

ANNALS

N7N71

142315

OF THE

NEW YORK ACADEMY OF SCIENCES.

LATE

LYCEUM OF NATURAL HISTORY.

VOLUME X.

1897-1898.

NEW YORK: PUBLISHED BY THE ACADEMY. OCTOBER, 1898.

.

•

NEW YORK ACADEMY OF SCIENCES.

ν.

OF THE

ANNALS

CONTENTS OF VOLUME X.

Te

BY A. A. TYLER.	
Art. I.—The Nature and Origin of Stipules; Plates I—III	PAGES. 1-49
BY HENRY E. CRAMPTON, JR.	
Art. II.—The Ascidian Half-Embryo; Plates IV-V	50-57
. BY HERMAN S. DAVIS.	
Art. IIIThe Rutherfurd Photographic Measures of Sixty-five Stars	
near 61 Cygni	58–122
BY HERMAN S. DAVIS.	
Art. IVThe Parallax of 61 ¹ Cygni, deduced from the Rutherfurd	
Photographic Measures	122-160
BY HERMAN S. DAVIS.	
Art. V.—The Rutherfurd Photographic Measures of Thirty-four Stars	
near "Bradley 3077."	161–187
FRANK SCHLESINGER.	
Art. VIThe Præsepe Group; Measurement and Reduction of the	
Butherfurd Photographs	180_986

8

•

OFFICERS OF THE ACADEMY. 1898 - 1899.

President.

HENRY F. OSBORN. American Museum of Natural History.

Vice-Presidents.

N. L. BRITTON,

Secretary, RICHARD E. DODGE.

Teachers College, W. 120th St.

J. F. KEMP.

Corresponding Secretary, WM. STRATFORD. College of the City of New York.

Treasurer, CHARLES F. COX. Grand Central Depot.

Librarian, ARTHUR HOLLICK, Columbia University.

Editor.

GILBERT VAN INGEN. Columbia University.

Section of Astronomy and Physics.

P. H. DUDLEY, Chairman, 90 Pine St.

REGINALD GORDON, Secretary. Columbia University.

Section of Biology.

EDMUND B. WILSON, Chairman, GARY N. CALKINS, Secretary. Columbia University.

Columbia University.

Section of Geology and Mineralogy.

JAMES F. KEMP, Chairman, Columbia University.

GEO. F. KUNZ, Secretary. 15 Union Square.

Section of Anthropology, Philology and Psychology.

L. A. MCLOUTH, Chairman, New York University.

A. V. W. JACKSON, Secretary for Philology, Columbia University.

CHAS. B. BLISS, Secretary for Anthropology and Psychology. New York University.

NOTE REGARDING PUBLICATIONS

OF THE

NEW YORK ACADEMY OF SCIENCES.

Publication of the **Transactions** of the Academy is discontinued with the issue of Volume XVI, 1898. The matter heretofore printed in the Transactions will be incorporated in the Annals.

The **Annals** (8vo), beginning with Volume XVI, will appear with new forms of typography and arrangement of matter; many changes having been made in the endeavor to facilitate the use of the volume for reference purposes. A volume of the Annals will hereafter coincide with the calendar year and will be issued in three parts. The price per volume is three dollars.

The **Memoirs** in quarto form will be published at irregular intervals. Part I of Volume I has been issued.

ANNALS

OF THE

NEW YORK ACADEMY OF SCIENCES, VOLUME X.

I.— The Nature and Origin of Stipules.

BY A. A. TYLER, A.M.

Read Feb. 8, 1897.

The investigation which has resulted in the preparation of this dissertation was undertaken with a view to determine the true nature and phylogenetic origin of those appendages of the bases of the petioles of leaves which are known as stipules and which are present in so large a number of the families of flowering plants.

The data have been collected from every available source; the evidences to be gathered from known geological facts have been taken into consideration, observations have been made upon the morphology and anatomy of the foliar organs in a large number of cases, and the gradual modification of leaf-forms in the annual growth of plants from simple scales to adult leaves has been carefully studied. In addition to the data so gathered, the literature dealing with the subject, relatively scanty though it is, has yielded much valuable material both by the record given of the observations of others and by the suggestion of lines of investigation.

With all this material in hand, I have endeavored to ground the theoretical consideration of the problem upon the broadest foundation possible in the present stage of the progress of science, and from a comparative study of the evidence gathered from all the various sources of information, have drawn the conclusions set forth at the close of my paper.

ANNALS N. Y. ACAD. SCI., X, April, 1897.-1.

The results of my investigations are herewith given to the public with the conviction that conclusions arrived at in the manner indicated cannot fail of interest to the reader, nor, in some degree at least, of scientific value.

COLUMBIA UNIVERSITY,

NEW YORK, Feb. 8, 1897.

SYNOPSIS.

1

A Review of important Literature pertaining to Stipules	3
The Nature and Origin of Stipules :	
The Field of Enquiry defined	22
Theoretical Discussion of the Primitive Leaf	23
The three Types of Leaf-development as regards the Formation of	
Stipules :	
a. When all the Parts develop as a Unit	29
b. When a sheathing Petiole, Ligule, or Ochrea is formed	32
c. When Stipules are formed	37
Conclusions	48

 $\mathbf{2}$

A REVIEW OF IMPORTANT LITERATURE PERTAINING TO STIPULES.

Owing to the fact that a large part of the literature pertaining to stipules is inaccessible to the majority of botanical students, scattered as it is, for the most part, in the journals of various scientific bodies, it has seemed desirable to preface the consideration of the results of my research on the question of the Nature and Origin of Stipules with a brief summary, in chronological order, of the publications having reference to the general subject of stipules. I have, however, omitted mention of their consideration in systematic works and the general allusions and definitions as they occur in most general works on the Spermatophyta together with their special consideration in individual species and groups except in the most important cases.

Stipules have not received a very large degree of attention from botanists apart from their morphology as used in classification and the publications to be considered are not very numerous, but it is thought that a review of those following will be profitable and of general interest:

Malpighi, Marcello.-Opera omnia, 22-39. 1686.

This is one of the earliest works in which stipules are treated. A considerable number are figured and described under the name of *foliola caduca*.

Linnæus, Carolus.-Philosophica Botanica, 50. 1751.

A general definition is given of stipules as scales borne at the base of the petiole. Buds are spoken of as formed by stipules, by petioles, or by rudiments of leaves.

Linnæus, Carolus.—Prælectiones in ordines naturales plantarum, 520. 1792. (Cited by Hanstein in Abhandl. Akad. Berlin, 77. 1857.)

In speaking of the whorled leaves of the Stellatæ, Linnæus says that only two of these leaves are true leaves, the remainder are stipules which have grown to the same size as the leaves.

De Candolle, Augustin P.- Theorie de la Botanique, 364. 1819.

The stipule is defined as a foliaceous appendage or accessory leaf situated at the base of certain leaves. The stipel, first so named by De Candolle, is defined as a stipule placed on the common petiole at the base of the leaflets. De Candolle, Augustin P.-Organographie Végétale, 1 ; 334-341. 1827.

De Candolle's views as here expressed may be outlined as follows: "Stipules do not exist in any monocotyledonous plant," nor in any dicotyledons in which the petiole has a sheathing base; among dicotyledons with leaves not sheathing, stipules are frequently wanting, especially in plants with opposite leaves. Their existence is intimately connected with the general symmetry of plants, and they occur or are wanting in all the species of a family.

"The only essential character of stipules is their lateral position at the base of the leaves, and it is not impossible that we confound under a common name objects really distinct. Their texture is, in many plants, perfectly foliaceous and in these cases they exhibit so exactly the character of leaves that we can say that they are small accessory leaves.

"In certain verticillate leaves, such as those of *Galium*, it is noticeable that the buds and young branches are not produced in the axils of all the leaves, but only of two among them which are opposite to one another. I presume that these two leaves furnished with buds are the true leaves and that the others should be considered as foliaceous stipules.

"The natural use of stipules seems to be the protection of the leaves during their development, but we must admit that in many cases their smallness or their nature or form make them inappropriate to this use, though we cannot well assign another to them, those which are foliaceous assist in the elaboration of the sap, those which are changed into spines serve for the defense of the plant.

"The tendril in the Cucurbitaceæ is perhaps a modified stipule. The ochrea of Polygonums is a prolongation of the base of the petiole into connate stipules."

In volume 2, pages 213 and 214, De Candolle says in treating of buds, "They have received particular names according as they are formed by different parts of the foliar organs, and according to the degree of their degeneration and adnation.

"1. Buds are called foliar when, the leaves being sessile, the blade itself, reduced to the form of a scale, forms the buds, as in *Daphne mezereum* L.

"2. They are called petiolar when the bases of the petioles dila-*See also A. Richard. Précis de Bot., 126.

4

ted into scales form the covering of the young shoot. This occurs in petiolate leaves without stipules, as in the walnut, ash and horse-chestnut.

"3. Buds are stipular when the scales are formed, not by the leaves, but by the stipules which are not united with the petioles. Of these there are two sorts,—those which are formed by a great number of stipules enclosing a young shoot collectively, as in oaks, willows and elms, and those in which the stipules, free or united by their exterior margins, form a peculiar envelope for each leaf, as in *Ficus* and the magnolias.

. "4. When the stipules are adherent with the petiole, these two organs united into one form the bud scales, and are named fulcral. This occurs in most of the Rosaceæ, and the scales are frequently three-lobed or three-toothed, indicating the origin of the scale formed by the petiole and the two stipules united together." Plate 21, figure 9, shows the progressive change from scales to foliage-leaves in buds that are fulcral in nature.

Bischoff, G. W.-Lehrbuch der Botanik. 177-183. 1834.

The subject is here more fully outlined than in De Candolle's Organographie. Stipules are defined as peculiar leafy expansions at the base of a free middle leaf. They are recognized as belonging to the leaf on the ground of their frequent connection with the petiole, the receiving of their vascular bundles from those of the leaf and the absence of buds from their axils. Various kinds of stipules are described and the ochrea, the ligule, the stipule in the Naiadaceæ and the ochrea of palms are included with stipular formations.

Lindley, John.-Introduction to Botany, 99. 1832.

The following statement is of interest: "The exact analogy of stipules is not well made out. I am clearly of opinion that, notwithstanding the difference in their appearance, they are really accessory leaves; because they are occasionally transformed into leaves, as in *Rosa bracteata*, because they are often indistinguishable from leaves of which they obviously perform all the functions, as in *Lathyrus*, and because there are cases in which buds develop in their axilla, as in *Salix*, a property peculiar to leaves and their modifications." The character of stipules is denied to the tendril of the Cucurbitaceæ and the tendrils of *Smilax* (p. 96) are regarded as lateral branches of the petiole.

ANNALS N. Y. ACAD. SCI., X. April, 1897.-2.

Henry, A.—Recherches sur les hourgeons. Nova Acta Acad. Nat. 18:525-540. 1836. (Cited by Clos in Bull. Soc. Bot. Fr. 26: 193. 1879.)

Henry says that he recognizes in the Betulaceæ and Cupuliferæ that the bud-scales are formed by stipules in an anamorphosed condition, and that in *Platanus* they are formed by the ochrea as he terms the basal foliar appendage in this genus.

Lestiboudois, Them.-Etudes sur l'anatomie et la physiologie des vegetaux. 1840. (Cited by himself in Bull. Soc. Bot. Fr. 4 : 746-747. 1857.)

The author states that he has shown that stipules are parts of the leaf, formed by the bundles or lateral fibers of these organs, whether they arise from bundles not yet having left the stem, from anastomosing arcades which unite the leaves as in the Stellatæ, or from the fibres of the petiole, as in the adnate stipules of Rosaceæ, or whether they are in part supplied by bundles directly from the cauline cylinder, as in *Platanus*.

In relation to the tendril in the Cucurbitaceae, he states that its bundles are derived from those which pertain to the axillary bud; that it is therefore not a stipule, but the first foliar appendage of the axillary branch for its fibro-vascular bundles are not disposed like those of stems, but are analogous with those of petioles.

St. Hilaire, Aug.-Leçons de Botanique. 170, 1840. (Quoted by Colomb in Ann. Sci. Nat. (VII), 6:28. 1887.)

It is stated that the tendrils of Smilax are to be considered as lateral leaflets of a compound leaf.

Agardh, J. G.-Ueber die Nebenblätter der Pflanzen. (Reviewed by Fries and Wahlberg in Flora, 33: 758-761. 1850.)

Agardh believes that, although stipules have been considered as degenerate appendages of the leaf or modifications of it, they are not at all a part of the leaf because they are formed before it, and must be considered as independent organs. The outer bud-scales and also the protective coverings of the earliest shoots of a plant are a kind of stipule-formation, leading to the conclusion that in the lower part of a shoot or the outer part of a bud the stipuleformation preponderates, and in the upper or inner parts, the leafformation, so that often at the lowest nodes the leaf does not develop and at the upper stipules are absent. In *Tussilago* there are special leafy shoots and the flowering shoots are provided with stipules only. From these considerations Agardh concludes that there are two kinds of appendicular organs instead of one, namely stipules and leaves.

Astaix.—Essai sur la Théorie des stipules, thése de l'Ecole de pharmacie de Paris. 1–25. 1841. (Cited by Clos in Bull. Soc. Bot. Fr. 1: 302. 1854.)

The conclusion is reached that the leaf is not a primitive appendage of the stipule and that the stipule is nothing more than an appendage of the leaf.

Regel, E.-Beobachtung über den Ursprung und Zweck der Stipeln. Linnæa, 17: 193-234. 1843.

Regel has studied the development of stipules in seedlings and in the growth of individual leaves. He believes, but does not feel ready to assert, that stipules are present in all Angiosperms in the earliest stages of growth. He therefore includes in stipular formations the ligule, ochrea, sheathing petiole and the supernumerary leaves of the Stellatæ. He concludes from his observations:

1. "That all the leafy organs of phanerogamic plants are divided into two entirely distinct formations, the stipular and leafformations.

2. "That the stipular formation arises from the base of the meristem tissue of the leafy axis, covering the summit, but always with a longitudinal cleft or one passing transversely across the apex.

3. "That perfect stipules are formed by the occurrence of two, four or more clefts in the original stipular sheath, giving rise to as many stipular leaflets.

4. "That the stipules receive their vascular bundles directly from the stem, and are usually parallel veined because of their forming originally a completely encircling sheath.

5. "That they serve always for the protection of the growing point and of the true leaves, when these are present, during their development.

6. "In all plants, organs adapted for protection belong not to the leaf-formation but to the stipule-formation.

7. "That stipules are to be regarded as a formation preceding the leaf-formation, since they appear before the leaves.

8. "That they belong primarily to a nodal ring distinct from that producing the leaves and situated either above or below it. From these relations, as regards the leaf, interior and exterior stipules are distinguished.

9. "Interior stipules protect the formation of the following node and leaves. The leaf at the same node develops somewhat earlier or at about the same time.

10. "Exterior stipules develop before the leaf at the same node and therefore protect their own node with its leaf.

11. "As stipules are limited in the time during which they are functional, they lose their significance as soon as this purpose is fulfilled. They do not produce buds in their axils except in cases where true leaves are not developed."

The following statement (p. 227) should be noted. "In some species of *Thalictrum* the membrane rising above the inner margin of the base of the petiole is the analogue of the ligule."

Kirschleger, F.-Flora, 28:615. 1845.

The tendril of Cucurbitaceæ is regarded as a normal stipular formation.

Mercklin, C. E.-Entwicklungsgeschicte der Blattgestalten. 1846. (Translated into the French in Ann. Sci. Nat. (III), 6: 215-246. 1846.)

The statements of Mercklin are contrary to those of Regel. He says, "In all cases the stipules of the developing leaf appear as portions of the lamina; it is only later, during the development and elongation of the petiole, that they become sufficiently separated to be considered as distinct organs. In all simple leaves the stipules never appear at the same time with the first rudiments of the lamina; they develop only with the inferior parts of the lamina including the petiole."

"From my observations of stipules I conclude that in common with the leaflets they owe their origin to the common petiole and are formed later than the leaflets."

Krause, G.—Einige Bemerke über den Blumenbau der Fumariaceæ und Cruciferæ. B. Cruciferæ. Bot. Zeit. 4:137–150. 1846.

Stipules in the Cruciferæ are considered (pp. 142–145) and the homology with stipules of the so-called glands at the base of the leaves is established by a careful series of observations upon their development. The glands of the bracts and floral organs are also included.*

*See also Duchartre, Rev. Bot. 2: 208. 1845-7 and Norman, Quelques Observ. de Morph. Veg. 1857.

Jussieu, Adrien.—Cours d'Histoire Naturelle: Botanique. 108-111. 1852.

Speaking of the leaf-sheath, Jussieu says that "sometimes the vascular bundles converge little by little, and there is a gradual transition from the sheath to the petiole; sometimes the marginal bundles stop after a course varying in length, or are prolonged in another plane than that of the petiole, and then there is a clear distinction of petiole and sheath. Often, however, the parenchyma does not unite the lateral bundles to the central ones which continue in the petiole, and this is the probable origin of many stipules."

Trécul, A.-Sur la Formation des Feuilles. Ann. Sci. Nat. (III), 20: 288-299. 1853.

The usual classification of stipules is given with the addition of extra-foliar stipules to include those of *Nelumbium*. The author says, "In all adnate stipules that I have seen, they do not envelop the leaf to which they belong, but that which comes next after them, and their own leaf is protected by the stipules of the leaf preceding. Under these circumstances the stipules play the same rôle as the sheath, from which they differ very little. We see thus clearly that there is the closest analogy between the formation of adnate stipules and that of a sheath; the analogy is such that it is impossible to distinguish between them in principle." All the forms of stipules, the ochrea, the tendrils of *Smilax* and the ligule of grasses are classed together.

Among the conclusions those relating to stipules are as follows: In basifugal leaf-formation all the parts are formed from below upward, the stipules first of all. In leaves with basipetal formation, the stipules have their origin earlier than the lower parts of the blade and sometimes even before the upper.

Trécul, A.-Vegetation du Nelumbium codophyllum. Ann. Sci. Nat. (IV), 1: 291-298. 1854.

In the seedling of this plant the leaves are in two ranks on the upper and lower sides of the rhizome and each of them is provided with an axillary stipule. In its later stages the leaves of the lower rank are aborted with the exception of the stipule of every second one and in the upper rank every second leaf is represented by the stipule only. The internodes above the stipules which stand alone remain undeveloped so that three stipules are associated with each leaf, one axillary and two extra-axillary. One of these last is on the upper side of the rhizome external to the leaf, the other on the lower side.

This paper was presented before the Botanical Society of France, May 24, 1854. M. Ad. Brongniart took part in the discussion which followed. He agreed with Trécul in his conclusions and closed with the statement that "this arrangement recalls that of certain buds in which the scales result from the stipules of leaves of which the petiole and blade are alike aborted." M. F. J. Lestiboudois remarked that "to decide whether stipules are an integral part of the leaf, it is necessary to study them anatomically. In other plants the same fibro-vascular bundles are distributed to the leaf and stipules. Stipules should therefore be regarded as appendages of the leaf."

Clos, D.—Considerations sur la Nature du prétendu Calicule ou involucre des Malvacées. Bull. Soc. Bot. Fr. 1: 289–303. 1854.

The stipular nature of the parts of the involuce or exterior calyx in the Malvaceæ is asserted contrary to the views of Aug. St. Hilaire (Leçons de Bot. 372. 1840) and the term *stipulium* is suggested as applicable to it.

Clos, D.-Du Stipulium chez les Géraniacées, les Légumeneuses et les Rosacées. Bull. Soc. Bot. Fr. 2; 4. 1855.

The term *stipulium* is applied to the exterior calyx of the Malvaceæ and the involuce of the umbel of some Geraniaceæ. In the Cistaceæ the bractlets of the calyx are wanting in exstipulate species.* In many of the Leguminosæ and Rosaceæ the bracts are evidently formed by stipules.

Clos, D.-La Vrille des Cucurbitacées, Organe de Dédoublement de la Feuille. Bull. Soc. Bot. Fr. 3: 545-548. 1856.

The different theories regarding the tendril in the Cucurbitaceæ are briefly stated. They have been considered to be roots; abortive peduncles by Tassi; stipules by De Candolle, Stoks and Aug. St. Hilaire; leaves by Gasparini, Seringe and Braun; degenerate branches by Meneghini; superfluous branches by Link; terminal branches of the axis as in Vitaceæ by Fabre; partly leaf, partly branch by Naudin. Clos concludes that the tendril arises by a division of the leaf, three fibrovascular bundles entering the leaf when there is no tendril and two when the tendril is present and receives the third bundle.

*See also Aug. St. Hilaire. Leçons de Bot. 326 and 371. 1840.

Clos, D.-Les Vrilles des Smilax ni Folioles ni Stipules. Bull. Soc. Bot. Fr. 4: 984-987. 1857.

A summary is given of the literature pertaining to the tendrils of *Smilax*. They are considered as representing two lateral leaflets of a compound leaf by von Mohl (Ueber den Bau und das Winden der Ranken und Schlingpflanzen, 41, 1827), Lindley (Introd. to Botany, Ed. 2, 118, 1835), Link (Elem. Phil. Bot. Ed. 2, 1:478, 1837), St. Hilaire (Leçons de Bot. 170 and 854, 1840), Le Maout (Atlas de Bot. 23, 1846) and Duchartre (Art. vrille in Dict. Univ. Hist. Nat.).

Mirbel (Élém. de Physiol. et de Bot., 2: 680, 1815), Treviranus (Physiol. der Gewachse. 2: 138, 1838), Seringe (Élém. de Bot. 175, 1841), De Candolle (Theorie Élément. Ed. 3, 321, 1844), Trècul (Ann. Sci. Nat. (III), 20: 295, 1854) and Lestiboudois (Bull. Soc. Bot. Fr. 4: 745, 1857), believe these organs to be stipular tendrils. It is the opinion of Clos that they are neither leaflets nor stipules, but a double lateral prolongation of the cellulovascular elements of the petiole.

Rossman, J.-Beiträge zur Kentniss der Phyllomorphose. 1857. (Cited by Clos in Bull. Soc. Bot. Fr. 26: 192. 1879.)

Rossman considers the problem of the nature of stipules, and from a study of bud-scales arrived at his conclusions. He figures the passage from bud-scales to leaves in *Ribes sanguineum* Pursh, *Prunus Padus* L., *Spiræa sorbifolia* L., etc. He notes the presence in the bud-scales of three median veins, separated at the base and joining one another at the apex, where the petiole will originate. The lateral parts of the scale outside of these three nerves he believes to represent the stipules which show themselves at the appearance of the blade in two little points at the apex.

Hanstein, J.—Uebergürtleformige Gefässstrang-Verbindung in Stengleknoten dicotyler Gewächse. Abhandl. der Akademie der Wissenschaften zu Berlin, 1857 : 77-98. 1858.

The vascular nodal girdle of the Stellatæ is treated of at length. It is shown that from this girdle arise the bundles that supply those leaves of the whorl which are really stipules, and in some cases also the veins of the lateral parts of the true leaves. Similar nodal girdles are shown to exist in other families of plants, notably in Sambucus, Valeriana, Verbena, Dipsacus, Scabiosa, Dahlia and Silphium. In Sambucus Ebulus L. the girdle sends off vascular branches to true stipules. In the majority of other cases if branches arise they enter the margins of the petioles or the interfoliar portions of connate leaves. In *Platanus* and *Liriodendron* with alternate leaves, each of which receives seven vascular bundles, a similar girdle is shown to pass around the stem posterior to the leaf, and is there joined by another small leaf-trace bundle. From this girdle arise a part of the stipular veins, the others being branches of the sixth and seventh leaf-trace bundles.

Clos, D.-Sépales Stipulaires. Bull. Soc. Bot. Fr. 6: 580-589. 1859.

It is argued from the similarity of the sepals to the divisions of the involucre (stipulium) and also to the stipules of the fully developed foliage leaves which is frequently observed, that they represent stipules. This is held to be true in many Geraniaceæ, Malvaceæ, Begoniaceæ and Cistaceæ. In concluding Clos adds the theoretical consideration that "whether or not stipules are admitted to be organs different from the leaf, analogy seems to demand that in some cases at least they should participate in some degree in floral formation."

Cosson, E.- Note sur la Stipule et la Préfeuille dans le Genre Potamogeton. Bull. Soc. Bot. Fr. 7: 715-720. 1860.

"The stipule in *Potamogeton* is very closely like the first leaf of one of the branches. It is homologous with the ligule of the Gramineæ and Cyperaceæ and is constituted by a single organ, not by two united by their margins."

Eichler, A. W.-Zur Entwicklungsgeschichte des Blattes. 22-31, 1861 (Cited by Martin Franke in Bot. Zeit. 54 :45, 1896.)

Stipules are said to arise without exception as a product of the leaf base of the primordial leaf. This mode of origin of the stipules is their chief characteristic. Their form, their more or less foliaceous condition and their persistence are secondary.

In individual leaf development in the Stellatæ, the whorl originates in a uniform ring about the growing point. Then arise two opposite prominences in the ring. These develop into the true leaves. After them appear two smaller prominences on each side of the stem between the first. These are the stipules. According to the species they develop separately, forming six-leaved whorls, or grow together giving origin to four-leaved whorls.*

With this view Göbel agrees (Schenk's Handbuch der Botanik 3 : 230. 1884), except that he does not distinguish the time of appearance of the different parts of the whorl. Where a larger number of leaves occurs, an additional prominence for each arises between the original stipular prominences.

Cauvet, D.—Probabilité de la Presence des Stipules dans quelques Monocotyedones. Bull. Soc. Bot. Fr. 12:241. 1865.

A number of cases are considered and the conclusion drawn that very probably some Monocotyledones are provided with stipules, but the difference in their form and position has caused them to be considered as another kind of organ.

Meehan, Thomas.—On the Stipules of Magnolia and Liriodendron. Proc. Acad. Nat. Sci. Phila. 114-116. 1870.

Mr. Meehan argues for the origin of the stipules of Magnolia as lobes of the lamina similar to the auricles which occur in *M. Fraseri* Walt. by a union of the auricles with the upper surface of the petiole, and a subsequent adnation of their margins and separation from the lamina. He says, "It is scarcely possible to avoid the suspicion that the stipules of Magnolia are not formed like the stipules of most plants which are perhaps leaf portions which have never been well developed, but rather are the tolerably well developed side pinnules of a trifoliate or deeply auricled leaf."

Speaking of observations upon the flowers of M. fuscata Andr., of East India, the following interesting statement is made: "This observation confirms the views of some botanists as I have learned from Professor Asa Gray, that it is by metamorphosis of the petiolar and stipular parts, rather than by modifications of the leaf-blade, that petals are formed."

Duval-Jouve, J.—Sur quelques tissues de Joncées, etc. Bull. Soc. Bot. Fr. 18 : 231–239. 1871.

The presence of the lignle in the Juncaceæ is treated of. To quote the author, "If in certain species the ligule is so reduced that it appears to be lacking between the separated auricles at the apex of the sheath, in most others these auricles are united by a true ligule, as pronounced as that of grasses, either entire or cleft at the middle."

Dutaily, G.—Sur les variations de structure de la ligule des Graminées. Bull. de la Soc. Linnéene, 170. 1878.

*F. Pax (Allgemeine Morph. der Pflanzen, 100. 1890) says, when there are more than six parts to the whorl, the additional parts must have their origin in a division of the blades of the stipules.

It is argued from the presence of a median vein in the ligule of some of the grasses in which this organ is supplied with vascular support that it cannot be formed of two stipules grown together.

Hilburg, C.—Dissertation über den Bau und die Function der Nebenblätter. (Reviewed by F. Hildebrand in Flora, (II), 36:161–167. 1878.)

The general neglect of the subject of stipules and the timeliness of this dissertation is referred to by the reviewer.

The functions of stipules as protecting organs are discussed. They are considered under the heads of (1) those protecting the buds in winter, (2) those protecting the growing parts in the spring, (3) those which serve as protection against insects and other animals, (4) those which serve as well the function of assimilation.

The adaptation of most stipules in their form and manner of growth to the special function they are intended to fulfill and the apparent lack of function in others is remarked upon.

Clos, D.—Des Stipules et de leur rôle à l'infloresence et dans la Fleur. Mem. Acad. Sci. Toulouse, (VII), 10: 201-317. 1878.

This paper is the first part of an extended consideration of the subject of stipules. It deals with their occurrence in the families of plants and their importance in classification on account of the great variety of their characteristics.

Clos, D.—De la part des Stipules a l'infloresence et dans la Fleur. Comptes Rendus, 87: 305-306. 1878.

The stipular nature of the sepals in Geranium, Helianthemum, Begonia, Oxalis, Alchimilla, Viola and many other genera in different families is maintained.

Dixon, Alex.—On the stipules of *Spergularia marina*. Journal of Botany (Trimen), 7: 316. 1878.

Attention is called to the anomalous connation of the stipules of *Spergularia marina* Griseb. exterior to the petioles of the opposite leaves.

Clos, D.—Des Stipules considérées au point de vue morphologique. Bull. Soc. Bot. Fr. 26: 151–155. 1879.

Under this title a summary of the opinions of botanical authorities as to the true nature of stipules is given and the different theories are briefly discussed.

Various leaves have been considered as stipules, for example the primary leaves of Asparagus (Dutrochet), the first leaves of the branches of Verbena aphylla Gill & Hook. (Hooker, Bot. Misc. 1: 116. 1830) and of the Piperaceæ (C. DeCandolle, Mém. sur les Piper. 18–19, 1866), and the first two leaves of the axillary buds of many Solanaceæ.

The appendages sometimes accompanying the leaf in some Convolvulaceæ, as *Ipomea stipulacea* Sweet., have been considered as stipules (Jacquin. Pl. Hort. Schoenbr. Descr. et Ic. 2: 39. 1797).

Many have regarded stipules as leaflets, as for example in *Vibernum* (Baillon, Adans. 1: 372. 1860), and the lower leaflets in many plants have been taken for stipules, as in *Cobæa scandens* Cav. (Blume. Rumphia 3: 142. 1837), and *Lotus tetraphyllus* Murr. (Linnæus, Trinius, E. Meyer, Fischer.)

In 1844 Wydler declared that stipules belong to the sheath and cites examples of transition between the two kinds of organs in the Rosaceæ, Polygonaceæ, Leguminosæ, etc. Stipules, in connection with the sheath have been ascribed to *Ranunculus*, *Isopyrum* and *Thalictrum* by Lloyd (Fl. de l'Ouest de Fr. Ed. 2, 1868), to *Callha* by Wydler, Kützing (Grundz. der phil. Bot. 684, 1851-52) and Hooker. They have been recognized in the scales of the stems of the Aroids.

The so-called "decurrences" of leaves do not differ anatomically from stipules and are to be considered as identical with them, as for example in *Crotalaria*.

The tendril of the Cucurbitaceæ has been regarded as a stipule by Seringe (Mém. Soc. Hist. Nat. Genèv. 3: 1–31. 1825), De Candolle (Organ. Veg. 1: 336. 1827), Kirschleger (Flora, 28: 615. 1845), Stoks (Ann. Nat. Hist. 1846), Payer (Elém. de Bot. 53. 1857–58), Parlatore, etc. Those of *Smilax* have been so considered by Cauvet (Bull. Soc. Bot. Fr. 12: 241. 1865), but are looked on by Clos as "simple prolongations of the fibro-vascular bundles of the petiole without morphological signification."

The spines of the orange are considered as stipules by Du Petit-Thouars (Cours de Phytol. 47. 1820). Clos regards them as branches and those of Amaranthus spinosus L. as leaves, though they are considered stipular by Lamarck (Encyc. Meth. 2: 118. 1786). Ribes shows stipular spines in some species. The spines of Xanthium spinosum L. mentioned by Sachs as occupying the place of stipules, Clos regards as representing pistillate flowers. He looks with disfavor on the doctrine that the glands at the base of the leaves in Resedaceæ, Cruciferæ, Epilobium, Lythrum and some Euphorbiaceæ and Balsaminaceæ as well as the axillary hairs in some Portulacaceæ are stipules.

Clos, D.—Indépendance, developpement, anomalies des stipules; Bourgeons a écailles stipulaires. Bull. Soc. Bot. Fr. 26: 189-193. 1879.

Stipules have been regarded as appendages of the leaf by Du Petit-Thouars (Cours de Phytol. 46, 1820), Aug. St. Hilaire (Leçons de Bot. 189, 1840), G. St. Pierre and F. J. Lestiboudois.

Clos agrees with Agardh in considering stipules as independent organs, giving as his reason that frequently in the Rosaceæ, Leguminosæ, Malvaceæ, Geraniaceæ, etc., the stipules persist alone, the leaves having completely disappeared, whether in the infloresence or at the base of stems and branches.

Under the head of the development of stipules the conflicting opinions of Mercklin and Trécul as to their time of appearance in relation to that of the leaf-blade is referred to. Agreement with Trécul is indicated and the evidence is not considered sufficient as a basis for the theory of the autonomy of stipules on the ground that they appear before the leaf-blade.

In consideration of stipular bud-scales reference is made to their recognition by Linnæus (Phil. Bot. Ed. 3, 52. 1790), Adanson (Familles des Pl. 246, 1763), De Candolle (Ann. Sci. Nat. (III), 5: 321, 1846)* and Lindley (Veg. Kingdom, 283, 1846).

Göbel, K.-Beiträge zur Morphologie und Physiologie des Blattes. Pt. I. Die Niederblätter. Bot. Zeit. 38: 753, etc.-845. 1880.

This extended treatise deals with bud-scales and the scales of subterranean parts of plants and their homologies with leaves. Speaking of the primordial leaf Göbel says, "it is divided into two parts, a stationary zone which takes no farther part in the leaf-formation and a part out of which the lamina is developed." He calls these parts respectively the leaf-base and upper-leaf and states that the petiole arises after the formation of the blade and is inserted between the two parts.

Bud-scales are regarded as modified foliage-leaves and divided into those formed from the blade (Syringa), those formed by the leaf-base (\mathcal{E} sculus, Prunus), and those consisting of stipules (*Liriodendron*, Quercus). In Prunus, etc., the formation of the bud-scales by the union of petiole and stipules is denied on the ground that the continuous separate development of the petiole and stipules can be followed.

* See also Org. Veg. 2: 213. 1827.

The scales of rhizomes are divided into those formed by a development of the leaf-base (*Dentaria*, *Chrysosplenium*) and those formed by a modification of the upper-leaf (Labiatæ, Onagraceæ).

Colomb, G.—Note sur l'ochrea des Polygonées. Bull. Soc. Bot. Fr. 33 : 506-507, 1886.

"The ochrea of the Polygonums is a complex organ formed of two parts: one opposite the leaf, the leaf-sheath, the other in its axil and detached from the petiole. This is a ligule." "Practically the same conditions prevail in the Gramineæ as in *Polygonum* with the difference that in the former the sheath proper is greatly developed and little prolonged beyond the insertion of the blade, while in the latter, the sheath proper remains short and is much prolonged above the petiole. By union with the ligule it forms an ochrea. So considered the ochrea is not peculiar to the Polygonaceæ. It is found also in *Ficus* and *Magnolia*, establishing the transition between the ochrea and stipules properly so called.

Vuillemin, P.—Apropos d'une recent communication de M. Colomb. Bull. Soc. Bot. Fr. 34: 141-142. 1887.

Commenting on the preceding paper, the author says that the leaf is primitively unifasciculate. The concrescence of a verticil of elementary leaves, such as occurs in the fossil *Asterophyllites*, gave a sheath analogous to that of Equisetum; the bundle of one of these elementary leaves becoming predominant and functioning as a midvein gave rise to an aggregate leaf, the first stage of a high differentiation. In this way the origin of the leaf-blade in *Polygonum*, *Platanus*, etc. is explained, while the ochrea, the homologue of the sheath of Equisetum, remains as a vestige of the primordial state.

Kronfeld, M.—Ueber die Beziehung der Nebenblätter zu ihrem Hauptblatte. Verhand. der Kais.-Konig. Zool.-Bot. Gesellschaft Wien. 37. Abhandl. 69-79. 1887.

The author has made investigations experimenting upon a large number of plants, by the removal of the lamina of the leaves at the earliest possible stage of development, in order to observe the effect upon the development of the stipules and so determine their physiological relation to the leaf-blade. Only in exceptional cases was the ultimate size of the stipules increased, and those where the stipules were normally foliaceous. Colomb, G.—Recherches sur les stipules. Ann. Sci. Nat. (VII), 6 : 1-76. 1887.

This paper is the result of an exhaustive anatomical study of stipules and their homologues. The results obtained are of great interest and value. They are admirably summed up at the close of the paper as follows :

"When a leaf is sheathing, the sheath may be prolonged in a ligule situated above the point of insertion of the blade upon the sheath.

"In this organ three regions may be recognized :

"1. The lateral regions into which the marginal bundles of the sheath are merely prolonged. These regions naturally do not exist if all the bundles of the sheath enter into the leaf.

"2. The stipular regions, the bundles of which arise from a doubling of the last bundle of the sheath entering into the leaf.

"3. The axillary region, which unites the two stipular regions, a lamina, usually of parenchyma, but which may receive bundles arising from the internal doubling of those bundles of the sheath which become petiolar.

"The sheath may be reduced even to complete disappearance without a consequent disappearance of the ligule.

"1. If the ligule is complete with its three regions, I give it the name of an axillary ligule.

"2. If the stipular and axillary regions only persist, the sheathing regions having disappeared, we have an axillary stipule.

"3. If finally the axillary region divides into two halves, right and left (which would not be remarkable, considering its purely parenchymatous nature), the stipular regions exist alone at the base of the petiole, and we have then stipules properly so-called.

"Stipules and the ligule are then organs of the same nature, between which it is possible to find all forms of intergradation, the stipule being a portion of the axillary ligule.

"When, finally, the manner of origin of the bundles of the stipule is studied, we arrive at the following definition of the organ: An appendage inserted on the stem, at the base of the leaf, all the bundles of which arise exclusively from the corresponding foliar bundles."

Each of the tendrils of a leaf of *Smilax* is characterized as a demi-ligule, the "stipule" of *Potamogeton* as a ligule identical with that of grasses, the ochrea of *Polygonum* and *Platanus* as axillary

stipules, the stipules of *Ficus elastica* Roxb. and *Magnolia grandiflora* L. as axillary ligules.

Ward, L. F.—The Paleontologic History of the Genus Platanus. Proc. U. S. Nat. Mus. 11: 39-42. 1888.

Professor Ward says (p. 41) in speaking of the fossil leaves of *Platanus basilobata* Ward, of the Yellowstone valley, that some of those found had "a remarkable expansion at the base of the blade, projecting backward on the leaf-stalk and having two to five lobes or points.

"These expansions are to be interpreted as evidence that the leaves all belong to *Platanus* or to some extinct ancestral type of the genus, since something quite analagous to them is found in our American plane-tree. The ordinary leaves of this tree are, it is true, destitute of basilar expansions, but those on young shoots, and sometimes those on the lower or non-fruit-bearing branches of trees exhibit this peculiarity.

"In place of this backward expansion of the blade many sycamore leaves have an appendage similar in shape at the base of the leaf-stalk, as though the once basilar appendage had been separated from the blade and crowded down the petiole to its point of insertion." This is shown in a short-petioled, wedge-shaped leaf from a young shoot of *Platanus* corresponding to the fossil form of *Platanus appendiculata* Lesq. from the auriferous gravels of California. The indication is that "the constriction seen in the fossil forms between the blade of the leaf and the appendage would seem to represent the beginning of this process of detachment."

Ward, L. F.-Origin of the Plane-Trees. Am. Nat. 24: 797-810. 1890.

The same cases as those in the preceding paper are discussed, the appendages in *Platanus appendiculata* Lesq. being described as stipular, while those of *P. nobilis* Newb. and *P. basilobata* Ward are not so considered.

Lubbock, Sir John.—On Stipules, their Form and Function. Jour. Linn. Soc. Lond. 28: 217-243. 1890.

"The primary function of stipules seems to be to protect the bud. In other species, however, they serve as accessory or deputy leaves. Their protective function is confirmed by the fact of their early fall. Some are more persistent than the leaves and protect the leaves of the following year. "When stipules are present [in *Helianthemum*] the petiole is always very narrow, semiterete, and tapered to the base. Where they are absent the leaf is often sessile and, whether or not, its base is always dilated and concave on the inner face, completely enclosing the bud up to a certain stage of its development."

The presence of stipules in the lower imperfect leaves of Ailanthus glandulosa Desf. is noticed, though the family of the Simarubiaceæ has been described as exstipulate. In Ribes sanguineum Pursh. the bud-scales are described as consisting of the dilated base of the petiole, the lamina being represented by a small black point. "One or two succeeding leaves bear a small lamina sessile on the sheath, which is wholly adnate to the thin dilated base of the petiole and membranous, especially outside of the three vascular bundles. The next one or two have a welldeveloped lamina, and the sheaths partly separated from the petiole and corresponding to stipules. Farther up the stipular sheaths are shorter and wholly adnate to the petiole."

The form and function of the stipules in a large number of species are described.

Lesquereux, L.-U. S. Geol. Surv., Monog. No. 117 : Geology of the Dakota Group. 1892.

Well-developed stipules of a species of *Betulites* from Kansas are described (p. 65) as having been found in their original connection with the leaf, and the discovery of leaves of a *Cratægus* with large undoubted stipules, from the Devonian of Wyoming is mentioned (p. 254). Speaking of a leaf of *Aspidiophyllum* (p. 232). Professor Lesquereux says, "the basilar appendage or pelta is like a primordial form of stipules, as in *Platanus basilobata* Ward of the Laramie group of Wyoming, *P. appendiculata* Lesq. of the auriferous gravels of California and definitively in *P. occidentalis* L. of the living flora."

Henslow, Rev. George.—On a Theoretical Origin of Endogens from Exogens. Jour. Linn. Soc. Lond. 29: 485-528. 1893.

The absence of vascular bundles in certain stipules is noted (p. 494).

Hollick, Arthur.—Wing-like Appendages on the Petioles of Liriophyllum populoides Lesq. and Liriodendron alatum Newb. Bull. Torr. Bot. Club, 21: 467-471. 1894.

These peculiar wing-like appendages are described and figured. Their similarity to the appendages in fossil species of *Platanus* as described by Professors Lesquereux and Ward is mentioned, and the probability suggested that we have here an explanation of the origin of the stipules of *Liriodendron Tulipifera* L. in the same manner as that indicated for those of *Platanus occidentalis* L. by Professor Ward. The presence of an unwinged portion of the petiole next to the blade in what is evidently the mature form of the leaves of *Liriophyllum*, and its absence in the immature ones is mentioned as tending to confirm the theory.

In commenting on this paper, the *Botanical Gazette* (19: 515, 1894) says, "The phyllopodium is to be regarded as an axis which has a tendency to develop wing-like appendages at any portion, notably, of course, in the epipodium. If stipules are branches of the hypopodium their origin has simply to do with the branching of that part of the phyllopodium, without any reference to the method of winging found in other regions."

Lubbock, Sir John.—On Stipules, their Form and Function. Pt. II. Jour. Linn. Soc. Lond. 30: 463-532. 1894.

This paper is a continuation of the author's former publication.

The presence of stipels in Sambucus Ebulus L. is noticed. The membranous protective margins of the sheath in Thalictrum aquilegifolium L. and the "membranous stipular processes at each trifurcation of the lamina" are mentioned, the latter "appearing to differ somewhat in their origin from the primary sheath." In treating of Ranunculus aquatilus L., the author says, "The terminal bud is enclosed by the stipules of the two uppermost expanded leaves. The developing leaves push their way out at the apex of the stipular sheath. Similarity of conditions have therefore developed in the aquatic Ranunculaceæ, an arrangement very similar to that of the Potamogetons."

The following remarks are of particular interest: "In Magnolia glauca L. the winter bud is covered by a pair of connate stipules adnate to a petiole that is less than half their length. Succeeding leaves are perfect, and the stipules are two or three times as long as the petiole, the free portions being connate by both edges, like a candle extinguisher, over the bud, so that the leaf appears to spring from the back. As they are adnate to the petiole, there is some reason to assume that the stipules once formed a sheath pure and simple to the leaf of some ancestral form." Franke, Martin.—Berträge Zur Morphologie und Entwicklungsgeschichte der Stellaten. Bot. Zeit., 54: 33-60. 1896.

In the part of this paper which treats of the development of the leaf-whorl the author agrees with Eichler that the stipules originate later than the principal leaves. But he says that in the species having four-leaved whorls never more than four prominences arise to develop into the parts of the whorl, and that if the parts number six or more, there is a distinct prominence for each. In the last case the supernumerary stipules first make their appearance in the course of development of the whorl a little later than the first pair of stipules.

Hollick, Arthur.—Appendages to the Petioles of Liriodendra. Bull. Torr. Bot. Club, 23: 249. 1896.

The author, referring to his former paper, describes and figures some abnormal leaves of *Liriodendron* collected from saplings, seedlings and new shoots from old stumps. One in particular of these leaves is of interest on account of its similarity to the fossil leaves of *Liriophyllum populoides* Lesq. both in the form of the lamina and especially in having a short petiole with broadly winged margins which extend from the base of the petiole and connect with the base of the leaf-blade.

The question is put whether in this case we have "stipules adnate to the petiole and leaf-blade, or portions of the leaf-blade which are acting the part of stipular appendages."

Such, in brief, is the import of what has been written on the subject of stipules, so far as I have been able to learn. The results of my own observations are not at variance to any very considerable degree with the opinions of most of the botanists who have studied the subject carefully, as will appear from the following exposition of my investigations and the conclusions at which I have arrived. To these I shall pass at once, deeming unnecessary farther comment on previous writings, except such as the statement of my results may imply.

THE NATURE AND ORIGIN OF STIPULES.

Though it is not part of the purpose of this paper to discuss the problem of the phylogeny of the plant world, it is nevertheless necessary in order to define our field of inquiry to make a brief statement concerning the probable relationship of the higher forms, namely of those in which foliar organs are developed, including in the widest interpretation the Characeæ, Bryophyta, Pteridophyta and Spermatophyta.

As, in the Characeæ and Bryophyta, the plant body represents the gametophyte stage of development, there can be no homology of the leaves of these plants with those of the Pteridophyta and Spermatophyta in which the plant body is the sporophyte. For this reason the so-called stipules of the Charas, together with the basal lobes or saclike and straplike appendages of the leaves of many Hepaticæ need not be taken into consideration.

Accepting the general theory of evolution in nature, we must admit that the origin of all the higher plants is algal, but just what the relationship of the Pteridophyta to the Spermatophyta may be is still an open question. The same is true in greater or less degree of the affinity of the Monocotyledones, Dicotyledones and Gymnospermæ in the latter group.

This question of relationship is of considerable importance in connection with the problem before us as determining the homology of the foliar appendages in the several groups. The evidence in support of the doctrine of the common origin of all the Angiospermæ is particularly strong and may be considered as conclusive. But the relationship of the Gymnospermæ to the Angiospermæ is more remote, and that of the Pteridophyta still more soand, though there are many points of resemblance, the similar characters may be cases of parallel development rather than indications of a common origin. It is my present opinion, however, that the Gymnospermæ sprang from some generalized hetero, sporous Pteridophyte,* that the early Angiospermæ were differentiated from related forms, and that therefore, the foliar organs in the three groups may be considered as homologous. But this homology can apply to the leaves of Pteridophytes in a very general way only, namely, to such undifferentiated forms of leaves as the ancestors which gave rise to the early Gymnospermæ and Angiospermæ may be supposed to have had. While, therefore, the foliar organs in the three classes are to be considered homologous in their origin, they cannot be so considered in their differentiation and the evolution of leaf-forms in the Pteridophyta and Gymnospermæ, though analogous in many points to their evolution among the Angiospermæ, should be regarded as independent. We may then consider the "stipule" of the Ophio-

*See Campbell, Mosses and Ferns, 300. 1895.

glossaceæ, Marrattiaceae and Osmundaceæ and the "ligule" of Selaginella and Isoetes as special developments and as properly placed in a separate category from the appendages bearing these names among the Angiospermæ. The Gymnospermæ present nothing to represent either stipule or ligule and we have left for our special consideration the ligule, stipule and their homologues as they occur in the various groups of the Angiospermæ only.

Having thus defined our field, we should have, for the considoration of the problem before us, some conception of what sort of plant the earliest Angiosperm was. In the absence of geological evidence this conception must be purely hypothetical and, basing it on a generalization which would admit of the differentiation from it of all the varied forms of the modern group of Angiosperms, we can see that it must have been a plant of very simple organization indeed. For our present purpose we need not concern ourselves with any other organs of this primitive Angiosperm than the leaves which, from the point of view of the proposed generalization, must be conceived of as hardly more than the bare rudiments of leaves, mere sheathing scales at the nodes of the plant, serving slightly, if at all, the function of assimilation which was still subserved, as in its ancestors, by the general surface of the plant, but confined chiefly to that of protection. The primitive leaf was probably parallel-veined or approximately so, giving rise in its earlier differentiation to the parallel-veined leaves of the Monocotyledones. The geological evidence indicates that these appeared before the Dicotyledones* which must have sprung from them later at one or more unknown points, and netted-veined leaves are of a more recent evolution. Consequently the tendency of aquatic Dicotyledones to revert toward monocotyledonous structure is rather a case of atavistic degeneration than an indication of the origin of Monocotyledones from Dicotyledones in ancient times through the effects of aquatic habit.

Now, as advance in evolution proceeded, the need of greater assimilative capacity arose and, as the foliar organ was the one best

* Professor L. F. Ward. Sketch of Paleobotany. Fifth Ann. Rep. U. S. Geol. Surv. 448, 1885. Professor A. C. Seward, on the contrary, does not believe that we have satisfactory evidence of pre-Cretaceous Monocotyledones. Notes on the Geologic History of Monocotyledones. Annals of Botany, 10: 220. 1896.

†See Rev. George Henslow. Jour. Linn. Soc. Lond. 29: 485-528. 1893.
adapted for specialization in this direction, it was the one upon which the office devolved. Every botanist knows what an endless variety of forms and special adaptations of particular foliar parts have arisen in the course of evolution which was inaugurated when this setting aside of the leaf to bear in future the weight of the assimilative function took place, or rather when this additional function was placed upon it, for the old protective function has always been retained, though it has become less noticeable as the new function has overshadowed the old.

There has been in the line of vegetable descent a progressive development of the foliar organ, and a history of this development, together with that of other organs, if it were obtainable, would give us a complete phylogeny of the flowering plants, and leave no morphological problem unsolved,* but as the geological record is very incomplete, and we have in the lower Cretaceous an already well developed and much differentiated angiospermous flora of the earlier history of which almost nothing is known, we must seek other sources of information in determining the homologies of parts. At this juncture we may safely follow the example of the zoölogists and turn to embryology for the evidence which geology, as yet, refuses to give except in fragments Among animals, as the phylogeny and ontogeny are found to parallel one another, so we may feel confident they will be found to do among plants when the geological record shall be more completely unearthed.

It has become a well established part of the theory of evolution that each individual organism epitomizes more or less fully in its development the historical steps in the evolution of the type to which it belongs.⁺ By the application of this law of re-

* "On this same view of descent with modification most of the facts in morphology become intelligible, whether we look to the same pattern displayed by the different species of the same class in their homologous organs, to whatever purpose applied, or to the serial and lateral homologies in each individual animal and plant." *Charles Darwin*, Origin of Species, 1859. Am. Ed. 6, 2. 264. 1889. See also p. 239, *et seq*.

† This theory, known as Von Baer's law, was promulgated by that scientist in his Ueber Entwicklungsgeschichte der Thiere, 224. 1828-37.

See also F. M. Balfour. Comparative Embryology. Ed. 2, 1: 2. 1885.

Opposed to this law is Adam Sedgewick. On the Law of Development commonly known as Von Baer's Law. Quar. Jour. Mic. Soc. (II), 36: 35. 1894.

capitulation to the development of plants we may arrive at valuable and trustworthy conclusions. The question would at once be asked, where shall the embryology of the flowering plants be studied, and the answer would naturally be, in the development of the seed in the ovary. And here indeed, we trace in outline an epitome of the course of development from the simple unicellular organism, represented by the fertilized egg-cell of the ovule to the highest thalloid form, the "embryo," with its bud (plumule) which is to develop into the full-formed plant perfect in all its parts. For a summary of the further development of the Angiosperms we must look to the growing bud which is the essential reproductive organ of the sporophyte stage and, doubtless, a more primitive one than the seed, for it is common among the more ancient Pteridophytes and these have no seed. The embryo of flowering plants does, however, correspond pretty closely to that advanced stage of development of the egg-cell of some of the higher Pteridophyta now generally spoken of as the embryo and should be regarded as a young plant in a state of arrested development. In this state it remains during a period of rest, in a highly specialized environment in the seed, awaiting favorable conditions for farther growth. Because of the highly specialized environment of the embryo, it has itself become correspondingly specialized and has been variously modified to suit the special conditions of its surroundings. The plumule cannot then be regarded as any longer representing a primitive form of bud and its development is so altered by secondary modifications that the series of phylogenetic changes is disguised and imperfectly represented. A parallel case is found among animals in the development of Echinoderms, in which the changes that have taken place through secondary modification are so great that the relationship of the group cannot be satisfactorily determined by developmental evidence.

It is not then in the seedling that we should expect to find representations of primitive leaf-forms, though later ancestral forms paralleling those of fossil leaves, of which we shall speak, are found in some seedlings, as for example in *Liriodendron*. But it is in the growth of the less specialized buds developing under more primitive conditions that we should expect to find them. Such buds are the ordinary leaf-buds of perennial plants, and especially those occurring on basal and subterranean portions which I conceive to develop under conditions somewhat more primitive than is the case with aërial buds. But in both these the recapitulation of the development of leaf-forms may be traced with a considerable degree of confidence, from the primitive sheathing protective scale to the most highly differentiated and complex of modern leaf-forms.

It is at this point that the fragmentary geological evidence sheds its strongest light on the problem under consideration. In the Cretaceous and Tertiary floras which preceded the modern, the present degree of differentiation had not as yet been attained and but few modern species made their appearance before the close of the Tertiary.* The species, however, which immediately preceded those which now exist were very closely related to them, being their immediate ancestors, and differed from them only in showing a somewhat lower degree of differentiation, and their leaf-forms are accordingly more primitive than those of the existing species which have descended from them.

Now it is a well-established fact that the lower leaves of young branches and shoots, and especially of those which spring from the stumps of felled trees, are frequently unlike the adult forms which occur higher up and bear a close resemblance to the fossil leaves of extinct species, so close indeed, as oftentimes to be indistinguishable from them. This is strong evidence in favor of the doctrine that the lower foliar organs represent not reduced leaves, as botanists have commonly supposed,[†] but the primitive foliar organs, and that in an ascending series from the lowest scale to the mature adult leaves of the upper part of the stem, giving a more or less perfect summary of the phylogenetic development of the foliar organ from the most primitive type upward to the most highly differentiated.[‡] In other words, a single stem may represent the whole phylogeny of the foliar organs of its type. It is true that there are simple leaf-forms which have become so

* Our modern species of *Corylus* are recorded from the Eocene by Professor J. S. Newbury. Later Extinct Floras of North America. Ann. N. Y. Lyc. Nat. Hist. 9:59-60. 1868.

† See DeCandolle. Org. Veg. 2:212. 1827.

⁺"Most modern botanists now regard the varying forms of leaf seen on young shoots and near the base of trees as valuable hints at the probable stages through which the final forms have passed in the history of their development." Professor L. F. Ward. Proc. U. S. Nat. Mus. 11:41. 1888. by reduction but, as an organ cannot be reduced until it has been developed, these are to be looked for above and not below the perfect leaves, and are found in bracts, involucral scales and the parts of floral envelopes, reduction taking place in inverse order to the course of development, and only the most primitive structure, the simple sheath, persists in the petals of most flowers. Reduced leaves are also common in parasites, and in the flora of desert regions as is well illustrated in some of the Leguminosæ of Australia the leaves of which are little more than spines, or are developed into bladeless phyllodia, while in the seedlings the ancestral pinnate or bipinnate forms occur.*

We thus have shown in each season's growth of a plant, though not clearly in annuals because disguised in the seedling, a more or less complete series of foliar organs which may for illustration be compared with the vertebrate series among animals, the lowest leaf-scales being comparable in degree of development to the simple structures of the fishes and the most highly developed leaves to the complicated ones of mammals. Each leaf in the series is equally perfect for the function it is intended to perform, but the lowest of a lower type of organization, as are the fishes, and representing an earlier stage in the phylogenetic series.

Now in animals we look to the developing egg of the more generalized fishes for the least abbreviated embryological recapitulation of the early development of the vertebrate branch, for in the mammals the early stages are passed through so rapidly and with so many disguises as to be of comparatively small importance in giving the history of the branch, unless viewed in the light of the embryological development of the lower types. So the lower foliar organs of a branch or shoot are embryologically of far greater importance than the upper, for in the beginning of the development of one of the upper leaves we have but the early stages of a highly organized appendage. These early stages are consequently abbreviated and more or less disguised. The formation of the stipules in the growth of the upper leaves is therefore not a salient point in the consideration of our problem though it has had much stress laid upon it, yet it is of interest to note that in general the stipules appear earlier than the leaf-blade, thus giving evidence that they are of more ancient origin. It may be added,

*See Sir John Lubbock. On Seedlings. 1: 474. 1892. See also p. 440 as to the similar case of *Lathyrus Aphaca*.

and it is a matter of common observation, that the petiole is the last portion of the leaf to develop ontogenetically and is therefore to be regarded as the most recent part to be added phylogenetically. This helps to explain the common occurrence of sessile and petiolate leaves even in different species of the same genus, as variation more readily occurs in recent than in ancient structures, while on the contrary it has been a matter of remark among even the earlier botanists that stipules when they occur usually characterize all the species of a family, an additional evidence of the antiquity of their origin.

Let us now take up, in the light of the foregoing conclusions the consideration of the destiny of the primitive foliar organ as it has been modified and developed in the course of evolution. For convenience in making our inquiry, I would divide the primitive leaf into the central-basal, axial, apical and lateral portions. Each of these figures prominently in the evolutionary history of foliar organs, for from the original condition there has been progressive development along several lines of varying degrees of relationship and the morphological result of the development of the several parts has been quite different in the divergent groups, so much so as to render the question of homology a doubtful one to many minds. We shall endeavor to establish its reality.

The lamina of the leaf, as we shall see, has been developed chiefly from the apical portion, usually from scarcely more than a mere point, though it may also include the axial and lateral portions. The true petiole, when present, is developed from the axial portion,* the sheathing petiole from the central basal together with the lateral portions, stipules and structures of the same signification from the lateral portions. It is with the lateral portions, therefore, that we are chiefly concerned.

With reference to the formation of stipules there are three principle types of leaf-development: that in which the several portions of the primitive leaf have developed together into a simple unappendaged blade, that in which a sheathing petiole is formed with or without a ligule or ochrea, and that in which stipules properly so-called are present.

In the first and simplest case the development of all the parts *See S. H. Vines. Text-book of Botany, 1: 49. 1894. together gives rise to such leaf-forms as are found in *Vaccinium* and *Sassafras*, the principal portion of the lamina being formed by the development of the apical portion, but including at the base the lateral, central-basal and axial portions which are contracted below into a short petiole.

If we observe the development of the leaf in Sassafras the relative growth of the several parts can be readily traced. The first four leaves (fig. 1) are very simple. In the fifth (fig. 2) considerable development has taken place. The apical portion, now forming about half of the organ, is provided with the three typical veins as they appear in the adult leaf, but starting out separately from the very base. The lateral portions have reached their highest development and each is furnished with a pair of veins. In the sixth leaf (fig. 3) there is a very close approach to the adult form. The upper part has expanded and the lower parts have elongated, removing the point of separation of the three principal veins of the leaf to a considerable distance from the stem. At the same time there has been a basal contraction looking toward the formation of the petiole with a considerable degeneration of the lateral portions, one of the veins having disappeared from each of them, while the other has become associated with the midvein. The seventh leaf (fig. 4) represents the unlobed adult form and differs but little from the sixth.

A similar condition is observable in *Ailanthus glandulosa* Desf. (figs. 5–10), but resulting in this case in the final separation of the lateral portions as small gland-bearing fugacious stipules, comparable to those at the base of the leaves of many of the Ranunculaceæ. The comparison of *Sassafras* and *Ailanthus* shows how small a difference in development may determine a leaf as stipulate or exstipulate.

The case of Syringa vulgaris L. is like that of Sassafras, though more difficult to trace, owing to the larger number of veins in the leaf, but the homologies of parts may be followed more or less distinctly from the second leaf up to the sixth, the first adult leaf (figs. 11–14). The lateral portions are seen to have degenerated almost entirely and, their bundles having disappeared, they remain only in the margin of the petiole.

The Compositæ furnish examples of a similar course of development but often with a closer approach to the true stipular condition, as the lateral portions are supplied with vascular tissue by

31

small branches coming off at the base of the leaf from the main lateral bundles.

In Erigeron annuum (L.) Pers., for example, there are three fibro-vascular bundles in the leaf-trace which pass up through the central portion of the petiole, converging as it narrows. But almost immediately on their departure from the stem each of the lateral bundles gives off a branch in the same manner as when true stipules are present. This branch forks at once and supplies the wings of the petiole. In the cauline leaves (fig. 15) its branches can be distinctly traced into the lower lobes of the leaf. The basal leaves of Aster undulatus L. show a condition very closely similar to that found in *Erigeron annuum* (L.) Pers., but in the cauline leaves there is a considerable modification by which the large lobes of the base of the petiole (fig. 16) are formed. The stipular bundle curves outward through the lobe giving off branches which form a net-work supporting its parenchyma. It then passes up through the wing of the petiole and into the basal part of the leaf. In Solidago juncea Ait., there are eleven bundles in the leaf-trace and a stipular bundle is given off on each side, supplying the margins of the petiole. Artemisia vulgaris L. affords a very interesting variation. The lateral portions of the primitive leaf have branched in a very curious manner (fig. 17), forming several small leaflet-like appendages to the base of the petiole. That they belong to the lateral portions and are stipular in their character is shown by the fact that they are supported by branches of the stipular bundle which is given off a little higher up than in Erigeron, passes on through the wings of the petiole after giving off the branches and enters the base of the blade as in other cases. This is the nearest approach to the true stipular condition that I have observed among the Compositæ.

The embryonic development of the foliar organ among the Compositæ is in general too much abbreviated to give much evidence in the consideration of the present question, and it should be so expected from the position which the family holds at the head of the vegetable kingdom.

Petioles of the kind seen in this type of leaf-development are very often short and usually more or less margined or winged by the contracted basal parts of the lateral portions of the primitive leaf. They are evidently genetically different from the petioles of

The Nature and Origin of Stipules.

stipulate leaves which are developed by the elongation of the axial portion alone. Sessile leaves also are of this type, hence the absence of stipules, the stipular tissue being incorporated into the basal part of the blade. But even where stipules are present, the lateral basal portions of the leaves are often in the closest anatomical relation with the stipules. This may be seen in *Viola obliqua* Hill (fig. 18) in which, near the bundle which passes into the stipule, a similar one arises, takes its course up the petiole supporting its narrow wing and is distributed to a small part of the basal portion of the lamina. We shall find several cases similar to this when we come to the consideration of the Rosaceæ. There is in this a suggestion of the occasional separation of only a part of the lateral portions to form the stipules and the incorporation of the remainder into the petiole and blade.

The second case is that of the sheathing petiole as it occurs in the Graminæ, Araceæ and Umbelliferæ. In this case the centralbasal portion of the primitive leaf is very largely developed and with it the lateral portions which form the margins of the sheathing petiole. The lamina and true petiole are later developments of the apical and axial tissues. We are strongly supported in this view by the fact that the sheathing petiole is interchangeable with petioles of the ordinary type accompanied by stipules. This occurs in the Umbelliferæ. In Hudrocotule and a few other genera the sheathing petiole is wanting and stipules are present. The closely related Aralia racemosa L. also has stipules. Still more striking is the case of Comarum palustre L. in which the basal leaves have the sheathing petiole remarkably developed with no indication of stipules (fig. 19), while the upper leaves possess well developed stipules adnate for not more than half their length (fig. 20).

But the identity of the marginal tissue of sheathing petioles is perhaps best shown in the Ranunculaceæ. In the upper basal leaves of *Ranunculus bulbosus* L., the separation of the lateral portions is seen actually to have begun, presenting exactly the appearance of adnate stipules. The development can be clearly traced from below upward. The first leaf has a short sheathing petiole of the ordinary type (fig. 21). This is slowly modified till in the fourteenth leaf (fig. 22) the vascular bundles have drawn closer together, the sheath has grown shorter and the broad lateral portions, hyaline in texture and requiring no special support other than that of the surrounding leaves, are rounded off distinctly at the top at the point of beginning of the true petiole. In the fifteenth leaf (fig. 23) there is a further reduction in size and the tips of the lateral portions are free. Another interesting case among the Ranunculaceæ is that of Thalictrum polygamum Muhl. in which the sheathing petiole is of a very generalized type (fig. 24). The lateral portions are chiefly hyaline, though sometimes faintly netted-veined and their margins turn in at the apex and meet in the central dorsal channel of the petiole at its base, forming a ridge between the sheathing and true petioles. This ridge supports a very narrow hyaline membrane which appears to me as the rudiment of a ligule. It would become typical by a little further development of marginal tissue. I believe this to be the origin of the ligule wherever it occurs, though it does not appear so clearly evident in highly specialized groups, nor should we expect such to be the case. There is also present at the first and second forkings of the petiole a transverse hyaline scale very much like a ligule.

It is noteworthy that the ligule always occurs in connection with the sheathing petiole, as in the Gramineæ and Cyperaceæ, or where there is evidence that there has been a sheathing petiole which has disappeared by degeneration, leaving the ligule axillary as in some of the Naiadaceæ which we shall presently consider.

When the ligule has developed sufficiently to require special support, it is supplied by the introduction of vascular bundles. These bundles have their origin most frequently as tangential branches of the main leaf-bundles at their point of passage from the sheathing petiole into the true petiole, or, where the latter is undeveloped as in the grasses, into the blade. This mode of origin of the ligular bundles is seen in some of the tropical grasses and in the ligular portion of the stipule of the Naiadaceæ and the ochrea of the Polygonaceæ. *Richardia* shows an exceptional venation of the ligule.

The best marked examples of the sheathing petiole among the Monocotyledones are found in the Araceæ, the Cyperaceæ and the Gramineæ. If we examine a developing plant of the common hot-house calla (*Richardia Africana* Kunth.), the first leaf (fig. 25) is seen to be a short, broad sheath, the second (fig. 26) has increased to a considerable length and the apical and axial tissues have developed into a minute blade and petiole. The third leaf is of the adult form, but smaller, though all the parts have increased very much in size. This is contrary to what is observed in *Ranunculus* where the sheathing petiole degenerates while the other parts advance. The margins of the sheathing petiole of *Richardia* curve inward at their apices and meet in the middle line of the leaf as in the case of *Thalictrum polygamum* L., but they are much broader and form a distinct ligule which is supported by the incurving and union of the marginal veins of the sheath instead of by tangential branches. In *Arisæma triphyllum* (L.) Torr., the transition is not so well marked, owing to the small number of leaves the first of which is but a sheath as in *Richardia*, while the second bears a mature lamina.

Scirpus polyphyllus Vahl. (fig. 27) will serve well to illustrate the ligule in the Cyperaceæ. It is but little developed as a slight hvaline outgrowth upon the ridge at the union of the sheath and lamina, but the sheath is closed, as is typical in the family, and a little farther development of marginal tissue would produce an ochrea. Typical of the ligule in our common grasses is that of Phalaris arundinacea L. (fig. 28). It consists of a considerable outgrowth of hyaline tissue which is continuous laterally with the marginal hyaline tissue of the sheath. This continuity strongly supports the position taken as to the origin of the ligule. The purpose of the ligule is evidently to prevent the flow of water from the upper parts of the leaf down between the sheathing petiole and the stem which together with the axillary bud it invests and protects, and neither the ligule nor the primitive ridge which bears it are found in those cases where the sheathing petiole does not closely invest the stem, at least in the early stages of growth, and its purpose could not be in any considerable measure fulfilled.

The usually axillary position of the "stipule" in the Naiadaceæ has occasioned considerable discussion as to its real relation to the ligule of grasses and to stipules proper. That it is in reality a development of the lateral portions of the primitive leaf, and that it corresponds to the ligule together with the margins of the sheathing petiole of grasses and is rendered more or less nearly axillary by the degeneration of the centralbasal portion, becomes clear from the fact that in some species of Naiadaceæ the sheathing petiole retains a considerable degree of

what should be regarded as its ancestral development, and a condition approaching that which occurs in grasses is found. Potamogeton crispus L, is one of our species which will serve well for an illustration. The first leaves do not develop a blade, but the lateral and central-basal portions are well developed. In the adult leaves there is present a true sheathing petiole (fig. 29). The fibro-vascular bundles of the central-basal portion pass into the blade, giving off tangentially, at the point of transition from sheath to blade, the bundles of the ligular part of the stipule. The bundles of the lateral portions do not in this case curve about to join those entering the blade but are prolonged upward, remaining parallel and supplying the lateral portions of the stipule with supporting tissue directly. In Althenia filiformis Petit. (fig. 30), the conditions are more primitive in the larger relative development of the lateral and central-basal portions. In Ruppia the ligule is not developed, and the tips of the lateral portions are free as in ordinary adnate stipules.

The condition found in *Potamogeton* is almost exactly repeated in Polygonella articulata (L.) Meisn. (fig. 31). The ochrea is cylindrical, surrounding the stem. The central-basal portion is long and narrow, bearing at its apex the terete lamina which is deciduous before flowering. The lateral portions form the principal part of the sheath, are parallel veined with a few anastomosing bundles and are prolonged above the central-basal portion, growing in along the ridge between it and the lamina. This middle portion shows its origin by a deep median sinus and receives its bundles typically as tangential branches from those entering the lamina. We do not have then in Polygonella a typical ochrea as it occurs in Rumex and Polygonum, where, because of the small development of the central-basal portion, the sheathing petiole is very short or almost wholly wanting. The lamina, being of much greater importance than in Polygonella, receives all the bundles of the leaf-trace. They are more or less abruptly deflected into the true petiole, generally developed in these genera, according to the degree of degeneration of the central-basal portion. The lateral portions receive their supporting bundles as branches of the lateral ones of the leaf-trace. In Polygonum sagittatum L. (fig. 32), the marginal tissues do not extend across the petiole and we have a stipule opposite the leaf. In Rumex crispus L. (fig. 33) and Polygonum Virginianum L. (fig. 34), the ochrea is complete and the axillary parts receive the typical tangential bundles.

The Nature and Origin of Stipules.

The ochrea of palms is doubtless of the same character, though I have not had opportunity to examine its anatomical structure. In those species which I have examined morphologically, the case is that of the ochrea associated with a remarkable development of the sheathing petiole. There is no true petiole and the ligule may be seen even a little above the base of the blade on the upper surface of the midrib. From this point the lateral portions may be traced down the margins of the sheath, though dried up and very much torn and broken by the more rapid development of the central tissues, till they unite with those parts which in their development have formed the "ochrea." The degeneration of the sheathing petiole with the probable concomitant formation of a true petiole would give the same conditions as in *Polygonum* with its typical ochrea.

The ochreate stipule of *Platanus* differs little morphologically from the typical ochrea, except in the absence of development of the central-basal portion and the possession of a horizontal limb, but there is no fibro-vascular support for the ligular part and this usually splits, leaving apparently a single stipule opposite the leaf.

The case of the tendrils of *Smilax* is one which has occasioned much discussion, but the embryological together with the anatomical characters make it sufficiently clear that in Smilax the tendrils are true stipules found in connection with the sheathing petiole. If a young shoot of Smilax rotundifolia L. be examined, the first leaf (fig. 35) is seen to be of the typical primitive form. In the second (fig. 36), the apical portion has developed into a blade of considerable size and there is a well-marked sheathing petiole. In the third (fig. 37), the true petiole has begun to develop, the central-basal portion is degenerating and at the same time the lateral portions have begun to separate, forming rudimentary tendrils which in the adult leaves come to considerable length by secondary development in adaptation to their new and unusual function of support. In cross section the bundles of the tendrils are seen to arise as branches of those of the petiole, so that anatomically, as well as embryologically, they answer to true stipules.

Pastinaca sativa L. (fig. 38) furnishes a good example of the sheathing petiole among the Umbelliferæ. The lateral portions are broad and furnished with several vascular bundles parallel with

The Nature and Origin of Stipules.

those of the central basal portion. The lateral portions remain of considerable breadth to the top where they are distinctly rounded off, and their bundles, with the exception of two or three of the exterior ones. curve around and unite with those entering the petiole. This free condition of the exterior lateral bundles with the anastomosing network between them shows a considerable degree of approach to the true stipular condition.

In the third case true stipules are developed. They are formed by a very early separation of the lateral portions from the main body of the primitive leaf, a separation which can be very clearly traced progressively in the embryological history of leaf develop-The function of the lateral portions in their primitive ment. connection with the main body of the foliar organ is, in common with the other portions, protective, and while the apical portion, having had placed upon it the special function of assimilation, goes on in its development together with the accessory axial portion in adaptation to this purpose, the lateral portions usually serve their ancient function only, sharing it with the central-basal portion when this has not disappeared by degeneration. The central-basal portion also supports the main body of the leaf, a function from which the lateral portions have been freed by separation.

It is in consequence of this separation that all the main vascular bundles of the leaf-trace in the third type of leaf-development are deflected toward the central one that they may pass up through the petiole into the lamina and give the required support to these important parts. The support of the lateral portions is left to comparatively small lateral branches from the two exterior bundles of the trace, evidently developed expressly for the purpose. This we may conclude, since vascular tissue is the most modern of plant tissues and introduced because of the necessity of support in the evolutionary development of the primitive ground tissues. It would, therefore, follow and not precede the evolution of leaf-forms, being introduced where needed and disappearing again when degeneration or other support of particular parts renders its presence unnecessary. This will appear in some of our examples. In the first and second types of leaf-development the lateral portions may retain in greater or less degree their independent venation.

Annals N. Y. Acad. Sci., X, May, 1897.-4.

37

As the other portions of the primitive leaf have been so wonderfully modified in the course of their development and altered from their original condition, so the freed lateral portions to which we may now apply the term stipules have not retained their primitive proportions in adult leaves nor the identity of all their parts. But as the central basal portion has often almost wholly degenerated, the same thing has happened to the basal parts of the lateral portions. The parallel degeneration of the two portions has brought the stipules into closer and closer apparent relation to the stem, so much so as to lead to the enquiry whether they are not accessory leaves and to suggest their origin from the reduction or lack of development of a portion of the leaves as in Selaginella and their subsequent association in close relation to the larger ones, but in all my investigation I have not found the slightest evidence in support of this theory. The degeneration of the stipules may continue until they become vestigial or finally disappear altogether. This is evidently the case in those families of plants a few species only of which still possess stipules, as for example the Caprifoliaceæ.

But opposed to the basal degeneration of stipules, there has very commonly been a longitudinal development corresponding to that by which the lamina has been evolved. This has resulted in the adaptation of the stipules to the peculiar requirements of each genus and species. Often in this secondary development they remain membranous, serving the protective function only, and when free are early deciduous. But in numerous cases they have acquired the assimilative function also, developing abundant chlorophyll and sometimes, as in the pea (*Pisum sativium* L.), becoming of equal assimilative importance with the lamina. In *Lathyrus Aphaca* L., they even replace it almost entirely.

Among all these varying forms we should expect to find closer similarities in those plant groups of nearer relationship as we do in floral structures, and conversely these similarities of foliar development should also point to relationship, due allowance being made for parallel development in adaptation to similar environment and for secondary functional modifications which find morphological expression. Also in types more recently evolved and more highly differentiated wide divergence from the typical mode of development may be looked for. The Caprifoliaceæ, before mentioned, are of such a type, with stipules usually wholly aborted; another is the family of the Rubiaceæ with anomalous stipular development in the group of the Stellatæ. The oaks also, though of lower organization, are an advancing type and still actively undergoing differentiation as evinced by the close relationship and difficulty of determination of the species of any given group. In this genus all but the upper part of the primitive leaf has disappeared by degeneration even in the earliest stages represented in embryonic leaf-development, and the well developed stipules are distinct and separate from the very base of a developing shoot. Not until the fifteenth node, in Quercus rubra L. (fig. 39), is there any appearance of lamina. The apical portion of the protophyll must however be regarded as potentially present between the stipules at their base. It begins its development unusually late in the series and exhibits several stages, of which the twentieth leaf (fig. 40) is illustrative, before reaching adult size. The axial portion of the protophyll being aborted, the petiole, here again a short one, is formed by the contraction of the basal part of the lamina itself. The case of Fague is very similar, but the lamina appears as early as the eighth node (fig. 41), indicating a less degree of specialization. In related genera a different course has The lamina develops still earlier and the stipules been followed. of the lowest nodes are united, separating only on the appearance of the first accompanying lamina.

In the family of the Juglandaceæ the genus *Hicoria* furnishes a very interesting example. The lower foliar organs are of the primitive type with an unusual development in size in some species. The transition to the adult leaf-form is commonly rather abrupt, but I have observed, in both *Hicoria alba* (L.) Britton and *H. microcarpa* (Nutt.) Britton, the frequent occurrence of intermediate forms, the lateral portions remaining as typical adnate stipules (fig. 42).

I have not seen the typical representation of embryonic leaf-development better exemplified than in the case of *Baptisia tinctoria* (L.) R. Br. where at a glance one is struck with its clearness. It is also especially full and accurate as occurring in the development of subterreanean buds. The first five leaves are extremely primitive, completely surrounding the node, though only slightly developed on one side. The fifth (fig. 43) shows at its apex a minute apical tooth, the beginning of the lamina which is farther developed in the sixth leaf. In the seventh (fig. 44) the three leaflets

The Nature and Origin of Stipules.

are plainly distinguishable, the petiole has begun its development and the separation of the stipules has made considerable advance. The ninth leaf (fig. 45) is well developed, with the large stipules still showing considerable adnation. But in the tenth (fig. 46) they are wholly free and much reduced, and higher up disappear altogether. We could hardly have a more complete series in illustration of the formation of stipules than this, giving as it does all the stages from an extremely primitive leaf-form to that very highly organized condition where the stipules have entirely disappeared. By a comparison of the venation in the seventh and ninth leaves, it will appear that the separate condition of the stipules has been attained in the manner already described, partly by the formation of an apical cleft, partly by the degeneration of the central-basal portion bringing the base of the cleft lower down. Meanwhile there has also been a considerable apical development of the stipule itself. But this increase in size is lost again in the tenth leaf and the reduction continues to final abortion. Melilotus alba Lam. presents very similar though somewhat less primitive conditions.

While considering leguminous plants, a few words concerning stipels, which are so characteristic of the family, would be in place. They have been denominated as "the stipules of leaflets," but I am convinced that they have no connection with stipules whatever, but that they represent rudimentary leaflets which have their origin in a tendency to increased compounding. The habit has become so fixed in the Leguminosæ that evidence of its origin is seldom met with. I have however seen, in Lespedeza capitata Michx., one of the earliest leaves with the terminal leaflet only developed and the two lateral ones represented by stipels.

I have found more light on the question in other families where the same tendency to increased compounding often occurs. In Sanguisorba Canadensis L. (fig. 47) for example, very vigorous plants sometimes show rudimentary leaflets, more developed indeed than typical stipels, but in the same position. Their character as leaflets of secondary rank is evinced by their occasional removal to a little distance from the primary petiole. A more striking case is that of Sumbucus Canadensis L. In this species the leaves of young shoots springing up where the bushes have been cleared away are frequently partially bicompound and there are all gradations between the ordinary pinnate form and the bipinnate condition (figs. 48-50). In this case it is remarkable that the first appearance of the secondary leaflet is in the shape of a small body with both the form and position of a stipel, with the same small supporting vein and differing only in greater thickness. These facts seem to give evidence sufficiently conclusive that stipels are in reality rudimentary leaflets. That their development is not confined to the Leguminosæ is farther shown by their characteristic occurrence in *Staphylea trifolia* L.

Another frequent foliar variation among the Leguminosæ is the development of the phyllodium, which might be thought to have some connection with stipules, but the presence of both together in some genera disproves the idea.* The stipules in the Leguminosæ often take the form of spines which serve for the general protection of the plant. We have an example in the well known *Robinia Pseudacacia* L. (fig. 51). In some of the tropical Acacias, as for example *A. spadicigera* C. & S. (fig. 52), they take the form of enormous hollow horns which are appropriated as homes by some species of ants.[†]

Sambucus Canadensis L. presents another remarkable character. The leaves of the vernal shoots from subterranean buds are furnished with stipules of the same form and in the same position as those of Sambucus Ebulus L., but smaller. There are four of them at each node, they are ovate or nearly orbicular in form, small, rather fleshy and persist but a short time. Each is supplied with a small vascular bundle, originating as a branch of the nodal girdle which connects the leaf-traces. These facts give evidence of the close relationship of these two species of Sambucus, and of the characteristic presence of stipules in the ancestral form. In Sambucus Ebulus L., they are still typically developed, but in our species have become so far vestigial as to appear only in connection with the early leaves of shoots from subterranean buds, an additional evidence of the importance of the leaf-forms successively developed from such buds, in their bearing on the evolutionary development of modern adult forms.

If now we turn to the family of the Rosaceæ we shall find many illustrative examples of the same facts as those born out in the case of *Baptisia tinctoria* (L.) R. Br. But it frequently happens that basal degeneration does not take place or is only partial, re-

^{*} Bentham and Mueller. Flora of Australia, 2: 304. 1864.

[†] Belt. Naturalist in Nicaraugua, 218. 1874.

sulting in the adnate stipules characteristic of so many genera and species of the family. Agrimonia striata Michx., in the development of its subterranean buds in the spring, presents an excellent series of embryonic leaf-forms. The lower ones are all simple sheathing scales completely surrounding the stem at their insertion. Not until the eleventh leaf (fig. 53), which is three-toothed at the apex, does the differentiation of parts begin. The central tooth is the beginning of the blade with its petiole: the lateral portions with their tips now free are the stipules. To say that they are "adnate" indicates only that they retain their primitive connection with the central-basal portion. In the twelfth leaf (fig. 54), there has been some basal degeneration, as shown by the lower point at which the three main bundles of the leaf converge and the lower position of the zigzag plexus of the stipular veins. The free tips, on the other hand, have increased in size and a small blade supported by a petiole is present in consequence of the development of the central tooth. The fifteenth leaf (fig. 55) shows a stronger development of all the parts, and a branch of the main stipular bundle is seen to pass up the petiole. The adult form is attained in the seventeenth leaf (fig. 56). In it some further basal degeneration has taken place, but the adnation of the stipules is still very prominent.

Prunus Cerasus L. gives a very good morphological series, but the venation is obscure. A view of the several forms can be had by an examination of the tenth, thirteenth, fifteenth, sixteenth and seventeenth leaves (figs. 57-61). They show the transition from the simple primitive scale to the mature condition in which the stipules are rendered entirely free. The series is similar in Rubus occidentalis L., Pyrus Malus L. and Pyrus communis L. In Rubus villosus Ait. (figs. 62-66), the basal degeneration is not carried quite so far and the stipules in the adult leaf-forms remain aduate for some distance from the base of the leaf. The tips of the stipules have taken a larger comparative development than in Agrimonia. Anatomically, however, Rubus villosus Ait. resembles the latter in having a vein which enters the petiole, neighboring to the main stipular bundle much as in Viola obligua Hill (fig. 18). The venation in Pyrus Malus L. (fig. 67) is still more like that in Agrimonia.

The stipules of *Fragaria* and *Rosa* show the highest degree of adnation and little, if any, basal degeneration seems to have taken

place, though the lateral leaf bundles curve in toward the median one at but a short distance from the stem. This arrangement of the bundles is probably secondary in these forms for the purpose of giving a firmer support to the leaf by an axial concentration of the vascular tissue in the sheath and a corresponding thickening of the surrounding tissues, a firmer support than could be given by only three bundles if they did not converge till they approached the point of their entering the petiole. The venation of the stipules is also peculiar. In Fragaria Virginiana Duchesne (fig. 68), there is a single strong bundle running out into the free tip of the stipule. From this are sent out one or two weak veins above, and below there is a faint vascular network confined mostly to the region of the tip and extending in a long curve toward the outer portion of the base, where it gradually fades out without forming any connection with other vascular tissue below. This condition seems to indicate a former basal connection of these stipular bundles, either with the lateral bundle of the leaf or possibly with those of the stem, forming an additional leaf-trace bundle distributed to the stipules only. The former case is far more likely. A probable explanation of this degeneration of the basal stipular bundles can be found by a consideration of the conditions of the environment. All the leaves being basal, the stipules are clustered together and are supported by one another and by the surrounding soil. They are more or less fleshy, destitute of chlorophyll, and in their moist surroundings loss of water by evaporation is comparatively slight. All these circumstances lessen the necessity of the supply of fresh sap. The rapidly conducting vascular tissue has come into disuse, and its degeneration and disappearance is the natural consequence. The same arrangement in forms with leafy stems is not so readily explainable except by the supposition that the arrangement is ancestral. This seems rather evident in the case of Agrimonia striata Michx. (figs. 53-56), where the same condition of the bundles occurs, for the earliest leaves representing the ancestral forms develop under the same conditions as the adult leaves of Fragaria. But in Rosait would be by no means clear did we not have such intermediate types as Agrimonia. Rosa humilis Marsh. (fig. 69) may be taken as typical of the genus. The venation of the tip of the stipules is nearly like that in Fragaria, but with a little larger development above the main bundle. The vascular network below is much more extensive and is reënforced by several small branches from the lateral bundle which enters the petiole, below the main stipular branch. This additional supply of vascular tissue is evidently rendered necessary by the exposure of the stipules to the light and air and the development of chlorophyll. It seems to be of secondary introduction.

The nearest approach to the stipular conditions occurring in Fragaria and Rosa which I have observed among the Leguminosæ is found in the adnate stipules of Trifolium pratense L. (fig. 70). There are two sets of stipular bundles. One of these supplies the tip of the stipule and consists of three veins of which the lowest corresponds to the single large bundle of the tip of the stipules of Fragaria and Rosa. The other has its origin as branches from the lateral bundle of the leaf-trace at the base of the leaf, the usual point of origin of the veins of free stip-This set of veins is distributed to the lateral and basal ules. parts of the stipules and apparently corresponds to the lower network of the stipules in Fragaria. These stipules are mainly protective in function. Their meshes are filled with hyaline tissue, but there is some green parenchyma along the veins.

Two very interesting cases in the family of the Rosaceæ are those of Cliffortia graminea L. f. of South Africa (fig. 71) and Potentilla fruticosa L. (fig. 72). In the former the leaves very closely simulate those of grasses with the linear lamina sessile upon a sheathing petiole. They differ in having the tips of the lateral portions (stipules) free instead of turning in across the insertion of the lamina to form a ligule. In the latter the conditions are very closely similar to those of the ochrea of Polygo-There is a short sheathing petiole, above the apex of which num. the tips of the stipules rise. Each of them is supported by a strong vein which has its origin at the base of the true petiole. But instead of being free from one another as in Rosa, the stipules are connected back of the petiole by a hyaline ligular tissue. The lateral portions of the sheathing petiole are also united to one another on the opposite side of the stem, at least in young leaves, to a considerable degree. Thus an ochrea is formed, not quite a typical one it is true, yet more nearly so than that of Polygonum sagittatum L. (fig. 32).

The fact that such forms as these can occur in the same family of plants along with typical stipules, both adnate and free, goes to show how small is the real difference between the various stipular forms. Not all stipules possess supporting tissues but, just as is the case in the ligule of most grasses, may be without any fibrovascular bundles whatever. This is the case in *Vitis*, in *Parthenocissus* and *Hydrocotyle*. *Vitis Labrusca* L. (fig. 73) shows a somewhat thickened central streak at the base of the membranous stipule, but in *Hydrocotyle Americana* L. (fig. 74), the thickness is uniform and the stipule very thin. These facts give some authority to the supposition that the pectinate interpetiolar appendages which occur in the Composite *Willoughbya scandens* (L.) Kuntze (fig. 75) are true stipules. They are hyaline in texture, without supporting tissue, and may possibly be merely of epidermal origin. To determine this point requires opportunity to examine their development.

It is of importance to state that the tendril of the Cucurbitaceæ, regarded by many as a stipule, has been determined by anatomical examination to represent the first leaf of the axillary bud.* The spines of *Xanthium spinosum* L., simulating stipules in position, are degenerate pistillate flowers. As proof of this, they often bear a greater or less number of hooked prickles like those of the flowers, and there may be a spine on one side and a flower on the other, showing them to be of the same significance.[†]

The stipules of *Comptonia peregrina* (L.) Coulter (fig. 76) denied by some to be properly so-called, do not differ anatomically from other stipules notwithstanding their peculiar morphology, and are to be included under the term. One of the chief reasons for their exclusion seems to have been the absence of stipules in *Myrica*. This is doubtless a case parallel with that of *Viburnum*, of which most of the species have lost their stipules by degeneration.

While it is not a generally accepted view, there is no good reason why stipules should not sometimes be distinguishable in floral parts. They are clearly present in the sepals of *Rosa* and *Rhodotypus*, and the smaller intermediate lobes of the calyx of *Potentilla* probably represent pairs of united stipules, one from each neighboring calyx-lobe in the manner of interpetiolar stipules.[‡] The teeth of the filament in *Deutzia* are very suggestive of stipules in

^{*}See Lestiboudois, Bull. Soc. Bot. Fr. 4: 746-747. 1857. Cited on p. 6.

[†] See also Clos. Mem. Acad. Sci. Toulouse, (IV), 6: 66-75. 1875.

[‡] See Engler and Prantl. Pflanzen Familien. 3: Abt. 3, 6. 1894.

stamens, and the corona of *Silene* may very probably represent a ligule. The glands of the leaves of Ranunculaceæ which have been homologized with stipules, as already stated, can often be traced up into the flowers and are familiar in connection with the petals of *Ranunculus*.

One of the most interesting families of plants in the development of its stipules is that of the Rubiaceæ, the development being very unusual in the group of the Stellatæ. Though the foliar anomaly in this group was early remarked upon and was anatomically explained as early as 1840,* there are considerations which make its present discussion desirable.

In the greater part of the family the leaves are opposite, or occasionally in whorls of three as in Cephalanthus occidentalis L., and are usually stipulate. The stipules are of variable character and often interpetiolar, the adjoining stipules on each side of the stem being connate. In the group of the Stellatæ however, comprising ten or twelve genera, the stipules usually are apparently wanting and the leaves in whorls. There is a tendency toward a verticillate arrangement of the leaves in others of the Rubiaceæ. as shown by the frequent occurrence of whorls of three in usually opposite-leaved species. Now an anatomical examination of the whorled leaves of Mollugo verticillata L., Silene stellata (L.) Ait. f., Leptandra Virginica (L.) Nutt. and Cephalanthus occidentalis L. reveals the fact that in other families, as well as in the Rubiaceæ exclusive of the Stellatæ, each leaf of any whorl receives its fibro-vascular bundles directly from the cauline cylinder. But in Galium the case is different. Two leaves only of the whorl receive their bundles in the manner stated, and only these two produce buds in their axils. All the others receive their vascular supply from what may be termed a nodal girdle, each half of which is formed by the union of two bundles arising, one from each of the two leaf-traces in the same manner as those supplying stipules of the ordinary form. From this girdle arise the bundles which supply the additional leaves, whether there be only one on each side, as in Galium circæzans Michx. and G. lanceolatum Torr., two, as in G. triflorum Michx. and G. tinctorium L., or even three or four, as occurs in G. Aparine L. The distribution of the vascular bundles may be seen in a cross section of the node of Galium tinctorium L. (fig. 77).

^{*}See page 6.

The Nature and Origin of Stipules.

This anatomical arrangement shows that the so-called additional leaves of the whorls in *Galium* are in reality stipules and that the Stellatæ agree with the rest of the Rubiaceæ in having opposite leaves. The tendency of the family however to produce verticillate leaves has been strongly felt in this group but has taken an unusual course, the increased assimilative area having been evolved through the stipules instead of by an increase in the number of true leaves. The explanation is thus made comparatively simple except in those cases where the number of stipules at a node is more than four.

As a general rule, in plants with stipulate leaves, each leaf is provided with two stipules. But when the leaves are opposite, the two on the same side of the node often coalesce, forming a single interpetiolar stipule, as in the case of Cephalanthus (fig. 78). That this coalescence is secondary is shown by the fact that the distal portions only of the veins of the two stipules have united. Now in the Stellatæ also, this must have been the original condition, but the interpetiolar stipules have been greatly developed to serve assimilative purposes, the veins having meanwhile united completely to form a midrib. The increase in size has advanced until in Galium the stipules are of the same size and form as the leaves and morphologically indistinguishable from them, except in G. bifolium where the stipules are smaller. In this condition they remain in the broader-leaved species, as G. pilosum Ait., G. latifolium Michx. and G. lanceolatum Torr. But in the narrower-leaved species, a still greater foliar expansion being desirable, separation has been re-accomplished, proceeding probably from the tip downward, as is illustrated in Rubia peregrina L. with whorls of four. In this species stipules are occasionally found with two midribs (fig. 79), most widely separated at the apex or even coalescing toward the base. In Galium Aparine L. and other species in which the number of stipules is abnormal, we may suppose this condition to have arisen from a repetition of the process of division which has produced the sixleaved whorls. This is not improbable, since even in the fourleaved forms the stipules have already entirely lost their original morphological character and have taken on a more generalized nature, making them fit material for development along new lines of evolution. Embryological evidence is not wholly wanting, although the family stands so near the head of the plant series. In

47

Galium Aparine L., in common with the six-leaved species, the earlier whorls are of four leaves only, representing the ancestral condition. In *Rubia tinctorium* L., the opposite leaves of the subterranean portion of the stem are exstipulate. At the first aërial node there is a whorl of four, interpetiolar stipules being present, and in the higher whorls there are six leaves.* This is a series of long range, though lacking in intermediate steps.

Another case in which there is present a nodal girdle from which the stipular bundles arise is that of *Humulus Lupulus* (fig. 80), but there are three bundles in each leaf-trace. They are placed at about equal distances around the circumference of the stem, and the girdle-bundles proper occupy only about one-third of the periphery on each side. From them a part of the stipular bundles arise, the remainder originating directly from the lateral bundles of the leaf-traces.

It would be to small purpose that examples should be further multiplied. From those already cited we may confidently deduce the following conclusions :

1. The sheathing petiole has its origin independently of the true petiole and is formed by a concomitant development of the lateral and central-basal portions of the primitive leaf.

2. The ligule is a special development of the apical parts of the lateral portions of the primitive leaf along the ridge between the sheathing petiole and the distal parts of the leaf. It may be supplied with veins either by the marginal bundles of the sheath or by tangential branches from those entering the blade. The sheathing petiole may disappear by degeneration, rendering the ligule axillary as in many species of *Potamogeton*.

3. The ochrea is related to the ligule and is generally associated with the sheathing petiole. It consists of the apical tissues developed in those cases where the sheathing petiole completely surrounds the stem or did so in the ancestral condition. The part of the ochrea posterior to the lamina or petiole may be called its ligular portion and is usually supplied by bundles arising tangentially from the main ones.

4. The lateral portions of the primitive leaf, when separated in greater or less degree, constitute stipules in the usual acceptation of the term. They are variously modified by subsequent evolu-

^{*}Sir John Lubbock. Jour. Lin. Soc. Lond. 30:504. 1894.

tionary changes, by increased development, by basal or total degeneration, by secondary adnations and various textural modifications. They receive their vascular bundles typically as branches of the lateral ones of the leaf-trace.

5. The lateral portions of the primitive leaf therefore represent in potential the ligule, the ochrea, the margins of sheathing petioles and stipules, but they are often incorporated with the other portions as the wings of petioles and as lateral basal portions of leaf-blades.

ANNALS N. Y. ACAD. SCI., X, June, 1897.-4.

II.—The Ascidian Half-Embryo.

BY HENRY E. CRAMPTON, JR.

Read March 8, 1897.

The development of isolated blastomeres of the ascidian egg has afforded a subject of considerable discussion on the part of many theoretical embryologists. Chabry* approached the subject from the experimental side, and, from the results of his many detailed observations and experiments, was led to the conclusion that one of the isolated blastomeres of the two-celled stage produced a strict half-embryo. As it was well known that the first cleavage-plane divided the egg into right and left halves, this conclusion seemed altogether probable and of considerable interest.

A number of writers, however, among them Hertwig,[†] Driesch,[‡] Weismann,[§] Barfurth and Roux,[¶] were led, on the grounds of Chabry's results, to opinions more or less at variance with his. Barfurth considered Chabry to be in greater part correct. Roux and Weismann believed that during the later development the missing part was supplied by the other cells through "postgeneration." Hertwig states that, in his opinion, Chabry was in error; and Driesch also argued that a typical total development occurred. Finally, Driesch** in 1893 repeated Chabry's experiments, upon the eggs of *Phallusia mammillata*, and by the results wholly confirmed the theoretical conclusions of his previous paper.

* Chabry L. Contribution à l'embryologie normale et teratologique des ascidies simples. Journ. de l'anat. et de la phys. XXIII. 1887.

† Hertwig, R. Urmund und Spina bifida. Arch. f. mikr. Anat. XXXIX. 1892.

‡ Driesch, H. Der Werth der beiden ersten Furchungszellen in der Echinodermentwickelung. Zeit. f. wiss. Zool. LIII.

& Weismann, A. Das Keimplasma. 1882.

|| Barfurth, D. Halbbildung oder Ganzbildung von halber Grösse. Anat. Anz. VIII. 1893.

¶ Roux, W. Über des entwickelungsmechanische Vermögen jeder der beiden ersten Furchungszellen des Eies. Verhandl. d. Anat. Ges. Wien. 1892.

** Driesch, H. Von der Entwickelung einzelner Ascidienblastomeren. Archiv für Entwick. der Organismen. I. 3. 1895. Although at that time reluctant to admit anywhere the occurrence of "partial" development, Driesch has since proved, in connection with Morgan, the existence of a partial *early* development in the ctenophore egg.* And in a recent paper by the writer † it has been shown that the isolated blastomere of the snail possesses the power of forming only a corresponding portion of an embryo. In a later paper, Driesch,‡ developing an idea suggested by Prof. E. B. Wilson and myself (loc. cit.), recognized the existence of a series among animal eggs, from the nearly isotropic eggs of the medusa, Amphioxus, fish, sea-urchin, etc., at one extreme, to forms such as the frog and ctenophore, and finally to the snail, at the other extreme, where the blastomere possesses such an organization that but a part of an embryo can be formed and postgeneration cannot occur.

The ascidian egg, however, remained unexplained by the contradictory results of Chabry and Driesch. From this consideration the author was led to an examination of the facts in another ascidian. The results will, it is hoped, clear up the confusion to some extent, and will show how far the development is a "partial" one and in what respects it is "total."

The experiments were performed during the past summer at the Marine Biological Laboratory, Wood's Holl, upon the eggs of *Molgula manhattensis*, which grows very abundantly upon the piles and wharves at New Bedford, Mass. Artificial cross-fertilization was resorted to, and the eggs at the desired stage were spurted in a watch-glass by means of a fine spiral pipette.§ Those eggs presenting isolations were placed separately in watch-glasses, and camera drawings of successive stages were made at intervals, using a Zeiss oc. 4, and obj. C.

As to nomenclature, the system proposed by Kofoid || and ap-

* Driesch, H., and Morgan T. H. Von der Entwickelung einzelner Ctenophórenblastomeren. Archiv für Entwick. der Organismen. II. 2. 1895.

[†]Crampton, H. E., Jr. Experimental Studies on Gasteropod Development, with an appendix on Cleavage and Mosaic Work, by E. B. Wilson. Archiv für Entwick. der Organismen. III. 1. 1896.

‡ Driesch, H. Betrachtung über die Organisation des Eies und ihre Genese. Archiv für Entwick. der Organismen. IV. 1. 1896.

& As previously described in connection with the gasteropod experiments.

|| Kofoid, C. On some laws of Cleavage in Simax. Proc. Amer. Acad. Arts and Sciences. Vol. XXIX. 1894.

The Ascidian Half-Embryo.

plied by Castle * to the *Ciona* egg has been used for obvious reasons. According to this system, now well known, each cell is designated by a letter referring to the particular quadrant of the four-cell stage from which it arose; in addition it receives an exponent denoting the generation to which it belongs, and a second exponent denoting its place in that generation, counting from below upward.

DETAILED DESCRIPTION OF CLEAVAGE.

A. Normal Cleavage.—The cleavage of the Molgula egg is precisely the same as that of Ciona and other ascidians, as far as it has been followed. Therefore, it is unnecessary to discuss the normal phenomena further than to emphasize a few of the facts which are important in connection with the cleavage of the fragments.

The first and second cleavage-planes are meridional, while the third is equatorial. An eight-cell stage results (fig. 1) which, seen from the side, consists of two tiers of four cells each. The upper tier is shifted anteriorly upon the lower, so that the poste. rior upper cells are in contact with the anterior ventral cells-This relation is constant, and characteristic of probably all ascidian eggs (Castle. loc. cit., p. 228). Passing to the 16-cell stage, all the eight blastomeres divide. The spindle axes are inclined in such a manner that the anterior products of the anterior cells (fig. 2: B^{5.2}, b^{5.4}) lie slightly below the median products; while the posterior products of the posterior cells lie slightly above the other cells (fig. 2: C $^{5.1}$, c $^{5.3}$). When activity is again resumed, the dorsal cells remain quiescent, while the ventral cells segment, and a 24-cell stage results (fig. 3). After a period of rest the dorsal cells pass into the same generation (sixth) with the ventral cells, and a morula of 32-cells results. Then the ventral cells divide at about the same time, while the dorsal cells remain quiescent, giving a 48-cell stage.

Further details are unnecessary for our purpose. We emphasize the fact that, beginning with the 16-cell stage, there is a wellmarked alternation of activity between the cells of the upper and those of the lower hemisphere of the embryo.

* Castle, W. E. The Early Embryology of Ciona intestinalis. Bulletin of Mus. of Comp. Zool. Harvard. Jan. 1896.

B. Cleavage of the $\frac{1}{2}$ blastomere.—As is well known, the isolation of an ascidian blastomere is effected by the death of its neighboring cell or cells, and not by an actual separation. The dead cell partially disintegrates and exerts upon the living cell no modifying influence, such as mechanical obstruction to rounding during division, etc.

 $\frac{2}{4}$. At the normal time, viz: at the time of division of control eggs, the injured blastomere divides about equally (figs. 4 and 13). Often when the eggs are operated upon when passing into the 4-cell stage, evidence of division in the dead cell will remain. In such cases the division plane of the living cell is seen to be meridional and at right angles to the first. Therefore, it corresponds with the second cleavage-plane of the normal embryo. In all cases where it is possible to ascertain the facts this relation obtains. Driesch finds in *Phallusia* that no such constancy of relation exists.

4. After a normal period of rest the two cells divide at the same time. There are thus produced four cells which are arranged in a manner exactly similar to the half of a normal 8celled embryo. Seen from the side (figs. 5, 9) the cells lie so that two are separated, while two are in contact; these latter are the posterior dorsal and the anterior ventral cells, as shown by the succession of the cleavage planes of the fragment. Precisely as in the normal 8-celled embryo, there is an anterior shifting of the dorsal cells upon the lower cells. According as this shifting is to the right or left, in lateral view, one is confronted by a right or left half-embryo. From a comparison of the figures, it is seen that the embryo in fig. 5 is the same as the half turned toward the observer of fig. 1; while that shown in fig. 9 is derived from a right $\frac{1}{2}$ blastomere. The appearance of the $\frac{4}{8}$ embryo in end view is shown in fig. 14, and a characteristic crossing of the spindle axes is exhibited, which is similar to their crossing in the complete egg (vide Castle for figures). The four-celled fragment, then, is in nowise a counterpart of the normal four-celled embryo, but, on the contrary, corresponds in every particular to the half of an eight-celled embryo.

From Chabry's fig. 106, it appears that a typical $\frac{4}{8}$ stage occurs also in Ascidiella.

 $\frac{8}{16}$. At the next cleavage, all the cells divide (figs. 6, 10). Exactly as in the origin of corresponding normal cells, (fig. 2)

the anterior products of the anterior cells (fig. 6: B⁵⁻¹, b⁵⁻³; figs. 10 and 16: A^{5.1}, a^{5.3}) lie slightly below the other cells; and the posterior products of the posterior cells (fig. $6: C^{5\cdot 2}, C^{5\cdot 4}$; figs 10 and 16: D^{5.2}, d^{5.4}) lie slightly above the median products. On a comparison of fig. 6 and fig. 2, it will be seen, however, that the topographical relations of the cells of the fragment are quite different from the normal. For example in fig. 6, the cell $c^{5.4}$ is in contact with B^{5.1} and b^{5.3}, while in the normal egg it lies at the other end of the embryo. A similar rearrangement is still better shown in fig. 10, that of a right $\frac{8}{16}$ embryo, where D^{5.2} is in contact with $A^{5\cdot 1}$, while $d^{5\cdot 4}$ is in contact with $A^{5\cdot 1}$ and $a^{5\cdot 3}$. This rearrangement is obviously rendered possible by the absence of the other half of the embryo, so that the cells cohere in a spherical form just as a corresponding number of soap-bubbles. It cannot be considered as a "gliding," for the spindle-axes are from the first accommodated to the changed conditions. That is (figs. 15, 16), the anterior end of the anterior spindles, and the posterior ends of the posterior mitotic figures are swung somewhat toward the original first cleavage-plane of the embryo.

Chabry's fig. 113 leaves no doubt that the $\frac{8}{16}$ embryo of Ascidiella is precisely the same as that described above for Molgula. From Driesch's fig. 5, there is no doubt that in Phallusia the eight cells are arranged as the normal 8 cells.

 $\frac{16}{16} - \frac{12}{24}$. When activity is again resumed, only the four lower cells are affected, while the dorsal cells remain quiescent. A 12-celled fragment results (figs. 7 and 11), which is exactly equivalent to a half of the normal 24-cell stage (fig. 3). The quiescence of the dorsal cells during the division of the ventral cells is the first indication of the alternation of activity in the rhythm of cleavage, which was found to be characteristic of this type of segmentation. As in the preceding stage, when the resting condition is assumed, there is a passive rearrangement of the cells. For example, the cells $A^{6\cdot3}$ and $A^{6\cdot4}$ were segmented along an axis inclined at an angle of 45° to the axis joining their centres at the resting stage. Again the cells $D^{6\cdot3}$ and $D^{6\cdot4}$ have retreated around the posterior end of the fragment.

 $\frac{16}{32}$. While the eight cells of the lower hemisphere are resting, the four dorsal cells likewise pass into the sixth generation, and a $\frac{16}{32}$ stage results (figs. 8, 12). Its resemblance to the half of a normal 32-cell stage is still less marked than that of a $\frac{12}{24}$ embryo

to a half of the normal 24-celled stage. This is so, for the reason that further passive rearrangements of the cells occur, obscuring the partial character of their origin, and causing the cell complex in its solid, or "complete," condition to resemble a normal or "complete" embryo. Nevertheless, the succession of rhythmic cleavages, relation of successive cleavage-planes, etc., point to the operation of factors which are counterparts of those operating in a *half* of the normal embryo.

Later development. The embryo is now "complete," and gives rise to a complete blastula and larva. Although the process of gastrulation has not been carefully observed, enough of the later development has been ascertained to prove that a larva arises which resembles the normal larva, except as regards its smaller size and certain minor defects. My results, therefore, are entirely confirmatory of those of Driesch upon *Phallusia*.

C.—*Cleavage of the* $\frac{1}{4}$ *blastomeres.*—One of the isolated blastomeres of the four-cell stage, is divided at the next cleavage by a plane which is seen to be at right angles to both of the preceding planes. Therefore it corresponds to the third cleavage plane of the normal embryo. The $\frac{2}{8}$ stage is shown in fig. 17. A subsequent cleavage cuts each of the cells equally, and a $\frac{4}{16}$ stage results (figs. 18, 19), until this time, one is left in doubt as to the true nature of the fragment, that is, whether it will segment as a quarter or as an entire egg. However, from this time on, the character of cleavage is exactly that of a quadrant of a normal embryo.

When division next occurs, only the two cells toward the observer segment (fig. 20), and a stage of six cells results, which is evidently comparable to a $\frac{6}{24}$ embryo only, and not to any stage of the normal development. After a normal period, the dorsal cells (lower in the figure) pass into the sixth generation, and an $\frac{8}{32}$ embryo (fig. 21) is the result. As in the previously described fragments, passive rearrangements occur when the resting condition is assumed, and the cells flatten down upon one another (fig. 22). The cells of the ventral half segment at the next period of activity (fig. 23), while the dorsal cells remain undivided. The resulting $\frac{1}{48}$ stage, although solid, is nevertheless derived from the $\frac{1}{4}$ blastomere through a segmentation of a partial character. This partial character is expressed chiefly in the characteristic rhythm of cleavage. Concerning the later stages, the results of Driesch are again confirmed. The young larvæ represented in Figs. 25, 26 of this paper illustrate one point further, although of minor consequence. It will be seen that the long axis of the $\frac{1}{4}$ larva in fig. 25, and the long axes of the $\frac{1}{4}$ larvæ derived from the same egg, in fig. 26, are approximately parallel to the principal dorso-ventral-axis of the original egg.

SUMMARY AND CONCLUSION.

An isolated blastomere of the Molgula egg segments as if still forming a corresponding part of an entire embryo. The *cleavage phenomena* are strictly *partial*, as regards the origin of cells, the inclination of cleavage-planes, and especially in respect to the rhythm of segmentation. The general appearance of the fragment differs materially from that of a half of a complete embryo, for the reason that rearrangements of the blastomeres occur, which tend progressively to mask the partial nature of development. The end result is a larva of less than normal size, and with defects in certain of its systems. These defects are undoubtedly due to the fact that but a portion of the normal amount of material is available for the formation of the larva; that, for instance, the chorda of a larva derived from a one-half blastomere, receives but one-half of the normal number of cells, and consequently a chorda of one row, and not two rows of cells, results.

In conclusion, one is constrained to adopt the view of Rouxnamely, that in Molgula as in the well-known case of the echino, derms (Driesch, Wilson, and others) the development begins as a partial one, but that the missing part is gradually supplied by the cells already present. Driesch is also entirely correct, as far as the end result, a nearly complete larva, is concerned.

EXPLANATION OF PLATE IV.

Magnification of figs. 1-3 about 280 diameters; of all other figures, 250 diameters. The arrows show the direction of cleavage.

Fig. 1, 8-cell stage of Ciona from Castle (fig. 23), from the left side.

Fig. 2, 16-cell stage of Ciona from Castle (fig. 24), from the left side.

Fig. 3, 24-cell stage of Ciona from Castle (fig. 43), from the right side.

Figs. 4-8, cleavage of the left $\frac{1}{2}$ blastomere of *Molgula*, from the side. Fig. 4, $\frac{2}{4}$ embryo.

Fig. 5, 4 embryo.

Fig. 6, $\frac{8}{16}$ embryo. Fig. 7, passage to $\frac{12}{24}$ embryo. Fig. 8, $\frac{15}{24}$ embryo. Figs. 9–12, eleavage of the right $\frac{1}{2}$ blastomere, from the side. Fig. 9, $\frac{4}{8}$ embryo. Fig. 10, $\frac{8}{16}$ embryo. Fig. 11, $\frac{12}{24}$ embryo. Fig. 12, $\frac{16}{82}$ embryo. Figs. 13–16, eleavage of the right $\frac{1}{2}$ blastomere, from the front. Fig. 13, $\frac{2}{4}$ embryo. Fig. 14, $\frac{4}{8}$ embryo. Fig. 15, passage to $\frac{8}{16}$ embryo. Fig. 16, complete $\frac{8}{16}$ embryo.

EXPLANATION OF PLATE V.

Figs. 17-24, cleavage of the $\frac{1}{4}$ blastomere, ventral view.

Fig. 17, ²/₈ embryo.

Fig. 18, passage to $\frac{4}{16}$.

Fig. 19, complete $\frac{4}{16}$.

Fig. 20, $\frac{6}{24}$ embryo.

Fig. 21, $\frac{8}{32}$ embryo, immediately after division.

Fig. 22, $\frac{8}{32}$ embryo, in resting condition.

Fig. 23, passage to $\frac{12}{48}$ stage.

Fig. 24, complete $\frac{12}{48}$ embryo.

Fig. 25, $\frac{1}{4}$ larva. The arrow indicates the long axis.

Fig. 26, two $\frac{1}{4}$ larvæ, from same egg. The arrows indicate the principal axes.

III.— The Rutherfurd Photographic Measures of Sixty-five Stars near 61 Cygni.

BY HERMAN S. DAVIS.

Read May, 1897.

1. It was but natural that MR. RUTHERFURD, in developing the art of astronomical photography, should try his skill upon that star which has attracted the attention of so many investigators ever since BESSEL proved by it the possibility of determining stellar parallax.

Of these photographs of 61 Cygni and its surrounding stars taken by Mr. RUTHERFURD, nineteen, exposed between 1871, Nov. 9, and 1874, June 13, were measured by Miss Ida Martin more than twenty years ago, but have remained unreduced until recently placed in my hands for that purpose by Professor J. K. REES, Director of the Observatory. The present paper contains the results of measures of position of stars surrounding 61 Cygni, and will be followed by a second paper containing the results of an investigation of the Parallax of 61¹ Cygni. The methods of reduction used so far as measures of distance are concerned are those presented by Dr. HAROLD JACOBY in earlier Contributions from this Observatory.

2. In Table I are given the general data of exposure of the plates, including the computed values of the zenith-distance, parallactic angle and refraction factor.

3. Table II contains the *means* of the refractions computed for the Eastern and Western impressions from the data of Table I by the formulæ

$$\begin{split} & \frac{\sigma-s}{s} \!=\! \kappa \left[\tan^2 \zeta \cos^2 \left(\, p \!-\! q \right) + {\rm I} \right] \\ & \pi \!-\! p \!=\! - \! \frac{1}{2} \kappa \operatorname{cosec} {\rm I}^{\prime\prime} \tan^2 \zeta \sin 2 \left(\, p \!-\! q \right). \end{split}$$

The argument for entering this table is p.

4. Table III.—The corrections to the position-angle due to precession, nutation and aberration will be found in column two. These were computed by the formulæ $\begin{aligned} a' &= 20.'' 06 \sin a \sec \delta & \gamma' &= \cos a \tan \delta \\ \beta' &= & \cos a \sec \delta & \delta' &= \sin a \tan \delta \\ \Delta p &= (T-t) a' - Aa' - B\beta' - C\gamma' - D\delta'. \end{aligned}$

The epoch T = 1873.0 has been selected to which to reduce all the observations. The substitution of the coördinates of 61^1 Cygni for this epoch gives:

 $\begin{aligned} \Delta p_{71} = & -36'' + [1.254] A + [9.956_n] B + [9.746_n] C + [9.742] D. \\ \Delta p_{72} = & -18 + [1.254] A + [9.956_n] B + [9.746_n] C + [9.742] D. \\ \Delta p_{73} = & 0 + [1.254] A + [9.956_n] B + [9.746_n] C + [9.742] D. \\ \Delta p_{74} = & +18 + [1.254] A + [9.956_n] B + [9.746_n] C + [9.742] D. \end{aligned}$

Where $4p_{71}$ denotes the correction to be applied to the position-angle for the plates made in 1871, and so on in the other years as denoted by the subscripts.

5. Precession and nutation have no effect upon the distances; but aberration does have, and its amount is given by :

$$\gamma'' = (\tan \varepsilon \sin \delta + \sin a \cos \delta) \sin \mathbf{I}''$$

$$\delta'' = -\cos a \cos \delta \sin \mathbf{I}''$$

$$\Delta s = (C\gamma'' + D\delta'') s$$

For 61¹ Cygni this becomes

 $\Delta s = \{ [4.141_n] C + [4.433_n] D \} s$ for all years,

and is additive to the distances to reduce them to 1873.0. This factor of s is given in column three of Table III.

6. The logarithms of the Besselian day-numbers, taken from the American Ephemeris, are:

Plates.	log A.	log B.	log C.	log D.
ı,	9.692	0.035n	1.104	1.178
2, 3,	9.699	0.022n	1.077	1.198
4,	9.774	0.583n	0.840	1.279
5, 6,	9.816	0.580_{n}	0.244	1.309
7,	9.821	0.582n	0.038	1.310
8, 9,	9.788	0.807n	1.043	1.218
10,	9.800	0.802n	0.985	1.244
11, 12, 13,	9.805	0.801 n	0.958	1.253
15,	9.336	0.857n	0.776n	1.287n
16, 17,	9.411	0.854n	0.418n	1.306_{n}
18, 19, 20.	9.417	0.854n	0.364n	1.307n

7. In the second portion of Table III. is given the mean of the

East and West zero-corrections computed for each by the formula *

$$v = \frac{1}{2} k z \tan \delta - y + x$$

in which v is the zero-correction to be added to all observed position angles of each plate.

In the next column are the special corrections \dagger required by the position-angles of the Western impressions in consequence of using the same zero-point in measuring both Eastern and Western impressions.[‡] The sum of these two columns is then given in column six, which, therefore, contains the final correction as actually applied in the reductions.

8. In Table IV. is given the tangent correction. This is always negative and its unit is .0001 divisions of the micrometer. It has been computed by the formula:

Correction =
$$-\frac{1}{3}s^3 d^2 \sin^2 \mathbf{I}'' = [1.7887_n]s^3$$

where s denotes the distance in divisions of the glass scale and d is the value of one division of the scale in seconds of arc.

TABLE V.-Measures of Distance.

9. The first column contains the numbers of the stars in order of right ascension and also in parentheses, for convenience of reference to the original measures and plates, are the numbers as assigned by RUTHERFURD. The number of the plate is given in column two, after which follows the observed distances for the Eastern and Western impressions. The numbers set down are the fractional part of the measured distance expressed in divisions of the glass scale, the whole number of divisions being ordinarily the same as that given in the *final corrected distance*. Where there is a change of .8 or .9 in the observed distance, it is an indication of a change of a unit in the whole number of divisions in passing from the observed distance to the corrected mean. In columns five, six and seven are placed the corrections as applied for refraction, aberration and scale respectively; these, with addition of

60

^{*} Annals N. Y. Acad. of Sci., Vol. VI., p. 272.

[†] Ibid., p. 278.

[‡]Ibid., p. 240.

[&]amp; Table II and Paragraph 2.

^{||} Table III and Paragraph 4.

[¶] Pleiades, pp. 242-251.
the tangent correction only—which may be obtained directly from Table IV, being practically constant for each star—present all the corrections which have been applied to the observed *mean* distance of the East and West impressions to get the *corrected mean* of column eight.

10. It is noticeable that among these corrected means the distances belonging to some of the plates are always larger than the average and to other plates always smaller. To get rid of this variation of scale value, whatever may be its cause, I have selected the following four stars as standards:

No.	Distance.	sin p.	cos p.
5	77.2926	—0. 998	+0.054
23	89.2118	0.068	+0.998
32	77.0019	+0.127	0.992
48	50.7333	+0.96 2	-0.274
Sums	294.2396	+0.02	-0.21

Now, if s_5 , s_{23} , s_{32} , s_{48} represent the distances of stars 5, 23, 32 and 48 from $6r^1$ *Cygni* on any given plate and $\sum s_s$ the sum of the standard distances, there must be added to every distance on that plate for any other star its proportional part of the difference between the mean of the sums of the distances of the standard stars and their separate sums for that particular plate, or:

Scale variation =
$$\frac{\Sigma_{s_s} - (s_5 + s_{23} + s_{32} + s_{48})}{\Sigma_{s_s}} s$$

The following table gives the value of this coefficient of s for each plate. The individual values of *scale variation* are given in column nine of Table V.

Plate.	Scale Variation Factor \times 10 ³ .
1 2 3 4 5 6 7 8 9 10 11 12 13 15 16 17 18 19	$\begin{array}{c} + .1948 \\ + .2275 \\ + .1666 \\0027 \\ + .0439 \\ + .0928 \\1272 \\0442 \\0408 \\0714 \\0598 \\0714 \\0598 \\0129 \\1047 \\0670 \\0714 \\0537 \\0326 \end{array}$
20	1241

11. The measures of distance are next to be corrected for the proper motion of the central star. For this purpose let :

$$t = \text{date of the plate.}$$

$$\tau = t - 1873.0$$

$$\rho = \text{annual motion on great circle}$$

$$\chi = \text{position-angle of that great circle}$$

$$S_1 = \cos (\chi - p)$$

$$S_2 = -\frac{1}{2s} \sin^2 (\chi - p)$$

$$P_1 = \tau \rho$$

$$P_2 = \tau^2 \rho^2$$

The correction for proper motion, additive to observed distances, will then be:

$$\Delta s = S_1 P_1 + S_2 P_2 \cdot$$

I have adopted AUWERS'S values of

$$\mu = + 0.3444, \qquad \mu = + 3.230,$$

as given in the *Fundamental Catalog*. Corresponding to these are:

$$\rho = 5.{}^{''}1904 = 0.{}^{a}18528, \qquad \qquad \chi = 51^{\circ}30^{\prime}56^{''}$$

The values of p used in the above formulæ were the means after correction for "zero" and refraction, as explained in paragraph 7; and the values of s were after correction for scale variation.

12. The values of S_1 and S_2 will be found in columns two and three of Table VII. The following table gives τ , P_1 , and P_2 :

		For Proper Motion.			
Plate.	т	P_1	P_2		
1 2 3 4 5 6 7 8 9 10 11 12 13 15 16 17	$\begin{array}{c} - 1.142 \\ - 1.134 \\ - 0.085 \\ - 0.041 \\ - 0.036 \\ + 0.876 \\ + 0.876 \\ + 0.895 \\ + 0.895 \\ + 0.895 \\ + 0.895 \\ + 1.418 \\ + 1.448 \\ + 1.448 \end{array}$	$\begin{array}{c} -0.2116\\ -0.2101\\ -0.2101\\ -0.0157\\ -0.0076\\ -0.0076\\ +0.1623\\ +0.1623\\ +0.1658\\ +0.1658\\ +0.1658\\ +0.1658\\ +0.2627\\ +0.2683\\ +0.2683\\ \end{array}$	$\begin{array}{c} \begin{array}{c} + 0.045 \\ + 0.044 \\ + 0.044 \\ + 0.000 \\ + 0.000 \\ + 0.000 \\ + 0.000 \\ + 0.026 \\ + 0.026 \\ + 0.027 \\ + 0.027 \\ + 0.027 \\ + 0.027 \\ + 0.027 \\ + 0.027 \\ + 0.027 \\ + 0.027 \\ + 0.072 \end{array}$		
18 19 20	+ 1.451 + 1.451 + 1.451	+ 0.2688 + 0.2688 + 0.2688 + 0.2688	+ 0.072 + 0.072 + 0.072		

13. As the quantity which depends on the square of the time is always small for a star having even so large a proper motion as $61 \ Cygni$, its values may be tabulated for limiting values of S_2 . Such a table as used in the present paper is:

Plates S ₂ P ₂	I	2 3	4 5 6 7	8 9	10 11 12 13	15	16 17 18 19 20
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.0 11.2 33.5 55.8 78.2 100.5 122.8 145.1	.0 11.3 34.0 56.7 79.3 102.0 124.6 147.3	.0 140.0	.0 19.0 57.0 95.0 133.1	.0 18.2 54.8 91.2 127.8 164.2 200.8	.0 7.2 21.7 36.2 50.7 65.2 79.7 94.2 108.7 123.2 137.7	.0 6.9 20.7 34.7 48.5 62.4 76.2 90.1 104.0 117.8 131.7

The figures at the tops of the columns are the numbers of the plates to which the columns are applicable as determined by their values of P_2 . Selecting, therefore, the proper column and using S_2 as the argument in the body of the table (where it is expressed in units of the fourth decimal place), one will find in the first column the desired value of $S_2 P_2$, expressed in divisions of the scale. Column ten of Table V gives the total proper motion correction.

14. A correction for parallax of the principal star was next applied. Using Auwers's values of the coördinates of 61^1 Cygni reduced to 1873.0

$$a = 21^{h} 01^{m} 12.329$$

$$\delta = 38^{\circ} 07^{\prime} 33.40^{\prime}$$

and the almanac values of r and \odot , the radius vector and longitude of the sun respectively, the values of S_3 , S_4 , P_3 and P_4 were computed by the formulæ

> $g \sin G = \sin \delta \cos a \qquad h \sin H = \sin \delta \sin a$ $g \cos G = \sin a \qquad h \cos H = -\cos \delta$ $f \sin F = h \sin (H + \varepsilon)$ $f \cos F = -\cos a \cos \varepsilon$ $S_3 = f \sin (p + F)$ $S_4 = g \sin (p + G)$ $P_3 = -r \sin \bigcirc$ $P_4 = -r \cos \bigcirc$

The value of p used here was the mean of the position-angles after correction for proper motion and orientation variation, as described in paragraphs 17 and 19. The values of P_3 and P_4 are:

	For Parallax.				
Plates.	P_3	P_4			
1 2 3 4 5 6 7 8 9 10 11 12 3 15 16 17 8 9 20	$\begin{array}{c} + 0.727 \\ + 0.761 \\ + 0.761 \\ + 0.915 \\ + 0.979 \\ + 0.979 \\ + 0.979 \\ + 0.979 \\ + 0.845 \\ + 0.862 \\ + 0.862 \\ + 0.862 \\ + 0.862 \\ - 0.962 \\ - 1.006 \\ - 1.006 \\ - 1.008 \\ - 1.008 \\ - 1.008 \\ - 1.008 \end{array}$	$\begin{array}{r} + 0.672 \\ + 0.632 \\ + 0.632 \\ + 0.366 \\ + 0.095 \\ + 0.095 \\ + 0.095 \\ + 0.583 \\ + 0.583 \\ + 0.583 \\ + 0.581 \\ + 0.480 \\ + 0.480 \\ - 0.322 \\ - 0.142 \\ - 0.142 \\ - 0.142 \\ - 0.125 \\ - 0.125 \end{array}$			

In Table VIII, columns two and three, will be found S_3 and S_4 . The *coefficient* of the parallax, as printed in column eleven of Table V is

$$S_3P_3 + S_4P_4$$

and the correction, additive to the distances, is

$$(S_3P_3 + S_4P_4) \frac{\Pi}{28.''_{0124}}$$

where II is the parallax expressed in seconds of arc. Table XI gives values of this quantity corresponding to limiting values of the coefficient. The method of using this table is the same as described in paragraph 13. In its construction I used*

$$\Pi = + 0.''3597$$

15. The distances thus corrected for all known disturbances affecting the central star, 61^1 Cygni, are given in column twelve of Table V. In this column are also the means of the distances.

TABLE VI.—Measures of Position-angle.

16. This table has been put on pages opposite the correspond-

* The Parallax of 61¹ Cygni as deduced from Rutherfurd Photographic Measures, by Herman S. Davis. Contribution No. 13.

ANNALS N. Y. ACAD. SCI., X, August, 1897.-5.

ing measures of distance in Table V. The first column is a repetition of the number of the plate. In columns two and three are given the *observed* angles for the eastern and western impressions. The number of degrees for the *west* column are the same as printed in the *east* column, except where there is an obvious change of $\pm 1^{\circ}$ indicated by a difference of nearly 60' in the minutes of the two columns.

In column four are placed the zero-corrections of paragraph 7 plus the special corrections due to the precession, etc., mentioned in the same paragraph. This quantity is taken from the last column of Table III. The correction for refraction from Table II is in column five. The mean of the east and west impressions thus corrected is placed in column six.

17. In column seven of Table VI is the correction due to proper motion of the central star. This has been computed from the following formulæ:*

Let $t, \tau, S_1, P_1, P_2, \rho$ and χ have the same meaning as in paragraph II; also let

$$S_5 = \sin (\chi - p)$$

$$S_6 = \frac{I}{\sigma}$$

$$S_7 = S_5 S_6$$

$$P_5 = \tau \rho \operatorname{cosec} \mathbf{1''}$$

$$K = - \{P_1 \sin \chi \tan \delta + \frac{1}{2} P_2 \sin \mathbf{1''} \sin \chi \cos \chi (\mathbf{1} + 2 \tan^2 \delta) \}$$

Then will the correction for proper motion, additive to observed angles, be

$$\Delta p = S_7 P_5 \left(\mathbf{I} + S_1 P_1 \cdot S_6 \right) + K.$$

Throughout these formulæ ρ and σ are to be expressed in divisions of the scale, whereas K and Δp are in seconds of arc. The convenience of expressing Δp in this form is more noticeable when it is remembered that S_1P_1 has already been computed for use in correcting the distances; see paragraph 11. Here σ is to represent the value of s after being corrected for scale variation and proper motion.

18. As K is obviously a constant for all stars on the same plate, being only that part of the variation in $(\chi - p)$ due to the

* Handbuch der Vermessungskunde von Dr. W. Jordan, Bd. III. S. 359. Vierte Auflage. effect of meridian-convergence upon the value of χ at different dates, we have for 61^1 Cygni:

$$K = -17.2094 P_1$$

the term in P_2 being neglected, as its maximum value in the present research is only $\pm 0.''_{00015}$.

The following table gives K for the various plates, and also the values of P_5 ; while in columns four, five and six of Table VII will be found S_5 , S_6 and S_7 .

	For Proper Motion.				
Plate.	K	P_5			
I 2 3 4 5 6 7 8 9 10 11 12 13 15 16 17 18 19 20	$\begin{array}{c} & & \\ & + & 3.6 \\ & + & 3.6 \\ & + & 3.6 \\ & + & 0.1 \\ & + & 0.1 \\ & + & 0.1 \\ & + & 2.8 \\ & - &$	$\begin{array}{c} - 43644. \\ - 43338. \\ - 43338. \\ - 3248. \\ - 1567. \\ - 1567. \\ - 1376. \\ + 33478. \\ + 34013. \\ + 34204. \\ + 34204. \\ + 34204. \\ + 54191. \\ + 55338. \\ + 55338. \\ + 55338. \\ + 55452. \\ + 55452. \\ \end{array}$			

19. Orientation Variation.—When the angles have been corrected as described above, observation of the corrected mean plus proper motion in Table VI reveals a variation of measures on some of the plates from the mean of all that is erratic, and in some cases very considerable in magnitude. This is undoubtedly due to the method which RUTHERFURD used for the orientation of his plates.

It was his custom in making the exposures to take two impressions of the stars on each plate. After the second, or western impression, the telescope clock was stopped, and the stars were allowed to trail across the plate for a distance of sixty to eighty scale-divisions. The clock was then again made to run long enough to permit the formation of another image of the central star. The line joining this last image with the central image was used as the origin of the position-angles. Angles so measured were made in the present paper to conform to the custom of counting from the north point towards the east by addition of 270° to the observed readings, as seen in Table VI.

Of course the position-angle of this last impression of the principal star is not exactly 270°, however, unless there has been absolutely no shifting of the telescope in declination during the formation of the trail, or when clamping in the clock for the final image. It is a priori probable that such shifting did occur; but with such alterations in the balance-weights of the tube, in the pointing of the telescope, and in the other conditions of exposure of many plates during the course of several years, we may fairly assume, on the other hand, that such shifting in declination is not systematically in the same direction; that, consequently, the mean of the position-angles of a given star as determined from all the plates is its most probable value. Hence, if all the stars were found on all the plates, it would be unnecessary to apply a correction for error of orientation. But such is not the case. Furthermore it is desirable to use the individual measures separately for a determination of the parallax.

This correction may be deduced from standard stars by taking from the mean of all the angles of all the plates the angle measured on each plate separately, and regarding the residual as the orientation variation of that plate. For any particular star such residuals would not, however, be the true correction; for it would contain the effect of both the proper motion and the parallax of the central star. Several stars should, therefore, be selected as standards; and they should be so distributed in distance and angle as to eliminate both parallax and proper motion from the mean of their residuals for each plate severally. Since the probable error of measures of angle vary inversely as the distance, these means should be taken by weight proportional to the square of the distance.

Expressed symbolically these conditions are:

A.
$$\frac{\Sigma \sigma^2 S_8}{\Sigma \sigma^2} = 0 \quad \text{and} \quad \frac{\Sigma \sigma^2 S_9}{\Sigma \sigma^2} = 0$$

B.
$$\Sigma S_7 = 0.$$

The significance of S_8 and S_9 will be found in paragraph 22, and of S_7 in paragraph 17.

20. It is easily seen that both A and B cannot be satisfied at the same time, unless the direction of proper motion of the principal star coincide with the major or the minor axis of the parallactic ellipse. This fortunately is very nearly the case with 61^1 Cygni; wherefore it would have been immaterial here whether the angles of the standard stars had been corrected for proper motion or not, though as a matter of fact they were so corrected; as would ordinarily be necessary.

21. If stars can be found on all the plates which will satisfy only very closely, but not exactly, condition A, the *residuum* of the parallactic effect may be more nearly eliminated by adding to the orientation variation deduced from such stars the quantity

$$\left\{ \frac{(P_3' - P_3) \Sigma \sigma^2 S_8}{\Sigma \sigma^2} + \frac{(P_4' - P_4) \Sigma \sigma^2 S_9}{\Sigma \sigma^2} \right\} \text{ II'}$$

where the primed P_3' and P_4' are the means of the values of P_3 and P_4 for all the plates, and where II' is an approximate value of the parallax, or a value deduced from the measures of distance.

In this paper the following six stars were selected as the standards:

Star	$\sigma^2 S_8$	$\sigma^2 S_9$	S_7	σ^2
5	-423898.2	+227748.4	+0.008588	5962.
6	90170.0	+550938.7	000240	9017.
13	-611921.1	381846.5	+ .009566	9667.
23	459811.3		+ .009229	7969.
32	+418587.4	+364040.6	.011118	5929.
48	+322758.0	- 85914.0	.016022	2580.

These give:

 $\frac{\Sigma\sigma^2 S_8}{\Sigma\sigma^2} = -20.5 \qquad \frac{\Sigma\sigma^2 S_9}{\Sigma\sigma^2} = +5.7 \qquad \Sigma S_7 = -.000003$

which shows that they are admirably adapted to the present purpose. From these stars, therefore, and with II' = +0.''40 have been deduced the following corrections, additive to observed position-angles.

69

Plate.	Orientation Variation.
I 2 3 4 5 6 7 8 9 10 11 12 13 15 16 17 18 19	$\begin{array}{c} & & & & & & & \\ & + & 0 & 13 \\ & + & 1 & 0 \\ & + & 0 & 6 \\ & - & 0 & 35 \\ & - & 0 & 35 \\ & - & 0 & 35 \\ & + & 0 & 17 \\ & + & 3 & 21 \\ & - & 0 & 30 \\ & - & 0 & 21 \\ & - & 0 & 30 \\ & - & 0 & 21 \\ & - & 0 & 30 \\ & - & 0 & 21 \\ & - & 0 & 30 \\ & - & 0 & 21 \\ & - & 0 & 30 \\ & - & 0 & 21 \\ & - & 0 & 30 \\ & - & 0 & 21 \\ & - & 0 & 30 \\ & - & 0 & 21 \\ & - & 0 & 30 \\ & - & 0 & 21 \\ & - & 0 & 10 \\ & - & 0 & 20 \\ & - & 0 & 25 \\ & - & 0 & 50 \\ & - & 0 & 1 \end{array}$
20	+ 0 14

22. In column eight of Table VI are given the parallax coefficients. They have been computed by the formulæ:

 $S_{8} P_{3} + S_{9} P_{4}$

$$\begin{split} S_8 &= \frac{f \operatorname{cosec} 1''}{28.'' \circ 124} S_6 \cos \left(\pi + F\right) \\ S_9 &= \frac{g \operatorname{cosec} 1''}{28.'' \circ 124} S_6 \cos \left(\pi + G\right) \\ S_6 &= \frac{1}{\sigma} \end{split}$$

and where f, g, F, G, P_3 , and P_4 have the same meaning as in paragraph 14. The value of the position-angle used here, π , is the angle p corrected for proper motion and orientation variation. The quantities S_8, S_9 , and S_6 are in columns four and five of Table VIII and five of Table VII respectively. P_3 and P_4 are tabulated in paragraph 14.

23. After adding to the observed angle the correction

$$(S_8 P_3 + S_9 P_4) \Pi$$

taken from Table XI with the parallax coefficient of column eight, Table VI, as the argument we have the final corrected angle given in the last column of Table VI. Sixty-five Stars near 61 Cygni. 71

24. Table IX.—Column three contains the mean of the final position angles of Table VI, and column two the mean of the distances, converted to seconds of arc by the scale value 28."0124. These are followed in columns four and five by the differences of right ascension and of declination derived by aid of the formulæ :

	Logarithms for Plates of
$n = \sigma \sin \pi$	or oggin only
$m = \sigma \cos \pi$	_
$P = \sec \delta$	= [0.104215]
$Q = [4.685575] \tan \delta \sec \delta$	= [4.6846]
$R = [8.89403_n] \tan^2 \delta \sec \delta$	$= [8.7878_{n}]$
$S = [8.89403] \sec \delta (1 + 3 \tan^2 \delta)$	= [9.4528]
$T = [4.384545_{\rm n}] \tan \delta$	$= [4.2793_n]$
$U = [8.59300_{\rm n}] (1 + 3 \tan^2 \delta)$	$= [9.0475_n]$
$V = [3.57960_{n}] \sec \delta \tan \delta (1 + 3 \tan^{2} \delta)$	
$W = \begin{bmatrix} 3.57960 \end{bmatrix} \sec \delta \tan \delta (2 + 3 \tan^2 \delta)$	
al a Du L Oum L Dus L Curre	(TZ-3 1 TTZ 2)
$a' - a \equiv Pn + Qnm + Kn^3 + Snm^2 - \delta' = \delta' - m + Tn^2 + Un^2m$	$+ (Vn^{\circ}m + Wnm^{\circ})$
$m + 1n^{-} + 1n^{-}$	

where σ and π are the final corrected mean distance and positionangle respectively of the star whose α' and δ' are desired. It was found also that the terms in V and W were not needed, since they are so nearly equal and have contrary signs.

In column six is the number of plates on which the image of the star was impressed; though it is proper to state that the given position is the result of at least twenty measures of distance and twelve of position-angle for *each* plate recorded in this column.

In columns seven and eight are the *Durchmusterung* number and magnitude for as many of the stars as could be identified. A few of those found in the *Durchmusterung* but not found on these plates, though of much brighter magnitude than many which are on the plates, no doubt are missing because of their color; as obviously light from reddish stars affects the plate but little, though optically it may appear quite bright.

25. Table X is on pages opposing Table IX and gives the right ascensions and declinations of each star. These were obtained by adding the a' - a, $\delta' - \delta$ of Table X to AUWERS's position of 61^1 Cygni reduced to 1873.0 with the constants given in the Fundamental Catalog:

$$a = 21^{h} 01^{m} 12.329 \\ \delta = 38^{\circ} 07^{\prime} 33^{\circ}.40$$
 } 1873.0

The other columns contain the precession constants, whereby the positions of these stars may be reduced to another epoch; T, by the formulæ:

$$a_T = a_{1873} + J(T - 1873) + K \frac{(T - 1873)^2}{200}.$$

$$\delta_T = \delta_{1873} + L(T - 1873) + M \frac{(T - 1873)^2}{200}.$$

TABLE I.-GENERAL DATA.-Observatory of L. M. Rutherfurd, New York.

48.5 Long. = 4 55

40 43

Lat. =

56.62 W

Log. ĸ 6.4559 6.4690 6.4685 6.4706 6.4654 6.4641 6.4695 6.4581 6.4574 6.4682 6.4667 6.4663 6.4663 6.4303 6.4312 6.4461 6.4466 6.4466 6.4442 +69.38+66.40+70.57+71.38+69.38+70.04+70.31+65.33+68.10+73.13+73.95 +72.05 +69.67 --71.88 --66.03 --68.33 --68.33 --69.07 -71.30 ъ 39.50 46.76 27.88 31.82 38.83 38.83 42.20 45.90 40.34 34.14 36.32 33.91 39.50 37.74 37.01 49.07 42.71 32.33 47.64 ~ $\begin{array}{c} 68.32 \\ 68.32 \\ 63.00 \\ 63.18 \\ 63.67 \\ 63.67 \\ 70.22 \end{array}$ 70.38 77.08 77.19 69.72 63.56 63.18 69.44 70.05 76 95 71.01 77.15 84.37 70.29 Zero. Focus. 7.7 7.64 7.7 7.7 7.8 8.0 7.9 7.9 Tel. Therm. 45° 45° 25 35 33 33 33 $40 \\ 40 \\ 335 \\$ 366338 Ext. Therm. 35 42° 35 37 37 37 555 57 57 57 Att. Therm. 385°° 3333333333 59 59 59 29.988 30.460 30.460 **29.748** 30.150 30.150 30.328 29.984 29.950 29.950 30.300 30.300 30.300 29.716 29.716 30.070 30.392 30.392 30.392 30.392 Barom. 56 56 35 35 40 $\begin{array}{c}
 7 \\
 23 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\
 33 \\$ Hour Angle. 27 56 B 1313 a no n **~~~**4 ~~ 04000 m 21 19 20 20 20 20 Sor or " 47 47 52 Sidereal Time. h m 0 11 23 58 0 28 B 18 14 21 45 28 26 24 24 24 24 ооно 18 16 17 17 18 18 June 13 June 13 June 13 12 12 29 15 17 15 15 20 22 22 June 12 June J2 June I Nov. Nov. Nov. Nov. Nov. Nov. Nov. Nov. Dec. Dec. Date. 1872 1873 1874 **1871** Plate. H a m 15 16 17 18 18 19 20 4502 8 10 11 12 13

<u> </u>		•			
Position Angle,	$\frac{\sigma-s}{s} \times 10^3$	$\pi - p$	Position Angle, <i>p</i> .	$\frac{\sigma-s}{s} \times 10^3$	π-p
	PLATE 1.			Plate 2.	,
$\begin{array}{ccccc} 71^{\circ} & 251^{\circ} \\ 81 & 261 \\ 91 & 271 \\ 101 & 281 \\ 111 & 291 \\ 121 & 301 \\ 131 & 311 \\ 141 & 321 \\ 151 & 331 \\ 161 & 341 \\ 171 & 351 \\ 181 & 1 \\ 191 & 11 \\ \cdot 201 & 21 \\ 211 & 31 \\ 221 & 41 \\ 231 & 51 \\ 241 & 61 \\ 251 & 71 \end{array}$	$\begin{array}{c} +.440 \\ .436 \\ .422 \\ .402 \\ .377 \\ .350 \\ .325 \\ .304 \\ .291 \\ .286 \\ .291 \\ .304 \\ .325 \\ .350 \\ .377 \\ .402 \\ .422 \\ .436 \\ +.440 \end{array}$	$\begin{array}{c} " \\ 0.0 \\ - 5.4 \\ - 10.2 \\ - 13.8 \\ - 15.7 \\ - 15.7 \\ - 13.8 \\ - 10.2 \\ - 5.4 \\ + 10.2 \\ + 13.8 \\ + 15.7 \\ + 15.7 \\ + 15.7 \\ + 13.8 \\ + 10.2 \\ + 5.4 \\ - 0.0 \end{array}$	$\begin{array}{cccc} 71^\circ & 251^\circ \\ 81 & 261 \\ 91 & 271 \\ 101 & 281 \\ 111 & 291 \\ 121 & 301 \\ 131 & 311 \\ 141 & 321 \\ 151 & 331 \\ 161 & 341 \\ 171 & 351 \\ 181 & 11 \\ 191 & 11 \\ 201 & 21 \\ 211 & 31 \\ 221 & 41 \\ 231 & 51 \\ 241 & 61 \\ 251 & 71 \end{array}$	$\begin{array}{c} +.427\\ .423\\ .411\\ .394\\ .372\\ .349\\ .327\\ .310\\ .298\\ .294\\ .298\\ .298\\ .294\\ .310\\ .327\\ .349\\ .372\\ .394\\ .411\\ .423\\ +.427\end{array}$	$\begin{array}{c} \begin{array}{c} & & & & & & \\ & & & & & & \\ & & & & & $
	PLATE 3.		PLATE 4.		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} & & & \\$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{r} +.473 \\ .468 \\ .453 \\ .429 \\ .400 \\ .369 \\ .340 \\ .317 \\ .301 \\ .296 \\ .301 \\ .317 \\ .340 \\ .369 \\ .400 \\ .429 \\ .453 \\ .468 \\ +.473 \end{array}$	$\begin{array}{c} \begin{array}{c} & & \\ & & 0.0 \\ & - & 6.3 \\ & - & 11.8 \\ & - & 15.8 \\ & - & 18.0 \\ & - & 18.0 \\ & - & 18.0 \\ & - & 15.8 \\ & - & 15.8 \\ & - & 16.3 \\ & - $

TABLE II.—CORRECTIONS FOR REFRACTION.

Position Angle, p.	$\frac{\sigma-s}{s} \times 10^3$	$\pi - p$	Position Angle, <i>p</i> .	$\left \frac{\sigma-s}{s} \times 10^3 \right $	$\pi - p$
	PLATE 5.			PLATE 6.	
$\begin{array}{ccccc} 70^\circ & 250^\circ \\ 80 & 260 \\ 90 & 270 \\ 100 & 280 \\ 110 & 290 \\ 120 & 300 \\ 130 & 310 \\ 140 & 320 \\ 150 & 330 \\ 160 & 340 \\ 170 & 350 \\ 180 & 0 \\ 190 & 10 \\ 200 & 20 \\ 210 & 30 \\ 220 & 40 \\ 230 & 50 \\ 240 & 60 \\ 250 & 70 \end{array}$	$\begin{array}{c} +.458 \\ .453 \\ .439 \\ .417 \\ .390 \\ .361 \\ .333 \\ .312 \\ .297 \\ .292 \\ .297 \\ .297 \\ .312 \\ .333 \\ .361 \\ .390 \\ .417 \\ .439 \\ .453 \\ +.458 \end{array}$	$\begin{array}{c} \overset{,0}{-} & \overset{,0}{-} \\ & \overset{,0}{-} & \overset{,0}{-} \\ & \overset{,-}{-} & \overset{,1}{-} \\ & \overset{,-}{-} & \overset{,1}{-} \\ & \overset{,-}{-} & \overset{,0}{-} \\ & \overset{,-}{-} & \overset{,-}{-} & \overset{,-}{-} & \overset{,-}{-} & \overset{,-}{-} & \overset{,-}{-} \\ & \overset{,-}{-} & $	$\begin{array}{ccccccc} 65^\circ & 245^\circ \\ 75 & 255 \\ 85 & 265 \\ 95 & 275 \\ 105 & 285 \\ 115 & 295 \\ 125 & 305 \\ 135 & 315 \\ 145 & 325 \\ 155 & 335 \\ 165 & 345 \\ 175 & 355 \\ 185 & 5 \\ 195 & 15 \\ 205 & 25 \\ 215 & 35 \\ 225 & 45 \\ 235 & 55 \\ 245 & 65 \end{array}$	$\begin{array}{c} +.678\\.666\\.633\\.581\\.518\\.451\\.388\\.336\\.303\\.291\\.303\\.336\\.388\\.451\\.518\\.581\\.633\\.666\\+.678\end{array}$	$\begin{array}{c} & & & & & & & & & & & & & & & & & & &$
	PLATE 7.			PLATE 8.	
$\begin{array}{cccccc} 68^\circ & 248^\circ \\ 78 & 258 \\ 88 & 268 \\ 98 & 278 \\ 108 & 288 \\ 118 & 298 \\ 128 & 308 \\ 138 & 318 \\ 148 & 328 \\ 158 & 338 \\ 158 & 338 \\ 168 & 348 \\ 178 & 358 \\ 188 & 38 \\ 198 & 18 \\ 208 & 28 \\ 218 & 38 \\ 228 & 48 \\ 238 & 58 \\ 248 & 68 \end{array}$	$\begin{array}{r} +.546\\ .539\\ .517\\ .484\\ .443\\ .399\\ .358\\ .325\\ .303\\ .295\\ .303\\ .325\\ .303\\ .325\\ .358\\ .399\\ .443\\ .484\\ .517\\ .539\\ +.546\end{array}$	$\begin{array}{c} \begin{array}{c} & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & \\ & $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{r} +.482\\ .476\\ .459\\ .433\\ .402\\ .367\\ .336\\ .293\\ .287\\ .293\\ .310\\ .336\\ .367\\ .402\\ .433\\ .459\\ .476\\ +.482\end{array}$	$\begin{array}{c} 0.0 \\ - 6.9 \\ - 12.9 \\ - 17.4 \\ - 19.8 \\ - 19.8 \\ - 17.4 \\ - 12.9 \\ - 6.9 \\ + 12.9 \\ - 6.9 \\ + 17.4 \\ + 19.8 \\ + 17.4 \\ + 12.9 \\ + 6.9 \\ + 0.0 \\ \end{array}$

TABLE II.—CORRECTIONS FOR REFRACTION. (Continued.)

Position Angle, p	$\frac{\sigma-s}{s} \times 10^3$	$\pi - p$	Position Angle, p	$\frac{\sigma-s}{s} \times 10^3$	π-p
	PLATE 9.			Plate 10.	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{r} +.612\\ .602\\ .574\\ .531\\ .477\\ .421\\ .368\\ .325\\ .297\\ .287\\ .297\\ .325\\ .368\\ .421\\ .477\\ .531\\ .574\\ .602\\ +.612\end{array}$	$\begin{array}{c} \overset{"}{0.0} \\ -11.5 \\ -21.5 \\ -29.0 \\ -33.0 \\ -29.0 \\ -21.5 \\ -11.5 \\ 0.0 \\ +11.5 \\ +21.5 \\ +29.0 \\ +33.0 \\ +29.0 \\ +21.5 \\ +11.5 \\ 0.0 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+.376 .374 .367 .356 .342 .328 .314 .296 .294 .296 .294 .296 .304 .314 .328 .342 .328 .342 .356 .367 .374 +.376	$\begin{array}{c} & 0.0 \\ - & 2.9 \\ - & 5.5 \\ - & 7.3 \\ - & 8.4 \\ - & 7.3 \\ - & 8.4 \\ - & 7.3 \\ - & 2.9 \\ + & 5.5 \\ - & 2.9 \\ + & 5.5 \\ + & 7.3 \\ + & 8.4 \\ + & 7.3 \\ + & 5.5 \\ + & 2.9 \\ 0.0 \end{array}$
]	PLATE 11.		PLATE 12.		
$\begin{array}{ccccccc} 74^\circ & 254^\circ \\ 84 & 264 \\ 94 & 274 \\ 104 & 284 \\ 114 & 294 \\ 124 & 304 \\ 134 & 314 \\ 144 & 324 \\ 154 & 334 \\ 164 & 344 \\ 174 & 354 \\ 184 & 4 \\ 194 & 14 \\ 204 & 24 \\ 214 & 34 \\ 224 & 44 \\ 234 & 54 \\ 244 & 64 \\ 254 & 74 \end{array}$	$\begin{array}{r} +.35^{2} \\ .350 \\ .345 \\ .337 \\ .327 \\ .317 \\ .308 \\ .300 \\ .295 \\ .293 \\ .295 \\ .293 \\ .295 \\ .300 \\ .308 \\ .317 \\ .327 \\ .337 \\ .345 \\ .350 \\ +.352 \end{array}$	$\begin{array}{c} & 0.0 \\ & 0.0 \\ - & 2.1 \\ - & 3.9 \\ - & 6.0 \\ - & 5.2 \\ - & 6.0 \\ - & 5.2 \\ - & 2.1 \\ + & 3.9 \\ - & 2.1 \\ + & 3.9 \\ + & 5.2 \\ + & 5.2 \\ + & 5.2 \\ + & 5.2 \\ + & 3.9 \\ + & 5.2 \\ - & 2.1 \\ - & 0.0 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{r} +.406 \\ .403 \\ .393 \\ .378 \\ .359 \\ .321 \\ .306 \\ .296 \\ .296 \\ .296 \\ .296 \\ .306 \\ .321 \\ .339 \\ .359 \\ .378 \\ .393 \\ .403 \\ +.406 \end{array}$	$\begin{array}{c} & & & \\ & & & 0.0 \\ & & - & 4.0 \\ & & - & 7.5 \\ & & - & 10.0 \\ & & - & 11.4 \\ & - & 11.4 \\ & - & 11.4 \\ & - & 10.0 \\ & & - & 7.5 \\ & - & 4.0 \\ & & 0.0 \\ & + & 4.0 \\ & + & 11.4 \\ & + & 10.0 \\ & + & 11.4 \\ & + & 10.0 \\ & + & 7.5 \\ & + & 4.0 \\ & & 0.0 \end{array}$

TABLE II.—CORRECTIONS FOR REFRACTION. (Continued.)

Position Angle, <i>p</i> .	Position Angle, $\frac{\sigma-s}{s} \times 10^3$		Position Angle, p.	$\frac{\sigma-s}{s} \times 10^3$	· <i>π</i> — <i>p</i>
	PLATE 13.			Plate 14.	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{r} +.481 \\ .475 \\ .459 \\ .434 \\ .403 \\ .370 \\ .339 \\ .314 \\ .298 \\ .292 \\ .298 \\ .314 \\ .339 \\ .370 \\ .403 \\ .434 \\ .459 \\ .475 \\ +.481 \end{array}$	$\begin{array}{c} \begin{array}{c} & 0.0 \\ - & 6.7 \\ - & 12.5 \\ - & 16.9 \\ - & 19.2 \\ - & 19.2 \\ - & 19.2 \\ - & 16.9 \\ - & 12.5 \\ - & 6.7 \\ - & 6.7 \\ + & 12.5 \\ + & 16.9 \\ + & 19.2 \\ + & 19.2 \\ + & 16.9 \\ + & 12.5 \\ + & 6.7 \\ - & 0.0 \end{array}$			
	PLATE 15.			PLATE 16.	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{r} +.3^{89} \\ .3^{86} \\ .3^{76} \\ .3^{62} \\ .3^{24} \\ .3^{06} \\ .2^{91} \\ .2^{78} \\ .2^{81} \\ .2^{78} \\ .2^{81} \\ .2^{78} \\ .3^{61} \\ .3^{62} \\ .3^{76} \\ .3^{86} \\ +.3^{89} \end{array}$	$\begin{array}{c} & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{r} +.593 \\ .583 \\ .555 \\ .512 \\ .459 \\ .403 \\ .350 \\ .307 \\ .279 \\ .269 \\ .279 \\ .269 \\ .279 \\ .307 \\ .350 \\ .403 \\ .459 \\ .512 \\ .555 \\ .583 \\ +.593 \end{array}$	$\begin{array}{c} \overset{\circ}{0.0} \\ -11.4 \\ -21.5 \\ -28.9 \\ -32.9 \\ -32.9 \\ -28.9 \\ -28.9 \\ -28.9 \\ +28.9 \\ +11.4 \\ +21.5 \\ +28.9 \\ +32.9 \\ +32.9 \\ +32.9 \\ +28.9 \\ +21.5 \\ +11.4 \\ 0.0 \\ -20.5$

TABLE II. CORRECTIONS FOR REFRACTION. (Continued.)

Position Angle, p .	psition Angle, $\left \frac{\sigma - s}{s} \times 10^3 \right $		Position Angle, p .	$\frac{\sigma-s}{s} \times 10^3$	$\pi - p$			
	PLATE 17.		Plate 18.					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+.492 .485 .466 .437 .400 .362 .326 .296 .277 .270 .277 .270 .326 .326 .362 .400 .437 .466 .485 +.492	$\begin{array}{c} & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+.576 .567 .541 .453 .402 .353 .314 .288 .279 .288 .314 .353 .402 .453 .501 .541 .567 +.576	$\begin{array}{c} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & &$			
:	PLATE 19.			Plate 20.				
$\begin{array}{cccc} 291^{\circ} & 111^{\circ} \\ 301 & 121 \\ 311 & 131 \\ 321 & 141 \\ 331 & 151 \\ 341 & 161 \\ 351 & 171 \\ & & & & & \\ 11 & 191 \\ 21 & 201 \\ 31 & 211 \\ 41 & 221 \\ 51 & 231 \\ 61 & 241 \\ 71 & 251 \\ 81 & 261 \\ 91 & 271 \\ 101 & 281 \\ 111 & 291 \\ \end{array}$	$\begin{array}{r} +.482 \\ .476 \\ .459 \\ .432 \\ .399 \\ .363 \\ .331 \\ .304 \\ .286 \\ .286 \\ .286 \\ .286 \\ .286 \\ .286 \\ .304 \\ .331 \\ .363 \\ .399 \\ .432 \\ .459 \\ .476 \\ +.482 \end{array}$	$\begin{array}{c} & & \\ & & 0.0 \\ & - & 7.1 \\ & - & 13.4 \\ & - & 18.0 \\ & - & 20.5 \\ & - & 20.5 \\ & - & 13.4 \\ & - & 7.1 \\ & - & 7.1 \\ & - & 13.4 \\ & - & 7.1 \\ & + & 13.4 \\ & + & 18.0 \\ & + & 20.5 \\ & + & 18.0 \\ & + & 20.5 \\ & + & 18.0 \\ & + & 18.4 \\ & + & 7.1 \\ & 0.0 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+.409 .405 .394 .377 .356 .333 .312 .295 .284 .280 .284 .280 .284 .280 .284 .280 .312 .313 .356 .377 .395 .312 .333 .356 .377 .394 .405 +.409	$\begin{array}{c} \overset{"}{0.0} \\ - & 4.5 \\ - & 8.6 \\ - & 11.5 \\ - & 13.1 \\ - & 13.1 \\ - & 11.5 \\ - & 8.6 \\ - & 4.5 \\ - & 4.5 \\ + & 4.5 \\ + & 4.5 \\ + & 13.1 \\ + & 11.5 \\ + & 13.1 \\ + & 11.5 \\ + & 8.6 \\ + & 4.5 \\ - & 0.0 \end{array}$			

TABLE II.-CORRECTIONS FOR REFRACTIONS. (Concluded.)

Plato	Precessi	on, etc.	Zero Correction	Special		
No.	Position Angle Correction.	$\begin{array}{c} \text{Distance} \\ \text{Factor} \times 10^3 \end{array}$	$\frac{1}{2}$ (East + West)	Correction Mean.	Adopted Mean.	
1 2 3 4 5 6 7 8 9 10 11 12 13 15 16 17 18 19	$\begin{array}{c} -25. \\ -24. \\ -24. \\ +3. \\ +8. \\ +8. \\ +8. \\ +20. \\ +20. \\ +21. \\ +22. \\ +22. \\ +22. \\ +21. \\ +19. \\ +19. \\ +19. \\ +19. \end{array}$		$\begin{array}{c} +12 & 29 \\ 13 & 52 \\ 13 & 58 \\ 13 & 1 \\ 11 & 57 \\ 12 & 12 \\ 13 & 9 \\ 13 & 23 \\ 14 & 50 \\ 13 & 27 \\ 14 & 34 \\ 15 & 56 \\ 13 & 27 \\ 14 & 34 \\ 15 & 56 \\ 13 & 27 \\ 12 & 45 \\ 11 & 27 \\ 11 & 38 \\ 11 & 29 \\ 11 & 45 \\ \end{array}$	$\begin{array}{c} -27 \\ -24 \\ -24 \\ -22 \\ -19 \\ -34 \\ -17 \\ -20 \\ -20 \\ -20 \\ -20 \\ -21 \\ -21 \\ -19 \\ -32 \\ -29 \\ -28 \\ -26 \\ -23 \end{array}$	$\begin{array}{c} & & & & & \\ & + & 12 & 2 \\ & & 13 & 28 \\ & & 13 & 34 \\ & & 12 & 39 \\ & & 11 & 38 \\ & & 12 & 52 \\ & & 13 & 3 \\ & & 12 & 52 \\ & & 13 & 3 \\ & & 14 & 30 \\ & & 13 & 7 \\ & & 14 & 30 \\ & & 13 & 7 \\ & & 14 & 30 \\ & & 13 & 7 \\ & & 14 & 30 \\ & & 13 & 7 \\ & & 14 & 30 \\ & & 13 & 7 \\ & & 14 & 30 \\ & & 13 & 7 \\ & & 14 & 30 \\ & & 15 & 35 \\ & & 13 & 8 \\ & & 12 & 13 \\ & & 15 & 35 \\ & & 13 & 8 \\ & & 12 & 13 \\ & & 15 & 35 \\ & & 13 & 8 \\ & & 12 & 13 \\ & & 15 & 35 \\ & & 13 & 8 \\ & & 12 & 13 \\ & & 15 & 35 \\ & & 13 & 8 \\ & & 12 & 13 \\ & & 10 & 58 \\ & & 11 & 10 \\ & & 11 & 3 \\ & & 11 & 22 \\ \end{array}$	
20	+19.	+.0582	+13 3	25	+1238	

 TABLE III.—CORRECTIONS FOR PRECESSION, ETC., TO 1873 AND

 ZERO CORRECTIONS.

TABLE IV .- TANGENT CORRECTION.

This correction is always *negative*, and is here expressed in terms of the *fourth* decimal place of the micrometer readings.

Distance	0.	1.	2.	3.	4.	5.	6.	7.	8.	9.
20.	— 0	— 0	- 0	— 0	- 0	— I	— I	— I	— I	— I
30.	2	2	2	2	2	3	3	3	3	3
40.	4	4	4	5	5	6	6	6	7	7
50.	8	8	8	9	9	10	10	11	11	12
60.	13	13	14	15	16	17	17	18	19	20
70.	· 21	22	23	24	25	26	27	28	30	31
80.	32	34	35	36	37	38	40	41	42	43
90.	45	46	48	50	52	53	55	57	59	61
100.	62	64	65	67	69	71	73	75	77	79
110.	81	83	85	87	90	93	95	98	100	103
120.	106	109	112	114	117	120	123	126	129	132
130.	—135	—138	—141	—145	—148	—151	—155	—158	—162	–165

Star	Pla	Observe	ed Dist.	Cor	rections	for	Cor- rected	Scale Varia-	Proper	Parallax	Final Corrected
No.	te.	East.	West.	Refrac.	Aberr.	Scale.	Mean. s	tion.	Motion,	efficient.	Distance. σ
1 (16)	I 2 3 5 6 7 10 15 16 17	.5188 .4992 .5392 .5864 .5898 .6063 .6539 .6880 .5970 .6227	.5206 .5242 .5166 .6211 .6182 .6018 .6502 .7412 .6074 .6303	479 458 479 464 513 493 439 516 774 650	$ \begin{array}{r} -79 \\ -80 \\ -80 \\ -78 \\ -78 \\ -77 \\ -82 \\ +82 \\ +79 \\ +79 \end{array} $	4 4 12 5 10 10 5 6 6 Mean	.5452 .5349 .5531 .6285 .6330 .6316 .6737 .7599 .6731 .6851	$ \begin{array}{r} +262 \\ +306 \\ +224 \\ +59 \\ +120 \\ +125 \\ -55 \\ -141 \\ -90 \\ -96 \end{array} $	$\begin{array}{c} +.0502 \\ +.0499 \\ +.0499 \\ +.0018 \\ +.0018 \\ +.0016 \\0394 \\0629 \\0643 \\0643 \end{array}$	$\begin{array}{r} +0.612 \\ + .582 \\ + .582 \\ + .157 \\ + .157 \\ + .129 \\ + .490 \\343 \\197 \\197 \end{array}$	134.6295 .6229 .6329 .6382 .6488 .6474 .6351 .6785 .5973 .6087 134.6339
2 (25)	3 11 12 13 15 19	.7912 .2029 .1825 .1650 .2923 .3074	.7799 .2003 .1745 .1473 .2717 .3010	532 384 438 517 355 382	-65 -67 -67 -67 -67 +66 +63	112 117 112 112 106 112 Mean	.8357 .2371 .2189 .2045 .3267 .3519	$+181 \\ - 78 \\ - 65 \\ - 14 \\ - 114 \\ - 36$	+.2096 1654 1654 1654 2621 2682	+0.925 + .970 + .970 + .970 -1.011 -0.991	109.0753 .0764 .0595 .0502 .0402 .0674 109.0615
3 (26)	2 11 13 15 18	.0674 .4735 .4314 .5538 .5716	.0344 .4343 .4084 .5548 .5540	474 397 533 361 395	68 70 +-70 +-70 +-67	105 123 114 105 107 Mean	.0930 .4897 .4685 .5987 .6106	+260 - 82 - 15 - 120 - 62	+.2100 1658 1658 2626 2687	+0.892 + .950 + .950 -1.004 -0.997	114.3405 .3279 .3134 .3112 .3229 114.3232
4 (27)	2 12	.5200 ,8999	.5410 .9155	451 435	—66 —68	114 114 Mean	.5722 .9475	$^{+252}_{-66}$	+.2094 —.1653	+0.868 + .932	110.8179 .7876 110.8028
5 (19)	1 2 3 4 5 6 7 8 9 10 11 12 13 15 16 17 18 9 20	.0086 .0038 .0032 .2026 .1722 .1544 .1684 .3030 .2870 .3072 .3072 .3072 .3072 .3072 .3072 .3793 .3771 .3878 .3781	.0100 .0036 .0030 .1564 .1676 .1458 .2988 .2860 .2922 .3048 .3017 .2900 .3863 .3607 .3739 .3737 .3854 .3947	327 320 360 350 339 463 397 352 438 289 271 307 355 300 432 368 424 358 313	$\begin{array}{c} -45 \\ -46 \\ -47 \\ -44 \\ -44 \\ -44 \\ -46 \\ -46 \\ -47 \\ -47 \\ -47 \\ +47 \\ +45 \\ +45 \\ +45 \\ +45 \\ +45 \end{array}$	115 115 115 115 115 115 115 115 115 115	.0462 .0398 .0432 .2185 .2080 .2009 .2058 .3401 .3343 .3325 .3389 .3391 .3345 .4293 .4231 .4266 .4310 .4356 .4309	$\begin{array}{c} +150\\ +175\\ +128\\ -2\\ +34\\ +69\\ -98\\ -34\\ -32\\ -98\\ -34\\ -32\\ -55\\ -46\\ -10\\ -81\\ -55\\ -42\\ -25\\ -96\end{array}$	$\begin{array}{r} +.1583\\ +.1571\\ +.0117\\ +.0057\\ +.0057\\ +.0050\\1216\\1216\\1216\\1242\\1242\\1242\\1242\\1242\\1242\\1242\\2010\\2010\\2014\\$	$\begin{array}{c} +0.934\\ +.925\\ +.925\\ +.670\\ +.670\\ +.646\\ +.912\\ +.912\\ +.887\\ +.877\\ +.877\\ +.877\\ +.877\\720\\720\\709\\709\\709\\709\end{array}$	77.2315 .2263 .2250 .2406 .2257 .2221 .2263 .2204 .2210 .2172 .2205 .216 .2206 .2138 .2077 .2109 .2163 .2226 .2108 .2218

TABLE V.-RESULTS OF MEASURES OF DISTANCE.

Sixty-five Stars near 61 Cygni.

TABLE VI.-RESULTS OF MEASURES OF ANGLE.

Pl	Observed P Angle	osition	Zero Correc-	Pofroo	Cor-	Proper	Paral- lax	Final Cor-
ute.	East.	West.	preces- sion, etc.	Kenac.	Mean. p	Motion.	Coef- ficient.	rected Angle. π
1 2 3 5 6 7 10 15 16 17	37 37 13 35 58 36 36 33 34 33 2 29 2 27 3 25 8 26 53 28 18	38 I 36 24 37 IO 33 42 33 30 29 22 27 33 25 34 27 27 28 40	12 2 13 28 13 34 11 38 12 52 13 7 12 13 10 58 11 10	$ \begin{array}{r} -16'' \\ -13 \\ -18 \\ -15 \\ -32 \\ -23 \\ -8 \\ -7 \\ -18 \\ -12 \\ Mean \end{array} $	49 23 49 26 50 9 45 1 44 22 41 41 40 17 37 27 37 50 39 27	$ \begin{array}{c} -5 & 11 \\ -5 & 9 \\ -5 & 9 \\ -0 & 11 \\ -0 & 10 \\ +4 & 3 \\ +6 & 26 \\ +6 & 34 \\ +6 & 34 \\ +6 & 34 \end{array} $	-41 -43 -43 -51 -52 -46 +52 +54 +54	307 44 10 45 2 44 51 44 24 44 10 44 33 43 42 43 53 44 14 44 15 307 44 19.4
3 11 12 13 15 19	325 11 34 10 54 8 2 11 20 12 55 13 8	12 22 11 18 8 58 11 12 13 37 13 48	13 34 14 13 15 35 13 8 12 13 II 22	+10 +3 +6 +10 +11 +18 Mean	25 42 25 22 24 11 24 34 25 40 25 8	$ \begin{array}{r} -0 & 23 \\ +0 & 18 \\ +0 & 18 \\ +0 & 19 \\ +0 & 29 \\ +0 & 30 \end{array} $	+21 +12 +12 +12 -3 +9	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2 11 13 15 18	319 54 34 54 45 55 22 57 15 57 48	54 28 55 27 55 25 58 12 59 32	I3 28 I4 I3 I3 8 I2 I3 I1 3	+ 9 + 4 +13 +10 +25 Mean	8 8 9 23 8 45 10 6 10 8	+0 13 -0 10 -0 10 -0 16 -0 16	+26 +17 +17 - 8 + 3	230 9 30 8 48 9 5 9 28 9 3 230 9 10.8
2 12	316 42 20 42 20	43 42 43 42	13 28 15 35	+10 +9 Mean	56 39 58 45	+0 35 —0 27	+30 + 2 2	226 58 25 58 37 226 58 31.0
1 2 3 4 5 6 7 8 9 10 11 12 13 15 16 17 18 19 20	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} {}_{1} 28\\ {}_{59} 32\\ {}_{59} 40\\ {}_{55} 48\\ {}_{56} 55\\ {}_{56} 52\\ {}_{52} 27\\ {}_{49} 50\\ {}_{48} 23\\ {}_{49} 23\\ {}_{46} 20\\ {}_{49} 23\\ {}_{47} 38\\ {}_{49} 23\\ {}_{47} 58\\ {}_{47} 11\\ {}_{45} 46\end{array}$	12 2 13 28 13 34 12 39 11 38 12 52 13 3 14 30 13 7 14 13 15 35 13 8 12 13 10 58 11 30 11 22 12 38	-11 - 9 - 15 - 13 - 12 - 33 - 20 - 15 - 26 - 5 - 4 - 8 - 13 + 6 + 23 + 13 + 20 + 12 - 7 - 13 - 12 - 12 - 12 - 12 - 12 - 12 - 12	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -6 & 12 \\ -6 & 9 \\ -0 & 28 \\ -0 & 13 \\ -0 & 13 \\ -0 & 13 \\ +4 & 44 \\ +4 & 44 \\ +4 & 45 \\ +4 & 50 \\ +7 & 49 \\ +7 & 49 \\ +7 & 50 \\ $	$\begin{array}{c} -26 \\ -30 \\ -30 \\ -51 \\ -66 \\ -68 \\ -35 \\ -41 \\ -43 \\ -43 \\ +56 \\ +66 \\ +67 \\ +67 \\ +67 \\ +67 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

ANNALS N. Y. ACAD. SCI., X, August, 1897.-6.

Star	Pla	Observ	ed Dist.	Cor	rections	for	Cor- rected	Scale	Proper	Parallax	Final Corrected
No.	te.	East.	West.	Refrac.	Aberr.	Scale.	Mean. s	tion.	Motion.	efficient.	Distance. σ
6 (24)	I 2 3 4 5 6 7 8 9 10 11 12 13 15 5 16 17 18 19 20	.6858 .6928 .6920 .8981 .9014 .8773 .8896 .0688 .0571 .0923 .0848 .0571 .0923 .0848 .0814 .0632 .1924 .1892 .2069 .1939 .2206	.6818 .6910 .6812 .8831 .8962 .8578 .8944 .0660 .0546 .0755 .c872 .0812 .0488 .1991 .1790 .2078 .1912 .1926 .2074	401 393 455 437 423 626 503 445 561 352 330 376 444 300 322 323 328 319 304	55668 555555555555555555555555555555555	I31 I30 I34 I38 I32 I38 I34 I34 I34 I34 I34 I34 I32 I32 I32 I32 I32 I32 I32 I32 I32 I32	.7262 .7333 .7342 .9365 .9441 .9326 .9454 .1143 .1145 .1214 .1213 .1214 .1223 .2394 .2298 .2531 .2388 .2523 .2506	$\begin{array}{c} +185\\ +215\\ +158\\ -3\\ +42\\ +85\\ +85\\ -121\\ -42\\ -399\\ -68\\ -57\\ -12\\ -100\\ -64\\ -68\\ -51\\ -31\\ -31\\ \end{array}$	$\begin{array}{r} +.2115 \\ +.2100 \\ +.2100 \\ +.0157 \\ +.0076 \\ +.0076 \\ +.0067 \\1623 \\1623 \\1658 \\1658 \\1658 \\2682 \\2682 \\2687 \\2687 \\2687 \end{array}$	$\begin{array}{c} +0.871\\ +892\\ +892\\ +962\\ +962\\ +962\\ +916\\ +916\\ +916\\ +916\\ +950\\ +950\\ +950\\ -1.005\\ -1.005\\ -1.000\\ -1.000\\ -0.998\\998\\998\\998\end{array}$	94.9674 .9763 .9715 .9644 .9683 .9611 .9732 .9517 .9598 .9647 .9609 .9621 .9479 .9539 .9424 .9653 .9522 .9523 .9522 .9573 .9573 .94.9615
7 (23)	2 13	.0818 .4722	.1088 .4627	341 244	48 50	125 126 Mean	.1337 .4960	+185 - 11	+.2097 —.1655	$^{+0.923}_{+.969}$	81.3738 .3418 81.3578
8 (17)	2 3 11 12 13 15	.0438 .0383 .1636 .1595 .1678 .1983	.0356 .0341 .1495 .1823 .1622 .2245	213 228 196 209 214 237	$-36 \\ -36 \\ -37 \\ -37 \\ -37 \\ +37 \\ +37 \\ -37 \\ +37 \\ -37 \\ +37 \\ -37 \\ +37 \\ -37 \\ +37 \\ -37 \\ -37 \\ +37 \\ -37 $	100 100 100 100 100 96 Mean	.0660 .0640 .1811 .1967 .1913 .2471	+139 +102 - 44 - 37 - 8 - 64	+.0676 +.0538 0538 0538 0538 0854	+0.650 + .650 + .541 + .541 + .541 426	61.1558 .1501 .1298 .1461 .1436 .1498 61.1459
9 (29)	2 3 11 13 15 18	.4752 .5146 .8372 .8130 .9240 .9489	.4860 .4676 .8280 .8001 .9426 .9477	416 458 371 449 327 328	68 68 70 70 +70 +67	115 122 120 120 121 120 Mean	.5178 .5331 .8654 .8473 .9758 .9905	+260 +191 - 82 - 15 - 120 - 62	+.1873 +.1873 1478 1478 2343 2398	+0.631 + .631 + .740 + .740 849 912	114.7392 .7476 .7189 .7075 .7186 .7328 114.7274
10 (78)	10 12 15 18 19 20	.0253 .0295 .9722 .9556 .9687 .9906	.0063 .9887 .9822 .9712 .9714 .9534	300 298 337 460 404 352	-60 -60 +58 +58 +58 +58	132 132 128 132 132 132 132 Mean	.0469 .0400 .0236 .0223 .0233 .0201	$ \begin{array}{r} - & 40 \\ - & 49 \\ - & 104 \\ - & 53 \\ - & 3^2 \\ - & 123 \end{array} $	+.0296 +.0298 +.0470 +.0480 +.0480 +.0480	+0.097 + .069 + .077 + .233 + .233 + .233	99.0737 .0648 .0612 .0680 .0711 .0588 99.0663

TABLE V.-RESULTS OF MEASURES OF DISTANCE. (Continued.)

TABLE VI. $$ DESULTS OF DEBASURES OF ANGLE. (DOILTHURD	TABL	E VL.	-Results	OF	MEASURES	OF	A NGLE.	(Continued
--	------	-------	----------	----	----------	----	---------	------------

Pla	Observed P Angle	osition	Zero Correc-	Refrac	Cor- rected	Proper	Paral- lax	Final Cor-
te.	East.	West.	preces- sion. etc.		Mean. p	Motion.	Coef- ficient.	rected Angle. π
1 2 3 4 5 6 7 8 9 10 11 13 15 16 17 18 19 20	$\begin{array}{c} 319 & 59 & 30 \\ 57 & 57 & 56 \\ 58 & 57 & 59 \\ 320 & 0 & 48 \\ 0 & 18 \\ 319 & 55 & 52 \\ 59 & 28 \\ 57 & 45 \\ 59 & 27 \\ 58 & 34 \\ 56 & 38 \\ 58 & 15 \\ 5320 & 00 & 40 \\ 1 & 28 \\ 2 & 50 \\ 1 & 22 \\ 319 & 59 & 30 \end{array}$	59 52 57 52 24 13 1 28 4 55 59 12 28 59 55 1 1 57 59 55	12 2 13 28 13 34 12 39 11 38 12 52 13 3 14 13 15 35 13 8 12 13 13 15 14 13 15 35 11 10 11 3 11 22 12 38	$ \begin{array}{c} $	11 54 11 33 12 1 12 52 12 57 12 24 9 2 12 35 12 59 13 30 13 10 12 31 13 15 14 48 12 59 13 13 15 14 48 12 59 13 19 12 32	$\begin{array}{c} \cdot & \cdot & \cdot \\ + & \circ & \cdot & 1 \\ + & \circ & \cdot & 1 \\ + & \circ & \circ & 1 \\ - & \circ & \circ & 1 \\ - &$	$\begin{array}{c} + 34 \\ + 31 \\ + 31 \\ + 31 \\ + 13 \\ - 4 \\ - 28 \\ + 28 \\ + 221 \\ + 21 \\ + 21 \\ - 1 \\ + 1 \\ 2 \\ - + 2 \\ - + 2 \\ - + 2 \\ - + 2 \\ - + 2 \\ - + 2 \\ - + 2 \\ - + 2 \\ - + 2 \\ - + 2 \\ - + 2 \\ - + 2 \\$	$\begin{array}{c} & & & & & & \\ 230 & 12 & 33 \\ & 12 & 32 \\ 12 & 32 \\ 12 & 23 \\ 12 & 41 \\ 12 & 21 \\ 12 & 21 \\ 12 & 22 \\ 12 & 28 \\ 12 & 39 \\ 12 & 36 \\ 12 & 39 \\ 12 & 25 \\ 12 & 25 \\ 12 & 25 \\ 12 & 25 \\ 11 & 52 \\ 13 & 1 \\ 12 & 29 \\ 230 & 12 & 33.1 \end{array}$
2 13	325 I I5 0 I5	1 43 0 59	13 28 13 8	+ 6 - 3 Mean	15 3 13 42	- 0 31 + 0 24	+ 29 + 16	235 15 42 14 36 235 15 9.0
2 3 11 12 13 15	32 40 22 40 16 20 2 18 40 21 10 16 8	41 24 40 45 21 20 18 37 21 48 15 24	13 28 13 34 14 13 15 35 13 8 12 13	-13 -19 -6 -11 -17 -5 Mean	54 7 53 46 34 48 34 2 34 20 27 54	$ \begin{array}{cccc} -11 & 8 \\ -11 & 8 \\ + & 8 & 46 \\ + & 8 & 46 \\ + & 8 & 46 \\ + & 13 & 53 \end{array} $	- 89 - 89 -100 -100 +101	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2 3 11 13 15 18	294 17 35 17 33 23 23 22 47 26 32 27 52	18 20 18 48 24 5 23 22 28 41 28 53	13 28 13 34 14 13 13 8 12 13 11 3	+14 +20 +6 +19 +2 +2 Mean	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{r} + & 2 & 55 \\ + & 2 & 55 \\ - & 2 & 18 \\ - & 2 & 18 \\ - & 3 & 38 \\ - & 3 & 43 \end{array}$	+ 48 + 48 + 41 + 41 - 35 - 26	204 35 52 35 22 35 29 34 52 35 41 34 45 204 35 20.2
10 12 15 18 19 20	61 42 56 40 24 40 38 41 12 39 25 39 43	44 IO 4I 48 40 37 42 I6 4I 23 40 I3	13 7 15 35 12 13 11 3 11 22 12 38	$ \begin{array}{c} - 3 \\ - 4 \\ - 11 \\ - 30 \\ - 21 \\ - 13 \\ \text{Mean} \end{array} $	56 37 56 37 52 40 52 17 51 25 52 23	$\begin{array}{r} + 5 35 \\ + 5 37 \\ + 8 54 \\ + 9 6 \\ + 9 6 \\ + 9 6 \end{array}$	$ \begin{array}{r} - & 73 \\ - & 73 \\ + & 75 \\ + & 72 \\ + & 72 \\ + & 72 \\ \end{array} $	332 I 25 I 59 I 42 O 59 O 56 2 9 332 I 31.7

.

83

TABLE V.-RESULTS OF MEASURES OF DISTANCE. (Continued.)

Star	P	Observe	ed Dist.	Cor	rections	for	Cor-	Scale	Proper	Parallax	Final
No.	late.	East.	West.	Refrac.	Aberr.	Scale.	Mean.	tion.	Motion.	efficient.	Distance.
11 (77)	11 12 15	.1390 .1531 .1319	.1408 .1270 .1356	223 225 255	$-45 \\ -45 \\ +45$	124 124 123 Mean	.1675 .1679 .1736		+.0261 +.0261 +.0412	+0.090 + .090 + .056	74.1895 .1908 .2077 74.1960
12 (15)	11 13 15	.6700 .6836 .6732	.6604 .6730 .6743	166 172 195	$-33 \\ -33 \\ +33$	99 99 96 Mean	.6874 .7011 .7053	-38 -7 -56	0056 0056 0090	+0.276 + .276 138	53 6815 .6983 .6889 53.6896
13 (14)	I 2 3 4 5 6 7 10 11 12 13 15 16 17 18 19 20	.3524 .3630 .3642 .2984 .3068 .2970 .3014 .2354 .2419 .2352 .2352 .1947 .1811 .1604 .1873 .1854	.3614 -3550 -3513 -2968 -2951 -2951 -2933 -2395 -2293 -2496 -1884 -1681 -1670 -1686 -1810 -1686	285 293 295 297 299 298 294 294 294 293 317 413 366 407 361 329	$\begin{array}{c} -57\\ -58\\ -58\\ -58\\ -57\\ -56\\ -60\\ -60\\ -60\\ +60\\ +57\\ +57\\ +57\\ +57\\ +57\end{array}$	136 136 138 136 136 136 136 136 136 136 136 136 136	.3874 .3901 .3894 .3289 .3375 .3278 .3356 .2684 .2716 .2624 .2369 .2293 .2137 .2169 .2336 .2233	$\begin{array}{c} +192\\ +224\\ +164\\ -3\\ +43\\ +88\\ +91\\ -40\\ -70\\ -59\\ -13\\ -103\\ -66\\ -70\\ -53\\ -32\\ -122\\ \end{array}$	$\begin{array}{c}0720 \\0715 \\0715 \\0026 \\0023 \\ +.0559 \\ +.0562 \\ +.0562 \\ +.0562 \\ +.0562 \\ +.0889 \\ +.0908 \\ +.0908 \\ +.0908 \\ +.0910 \\ +.0910 \end{array}$	$\begin{array}{r} +0.092 \\ +.050 \\ +.050 \\191 \\394 \\394 \\419 \\094 \\094 \\ +.242 \\ +.378 \\ +.378 \\ +.378 \\ +.390 \\ +.390 \\ +.390 \end{array}$	98.3358 .3416 .3349 .3208 .3271 .3289 .3370 .3195 .3195 .3195 .3195 .3195 .3184 .3271 .3186 .3184 .3076 .3264 .3071 98.3226
14 [(18)	2 3 10 11 12 13 15 16 18 19 20	.5585 .5667 .7285 .7369 .7356 .7191 .7756 .7510 .7750 .7750 .7717 .7780	.5620 .5729 .7121 .7223 .7166 .6993 .7645 .7642 .7772 .7725 .7722	127 135 119 115 123 135 136 208 203 169 143	$ \begin{array}{c} -21 \\ -21 \\ -21 \\ -21 \\ -21 \\ +21 \\ +20 \\ +20 \\ +20 \\ +20 \\ +20 \\ \end{array} $	106 105 104 105 105 104 102 106 108 105 108 Mean	.5811 .5914 .7402 .7492 .7465 .7307 .7956 .7907 .8089 .8012 .8019	$ \begin{array}{r} + & 79 \\ + & 58 \\ - & 14 \\ - & 25 \\ - & 21 \\ - & 4 \\ - & 36 \\ - & 23 \\ - & 19 \\ - & 11 \\ - & 43 \\ \end{array} $	+.0881 +.0881 0698 0702 0702 1115 1140 1142 1142	$\begin{array}{c} +0.723 \\ +.723 \\ +.646 \\ +.625 \\ +.625 \\ +.625 \\521 \\384 \\370 \\370 \\370 \end{array}$	34.6864 .6946 .6773 .6845 .6822 .6681 .6738 .6695 .6880 .6811 .6786 34.6804
15 (22)	2 3 10 11 12 13 15 18	.9422 .9428 .3307 .3287 .3230 .3143 .4327 .4623	.9548 .9546 .3272 .3188 .3271 .3105 .4583 .4506	201 227 183 175 194 223 194 163	$ \begin{array}{c} -31 \\ -31 \\ -32 \\ -32 \\ -32 \\ -32 \\ +32 \\ +31 \\ \end{array} $	106 110 106 106 106 110 94 101 Mean	.9753 .9784 .3537 .3478 .3510 .3416 .4766 .4851	$ \begin{array}{c} +118 \\ +87 \\ -21 \\ -37 \\ -31 \\ -7 \\ -55 \\ -28 \end{array} $	$\begin{array}{c} +.2018 \\ +.2018 \\1584 \\1593 \\1593 \\1593 \\2523 \\2583 \end{array}$	$\begin{array}{r} +0.760 \\ + .760 \\ + .835 \\ + .850 \\ + .850 \\ + .850 \\938 \\972 \end{array}$	52.1987 .1987 .2039 .1957 .1995 .1925 .2068 .2115 52.2009

1.1

Plai	Observed Po Angle	osition	Zero Correc-	Refrac.	Cor- rected	Proper	Paral- lax	Final Cor-
-те	East.	West.	preces- sion, etc.		p	Motion.	Coef- ficient.	rected Angle. π
11 12 15	60 [°] 27 [°] 37 [°] 25 [°] 25 [°] 23 [°] 52	27 48 25 33 23 32	14 13" 15 35 12 13	— 3 — 5 —11 Mean	41 52 40 59 35 44	+7'33' +7'33' +11'57	— 97 — 97 +101	330 [°] 48 [°] 19 ["] 48 [°] 8 47 [°] 58 330 [°] 48 [°] 8.3
11 13 15	49 29 30 30 2 23 57	30 22 30 36 24 5	14 13 13 8 12 13	— 4 —13 —10 Mean	44 5 43 14 36 4	+10 34 +10 34 +16 44	—130 —130 +137	319 53 21 53 25 53 18 319 53 21.3
1 2 3 4 5 6 7 10 11 12 13 15 16 17 18 19 20	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19 39 17 22 18 45 14 20 13 43 9 25 7 11 6 38 6 16 4 4 6 21 7 370 5 5 3 3	12 2 13 28 13 34 12 39 11 38 12 52 13 7 14 13 15 35 12 13 10 58 11 10 11 13 12 38	$\begin{array}{c} 0 \\ 0 \\ + 1 \\ + 1 \\ + 3 \\ - 1 \\ - 1 \\ + 1 \\ - 1 \\ + 1 \\ - 11 \\ - 33 \\ - 30 \\ - 20 \\ - 13 \\ Mean \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2 3 10 11 12 13 15 16 18 19 20	26 54 6 54 0 19 37 19 26 17 28 20 3 12 35 10 30 11 42 10 10 10 2	55 10 56 16 21 27 19 38 17 46 20 21 11 37 12 42 11 58 12 35 9 56	13 28 13 34 13 7 14 13 15 35 13 8 12 13 10 58 11 32 12 38		7 52 8 22 33 31 33 39 33 1 24 16 22 31 22 50 22 40 22 34	$\begin{array}{c} -18 & 53 \\ -18 & 53 \\ +14 & 45 \\ +14 & 50 \\ +14 & 50 \\ +14 & 50 \\ +23 & 28 \\ +23 & 58 \\ +24 & 1 \\ +24 & 1 \\ +24 & 1 \end{array}$	-140 - 140 - 158 - 162 - 162 - 162 + 185 + 196 + 197 + 197 + 197 + 197	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2 3 10 11 12 13 15 18	305 0 0 I 54 I0 13 9 37 6 58 9 44 I4 53 I5 43	I 40 2 42 11 25 9 55 8 16 10 6 16 10 15 5	13 28 13 34 13 7 14 13 15 35 13 8 12 13 11 3	+13 +19 +8 +6 +11 +19 -9 +18 Mean	14 31 16 11 24 4 24 5 23 23 23 22 27 36 26 45	$\begin{array}{r} + 3 55 \\ + 3 55 \\ - 3 3 \\ - 3 4 \\ - 3 4 \\ - 3 5 \\ - 4 52 \\ - 4 59 \end{array}$	+ 87 + 87 + 74 + 71 + 71 + 71 - 54 - 32	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

TABLE VI.-RESULTS OF MEASURES OF ANGLE. (Continued.)

Star	Pla	Observ	ed Dist.	Cor	rections	for	Cor- rected	Scale	Proper	Parallax	Final Corrected
No.	ite.	East.	West.	Refrac.	Aberr.	Scale.	Mean.	tion.	Motion.	efficient.	Distance.
16 (20)	2 3 10 11 13 15 16 18	.0451 .0509 .4275 .4162 .4499 .5196 .5260 .5260	.0651 .0502 .4128 .4188 .4011 .5287 .5298 .5371	131 151 116 108 148 108 137 137	$-18 \\ -18 \\ -19 \\ -19 \\ -19 \\ +19 \\ +18 \\ +18 \\ +18 \\ +18 \\ -11 \\ +18 $	107 107 108 108 108 136 104 106 Mean	.0769 .0743 .4405 .4369 .4490 .5503 .5536 .5547	$ \begin{array}{r} + 68 \\ + 50 \\ - 12 \\ - 22 \\ - 4 \\ - 32 \\ - 21 \\ - 16 \\ \end{array} $	+.1978 +.1978 1554 1563 2475 2528 2533	$\begin{array}{r} +0.976 \\ + .976 \\ + .984 \\ + .982 \\ + .982 \\984 \\926 \\920 \end{array}$	30.2940 .2896 .2965 .2910 .3049 .2870 .2868 .2980 30.2935
17 (13)	2 IO II I3 I5 20	.4616 .3210 .3304 .3578 .2947 .2928	.4644 .3434 .3316 .3466 .2895 .2669	246 246 246 246 266 276	49 50 50 +50 +48	135 136 136 136 136 135 Mean	.4942 .3618 .3607 .3818 .3338 .3223	+188 - 34 - 59 - 11 - 86 -102	$\begin{array}{c}0712 \\ +.0555 \\ +.0558 \\ +.0558 \\ +.0884 \\ +.0904 \end{array}$	+0.052 064 092 092 + .240 + .388	82.4425 .4131 .4094 .4353 .4167 .4075 82.4207
18 (12)	2 10 11 12 13 15 18 19 20	.9388 .8614 .8696 .8637 .8604 .8128 .8071 .8118 .8181	.9421 .8647 .8500 .8578 .8524 .8102 .8033 .8030 .8011	230 210 209 209 209 230 304 251 237	-41 -43 -43 -43 -43 +42 +41 +41 +41	128 127 127 128 127 128 128 128 127 127 Mean	.9701 .8903 .8870 .8881 .8836 .8494 .8504 .8472 .8480	+159 -29 -50 -42 -9 -73 -37 -23 -87	$\begin{array}{c}0607 \\ +.0472 \\ +.0475 \\ +.0475 \\ +.0475 \\ +.0752 \\ +.0752 \\ +.0769 \\ +.0769 \\ +.0769 \end{array}$	$\begin{array}{r} +0.103 \\ -0.013 \\ -0.040 \\ -0.040 \\ +0.040 \\ +0.040 \\ +0.339 \\ +0.339 \\ +0.339 \\ +0.339 \\ +0.339 \end{array}$	69. 9266 .9344 .9290 .9309 .9297 .9197 .9280 .9262 .9206 69.9272
19 (62)	11 12 15 19	.9849 .9814 .0476 .0705	.9861 .9767 .0500 .0634	397 410 366 381	79 79 +-78 +75	23 23 23 23 23 Mean	.0064 .0013 .0823 .1016	-92 -77 -135 -42		+0.529 + .529 662 763	128.8829 .8793 .8686 .8914 128.8806
20 (11)	2 3 9 10 11 12 13 15 16 18 19 20	.8045 .8395 .6494 .6614 .6725 .6730 .6560 .6116 .5856 .5646 .5870 .6028	.8214 .8172 .6636 .6699 .6640 .6656 .6576 .5942 .5666 .5910 .5912 .5880	223 226 228 221 220 221 223 228 282 278 252 233	-44 -44 -444 -445 -455 -455 -455 +443 +433 +433 +433 +433 +433 +433 +	120 120 120 120 120 120 120 120 118 118 118 118 118 118 Mean	.8403 .8561 .6844 .6927 .6948 .6964 .6841 .6347 .6179 .6179 .6122 .6279 .6323	$ \begin{array}{r} +168 \\ +123 \\ -33 \\ -30 \\ -53 \\ -44 \\ -10 \\ -77 \\ -49 \\ -40 \\ -24 \\ -91 \end{array} $	$\begin{array}{c}0985 \\0985 \\ +.0758 \\ +.0770 \\ +.0774 \\ +.0774 \\ +.0774 \\ +.1225 \\ +.1251 \\ +.1253 \\ +.1253 \\ +.1253 \end{array}$	$\begin{array}{c} -0.087 \\ -0.087 \\ -0.087 \\ -0.203 \\ -0.230 \\ -0.230 \\ -0.230 \\ -0.230 \\ -0.230 \\ -0.230 \\ +0.514 \\ +0.51$	73-7575 .7688 .7552 .7641 .7639 .7664 .7575 .7543 .7445 .7445 .7471 .7574 .7551 73.7576

TABLE V.-RESULTS OF MEASURES OF DISTANCE. (Continued.)

Pl	Observed P Angle	osition e.	Zero Correc-	Refrac	Cor-	Proper	Paral- lax	Final Cor-
ute.	East.	West.	preces- sion, etc.		Mean.	Motion.	Coef- ficient.	rected Angle π
2 3 10 11 13 15 16 18	34 ¹ 7 47 7 48 340 53 52 51 57 55 44 49 42 51 14 51 43	3 50 6 20 54 38 52 45 55 50 51 33 49 54 51 24	13 28" 13 34 13 7 14 13 13 8 12 13 10 58 11 3	$ \begin{array}{c} $	19 16 20 36 7 23 6 35 8 54 3 1 2 5 3 7	$ \begin{array}{c} -8 & 0 \\ -8 & 0 \\ +6 & 12 \\ +6 & 15 \\ +6 & 15 \\ +9 & 52 \\ +10 & 4 \\ +10 & 5 \end{array} $	+ 13 + 13 - 15 - 22 + 59 + 92 + 94	$\begin{array}{c} 251 \\ 12 \\ 12 \\ 12 \\ 13 \\ 9 \\ 12 \\ 11 \\ 15 \\ 25 \\ 12 \\ 55 \\ 12 \\ 13 \\ 12 \\ 56 \\ 251 \\ 12 \\ 59.6 \end{array}$
2 10 11 13 15 20	71 15 34 2 41 I 3 1 15 70 58 12 57 58	15 8 2 43 0 38 2 23 59 25 57 30	13 28 13 7 14 13 13 8 12 13 12 38	$ \begin{array}{c} 0 \\ - 1 \\ + 1 \\ + 1 \\ - 11 \\ - 13 \\ \text{Mean} \end{array} $	28 49 15 48 15 2 14 58 10 50 10 9	$ \begin{array}{r} - 8 & 11 \\ + 6 & 26 \\ + 6 & 28 \\ + 6 & 28 \\ + 10 & 14 \\ + 10 & 29 \\ \end{array} $	- 87 - 88 - 88 - 88 + 88 + 82	341 21 7 21 21 20 27 21 18 20 13 20 22 341 20 48.0
2 10 11 12 13 15 18 19 20	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13 28 13 7 14 13 15 35 13 8 12 13 11 3 12 38		31 13 15 28 15 13 14 1 14 23 9 41 10 34 8 53 9 4	$\begin{array}{r} - 9 \ 49 \\ + 7 \ 43 \\ + 7 \ 46 \\ + 7 \ 46 \\ + 12 \ 18 \\ + 12 \ 36 \\ + 12 \ 36 \\ + 12 \ 36 \end{array}$	-103 - 103 - 104 - 104 - 104 + 105 + 98 + 98 + 98	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
11 12 15 19	278 5 48 4 0 10 45 11 47	7 0 4 20 11 25 11 52	14 13 15 35 12 13 11 22	+ 4 + 9 - 4 - 9 - 9 Mean	20 41 19 54 23 14 23 2	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$^{+}_{-} \begin{array}{c} 48 \\ + \ 48 \\ - \ 44 \\ - \ 36 \end{array}$	188 17 23 17 18 17 47 17 50 188 17 34.5
2 3 9 10 11 12 13 15 16 18 19 20	79 23 48 23 40 8 30 10 40 10 7 6 45 10 12 6 4 8 53 8 12 6 40 5 42	24 47 25 59 9 58 10 56 10 20 7 52 11 0 7 24 9 40 8 35 7 37 7 2	13 28 13 34 14 30 13 7 14 13 15 35 13 8 12 13 10 58 11 3 11 22 12 38	+ 4 + 7 + 15 + 2 + 1 + 3 + 7 - 10 - 31 - 28 - 19 - 11 Mean	37 50 38 31 23 59 23 57 24 28 23 57 24 28 23 51 18 47 19 43 19 48 18 11 18 49	$\begin{array}{c} - & 8 & 35 \\ - & 8 & 35 \\ + & 6 & 39 \\ + & 6 & 48 \\ + & 6 & 48 \\ + & 6 & 48 \\ + & 10 & 46 \\ + & 11 & 1 \\ + & 11 & 1 \\ + & 11 & 1 \end{array}$	$\begin{array}{c c} - & 98 \\ - & 998 \\ - & 997 \\ - & 995 $	349 29 40 29 27 29 33 29 46 30 11 29 21 30 29 29 48 30 45 30 30 29 42 30 35 349 29 58.9

TABLE VI.-RESULTS OF MEASURES OF ANGLE. (Continued.)

Star	Ple	Observ	ed Dist.	Cor	rections	for	Cor- rected	Scale	Proper	Parallax	Final Corrected
No.	ute.	East.	West.	Refrac.	Aberr.	Scale.	Mean. s	tion.	Motion.	efficient.	Distance. σ
21 (21)	2 10 11 12 13 15 20	.0277 .4069 .4056 .3958 .3989 .5047 .5184	.0658 .4061 .3932 .3944 .3947 .5059 .5169	82 77 73 80 91 64 65	$ \begin{array}{r} -13 \\ -14 \\ -14 \\ -14 \\ +14 \\ +13 \end{array} $	100 100 100 100 101 102 Mean	.0636 .4227 .4152 .4116 .4144 .5231 .5355	+ 50 - 9 - 16 - 3 - 24 - 28	$\begin{array}{c} +.1945 \\1529 \\1537 \\1537 \\1537 \\2436 \\2492 \end{array}$	$\begin{array}{r} +0.692 \\ + .775 \\ + .792 \\ + .792 \\ + .792 \\892 \\943 \end{array}$	22.2720 .2789 .2701 .2668 .2706 .2656 .2714 22.2708
22 (9)	2 3 13 15 16 19 20	.7426 .7438 .5671 .4800 .4590 .4759 .4736	.7498 .7714 .5651 .4844 .4456 .4712 .4740	340 350 345 331 386 358 340	-66 -66 -68 +67 +64 +64 +65	123 123 128 128 128 128 128 132 Mean	.7777 .7901 .5983 .5266 .5018 .5204 .5193	+252 +185 - 14 -116 - 74 - 36 -137	11711171 +.0922 +.1461 +.1492 +.1495 +.1495	$\begin{array}{r} -0.187 \\187 \\327 \\ + .472 \\ + .590 \\ + .599 \\ + .599 \end{array}$	110.6834 .6891 .6849 .6672 .6512 .6740 .6628 110.6732
23 (10)	1 2 3 4 5 6 7 8 9 10 11 12 13 15 16 17 18 19 20	.3538 .3584 .3613 .2602 .2526 .2462 .2490 .1524 .1444 .1523 .1550 .1528 .0830 .0558 .0541 .0595 .0694	.3482 .3390 .3465 .2464 .2428 .1357 .1497 .1524 .1497 .1497 .1553 .1485 .1499 .0692 .0636 .0660 .0614 .0628 .0656	271 276 284 280 277 309 290 432 293 270 268 272 278 267 310 288 267 310 288 274	$\begin{array}{c} -52\\ -53\\ -53\\ -55\\ -55\\ -55\\ -55\\ -55\\ -55$	134 134 135 135 135 135 135 135 135 135 135 135	.3820 .3801 .2849 .2810 .2793 .2814 .1910 .1801 .1812 .1843 .1826 .1824 .1173 .1096 .1042 .1030	$\begin{array}{c} +174\\ +203\\ +149\\ -2\\ +39\\ +80\\ +83\\ -113\\ -39\\ -36\\ -64\\ -53\\ -12\\ -93\\ -60\\ -64\\ -48\\ -29\\ -111\\ \end{array}$	$\begin{array}{c}1201\\1192\\0043\\0043\\0038\\ +.0919\\ +.0919\\ +.0938\\ +.0938\\ +.0938\\ +.0938\\ +.0938\\ +.1485\\ +.1517\\ +.1517\\ +.1520\\ +.1520\\ +.1520\\ \end{array}$	$\begin{array}{c} -0.156\\ -1.199\\199\\604\\623\\248\\248\\248\\248\\314\\339\\339\\339\\339\\484\\ +.600\\ +.609\\ +.609\\ +.609\end{array}$	$\begin{array}{r} 89.2773\\ .2786\\ .2791\\ .2703\\ .2728\\ .2752\\ .2779\\ .2684\\ .2649\\ .2669\\ .2673\\ .2667\\ .2673\\ .2667\\ .2627\\ .2630\\ .2572\\ .2580\\ .2613\\ .2580\\ .2683\end{array}$
24 (75)	11 13	.4972 .4776	.4884 .4791	25 26	-5 - 5	29 32 Mean	•4977 •4837	— 6 — 1	+.0292 +.0292	+0.064 + .064	8.5271 .5136 8.5204
25 26											

TABLE V.-RESULTS OF MEASURES OF DISTANCE. (Continued.)

Libid (It Ithous of Libid of Little (of the the the	TABLE	VIRESULTS	OF	MEASURES	OF	ANGLE.	(Continued.)
---	-------	-----------	----	----------	----	--------	--------------

Pla	Observed P Angle	osition	Zero Correc-	Refrac.	Cor- rected	Proper	Paral- lax	Final Cor-
te.	East.	West.	preces- sion, etc.		Mean. 	Motion.	Coef- ficient.	
2 10 11 12 13 15 20	298 [°] 44 53 299 12 10 11 45 8 36 10 50 21 38 20 40	50 40 13 43 10 38 5 25 9 6 21 3 20 32	13 28 13 7 14 13 15 35 13 8 12 13 12 38	+14 + 8 + 6 +11 +19 + 4 + 5 Mean	1 28 26 11 25 30 22 47 23 25 33 38 33 19	$ \begin{array}{c} +12 & 23 \\ - & 9 & 34 \\ - & 9 & 38 \\ - & 9 & 38 \\ - & 9 & 38 \\ - & 15 & 11 \\ - & 15 & 32 \end{array} $	+229 +202 +195 +195 +195 -158 -108	209 16 13 17 29 16 31 14 30 15 21 17 11 17 22 209 16 22.4
2 3 13 15 16 19 20	85 15 2 16 17 7 0 5 40 6 55 5 53 5 15	16 8 17 35 7 5 5 50 8 10 6 13 5 17	13 28 13 34 13 8 12 13 10 58 11 22 12 38	+ 6 +11 +10 - 8 -28 -16 - 9 Mean	29 9 30 41 20 20 17 50 18 2 17 9 17 45	$ \begin{array}{r} - 5 & 22 \\ - 5 & 222 \\ + 4 & 14 \\ + 6 & 43 \\ + 6 & 522 \\ + 6 & 522 \\ + 6 & 522 \end{array} $	$ \begin{array}{r} - & 64 \\ - & 64 \\ - & 62 \\ + & 59 \\ + & 53 \\ + & 53 \\ + & 53 \end{array} $	355 24 24 25 2 24 36 24 35 24 44 24 19 25 10 355 24 41.4
I 2 3 4 5 6 7 8 9 10 11 12 13 15 16 17 18 19 20 11 13	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	59 45 57 45 58 2 53 55 53 25 53 26 48 42 47 43 45 34 47 30 44 27 46 40 44 27 46 40 44 27 46 40 44 27 46 40 44 27 46 40 45 28 44 6 43 37 55 42 1 51	12 2 13 28 13 34 12 39 11 38 12 52 13 3 14 30 15 35 13 8 10 58 11 22 12 38 14 13 15 35 13 8 14 13 13 8 14 13 13 8	+ 8 + 6 + 11 + 9 + 27 + 15 - 5 + 21 + 3 + 6 + 10 - 27 + 16 + 10 - 27 - 118 - 25 - 15 - 9 - 9 - 15 - 9 - 15 - 9 - 15 - 9 - 15 - 9 - 15 - 9 - 15 - 15	$\begin{array}{c} 11 & 15 \\ 10 & 48 \\ 11 & 19 \\ 6 & 25 \\ 4 & 36 \\ 4 & 37 \\ 1 & 52 \\ 59 & 56 \\ 0 & 21 \\ 0 & 10 \\ 0 \\ 59 & 34 \\ 56 & 15 \\ 57 & 37 \\ 55 & 57 \\ 35 & 55 \\ 57 & 37 \\ 16 \\ 43 \end{array}$	$\begin{array}{c} 6 & 39 \\ 6 & 36 \\ 6 & 30 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 &$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Star	Pla	Observ	ed Dist.	Cor	rections	for	Cor- rected	Scale	Proper	Parallax	Final Corrected
No.	te.	East.	West.	Refrac.	Aberr.	Scale.	Mean. s	tion.	Motion.	efficient.	Distance. σ
27 (30)	2 3 10 11 12 13 15 16 18 20	.2265 .2274 .4421 .4299 .4387 .4381 .4898 .4972 .5107 .4933	.2096 .1914 .4243 .4405 .4402 .4337 .4942 .5186 .4993 .5113	118 122 141 116 118 121 114 129 130 117	$ \begin{array}{r} -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ +23 \\ +22 \\ +22 \\ +22 \\ +22 \end{array} $	109 108 108 108 108 108 108 108 108 108 Mean	.2380 .2298 .4554 .4549 .4593 .4561 .5161 .5334 .5306 .5266	$ \begin{array}{r} + & 87 \\ + & 64 \\ - & 16 \\ - & 27 \\ - & 23 \\ - & 5 \\ - & 40 \\ - & 26 \\ - & 21 \\ - & 48 \\ \end{array} $	$\begin{array}{c} +.1228 \\ +.1228 \\0969 \\0974 \\0974 \\1546 \\1579 \\1582 \\1582 \end{array}$	$\begin{array}{r} +0.222 \\ + .222 \\ + .335 \\ + .361 \\ + .361 \\ + .361 \\504 \\618 \\627 \\627 \end{array}$	38.3724 .3619 .3612 .3594 .3622 .3510 .3650 .3650 .3650 .3652 .3555 38.3616
28 (60)	11 12 13 15 18 19	.8154 .8212 .8050 .8830 .8925 .8712	.8118 .8102 .8032 .8616 .8660 .8688	338 343 351 329 374 353	-68 -68 -68 -68 +68 +65 +65 +65	112 112 112 112 112 112 112 112 Mean	.8433 .8459 .8351 .9147 .9258 .9145	$ \begin{array}{r} - 80 \\ - 67 \\ - 14 \\ - 117 \\ - 60 \\ - 36 \end{array} $	1002 1002 1588 1625 1625	$\begin{array}{r} +0.381 \\ + .381 \\ + .381 \\523 \\645 \\645 \\ \end{array}$	111.7400 .7439 .73 ⁸ 4 .7375 .7490 .7401 111.7415
29 (5)	3 11 13	.1795 .8741 .8725	.1523 .8697 .8763	129 111 125	21 22 22	JI2 II2 II2 Mean	.1876 .8917 .8956	+ 60 - 26 - 5	1601 +.1259 +.1259	0.440 + .567 + .567	36.0279 .0077 .0137 36.0164
$\frac{30}{(60)}$	11	•2444	.2182	60	-11	78	.2 440	- 13	+.1536	—o.793	18.3861
31 (64)	II	.9278	.9310	179	—37	10 2	·9525	- 43	0820	+0.258	59.8695
32 (31)	1 2 3 4 5 6 7 8 9 10 11 13 15 16 17 18 19 20	.8124 .8056 .7998 .9032 .9166 .9144 .0149 .0119 .0117 .044 .0090 .9911 .0522 .0533 .0687 .0698 .0621	.7994 .7947 .8035 .9052 .9137 .8940 .9030 .0115 .0014 .9983 .0053 .0010 .0366 .0591 .0560 .0420 .0420 .0420	227 235 238 235 256 245 232 231 233 236 235 270 253 270 253 270 253 270 253 270 254 240	$\begin{array}{c} -45\\ -46\\ -47\\ -44\\ -44\\ -44\\ -44\\ -46\\ -47\\ -47\\ -47\\ +45\\ +45\\ +45\\ +45\\ +45\\ +45\end{array}$	$\begin{array}{c} 130\\ 130\\ 124\\ 124\\ 124\\ 124\\ 124\\ 124\\ 124\\ 124$.8343 .8293 .8311 .9329 .9356 .9356 .0363 .0328 .0328 .0249 .0229 .1025 .1033 .1003 .0954 .1025	$\begin{array}{c} +150\\ +175\\ +128\\ -2\\ +34\\ +69\\ +71\\ -98\\ -34\\ +69\\ -31\\ -55\\ -46\\ -81\\ -55\\ -1\\ -55\\ -2\\ -55\\ -2\\ -55\\ -2\\ -55\\ -2\\ -2\\ -96\end{array}$	$\begin{array}{r} +.1095 \\ +.1087 \\ +.0081 \\ +.0039 \\ +.0039 \\ +.0039 \\ +.0039 \\ +.0035 \\0842 \\0842 \\0856 \\0860 \\0860 \\0860 \\1396 \\1394 \\1396 \\1396 \\1396 \end{array}$	$\begin{array}{c} +0.100 \\ +.142 \\ +.142 \\ +.378 \\ +.560 \\ +.191 \\ +.258 \\ +.284 \\ +.284 \\ +.284 \\ +.284 \\ +.284 \\ +.284 \\ +.284 \\ +.284 \\ +.284 \\ +.284 \\ +.284 \\552 \\552 \\562 \\562 \end{array}$	76.9601 .9573 .9544 .9584 .9536 .9544 .9451 .9451 .9477 .9449 .9462 .9491 .9461 .9461 .9498

TABLE V.-RESULTS OF MEASURES OF DISTANCE. (Continued.)

90

TABLE	VI	RESULTS	OF	MEASURES	OF	ANGLE	(()	Intinuer	11
LADLE	- Y 1		UL	MEASURES	UL 1	a nulle.		onconucc	

Pl	Observed P Angle	osition	Zero Correc-	Refrac	Cor- rected	Proper	Paral- lax	Final Cor-
ate.	East.	West.	preces- sion, etc.		$rac{Mean.}{p}$	Motion.	Coef- ficient.	rected Angle. π
2 3 10 11 12 13 15 16 18 20	266 44 0 45 17 267 14 38 12 58 11 6 11 3 22 30 25 5 26 52 22 0	44 25 44 12 13 58 13 44 9 35 11 43 24 28 26 10 25 48 24 2	13 28 13 34 13 7 14 13 15 35 13 8 12 13 10 58 11 3 12 38	$ \begin{array}{c} & & & & \\ & + & 7 \\ & + & 7 \\ & + & 7 \\ & + & 12 \\ & + & 6 \\ & + & 12 \\ & + & 6 \\ & + & 12 \\ & - & 27 \\ & - & 23 \\ & - & 27 \\ & - & 23 \\ & - & 27 \\ & - & 23 \\ & - & 27 \\ & - & 23 \\ & - & 27 \\ & - & 23 \\ & - & 27 \\ & - & 23 \\ & - & 27 \\ & - & 23 \\ & - & 27 \\ & - & 23 \\ & - & 27 \\ & - & 23 \\ & - & 27 \\ & - & 23 \\ & - & 27 \\ & - & 23 \\ & - & 27 \\ & - & 23 \\ & - & 27 \\ & - & 23 \\ & - & 27 \\ & - & 23 \\ & - & 27 \\ & - & 23 \\ & - & 27 \\ & - & 23 \\ & - & 27 \\ & - & 23 \\ & - & 27 \\ & - & 23 \\ & - & 27 \\ & - & 23 \\ & - & 23 \\ & - & 27 \\ & - & 23 \\ & - & 23 \\ & - & 27 \\ & - & 23 $	57 48 58 30 27 19 27 37 26 2 24 43 35 34 35 34 36 8 37 40 35 30	$\begin{array}{c} & & & & & \\ +15 & 21 \\ +15 & 21 \\ -11 & 59 \\ -12 & 3 \\ -12 & 3 \\ -12 & 3 \\ -19 & 4 \\ -19 & 28 \\ -19 & 30 \\ -19 & 30 \end{array}$	+183+183+178+176+176+176-169-151-149-149	$ \begin{array}{c} & & & & & & \\ & & & & 15 & 15 \\ & & & 15 & 3 \\ & & 16 & 3 \\ & & 16 & 6 \\ & & 15 & 13 \\ & & 14 & 7 \\ & & 15 & 10 \\ & & 15 & 17 \\ & & 16 & 26 \\ & & 15 & 20 \\ & & 177 & 15 & 24.0 \end{array} $
11 12 13 15 18 19	268 23 45 21 18 23 40 28 42 30 20 30 22	24 35 22 28 24 24 29 56 30 52 30 00	14 13 15 35 13 8 12 13 11 3 11 22	+ 2 + 6 +12 - 7 -25 -15 Mean	38 25 37 34 37 22 41 25 41 14 41 18	$ \begin{array}{r} - 4 & 7 \\ - 4 & 7 \\ - 4 & 7 \\ - 6 & 31 \\ - 6 & 40 \\ - 6 & 40 \end{array} $	+ 60 + 60 + 60 + 60 - 57 - 51 - 51	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
3 11 13	101 6 44 100 40 27 42 10	4 42 38 44 42 40	13 34 14 13 13 8	+18 + 5 +17 Mean	19 35 53 53 55 50	12 54 +10 15 +10 15	—178 —165 —165	11 5 43 2 38 5 30 11 4 37.0
11	119 16 43	11 55	14 13	+ 6	28 38	+11 41	234	29 38 16
11	260 49 18	50 32	14 13	+ 2	4 10	- 8 19	+117	170 56 2.0
I 2 3 4 5 6 7 8 9 10 11 12 13 15 16 17 18 19 20	$\begin{array}{ccccccc} 268 & 18 & 42 \\ 16 & 50 \\ 17 & 37 \\ 26 & 12 \\ 27 & 43 \\ 26 & 38 \\ 22 & 58 \\ 33 & 25 \\ .31 & 55 \\ 33 & 5 \\ 32 & 24 \\ 30 & 31 \\ 32 & 30 \\ 38 & 40 \\ 40 & 45 \\ 42 & 13 \\ 262 & 40 & 53 \\ 40 & 12 \\ 37 & 53 \\ \end{array}$	19 55 17 32 18 22 26 36 27 50 23 47 33 30 32 25 33 55 31 8 33 5 40 8 41 30 443 27 41 27 40 58 38 32	12 2 13 28 13 34 12 39 11 38 12 52 13 3 14 13 15 35 13 7 14 13 15 35 10 58 11 3 11 22 12 38	$\begin{array}{r} + \ 6 \\ + \ 9 \\ + \ 8 \\ + \ 23 \\ + \ 12 \\ + \ 8 \\ + \ 13 \\ + \ 5 \\ + \ 5 \\ - \ 30 \\ - \ 19 \\ - \ 27 \\ - \ 17 \\ - \ 10 \\ \text{Mean} \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} + & 8 & 10 \\ + & 8 & 6 \\ + & 0 & 36 \\ + & 0 & 18 \\ + & 0 & 15 \\ - & 6 & 15 \\ - & 6 & 15 \\ - & 6 & 23 \\ - & 16 & 23 \\ - & 16 & 23 \\ - & 10 & 19 \\ - & 10 & 19 \\ - & 10 & 20 \\ - & 10 & 20 \end{array}$	$\begin{array}{r} + 93 \\ + 93 \\ + 93 \\ + 87 \\ + 75 \\ + 75 \\ + 99 \\ + 99 \\ + 99 \\ 99 \\ - 99 \\ - 99 \\ - 99 \\ - 99 \\ - 99 \\ - 99 \\ - 79$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Star	Pl	Observ	ed Dist.	Cor	rections	for	Cor-	Scale	Proper	Parallax	Final
No.	ıte.	East.	West.	Refrac.	Aberr.	Scale.	Mean.	tion,	Motion.	Co- efficient.	Distance. σ
33 (4)	2 3 11 12 13 15 18	.9723 .9855 .6619 .6594 .6615 .5516 .5535	·9735 ·9747 .6613 .6642 .6579 ·5545 .5761	124 137 111 118 131 98 99	$ \begin{array}{c} -21 \\ -21 \\ -21 \\ -21 \\ -21 \\ +21 \\ +20 \\ \end{array} $	115 115 115 115 115 115 113 116 Mean	.9944 .0029 .6818 .6827 .6819 .5759 .5880	+ 80 + 58 - 25 - 21 - 4 - 36 - 19	$\begin{array}{r}1815 \\1815 \\ +.1430 \\ +.1430 \\ +.1430 \\ +.2264 \\ +.2317 \end{array}$	$\begin{array}{c} -0.587 \\587 \\701 \\701 \\701 \\ + .815 \\ + .887 \end{array}$	34.8134 .8197 .8133 .8146 .8155 .8092 .8292 34.8164
34 (37)	2 11 13	•4744 .4828 .500 2	.4310 .5022 .4982	106 105 106	20 21 21	116 113 113 Mean	.4726 .5119 .5187	+ 78 - 25 - 4	+.0184 0154 0154	0.296 158 158	34.4950 .4920 .5009 34.4960
35 (66)	11 13	•5791 •5724	.5869 .5822	73 79	—14 —14	105 101 Mean	.5993 .5938	— 16 — 3	+.0507 +.0507	0.529 	22.6416 .6374 22.6395
36 (1)	2 3 10 11 12 13 15 18	.5 ⁸⁰⁵ .5566 .2344 .2540 .2634 .2619 .1350 .1366	.5901 .5800 .2589 .2531 .2490 .2501 .1192 .1154	97 111 84 79 91 106 63 112	-13 - 13 - 14 - 14 - 14 - 14 + 13 + 13	102 104 102 102 102 102 98 102 Mean	.6039 .5884 .2637 .2702 .2741 .2553 .1444 .1487	$ \begin{array}{r} + 51 \\ + 38 \\ - 9 \\ - 16 \\ - 13 \\ - 3 \\ - 23 \\ - 12 \end{array} $	$\begin{array}{r}1805 \\1805 \\ +.1412 \\ +.1420 \\ +.1420 \\ +.1420 \\ +.2249 \\ +.2301 \end{array}$	$\begin{array}{c}0.967 \\967 \\952 \\945 \\945 \\945 \\ +918 \\ +826 \end{array}$	22.4161 · 3993 · 3918 · 3985 · 4027 · 4049 · 3788 · 3882 22.3977
37 (35)	2 3 4 5 6 7 8 9 10 11 12 13 15 16 17 18 19 20	.6800 .6756 .7040 .7052 .7098 .7106 .7296 .7345 .7349 .7322 .7345 .7322 .7322 .7358 .7323 .7358 .7323 .7358 .7323 .7358 .7323	.6808 .6848 .6981 .7086 .6976 .7294 .7399 .7305 .7305 .7305 .7305 .7305 .7305 .7305 .7305 .7350 .7370 .7253 .7253 .7198 .7378	146 145 146 145 144 141 142 145 145 145 145 145 145 164 232 197 232 197 232 195 172	$\begin{array}{c} -28\\ -22\\ -22\\ -27\\ -27\\ -229\\ -29\\ -29\\ -29\\ -29\\ +28\\ +28\\ +28\\ +28\\ +28\\ +28\end{array}$	114 114 114 118 114 114 114 114 114 114	.7029 .7026 .7234 .7294 .7259 .7257 .7556 .7557 .7557 .7557 .7658 .7631 .7648 .7655 .7612 .7655 .7612 .7637	$\begin{array}{c} +109\\ +79\\ -1\\ +21\\ +43\\ +44\\ -61\\ -21\\ -20\\ -34\\ -29\\ -6\\ -50\\ -32\\ -34\\ -29\\ -6\\ -50\\ -32\\ -34\\ -26\\ -59\\ -59\\ \end{array}$	$\begin{array}{c} +.0296\\ +.0296\\ +.0022\\ +.0011\\ +.0010\\0236\\0236\\0239\\0241\\0241\\0241\\0391\\0391\\0392\\0392\\0392\\0392\\0392\end{array}$	$\begin{array}{c} -0.246 \\ -0.246 \\ -0.007 \\ +.210 \\ +.210 \\ +.236 \\200 \\133 \\166 \\106 \\106 \\184 \\184 \\196 \\196 \\196 \\196 \end{array}$	46.7402 .7369 .7254 .7353 .7340 .7351 .7191 .7309 .7274 .7266 .7220 .7184 .7199 .7212 .7179 .7161 47.7266

TABLE V.-RESULTS OF MEASURES OF DISTANCE. (Continued.)

TABLE	VL-BESULTS	OF	MEASURES	OF	ANGLE.	(Continued.)	}
LADUR	I TO TOPOORIO	01	THE TREE O TOTAD	OT:	TETLOTITS.		/

Pla	Observed Pos Angle.	sition	Zero Correc-	Refrac	Cor- rected	Proper	Paral- lax	Final Cor-
ate.	East.	West.	preces- sion, etc.		Mean. p	Motion.	Coef- ficient.	rected Angle. π
2 3 11 12 13 15 18	111 10 24 10 48 110 54 46 51 35 53 10 49 17 52 48	10 52 11 30 55 46 51 35 55 24 48 43 52 7	['] 28 ^{''} ¹³ 34 ¹⁴ 13 ¹⁵ 35 ¹³ 8 ¹² 13 ¹¹ 3	+14 +20 +6 +11 +19 +1 -2 Mean	24 20 25 3 9 35 7 21 7 46 1 14 3 29	$ \begin{array}{r} -10 & 22 \\ -10 & 22 \\ + 8 & 15 \\ + 8 & 15 \\ + 8 & 15 \\ + 13 & 6 \\ + 13 & 25 \\ \end{array} $	$-165 \\ -165 \\ -147 \\ -147 \\ -147 \\ +126 \\ + 97 $	21 13 59 13 48 16 26 14 54 15 32 14 46 16 39 21 15 9.1
2 11 13	236 3 27 41 28 40 23	3 30 40 4 40 53	13 28 14 13 13 8	— 7 — 4 — 8 Mean	16 49 54 55 53 3 ⁸	+2056 -1630 -1630	+199 +207 +207	146 39 57 39 8 3 ⁸ 46 146 39 17.0
11 13	213 17 2 17 25	17 24 17 40	14 13 13 8	— 6 —17 Mean	31 20 30 23	-24 2 -24 3	+269 +269	123 8 24 8 21 123 8 22.5
2 3 10 11 12 13 15 18	171 48 14 4 45 48 4 172 18 12 18 18 17 18 17 18 19 20 29 8 29 55 3	47 43 51 2 19 36 20 29 16 43 18 40 29 8 31 11	13 28 13 34 13 7 14 13 15 35 13 8 12 13 11 3	$ \begin{array}{r} -5 \\ -9 \\ -3 \\ -2 \\ -4 \\ -8 \\ +2 \\ +27 \\ \text{Mean} \end{array} $	I 22 I 50 3I 58 33 34 33 17 32 0 4I 23 42 3	$\begin{array}{r} +16 & 30 \\ +16 & 30 \\ -13 & 8 \\ -13 & 13 \\ -13 & 13 \\ -13 & 13 \\ -21 & 1 \\ -21 & 30 \end{array}$	+ 44 + 44 + 83 + 91 + 91 + 91 - 139 - 183	82 19 8 18 42 18 59 20 23 20 48 19 44 19 13 18 37 82 19 26.8
2 3 4 5 6 7 8 9 10 11 12 13 15 16 17 18 19 20	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13 28 13 34 12 39 11 38 12 52 13 3 14 30 15 35 13 8 12 13 14 13 15 35 13 8 11 10 11 22 12 38	- 5 - 7 - 7 - 6 - 7 - 8 - 6 - 7 - 3 - 3 - 5 - 6 - 11 - 3 - 22 - 29 - 20 - 13 Mean	19 53 21 19 35 4 35 45 36 5 32 38 48 28 48 28 48 28 47 47 57 11 57 159 57 19 57 12 57 1	$\begin{array}{c} +15 & 3 \\ +15 & 3 \\ +15 & 3 \\ +0 & 33 \\ +0 & 29 \\ -11 & 37 \\ -11 & 37 \\ -11 & 48 \\ -11 & 52 \\ -11 & 52 \\ -11 & 52 \\ -18 & 47 \\ -19 & 11 \\ -19 & 13 $	$\begin{array}{c} +146\\ +146\\ +152\\ +145\\ +145\\ +143\\ +148\\ +148\\ +148\\ +151\\ +151\\ +151\\ +151\\ -156\\ -152\\ -152\\ -151\\ -151\\ -151\end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

TABLE V.-RESULTS OF MEASURES OF DISTANCE. (Continued.)

Star	Pl	Observ	ed Dist.	Cor	rections	for	Cor- rected	Scale	Proper	Parallax	Final Corrected
No.	ate.	East.	West.	Refrac.	Aberr.	Scale.	Mean. s	tion.	Motion.	efficient.	Distance.
38 (32)	2 3 11 12 13 15 18 19 20	.1008 .0889 .2728 .2472 .2560 .3051 .2970 .2952 .2980	.0942 .1011 .2700 .2810 .2598 .3069 .2856 .2910 .3130	337 340 336 335 336 345 334 392 360	-66 -68 -68 -68 -68 +65 +65 +65	113 113 113 113 112 113 113 113 113 Mean	.1274 .1252 .3009 .2935 .2873 .3500 .3339 .3415 .3507	$ \begin{array}{c} +255 \\ +187 \\ -80 \\ -67 \\ -14 \\ -118 \\ -60 \\ -37 \\ -139 \\ \end{array} $	+.0898 +.0898 0711 0711 0711 1127 1154 1154	$\begin{array}{r} +0.043 \\ + .043 \\ + .187 \\ + .187 \\ + .187 \\335 \\475 \\475 \\475 \end{array}$	112.2433 .2343 .2242 .2181 .2172 .2212 .2064 .2163 .2153 112.2206
39 (8)	I 2 3 6 9 10 11 13 15 16 17 18 19 20	$\begin{array}{c} .8614\\ .8448\\ .8484\\ .7040\\ .5794\\ .5686\\ .5678\\ .5601\\ .4675\\ .4474\\ .4422\\ .4532\\ .4398\\ .4372 \end{array}$.8446 .8534 .8438 .7114 .5372 .5601 .5612 .5579 .4617 .4601 .4408 .4473 .44573 .4402	383 383 415 506 466 362 354 404 322 324 317 311 326 324	$\begin{array}{c} -67\\ -68\\ -69\\ -66\\ -69\\ -70\\ -769\\ +66\\ -66\\ -66\\ -66\\ -66\\ -66\\ -66\\ -66$	130 105 106 105 103 107 105 108 108 108 108 108 108 108 108	.8886 .8822 .8825 .7533 .5994 .5955 .5943 .5057 .4946 .4818 .4919 .4897 .4797	$\begin{array}{c} +222 \\ +259 \\ +190 \\ +102 \\ -50 \\ -46 \\ -81 \\ -119 \\ -76 \\ -81 \\ -61 \\ -37 \\ -141 \end{array}$	1662 1651 1651 0060 +.1274 +.1295 +.1302 +.2062 +.2106 +.2106 +.2110 +.2110	$\begin{array}{c} -0.433 \\ -0.473 \\ -0.473 \\ -0.473 \\ -0.575 \\ -0.598 \\ -0.598 \\ -0.598 \\ +0.724 \\ +0.809 \\ +0.816 \\ +0.81$	113.7390 .7369 .7303 .7473 .7152 .7130 .7089 .7153 .7093 .7080 .6947 .7073 .7075 .6871 113.7157
40 (33)	2 3 11 12 13 15 18	.1750 .1687 .3050 .2842 .3034 .3279 .3268	.1744 .1808 .3063 .3048 .3065 .3275 .3224	288 290 287 288 289 308 393	-57 -57 -59 -59 -59 +59 +56	138 138 138 138 138 138 138 138 138 Mean	.2061 .2063 .3367 .3256 .3361 .3726 .3777	+219 +160 - 69 - 58 - 12 -101 - 52	+.0763 +.0763 0605 0605 0605 0959 c982	$\begin{array}{c} -0.025 \\ -0.025 \\ +0.119 \\ +0.119 \\ +0.119 \\ -0.267 \\ -0.414 \end{array}$	96.3040 .2983 .2708 .2608 .2759 .2632 .2690 96.2774
41 (38)	2 15	.0414 .8546	.0432 .8660	120 131	20 +21	126 126 Mean	.0646 .8878	+78 - 35	0685 +.0841	-0.650 + .426	33.9956 •9739 33.9848
42 (7)	2 3 16 18 19	.2542 .2624 .8572 .8465 .8395	.2492 .2463 .8356 .8353 .8353	422 457 345 356 352	-73 -73 +72 +72 +72 +72	112 107 112 110 112 Mean	.2864 .2920 .8879 .8833 .8794	+281 +205 - 82 - 66 - 40		$\begin{array}{c} -0.508 \\508 \\ + .833 \\ + .839 \\ + .839 \\ + .839 \end{array}$	123.1377 .1357 .1076 .1051 .1038 123.1180

Pla	Observed P Angle	osition	Zero Correc-	Refrac.	Cor- rected	Proper	Paral- lax	Final Cor-
te.	East.	West.	preces- sion, etc.		$\frac{\text{Mean.}}{p}$	Motion.	Coef- ficient.	$\frac{\pi}{\pi}$
2 3 11 12 13 15 18 19 20	256 [°] 27 [′] 28 [′] 28 27 39 [′] 4 37 [′] 35 39 [′] 10 44 [′] 12 46 [′] 0 46 [′] 42 44 [′] 13	28 18 29 48 39 28 37 32 39 43 46 52 47 10 46 48 44 55	13 28 13 34 14 13 15 35 13 8 12 13 11 3 11 22 12 38	+ 2' + 6 + 1 + 1 + 5 - 10 - 29 - 19 - 12 Mean	41 24 42 48 53 30 53 10 52 39 57 35 57 35 57 9 57 48 57 0	$\begin{array}{c} + 5 53 \\ + 5 53 \\ - 4 38 \\ - 4 38 \\ - 4 38 \\ - 7 20 \\ - 7 3I \\ - 7 3I \\ - 7 3I \\ - 7 3I \end{array}$	$\begin{array}{r} + 64 \\ + 64 \\ + 63 \\ + 63 \\ + 63 \\ + 63 \\ - 58 \\ - 58 \\ - 58 \\ - 58 \end{array}$	166 [°] 48 [°] 49 [°] 49 49 [°] 10 48 [°] 44 49 [°] 6 48 [°] 48 49 [°] 34 48 [°] 27 49 [°] 55 49 [°] 22 166 [°] 49 [°] 5.1
1 2 3 6 9 10 11 13 15 16 17 18 19 20	$\begin{matrix} 103 & 8 & 12 \\ & 6 & 25 \\ & 7 & 12 \\ & 4 & 30 \\ 102 & 59 & 56 \\ 103 & 1 & 2 \\ 102 & 59 & 57 \\ 103 & 0 & 2 \\ 102 & 59 & 47 \\ 103 & 1 & 13 \\ & 2 & 22 \\ & 0 & 55 \\ 102 & 59 & 48 \\ & 59 & 16 \\ \end{matrix}$	9 4 7 13 8 24 6 2 0 22 1 55 0 38 0 53 0 53 0 53 0 53 2 23 3 13 1 57 1 5 59 44	12 2 13 28 13 34 11 38 14 30 13 7 14 13 13 8 12 13 10 58 11 10 11 3 11 22 12 38	$ \begin{array}{c} +14 \\ +12 \\ +18 \\ +38 \\ +32 \\ +7 \\ +18 \\ -2 \\ -12 \\ -7 \\ -10 \\ -2 \\ -3 \\ Mean \end{array} $	20 54 20 29 21 40 17 32 15 11 14 42 13 31 12 28 12 34 13 50 12 19 11 47 12 5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2 3 11 12 13 15 18	252 27 5 28 4 40 35 39 43 40 15 46 13 47 52	26 16 28 28 41 15 38 5 40 53 47 45 47 58	13 28 13 34 14 13 15 35 13 8 12 13 11 3	0 + 1 = 0 + 0 + 1 = 0 + 0 + 1 = 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0	40 8 41 51 55 8 55 30 53 44 59 1 58 28	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	+ 74 + 74 + 75 + 75 + 75 - 74 - 69	162 48 38 49 27 49 30 50 34 49 1 49 27 48 12 162 49 15.6
2 15	212 I 28 49 32	2 24 51 18	13 28 12 13	—13 — 6 Mean	15 11 2 32	+20 8 -25 17	+158 -199	122 37 16 35 44 122 36 30.0
2 3 16 18 19	I05 25 50 27 17 21 57 21 7 21 42	26 42 27 13 23 13 22 12 21 17	13 28 13 34 10 58 11 3 11 22	+12 +18 -10 - 9 - 4 Mean	39 56 41 7 33 22 32 46 32 47	$ \begin{array}{r} - 3 & 22 \\ - 3 & 22 \\ + 4 & 19 \\ + 4 & 20 \\ + 4 & 20 \end{array} $	$ \begin{array}{r} - 50 \\ - 50 \\ + 33 \\ + 32 \\ + 32 \\ + 32 \\ \end{array} $	15 37 16 37 33 37 24 36 28 37 18 15 37 11.8

TABLE VI.-RESULTS OF MEASURES OF ANGLE. (Continued.)

Observed Dist. Corrections for Cor-Plate. Final Scale Parallax Star rected Proper Varia-Corrected Co-No. Mean. Motion. Distance. tion. efficient. West. Aberr. East. Refrac. Scale. 43 .1144 .1423 +127 +.0087 .1198 -38 108 -0.377 65.1589 I 199 -39 +1482 .1202 .1164 202 105 .1434 +.0086.1624 — .340 .1286 +108 +.0086 .1072 206 (34)3 .1434 .1584 -39 105 - .340 .1562 - 27 .1292 201 .1433 IO .1334 -40 105 -.0072 .231 II .1330 .1302 199 -40 105 .1563 - 47 -.0072 .204 .1418 .1372 12 .1324 201 -40 .1597 -.0072 .204 .1460 105 - 39 .1285 .1371 -40 .1580 8 -.0072 .204 13 204 105 .1474 .1129 +40 - 68 -.0116 15 .1291 231 .1578 +.063114 .1402 .1065 +3816 .1251 .1628 -.0120 .084 IIO 339 - 44 .1453 18 .1013 +38.1075 108 .098 327 .1500 35 -.0120 .1332 .1082 +38.098 19 .1001 277 .1445 - 21 -.0120 105 .1291 +38108 .1682 - 81 - .098 .1468 20 .1226 .1394 243 -.0120 Mean 65.1461 44 .1214 .1514 187 108 .1614 +130 -.0286 2 -34 --0.496 57.1394 .0957 194 182 .1632 108 -.0286 3 .1552 + 95 - .496 -34 .1297 .0813 - 23 .1050 +.0219 (36).1172 10 104 .396 .1317 ---35 .1076 .0924 179 11 107 .1240 +.0221-35- 41 - .372 .1372 .0948 .0884 .1165 13 191 -35 104 7 -.0221 .372 .1331 +35- 60 15 .0611 .0733 214 107 .1017 +.0347+ .240 .1335 Mean 57.1341 -63 -. 1844 45 .2294 .1670 .2336 +253-0.609106.0667 2 379 III .7967 +64-111 +.832.7729 III +.230615 300 .8250 .0552 Mean 106.0610 (54) 46 II .3643 ·3373 157 -27 124 ·3757 - 32 +.1385-0.93244.4990 (67) 47 .6216 391 386 ---80 .6184 - 78 +0.06312 .5740 -.0516 130.5598 32 ---80 .6127 +.063.5929 - 17 -.0516 .5602 13 .5923 32 - .362 (63) .6220 478 -.0838 .5652 .6042 +7630 .6579 19 -- 43 Mean 130.5617 .8930 48 .8908 .9198 -.1233 -0.849Ι 202 -30 115 + 99+11650.7955 .8020 2 .8974 .8948 198 114 .9235 -.1224 - .832 —30 .832 3 .8927 .9083 222 114 + 85-.1224 .8057 (44) -30 .9303 .7861 .7802 .7702 .8041 .686 214 -31 114 -.0091 4 Т +++ .7614 208 .7863 .7692 .7938 -.0044 56 33 .499 -29 114 •7539 •7687 .7912 .7834 .7722 265 -29 116 ·7975 .7887 45 -.0044 .499 78 -29 ·7475 110 -.0039 .472 233 47 .7866 .6814 .6796 - 64 .809 213 -30 114 .7093 +.0941.7834 .6653 .6743 .809 9 245 —30 114 .7019 - 22 -.0941 .6770 .6818 .6815 .7885 10 181 114 .7048 - 21 +.0957 .771 .6780 .7046 36 +.0962.7875 TT 172 -31 114 .755 .6745 .6767 +.0962 .7858 12 192 -31 114 .7023 30 .755 +.0962.7874 .6705 .7016 ·755 .672 13 .6747 215 114 7 -31 ____ .7871 .5930 .5882 +31 + 30.6316 15 16 .6026 116 199 +.1522- 53 298 .6241 .7832 .5727 116 ·547 34 -.1555 .5852 36 .7854 17 18 .6265 .5900 251 +30116 ____ +.1555.547 .5812 .7811 .6211 +29 115 27 +.1558.534 ·5751 293 •7749 •7898 19 .5778 +29 114 .6138 - 16 -.1558 ·5737 246 ·534 - 63 20 .5964 256 116 .6334 +.1558+29.534 .5919 50.7880 Mean

TABLE V.-RESULTS OF MEASURES OF DISTANCE. (Continued.)
TABLE VI .-- RESULTS OF MEASURES OF ANGLE. (Continued.)

Pla	Observed P Angle	osition	Zero Correc-	Refrac.	Cor- rected	Proper	Paral- lax	Final Cor-
te.	East.	West.	Vest. preces- sion. etc.		Mean. p	Motion.	Coef- ficient.	rected Angle. π
1 2 3 10 11 12 13 15 16 18 19 20	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 27 & 20 \\ 24 & 40 \\ 25 & 45 \\ 47 & 22 \\ 45 & 52 \\ 43 & 33 \\ 45 & 35 \\ 55 & 5 \\ 55 & 13 \\ 55 & 52 \\ 56 & 15 \\ 52 & 18 \end{array}$	12 2 13 28 13 34 13 7 14 13 15 35 13 8 12 13 10 58 11 22 12 38	$ \begin{array}{r} -9'' \\ -8'' \\ -10'' \\ -10'' \\ -11'' \\ -11'' \\ -11'' \\ -11'' \\ -11'' \\ -29'' \\ -12'' \\ -12'' \\ Mean \\ \end{array} $	38 35 37 34 39 8 59 33 59 33 59 57 58 52 58 41 6 19 6 5 6 48 6 35 4 42	$\begin{array}{c} +11 & 13 \\ +11 & 8 \\ +11 & 8 \\ -8 & 44 \\ -8 & 47 \\ -8 & 48 \\ -13 & 55 \\ -14 & 13 \\ 55 \\ -14 & 15 \\ -14 & 15 \\ -14 & 15 \\ \end{array}$	$ \begin{array}{c} + 101 \\ + 104 \\ + 104 \\ + 108 \\ + 109 \\ + 109 \\ + 109 \\ - 114 \\ - 113 \\ - 112 \\ - 112 \\ - 112 \end{array} $	$\begin{matrix} 143 & 50 & 37' \\ 50 & 59 \\ 51 & 7 \\ 50 & 58 \\ 50 & 55 \\ 50 & 56 \\ 51 & 24 \\ 50 & 42 \\ 51 & 3 \\ 51 & 39 \\ 50 & 1 \\ 143 & 50 & 53.3 \end{matrix}$
2 3 10 11 13 15	223 19 12 17 30 41 55 38 43 40 55 50 8	16 18 19 20 41 54 41 17 40 51 50 40	13 28 13 34 13 7 14 13 13 8 12 13		31 2 31 43 54 54 54 8 53 45 2 28	$ \begin{array}{r} +12 & 35 \\ +12 & 35 \\ -9 & 53 \\ -9 & 56 \\ -9 & 56 \\ -15 & 45 \end{array} $	+108 +108 +116 +117 +117 -126	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
2 15	112 43 4 37 44	42 0 37 40	13 28 12 13	+14 + 2 Mean	56 14 49 57	-312 + 41	-53 + 40	22 53 43 53 53 22 53 48.0
11	174 32 24	32 0	14 13	- 2	46 23	- 7 6	+ 52	84 39 5.0
12 13 19	249 19 12 22 41 28 15	20 30 23 17 29 0	15 35 13 8 11 22	— 2 — I —21 Mean	35 24 36 6 39 38	$ \begin{array}{r} - 4 & 12 \\ - 4 & 12 \\ - 6 & 48 \\ \end{array} $	$^{+ 56}_{+ 56}_{- 53}$	159 31 43 32 38 32 30 159 32 17.0
1 2 3 4 5 6 7 8 9 10 11 12 13 15 16 17 18 19 20	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	29 55 26 26 28 55 39 26 41 57 26 53 50 8 49 2 48 46 49 7 48 43 57 4 59 15 57 45 57 45 56 52	12 2 13 28 13 34 12 39 11 38 12 52 13 3 14 30 15 35 13 8 12 13 10 58 11 3 11 3 11 22 12 38	$\begin{array}{c} -14 \\ -12 \\ -19 \\ -16 \\ -15 \\ -39 \\ -25 \\ -19 \\ -33 \\ -8 \\ -10 \\ -18 \\ +1 \\ +9 \\ +6 \\ +7 \\ +4 \\ +1 \\ Mean \end{array}$	41 4 39 24 41 41 51 15 52 27 2 33 1 49 2 25 1 37 0 56 8 32 9 27 11 11 8 18 8 52 8 33	$\begin{array}{c} +11 & 41 \\ +11 & 36 \\ +0 & 52 \\ +0 & 25 \\ +0 & 22 \\ -9 & 0 \\ -9 & 9 \\ -9 & 9 \\ -9 & 9 \\ -9 & 9 \\ -9 & 9 \\ 12 \\ -14 & 55 \\ -14 & 56 \\ -14$	$\begin{array}{c} + \ 68 \\ + \ 74 \\ + \ 74 \\ + \ 102 \\ + \ 119 \\ + \ 119 \\ + \ 111 \\ + \ 80 \\ + \ 80 \\ + \ 92 \\ + \ 92 \\ + \ 92 \\ + \ 92 \\ - \ 110 \\ - \ 121 \\ - \ 122 \\ - \ 122 \\ - \ 122 \\ - \ 122 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

ANNALS N. Y. ACAD., SCI. X, August, 1897.-7.

TABLE	VRESULTS	OF 1	MEASURES	OF	DISTANCE.	(0	Continued.)
-------	----------	------	----------	----	-----------	----	------------	---

Star	P	Observe	ed Dist.	Cor	rections	for	Cor-	Cor- Scale Proper Parallax				
No.	ate.	East.	West.	Refrac.	Aberr.	Scale.	Mean.	tion.	Motion.	efficient.	Distance.	
49 (87)	11	.7198	.6913	191	-35	110	.7311	- 41	+.0740	0.648	57.7927	
50	I 2	.8328 .8461	.8330 .8266	229 225	-34	110 108	.8622	+115 + 134	1125 1117	0.818 798	58.7507	
(43)	3 6	.8240	.8310 .7006	245 292	-35 -34	108 110	.8581	+ 98 + 52	1117 0040	- .798 - .447	.7460	
	9 10	.6356	.6495 .6376	· 272 206	$-35 \\ -36$	108 106	.6759	- 26	+.0858 +.0872	773 732	•7492 •7338	
	II I2	.6362	.6416	197 217	-36	108 108	.6646	-42 -35	+.0877 +.0877	714 714	.7389	
	13 15	.6383	.6366	239 231	-36 + 36	108 110	.6674	8 61	+.0877 +.1389	714 + .623	.7451	
	16 17	.5421	.5413	350	+34 +34	112 112	.5901	-39 -42	+.1418 +.1418	+ .494 + .494	·7343	
	18 19	.5536	.5380	341 285	+34 + 34	110 108	.5931	- 31 - 19	+.1421 +.1421	+ .481 + .481	.7383	
	20	.5624	.5660	242	+34	108 Mean	.6014	- 73	+.1421	+ .481	.7424 58.7396	
51 (42)	2	.8800	.9059	340	63	118	.9249	+243	0074	-0.409	106.9365	
` 52´	I 2	.3976 .3822	.3860	312 306	-45 -45	137 136	.4295 .4277	+149 +174	1365 1355	-0.883 869	76.2966 .2984	
(45)	3 10	.3848 .1701	.4191	339 277		136 136	.4422	+127 - 31	1355 +.1061	869 818	.3082	
	II I2	.1598 .1513	.1582 .1481	263 293	47 46	136 136	.1915	-54 -46	+.1067 +.1067	802 802	.2825 .2771	
	13 15	.1288 .0628	.1570 .0610	334 299	-46 + 46	136 140	.1826	— 10 — 80	+.1067 +.1689	— .802 + .729	.2780 .2780	
	16 18	.0323 .0378	.0501 .0366	446 435	+44 +44	136 136	.1011 .0960	-51 -41	+.1725 +.1729	+ .611 + .599	.2763 .2725	
						Mean					76.2855	
53	I 2	.0292	.0332	338 326		136	.0715	+148 +173	1840	-0.969 -0.970	75.8899	
(2)	36	.0089	.0216	375 499		136 140	.0592	+127 + 68	1827 0066	970 798	.8767	
	7 9	.8662	.8756	411	-43 -45	130	·9186	+ 70 - 34	0058 +.1411	778 968	.9098	
	II	.7138	.7182	288		136	.7511	-31 -54	+.1433 +.1441	957 952	.8790	
	12	.7131	.7071	363		136	·7449 ·7527	- 45 - 10	+.1441 +.1441 ± 2282	952 952 952	.8836	
	16	.5842	.5820	382	+40 +44 +44	140	.6370	- 51	+.2331 +.2331	+ .848 + .848	.8759	
	18	.5763	.5611	376	+44 +44	138	.6218	- 41	+.2336 +.2336 ± 2226	+ .838 + .838	.8621	
	20	.5980	.5938	333 292	+44 +44	134 136 Mean	.6404	- 94	+.2336	+.838	.8754 75.8796	
	1		1	1	1	1	1	1	1			

TABLE VI.-RESULTS OF MEASURES OF ANGLE. (Continued.)

Pla	Observed Po Angle	osition	Zero Correc-	Refrac	Cor-	Proper	Paral- lax	Final Cor-
te	East.	West.	preces- sion, etc.		Mean.	Motion.	Coef- ficient.	rected Angle. π
11	204° 39′ 45′	41 [′] 48′′	14' 13''	— 6 ["]	54 54	- 8 53	+ 95	114°46′4.0
I 2 3 6 9 10 11 12 13 15 16 17 18 19 20	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12 2 13 28 13 34 11 38 14 30 15 35 13 7 14 13 15 35 12 13 10 58 11 10 11 22 12 38	$ \begin{array}{c} -12 \\ -13 \\ -20 \\ -39 \\ -33 \\ -6 \\ -11 \\ -19 \\ -1 \\ +7 \\ +2 \\ +3 \\ +2 \\ -1 \\ Mean \end{array} $	12 37 12 18 13 41 23 35 32 27 31 34 32 40 31 23 31 33 38 37 38 26 40 12 38 40 40 12 38 40 38 41 38 5	$\begin{array}{c} +10 & 3 \\ +10 & 28 \\ +10 & 28 \\ + & 0 & 23 \\ - & 8 & 7 \\ - & 8 & 17 \\ - & 8 & 17 \\ - & 8 & 17 \\ - & 13 & 8 \\ - & 13 & 25 \\ - & 13 & 25 \\ - & 13 & 27 \\ - & 13 & 27 \\ - & 13 & 27 \\ - & 13 & 27 \\ - & 13 & 27 \\ \end{array}$	$\begin{array}{c} + \ 66 \\ + \ 71 \\ + \ 71 \\ + \ 71 \\ + \ 76 \\ + \ 82 \\ + \ 85 \\ + \ 85 \\ + \ 85 \\ - \ 100 \\ - \ 109 $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2	229 19 12	20 3	13 28	— 9	32 57	+ 6 48	+ 61	139 41 7.0
1 2 3 10 11 12 13 15 16 18	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 38 0 53 1 12 15 6 13 45 14 13 19 38 20 28 20 4	12 2 13 28 13 34 13 7 14 13 15 35 13 8 12 13 10 58 11 3	$ \begin{array}{c} -14 \\ -12 \\ -18 \\ -7 \\ -5 \\ -9 \\ -17 \\ +2 \\ +14 \\ +11 \\ \text{Mean} \end{array} $	13 49 13 38 13 54 27 46 27 35 26 55 31 5 31 42 30 36	$\begin{array}{r} + 7 & 20 \\ + 7 & 17 \\ + 7 & 17 \\ - 5 & 44 \\ - 5 & 46 \\ - 5 & 46 \\ - 5 & 46 \\ - 9 & 9 \\ - 9 & 21 \\ - 9 & 22 \end{array}$	$ \begin{array}{r} + & 39 \\ + & 43 \\ + & 53 \\ + & 55 \\ + & 55 \\ + & 55 \\ - & 76 \\ - & 76 \\ \end{array} $	IOI 21 36 22 IO 21 32 22 O 21 38 21 40 21 53 21 23 21 25 19 57 IOI 21 31.4
1 2 3 6 7 9 10 11 12 13 15 16 17 18 19 20	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	48 55 46 50 48 15 53 47 49 42 56 38 56 45 56 38 56 45 56 21 8 3 37 1 6 0 48 59 57	12 2 13 28 13 34 11 38 12 52 14 30 13 7 14 13 15 35 13 8 12 13 10 58 11 30 11 22 12 38	$ \begin{array}{c} -5 \\ -5 \\ -8 \\ -20 \\ -11 \\ -17 \\ -2 \\ -2 \\ -4 \\ -7 \\ +9 \\ +29 \\ +20 \\ +27 \\ +17 \\ +11 \\ \text{Mean} \end{array} $	0 31 59 59 1 4 5 8 2 3 10 1 9 29 10 12 9 13 9 30 12 28 13 22 14 14 12 42 12 8 12 10	$\begin{array}{c} + 4 & 47 \\ + 4 & 455 \\ + 0 & 100 \\ 9 & 3 & 415 \\ + & 3 & 3 & 455 \\ - & 3 & 3 & 466 \\ - & 3 & 3 & 466 \\ - & 3 & 3 & 466 \\ - & 6 & 6 & 7 \\ - & - & 6 & 7 \\ - & - & 6 & 7 \\ - & - & 6 & 7 \\ - & - & 6 & 7 \\ - & - & 6 & 7 \\ - & - & 6 & 7 \\ - & - & 6 & 7 \\ - & - & 6 & 7 \\ - & - & - & 6 \\ - & - & - & - \\ - & - & - & - \\ - & - &$	$\begin{array}{r} + & 7 \\ + & 11 \\ + & 11 \\ + & 52 \\ + & 54 \\ + & 16 \\ + & 22 \\ + & 25 \\ + & 25 \\ + & 25 \\ - & 52 \\ - & 52 \\ - & 52 \\ - & 52 \\ - & 52 \\ - & 52 \\ - & 52 \\ - & 52 \\ - & 52 \\ \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

TABLE V.-RESULTS OF MEASURES OF DISTANCE. (Continued.)

The second secon		_	-	_			and the second second			-	
Star No.	Plate.	Observe	ed Dist.	Cor	rections	for	Cor- rected Mean.	Scale Varia- tion.	Proper Motion.	Parallax Co-	Final Corrected Distance.
		East.	West.	Refrac.	Aberr.	Scale.	8	01041		0,010101101	σ
24	~	1160						1	-0		
94	1	.4400	.4302	344		137 125	.4820	+151 +176	1890	-0.972	77.2956
(3)	3	.4183	.4360	385	-46	134	.4716	+129	1876	975	.2844
	9	.0746	.0985	468	-46	134	.1393	- 34	+.1449	975	.2683
	IO	.0965	.1053	294	-47	134	.1362	— 31	+.1472	969	.2679
	11	.0990	.0974	274	-47	134	.1315	- 55	+.1480	964	.2010
	12	.0853	.0902	372	-47	134	.1320	— 10	+.1480 +.1480	904	.2675
	15	.9911	.9729	227	+47	130	.0196	— 81	+.2344	+.946	.2570
	16	.9606	.9866	375	+45	135	.0263	- 52	+.2394	+.873	.2717
	17	.9814	.9784	330	+45	135	.0281	- 55	+.2394	+.873	.2732
	10	.9590	.9001	373	+45	134	.0150	-41	+.2398	+ .864	.2018
	20	.9090	19703	293	145	Mean	.01/2	90	7 .2390	1 1004	77.2707
											111-1
55	12	.6444	.6202	416	-82	17	.6525	- 81	0089	-0.194	134.6330
$(-\alpha)$	13	•5973	.5996	417	82	17	.6186	-17	0089	194	.6055
(39)	10	.0110	.5700	0,0	179	Mean	.0557	- /2	0140	100	124.6227
											-34.0-37
56	2	.3874	.3912	474	69	130	.4329	+267	2077	-0.833	117.2412
10	3	.3788	.3658	541	69	126	.4222	+196	2077	833	.2234
(0)	11	.0598	.0434	390	-71	122	.0807	04	+.1039 	908	.2305
	16	.8690	.8820	354	68	I24 I24	.9304	-78	+.2653	+ .979	.1013
	18	.8900	.8905	372	+68	124	.9368	- 63	+.2658	+.993	.2091
	19	.8798	.8847	368	+68	124	.9285	- 38	+.2658	+ .993	.2033
						Mean					117.2168
57	2	.7927	.7629	445	-64	122	.8204	+245		-c.881	107.6238
(53)			.,,	110				1-40			10700030
58	2	.8308	.8107	349	-53	138	.8597	+205	1171	-0.815	89.7526
	IO	.6051	.6227	316	55	138	.6493	- 37	+.0917	752	.7276
(47)	11	.0000	.0000	303	-55	134	.6414	- 64	+.0922	735	.7178
	13	.6056	.6115	374	-55	134 134	.6496	-12	+.0922 +.0922	735	.0005
	15	.5336	.5150	353	+54	135	.5741	- 94	+.1459	+.649	.7189
	16	.5061	.5177	533	+52	137	·5797	60	+.1490	+ .521	.7294
	18	.4881	.4839	519	+52	135	.5522	- 48	+.1493	+ .508	.7032
	20	.5215	.5150	371	+52	I32 Mean	.5693	-111	+.1493	+ .508	.7140
						псац					09.7201

100

Sixty-five Stars near 61 Cygni.

Pla	Observed P Angle	osition	Zero Correc-	Refrac	Cor- rected	Proper	Paral- lax	Final Cor-
ute.	East.	West.	preces- sion, etc.		$\frac{\text{Mean.}}{p}$	Motion.	Coef- ficient.	π
1 2 3 9 10 11 12 13 15 16 17 18 20	167 59 33 56 40 57 56 168 4 55 5 39 5 12 2 52 5 55 8 37 10 10 12 2 9 24 8 30	0 3 57 8 58 47 5 15 7 8 6 10 3 53 6 20 10 20 11 55 13 53 10 24 9 18	' 2' 13 28 13 34 14 30 13 7 14 13 15 35 13 8 12 13 10 58 11 10 11 3 12 38	$ \begin{array}{c} - 4 \\ - 3 \\ - 14 \\ - 2 \\ - 1 \\ - 3 \\ - 6 \\ - 7 \\ + 31 \\ + 21 \\ + 28 \\ + 12 \\ Mean \end{array} $	11 46 10 19 11 50 19 21 19 29 19 53 18 54 19 10 21 34 22 31 24 28 21 25 21 44	$\begin{array}{c} & 4 & 18 \\ + & 4 & 16 \\ + & 4 & 16 \\ + & 3 & 3 & 22 \\ - & 3 & 23 & 23 \\ - & 3 & 23 & 23 \\ - & 3 & 23 & 23 \\ - & 5 & 28 \\ - & 5 & 28 \\ - & 5 & 29 \\ - & 5 & 29 \\ - & 5 & 29 \end{array}$	$ \begin{array}{c} + & 2 \\ + & 6 \\ + & 6 \\ + & 11 \\ + & 17 \\ + & 20 \\ + & 20 \\ + & 20 \\ - & 34 \\ - & 46 \\ - & 47 \\ - & 47 \end{array} $	$78^{\circ} 16^{\circ} 18^{\prime\prime} \\ 15 37 \\ 16 14 \\ 15 37 \\ 15 52 \\ 16 6 \\ 15 49 \\ 16 18 \\ 15 41 \\ 16 17 \\ 16 38 \\ 14 49 \\ 16 12 \\ 78 15 57.5$
12 13 18	234 16 10 18 53 24 55	16 58 20 5 25 28	15 35 13 8 11 3	— 7 — 9 —27 Mean	32 2 32.28 36 36	-4 17 -4 17 -6 56	$^{+52}_{+52}_{-54}$	144 28 15 28 54 28 31 144 28 33.3
2 3 11 15 16 18 19	132 39 28 40 56 39 11 40 7 41 32 40 40 40 16	40 15 41 2 39 40 40 53 42 5 41 35 40 50	13 28 13 34 14 13 12 13 10 58 11 3 11 22	+11 +16 + 6 + 9 +20 +20 +14 Mean	53 31 54 49 53 45 52 52 53 6 52 31 52 9	$\begin{array}{c} - & 0 & 52 \\ - & 0 & 52 \\ + & 0 & 41 \\ + & 1 & 5 \\ + & 1 & 6 \\ + & 1 & 7 \\ + & 1 & 7 \end{array}$	$ \begin{array}{c} - 3^2 \\ - 25 \\ + 16 \\ + 7 \\ + 6 \\ + 6 \end{array} $	$\begin{array}{ccccccc} 42 & 53 & 27 \\ & 53 & 51 \\ & 53 & 46 \\ & 53 & 44 \\ & 53 & 46 \\ & 52 & 50 \\ & 53 & 17 \\ 42 & 53 & 31.6 \end{array}$
2	138 30 38	32 40	13 28	+10	45 17	— o 16	- 29	48 45 51.0
2 10 11 12 13 15 16 18 20	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16 14 30 16 28 22 27 23 29 25 35 23 36 52 35 58 34 18	13 28 13 7 14 13 15 35 13 8 12 13 10 58 11 3 12 38	$ \begin{array}{r} -12 \\ -8 \\ -5 \\ -10 \\ -19 \\ +1 \\ +7 \\ +5 \\ +1 \\ Mean \\ \end{array} $	29 27 42 39 42 32 42 35 42 3 47 2 47 38 46 28 46 11	$\begin{array}{r} + \ 6 \ 45 \\ - \ 5 \ 18 \\ - \ 5 \ 20 \\ - \ 5 \ 20 \\ - \ 5 \ 20 \\ - \ 5 \ 20 \\ - \ 8 \ 37 \\ - \ 8 \ 38 \\ - \ 8 \ 39 \\ - \ 8 \ 39 \end{array}$	$ \begin{array}{r} + 44 \\ + 52 \\ + 54 \\ + 54 \\ - 64 \\ - 70 \\ - 71 \\ - 71 \end{array} $	107 37 28 37 19 37 0 37 45 37 26 37 53 37 58 36 33 37 20 107 37 24.4

TABLE VI.-RESULTS OF MEASURES OF ANGLE. (Continued.)

TABLE V.—RESULTS OF MEASURES OF DISTANCE.	(Continued.)
---	--------------

Star	Pl	Observ	ed Dist.	Cor	rections	for	Cor- rected	Scale	Proper	Parallax	Final Corrected
No.	ute.	East.	West.	Refrac.	Aberr.	Scale.	Mean. s	tion.	Motion.	efficient.	Distance. σ
59 (41)	I 2 3 10 11 12 13 15	.9381 .9478 .9334 .7559 .7572 .7542 .7580 .6890	.9276 .9312 .9322 .7671 .7653 .7318 .7381 .6809	369 364 394 323 350 388 380	-57 -57 -57 -57 -59 -59 -59 -59 -59 +56	148 148 148 148 148 148 148 148 146	.9731 .9793 .9756 .7985 .7967 .7812 .7812 .7901	+189 +221 +162 - 39 - 69 - 58 - 12 - 101 - 65	1024 1017 1017 +.0796 +.0800 +.0800 +.0800 +.1266	$\begin{array}{c} -0.787 \\767 \\767 \\695 \\676 \\676 \\676 \\676 \\ +.579 \\ +.579 \\ +.46 \end{array}$	96.8795 .8899 .8803 .8653 .8611 .8467 .8602 .8618
	10 17 18 19 20	.6586 .6513 .6702 .6762	.6572 .6644 .6443 .6610 .6707	581 482 564 471 399	+56 +56 +56 +56 +56 +56	146 147 146 148 146 Mean	.7232 .7244 .7188 .7275 .7279	-69 -52 -32 -120	+.1293 +.1293 +.1296 +.1296 +.1296	+ .440 + .446 + .433 + .433 + .433	.8517 .8525 .8488 .8595 .8511 96.8622
60 (51)	2 13 15	.7962 .4324 .3186	.7690 .4264 .3134	422 473 338	—58 —60 +59	145 146 146 Mean	.8276 •4795 •3645	+222 - 13 - 102	—.2024 +.1597 +.2530	-0.968 -0.985 +0.998	97.6350 .6253 .6201 97.6268
61 (40)	1 2 3 5 6 7 9 10 11 12 13 15 16 17 18 19 20	.3070 .3178 .3112 .2298 .22046 .2193 .1560 .1578 .1466 .1485 .0917 .0790 .0733 .0579 .0782 .0894	.3036 .3030 .2954 .2209 .1991 .1612 .1520 .1619 .1568 .1453 .0877 .0785 .0615 .0768 .0866	397 3 ⁸ 9 423 408 480 442 454 368 356 3 ⁸ 3 415 425 647 537 628 524 445	$\begin{array}{c} -63\\ -63\\ -64\\ -62\\ -66\\ -66\\ -66\\ -66\\ -66\\ -66\\ -66$	122 122 122 120 126 126 126 126 126 122 122 122 122 122	.3432 .3473 .3436 .2784 .2591 .2515 .2024 .1966 .1883 .1867 .1433 .1540 .1404 .1333 .1407 .1433	$\begin{array}{c} +211\\ +246\\ +180\\ +48\\ +97\\ +101\\ -48\\ -44\\ -77\\ -65\\ -14\\ -113\\ -72\\ -77\\ -58\\ -35\\ -134\\ \end{array}$	$\begin{array}{c}0862\\0856\\0856\\0031\\0031\\0027\\ +.0658\\ +.0669\\ +.0673\\ +.0673\\ +.1067\\ +.1087\\ +.1089\\ +.1089\\ +.1089\\ +.1089\\ +.1089\end{array}$	$\begin{array}{c} -0.737\\712\\712\\323\\323\\295\\681\\633\\613\\613\\613\\613\\ +.506\\ +.367\\ +.354\\ +.354\\ +.354\\ +.354\end{array}$	$\begin{matrix} 108.2686 \\ .2772 \\ .2669 \\ .2760 \\ .2616 \\ .2551 \\ .2547 \\ .2444 \\ .2483 \\ .2412 \\ .2447 \\ .2449 \\ .2602 \\ .2461 \\ .2409 \\ .2506 \\ .2433 \\ 108.2544 \end{matrix}$
62 (57)	2 3 18	.5976 .5722 .1430	.6115 .5680 .1066	483 504 539	-66 -66 +65	125 124 130 Mean	.6504 .6179 .1899	+265 + 186 - 60	—.1918 —.1918 +.2453	0.977 977 +886	111.4726 .4322 .4406 111.4485

102

Pl	Observed P Angle	osition	Zero Correc-	Refrac	Cor- rected	Proper	Paral- lax	Final Cor-
ite.	East.	West.	preces- sion, etc.		Mean.	Motion.	Coef- ficient,	rected Angle. π
I 2 3 10 11 12 13 15 16 17 18 19 20	202 13 14 11 48 12 44 25 8 23 46 21 55 24 20 29 20 30 13 32 40 30 18 30 18 30 18 30 5	14 32 13 5 14 37 25 22 24 18 23 7 25 4 30 35 31 50 31 50 31 50 31 5 29 52	''' 12 2'' 13 28 13 34 13 7 14 13 15 35 13 8 12 13 10 58 11 10 11 31 12 38	$ \begin{array}{r} -16'' \\ -14 \\ -20 \\ -8 \\ -6 \\ -11 \\ -19 \\ -2 \\ +2 \\ -1 \\ 0 \\ -2 \\ -3 \\ \text{Mean} \end{array} $	25 39 25 40 26 55 38 14 38 9 37 55 37 53 42 9 42 2 44 27 41 52 42 00 41 53	$\begin{array}{c} + 6 & 38 \\ + 6 & 35 \\ + 6 & 35 \\ - 5 & 10 \\ - 5 & 12 \\ - 5 & 12 \\ - 5 & 12 \\ - 5 & 12 \\ - 5 & 12 \\ - 8 & 25 \\ - 8 & 25 \\ - 8 & 26 \\ - 8 & 26 \\ - 8 & 26 \end{array}$	$ \begin{array}{r} + 43 \\ + 46 \\ + 53 \\ + 54 \\ + 54 \\ - 63 \\ - 68 \\ - 68 \\ - 69 \\ - 69 \\ - 69 \\ - 69 \end{array} $	$\begin{array}{c} & & & & & & \\ 112 & 32 & 45 \\ & & & 33 & 32 \\ & & & 33 & 53 \\ & & & 32 & 45 \\ & & & 32 & 45 \\ & & & 33 & 13 \\ & & & 32 & 44 \\ & & & 33 & 33 \\ & & & & 244 \\ & & & 33 & 33 \\ & & & & 244 \\ & & & & 33 & 33 \\ & & & & & 11 \\ & & & & 33 & 16 \\ 112 & & & 33 & 7.5 \end{array}$
2 13 15	156 50 25 53 37 56 2	50 51 54 41 58 2	13 28 13 8 12 13	+ 2 + 1 +11 Mean	4 8 7 18 9 26	+ 2 3 - 1 37 - 2 34	-9 + 1 = 13	67 7 8 6 5 6 28 67 6 33.7
1 2 3 5 6 7 9 10 11 12 13 15 16 17 18 19 20	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12 2 9 52 11 10 19 2 18 27 13 33 21 4 21 36 20 56 18 355 21 8 26 33 28 16 29 31 26 33 26 40 25 40	12 2 13 28 13 34 11 38 11 38 12 52 14 30 13 7 14 13 15 35 12 13 10 58 11 0 11 3 12 38		23 11 22 31 29 52 28 46 26 33 34 38 34 18 34 33 33 48 33 39 38 9 38 19 39 57 37 40 37 47 37 38	$\begin{array}{c} + \ 6 \ 12 \\ + \ 6 \ 9 \\ + \ 6 \ 9 \\ + \ 0 \ 13 \\ + \ 0 \ 13 \\ + \ 0 \ 12 \\ - \ 4 \ 45 \\ - \ 4 \ 52 \\ - \ 4 \ 52 \\ - \ 7 \ 52 \\ - \ 7 \ 52 \\ - \ 7 \ 53 \\ - \ 7 \ 53 \\ - \ 7 \ 53 \end{array}$	$\begin{array}{r} + 43 \\ + 45 \\ + 45 \\ + 62 \\ + 62 \\ + 53 \\ + 53 \\ + 553 \\ - 63 \\ -$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2 3 18	165 20 35 21 48 30 0	21 26 22 25 30 27	13 28 13 34 11 3	2 4 +-29 Mean	34 27 35 37 41 45	$\begin{array}{c} + & 2 & 42 \\ + & 2 & 42 \\ - & 3 & 28 \end{array}$	+ 1 + 1 - 30	$\begin{array}{cccccc} 75 & 38 & 9 \\ & 38 & 25 \\ & 37 & 16 \\ 75 & 37 & 56.7 \end{array}$

TABLE VI.-RESULTS OF MEASURES OF ANGLE. (Continued.)

TABLE VRESULT	S OF MEASU	IRES OF DISTANCE.	(Concluded.)
---------------	------------	-------------------	--------------

Star	Pla	Observe	ed Dist.	Cor	rections	for	Cor- rected Varia-		Proper	Parallax	Final Corrected
No.	te.	East.	West.	Refrac.	Aberr.	Scale.	Mean. s	tion.	Motion.	efficient.	Distance. σ
63 (48)	2 11 13 15 16 17 18 19 20	.7541 .4323 .4072 .3026 .2991 .2860 .2766 .3023 .3147	.7438 .4440 .4136 .2808 .3042 .2935 .2810 .2725 .2970	470 389 524 411 555 488 550 483 425	-65 -67 +66 +64 +64 +63 +63 +63	133 133 126 124 128 128 128 126 126 134 Mean	.7946 .4757 .4607 .3438 .3683 .3498 .3498 .3447 .3466 .3600	+250 -78 -14 -114 -73 -78 -59 -36 -136	$\begin{array}{r}1809\\ +.1426\\ +.1426\\ +.2259\\ +.2307\\ +.2307\\ +.2312\\ +.2312\\ +.2312\\ +.2312\end{array}$	$\begin{array}{c} -0.967 \\946 \\946 \\ +920 \\ +837 \\ +829 \\ +829 \\ +829 \\ +829 \end{array}$	$\begin{array}{r} 109.6263\\ .5984\\ .5898\\ .5701\\ .6024\\ .5834\\ .5806\\ .5848\\ .5882\\ 109.5916\end{array}$
64 (46)	I 2 3 4 5 6 7 9 10 11 12 13 15 17 19 20	.1776 .1922 .1634 .0126 .9536 .9913 .8060 .8454 .8628 .8466 .8351 .7124 .6983 .6955 .6944	.1780 .1778 .1586 .9952 .9997 .9504 .0029 .8200 .8412 .8512 .8533 .7110 .6890 .6875 .6862	535 520 602 575 558 818 664 741 457 427 492 584 422 477 481 434	$\begin{array}{c} -70 \\ -71 \\ -71 \\ -73 \\ -69 \\ -69 \\ -68 \\ -72 \\ -73 \\ -73 \\ -73 \\ -73 \\ +73 \\ +70 \\ +70 \\ +70 \end{array}$	123 123 123 123 123 123 124 123 123 123 123 123 123 123 123 124 123 126 Mean	.2260 .2316 .2157 .0558 .0514 .0285 .0585 .0585 .8816 .8834 .8941 .8936 .8865 .7629 .7451 .7484 .7428	$\begin{array}{r} +234\\ +273\\ +200\\ -3\\ +53\\ +107\\ +111\\ -53\\ -49\\ -86\\ -72\\ -15\\ -125\\ -39\\ -149\\ -149\\ \end{array}$	$\begin{array}{c}2010 \\1996 \\1996 \\0149 \\0072 \\0072 \\0064 \\ +.1542 \\ +.1565 \\ +.1575 \\ +.1575 \\ +.2548 \\ +.2553 \\ +.2553 \\ +.2553 \end{array}$	$\begin{array}{c} -0.965 \\ -0.974 \\ -0.974 \\ -0.971 \\ -0.889 \\ -0.889 \\ -0.889 \\ -0.889 \\ -0.985 \\ -0.984 \\ -0.984 \\ -0.984 \\ -0.984 \\ +0.989 \\ +0.929 \\ +0.929 \\ +0.929 \end{array}$	120,0360 .0468 .0236 .0281 .0381 .0207 .0520 .0179 .0225 .0304 .0313 .0299 .0126 .0034 .0117 .9951 120.0250
65 (50)	2 15 18 20	.0835 .8134 .7827 .8129	.0878 .8004 .7731 .8114	479 506 749 532	-76 + 78 + 75 + 75	34 46 43 43 Mean	.1161 .8567 .8515 .8641	+294 135 69 160	0945 +.1179 +.1206 +.1206	-0.743 + .547 + .398 + .398	129.0415 128.9681 .9703 .9738 128.9884
66 (49)	2 11 13 18	.9326 .6092 .6028 .4338	.9067 .6052 .5993 .4378	523 433 585 610	-72 -75 -75 +70	122 123 122 128 Mean	.9659 .6443 .6532 .5056	+277 - 87 - 16 - 65	$1821 \\ +.1437 \\ +.1437 \\ +.2329$	0.970 950 950 +836	121.7990 .7671 .7831 .7427 121.7730

Plat	Observed P Angle	osition	Zero Correc- tion plus	Refrac.	Cor- rected	Proper	Paral- lax	Final Cor-
te.	East.	West.	preces- sion, etc.		p	Motion.	ficient.	π
2 11 13 15 16 17 18 19 20	171 47 50 54 45 54 32 57 35 58 45 172 0 50 171 58 36 58 36 57 8	48 36 55 13 55 23 59 8 00 32 1 45 59 25 59 6 58 32	13 28 14 13 13 8 12 13 10 58 11 10 11 3 11 22 12 38	$ \begin{array}{c} $	1 36 9 10 8 4 10 43 10 6 12 47 10 32 10 30 10 38	$\begin{array}{c} & & & & \\ & + & 3 & 25 \\ & - & 2 & 42 \\ & - & 2 & 42 \\ & - & 4 & 17 \\ & - & 4 & 23 \\ & - & 4 & 23 \\ & - & 4 & 23 \\ & - & 4 & 23 \\ & - & 4 & 23 \\ & - & 4 & 23 \\ \end{array}$	$ \begin{array}{r} + & 8 \\ + & 19 \\ + & 19 \\ - & 29 \\ - & 37 \\ - & 37 \\ - & 38 \\ - & 38 \\ - & 38 \\ - & 38 \\ \end{array} $	$ \begin{array}{c} $
1 2 3 4 5 6 7 9 10 11 12 13 15 17 19 20	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12 2 13 28 13 34 12 39 11 38 12 52 14 30 15 35 13 8 12 13 14 13 15 35 13 8 11 10 11 22 12 38	$ \begin{array}{c} + 1 \\ + 1 \\ 0 \\ 0 \\ - 6 \\ - 8 \\ - 4 \\ + 1 \\ + 1 \\ + 2 \\ + 1 \\ + 2 \\ + 1 \\ + 2 \\ + 1 \\ + 2 \\ - 4 \\ - $	$\begin{array}{c} 42 \\ 23 \\ 41 \\ 45 \\ 42 \\ 40 \\ 43 \\ 51 \\ 44 \\ 19 \\ 43 \\ 48 \\ 40 \\ 28 \\ 46 \\ 5 \\ 46 \\ 15 \\ 46 \\ 8 \\ 45 \\ 9 \\ 47 \\ 16 \\ 8 \\ 45 \\ 9 \\ 47 \\ 16 \\ 8 \\ 45 \\ 9 \\ 47 \\ 16 \\ 52 \end{array}$	$\begin{array}{c} + 1 57 \\ + 1 56 \\ + 0 9 \\ + 0 4 \\ + 0 4 \\ + 1 32 \\ - 1 32 \\ - 1 32 \\ - 1 32 \\ - 1 32 \\ - 2 29 \\ - 2 2 29 \\ - 2 2 29 \\ - 2 2 29 \\ - 2 2 29 \\ - 2 2 29 \\ - 2 2 29 \\ - 2 2 2 \\ - 2 2 2 \\ - 2 2 2 \\ - 2 2 2 \\ - 2 2 2 \\ - 2 2 2 \\ - 2 2 2 \\ - 2 2 2 \\ - 2 2 2 \\ - 2 2 2 \\ - 2 2 2 \\ - 2 2 2 \\ - 2 2 2 \\ - 2 2 2 \\ - 2 2 $	$\begin{array}{c} - & 7 \\ - & 4 \\ + & 10 \\ + & 23 \\ + & 23 \\ + & 25 \\ - & 1 \\ + & 23 \\ + & 23 \\ + & 23 \\ + & 23 \\ + & 23 \\ + & 24 \\ + & 4 \\ + & 4 \\ + & 4 \\ - & 13 \\ - & 21 \\ - & 22 \\ - & 22 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2 15 18 20	204 24 48 39 12 40 5 38 30	25 48 40 48 41 10 39 10	13 28 12 13 11 3 12 38	$ \begin{array}{c c}14 \\3 \\3 \\ \text{Mean} \end{array} $	38 32 52 10 51 39 51 25	+ 5 3 6 20 6 28 6 29	+ 36 - 49 - 52 - 52	114 44 48 45 13 44 2 44 51 114 44 43.5
2 11 13 18	171 6 10 11 43 12 10 15 34	7 7 12 37 12 34 16 12	13 28 14 13 13 8 11 3	-5 -2 -7 +28.	20 I 26 2I 25 23 27 24	$ \begin{array}{c} + 3 & 1 \\ - 2 & 23 \\ - 2 & 23 \\ - 3 & 52 \end{array} $	+ 7 + 16 + 16 - 33	81 24 4 23 33 23 30 22 30 81 23 24.2

TABLE VI.-RESULTS OF MEASURES OF ANGLE. (Concluded.)

Rutherfurd Photographic Measures of

TABLE VII.-FOR PROPER MOTION.

Star	In Dis	tance.		In Position Ang	gle.
No.	<i>S</i> ₁	S_2	S_5	S_6	S_7
1 2 3 4 5	2384 9977 9997 9968 7484	0035 0000 0000 0029	+.9712 +.0681 0237 0794 +.6632	.007 43 .009 17 .008 75 .009 03 .012 95	$\begin{array}{c} +.007 & 216 \\ +.000 & 624 \\000 & 207 \\000 & 717 \\ +.008 & 588 \end{array}$
6 7 8 9 10	9997 9979 3231 8917 +.1802	0000 0000 0073 0009 0049	$\begin{array}{c}0228 \\ +.0649 \\ +.9464 \\4526 \\ +.9836 \end{array}$.010 53 .012 29 .016 36 .008 72 .010 09	$\begin{array}{c}000 & 240 \\ +.000 & 798 \\ +.015 & 483 \\003 & 947 \\ +.009 & 925 \end{array}$
11 12 13 14 15	+.1589 0319 +.3395 4216 9606	0066 0093 0045 0118 0007	+.9873 +.9995 +.9406 +.9068 2780	.013 48 .018 63 .010 17 .028 84 .019 16	$\begin{array}{r} +.013 & 309 \\ +.018 & 621 \\ +.009 & 566 \\ +.026 & 152 \\005 & 326 \end{array}$
16 17 18 19 20	$\begin{array}{r}9419 \\ +.3379 \\ +.2877 \\7295 \\ +.4677 \end{array}$	0019 0054 0018 0053	+.3360 +.9412 +.9577 6840 +.8838	.033 01 .012 13 .014 30 .007 76 .013 56	+.011 091 +.011 417 +.013 695 005 308 +.011 984
21 22 23 24 25	9264 +.5569 +.5665 +.1855	0032 0031 0038 0568	3767 +.8306 +.8240 +.9827	.044 91 .009 04 .011 20 .117 38	016 918 +.007 509 +.009 229 +.115 349
26 27 28 29 30	5863 6038 +.7608 +.9269	0085 0028 0058 0039	8100 7971 +.6488 +.3753	.026 06 .008 95 .027 76 .054 36	—.021 109 —.007 134 +.018 011 +.020 401
31 32 33 34 35	$\begin{array}{r}4932 \\5183 \\ +.8631 \\0903 \\ +.3090 \end{array}$	0063 0048 0037 0144 0200	8699 8552 +.5049 9959 9510	.016 70 .013 00 .028 72 .028 99 .044 16	014 527 011 118 +.014 501 028 871 041 996
36 37 38 39 40	$\begin{array}{r} +.8577 \\1433 \\4283 \\ +.7852 \\3641 \end{array}$	0059 0103 0036 0017 0045	$\begin{array}{c}5141 \\9897 \\9036 \\ +.6192 \\9314 \end{array}$.044 64 .020 95 .008 91 .008 79 .010 39	022 941 020 734 008 051 +.005 443 009 677

(See Paragraphs 11-12 and 17-18.)

Sixty-five Stars near 61 Cygni.

TABLE VII.—FOR PROPER MOTION. (Concluded.)

Star No.	In Dis	tance.		In Position Ang	gle.
No.	<i>S</i> ₁	S2	S 5	<i>S</i> ₆	S7
41	+.3234	0132	9463	.029 42	$\begin{array}{c}027 & 840 \\ +.004 & 763 \\015 & 336 \\017 & 341 \\ +.004 & 519 \end{array}$
42	+.8099	0014	+.5866	.008 12	
43	0424	0077	9991	.015 35	
44	+.1342	0086	9909	.017 50	
45	+.8777	0011	+.4792	.009 43	
46	+.8362	0034	5484	.022 47	012 323
47	3107	0035	9505	.007 66	007 281
48	+.5812	0065	8137	.019 69	016 022
49	+.4478	0069	8941	.017 30	015 468
50	+.5301	0061	8479	.017 02	014 431
51	+.0343		9994	.009 35	009 344
52	+.6442		7648	.013 11	010 027
53	+.8692		4943	.013 18	006 515
54	+.8926		4508	.012 94	005 833
55	0531		9986	.007 43	007 420
56	+.9887	000 I	+.1500	.008 53	+.001 280
57	+.9988	0000	+.0482	.009 29	+.000 448
5 ⁸	+.5565	0039	8309	.011 15	009 265
59	+.4832	0040	8755	.010 32	009 035
60	+.9632	0004	2689	.010 24	002 754
61 62 63 64 65 66	+.4063 +.9128 +.8604 +.9498 +.4494 +.8669	0039 0007 0012 0004 0031 0010	$\begin{array}{c}9137 \\4084 \\5096 \\3129 \\8933 \\4984 \end{array}$.009 24 .008 97 .009 13 .008 33 .007 75 .008 21	

.

(See Paragraphs 11-12 and 17-18.)

TABLE VIII.—FOR PARALLAX.

Star	In Dist:	ance.	In Positio	on Angle.
No.	S_3	S_4	S_8	S_9
1 2 3 4 5	+.080 +.941 +.957 +.962 +.613	+.825 +.330 +.259 +.215 +.726	52.6 14.6 8.3 5.0 71.1	$ \begin{array}{r} - & 4.6 \\ + & 51.4 \\ + & 50.7 \\ + & 53.2 \\ + & 38.2 \end{array} $
6 7 8 9 10	+.957 +.941 +.165 +.918 320	+.260 +.328 +.829 106 +.718	— 10.0 — 19.3 —114 6 + 19.1 — 67.6	$\begin{array}{r} + & 61.1 \\ + & 68.9 \\ - & 1.3 \\ + & 52.8 \\ - & 30.8 \end{array}$
11 12 13 14 15		+.727 +.790 +.641 +.825 +.049	90.9 	- 39.7 - 35.0 - 39.5 + 15 9 +116.8
16 17 18 19 20	+.847 464 419 +.799 579	+.524 +.642 +.668 332 +.561		+156.0
21 22 23 24 25	+.940 656 665 325	037 +.494 +.487 +.716	+ 73.1 47.1 57.7 779.8	+273.8 44.3 55.4 372.7
26 27 28 29 30	+.681 +.696 —.823 —.940	470 455 +.296 +.036	+131.6 + 44 1 102.8 85.8	+130.8 + 45.6 158.3 331.6
31 32 33 34 35	+.602 +.623 899 +.237 151	543 524 +.155 753 829	+ 93.0 + 70.6 74.0 + 199.8 + 309.6	$ \begin{array}{r} + & 76.9 \\ + & 61.4 \\ - & 172.3 \\ + & 73.8 \\ + & 5.4 \end{array} $
36 37 38 39 40	$740 \\ +.286 \\ +.545 \\842 \\ +.488$	640 734 587 +.266 627	$ \begin{array}{r} +203.1 \\ +142.3 \\ +52.3 \\ -30.5 \\ +63.7 \end{array} $	-173.8 + 59.3 + 38.4 - 50.9 + 41.5

(See Paragraphs 14 and 22.)

Sixty-five Stars near 61 Cygni.

TABLE VIII.—FOR PARALLAX. (Concluded.)

Star	In Dist	tance.	In Positio	on Angle.
No.	S3	S4	S ₈	S ₉
41	165	829	+206 0	$ \begin{array}{r} + & 2.0 \\ - & 47.6 \\ + & 34.9 \\ + & 21.8 \\ - & 56.8 \end{array} $
42	861	+234	-26.1	
43	+.192	769	+107.0	
44	+.022	812	+124.3	
45	909	+.131	-22.5	
46	714	660	+ 107.2	$ \begin{array}{r} - & 83.1 \\ + & 28.5 \\ - & 33.3 \\ - & 13.2 \\ - & 22.6 \\ \end{array} $
47	+.440	656	+ 48.5	
48	431	797	+ 125.1	
49	292	823	+ 117.1	
50	377	810	+ 111.3	
51	+.118	790	+ 65.9	$ \begin{array}{r} + & 17.4 \\ - & 28.2 \\ - & 52.6 \\ - & 54.6 \\ + & 17.4 \end{array} $
52	498	776	+ 79.7	
53	754	627	+ 58.4	
54	783	600	+ 53.8	
55	+.202	765	+ 51.7	
56	965	157	$\begin{array}{r} + & 0.4 \\ + & 7.2 \\ + & 71.9 \\ + & 68.9 \\ + & 30.3 \end{array}$	- 5 ¹ .1
57	959	240		- 54.3
58	405	804		- 16.9
59	328	818		- 10.3
60	877	477		- 51.1
61 62 63 64 65 66	249 808 743 858 293 751	$\begin{array}{r}827 \\572 \\637 \\508 \\823 \\630 \end{array}$	$ \begin{array}{r} + 63.4 \\ + 34.8 \\ + 41.4 \\ + 27.1 \\ + 52.5 \\ + 36.6 \\ \end{array} $	$\begin{array}{rrrr} & 4.4 \\ - & 39.6 \\ - & 35.7 \\ - & 40.2 \\ - & 5.9 \\ - & 32.6 \end{array}$

(See Paragraphs 14 and 22.)

Star	Distance	Position	,	SY 5	No. of	Durchmust	erung.
No.	Distance.	Angle.	a —a	o —o	Plates.	No.	Mag.
1 2 3 4 5	3771.42 3055.07 3202.47 3103.85 2163.15	307 44 19.4 235 25 23.3 230 9 10.8 226 58 31.0 273 6 36.6	$\begin{array}{r} -3824.94 \\ -3176.65 \\ -3101.33 \\ -2861.47 \\ -2746.93 \end{array}$	$ \begin{array}{r} +2291.19 \\ -1745.70 \\ -2063.32 \\ -2127.48 \\ + 108.47 \end{array} $	10 6 5 2 19	38.4318 37.4154 37.4155 37.4157 38.4325	7.2 9.1 9.3 9.3 6.0
6 7 8 9 10	2660.10 2279.03 1712.84 3213.79 2775.08	230 12 33.1 235 15 9.0 302 42 34.5 204 35 20.2 332 1 31.7	2581.61 2368.76 1838.55 1681.35 1670.41	-1710.30-1305.58+ 921.62-2925.69+2447.56	19 2 6 6 6	37.4159 37.4161 38.4331 37.4166 38.4332	7.5 9.5 9.3 9.1 9.2
11 12 13 14 15	2078.41 1503.97 2754.25 971.48 1462.27	330 48 8.3 319 53 21.3 341 24 38.4 296 47 43.5 215 20 57.0	—1297.85 —1237.16 —1127.39 —1104.18 —1070.60	+1812.35+1148.44+2609.07+ 436.52-1194.04	3 3 17 11 8	38.4333 38.4334 38.4335 38.4336 37.4170	9.4 9 5 9.0 8.8 8.5
16 17 18 19 20	848.59 2308 80 1958.83 3610.25 2066.13	251 12 59.6 341 20 48.0 338 22 5.9 188 17 34.5 349 29 58.9		$\begin{array}{r} - 274.47 \\ +2186.47 \\ +1819.88 \\ -3573.00 \\ +2031.26 \end{array}$	8 6 9 4 12	37.4171 [.38.4338] 38.4337 37.4172 38.4339	9·4 [9·4] 9.0 8.3 8.9
21 22 23 24 25	623.86 3100.22 2500.62 238.68	209 16 22.4 355 24 41.4 356 4 29.8 333 13 7.5 61 ¹ Uygni	— 386.98 — 319.06 — 219.69 — 136.82	$\begin{array}{r} - 544.37 \\ +3090.17 \\ +2494.70 \\ + 213.06 \end{array}$	7 7 19 2	37.4173 38.4340 38.4341 38.4342 38.4343	8.8 9.1 8.2 9.5 5.0
26 27 28 29 30	19.39 1074.60 3130.15 1008.91 515.04	61 ² Cygni 177 15 24.0 178 34 1.3 11 4 37.0 29 38 16.0	$ \begin{array}{r} + & 65.11 \\ + & 98.35 \\ + & 247.35 \\ + & 324.32 \end{array} $	-1073.38-3129.18+ 990.04+ 447.54	19 10 6 3 1	38.4344 37.4175 37.4176 38.4348 38.4349	5.3 9.0 8.7 9.5 9.4
31 32 33 34 35	1677.09 2155.55 975.29 966.32 634.19	170 56 2.0 172 40 30.0 21 15 9.1 146 39 17.0 123 8 22.5	$\begin{array}{r} + 333.84 \\ + 346.56 \\ + 450.96 \\ + 673.17 \\ + 674.16 \end{array}$	-1656.26-2138.10+ 908.72- 807.78- 347.24	1 19 7 3 2	37.4177 37.4178 38.4350 37. 37.4179	9.5 7.5 9.5 8.6
36 37 38 39 40	627.41 1336.94 3143.57 3185.45 2696.96	82 19 26.8 149 37 6.6 166 49 5.1 13 17 8.6 162 49 15.6	$ \begin{array}{r} + & 790.67 \\ + & 855.80 \\ + & 900.87 \\ + & 941.74 \\ + 1002.82 \end{array} $	$\begin{array}{r} + & 83.07 \\ - & 1154.21 \\ - & 3061.70 \\ + & 3099.16 \\ - & 2577.83 \end{array}$	8 18 9 14 7	38.4351 37.4180 37.4181 38.4353 37.4182	9.5 7.7 9.0 8.4 9.4

•

TABLE IX.—MEAN RESULTS.

TABLE X.—CATALOGUE OF STARS ABOUT 61¹ CYGNI.

Star	und.	Right Ascension.	Precession.	Sec.Var.	Declination.	Precession.	Sec.Var.
No.	A.G. I	1873.	J	K	1873.	L	М
I 2 3 4 5		h m s 20 56 57.333 57 40.552 57 45.574 58 1.564 58 9.200	$ \begin{array}{r} $	s +0.0041 .0041 .0041 .0041 .0042	38 [°] 45 44.59 37 38 27.70 37 33 10.08 37 32 5.92 38 09 21.87	$ \begin{array}{r} & "\\ +13.991 \\ 14.036 \\ 14.041 \\ 14.058 \\ 14.066 \end{array} $	+0.235 .237 .237 .237 .237 .236
6		20 58 20.222	+2.3375	+0.0041	37 39 3.10	+14.077	+0.237
7		58 34.412	2.3353	.0042	37 45 47.82	14.092	.236
8		59 9.759	2.3206	.0042	38 22 55.02	14.129	.234
9		59 20.239	2.3496	.0042	37 18 47.71	14.140	.237
10		59 20.968	2.3097	.0043	38 48 20.96	14.140	.232
11 12 13 14 15		20 59 45.806 59 49.852 59 57.170 59 58.717 21 00 0.956	+2.3161 2.3211 2.3107 2.3270 2.3391	+0.0043 .0043 .0043 .0043 .0042	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+14.166 14.170 14.178 14.179 14.181	+0.233 .233 .232 .234 .235
16		21 00 4.314	+2.3324	+0.0043	38 02 58.93	+14.185	+0.234
17		00 9.220	2.3145	.0043	38 43 59.87	14.190	.233
18		00 10.704	2.3172	.0044	38 37 53.28	14.192	.233
19		00 28.787	2.3578	.0043	37 08 0.40	14.210	.237
20		00 40.170	2.3172	.0044	38 41 24.66	14.222	.232
21		21 00 46.530	+2.3369	+0.0044	37 58 29.03	+14.229	+0.234
22		00 51.058	2.3099	.0044	38 59 3.57	14.233	.231
23		00 57.683	2.3149	.0044	38 49 8.10	14.240	.232
24		01 3.208	2.3321	.0044	38 11 6.46	14 246	.233
25		21 01 12.329	2.3343	.0014	38 07 33.40	14.260	.233
26 27 28 29 30		01 16.670 01 18.886 01 28.819 01 33.950	See +2.3422 2.3572 2.3276 2.3321	Contribu +0.0044 .0044 .0044 .0044	tion No. 13. 37 49 40.02 37 15 24.22 38 24 3.44 38 15 0.94	+14.259 14.262 14.272 14.277	+0.234 .235 .232 .233
31		21 01 34.585	+2.3387	+0.0044	37 39 57.14	+14.278	+0.234
32		01 35.433	2.3511	.0044	37 31 55.30	14.279	.235
33		01 42.393	2.3290	.0044	38 22 42.12	14.286	.232
34		01 57.207	2.3425	.0044	37 54 5.62	14.301	.234
35		01 57.273	2.3392	.0044	38 01 46.16	14.301	.233
36		21 02 5.040	+2.3364	+0.0044	38 08 56.47	+14.309	+0.233
37		02 9.382	2.3458	.0044	37 48 19.19	14.313	.234
38		02 12.387	2.3597	.0044	37 16 31.70	14.316	.235
39		02 15.112	2.3147	.0045	38 59 12.56	14.319	.230
40		02 19.184	2.3565	.0044	37 24 35.57	14.324	.234

Star	Distance	Position	a'-a	8-13	No. of	Durchmust	erung.
No.	Distance.	Angle.	u —u	0-0	Plates.	No.	Mag.
41 42 43 44 45	952.00 3448.83 1824.90 1600.46 2971.02	[°] 122 [°] 36 [°] 30.0 153711.8 1435053.3 133456.3 225348.0	+1017.45 +1195.67 +1360.90 +1463.45 +1484.97	-514.25+3319.79-1475.72-1109.29+2734.35	2 5 12 6 2	37.4183 38.4356 37.4185 37.4186 38.4357	9 5 8.9 9.0 9.5 9.3
46 47 48 49 50	1246.52 3657.35 1422.69 1618.91 1645.44	84 39 5.0 159 32 17.0 105 53 10.6 114 46 4.0 109 24 10.7	+1578.37 +1604.53 +1736.87 +1863.84 +1968.78	+ 113.27 -3429.64 - 392.98 - 682.32 - 551.20	1 3 19 1 15	38.4358 37.4187 37.4189 37.4191 37.4192	9·5 9.0 7·9 9.4 9.0
51 52 53 54 55	2995.55 2136.94 2125.57 2164.54 3771.13	139417.01012131.481552.2781557.51442833.3	+2442.53 +2658.96 +2672.78 +2698.53 +2753.46	$\begin{array}{r} -2291.17 \\ - 429.20 \\ + 320.52 \\ + 431.63 \\ - 3078.19 \end{array}$	1 10 16 13 3	37.4195 37.4197 38.4362 38.4363 37.4198	9.5 9.1 7.8 9.1 8.7
56 57 5 ⁸ 59 60	3283.52 3014.80 2513.28 2713.34 2734.76	42 53 31.6 48 45 51.0 107 37 24.4 112 33 7.5 67 6 33.7	+2867.24 +2903.97 +3036.08 +3172.80 +3215.61	+2396.00 +1977.36 - 771.78 - 1052.51 +1051.59	7 1 9 13 3	38.4364 38.4365 37.4201 37.4202 38.4367	9.0 9.3 9.3 8.8 9.0
61 62 63 64 65 66	3032.47 3121.94 3069.92 3362.19 3613.27 3411.15	117 29 40.1 75 37 56.7 82 5 48.6 69 44 14.7 114 44 43.5 81 23 24.2	+3401.30+3855.71+3874.48+4027.23+4147.41+4295.50	-1413.65 + 757.20 + 404.48 + 1145.36 - 1532.77 + 488.97	17 3 9 16 4 4	37.4203 38.4369 38.4370 38.4372 37.4209 38.4375	8.3 9.3 9.0 7.8 8.4 8.4

TABLE IX.—MEAN RESULTS. (Concluded.)

TABLE X.—CATALOGUE OF STARS ABOUT 61¹ CYGNI. (Concluded.)

			· · · · · · · · · · · · · · · · · · ·				
	A.0						
Star		Right Ascension,	Precession,	Sec. Var.,	Declination,	Precession,	Sec. Var.,
No.	an'	1873.	T	77	1873.	r	25
	d.		J	А			Ш
		h m s	S		0 / //		
41		21 02 20.159	+2.3415	+0.0045	37 58 59.15	+14.325	+0.233
42		02 32.040	2.3140	.0045	39 2 53.19	14.336	.230
43		02 43.056	2.3498	.0045	37 42 57.68	14.348	.234
44		02 49.892	2.3476	.0045	37 49 4.11	14.355	.233
45		02 51.327	2.3194	.0045	38 53 7.75	14.356	.230
16		21 02 57 554	+2 2201	+0.0015	28 0 26.67	+14.362	+0.222
40		02 59.298	2.3648	.0045	37 10 23.76	14.364	.235
48		03 8.120	2.3434	.0045	38 I 0.42	14.373	.232
49		03 16.585	2.3459	.0045	37 56 11.08	14.382	.232
50		03 23.581	2.3453	.0045	37 58 22.20	14.389	.232
			0.00		0. 0		Ű
51		21 03 55.164	+2.3595	+0.0045	37 29 22.23	+14.421	+0.233
52		04 9.593	2.3470	.0046	38 0 24.20	14.435	.231
53		04 10.514	2.3415	.0046	38 12 53.92	14.436	.231
54		04 12.231	2.3409	.0046	38 14 45.03	14.438	.231
55		04 15.893	2.3662	.0045	37 16 15.21	14.442	.233
56		21 04 22 478	+2 2272	± 0.0016	1 28 47 20 40	-14 450	+0.220
57		04 25 027	2 2 2 2 0 2	0046	28 40 20 76	14.452	220
58		04 34.734	2.3508	.0046	37 54 41.62	14.461	.232
59		04 43.849	2.3532	.0046	37 50 0.89	14.470	.232
60		04 46.703	2.3382	.0046	38 25 4.99	14.473	,230
		1170		•			Ū
61		21 04 59.082	+2.3567	+0.0046	37 43 59.75	+14.486	+0.231
62	,	05 29.376	2.3427	.0047	38 20 10.60	14.516	.230
63		05 30.428	2.3454	.0047	38 14 17.88	14.517	.230
64		05 40.811	2.3406	.0048	38 26 38.76	14.527	.229
65		05 48.823	2.3603	.0047	37 42 0.63	14.536	.231
. 66		05 58.696	2.3463	.0048	38 15 42.37	14.546	.229
,					<u> </u>		

113

TABLE XI.—LIMITING VALUES OF PARALLAX COEFFICIENTS FOR $\Pi = + 0."3597$.

IN DISTANCE.

Use	Parallax	Coefficient S_3 .	$P_{3} +$	$S_4 P_4$	$_{1}$ as the	argument	in the	body of	table.
-----	----------	---------------------	-----------	-----------	---------------	----------	--------	---------	--------

	^d .00 00	^d .00 10	$\overset{d}{.0020}$	^d .00 30	₫, .co 40	^d .00 50	^d .00 60	a .00 70	a .00 80	a .00 90	^d .0100	^d .o 110
d.0000 . 1 2 3 4 5 6 7 8 .0009	.0000 .0039 .0117 .0195 .0273 .0350 .0428 .0506 .0584 .0562 .0740	.0740 .0818 .0896 .0973 .1051 .1129 .1207 .1285 .1363 .1441 .1519	.1519 .1596 .1674 .1752 .1830 .1908 .1986 .2064 .2142 .2219 .2297	.2297 .2375 .2453 .2531 .2609 .2687 .2765 .2843 .2920 .2998 .3076	.3076 .3154 .3232 .3310 .3388 .3466 .3543 .3621 .3699 .3777 .3855	-3855 -3933 .4011 .4089 .4166 .4244 .4322 .4400 .4478 .4556 .4634	.4634 .4712 .4789 .4867 .4945 .5023 .5101 .5179 .5257 .5335 .5412	.5412 .5490 .5568 .5646 .5724 .5802 .5880 .5958 .6035 .6113 .6191	.6191 .6269 .6347 .6425 .6503 .6581 .6658 .6736 .6814 .6892 .6970	.6970 .7048 .7126 .7204 .7282 .7359 .7437 .7515 .7593 .7671 .7749	.7749 .7827 .7905 .7982 .8060 .8138 .8216 .8294 .8372 .8450 .8528	.8528 .8605 .8683 .8761 .8839 .8917 .8995 .9073 .9151 .9228 .9306

IN POSITION-ANGLE.

Use Parallax Coefficient $S_8 P_3 + S_9 P_4$ as the argument in the body of table.

	00"	10″	20″	30″	40	50	60	70″	80″	90"	10Ő
0. 1. 2. 3. 4. 5. 6. 7. 8. 9.	0.0 1.4 4.2 7.0 9.7 12.5 15.3 18.1 20.9 23.6 26.4	26.4 29.2 32.0 34.8 37.5 40.3 43.1 45.9 48.7 51.4 54.2	54.2 57.0 59.8 62.6 65.3 68.1 70.9 73.7 76.5 79.2 82.0	82.0 84.8 87.6 90.4 93.1 95.9 98.7 101.5 104.3 107.0 109.8	109.8 112.6 115.4 118.2 120.9 123.7 126.5 129.3 132.1 134.8 137.6	137.6 140.4 143.2 146.0 148.7 151.5 154.3 157.1 159.9 162.6 165.4	165.4 168.2 171.0 173.8 176.5 179.3 182.1 184.9 187.7 190.4 193.2	193.2 196.0 198.8 201.6 204.3 207.1 209.9 212.7 215.5 218.2 221.0	221.0 223.8 226.6 229.4 232.1 234.9 237.7 240.5 243.3 246.0 248.8	248.8 251.6 254.4 257.2 259.9 262.7 265.5 268.3 271.1 273.8 276.6	276.6 279.4 282.2 285.0 287.7 290.5 293.3 296.1 298.9 301.6 304.4

The Position of 61² Cygni.

26. When we correct the measured coördinates of 61^2 Cygni with respect to 61^1 Cygni, it is, of course, necessary to take into account the very considerable proper motion of the measured star as well as of the central star.

On account of the shortness of time over which the RUTHER-FURD plates extend, a value of the relative motion deduced from them alone would have very small weight. On the other hand, the mean of the measured distances and of the measured angles is entitled to great weight as representing the true value of the distance and angle of these stars at the mean of the dates of observation, 1873.546. I have, accordingly, with the latter as a basis, deduced trigonometrically a set of formulæ which represent the motion of either of these stars relative to the other; assuming the motion of each to be uniform and on the arc of a great circle. In these formulæ have then been substituted constants derived from the proper motion of each star separately, as determined from meridian observations in the manner used in my "Declinations and Proper Motions of Fifty-six Stars,"* to which reference is made for an explanation of the method.

27. For 61^1 Cygni I have used AUWERS' values as previously quoted on page 62; but for 61^2 Cygni the results given here have been derived from the data of Table XII.

By the usual formulæ[†] these become:

We have also:

 $61^1 Cygni \quad \delta_0 = 38^{\circ}7'35''$

and from the RUTHERFURD measures :

For 61^2 Cygni, relative to 61^1 , $\sigma_0 = 19.''_38_{23}$ $\pi_0 = 114^{\circ}41'_{30}''$ at 1873.546.

* Contribution from the Observatory of Columbia College, New York.-No. 8. † Chauvenet : Manual of Spherical and Practical Astronomy, Vol. I, 2380.

- mean of all the measured distances.
- MN = Distance measured on plate of the date, t, corrected except for proper motion.
- $\rho_0, \rho_0' =$ The proper motions of $6r^1$ and $6r^2$ Cygni at the epoch 1873.546.
- AM, BN =Arcs traveled over in the time $\tau = t - 1873.546.$
- $\Delta \sigma_0 =$ The change in σ_0 due to the proper motion of only 61^1 from A to M.
- $\Delta'\sigma_0 =$ The change in $(\sigma_0 \Delta \sigma_0)$ due to the proper motion of only 61^2 from B to N.

- $AB = \sigma_0 =$ True distance at 1873.546 from the | $PAB = \pi_0 =$ True angle at 1873.546 from the mean of all the measured angles.
 - PMN = Position-angle measured on plate of the date, t, corrected except for proper motion.
 - $\chi_0, \chi_0' =$ The position-angles of the proper motion of 611 and 612 at 1873.546.
 - $PBA = \lambda_0'$, also y, z, λ are auxiliary angles having the significance shown above.
 - $\Delta \pi_0 =$ The change in π_0 due to the proper motion of only 61^1 from A to M.
 - $\Delta' \pi_0 =$ The change in $(\pi_0 \Delta \pi_0)$ due to the proper motion of 61^2 from B to N.

28. Let the angles and arcs have the significance attached to them in the figure; where P is the Pole; PA and PB hourcircles through 61^1 and 61^2 respectively at 1873.546, and M'Mand N'N the paths of proper motion. Then, as the arc AB joining 61^1 and 61^2 is the mean of all the measures of distance, it may be assumed as the true distance at the mean date of observation. In like manner PAB is assumed as the true position-angle at the same date. The problem before us is to (1) determine the distance MN at the end of the interval τ years; (2) determine the angle PMN at the end of the same interval. In both these cases evidently we regard the only cause of motion of the stars to be that known as proper motion, *i.e.*, uniform motion on the arc of a great circle.

Let all angles count from the hour circle positively towards the east, *i.e.*, counter-clockwise in the figure; or else from the arc AB, but always likewise positive when counter-clockwise, as shown by the direction of the arrows in the figure.

29. Let us first suppose that 61^2 remains motionless while 61^1 advances from A to M during the time τ ; then the change in distance is given by the formula :

$$\begin{split} &\Delta \sigma_0 = (\tau \rho_0) \cos(\pi_0 - \chi_0) \\ &+ (\tau \rho_0)^2 \left\{ -\frac{\mathbf{I}}{2\sigma_0} \sin^2(\pi_0 - \chi_0) \right\} \\ &+ (\tau \rho_0)^3 \left\{ -\frac{\mathbf{I}}{2\sigma_0^2} \sin^2(\pi_0 - \chi_0) \cos(\pi_0 - \chi_0) \right\} \\ &+ (\tau \rho_0)^4 \left\{ \frac{\mathbf{I}}{2\sigma_0^3} \left[\frac{1}{4} \sin^4(\pi_0 - \chi_0) - \sin^2(\pi_0 - \chi_0) \cos^2(\pi_0 - \chi_0) \right] \right\}. \end{split}$$

When the proper constants have been substituted in this we have: $\Delta \sigma_0 = [9.657224](\tau \rho_0) + [8.311234n](\tau \rho_0)^2 + [6.68105n](\tau \rho_0)^3 + [3.6310n](\tau \rho_0)^4.$

Thus is obtained the auxiliary distance BM agreeing of course with the formula of paragraph 11, as far as terms in τ^2 .

30. Now during the same interval of time τ , suppose 61^1 to remain still and 61^2 to be in motion. Then the change of distance is given by the formula :

$$\begin{split} \Delta' \sigma_0 &= (\tau \rho_0') \cos \left(\chi_0' - z \right) \\ &+ (\tau \rho_0')^2 \left\{ -\frac{I}{2(\sigma_0 - \Delta \sigma_0)} \sin^2 \left(\chi_0' - z \right) \right\} \\ &+ (\tau \rho_0')^3 \left\{ -\frac{I}{2(\sigma_0 - \Delta \sigma_0)^2} \sin^2 \left(\chi_0' - z \right) \cos \left(\chi_0' - z \right) \right\} \\ &+ (\tau \rho_0')^4 \left\{ \frac{I}{2(\sigma_0 - \Delta \sigma_0)^3} \left[\frac{1}{4} \sin^4 \left(\chi_0' - z \right) - \sin^2 \left(\chi_0' - z \right) \cos^2 \left(\chi_0' - z \right) \right] \right\} \end{split}$$

which may be computed for each plate separately after $\exists \sigma_0$ has been computed by the preceding formula; and where the value of z is obtained from the following relations :*

$$\begin{split} z &= \lambda - \lambda_0'.\\ \lambda_0' &= \overline{180^\circ - \pi_0} - \sigma_0 \sin \pi_0 \tan \delta_0\\ \cot \lambda &= \frac{\mathbf{I}}{\tau \rho_0} \cdot \frac{\sigma_0}{\sin (\pi_0 - \chi_0)} - \cot (\pi_0 - \chi_0). \end{split}$$

By substitution of the constants for these stars these become :

$$\lambda_0' = 65^{\circ} 18' 16''.5$$

$$\cot \lambda_0 = 21.75560 \frac{I}{\tau \rho_0} - 0.509789$$

hence

$$z = \lambda - 65^{\circ} 18' 16''.5$$

which may be computed for each plate.

Thus the variation in distance due solely to the proper motions of 61^{1} and 61^{2} *Cygni* in the assumed direction at the assumed rate may be expressed by

$$\Delta \sigma_0 + \Delta' \sigma_0$$

as computed for each value of τ , and printed in columns nine and ten of Table XIII. This quantity is additive to the observed distance on each plate to reduce to the mean epoch.

31. By the formula of paragraph 17 may be computed values of K or \mathcal{A}_{χ_0} applicable to the new mean epoch adopted, thus:

$$\Delta \chi_0 = [9.7895] \tau \rho$$

where the number in brackets is a logarithm as usual. We also have, as in paragraph 30,

$$\cot \Delta' \pi_0 = \frac{\mathbf{I}}{\tau \rho_0'} \cdot \frac{\sigma - \Delta \sigma_0}{\sin \left(\chi_0' - z\right)} - \cot \left(\chi_0' - z\right)$$

and

$$\cot y = \frac{\mathbf{I}}{\sigma_0} \cdot \frac{\tau \rho_0}{\sin\left(\pi_0 - \chi_0\right)} - \cot\left(\pi_0 - \chi_0\right)$$

* Jordan : Handbuch der Vermessungskunde, 4te Auflage. Bd. III, & 359, 342.

whence is obtained by substitution of the constants and from the figure :

$$\begin{array}{lll} \Delta \pi_0 = & 62^\circ 59' 17'' + (y - \Delta \chi_0) & \text{before epoch,} \\ = & -117^\circ \ 0' 43'' + (y - \Delta \chi_0) & \text{after epoch,} \end{array}$$

and thus the total change of angle is

$$\Delta \pi_0 + \Delta' \pi_0$$

additive to the observed position-angle. These quantities are printed in columns seven and eight of Table XIII.

When these corrections for proper motion have been applied to the preceding columns of Table XIII we get in the next-to-thelast column of the Table the distance and angle of 61^2 good for 1873.546 corrected for all known motions of either star, except for difference of parallax if there be any such difference. This oint will be considered in the following *Contribution*, No. 13.

	-	_					-	the second day of the
Authority.	Date of Observa- tion.	Epoch of Cata- logue, T	No. of Obs. n	Position at Epoch of Catalogue.	Reduction to 1875+Syst. Correction. A'	Reduced Position. B	Wgt.	C0. R
			RI	GHT ASCENSION.	·			
Br. 2745 Pi. $xx:476$ Abo 482 Pond 946 Tay. 9785 12 Yr_1 1887 12 Yr_2 1887 6 $Yr.$ 1358 Rad_1 5107 Yarn. 9477 Rad_2 2059 7 $Yr.$ 1743 Quet. 9276 N. 7 $Yr.$ 2394 Poulk. 9 9 $Yr.$ 1976 Romb. 4784 10 $Yr.$ 3532 Green, Yearly	1753.8 1806.2 1828. 1835. 1835. 1835. 1845. 1856.8 1856.9 1856.9 1856.4 1856.9 1866.2 1866.2 1877.9 1883.6	1755 1800 1830 1835 1840 1845 1845 1845 1860 1860 1860 1865 1865 1865 1872 1875 1880 1802	2 17 62 16 5 30 40 45 19 23 11 48 18 17 27 13 7 14	20 ^h + m s 55 57.41 57 57.80 59 18.34 59 18.73 59 32.24 59 45.14 59 58.61 60 12.11 59 58.76 60 38.93 60 38.93 60 38.93 60 38.93 60 51.11 60 49.70 60 52.448 61 11.185 61 19.37 61 32.656 62 7 565	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$21^{h} 1^{m}$ s 19.177 19.297 19.145 19.467 19.608 19.226 19.208 19.263 19.263 19.254 19.310 19.254 19.307 19.258 19.244 19.307 19.258 19.244 19.307 19.258 19.247 19.270 19.271	0.3 0.3 4.0 1.0 0.4 3.0 3.0 3.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3	$ \begin{array}{c} s \\031 \\089 \\ +.089 \\230 \\365 \\ +.022 \\ +.047 \\001 \\046 \\ +.012 \\039 \\ +.011 \\ +.031 \\ +.007 \\ +.011 \\078 \\ +.039 \\ +.039 \\ +.039 \\ +.039 \end{array} $
Results.	1858.58	1875	424	m s 61 19.291			51.4	
				DECLINATION.	·			
				37°+		38°7/+		
Br. 2745 Pi. xx:476 Abo 482 Tay. 9785 12 Yr1 1887 12 Yr2 1887 6 Yr. 1358 Rad ₁ 5107 Yarn. 9477 7 Yr. 1743 Rad ₂ 2059 N. 7 Yr. 2394 9 Yr. 1976 Romb. 4784 10 Yr. 3532 Green. Yearly Results.	1753.8 1805.8 1835. 1839. 1839. 1844. 1851.2 1853.2 1853.2 1854.0 1857.0 1858.8 1864.2 1877.9 1877.9 1877.9 1833.6 1893.7	1755 1800 1835 1840 1845 1845 1860 1860 1860 1864 1872 1875 1875 1893 1893	1 13 33 9 31 36 35 18 113 44 10 19 14 7 15 10 408	$\begin{array}{c} 33 & 43.9 \\ 46 & 34.0 \\ 55 & 4.7 \\ 56 & 30.47 \\ 57 & 55.71 \\ 59 & 22.02 \\ 60 & 48.67 \\ 59 & 23.2 \\ 63 & 22.6 \\ 63 & 40.53 \\ 63 & 41.8 \\ 64 & 49.69 \\ 67 & 8.90 \\ 68 & 0.7 \\ 69 & 26.61 \\ 73 & 12.43 \\ 68 & 0.150 \end{array}$	$\begin{array}{c} +34 & 13.76 \\ +21 & 26.49 \\ +12 & 54.11 \\ +11 & 29.19 \\ +10 & 3.00 \\ +8 & 36.89 \\ +7 & 10.90 \\ +8 & 36.32 \\ +4 & 37.25 \\ +4 & 18.51 \\ +3 & 9.90 \\ +0 & 51.16 \\ +0 & 0.02 \\ -1 & 26.54 \\ -5 & 11.81 \end{array}$	$\begin{array}{c}$	0.2 0.3 4.0 0.5 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	$\begin{array}{c} ".60,78\\ -2.21\\ +0.07\\ -0.59\\ +0.47\\ +0.40\\ -0.66\\ +0.04\\ -0.27\\ +0.11\\ -0.60\\ +0.27\\ +0.31\\ +0.03\\ +0.03\\ \end{array}$

TABLE XII.—PROPER MOTION OF 61² Cygni.

Probably an error of 5" in Quetelet's declination, hence it has been discarded.

120

TABLE XIII.—Position of 61² Cygni.

P]	Observe	ed Dist.	Corr	ections for	Cor-	Scale Varia-	Distance at Date of each	Correct Proper 1	tion for Motion of	Distance	Parallax
ate.	East.	West.	Refr.	Scale.	Mean.	tion.	Plate. 28''.0124(<i>s</i> + <i>v</i> ')	61 ¹ Cygni	61² Cygni	1873.546	efficient.
1 2 3 4 5 6 7 8 9 10 11 12 13	0.6843 .6900 .6968 .6918 .6877 .6834 .6934 .6934 .6934 .6955 .6951 .7023 .6955 .69655	0.6716 .6866 .6916 .6846 .6916 .6865 .7012 .6864 .6935 .6910 .6940 .7016 .6951 .6992	3333333384433	+ 50 0 0 0 2 3 0 0 0 1 1 1 1 6 ++++	0.6788 .6886 .6910 .6920 .6874 .6922 .6937 .6883 .6947 .7023 .6947 .7023 .6958 .6982	$ \begin{array}{c} +1 \\ +1 \\ +2 \\ +1 \\ 0 \\ +1 \\ +1 \\ -1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $		$\begin{array}{c} -5.2484 \\ -5.2191 \\ -5.2191 \\ -5.2191 \\ -1.6956 \\ -1.5652 \\ -1.5555 \\ +0.7173 \\ +0.7173 \\ +0.7438 \\ +0.7546 \\ +0.7546 \\ +0.7546 \\ +1.5046 \end{array}$	$\begin{array}{c}$	19:2466 .5226 .5871 .4629 .3286 .4715 .4654 .3884 .2399 .4173 .6296 .4475 .5148 .4246	$\begin{array}{c} -0.767 \\745 \\745 \\572 \\369 \\369 \\341 \\715 \\715 \\650 \\650 \\650 \\650 \\550 $
15 16 17 18 19 20	.6966 .6839 .6935 .6774 .6868 .6905	.6987 .7047 .6958 .6957 .6846 .6889	3 4 3 4 3 3	-6 +3 +3 +10	.6974 .6947 .6953 .6873 .6861 .6910	1 0 0 1 1	.5330 .4602 .4770 .2529 .2193 .3538	+1.5946 +1.6312 +1.6312 +1.6348 +1.6348 +1.6348	-1.7030 -1.7433 -1.7433 -1.7471 -1.7471 -1.7471	.4246 .3481 .3649 .1406 .1070 19.2415	$\begin{array}{r} + .550 \\ + .415 \\ + .415 \\ + .401 \\ + .401 \\ + 0.401 \end{array}$
					Means		19.3823			19.3868	

TARLE XIII, Concluded.—Position of 61² Cygni.

Plate.	Observed Ang East.	Position gle West.	Zero Correc- tion plus preces- sion etc	Refrac.	Corrected Mean Angle at Date of each Plate.	Correct Proper M 61 ¹ Cygni	ion for fotion of 61² <i>Cygni</i>	Angle at 1873.546	Paral- lax Coef- ficient.
I 2 3 4 5 6 7 8 9 10 11 12 13 15 16 17 18 19 20	$\begin{array}{c} \circ & \circ & \circ & \circ \\ 203 & 25 & 46 \\ 204 & 6 & 26 \\ 203 & 20 & 11 \\ 203 & 30 & 8 \\ 204 & 45 & 51 \\ 203 & 30 & 28 \\ 204 & 45 & 51 \\ 203 & 30 & 28 \\ 204 & 45 & 51 \\ 204 & 41 & 33 \\ 204 & 34 & 43 \\ 204 & 34 & 43 \\ 204 & 54 & 37 \\ 204 & 58 & 47 \\ 206 & 5 & 42 \\ 204 & 39 & 30 \\ 204 & 55 & 18 \\ 205 & 11 & 40 \\ \end{array}$	$\begin{array}{c} \begin{array}{c} 0 \\ 203 \\ 43 \\ 17 \\ 203 \\ 7 \\ 203 \\ 7 \\ 203 \\ 31 \\ 18 \\ 203 \\ 47 \\ 23 \\ 204 \\ 48 \\ 33 \\ 204 \\ 48 \\ 33 \\ 204 \\ 48 \\ 33 \\ 204 \\ 48 \\ 33 \\ 204 \\ 48 \\ 36 \\ 201 \\ 204 \\ 12 \\ 205 \\ 7 \\ 205 \\ 7 \\ 42 \\ 205 \\ 7 \\ 42 \\ 205 \\ 7 \\ 44 \\ 205 \\ 7 \\ 47 \\ 40 \\ 205 \\ 55 \\ 25 \\ 204 \\ 36 \\ 40 \\ 205 \\ 58 \\ 48 \\ 205 \\ 39 \\ 0 \end{array}$	12 2 13 28 13 34 12 39 11 38 12 52 13 3 14 30 13 7 14 13 15 35 10 58 11 10 11 31 22 238	$ \begin{array}{r} -16'' \\ -14 \\ -20 \\ -18 \\ -17 \\ -39 \\ -26 \\ -20 \\ -33 \\ -8 \\ -6 \\ -11 \\ -19 \\ -4 \\ -1 \\ -2 \\ -2 \\ -3 \\ -2 \\ -3 \\ -2 \\ -2 \\ -3 \\ -2 \\ -2$	$\begin{array}{c} & & & & & & & & & \\ 113 & 46 & 30 & & \\ 51 & 10 & & & \\ 39 & 57 & 56 & \\ 114 & 18 & 4 & & \\ 49 & 52 & & \\ 14 & 49 & 52 & & \\ 24 & 32 & & \\ 52 & 38 & \\ 115 & 4 & 34 & & \\ 0 & 32 & & \\ 114 & 51 & 32 & & \\ 29 & 11 & & \\ 115 & 13 & 0 & & \\ 3 & 42 & & \\ 116 & 9 & 37 & \\ 114 & 48 & 17 & \\ 115 & 8 & 20 & & \\ 38 & 10 & & \\ 114 & 41 & 30 & \\ \end{array}$	$\begin{array}{c} +18 & 31 & 4 \\ +18 & 27 & 0 \\ +18 & 27 & 0 \\ +18 & 27 & 0 \\ +7 & 28 & 2 \\ +7 & 28 & 2 \\ +7 & 28 & 2 \\ +7 & 28 & 2 \\ +7 & 24 & 31 \\ -4 & 42 & 11 \\ -4 & 42 & 11 \\ -4 & 42 & 11 \\ -4 & 42 & 11 \\ -4 & 42 & 11 \\ -4 & 42 & 11 \\ -4 & 59 & 5 \\ -4 & 59 & 5 \\ -4 & 59 & 5 \\ -4 & 59 & 5 \\ -4 & 59 & 5 \\ -13 & 37 & 52 \\ -13 & 37 & 52 \\ -13 & 37 & 52 \\ -13 & 40 & 49 \\ -13 & 40 & 49 \\ -13 & 40 & 49 \\ \end{array}$	$\begin{array}{c} -17 & 53 & 47 \\ -17 & 49 & 51 \\ -17 & 49 & 51 \\ -7 & 744 & 37 \\ -7 & 14 & 49 \\ -7 & 14 & 49 \\ -7 & 11 & 24 \\ +4 & 35 & 26 \\ +4 & 455 & 26 \\ +4 & 455 & 26 \\ +4 & 455 & 26 \\ +4 & 455 & 16 \\ +4 & 51 & 16 \\ +4 & 51 & 16 \\ +12 & 49 & 0 \\ +13 & 17 & 42 \\ +13 & 17 & 42 \\ +13 & 20 & 34 \\ +13 & 20 & 34 \\ +13 & 20 & 34 \\ \end{array}$	114 23 47 28 19 16 14 12 9 31 17 63 5 14 49 17 47 45 53 56 52 52 43 43 43 21 22 53 29 43 32 109 27 28 2 48 5 5114 47 30	+6354 + 6732 + 8536 + 9464 + 9464 + 9464 + 7149 + 7149 + 7749 + 77886 + 7886 + 7886 + 7886 + 79856 - 99745 - 99715

ę

IV.— The Parallax of 61¹ Cygni, deduced from the Rutherfurd Photographic Measures.

BY HERMAN S. DAVIS.

Read May 3d, 1897.

32. For the purpose of determining the parallax of 61^1 Cygni the measures of both distance and position-angle have been used as recorded in the preceding catalogue of sixty-five stars. The method adopted for getting the parallax from the measures of distance is the same as has been used in previous investigations at this Observatory.* Briefly stated this consists of correcting the observed distances for refraction, aberration, errors of the scale, proper motion of 61^1 Cygni, etc. These distances so corrected may be obtained from Table V by taking the sums of the quantities in columns eight, nine and ten. These sums are printed in columns two and three of Table XVI.

33. Then particular pairs of comparison stars were so chosen that their components should be as nearly as possible equally distant from 61^1 *Cygni* and differing 180° in position-angle. Table XIV contains a catalogue of these stars with memorandum of some other observers who have used the same stars for determining the parallax of 61 *Cygni*.

In the equations of condition of Table XVII have been introduced an unknown y varying with the time, as a correction of the assumed proper motion; and another unknown x, as the correction of the assumed mean of the distances. The coefficients of the parallax have been obtained as follows: Using the symbols of paragraph 14, the quantities of column eleven, Table V are

$S_3 P_3 + S_4 P_4.$

Denoting by primed letters all symbols belonging to the *less* distant of the two comparison stars of each pair, we have as the coefficient of the parallax

$$(S_2 P_3 + S_4 P_4) - (S_3' P_3 + S_4' P_4)$$

when the absolute term of the equations is the *difference* of the distance of the comparison stars from 61^1 Cygni, after these dif-

* The Parallax of μ and θ Cassiopeix, by HAROLD JACOBY.

The Parallax of η Cassiopeiæ, by HERMAN S. DAVIS.

ferences have been corrected by their proportional part of the variation of distance. This variation is deduced from the deviation of the sum of the distances on the various plates from the mean of all the plates. See Table XVI, columns four to seven inclusive.

Equations of condition thus formed are in Table XVII. At the foot of each page of this table will be found the normal equations, the deduced values of the unknowns, with their probable errors and the probable error of one equation of unit weight.

Eight different stars combined in five pairs were used for the determination of the parallax by measures of distance.

34. Whereas heretofore only measures of distance were used for parallax, in the present research measures of angle have also been used. For it has been recently shown* in the case of eight stars among the Pleiades whose average distance is 2160", ranging from 631" to 3160", that the displacement on the arc of a great circle by reason of the probable error of observation is but little larger in measures of angle than of distance. This research on the measures of 61^1 Cygni has shown in addition that, for the seven stars whose measurement of position-angle I have used, the probable error for one plate of unit weight is $\pm 0''.149$ in angle, whereas for the eight stars used in distance it is $\pm 0^{\prime\prime}$. 191. The average distance of these stars is only 1956", ranging from 1075" to 2754". This fully justifies the use of position-angle for parallax determination from the RUTHERFURD photographic plates in the present and in future reductions.

35. In the use of measures of position-angle the seven stars were selected irrespective of distance but as equally distributed in angle as possible.

Several methods of reduction suggested themselves, but the following was adopted. The observed angles were corrected as described in paragraphs 16-21. The "reduced angles," obtained from adding together columns six and seven of Table VI and the "variation" of paragraph 21, are printed in Table XVIII.

If x' and y' be introduced for error of the adopted mean of the angles and of proper motion respectively, and the parallax coefficient

$$S_8 P_3 + S_9 P_4$$

^{*} On the Permanence of the Rutherfurd Photographic Plates, by HAROLD JA-COBY. Page 282.

from column eight, Table VI, be used, the equations of condition can be formed as in Table XVIII. The solution of these equations is given at the bottom of each page; where also will be found the probable errors of the unknowns; likewise the probable error of one equation of unit weight expressed as change of position-angle and also as reduced to the arc of a great circle by aid of the

"Factor" =
$$28''.0124 \cdot \sigma \cdot \sin 1'' = [6.1329] \sigma$$

36. The values of parallax given by the measures of distance of the various pairs of stars are collected in the first part of Table XV, with their weights, p, deduced from the least-square solution, and the corresponding probable errors, r_{π} . As the stars 5 and 6 enter respectively into each of two pairs, the "combining weights" of those pairs, (p), were used in computing the mean of the five determinations. The (r_{π}) is the probable error of the parallax when (p) is regarded as the weight. Hence

$$Parallax = + 0''.3999 \pm 0''.0230.$$

In the second part of Table XV are given the values of parallax deduced from the measures of position-angle, with their probable errors r_{π} . Hence

Parallax =
$$+ 0^{\prime\prime}.3326 \pm 0^{\prime\prime}.0189$$
.

When these two values are combined with weights which are the reciprocals of the squares of their respective probable errors there results the

Mean relative parallax of 61^1 Cygni = $+0^{\prime\prime}.360 \pm 0^{\prime\prime}.0146$

TABLE XIV.—COMPARISON STARS.

Comp. Star.	Approximate position referred to 61 ¹ Cygni.		Durchmusterung.		Remarks.	
No.	Distance.	Angle.	Number.	Mag.		
64 6 39 5 53 54 48 14 37 27 48 43 32 23	3362 ["] 2660 3185 2163 2126 2165 1423 971 1337 1075 1423 1825 2156 2501	69.74 230.21 13.29 273.11 81.10 78.27 105.89 296.79 149.62 177.26 105.89 143.85 172.68 356.08	$3^{8}:437^{2}$ $3^{7}:4159$ $3^{8}:4353$ $3^{8}:4353$ $3^{8}:436^{2}$ $3^{8}:436^{3}$ $3^{7}:4189$ $3^{8}:4336$ $3^{7}:4180$ $3^{7}:4185$ $3^{7}:4185$ $3^{7}:4185$ $3^{7}:4178$ $3^{8}:4341$	7.8 7.5 8.4 6.0 7.8 9.1 7.9 8.8 7.7 9.0 7.9 9.0 7.5 8.2	Johnson. Johnson : [Pritchard]: Wilsing. [Pritchard]. Johnson : [Pritchard].	
-3 13	2754	341.41	38:4335	9.0		

TABLE XV.-RESULTS.

FROM A	IEASURES	OF I	ISTANCE.
--------	-----------------	------	----------

Comp.	Relative Parallax	Weig	ghts.	P	Relative Weights.		
Stars.	of 61 ¹ Cygni	p	(<i>p</i>)	r_1	rπ	(1777)	$\frac{1}{(r\pi)^2}$
64- 6 39- 6	+0.5211 +0.4497	26.2675 19.8822	17.5117 13.2548	±0.1641 .2562	±0.0373 .0429	±0.0457 .0525	479.3 362.7
5-53 54- 5	+0.3733 +0.2431	22.8220 21.8784	15.2147 14.5856	± .2020 .1576	±0.0400 .0409	±0.0490 .0500	416.3 399.2
48–14	+0.3888	8.4314	8.4314	± .1840	± 0.0658	± 0.0658	230.7
Results	+ ő.3999		68.9982	±0.1912	± 0.0230		1888.2

FROM MEASURES OF POSITION-ANGLE.

Comp.	Relative Parallax	Weights	5.	F	robable Er	Relative Weight.	
Stars.	of 61 ¹ Cygni	р	σ^2	(<i>r</i> ₁)	r_1	γ π	$\frac{1}{r_{\pi}^2}$
	, // 。	-	. 0	, //	, // 0		
37	+0.3028	190 129.40	2278.	± 15.70	±0.1018	± 0.0354	790.9
27	+0.3779	157 834.62	1471.	29.27	.1525	.0395	641.2
48	+0.2794	110 142.84	2580.	25.49	.1758	.0473	447.5
43	+0.3299	79 259.74	4245.	18.52	. 1638	.0557	322.0
32	+0.3442	63 960.30	5921.	12.37	. 1 2 9 3	.0620	259.9
23	+0.3334	44 572.46	7968.	12.33	. 1496	.0743	181.0
13	+0.4401	36 689.52	9667.	± 12.32	± 0.1646	± 0.0819	149.0
Results	+ 0.3326	688 588.88			±0.1488	±0.0189	2797.5

TABLE XVI.—OBSERVATIONAL DATA.

Plate	Corrected	Distance.	Sum	Mean	Difference	Seale Corr	Corrected Difference		
No.	Star 64	Star 6	Distances	minus Sum	Distances	Scale COII.			
I	120.0484	94.9562	215.0046	0152	25.0922	0018	25.0904		
2	.0593	.9648	.0241	0347	.0945	0041	.0904		
3	.0361	.9600	214.9961	0067	.0761	0008	.0753		
4	.0406	.9519	.9925	0031	.0887	0004	.0883		
5	.0495	.9559	215.0054	—. 0160	.0936	—.0019	.0917		
6	.0321	.9487	214.9808	+.0086	.0834	+.0010	.0844		
7 8	.0632	.9609	215.0241	0347	.1023	0041	.0982		
9	.0305	.9480	214.9785	+.0109	.0825	+.0013	.0838		
IO	.0351	.9526	.9877	+.0017	.0825	+.0002	.0827		
II	.0430	.9487	.9917	0023	.0943	0003	.0940		
12	.0439	·9499	.9938	0044	.0940	0005	.0935		
13	.0425	-9357	.9782	+.0112	.1068	+.0013	.1081		
15 16	119.9999	.9668	.9667	+.0227	.0331	+.0027	.0358		
17 18	•9914	.9781	.9695	+.0199	.0133	+.0023	.0156		
19	.9998	.9805	.9803	+.0091	.0193	+.0011	.0204		
20	.9832	.9701	.9533	+.0361	.0131	+.0042	.0173		
	Adopted mean, 214.9894 Assumed value, 25.0730								

COMPARISON STARS 64 AND 6.

TABLE XVII.-PARALLAX EQUATIONS.

Comparison Stars 64 and 6.

					Resid	luals.	
Plate.					Scale.	Arc.	
I	1.00x	—1.14 <i>y</i>	—1.84∏	+1.74 = 0	+0.46	+0".13	
2	1,00	-1.13	-1.87	+1.74 = 0	+0.39	+ .11	
3	1,00	—1.13	-1.87	+0.23 = 0	-1,12	31	
4	1.00	0.08	-1.94	+1.53 = 0	-0.23	.06	
5	I.00	0.04	-1.85	+1.87 = 0	+0.27	+ .08	
6	·1,00	0,04	-1.85	+1.14 = 0	0.46	— .13	
7	1.00	0.04	-1.83	$+2.52 \doteq 0$	+0.96	+ .27	
9	1.00	+0.88	—1.90	+1.08 = 0	o.86	— .24	
10	1.00	+0.89	—1.93	+0.97 = 0	—1.03	— .29	
II	1.00	+0.90	-1.93	+2.10 = 0	+0.10	+ .03	
12	1.00	+0.90	—1.93	+2.05 = 0	+0.05	10. +	
13	1.00	+0.90	—1.93	+3.51 = 0	+1.51	+ .42	
15	1.00	+1.42	+1.99	-3.72 = 0	+1.42	+ .40	
17	1.00	÷1.45	+1.94	-5.74 = 0	0.69	19	
19	1.00	+1.45	+1.93	-5.26 = 0	-0.23	06	
20	1.00	+1.45	+1.93	-5.57 = 0	0.54	15	
				[vv	1 = 0.81		

Normal Equations.

 $\begin{array}{rrrr} + & 16.0000x + & 6.6400y - 14.8800\Pi + & 0.1900 = 0 \\ & \cdot & + & 16.1850 & + & 9.3353 & - & 25.1545 = 0 \\ & + & 58.0200 & - & 78.1820 = 0 \end{array}$

Solution.

In units of 2d dec. place of scale.	In Arc.
$\Pi = + 1.8602 \pm 0.1143$	$\Pi = + 0^{\prime\prime}.5211 \pm 0^{\prime\prime}.0320$
$y = -0.2695 \pm 0.2073$	$y = -0$.0755 ± 0 .0581
$x = +$ 1.8299 \pm 0.2276	$x = + 0.5126 \pm 0.0638$
	Scale. Arc.
Probable error of one equation	$on = \pm o''.5859 = \pm o''.1641$

TABLE XVI.—OBSERVATIONAL DATA.

COMPARISON STARS 39 AND 6.

Plate	Corrected	Distance.	Sum	Mean	Difference	Scale	Corrected	
No.	Star 39	Star 6	Distances	minus Sum	Distances	Corr.	Difference	
I 2 2	113.7446 .7430 7264	94.9562 .9648	208.7008 .7078	0261 0331	18.7884 .7782	0023 0030	18.7861 •7752	
3 4 5	.7304	.9000	.0904	0217	.7704	0020	•7744	
6 7 8	•7575	.9487	.7062	0315	.8088	0028	.8060	
9	.7218	.9480	.6698	+.0049	.7738	+.0004	.7742	
10	.7204	.9526	.6730	+.0017	.7678	+.0002	.7680	
II I2	.7166	.9487	.6653	+.0094	.7679	+.0008	.7687	
13	.7230	·9357	.6587	+.0160	.7873	+.0014	.7887	
15	.7000	.9668	.6668	+.0079	.7332	+.0007	.7339	
16	.6976	·9552	.6528	+.0219	.7424	+.0020	•7444	
17	.6843	.9781	.6624	+.0123	.7062	+.0011	.7073	
18	.6968	.9650	.6618	+.0129	.7318	+.0012	.7330	
19	.6970	.9805	.6775	0028	.7165	0003	.7162	
20	.6766	.9701	.6467	+.0280	.7065	+.0025	.7090	
	Adopted mean, 208.6747 Assumed value, 18.7560							

TABLE XVII.-PARALLAX EQUATIONS.

COMPARISON STARS 39 AND 6

					Res	iduals
Plate.					Scale.	Arc.
I	1.00x	-1.14y	—1.30П	+3.01 = 0	+0.52	+".15
2	1.00	-1.13	—1.37	+1.92 = 0	0.68	— .19
3	1.00	—1.13	—I.37	+1.84 = 0	0.76	— .2I
6	1.00	0.04	—1.76	+5.00 = 0	+2.10	+ .59
9	1.00	+o.88	—1.43	+1.82 = 0	0.29	08
10	1.00	+0.89	—1.52	+1.20 = 0	-1.05	29
11	1.00	+0.90	—I.55	+1.27 0	-1.03	29
13	I.00	+0.90	-1.55	+3.27 = 0	+0.97	+ .27
15	1.00	+1.42	+1.73	-2.2I = 0	+0.92	+ .26
16	1.00	+1.45	+1.81	-1.16 = 0	+2.09	+ .59
17	1.00	+1.45	+1.81	-4.87 = 0	<u> </u>	45
18	1.00	+1.45	+1.81	-2.30 = 0	+0.96	+ .27
19	1.00	+1.45	+1.81	-3.98 = 0	-0.72	20
20	1.00	+1.45	+1.81	-4.70 = 0	—1.44	40
				[vv]	= 20.23	

Normal Equations.

 $\begin{array}{r} +14.0000x + 8.8000y - 1.0700\Pi + 0.1100 = 0 \\ +19.5704 + 14.8265 & -28.9273 = 0 \\ +37.0751 & -63.9392 = 0 \end{array}$

Solution.

In units of 2d dec. place of scale.	In Are.
$\Pi = +1.6054 \pm 0.2051$	$\Pi = +0^{\prime\prime}.4497 \pm 0^{\prime\prime}.0575$
$y = +0.2941 \pm 0.3330$	$y = +0$.0821 ± 0 .0933
$x = -0.0694 \pm 0.3291$	$x = -0$.0194 ± 0 .0922

	Scale.	Arc.
Probable error of one equation =	$=\pm 0.9145 = =$	±0″.2562

TABLE XVIO	BSERVATIC	NAL	DATA.
COMPARISON	STARS 5	AND	53.

Plate No.	Corrected Distance.		Sum	Mean	Difference	Scale Corr	Corrected
	Star 5	Star 53	Distances	minus Sum	Distances		Difference
I 2 2	77.2195 .2144	75.9023 .9034 8802	153.1218 .1178	0225 0185 0020	1.3172 .3110	0002 0002	1.3170 .3108
3 4 5	,21,31	.0092	.1023	0030	•3239	0000	•3239
6	.2135	.8975	0111.	0117	.3160	0001	.3159
7 8	.2180	.9198	.1378	0385	.2982	0003	.2979
9	.2093	.8921	,1014	0021	.3172	0000	.3172
IO	.2058	.8913	.0971	+.0022	.3145	+.0000	.3145
II	.2092	.8894	.0986	+.0007	.3198	+.0000	.3198
12	.2103	.8845	.0948	+.0045	.3258	+.0000	.3258
13	.2093	.8958	.1051	0058	.3135	000I	.3134
15	.2244	.8536	.0780	+.0213	.3708	+.0002	.3710
16	.2169	.8650	.0819	+.0174	·3519	+.0002	.3521
17	.2201	.8707	.0908	+.0085	•3494	+.0001	·3495
18	.2254	.8513	.0767	+.0226	·3741	+.0002	.3743
19	.2317	.8559	.0876	+.0117	.3758	+.0001	·3759
20	.2199	.8646	.0845	+.0148	-3553	+.0001	.3554
Adopted mean, 153.0993 Assumed value, 1.3330							
TABLE XVII.—PARALLAX EQUATIONS.

COMPARISON STARS 5 AND 53.

					Resi	duals.	
Plate.					Scale.	Α	rc.
I	1.00x	—1.14 <i>y</i>	+ 1.90∏	-1.60 = 0	+0.41	+0	″.1I
2	1.00	—1.13	+1.90	-2.22 = 0	-0,21	-	.06
3	1.00	1.13	+1.90	-0.9I = 0	+1.10	+	•31
6	1.00	0.04	+1.47	-1.71 = 0	0.41	-	.11
7	0.1	0.04	+1.42	-3.51 = 0	2.28		.64
9	1.00	+o.88	+1.88	-1.58 = 0	+0.16	+	.04
10	1.00	+0.89	+1.85	-1.85 = 0	0.15	—	.04
II	1.00	+0.90	+1.83	-1.32 = 0	+0.35	+	.10
12	1.00	+0.90	+1.83	-0.72 = 0	+0.95	+	.27
13	1.00	+0.90	+1.83	-1.96 = 0	0.29	—	.08
15	1.00	+1.42	-1.75	+3.80 = 0	+0.64	+	.18
16	1.00	+1.45	1.57	+1.91 = 0	-1.02	-	.29
17	1.00	+1.45	-1.57	+1.65 = 0	-1.28		.36
18	1.00	+1.45		+4.13 = 0	+1.22	+	•34
19	1.00	+1.45		+4.29 = 0	+1.38	+	•39
20	1,00	+1.45	-1.55	+2.24 = 0	0.67		.19
				[vv]	= 14.87		

Normal Equations.

+ 16.0000x + 9.6600y + 8.2700II + 0.6400 = 0+ 20.3820 - 12.1142 + 24.9478 = 0+ 47.2107 - 58.9600 = 0

Solution.

In units of 2d dec. place of scale. In Arc. $\Pi = + 1.3326 \pm 0.1510$ $\Pi = + 0''.3733 \pm 0''.0423$ $y = -0.1213 \pm 0.2593$ y = -0.0340 ± 0 .0726 $x = -0.6556 \pm 0.2826$ x = -0.1836 ± 0 .0792 Scale. Arc.

Probable error of one equation $= \pm 0.7211 = \pm 0''.2020$

TABLE	XVI0	DBSERVATIONAL	DATA.
-------	------	----------------------	-------

COMPANION	STARS	54	AND	5.
-----------	-------	----	-----	----

Corrected Distan		Distance	Sum	Mean	Difference	Scale Corr	Corrected	
No.	Star 54	Star 5	Distances	minus Sum	Distances		Difference	
I	77.3081	77.2195	154.5276	0383	0.0886	0	0.0886	
2	.3100	.2144	.5250	0357	.0962	0	.0962	
3	.2909	.2131	.5100	0207	.0838	0	.0838	
4								
6								
7								
8								
9	.2808	.2093	.4901	0008	.0715	0	.0715	
IO	.2803	.2058	.4861	+.0032	.0745	0	.0745	
II	.2740	.2092	.4832	+.0061	.0648	0	.0648	
12	.2661	.2103	.4764	+.0129	.0558	0	.0558	
13	.2799	.2093	.4892	+.0001	.0706	0	.0706	
15	.2449	.2244	.4693	+.0200	.0205	0	.0205	
10	.2605	.2169	.4774	+.0119	.0436	0	.0436	
17	.2620	.2201	.4821	+.0072	.0419	0	.0419	
10	.2507	.2254	,4701	+.0132	.0253	0	.0253	
20	2474	2100	1672	+ 0220	0275	0	0.0275	
20	•==4/4	.2199	.4073	1.0220	.02/5		0.0275	
Adopted mean, 154.4893					Ass	umed valu	e, 0.0590	

TABLE XVII.—PARALLAX EQUATIONS.

COMPARISON STARS 54 AND 5.

					Res	iduals.	
Plate.					Scale.	\mathbf{A}	rc.
I	1.00x	-1.14y	—1.91П	+2.96 = 0	 0, IO	0	‴.o3
2	1.00	-1.13	—1.90	+3.72 = 0	+0.68	+	.19
3	1.00	-1.13	—1.90	+2.48 = 0	0.56		.16
9	1.00	+0.88	-1.89	+1.25 = 0	+0.34	+	.10
IO	1.00	+0.89	1.86	+1.55 = 0	+0.68	+	.19
II	1.00	+0.90	—1.84	+0.58 = 0	-0.27		.08
12	1.00	+0.90	1.84	-0.32 = 0	-1.17		.33
13	1.00	+0.90	1.84	+1.16=0	+0.31	+	.09
15	1.00	+1.42	+1.77	-3.85 = 0	1.01		.28
16	1.00	+1.45	+1.59	-1.54 = 0	+1.17	+	•33
17	1.00	+1.45	+1.59	-1.71 = 0	+1.00	+	.28
18	1.00	+1.45	+1.57	-3.37 = 0	0,68	—	.19
20	I.00	+1.45	+1.57	-3.15 = 0	<u> </u>		.13
				[vi	[] = 6.96		

Normal Equations.

 $\begin{array}{r} +13.0000x + 8.2900y - 6.8900 \Pi - 0.2400 = 0 \\ +18.2763 + 9.8622 - 26.2564 = 0 \\ +41.1755 - 47.5103 = 0 \end{array}$

Solution.

In units of 2d dec. place of scale.		In Arc.	
$\Pi = +0.8680 \pm 0.1203$	$\Pi = + o'$	'.2431 ±0"	.0337
$y = +1.0570 \pm 0.2044$	y = + 0	.2961 ±0	.0573
$x = -0.1955 \pm 0.2369$	x = -0	$.0548 \pm 0$.0664
	Sca	ale.	Arc.
Probable error of one equation	$n = \pm 0.$	$5626 = \pm 0$	1.1576

TABLE XVI.-OBSERVATIONAL DATA.

Comparison Stars 48 and 14.

Plate	Corrected Distance		Sum	Mean	Difference	Scale Corr	Corrected
No.	Star 48	Star 14	Distances	minus Sum	Distances	Scale COII.	Difference
1 2 3 4 5 6 7 8	50.8127 .8164	34.6771 .6853	85.4898 .5017	—.0210 —.0329	16.1356 .1311	0039 0062	16.1317 .1249
9 10 11 12 13 15 16 17 18 19 20	.7984 .7972 .7955 .7971 .7785 .7762 .7742 .7680 .7829	.6690 .6765 .6742 .6601 .6805 .6744 .6928 .6859 .6859 .6834	.4674 .4737 .4697 .4572 .4590 .4596 .4506 .4670 .4539 .4663	$\begin{array}{c} +.0014 \\0049 \\0009 \\ +.0116 \\ +.0098 \\ +.0182 \\ +.0182 \\ +.0018 \\ +.0149 \\ +.0025 \end{array}$.1294 .1207 .1213 .1370 .0980 .1018 .0814 .0821 .0995	$\begin{array}{c} +.0003 \\0009 \\0002 \\ +.0018 \\ +.0034 \\ +.0003 \\ +.0028 \\ +.0005 \end{array}$.1297 .1198 .1211 .1392 .0998 .1052 .0817 .0849 .1000
Adopted mean, 85.4688 Assumed value, 16.1130							

.

TABLE XVII.—PARALLAX EQUATIONS.

COMPARISON STARS 48 AND 14.

					Res	iduals.
Plate.					Scale.	Arc.
2	1.00 <i>x</i>	-1.13y	<u>1.55</u> Π	+1.87 = 0	+0.32	+0″.09
3	1.00	-1.13	—1.55	+1.19=0	0.36	io
10	1.00	+0.89	→ 1.42	+1.67 = 0	+0.23	+ .06
II	1.00	+0.90	1.38	+0.68 = 0	0.71	20
12	1,00	+0.90	—1.38	+0.81 = 0	<u>-0.5</u> 8	<u> </u>
13	1.00	+0.90	-1.38	+2.62 = 0	+1.23	+ .34
15	1.00	+1.42	+1.19	-1.32 = 0	+ 0.84	+ .24
16	I.00	+1.45	+0.93	-0.78 = 0	+1.02	+ .29
18	I.00	+1.45	+0.90	-3.13 = 0		38
19	1.00	+1.45	+0.90	-2.81 = 0	1.05	30
20	1.00	+1.45	+0.90	-1.30 = 0	+0.46	+ .13
				[vi	v] = 7.58	

Normal Equations.

 $\begin{array}{r} +11.0000x + 8.5500y - 3.8400\Pi - 0.5000 = 0 \\ +16.2023 + 5.4665 - 11.7759 = 0 \\ +17.2456 - 21.5984 = 0 \end{array}$

Solution.

In Arc.

In units of 2d dec. place of scale.

$\Pi = +1.3880 \pm 0.2261$	$\Pi = +0^{\prime\prime}.3888 \pm 0^{\prime\prime}.0634$
$y = -0.0359 \pm 0.2918$	$y = -0$.0101 ± 0 .0818
$x = +0.5579 \pm 0.3485$	$x = +0$.1563 ± 0 .0976
	Scale. Arc.

Scale.Arc.Probable error of one equation $\pm 0.6568 = \pm 0^{\prime\prime}.1840$

r

TABLE XVIII.—PARALLAX EQUATIONS. POSITION-ANGLE. STAR 37.

						nesiduais
						in arc of
Plate.	Reduced Angle.					great circle.
2	149°35′56′′	1.00x'	—1.13 <i>y</i> ′	+146.Π	-54''=0	-".11
3	36 28	1.00	-1.13	+ 146.	-22 = 0	нio
4	35 37	1.00	0.08	+152.	-73 = 0	25
5	36 10	1.00	0.04	+145.	-40 = 0	05
6	36 55	1.00	0.04	+145.	+5 = 0	+ .24
7	36 28	1.00	0.04	+143.	-22 = 0	+ .07
8	36 53	1.00	+o.88	+ 148.	+3 = 0	+ .21
9	36 28	1.00	+o.88	+148.	-22 = 0	+ .05
10	36 19	1.00	-+0.89	+151.	-31 = 0	00
II	36 22	1.00	+0.90	+151.	-28 = 0	+ .02
12	36 3	1.00	+0.90	+151.	-47 = 0	.10
13	35 52	1.00	+0.90	+151.	-58 = 0	18
15	38 5	1.00	+1.42	—156.	+75 = 0	+ .07
16	37 38	1.00	+1.45	—152.	+48 = 0	.10
17	38 18	1.00	+1.45	—152.	+88 = 0	-+ .16
18	37 16	1.00	+1.45	—151.	+26 = 0	24
19	37 58	1.00	+1.45	-151.	+68 = 0	+ .03
20	38 2	I.00	+1.45	—151.	+72 = 0	

149 36 50 = Adopted Mean.

Normal Equations.

+18.00x'+1	1.56 <i>y</i> ′ +	864.001	[]	12.00 = 0
+ 1	9.86 —	876.04	+	474·39 = 0
	+40	02194.00	— I	15427.00 = 0

Solution.

$\Pi = +$	0".3028 ± 0".0355	[vv]	= 8127.
y' = -	3 .9189 ± 6 .039	σ	= 1336''.94
x' = -1	1 .3531 ± 6 .368	Facto	r = .00648

In Angle. Arc of great circle. Probable error of one equation $=\pm 15''.70 = \pm 0''.1018$

TABLE XVIII.—PARALLAX EQUATIONS.POSITION-ANGLE.STAR 27.

					F	tesiduals
Plate.	Reduced Angl	е.			gr	eat circle.
2	177°14′ 9′′	1.00 x ′	-1.13y'	+183.П	— 59.″=o	+".03
3	13 57	1.00	—1.13	+183.	-71. = 0	— .03
10	14 59	1.00	+0.89	+178.	— 9. =0	+ .21
II	15 3	1.00	+0.90	+176.	-5.=0	+ .23
12	14 10	1.00	+0.90	+176.	-58. = 0	— .05
13	13 4	1.00	+0.90	+176.	-124. = 0	39
15	16 11	1.00	+1.42	—169.	+ 63. = 0	12
16	16 11	1.00	+1.45	-151.	+ 63. = 0	— .08
18	17 20	1.00	+1.45	—149.	+132. = 0	+ .28
20	16 14	1.00	+1.45	—149.	+ 66. = 0	07

177 15 8.0 =Adopted Mean.

Normal Equations.

Solution.

$\Pi = + o'$	$'.3797 \pm 0'$	1.0737	[vv]	= 13187.
y' = -7	$.1257 \pm 12$.65	σ	= 1074".60
x' = -11	$.8966 \pm 14$.69	Factor	=.00521

In Angle. Arc of great circle. Probable error of one equation $= \pm 29''.27 = \pm 0''.1525$

TABLE XVIII.—PARALLAX EQUATIONS.

Residuals

POSITION-ANGLE. STAR 48.

						in arc of
Plate.	Reduced Angle.					great circle.
I	105°52′58′′	1.00x'	—1.14 <i>y′</i>	+ 68.Π	-3''=.0	+".03
2.	52 0	I.00	1.13	+ 74.	-61 = .0	35
3	53 23	1.00	-1.13	+ 74.	+22 = .0	+ .22
4	51 32	1.00	0.08	+102.	89 = .0	48
5	53 43	1.00	0.04	+119.	+42 = .0	+ .46
6	53 9	1.00	0.04	+119.	+8 = .0	+ .22
7	52 48	1.00	0.04	+121.	-13 = .0	4 .08
8	52 55	1.00	+ 0.88	+ 80.	- 6 = .0	+ .06
9	53 3	1.00	+o.88	+ 8o.	+2 = .0	+ .12
10	52 19	I.00	+0.89	+ 89.	-42 = .0	.16
11	52 42	1.00	+0.90	+ 92.	—19 .0	00
12	52 36	1.00	+0.90	+ 92.	-25 = .0	04
13	52 8	1.00	+0.90	+ 92.	-53 = .0	24
15	53 3 ⁸	1.00	+1.42	IIO.	+37 = .0	
16	54 4	1.00	+1.45		+63 = .0	+ .16
17	54 12	1.00	+1.45	—121.	+71 = .0	+ .22
18	52 32	1.00	+1.45	—I22.	-29 = .0	47
19	53 55	1.00	+1.45	—122.	+54 = .0	+ .10
20	53 51	I.00	+1.45	<u> </u>	+50 = .0	+ .07

105 53 1.0 = Adopted Mean.

Normal Equations.

+ 19.00x' + 10.42y'	'+	484.00П	+	9.00=0
+21.16		836.67	+	280.52 = 0
	+201	(090.00	50	0207.00 = 0

Solution.

$\Pi = +0^{\prime\prime}.2794 \pm 0^{\prime\prime}.0766$	[vv] = 22847.
$y' = +2$.0965 ± 8 .487	$\sigma = 1422''.69$
$x' = -8$.7418 ± 8 .453	Factor == .00690

In Angle. Arc of great circle. Probable error of one equation $= \pm 25''.49 = \pm 0''.1758$

TABLE XVIII.--PARALLAX EQUATIONS.

						Residuals
						in arc of
Plate.	Reduced Angle.					great circle.
I	143°50′ 1′′	1.00x′	-1.14y'	+101.П	-48.''=0	—″.oi
2	49 42	I.00	—1.13	+104.	-67. = 0	17
3	50 22	1.00	-1.13	+104.	-27. = 0	+ .18
01	50 28	1.00	+0.89	+108.	-21. = 0	+ .07
II	50 19	I.00	+0.90	+109.	-30. = 0	io. —
12	50 16	1.00	+0.90	+109.	-33. = 0	03
13	50 17	1.00	+0.90	+109.	-32. = 0	02
15	52 5	1.00	+1.42	—114.	+76. = o	+ .23
16	51 23	1.00	+1.45	—113.	+34. = 0	14
18	. 51 43	1.00	+1.45	<u> </u>	+54. = 0	+ .04
19	52 19	1,00	+1.45	<u>—112.</u>	+90. = 0	+ .36
20	50 41	1.00	+1.45	—112.	-8. = 0	51

POSITION-ANGLE. STAR 43.

143 50 49.0 = Adopted Mean.

Normal Equations.

 $+12.00x'+7.41y'+181.00\Pi-12.00=0$ +17.50 - 772.69 + 411.17 = 0+142537.00 -54985.00 = 0

Solution.

$\Pi = + o'$	''.3299 ±0'	1.0658	[vv]	= 6788.
y' = -9	$.8126 \pm 6$.845	σ	= 1824''.90
x' = +2	$.0830 \pm 7$.280	Facto	r = .00885

In Angle. Arc of great circle. Probable error of one equation $= \pm 18^{\prime\prime}.52 = \pm 0^{\prime\prime}.1638$

TABLE XVIII.—PARALLAX EQUATIONS. POSITION-ANGLE. STAR 32.

						Resid in arc	uals e of
Plate.	Reduced Angle.				g	reat c	ircle.
ĩ	172°39′49′′	1.00x'	-1.14y'	+ 93.∏	-30.''=0	+0	″.oS
2	39 51	I.00	—1.13	+93.	-28. = 0	+	.10
3	39 55	1.00	-1.13	+93.	<i>—</i> 24. <i>≡</i> 0	+	.14
4	39 12	1.00	0.08	+87.	—67. <u>—</u> 0		•43
5	39 41	1.00	0.04	+75.	<u> </u>	—	.18
6	39 51	I.00	0.04	+75.	-28. = 0	—	.07
7	40 2	1.00	-0.04	+73.	-17. = 0	+	.03
8	40 11	1.00	+o.88	+ 92.	<u> </u>	+	.10
9	40 I	1.00	+ 0.88	+ 92.	-18 = 0	—	.00
10	39 59	1.00	+0.89	+ 91.	-20. = 0		.03
11	40 5	I.00	+c.90	+90.	-14. = 0	+	.03
12	40 18	1,00	+0.90	+90.	- I. = 0	+	.17
13	40 4	1,00	+0.90	<u>+9</u> 0.	-15. = 0	+	.02
15	41 6	1.00	+1.42		+47. ==0	—	.02
16	40 47	1.00	+1.45	<u>—80.</u>	+28. = 0		.19
17	41 17	1.00	+1.45	<u>—80.</u>	+58. = 0	+	.12
18	41 36	1.00	+1.45	-79.	+77. = 0	+	.32
19	41 19	1.00	+1.45	79.	+60. = 0	+	.14
20	40 34	1.00	+1.45	79.	+15. = 0	_	.33

172°40 19.0 == Adopted Mean.

Normal Equations.

Solution.

$\Pi = +0^{\prime\prime}.3442 \pm 0^{\prime\prime}.0489$	[vv] = 5382.
$y' = -9 .5621 \pm 4 .251$	$\sigma = 2155.''55$
$x' = -5$.3013 ± 4 .638	Factor = .01045

In Ang'e. Arc of great circle. Probable error of one equation $=\pm 12.''37 = \pm 0.''1293$

The Rutherfurd Photographic Measures. 143

TABLE XVIII.---PARALLAX EQUATIONS.

POSITION-ANGLE. STAR 23.

						Residu	als
D1	Deduced America					in arc	of
Plate.	Reduced Angle	•				great ch	cere.
I	356°4′49′′	1.00x	-1.14y	-79.11	+ 8.''=0		.08
2	5 12	1.00	1.13	79.	+31. = 0	+	.20
3	4 49	1.00	—1.13	7 9·	+ 8. = 0		.08
4	5 20 .	1.00	0.08	-73.	+39. = 0	+	.31
5	4 14	1.00	0.04	62.	-27. = 0	—	•45
6	4 40	1.00	-0.04	62.	-1. = 0	—	.13
7	57	1.00	-0.04	—60.	+26. = 0	+	.20
8	4 50	1.00	+ 0.88	<u> </u>	+9. =0		.08
9	4 57	1,00	+o.88	—78 .	+16. = 0	+	.00
10	5 0	I.00	+0.89	-77.	+19. = 0	+	.04
II	4 42	1.00	+0.90	—76.	+ 1. = 0	—	.17
12	4 58	I.00	+0.90	—76.	+17. = 0	. +	.02
13	5 11	1.00	+0.90	—76.	+30. = 0	+	.18
15	4 I	I.00	+1.42	+73.	-40. = 0	—	.07
16	4 13	I.00	+1.45	+66.	-28. = 0	+	.05
17	3 59	1.00	+1.45	+66.	-42. = 0		.12
18	4 24	I.00	+1.45	+65.	—17. — 0	+	.18
19	3 40	1.00	+1.45	+65.	-61. = 0		.36
20	4 39	1.00	+1.45	+65.	-2. = 0	+	.36

356 4 41.0 = Adopted Mean.

Normal Equations.

+19.00x'	+10.42y'	·	555.00II		14.00=0
	+21.16	+	448.60		248.42 - 0
		+97	7481.00	26	6185.00 - 0

Solution.

$\Pi = + o'$	$'.3334 \pm 0'$	1.0584	[vv]	= 5349.
y' = - 0	$.6676 \pm 4$.237	σ	= 2500''.62
x' = +10	$.8423 \pm 4$.652	Facto	r=.01213

.

In Angle. Arc of great circle. Probable error of one equation $= \pm 12^{\prime\prime}.33 = \pm 0^{\prime\prime}.1496$

TABLE XVIII.—PARALLAX EQUATIONS. POSITION-ANGLE. STAR 13.

							Residu	lais
							in arc	of
Plate.	Reduced Angle.				•		great ci	rcle.
I	341°25′ 9′′	1.00x	-1.14y	—73.П	+23."=	= 0	+0'	7.11
2	24 30	I.00	—1.13	-73.	16. =	= 0		.41
3	25 10	1.00	—1.13	-73.	+24. =	= 0	+	.12
4	25 40	I.00		72.	+54. =	=0	+	.46
5	25 0	1.00	-0.04	66.	+14. =	= 0	—	.04
6	24 55	1.00	-0.04	66.	+ 9. =	=0		.11
7	25 6	1.00	-0.04	65.	+20. =	=0	+	.05
10	25 14	1.00	+0.89	74.	+28. =	= 0	+	.04
II	25 13	1.00	+0.90	74.	+27. =	= 0	+	.02
12	24 59	1.00	+0.90	74.	+13. =	= 0	-	.16
13	25 4	1.00	+0.90	74.	+18. =	= 0	-	.10
15	23 54	1.00	+1.42	+74.		= 0		.20
16	24 13	I.00	+1.45	+ 69.	33. =	= 0	+	.03
17	24 19	I.00	+1.45	+69.	27. =	= 0	+	.11
18	24 47	1.00	+1.45	+69.	+ I. =	= 0	+	.48
19	23 52	1.00	+1.45	+69.		= 0		.26
20	23 59	1.00	+1.45	+69.		= 0		.16

341 24 46.0 = Adopted Mean.

Normal Equations.

+17.00x'	+	8.66 <i>y</i> ′		365.00П	+	2.00 = 0
	+1	19.62	+	601.51		270.02 = 0
			+85	5293.00	-30	0221.00 = 0

Solution.

$\Pi = + o'$	′.4401 ±0′	1.0643	[vv]	- 4672.
y' = -4	.9631 ±4	.591	σ	= 2754".25
$x' = + \Pi$	$.8592 \pm 4$.582	Factor	=.01336

In Angle. Arc of great circle. Probable error of one equation $= \pm 12''.32 = \pm 0''.1646$

The Parallax of 61² Cygni.

37. If the coefficients for parallax of 61^2 Cygni be computed by the formulæ of paragraphs 14 and 22, we have :

$$S_3 = -0.296$$

 $S_4 = -0.822$
 $S_8 = +9777.$
 $S_9 = -1120.$

With these, and the values of P_3 and P_4 of paragraph 14, have been obtained the quantities printed in the last column of Table XIII.

38. The measured distances duly corrected for proper motions of both stars are given in the last-but-one column of Table XIII. Table XIX contains the equations of condition of the form :

$$x + (t - 1873.546)y + (S_3P_3 + S_4P_4)\Pi + \sigma - \sigma_0' = 0$$

from which are derived the values of the unknowns given on the same page.

39. In column nine of Table XIII are given in like manner the corrected position-angles from which the equations of condition of Table XX have been formed after the manner of paragraph 35. They are of the form

 $x' + (t-1873.546)y' + \sigma \sin 1'' \cdot (S_8P_3 + S_9P_4) \Pi + \sigma \sin 1'' \cdot (\pi - \pi_0') = 0.$ The resulting values of the unknowns will be found on the same page.

40. In both these cases, however, we cannot assume the parallax of the reference star to be *nil*. Its value has been shown to be $\pm 0.1360 \pm 10.015$. The mean by weight of the values of parallax of $\ell 1^1$ with respect to $\ell 1^2$ obtained from distance and from angle is $\pm 0.072 \pm 10.028$, wherefore the concluded value of the

Parallax of 61^2 Cygni = 0^{''}.288 \pm ^{''}.031

referred indirectly to all the comparison stars given in Table XIV.

TABLE XIX .--- PARALLAX EQUATIONS IN DISTANCE.

COMPARISON STAR, 611 Cygni.

Plate.					v.
Ī	1.00 <i>x</i>	—1.69 <i>y</i>	<u></u> 0.77∏	-0".140=0	-011.248
2	I.00	-1.68	-0.74	+ .I36=0	+ .032
3	I.00	—1.68	0.74	+ .200 = 0	+ .096
4	I.00	0.63	-0.57	+ .076=0	+ .022
5	1.00	<u> </u>	0.37	— .058 — 0	085
6	I.00	<u>—0.59</u>	0.37	+ .085 = 0	+ .058
7	1.00	0.58	0.34	+ .078 = 0	+ .055
8	I.00	+0.33	0.7I	0 = 100. +	045
9	1.00	+0.33	0.7I	— .147 — o	193
10	I.00	+0.34	—0.67	+ .030=0	.010
II	I.00	+0.35	—0.65	+ .243=0	+ .205
12	1.00	+0.35	0.65	061=0	+ .023
13	1.00	+0.35	0.65	+ .128=0	090
15	I.00	+0.87	+0.55	+ .038=0	+ .168
16	1.00	+0.90	+0.42	039=0	+ .075
17	1.00	+0.90	+0.42	022=0	+ .092
18	1.00	+0.91	+0.40	246=o	134
19	I.00	+0.91	+0.40	280= o	168
20	1.00	+0.91	+0.40	— .146=o	033

Normal Equations.

Solution.

	weights.
$x = +0^{\prime\prime}.0362 \pm 0^{\prime\prime}.0249$	12.08
$y = +0$.0272 ± 0 .0295	8.59
$\Pi = +0$.1282 ± 0 .0533	2.64
Probable error of one equation $= \pm 0^{\prime\prime}.0865$.	[vv] = 0.2634

TABLE XX .--- PARALLAX EQUATIONS IN ANGLE.

COMPARISON STAR, 611 Cygni.

Plate.					v_{*}
I	1.00x'	—1.69 <i>y′</i>	+0.597∏	-''.100=0	+".005
2	I.00	—1.68	+ .633	074=0	+ .033
3	1.00	-1.68	+ .633	— .I42 — 0	+ .065
4	1.00	<u></u> 0.63	+ .802	— .165=0	— .103
5	I.00	0.59	+ .890	— .058 <u>—</u> 0	+ .006
6	1.00	0.59	+ .890	+ .122 = 0	+ .186
7	1.00	-0.58	+ .896	— .150 — 0	086
8	I.00	+0.33	+ .672	— .I34 = 0	— .128
9	1.00	+0.33	+ .672	+ .025 = 0	+ .031
IO	I.00	+0.34	+ .723	+ .087 = 0	+ .095
II	1.00	+0.35	+ .742	+ .063=0	+ .072
12	I.00	+0.35	+ .742	+ .013=0	+ .022
13	I.00	+0.35	+ .742	— .II3=0	104
15	I.00	+0.87	— .850		— .031
16	1.00	+0.90	— .910	+ .012 = 0	— .092
17	I.00	+0.90	— .910	+ .383 = 0	+ .279
18	1.00	+0.91	— .9I3	— .076 <u></u> 0	181
19	I.00	+0.91	— .9I3	+ .037=0	.068
20	I.00	+0.91	913	+ .205 = 0	+ .100

Normal Equations.

Solution.

	Weights.
$x' = -0''.0115 \pm ''.0200$	16.57
$y' = -0$.0510 \pm .0273 $= -0^{\circ}$.151 $\pm 0^{\circ}$.081	8.87
$\Pi = +0 .0512 \pm .0321$	6.42
Probable error of one equation $= \pm 0^{\prime\prime}.0813$ [vv]] = 0.2326

Incidentally it should be noticed that the assumed annual change in distance of 61^2 from 61^1 was -0''.128, the negative sign being used to indicate separation. From the value of y in Table XIX the correction to this is 0''.027. Thus the RUTHER-FURD plates for an interval of only 2.6 years give :

Annual increase of distance = $0^{\prime\prime}$.101 $\pm^{\prime\prime}$.030.

In like manner, the assumed increase of position-angle being $0^{\circ}.370$ and Table XX, giving as a correction a further increase of $0^{\circ}.151$, there results :

Annual increase of angle =
$$0^{\circ}.521 \pm ^{\circ}.081$$
.

But what is of greater significance, there is also a difference of parallax :

$(61^{1} \text{ Cygni} - 61^{2} \text{ Cygni}) = + 0''.072 \pm ''.028$

41. This result is so surprising and yet the difference of parallax obtained from angles and from distances is so accordant within the limits of their respective probable errors that I have deemed it advisable to use the very excellent series of measures of the distance of these two stars given by WILSING in Sitzungsberichten* der Königl. Preuss. Akademie der Wissenschaften, 1893, Bd. 40, to see what value of the difference of parallax, if any, might be deduced from them.

42. Using AUWERS' values of the right ascension and declination of 61^1 *Cygni* for 1875.0 and his constants of precession we have:

$$a = 21^{h} 2^{m} 0^{s.6} \\ \delta = 38^{\circ} 12' 48''.6$$
 for 1891.0

I have taken $p = 114^{\circ}.692$ for 1873 with an annual variation of 0°.50 which gives $p = 123^{\circ}.5$ for 1891.0 quite accurately enough; as an error of a whole degree would, demonstrably, have no sensible effect upon the deduced value of parallax. Therefore :

$$S_3 = [9.9849] \sin 350^\circ.8 = -0.154$$

 $S_4 = [9.9181] \sin 271^\circ.3 = -0.828$

With these and the values of P_3 and P_4 computed for each date of Wilsing's plates[†] were formed the parallax coefficients

$$S_3P_3 + S_4P_4$$

which are found in the equations of condition of Table XXI.

*Since given more fully in Publicationen des Astrophysikalischen Observatoriums zu Potsdam, Nr. 36, Bd. XI, 1897.

+Sitzungsberichten, etc., pages 883-4.

No.	Date.	Meas. Dist.	Equations of Condition.	Cor- rected Distance.	Distance minus Mean. v
I 2	1890 Oct. 14.43 22.43	,, 21.04 20.90	$1.x - 0.22y82\Pi + .04 = 0$ 1 -0.197910	20.986 20.847	+
3	Nov. 5.32	20.89	1 —0.16 —.70 —.11=0	20.842	140
4	Dec. 17.24	20.95	1 -0.042105=0	20.935	047
5	1891 Feb. 4.29	20.99	1 +0.10 +.4801=0	21.024	+.042
6 7 8 9 10 11	May 5.48 8.49 11.46 11.47 12.47 29.46	21.04 20.97 21.04 20.87 20.81 20.94	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	21.073 21.001 21.071 20.901 20.837 20.947	+.091 +.019 +.089 081 145 035
12 13 14 15	June 5.49 16.44 17.47 17.49	20.91 20.85 20.81 20.76	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	20.907 20.831 20.790 20.740	075 151 192 242
16 17 18 19 20 21 22 23 24 25 26 27	Aug. 18.40 18.41 18.43 22.42 23.44 27.41 27.42 28.45 28.46 29.38 31.37 31.39	21.12 21.11 21.10 21.01 21.03 21.06 21.20 21.04 21.16 21.02 21.03 21.06	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21.017 21.005 20.995 20.901 20.920 20.946 21.086 20.926 21.046 20.905 20.912 20.942	$\begin{array}{c} +.035 \\ +.023 \\ +.013 \\081 \\062 \\036 \\ +.104 \\056 \\ +.064 \\077 \\070 \\040 \end{array}$
28 29 30 31 32 33 34 35 36 37 38 39	Sept. 6.44 6.45 7.42 7.43 9.46 11.38 23.41 23.43 24.35 24.36 30.37 30.38	21.02 21.12 21.16 21.16 20.95 20.97 21.03 21.14 20.87 21.22 20.90 21.04	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	20.896 20.996 21.036 21.036 20.825 20.844 20.898 21.008 21.088 20.738 21.088 20.764 20.904	$\begin{array}{c}086 \\ +.014 \\ +.054 \\ +.054 \\157 \\138 \\084 \\ +.026 \\244 \\ +.106 \\218 \\078 \end{array}$

TABLE XXI .--- WILSING'S MEASURES.

No.	Date.	Meas. Dist.	Equations of Condition.	Cor- rected Distance.	Distance minus Mean. v
40 41 42 43 44 45 46 47 48 49	1891 Oct. 1.37 1.37 6.35 6.37 9.36 10.30 20.43 23.42 23.43 28.36	" 21.00 21.07 21.01 21.13 21.32 21.31 21.13 21.21 21.08 21.10	$\begin{array}{c} 1.x + 0.75y84\Pi + \stackrel{\prime 0}{0.0000} \\ I + 0.7584 + .07 \\ I + 0.7784 + .01 \\ I + 0.7784 + .13 \\ I + 0.7884 + .32 \\ I + 0.7884 + .31 \\ I + 0.8080 + .13 \\ I + 0.8179 + .21 \\ I + 0.8179 + .08 \\ I + 0.8276 + .10 \end{array}$	"20.864 20.934 20.873 20.993 21.182 21.172 20.994 21.074 20.944 20.965	$ \begin{array}{c} ".118 \\ 048 \\ 109 \\ +.011 \\ +.200 \\ +.190 \\ +.012 \\ +.092 \\ 038 \\ 017 \\ \end{array} $
50 51 52 53 54 55 56 57	Oct. 29.32 Nov. 3.32 3.33 5.41 19.30 29.33 29.34	21.17 21.13 21.11 21.06 21.03 21.34 21.23 21.41	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	21.036 20.998 20.978 20.930 20.900 21.217 21.115 21.295	$\begin{array}{r} +.054 \\ +.016 \\004 \\052 \\082 \\ +.235 \\ +.133 \\ +.313 \end{array}$
58	Dec. 7.23	21.31	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21.202	+.220
59	11.33	21.25		21.147	+.165
60	12.30	21.18		21.077	+.095
61	12.31	21.26		21.157	+.175
62	17.32	21.13		21.033	+.051
63	17.33	21.07		20.973	009
64	25.27	21.32		21.230	+.248
65	25.29	21.11		21.020	+.038
66	25.30	21.09		21.000	+.018
67	1892 Jan. 7.24	21.07	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20.994	+.012
68	7.26	21.12		21.044	+.062
69	17.29	21.14		21.075	+.093
70	17.30	21.10		21.035	+.053
71	20.25	21.26		21.198	+.216
72	20.27	21.18		21.118	+.136
73	20.28	21.09		21.028	+.046
74	May 8.53	21.08	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21.028	+.046
75	11.52	21.08		21.024	+.042
76	11.53	21.07		21.014	+.032
77	26.54	21.05		20.977	005
78	26.56	21.10		21.027	+.045
79	June 8.49	21.05	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	20.960	022
80	8.51	21.07		20.980	002
81	17.55	21.17		21.068	+.086
82	28.48	21.16		21.041	+.059

TABLE XXI.—WILSING'S MEASURES, (Continued).

TABLE XXI.—WILSING'S MEASURES, (Concluded).

No.	Date.	Meas. Dist.	Equations of Condition.	Cor- rected Distance. v
83 84 85 86 87 88	1892 Dec. 22.36 1893 Jan. 7.24 7.28 11.25 28.26 Feb. 4.26	" 21.12 21.16 21.12 21.15 21.10 21.19	$\begin{matrix} \textbf{I.x+1.97y13}\Pi+.12=0\\ \textbf{I}+2.02+.10+.16\\ \textbf{I}+2.02+.10+.12\\ \textbf{I}+2.03+.16+.15\\ \textbf{I}+2.08+.40+.10\\ \textbf{I}+2.10+.49+.19 \end{matrix}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
89 90 91	Mar. 23.61 23.64 27.62	20.98 21.00 21.06	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	20.86911320.88909320.949033
92 93 94	Apr. 6.57 18.59 21.50	20.95 21.02 21.05	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20.837 —.145 20.900 —.082 20.929 —.053
95 96 97 98	May 9.55 10.51 15.56 23.57	21.11 21.11 21.10 21.09	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20.97400820.97300920.95802420.939043
99 100 101 102	June 1.50 7.49 14.49 24.44	21.12 21.15 21.16 21.13	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	20.957 025 20.980 002 20.979 003 20.935 047
103 104 105	July 4.44 15.41 Aug. 3.41	21.22 21.21 21.24	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccc} 21.009 & +.027 \\ 20.984 & +.002 \\ 20.988 & +.006 \end{array}$
106 107 108	Aug. 4.41 10.39 31.45	21.23 21.17 21.26	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	20.977 005 20.909 073 20.977 005
109 110	Sept. 1.49 15.48	21.27 21.22 21.00	1 +2.6773 +.27=0 1 +2.7181 +.22 = Assumed Mean. Mean =	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

43. From these equations are obtained the following normal equations and values of the unknowns :

Normal Equations. +110.0000x +129.0300y -19.1300II +10.3300 = 0 +215.2083 - 3.9695 +15.7599 = 0 +39.4805 - 3.4429 = 0

Solution.

	Weights.
$x = + 0^{\prime\prime}.0180 \pm 0^{\prime\prime}.0014$	25.49
$y = -0$.0824 ± 0 .0093	54.42
$\Pi = + 0 .0876 \pm 0 .0123$	30.81
Probable error of one equation =	=± 0′′.0684
[vv] =	= 1″.1006

44. It will be noticed that this difference of parallax between δz^1 and δz^2 is in very close agreement with the $+ o''.072 \pm .''028$ derived from the RUTHERFURD measures. Its probable error and the sum of the squares of the residuals when compared with similar quantities* in WILSING'S determination of the parallax of δI^2 Cygni would indicate that it has as real an existence in the measures as his own values of the parallax of δI^2 itself; while at the same time bearing testimony to the excellent quality of his measures.

45. Yet this difference of parallax does not preclude the possibility of orbital motion of either δI^1 or δI^2 about a dark companion, as has been suggested by WILSING to account for the systematic irregularity of his measures—a suggestion which the outstanding residuals, after corrections for this difference of parallax have been applied to the measures, would in a degree confirm. And yet it is greatly to be regretted that points numbered 1, 2, 3, and 4 of his curve† are determined by only 4, 2, 2, and 2, exposures on 2, 1, 1, and 1 plates respectively, in contrast with the other points which are determined by the means of from 11 to 40 exposures; and that the most critical portion of the curve (that from January 15th, 1892, to January 13th, 1893) is determined by two points only, from 15 and 11 exposures on only 5 and 4 plates respectively. Moreover, for the reasons stated on page 160 of this paper, the testimony of the PRITCHARD measures, adduced by

 $[\]ast$ [vv] = 2.691; 2.390 and 1.681 on pages 109, 114 and 120 respectively, Publicationen, etc.

⁺ Sitzungsberichten, etc., pages 884-5.

JACOBY* to corroborate WILSING, should be given no weight at the present time.

On the other hand, it is still an open question whether or not the parallaxes obtained from RUTHERFURD measures may not be affected by systematic errors, the nature and origin as well as existence of which are at present unknown. The case of β Cygni⁺ as well as Mrs. Davis' deduction of a similarly large parallax from the measures⁺ of "Bradley 3077" give room for this suspicion. It is for this reason that the confirmation of difference of parallax by WILSING's measures is all the more instructive.

46. It should be stated in this connection also, that even if such orbital motion exist, its amplitude is so greatly diminished by this difference of parallax of the two stars as to reduce the sum of the squares of the residuals formed in means for the 22 groups of WILSING'S Table on page 885§ from 0.1708 to 0.1052 or by nearly forty per cent.

In the following Table, are reproduced, in column two, these twenty-two mean residuals[‡] and in column three are given also the mean of the residuals for the same plates from the last column of Table XXI, whereby to facilitate their comparison as to the effect produced by the introduction of the parallax into the equations.

I have also made a second solution of these 110 equations on the assumption that there might be a term whose coëfficient is

$$\tan\zeta\cos\left(p-q\right)$$

to account for the unequal effect on the two stars of the atmospheric dispersion. The solution of the equations and the resulting residuals are not contradictory of WILSING'S conclusions (from the similarity of the spectra of δz^1 and δz^2) that there is no reason for the introduction of this term. In column four are given, however, the means of the residuals resulting from this solution.

*Monthly Notices, Vol. LIV, page 117. See also, Vierteljahrsschrift, for 1891, Vol. 26, p. 146.

† Astronomical Journal, No. 287: On the Probable Large Parallax of β Cygni, by Harold Jacoby.

‡ Contribution from the Observatory of Columbia University, New York, No. 14.

§ Sitzungsberichten, etc.

|| Publicationen des Astrophysikalischen Observatoriums zu Potsdam, No 36, page 144.

¶ Monthly Notices, Vol. LV, page 123. But see also Vol. LVIII, page 83.

Parallax of 61² Cygni, deduced from

TABLE XXII.—WILSING'S MEASURES.

No. of	Me	Mean of Residuals.			ght.	
on Curve.	Wilsing.	With Parallax.	With Paral. and Atmos. Dispersion.	Plates.	Expos.	Mean Date.
I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	$\begin{array}{r} +041 \\039 \\ +001 \\ +031 \\039 \\179 \\ +071 \\ +031 \\ +131 \\ +131 \\ +151 \\ +091 \\009 \\ +011 \\009 \\159 \\169 \\089 \end{array}$	$\begin{array}{c}066 \\140 \\047 \\ +.042 \\010 \\165 \\015 \\015 \\015 \\ +.032 \\ +.030 \\ +.032 \\ +.030 \\ +.007 \\080 \\093 \\021 \end{array}$	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array}, \\ \\ \end{array}, \\ \\ \hline \\ \\ \end{array}, \\ \\ \hline \\ \\ \end{array}, \\ \\ \begin{array}{c} \\ \\ \\ \\ \end{array}, \\ \\ \\ \\ \end{array}, \\ \\ \\ \\ \\ \end{array}, \\ \\ \\ \\$	2 I I 6 4 12 12 10 8 9 7 5 4 6 3 3 4	4 2 2 2 2 2 2 2 2 2 2 3 2 4 24 24 19 16 17 14 15 11 40 19 24 34	1890 Oct. 18 Nov. 5 Dec. 17 1891 Feb. 4 May 13 June 14 Aug. 25 Sept. 17 Oct. 13 Nov. 11 Dec. 17 1892 Jan. 15 May 16 June 15 1893 Jan. 13 Mar. 24 April 15 May 14
20 21 22	049 +.021 +.011 +.031	019 +.012 028 026	+.004 +.026 002 022	4 3 2	32 24 25 18	July 18 Aug. 15 Sept. 8

(See Paragraph 46.)

47. Several astronomers have investigated the parallax of these stars by measures with reference to the point mid-way between δ_I^1 and δ_I^2 ; others with reference to either star independently of the other. In Table XXIII are gathered many of the results of such investigations where the stars were individually observed. When the same measures have been reduced in several different ways or by different persons, that result which is regarded as definitive has been printed in heavy type, the lightface type being used in other cases. The numbers in the last column refer to the list of reference books given on pages 159–160.

Method.	Star of Comparison.	Parallax of 61 ¹ Cygni.	Probable error r	Authority.	Ref. No.				
δ	Absolute	+0.340	+0,080	Peters	2				
$\Delta\delta$	38°4351	.4654	.0497	Ball	8				
$\Delta\delta$.	38°4351	.400	.055	Ramb. Ball	15				
α	Absolute (?)	.50	.094	Belopolsky	IO				
Δa		.21	.03	Flint	16				
Photography	Ten Stars	.30	.031	Kapteyn	17				
	I	Distance.		·	<u>.</u>				
Photography	37°4189	[+0,4294]	+0.0162	Pritchard	12				
((38°4336	[.4414]	.0222	Pritchard	12				
"	37°4175	۲.44487	.0212	Pritchard	12				
**	38°4348	[.4193]	.0182	Pritchard	12				
Photography	38°4372—37°4159	.5211	.0373	Davis	13				
"	38°4353—37°4159	·4497	.0429	Davis	13				
	38°4325—38°4362	·3733	.0400	Davis	13				
" "	38°4363—38°4325	.2431	.0409	Davis	13				
"	37°4189—38°4336	.3888	.0658	Davis	13				
Photography	37°4189	.405	.026	Wilsing	14				
Position Angle.									
Photography	37°4180	+0.3028	±0.0354	Davis	13				
	37°4175	•3779	.0395	Davis	13				
"	37°4189	.2794	.0473	Davis	13				
"	37°4185	.3299	.0557	Davis	13				
"	37°4178	.3442	.0620	Davis	13				
"	38°4341	•3334	.0743	Davis	13				
"	3 ^{8°} 4335	.4401	.0819	Davis	13				

TABLE XXIII.-VARIOUS VALUES OF PARALLAX OF 61¹ CYGNI.

٩.

TABLE XXIII.—VARIOUS VALUES OF PARALLAX OF 61² Cygni.

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Method.	Star of Comparison.	Parallax of 61² Cygni.	Probable error r	Authority.	Ref. No.					
" 38^94345 $.2698$ $.0130$ A. Hall II " 38^94345 $.3217$ $.0213$ A. Hall II " $\Delta a = -63^{\circ}.5$ $.2005$ $.0246$ A. Hall II $\Delta a = -34''$ $.2005$ $.0246$ A. Hall II Δa Absolute (?) $.55$ $.091$ Belopolsky IO Photography Ten Stars. $.36$ $.034$ Kapteyn I7 Distance. Micrometer 38^94345 $.4365$ $.0738$ Socoloff's Schweizer 5 "" "" $.4385$ $.0654$ Lamp's Schweizer 5 "" "" $.4388$ $.0654$ Lamp's Schweizer 6 "" "" $.4388$ $.0654$ Lamp's Schweizer 6 "" "" $.4388$ $.0654$ Lamp's Schweizer 6 "" "" $.4389$ $.0564$ Lamp's Schweizer 6 "" "" $.4389$ $.0176$ Pritchard 12	$\Delta\delta$, Microm.	38°4351	+0.4676	±0.0321	Ball	9					
" $38^{\circ}4345$ $.3217$ $.0213$ A. Hall II " $\Delta \alpha = -63^{\circ}.5$ $.2005$ $.0246$ A. Hall II " $\Delta \alpha = -34''$ $.55$ $.091$ Belopolsky IO Photography Ten Stars. $.36$ $.034$ Kapteyn 17 Distance. Distance. Image: Comparison of the stars of		38°4345	.2698	.0130	A. Hall	II					
" $\Delta a = -63^{3}.5$ $\Delta a = -34''$ J. 2005; .0246 A. Hall II Δa Absolute (?) .55 .091 Belopolsky IO Photography Ten Stars. .36 .034 Kapteyn I7 Distance. Distance. Micrometer $38^{\circ}4345$.05092 ± 0.0355 O. Struve 3 """"""""""""""""""""""""""""""""""""	66	38°4345	.3217	.0213	A. Hall	II					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	"	$ \begin{array}{c} \Delta a = -63^{\circ}.5 \\ \Delta \delta = -34^{\prime\prime} \end{array} $. 2005	.0246	A. Hall	11					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Δa	Absolute (?)	.55	.091	Belopolsky	IO					
Distance. Micrometer $38^{\circ}4345$ 0.5092 ± 0.0355 O. Struve 3 "" "" 0.5092 ± 0.0355 O. Struve 3 Micrometer $38^{\circ}4345$ $.4365$ $.0738$ Socoloff's Schweizer 5 "" "" .4385 $.0524$ Socoloff's Schweizer 5 "" "" .4388 $.0654$ Lamp's Socoloff's Schweizer 5 "" "" .4388 $.0654$ Lamp's Schweizer 6 "" ".4384 $.0657$ Lamp's Schweizer 6 "" "" .4715 $.0684$ Lamp's Schweizer 6 "" "" .4715 $.0684$ Lamp's Schweizer 6 Photography 37°4189 [".4250] $.0176$ Pritchard 12 "" "" .4303 .0178 Pritchard 12 Photography 61' Cygni .288 .031 Davis 13 Photography <td>Photography</td> <td>Ten Stars.</td> <td>.36</td> <td>.034</td> <td>Kapteyn</td> <td>17</td>	Photography	Ten Stars.	.36	.034	Kapteyn	17					
Micrometer $38^{\circ}4345$ 0.5092 ± 0.0355 0. Struve3"" $.5179$ $.0328$ Lamp's Struve6Micrometer $38^{\circ}4345$ $.4365$ $.0738$ Socoloff's Schweizer5"""" $.4885$ $.0824$ Socoloff's Schweizer5"""" $.4388$ $.0654$ Lamp's Schweizer6"""" $.4388$ $.0654$ Lamp's Schweizer6"""" $.4389$ $.0654$ Lamp's Schweizer6"""" $.4594$ $.0637$ Lamp's Schweizer6"""" $.4715$ $.0684$ Lamp's Schweizer6Photography $37^{\circ}4189$ [$.4250$] $.0176$ Pritchard12"" $38^{\circ}4346$ [$.4303$] $.0176$ Pritchard12"" $38^{\circ}4348$ [$.4303$] $.0178$ Pritchard12Photography 61° Uggni $.288$ $.031$ Davis13Photography $37^{\circ}4189$ $.357$ $.017$ Wilsing14Position-Angle.Micrometer $38^{\circ}4345$ $.3761$ $.0439$ Socoloff's Schweizer5"""""" $.4926$ $.0546$ Socoloff's Schweizer5"""""" $.4926$ $.0438$ Lamp's Scooloff's Schweizer5"""" $.3761$ $.0439$ Socoloff's Schweizer5"""""" $.4927$ $.0512$ Lamp's Scooloff's Sc		I	Ľ)istance.		1					
"" "" .5179 .0328 Lamp's Struve 6 Micrometer $38^{\circ}4345$.4365 .0738 Socoloff's Schweizer 5 "" "" .4885 .0824 Socoloff's Schweizer 5 "" "" .4388 .0654 Lamp's Socoloff's Schweizer 6 "" ".4388 .0654 Lamp's Socoloff's Schweizer 6 "" ".4394 .0637 Lamp's Schweizer 6 "" ".4715 .0684 Lamp's Schweizer 6 Photography $37^{\circ}4189$ [.4250] .0176 Pritchard 12 "" 38°4336 [.4303] .0199 Pritchard 12 "" 38°4348 [.4303] .0178 Pritchard 12 "" 38°4348 [.4303] .0178 Pritchard 12 Photography 61' Cygni .288 .031 Davis 13 Photography 37°4189 .357 .017 Wilsing 14 "" "" .4913 .0371 Lamp's Struve	Micrometer	3 ^{8°} 4345	0.5092	± 0.0355	O. Struve	3					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	66	"	.5179	.0328	Lamp's Struve	6					
Altorior $36^{\circ} 4345$ 4363_{\circ} 1635_{\circ} Bocoloff's Schweizer5'''' $.4885_{\circ}$ $.0824_{\circ}$ Socoloff's Schweizer6'''' $.4388_{\circ}$ $.0654_{\circ}$ Lamp's Socoloff's Schweizer6'''' $.4594_{\circ}$ $.0657_{\circ}$ Lamp's Sochweizer6'''' $.4715_{\circ}$ $.0684_{\circ}$ Lamp's Schweizer6'''' $.4715_{\circ}$ $.0684_{\circ}$ Lamp's Schweizer6Photography $37^{\circ}4189_{\circ}$ ['.4250]_{\circ} $.0176_{\circ}$ Pritchard12'' $38^{\circ}4346_{\circ}$ [.4303]_{\circ} $.0190_{\circ}$ Pritchard12'' $38^{\circ}4348_{\circ}$ [.4303]_{\circ} $.0178_{\circ}$ Pritchard12Photography 61° Cygni $.288_{\circ}$ $.031_{\circ}$ Davis13Photography 61° Cygni $.288_{\circ}$ $.031_{\circ}$ Davis14Position-Angle.Micrometer $38^{\circ}4345_{\circ}$ $\frac{.4913}{.027_{\circ}}$ $.0371_{\circ}$ Lamp's Struve6Micrometer $38^{\circ}4345_{\circ}$ $.3761_{\circ}$ $.0439_{\circ}$ Socoloff's Schweizer5'''' $.4926_{\circ}$ $.0546_{\circ}$ Socoloff's Schweizer5'''' $.4926_{\circ}$ $.0546_{\circ}$ Socoloff's Schweizer5'''' $.4926_{\circ}$ $.0546_{\circ}$ Socoloff's Schweizer5'''' $.4926_{\circ}$ $.0546_{\circ}$ Socoloff's Schweizer5''''	Micrometer	28°4345	.4365	0738	Socoloff's Schweizer	5					
""	"'	J° +J+J ((.4885	.0824	Socoloff's Schweizer	5					
"" "" .5220 .0770 Lamp's Socoloff's Schweizer 6 "" "" .4594 .0637 Lamp's Schweizer 6 "" "" .4715 .0684 Lamp's Schweizer 6 Photography 37°4189 [.4250] .0176 Pritchard 12 "" 38°4336 [.4303] .0191 Pritchard 12 "" 38°4348 [.4303] .0190 Pritchard 12 "" 38°4348 [.4303] .0178 Pritchard 12 Photography 61' Cygni .288 .031 Davis 13 Photography 37°4189 .357 .017 Wilsing 14 Position-Angle. Micrometer 38°4345 +".5008 ±0.0466 O. Struve 3 "" "" .4913 .0371 Lamp's Schweizer 5 "" "" .4926 .0546 Socoloff's Schweizer 5 "" "" .4926 .0546 Socoloff's Schweizer 5	66	"	.4388	.0654	Lamp's Socoloff's Schweizer	6					
" " .4594 .0637 Lamp's Schweizer 6 " " .4715 .0684 Lamp's Schweizer 6 Photography $37^{\circ}4189$ [.4250] .0176 Pritchard 12 " $38^{\circ}4336$ [.4250] .0176 Pritchard 12 " $38^{\circ}4336$ [.4303] .0191 Pritchard 12 " $37^{\circ}4175$ [.4320] .0190 Pritchard 12 " $38^{\circ}4348$ [.4303] .0178 Pritchard 12 Photography 61° Cygni .288 .031 Davis 13 Photography $37^{\circ}4189$.357 .017 Wilsing 14 Position-Angle. Micrometer $38^{\circ}4345$ $+0^{\circ}.5008$ $\pm0^{\circ}.0466$ O. Struve 3 "Micrometer $38^{\circ}4345$ $.3761$.0439 Socoloff's Schweizer 5 " " .4926 .0546 Socoloff's Schweizer 5 " " .4926 .0512 Lamp's So	6.6	**	.5220	.0770	Lamp's Socoloff's Schweizer	6					
"".4715.0684Lamp's Schweizer6Photography $37^{\circ}4189$ [.4250].0176Pritchard12" $38^{\circ}4336$ [.4508].0191Pritchard12" $37^{\circ}4175$ [.4320].0190Pritchard12" $38^{\circ}4348$ [.4303].0178Pritchard12Photography 61° Cygni.288.031Davis13Photography 61° Cygni.288.017Wilsing14Position-Angle.Micrometer $38^{\circ}4345$ $+0^{\circ}.5008$ $\pm0^{\circ}.0466$ O. Struve3"""".4913.0371Lamp's Struve6Micrometer $38^{\circ}4345$.3761.0439Socoloff's Schweizer5"""".4926.0546Socoloff's Schweizer5"""".4957.0512Lamp's Socoloff's Schweizer6"""".4957.0512Lamp's Schweizer6	"	" "	.4594	.0637	Lamp's Schweizer	6					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	66	66	.4715	.0684	Lamp's Schweizer	6					
"" $38^{\circ}4336$ [.4503] .0191 Pritchard 12 " $37^{\circ}4175$ [.4303] .0191 Pritchard 12 "" $38^{\circ}4348$ [.4303] .0190 Pritchard 12 Photography 61° Cygni .288 .031 Davis 13 Photography 61° Cygni .288 .031 Davis 14 Photography $37^{\circ}4189$.357 .017 Wilsing 14 Position-Angle. Micrometer $38^{\circ}4345$ $+0.5008$ ±0.0466 O. Struve 3 "" "" $+0.5008$ ±0.0466 O. Struve 3 6 Micrometer $38^{\circ}4345$.3761 .0439 Socoloff's Schweizer 5 "" "" .4926 .0546 Socoloff's Schweizer 5 "" "" .4925 .0438 Lamp's Socoloff's Schweizer 5 "" "" .4957 .0512 Lamp's Schweizer 6	Photography	37°4189	[.4250]	.0176	Pritchard	12					
" $37^{\circ}4175$ [.4320] .0190 Pritchard 12 " $38^{\circ}4348$ [.4303] .0178 Pritchard 12 Photography 61° Cygni .288 .031 Davis 13 Photography $37^{\circ}4189$.357 .017 Wilsing 14 Position-Angle. Micrometer $38^{\circ}4345$ $+0^{\circ}.5008$ $\pm0^{\circ}.0466$ O. Struve 3 Micrometer $38^{\circ}4345$ 4913 .0371 Lamp's Struve 6 Micrometer $38^{\circ}4345$.3761 .0439 Socoloff's Schweizer 5 " " .4926 .0546 Socoloff's Schweizer 5 " " .4925 .0438 Lamp's Socoloff's Schweizer 5 " " .4957 .0512 Lamp's Schweizer 6		38°4336	[.4508]	.0191	Pritchard	12					
'' $38^{\circ}4348$ [.4303] .0178 Pritchard 12 Photography 61^{1} Cygni .288 .031 Davis 13 Photography $37^{\circ}4189$.357 .017 Wilsing 14 Position-Angle. Micrometer $38^{\circ}4345$ $+0.5008$ ±0.0466 O. Struve 3 Micrometer $38^{\circ}4345$ $+0.5008$ ±0.0466 O. Struve 3 Micrometer $38^{\circ}4345$ $.3761$.0439 Socoloff's Schweizer 5 '' '' .4926 .0546 Socoloff's Schweizer 5 '' '' .4925 .0438 Lamp's Socoloff's Schweizer 5 '' '' .4957 .0512 Lamp's Socoloff's Schweizer 6 '' '' .3818 .0457 Lamp's Schweizer 6	"	37°4175	[.4320]	.0190	Pritchard	12					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	"	38°4348	[.4303]	.0178	Pritchard	12					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Photography	61¹ Cygni	.288	.031	Davis	13					
Position-Angle. Micrometer $38^{\circ}4345$ $+0.5008$ ±0.0466 O. Struve 3 "" "" .4913 .0371 Lamp's Struve 6 Micrometer $38^{\circ}4345$.3761 .0439 Socoloff's Schweizer 5 "" "" .4926 .0546 Socoloff's Schweizer 5 "" "" .3925 .0438 Lamp's Socoloff's Schweizer 6 "" "" .4957 .0512 Lamp's Socoloff's Schweizer 6 "" "" .3818 .0457 Lamp's Schweizer 6	Photography	37°4189	.357	.017	Wilsing	14					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Position-Angle.									
"" .4913 .0371 Lamp's Struve 6 Micrometer 38° 4345 .3761 .0439 Socoloff's Schweizer 5 "" .4926 .0546 Socoloff's Schweizer 5 "" .4925 .0438 Lamp's Schweizer 5 "" .4925 .0438 Lamp's Socoloff's Schweizer 6 "" .4957 .0512 Lamp's Socoloff's Schweizer 6 "" .3818 .0457 Lamp's Schweizer 6	Micrometer	38°4345	+0.5008	±0.0466	O. Struve	3					
Micrometer 38°4345 .3761 .0439 Socoloff's Schweizer 5 '' '' .4926 .0546 Socoloff's Schweizer 5 '' '' .3925 .0438 Lamp's Socoloff's Schweizer 6 '' '' .4957 .0512 Lamp's Socoloff's Schweizer 6 '' '' .4957 .0512 Lamp's Socoloff's Schweizer 6 '' '' .3818 .0457 Lamp's Schweizer 6	66	"	.4913	.0371	Lamp's Struve	6					
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	Micrometer	2804245	2761	0420	Socoloff's Schweizer	=					
"" "" <th""< th=""> "" "" ""<!--</td--><td>((</td><td>50 4545</td><td>.4026</td><td>.0546</td><td>Socoloff's Schweizer</td><td>5 5</td></th""<>	((50 4545	.4026	.0546	Socoloff's Schweizer	5 5					
" " .4957 .0512 Lamp's Socoloff's Schweizer 6 " " .3818 .0457 Lamp's Schweizer 6	"	66	.3925	.0438	Lamp's Socoloff's Schweizer	6					
" .3818 .0457 Lamp's Schweizer 6	66		.4957	.0512	Lamp's Socoloff's Schweizer	6					
	66	66	.3818	.0457	Lamp's Schweizer	6					
" .4824 .0517 Lamp's Schweizer 6	"	"	.4824	.0517	Lamp's Schweizer	6					

The Rutherfurd Photographic Measures.

48. While there is some dependence of one result on another in those instances where the same star of comparison was used, yet, as the measures were made by independent observers and dissimilar methods, and show in themselves no indication of a parallax of the comparison-star, it is not improper to combine all these individual results into means by weights proportional to the reciprocal of the square of the probable error. Thus we have the mean of previous determinations of the

Parallax of 61^1 Cygni = 0.''417 + 0''.0216

and, in like manuer excluding my own determinations:

Parallax of 61^2 Cygni = 0^{''}.335 + 0^{''}.0076

which give:

$$6I^1 - 6I^2 = +0.''082 \pm 0''.023 [+0''.054 \pm 0''.010]$$

and if the RUTHERFURD results be included as given in Table XXIII, this becomes:

$$6I^1 - 6I^2 = +0^{\prime\prime}.048 \pm 0^{\prime\prime}.014 \quad [+0^{\prime\prime}.035 \pm 0^{\prime\prime}.009]$$

The numbers placed in the brackets are what these values would have been had PRITCHARD'S results not been discarded.

49. Let us now tabulate these differences of parallax of the two stars under consideration :

Davis' Rutherfurd,—direct measures of distance +0".128	+'	1.053	
Davis' Rutherfurd,-direct measures of angles + .051		.032	
Adopted Mean =	+-	0//.072 =	⊢ ″.o2 8
Davis' Wilsing,-direct measures of distance	+	.088	.012
Wilsing's $(6I^1 - 6) - (6I^2 - 6)^*$	+	.048	.031
Mean of all determinations† previous to Rutherfurd =	+	.082	.013
Mean of all determinations including Rutherfurd =	+	.048	.014

The magnitude and accordance of these values when considered in connection with their respective probable errors leave little room for doubt as to the reality of the difference of parallax detected by the measures of the RUTHERFURD plates, and discarding PRITCHARD's results in no respect lessens the force of the argument. So that if 61^1 Cygni be really a binary system of which

*Publicationen des Astrophysikalischen Observatoriums zu Potsdam : Nr. 36. page 148.

 $\uparrow As$ determined from Table XXIII on pages 155-6, using only the values in bold type.

Parallax of 61² Cygni, deduced from

one member is a dark body* it is nevertheless far removed from the influence of 61^2 *Cygni*, which would account for the as yet unproved[†] orbital motion of δz^1 and δz^2 around a centre of gravity common to the two. The probabilities in favor of the existence of such orbital motion, if they really have the same parallax, are fully as strong as are those against the juxtaposition in line of sight of two stars having so nearly the same large apparent motion, if they are really separated in space by the distance which this *difference* of parallax indicates.

This presents to us therefore one of those cases where the exceedingly strong probability against an event happening is perhaps overruled by its actual occurrence.

The evidence here presented as to a difference of parallax is at any rate of sufficient weight to demand a more extended series of photographic measures of the same degree of precision as WIL-SING's and extending over more than two years. Perhaps Prof. Wilsing would himself be willing to continue his series of plates. It is also highly desirable to reinforce the evidence of a variable proper motion of δr^1 by independent methods, such as is afforded by the spectroscope, for example.

* Publications of the Lick Observatory, Vol. II, 1894. Page 122. BURNHAM records his inability to see at 1889.463 and 1889.502 a companion to either star, though using the 36-inch telescope with powers up to 1000.

+ Monthly Notices, Vol. XXXV, page 323. Ast. Nach., Vol. 132, pages 87 and 199. BURNHAM in The Sideral Messenger, Vol. X, page 1, and MANN, ibid. page 13.

Reference Books.--(See TABLE XXIII.)

(1.) BESSEL—Astronomische Nachrichten, No. 365-6, and Vol. XVII.

(2.) PETERS-Recherches sur la Parallaxe des Étoiles Fixes. Recueil de Mémoires présentés à l'Académie des Sciences par les Astronomes de Poulkova. Vol. I, page 136.

(3.) STRUVE — Nouvelle Détermination de la Parallaxe annuelle des Étoiles a Lyræ et 61 Cygni. Memoires de l'Académie Impériale des Sciences de St.-Pétersbourg, VII Série. Vol. I, No. 1, page 44.

(4.) AUWERS-Untersuchungen über die Beobachtungen von Bessel und Schlüter am Königsberger Heltometer zur Bestimmung der Parallaxe von 61 Cygni. Abhandlungen der Academie zu Berlin, 1868 : page 113.

(5.) Socoloff — Parallaxes des Étoiles observées par G. Schweizer. Annales de l'Observatoire de Moscou, Vol. VIII, 2, pages 89-90.

(6.) LAMP-Neue Berechnung der Parallaxe von 61 Cygni aus den Beobachtungen von Schweizer in Moskau 1863-1866, Kiel, 1883, pages 52-9.

(7.) JOHNSON — Introduction to the Observations with the Heliometer. Part II of Astronomical Observations made at the Radcliffe Observatory in the year 1853. Vol. XIV, page xxxix.

(8.) BALL—On a new Determination of the Parallax of the Preceding Star of 61 Cygni by the Method of Differences of Declination. Astronomical Observations and Researches made at Dnnsink. Part III, page 27.

(9.) BALL—Further Researches on the Parallax of 61 Cygni. Astronomical Observations and Researches made at Dunsink. Part V, page 166.

(10.) BELOPOLSKY-Astronomische Nachrichten, No. 2888.

These values of parallax are computed from discordances in right ascension between observations made six months apart on the transit instrument by WAGNER at Poulkova in 1862–1870.

(11.) HALL—Observations for Stellar Parallax. Washington Observations for 1883, Appendix II, pages 54 and 67.

(12.) PRITCHARD—Researches in Stellar Parallax by the aid of Photography, from Observations made at the Oxford University Observatory, Oxford, 1889.

In the formation of Table XXIII, giving the various values of the parallax of 61 Cygni hitherto published, I have not placed Pritchard's values in bold type, because they cannot be regarded as trustworthy. They have been discarded in taking the means of the determinations for δt^1 and δt^2 . I have examined the eight sets of normal equations given in the work on 61 Cygni (pages 17-63) and among the eight sets have not found one which is correct in every quantity. The set on page 30 first attracted my attention and so it may be used for illustration. As given there the quantities are :

 $\begin{array}{l} -1^{\prime\prime}.3140=+88.0000\ x-6.7889\ d\mu-2.5442\ \pi\\ +4\ .3827=-\ 6.7889\ +8.4762\ +9.7965\\ +17\ .1716=-\ 2.5442\ +9.7965\ +38.7724\\ \text{d be:}\\ -1^{\prime\prime}.21^{8}0=+88.0000\ x-6.7889\ d\mu-9.92^{8}1\ \pi\end{array}$

These should be :

This criticism applies not only to the normals for 61 *Cygni* but for many of the other stars as well. No attempt has been made to verify all the numbers in each set of normals, nor indeed to extend the test to all sets of normals given in the book, but it can be stated that at least one number is wrong in each of the fourteen sets given on pages 17, 23, 30, 36, 47, 52, 58, 73, 75, 87, 104, 106, 107 and 113.

(13.) DAVIS—Contributions from the Observatory of Columbia University, New York, No. 13.

(14.) WILSING—Untersuchungen über die Parallaxe und die Eigenbewegung von 61 Cygni nach Photographischen Aufnahmen. Publicationen des Astrophysikalischen Observatoriums zu Potsdam, No. 36, pages 152 and 148.

(15.) RAMBAUT-On the Effects of Atmospheric Dispersion on the Position of a Star. Monthly Notices, Vol. LV, page 123.

(16.) FLINT-Research Work at the Washburn Observatory. The Astrophysical Journal, Vol. VI, page 420.

A preliminary announcement of results now in process of computation.

(17.) KAPTEYN—Bestimmung von 250 Parallaxen. Astronomische Nachrichten, Bd. 145, S. 300. V.—The Rutherfurd Photographic Measures of Thirty-four Stars near "Bradley 3077."

BY HERMAN S. DAVIS.

Read May, 1897.

1. The methods of reduction employed in the formation of this catalogue are the same as have been described in my paper on *Sixty-five Stars near 61 Cygni*, except that no corrections for parallax were applied. The computations have been almost entirely performed by Mrs. Davis, who has also rendered considerable assistance in the computations connected with all my other papers on the *Ruther/urd Measures*.

In this presentation of results the Tables have been given numbers to correspond with the similar tables in the paper on 61*Cygni*, reference to which will make clear any matter not sufficiently intelligible from the captions to the various columns.

2. Nearly the mean date of observation, 1874.0, was selected as the epoch to which the observations were reduced. Thus we have :

 $\begin{array}{l} \Delta p_{73} = - \ 8^{\prime\prime} + \ [0.919] \ A + \ [0.246_n] \ B + \ [0.167_n] \ C + \ [9.537] \ D \\ \Delta p_{74} = 0 + \ [0.919] \ A + \ [0.246_n] \ B + \ [0.167_n] \ C + \ [9.537] \ D \end{array}$

as the correction for precession, nutation and aberration in position-angle; and, for all years, to correct for aberration in distance:

$$\Delta s = \{ [4.058]C + [4.416n]D \} s$$

3. The logarithms of the Besselian day-numbers, taken from the *American Ephemeris*, are:

Plates.	$\log A$.	$\log B$.	log C.	$\log D$.
I, 2, 3,	9.786	0.808n	1.053	1.213
4, 5, 6,	9.805	0.801 _n	0.958	1.253
7, 8,	9.336	0.857n	0.776 _n	1.287n
9, 10,	9.411	0.854n	0.418 _n	1.306n
11, 12.	9.417	0.854n	0.364n	1.307n

(161)

4. ARGELANDER'S position and proper motion of this star as given in *Mittlere Positionen von 160 Sternen* have been adopted. For 1874.0 they are:

$$a = 23^{h} \text{ o7}^{m} \text{ 13}^{s}.356 \qquad \mu = + \text{ o}^{s}.24867 \\ \delta = 56^{\circ} 28' 21''.95 \qquad \mu' = + \text{ o}''.2685$$

From these are derived :

 $\rho = 2^{\prime\prime}.07765 = 0^{d}.07416$ $\chi = 82^{\circ} 34^{\prime} 29^{\prime\prime}$

The values of P_1 , P_2 , P_5 , and K, depending hereon, are in Table VII on page 184; and S_1 , S_5 , S_6 , and S_7 , are in Table VIII.

5. For determining the correction for scale-variation, stars numbered 3, 9, 19, 20, 31 and 33 have been used. These are so distributed that

 $\Sigma_{s_s} = 428^{i}.6222, \quad \Sigma \cos p = -0.01, \text{ and } \Sigma \sin p = -0.10$

Therefore the

Scale variation =
$$\frac{\Sigma_{S_s} - (s_3 + s_9 + s_{19} + s_{20} + s_{31} + s_{33})}{\Sigma_{S_s}}s.$$

This factor of s will be found on page 184.

6. The correction for orientation variation on page 184 has been deduced in the same manner as described in paragraphs 19-21 of the paper on 61 Cygni, except that Mrs. Davis has reduced the orientation to the mean of all the plates excluding that numbered six, regarding for very obvious reasons the mean of the remaining eleven as nearer the truth than the mean of the entire twelve. Thus the corrections actually applied reduces the orientation to the mean of the remaining eleven plates. The nine stars whose numbers are 8, 9, 10, 11, 14, 16, 17, 20 and 33 after correction for proper motion have been used as standards. They give:

$$\frac{\Sigma\sigma^2 S_8}{\Sigma\sigma^2} = +6.0 \text{ and } \frac{\Sigma\sigma^2 S_9}{\Sigma\sigma^2} = -2.3$$

7. For calculating the difference of right ascension and of declination the following constants have been used :

$\log P = 0.257799$	$\log R = 9.5094$ n	$\log T = 4.5633$ n
$\log Q = 5.1221$	$\log 8 = 0.0458$	$\log U = 9.4870_{n}$

Also, by paragraph 24 of Catalogue of Sixty-five Stars near 61 Cygni.

$$\begin{array}{c} n = \sigma \sin \pi \\ m = \sigma \cos \pi \\ a' - a = Pn + Qnm + Rn^3 + Snm^2 \\ \delta' - \delta = m + Tn^2 + Un^2m \end{array}$$

ILE 1GENERAL DATAODServatory of 1	I L. M. Kutherfurd, New York
$T_{at} = 40^{\circ} 43/48/7 = 1.6$	I on - Abermeds 60 W

				· · · · · · · · · · · · · · · · · · ·	0			5 . 1 t					
Plate.	Date.		Sidereal Time.	Hour Angle.	Barom.	Att. Therm.	"Ext. Therm.	Tel. Therm.	Focus.	Zero.	\$, p	log ĸ
наю	1873 Nov. Nov. Nov.	14 14 14	$ \begin{array}{cccc} {}^{h} & {}^{m} & {}^{s} \\ {}^{1} 54 & 3 \\ {}^{2} 28 & 3 \\ {}^{3} 4 & 3 \\ {}^{3} 4 & {}^{3} \end{array} $	^h m s 2 46 53 3 20 53 3 56 53	30.132 30.132 30.132	29 29 29	28° 28° 28	30 30 °°	8.0 8.0 8.0	58.60 63.73 59.19	31.09 35.73 40.70	+102.42 + 94.30 + 86.73	6 4709 6.4707 6.4704
4 v Q	Nov. Nov. Nov.	22 22 22	2 45 33 3 18 23 3 50 43	3 38 23 4 11 13 4 43 33	30.418 30.418 30.418	36 36 36	35 35 35	36 36 36	7.8 7.8 7.8	54.68 58.90 40.86	38.16 42.67 47.08	+ 90.51 + 83.92 + 77.89	6.4682 6.4679 6.4676
r×8	1874 June June	г	19 7 7 19 44 23	19 59 54 20 37 10	29.984 29.984	38	55 55	60 60	7.7 7.7	54. II 54. 73	41.15 36.00	86.09 93.86	6.4437 6.4440
9 01	June June	12 12	18 27 27 19 0 17	19 20 14 19 53 4	29.950 29.950	71	69 69	70 70	7.64 7.64	54.15 48.89	46.57 42.09	- 78.58 - 84.75	6.4305 6.4312
11 12	June June	13 13	IS 59 43 I9 33 33	I9 52 30 20 26 20	30.300 30.300	59 59	57 57	60	7.7	54.21 54.35	42.16 37.50	— 84.64 — 91.51	6.4466 6.4469

$\begin{array}{c} \text{Position Angle,} \\ p \end{array}$	$\frac{\sigma-s}{s} imes 10^3$	π-p	Position Angle, p	$\frac{\sigma-s}{s}$, \times 103	$\pi - p$	
	PLATE 1.			PLATE 2.		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} +.410\\ .406\\ .397\\ .383\\ .365\\ .345\\ .328\\ .314\\ .304\\ .304\\ .304\\ .304\\ .304\\ .314\\ .328\\ .345\\ .365\\ .383\\ .397\\ .406\\ .410\end{array}$	$\begin{array}{c} \begin{array}{c} & & \\ & & 0.0 \\ - & 3.9 \\ - & 7.2 \\ - & 9.7 \\ - & 11.1 \\ - & 11.1 \\ - & 11.1 \\ - & 9.7 \\ - & 7.2 \\ - & 3.9 \\ 0.0 \\ + & 3.9 \\ 0.0 \\ + & 3.9 \\ - & 7.2 \\ + & 9.7 \\ + & 11.1 \\ + & 9.7 \\ + & 11.1 \\ + & 9.7 \\ + & 7.2 \\ + & 3.9 \\ 0.0 \end{array}$	$\begin{array}{ccccccc} 94^{\circ} & 274^{\circ} \\ 104 & 284 \\ 114 & 294 \\ 124 & 304 \\ 134 & 314 \\ 144 & 324 \\ 154 & 334 \\ 164 & 344 \\ 174 & 354 \\ 184 & 4 \\ 194 & 14 \\ 204 & 24 \\ 214 & 34 \\ 224 & 44 \\ 234 & 54 \\ 244 & 64 \\ 254 & 74 \\ 264 & 84 \\ 274 & 94 \end{array}$	+.456 .451 .438 .417 .392 .365 .339 .301 .306 .301 .306 .319 .365 .339 .365 .392 .417 .438 .451 .456	$\begin{array}{c} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$	
	PLATE 3.		Plate 4.			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} +.5^{21} \\ .5^{15} \\ .496 \\ .466 \\ .430 \\ .391 \\ .355 \\ .326 \\ .306 \\ .306 \\ .306 \\ .326 \\ .306 \\ .326 \\ .391 \\ .430 \\ .466 \\ .496 \\ .515 \\ .521 \end{array}$	$\begin{array}{c} 0.0\\ -7.8\\ -14.7\\ -19.8\\ -22.5\\ -22.5\\ -19.8\\ -14.7\\ -7.8\\ 0.0\\ +7.8\\ +14.7\\ +19.8\\ +22.5\\ +22.5\\ +22.5\\ +19.8\\ +14.7\\ +7.8\\ 0.0\\ \end{array}$	$\begin{array}{cccc} 91^{\circ} & 271^{\circ} \\ 101 & 281 \\ 111 & 291 \\ 121 & 301 \\ 131 & 311 \\ 141 & 321 \\ 151 & 331 \\ 161 & 341 \\ 171 & 351 \\ 181 & 1 \\ 191 & 11 \\ 201 & 21 \\ 211 & 31 \\ 221 & 41 \\ 231 & 51 \\ 241 & 61 \\ 251 & 71 \\ 261 & 81 \\ 271 & 91 \\ \end{array}$	+.483 .477 .462 .437 .375 .344 .320 .305 .320 .305 .320 .344 .375 .320 .344 .375 .407 .437 .462 .477 .483	$\begin{array}{c} \begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $	

TABLE II.—CORRECTIONS FOR REFRACTION.

Thirty-four Stars near "Bradley 3077." 165

Position Angle, p	$\frac{\sigma-s}{s} imes 10^3$	$\pi - p$	Position Angle, p	$rac{\sigma-s}{s} imes 10^3$	$\pi - p$	
	PLATE 5.		Plate 6.			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} +.55^2 \\ .544 \\ .523 \\ .489 \\ .448 \\ .403 \\ .361 \\ .328 \\ .307 \\ .299 \\ .307 \\ .299 \\ .307 \\ .299 \\ .307 \\ .293 \\ .361 \\ .448 \\ .489 \\ .489 \\ .523 \\ .544 \\ .552 \end{array}$	$\begin{array}{c} \begin{array}{c} & & & & & & & & & & \\ & & & & & & & & $	$\begin{array}{cccc} 78^\circ & 258^\circ \\ 88 & 268 \\ 98 & 278 \\ 108 & 288 \\ 118 & 298 \\ 128 & 308 \\ 138 & 318 \\ 148 & 328 \\ 158 & 338 \\ 168 & 348 \\ 158 & 348 \\ 158 & 348 \\ 158 & 348 \\ 168 & 348 \\ 168 & 348 \\ 188 & 8 \\ 198 & 18 \\ 208 & 28 \\ 218 & 38 \\ 228 & 48 \\ 238 & 58 \\ 248 & 68 \\ 258 & 78 \\ \end{array}$	$\begin{array}{r} +.644\\ .634\\ .633\\ .557\\ .502\\ .441\\ .385\\ .339\\ .309\\ .299\\ .309\\ .299\\ .309\\ .339\\ .385\\ .441\\ .502\\ .557\\ .603\\ .634\\ .644\end{array}$	$\begin{array}{c} 0.0\\ -12.2\\ -22.8\\ -30.8\\ -35.0\\ -35.0\\ -35.0\\ -35.0\\ +22.8\\ -12.2\\ 0.0\\ +12.2\\ +22.8\\ +30.8\\ +35.0\\ +35.0\\ +30.8\\ +35.0\\ +30.8\\ +22.8\\ +12.2\\ 0.0\\ \end{array}$	
	PLATE 7.			PLATE 8.		
$\begin{array}{cccc} 274^{\circ} & 94^{\circ} \\ 284 & 104 \\ 294 & 114 \\ 304 & 124 \\ 314 & 134 \\ 324 & 144 \\ 334 & 154 \\ 344 & 164 \\ 354 & 174 \\ 4 & 184 \\ 14 & 194 \\ 24 & 204 \\ 34 & 214 \\ 44 & 224 \\ 54 & 234 \\ 64 & 244 \\ 74 & 254 \\ 84 & 264 \\ 94 & 274 \\ \end{array}$	$\begin{array}{r} +.498\\ .491\\ .473\\ .444\\ .409\\ .372\\ .336\\ .308\\ .288\\ .282\\ .288\\ .308\\ .38\\ .38\\ .336\\ .372\\ .409\\ .444\\ .473\\ .491\\ .498\end{array}$	$\begin{array}{c} & & & \\ & & & \\ &$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+.432 .427 .414 .394 .370 .344 .320 .300 .286 .282 .286 .300 .320 .320 .320 .344 .370 .394 .414 .427 .432	$\begin{array}{c} & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$	

TABLE II.—CORRECTIONS FOR REFRACTION. (Continued.)

TABLE II.—	CORRECTIONS	FOR	REFRACTION.	(0	Concluded.)
------------	-------------	-----	-------------	----	------------	---

Position Angle, p	$\frac{\sigma-s}{s} imes 10^3$	$\pi - p$	Position Angle, p	$\left \frac{\sigma - s}{s} \times 10^3 \right $	$\pi - p$
	PLATE 9.			PLATE 10.	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{r} +.580\\ .571\\ .544\\ .504\\ .454\\ .400\\ .350\\ .283\\ .274\\ .283\\ .274\\ .283\\ .310\\ .350\\ .400\\ .454\\ .504\\ .504\\ .544\\ .571\\ .580\end{array}$	$\begin{array}{c} \begin{array}{c} \begin{array}{c} & \\ & 0.0 \\ - & 10.8 \\ - & 20.2 \\ - & 27.2 \\ - & 31.0 \\ - & 31.0 \\ - & 27.2 \\ - & 20.2 \\ - & 10.8 \\ 0.0 \\ + & 10.8 \\ + & 20.2 \\ + & 27.2 \\ + & 31.0 \\ + & 31.0 \\ + & 27.2 \\ + & 20.2 \\ + & 10.8 \\ 0.0 \end{array}$	$\begin{array}{cccc} 275^{\circ} & 95^{\circ} \\ 285 & 105 \\ 295 & 115 \\ 305 & 125 \\ 315 & 135 \\ 325 & 145 \\ 335 & 155 \\ 345 & 165 \\ 355 & 175 \\ 55 & 185 \\ 15 & 195 \\ 255 & 205 \\ 355 & 215 \\ 45 & 225 \\ 555 & 235 \\ 65 & 245 \\ 75 & 255 \\ 85 & 265 \\ 95 & 275 \end{array}$	+.498 .491 .471 .442 .405 .367 .300 .274 .280 .274 .280 .274 .280 .301 .330 .367 .405 .442 .471 .491 .498	$\begin{array}{c} \overset{''}{0.0} \\ -7.9 \\ -14.8 \\ -20.0 \\ -22.7 \\ -22.7 \\ -22.7 \\ -20.0 \\ -14.8 \\ -7.9 \\ 0.0 \\ +7.9 \\ +14.8 \\ +20.0 \\ +22.7 \\ +22.0 \\ +22.7 \\ +20.0 \\ +14.8 \\ +7.9 \\ 0.0 \end{array}$
	PLATE 11.			Plate 12.	
$\begin{array}{cccc} 275^{\circ} & 95^{\circ} \\ 285 & 105 \\ 295 & 115 \\ 305 & 125 \\ 315 & 135 \\ 325 & 145 \\ 335 & 155 \\ 345 & 165 \\ 345 & 165 \\ 345 & 175 \\ 5 & 185 \\ 15 & 195 \\ 25 & 205 \\ 35 & 215 \\ 45 & 225 \\ 55 & 235 \\ 65 & 245 \\ 75 & 255 \\ 85 & 265 \\ 95 & 275 \end{array}$	$\begin{array}{r} +.518\\ .511\\ .490\\ .459\\ .421\\ .381\\ .342\\ .312\\ .291\\ .284\\ .291\\ .312\\ .342\\ .381\\ .421\\ .459\\ .490\\ .511\\ .518\end{array}$	$\begin{array}{c} \begin{array}{c} \begin{array}{c} & \\ & 0.0 \\ - & 8.2 \\ - & 15.4 \\ - & 20.7 \\ - & 23.6 \\ - & 23.6 \\ - & 20.7 \\ - & 15.4 \\ + & 8.2 \\ + & 15.4 \\ + & 20.7 \\ + & 23.6 \\ + & 23.6 \\ + & 20.7 \\ + & 15.4 \\ + & 8.2 \\ 0.0 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{r} +.452\\ .447\\ .432\\ .449\\ .383\\ .353\\ .326\\ .304\\ .289\\ .284\\ .289\\ .304\\ .326\\ .353\\ .304\\ .326\\ .353\\ .383\\ .409\\ .432\\ .447\\ .452\end{array}$	$\begin{array}{c} " \\ 0.0 \\ - 5.9 \\ - II.1 \\ - I4.9 \\ - I7.0 \\ - I7.0 \\ - I4.9 \\ - II.1 \\ - 5.9 \\ 0 \\ + 5.9 \\ + I1.1 \\ + 14.9 \\ + I7.0 \\ + I4.9 \\ + I7.0 \\ + I4.9 \\ + I1.1 \\ + 5.9 \\ 0.0 \end{array}$

Plata	Precessi	ion, etc.	Zoro Correction	Special	
No.	Position Angle Correction.	Distance Factor \times 10 ³	$\frac{1}{2}$ (East + West)	Correction Mean.	Adopted Mean.
I	- 2.9	0297	+20 31	-35	+19 56
2	- 2.9	0297	22 23	38	21 45
3	- 2.9	0297	20 50	-31	20 19
4	+ 1.0	0363	19 16	54	18 22
5	+ 1.0	0363	20 52	44	20 8
6	+ 1.0	0363	14 39	-35	14 4
7	+16.6	+.0437	19 18	41	18 37
8	+16.6	+.0437	19 36	-42	18 54
9	+11.5	+.0497	19 5	-52	18 13
10	+11.5	+0497	17 22	52	16 30
11	+11.2	+.0502	19 14	—36	18 38
12	+11.2	+.0502	+19 21	4I	+18 40

TABLE III .- CORRECTIONS FOR PRECESSION, ETC., TO 1874 AND ZERO CORRECTIONS.

TABLE IV.—TANGENT CORRECTION.

This correction is always negative, and is here expressed in terms of the fourth decimal place of the micrometer readings.

Distance.	0.	1.	2.	3.	4.	5.	6.	7.	8.	9.
20.	— 0	0	— 0	— 0	— 0	— I	— I	— I	— I	— I
30.	2	2	2	2	2	3	3	3	3	3
40.	4	4	4	5	5	6	6	6	7	7
50.	8	8	8	9	9	10	10	11	11	12
60.	13	13	14	15	16	17	17	18	19	20
70.	21	22	23	24	25	26	27	28	30	31
80.	3 2	34	35	36	37	38	40	41	42	43
90.	45	46	48	50	52	53	55	57	59	61
109.	62	64	65	67	69	71	73	75	77	79
119.	81	83	85	87	90	93	95	98	100	103
120.	106	109	112	114	117	120	123	126	129	132
130.	—135	—138	—141	—145	—148	—151	—155	—158	—162	–165

Star No.	Plate.	Observed Dist.		Corrections for			Cor- rected	Scale	Proper	Final Corrected
		East.	West.	Refrac.	Aberr.	Scale.	Mean. s	tion.	Motion.	Distance. σ
1 (2)	II I2	.9218 .8604	.9090 .9280	625 557	+62 +62	80 94 Mean	.9802 .9536	- 46 - 52	0334 0334	123.9422 .9150 123.9286
2 (5)	I 2 4 5 7 8 11 12	.0565 .0288 .0233 .0191 .0681 .0672 .0588 .0788	.0314 .0212 .0122 .0307 .0718 .0506 .0687 .0600	426 480 512 603 508 473 518 490	$ \begin{array}{r} -35 \\ -35 \\ -42 \\ -35 \\ +51 \\ +51 \\ +59 \\ +59 \\ +59 \end{array} $	118 118 105 112 118 118 118 118 118 Mean	.0851 .0715 .0658 .(831 .1278 .1134 .1234 .1263	$ \begin{array}{r} - 11 \\ + 31 \\ + 135 \\ + 21 \\ - 8 \\ + 8 \\ - 44 \\ - 49 \end{array} $	$\begin{array}{r} +.0088 \\ +.0088 \\ +.0073 \\ +.0073 \\0290 \\0312 \\0312 \end{array}$	117.0928 .0834 .0866 .0925 .0980 .0852 .0878 .0902 117.0896
3 (37)	I 2 3 4 5 6 7 8 9 10 11 12	.8405 .8343 .8370 .8290 .8246 .8246 .8677 .8702 .8731 .8802 .8722 .8680	.8320 .8318 .8265 .8253 .8268 .8302 .8751 .8771 .8745 .86.8 .8724 .8923	308 345 393 365 414 470 377 326 434 376 392 342	$\begin{array}{r} -23 \\ -23 \\ -23 \\ -28 \\ -28 \\ +33 \\ +38 \\ +38 \\ +38 \\ +38 \\ +38 \\ +38 \end{array}$	126 126 126 120 120 125 125 125 125 118 119 126 120 Mean	.8747 .8757 .8787 .8700 .8736 .8815 .9222 .9193 .9301 .9221 .9251 .9275	$ \begin{array}{r} - & 7 \\ + & 20 \\ + & 3 \\ + & 14 \\ - & 39 \\ - & 5 \\ + & 14 \\ - & 39 \\ - & 5 \\ + & 5 \\ - & 30 \\ + & 11 \\ - & 28 \\ - & 32 \end{array} $	$\begin{array}{c} +.0092 \\ +.0092 \\ +.0092 \\ +.0077 \\ +.0077 \\0305 \\0327 \\0327 \\0329 \\0329 \end{array}$	75.8832 .8863 .8882 .8844 .8827 .8853 .8912 .8933 .8944 .8905 .8944 .8914 75.8882
4 (4)	I 2 3 4 5 6 7 8 9 10 11 12	.6812 .6670 .6482 .6526 .6528 .6520 .7078 .7097 .7018 .7171 .7009 .7038	.6768 .6668 .6546 .6361 .6540 .6515 .7126 .7233 .7226 .7008 .7205 .7110	297 336 393 357 421 500 359 330 382 355 368 340	$-24 \\ -24 \\ -29 \\ -29 \\ -29 \\ +35 \\ +35 \\ +40 \\ +40 \\ +48$	125 126 125 122 121 125 126 126 122 122 126 126 Mean	.7156 .7075 .6976 .6861 .7015 .7082 .7590 .7624 .7634 .7575 .7609 .7548	$ \begin{array}{r} - 8 \\ + 21 \\ + 3 \\ + 92 \\ + 15 \\ - 41 \\ - 5 \\ + 5 \\ - 31 \\ + 12 \\ - 30 \\ - 34 \end{array} $	$\begin{array}{c} +.0090 \\ +.0090 \\ +.0090 \\ +.0075 \\ +.0075 \\ +.0075 \\0297 \\0297 \\0319 \\0319 \\0321 \\0321 \\0321 \end{array}$	79.7238 .7186 .7059 .705 .7116 .7288 .7332 .7284 .7288 .7268 .7268 .7258 .7193 79.7197
5 (7)	1 2 4 7 9	.4787 .4734 .4728 .5138 .5070	.5182 .4791 .4666 .5006 .5259	383 408 425 406 389	-36 -36 -44 +53 +60	112 108 108 109 109 Mean	.5337 .5136 .5079 .5533 .5615	$ \begin{array}{r} - & 12 \\ + & 32 \\ + & 139 \\ - & 8 \\ - & 47 \end{array} $	+.0062 +.0052 0206 0220	120.5387 .5230 .5270 .5319 .5348 120.5311

TABLE V.-RESULTS OF MEASURES OF DISTANCE.
TABLE VI.-RESULTS OF MEASURES OF ANGLE.

Pla	Observed Po Angle	osition	Zero Correc-	Refrac.	Corrected Mean.	Proper	Final Cor-
te	East.	West.	preces- sion, etc.		p	Motion.	rected Angle. π
11 12	351°38′20′ 40 50	39 ²⁵ 41 45	18′38″ 18 40	+10'' + 4 Mean	$\begin{array}{cccc} & & & & & & & \\ 261 & 57 & 41 \\ 262 & 0 & 2 \\ 261 & 58 & 52 \end{array}$	$- \circ 2' - \circ 2$	261° 57′ 53′ 57′ 22 261 57′ 38′
1 2 4 5 7 8 11 12	331 22 50 19 8 24 22 21 45 23 43 24 50 24 58 27 10	23 32 21 30 25 7 23 11 25 45 27 3 25 45 28 17	19 56 21 45 18 22 20 8 18 37 18 54 18 38 18 40	+11 + 15 + 16 + 17 + 20 + 12 + 22 + 13 Mean	241 43 18 42 20 43 22 42 53 43 41 45 3 44 22 46 37 241 43 57	$\begin{array}{c} + & 0 & 6 \\ + & 0 & 6 \\ + & 0 & 5 \\ + & 0 & 5 \\ - & 0 & 21 \\ - & 0 & 22 \\ - & 0 & 22 \\ - & 0 & 22 \end{array}$	241 43 58 43 33 43 56 44 1 44 23 44 23 44 14 43 37 241 44 1
1 2 3 4 5 6 7 8 9 10 11 12	2 29 48 27 40 31 3 30 6 30 12 30 26 31 48 33 15 33 42 31 26 34 28	31 34 28 38 32 6 34 8 30 50 31 32 31 32 33 13 33 48 35 27 32 34 34 54	19 56 21 45 20 19 18 22 18 37 18 54 18 13 16 30 18 38 18 40	$ \begin{array}{r} + 4 \\ + 2 \\ - 4 \\ - 2 \\ - 6 \\ - 17 \\ + 2 \\ - 3 \\ + 9 \\ + 2 \\ - 3 \\ \text{Mean} \\ \end{array} $	$\begin{array}{ccccccc} 272 & 50 & 41 \\ 49 & 56 \\ 51 & 50 \\ 50 & 30 \\ 44 & 39 \\ 49 & 38 \\ 51 & 22 \\ 51 & 54 \\ 51 & 6 \\ 50 & 40 \\ 53 & 18 \\ 272 & 50 & 35 \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1 2 3 4 5 6 7 .8 9 10 11 12	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	57 27 55 42 58 13 0 57 2 58 5 59 20 00 38 1 50 2 42 59 45 3 8	19 56 21 45 20 19 18 22 20 8 14 4 18 37 18 54 16 30 18 38 18 40	+10 +13 +16 +17 +15 +14 +18 +10 +29 +19 +20 +12 Mean	246 17 24 17 5 18 24 17 43 16 55 11 43 17 29 19 5 19 38 18 59 18 10 21 10 246 17 49	$\begin{array}{c} + & \circ & 7 \\ + & \circ & 7 \\ + & \circ & 6 \\ + & \circ & 6 \\ + & \circ & 24 \\ - & \circ & 24 \\ - & \circ & 26 \\ - & \circ & 26 \\ - & \circ & 26 \end{array}$	246 18 5 18 19 18 10 18 18 18 4 18 56 18 8 18 22 18 16 18 18 17 58 18 6 246 18 15
1 2 4 7 9	303 48 8 45 14 48 57 49 6 51 40	49 33 46 12 51 5 50 40 54 10	19 56 21 45 18 22 18 37 18 13	+ 8 +14 +17 +19 +22 Mean	214 8 54 7 41 8 40 8 49 11 30 214 9 7	$ \begin{array}{c} + & 0 & 12 \\ + & 0 & 12 \\ + & 0 & 10 \\ - & 0 & 41 \\ - & 0 & 44 \end{array} $	214 9 40 9 0 9 19 9 11 9 50 214 9 24

Star	Pla	Observ	ed Dist.	Cor	rections	for	Cor- rected	Scale	Proper	Final Corrected
No.	te.	East.	West.	Refrac.	Aberr.	Scale.	Mean. <i>s</i>	tion.	Motion.	Distance. σ
6 (6)	1 7 8 11 12	.6300 .6482 .6311 .6501 .6314	.6668 .6756 .6802 .6848 .7006	206 237 229 242 234	-18+27+27+30+30	108 104 104 104 104 Mean	.6767 .6974 .6903 .7037 .7015	- 6 - 4 + 4 - 23 - 26	+.0079 0260 0260 0280 0280	60.6840 .6710 .6647 .6734 .6709 60.6728
7 (8)	1 2 3 4 7 9 11 12	.4126 .4182 .4091 .4038 .4462 .4520 .4362 .4324	.4174 .4170 .4190 .3977 .4322 .4428 .4428 .4485	280 297 329 307 292 276 291 297	$-27 \\ -27 \\ -27 \\ -32 \\ +39 \\ +44 \\ +45 \\ +45 \\ +45$	132 132 135 132 135 132 135 135 135 Mean	.4491 .4534 .4533 .4371 .4814 .4882 .4832 .4838	$ \begin{array}{r} - & 9 \\ + & 24 \\ + & 3 \\ - & 35 \\ - & 35 \\ - & 33 \\ - & 38 \end{array} $	+.0058 +.0058 +.0058 +.0049 0193 0207 0208 0208	89.4540 .4594 .4594 .4523 .4615 .4640 .4591 .4592 89.4589
8 (36)	1 2 3 4 5 6 7 8 9 10 11 12	.4792 .4758 .4737 .4762 .4765 .4964 .5143 .4998 .5128 .4968 .4998	.4746 .4712 .4686 .4766 .4783 .4917 .5112 .5047 .5015 .5012 .4960	226 235 245 240 246 253 249 209 297 248 257 221	-17 - 17 - 17 - 17 - 21 - 21 - 21 + 26 + 26 + 29 + 29 + 29 + 29 + 29	98 96 98 92 95 95 95 94 90 95 95 Mean	.5063 .5037 .5023 .5023 .5087 .5092 .5298 .5446 .5430 .5427 .5359 .5312	$ \begin{array}{r} - & 6 \\ + & 16 \\ + & 2 \\ + & 67 \\ + & 11 \\ - & 30 \\ - & 4 \\ + & 4 \\ - & 23 \\ + & 8 \\ - & 22 \\ - & 25 \\ \end{array} $	$\begin{array}{r} +.0063\\ +.0063\\ +.0052\\ +.0052\\ +.0052\\ +.0052\\0208\\0208\\0223\\0223\\0223\\0224\\0224\end{array}$	58.5120 .5116 .5088 .5142 .5150 .5114 .5086 .5242 .5184 .5212 .5113 .5063 58.5136
9 (I)	I 2 3 4 5 6 7 8 9 10 11 12	.6254 .6682 .6143 .6158 .6598 .6592 .6626 .6701 .6486 .6690 .6680	.6327 .6068 .6124 .5907 .6114 .6051 .6639 .6476 .6652 .6434 .6858 .6870	120 134 154 143 162 185 147 128 169 147 153 134	$ \begin{array}{r} -9 \\ -9 \\ -11 \\ -11 \\ +13 \\ +13 \\ +15 \\ +15 \\ +15 \\ +15 \\ +15 \\ \end{array} $.6387 .6189 .6264 .6147 .6292 .6149 .6764 .6681 .6844 .6604 .6931 .6909	$ \begin{array}{r} - & 3 \\ + & 1 \\ + & 34 \\ + & + \\ + & 5 \\ - & 2 \\ + & 12 \\ + & 11 \\ - & 13 \\ \end{array} $	$\begin{array}{c} +.0093\\ +.0093\\ +.0077\\ +.0077\\ +.0077\\ +.0077\\0307\\0329\\0329\\0321\\0331\\0331\end{array}$	29.6477 .6290 .6358 .6258 .6374 .6211 .6455 .6376 .6503 .6579 .6589 .6565 29 6394

TABLE V.-RESULTS OF MEASURES OF DISTANCE. (Continued.)

170

TABLE VI.-RESULTS OF MEASURES OF ANGLE. (Continued.)

Pla	Observed Po Angle	osition	Zero Correc-	Refrac.	Corrected Mean.	Proper	Final Cor-
te.	East.	West.	preces- sion, etc.		p	Motion.	π
1 7 8 11 12	319 ⁸ 16 11 20 11 21 11 43 12 53	10 5 12 14 13 29 12 58 15 58	19 56 18 37 18 54 18 38 18 40	+11'' +22 +14 +24 +16 Mean	229 29 17 30 46 31 33 31 23 33 22 229 31 16	+ 0 18'' - 059 - 059 - 1 3 - 1 3	229 30 9 30 50 30 15 30 34 29 41 229 30 18
1 2 3 4 7 9 11 12	300 40 20 38 36 41 35 41 25 43 42 45 50 43 47 46 12	41 54 38 53 41 28 43 31 44 35 46 45 41 37 47 45	19 56 21 45 20 19 18 22 18 37 18 38 18 38 18 40	+ 6 +12 +21 +16 +18 +19 +18 +15 Mean	2111 I 9 0 42 2 12 I 6 3 3 4 49 3 8 5 53 2111 2 45	$\begin{array}{r} + 0 \ 17 \\ + 0 \ 17 \\ + 0 \ 17 \\ + 0 \ 14 \\ - 0 \ 57 \\ - I \ I \\ - I \ 2 \\ - I \ 2 \end{array}$	211 2 0 2 6 2 8 1 49 3 9 2 52 2 20 2 13 211 2 20
1 2 3 4 5 6 7 8 9 10 11 12	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19 56 21 45 20 19 18 22 18 37 18 54 18 13 16 30 18 38 18 40		310 19 45 18 45 21 18 20 29 19 28 13 41 17 16 18 10 19 9 18 47 17 38 20 31 310 18 45	$\begin{array}{c} - & 0 & 24 \\ - & 0 & 24 \\ - & 0 & 20 \\ - & 0 & 20 \\ - & 0 & 20 \\ + & I & 20 \\ + & I & 20 \\ + & I & 25 \\ + & I & 25 \\ + & I & 26 \\ + & I & 26 \end{array}$	310 19 55 19 28 20 33 20 38 20 11 20 28 19 39 19 11 19 38 19 57 19 18 19 19 310 19 51
1 2 3 4 5 6 7 8 9 10 11 12	0 27 0 24 22 28 12 27 47 26 40 28 26 28 2 30 8 29 28 27 57 30 48	25 25 25 12 27 34 27 18 24 28 27 42 28 50 31 00 32 55 32 32 27 23 31 5	19 56 21 45 20 19 18 22 20 8 14 4 18 37 18 54 18 13 16 30 18 38 18 40	$ \begin{array}{r} + 5 \\ + 3 \\ - 3 \\ + 1 \\ - 5 \\ - 15 \\ + 3 \\ + 4 \\ + 4 \\ + 2 \\ \text{Mean} \end{array} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	270 46 38 47 33 47 38 46 17 47 7 48 0 48 50 48 32 49 33 47 51 47 8 47 29 270 47 43

A second of a second of a second of the seco	TABLE	VResults	OF MEASURE	S OF DISTANCE.	(Continued.)
--	-------	----------	------------	----------------	--------------

Star	Pla	Observ	ed Dist.	Cor	rections	for	Cor- rected	Scale	Proper	Final Corrected
No.	te.	East.	West.	Refrac.	Aberr.	Scale.	Mean. s	tion.	Motion.	Distance. σ
10 (3)	I 2 3 4 5 6 7 8 9 10 11 12	.5694 .5719 .5654 .5708 .5702 .5602 .6193 .6193 .6271 .6221 .6156	.5805 .5707 .5760 .5648 .5796 .5624 .6315 .6273 .6354 .6077 .6370 .6302	71 80 93 86 100 118 86 78 93 85 85 88 81	66667778899999 ++++++	82 82 80 79 82 84 83 80 80 83 79 Mean	$\begin{array}{c} .5^{8}97\\ .5^{8}69\\ .5^{8}76\\ .5^{8}76\\ .5^{9}31\\ .5^{8}06\\ .6435\\ .6402\\ .6435\\ .6402\\ .6455\\ .6348\\ .6476\\ .6397\end{array}$	$ \begin{array}{c} - & 2 \\ + & 5 \\ + & 1 \\ + & 21 \\ + & 3 \\ - & 1 \\ + & 7 \\ + & 3 \\ - & 7 \\ - & 8 \\ \end{array} $	$\begin{array}{c} +.0092 \\ +.0092 \\ +.0092 \\ +.0076 \\ +.0076 \\ +.0076 \\0303 \\0303 \\0325 \\0325 \\0327 \\0327 \end{array}$	18. 5987 . 5966 . 5934 . 6010 . 5873 . 6131 . 6100 . 6123 . 6026 . 6142 . 6062 18. 6027
11 (13)	1 2 3 4 5 6 7 8 9 10 11 12	.8040 .7998 .8079 .7984 .7858 .8105 .8096 .8069 .8170 .8217 .8097 .8047	.8069 .7846 .7994 .7982 .8043 .7979 .8005 .7925 .8218 .7905 .8067 .7993	321 320 323 319 329 351 300 302 295 292 302 304	$\begin{array}{r} -31 \\ -31 \\ -31 \\ -38 \\ -38 \\ -38 \\ +46 \\ +53 \\ +53 \\ +53 \\ +53 \\ +53 \end{array}$	114 113 114 113 114 114 111 115 113 114 114 Mean	.8386 .8251 .8369 .8304 .8283 .8396 .8434 .8383 .8584 .8446 .8478 .8418	$\begin{array}{c} - & 10 \\ + & 28 \\ + & 4 \\ + & 122 \\ + & 19 \\ - & 54 \\ - & 7 \\ + & 7 \\ - & 41 \\ + & 15 \\ - & 39 \\ - & 45 \end{array}$	+.0022 +.0022 +.0018 +.0018 +.0018 0072 0072 0077 0077 0077	105.8398 .8301 .8395 .8444 .8320 .8360 .8355 .8318 .8466 .8384 .8384 .8362 .8296 105.8366
12 (9)	3 6 7 11	.0888 .0682 .0909 .1478	.0700 .0690 .1093 .1806	43 52 38 39	-4 -4 +5 +6	48 48 48 48 Mean	.0881 .0782 .1092 .1735	- 6 - 1 - 5	+.0053 +.0044 0176 0190	12.0934 .0820 .0916 .1540 12.1052
13 (10)	I 2 3 4 5 6 7 8 9 10 11 12	.0319 .0380 .0286 .0258 .0384 .0418 .0542 .0473 .0457 .0405 .0508	.0384 .0307 .0349 .0345 .0495 .0380 .0258 .0408 .0495 .0405 .0475 .0479	73 72 73 72 75 80 68 69 67 66 69 69	$ \begin{array}{c} -7 \\ -7 \\ -9 \\ -9 \\ +11 \\ +12 \\ +12 \\ +12 \\ +12 \\ +12 \\ +12 \\ \end{array} $	II2 III II2 II1 II2 II1 II1 II1 II1 II1	.0529 .0518 .0533 .0489 .0554 .0564 .0527 .0665 .0673 .0621 .0632 .0684	$ \begin{array}{c} - & 2 \\ + & 6 \\ + & 1 \\ + & 28 \\ + & 4 \\ - & 12 \\ - & 2 \\ + & 2 \\ - & 9 \\ + & 3 \\ - & 10 \\ \end{array} $	$\begin{array}{c} +.0024 \\ +.0024 \\ +.0020 \\ +.0020 \\ +.0020 \\0078 \\0078 \\0084 \\0084 \\0085 \\0085 \end{array}$	24.0551 .0584 .0558 .0577 .0578 .0572 .0447 .0589 .0580 .0540 .0538 .0589 24.0552

TABLE VI RESULTS OF MEASURES OF ANGLE. (U0)	BLE	VI.—RESULTS OF MEASURES OF ANGLE.	(Continued.)
---	-----	-----------------------------------	--------------

Pla	Observed P Angle	osition	Zero Correc-	Refrac	Cor-	Proper	Final Cor-
te.	East.	West.	preces- sion. etc.		Mean. p	Motion.	rected Angle. π
I 2 3 4 5 6 7 8 9 10 11 12	340° 10° 45° 6 59 10 50° 9 37 8 42 11 7 14 10 15 52° 15 36 18 27 13 54 15 35	9 22 7 55 10 13 12 42 11 48 10 51 12 28 18 55 14 45 19 15 13 57 17 13	19 56 21 45 20 19 18 22 20 8 14 4 18 37 18 37 18 54 18 13 16 30 18 38 18 40	$ \begin{array}{r} & +10 \\ & +12 \\ & +14 \\ & +12 \\ & +12 \\ & +10 \\ & +16 \\ & +8 \\ & +26 \\ & +17 \\ & +18 \\ & +10 \\ & Mean \end{array} $	$\begin{array}{c} & & & & & & & & & \\ & & & & & \\ & & & & & \\ & & & &$	$\begin{array}{c} + & 0 & 22 \\ + & 0 & 22 \\ + & 0 & 22 \\ + & 0 & 18 \\ + & 0 & 18 \\ + & 0 & 18 \\ - & 1 & 13 \\ - & 1 & 13 \\ - & 1 & 18 \\ - & 1 & 18 \\ - & 1 & 19 \\ - & 1 & 19 \end{array}$	250 31 5 30 52 31 6 30 30 31 56 32 38 32 2 34 53 31 36 34 5 31 36 34 5 31 46 31 17 250 31 59
1 2 3 4 5 6 7 8 9 10 11 12	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 39 & 10 \\ 36 & 3^2 \\ 39 & 25 \\ 40 & 35 \\ 38 & 15 \\ 37 & 52 \\ 41 & 13 \\ 42 & 47 \\ 44 & 20 \\ 44 & 48 \\ 42 & 15 \\ 45 & 30 \end{array}$	19 56 21 45 20 19 18 22 18 37 18 54 18 13 16 30 18 38 18 40	$ \begin{array}{r} -2 \\ +1 \\ +5 \\ +3 \\ +9 \\ +19 \\ +1 \\ +5 \\ -5 \\ +1 \\ 0 \\ +5 \\ \text{Mean} \end{array} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} + & 0 & 18 \\ + & 0 & 18 \\ + & 0 & 18 \\ + & 0 & 15 \\ + & 0 & 15 \\ + & 0 & 15 \\ - & 1 & 1 \\ - & 1 & 1 \\ - & 1 & 4 \\ - & 1 & 5 \\ - & 1 \\ - & 5 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
3 6 7 11	296 47 36 43 50 297 00 30 296 57 10	44 50 46 28 00 55 59 18	20 19 14 4 18 37 18 38	+20 +34 +16 +16 Mean	207 6 52 206 59 47 207 19 35 17 8 207 10 50	+ 2 12 + 1 49 - 7 16 - 7 50	207 8 43 8 43 13 22 9 32 207 10 5
1 2 3 4 5 6 7 8 9 10 11 12	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19 56 21 45 20 19 18 22 20 8 14 4 18 37 18 54 18 54 16 30 18 38 18 40	$ \begin{array}{r} - 2 \\ + 2 \\ + 7 \\ + 4 \\ + 11 \\ + 21 \\ + 2 \\ + 6 \\ - 7 \\ + 2 \\ + 5 \\ \text{Mean} \end{array} $	187 9 44 7 23 8 58 6 56 10 15 3 3 15 26 17 5 16 35 21 10 187 12	$\begin{array}{r} + 1 & 18 \\ + 1 & 18 \\ + 1 & 18 \\ + 1 & 15 \\ + 1 & 5 \\ + 1 & 5 \\ - 4 & 18 \\ - 4 & 18 \\ - 4 & 37 \\ - 4 & 37 \\ - 4 & 39 \\ - 4 & 39 \\ - 4 & 39 \end{array}$	187 11 36 9 48 9 55 8 30 12 23 11 15 12 11 12 28 10 30 10 18 12 10 13 53 187 11 15

Star	Plε	Observ	ed Dist.	Cor	rections	for	Cor- rected	Scale	Proper	Final Corrected
No.	te.	East.	West.	Refrac.	Aberr.	Scale.	Mean.	tion.	Motion.	Distance.
14 (II)	1 2 3 4 5 6 7 8 9 10 11 12	.9921 .9942 .9912 .9856 .9839 .0009 .0067 .9980 .0037 .0043 .0001 .9977	.9886 .9893 .9902 .9872 .9894 .9952 .9917 .9899 .0073 .0031 .0040 .9912	241 238 239 237 241 251 224 224 224 224 218 227 225	$ \begin{array}{r} -23 \\ -23 \\ -29 \\ -29 \\ -29 \\ +35 \\ +35 \\ +39 \\ +39 \\ +40 \\ +40 \end{array} $	123 123 123 123 123 123 123 123 123 124 123 122 123 Mean	.0214 .0225 .0215 .0164 .0170 .0295 .0343 .0290 .0411 .0386 .0378 .0302	$ \begin{array}{r} -8 \\ +21 \\ +3 \\ +91 \\ +14 \\ -40 \\ -5 \\ +5 \\ -31 \\ +11 \\ -29 \\ -33 \end{array} $	$\begin{array}{c} +.0015 \\ +.0015 \\ +.0012 \\ +.0012 \\ +.0012 \\ +.0012 \\0048 \\0051 \\0051 \\0052 \\0052 \end{array}$	79.0221 .0261 .0233 .0267 .0290 .0247 .0329 .0346 .0297 .0217 79.0264
15						Bradle	y 3077			
16 (12)	1 2 3 4 5 6 7 8 9 10 11 12	.8460 .8421 .8450 .8380 .8317 .8454 .8456 .8386 .8440 .8516 .8385 .8381	.8478 .8386 .8397 .8354 .8400 .8426 .8497 .8396 .8532 .8420 .8405 .8349	246 243 240 240 241 247 227 227 233 222 231 227	-24-24-24-29-29+35+35+40+40+40+40	128 128 128 126 128 126 126 126 126 126 126 Mean	.8787 .8720 .8737 .8672 .8667 .8755 .8833 .8753 .8854 .8825 .8761 .8727	$ \begin{array}{r} -8 \\ +21 \\ +3 \\ +92 \\ +15 \\ -41 \\ -5 \\ +5 \\ -31 \\ +12 \\ -30 \\ -34 \end{array} $	+.0010 +.0010 +.0008 +.0008 +.00032 0032 0034 0034 0034	79.8789 .8751 .8750 .8772 .8690 .8722 .8796 .8726 .8789 .8803 .8803 .8697 .8659 79.8746
17 (34)	1 2 3 4 5 6 7 8 9 10 11 12	.1610 .1661 .1664 .1569 .1613 .1685 .1522 .1550 .1546 .1376 .1445 .1461	.15c9 .1638 .1624 .1605 .1573 .1719 .1574 .1482 .1376 .1481 .1444 .1446	118 119 121 119 124 134 112 114 108 108 112 113	$-12 \\ -12 \\ -12 \\ -14 \\ -14 \\ +17 \\ +17 \\ +19 \\ +20 $	IOI IO2 IO2 IO2 IO1 III III IO5 IO1 IO2 Mean	.1763 .1855 .1850 .1790 .1801 .1919 .1784 .1754 .1696 .1656 .1673 .1684	$ \begin{array}{r} -4 \\ +10 \\ +1 \\ +45 \\ +7 \\ -20 \\ -3 \\ +3 \\ -15 \\ +6 \\ -15 \\ -17 \end{array} $	$\begin{array}{c}0026\\0026\\0022\\0022\\0022\\ +.0086\\ +.0086\\ +.0086\\ +.0121\\ +.0121\\ +.0122\\ +.0122\end{array}$	39.1733 .1839 .1825 .1813 .1786 .1877 .1867 .1843 .1802 .1783 .1780 .1789 39.1811

TABLE V.-RESULTS OF MEASURES OF DISTANCE. (Continued.)

TABLE VI.-RESULTS OF MEASURES OF ANGLE. (Continued.)

Pla	Observed P Angle	osition	Zero Correc-	Refrac.	Cor- rccted	Proper	Final Cor-
te.	East.	West.	preces- sion, etc.		Mean. p	Motion.	rected Angle π
I 2 3 4 5 6 7 8 9 10 11 12	271°732 5 10 8 5 8 44 7 22 6 21 10 35 11 18 12 55 14 3 11 34 14 28	9 8 6 43 8 55 10 50 8 8 8 5 11 40 12 33 15 18 14 57 12 30 15 20	19 56 21 45 20 19 18 22 20 8 14 4 18 37 18 54 18 13 16 30 18 38 18 40	$ \begin{array}{r} -5 \\ -2 \\ +4 \\ +1 \\ +5 \\ +15 \\ +3 \\ -10 \\ -3 \\ -5 \\ +2 \\ Mean \\ \end{array} $	181°28′11′ 27 40 28 53 28 10 27 58 21 32 29 43 30 53 32 9 30 57 30 35 33 36 181 29 11	$\begin{array}{c} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ \end{array}$	18° 29 10 29 12 28 57 28 59 29 21 28 59 29 25 29 13 29 46 29 15 29 21 29 30 181 29 16
1 2 3 4 5 6 7 8 9 10 11 12	268 8 40 6 23 9 17 9 52 7 56 7 23 11 22 12 40 13 28 15 0 12 38 14 28	IO 24 7 8 IO 12 II 38 9 50 9 14 I3 27 I4 3 I5 57 I3 43 I6 47	19 56 21 45 20 19 18 22 20 8 14 4 18 37 18 54 18 13 16 30 18 38 18 40	$ \begin{array}{r} -5 \\ -2 \\ +1 \\ -2 \\ +4 \\ +13 \\ -4 \\ +1 \\ -14 \\ -2 \\ -5 \\ 0 \\ \text{Mean} \end{array} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} + & 0 & 25 \\ + & 0 & 25 \\ + & 0 & 20 \\ + & 0 & 20 \\ + & 0 & 20 \\ - & I & 21 \\ - & I & 21 \\ - & I & 27 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1 2 3 4 5 6 7 8 9 10 11 12	98 30 35 27 55 31 38 33 5 29 66 29 42 26 3 27 41 28 47 29 34 27 50 29 18	31 20 30 13 31 55 33 0 30 26 30 30 28 3 28 27 30 28 31 40 29 25 30 12	19 56 21 45 20 19 18 22 20 8 14 4 18 37 18 54 18 13 16 30 18 38 18 40	$ \begin{array}{r} -2 \\ +2 \\ +9 \\ +5 \\ +13 \\ +23 \\ +11 \\ +7 \\ -3 \\ +3 \\ +6 \\ \text{Mean} \end{array} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} - \circ \ 47 \\ - \circ \ 47 \\ - \circ \ 39 \\ - \circ \ 39 \\ - \circ \ 39 \\ + 2 \ 35 \\ + 2 \ 35 \\ + 2 \ 47 \\ + 2 \ 48 \\ + 2 \ 48 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

TABLE	VResul	LTS OF	MEASURES	OF	DISTANCE.	(Continued.)
-------	--------	--------	----------	----	-----------	--------------

			-			-		i		
Star	Pl	Observ	ed Dist.	Cor	rections	for	Cor-	Scale	Proper	Final
No.	ate.	These	337+	Defer	4.7	Geele	Mean.	Varia-	Motion.	Distance.
		Last.	west.	Kerrac.	Aberr.	scare.	8			σ
10				00						-9
18		.3692	.3590	88 TOT	$-\frac{8}{8}$	113	.3832	— 3 — 1	0053	28.3776
(33)	3 4	.3821	.3729	95	—10	113	.3982	+ 33	0033	.3940
	6	.3806	.3646	122	-10	112	.3948	-14	0044	.3890
	11	.3330	.3232	90	+14	113	.3496	- 11	+.0188	.3673
	12	•3444	·3357	91	+14	113 Moon	.3616	— 12	+.0188	•3792
						mean				20.3041
19	I	.9604	.9622	182	-17	103	.9871	— 5	0013	55.9853
(14)	2	.9638	.9538	178	-17	103	.9837	+ 15	0013	.9839
	3	.9560	.9669	174	-17	104	.9865	+ 2	0013	.9854
	4	.9503	.9495	170		104	.0820	+ 10	0011	.9000
	6	.9636	.9625	169	-20	103	.9872	- 28	0011	.9833
	7	.9464	.9467	172	+24	100	.9752	<u> </u>	+.0042	.9790
、 、	- 8	.9410	.9460	162	+24	100	.9711	+ 4	+.0042	·9757
	<u> </u>	.9470	.9522	100 168	+20 + 28	100	.9000	-22 $+ 8$	+.0045 +.0045	.9029
	11	.9503	.9477	176	+28	106	.9790	- 21	+.0046	.9815
	I2	.9530	·9375	165	+28	103	.9738	.— 24	+.0046	.9760
		•				Mean				55.9815
20	I	.5073	.5128	269	27	134	.5432	— 9	0033	89.5390
(35)	2	.5142	.5126	273	-27	135	.5471	+ 24	0033	.5462
	3	.5201	.5099	284	-27	134	•5497	+ 3	0033	.5467
	4	.5090	.5030	275		134	-5390	+103 +16	0027	•5472
	6	.5228	.5256	322	-32	134 134	.5622	-46	0027	•5549
	7	.4895	.4994	256	+39	132	.5327	— 6	+.0108	.5429
	8	.4880	.4998	264	+39	133	.5331	+ 6	+.0108	.5445
	9	.4940	.4784	247	+44 +44	129	.5242	-35 +12	+0116	•5323
•	II	.4836	.4807	259	+45	134 134	.5216	-33	+.0117	.5300
	12	.4925	.4884	266	+45	134	.5306	<u> </u>	+.0117	.5385
						Mean				89.5428
21	I	.9995	.0222	122	-10	119	.0337	- 3	0059	32.0275
(22)	3	.0215	.0238	130	-10	119	.0463	+ I	0059	.0405
	4	.0225	.0284	128	-12	124	.0492	+ 37	0049	.0480
	0	.0242	.0170	132	-12 + 14	119	.0443	-10	0049 +.0195	.0378
	8	.9991	.9762	112	+14	121	.0122	+ 2	+.0195	.0319
	9	.9821	.9786	157	+16	122	.0097	- 12	+.0209	.0294
	II	.9916	.9710	137	+16	121	.0085	- 12	+.0210	.0283
	12	.0040	.9812	118	+10	Mean	.0179	- 14	+.0210	32,0375
						Ja cteri				32.0333

176

.Ple	Observed Po Angle	osition	Zero Correc-	Refrac	Cor- rected	Proper	Final Cor-
ute.	East.	West.	preces- sion, etc.		$\substack{\text{Mean.}\\p}$	Motion.	π
1 3 4 6 11 12	$116^{\circ} 31^{\circ} 5^{\circ} 34^{\circ} 8^{\circ} 35^{\circ} 7^{\circ} 32^{\circ} 25^{\circ} 29^{\circ} 35^{\circ} 32^{\circ} 24^{\circ}$	31 42 34 50 38 0 33 14 29 14 30 35	19 56 20 19 18 22 14 4 18 38 18 40	+5 +19 +14 +-34 +16 +14 Mean	26 [°] 51 [°] 24 [°] 55 [°] 7 55 [°] 9 47 [°] 28 48 [°] 18 5 [°] 23 26 [°] 51 [°] 18	$ \begin{array}{r} - & \circ & 56 \\ - & \circ & 56 \\ - & \circ & 47 \\ - & \circ & 47 \\ + & 3 & 20 \\ + & 3 & 20 \end{array} $	$\begin{array}{c} 26 & 51 & 2 \\ 53 & 50 \\ 54 & 51 \\ 53 & 48 \\ 51 & 52 \\ 51 & 5 \\ 26 & 52 & 45 \end{array}$
1 2 3 4 5 6 7 8 9 10 11 12	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22 27 19 38 21 48 24 22 22 6 21 18 25 40 26 45 28 50 28 11 27 40 29 58	19 56 21 45 20 19 18 22 20 8 14 4 18 37 18 54 18 13 16 30 18 38 18 40	$ \begin{array}{r} -9 \\ -10 \\ -9 \\ -10 \\ -8 \\ -5 \\ -14 \\ -6 \\ -24 \\ -15 \\ -16 \\ -8 \\ Mean \end{array} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} + & 0 & 35 \\ + & 0 & 35 \\ + & 0 & 29 \\ + & 0 & 29 \\ + & 0 & 29 \\ + & 1 & 54 \\ - & 1 & 54 \\ - & 1 & 54 \\ - & 2 & 3 \\ - & 2 & 3 \\ - & 2 & 3 \\ - & 2 & 3 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1 2 3 4 5 6 7 8 9 10 11 12	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	43 28 40 45 43 28 45 10 42 10 41 42 41 48 43 8 44 25 45 32 42 47 45 30	19 56 21 45 20 19 18 22 20 8 14 4 18 37 18 54 18 13 16 30 18 38 18 40	$ \begin{array}{c} 0 \\ + 5 \\ + 11 \\ + 8 \\ + 15 \\ + 27 \\ + 7 \\ + 8 \\ + 3 \\ + 6 \\ + 6 \\ + 6 \\ + 8 \\ \text{Mean} \end{array} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} - & 0 & 20 \\ - & 0 & 20 \\ - & 0 & 20 \\ - & 0 & 16 \\ - & 0 & 16 \\ + & 1 & 6 \\ + & 1 & 6 \\ + & 1 & 10 \\ + & 1 & 10 \\ + & 1 & 11 \\ + & 1 & 11 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1 3 4 6 7 8 9 11 12	223 IO 27 IO 35 II 24 9 I3 I3 28 I5 6 I6 50 I7 5 I6 7	13 8 12 2 15 35 11 20 17 0 20 25 17 45 17 37	19 56 20 19 18 22 14 4 18 37 18 54 18 13 18 38 18 38 18 40		133 31 34 31 15 31 32 23 48 32 16 34 42 36 23 35 40 35 15 133 32 29	$\begin{array}{r} + \circ \ 48 \\ + \circ \ 48 \\ + \circ \ 39 \\ + \circ \ 39 \\ - \ 2 \ 36 \\ - \ 2 \ 48 \\ - \ 2 \ 49 \\ - \ 2 \ 49 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

TABLE VI.-RESULTS OF MEASURES OF ANGLE. (Continued.)

Star	Pla	Observ	ed Dist.	Cor	rections	s for	Cor- rected	Scale	Proper	Final Corrected
No.	ute.	East.	West.	Refrac.	Aberr.	Scale.	Mean s	tion.	Motion.	Distance. σ
22 (15)	8 11 12	.2376 .2489 .2472	.2377 .2607 .2366	295 320 301	+45 +51 +51	125 134 125 Mean	.2775 .2987 .2830	+7 -38 -43	+.0040 +.0043 +.0043	102.2822 .2992 .2830 102.2881
23 (16)	1 2 4 5 6 7 8 10 11 12	.5766 .5746 .5400 .5488 .5830 .5582 .5514 .5485 .5523 .5545	.5912 .5729 .5510 .5608 .6004 .5378 .5656 .5727 .5609 .5378	410 404 397 389 381 392 364 385 397 370	-37 -37 -45 -45 +54+54+62+63+63	84 84 82 82 82 84 85 84 85 84 84 104 Mean	.6175 .6068 .5770 .5853 .6214 .5889 .5967 .6016 .5989 .5878	$ \begin{array}{r} - 12 \\ + 33 \\ + 144 \\ + 23 \\ - 63 \\ - 8 \\ + 8 \\ + 18 \\ - 46 \\ - 53 \\ \end{array} $	$\begin{array}{c}0016 \\0016 \\0013 \\0013 \\0013 \\ +.0054 \\ +.0054 \\ +.0058 \\ +.0058 \\ +.0058 \\ +.0058 \end{array}$	124.6147 .6085 .5901 .5863 .6138 .5935 .6029 .6092 .6001 .5883 124.6007
24 (21)	1 2 3 4 5 6 7 8 9 11 12	.5444 .5391 .5466 .5401 .5583 .5331 .5166 .5112 .5372 .5177	.5442 .5316 .5332 .5563 .5340 .5482 .5149 .5144 .4964 .5161 .5113	238 241 240 237 234 245 214 290 253 223	$ \begin{array}{r} -20 \\ -20 \\ -24 \\ -24 \\ +29 \\ +33 \\ +33 \\ +33 \end{array} $	107 107 106 109 107 107 110 110 107 106 Mean	5750 5690 5669 5821 5672 5832 5666 5490 5453 5641 5489	$ \begin{array}{r} - & 6 \\ + & 18 \\ + & 77 \\ + & 12 \\ - & 34 \\ - & 5 \\ + & 5 \\ - & 26 \\ - & 25 \\ - & 28 \end{array} $	$\begin{array}{c}0043 \\0043 \\0035 \\0035 \\0035 \\0035 \\ +.0140 \\ +.0150 \\ +.0151 \\ +.0151 \end{array}$	66.5701 .5665 .5628 .5863 .5649 .5763 .5741 .5635 .5577 .5767 .5767 .5612 66.5691
25 (17)	1 2 3 4 5 7 8 9 11 12	.5484 .5400 .5540 .5296 .5296 .5290 .5295 .5226 .5294 .5205	.5453 .5337 .5545 .5390 .5345 .5176 .5224 .5122 .5288 .5310	396 391 383 386 378 383 352 428 393 358	-35-35-35-43-43+52+52+59+60+59	123 123 123 123 123 123 124 123 123 123 Mean	.5851 .5746 .5913 .5735 .5677 .5690 .5737 .5683 .5766 .5697	$ \begin{array}{r} - 11 \\ + 32 \\ + 4 \\ + 137 \\ + 22 \\ - 8 \\ + 8 \\ - 46 \\ - 44 \\ - 50 \\ \end{array} $	0022 0022 0022 0018 +.0071 +.0071 +.0076 +.0076 +.0076	$\begin{array}{c} 118.5818\\ .5756\\ .5895\\ .5854\\ .5681\\ .5753\\ .5816\\ .5713\\ .5798\\ .5723\\ 118.5781\end{array}$

TABLE V.-RESULTS OF MEASURES OF DISTANCE. (Continued.)

178

Pla	Observed Po Angle	osition	Zero Correc-	Refrac	Cor- rected	Proper	Final Cor-
te.	East.	West.	preces- sion, etc.	inciniao.	Mean. p	Motion.	rected Angle. π
8 11 12	2 54 45 34 44 57 47 47	46 15 46 50 48 55	18 54 18 38 18 40	— 6" —15 — 8 Mean	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-1'3'' -18 -18	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
1 2 4 5 6 7 8 10 11 12	252 10 42 8 48 11 56 9 28 9 56 13 33 13 53 16 26 13 38 16 2	II 42 9 52 I4 7 II 32 II 8 I4 13 I5 27 I7 50 I5 12 I8 I3	19 56 21 45 18 22 20 8 14 4 18 37 18 54 16 30 18 38 18 40	10 11 10 5 15 7 16 17 8 Mean	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} + & 0 & 16 \\ + & 0 & 16 \\ + & 0 & 13 \\ + & 0 & 0 & 52 \\ + & 0 & 0 & 55 \\ - & 0 & 0 & 56 \\ - & 0 & 56 \\ - & 0 & 56 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1 2 3 4 5 6 7 8 9 11 12	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19 22 16 32 19 8 19 53 18 50 18 18 21 45 23 18 26 48 23 22 26 6	19 56 21 45 20 19 18 22 20 8 14 4 18 37 18 54 18 13 18 38 18 40		$\begin{matrix} 145 & 38 & 30 \\ 37 & 34 \\ 38 & 54 \\ 37 & 41 \\ 37 & 28 \\ 31 & 10 \\ 39 & 26 \\ 41 & 13 \\ 42 & 49 \\ 40 & 37 \\ 42 & 58 \\ 145 & 38 & 56 \end{matrix}$	+ 0 26 + 0 26 + 0 26 + 0 22 + 0 22 + 0 22 - I 27 - I 27 - I 33 - I 34 - I 34	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
I 2 3 4 5 7 8 9 11 12	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	58 56 56 46 59 38 00 35 58 55 1 32 2 5 4 18 2 45 4 58	19 56 21 45 20 19 18 22 20 8 18 37 18 54 18 13 18 38 18 40	10 12 13 13 17 18 27 18 10 Mean	159 17 59 17 50 19 4 18 5 17 53 19 9 20 26 21 4 20 22 22 26 159 19 26	$\begin{array}{c} + & 0 & 16 \\ + & 0 & 16 \\ + & 0 & 16 \\ + & 0 & 0 & 14 \\ + & 0 & 0 & 54 \\ - & 0 & 0 & 58 \\ - & 0 & 0 & 58 \\ - & 0 & 58 \end{array}$	159 18 49 19 13 18 59 18 48 19 10 19 18 19 13 19 10 19 38 18 50 159 19 7

TABLE VI.-RESULTS OF MEASURES OF ANGLE. (Continued.)

TABLE V.-RESULTS OF MEASURES OF DISTANCE. (Continued.)

Star	Pla	Observe	ed Dist.	Cor	rections	for	Cor- rected	Scale	Proper	Final Corrected
No.	ate.	East.	West.	Refrac.	Aberr.	Scale.	Mean. s	tion.	Motion.	Distance. σ
26 (29)	1 2 3 4 5 6 7 8 11 12	.9975 .0162 .0286 .0159 .0173 .0185 .9586 .9839 .9594 .9566	.0135 .0226 .0154 .0140 .9999 .0212 .9565 .9789 .9571 .9410	183 207 242 220 259 309 221 203 228 209	$ \begin{array}{r} -15 \\ -15 \\ -15 \\ -18 \\ -18 \\ -18 \\ +21 \\ +25 \\ +25 \\ +25 \\ \end{array} $	114 114 121 120 110 114 114 124 120 Mean	.0330 .0492 .0553 .0464 .0439 .0591 .9923 .0144 .9951 .9834	$ \begin{array}{r} - 5 \\ + 13 \\ + 2 \\ + 56 \\ + 9 \\ - 25 \\ - 3 \\ + 3 \\ - 18 \\ - 21 \end{array} $	$\begin{array}{c}0091\\0091\\0075\\0075\\0075\\ +.0299\\ +.0299\\ +.0322\\ +.0322\end{array}$	$\begin{array}{c} 49.0234\\ .0414\\ .0464\\ .0445\\ .0373\\ .0491\\ .0219\\ .0219\\ .0446\\ .0255\\ .0135\\ 49.0348\end{array}$
27	12	.8166	.8112	298	+45	132	.8570	38	+.0144	89.8676
(24)	4 6 11 12	•7395 •7193 •7391 •6891	.7356 .7225 .7261 .6803	265 269 285 243	-23 -23 +31 +31	117 114 114 113 Mean	.7720 .7554 .7741 .7219	$+72 \\ -32 \\ -23 \\ -26$	—.0056 —.0056 +.0241 +.0241	62.7736 .7466 .7959 .7434 62.7649
29 (28)	I 2 3 4 5 6 7 8 11 12	.0709 .0724 .0856 .0794 .0785 .0877 .9937 .0371 .0104 .0354	.0682 .0725 .0750 .0760 .0611 .0677 .9865 .0175 .0034 .0176	200 227 264 242 280 329 246 219 254 228	$ \begin{array}{r} -15 \\ -15 \\ -15 \\ -19 \\ -19 \\ -19 \\ +22 \\ +22 \\ +26 \\ +26 \\ \end{array} $	110 110 117 114 110 115 113 110 113 Mean	.0982 .1038 .1154 .1109 .1065 .1189 .0276 .0619 .0451 .0624	$ \begin{array}{r} -5 \\ +14 \\ +2 \\ +59 \\ +9 \\ -26 \\ -3 \\ +3 \\ -19 \\ -22 \\ \end{array} $	$\begin{array}{c}0094 \\0094 \\0078 \\0078 \\0078 \\ +.0309 \\ +.0309 \\ +.0333 \\ +.0333 \end{array}$	$\begin{array}{c} 51.0883\\ .0958\\ .1062\\ .1090\\ .0996\\ .1085\\ .0582\\ .0931\\ .0765\\ .0935\\ 51.0929\end{array}$
30	4	.5448	.5838	259	22	110	.5977	+69	0072	59.5974
(23)	1 2 3 4 5 6 7 8 9 10 11 12	.4623 .4626 .4533 .4606 .4502 .4646 .4279 .4457 .4184 .4276 .4321 .4344	.4634 .4558 .4532 .4474 .4638 .4577 .4294 .4360 .4200 .4293 .4333 .4208	307 314 318 318 318 316 327 279 386 323 336 290	$\begin{array}{r} -24 \\ -24 \\ -24 \\ -30 \\ -30 \\ +36 \\ +41 \\ +41 \\ +41 \\ +41 \end{array}$	137 137 136 140 137 141 138 136 140 137 140 Mean	.5014 .4984 .4928 .4929 .4963 .5000 .4756 .4826 .4720 .4754 .4806 .4712	$ \begin{array}{r} -8 \\ +22 \\ +3 \\ +95 \\ +15 \\ -4^2 \\ -6 \\ +6 \\ -32 \\ +12 \\ -31 \\ -35 \end{array} $	0053 0053 0053 0044 0044 +.0173 +.0173 +.0186 +.0186 +.0187 +.0187	$\begin{array}{r} 82.4953\\ .4953\\ .4878\\ .4980\\ .4934\\ .4914\\ .4923\\ .5005\\ .4874\\ .4952\\ .4952\\ .4952\\ .4864\\ 82.4933\end{array}$

TABLE VI .-- RESULTS OF MEASURES OF ANGLE. (Continued.)

ate.	Observed P Angle	osition	Zero Correc-	Refrac	Cor- rected.	Proper	Final Cor-
Id	East.	West.	preces- sion, etc.		меан. р	Motion.	π
1 2 3 4 5 6 7 8 11 12	156 31 26 29 3 31 42 33 38 31 1 31 5 31 20 30 52 32 25 33 13	34 24 30 55 33 17 35 55 32 35 32 18 30 45 31 58 34 26 35 15	19 56 21 45 20 19 18 22 20 8 14 4 18 37 18 54 18 38 18 40	+10 +13 +15 +14 +14 +15 +18 +9 +19 +13 Mean	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} - & 0 & 10 \\ - & 0 & 10 \\ - & 0 & 9 \\ - & 0 & 9 \\ - & 0 & 9 \\ - & 0 & 9 \\ + & 0 & 34 \\ + & 0 & 37 \\ + & 0 & 37 \\ + & 0 & 37 \end{array}$	$\begin{array}{c} 66 \\ 53 \\ 52 \\ 52 \\ 52 \\ 34 \\ 53 \\ 43 \\ 53 \\ 4 \\ 52 \\ 59 \\ 51 \\ 35 \\ 50 \\ 43 \\ 53 \\ 14 \\ 51 \\ 6 \\ 66 \\ 52 \\ 32 \end{array}$
12	236 48 54	50 17	18 40	—15	147 8 1	— I II	147 4 12
4 6 11 12	216 8 8 6 47 9 50 11 12	10 18 8 0 13 3 14 53	18 22 14 4 18 38 18 40	17 35 21 16 Mean	126 27 18 20 53 29 43 31 26 126 27 20	+ 0 18 + 0 18 - 1 18 - 1 18	126 28 5 28 18 28 39 27 30 126 28 8
1 2 3 4 5 6 7 8 11 12	168 36 24 33 52 36 8 38 28 35 23 36 16 37 2 38 30 39 16 39 38	38 27 35 5 38 8 38 36 37 50 36 30 36 42 38 32 39 55 42 6	19 56 21 45 20 19 18 22 20 8 14 4 18 37 18 54 18 38 18 40	+ 8 + 8 + 7 + 5 - 1 + 10 + 3 + 13 + 5 Mean	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccccccc} 78 & 58 & 1 \\ 57 & 26 \\ 57 & 11 \\ 57 & 29 \\ 57 & 50 \\ 57 & 31 \\ 56 & 49 \\ 57 & 16 \\ 58 & 48 \\ 57 & 6 \\ 78 & 57 & 33 \end{array}$
4	150 3 18	5 32	18 22	+16	60 23 3	— o 10	60 23 22
1 2 3 4 5 6 7 8 9 10 11 12	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15 55 13 53 16 5 17 28 15 30 14 50 18 8 19 36 21 43 19 5 22 5	19 56 21 45 20 19 18 22 20 8 14 4 18 37 18 54 18 13 16 30 18 38 18 40	11 16 22 19 24 31 22 14 30 23 24 17 Mean	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} + & 0 & 20 \\ + & 0 & 20 \\ + & 0 & 20 \\ + & 0 & 16 \\ + & 0 & 16 \\ + & 0 & 16 \\ - & 1 & 6 \\ - & 1 & 6 \\ - & 1 & 10 \\ - & 1 & 10 \\ - & 1 & 11 \\ - & 1 & 11 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

182 Rutherfurd Photographic Measures of

TABLE V.-RESULTS OF MEASURES OF DISTANCE. (Concluded.)

Star	Pla	Observe	ed Dist.	Cor	rections	for	Cor- rected	Scale Varia-	Proper	Final Corrected
No.	te.	East.	West.	Refrac.	Aberr.	Scale.	Mean, s	tion.	Motion.	Distance.
32 (32)	1 2 4 7 8 9 10 11 12	.2646 .2655 .2768 .2306 .2388 .2557 .2360 .2292 .2333	.2658 .2600 .2702 .2495 .2309 .2180 .2386 .2214 .2124	344 368 384 364 368 349 355 368 370	$-32 \\ -32 \\ -40 \\ +48 \\ +48 \\ +54 \\ +54 \\ +55 \\ +55 \\ +55$	120 138 128 130 130 139 128 138 138 118 Mean	.3005 .3014 .3128 .2863 .2815 .2831 .2831 .2831 .2735 .2693	$ \begin{array}{r} - & 10 \\ + & 29 \\ + & 125 \\ - & 7 \\ + & 7 \\ - & 43 \\ + & 16 \\ - & 41 \\ - & 46 \\ \end{array} $	$\begin{array}{c}0062 \\0052 \\ +.0205 \\ +.0205 \\ +.0219 \\ +.0219 \\ +.0221 \\ +.0221 \end{array}$	109.2933 .2981 .3201 .3061 .3027 .3066 .2915 .2868 109.3007
33 (31)	1 2 3 4 5 6 7 8 9 10 11 12	.0454 .0511 .0424 .0409 .0380 .0000 .0001 .0036 .9968 .9996 .0000	.0412 .0403 .0366 .0354 .0282 .0428 .9866 .9929 .9918 .0042 .9859 .9922	$\begin{array}{c} 321\\ 357\\ 412\\ 377\\ 441\\ 529\\ 366\\ 356\\ 366\\ 366\\ 360\\ 373\\ 364\\ \end{array}$	$ \begin{array}{r} -28 \\ -28 \\ -28 \\ -34 \\ -34 \\ -35 \\ +42 \\ +47 \\ +48 \\ +48 \\ +48 \end{array} $	140 144 140 144 138 143 142 140 143 143 144 Mean	.0812 .0876 .0865 .0812 .0843 .0982 .0430 .0451 .0476 .0500 .0388 .0463	$\begin{array}{r} - 9 \\ + 25 \\ + 4 \\ + 109 \\ + 17 \\ - 48 \\ - 6 \\ + 6 \\ - 37 \\ + 14 \\ - 35 \\ - 40 \end{array}$	$\begin{array}{c}0078\\0078\\0078\\0064\\0064\\ +.0256\\ +.0256\\ +.0276\\ +.0274\\ +.0276\\ +.0276\end{array}$	95.0725 .0823 .0791 .0857 .0796 .0870 .0680 .0713 .0713 .0713 .0788 .0629 .0699 95.0757
34 (19)	7 8 11 12	·9473 .9583 .9655 .9702	.9391 .9454 .9507 .9496	472 410 490 427	+54 +54 +62 +62	118 118 108 113 Mean	.9957 .9981 .0122 .0082	- 8 + 8 - 46 - 52	+.0158 +.0158 +.0171 +.0171	124.0107 .0147 .0247 .0201 124.0175
35 (27)	10 11	.5560 .5637	.5567 .5550	516 535	+57 +58	119 114 Mean	.6164 .6209	+ 17 - 43	+.0251 +.0253	114.6432 .6419 .6426,

.

TABLE VI.—RESULTS OF MEASURES OF ANGLE. (Concluded.)

Plate.	Observed P Angle East.	West.	Zero Correc- tion plus preces-	Refrac.	Cor- rected Mean.	Proper Motion.	Final Cor- rected Angle.
I 2 4 7 8 9 10 11 12	123 33 26 31 20 35 45 33 42 34 55 35 42 37 3 35 10 37 10	35 6 32 52 37 38 34 58 35 55 37 33 38 19 35 40 38 13	sion, etc. 19 56 21 45 18 22 18 37 18 54 18 13 16 30 18 38 18 40	$ \begin{array}{r} $	$\begin{array}{c} p\\ 33 54 19\\ 54 5\\ 55 20\\ 53 15\\ 54 33\\ 55 13\\ 54 30\\ 54 22\\ 56 38\\ 33 54 42\end{array}$	$ \begin{array}{c} & 0 & 13 \\ & - & 0 & 13 \\ & - & 0 & 13 \\ & + & 0 & 43 \\ & + & 0 & 43 \\ & + & 0 & 46 \\ & + & 0 & 46 \\ & + & 0 & 46 \end{array} $	$\begin{array}{c} \pi \\ 33 & 54 & 40 \\ 54 & 59 \\ 55 & 38 \\ 55 & 1 \\ 54 & 57 \\ 55 & 3 \\ 55 & 1 \\ 54 & 57 \\ 55 & 3 \\ 55 & 1 \\ 55 & 22 \\ 54 & 46 \\ 33 & 55 & 3 \end{array}$
1 2 3 4 5 6 7 8 9 10 11 12	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19 56 21 45 20 19 18 22 20 8 14 4 18 37 18 54 18 13 16 30 18 38 18 40	+10 +16 +22 +19 +24 +31 +22 +14 +30 +23 +24 +17	48 18 1 17 27 18 49 18 11 17 32 11 21 16 12 17 29 18 39 17 49 17 18 20 11 48 17 25	$ \begin{array}{c} - & 0 & 11 \\ - & 0 & 11 \\ - & 0 & 9 \\ - & 0 & 9 \\ - & 0 & 9 \\ - & 0 & 37 \\ + & 0 & 37 \\ + & 0 & 39 \\ + & 0 & 39 \\ + & 0 & 40 \\ + & 0 & 40 \end{array} $	$\begin{array}{ccccccc} 48 & 18 & 24 \\ & 18 & 23 \\ & 18 & 17 \\ & 18 & 31 \\ & 18 & 26 \\ & 18 & 19 \\ & 17 & 52 \\ & 17 & 47 \\ & 18 & 22 \\ & 17 & 47 \\ & 18 & 22 \\ & 18 & 13 \\ & 18 & 13 \\ & 48 & 18 & 15 \\ \end{array}$
7 8 11 12	231 32 22 33 2 33 8 34 47	33 3 34 40 34 38 37 13	18 37 18 54 18 38 18 40	22 14 24 16 Mean	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	— o 46 — o 46 — o 49 — o 49	141 51 14 51 27 51 32 50 57 141 51 18
10 11	213 4 38 2 32	6 18 3 35	16 30 18 38	—19 —20 Mean	123 21 39 21 21 123 21 30	— 0 41 — 0 41	123 20 43 20 54 123 20 48

TABLE VII.—FOR PROPER MOTION, ETC.

Plate	t-1874	D	72	7.5	Correction f	or Variation.
No.	τ	<i>I</i> 1	£ 5	£	Scale $\times 10^3$	Orientation.
1 2 3 4 5 6 7 8 9 10 11 12	$\begin{array}{c} -0.127 \\ -0.127 \\ -0.127 \\ -0.127 \\ -0.105 \\ -0.105 \\ -0.105 \\ -0.105 \\ +0.418 \\ +0.418 \\ +0.448 \\ +0.448 \\ +0.448 \\ +0.451 \\ +0.451 \\ +0.451 \end{array}$	$\begin{array}{c}0094 \\0094 \\0094 \\0078 \\0078 \\0078 \\ +.0310 \\ +.0310 \\ +.0332 \\ +.0332 \\ +.0334 \\ +.0334 \end{array}$	$\begin{array}{c} -1942.6\\ -1942.6\\ -1942.6\\ -1606.2\\ -1606.2\\ -1606.2\\ +6394.2\\ +6394.2\\ +6394.2\\ +6852.9\\ +6852.9\\ +6852.9\\ +6898.7\\ +6898.7\end{array}$	$ \begin{array}{c} $	$\begin{array}{c}00957 \\ +.02660 \\ +.00373 \\ +.11455 \\ +.01820 \\05086 \\00677 \\ +.00677 \\ +.00677 \\ +.03896 \\ +.01446 \\03733 \\04223 \end{array}$	$\begin{array}{c} & & & \\ & & & \\ & +$

- 5

Star	In Distance.		In Position Angle	
No.	<i>S</i> ₁	S5	${\mathcal S}_6$	87
1	1.000	0104	.0081	
2	0.935	3558	.0085	
3	984	+.1783	.0132	
4	960	2803	.0125	
5	664	7481	.0083	
6	0.838	5454	.0165	00899
7	622	7829	.0112	00875
8	673	+7401	.0171	+.01265
9	990	+.1428	.0337	+.00482
10	978	2087	.0538	01122
11 12 13 14 15	0.232 568 253 155	9727 8231 9676 9879	.0094 .0826 .0416 .0126	00919 06795 04022 01250
16 17 18 19 20	$\begin{array}{r} -0.103 \\ + .280 \\ + .563 \\ + .137 \\ + .349 \end{array}$	$\begin{array}{c}9947 \\ +.9601 \\ +.8263 \\9906 \\ +.9370 \end{array}$.0125 .0255 .0352 .0179 .0112	01245 +.02450 +.02911 01769 +.01047
21	+0.630	7768	.0312	02424
22	+ .130	9915	.0098	00970
23	+ .174	9847	.0080	00791
24	+ .453	8916	.0150	01339
25	+ .229	9734	.0084	00821
26	+0.963	+.2709	.0204	+.00553
27	+ .430	9030	.0111	01005
28	+ .721	6932	.0159	01104
29	+ .998	+.0633	.0196	+.00124
30	+ .926	+.3777	.0168	+.00634
31	+0.559	$\begin{array}{r}8292 \\ +.7508 \\ +.5636 \\8599 \\6532 \end{array}$.0121	01005
32	+ .661		.0092	+.00687
33	+ .826		.0105	+.00593
34	+ .510		.0081	00693
35	+ .757		.0087	00570

TABLE VIII.—FOR PROPER MOTION.

Star	Distance	Position	a'-a	8/8	No. of	Durchmust	erung.
No.	Distance.	Angle.	u —u	,	Plates.	No.	Mag.
1 2 3 4 5	3471.54 3279.96 2125.81 2233.14 3376.37	261 57 38 241 44 1 272 51 16 246 18 15 214 9 24	$\begin{array}{c}6200.11\\5170.81\\3846.67\\3677.83\\3363.40\end{array}$	$\begin{array}{c} - 528.57 \\ - 1583.43 \\ + 89.36 \\ - 912.64 \\ - 2806.80 \end{array}$	2 8 12 12 5	56.2942 55.2898 56.2952 56.2953 55.2908	9.4 9.1 7.5 8.6 9.3
6 7	1699.59 2505.96	229 30 18 211 2 20	2321.22 2303.23	-1109.73 -2153.15	5 8	56.2956	8.5
8 9 10	1639.11 830.27 521.11	310 19 51 270 47 43 250 31 59	-2279.93 -1503.17 -888.41	+1055.07 + 9.01 - 174.55	12 12 12	56.2958 56.2961 56.2962	7.0 9.0 9.0
11 12 13 14 15	2964.74 339.10 673.84 2213.72	185 59 15 207 10 5 187 11 15 181 29 16 Bradley		2948.90 301.78 668.58 2212.98	12 4 12 12	» 55.2915 56.2963 56.2964 55.2917 56.2966	9.3 8.7 9.1 8.2 6.0
16 17 18 19 20	2237.48 1097.56 795.11 1568.18 2508.31	178 30 17 8 50 15 26 52 45 164 42 34 13 2 27	$ \begin{array}{r} + 104.00 \\ + 307.73 \\ + 654.24 \\ + 740.56 \\ + 1043.41 \end{array} $	$\begin{array}{r} -2236.73 \\ +1084.43 \\ +708.74 \\ -1513.29 \\ +2442.43 \end{array}$	12 12 6 12 12	55.2919 56.2969 56.2970 55.2920 57.2712	7.6 8.0 9.1 9.3 8.0
21 22 23 24 25	897.34 2865.34 3490.36 1864.76 3321.66	133 31 53 165 3 17 162 32 2 145 39 8 159 19 7	+1172.55 +1311.41 +1851.74 +1883.65 +2076.84	$\begin{array}{r} \ 619.58 \\ 2770.35 \\ 3333.34 \\ 1543.60 \\ 3112.52 \end{array}$	9 3 10 11 10	56.2972 55.2922 55.2925 55.2926 55.2928	9.3 9.5 8.5 8.5 8.3
26 27 28	1373.58 2517.41 1758.20	66 52 32 147 4 12 126 28 8	+2296.06 +2439.97 +2540.40	+ 533.57 -2119.69 -1052.30	10 1 4	56.2974	9.4
29 30	1431.23 1669.47	78 57 33 60 23 22	+2548.30 +2643.71	+ 266.85 + 817.13	10 1	56.2975 56.2976	9.4 9.5
31 32 33 34 35	2310.84 3061.77 2663.30 3474.03 3211.41	138 35 50 33 55 3 48 18 15 141 51 18 123 20 48	+2732.23 +3151.75 +3647.57 +3808.68 +4794.57	-1741.73 +2529.88 +1756.88 -2748.62 -1791.25	12 9 12 4 2	55.2929 57.2715 56.2978 55.2933 55.2935	7.6 8.5 7.0 8.9 9.4

TABLE IX.—MEAN RESULTS.

Star No.	Helsings- fors-Gotha No.	Right Ascen- sion, 1874.	Precession, J	'Sec. Var., K	Declination, ^{1874.}	Precession, L	Sec. Var. M
1 2 3 4 5	13747 13768 13773	h m s 23 0 20.015 1 28.635 2 56.911 3 8.167 3 29.129	s +2.5557 2.5709 2.5746 2.5814 2.5939	+.0276 .0279 .0286 .0285 .0283	56 [°] 19 [°] 33.38 56 [°] 158.52 56 [°] 29 [°] 51.31 56 [°] 13 [°] 9.31 55 [°] 41 [°] 35.15	+19.378 19.404 19.436 19.440 19.447	+088 .086 .084 .084 .084
6 7 8 9 10	13801 13805 13814 13826	4 38.608 4 39.807 4 41.361 5 33.145 6 14.129	+2.5952 2.6004 2.5846 2.5973 2.6041	+.0289 .0288 .0293 .0294 .0296	56 9 52.22 55 52 28.80 56 45 57.02 56 28 30.96 56 25 27.40	+19.472 19.473 19.473 19.491 19.505	+.082 .083 .082 .081 .080
11 12 13 14 15	13829 13836 13837 13839 13841	6 36.814 6 54.709 7 3.230 7 6.529 23 7 13.356	+2.6206 2.6105 2.6134 2.6213 2.6116	+.0292 .0298 .0298 .0295 .0300	55 39 13.05 56 23 20.17 56 17 13.37 55 51 28.97 56 28 21.95	+19.513 19.519 19.522 19.523 19.525	+.080 .079 .079 .079 .078
16 17 18 19 20	13844 13848 13850 13852 13856	7 20.289 7 33.871 7 56.972 8 2.727 8 22.917	+2.6233 2.6093 2.6145 2.6259 2.6098	+.0296 .0303 .0303 .0299 .0308	55 51 5.22 56 46 26.38 56 40 10.69 56 3 8.66 57 9 4.38	+19.527 19.532 19.539 19.541 19.548	+.079 .078 .077 .078 .077
21 22 23 24 25	13870 13871 13875	8 31.526 8 40.783 9 16.805 9 18.933 9 31.812	+2.6255 2.6369 2.6445 2.6367 2.6454	+.0303 .0303 .0300 .0303 .0301	56 18 2.37 55 42 11.60 55 32 48.61 56 2 38.35 55 36 29.43	+19.551 19.554 19.565 19.566 19.570	+.077 .077 .076 .076 .076
26 27 28 29 30		9 46.427 9 56.021 10 2.716 10 3.243 10 9.603	+2.6310 2.6445 2.6407 2.6347 2.6332	+.0308 .0304 .0304 .0304 .0304	56 37 15.52 55 53 2.26 56 10 49.65 56 32 48.80 56 41 59.08	+19.575 19.578 19.580 19.580 19.582	+.074 .076 .076 .076 .076
31 32 33 34 35	13885 13894 13903 13907	10 15.505 10 43.473 11 16.527 11 27.268 12 32.994	+2.6455 2.6300 2.6385 2.6600 2.6652	+.0306 .0316 .0316 .0308 .0313	55 59 20.22 57 10 31.83 56 57 38.83 55 42 33.33 55 58 30.70	+19.584 19.593 19.603 19.606 19.626	+.075 .073 .073 .073 .071

TABLE X.-CATALOGUE OF STARS.

VI.—The Præsepe Group; Measurement and Reduction of the Rutherfurd Photographs.

BY FRANK SCHLESINGER.

Read April 4, 1898.

I.

Description of the Plates.

The collection of astronomical photographs presented by the late Lewis M. Rutherfurd to the Observatory of Columbia University contains eleven photographs of Præsepe taken with his larger and improved instrument; only eight of these were measured and reduced, three having been judged inferior to the rest. According to Rutherfurd's invariable practice, each plate shows two complete pictures of the group separated by about a millimetre in right ascension, the driving clock of the instrument having been stopped for a few seconds after the completion of the first or eastern impression. Near the west edge of the plate still a third image of each of the brighter stars in the group is found, separated by about forty millimetres from the two other impressions, the driving clock having been stopped for an interval of about three minutes after the completion of the second impression, and then started again and allowed to run long enough to permit the brighter stars to leave well-defined images. The object in securing these third impressions or truils was to afford means for orienting the group, but in the present work they were not used for this purpose, the orientation having been effected in another way. It is important, however, to know how accurately the use of trails will give the orientation, and they were therefore completely measured and reduced, and the results compared with those obtained by the method actually employed, which is of unquestioned accuracy but may not be always available.

A perpendicular to the plate passing through the optical centre of the object glass pierces the plate at a point whose approximate position must be known in order to reduce the measures of the stars to right ascensions and declinations. Rutherfurd so adjusted his plate holder that this point coincides approximately with the image of the central star of the group, numbered 15 in the following pages.

189

ANNALS N. Y. ACAD. SCI., X, May, 1893-13.

190 Præsepe Group; Measurement and Reduction

Table I gives the data of exposure for the plates. Plates VI, X and XI do not appear, these being the ones that were not measured, on account of their inferiority. This is due to the fact that the photographic images of the stars on these plates, when viewed under the microscope of the measuring machine were neither so round nor so well defined as on the other plates and therefore did not admit of so accurate measurement. The irregularity of the images is not due to a deterioration of the plates since they were taken, but to the bad behavior of RUTHERFURD's clock during the exposures. For this reason these three plates were never measured, it being deemed probable that more reliable results are to be obtained from the eight plates actually reduced, than if all the plates had been measured, in spite of the greater number of observations in the latter case. In this connection I should also say that not all the stars which appear on the plates were measured. A few whose images come near the edges of the plates were rejected, for not only are these images much distorted, but as we shall see later, the corrections become uncertain as we recede from the centre of the plate.

TABLE I.-PHOTOGRAPHS OF PRÆSEPE.

 $\label{eq:constraint} \begin{array}{c} \mbox{Observatory of L. M. Rutherfurd, New York.} \\ \mbox{Lat.} = 40^{\circ}43'48''.5 & \mbox{Long.} = 4^{h}55^{m}56^{s}.62 \ {\rm W}. \end{array}$

Date.	Sidereal Time.	Bar.	The	Focus		
			Att.	Ext.	Tel.	
1870 Apr. 24 1870 Apr. 24 1870 Apr. 25 1870 Apr. 25 1877 Apr. 25 1877 Apr. 25 1877 Apr. 25	h m s 10 45 05 11 25 35 11 10 35 11 59 35 10 39 38 11 26 02 11 53 32	30.01 30.01 30.26 30.26 30.06 30.06 30.06	60° 60 53 53 47 57 57	55 55 47 47 45 56 56	58° 58 53 53 48 58 58 58	8.4 8.4 8.4 7.8 7.7 7.7
	Date. 1870 Apr. 24 1870 Apr. 24 1870 Apr. 25 1870 Apr. 25 1877 Apr. 25 1877 Apr. 25 1877 Apr. 25 1877 May 2	Date. Sidereal Time. 1870 Apr. 24 h m s 10 45 05 1870 Apr. 24 II 25 35 1870 Apr. 25 II 10 35 1870 Apr. 25 II 59 35 1877 Apr. 14 10 39 38 1877 Apr. 25 II 26 02 1877 Apr. 25 II 53 32 1877 May 2 10 57 08	Date.Sidereal Time.Bar.1870 Apr. 2410 45 0530.011870 Apr. 2411 25 3530.011870 Apr. 2511 10 3530.261870 Apr. 2511 59 3530.261877 Apr. 1410 39 3830.061877 Apr. 2511 26 0230.061877 Apr. 2511 53 3230.061877 Apr. 2511 57 37230.661877 Apr. 2511 57 7829.86	Date. Sidereal Time. Bar. The 1870 Apr. 24 10 45 05 30.01 60° 1870 Apr. 24 11 25 35 30.01 60° 1870 Apr. 25 11 10 35 30.26 53 1870 Apr. 25 11 59 35 30.26 53 1870 Apr. 25 11 59 35 30.26 53 1877 Apr. 25 11 26 02 30.06 47 1877 Apr. 25 11 26 02 30.06 57 1877 Apr. 25 11 53 32 30.06 57 1877 May 2 10 57 08 29.86 47	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

The column marked "sidereal time" gives the mean of four instants for each plate: beginning of east exposure, end of east exposure, beginning of west exposure and end of west exposure; each exposure lasted six minutes. Three thermometers were read: attached, external and telescope, the last being in contact

with the telescope-tube. The last column, marked "focus," gives the reading of a micrometer head attached to the eye end of the telescope and shows the position of the plate holder; this information is not used in the reductions and is given only to provide for the possibility of determining a relation between this reading and the scale-value after a sufficient number of the photographs made with this instrument has been reduced.

II.

Measurement of the Plates.

The plates were measured with the older Repsold Measuring Machine of this Observatory, which is a counterpart of the one by the same maker belonging to the University of Leyden except that an alteration has been made which obviates "projection errors." (See III.) A full description of the Leyden machine is given in the "Bulletin du Comité Permanent," Vol. 1, page 169, and also in the recent work by Dr. Scheiner, "Photographie der Gestirne," page 148. The machine is so constructed that the position of a star may be determined either by position angle and distance or by rectangular coördinates; the latter method was adopted in the present case. A star which is to be measured may be brought into the field of the reading microscope by moving the plate along a straight guiding cylinder and then moving the microscope at right angles to the cylinder on another straight guiding way. The wire of the micrometer is made to bisect the image of the star and the micrometer head is read. Then the whole microscope is revolved through a small vertical angle and the wire set upon a scale of millimetres placed parallel to the motion of the microscope. The difference of the two readings on star and scale, together with the number of the line on the scale gives us the position of the star. Having gone through the same operation for all the stars we obtain their relative positions, at least in one direction; the plate is now revolved through 90° by means of the graduated circle and the stars are again measured; these two sets of measures are sufficient to fix the relative positions of the stars, but in order to secure greater accuracy and especially to eliminate personality the plate is turned 180° and 270° respectively from its original position, and the stars are read a third and a fourth time. By means of the trails

or otherwise the plate may be so placed in the machine that a circle of declination through the central star shall be approximately parallel to the guiding cylinder; in this way we obtain rectangular coördinates which are nearly in the directions of right ascensions and declinations, thus rendering their conversion into the latter a comparatively easy matter.

Two observers alternated in the measurements, one recording while the other observed; the details of each morning's work, which usually lasted a little over two hours, are as follows: the first observer reads the circle, runs and temperature, the second reads on the central star thus: East image, scale, scale, east image; west image, scale, scale, west image. Continuing, the second observer goes through the same operations for usually three other stars, experience having shown that four stars could be read conveniently without fatiguing the eye; thus the observers alternate till twenty or twenty-five stars have been read and then the temperature is recorded a second time. The morning's work is now half finished; the same stars are then observed in the reverse order, care being taken that each observer shall now read those stars that he had not read in the first half; having finally gotten back to the central star, temperature, runs and the circle are read as at the beginning. This process of repeating all the measurements in the reverse order, eliminates the effects of any change in the machine or in the observers that is proportionate to the time, for the mean of the two times of observation is nearly the same for all the stars. In the first half of the morning's work the micrometer head is set at about 9.^R0 when pointed at a star; but in the second half the reading is made 9.85; in this way periodic errors of the screw are nearly eliminated, for both star and scale are read with two different parts of the screw separated by half a turn.

The measurements made in the first position of the plate, *i. e.*, with the stars having the greatest *right ascensions* farthest from the cylinder are recorded as "x direct;" on the next day the plate is turned 90° in a counter-clockwise direction so that now the stars having the greatest *north polar distances* are farthest from the cylinder. The measurements taken in this position are called "y direct," while those taken in the two opposite positions, 180° and 270° from the original position are called respectively "x reversed" and "y reversed." As only twenty or twenty-five stars could be

measured on each day, and as the photographs of Præsepe show about forty-five stars that admit of measurement, it was necessary to spend two days on each position of the plate. To eliminate the effect of a possible motion of the plate or of the scale the central star 15 was read each day by both observers. After three of the plates had been measured, viz. : III, VII and IX, it was decided to read the central star more often, so that on the succeeding plates four such readings were made every day, instead of two.

Three observers were engaged in the measurement of the first five plates, but only two were concerned in the work for any single day. Care was always taken to have the same pair of observers make both the direct and the reversed measurements of a particular set of stars, in order to eliminate personality. Suppose one of the observers has contracted the habit of always setting the micrometer wire too far to the right of the centre of a star's image by an amount depending upon the size of the image; the distance between two stars as obtained by such an observer will be subject to an error which depends upon the difference of magnitudes of the stars. But when the plate is reversed 180°, the same observer will get a distance which is too small by as much as the first distance was too large or vice versa; consequently the mean of the two measurements will be free from such personality as we have supposed. However, this method of measurement does not eliminate all personality, for the star images are seldom round and are usually more sharply defined on one edge than upon the other; two observers will thus sometimes differ considerably in their estimations of the true centre of the image.

Table II gives the runs, circle reading, etc., for each day. Runs were observed twice daily, once before and once after the measurement of the stars; the number in the column headed "runs" is the mean of the two determinations expressed in millimetres. The circle was also read twice, employing two microscopes 180° apart for each reading; in the column marked "circle" the degrees and minutes are always taken from the right-hand microscope, while the number of seconds is the mean of both microscopes. The thermometer occupied a fixed position near the plate and was graduated in Fahrenheit degrees. The last column gives the initials of the three observers, Kretz, Hays and Schlesinger.

TABLE II .- DAILY RECORDS.

Date, 1897.	Runs in mm.	Circle.	Ther.	Position of Plate, and Stars Measured.	Obs'rs.
			Plate	9 JII.	
Jan. 12	0.0029	185° 58' 00'	63.3	x direct; 2-4, 6, 8, 10, 11, 14- 18, 20, 22-24, 26, 28, 29, 45.	, к
" 13	0.0026	275 57 57	67.0	y direct; 2-4, 6, 8, 10, 11, 14- 18, 20, 22-26, 28, 29, 33.	S, H
" 18 " 19	0.0026 0.0021	5 58 00 185 57 57	63.2 60.8	x reversed; see Jan. 12. x direct; 1, 2, 5, 7, 15, 23A,25,	S, K K, H
" 20 " 21	0.0016	95 58 02 275 58 01	63.6 65.2	27, 31-37; 39, 40, 43-45. y reversed; see Jan. 13. y direct: 1, 5, 7, 15, 23A, 27.	S, H S. H
" 23 "	0.0035	5 58 00	60.5	31-37, 39, 40, 43-45. x reversed; see Jan. 19.	K, H
·· 26 ·· 27	-0.0020	275 58 00 95 58 00	61.6	Trails; 15, 23, 27, 31. y reversed; see Jan. 21.	S, K S, H
			Plate	, IX.	
Feb. 5	+0.0028	177 37 02	63.2	x direct; 2-4, 6, 8, 10, 11, 14-	S, K
" 8 " 9	+0.0016	267 37 01 267 37 00	62.2	Trails; 15, 23, 31, 37. y direct; 2-4, 6, 8, 10, 11, 14-	S, K K, H
" IO	+0.0010	267 36 58	63.6	18, 20, 22-29, 33. y direct; 1, 5, 7, 15, 23A, 31-	S, Н
" II " I3	+0.0021	87 37 02 87 37 01	60.9	40, 43-45. y reversed; see Feb. 10. y reversed; see Feb. 0.	<u></u> , н к. н
·' 16 ·' 17	+0.0031 0.0016	357 37 02 357 37 00	64.2 65.9	x reversed; see Feb. 19. x reversed; see Feb. 5.	K, H S, K
" 19	+0.0036	177 37 02	66.4	x direct; 1, 2, 5, 7, 15, 23A, 31-40, 43-45.	К, Н
	·	<u></u>	Plate	VII.	
Feb. 26	+0.0026	86° 54° 00'	63.8	x direct; 2-4, 6, 8, 10, 11, 14-	S, Н
" 27 Mar. 1	+0.0030	356 54 00	62.I	y reversed; see Mar. 1. y direct: 2-4, 6, 8, 10, 11, 14-	S, K S, K
" 2	+0.0011	176 54 02	65.1	18, 20, 22-29, 31-33. y direct; 1, 5, 7, 7A, 15, 19,	к, н
" 3	+0.0039	86 53 58	65.9	21, 23A, 33-45. x direct; 1, 2, 5, 7, 7A, 15, 19,	s, н
" 4	+0.0044	266 53 56	66.8	21, 23A, 34-45 x reversed; see Feb. 26.	S, H
" 5 " 6	+0.0045	176 54 00 356 54 03	65.8	Trails; 15, 22, 23, 31. y reversed; see Mar. 2.	S, H K, H
	+0.0026	266 54 00	60.8	x reversed; see Mar. 3.	S, Н

Præsepe Group; Measurement and Reduction

Plate VIII.Mar. 15 $+0.0036$ $177^{\circ} 02' 28'$ 56.8x direct; 2-4, 6, 8, 10, 11, 14- 18, 20, 22-29, 31, 45.S, K 16"16 $+0.0036$ $267 \circ 02$ 3062.6y direct; 2-4, 6, 8, 10, 11, 14- 18, 20, 22, 29, 31, 33.K, H"17 $+0.0039$ $357 \circ 02$ 3160.4x reversed; see Mar. 15.S, K"17 $+0.0050$ $87 \circ 02$ 3262.0y reversed; see Mar. 25.S, H"20 $+0.0050$ $87 \circ 02$ 3262.0y reversed; see Mar. 16.K, H"21 $+0.0045$ $87 \circ 02$ 3262.0y reversed; see Mar. 17.K, H"22 $+0.0045$ $177 \circ 02$ 2962.8x direct; 1, 5, 7, 7A, 15, 19.S, K"23 $+0.0045$ $177 \circ 02$ 2962.8x direct; 1, 2, 5, 7, 7A, 15, 19.S, H23A, 32-45."25 $+0.0045$ $177 \circ 02$ 2962.8x direct; 2, 4, 6, 8, 10, 11, 14-S, K"25 $+0.0045$ $177 \circ 02$ 2962.8x direct; 1, 2, 5, 7, 7A, 15, 19.S, H23A, 32-45."26 $x reversed; see Apr. 3.K, H"5+0.0015185 59 5965.9y direct; 1, 5, 7, 7A, 15, 19.S, K"6+0.0015276' \circ 00' \circ 6'7.8y reversed; see Apr. 3.K, H"6+0.00356 \circ 00 \circ 6'7.8x reversed; see Apr. 3.K, H"7+0.00186 \circ 00 \circ 6'7.8x reversed; see Apr. 5.S, K"8+0.0035185 59 5865.6x direct; 1, 2, 5, 7, 7A, 15, 19.S, H$	Date 1897	e, •	Runs in mm.	Circle.	Ther.	Position of Plate, and Stars Measured.	Obsr's.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					Plate	VIII.	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Mar.	15	+0.0036	177°02 28	56.8	x direct; 2-4, 6, 8, 10, 11, 14-	S, K
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	""	16	+0.0036	267 02 30	62.6	y direct; 2-4, 6, 8, 10, 11, 14-18, 20, 22, 29, 31, 33.	к, н
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	••	17	+0.0039	357 02 31	60.4	x reversed; see Mar. 15.	S, K
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		18	+0.0036	357 02 27	62.3	x reversed; see Mar. 25.	S, H
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		20	+0.0050	87 02 32	62.0	y reversed; see Mar. 16.	K, H
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		22	+0.0045	87 02 28	64.0	y reversed; see Mar. 24.	S, K
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		23	1	267 02 29	60.0	1 rails; 15, 22, 23, 31.	\mathbf{K}, \mathbf{H}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		24	+0.0042	267 02 34	63.9	y direct; 1, 5, 7, 7A, 15, 19, 23A, 32–45.	S, K
Plate II.Apr. 3 $+0.0015$ 276° 00 00 65.9 y direct; 2, 4, 6, 8, 10, 11, 14- 18, 20, 22-26, 28, 29, 33.K, H"5 $+0.0015$ 185 59 59 65.9 x direct; 2, 4, 6, 8, 10, 11, 14- 18, 20, 22-29, 45.S, K"6 $+0.0001$ $96 \circ 0.02$ 67.8 y reversed; see Apr. 3.K, H"7 $+0.0018$ $6 \circ 0 \circ 0$ 67.8 x reversed; see Apr. 5.S, K"8 $+0.0035$ $6 \circ 0 \circ 0$ 67.6 x reversed; see Apr. 10.S, H"9 $+0.0046$ $276 \circ 0 \circ 0$ 64.7 y direct; 1, 5, 7, 7A, 15, 19, 23A, 27, 31-40, 43-45.S, H"10 $+0.0055$ 185 59 58 65.6 x direct; 1, 2, 5, 7, 7A, 15, 19, 23A, 31-40, 43-45.S, H"14 $+0.0062$ 95 59 59 65.9 y reversed; see Apr. 9.K, HHate IV.Plate IV.Number of the set		25	+0.0045	177 02 29	62.8	x direct; 1, 2, 5, 7, 7A, 15, 19, 23A, 32-45.	S, Н
Apr. 3 $+0.0015$ $27^{\circ} o o o o 65.9$ y direct; 2, 4, 6, 8, 10, 11, 14- K, H 18, 20, 22-26, 28, 29, 33. 5 $+0.0015$ 185 59 59 65.9 x direct; 2, 4, 6, 8, 10, 11, 14- K, H 18, 20, 22-29, 45. 6 $+0.0001$ 96 00 02 67.8 y reversed; see Apr. 3. 6 $+0.0031$ 6 00 00 67.8 x reversed; see Apr. 5. 7 $+0.0018$ 6 00 00 67.8 x reversed; see Apr. 10. 8 $+0.0035$ 6 00 00 67.7 x reversed; see Apr. 10. 9 $+0.0046$ 276 00 00 64.7 y direct; 1, 5, 7, 7A, 15, 19, 19 $+0.0055$ 185 59 58 65.6 x direct; 1, 2, 5, 7, 7A, 15, 19, 10 $+0.0052$ 185 59 58 65.6 x direct; 1, 2, 5, 7, 7A, 15, 19, 14 $+0.0062$ 95 59 59 65.9 y reversed; see Apr. 9. 14 $+0.0062$ 95 59 59 65.9 y reversed; see Apr. 9. 15 $+0.0151$ 276 17 00 65.9 x reversed; see Apr. 24. 18 20, 22-29, 45. 18 20, 22-29, 45. 29 $+0.0151$ 276 17 00 66.9 y direct; 2-4, 6, 8, 10, 11, 14- 18, 20, 22-29, 45. 18 20, 22-29, 45. 20 $+0.0151$ 276 17 00 66.9 y reversed; see Apr. 24. 20 $+0.0155$ 96 16 58 65.0 y reversed; see Apr. 24. 21 $+0.0165$ 96 17 02 67.5 y reversed; see Apr. 29. 23 $A, 31-40, 43-45.$ 23 $A, 31-40, 4$					Plat	re II	
Apr. 3 $+0.0015$ $276^{\circ} 00^{\circ} 00^{\circ}$ 65.9 y direct; 2, 4, 6, 8, 10, 11, 14- 18, 20, 22-26, 28, 29, 33. " 5 $+0.0015$ 185 59 59 65.9 x direct; 2, 4, 6, 8, 10, 11, 14- 18, 20, 22-29, 45. " 6 $+0.0018$ 6 00 00 67.8 x reversed; see Apr. 3. " 7 $+0.0018$ 6 00 00 67.8 x reversed; see Apr. 5. S, K " 8 $+0.0035$ 6 00 00 64.7 y direct; 1, 5, 7, 7A, 15, 19, " 9 $+0.0046$ 276 00 00 64.7 y direct; 1, 5, 7, 7A, 15, 19, " 10 $+0.0055$ 185 59 58 65.6 x direct; 1, 2, 5, 7, 7A, 15, 19, " 14 $+0.0062$ 95 59 59 65.9 y reversed; see Apr. 9. K, H X pr. 24 $+0.0101$ 186° 16′ 58′ 69.7 x direct; 2-4, 6, 8, 10, 11, 14- 18, 20, 22-29, 45. " 28 $+0.0109$ 6 17 01 65.9 y reversed; see Apr. 24. " 29 $+0.0151$ 276 17 00 66.9 y direct; 1, 2, 5, 7, 7A, 15, 19, 3, K May 1 $+0.0165$ 96 17 02 67.5 y reversed; see Apr. 24. " 3 $+0.0155$ 96 16 58′ 65.0 y reversed; see Apr. 29. " 3 $+0.0155$ 96 16 58′ 65.0 y reversed; see Apr. 29. " 4 $+0.0136$ 186 16 58′ 66.0 x direct; 1, 2, 5, 7, 7A, 15, 19, 3, K " 5 $+0.0156$ 276 16 57′ 66.9 y direct; 1, 5, 7, 7A, 15, 19, 3, K " 5 $+0.0156$ 276 16 57′ 66.9 y direct; 1, 5, 7, 7A, 15, 19, 3, K " 6 $+0.0160$ 6 17 00 68.8 x reversed; see May 4. S, K " 6 $+0.0160$ 6 17 00 68.8 treversed; see May 4. S, K					1 100	··· · · · ·	
Apr. $3 + 0.0015$ 276 00 00 65.9 y direct; 2, 4, 6, 8, 10, 11, 14- I8, 20, 22-26, 28, 29, 33. " $5 + 0.0015$ 185 59 59 65.9 x direct; 2, 4, 6, 8, 10, 11, 14- I8, 20, 22-29, 45. " $6 + 0.0001$ 96 00 02 67.8 y reversed; see Apr. 3. " $7 + 0.018$ 6 00 00 67.8 x reversed; see Apr. 5. " $8 + 0.0035$ 6 00 00 67.6 x reversed; see Apr. 10. " $9 + 0.0046$ 276 00 00 64.7 y direct; 1, 5, 7, 7A, 15, 19, K, H 23A, 27, 31-40, 43-45. " $14 + 0.0062$ 95 59 59 65.9 y reversed; see Apr. 9. " $14 + 0.0055$ 185 69 59 65.9 y reversed; see Apr. 9. " $14 + 0.0062$ 95 59 59 65.9 y reversed; see Apr. 9. " $14 + 0.0161$ 186° 16′ 58′ 69.7 x direct; 2-4, 6, 8, 10, 11, 14- 18, 20, 22-29, 45. " $28 + 0.0109$ 6 17 01 65.9 x reversed; see Apr. 24. " $29 + 0.0151$ 276 17 00 66.9 y direct; 1, 2, 5, 7, 7A, 15, 19, 18, 20, 22-29, 45. " $29 + 0.0151$ 276 17 00 66.9 x reversed; see Apr. 24. " $29 + 0.0155$ 96 16 58′ 65.0 y reversed; see Apr. 24. " $29 + 0.0155$ 96 16 58′ 65.0 y reversed; see Apr. 29. " $3 + 0.0155$ 96 16 58′ 65.0 y reversed; see Apr. 29. " $3 + 0.0155$ 96 16 58′ 65.0 y reversed; see Apr. 29. " $3 + 0.0155$ 96 16 58′ 65.0 y reversed; see Apr. 29. " $4 + 0.0136$ 186 16 58′ 66.0 x direct; 1, 2, 5, 7, 7A, 15, 19, 23A, 31-40, 43-45. " $4 + 0.0136$ 186 16 58′ 66.0 x direct; 1, 2, 5, 7, 7A, 15, 19, 3A, 31-40, 43-45. " $5 + 0.0156$ 276 16 57′ 66.9 y direct; 1, 5, 7, 7A, 15, 19, 3A, 27, 31-40, 43-45. " $5 + 0.0156$ 276 16 57′ 66.9 y direct; 1, 5, 7, 7A, 15, 19, S, K " $5 + 0.0156$ 276 16 57′ 66.9 y direct; 1, 2, 5, 7, 7A, 15, 19, S, K " $5 + 0.0156$ 276 16 57′ 66.9 y direct; 1, 2, 5, 7, 7A, 15, 19, S, K " $5 + 0.0156$ 276 16 57′ 66.9 y direct; 1, 2, 5, 7, 7A, 15, 19, S, K " $5 + 0.0156$ 276 16 57′ 66.9 y direct; 1, 2, 5, 7, 7A, 15, 19, S, K " $5 + 0.0156$ 276 16 57′ 66.9 y direct; 1, 2, 5, 7, 7A, 15, 19, S, K " $5 + 0.0156$ 276 16 57′ 66.9 y direct; 1, 2, 5, 7, 7A, 15, 19, S, K " $5 + 0.0156$ 276 16 57′ 66.9 y direct; 1, 2, 5, 7, 7A, 15, 19, S, K " $5 + 0.0156$ 276 16 57′ 66.9 y di				0 / //			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Apr.	3	+0.0015	276 00 00	65.9	y direct; 2, 4, 6, 8, 10, 11, 14-	к, н
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				_		18, 20, 22-26, 28, 29, 33.	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	"	5	+0.0015	185 59 59	65.9	x direct; 2, 4, 6, 8, 10, 11, 14- 18, 20, 22-29, 45.	S, K
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		6	+0.0001	96 00 02	67.8	y reversed; see Apr. 3.	K, H
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	**	7	+0.0018	6 00 00	67.8	x reversed; see Apr. 5.	S, K
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	66	8	+0.0035	6 00 00	67.6	x reversed; see Apr. 10.	S, H
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	66	9	+0.0046	276 00 00	64.7	y direct; 1, 5, 7, 7A, 15, 19,	K, H
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		-				23A, 27, 31-40, 43-45.	
"14 $+0.0062$ 955965.9y reversed; see Apr. 9.K, HPlate IV.Apr. 24 $+0.0101$ $186^{\circ}16^{\circ}58^{\circ}$ 69.7x direct; 2-4, 6, 8, 10, 11, 14- 18, 20, 22-29, 45.S, K"28 $+0.0109$ 6170165.9x reversed; see Apr. 24.S, K"29 $+0.0151$ 276170066.9y direct; 2-4, 6, 8, 10, 11, 14- 18, 20, 22-26, 28, 29, 33.S, KMay1 $+0.0165$ 96170267.5y reversed; see Apr. 29.S, K"3 $+0.0155$ 96165865.0y reversed; see May 5.S, K"4 $+0.0136$ 186165866.0x direct; 1, 2, 5, 7, 7A, 15, 19, 23A, 31-40, 43-45.S, K"5 $+0.0156$ 276165766.9y direct; 1, 5, 7, 7A, 15, 19, 23A, 27, 31-40, 43-45.S, K"6 $+0.0160$ 6170068.8x reversed; see May 4.S, K	"	10	+0.0055	185 59 58	65.6	x direct; 1, 2, 5, 7, 7A, 15, 19,	в, н
Plate IV.Apr. 24 $+0.0101$ $186^{\circ}16^{\circ}58^{\circ}69.7$ x direct; 2-4, 6, 8, 10, 11, 14- 18, 20, 22-29, 45.S, K"28 $+0.0109$ 6 17 0165.9x reversed; see Apr. 24. 18, 20, 22-26, 28, 29, 33.S, K"29 $+0.0151$ 276 17 0066.9y direct; 2-4, 6, 8, 10, 11, 14- 18, 20, 22-26, 28, 29, 33.S, KMay I $+0.0165$ 96 17 0267.5y reversed; see Apr. 29. y reversed; see Apr. 29.S, K"3 $+0.0155$ 96 16 5865.0y reversed; see Apr. 29. y reversed; see Apr. 29.S, K"4 $+0.0136$ 186 16 5866.0x direct; 1, 2, 5, 7, 7A, 15, 19, y 3A, 31-40, 43-45.S, K"5 $+0.0156$ 276 16 5766.9y direct; 1, 5, 7, 7A, 15, 19, y 3A, 27, 31-40, 43-45.S, K"6 $+0.0160$ 6 17 0068.8x reversed; see May 4.S, K	"	14	+0.0062	95 59 59	65.9	y reversed; see Apr. 9.	к, н
Apr. 24 $+0.0101$ $186^{\circ}16^{\circ}58^{\circ}$ 69.7 x direct; 2-4, 6, 8, 10, 11, 14- 18, 20, 22-29, 45.S, K"28 $+0.0109$ 6 17 0165.9x reversed; see Apr. 24.S, K"29 $+0.0151$ 276 17 0066.9y direct; 2-4, 6, 8, 10, 11, 14- 18, 20, 22-26, 28, 29, 33.S, KMay I $+0.0165$ 96 17 0267.5y reversed; see Apr. 29.S, K"3 $+0.0155$ 96 16 5865.0y reversed; see May 5.S, K"4 $+0.0136$ 186 16 5866.0x direct; I, 2, 5, 7, 7A, 15, 19, 23A, 31-40, 43-45.S, K23A, 27, 31-40, 43-45."6 $+0.0160$ 6 17 0068.8x reversed; see May 4.S, K					Plate	e IV.	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Apr.	24	+0.0101	186° 16′ 58′	69.7	x direct; 2-4, 6, 8, 10, 11, 14-	S, K
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						18, 20, 22-29, 45.	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	"	28	+0.0109	6 17 01	65.9	x reversed; see Apr. 24.	S, K
May I $+0.0165$ 96 17 02 67.5 y reversed; see Apr. 29. S, K " 3 $+0.0155$ 96 16 58 65.0 y reversed; see May 5. S, K " 4 $+0.0136$ 186 16 58 66.0 x direct; I, 2, 5, 7, 7A, 15, 19, S, K " 5 $+0.0156$ 276 16 57 66.9 y direct; I, 5, 7, 7A, 15, 19, S, K " 6 $+0.0160$ 6 17 00 68.8 x reversed; see May 4. S, K " 6 $+0.0160$ 6 17 00 68.8 x reversed; see May 4. S, K		29	+0.0151	276 17 00	66.9	y direct; 2-4, 6, 8, 10, 11, 14- 18, 20, 22-26, 28, 29, 33.	S, K
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	May	I	+0.0165	96 17 02	67.5	y reversed: see Apr. 29.	S. K
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	"	3	+0.0155	96 16 58	65.0	y reversed: see May 5.	S.K
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		4	+0.0136	186 16 58	66.0	x direct: 1, 2, 5, 7, 7Å, 15, 19,	S.K
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		7	,			23A, 31-40, 43-45.	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		5	+0.0156	276 16 57	66.9	y direct; 1, 5, 7, 7A, 15, 19,	S, K
" 6 +0.0160 6 17 00 68.8 x reversed; see May 4. S, K		Ť		. 07		23A, 27, 31-40, 43-45.	
" S OTE TO Troiler IT OF AT ST		6	+0.0160	6 17 00	68.8	x reversed; see May 4.	S, K
2/0 1/ 01 1 Italis; 15, 23, 31, 37. S, K	"	8		276 17 01		Trails; 15, 23, 31, 37.	S, K

TABLE II.—DAILY RECORDS. (Continued.)

TABLE II.—DAILY RECORDS. (Concluded.)

Dat 1893	е, 7.	Runs in mm.	Circle.	Ther.	Position of Plate, and Stars Measured.	Obs'rs.					
				Pla	te I.						
Nov.	3	0.0080	187° 10' 05"	65.3	x direct; 2-4, 6, 8, 10, 11, 14-	ѕ, к					
"	4	-0.0062	187 10 0 4	63.8	x direct; 1, 2, 5, 7, 15, 23A,	S, K					
"	6	0.0076	277 10 06	65.4	<i>y</i> direct ; 2-4, 6, 8, 10, 11, 14- 18, 20, 22-20, 33,	s, k					
"	10	0.0056	277 10 03	65.0	y direct; 1, 5, 7, 15, 23A, 31-	S, K					
	11	-0.0064	7 10 07	67.0	x reversed : see Nov. 3.	s. ĸ					
	13	-0.0066	7 10 05	64.1	x reversed : see Nov. 4.	S. K					
	16	-0.0069	97 10 05	65.2	y reversed; see Nov. 6.	S, K					
	17	-	277 10 08		Trails; 15, 23, 31, 37.	S, K					
"	18	—0 0065	97 10 05	64.6	y reversed ; see Nov. 10.	S, K					
	Plate V.										
Nov.	20	0.0041	176°09' 07'	64.5	x direct ; 2-4, 6, 8, 10, 11, 14-	S, K					
**	23	0.0060	176 09 07	64.2	<i>x</i> direct; 1, 2, 5, 7, 15, 19, 23A,	S, K					
 -	24	-0.0061	266 09 07	68.7	<i>y</i> direct; 2-4, 6, 8, 10, 11, 14-	S, K					
" "	26	—0.0059	266 09 06	71.0	y direct; 1, 5, 7, 15, 19, 23A,	S, K					
"	27	-0.0068	356 00 07	68.5	x reversed : see Nov. 20.	S. K					
	30	0.0072	356 09 04	63.4	x reversed : see Nov. 23.	S. K					
Dec.	Ĩ	0.0065	86 09 07	66.1	y reversed ; see Nov. 24.	S, K					
	2	0.0058	86 09 08	65.4	y reversed ; see Nov. 26.	S, K					

198 Præsepe Group; Measurement and Reduction

On the next page is given a specimen of the recording sheets ; all the measurements relating to the same star for any one plate are recorded on one sheet. The forms are not designed for the separate reduction of the two impressions of a group which appear on each plate, but the mean of the measurements on the two images of a star is taken at once; that is, each star is treated as though it occupied the middle point between its two images. The place of this point is known when we have given the lines of the scale used in the measurement and the quantity $\frac{1}{2}m$, which is obtained thus: from the reading on the scale we subtract the reading on the star, and the mean of these differences for both images is taken, giving "Mean of Diff's;" as the scale is one of millimetres and as two complete turns of the screw correspond to a space on the scale we divide by 2 and get $\frac{1}{2}m$. In reading on the scale it was made a rule to select the line having the next lower number; consequently the place of a star is obtained by adding $\frac{1}{2}m$ to the mean of the numbers of the lines used; in rare cases, however, the next higher line was employed when it came nearly opposite to a star, as on March 24; this has been indicated by affixing a minus sign to $\frac{1}{2}m$. In the y measurements the same line was always used for both images, since the latter differ only in apparent right ascension.

Table III gives the uncorrected observations; it is only necessary to set down the numbers of the lines used and $\frac{1}{2}m$, for these not only fix the place of the star but, as we shall see later, they are sufficient for the application of all instrumental corrections. The numbers of the stars are in the order of increasing right ascensions and are those given by Professor Schur,* excepting 7A and 23A, which do not appear in his triangulation of the group. The table gives the observations of $\frac{1}{2}m$ by both observers, followed by the difference reduced to seconds of arc in order to facilitate a comparison.

* "Astronomische Mittheilungen der K. Sternwarte zu Göttingen," part IV.

STAR
VIII.
PLATE
PRÆSEPE.

	March 25	, 1897;	x direct.		Marc	ch 24, 1	897; y dir	ect.	March	18, 189	7; x revei	.sed.	March	22, 189	1; y revei	sed.
	Star.	S	cale.		Star.	š	cale.		Star.	ŝ	cale.		Star.	202	cale.	
	Microm.	Line.	Microm		Microm.	Line.	Microm.		Microm.	Line.	Microm.		Microm.	Line.	Microm.	
East	9 053 •050	74	10.680 .681	Diff's of Mean	9.030 .030	36	9.00 010	Diff's of Mean	9.024 .035	44	10.513 .512	Diff's of Mean	9.081 .085	83	10.214	Diff's of
Mean	9.0515		10,6805	1.6290	9.0300		9.0095	-0.0205	9.0295		10.5125	1.4830	9.0830		10.2130	I.1300
West	9.050 .051	76	9.280 .280		9 050 .050	36	9.009 ,009		9.013	43	9.910 016.		9.070 070.0	83	10.212 .211	
Mean	j 0505		9.2800	0.2295	9.0500		0.0000	-0.0410	9.0180		9.9100	o 8920	9.0695		10.2115	I.I420
	Me	an of	$\operatorname{Diff's} =$	0.9292	Me	an of	Diff's =-	0.0308	Me	an of	Diff's =	I.1875	Me	an of	Diff's =	I.1360
Measu Record	tred by F	fays. chl.	/ m z/	0404.0	Measure Recorde	ed by f d by F	Zehl. Schl. Kretz.	+C10.0	Measure Recorde	d by	Schl. Hays.	0.590.0	Measure Recorde	d by	y₂ m = Schl. Kretz.	0.5000
	Star.		scale.		Star.	x	cale.		Star.	S	cale.		Star.	502	cale.	
	Microm.	Line.	Microm.		Microm	Line.	Microm.		Microm.	Line.	Microm.		Microm.	Line.	Microm.	
East	9.597 .598	74	11.229	Diff's of Mean	9.547 •540	36	9.515 .518	Diff's of Mean	9.550 .543	44	11.021 .020	Diff's of Mean	9.555 .555	83	10.681 .684	Diff's of
Mean	9.5975		11.2295	I 6320	9.5435		9.5165	-0 0270	9.5465		11.0205	I 4740	9.5550		10.6825	1 1275
West	9.579 .574	76	9.800 .800		9.562 .560	36	9.517		9.535 .535	43	10.420 .419		.9.545 .540	83	10.683 .683	
Mean	9.5765		9.8000	0.1235	9.5610		9 5170	-0.0440	9.5350		IO.4195	o 8845	9.5425		10.6S30	1.1405
	M	ean of	$\text{Diff's} = \frac{1}{1 \text{ k } m} =$	0.9278	Me	an of	Diff's =	-0.0355	Me	an of	$\operatorname{Diff's} = \frac{1}{2}$	1.1792	Me	an of	$\text{Diff's} = \frac{1}{2}$	I.1340
Measu Record	ded by B	ichl. Iays.	7/	60-t-	Measure Recorde	ed by	Kretz.		Measure Recorde	d by	72 m Hays. Schl.	0.200.0	Measure Recorde	d by	Xz w — Kretz. Schl.	2/20:0

199

		x di	rect.			x rev	versed.	
Star.	Lines.	½ m Scale min	, or ius Star.	S-K	Lines.	½ n Scale mi	ı, or nus Star.	S-K
		Schl.	Kretz.			Schl.	Kretz.	
15 15 2 3 4 6 8 10 11 14 16 17 18 20 22 23 24 25 26 27 28 29 15 15	Lines. 60,61 94,95 93,94 91,92 78,79 70,71 69,70 61,62 60 58,59 57,58 56,57 54,55 53,54 51,52 50,51 50,51 49,50 60,61 60,61	Schl. 0.9016 0.9010 0.4114 0.2961 0.5395 0.3274 0.4849 0.5885 0.7241 0.1022 0.4836 0.5726 0.0299 0.6860 0.7451 0.3750 0.2446 0.6644 0.5456 0.2915 0.0596 0.4759 0.9005 0.9005 0.9005	Kretz. 0.8984 0.8994 0.4114 0.2954 0.5419 0.3290 0.4878 0.5859 0.7252 0.1020 0.4858 0.5739 0.0321 0.6865 0.7494 0.3759 0.2451 0.6640 0.2942 0.6640 0.2942 0.6622 0.4772 0.8999 0.8999	$\begin{array}{c} 8 - K \\ + 0.19 \\ + 0.7 \\ .00 \\ + .04 \\13 \\08 \\15 \\ + .14 \\01 \\12 \\07 \\12 \\03 \\13 \\03 \\ + .02 \\13 \\14 \\07 \\ + 0.02 \\ + .12 \end{array}$	Lines. 57,58 57,58 24,25 25,26 27,28 40,41 47,48 48,49 57,58 58,59 60,61 61,62 63,66 67,68 63,66 65,66 67,68 68,69 68,69 68,69 69,70 57,58 57,58 57,58 57,58 57,58 58,59 57,58 58,59 57,58 58,59 58,59 58,59 57,58 58,59 58,59 57,58 58,59 59,59 57,58 58,59 59,59 57,58 58,59 57,58 5	Schl. 0.6695 0.2798 0.326 0.2472 0.884 0174 0.8429 0.5859 020 0.5404 0.828 0.1946 0.3272 0.9106 0.2252 0.2752 0.5080 0.0936 0.6698 0.6688	Kretz. 0 6681 0.6696 0.1635 0.2782 0.0348 0.2455 0.8451 0.4684 0.5871 0006 0.5391 0.8865 0.8221 0.1944 0.3256 0.9080 0.0231 0.2784 0.5075 0.0944 0.6682 0.6669	$\begin{array}{c} 8-K \\ +0.7 \\ +0.7 \\ -0.66 \\ +0.8 \\ +0.8 \\ +0.8 \\ +0.8 \\ +0.12 \\ -0.12 \\ -0.12 \\ -0.12 \\ -0.12 \\ -0.12 \\ -0.07 \\ +0.01 \\$
15 1 2 5 7 23A 31 32 33 34 35 36 37 38 39 40 43 44	60,61 95,96 94,95 82,83 75,76 52,53 48,49 47,48 45,46 44,45 42,43 41,42 41,42 41,42 37,38 36,37 34,35 27,28 26,27	0.9009 0.4069 0.4126 0.5152 0.5840 0.3599 0.8738 0.3332 0.6959 0.7008 0.2239 0.0792 0.4668 0.7224 0.8836 0094 0.4574	0.8990 0.4066 0.4120 0.5181 0.5830 0.3531 0.8725 0088 0.3376 0.7006 0.7029 0.2221 0.0799 0.2221 0.0799 0.4691 0.7174 0.8819 0124 0.4624	$\begin{array}{c} + .12 \\ + .02 \\ + .03 \\15 \\ + .05 \\ + .05 \\ + .05 \\ + .05 \\23 \\25 \\12 \\ + .09 \\12 \\ + .26 \\ + .08 \\ + .16 \\26 \end{array}$	57,58 23,24 24,25 36,37 43,44 66,67 69,70 71,72 73,74 73,74 73,74 75,76 77,78 77,78 81,82 81,82 81,82 83,84 91,92 92,93	$\begin{array}{c} 0.6688\\ 0.1675\\ 0.1625\\ 0.0534\\ \hline 0.2135\\ 0.6971\\ 0.5745\\ 0.2350\\ 0.8731\\ 0.8659\\ 0.3489\\ 0.4944\\ 0.1081\\ 0.8555\\ 0.6880\\ 0.5789\\ 0.1164\\ \end{array}$	0.6669 0.1684 0.1616 0.0540 0164 0.2155 0.6972 0.5799 0.2410 0.8708 0.8645 0.3515 0.3515 0.4919 0.1061 0.8554 0.6890 0.5781 0.1168	$\begin{array}{c} + .10 \\05 \\ + .05 \\03 \\ + .18 \\11 \\20 \\ + .13 \\ + .08 \\14 \\ + .13 \\ + .10 \\05 \\ + .04 \\02 \end{array}$

TABLE III.-PLATE I: x MEASUREMENTS.

TABLE III.—PLATE I: y MEASUREMENTS.

		y đ	irect.			y rev	versed.	
Star.	Line.	½ m Scale m≀	n, or nus Star,	S-K	Line.	½ n Scale mi	n, or nus Star.	S-K
		Schl.	Kretz.			Schl.	Kretz.	
15 15 2 3 4 6 8 10 11 14 16 17 18 20 22 23 24 25 26 27 28 29 33 15 15 1 5 7 23A 31 32 33 34	52 52 48 347 66 67 45 97 38 65 36 65 35 69 15 52 28 81 367 62 258 81 367 368 55 56 915 52 28 81 367 368 55 28 81 367 368 55 28 81 367 52 81 52 52 81 52 52 81 52 52 81 52 52 81 52 52 52 81 52 52 52 81 52 52 52 81 52 52 52 52 52 52 52 52 52 52 52 52 52	Schl. 0.3166 0.3140 0.8969 0.3140 0.2278 0.5180 0.2651 0.2985 0.2576 0.0766 0.1639 0.0128 0.2369 0124 0.5135 0.6510 0.1918 0.2064 0.0530 0.2920 0.9150 0.0512 0.3161 0.3174 0.00512 0.3161 0.3174 0.00512 0.2686 0.2762 0.2686 0.2762 0.2686 0.2762 0.2686 0.2762 0.2686 0.2762 0.2686 0.2762 0.2686 0.2762 0.2686 0.2762 0.2686 0.2762 0.2686 0.2762 0.2686 0.2762 0.2686 0.2762 0.2686 0.2762 0.2686 0.2762 0.2686 0.2762 0.2686 0.2762 0.2686 0.2762 0.2686 0.2762 0.2685 0.2762 0.2762 0.3161 0.3174 0.00512 0.3161 0.3174 0.00512 0.2651 0.2765 0.2775 0.2765 0.2775 0.2765 0.2775 0.2	Kretz. 0.3169 0.3176 0.8979 0.3131 0.2255 0.5181 0.2636 0.2952 0.5594 0.2595 0.0752 0.1634 0.0138 0.2336 0101 0.5144 0.6511 0.5144 0.6511 0.5144 0.6511 0.5144 0.6511 0.5144 0.6511 0.5150 0.0539 0.3172 0.0006 0.2674 0.2805 0.2675 0.2675 0.2674 0.2805 0.2675 0.2675 0.2675 0.2675 0.2675 0.2675 0.00539 0.2675 0.2675 0.2675 0.2675 0.2675 0.2675 0.2675 0.2675 0.2675 0.2675 0.2675 0.2675 0.2675 0.2675 0.2677 0.2805 0.2677 0.2805 0.2677 0.2805 0.2677 0.2805 0.2677 0.2805 0.2677 0.2805 0.2677 0.275	$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$	$\begin{array}{c} 67\\ 67\\ 70\\ 8\\ 53\\ 52\\ 74\\ 8\\ 6\\ 101\\ 8\\ 32\\ 8\\ 3\\ 7\\ 6\\ 7\\ 4\\ 6\\ 39\\ 10\\ 6\\ 7\\ 5\\ 8\\ 8\\ 5\\ 2\\ 8\\ 30\\ 6\\ 7\\ 1\\ 8\\ 8\\ 5\\ 2\\ 8\\ 30\\ 104\\ 7\\ 1\\ 7\\ 1\\ 2\\ 8\\ 6\\ 7\\ 1\\ 3\\ 8\\ 5\\ 2\\ 8\\ 3\\ 104\\ 7\\ 1\\ 2\\ 8\\ 3\\ 104\\ 7\\ 1\\ 2\\ 8\\ 3\\ 104\\ 7\\ 1\\ 2\\ 8\\ 3\\ 104\\ 7\\ 1\\ 2\\ 8\\ 3\\ 104\\ 7\\ 1\\ 2\\ 8\\ 3\\ 104\\ 7\\ 1\\ 2\\ 8\\ 3\\ 104\\ 7\\ 1\\ 2\\ 8\\ 3\\ 104\\ 7\\ 1\\ 2\\ 8\\ 104\\ 7\\ 1\\ 2\\ 8\\ 104\\ 7\\ 1\\ 2\\ 8\\ 104\\ 7\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\$	Sehl. 0.2538 0.2551 0.6722 0.2620 0.3502 0.0520 0.3502 0.0520 0.3502 0.0520 0.3502 0.0149 0.4050 0.4050 0.4050 0.5598 0.3358 0.4996 0.4050 0.5598 0.3358 0.5598 0.3358 0.9205 0.3684 0.5215 0.2778 0.6569 0.5241 0.2535 0.5711 0.2535 0.5711 0.3002 0.2989 0.4675 0.0161 0.8538 0.5244 0.0906	Kretz. 0.2550 0.2545 0.6735 0.2640 0.3512 0.0530 0.3069 0.2744 0.0134 0.0134 0.4050 0.5579 0.3385 0.5822 0.0571 0.9208 0.3779 0.3689 0.5174 0.2786 0.6605 0.5222 0.2525 0.2536 0.5720 0.2975 0.2605 0.25720 0.2975 0.4684 0.0155 0.8489 0.5242 0.05242 0.05242 0.0292 0.2975 0.4684 0.0155 0.8489 0.5242 0.0889 0.5242 0.02925 0.2525 0.2536 0.25720 0.2975 0.2525 0.2536 0.5222 0.2525 0.2536 0.5222 0.2525 0.2536 0.5222 0.2525 0.2536 0.5222 0.2525 0.2536 0.5222 0.2525 0.2536 0.5222 0.2536 0.2525 0.25720 0.2975 0.2640 0.2525 0.2525 0.2536 0.5720 0.2925 0.2525 0.2536 0.2522 0.2525 0.2536 0.5222 0.2525 0.2525 0.2536 0.5222 0.2525 0.2536 0.5222 0.2525 0.2536 0.5222 0.2525 0.2536 0.5222 0.2575 0.2536 0.5222 0.2575 0.2536 0.5222 0.2575 0.2536 0.5222 0.2575 0.2536 0.5222 0.2575 0.2525 0.2536 0.5222 0.2525 0.2525 0.2536 0.5222 0.2525 0.555 0.5222 0.555 0.5255 0.55555 0.55555 0.55555 0.55555 0.55555 0.5555555555	* •
35 36 37 38 39 40 43 44	85 63 39 56 62 17 59 78	0.7528 0.1924 0.0658 0.0759 0.3799 0.4095 0.2589 0.6826	0.7519 0.1936 0.0655 0.0802 0.3780 0.4081 0.2636 0.6850	$\begin{array}{r} + .05 \\06 \\ + .02 \\23 \\ + .10 \\ + .07 \\25 \\13 \end{array}$	33 56 80 63 57 102 60 40	0.8198 0.3759 0.5042 0.4912 0.1916 0.1689 0.3096 0.8895	0.8231 0.3762 0.5071 0.4900 0.1932 0.1674 0.3105 0.8870	$ \begin{array}{r}16 \\02 \\15 \\ + .06 \\ + .08 \\05 \\ + .12 \end{array} $

TABLE III.-(Continued.) PLATE II: x MEASUREMENTS.

		x d	irect.			<i>x</i> re	versed.	
Star.	Lines.	$\frac{\frac{1}{2}n}{\text{Scale }mi}$	n, or nus Star.	S-K	Lines.	¹ ∕2 n Scale mi	n, or nus Star.	S-K
		Schl.	Kretz.			Schl.	Kretz.	
15 15 2 4 6 8 10 11 14 16 17 18 20 22 23 24 25 26 27 28 29 45	63,64 63,64 97,98 94,95 81,82 74,75 73,74 72,73 64 62,63 61,62 59,60 59,60 59,60 59,58 56,57 54,55 53,54 53,54 53,54 53,54 53,54 52,53 22	0.7105 0.7085 0.2185 0.3538 0.1314 0.2901 0.3949 0.5386 0.4098 0.7976 0.3892 0.8448 0.5010 0.5558 0.1874 0.6510 0.4784 0.6610 0.4784 0.3661 0.1111 0.8736 0.2845 0.4730	0.7096 0.7099 0.2192 0.3585 0.1352 0.2916 0.3975 0.5364 0.4100 0.7986 0.3901 0.8468 0.4991 0.5589 0.1871 0.0612 0.4780 0.3669 0.1118 0.8748 0.2878 0.4744	$\begin{array}{c} +0.05\\ +0.07\\ -0.07\\ -0.04\\ -0.25\\ -0.02\\ -0.08\\ -0.14\\ +0.12\\ -0.05\\ -0.12\\ -0.05\\ -0.12\\ +0.02\\ -0.04\\ -0.04\\ -0.04\\ -0.04\\ -0.06\\ -0.07\\ -0$	54,55 54,55 21,22 24,25 37,38 44,45 45,46 54,55 55,56 57,58 58,59 59,66 61 62,63 64,65 65,66 65,	0.8424 0.8422 0.3390 0.2039 0.4219 0.2625 0.1579 0.5189 0.6420 0.7551 0.1654 0.7078 0.0539 0.4941 0.3664 0.3664 0.745 0.1869 0.4440 0.6789 0.2669 0.5818	0.8400 0.8426 0.3380 0.1984 0.4200 0.2612 0.1584 0.5141 0.6401 0.7531 0.1615 0.7072 0.0565 0.4908 0.3642 0.4908 0.3642 0.4902 0.0722 0.1885 0.4401 0.6774 0.2612 0.5840	$\begin{array}{c} \begin{array}{c} & & \\ +0.12 \\ -0.02 \\ +0.05 \\ +.05 \\ +.05 \\ +.05 \\ +.05 \\ +.05 \\ +.05 \\ +.05 \\ +.05 \\ +.07 \\ -0.03 \\ +.25 \\ +.10 \\ +.01 \\ +.01 \\ +.01 \\ +.01 \\ +.01 \\ +.02 \\ +.00 \\ +.01 \\ +.00 \\ +.01 \\ +.00 \\ +$
.0	Ŭ	Schl.	Hays	S—H	50751	Schl.	Hays	S-H
15 15 1 5 7 7 4 19 23 4 31 32 33 34 35 36 37 38 39 40 43 44 45	63,64 63,64 98,99 97,98 85,86 78,79 55,56 51,52 49,50 48,49 47,48 45,46 44 43,44 43,44 40,41 39,40 37,38 29,30 29,30 25	0.7105 0.7130 0.2198 0.2161 0.3189 0.4000 0.3018 0.8144 0.1681 0.6894 0.5344 0.5342 0.5344 0.5344 0.5344 0.5344 0.5344 0.5344 0.6996 0.2696 0.2696 0.4734	0.7124 0.7108 0.2182 0.2202 0.3158 0.3010 0.8172 0.1626 0.6871 0.5140 0.5122 0.5275 0.8980 0.2762 0.5344 0.6971 0.8078 0.2618 0.4758	$\begin{array}{c} \overset{''}{-} \overset{''}{-} \overset{''}{+} \overset{''}{-} \overset{''}{+} \overset{''}{-} \overset{''}{+} \overset{''}{-} \overset{''}{+} \overset{''}{+} \overset{''}{-} \overset{''}{+} \overset{''}{+} \overset{''}{+} \overset{''}{-} \overset{''}{+} \overset{''}$	$\begin{array}{c} 54.55\\ 54.55\\ 20,21\\ 21,22\\ 33.34\\ 40,41\\ 44.45\\ 58.59\\ 63,64\\ 66,67\\ 70,71\\ 71\\ 73\\ 74.75\\ 78,79\\ 79\\ 78,79\\ 79\\ 80,81\\ 88,89\\ 89,90\\ 93,94 \end{array}$	0.8412 0.8408 0.3396 0.3398 0.2370 0.1598 0.2538 0.7409 0.3889 0.8675 0.7445 0.5412 0.5245 0.6581 0.2790 0.5228 0.8536 0.7468 0.2901 0.5821	0.8419 0.3376 0.3376 0.2384 0.1588 0.2531 0.7334 0.3884 0.8676 0.7426 0.7426 0.5445 0.5174 0.2751 0.5226 0.8578 0.7445 0.2881 0.5852	$\begin{array}{c} 1 \\ 0.01 \\ 0.01 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$

TABLE III.-(Continued.) PLATE II: y MEASUREMENTS.

		y d	irect.			y re	versed.	
Star.	Line.	$\frac{1_2}{2}m$ Scale mi	, or nus Star.	K—H	Line.	⅓ m Scale mi	ı, or nus Star.	K—H
		Kretz.	Hays.			Kretz.	Hays.	
15 15	51	0.4148	0.4171	0.12	68 68	0.1352 0.1355	0.1344 0.1368	+0.04 07
2	48	0.0102	0.00\$8	+ .07	7I	0.5406	0.5432	14
6	65	0.6206	0.6175	+ .16	53	0.9330	0.9344	08
8 10	66	0.3665	0.3671	03 + 12	53	0.1856	0.1838	+ .10 + 12
II	38	0.6644	0.6645	01	80	0.8918	0.8906	+ .07
14	72	0.3570	0.3578	04	47	0.1970	0.1950	+ .11
17	35	0.2662	0.2641	+.11	84	0.2851	0.2858	04
18	36	0.1135	0.1128	+ .01	83	0.4404	0.4381	+ .12
20	55 67	0.3300	0.3325	05	52	0.2159	0.4609	+.01
23	64	0.6105	0.6099	+ .03	54	0.9411	0.9408	+.03
24	34 45	0.7494	0.7484	+.00 +.17	74	0.8025	0.2612	+.04
26	22	0.3085	0.3072	+ .07	97	0.2479	0.2501	— .II
28 29	55	0.3882	0.3879	+ .02 10	04 40	0.1001	0.1598	+.02 +.02
33	14	0.1540	0.1538	10. +	105	0.4014	0.3988	+ .14
15	51	0.4176	0.4178	-0.01	68	0.1374	0.1369	+o
15	51	0.4146	0.4166	11 + .06	68 52	0.1348	0.1381	17
5	80	0.3721	0.3734	07	39	0.1791	0.1778	+.07
7	32	0.3801	0.3786	+ .08	87	0.1742	0.1741	+ .01
19	47	0.3065	0.3075	04 05	42	0.2455	0.8958	+ .07 + .08
23A	66	0.1972	0.1936	+ .19	53	0.3584	0.3549	+.19
31	44	0.1530	0.1530	+.13	83	0.4005	0.3972	+ .05
32	II	0.8212	0.8249	21	107	0.7351	0.7302	+ .26
33 34	47	0.1548	0.1532	+.00 +.13	105 71	0.4031	0.4030	$^{10.}+$
35	84	0.8458	0.8426	4.1Ğ	34	0.7100	0.7115	08
36	62 38	0.2885	0.2879	+ .03 + .07	57 81	0.2629	0.2646	09 +.05
38	55	0.1725	0.1746	11	64	0.3778	0.3762	+ .08
39 40	61 16	0.4712	0.4724	06 +.21	58 103	0.0776	0.0781	03 06
43	58	0.3500	0.3474	+.14	61	0.2022	0.2029	04
44	77	0.7740	0.7744	02	41	0.7819	0.7749	+ .37
43	20	0.9090	0.9109	00	92	0.0474	0.0400	1 .03

TABLE III.-(Continued.) PLATE III: x MEASUREMENTS.

		x d	lirect.			x reve	ersed.	
Star.	Lines.	½ m Scale mi	ı, or nus Star.	S-K	Lines.	Scale mi	ı, o r nus Star.	S-K
		Schl.	Kretz.			Schl.	Kretz.	
15 2 3 4 6 8 10 11 14 16 17 18 20 22 23 24 26 28	$\begin{array}{c} {\color{red} 56}\\ {\color{red} 89,90}\\ {\color{red} 88,89}\\ {\color{red} 86,87}\\ {\color{red} 73,74}\\ {\color{red} 66,67}\\ {\color{red} 65,66}\\ {\color{red} 64,65}\\ {\color{red} 55}\\ {\color{red} 53,54}\\ {\color{red} 52}\\ {\color{red} 51,52}\\ {\color{red} 49,50}\\ {\color{red} 45,46}\\ {\color{red} 45,46}\\ {\color{red} 45}\\ {$	0.3911 0.4000 0.2970 0.5528 0.3035 0.4601 0.5760 0.7194 0.5784 0.4950 0.5736 0.5315 0.6865 0.7265 0.3615 0.2424 0.5581 0.5479	0.3919 0.3988 0.2958 0.5500 0.3024 0.4549 0.5782 0.5782 0.4929 0.5715 0.5326 0.6869 0.7282 0.3651 0.2431 0.5551 0.5551	$\begin{array}{c} " \\ - & 0.046 \\ + & 0.066 \\ + & + & 0.068 \\ + & 0.048 \\ + & 0.048 \\ + & 0.048 \\ + & 0.048 \\ + & 0.048 \\ + & 0.048 \\ + & 0.048 \\ + & 0.048 \\ + & 0.048 \\ - &$	62,63 29 30,31 32 45,46 53 53,54 62,63 63,64 65 66,67 67 68,69 70,71 72,73 73 73,74	0.6618 0.6618 0.2614 0.5092 0.2494 0.5961 0.4779 0.8316 0.4718 0.4718 0.5551 0.4799 0.5189 0.3662 0.8251 0.3662 0.8251 0.3662 0.4976 0.5059	0.6571 0.6576 0.2550 0.5078 0.2486 0.5900 0.4745 0.8298 0.4712 0.5549 0.4765 0.5174 0.3678 0.8240 0.1900 0.3092 0.3092 0.4960 0.5044	$\begin{array}{c} "\\ +0.25\\04\\ +.34\\ +.06\\ +.04\\ +.31\\ +.17\\ +.10\\ +.02\\ +.07\\ +.09\\ +.07\\08\\ +.05\\16\\ +.08\\ +$
29 45	44,45 17,18	0.4485 0.1620	0.4481 0.1652	+ .0218	74 101,10 2	0.8046	0.0075	+ .28
15 1 2 5 7 23A 25 27 31 32 33 34 35 36 37 39 40 43 44 45	56 90,91 89,90 77,78 47,48 45,46 45,46 44,44 39,40 37,38 36,37 36 31,32 30 22 21,22 17,18	Kretz. 0.3914 0.3850 0.4021 0.4799 0.5824 0.3338 0.6594 0.2888 0.3776 0.5044 0.3505 0.6875 0.6701 0.2011 0.5816 0.7004 0.3930 0.4799 0.4258 0.1648	Hays. 0.3921 0.3879 0.3982 0.4805 0.5838 0.3400 0.6636 0.2896 0.3795 0.5028 0.3565 0.6896 0.6732 0.2008 0.5810 0.7045 0.3948 0.4785 0.4301 0.1620	$\begin{array}{c} KH\\ "\\ -0.04\\15\\ +.19\\03\\03\\33\\23\\04\\10\\ +.09\\31\\12\\16\\ +.01\\ +.03\\22\\11\\ +.07\\24\\ +.14\end{array}$	62,63 28,29 29,30 41 48 71,72 73 73,74 74,75 76,77 78,79 79 81 82,83 82,83 82,83 82,83 87 88,89 96,97 97 101,102	Kretz. 0.6609 0.1676 0.1490 0.5679 0.2149 0.3872 0.2650 0.6784 0.5489 0.2052 0.3648 0.3648 0.3848 0.3848 0.3482 0.4754 0.3522 0.6641 0.5762 0.63c1 0.3924	Hays. 0.6606 0.1706 0.5720 0.4664 0.2169 0.3941 0.2638 0.6780 0.5510 0.2025 0.3654 0.3850 0.3489 0.4729 0.3499 0.4729 0.3499 0.6649 0.5755 0.6301 0.3916	$\begin{array}{c} K-H\\ +0.01\\ -1.15\\ -1.15\\ -1.15\\ -2.11\\ +0.08\\ -0.12\\ -3.7\\ +0.07\\ +0.03\\ -0.11\\ +0.15\\ -0.04\\ +0.13\\ +0.13\\ +0.04\\ +0.13\\ +0.05\\ +0.03\\ -0.04\\ +0.04\\ +0.04\\ +0.04\\ +0.04\\ -0.04\\ +0.04\\ -0.04\\ -0.04\\ +0.04\\ -0.04$

204
TABLE III.-(Continued.) PLATE III: y MEASUREMENTS.

		y đ	irect.			y re	versed.	
Star.	Line.	Scale $m_{i}^{\frac{1}{2}n}$	n, or mus Star.	S-H	Line.	¹ ∕₂ n Scale mi	ı, or nus Star.	S-H
		Schl.	Hays.			Schl.	Hays.	
15 2 3 4 6 8 10 11 14 16 17 18 20 22 23 24 25 26 28 29	53 50 35 18 67 68 46 41 74 19 37 38 37 69 66 37 47 24 57 81	0.7856 0.3928 0.8020 0.7200 0.9966 0.7408 0.7719 0.0348 0.7250 0.5458 0.6339 0.4796 0.7001 0.4481 0.9716 0.1121 0.6516 0.6655 0.7496 0.3720	0.7866 0.3918 0.8015 0.7194 0.9959 0.7428 0.7692 0.0328 0.7204 0.5422 0.6324 0.4758 0.7011 0.4520 0.9748 0.1108 0.6499 0.6665 0.7475 0.3685 0.7475	$\begin{array}{c} -0.06 \\ + .05 \\ + .03 \\ + .03 \\ + .05 \\10 \\ + .14 \\ + .14 \\ + .14 \\ + .18 \\ + .08 \\ + .21 \\20 \\10 \\10 \\ + .11 \\ + .10 \\ + .00 \\ + .11 \\ + .10 \\$	65 69 83 100 51 50 72 78 44 100 81 81 81 50 52 82 71 94 61 38	0.7708 0.1626 0.7534 0.8375 0.5574 0.8144 0.7849 0.5232 0.8316 0.0146 0.9212 0.0778 0.8534 0.1001 0.5775 0.4415 0.9010 0.8871 0.8059 0.1829	0.7681 0.1632 0.7555 0.8408 0.5572 0.8135 0.7830 0.5200 0.8282 0.0119 0.9208 0.0741 0.8512 0.0995 0.5795 0.4392 0.8996 0.8880 0.8840 0.1800	$\begin{array}{c} +0.14 \\ -0.04 \\ -0.04 \\ -0.01 \\ -0.01 \\ +0.05 \\ +0.01 \\$
33 15 1 5 7 23A 27 31 32 33 34 35 36 37 39 40 43 44 45	16 53 69 82 34 68 46 38 14 49 87 64 40 63 18 60 80 29	0.5105 0.7829 0.4875 0.7499 0.7538 0.5646 0.515 0.0155 0.1861 0.5112 0.9341 0.2068 0.6476 0.5184 0.8299 0.8654 0.7026 0.1296 0.2606	0.5121 0.7849 0.4878 0.7450 0.7535 0.5611 0.5145 0.0181 0.1812 0.9330 0.2039 0.6454 0.5215 0.8256 0.8618 0.7032 0.1265 0.2582	$\begin{array}{c}10 \\ - 0.10 \\ - 0.33 \\ + .25 \\ + .02 \\ + .19 \\ + .08 \\14 \\ + .25 \\14 \\ + .25 \\ + .05 \\ + .15 \\ + .12 \\16 \\ + .22 \\ + .03 \\ + .17 \\ + .13 \end{array}$	103 65 50 36 84 50 73 81 105 103 69 32 54 79 55 100 58 39 90	0.0479 0.7679 0.0631 0.8035 0.8054 0.9911 0.3379 0.3760 0.0484 0.6175 0.3486 0.9068 0.0340 0.7232 0.6912 0.8524 0.4255 0.2991	0.0425 0.7654 0.0631 0.8031 0.9874 0.3750 0.0438 0.6154 0.3269 0.0320 0.7225 0.6911 0.8500 0.4234 0.2939	$\begin{array}{c} + .28 \\ + .014 \\ .00 \\ + .02 \\ + .29 \\ + .21 \\ + .04 \\ + .05 \\ + .24 \\ + .05 \\ + .24 \\ + .01 \\ + .03 \\ + .02 \\ + .11 \\ + .03 \\ + .02 \\ + .11 \\ + .03 \\ + .12 \\ + .28 \end{array}$

ANNALS N. Y. ACAD. SCI., X., June, 1898-14.

TABLE III.—(Continued.) PLATE IV: x MEASUREMENTS.

		x d	irect.			x rev	ersed.	
Star.	Lines.	$\frac{1_2}{2m}$ Scale mi	, or nus Star.	S-K	Lines.	¹ ∕₂ m Scale mi	ı, or nus Star.	S-K
		Schl.	Kretz.			Schl.	Kretz.	
15 15 2 3 4 6 8 10 11 14 16 17 18 20 22 23 24 25	58,59 58,59 91,92 90,91 88,89 75,76 68,69 67,68 67,68 67,58 55,55 54,55 54,55 54 52 50,51 48,49 48	0.1086 0.1098 0.6132 0.4950 0.7311 0.5378 0.7006 0.7929 0.4274 0.3225 0.1772 0.7785 0.2394 0.3919 0.4664 0.5970 0.4505 0.3772	0.1090 0.1102 0.6136 0.4922 0.7309 0.5355 0.6994 0.7919 0.4251 0.3204 0.1769 0.7760 0.2390 0.3916 0.4679 0.5962 0.4506 0.3728	$\begin{array}{c} \begin{array}{c} & & \\ & -0.02 \\ &02 \\ &02 \\ +.15 \\ & +.01 \\ +.12 \\ & +.06 \\ & +.02 \\ & +.11 \\ & +.02 \\ & +.13 \\ & +.02 \\ & +.02 \\ &08 \\ & +.04 \\ &01 \\ & +.23 \end{array}$	60,61 60,61 27 28 29.30 43 50 50,51 51,52 60,61 61,62 64,65 64,65 64,65 64,65 64,65 70 70,71	0.440I 0.4404 0.4422 0.5600 0.8258 0.5160 0.3525 0.7615 0.6255 0.2276 0.3724 0.3724 0.3724 0.3724 0.3724 0.3724 0.3525 0.6571 0.5841 0.4560 0.6604 0.6758	0.4376 0.4382 0.4411 0.5594 0.8249 0.5156 0.3500 0.7609 0.6258 0.2272 0.3735 0.7760 0.3105 0.5841 0.4542 0.6036 0.6746	$\begin{array}{c} \overset{"}{+0.13} \\ +0.13 \\ +0.12 \\ +0.06 \\ +0.04 \\ +0.05 \\ +0.02 \\ +$
26 27 28 29 45	47,48 47,48 47,48 46,47 19,20	0.7520 0.5058 0.2779 0.7029 0.3636	0.7505 0.5064 0.2762 0.7000 0.3658	+ .07 03 + .08 + .15 12	70,71 71 71,72 72 99,100	0.8045 0.5465 0.2745 0.3510 0.1926	0.8032 0.5438 0.2740 0.3495 0.1918	+ .08 + .15 + .03 + .08 + .04
15 15 1 2 5 7 7 4 19 23A 31 32 33 34 35 36 37 8 39 43 44 45	$\begin{array}{c} 58\\ 58\\ 92,93\\ 91,92\\ 79,80\\ 72,73\\ 68,69\\ 54,55\\ 49,50\\ 46\\ 44,45\\ 42,43\\ 42\\ 40\\ 38,39\\ 38,39\\ 34,35\\ 34\\ 32\\ 24,25\\ 23,24\\ 19,20\\ \end{array}$	0.6106 0.6108 0.6165 0.7375 0.7816 0.6918 0.2284 0.5751 0.5839 0.1821 0.5291 0.4086 0.4341 0.4386 0.2875 0.6826 0.4401 0.5829 0.2176 0.6931 0.3628	0.6114 0.6094 0.6235 0.7375 0.7840 0.6942 0.2284 0.5280 0.5828 0.1831 0.5280 0.4081 0.4365 0.2868 0.2868 0.6850 0.4415 0.5836 0.2154 0.6961 0.3605	$\begin{array}{c} -0.03 \\ + .06 \\37 \\ + .04 \\12 \\13 \\07 \\ + .05 \\ + .05 \\ + .05 \\ + .05 \\ + .05 \\ + .05 \\ + .03 \\11 \\ + .04 \\12 \\07 \\ + .12 \\15 \\ + .12 \end{array}$	$\begin{array}{c} 60, 61\\ 60, 61\\ 26\\ 27\\ 38, 39\\ 45, 46\\ 50\\ 69\\ 72, 73\\ 74, 75\\ 76\\ 76, 77\\ 78, 79\\ 80\\ 80, 81\\ 84\\ 84, 85\\ 86, 87\\ 94, 95\\ 95\\ 99, 100\\ \end{array}$	0.4404 0.4415 0.4415 0.4415 0.7742 0.3619 0.7742 0.3215 0.4772 0.4772 0.47711 0.3680 0.5155 0.6442 0.6442 0.6144 0.2640 0.3724 0.6141 0.4729 0.3385 0.3649 0.1922	0.4411 0.4379 0.4395 0.4405 0.3202 0.7744 0.3602 0.3205 0.4790 0.4691 0.3692 0.5175 0.6416 0.6154 0.2649 0.3726 0.6149 0.3726 0.6149 0.3726 0.6149 0.3726 0.6149 0.3726	$\begin{array}{c} -0.03 \\ + .19 \\ + .07 \\01 \\02 \\ + .09 \\ + .05 \\10 \\ + .11 \\06 \\11 \\ + .14 \\ + .10 \\06 \\05 \\02 \\02 \\04 \\ + .12 \\ + .09 \end{array}$

TABLE III.—(Continued.) PLATE IV: y MEASUREMENTS.

		y di	irect.		<i>y</i> reversed.			
Star.	Line.	$\frac{1_2}{2}$ m Scale mit	, or nus Star.	S-K	Line.	$\frac{1_2}{2}$ m Scale min	nus Star.	8—K.
		Schl.	Kretz.			Schl.	Kretz.	
15 15 2 3 4 6 8 10 11 14 16 17 18 20 22 23 24 25 26 28 29	54 54 50 36 19 68 69 47 41 75 20 38 39 38 70 67 37 48 25 88	0.3544 0.3545 0.9360 0.2672 0.5526 0.2996 0.3356 0.5992 0.2926 0.1172 0.2076 0.0536 0.2798 0.0256 0.55222 0.6928 0.2345 0.2345 0.2315 0.9495	$\begin{array}{c} 0.3561\\ 0.3578\\ 0.9344\\ 0.3464\\ 0.2691\\ 0.5525\\ 0.3001\\ 0.3349\\ 0.5962\\ 0.2945\\ 0.1185\\ 0.2078\\ 0.0534\\ 0.2785\\ 0.0255\\ 0.5525\\ 0.5525\\ 0.5525\\ 0.5525\\ 0.2330\\ 0.2508\\ 0.3305\\ 0.9505\\ \end{array}$	$\begin{array}{c} & & & \\ & & & \\ -0.09 \\ -1.17 \\ +2.03 \\ -1.17 \\ +2.03 \\ -1.17 \\ +2.03 \\ -1.17 \\$	65 68 83 100 50 72 77 44 99 81 80 81 49 52 81 71 94 61 37	0.1952 0.1926 0.6195 0.2059 0.2875 0.9996 0.2510 0.2148 0.9564 0.2558 0.4378 0.3446 0.4979 0.2716 0.5252 0032 0.8572 0.3155 0.3014 0.2180 0.6024	0.1934 0.1939 0.6199 0.2051 0.2898 1.0015 0.2481 0.2164 0.9561 0.2565 0.4361 0.3442 0.4991 0.2736 0.5246 0.0002 0.8588 0.3162 0.3042 0.3042 0.2182 0.6021	$\begin{array}{c} \begin{array}{c} \\ +0.10 \\ -0.07 \\ -0.02 \\ +0.04 \\ -1.12 \\ -1.12 \\ -1.12 \\ -1.12 \\ -1.03 \\ -0.04 \\ +0.09 \\ +0.02 \\ -0.06 \\ -0.11 \\ +0.03 \\ -0.01 \\ $
33 15 15 7 7A 19 23A 27 31 32 33 34 35 36 37 38 39 40 43 44 45	17 54 54 70 83 35 50 69 47 38 69 47 38 14 17 50 87 65 41 58 61 80 29	0.1019 0.3538 0.3562 0.2979 0.3186 0.5930 0.2471 0.1386 0.0961 0.5966 0.7720 0.1015 0.5242 0.7922 0.2356 0.1111 0.1198 0.4198 0.4612 0.2991 0.7300 0.8686	0.0998 0.3568 0.3579 0.0304 0.2979 0.3182 0.5936 0.2455 0.1401 0.0966 0.5961 0.7728 0.1024 0.5254 0.7228 0.2331 0.1115 0.1186 0.4202 0.4622 0.3002 0.7276 0.8679	$\begin{array}{c} + .11 \\ -0.15 \\ -0.02 \\ -0.02 \\ + .002 \\ $	102 65 65 49 36 84 68 39 50 72 80 104 102 69 31 54 78 61 55 100 58 38 89	0.4535 0.1951 0.1929 0.5239 0.2529 0.2529 0.2529 0.2646 0.3060 0.4115 0.4555 0.9584 0.7861 0.4555 0.0256 0.7645 0.3152 0.4406 0.4311 0.1292 0.0895 0.2488 0.8281 0.6874	0.4555 0.1922 0.2540 0.2240 0.2240 0.22540 0.2362 0.9656 0.3088 0.4120 0.4564 0.4564 0.4562 0.0276 0.7664 0.3154 0.4410 0.4320 0.1296 0.0895 0.2490 0.8304 0.6874	$\begin{array}{c}11 \\ ". \\ + 0.15 \\ + .13 \\ + .07 \\06 \\03 \\07 \\15 \\03 \\07 \\15 \\03 \\01 \\01 \\01 \\01 \\01 \\02 \\02 \\02 \\ .00 \\01 \\13 \\ .00 \end{array}$

TABLE III.-(Continued.) PLATE V : x MEASUREMENTS.

		x	direct.			x re	versed.	
Star.	Lines.	Scale mi	n. or Inus Star.	S-K	Lines.	Scale $m^{\frac{1}{2}n}$	n, or inus Star.	S-K
<u> </u>		Schl.	Kretz.			Sch1.	Kretz.	
15 15 2 3 4 6 8 10 11 14 16 17 18 20 22 3 24 25 26 27 28 29 45	55,56 55,56 88,89 87,88 85,86 64,66 64,65 55,56 54,55 52,54 51,52 51,52 51,52 51,52 51,52 49,50 47,48 45,46 45,46 45,46 45,46 45,46 45,46 45,46 44,45 44,45 43,44 16,17	0.2626 0.2629 0.7681 0.6692 0.9279 0.6664 0.8274 0.4472 0.0944 0.4405 0.3751 0.4486 0.4046 0.6611 0.0939 0.7248 0.6199 0.0336 0.4384 0.6610 0.4170 0.8122 0.5412	0.2598 0.2598 0.7676 0.6708 0.9281 0.6684 0.8279 0.4454 0.0921 0.4400 0.3738 0.4476 0.4030 0.0592 0.0929 0.7234 0.6192 0.0326 0.4380 0.6584 0.4146 0.8128 0.5450	$\begin{array}{c} & & \\ & +0.15 \\ + & .16 \\ + & .03 \\ - & .02 \\ - & .11 \\ - & .03 \\ + & .10 \\ + & .12 \\ + & .03 \\ + & .07 \\ + & .05 \\ + & .07 \\ + & .05 \\ + & .07 \\ + & .04 \\ + & .05 \\ + & .02 \\ + & .14 \\ + & .13 \\ - & .20 \end{array}$	63,64 63,64 29,30 30,31 32.33 45,46 52,53 53,54 54,55 63,64 64,65 65,66 67,68 67,68 67,68 67,68 67,68 67,68 67,68 67,68 67,68 67,68 67,68 67,68 67,68 67,68 67,70 70,71 72,74 73,74 73,74 73,74 73,74 73,74 73,74 73,74 73,74	$\begin{array}{c} 0.3082\\ 0.3078\\ 0.8032\\ 0.9018\\ 0.6450\\ 0.9018\\ 0.6450\\ 0.1269\\ 0.7400\\ 0.1269\\ 0.1269\\ 0.1269\\ 0.1269\\ 0.1269\\ 0.5110\\ 0.4755\\ 0.8448\\ 0.4516\\ 0.5389\\ 0.6342\\ 0.9106\\ 0.1540\\ 0.7590\\ 0.0298\\ \end{array}$	$\begin{array}{c} 0.3041\\ 0.3055\\ 0.8031\\ 0.9005\\ 0.6451\\ 0.9011\\ 0.7415\\ 0.6194\\ 0.4764\\ 0.1251\\ 0.1938\\ 0.6204\\ 0.1631\\ 0.5089\\ 0.4735\\ 0.8422\\ 0.4486\\ 0.5368\\ 0.6314\\ 0.9106\\ 0.1514\\ 0.7554\\ 0.0298\\ \end{array}$	$\begin{array}{c} & & & \\ & + 0.22 \\ + & .12 \\ + & .01 \\ + & .06 \\ \hline & - & .01 \\ + & .06 \\ - & .01 \\ + & .07 \\ + & .01 \\ + & .03 \\ + & .00 \\ + & .09 \\ + & .07 \\ + & .11 \\ + & .17 \\ + & .11 \\ + & .17 \\ + & .11 \\ + & .15 \\ - & .00 \\ + & .01 \\ + & .19 \\ - & .00 \end{array}$
15 15 1 2 5 7 19 23A 31 32 34 35 37 39 40 43 44 45	55.56 89,90 88,89 76,77 69,71 51,52 46,47 43,44 41,42 39,40 37,38 35,36 31,32 29,30 21,22 20,21 16,17	0.2614 0.2590 0.7531 0.7692 0.8410 0.4560 0.3436 0.7032 0.2522 0.3892 0.630 0.0308 0.4526 0.7452 0.2818 0.3564 0.7966 0.5421	0.2596 0.2598 0.7504 0.7650 0.8396 0.4555 0.7029 0.2494 0.3901 0.0658 0.0279 0.4510 0.0725 0.2772 0.3550 0.7962 0.5444	$ \begin{array}{c} & \\ +0.10 \\ -0.4 \\ +.14 \\ +.22 \\ +.08 \\ +.02 \\ +.11 \\ +.02 \\ +.15 \\15 \\ +.15 \\ +.08 \\ +.11 \\ +.24 \\ +.07 \\ +.02 \\12 \end{array} $	63,64 63,64 28,29 29,30 41,42 48,49 67,68 71,72 75,76 77,78 79,80 81,82 83,84 87,88 89,90 97,98 97,98 97,98 102,103	$\begin{array}{c} 0.3075\\ 0.3069\\ 0.8219\\ 0.8012\\ 0.7296\\ 0.6126\\ 0.6126\\ 0.6126\\ 0.6126\\ 0.6126\\ 0.6571\\ 0.575\\ 0.3858\\ 0.5971\\ 0.5371\\ 0.5371\\ 0.1158\\ 0.4980\\ 0.2950\\ 0.2196\\ 0.2196\\ 0.7794\\ 0.0304 \end{array}$	0.3050 0.3049 0.8161 0.8020 0.7272 0.6108 0.2262 0.8656 0.3155 0.1832 0.5326 0.1126 0.4962 0.2159 0.7735 0.0251	$\begin{array}{c} + 0.^{''} 13 \\ + 0.111 \\ + 0.111 \\ + 0.111 \\ + 0.111 \\ - 0.$

TABLE III.-(Continued.) PLATE V: y MEASUREMENTS.

TABLE III.—(Continue	ed.) Pi	LATE VI]	[: x]	MEASUREMENTS.
----------------------	---------	----------	-------	---------------

		x di	rect.			x rev	versed.	
Star.	Lines.	½ m Scale min	, or nus Star.	S-H	Lines.	Kale min	ı, or nus Star.	S-H
		Schl.	Hays.			Schl.	Hays.	
15 2 3 4 6 8 10 11 14 16 17 18 20 22 23 24 25 26 27 28 29 31 32 33	61,62 95,96 93,95 92,93 71,72 70,71 61,62 57,58 57,58 57,58 55,56 54,55 51,52 51,52 51,52 50,51 50,51 50,51 50,51 50,51	0.6390 0.1465 0.5530 0.3122 0.5484 0.2074 0.3296 0.4775 0.8200 0.7609 0.3314 0.7879 0.4450 0.4754 0.4754 0.1081 0.5110 0.4162 0.3231 0.5444 0.8028 0.1946 0.6379 0.7781 0.1226	0.6438 0.1489 0.5496 0.3115 0.5484 0.2076 0.3339 0.4796 0.8219 0.7619 0.3268 0.7915 0.4424 0.4781 0.1092 0.5112 0.4139 0.3251 0.5456 0.8031 0.1925 0.6386 0.7770 0.1226	$\begin{array}{c} \begin{array}{c} & & & \\ & -0.25 \\ &13 \\ +.17 \\ +.00 \\ &01 \\ \\23 \\11 \\23 \\10 \\25 \\ +.24 \\20 \\ +.14 \\06 \\01 \\ +.12 \\06 \\01 \\ +.10 \\06 \\01 \\ +.10 \\06 \\01 \\ +.06 \\01 \\ +.06 \\00 \end{array}$	56,58 23,24 24,25 26,27 39,40 46,47 47,48 47,49 56,57 57,58 59,60 60,61 60,62 62,64 64,65 66,67 67,68 67,68 67,68 67,68 67,68 67,68 67,68 67,68 67,68 67,68 67,68 67,68 67,68	0.4129 0.4122 0.5062 0.2438 0.5079 0.3484 0.2242 0.5779 0.7348 0.7938 0.7938 0.7938 0.7938 0.7640 0.5755 0.4446 0.5442 0.1366 0.2321 0.5095 0.7540 0.3584 0.4170 0.7778 0.4316	$\begin{array}{c} 0.4134\\ 0.4078\\ 0.5049\\ 0.2468\\ 0.5094\\ 0.3449\\ 0.2252\\ 0.5730\\ 0.7306\\ 0.7931\\ 0.2222\\ 0.7655\\ 0.6100\\ 0.5742\\ 0.4468\\ 0.5444\\ 0.1356\\ 0.2316\\ 0.2316\\ 0.5095\\ 0.7515\\ 0.3595\\ 0.7515\\ 0.3595\\ 0.4178\\ 0.7756\\ 0.4350\end{array}$	$\begin{array}{c} & & \\ & -0.03 \\ + .23 \\ + .07 \\08 \\ + .18 \\05 \\ + .25 \\ + .25 \\ + .25 \\ + .25 \\ + .03 \\07 \\10 \\ + .03 \\07 \\11 \\01 \\ + .05 \\ + .03 \\04 \\ + .11 \\18 \end{array}$
45	22,24	0.4344 Schl.	0.4370 Kretz	13	95,96	0.6214 Schl.	0.6179 Kretz.	+ .19 S-K
15 1 2 5 7 7 4 9 21 23A 34 35 36 37 38 39 40 41 42 43 44 45	61,62 96,97 95,96 83,84 76,77 72:73 57.58 56,58 56,58 52,54 45,46 43,44 41,43 41,42 38,39 37,38 35,36 31,32 29,30 27,28 27,28 22,24	0.6420 0.1244 0.1474 0.2168 0.3461 0.2332 0.7251 0.4262 0.5909 0.4486 0.4162 0.4652 0.8426 0.2091 0.4620 0.6735 0.6124 0.6276 0.7438 0.1826 0.4362	0.6444 0.1286 0.2158 0.3411 0.2351 0.7224 0.4250 0.5854 0.4469 0.4164 0.4626 0.8446 0.2134 0.4608 0.6731 0.6054 0.6054 0.6230 0.7431 0.1789 0.4340	$\begin{array}{c}$	56,58 22,23 35,36 42,43 46,47 60,61 61,62 65,66 73,74 75,76 76,77 76,77 76,77 76,77 76,77 80,81 80,82 82,84 86,88 88,90 90,91 91,92 95,96	0.4105 0.4282 0.4101 0.3389 0.2086 0.3231 9.8312 0.6336 0.4660 0.1078 0.1359 0.5950 0.7156 0.3486 0.5946 0.3860 0.4504 0.4504 0.4315 0.8136 0.3741 0.6239	0.4090 0.4268 0.3389 0.2081 0.3216 0.8338 0.6280 0.4674 0.1046 0.1390 0.5931 0.7064 0.3459 0.5924 0.3824 0.3824 0.3824 0.4526 0.4526 0.4526 0.4526 0.4526 0.3744 0.6222	$\begin{array}{c} \begin{array}{c} \\ +0.08 \\ +.07 \\ +.17 \\ .00 \\ +.03 \\ +.08 \\14 \\ +.30 \\07 \\ +.17 \\16 \\ +.10 \\ +.19 \\ +.14 \\ +.12 \\ +.19 \\12 \\ +.07 \\ +.03 \\02 \\ +.09 \end{array}$

TABLE III.-(Continued.) PLATE VII: y MEASUREMENTS.

		y d	irect.		y reversed.			
Star.	Line.	$\frac{1_2}{2} m$ Scale min	e, or nus Star.	S-K	Line.	Scale mi	, or nus Star.	S-K
		Schl.	Kretz.			Schl.	Kretz.	
15 2 3 4 6 8 10 11 14 16 17 18 20 22 23 24 25 26 27 28 29 31	62 58 44 26 76 55 49 82 27 45 45 45 55 32 45 55 32 54 65 89 46	0.0196 0.6448 0.0536 0.9754 0.2415 0.9804 0.0164 0.2788 0.9624 0.7882 0.8736 0.7182 0.9394 0.6870 0.2095 0.3472 0.8854 0.9052 0.7488 0.9808 0.6049 0.2505	0.0186 0.6446 0.0534 0.9744 0.2414 0.9799 0.0149 0.2782 0.9610 0.7840 0.7840 0.7840 0.7840 0.7840 0.7840 0.8712 0.7169 0.9379 0.6864 0.2090 0.3462 0.8852 0.9058 0.7494 0.9806 0.6022 0.2515	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ +0.05 \\ + \\ .01 \\ + \\ .01 \\ + \\ .01 \\ + \\ .01 \\ + \\ .01 \\ + \\ .01 \\ + \\ .02 \\ + \\ .03 \\ + \\ .05 \\ + \\ .04 \\ + \\ .05 \\$	57 60 75 92 43 42 64 70 36 91 73 72 73 41 44 74 63 86 64 53 29 73	$\begin{array}{c} 0.5301\\ 0.9095\\ 0.4972\\ 0.5794\\ 0.3114\\ 0.5731\\ 0.5348\\ 0.2735\\ 0.5922\\ 0.7689\\ 0.6788\\ 0.8365\\ 0.6142\\ 0.8685\\ 0.6142\\ 0.8685\\ 0.6142\\ 0.8685\\ 0.6142\\ 0.8685\\ 0.6142\\ 0.8685\\ 0.6142\\ 0.8685\\ 0.6142\\ 0.5726\\ 0.9515\\ 0.3002\\ \end{array}$	0.5302 0.9045 0.4942 0.5774 0.5720 0.5346 0.2714 0.5928 0.7664 0.6784 0.6784 0.6784 0.6628 0.6149 0.8691 0.3448 0.2011 0.6628 0.6496 0.7996 0.5720 0.9535 0.3026	$\begin{array}{c} \begin{array}{c} \begin{array}{c} 0.01 \\ -0.01 \\ +28 \\ +10 \\ +11 \\ +22 \\ +00 \\ +11 \\ +20 \\ +11 \\ +11 \\ +10 $
32 33	22 24	0.4230	0.4215	11. +	97 94	0.1355 0.8048	0.1334 0.8038	+ .05
15 1 5 7 7 4 19 21 23 33 34 35 36 37 38 39 40 41 42 43 44 45	62 77 90 43 58 87 86 76 24 58 95 72 48 65 72 27 54 68 88 37	Kretz. 0.0182 0.7418 0.9979 0.9085 0.2669 0.9085 0.3856 0.7939 0.7534 0.1652 0.4320 0.8776 0.7515 0.7550 0.0530 0.0934 0.4615 0.3646 0.9215 0.3458 0.4842	Hays. 0.0246 0.7462 0.9966 0.2690 0.9064 0.3829 0.7956 0.7530 0.1675 0.4320 0.8750 0.7538 0.7541 0.0952 0.4634 0.3646 0.9211 0.3438 0.4869	$\begin{array}{c} K - H \\ " \\ - 0.34 \\23 \\ + .08 \\02 \\11 \\ + .10 \\ + .14 \\08 \\ + .02 \\12 \\12 \\ + .06 \\10 \\10 \\10 \\10 \\14 \end{array}$	57 41 28 76 61 31 33 42 96 24 46 70 53 47 92 65 50 31 82	Kretz. 0.5318 0.8111 0.5592 0.2860 0.6464 0.1770 0.7582 0.8038 0.3841 0.1251 0.6749 0.8013 0.5000 0.4606 0.0992 0.1885 0.6322 0.2065 0.0679	Hays. 0.5329 0.8120 0.5605 0.5521 0.2868 0.6486 0.1775 0.7600 0.8059 0.3861 0.1244 0.6749 0.8045 0.8026 0.5019 0.4615 0.0882 0.1909 0.6345 0.2076 0.0672	$\begin{array}{c} K-H \\ , \\ -0.06 \\ -0.04 \\ -0.06 \\ -0.04 \\ -0.02$

TABLE III.--(Continued.) PLATE VIII: x MEASUREMENTS.

	1	x d	irect.		1	x re	versed.	
Star.	Lines.	Scale mi	a, or nus Star.	S-K	Lines.	לע Scale mi	n, or nus Star.	S-K
	1	Schl.	Kretz.	1		Schl.	Kretz.	
15 15 2 3 4 6 8 10 11 14 16 17	60,61 93.94 92.93 90.92 77.78 70,72 69.71 68,70 60.61 59,60 57,50	0.2671 0.7701 0.6742 0.4280 0.6768 0.3415 0.4545 0.6009 0.4509 0.4509 0.4509	0.2648 0.7728 0.6731 0.4276 0.6800 0.3375 0.4509 0.6011 0.4502 0.3795 0.4515	$ \begin{array}{r} +0.12 \\ -14 \\ +0.06 \\ +.02 \\ -17 \\ +.21 \\ +.19 \\01 \\ +.04 \\ +.14 \\ +.25 \\ \end{array} $	58.59 58.59 24.25 25.27 27,28 40,42 47,48 48,49 49,50 57.59 59,60 60,61	$\begin{array}{c} 0.2850\\ 0.2851\\ 0.7856\\ 0.3849\\ 0.6299\\ 0.3745\\ 0.7154\\ 0.6002\\ 0.4522\\ 0.5990\\ 0.1725\\ 0.5070\end{array}$	0.2819 0.2828 0.7825 0.3842 0.6285 0.3741 0.7150 0.5968 0.4505 0.5988 0.1725 0.5978	$\begin{array}{c} +0.16 \\ +.12 \\ +.17 \\ +.04 \\ +.07 \\ +.02 \\ +.02 \\ +.18 \\ +.09 \\ +.02 \\00 \\ +.01 \end{array}$
18 20 22 23 24 25 26 27 28 29 31 45	57.39 56.57 53.55 52.53 50.51 49.51 49.51 49.50 49.50 49.50 48.49 48.49 21,22	0.4352 0.4119 0.5689 0.6064 0.7400 0.6309 0.5430 0.4416 0.6729 0.4262 0.8270 0.2589 0.5558	$\begin{array}{c} 0.4091\\ 0.5650\\ 0.6061\\ 0.7380\\ 0.6234\\ 0.5401\\ 0.4394\\ 0.6702\\ 0.4281\\ 0.8258\\ 0.2556\\ 0.5545\end{array}$	$\begin{array}{r} 1.23 \\ + .15 \\ + .21 \\ + .01 \\ + .11 \\ + .40 \\ + .15 \\ + .12 \\ + .14 \\10 \\ + .07 \\ + .17 \\ + .07 \end{array}$	62,63 62,63 62,63 64,65 65,66 67,69 68,69 68,69 68,70 68,70 68,70 68,70 69,70 70,71 96 98	$\begin{array}{c} 0.1374\\ 0.4841\\ 0.4450\\ 0.8161\\ 0.4269\\ 0.5071\\ 0.6129\\ 0.5071\\ 0.6234\\ 0.7252\\ 0.2974\\ 0.5000 \end{array}$	0.1385 0.4874 0.4465 0.8162 0.4252 0.5089 0 6110 0.3794 0.6234 0.7242 0.2940 0.4980	$\begin{array}{c} - & .06 \\ - & .08 \\ - & .09 \\ - & .09 \\ + & .09 \\ + & .10 \\ + & .03 \\ - & .05 \\ + & .18 \\ + & .10 \end{array}$
15 15 7 7 2 35 7 7 4 19 23A 32 33 34 35 36 37 38 39 40 41 42 43 44 45	60,61 60,61 94.95 93.91 81,82 74.76 70.72 56.57 51,52 46.47 44.45 43.45 44.45 43.45 44.45 43.45 40.41 40.41 40.41 35.37 34.35 30.31 28.29 26.27 25.26 21,22	Schl. 0.2681 0.2664 0.7576 0.7576 0.8511 0.4639 0.3661 0.3584 0.7201 0.3970 0.7401 0.5712 0.5529 0.5946 0.4676 0.8402 0.5885 0.2381 0.2381 0.2392 0.3708 0.8192 0.5601	Hays. 0.2700 0.2661 0.7529 0.7736 0.8485 0.4646 0.3594 0.3575 0.7181 0.3920 0.7400 0.5742 0.5742 0.5523 0.4679 0.8384 0.5916 0.2882 0.2302 0.2302 0.2594 0.3731 0.8188 0.5591	$\begin{array}{c} S-H\\ & & \\ & & \\ & & \\ -0.10\\ + & .02\\ + & .24\\ + & .13\\ + & .03\\ + & .35\\ + & .05\\ + & .26\\ + & .17\\ + & .04\\ + & .02\\ + & .02\\ + & .02\\ + & .02\\ + & .02\\ + & .02\\ + & .02\\ + & .02\\ + & .03\\ + & .05\\ \end{array}$	58.59 23,24 24.25 36,37 43.44 47.48 62.63 66.67 72,73 73.74 74.75 76.77 77.79 81,82 82,83 84,85 88,89 90,91 82,93 92,93 92,93 92,93	Schl. 0.2839 0.2852 0.8044 0.7872 0.7059 0.5938 0.6921 0.1961 0.8364 0.1592 0.8152 0.4800 9.5016 0.4630 0.5885 0.7172 0.4624 0.2649 0.3200 0.3016 0.1818 0.7378 0.5009	Hays. 0.2840 0.2856 0.7984 0.7855 0.5896 0.6902 0.1901 0.8356 0.1631 0.8174 0.4814 0.5000 0.4615 0.5921 0.7172 0.4692 0.2655 0.3199 0.2991 0.1814 0.7345 0.4981	$\begin{array}{c} S-H\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $

TABLE III.-(Continued.) PLATE VIII: y MEASUREMENTS.

		y đ	irect.		y reversed.			
Star.	Line.	Scale mi	ı, or nus Star.	K—H	Line.	½ n Scale mi	ı, or nus Star.	K-H
		Kretz.	Hays.			Kretz.	Hays.	
15 15 2 3 4 6 8 10 11 14 16 17 18 20 22 23 24 25 26 27 28	55 51 37 19 69 69 48 42 75 20 38 39 38 70 68 38 48 25 47 58	0.0068 0.6239 0.0348 0.9572 0.2228 0.9606 0029 0.2579 0.9466 0.7739 0.8599 0.7045 0.9272 0.6700 0.1906 0.3356 0 8722 0.8939 0.7358 0.9688	0.0070 0.6241 0.0326 0.9590 0.2200 0.9614 0.0000 0.2596 0.9432 0.7724 0.8614 0.7068 0.9284 0.6721 0.1938 0.3372 0.8729 0.8729 0.8966 0.7394 0.9678	$\begin{array}{c} & & & \\$	64 67 82 99 50 49 77 43 80 79 80 48 51 70 93 71 60	0.5411 0.5421 0.9258 0.5169 0.5984 0.3288 0.5875 0.5505 0.2900 0.6034 0.7801 0.6928 0.8506 0.6249 0.8775 0.3525 0.2140 0.6748 0.6598 0.8111 0.5792	0.5416 0.5425 0.9290 0.5194 0.6002 0.3249 0.5898 0.5512 0.2915 0.6072 0.7820 0.6949 0.8478 0.6264 0.8769 0.3596 0.2150 0.67755 0.6611 0.8096 0.5779	$\begin{array}{c} & & & \\$
29 31	82	0.5856	0 5869	07	36 80	0.9645	0.9650	04 16
33	17	0.7346	0.7341	+.03	IOI	0.8170	0.8195	14
		Schl.	Kretz.	S-K		Schl.	Kretz.	S-K
15 15 1 5 7 7 4 9 23A 32 33 34 35 36 37 38 39 40 41 42 43 44 45	55 57 83 36 15 15 88 65 15 86 50 47 46 1 81 30	0 0095 0.0105 0.7176 0.9740 0.2508 0.8938 0.7815 0.4090 0.7384 0.1562 0.4174 0.8636 0.7460 0.7450 0.7450 0.7450 0.7458 0.3562 0.3348 0.4771	0.0072 0.0076 0.7158 0.9754 0.2484 0.7892 0.4109 0.7378 0.1560 0.4150 0.8619 0.7445 0.745 0.747 0.747 0.778 0.77	$\begin{array}{c} & & & \\ + & & & \\ + & & & \\ + & & & \\ + & & & \\ + & & & \\ + & & & \\ + & & & \\ + & & & \\ + & & & \\ + & & & \\ + & & \\ + & & \\ + & & \\ + & & \\ + & & \\ + & & \\ + & & \\ + & & \\ + & & \\ + & & \\ + & & \\ + & & \\ + & & \\ + &$	64 48 35 83 68 49 104 101 68 31 53 760 54 99 72 57 38 89	0.5411 0.5458 0.8352 0.5774 0.5680 0.3062 0.6646 0.7719 0.1476 0.8194 0.3972 0.1369 0.6901 0.8105 0.8105 0.8075 0.5091 0.4692 0.0951 0.2010 0.6349 0.2199 0.0745	0.5409 0.5418 0.8331 0.5751 0.5670 0.3025 0.6609 0.7688 0.1456 0.8171 0.3955 0.1330 0.6880 0.8101 0.8049 0.5089 0.4708 0.6349 0.2176 0.0785	$\begin{array}{c} & & & \\ + & & & 0.01 \\ + & & & .021 \\ + & & & .10 \\ + & & & .10 \\ + & & & .10 \\ + & & & .20 \\ + & & & .20 \\ + & & .10 \\ + & & .11 \\ + & & .13 \\ + & & .21 \\ + & & .11 \\ + & & .10 \\ + & & .21 \\ + & & .01 \\$

TABLE III.—(Continued.) PLATE IX: x MEASUREMENTS.

		x đ	irect.			$x \mathrm{rev}$	ersed.	
Star.	Lines.	½ n Scale mi	ı, or nus Star.	S-K	Lines.	Scale m	m, or inus Star	S—K
		Schl.	Kretz.			Schl.	Kretz.	
15 2 3 4 6 8 10 11 14 16 17 18 20 22 23 24 25	54,55 88,89 87,88 87,88 85,86 72.73 65,66 64,65 55,56 53,55 52,53 50,51 48,49 47,48 45,46	0.8900 0.3924 0.3025 0.5701 0.2920 0.4511 0.7320 0.0608 0.5259 0.5848 0.5451 0.6969 0.7159 0.3495 0.3495 0.2512 0.600	0.8901 0.3978 0.3008 0.5648 0.2899 0.4461 0.5730 0.7318 0.0609 0.5236 0.5914 0.5914 0.5914 0.5914 0.5915 0.3515 0.3515 0.2520 0.6601	$\begin{array}{c} \begin{array}{c} & & & \\ & -0.01 \\ &29 \\ & +.28 \\ & +.11 \\ & +.26 \\ & +.11 \\ & +.26 \\ & +.11 \\ & +.26 \\ & +.01 \\ & +.01 \\ & +.01 \\ & +.01 \\ & +.01 \\ &01 \\ & +.01 \\ & +.01 \\ &01 \\ & +.01 \\ & +.01 \\ &01 \\ & +.01 \\ & +.01 \\ &01 \\ & +.01 \\ & +.01 \\ &01 \\ & +.01 \\ &01 \\ & +.01 \\ &01 \\ & +.01 \\ &01 \\ & +.01 \\ &01 \\ & +.01 \\ &01 \\ & +.01 \\ &01 \\ &01 \\ & +.01 \\ &01 \\ $	63,64 30,31 31,32 32,34 46,47 53,54 53,55 54,55 63,64 64,65 65,67 67,68 67,68 67,68 67,68 69,70 71,72 73,74	0.6599 0.1621 0.2570 0.4876 0.2621 0.1020 0.4780 0.8220 0.4985 0.5291 0.4656 0.5085 0.8598 0.8598 0.8598 0.8598 0.2038 0.2038 0.2038	0.6628 0.1625 0.2544 0.4918 0.2621 0.1029 0.4776 0.8205 0.4886 0.5299 0.4661 0.5105 0.8592 0.8382 0.2044 0.2989 0.8014	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
25 26 27 28 29 45	44,45 44,45 44,45 43,45 43,44 16,17	0.5798 0.2938 0.5416 0.4295 0.1870 Kretz.	0.5791 0.2900 0.5436 0.4300 0.1888 Hays.	+ .04 + .04 + .20 11 03 10 K-H	73.74 73.75 74.75 74.75 75.76 102,103	0.4729 0.2616 0.5095 0.1226 0.3682 Kretz.	0.4739 0.2608 0.5086 0.1228 0.3689 Hays.	$ \begin{array}{c} + .07 \\05 \\ + .04 \\ + .05 \\01 \\04 \\ K-H \end{array} $
15 1 2 5 7 23A 31 32 33 34 35 36 37 38 39 40 43 44 45	54,55 89,90 85,89 76,77 69,70 46,47 42,43 40,42 39,40 38,39 36,37 35,36 35,36 35,36 35,36 31,32 30,31 28,29 20,22 20,21 16,17	0.8899 0.3738 0.3738 0.3938 0.4536 0.5980 0.3264 0.8836 0.5325 0.3811 0.6959 0.6520 0.2006 0.0874 0.4465 0.7034 0.9286 0.4879 0.4152 0.1885	0.8898 0.3658 0.3946 0.4546 0.5940 0.3236 0.8880 0.5338 0.3829 0.6980 0.6511 0.1999 0.0931 0.4495 0.6981 0.9256 0.4882 0.4138 0.1902	$\begin{array}{c} +0.01 \\ +0.01 \\ +.42 \\05 \\ +.21 \\ +.21 \\ +.22 \\07 \\10 \\ +.05 \\ +.04 \\16 \\ +.04 \\16 \\ +.07 \\01 \\ +.07 \\09 \end{array}$	63, 64 29, 30 30, 31 42, 43 48, 50 72, 73 75, 76 77, 78 79, 80 79, 80 81, 82 83, 84 83, 84 83, 84 87, 88 87, 88 89, 90 97, 98 98, 99 102, 103	$\begin{array}{c} 0.6629\\ 0.1809\\ 0.1600\\ 0.0996\\ 0.4599\\ 0.2242\\ 0.6685\\ 0.5216\\ 0.1719\\ 0.8628\\ 0.3628\\ 0.3488\\ 0.4661\\ 0.1064\\ 0.8530\\ 0.6330\\ 0.6330\\ 0.5671\\ 0.1415\\ 0.3685\end{array}$	0.6628 0.1800 0.1602 0.0986 0.4625 0.2258 0.6692 0.5194 0.1732 0.8601 0.9005 0.3510 0.4621 0.1052 0.8550 0.6298 0.5681 0.1409 0.3682	$\begin{array}{c} & & & \\ & + & & & \\ & + & & & & \\ & + & & & &$

214

TABLE III.-(Concluded.) PLATE IX : y MEASUREMENTS.

		y đ	irect.			y rev	versed.	
Line.	Star.	$\frac{\frac{1}{2}n}{\text{Scale }mi}$	a, o r nus Star.	KH	Line.	$\frac{1}{2}m$ Scale mi	ı, or nus Star.	K-H
		Kretz.	Hays.			Kretz.	Hays.	
15 2 3 4 6 8 10 11 14 16 17 18 20 22 23 24 25 26 27 29	56 53 38 21 70 71 49 43 77 22 40 41 40 72 69 39 50 27 49	0.6574 0.2924 0.7025 0.6201 0.8824 0.6176 0.6535 0.9194 0.5956 0.4234 0.5092 0.3556 0.3556 0.5775 0.3186 0.8454 0.9861 0.5185 0.5389 0.38455	0.6586 0.2885 0.7022 0.6211 0.8836 0.6160 0.6530 0.9174 0.5951 0.4211 0.5951 0.4211 0.5983 0.3512 0.5768 0.3181 0.58441 0.5831 0.5426 0.5426 0.3856 0.5426 0.3856 0.5426 0.566 0.566 0.566 0.566 0.566 0.566 0.566	$\begin{array}{c} -0.06 \\ + .21 \\ + .02 \\05 \\ + .05 \\ + .02 \\ + .03 \\ + .12 \\ + .03 \\ + .03 \\ + .03 \\ + .03 \\ + .03 \\ + .04 \\06 \\ + .03 \\06 \\06 \end{array}$	62 66 80 97 48 47 69 75 41 97 79 78 78 77 8 77 8 79 69 92 70 8	0.8968 0.2601 0.8546 0.9386 0.6685 0.9336 0.8961 0.6335 0.9594 0.1318 0.0488 0.2010 0.9788 0.2341 0.7089 0.5705 0.0304 0.0139 0.1659	0.8969 0.2619 0.8548 0.9390 0.6701 0.9311 0.8986 0.6356 0.9579 0.1336 0.0450 0.2028 0.9575 0.2351 0.7101 0.5735 0.0294 0.0171 0.1660	$\begin{array}{c} \overset{"}{0,00} \\ - & .02 \\ - & .03 \\ - & .03 \\ - & .12 \\ - & .12 \\ - & .11 \\ + & .10 \\ - & .10 \\ + & .10 \\ - & .05 \\ - & .05 \\ - & .06 \\ - & .06 \\ - & .0$
29 33	84 19	0.0129 0.2345 0.3819	0.2326 0.3838	+ .02 + .1010	35 100	0.3168 0.1718	0.3154 0.1716	+ .00 + .07 + .01
$ \begin{array}{c} 15\\1\\5\\7\\23A\\31\\32\\33\\34\\35\\36\\37\\38\\39\\40\\43\\44\\45\end{array} $	56 72 85 37 40 17 19 52 90 67 43 60 66 21 63 82 32	Schl. 0.6586 0.3909 0.6366 0.6385 0.4271 0.8852 0.0584 0.3802 0.7965 0.0624 0.3900 0.3850 0.3900 0.6850 0.7210 0.5462 0.9712 0.1102	Hays. 0.6598 0.3881 0.6354 0.6375 0.4246 0.8874 0.0532 0.3842 0.7979 0.0638 0.5024 0.3868 0.3834 0.3834 0.6826 0.7229 0.5432 0.9688 0.1076	$\begin{array}{c} 8-H\\ -0.06\\ +.15\\ +.06\\ +.05\\ +.13\\13\\ +.28\\21\\07\\ +.37\\10\\ +.35\\ +.13\\10\\ +.15\\ +.11\\ +.14\end{array}$	62 47 33 81 48 78 102 66 29 52 76 59 52 97 56 36 87	Schl. 0.8946 0.1674 0.9176 0.9169 0.1265 0.6710 0.5040 0.1728 0.7548 0.4945 0.4945 0.1650 0.1671 0.8684 0.8329 0.0040 0.5834 0.4465	Hays. 0.8964 0.1626 0.9172 0.9132 0.6731 0.5041 0.7551 0.4920 0.0412 0.1701 0.1660 0.8680 0.8329 0.0062 0.5864 0.4474	$ \begin{array}{c} 8-H \\ -0.11 \\ +.25 \\ +.03 \\ +.21 \\ +.24 \\11 \\01 \\ +.09 \\01 \\ +.39 \\27 \\ +.06 \\ +.03 \\12 \\16 \\05 \end{array} $

Instrumental Corrections.

The first step towards turning the foregoing measures into right ascensions and declinations will be to apply the following instrumental corrections, which are here considered in the order of their application.

1° Division Errors of the Scale.

Just before beginning the measurement of the Præsepe plates a thorough examination of the division errors of the scale was completed. The details of this investigation together with the determinations of other constants of the measuring machine are reserved for another 'publication from this observatory. It will suffice for present purposes to set down merely the final results.

Previous to the above investigation the scale had also been examined by the Kaiserliche Normal Aichungs Kommission at Berlin; the results of this determination were published in the "Annals of the New York Academy of Sciences," Vol. IX, page 206. The two determinations agree quite well, the largest difference for any line being 0."11, and usually the agreement is much closer. As the investigation at Columbia was made with the same microscope and under the same conditions in which the plates were measured, it was thought best to use only our own results, as given in Table IV. The coördinates of a star depend upon several divisions for one plate, and the same star usually comes opposite different divisons for different plates. It follows therefore that our final positions will be nearly independent of inaccuracies in the determination of the division errors; for example, the right ascension of Star I depends upon eighteen different lines of the scale and its declination depends upon thirteen. In Table IV the corrections are given in millimetres, and are always to be added to observed readings.

2° Corrections for Runs and Screw Errors.

The screw used in the measurements is of such a pitch that two complete turns of the micrometer head correspond to one space on the scale; the micrometer head is divided into one hundred equal parts and may therefore be read directly to half-microns

TABLE IV .- DIVISION ERRORS OF THE SCALE.

Line.	Correction in mm,	Line.	Correction in mm.	Line.	Correction in mm.
$\begin{array}{c} 0\\ 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ \end{array}$	$\begin{array}{c} 0.0000 \\ +0.0011 \\ -0.0007 \\ -0.0001 \\ +0.0002 \\ -0.0004 \\ +0.0001 \\ -0.0003 \\ -0.0009 \\ -0.0009 \\ -0.0001 \\ +0.0016 \\ +0.0016 \\ +0.0016 \\ +0.0016 \\ +0.0012 \\ +0.0012 \\ +0.0012 \\ +0.0012 \\ +0.0012 \\ +0.0012 \\ +0.0012 \\ +0.0012 \\ +0.0012 \\ +0.0012 \\ +0.0012 \\ +0.0012 \\ +0.0012 \\ +0.0012 \\ +0.0012 \\ +0.0012 \\ +0.0012 \\ +0.0003 \\ +0.0002 \\ +0.0003 \\ +0.0022 \\ +0.0022 \\ +0.0022 \\ +0.0022 \\ +0.0022 \\ +0.0022 \\ +0.0022 \\ +0.0022 \\ +0.0022 \\ +0.0022 \\ +0.0025 \\ +0.0025 \\ +0.0024 \\ +0.0025 \\ +0.0024 \\ +0.0025 \\ +0.0024 \\ +0.0025 \\ +0.0024 \\ +0.0025 \\ +0.0025 \\ +0.0024 \\ +0.0025 \\ +0.0024 \\ +0.0025 \\ +0.0024 \\ +0.0025 \\ +0.0024 \\ +0.0025 \\ +0.0024 \\ +0.0025 \\ +0.0024 \\ +0.0025 \\ +0.0024 \\ +0.0025 \\ +0.0024 \\ +0.0025 \\ +0.0024 \\ +0.0025 \\ +0.0024 \\ +0.0025 \\ +0.0024 \\ +0.0025 \\ +0.0024 \\ +0.0025 \\ +0.0025 \\ +0.0024 \\ +0.0025 \\ +0.0024 \\ +0.0025 \\ +0.0025 \\ +0.0024 \\ +0.0025 \\ +0.0024 \\ +0.0025 \\ +0.0024 \\ +0.0025 \\ +0.0025 \\ +0.0024 \\ +0.0025 \\ +0.0025 \\ +0.0025 \\ +0.0025 \\ +0.0024 \\ +0.0025 \\ +0.0025 \\ +0.0025 \\ +0.0025 \\ +0.0025 \\ +0.0024 \\ +0.0025 \\ +0.0025 \\ +0.0024 \\ +0.0025 \\ $	44 45 46 47 49 55 55 55 55 55 55 55 55 55 55 55 55 55	$\begin{array}{c} +0.0029\\ +0.0020\\ +0.0021\\ +0.0020\\ +0.0013\\ +0.0015\\ +0.0015\\ +0.0030\\ +0.0030\\ +0.0032\\ +0.0032\\ +0.0034\\ +0.0034\\ +0.0034\\ +0.0034\\ +0.0034\\ +0.0034\\ +0.0034\\ +0.0035\\ +0.0059\\ +0.0059\\ +0.0059\\ +0.0059\\ +0.0059\\ +0.0059\\ +0.0059\\ +0.0059\\ +0.0057\\ +0.0052\\ +0.0057\\ +0.0052\\ +0.0057\\ +0.0052\\ +0.0057\\ +0.0052\\ +0.0057\\ +0.0052\\ +0.0057\\ +0.0052\\ +0.0057\\ +0.0052\\ +0.0057\\ +0.0046\\ +0.0047\\ +0.0046\\ +0.0047\\ +0.0046\\ +0.0047\\ +0.0056\\ +0.0047\\ +0.0056\\ +0.0047\\ +0.0056\\ +0.0047\\ +0.0056\\ +0.0047\\ +0.0056\\ +0.0047\\ +0.0056\\ +0.0047\\ +0.0056\\ +0.0047\\ +0.0056\\ +0.0047\\ +0.0056\\ +0.0047\\ +0.0056\\ +0.0047\\ +0.0056\\ +0.0047\\ +0.0056\\ +0.0047\\ +0.0056\\ +0.0047\\ +0.0056\\ +0.0047\\ +0.0056\\ +0.0047\\ +0.0056\\ +0.0047\\ +0.0056\\ +0.0047\\ +0.0056\\ +0.0047\\ +0.0056\\ +0.0047\\ +0.0026\\ +0.0033\\ +0.0021\\ +0.0026\\ +0.0021\\ +0.0026\\ +0.0021\\ +0.0026\\ +0.0021\\ +0.0026\\ +0.0021\\ +0.0026\\ +0.0021\\ +0.0026\\ +0.0021\\ +0.0026\\ +0.0021\\ +0.0026\\ +0.0021\\ +0.0026\\ +0.0021\\ +0.0026\\ +0.0021\\ +0.0026\\ +0.0021\\ +0.0026\\ +0.0026\\ +0.0021\\ +0.0026\\ +0.0020\\ +0.00$	88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130	$\begin{array}{c} +0.0025\\ +0.0026\\ +0.0026\\ +0.0027\\ +0.0025\\ +0.0026\\ +0.0026\\ +0.0026\\ +0.0019\\ +0.0019\\ +0.0019\\ +0.0019\\ +0.0019\\ +0.0012\\ +0.0012\\ +0.0005\\ +0.0012\\ +0.0012\\ +0.0012\\ +0.0012\\ +0.0012\\ +0.0012\\ +0.0012\\ +0.0002\\ +0.0012\\ +0.0002\\ +0.00$

and by estimation to twentieths of a micron. The details of the operation of observing runs were to set the micrometer head at about 5.^{ro} and to read on the scale as follows:

Line 70, Line 65, Line 65, Line 70.

These two lines were selected because they have practically the same division errors, thus avoiding an extra correction, and also because they happen to have more accurately determined division errors than most other lines. The correction for runs need not be applied to the separate readings on the stars and on the scale but may be applied to the quantity $\frac{1}{2}m$ directly; for let us put

2R = reading on Line 65, minus reading on Line 70, minus 10.^r0000.

Dividing by 2 we obtain R, the quantity given in Table II; we must then add to $\frac{1}{2}m$ the correction

$$-(\frac{1}{2}m)\frac{R}{5}$$
 millimetres.

This correction may conveniently be combined with the correction for non-periodic errors of the screw or variations in its pitch; investigation showed that the following quantities must be added to observed readings of the micrometer head in order to reduce them to what they would have been had the screw been of uniform pitch, but of the same total length:

Reading of the Micrometer Head.

Correction in Millimetres.

r	
5.0	0.
6.0+	0.0005
7.0+	0.0002
8.0	0.0003
9.0	0.0012
10.0	0.0017
II.O	0.0022
I2.0	0.0021
13.0	0.0022
14.0	0.0014
15.0	o

The screw is actually longer than ten turns, but as only this length was used in the determination of the error of runs the rest of the screw was not investigated. It will be observed that the corrections progress uniformly in the interval from $9.^{r}$ o to $11.^{r}$ o; advantage was taken of this fact to make the application of the corrections a simple matter. For if the micrometer head be set at $9.^{r}$ o when the microscope is pointed at a star, then the reading on the scale will lie between 9.^r0 and 11.^r0 because a whole space of the scale corresponds to two turns of the micrometer head; consequently the correction to the difference of the readings on scale and star will be proportionate to that difference, that is to $\frac{1}{2}m$; the correction to the latter is easily seen to be

 $-(\frac{1}{2}m) \times 0.0010$ millimetres.

Adding this to the correction for runs we obtain

$$-(\frac{1}{2}m)$$
 (0.00010 $+\frac{R}{5}$) millimetres.

As an example let us correct the first observation given on the specimen sheet on page 199. The date being March 25, we get from Table II,

$$R = + 0.0045.$$

Consequently the correction for runs and screw errors is

 $-(\frac{1}{2}m) \times 0.0019$ millimetres.

A table may now be constructed with the argument $\frac{1}{2}m$ which applies to all observations taken on March 25.

$\frac{1}{2}m$.	Correction.
0.0	0.0000 millimetres.
0.1	0.0002
0.2	0.0004
0.3	····- 0.0006
0.4	0.0008
0.5	0100.0
0.6	
0.7	0.0013
0.8	····- 0.0015
0.9	0.0017
1.0	— 0.0019

For the star given on the specimen sheet the correction is -0.0009. During the second half of each morning's observations when the micrometer head is set at 9.^r5 instead of at 9.^r0 it sometimes happens that the reading on the scale exceeds 11.^r0, in which case the correction will not be exactly proportionate to $\frac{1}{2}m$; but the error committed by using the same table throughout will never reach 0.''02, and in most cases is entirely negligible.

 3° . Having applied the corrections given above we have now to change the measures into rectangular coördinates x and y, referred to the central star 15 as origin, one axis being parallel to the cylinder and the other at right angles to it. For this purpose we subtract the mean of all the readings on the central star for

any one day from the readings of all the other stars that were measured on that day. As we wish to have positive values of xfor those stars which have greater right ascensions than the central star, we must subtract the reading "x direct" from the reading on Star 15; but we must subtract the reading on Star 15 from the reading "x reversed." Similarly to get positive values of yfor those stars having greater declinations than the central star, we subtract the reading on Star 15 from each "y direct" and the contrary for "y reversed."

4° Rotation Corrections.

It was found very difficult to set the circle at exactly 90° plus the reading for the previous day. Even when this had been accomplished the circle-reading was sometimes found to have changed a little during the measurement of the stars. A correction is therefore necessary to reduce the rectangular coördinates to what they would have been had the readings of the circle for different days differed only by multiples of 90° . Let

Q = the number of seconds which occurs most often in the circle readings of a particular plate.

Q-i = the number of seconds in the reading for any day. Then we have,*

Correction for x = -y. $i \sin 1.''$ " y = +x. $i \sin 1.''$

For the present measurements these corrections are very small, never exceeding 0.''05; they have however been applied throughout.

The values of Q adopted for the various plates are as follows:

Plate	I $Q =$	5''
	II	0
	III	0
	IV	58
	V	7
	VII	0
	VIII	29
	IX	2

5° Scale-value corrections.

The scale being made of German silver has a greater coefficient of expansion than the glass plate, and hence it would appear that if the temperature changed during the measurement of a plate,

* "Permanence of the Rutherfurd Photographic Plates" by Harold Jacoby, Annals of the N. Y. Acad. of Sciences, Vol. IX, p. 267. the coördinates would require a correction to reduce them to what they would have been had the temperature remained constant. Investigation shows, however, that such a correction is unnecessary by reason of its minuteness, at least within the limits of the range of temperature at which the present plates were measured. To ascertain the amount of the correction, two well defined specks, such as may be found in the film of any plate, were selected, one near either edge of the plate, and the distance between them was measured at various temperatures. On the morning of April 30, 1897, this distance was measured six times each by Mr. Kretz and myself with the following results :

	Schlesinger:	Kretz:
	104.1548 mm.	104.1505 mm.
	67	514
	36	505
	30	497
	50	540
	25	517
Mean,	104.1543	104.1513
Probable Error,	± 0.00042	±0.00041

Mean, Probable

The temperature of the measuring room had been kept at 69.°3 during the measurement by means of artificial heat, the heating apparatus being at the other end of the room from that occupied by the measuring machine. The heat was now turned off and the plate allowed to assume the natural temperature of the atmosphere; on the afternoon of the same day, three hours having elapsed since the first series was completed, the distance between the specks was again measured by the same observers as follows:

	Schlesinger:	Kretz:
	104.1550 mm.	104.1557 mm.
	70	44
	63	48
	87	60
	90	53
	70	75
	104.1572	104.1556
Error,	$\pm 0.0004 I$	±.0003I

The temperature for this series was $52.^{\circ}2$. Denoting by v the increase in the measured distance due to an increase of 1° in the temperature we have

ANNALS N. Y. ACAD. SCI., X, May, 1898-15.

Schlesinger :	Kretz:
$v = -0.00017 \ mm.$	v = -0.00025 mm.
± 0.000034	± 0.000030

These two values are not very accordant, but they agree sufficiently well for present purposes. As, however, some doubts were entertained as to whether the plates had been thoroughly cooled in the intervening three hours, and as to whether it would not be better to measure the distance between the specks at a season when artificial heat could be entirely dispensed with, the following third series of observations was undertaken by myself, several days elapsing between the various measurements. No artificial heat was allowed in the measuring room during the whole period.

222

July 27, 1897. Temperature = 82.°1.104.1532 mm. 525 505 530 520 495 510 542 510 522 548 525

Mean, 104.1522 \pm 0.00031

Denoting by v as before the increase in the distance due to an increase of 1° in the temperature, and by L the distance between the specks at the temperature 69.°6 we have the following four observation equations:

L	- 104.1543 = 0	weight 3	3
L +	1.4 v - 104.1537 = 0	" 5	5
L +	4.0 v - 104.1536 = 0	" 2	2
L +	12.5 v - 104.1522 = 0	"	5

The weights are calculated from the probable errors given above, the probable error of an equation of weight unity being

$$\pm 0.00067$$

Solving by least squares we get

$$w = -0.00015 \pm 0.000032$$

Taking into account the two previous series, the mean by weight is

v = -0.00019 mm.

which very probably does not differ from its true value by as much as 0.00005.

Now the largest coördinate in the Præsepe measures is less than forty millimetres, and the greatest deviation for any single day from the mean of the temperatures for the corresponding plate is less than 5° ; consequently the largest correction which it will ever be necessary to apply is

0.00037 mm.

which corresponds to 0."02. As this is so small, even in the extreme case, no appreciable error will be committed by neglecting the correction altogether. We may indeed conclude that for the scale under consideration and for the Rutherfurd plates, a correction for change in the scale-value will be unnecessary so long as the temperature does not vary more than 10° during the measurement of a single plate.

6° Projection Errors and Deviation of the Cylinder from Straightness.

In the present work corrections have been applied for neither of these; the first were discussed by Donner * and are very small in most cases; it is indeed very difficult to determine them with sufficient accuracy. Repsold has recently devised a new guiding way which is free from this source of error; the measuring machine used for the Præsepe plates had been furnished with such a guiding way in 1896. As regards the straightness of the cylinder, investigation showed that it had been admirably made \dagger ; the greatest error which we shall commit in assuming it to be straight is 0."04; the reversal of each plate and the insertion of different plates in different positions in the measuring machine will tend to eliminate even this small error.

Having now completed the consideration of all the instrumental corrections which it is necessary to apply, I shall conclude this subject by correcting the measurements of Star 7, Plate VIII, as given on page 199, or in Table III.

	March 25, x direct:	March 24, y direct :	March 18, x reversed :	March 22, y reversed :
Lines,	74,76	36	43,44	. 83
$\frac{1}{2}m$; First obs'v'r.,	0.4646	- 0.0154	0.5938	0.5680
Second "	0.4639	- 0.0178	0.5896	0.5670
Mean,	0.4643	<u> </u>	0.5917	0.5675
Cor. for Runs, etc.,	— 9	0	II	11
Div. Correction,	+ 50	+ 24	+ 26	+ 50
Corrected $\frac{1}{2}m$,	0.4684	- 0.0142	0.5932	0 5714
Measurement,	75.4684	35.9858	44.0932	83.5714

Where two lines have been used the division correction is the mean of the division corrections for the separate lines; the final "measurement" is then obtained by adding the mean of the num bers of the lines to the corrected $\frac{1}{2}m$. The corresponding measurements for the central star 15 when similarly corrected are:

* "Détermination des Constantes nécessaires pour la Reduction d∈s Clichés." Acta Societatis Scientiarum Fennicae, Vol. XXI.

† "Permanence of the Rutherfurd Plates" by Harold Jacoby; Annals of the N. Y. Acad. of Sciences, Vol. IX, page 210.

March 25,	March 24,	March 18,	March 22,
$x ext{ direct}$:	y direct:	x reversed :	y reversed :
60.7692	55.0133	58.7883	64.5497
7695	0104	7887	5457
7731	0100	7870	5448
7712	0123	7871	5450
Mean, 60.7708	55.0115	58.7878	64.5463

Taking the differences between these and the corresponding measurements for Star 7, having regard to signs, we get :

Coördinates,	—14.6976	-19.0257	-14.6946	—19.0251
Rotation Cor.,	0	+ . 4	+ 2	0
Final Coörd.,	-14.6976	-19.0253	—1 4.6944	-19.0251

These are the quantities given in Table V, which needs no further explanation. In comparing the direct with the reversed coördinates, it should be remembered that unity in the fourth decimal place corresponds to about 0."005 of arc of a great circle.

TABLE V.-CORRECTED COÖRDINATES. PLATE I.

TABLE V.-(Continued.) CORRECTED COÖRDINATES. PLATE II.

Star.		x			y	
	Direct.	Rev'd.	Mean.	Direct.	Rev'd.	Mean.
$\begin{matrix} \mathbf{I} \\ 2 \\ 4 \\ 5 \\ 6 \\ 7 \\ 7 \\ 8 \\ 10 \\ 11 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 29 \\ 31 \\ 32 \\ 33 \\ 34 \\ 35 \\ 36 \\ 37 \\ 38 \\ 39 \\ 40 \\ 43 \\ 44 \\ 45 \end{matrix}$	$\begin{array}{c} -34.5040 \\ -33.5044 \\ -30.6440 \\ -21.6032 \\ -17.4227 \\ -14.6867 \\ -10.5896 \\ -9.6862 \\ -9.6862 \\ -9.6862 \\ -9.6862 \\ -9.6862 \\ -9.6862 \\ -9.6862 \\ -9.6862 \\ -9.6862 \\ -9.6862 \\ -9.6862 \\ -9.6862 \\ -9.6862 \\ -9.6862 \\ -9.6862 \\ -9.6862 \\ -9.6862 \\ -9.6862 \\ +0.2337 \\ +10.3454 \\ +10.2337 \\ +10.3454 \\ +10.6300 \\ +10.8382 \\ +11.4256 \\ +12.0266 \\ +13.9074 \\ +15.5584 \\ +19.8174 \\ +23.4373 \\ +24.1793 \\ +26.0170 \\ +33.9056 \\ +34.4474 \\ +38.7409 \\ \end{array}$.5037 .5036 .6420 .6037 .4214 .6812 .5799 .6838 .8259 .2006 .0000 .9122 .3230 .8664 .8967 .2147 .2147 .5505 .6500 .2350 .2350 .2350 .2492 .6032 .8390 .4253 .0287 .9049 .5616 .2031 .2038 .8514 .8190 .4378 .1830 .0153 .9042 .4480 .7417	$\begin{array}{c} -31.5038\\ -33.5040\\ -30.6430\\ -21.6035\\ -17.4221\\ -14.6840\\ -10.5803\\ -9.6850\\ -8.8266\\ -0.2005\\ 0.0000\\ +0.9122\\ +2.3220\\ +3.8662\\ +3.8972\\ +4.2130\\ +6.1528\\ +8.5490\\ +9.6501\\ +10.2344\\ +10.3473\\ +10.6016\\ +10.8386\\ +11.4254\\ +12.0276\\ +13.9061\\ +15.5600\\ +1$	$\begin{array}{r} +15.6928\\ -3.4064\\ -35.0756\\ +28.9578\\ +14.2064\\ -19.0368\\ -3.7603\\ +14.9550\\ -7.0164\\ -12.7520\\ +20.9444\\ 0.0000\\ +20.9444\\ 0.0000\\ +20.9444\\ -15.7620\\ +20.9444\\ -15.3018\\ +25.8933\\ -16.0802\\ +13.1972\\ +14.7833\\ -16.6802\\ +13.1972\\ +14.7833\\ -16.6802\\ +13.1972\\ +14.7833\\ -16.6802\\ +13.1972\\ +14.7833\\ -16.6802\\ +3.9732\\ +27.5944\\ -15.7620\\ -39.5946\\ -37.2621\\ -3.8444\\ +33.4284\\ +10.8745\\ -13.2498\\ +3.7584\\ +10.0571\\ -34.9106\\ +6.9342\\ +26.3596\\ -24.5064\\ \end{array}$	$\begin{array}{c} .6954\\ .4061\\ .0780\\ .9610\\ .2055\\ .0348\\ .7585\\ .0154\\ .7530\\ .9442\\ .0000\\ .2359\\ .1480\\ .3032\\ .2359\\ .1480\\ .3032\\ .2359\\ .1480\\ .3032\\ .2359\\ .1480\\ .3032\\ .2359\\ .1480\\ .2359\\ .1480\\ .2359\\ .1480\\ .2359\\ .1480\\ .2359\\ .1480\\ .2359\\ .1480\\ .2359\\ .1480\\ .2359\\ .1480\\ .2359\\ .1480\\ .2359\\ .1480\\ .2359\\ .1480\\ .2598\\ .1255\\ .1590\\ .2598\\ .1255\\ .1$	$\begin{array}{c} +15.6941\\ -3.4062\\ -35.0772\\ +28.9594\\ +14.2059\\ -19.0358\\ -3.7594\\ +14.9544\\ -7.0159\\ -12.7525\\ +20.9443\\ 0.0000\\ -34.2368\\ -16.1486\\ -15.3025\\ +25.8942\\ -16.0794\\ +13.1972\\ +14.7834\\ -16.6669\\ -6.1268\\ -29.1086\\ -7.2609\\ +3.9744\\ +27.5935\\ -15.7630\\ -39.5920\\ -37.2614\\ +27.5935\\ -15.7630\\ -39.5920\\ -37.2614\\ +3.7595\\ +10.0587\\ -3.49098\\ +6.9351\\ +26.3614\\ -24.5065\end{array}$

Star.	x		y			
	Direct.	Rev'd.	Mean.	Direct.	Rev'd.	Mean.
Star. 1 2 3 4 5 6 7 8 10 11 15 16 17 18 20 22 23 A 24 25 26 27 28 29 31 32 33 34 35 36 37 20 22 23 A 24 25 26 27 28 29 31 32 34 35 36 37 20 27 28 29 31 32 34 35 36 37 20 27 28 29 31 32 34 35 35 35 35 35 35 35 35 35 35	Direct. -34 4942 -33.5(73) -32.4044 -30.6587 -21.5902 -17.4130 -14.6935 -10.5682 -9.6864 -0.1866 0.0000 + 0.8979 + 2.3194 + 3.8596 + 4.2056 + 6.1663 + 7.5299 + 8.5566 + 9.6504 + 10.2314 + 10.6036 + 10.2314 + 10.6036 + 10.2314 + 10.6036 + 10.2314 + 10.4400 + 12.0134 + 13.8892 + 15.5390 + 16.2035 + 19.8112	x Rev'd. .4942 .5094 .4030 .6538 .5939 .4134 .6974 .5685 .6859 .8312 .1878 .0000 .8959 .3190 .2076 .1653 .5297 .5554 .6490 .2295 .3369 .6032 .8452 .3369 .6032 .8452 .3369 .6032 .8452 .3369 .6032 .8452 .3369 .6032 .8452 .3369 .6032 .8452 .3369 .6032 .8452 .3369 .6032 .8452 .3369 .6032 .8452 .3369 .6032 .8452 .3369 .6032 .8452 .3369 .6032 .8452 .3369 .6032 .8452 .3369 .6032 .8452 .3369 .6032 .8452 .3369 .6032 .8452 .3369 .6032 .8452 .6455 .8585 .3369 .6455 .8585 .3369 .6455 .65566 .65566 .65566 .65566 .65566 .65566 .65566 .6556	$\begin{array}{r} \text{Mean.} \\ \hline & -34.4942 \\ -33.5084 \\ -32.4037 \\ -30.6562 \\ -21.5920 \\ -17.4132 \\ -14.6954 \\ -10.5684 \\ -9.6862 \\ -8.8298 \\ -0.1872 \\ 0.0000 \\ + 0.8969 \\ + 2.3192 \\ + 3.8593 \\ + 4.2066 \\ + 6.1658 \\ + 7.5298 \\ + 8.5560 \\ + 9.6497 \\ +10.2305 \\ +10.2305 \\ +10.2305 \\ +10.3365 \\ +10.6034 \\ +10.2405 \\ +15.5406 \\ +15.5406 \\ +15.5406 \\ +15.5406 \\ +16.2034 \\ +18.2221 \\ +19.6889 \\ +19.8118 \\ +24.8891 \\ +24.8$	$\begin{array}{c} \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \\ \hline \\ \\ \\ \\ \hline \\$	y Rev'd. 7076 .3940 .9844 .0660 .9427 .0342 .9602 .0138 .7510 .9420 .0000 .2410 .9420 .0000 .2410 .1504 .3060 .0818 .6737 .1931 .7524 .3060 .0818 .6737 .1931 .7548 .1310 .1154 .2712 .9659 .5912 .7700 .6048 .2731 .8520 .2656 .2731 .8620 .2656	Mean. + 15.7076 - 3.3948 - 17.9842 - 35.0670 + 28.9652 + 14.2141 - 19.0327 + 14.9593 - 7.0148 - 12.7517 + 20.9405 0.0000 - 34.2420 - 16.1516 - 15.3074 - 16.0835 + 15.6706 + 13.1919 + 14.7820 - 16.6714 - 6.1340 - 29.1180 - 7.2700 + 3.9648 + 27.5888 - 39.6028 - 37.2740 - 3.8508 + 33.4218 + 10.8636 - 13.2643 - 13.2645 - 13.2655 - 13.2655 - 13.2655 - 13.2655 - 13.2655 -
40 43 44 45	+25.9978 +33.9138 +34.4648 +38.7302	.0012 .9114 .4650 .7281	+25.9995 +33.9126 +34.4649 +38.7292	$\begin{array}{r} -34.9216 \\ + 6.9199 \\ +26.3452 \\ -24.5248 \end{array}$.9212 .9170 .3448 .5266	$\begin{array}{r} -34.9214 \\ + 6.9184 \\ +26.3450 \\ -24.5257 \end{array}$

TABLE V.--(Continued.) CORRECTED COÖRDINATES. PLATE III.

•

Direct. Rev'd. Mean. I 34.5081 .5005 34.5043 2 33.5014 .4986 33.5000 3 32.3816 .3810 32.3813	D rect. Rev'd. Mean. +15.6765 .6747 +15.6756
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	+15.6765 .6747 +15.6756
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

TABLE V.-(Continued.) CORRECTED COÖRDINATES. PLATE IV.

Star.		x			y	
	Direct.	Rev'd.	Mean.	Direct.	Rev'd.	Mean.
I 2 3 4 5 6 7 8 10 11 14 15 16 7 8 10 11 14 15 16 17 18 19 20 22 32 34 25 26 27 28 29 1 32 34 35 37 940	$\begin{array}{c} -34.4912 \\ -33.5065 \\ -32.4083 \\ -32.4083 \\ -30.6656 \\ -21.5824 \\ -17.4077 \\ -14.6985 \\ -10.5690 \\ -9.6874 \\ -8.8342 \\ -0.1788 \\ 0.0000 \\ +0.8868 \\ +2.3130 \\ +3.8581 \\ +3.9180 \\ +4.2016 \\ +6.1697 \\ +7.5392 \\ +8.5584 \\ +9.6428 \\ +10.2291 \\ +10.3236 \\ +10.6022 \\ +10.8461 \\ +11.4492 \\ +12.0096 \\ +13.8710 \\ +16.1957 \\ +18.2316 \\ +19.8083 \\ +25.9806 \end{array}$.4900 .5062 .4072 .6644 .5810 .4090 .6980 .582 .6894 .8320 .1805 .0000 .8872 .3152 .3571 .9201 .2034 .1685 .3571 .2034 .5374 .5374 .5374 .5374 .5374 .5374 .5374 .5375 .4498 .0100 .8778 .0637 .8451 .4498 .0100 .8778 .4577 .2267 .8070 .18857 .9837	$\begin{array}{c} -34.4906\\ -33.5064\\ -32.4077\\ -30.6650\\ -21.5817\\ -17.4084\\ -14.6982\\ -10.5686\\ -9.6884\\ -8.8331\\ -0.1797\\ 0.0000\\ +0.8870\\ +2.3141\\ +3.8576\\ +3.9190\\ +4.2025\\ +6.1690\\ +7.5383\\ +8.5592\\ +9.6429\\ +10.2299\\ +10.3246\\ +10.6030\\ +10.8456\\ +11.4495\\ +12.0098\\ +13.8744\\ +16.1967\\ +18.2292\\ +19.8077\\ +24.1876\\ +25.9822\end{array}$	$\begin{array}{c} +15.7164\\ -3.3860\\ -17.9751\\ -35.0600\\ +28.9692\\ +14.2193\\ -19.0254\\ +14.9581\\ -7.0102\\ -12.7484\\ +20.9386\\ 0.0000\\ -34.2418\\ -16.1528\\ -15.3042\\ +25.8858\\ -16.0850\\ +15.6671\\ +13.1906\\ +14.7780\\ -16.6726\\ -6.1376\\ -29.1198\\ -7.2723\\ +3.9626\\ +27.5812\\ -15.7728\\ -39.6013\\ -3.8561\\ +33.4117\\ -13.2664\\ +10.0364\\ +34.9250\\ \end{array}$.7130 .3897 .9772 .9620 .9688 .2187 .0321 .9598 .0116 .7550 .9374 .0000 .3374 .0000 .3374 .0000 .3344 .1520 .3044 .8814 .0826 .6722 .3044 .1532 .3044 .7756 .6745 .1352 .1210 .2700 .9622 .5812 .7723 .6038 .8526 .4098 .2697 .0376 .9260	+15.7147 - 3.3878 -17.9762 -35.0610 +28.9686 +14.2190 -19.0288 +14.9589 - 7.0109 -12.7492 +20.9380 0.0000 -34.2406 -16.1524 +13.1911 +14.7768 -16.6736 - 6.1364 -29.1204 -7.2711 + 3.9624 +27.5812 -15.7726 - 3.8543 +33.4108 -13.2680 +10.0370 - 34.9255
43 44 45	+33.9056 +34.4653 +38.7196	.9072 .4661 .7170	$+33.9064 \\ +34.4657 \\ +38.7183$	+ 6.9073 + 26.3334 - 24.5324	.9062 .3336 .5328	+ 6.9068 + 26.3335 - 24.5326

TABLE V.-(Continued.) CORRECTED COÖRDINATES. PLATE V.

Star.		x			y	
	Direct.	Rev'd.	Mean.	Direct.	Rev'd.	Mean.
$ \begin{array}{c} \mathbf{I} \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ \mathbf{A} \\ 8 \\ 10 \\ 11 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 23 \\ 23 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 29 \\ 31 \\ 32 \\ 33 \\ 35 \\ 36 \\ 37 \\ 38 \\ 39 \\ 41 \\ 43 \\ \end{array} $	$\begin{array}{c} -34.4817\\ -33.5043\\ -32.4086\\ -30.6694\\ -21.5742\\ -17.4069\\ -14.7014\\ -10.5922\\ -10.5673\\ -9.6920\\ -8.8388\\ -0.1793\\ 0.0000\\ +0.8806\\ +2.3125\\ +3.8524\\ +3.9198\\ +4.1979\\ +4.7178\\ +6.1656\\ +7.5330\\ +8.5558\\ +9.6320\\ +10.2276\\ +10.3185\\ +0.5986\\ +10.8415\\ +11.4500\\ +12.0062\\ +13.8671\\ +15.5207\\ +16.1972\\ +18.2277\\ +19.6808\\ +19.8020\\ +23.4334\\ +24.1835\\ +25.9716\\ +30.0359\\ +33.9009\\ +33.9009\\ \end{array}$.4843 .5043 .4100 .6673 .5714 .4056 .7022 .5887 .6904 .8402 .1816 .0000 .8805 .3090 .8854 .9222 .1962 .7213 .1624 .5340 .5340 .5340 .6332 .2252 .3214 .5340 .6332 .2252 .3214 .5340 .6332 .2252 .3214 .5406 .4474 .0064 .4474 .0064 .8658 .5220 .1980 .2290 .6854 .8021 .4379 .1831 .9742 .0402 .0402 .0407 .0402 .0407 .0402 .0407 .0402 .0407 .0402 .0407 .0402 .0407 .0402 .0407 .0402 .0407 .0402 .0407 .0402 .0407 .0402 .0407	$\begin{array}{c} -34.4^{8}30\\ -33.5043\\ -32.4093\\ -30.6684\\ -21.5728\\ -17.4062\\ -14.7018\\ -10.5908\\ -10.5680\\ -9.6912\\ -8.8395\\ -0.1805\\ -9.6912\\ -8.8395\\ -0.1805\\ -9.6912\\ -8.8395\\ -0.1805\\ +3.8519\\ +3.8519\\ +3.9210\\ +4.1971\\ +4.7196\\ +6.1640\\ +7.5335\\ +8.5574\\ +9.6326\\ +10.2264\\ +10.3199\\ +0.5982\\ +10.8410\\ +11.4487\\ +12.0063\\ +13.86631\\ +15.5214\\ +16.8410\\ +15.5214\\ +16.831\\ +19.8020\\ +23.4356\\ +24.1833\\ +25.9729\\ +30.0381\\ +32.0195\\ +33.9012\end{array}$	$\begin{array}{c} +15.7221\\ -3.3759\\ -17.9669\\ -35.0474\\ +28.9724\\ +14.2230\\ -19.0236\\ -3.7542\\ +14.9603\\ -7.0050\\ -12.7439\\ +20.9396\\ 0.0000\\ -34.2354\\ -16.1506\\ -15.3052\\ +25.8832\\ -16.0844\\ +24.3594\\ +15.6664\\ +13.1890\\ +14.7731\\ -16.6755\\ -6.1370\\ -29.1174\\ -7.2726\\ +3.9608\\ +27.5814\\ -15.7710\\ -39.6008\\ +27.5814\\ -15.7710\\ -39.6008\\ +27.5814\\ -15.7710\\ -39.6008\\ +27.5814\\ -15.7710\\ -39.6008\\ +27.5814\\ -15.7710\\ -39.6008\\ +27.5814\\ -15.7710\\ -39.6008\\ +27.5814\\ -15.7710\\ -39.6008\\ +27.5814\\ -15.7710\\ -39.6008\\ +27.5814\\ -15.7710\\ -39.6008\\ +27.5814\\ -15.7710\\ -39.6008\\ +27.5814\\ -15.7710\\ -39.6008\\ +27.5814\\ -15.7710\\ -34.9286\\ -7.5610\\ -7.6587\\ +6.8994\\ \end{array}$.7231 .3763 .9658 .0472 .9737 .2216 .0206 .7547 .9586 .0060 .7446 .9388 .0060 .7446 .9388 .0060 .7446 .9388 .0060 .2364 .1493 .3557 .8544 .0854 .3554 .6736 .1348 .1180 .2710 .9597 .7727 .6022 .5797 .7727 .6022 .2721 .2721 .2721 .5536 .3408 .9282 .5599 .60340 .9282 .5599 .60340 .9282	$\begin{array}{c} +15.7226\\ -\ 3.3761\\ -17.9664\\ -35.0473\\ +28.9730\\ +14.2223\\ -19.0221\\ -\ 3.7545\\ +14.9595\\ -7.0055\\ -12.7443\\ +20.9392\\ 0.0000\\ -34.2359\\ -16.1500\\ -15.3054\\ +22.5843\\ +24.3574\\ +15.6648\\ +13.1881\\ +14.7738\\ -16.6745\\ -6.1359\\ -29.1177\\ -7.2718\\ +3.9599\\ +27.5806\\ -15.7718\\ -39.6014\\ -37.2726\\ -3.8548\\ +33.4084\\ +10.8564\\ +13.2726\\ -3.8548\\ +33.4084\\ +10.8564\\ -13.2726\\ -3.8548\\ +3.74226\\ -3.8548\\ +3.7226\\ -3.8548\\ +3.7226\\ -3.8548\\ +10.8564\\ -13.2726\\ -3.8548\\ +10.8564\\ -13.2726\\ -3.8548\\ +3.7228\\ -7.5605\\ -3.49284\\ -7.5605\\ -7.6595\\ -7.6595\\ -6.9004\end{array}$
44 45	+34.4624 +38.7094	.4036 .7085	+34.4630 +38.7090	+26.3208 -24.5388	.3246 .5361	-24.5374

TABLE V.--(Continued.) CORRECTED COÖRDINATES. PLATE VII.

Star.		x			y	
	Direct.	Rev'd.	Mean.	Direct.	Rev'd.	Mean.
I 2 3 4 5 6 7 7 8 10 11 14 15 16 17 18 19 20 22 3 23 A 24 25 26 27 28 29 13 2 33 4 35 37 8 940	Direct. -34.4857 -33.5032 -32.4060 -30.6600 -21.5811 -17.4127 -14.6976 -10.5962 -10.5749 -9.6885 -8.8362 -0.1844 0.0000 +0.8857 +2.3126 +3.8562 +3.85506 +9.6418 +10.2268 +10.5278 +10.5974 +10.8416 +11.4424 +12.0110 +13.8756 +15.5298 +16.1969 +16.1969 +19.6751 +19.8014 +23.4306 +24.1790 +25.0807	Rev'd. -4866 -5024 -4011 -6560 -5808 -4011 -6944 -5969 -5718 -6844 -5969 -5718 -6844 -5969 -5718 -6845 -8352 -0000 -8352 -1852 -0000 -8352 -1852 -0000 -8355 -3134 -8556 -9097 -2031 -16438 -2256 -3297 -3134 -5557 -3206 -5320	$\begin{array}{c} \mbox{Mean.} \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\begin{array}{c} \text{Direct.} \\ +15.7100 \\ -3.3848 \\ -17.9734 \\ -35.0517 \\ +28.9670 \\ +14.2171 \\ -19.0253 \\ -3.7603 \\ +14.9556 \\ -7.0098 \\ +12.7488 \\ +20.9374 \\ 0.0000 \\ -34.2371 \\ -16.1488 \\ +25.8812 \\ -16.0818 \\ +25.8812 \\ -16.0818 \\ +25.8812 \\ -16.0818 \\ +25.8812 \\ -16.656 \\ +13.1874 \\ +14.7729 \\ -16.6723 \\ -7.2728 \\ +3.9608 \\ +27.5784 \\ -15.7707 \\ -39.6012 \\ -3.2751 \\ -3.8543 \\ +3.34060 \\ +10.8545 \\ -13.2662 \\ +3.7362 \\ +3.7362 \\ +10.0346 \\ -34.0247 \end{array}$	Rev'd. .7124 .3846 .9738 .0524 .9680 .2192 .0251 .7626 .9570 .09680 .7488 .9392 .0000 .2353 .1500 .3060 .3268 .1500 .09524 .3060 .3060 .3268 .1500 .0524 .3060 .3265 .1583 .2683 .5832 .2683 .5832 .2683 .5852 .2685 .1585 .2685 .1585 .2685 .1585 .2685 .1585 .2685 .1585 .2685 .1585 .2685 .1585 .2685 .1585 .2685 .1585 .2685 .2685 .1585 .2685 .2685 .1585 .2685 .2685 .1585 .2685 .2685 .2685 .2685 .2685 .2685 .2685 .2685 .2685 .2685 .2685 .2776 .2685 .2685 .2685 .2685 .2685 .2685 .2675 .2575	$\begin{array}{c} \text{Mean.} \\ \hline \\ + 15.7112 \\ - 3.3847 \\ - 17.9736 \\ - 35.0520 \\ + 28.9675 \\ + 14.2182 \\ - 19.0252 \\ - 3.7615 \\ + 14.9563 \\ - 7.0097 \\ - 12.7488 \\ + 20.9383 \\ - 0.0000 \\ - 34.2362 \\ - 16.1494 \\ + 25.8822 \\ - 16.0819 \\ + 15.6672 \\ + 13.1880 \\ + 14.7744 \\ - 16.6724 \\ + 25.8822 \\ - 16 0.819 \\ + 15.6672 \\ + 13.1880 \\ + 14.7744 \\ - 16.6724 \\ + 25.8822 \\ - 16 0.819 \\ + 15.6672 \\ - 15.7727 \\ - 15.6772 \\ - 15.7727 \\ - 39.6013 \\ - 37.2732 \\ - 3.8544 \\ + 33.4073 \\ + 10.8554 \\ - 13.2666 \\ + 3.7372 \\ + 10.0348 \\ - 34.9240 \\ - 34.9240 \\ - 34.9240 \\ - 34.9240 \\ - 34.9240 \\ - 34.9240 \\ - 34.9240 \\ - 35.925 \\ - 35.925 \\ - 34.9240 \\ - 34.9240 \\ - 34.9240 \\ - 34.9240 \\ - 35.925 \\ - 35.925 \\ - 34.9240 \\ - 34.9240 \\ - 34.9240 \\ - 34.9240 \\ - 35.925 \\ - 3$
41 42 43 44 45	+30.0339 +32.0097 +33.8966 +34.4516 +38.7120	.0342 .0144 .8960 .4494 .7129	+30.0340 +32.0120 +33.8963 +34.4505 +38.7124	$ \begin{array}{r} -7.5534 \\ -7.6577 \\ +6.9064 \\ +26.3255 \\ -24.5322 \end{array} $.5538 .6576 .9093 .3264 .5326	$ \begin{array}{r} -7.5536 \\ -7.6576 \\ +6.9079 \\ +26.3259 \\ -24.5324 \end{array} $

TABLE V.-(Continued.) CORRECTED COÖRDINATES. PLATE VIII.

Star.		x			y	
	Direct.	Rev'd.	Mean.	Direct.	Rev'd.	Mean
I 2 3 4 5 6 7 8 10 11 14 15 16 17 18 20 22 23 A 24 25 26 27 8 29 31 32 33 34 35 36 37 8 39 40 43 44 5	$\begin{array}{c} -34.4800\\ -33.5050\\ -32.4120\\ -30.6766\\ -21.5667\\ -17.4034\\ -14.7092\\ -10.5617\\ -9.6866\\ -8.8444\\ -0.1718\\ 0.0000\\ +0.8652\\ +2.3019\\ +3.8459\\ +4.1952\\ +6.1756\\ +7.5408\\ +8.5656\\ +9.6386\\ +10.2299\\ +10.3108\\ +10.5979\\ +10.8479\\ +11.4602\\ +13.8562\\ +15.5071\\ +16.1936\\ +18.2386\\ +19.7985\\ +23.4416\\ +24.1886\\ +25.9634\\ +33.9029\\ +34.4765\\ +38.7025\end{array}$.4842 .5025 .4079 .6746 .5659 .4030 .7056 .5659 .6866 .8424 .1718 .0050 .6868 .8424 .1718 .0050 .5429 .5429 .5429 .5429 .5429 .5429 .5429 .5429 .5429 .5429 .5426 .5991 .3114 .2366 .5956 .5968 .5968 .5968 .5968 .5968 .5968 .5968 .5968 .5968 .5968 .5968 .5968 .5968 .5968 .5968 .5969 .2367 .6863 .8004 .4410 .1887 .6863 .8004 .4410 .1887 .5999 .9006 .4747 .7016 .7016 .7016 .7016 .5999 .9006 .4747 .7016 .4747 .7016 .7016 .4747 .7016 .5999 .2007 .5999 .5906 .2367 .5999 .2367 .5999 .2367 .5991 .2367 .5999 .2367 .5991 .2367 .5999 .2367 .5991 .2367 .5999 .2367 .5991 .2367 .5991 .2367 .5991 .2367 .5999 .2367 .5991 .2367 .5991 .2367 .5991 .2367 .5999 .2367 .5991 .2367 .5999 .2367 .5999 .2367 .5999 .2367 .5999 .2367 .5999 .2367 .5999 .2367 .5999 .2367 .5999 .2367 .5999 .2367 .5999 .2367 .5999 .2367 .5999 .2367 .5999 .2367 .5999 .2367 .5999 .2367 .5999 .2367 .5999 .2367 .5999 .2367 .5999 .2367 .5996 .2367 .5996 .2367 .5996 .2367	$\begin{array}{c} -34.4821\\ -33.5037\\ -32.4100\\ -30.6756\\ -21.5663\\ -17.4032\\ -14.7074\\ -10.5614\\ -9.6863\\ -8.8434\\ -0.1718\\ 0.0000\\ +0.8668\\ +2.3033\\ +3.8470\\ +4.1966\\ +6.1758\\ +7.5418\\ +8.5638\\ +9.6378\\ +10.2300\\ +10.3111\\ +10.5985\\ +10.8473\\ +11.4603\\ +12.0048\\ +13.8565\\ +15.5079\\ +16.1950\\ +18.2376\\ +19.6875\\ +19.7994\\ +23.4413\\ +24.1884\\ +25.9637\\ +33.9018\\ +34.4756\\ +38.7018\\ \end{array}$	$\begin{array}{c} +15.7316\\ -3.3680\\ -17.9574\\ -35.0392\\ +28.9755\\ +14.2269\\ -19.0220\\ +14.9613\\ -7.0064\\ -12.7406\\ +20.9388\\ 0.0000\\ -34.2368\\ -16.1486\\ -15.3053\\ -16.1486\\ -15.3053\\ -16.6626\\ +13.1893\\ +14.7698\\ -16.6742\\ -6.1412\\ -29.1168\\ -7.2740\\ +3.9552\\ +27.5766\\ -15.7726\\ -39.6046\\ -37.2773\\ -3.8618\\ +33.4038\\ +10.8493\\ -13.2732\\ +3.7287\\ +10.0280\\ -34.9383\\ +6.8892\\ +26.3112\\ -24.5407\end{array}$	-7334 -3664 -9570 -0384 -9582 -2304 -0194 -0682 -7372 -9407 -0008 -7372 -9407 -0008 -2330 -1504 -3054	$\begin{array}{c} +15.7325\\ -3.3672\\ -17.9572\\ -35.0388\\ +28.9778\\ +14.2286\\ -19.0208\\ +14.9648\\ -7.0041\\ -12.7389\\ +20.9397\\ 0.0000\\ -34.2349\\ +16.1495\\ -15.3054\\ -16.0807\\ +15.6640\\ +13.1898\\ +14.7716\\ -16.6746\\ -6.1382\\ -29.1171\\ -7.2724\\ +3.9581\\ +27.5790\\ -15.7745\\ -39.6043\\ -37.2756\\ -3.8614\\ +33.4040\\ +10.8502\\ -13.2735\\ +3.7289\\ +10.0284\\ -34.9360\\ +6.8899\\ +26.3117\\ -24.5490\end{array}$

TABLE V.-(Concluded.) CORRECTED COÖRDINATES. PLATE IX.

Method of Reduction.

The measured coördinates having been cleared of instrumental errors, it remains to convert them into right ascensions and declinations. For this purpose the following constants must be known for each plate:

1°. The right ascension of the centre of the plate, in this case the central star 15.

 2° . The declination of the same star.

3°. The scale-value, or the number of seconds corresponding to one space on the scale.

 4° . The orientation correction, or the angle through which we must rotate the coördinate axes in order that they may point respectively in the directions of a parallel of declination and a circle of declination through the central star.

The first plan that suggested itself for determining these constants was to employ the two existing heliometer researches upon the group. In 1856 to 1858 Professor Winnecke of Bonn measured the position angles and distances of forty-four stars from the central star 15; and in 1889 to 1892 Professor Schur of Göttingen triangulated thirty-eight stars and derived the places of seven more by measuring the position angles and distances from stars in the triangulation. The results of both researches were published in one volume by Professor Schur, part IV of the "Astronomische Mittheilungen von der K. Sternwarte zu Göttingen." The stars whose positions are there given include almost all those appearing on the photographs, and consequently very accurate values of the four constants could be obtained by comparing the measured coördinates of a large number of stars with their heliometer places. Another plan is to determine the constants by comparison with meridian observations. While this is not as accurate as the preceding, it has the advantage of being independent of the heliometer results, thus rendering a comparison with the latter more instructive.

The course that I have actually pursued is this: the constants were first determined for each plate separately by comparing the coördinates of some of the stars with meridian observations. For a star which appears on all the plates we have thus eight determinations of its right ascension, and eight of its declination, and a catalogue of the group may now be formed by taking the means. Finally a least square solution was made to determine how much the constants would have to be changed on the average, so as to secure the best possible agreement with the heliometer places. It is evident that if we now apply to our catalogue positions the corrections which result from these average changes in the constants we shall obtain the same results as though we had used the heliometer places to determine the constants for the separate plates, and had then taken the means.

The meridian observations used are those quoted by Professor Schur in the work mentioned above; they were used by him to help fix the place of his triangulation in the sky. Five stars were observed, the central star and four others distributed symmetrically over the plate; they are admirably fitted for our purpose, being at sufficiently large distances from the central star to insure accurate determinations of the scale-value and orientation, and yet not so distant as to have their photographic images much distorted. Their magnitudes are such that they appear on all of the plates with good images. The stars were observed both at Berlin and Göttingen;* the positions obtained at the former observatory and reduced to the A. G. catalogue system are as follows:

Star.	Epoch.	Equinox of 1890.0.
4	1890.26	$8^{h}31^{m}28.^{s}444, +19^{\circ}39'00''.65$
5	.51	32 02. 359 20 35 28 .43
15	.26	33 23. 463 20 09 55 .38
40	.51	35 00. 573 19 39 04 .35
44	.26	35 33. 417 20 33 03 .28

Each star was observed four times, and the probable error of a single observation is given as

 ± 0.8012 in right ascension, ± 0.125 in declination.

At Göttingen each star was observed six times with these results:

* "Astronomische Mittheilungen von der K. Sternwarte zu Göttingen," Part IV, pages 139 et seq.

Star.	Epoch.	Equinox of 1890.0.
4	1891.52	8 ^h 31 ^m 28.425, +19°38′59″.83
5	•37	32 02.388 20 35 27 .75
15	•55	33 23.462 20 09 55 .52
40	.89	35 00.607 19 39 04 .03
44	.89	35 33.447 20 33 03 .40

Giving these observations the weight $\frac{1}{3}$, and those at Berlin the weight unity, as was done by Professor Schur, we get finally :

Star.	Epoch.	Equinox of 1890 0.
4	1890.58	8 ^h 31 ^m 28.440, +19 39'00".45
5	.72	32 02.366 20 35 28 .26
15	.58	33 23.463 20 09 55 .42
40	.86	35 00.582 19 39 04 .27
44	.67	35 33.425 20 33 03 .31

As the epochs of these observations are from thirteen to twenty years later than the dates of our plates, it is necessary to apply proper motions, for which the following values have been adopted:

4	0. ^s 0054	+01.007
5	-0.0005	+0 .038
15	-0.0049	+0 .017
40	0. 0040	110. 0+
44	0. 0044	+0 .015

These are the values given by Professor Schur in his catalogue of the group, but they are not derived directly from a comparison of his places with those of Winnecke. Systematic corrections have been added to make the proper motion of the group as a whole conform with observations by Bradley and by Tobias Mayer; these corrections are:

-0.50003 +0''.039.

The necessity for such a large correction in declination is accounted for by Professor Schur, by assuming that either in the Bonn or in the Göttingen observations, or perhaps in both, the declination of the group as a whole was incorrectly determined; we shall have occasion to refer to this circumstance later.

The plates were taken at practically only two dates, 1870.3 and 1877.3; applying the corresponding proper motions to the meridian observations and reducing them to the equinox of 1875.0, we get:

236

For Plates I, II, III and IV,

	Δa	\cdot $\Delta\delta$
4	-1723".34	1856″.74
5	-1220 .23	+1531 .02
15	0	0
40	+1459 .38	
44	+1948 .13	+1390 .16
	a ₀	
	128°07′55″.26	+20°13′01″.26

For Plates V, VII, VIII and IX,

15

15

	Дa	10 10
4		1856″.81
5	—1219.75	+1531 .17
15	0	0
40	+1459 .48	—1849.40
44	+1948.19	+1390 .15
	a ₀	δ0
I	28°07'51″.75	$+20^{\circ}13'01''.38$

 Δa and $\Delta \delta$ are obtained by subtracting the right ascension and declination of Star 15 from those of the five comparison stars.

The numerical work in the problem before us, namely, to determine the constants of the plates, will be greatly decreased by first assuming an approximate scale-value and then determining how much this is in error. Such an approximate value is furnished by the reduction of Rutherfurd's photographs of the Pleiades where it was found that

1 millimetre = 52.%87

Let us suppose that this scale-value has been applied to the measured coördinates x and y of each of the comparison stars, giving X and Y; then the quantities $X \sec \delta_0$ and Y will be nearly equal to the corresponding Δa and $\Delta \delta$ respectively. The causes of difference are the following:

a. Transformation Corrections (see below), Refraction, Precession, etc.

b. Orientation, use of incorrect scale-value, etc.

c. Errors of observation, both in the measured coördinates and in the meridian places.

Let us first consider the causes of difference under a; we shall then determine the orientation, true scale-value etc., by comparing the corrected coördinates with the corresponding values of Δa

ANNALS N. Y. ACAD. SCI., X, May, 1898-15.

and $\Delta\delta$, eliminating the errors of observation as far as possible by means of a least-square solution.

I. TRANSFORMATION CORRECTIONS.

An astronomical photograph may be regarded as a central projection of a portion of the celestial sphere upon a tangent plane. The point on the plate which corresponds to the point of tangency is the foot of the perpendicular let fall from the optical centre of the object glass upon the plane of the plate. The rigorous relations between the rectilinear coördinates referred to this point as origin, and the right ascension and declination of a star, were given in simple form by Professor Turner in Vol. XVI, of "Observatory," page 374. Previous to this, however, Ball and Rambaut gave these relations in the form of series in their paper "On the Relative Positions of 223 stars in χ Persei," Transactions of the Royal Irish Academy, Vol. XXX, page 247. In our notation these formulas would be

$$\begin{aligned} \Delta a - X \sec \delta_0 &= (X \sec \delta_0) \ Y \tan \delta_0 - \frac{1}{3} \ (X \sec \delta_0)^3 + (X \sec \delta_0) \ Y \tan^2 \delta_0 \\ \Delta \delta - Y &= -\frac{1}{4} \ (X \sec \delta_0)^2 \sin 2\delta_0 - \frac{1}{3} \ Y^3 - \frac{1}{2} \ (X \sec \delta_0)^2 \ Y \end{aligned}$$

The elegance of these formulas lies in the fact that the coefficients of the powers and products of X and Y, are functions of δ_0 only, and are therefore constant for a plate, or indeed for an entire zone. For most plates these series are sufficiently accurate, but when the declination or the measured coördinates are large they fail; in such cases we do not need to resort to the rigorous formulas but we have [merely to extend the series to higher terms, as was done by Professor Jacoby in a review of a paper by Professor Donner, in the Vierteljahrschrift for 1895, page 114. In the same place, formulas are also given in which Δa and $\Delta \delta$ appear in the second members, instead of X and Y as above. Omitting terms of higher degree than the third, which is permissible for the Præsepe plates, these formulas may be written

$$\begin{aligned} \Delta a &- X \sec \delta_0 = \Delta a \cdot \Delta \delta \cdot \tan \delta_0 - \frac{1}{3} \Delta a^3 \left(\mathbf{I} - \frac{3}{2} \sin^2 \delta_0 \right) \\ \Delta \delta - Y &= -\frac{1}{4} \Delta a^2 \cdot \sin 2 \delta_0 - \frac{1}{2} \Delta a^2 \cdot \Delta \delta \cdot \cos 2 \delta_0 - \frac{1}{3} \Delta \delta^3 \end{aligned}$$

The use of these formulas presupposes a knowledge of the approximate values of Δa and $\Delta \delta$ for each star. They possess two points of advantage over the inverse forms: first, there is one term less in the expression for $\Delta a - X \sec \delta_0$; and second, they give slightly more accurate values for the corrections as they do

238

not involve errors of orientation, scale-value, etc., such as would be incurred through the use of the measured X and Y in the second members. I have therefore used the latter expressions for computing the transformation corrections given in Table VI, employing the heliometer values of Δa and $\Delta \delta$ given by Professor Schur. It will be remembered that Rutherfurd was careful to make the central star 15 coincide with the foot of the perpendicular let fall from the optical centre of the object glass upon the plane of the plate. As our measured coördinates are referred to this star as origin, Table VI applies equally to all the plates.

Star.	$\Delta a - X \sec \delta_0$	$\Delta \delta - Y$	Star.	$\Delta a - X \sec \delta_0$	$\Delta \delta - Y$
Star. 1 2 3 4 5 6 7 7 A 8 10 11 14 15 16 17 18 19 20	$\begin{array}{c} \underline{Ja-X \sec \delta_0} \\ \hline \\ -2.83 \\ +0.66 \\ +3.15 \\ +5.75 \\ -3.33 \\ -1.31 \\ +1.49 \\ +0.21 \\ -0.84 \\ +0.36 \\ +0.60 \\ -0.02 \\ 0.00 \\ -0.16 \\ -0.20 \\ -0.31 \\ +0.54 \\ -0.36 \end{array}$	$\begin{array}{c} -3.01 \\ -2.80 \\ -2.23 \\ -2.23 \\ -1.22 \\ -0.77 \\ -0.52 \\ -0.27 \\ -0.29 \\ -0.23 \\ -0.01 \\ 0.00 \\ +0.05 \\ -0.01 \\ -0.03 \\ -0.06 \\ -0.04 \end{array}$	Star. 24 25 26 27 28 29 31 32 33 34 355 36 37 38 39 41 42	$\begin{array}{c} \Delta a - X \sec \delta_0 \\ \hline \\ -0.85 \\ -0.34 \\ -1.60 \\ -0.41 \\ +0.23 \\ +1.68 \\ -1.01 \\ -2.92 \\ -3.08 \\ -0.34 \\ +3.24 \\ +1.13 \\ -1.41 \\ +0.45 \\ +1.28 \\ -4.84 \\ -1.24 \\ -1.35 \end{array}$	$\begin{array}{c} 2\delta - Y \\ \hline \\ -0.22 \\ -0.26 \\ -0.23 \\ -0.28 \\ -0.29 \\ -0.36 \\ -0.35 \\ -0.39 \\ -0.53 \\ -0.53 \\ -0.65 \\ -0.89 \\ -0.97 \\ -1.38 \\ -1.47 \\ -1.59 \\ -2.24 \\ -2.54 \end{array}$
22 23 23A	+0.51 +0.53 +0.67	0.10 0.15 0.18	43 44 45	+1.19 +479 5.12	2.89 3.05 3.66

TABLE VI.-TRANSFORMATION CORRECTIONS.

II. CORRECTIONS FOR REFRACTION.

Formulas for clearing rectangular coördinates of the effects of refraction were first published by Dr. Rambaut in the "Astronomische Nachrichten," No. 3125. Professor Turner has shown how these may be much simplified by employing the coördinates of the zenith as projected upon the plate.* His formulas, however, will not serve in the transformation of rectangular coördinates into right ascensions and declinations unless we apply an

* Monthly Notices, R.A.S., November, 1893.

extra correction for orientation. (See note at the end of this paper.) The formulas that I have preferred to use are those given by Professor Jacoby; * while these are not quite so simple as those of Professor Turner, they take into account the orientation correction mentioned. Let

 $\varphi =$ the latitude, $+40^{\circ}44'$ in this case.

 $\theta - a_0 =$ the hour angle of the centre of the plate, from Table I. $\delta_0 =$ the declination of the centre, $+ 20^{\circ} I 3'$

 β = the constant of refraction, computed in the usual way and then multiplied by $\frac{6}{65}$ to allow for the increased refrangibility of photographic rays.[†]

Now let us compute:

$$\begin{array}{l} \tan N &= \cos \left(\theta - a_0 \right) \cot \varphi \\ G &= \cot \left(\delta_0 + N \right) \\ H &= \tan \left(\theta - a_0 \right) \sin N \operatorname{cosec} \left(\delta_0 + N \right) \\ M_x = \beta \left(1 + H^2 \right) \\ N_x = \beta \left(G - \tan \delta_0 \right) H \sec \delta_0 \\ M_y = \beta \left(G + \tan \delta_0 \right) H \cos \delta_0 \\ N_y = \beta \left(1 + G^2 \right) \end{array}$$

Then the corrections for refraction take the form :

Correction for
$$X \sec \delta_0 = M_x \cdot X \sec \delta_0 + N_x \cdot Y$$

" " $Y = M_y \cdot X \operatorname{sc} \delta_0 + N_y \cdot Y$

The coefficients of $X \sec \delta_0$ and of Y in the second members are constant for an entire plate. We may then construct Table VII, in which the number of the plate is the argument.

Plate.	M_x	N_x	M_y	N_y
I. 111. 111. 111. 11. 11. V. VII. VIII. 1X.	0.000356 0.000423 0.000404 0.000523 0.000357 0.000423 0.000491 0.000377	0.000017 0.000042 0.000031 0.000086 0.000015 0.000015 0.000042 0.000074 0.000023	0.000114 0.000174 0.000253 0.000255 0.000110 0.000174 0.000233 0.000131	0.000349 0.000375 0.000373 0.000424 0.000354 0.000355 0.000404 0.000360

TABLE VII.-REFRACTION COEFFICIENTS.

All the coefficients are positive.

* Astronomical Journal, No. 387.

† Bulletin du Comité Permanent, I, 464; and Scheiner and Rambaut, Astron. Nach. 3255.
III. PRECESSION AND NUTATION.

These merely change the position of the axes to which the group is referred; it follows therefore that their *differential* effect upon X and Y is simply to rotate the coördinate axes through a small angle. When we determine the constants of a plate by comparing the measures of some of the stars with their true positions, it is evident that we need apply no corrections for precession and nutation to the measures of the comparison stars. Thus if we employ the places of the latter as referred to the equinox of 1875.0, then the value for the orientation which we shall get will include the necessary correction for precession and nutation. On the other hand, if we correct the places of the comparison stars for precession and nutation, then it would not only be necessary to apply the resulting orientation correction to the *other* stars, but we should also have to apply to them additional corrections for precession and nutation.

IV. ABERRATION.

It was shown by Bessel* that aberration changes the position angles around a point equally, and changes the distances by a constant factor, no matter in what direction the distance is measured. Consequently, as in the case of precession and nutation, we need apply no correction for aberration to the measures of the comparison stars, since the resulting orientation and scale-value corrections will be appropriately modified to include its whole effect.

Thus we see that the coördinates of our five comparison stars need be corrected only for transformation and refraction. We must bear in mind, however, that the orientation and the scalevalue which we shall then obtain are not the true values of these constants: the former must be corrected for precession, nutation and aberration, and the latter simply for aberration.

We are now ready to find the constants of the plates. Let

- p = the correction to the scale-value, so that the true scale-value is <math>52''.87 (1 + p).
- r = the orientation correction, or the small angle through which the axes are to be rotated in the direction of decreasing position angles.

* "Astronomische Untersuchungen," Vol. I, page 207.

- k = the number of seconds of arc of a great circle through which the axes are to be translated in the direction of decreasing right ascensions.
- c = the number of seconds of arc of a great circle through which the axes are to be translated in the direction of decreasing declinations.

The corrections to the rectangular coördinates arising from p are then:

For
$$X$$
, $+ p \cdot X$
" Y , $+ p \cdot Y$

On account of the orientation corrections, remembering that r is small, we have the corrections :

For
$$X$$
, $+r \cdot Y$
" Y , $-r \cdot X$

Finally, k and c give the corrections :

For X,
$$+ k$$

" Y, $+ c$

Combining all these corrections, we have:

For X, $+ p \cdot X + r \cdot Y + k$ " Y, $+ p \cdot Y - r \cdot X + c$

Let us now compute n_x and n_y for each comparison star, from the following equations:

- $n_x \sec \delta_0 = X \sec \delta_0 plus$ corrections for transformation and refraction, minus Δa .
- $n_y = Y plus$ corrections for transformation and refraction, minus $\Delta \delta$.

Then for each comparison star we have two equations of the following form from which to determine p, r, k and c:

$$pX + rY + k + n_x = 0$$
$$pY - rX + c + n_y = 0$$

Owing to the way in which the coefficients of the unknowns are repeated in these equations we do not need to make the least square solution in the usual manner, but as Professor Jacoby has pointed out,* we may find the unknowns very simply. Thus, let $\nu =$ the number of comparison stars, and let us denote by square brackets the sum of ν quantities.

* Monthly Notices of the Royal Astronomical Society, May, 1896.

Put

$$A = [XX] + [YY] - \frac{I}{v} ([X]^{2} + [Y]^{2})$$

$$C = [X \cdot n_{x}] + [Y \cdot n_{y}] - \frac{I}{v} ([X][n_{x}] + [Y][n_{y}])$$

$$E = [Y \cdot n_{x}] - [X \cdot n_{y}] - \frac{I}{v} ([Y][n_{x}] - [X][n_{y}])$$

n

Then we have:

$$p = -\frac{1}{A}, \text{ with the weight } A.$$

$$r = -\frac{E}{A}, \quad " \quad " \quad A.$$

$$k = -\frac{1}{v}([X]p + [Y]r + [n_x]), \text{ with the weight, } v - \frac{[X]^2 + [Y]^2}{[XX] + [YY]}$$

$$r = -\frac{1}{v}([Y]p - [X]r + [n_y]), \quad " \quad " \quad v - \frac{[X]^2 + [Y]^2}{[XX] + [YY]}$$

The following will be found a convenient check on the computations: the sum of the residuals for the right ascension equations is equal to zero, and similarly for the declination equations.*

The above method of solution is rendered still simpler in the present case, as we are going to use the same comparison stars for all the plates. Hence all the terms in the expressions for A, C and E are constant except those which involve n_x or n_y . Thus, selecting the coördinates of the comparison stars from any plate in Table V, and multiplying them by 52.87 we have, with sufficient accuracy:

	X	\boldsymbol{Y}
4		
5	. —1140	+1530
15	О	0
40	+1370	1850
44	+1820	+1390

Consequently, for all the plates,

* This is indeed a general check for any set of observation equations in which one of the unknowns enters with a constant coefficient; if this unknown is missing from some of the equations, then the sum of the residuals for those equations in which it does appear is equal to zero. The theorem may be easily modified to include the case of unequal weights. 244

$$A = 20,080,000$$

$$C = [X \cdot n_x] + [Y \cdot n_y] - 86 [n_x] + 156 [n_y]$$

$$E = [Y \cdot n_x] - [X \cdot n_y] + 156 [n_x] - 86 [n_y]$$

$$p = -\frac{C}{20,080,000}; \text{ weight, } 20,080,000$$

$$r = -\frac{E}{20,080,000}; \text{ '' } 20,080,000$$

$$k = -86 p + 156 r - 0.20 [n_x]; \text{ weight, } 4.96$$

$$c = +156 p + 86 r - 0.20 [n_y]; \text{ '' } 4.96$$

It now remains to show how the right ascensions and declinations of all the stars may be computed. The constants of the plate give rise to the corrections:

For
$$X \sec \delta_0$$
, $+ p \cdot X \sec \delta_0 + r \sec \delta_0 \cdot Y + k \sec \delta_0$
" Y , $+ p \cdot Y$ $- r \cdot X$ $+ c$

The corrections for refraction are:

We have still to add corrections for transformation, which vary from star to star, but are the same for different plates. Now let us define a_1 and δ_1 as the *projected* right ascension and declination respectively of a star, the true right ascension and declination being given thus:

 $a = a_1 plus$ the correction for transformation.

 $\delta = \delta$, plus the correction for transformation.

Then collecting the corrections given above :

$$a_1 = (\mathbf{I} + p + M_x) X \sec \delta_0 + (N_x + r \sec \delta_0) Y + (a_0 + k \sec \delta_0)$$

$$\delta_1 = (\mathbf{I} + p + N_y) Y + (M_y - r \cos \delta_0) X \sec \delta_0 + (\delta_0 + c)$$

Hence, to get the projected right ascension and declination of any star, the constants of the plate having been determined, we need only compute the six coefficients in the parentheses and perform the simple operations indicated. These coefficients, it is needless to remark, are constant for an entire plate.

As an example of the above methods I have set down the details of the computations for the constants of Plate VIII.

of the Rutherfurd Photographs.

	Right Ascensions.					
Star	4	5	15	40	44	
x: (Table V),	—30.6580	-21.5809	0	+25.9804	+34.4505	
$X \sec \delta_0 = 52.87 \sec \delta_0 \cdot x$	—I727.3I	-1215.89	,,, 0	+1463.77	+1940.98	
$M_x \cdot X \sec \delta_0$: (Tab. VII).	0.85	60	0	+ 0.72	+ 0.95	
$N_x \cdot Y$: (See below).	- 0.14	+ .12	0	· 0.14	+ 0.11	
$\Delta a - X \sec \delta_{\alpha}$: (Tab. VI).	+ 5.75	- 3.33	0	- 4.84	+ 1.70	
$- \exists a : (Page 237),$	+1723.40	+1219.75	0	-1459.48	-1948.19	
$n_x \sec \delta_0$:	+ 0.85	+ 0.05	0	+ 0.03	— 1.36	
n_x :	+ 0.80	+ 0.05	0	+ 0.03	1.28	
		Dec	linati	ons.		
Star.	4	5	15	40	44	
y: (Table V),	-35.0520	+28.9675	0	-34.9240	+26.3259	
$Y = 52.87 \ y$:	-1853.20	+1531.51	ő		+1301.85	
$N_{y} \cdot Y$: (Table VII),	- 0.75	+ 0.62	0	- 0.75	+ 0.56	
$N_x \cdot X \sec \delta_0$: (See above),	— 0.40	- 0.28	0	+ 0.34	+ 0.46	
$\Delta \delta = Y$: (Table VI),	- 2.23	— I.22	0	- 1.59	- 3.05	
$-\Delta\delta$: (Page 237),	+1856.81	-1531.17	0	+1849.40	-1390.15	
n_y :	+ 0.23	— 0 . 54	0	+ 0.97	- 0.33	
$[X \cdot n_x] = -36$	$550 [Y \cdot n_s]$	= -3240	$[n_x]$] = -0''.40		
$[X \cdot n_y] = + q$	80 [$Y \cdot n_s$]=-3510	$[n_y]$] = + 0''.33		
p = -	- 0.000352	±0	0.000	030		
r = -	- 0.000211	±0	0.000	030		
k = -	- o.″o8	± 0	0.″06	I		
c = -	- o."ot	+-(0.//06	T		

Having found the constants, we may now proceed to get the right ascension and declination of each star on the plate. For this purpose we compute the coefficients :

 For Right Ascensions.
 For Declinations.

 52.87 (1 + p + M_x) sec $\delta_0 = 56.3887$ 52.87 (1 + p + N_y) = 52.9100

 $N_x + r \sec \delta_0 = \pm 0.000299$ $M_y - r \cos \delta_0 = \pm 0.00035$
 $a_0 + k \sec \delta_0 = 128^\circ 07'54''.84$ $\delta_0 + c = 20^\circ 13'01''.39$

A slight change has been made in the two coefficients in the first line, our formulas requiring $(1+p+M_x)$ and $(1+p+N_y)$. This change, however, merely amounts to combining two multiplications into one; thus, instead of first computing X sec δ_0 and then multiplying this by $(1+p+M_x)$, we may apply the factor 52.87 $(1+p+M_x)$ sec δ_0 to x directly. The formulas require that we

know X sec δ_0 in computing the correction to the declination, but for this purpose we may use $52.87(1 + p + M_x) \sec \delta_0 \cdot x$, the quantity which we have just computed and which is practically equal to X sec δ_0 for this purpose. Similarly in the declination we may compute at once $52.87(1 + p + N_y)$.

Employing these coefficients for Star 7 we have:

Right Ascens	sion:	Declination:			
x:(Tab. V),	- 14.6960	y:(Tab. V),	— 19.0252		
$52.87(1+p+M_x) \sec \delta_0$	x:- 828.769	$52.87(1+y+N_y)\cdot y:$	— 1006″.62		
	=-13'48.69		= -16'46".62		
$(N_x + r \sec \delta_0) \cdot Y$:	- 0.30	$(M_y - r \sec \delta_0) \cdot X \sec \delta_0$	$\delta_0 :- 0.03$		
$a_0 + k \sec \delta_0$:	128°07 54 .84 ·	$\delta_0 + c$:	+20°13 01 .39		
$a_1 =$	127°54′05″.85	$\delta_1 =$	+19°56′14″.74		

These give the projected position; the true right ascension and declination are found by adding the transformation corrections from Table VI, giving:

 $a = 127^{\circ}54'7''.34$, $\delta = +19^{\circ}56'14''.22$,

which are corrected for refraction, precession, nutation and aberration, and are referred to the mean equinox of 1875.0.

V. Results.

Least-square solutions entirely similar to that given in detail in the last section lead to the following values of p, r, etc., for the various plates :

Plate.	p	r	Probable Error of p or r .	k	c	Probable Error of k or c.
I. II. IV. V. VII. VII. IX.	$\begin{array}{r} +0.000100 \\ + 125 \\ + 125 \\ + 209 \\ + 261 \\ + 342 \\ + 35^2 \\ + 365 \end{array}$	$ \begin{array}{r} +0.001054 \\ + & 844 \\ + & 409 \\ + & 1435 \\ + & 172 \\ - & 35 \\ + & 2111 \\ - & 326 \end{array} $	$\begin{array}{c} \pm 0.000037 \\ \pm 0.00037 $	$ \begin{array}{c} $	$ \begin{array}{c} " \\ 0.00 \\ -0.15 \\ -0.06 \\ -0.03 \\ +0.01 \\ -0.04 \\ +0.01 \\ -0.01 \\ \end{array} $	$\begin{array}{c} "\\ \pm 0.075\\ \pm 0.092\\ \pm 0.066\\ \pm 0.082\\ \pm 0.044\\ \pm 0.049\\ \pm 0.061\\ \pm 0.048\end{array}$

CONSTANTS OF THE PLATES.

The average probable error of p or r is

± 0.000032

which corresponds to an uncertainty of about o''.06 in the coördinates of the outlying stars. The great diversity in the values of r is due in small part to corrections for precession, nutation and aberration, but chiefly to the accidental position in which the plate was inserted in the measuring machine.

The following are the residuals for the five comparison stars, used in computing the values of p, r, k and c given above.

Residuals from the Right Ascension Equations :

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Plate.	Star 4.	Star 5.	Star 15.	Star 40.	Star 44.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	I	0,00	+0.03	0'01	+0,07	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	II	24	+ .31	18	+ .42	— .3I
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	III	14	+ .20	23	+ .28	— .1I
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	IV	— .19	+.13	.00	+.39	33
VII 07 $+.09$ $+.02$ $+.14$ 61 VIII 08 $+.05$ $+.08$ $+.21$ 61 IX $+.10$ 09 06 $+.12$ 61 Means, 08 $+.11$ 06 $+.24$ 61	v	10. —	+ .13	.06 —	+ .25	— .31
VIII 08 $+.05$ $+.08$ $+.21$ 6 IX $+.10$ 09 06 $+.12$ 6 Means, 08 $+.11$ 06 $+.24$ 6	VII	07	÷ .09	+.02	+ .14	18
IX $+.10$ 09 06 $+.12$ $$ Means, 08 $+.11$ 06 $+.24$ $$	VIII	08	+ .05	+ .08	+ .21	26
Means, 08 $+.11$ 06 $+.24$ $$	IX	+ .10	09	— .o6	+ .12	08
	Means,	08	+ .11	06	+ .24	21

247

Plate.	Star 4.	Star 5.	Star 15.	Star 40.	Star 44.
I	-0.13	+0.20	+0.01	+0'10	
II	03	+ .20	— .15	11. +	13
III	— .07	+ .13	— .06	+ .16	— .16
IV	00	+ .23	04	+ .07	<u> </u>
V	.09	+ .34	.00	10. —	24
VII	10	+ .22	04	+ .o8	<u> </u>
VIII	o8	+ .25	10. +	+ .04	<u> </u>
IX	— .02	+ .23	IO.	+ .03	— .23
Means,	06	+ .22	03	+ .07	20

Residuals from the Declination Equations:

Employing the constants in the manner described at length in the last section, we obtain the quantities a_1 and δ_1 which have been tabulated in the following pages. It will be remembered that α_1 and δ_1 are the projected right ascension and declination of a star respectively; the transformation correction being the same for all the plates, may just as well be applied to the means; and it is evident that this procedure does not affect in any way the comparison of the right ascensions or declinations of a star as derived from different plates. The columns headed "At Epoch of Plate" give the coördinates uncorrected for proper motion. The calculation of the latter is very simple in this case as the plates were taken at practically only two dates, 1870.3 and 1877.3; hence the annual proper motion is obtained by subtracting the mean of the places on plates of the earlier date from the mean for the later date, and dividing the difference by 7. The columns marked "P. M." give the correction for proper motion necessary to reduce the place of the star to the epoch 1875.0.

Probable errors are given for the right ascension and the declination of each star, and also for the proper motions; they were calculated thus:

Let m = the number of plates of date 1870.3 on which the star was measured.

n = the number of date 1877.3.

[vv] = the sum of the squares of the residuals obtained by subtracting the mean from the separate observations reduced to the epoch 1875.0.

Then the probable error of a quantity having the weight unity is :

of the Rutherfurd Photographs. 249

$$\pm 0.6745 \sqrt{\frac{[vv]}{m+n-2}}$$

The weight of a right ascension or a declination at the epoch 1875.0 is

$$\frac{49mn}{22.1\ m+5.3\ n}$$

For a proper motion the weight is

 $\frac{49mn}{m+n}$

Most of the stars appear on all eight plates; for such we have simply,

Probable error of a_1 or of $\delta_1 = \pm 0.103 \sqrt{[vv]}$ "" of proper motion = $\pm 0.028 \sqrt{[vv]}$

Two of the stars were observed only on plates taken in 1877, and consequently it was not possible to reduce them to the epoch 1875.0 by using proper motions determined from the plates themselves, as has been done for all the other stars. The proper motions used for these two stars are those given by Professor Schur on page 298 of his memoir, and are as follows :

Star.	P. M. in Right Ascension.	P. M. in Declination.
41	0".042	+0″.012
42	0.066	+0.036

These were used for an interval of only 2.3 years.

	Right Ascension :			Declination :		
Plate.	' At Epoch of Plate.	P. M.	At Epoch 1875.0.	At Epoch of Plate.	Р. М.	At Epoch 1875.0.
I III IV V VII VIII IX	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{r} -0^{\prime\prime}.43 \\ - & .43 \\ - & .43 \\ - & .43 \\ + & .21 \\ + & .21 \\ + & .21 \\ + & .21 \end{array} $	30 ¹¹ .82 .37 .51 .73 .67 .68 .66 .43	20°26′52′′.60 .47 .52 .64 .84 .79 .60 .90	$\begin{array}{c} +0^{\prime\prime}.15 \\ + .15 \\ + .15 \\ + .15 \\07 \\07 \\07 \\07 \end{array}$	52 ¹¹ .75 .62 .67 .79 .77 .72 .53 .83
Mean, 127°35′3 Probable Error,		ј′зо′′.бі ±.041	Mean, $20^{\circ}26'52''.7$ Probable Error, $\pm .0$			
Proper Motion,0.091 ±0.011			Proper Motion, +0.032 ±0.007			

STAR I.

STAR 2.

	Right Ascension :			Declination :		
Plate.	At Epoch of Plate.	P. M.	At Epoch 1875.0.	At Epoch of Piate.	Р. М.	At Epoch 1875.0.
I III IV V VII VIII IX	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{r} -0^{\prime\prime}.31 \\ -31 \\ -31 \\ -31 \\ +15 \\ +15 \\ +15 \\ +15 \\ +15 \\ +15 \\ \end{array} $	25 ¹¹ .86 .90 .72 .84 .89 .80 .75 .86	20°10′02′′.04 .10 .06 .14 .26 .32 .24 .40	$+0^{\prime\prime}.15$ + .15 + .14 + .14 07 07 07 07	2 ¹¹ .19 .25 .20 .28 .19 .25 .17 .33
Mean, 127°36⁄ Probable Error, Proper Motion, —0.066		0 ⁷ 25 ⁷⁷ .83 土.018 6 土0.005	Mean, Probable Proper Motio	20°10 Error, n, +0.031	′02 ^{//} .23 ±.015 I ±0.004	

	Right Ascension :			Declination :			
Plate.	At Epoch of Plate.	P. M.	At Epoch 1875.0.	At Epoch of Plate.	P. M.	At Epoch 1875.0.	
I III IV V VII VIII IX	127°37′28′′.20 27.95 27.98 27.53 27.39 27.39 27.36 27.62	$\begin{array}{r} -0^{\prime\prime}.38 \\ - & .38 \\ - & .38 \\ + & .19 \\ + & .19 \\ + & .19 \\ + & .19 \end{array}$	27 ¹¹ .82 .57 .60 .72 .58 .55 .81	19°57′10″.51 .32 .42 .50 .39 .34 .49	10. ¹⁰ + 10. + 10. + 00. 00. 10	10 ^{**} .52 .33 .43 .50 .39 .34 .48	
Mean, Probable Error, 127°37′27′′.66 Proper Motion, —0.081 ±0.009			Mean, Probabl Proper Motio	19°57 e Error, m, +0.00	′10′′.43 ±.021 2 ±0.006		

STAR 3.

|--|

.

	Right .	Ascension:		Declination :		
Plate.	At Epoch of Plate.	Р. М.	At Epoch 1875.0.	At Epoch of Plate.	Р. М.	At Epoch 1875.0.
I III IV V VII VIII IX	$\begin{array}{r} 127^{\circ}39'06''.16\\ 5.92\\ 6.04\\ 5.97\\ 5.60\\ 5.54\\ 5.52\\ 5.71\end{array}$	$ \begin{array}{c} -0''.29 \\29 \\29 \\29 \\ + .14 \\ + .14 \\ + .14 \\ + .14 \end{array} $	5 ^{11.87} .63 .75 .68 .74 .68 .66 .85	19°42′06′′.67 .72 .68 .74 .66 .70 .73 .77	10. ¹⁰ + 10. + 10. + 10. + 10. + 00. 00.	6 ¹¹ .68 .73 .69 .75 .66 .70 .73 .76
Mean, 127°39′05′′ Probable Error, ±		′ 05″.73 ±.024	Mean, Probabl	19°42 e Error,	/06//.71 土.010	
Proper Motion,		-0.061 ±0.007		Proper Motion, $+0.002 \pm 0.003$		

	Right Ascension :			Declination :			
Plate.	At Epoch of Plate.	Р. М.	At Epoch 1875.0.	At Epoch of Plate.	P. M.	At Epoch 1875.0.	
I III IV VII VIII IX	127°47′38′′.48 .63 .57 .48 .35 .41 .38 .22	$\begin{array}{c} -0''.14 \\ - & .14 \\ - & .14 \\ + & .07 \\ + & .07 \\ + & .07 \\ + & .07 \end{array}$	8 ⁷⁷ .34 .54 .43 .34 .42 .48 .45 .29	20°38′33′′.84 33 .71 33 .64 33 .74 33 .97 33 .99 34 .01 34 .01	$\begin{array}{c} +0^{\prime\prime}.17\\ + &.17\\ + &.17\\ + &.17\\ - &.08\\ - &.09\\ - &.09\\ - &.09\end{array}$	34 ¹¹ .01 33 .88 33 .81 33 .91 33 .99 33 .90 33 .92 33 .92 33 .92	
Mean, 127°47′38′′.41 Probable Error, ±.022			Mean, 20°38′33′′.91 Probable Error, ±.015				
Proper Motion,0.030 ±0.006			Proper Motio	n, +0.03	7 ± 0.004		

STAR 5.

STAR 6.

Plate.	Right 4	scension :		Declination :			
	• At Epoch of Plate.	Р. М.	At Epoch 1875.0.	At Epoch of Plate.	Р. М.	At Epoch 1875.0.	
I III IV V VII VIII IX	127°51′33′′.81 .66 .77 .97 .47 .34 .26 .20	$ \begin{array}{r} -0^{\prime\prime}.32 \\32 \\32 \\32 \\ + .16 \\ + .16 \\ + .16 \\ + .16 \end{array} $	33 ¹¹ .49 .34 .45 .65 .63 .50 .42 .36	20°25′33′′.46 .16 .30 .52 .66 .61 .64 .76	$\begin{array}{c} +0^{\prime\prime}.21\\ + .21\\ + .21\\ + .21\\10\\10\\10\\10\\ \end{array}$	33 ^{11.67} .37 .51 .73 .56 .51 .54 .66	
Mean, 127°51′33′′.48 Probable Error, ±.031 Proper Motion, -0.069 ±0.009			Mean, $20^{\circ}25'33''.57$ Probable Error, $\pm.031$ Proper Motion, $+0.044 \pm 0.009$				

	Right 2	Ascension :		Declination :		
Plate.	At Epoch of Plate.	Р. М.	At Epoch 1875.0.	At Epoch of Plate.	Р. М.	At Epoch 1875.0.
I III IV V VII VIII IX	$\begin{array}{r} 127^{\circ}54'06''.35\\ 6.36\\ 6.16\\ 6.46\\ 5.91\\ 5.81\\ 5.85\\ 5.77\end{array}$	$ \begin{array}{r} -0^{\prime\prime} \cdot 33 \\ - & \cdot 33 \\ - & \cdot 33 \\ - & \cdot 33 \\ + & \cdot 16 \\ + & \cdot 16 \\ + & \cdot 17 \\ \end{array} $	6 ¹¹ .02 6 .03 5 .83 6 .13 6 .07 5 .97 6 .01 5 .94	19°56′14′′.87 .70 .63 .88 .76 .74 .74 .66	$ \begin{array}{c} -0^{\prime\prime}.03 \\ -0.03 \\ -0.03 \\ -0.03 \\ +0.01 \\ +0.01 \\ +0.01 \\ +0.01 \\ \end{array} $	14''.84 .67 .60 .85 .77 .75 .75 .67
Mean, 127°54′06″.00 Probable Error, ±.025		Mean, 19°56′14′′.74 Probable Error, ±.024				
Proper Motion, -0.071 ± 0.007		± 0.007	Proper Motio	n, —0.00	6 ±0.007	

STAR 7.

STAR 7A.

Plate.	Right Ascension :			Declination :			
	At Epoch of Plate.	Р. М.	At Epoch 1875.0.	At Epoch of Plate.	Р. М.	At Epoch 1875.0.	
II IV VII VIII	127°57′58′′.00 58 .26 57 .61 57 .25	$ \begin{array}{r} -0^{\prime\prime}.47 \\47 \\ + .23 \\ + .23 \end{array} $	57 ⁷⁷ •53 •79 •84 •48	20°09′42′′.62 .55 .57 .34	0''.09 09 + .04 + .04	42 ¹¹ .53 .46 .61 .38	
Mean, 127°57′57′′.66			7'57''.66	Mean,	20°09	4211.50	
Proper Motion, —			0,100	Proper Moti	on,	-0.019	

ANNALS N. Y. ACAD. SCI., X., June, 1898-16.

	Right 4	Ascension :		Declination:			
Plate.	At Epoch of Plate.	Р. М.	At Epoch 1875.0.	At Epoch of Plate.	Р. М.	At Epoch 1875.0.	
I III IV V VII VIII IX	127°57′59′′.38 59.38 59.64 59.42 59.08 58.90 58.86 58.95	$\begin{array}{r} -0^{\prime\prime}.34 \\ - & .34 \\ - & .34 \\ - & .34 \\ + & .17 \\ + & .17 \\ + & .17 \\ + & .17 \end{array}$	9 ¹¹ .04 .04 .30 .08 .25 .07 .03 .12	20°26′12′′.54 .51 .69 .79 .69 .70 .88	$\begin{array}{c} +0^{\prime\prime}.12 \\ + .12 \\ + .12 \\ + .12 \\ + .12 \\06 \\06 \\06 \\06 \end{array}$	12".66 .63 .75 .81 .73 .63 .64 .82	
Mean, 127°57′59′′.12 Probable Error, ±.02		'59''.12 ±.028	Mean, 20°26′12′′.71 Probable Error, ±.022				
Prop	per Motion,	0.072	± 0.008	Proper Motio	n, +0.025	± 0.006	

STAR 8.

STAR 10.

	Right .	Ascension :		Dec	lination :	_
Plate.	At Epoch of Plate.	P. M.	At Epoch 1875.0.	At Epoch of Plate.	P. M.	At Epoch 1875.0.
I II IV V VII VIII IX	127°58′48′′′.65 .76 .83 .77 .47 .34 .42 .67	$\begin{array}{c} -0^{\prime\prime}.19\\19\\19\\19\\ + .09\\ + .09\\ + .09\\ + .09\\ + .09\end{array}$	48 ⁷⁷ .46 .57 .64 .58 .56 .43 .51 .76	20°06′50′′.40 .33 .27 .34 .52 .58 .48 .56	$+0^{\prime\prime}.14$ + .14 + .14 + .14 07 07 07 07	50 ⁷⁷ .54 .47 .41 .48 .45 .51 .41 .49
Mean, 127°58′48′′.56 Probable Error, ±.028		Mean, 20°06′50′′.47 Probable Error, ±.012				
Proper Motion,0.040 ±0.008		Proper Motio	n, +0.02	0 ± 0.003		

	Right A	scension :		Declination :			
Plate.	At Epoch of Plate.	Р. М.	At Epoch 1875.0.	At Epoch of Plate.	of	Р. М.	At Epoch 1875.0.
I III IV V VII VIII IX	$\begin{array}{r} 127^{\circ}59'36''.89\\ 36&.86\\ 36&.96\\ 37&.08\\ 36&.63\\ 36&.36\\ 36&.40\\ 36&.29\end{array}$	$ \begin{array}{r} -0^{\prime\prime} \cdot 35 \\ - & \cdot 35 \\ - & \cdot 35 \\ - & \cdot 35 \\ + & \cdot 17 \\ \end{array} $	36 ^{11.} .54 .51 .61 .73 .80 .53 .57 .46	20°01′46′′ 46 46 46 46 46 46 46 47	.90 .86 .76 .95 .96 .83 .16	$\begin{array}{c} +0''.10 \\ + & .10 \\ + & .10 \\ + & .10 \\ - & .05 \\ - & .05 \\ - & .05 \\ - & .05 \end{array}$	47 ¹¹ .00 46 .96 46 .90 46 .86 46 .90 46 .91 46 .78 47 .11
Mean, 127°59′36″.59 Probable Error, ±.03		/36 ^{//} .59 ±.032	Mean, 20°01′46′′.93 Probable Error, ±.027			′46′′.93 ±.027	
Proper Motion, -0.075 ±0.009		5 ±0.009	Proper M	otio	n, +0.02	I ±0.008	

STAR 11.

STAR 14.

Plate.	Right A	scension :		Declination :			
	At Epoch of Plate.	Р. М.	At Epoch 1875.0.	At Epoch Plate.	of	Р. М.	At Epoch 1875.0.
I III IV V VII VIII IX	128°07′45′′.06 44 .81 44 .98 45 .15 44 .82 44 .60 44 .75 44 .64	$\begin{array}{r} -0^{\prime\prime}.20\\20\\20\\20\\ + .10\\ + .10\\ + .10\\ + .10\end{array}$	44 ¹¹ .86 .61 .78 .95 .92 .70 .85 .74	20°31′29′ 29 28 29 29 29 29 29 29	".10 .00 .88 .01 .07 .19 .23 .26	1. "0+ 1. + 1. + 1. + 1. + 0 0 0	3 29 ¹¹ .23 3 .13 3 .01 3 .14 .06 .01 .06 .13 .06 .17 .06 .20
Mean, 128°07′44′′.80 Probable Error, ±.031 Proper Motion, −0.042 ±0.009			Mean, 20°31'29''.13 Probable Error, ±.022 Proper Motion, +0.027 ±0.006			31′29′′.13 ±.022 027 ±0.006	

	Right .	Ascension :		Declination :			
Plate.	At Epoch of Plate.	Р. М.	At Epoch 1875.0.	At Epoch of Plate.	Р. М.	At Epoch 1875.0.	
I III IV VII VIII VIII IX	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -0^{\prime\prime}.25 \\ - & .25 \\ - & .25 \\ - & .25 \\ + & .12 \\ + & .12 \\ + & .12 \\ + & .13 \end{array}$	54 ¹¹ .94 54 .82 54 .77 55 .01 54 .86 54 .89 54 .96 54 .82	20°13′01′′.26 .11 .20 .23 .39 .34 .39 .37	$\begin{array}{c} +0^{\prime\prime}.12 \\ + .12 \\ + .12 \\ + .12 \\06 \\06 \\06 \\06 \end{array}$	1 ^{11.38} .23 .32 .35 .33 .28 .33 .31	
Mean, 128°07/5 Probable Error,			′54′′.88 ±.022	Mean, Probable	20°13 e Error,	′01″.32 ±.012	
Proper Motion, -0.054 ± 0.054			4 ±0.006	Proper Motio	n, +0.023	5 ± 0.003	

STAR 15.

STAR 16.

Plate.	Right .	Ascension :		Dec	elination :	
	At Epoch of Plate.	P. M.	At Epoch 1875.0.	At Epoch of Plate.	Р. М.	At Epoch 1875.0.
I III IV VII VIII IX	128°08′44′′.80 .79 .73 .98 .38 .41 .32 .15	$\begin{array}{r} -0'' \cdot 34 \\ - & \cdot 34 \\ - & \cdot 34 \\ - & \cdot 34 \\ + & \cdot 17 \end{array}$	44 ¹¹ .46 .45 .39 .64 .55 .58 .49 .32	19 [°] 42′50″.00 50 .08 49 .91 49 .85 49 .97 50 .00 49 .95 50 .08	$+0^{\prime\prime}.03$ + .03 + .03 + .03 01 01 01	50 ¹¹ .03 50 .11 49 .94 49 .88 49 .96 49 .99 49 .99 49 .94 50 .07
Mean, 128°08/44″.4 Probable Error, ±.0		′44′′.48 ±.028	Mean, 19°42′49′′.99 Probable Error, ±.021			
Proper Motion, -0.073 ±0.008		Proper Motio	on, +0.006	5 ±0.006		

Plate.	Right .	Ascension :		Declination :		
	At Epoch of Plate.	Р. М.	At Epoch 1875.0.	At Epoch of Plate.	P. M.	At Epoch 1875.0.
I III IV VII VIII IX	128°10′05′′′.46 5 .17 5 .36 5 .57 5 .03 5 .06 5 .01 4 .83	$\begin{array}{c} -0^{\prime\prime}.27 \\27 \\27 \\27 \\ + .13 \\ + .13 \\ + .14 \end{array}$	5 ¹¹ .19 4 .90 5 .09 5 .30 5 .16 5 .19 5 .14 4 .97	19°48′46″.81 .83 .81 .75 .88 .90 .93 .99	$\begin{array}{r} +0''.09 \\ + & .09 \\ + & .08 \\ + & .08 \\ - & .04 \\ - & .04 \\ - & .04 \\ - & .04 \end{array}$	46 ⁷⁷ .90 .92 .89 .83 .84 .86 .89 .95
Mean, 128°10 Probable Error,		128°10/	′05 ′′.12 ±.035	Mean, 19°48′46′′.8 Probable Error, ±.0		46″.89 ±.011
Prop	per Motion,	0.058 ±0.010		Proper Motion, $+0.018 \pm 0.003$		

STAR 17.

STAR 18.

-						
	Right	Ascension :		Decl	ination :	
Plate.	At Epoch of Plate.	Р. М.	At Epoch 1875.0.	At Epoch of Plate.	Р. М.	At Epoch 1875.0.
I III IV VII VIII IX	128°11'32''.44 32 .26 32 .20 32 .28 32 .05 31 .95 32 .04 31 .86	$\begin{array}{c} -0^{\prime\prime}.22 \\ -22 \\ -21 \\ -21 \\ +.11 \\ +.11 \\ +.11 \\ +.11 \end{array}$	32 ¹¹ .22 32 .04 31 .99 32 .07 32 .16 32 .06 32 .15 31 .97	19°59′31′′.64 .53 .44 .48 .74 .60 .64 .69	$\begin{array}{c} +0^{\prime\prime}.10\\ + .10\\ + .10\\ + .05\\05\\05\\05\\05\end{array}$	31 ¹¹ .74 .63 .54 .58 .69 .55 .59 .64
Mean, 128°11 Probable Error,		1′32′′.08 ±.024	Mean, Probabl	19°59 le Error,	′31′′.62 ±.019	
Proper Motion, -0.046 ±0			6 ±0.007	Proper Motio	n, +0.02	1 ±0.005

Plate.	Right Ascension:			Declination :			
	At Epoch of Plate.	Р. М.	At Epoch 1875.0	At Epoch of Plate.	Р. М.	At Epoch 1875.0.	
II	128°11′36′′.06	$ \begin{array}{r} -0^{\prime\prime}.25 \\25 \\ + .12 \\ + .12 \\ + .12 \\ + .12 \end{array} $	35 ¹¹ .81	20°35′50′′.68	+0".09	50 ^{11.} 77	
IV	36.37		36 .12	.64	+ .09	.73	
V	35.95		36 .07	.69	04	.65	
VII	35.86		35 .98	.87	04	.83	
VIII	35.72		35 .84	.82	04	.78	
Mean, 1		128°11′35′′.96		Mean, 20°35		/50//.75	
Proper Motion,		0.053		Proper Motion.		+0.019	

STAR 19.

STAR 20.

Plate.	Right A	Ascension :		Declination :			
	At Epoch of Plate.	P. M.	At Epoch 1875.0	At Epoch of Plate.	P. M.	At Epoch 1875.0.	
I III IV VII VIII IX	128°11′51″.88 .77 .75 .77 .49 .42 .51 .58	$\begin{array}{cccc} -0^{\prime\prime}.20 \\ - & .20 \\ - & .20 \\ - & .20 \\ + & .10 \\ + & .10 \\ + & .10 \end{array}$	51 ¹¹ .68 •57 •55 •57 •59 •52 .61 .68	19°58′50″.40 .42 .39 .40 .50 .37 .50 .68	$\begin{array}{r} +0^{\prime\prime}.08 \\ + 0.08 \\ + 0.08 \\ + 0.08 \\ - 0.04 \\ - 0.04 \\ - 0.04 \\ - 0.04 \end{array}$	50 ⁷⁷ .48 .50 .47 .48 .46 .33 .46 .64	
Mean, Probable Error, Proper Motion,		128°11′51′′.60 ±.016 —0.042 ±0.004		Mean, 19°58'50''.48 Probable Error, ±.023 Proper Motion, +0.016 ±0.006			

Plate.	Right .	Ascension :		Declination :			
	At Epoch of Plate.	P. M.	At Epoch 1875.0.	At Epoch of Plate.	P. M.	At Epoch 1875.0.	
I III IV V VII VIII IX	$\begin{array}{c} 128^{\circ}12'43''.03\\ 42&.70\\ 42&.98\\ 43&.08\\ 43&.08\\ 42&.36\\ 42&.36\\ 42&.33\\ 42&.57\\ 42&.63\end{array}$	$ \begin{array}{r} -0^{\prime\prime}.3^{2} \\ -3^{2} \\ -3^{2} \\ -3^{2} \\ -3^{2} \\ +16 \\ +16 \\ +16 \\ +16 \\ +16 \\ +16 \\ \end{array} $	42 ¹¹ .71 .38 .66 .76 .52 .49 .73 .79	20°26′50′′.07 .12 .04 .04 .20 .20 .20 .35 .28	$+0^{\prime\prime}.13$ + .13 + .13 + .13 06 06 06 06	50 ⁷⁷ .20 .25 .17 .17 .14 .14 .14 .29 .22	
Mean, 128°12′42′′.63 Probable Error, ±.040			Mean, 20°26′50″.20 Probable Error, ±.015				
Proj	per Motion,	-0.06	8 ± 0.011	Proper Motio	on, +0.02	7 ± 0.004	

STAR 22.

STAR 23.

Plate.	Right A	scension:		Declination :			
	At Epoch of Plate.	Р. М.	At Epoch 1875.0.	At Epoch of Place.	Р. М.	At Epoch 1875.0.	
I III IV V VII VIII IX	128°14′60′′.24 59.92 59.81 60.20 59.85 59.54 59.71 59.69	$ \begin{array}{c} -0''.23 \\23 \\23 \\23 \\ + .11 \\ + .11 \\ + .11 \\ + .11 \end{array} $	60 ¹¹ .01 59 .69 59 .58 59 .97 59 .96 59 .65 59 .82 59 .80	20°34′39″.08 38.93 38.91 38.94 39.21 39.18 39.18 39.41	$\begin{array}{r} +0^{\prime\prime}.19 \\ + .19 \\ + .19 \\ + .19 \\09 \\09 \\09 \\09 \end{array}$	39 ¹¹ .27 .12 .10 .13 .12 .09 .09 .32	
Mean, 128°14′59″. Probable Error, ±.		.044 ±.044	Mean, 20°34′39′′.16 Probable Error, ±.025				
Proper Motion, -0.049 ± 0.000			9 ± 0.012	Proper Motic	n, +0.040	± 0.007	

	Right 4	Ascension :		Dec	lination:	
Plate.	At Epoch of Plate.	P. M.	At Epoch 1875.0.	At Epoch of Plate.	Р. М.	At Epoch 1875.0.
I II IV V VII VII IX	128°15′57″.80 .74 .70 .96 .42 .28 .27 .29	$ \begin{array}{r} -0^{\prime\prime}.32 \\ - & .32 \\ - & .32 \\ - & .32 \\ + & .16 \\ + & .16 \\ + & .16 \end{array} $	57 ⁷⁷ .48 .42 .38 .64 .58 .44 .43 .45	20°26′03′′.10 2.80 3.00 2.96 3.10 3.09 3.12 3.12	$\begin{array}{r} +0^{\prime\prime}.09\\ + .09\\ + .09\\ + .09\\05\\05\\05\\05\\05\end{array}$	3 ¹¹ .19 2 .89 3 .09 3 .05 3 .05 3 .05 3 .04 3 .07 3 .07
Mean, 128°15′57″.48 Probable Error, ±.024		5′57′′.48 ±.024	Mean, 20°26′03″.06 Probable Error, ±.022			
Proj	Proper Motion,		9 ±0.007	Proper Motion, $+0.020 \pm 0.006$		

STAR 23A.

STAR 24.

	Right .	Ascension :		Dec	lination :	
Plate.	At Epoch of Plate.	Р. М.	At Epoch 1875.0.	At Epoch of Plate.	Р. м.	At Epoch 1875.0.
I III IV V VII VIII IX	$\begin{array}{c} 128^{\circ}16'58''.57\\ 58\ .24\\ 58\ .57\\ 58\ .67\\ 58\ .19\\ 57\ .89\\ 58\ .32\\ 58\ .38\end{array}$	$ \begin{array}{r} -0^{\prime\prime}.2I \\2I \\2I \\2I \\ + .I0 \\ \end{array} $	58 ¹¹ .36 58 .03 58 .36 58 .46 58 .29 57 .99 58 .42 58 .48	19°58′19″.27 .16 .22 .11 .29 .24 .27 .38	+0''.07 + .07 + .07 + .07 + .03 03 03 04	19 ¹¹ .34 .23 .29 .18 .26 .21 .24 .34
Mean, 128°16′58′′.30 Probable Error, ±.051			Mean, 19°58′19″.26 Probable Error, ±.016			
Proj	Proper Motion, -0.045 ±0.014			Proper Motion, $+0.015 \pm 0.004$		

Plate.	Right.	Ascension :		Declination :			
	At Epoch of Plate.	Р. М.	At Epoch 1875.0.	At Epoch of Plate.	Р. М.	At Epoch 1875.0.	
I III IV V VII VIII IX	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -0^{\prime\prime}.25 \\25 \\25 \\25 \\ + .12 \\ + .12 \\ + .12 \\ + .13 \end{array}$	31 ¹¹ .78 .45 .32 .70 .51 .50 .50 .72	20°07′36′′.79 .67 .60 .69 .73 .82 .75 .86	$\begin{array}{r} +0''.07 \\ + .07 \\ + .07 \\ + .07 \\ + .07 \\03 \\03 \\03 \\04 \end{array}$	36 ⁷⁷ .86 .74 .67 .76 .70 .79 .72 .82	
Mean, Probable Error, Proper Motion,		128°17 —0.054	'31 ¹¹ .56 ±.043 4 ±0.012	Mean, 20°07'36''.76 Probable Error, ±.016 Proper Motion, +0.015 ±0.004			

STAR 25.

STAR 26.

_						the second s	
	Right	Ascension :		Declination :			
Plate.	At Epoch of Plate.	Р. М.	At Epoch 1875.0.	At Epoch Plate.	ņ of	P. M.	At Epoch 1875.0
I III IV V VII VIII IX	$\begin{array}{c} 128^{\circ}17'37''\cdot 23\\ 36\\ .92\\ 36\\ .98\\ 37\\ .12\\ 36\\ .49\\ 36\\ .64\\ 36\\ .79\\ 36\\ .56\end{array}$	$ \begin{array}{r} -0^{\prime\prime}.30 \\ - & .30 \\ - & .29 \\ - & .29 \\ + & .14 \\ + & .15 \\ + & .15 \\ + & .15 \\ + & .15 \end{array} $	36 ¹¹ .93 .62 .69 .83 .63 .79 .94 .71	19°47′20′ 21 20 20 20 20 20 21	".91 .01 .83 .76 .82 .90 .89 .09	$ \begin{array}{r} +0^{\prime\prime}.03\\ + .03\\ + .03\\ + .03\\02\\02\\02\\02\\02\end{array} $	20 ⁷⁷ .94 21 .04 20 .86 20 .79 20 .80 20 .80 20 .88 20 .87 21 .07
Mean, 128°17′36″.77 Probable Error, ±.034		Mean, 19°47′20″.91 Probable Error, ±.028					
Prop	per Motion,	-0.063	± 0.009	Proper N	Iotio	n, +0.00	7 ± 0.008

	Right A	Ascension :		Declination :			
Plate.	At Epoch of Plate.	P. M.	At Epoch 1875.0.	At Epoch of Plate.	Р. М.	At Epoch 1875.0.	
I II IV V VII VII IX	128°17′52′′.80 .35 .56 .71 .42 .34 .30 .39	$\begin{array}{c} -0^{\prime\prime}.17\\17\\16\\16\\ + .08\\ + .08\\ + .08\\ + .08\\ + .08\end{array}$	52 ¹¹ .63 .18 .40 .55 .50 .42 .38 .47	20°06′36′′.49 .67 .50 .43 .70 .73 .71 .86	$\begin{array}{c} +0^{\prime\prime}.15 \\ + .15 \\ + .15 \\ + .15 \\07 \\07 \\08 \end{array}$	36''.64 .82 .65 .58 .63 .66 .64 .78	
Mean, 128°17′52′′.44 Probable Error, ±.037			Mean, 20°06'36''.68 Probable Error, ±.022				
Proj	Proper Motion, -0.035 ±0.010			Proper Motion, $+0.032 \pm 0.006$			

STAR 27.

STAR 28.

	Right A	Ascension:			Dec	lination :	
Flate.	At Epoch of Plate.	P. M.	At Epoch 1875.0.	At Epoch Plate.	of	Р. М.	At Epoch 1875.0.
I III IV V VII VIII IX	128°18′06″.53 .26 .44 .58 .21 .03 .22 .22	$ \begin{array}{r} -0''.19 \\19 \\19 \\19 \\ + .09 \\ + .09 \\ + .09 \\ + .09 \\ + .09 \end{array} $	6 ⁷⁷ .34 .07 .25 .39 .30 .12 .31 .31	20° 16′ 31′′ 30 30 30 30 30 30 31 31	'.01 .96 .78 .93 .98 .98 .08 .08	$\begin{array}{c} +0''.0''_{,0}\\ + & .0''_{,0}\\ + & .0''_{,0}\\ + & .0''_{,0}\\ - & .0''_{,0}\\$	31 ¹¹ .08 31 .03 30 .85 31 .00 30 .95 30 .94 31 .05 31 .02
Mean, 128°18′06′′.26 Probable Error, ±.030			Mean, 20°16′30′′.99 Probable Error, ±.020				
Prop	Proper Motion, -0.040 ±0.008			Proper Motion, $+0.015 \pm 0.006$			

Plate.	Right	Right Ascension :			Declination :			
	At Epoch of Plate.	Р. М.	At Epoch 1875.0.	At Epoch of Plate.	P. M.	At Epoch 1875.0.		
I III IV V VIII VIII IX	128°18′40′′.95 40.52 40.87 41.08 40.50 40.30 40.50 40.38	$\begin{array}{r} -0^{\prime\prime}.29 \\29 \\29 \\29 \\ + .14 \\ + .14 \\ + .14 \\ + .14 \end{array}$	40 ^{11.66} .23 .5 ⁸ .79 .64 .44 .64 .52	20 ^{11.52} .31 .40 .37 .48 .71 .62 .81	$\begin{array}{c} +0^{\prime\prime}.17\\ + .17\\ + .17\\ + .17\\ + .17\\08\\08\\08\\08\end{array}$	20''.69 .48 .57 .54 .40 .63 .54 .73		
Mean, Probable Error,		128°18	3′40″.56 ±.046	Mean, 20°37′20′′.57 Probable Error, ±.030				
Prop	per motion,	-0.	062 0.012	Proper Motio	on, + 0.03	o <u>≓</u> =0.008		

STAR 29.

STAR 31.

	Right A	scension :		Declination :			
Plate.	At Epoch of Plate.	P. M.	At Epoch 1875.0.	At Epoch of Plate.	Р. М.	At Epoch 1875.0.	
I III IV V VII VIII IX	128°19′12″.34 12 .31 11 .93 12 .18 11 .64 11 .73 11 .95 11 .83	$\begin{array}{c} -0^{\prime\prime}.27\\27\\27\\27\\ + .13\\ + .13\\ + .13\\ + .13\end{array}$	12 ¹¹ .07 12 .04 11 .66 12 .91 11 .77 11 .86 12 .08 11 .96	19°59′06′′.84 6.88 6.93 6.64 7.02 7.02 6.88 7.07	+0''.10 + .10 + .10 + .05 05 05 05	6 ¹¹ .94 6 .98 7 .03 6 .74 6 .89 6 .97 6 .83 7 .02	
Mean, 128°19'11''.92 Probable Error, ±.041		Mean, 19°59′06′′.92 Probable Error, ±.027					
Proper Motion, -0.057 ±0.011			Proper Moti	on, +0.02	2 ±0.008		

	Right A	Ascension :	*	Declination :			
Plate.	At Epoch of Plate.	Р. М.	At Epoch 1875.0.	At Epoch of Plate.	Р. М.	At Epoch 1875.0.	
I III IV V VII VIII IX	128°20′56′′.93 57 .02 56 .98 57 .20 56 .51 56 .61 56 .71 56 .64	$\begin{array}{c} -0^{\prime\prime}.28\\28\\28\\28\\ +.14\\ +.14\\ +.14\\ +.14\end{array}$	56 ¹¹ .65 .74 .70 .92 .65 .75 .85 .78	19°38′06″.20 .35 .17 .05 .28 .27 .11 .32	$+0^{\prime\prime}.03$ + .03 + .03 + .03 02 02 02 02	6 ¹¹ .23 .38 .20 .08 .26 .25 .09 .30	
Mean, 128°20′56′′.76 Probable Error, ±.026			Mean, 19°38′06′′.22 Probable Error, ±.028				
Proper Motion, -0.059 ±0.00		€ ±0.007	Proper Motion, $+0.007 \pm 0.008$				

STAR 32.

STAR 33.

Die	Right J	Right Ascension :			Declination :		
Plate.	At Epoch of Plate.	Р. М.	At Epoch 1875.0.	At Epoch of Plate.	P. M.	At Epoch 1875.0.	
I III IV VII VII IX	128 ⁶ 22'30''.50 30 .37 30 .14 30 .53 29 .92 30 .02 29 .71	-0''.34343434 + .17 + .17 + .17	30 ¹¹ .16 30 .03 29 .80 30 .19 30 .09 30 .19 29 .88	19°40′09′′.34 -57 -34 -32 -50 -29 -57	+0''.04 + .04 + .04 + .04 02 02 02	9 ¹¹ .38 .61 .38 .36 .48 .27 .55	
Mean, 128°22′30′ Probable Error, =		′30′′.05 ±.048	Mean, Probabl	19°40 e Error,	′09′′.43 ±.037		
Proper Motion, -o.c		0.072	2 ± 0.013	Proper Motio	n, +0.00	9 ±0.010	

Plate.	Right A	Ascension:		Declination :			
	At Epoch of Plate.	P. M.	At Epoch 1875.0.	At Epoch of Plate.	Р. М.	At Epoch 1875.0.	
I III IV VII VIII VIII IX	128°23′08′′.33 8 .29 8 .33 8 .49 7 .80 8 .06 8 .08 7 .88	$\begin{array}{c} -0^{\prime\prime}.27 \\ - 27 \\ - 27 \\ - 27 \\ - 13 \\ + 13 \\ + 13 \\ + 14 \end{array}$	8 ¹¹ .06 8 .02 8 .06 8 .22 7 .93 8 .19 8 .21 8 .02	20°09′37′′·37 .32 .30 .36 .44 .58 .48 .48 .47	$\begin{array}{c} +0^{\prime\prime}.10 \\ + & .10 \\ + & .10 \\ + & .10 \\ - & .05 \\ - & .05 \\ - & .05 \\ - & .05 \end{array}$	37 ⁷⁷ .47 .42 .40 .46 .39 .53 .43 .42	
Mean, 128°23′08″.09 Probable Error, ±.029			Mean, 20°09'37''.44 Probable Error, ±.012				
Prop	per Motion,	0.058	3 <u>+</u> 0.008	Proper Motion, $+0.022 \pm 0.003$			

STAR 34.

STAR 35.

	Right	Ascension :		Declination :			
Plate.	At Epoch of Plate.	Р. М.	At Epoch 1875.0.	At Epoch of Plate.	P. M.	At Epoch 1875.0.	
I III IV VII VIII IX	$\begin{array}{r} 128^{\circ}25'03''.01\\ 2&.92\\ 3&.04\\ 3&.01\\ 2&.78\\ 2&.58\\ 2&.59\\ 2&.41\end{array}$	$\begin{array}{r} -0^{\prime\prime}.27 \\ - 27 \\ - 27 \\ - 27 \\ - 13 \\ + 13 \\ + 13 \\ + 14 \end{array}$	2 ¹¹ .74 .65 .77 .74 .91 .71 .72 .55	20°42′28′′.84 28 .80 28 .86 28 .82 28 .86 29 .12 29 .00 29 .17	$\begin{array}{c} +0^{\prime\prime}.14 \\ + & .14 \\ + & .14 \\ + & .14 \\ + & .14 \\ - & .07 \\ - & .07 \\ - & .07 \\ - & .07 \end{array}$	28 ¹¹ .98 28.94 29.00 28.96 28.79 29.05 28.93 29.10	
Mean, 128°25′02′ Probable Error, =		5′02′′.72 ±.028	Mean, 20°42′28′′.97 Probable Error, ±.025				
Proper Motion,		0.058 <u>+</u> 0.008		Proper Motion, $+0.030 \pm 0.007$			

	Right A	Ascension :		Declination :			
Plate.	At Epoch of Plate.	P. M.	At Epoch 1875.0.	At Epoch of Plate.	Р. М.	At Epoch 1875.0.	
I II IV VII VII IX	128°26′25″.18 25 .14 25 .17 25 .40 24 .59 24 .54 24 .54	$\begin{array}{r} -0^{\prime\prime}.45 \\45 \\44 \\44 \\ + .22 \\ + .22 \\ + .22 \end{array}$	24 ¹¹ .73 .69 .73 .96 .81 .76 .76	20°22′35′′.73 .67 .59 .63 .96 .78 .92	$+0^{\prime\prime}.16$ + .16 + .15 + .15 08 08 08	35 ¹¹ .89 .83 .74 .78 .88 .70 .84	
Mean, 12 Probable Error,		128°26	1⁄24′′.78 ±.028	Mean, 20°22'35''.81 Probable Error, ±.022			
Proper Motion, -		0.09	5 +0.007	Proper Motion, $+0.033 \pm 0.006$			

Star 36.

STAR 37.

	Right J	Ascension :		Dec	lination :	
Plate.	At Epoch of Plate.	P. M.	At Epoch 1875.0.	At Epoch of Plate.	Р. М.	At Epoch 1875.0.
I III IV VII VIII IX	128°26′31′′′.81 .61 .50 .89 .28 .29 .32 .27	$\begin{array}{c} -0^{\prime\prime}.28 \\ - & .28 \\ - & .28 \\ - & .28 \\ + & .14 \\ + & .14 \\ + & .14 \\ + & .14 \end{array}$	31 ¹¹ .53 .33 .22 .61 .42 .43 .46 .41	20°01′19′′.38 .56 .31 .28 .42 .34 .49 .58	$\begin{array}{c} +0^{\prime\prime}.05\\ + .05\\ + .05\\ + .05\\ + .02\\03\\03\\03\\03\end{array}$	19 ¹¹ .43 .61 .36 .33 .40 .31 .46 .55
Pro	Mean, $128^{\circ}26'31''.43$ Probable Error, $\pm .032$		Mean, 20°01/19".43 Probable Error, ±.029			
Proper Motion,		-0.059 ± 0.006		Proper Motion, $+0.011 \pm 0.008$		

•

	Right Ascension:			Declination :		
Plate.	At Epoch of Plate.	Р. М.	At Epoch 1875.0.	At Epoch of Plate.	Р. М.	At Epoch 1875.0.
I IV VII VIII IX	128°29′56′′.44 .48 .66 .17 .15 .32	$\begin{array}{r} -0^{\prime\prime}.21\\ -&.21\\ -&.21\\ +&.10\\ +&.10\\ +&.10\end{array}$	56 ¹¹ .23 .27 .45 .27 .25 .42	20°16′19′′.07 19 .16 18 .93 19 .08 19 .17 19 .24	+0".08 + .08 + .07 04 04 04	19 ¹¹ .15 .24 .00 .04 .13 .20
Mean, 128°29 Probable Error, Proper Motion, —0.045			1′ 56′′.32 ±.031 5 ±0.008	Mean, Probabl Proper Motic	20° 16 e Error, on, +0.01	5°19″.13 ±.030 6 ±0.008

STAR 38.

STAR 39.

	Right 2	scension :		Declination :			
Plate.	At Epoch of Plate.	Р. М.	At Epoch 1875.0.	At Epoch of Plate.	P. M.	At Epoch 1875.0.	
I III IV V VII VIII IX	128°30′39″.00 38.72 38.82 39.01 38.44 38.33 38.34 38.33	$ \begin{array}{r} -0^{\prime\prime} \cdot 35 \\ - & \cdot 35 \\ + & \cdot 17 \\ \end{array} $	38 ⁷⁷ .65 .37 .47 .66 .61 .50 .51 .50	20°21′52′′.34 .34 .22 .24 .30 .42 .38 .56	$\begin{array}{c} +0^{\prime\prime}.07 \\ + 0.07 \\ + 0.07 \\ + 0.07 \\ - 0.03 \\ - 0.03 \\ - 0.03 \\ - 0.04 \end{array}$	52 ¹¹ .41 .41 .39 .31 .27 .39 .35 .52	
Mean, Probable Error,		128°30	′3 ⁸ ′′.53 ±.027	Mean, 20°21′52′′.38 Probable Error, ±.021			
Proper Motion, -0.075 ±0.008			Proper Motion, $+0.015 \pm 0.006$				

Plate.	Right 2	Ascension :		Declination :			
	At Epoch of Plate.	P. M.	At Epoch 1875 0.	At Epoch of Plate.	P. M.	At Epoch 1875.0.	
I III IV VII VIII VIII IX	128°32′19″.74 .92 .78 .92 .14 .22 .29 .20	$\begin{array}{c} -0^{\prime\prime}.42 \\ - & .42 \\ - & .42 \\ - & .42 \\ + & .21 \\ + & .21 \\ + & .21 \\ + & .21 \\ + & .21 \end{array}$	19".32 .50 .36 .50 .35 .43 .50 .41	19°42′13′′.48 .60 .55 .54 .67 .65 .61 .61	$+0^{\prime\prime}.05$ + .05 + .05 + .02 02 02 02 02	13 ¹¹ .53 .65 .70 .59 .65 .63 .59 .59	
Mean, 128°32′19′′.4 Probable Error, ±.0			′19″.42 ±.020	Mean, 19°42′13′′.62 Probable Error, ±.014			
Proper Motion,			Proper Motion, $+0.010 \pm 0.004$				

STAR 40.

STAR 41.

Plate.	Right Ascension:			Declination :		
	At Epoch of Plate.	Р. М.	At Epoch 1875 0.	At Epoch of Plate.	Р. М.	At Epoch 1875.0.
VII VIII	128°06′08′′.44 .30	+0″.10 + .10	8″.54 .40	20°06′21′′.68 .78	0''.03 03	21′′.65 •75
Mean, 128°06′08′′.47			Mean, 20°06′21′′.70			

STAR 42.

Plate.	Right Ascension:			Declination :		
	At Epoch of Plate.	P. M.	At Epoch 1875.0.	At Epoch of Plate.	P. M.	At Epoch 1875.0.
VII VIII	128°38′00′′.16 59.83	$+0^{\prime\prime}.15$ + .15	00″.31 59 .98	20°06′16′′.46 .29	0''.08 08	16″.38 .21
Mean, 128°38′00′′.14			Mean,	20°06	16/1.30	

Diete	Right A	Ascension :		Dec	elination :	
Plate.	At Epoch of Plate.	P. M.	At Epoch 1875.0.	At Epoch of Plate.	Р. М.	At Epoch 1875.0.
I III IV V VII VIII IX	$\begin{array}{r} 128^{\circ}39'47''.04\\ 46&.71\\ 46&.88\\ 47&.05\\ 46&.32\\ 46&.27\\ 46&.32\\ 46&.66\end{array}$	$ \begin{array}{r} -0^{\prime\prime}.46 \\46 \\45 \\45 \\ + .22 \\ + .22 \\ + .22 \\ + .23 \end{array} $	46 ⁷⁷ .58 .25 .43 .60 .54 .49 .54 .29	20°19′06′′.94 .77 .72 .56 .68 .82 .95 .74	$\begin{array}{r} +0''.03 \\ + & .03 \\ + & .03 \\ + & .03 \\ - & .02 \\ - & .02 \\ - & .02 \\ - & .02 \end{array}$	6 ⁷⁷ .97 .80 .75 .59 .66 .80 .93 .72
Mean, 128°39′46″.4 Probable Error, ±.0			′46′′.46 ±.036	Mean, 20°19′06′′.78 Probable Error, ±.035		
Prop	per Motion,	0.09	7 ± 0.010	Proper Motion, $+0.007 \pm 0.010$		

STAR 43.

STAR 44.

Plate.	Right Ascension :			Dec	Declination:		
	At Epoch of Plate.	P. M.	At Epoch 1875.0.	At Epoch of Plate.	Р. М.	At Epoch 1875.0.	
I 128°40′18′′.28 III 18 .27 III 18 .49 IV 18 .26 V 18 .05 VII 17 .95 VIII 17 .87 IX 18 .08		$\begin{array}{c} -0^{\prime\prime}.23 \\ - & .23 \\ - & .22 \\ - & .22 \\ + & .11 \\ + & .11 \\ + & .11 \\ + & .11 \end{array}$	18 ¹¹ .05 18 .04 18 .27 18 .04 18 .16 18 .06 17 .98 18 .19	20°36′14′′.23 .33 .31 .21 .40 .42 .36 .33	$\begin{array}{c} +0^{\prime\prime}.07 \\ + 0.07 \\ + 0.07 \\ + 0.07 \\ - 0.03 \\ - 0.03 \\ - 0.04 \end{array}$	14".30 .40 .38 .28 .37 .39 .33 .29	
Mean, 128°40′18″.10 Probable Error, ±.027				Mean, 20°36′14′′.34 Probable Error, ±.013			
Proper Motion, -0.048 ± 0.008			Proper Motion, $+0.015 \pm 0.004$				

,

ANNALS N. Y. ACAD. SCI., X, June, 1898-17.

a

Plate.	Right Ascension :			Declination :			
	At Epoch of Plate.	P. M.	At Epoch 1875.0.	At Epoch of Plate.	P. M.	At Epoch 1875.0.	
II IV VII VIII IX	128°44′17″.78 .62 .98 .26 .34 .39 .23	$\begin{array}{r} -0^{\prime\prime} \cdot 33 \\ - & \cdot 33 \\ - & \cdot 33 \\ + & \cdot 16 \end{array}$	17 ¹¹ .45 .29 .65 .42 .50 .55 .39	19°51′23″.45 .38 .22 .44 .56 .45 .43	$+0^{\prime\prime}.08$ + .08 + .08 04 04 04 04	23 ¹¹ .53 .46 .30 .40 .52 .41 .39	
Mean, Probable Error, Proper Motion,		128°44 0.070	28°44′17′′.46 Mean, 19°51′ ±.032 Probable Error, -0.070 ±0.009 Proper Motion, +0.017		$23''.43 \pm .022$ 7 ± 0.006		

STAR 45.

The final results of the measurements have been collected on the next page; the right ascensions and declinations are obtained from a_1 and δ_1 , which are printed in the foregoing pages in slightly bolder type, by adding the transformation corrections given in Table VI, page 239. The magnitudes are those of the Bonn Durchmusterung.

Catalogue of the Relative Positions and Proper Motions of 42 Stars in the Præsepe Group.

Mean Equinox of 1875.0.

Epoch 1875.0.

Star.	Mag. B. D.	Right Ascension.	Proper Motion.	Declination.	Proper Motion.	No. of Plates.
Star. I 2 3 4 5 6 7 7 A 8 10 11 14 15 16 17 18 19 20 22 23 23 4 25 26 27 28 29 31 32 33 34 35 36 37 4 4 4 5 6 7 7 4 5 6 7 7 4 5 6 7 7 4 5 6 7 7 4 5 6 7 7 4 5 6 7 7 4 5 6 7 7 4 5 6 7 7 4 5 6 7 7 4 5 6 7 7 4 5 6 7 7 4 15 16 17 17 18 19 20 22 23 23 23 23 23 23 23 23 23	Mag. B. D. 8.8 8.2 8.4 9.0 8.2 8.4 9.0 8.2 8.4 9.0 8.2 8.4 9.0 8.2 7.0 7.3 9.0 8.2 7.0 7.3 9.0 8.2 7.0 7.3 9.0 8.2 7.0 7.3 9.0 8.2 7.0 7.3 8.5 8.5 7.0 7.3 8.5 8.5 7.0 7.3 8.5 8.5 7.0 7.3 8.5 8.5 7.0 7.3 8.5 8.5 7.0 7.3 8.5 8.5 7.0 7.3 8.5 8.5 7.0 7.3 8.5 8.5 7.0 7.3 8.5 8.5 7.0 7.3 8.5 8.5 7.0 7.3 8.5 8.5 7.0 7.3 8.5 8.5 7.0 7.3 8.5 7.0 7.3 8.5 7.0 7.3 8.5 7.0 7.3 8.5 7.0 7.3 8.5 7.0 7.3 8.5 7.0 7.3 8.5 7.0 7.3 8.5 7.0 7.3 8.5 8.5 7.0 7.3 8.5 7.0 7.3 8.5 7.0 7.3 8.5 7.0 7.3 8.5 7.0 7.3 8.5 7.0 7.3 8.5 8.5 7.0 7.3 8.5 7.0 7.3 8.5 8.5 7.0 7.3 8.5 8.5 7.0 7.3 8.5 8.5 7.0 7.3 8.5 8.5 7.0 7.3 8.5 8.5 7.0 7.3 8.5 8.5 7.0 7.3 8.5 8.5 7.0 7.3 8.5 8.5 7.0 7.3 8.5 8.5 7.0 7.3 8.5 8.5 7.0 7.3 8.5 8.5 7.0 7.3 8.5 8.5 7.0 7.3 8.5 8.5 7.7 7.0 8.5 8.5 7.7 9.0 8.5 7.7 9.0 8.5 7.7 9.0 8.5 7.7 9.0 8.5 8.5 7.7 9.0 8.5 7.7 9.0 8.5 7.7 9.0 8.5 7.7 9.0 8.5 7.7 9.0 8.5 7.7 9.0 8.5 8.5 7.7 9.0 8.5 7.7 9.0 8.5 8.5 7.7 9.0 8.5 7.7 9.0 8.5 8.5 7.7 9.0 8.5 8.5 7.7 9.0 8.5 7.7 9.0 8.5 8.5 7.7 9.0 8.5 7.7 9.0 8.5 8.5 8.5 7.7 9.0 8.5 8.5 7.7 9.0 8.5 8.5 8.5 8.5 7.7 9.0 8.5 8.5 7.7 9.0 8.5 8.5 7.7 9.0 8.5 8.5 8.5 8.5 8.5 7.7 9.0 8.5 8.5 8.5 7.7 9.0 8.5 8.5 8.5 8.5 8.5 8.5 7.7 9.0 8.5 8.5 8.5 8.5 8.5 7.7 9.0 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5	Right Ascension. 127 35 27.78 36 26.49 37 30.81 39 11.48 47 35.08 51 32.17 54 07.49 57 57.82 58 48.92 127 59 128 07 07 54.88 08 44.32 10 04.92 11 31.77 13 36.50 11 51.24 12 43.14 15 56.81 16 57.455 17 31.22 17 35.17 17 52.03 18 42.24 19 10.91 20 53.84 22 26.97 23 07.75 25 05.96 26 30.02 29 56.77 30 39.81	Proper Motion. 	Declination. +20 26 49.70 +20 09 59.43 +19 57 07.85 +19 42 04.48 +20 38 32.69 +20 25 32.80 +19 56 14.22 +20 09 42.23 +20 26 12.42 +20 01 46.74 +20 31 29.12 +20 13 01.32 +19 42 50.04 +19 48 45.88 +19 59 31.59 +20 35 50.69 +19 58 50.44 +20 26 50.10 +20 26 50.10 +20 35 50.69 +19 58 50.44 +20 06 36.40 +20 06 36.40 +20 16 30.70 +20 36 50.53 +19 40 86.90 +20 93 65.73 +19 40 86.90 +20 22 34.83 +20 01 18.46 +20 16 17.75 +20 21 50.91 +19 42 20.34 +20 20 16 4.57 +20 20 23 4.83 +20 16 17.75 +20 21 50.91 +19 42 20.35 +20 42 28.08 +20 42 48.08 +20 42 48.08 +20 42 48.08 +20 40 48.08	$\begin{array}{c} Proper \\ Motion. \\ \\ +0.032 \\ +.031 \\ +.002 \\ +.002 \\ +.002 \\ +.002 \\ +.025 \\ +.029 \\ +.021 \\ +.025 \\ +.025 \\ +.021 \\ +.025 \\ +.021 \\ +.021 \\ +.016 \\ +.021 \\ +.016 \\ +.027 \\ +.040 \\ +.021 \\ +.015 \\ +.032 \\ +.033 \\ +.031 \\ +.021 \\ +.033 \\ +.033 \\ +.021 \\ +.033 \\ +.033 \\ +.011 \\ +.016 \\ +.015 \\ +.010 \end{array}$	No. of Plates. Plates. 8 8 8 8 8 8 8 8 8 8 8 8 8
42 43 44 45	9.3 7.5 8.9 8.4	37 5 ⁸ .79 39 47.65 40 22.88 128 44 12.34	— .097 — .048 — .070	$\begin{array}{r} +20 & 06 & 13.76 \\ +20 & 19 & 03.89 \\ +20 & 36 & 11.29 \\ +19 & 51 & 19.77 \end{array}$	+ .007 + .015 + .017	2 8 8 7

VI.

Discussion of Results.

Let us first ascertain what is the probable error of a measured coördinate, being careful not to let personalities in the observing enter into our result. Each coördinate was measured completely, that is in both the direct and in the reversed positions, by two observers. The difference between the two complete measurements will be free from personalities and may be ascribed to errors of observation. This difference, which I shall call v, may easily be computed from Table III; say the two observers are Schlesinger and Kretz, then subtract (S-K) direct, from (S-K) reversed and the difference is double the amount by which one observer's complete measurement differs from the other's, or 2v. The probable error of a final coördinate is then given by,

$$\pm \frac{0.6745}{2} \sqrt{\frac{[vv]}{n}}$$

Proceeding in this way for all the plates we obtain the following probable errors. Only those stars were used, thirty-three in number, which appear on all the plates.

	Probable Error of a final x .	a Probable Error of x final y .
Plate I	±0″·034	±0″.031
II	.036	.029
III	.023	.023
IV	.024	.020
v	.020	.027
VII	.034	,020
VIII	.032	.025
IX	.037	.027
Means,	±0″.030	±0″.025

The greater uncertainty in right ascension is due to the fact that the images are usually elongated in that direction and are therefore more difficult to bisect. The elongation was caused by the failure of Rutherfurd's clock to keep pace exactly with the diurnal motion of the group, sometimes lagging slightly or sometimes moving too rapidly. In the tabulation of results the probable error of each right ascension and declination is given. We may compute the probable error of right ascension of a star as derived from a single plate by the expression

$$\pm 0.6745 \sqrt{\frac{[vv]}{264-66}} \cos \delta_0$$

where [vv] is the sum of the squares of all the residuals in right ascension for the thirty-three stars which appear on all eight plates; the factor $\cos \delta_0$ serves to reduce the probable error to arc of a great circle. The expression for the probable error of a single declination is identical with the above except that $\cos \delta_0$ is omitted. In this way we obtain the probable errors,

In Right Ascension.	In Declination.
±0″.081	±0″.058

If we do not confine ourselves to the thirty-three stars as above, but use all the stars, we get

 $\pm 0^{\prime\prime}.080$

+01.060

Thus it appears that the uncertainty in a right ascension or in a declination is considerably greater than that in the corresponding measured coördinate. We may conclude from this that when a large number of plates is available, better results will be attained, for a given expenditure of time and labor, by measuring a large number of plates rather than measuring a few with all the elaboration used in the present research. But for the Rutherfurd photographs such elaboration is amply justified by the very limited number of existing photographs of so early a date.

It might appear at first as though a large part of the discrepancy between the two sets of probable errors, namely, those for the measured coördinates, and those for the resulting right ascension and declination, could be accounted for by the uncertainty of the constants used for the several plates. That such is not the case appears from the following considerations: the residuals for the five comparison stars, given on pages 247 and 248, exhibit a remarkable uniformity, showing that the greater part of these residuals is due to inaccuracies in the meridian observations. It follows, therefore, that the probable errors given for the constants p, r, k and c, are due not so much to errors in measuring the plate as to errors in the meridian places. To obtain more precise information on this point, let us correct the meridian places of each of the comparison stars by the mean of the residuals for that star, and suppose we have effected thes leatsquare solutions ancw, using now the corrected meridian places. It can easily be shown that the new solutions would lead to exactly the same values of the constants as had been first obtained, but now each residual will be altered by a certain quantity, namely, the amount of the corresponding correction to the meridian place. We may then subtract at once the mean of the residuals for a star, from the corresponding residual in each leastsquare solution and then compute the probable errors of the constants. The results of such a computation are as follows :

	Probable Error of p or r .	Probable Error of k or c
Plate I	±0.000013	±0″.0 2 6
II	24	.049
III	16	.032
IV	16	.032
v	15	.030
VII	08	.016
VIII	II	,022
IX	20	.041
Means,	±0.000015	±0".031

The former means were

 ± 0.000032

 $\pm 0^{\prime\prime}.065$

and these must be regarded as indicating the uncertainty in the absolute values of the constants; if the constants which we have obtained are in error, then there will be a decided tendency to error in the same direction on *different* plates, and the smaller probable errors given above indicate how much we should expect the adopted values of the constants to differ from each other as obtained for different plates. Consequently only a small part of the discrepancy between the probable errors of the measured coordinates and of the right ascensions and declinations can be due to uncertainties in the adopted constants.

The discrepancy is probably caused by inaccuracies, and in some cases neglect, of instrumental corrections. For example, the difference between the two complete measurements of a coör-

of the Rutherfurd Photographs.

dinate is independent of errors in the determination of the division corrections, because the two observers always used the same lines; but not so with the differences of the right ascensions or declinations as derived from different plates. Similarly, the corrections for temperature and straightness of the scale, which we have neglected, do not affect the agreement of the measured coördinates. Possibly too, there have been distortions of the film, but the smallness of the probable errors on the whole must rather be taken as evidence against such distortions. It is important to note that the close agreement of the right ascensions and declinations for different plates affords a striking confirmation of the permanence of the Rutherfurd plates, which in the present case have been measured a quarter of a century after they were made.*

If we consider the probable errors of the measured coördinates, we see that the uncertainty is considerably greater upon some plates than upon others. Notwithstanding, equal weights have been assigned to all the plates, since it appears that the uncertainty in a measured coördinate forms only a small part of the uncertainty in the corresponding right ascension or declination.

Let us now compare the photographic results with those of the heliometer. In his memoir upon the group, Professor Schur has given the places of forty-five stars referred to the mean equinox and epoch of 1875.0, which are the same as those used in the present paper. Of these stars all but five appear on the photographs. The following table gives first the uncorrected or direct differences obtained by subtracting the right ascension, declination and proper motion of each star in our catalogue, from the corresponding quantities in Schur's. The differences in right ascension have been multiplied by cos δ_0 to reduce them to arc of a great circle.

*See, in this connection, "On the Permanence of the Rutherfurd Photographs," by Harold Jacoby, Annals of the N. Y. Acad. of Sciences, Vol. IX.

Præsepe Group; Measurement and Reduction

	Right Ascension.		Declination.		Proper Motion.		No. of
otar.	Direct Diff's.	Corr'd. Diff's.	Direct Diff's.	Corr'd. Diff's.	Diff's in R. As.	Diff'sin Decl.	Plates.
$\begin{smallmatrix} 1 & 2 & 3 & 4 & 56 & 78 \\ 1 & 1 & 1 & 156 & 78 & 101 \\ 1 & 1 & 1 & 56 & 78 & 101 \\ 1 & 1 & 1 & 16 & 78 & 190 & 22 & 324 & 256 & 728 & 911 & 2334 & 356 & 378 & 390 & 412 & 344 & 544 &$	$\begin{array}{c} & -0.04 \\ -0.03 \\ -0.17 \\ +.24 \\15 \\17 \\ +.24 \\15 \\ +.11 \\11 \\ +.38 \\ +.22 \\ +.38 \\ +.22 \\ +.38 \\ +.21 \\20 \\03 \\02 \\ +.03 \\02 \\ +.03 \\02 \\ +.03 \\02 \\ +.03 \\02 \\ +.03 \\02 \\ +.03 \\02 \\ +.03 \\02 \\ +.03 \\02 \\03 \\04 \\01 \\07$	$\begin{array}{c} & & & \\ +0.07 \\ - & .02 \\ - & .04 \\ + & .09 \\ + & .03 \\ + & .06 \\ + & .01 \\ + & .02 \\ - & .06 \\ + & .01 \\ + & .03 \\ - & .06 \\ + & .01 \\ + & .03 \\ - & .06 \\ + & .06 \\ + & .01 \\ - & .06 \\ + & .03 \\ - & .07 \\ + & .09 \\ - & .00 \\ + & .09 \\ - & .00 \\ + & .09 \\ - & .00 \\ + & .09 \\ - & .00 \\ - & .07 \\ + & .03 \\ - & .03 \\ - & .04 \\ - & .09 \\ - & .06 \\ + & .09 \\ - & .06 \\ + & .09 \\ - & .06 \\ + & .09 \\ - & .06 \\ + & .09 \\ - & .06 \\ + & .09 \\ - & .06 \\ + & .09 \\ - & .06 \\ + & .09 \\ - & .13 \end{array}$	$\begin{array}{c} & + \circ.466 \\ + & + .461 \\ + & + .737 \\ + & + .557 \\ + & + .567 \\ + & + .557 \\ - & .572 \\ - & .577 \\ - & $	$\begin{array}{c} & -0.08 \\ -0.04 \\ +1.00 \\ +2.00 \\ +1.00$	$\begin{array}{c} & +0.016 \\ - & .014 \\ + & .011 \\ - & .019 \\ + & .021 \\ - & .001 \\ - & .001 \\ - & .004 \\ - & .003 \\ - & .032 \\ - & .019 \\ - & .007 \\ - & .017 \\ - & .023 \\ - & .019 \\ - & .007 \\ - & .017 \\ - & .023 \\ - & .035 \\ - & .007 \\ - & .016 \\ - & .016 \\ - & .016 \\ - & .016 \\ - & .016 \\ - & .016 \\ - & .016 \\ - & .016 \\ - & .016 \\ - & .016 \\ - & .016 \\ - & .016 \\ - & .016 \\ - & .016 \\ - & .007 \\ - & .020 \\ - & .001 \\ - & $	$\begin{array}{c} -0.015 \\ -0.015 \\ -0.020 \\ +.004 \\ +.005 \\ +.001 \\ -0.032 \\ +.018 \\ -0.020 \\ -0.022 \\ -0.013 \\ -0.008 \\ +.001 \\ -0.028 \\ -0.028 \\ -0.028 \\ -0.028 \\ -0.028 \\ -0.011 \\ -0.011 \\ -0.011 \\ -0.011 \\ -0.010 \\ -0.026 \\ -0.017 \\ -0.026 \\ -0.017 \\ -0.026 \\ -0.010 \\ -0.008 \\ -0.000 \\ +.001 \\ -0.002 \\ -0.002 \\ -0.001 \\ +.001 \\ -0.002 \\ -0.002 \\ -0.001 \\ +.001 \\ -0.002 \\ -0.002 \\ -0.001 \\ +.001 \\ -0.002 \\ -0.002 \\ -0.001 \\ +.001 \\ -0.002 \\ -0.002 \\ -0.001 \\ -0.002 \\ -0.001 \\ -0.002 \\ -0.001 \\ -0.002 \\ -0.001 \\ -0.002 \\ -0.001 \\ -0.002 \\ -0.001 \\ -0.002 \\ -0.001 \\ -0.002 \\ -0.002 \\ -0.001 \\ -0.001 \\ -0.002 \\ -0.001 \\ -0.001 \\ -0.002 \\ -0.001 \\ -0.002 \\ -0.001 \\ -0.002 \\ -0.001 \\ -0.002 \\ -0.001 \\ -0.001 \\ -0.002 \\ -0.001 \\ -0.002 \\ -0.001 \\ -0.002 \\ -0.001 \\ -0.002 \\ -0.001 \\ -0.002 \\ -0.001 \\ -0.002 \\ -0.001 \\ -0.002 \\ -0.001 \\ -0.002 \\ -0.001 \\ -0.002 \\ -0.001$	\$\$ 7 \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$

COMPARISON WITH HELIOMETER RESULTS. HELIOMETER minus Photographs.

The corrected differences in right ascension and declination were obtained by adding systematic corrections and also by modifying the scale-value and orientation of the photographs. That is, a least-square solution was made to determine how much the
constants of the plates would have to be changed so as to secure the best possible agreement between the two catalogues. Each star gives two equations of the form,

$$Xdp + Ydr + dk + da = 0$$

$$Ydp - Xdr + dc + d\delta = 0$$

where $d\alpha$ and $d\delta$ are the uncorrected or direct differences in the table. The least-square solution may be carried out in a manner entirely similar to that previously used. The differences for stars 18, 20, 24 and 25 were not used because these stars were not included in Schur's triangulation, but each was merely located by position angle and distance from the nearest star in the triangulation. Stars 19, 41 and 42 were also excluded in making the least-square solution because of the small number of plates on which they appear. The remaining stars, thirty-three in number, give the following corrections to the contents:

$$dp = + 0.000011 \pm 0.00009$$

$$dr = + 0.000098 \pm 0.000099$$

$$dk = + 0''.047 \pm 0''.014$$

$$dc = - 0''.667 \pm 0''.014$$

The probable error of one equation is

 \pm o^{$\prime\prime$}.080

a quantity which speaks well for the accuracy of all three researches concerned. The corrected differences in the table are now obtained by adding to each uncorrected difference

and

 $X \cdot dp + Y \cdot dr + dk$ in the right ascensions, $Y \cdot dp - X \cdot dr + dc$ in the declinations.

From the above value for dp we see that the meridian observations gave a scale-value which agrees very closely with that obtained from the heliometer places; the largest effect that dp has on either coördinate of any star is only about o''.o2. On the other hand the value of dr, or the change in the orientation constant is quite large, corresponding to a correction of about o''.20 in the coördinates of outlying stars. The meridian observations which we used to determine the orientation of the group, were also employed by Schur for the same purpose, and were found by him to give results which practically agreed with those obtained by an independent method. As we have adopted Schur's proper motions for the comparison stars, to reduce their places to the epochs of the plates, we can only conclude that the somewhat large value of dr is due to the fact that the relative positions of these stars with respect to the rest of the group have been differently determined by the photographs on the one hand, and the heliometers on the other. This explanation is borne out by the comparatively large values of the corrected differences for the comparison stars, numbers 4, 5, 15, 40 and 44.

The large value for dk, or the systematic correction in declination, was to be expected. We have already remarked (see page 236) that the proper motions used for the comparison stars were not derived by Schur from the direct differences between the two heliometer determinations of the places of these stars, but that systematic corrections,

+ 08.0003 and - 0".039

were added to the proper motions in right ascension and declination respectively. Hence we must expect the photographic places to differ from those of the heliometer for the epoch of 1875.0, by

+ 0".071 and -0".612,

the proper motion having been used for an interval of 15.7 years. These corrections agree quite well with the values of dk and dc respectively, as obtained above.

Orientation by Trails. Scale-Value.

An independent method for orienting a stellar photograph is furnished by the "trails" or third images of some of the brighter stars. The Rutherfurd photographs previously reduced depend upon this mode of orientation, and the present research offers an admirable opportunity for testing its accuracy. Four trails have been measured and reduced on each Præsepe plate, and the resulting values of the orientation corrections were compared with the results obtained from a comparison with meridian observations, and also with those obtained with the use of the heliometer places. On Plate II the trails were too faint to admit of measurement, and on Plate V they were missing altogether.

The trails were measured in a different manner from that used for the other images. The plate was first set in the position which it occupied when "y direct" had been measured for the stars, and the micrometer was set and read on the east image of a star whose trail was to be measured. Then, without touching the microscope, the plate was moved along the cylinder till the corresponding trail came into view. This was always possible because the plate had been approximately oriented when first set in the machine. Two readings were made upon the trail and the plate was then moved back to the east image, which was read a The same operations were gone through for the second time. west image, and the mean of all the readings on the images was subtracted from the mean of the readings on the trail, thus giving the offset in declination by which the trail differed from the middle point between the two images. All the above operations were repeated in the opposite position of the plate, namely that corresponding to "y reversed," except that in the latter case the mean of the readings on the trail was subtracted from that for the images, so as to get the same sign for the offset as before. Each trail was thus measured by two observers separately, so that in all, sixteen readings were made on each trail, and eight upon each of the images. The resulting offsets are tabulated below in millimetres.

Star. Plate.	15.	22.	23.	27.	31.	37.
I III IV VII VIII IX	0443 0676 0535 0772 1054 0850	0422 0766	0193 0404 0312 0499 0718 0568	0398		+.0183 +.0070 0070

TRAIL MEASUREMENTS.

The distance from each trail to the middle point between the corresponding images was measured approximately as follows, being practically the same for all the stars upon a plate :

> Plate, I III IV VII VIII IX s, 35.0, 35.1, 35.0, 39.3, 48.1, 39.4 millimetres.

We shall now consider what corrections must be applied to the above offsets in order that the true orientations of the plates may be computed from them.

Instrumental Corrections. The only correction of this kind is that for rotation, the data for which have already been given in Table II. Using the same notation as before the correction to the offset is

-s. i. sin 1"

which is the same for all four stars. Having applied this connection, the offset may now be converted into seconds of arc by multiplying by the approximate scale value, 52.87.

Transformation Corrections. For the present purpose it will be convenient to use Ball and Rambaut's formulas quoted on page 238, in which $X \sec \delta_0$ and Y appear in the second members instead of $\Delta \alpha$ and $\Delta \delta$. We need only the second of these formulas :

$$\Delta \delta - y = -\frac{1}{4} (X \sec \delta_0)^2 \sin 2\delta_0 - \frac{1}{3} Y^3 - (X \sec \delta_0)^2 Y$$

For the trail, $X \sec \delta_0$ is diminished by

$$z = 52.87 \cdot s \cdot \sec \delta_0$$
,

while Y remains practically unchanged. Hence the correction to ' the offset is,

 $+ \frac{1}{4} \sin 2\delta_0 \cdot z \cdot (z - 2X \sec \delta_0) + z \cdot (z - 2X \sec \delta_0) Y$

Refraction Corrections. The trails were taken somewhat later than the principal images of the group, and as the zenith distance

of the Rutherfurd Photographs.

changed in the interval, the refraction-coefficients will also be changed. Denoting by M_y' and N_y' what these coefficients be come for the trails, we have the correction to the offset,

$$M' \cdot z + (M_y - M_{y'}) X \sec \delta_0 + (N_y - N_{y'}) Y$$

The first term is constant for all four stars, and the two remaining terms are small. To calculate M'_y and N'_y we must know how much the hour angle has changed in the interval between the exposures for the principal images and that for the trail. As each of the former lasted six minutes and as the exposure for the trail was much shorter, we may safely adopt seven minutes of time as the change in the hour-angle. M'_y and N'_y may then be calculated with sufficient accuracy by interpolating in Table VII.

After these corrections have been applied it will be convenient to transform the offsets into position angles, which may be done by the formula

$$p = 270^{\circ} + \sin^{-1} \left\{ \frac{\text{offset}}{z \cdot \cos \delta_0} \right\}$$

Precession, Nutation and Aberration. Formulas for correcting position angles for these were deduced in convenient form by Bessel*; let

$$a' = 20'' \sec \delta_0 \sin a_0$$
$$\beta' = \sec \delta_0 \cos a_0$$
$$\gamma' = \tan \delta \cos a_0$$
$$\delta' = \tan \delta_0 \sin a_0$$
$$A, B, C, D = \text{Bessel's star-numb}$$

= Bessel's star-numbers, tabulated for each day in the year in the ephemerides.

The true position angle at the beginning of the same year is found by adding to the observed position angle the correction,

$$(-Aa' + B\beta' + C\gamma' + D\delta')$$

Then to reduce this to beginning of another year we add

+ 20¹¹.06 sec
$$\delta_0 \sin a_0 \cdot t$$

where t is the integer corresponding to the difference of the years, and must be considered positive if we are reducing an observation to a later year than that in which it was made.

As an example of the reduction of trail measurements, I have set down the calculations in detail for the trail of Star 23, Plate I.

* "Astronomische Untersuchungen " Vol. I., pg. 202.

Offset,	— 0.0193	millimetres
Rotation Corr'n.,	+0.0005	
	-0.0188	
In arc,	— o′′.99	
Transf. Corr'n.,	+ 1 .75	
Refraction	+ o .24	
Corrected offset	+ 1".00	
Position Angle,	27	70 + III″.9
$-(Aa'+B\beta'+C\gamma)$	$(+ D\delta'),$	+ 2.6
20.06'' sec $\delta_0 \sin$	$a_0 \cdot t$,	+ 84 .0
True Position An	gle, 27	'0° + 198''.5

Consequently we have from this star,

r = + 0.000963

Similar calculations for all the trails gave the following results in which r has been multiplied by 10⁶ throughout.

Orientation by Trails. Values of $r \times 10^6$.

Star. Plate.	15.	22.	23.	27.	31.	37.
I III IV VII VIII IX	+954 +334 +851 -128 +122 -360	+186 +152	+963 +390 +777 	+118	+840 +288 +757 -52 +113 -248	+873 +706 -254

Taking the mean for the four stars on each plate and setting down again the values of r previously obtained by comparison with the meridian observations, we have,

	Orientation by Trails.		Orientation by Meria. Obs.	
Plate I	+0.0	000908	+ o.	001054
III	+	2 82	+	409
IV	+	773	+	1435
VII	—	34	—	35
VIII	+	1 2 4	+	211
IX	-	301	-	326
Means	+	292	+	458

In comparing these it will be remembered that a difference of 0.000100 corresponds to about 0''.20 in the coördinates of the outlying stars of the group. The results are decidedly adverse to

the accuracy of this mode of orientation, especially as a comparison with the heliometer places indicates a further correction of

+ 0.000098

to the orientations obtained by using the meridian places. T! large discrepancies are probably due to jarring of the plate durige exposure, caused by stopping and starting the clock-work several times; the large difference for Plate IV admits of no other obvious explanation.

Let us now examine the scale-values of the different plates. The values of p given at the beginning of Section V include aberration and temperature effects. Formulas for the former correction are thus given by Bessel :*

$$\gamma = -(\cos \delta_0 \sin a_0 + \tan \omega \sin \delta_0)$$

$$\delta = +(\cos \delta_0 \cos a_0)$$

Then the true distance is found by adding to the observed distance s,

$$-s(C\gamma + D\delta),$$

C and D being as before, the Besselian star numbers.

We may also correct the values of p for the temperature at which the plates were measured by adding

$+ 0.000017 (T - 65^{\circ}),$

T being the temperature in Fahrenheit degrees at which the plate was measured, given in Table II. This expression is easily derived from the value of v on page 223. Corrections for the temperature at which the plate was exposed ought also to be applied, but sufficient data to establish a connection between this quantity and the scale-value are lacking. After a greater number of Rutherfurd's photographs have been reduced we may have more definite information on this point.

The true scale-value S (so far as it can be obtained without the last correction), is given thus,

$S = 52''.87 \ [1 + p - C\gamma - D\delta + 0.0000017 \ (T^{\circ} - 65^{\circ})]$

The following table gives the corrections and the resulting scale value for each plate. The corrections for temperature are very small and might well have been neglected. The last two columns give the readings of the thermometer attached to the telescope and of the "focus," which have been copied from Table I for convenience of reference.

* "Astronomische Untersuchungen," Vol. I, page 208.

Plate.	Cor. for Aberration.	Cor. for Temp.	Corrected Scale-Value.	Tel. Therm.	Focus.
I II IV V VII VIII IX	0.000099 99 100 98 99 99 99 98	$ \begin{array}{c} 0.000000 \\ + & 2 \\ - & 3 \\ + & 4 \\ + & 3 \\ - & 2 \\ - & 5 \\ - & 2 \end{array} $	52.8701 52.8715 52.8712 52.8760 52.8788 52.8827 52.8831 52.8840	$+58^{\circ}$ 58 53 53 48 58 58 48 58 48 48	8.4 8.4 8.4 7.8 7.7 7.7 7.8

SCALE-VALUE.

The mean of the scale-values is

5211.8772

and if we adopt the correction of + 0.000009 as indicated by comparison with the heliometer places, this becomes

5211.8776.

However, either of these must still be regarded as only an approximate value, since the separate values for the different plates, as given above, vary in a way that cannot be fully explained by a connection with the readings either of the telescope thermometer or of the "focus."

The above investigations on the orientation and on the scalevalue lead to the same conclusion; it will usually be better to determine all the constants of a plate by comparing the measures of some of the stars with their positions as known through meridian observations or otherwise, than to attempt to reduce them by means of a predetermined scale-value and orientation. In any case it is necessary to appeal to such known positions to determine the values of k and c, or the absolute place of the group in the sky. The positions of two stars are theoretically sufficient to determine all four constants, but in most cases it will be possible to find enough stars to eliminate errors of observation to a large extent.

In conclusion, I wish to acknowledge my indebtedness to Messrs. Kretz and Hays for assisting me in the measurement of the plates, and to Professor Jacoby, who has kindly explained to me the methods used by him in the measurement and reduction of stellar photographs, and who has also suggested some improvements in the paper in reading over the proofs. Finally I desire to express my thanks to Professor Rees, Director of the Observatory, for the interest he has shown in my work, and for securing its publication.

Note on Refraction Formulas for Photographic Plates.

Formulas for correcting the measured rectangular coördinates of a star upon a photographic plate for refraction, may be easily derived from the well known general formulas of Bessel. On page 166, Vol. 1. of his "Astronomische Untersuchungen" he gives the following corrections to the differences of right ascension and declination:

$$\Delta (a'-a) = s \cdot k [\tan^2 \zeta \cos (p-q) \sin q - \tan \zeta \sin q \tan \delta_0 \cos p + \sin p] \sec \delta_0$$

$$\Delta (\delta'-\delta) = s \cdot k [\tan^2 \zeta \cos (p-q) \cos q + \tan \zeta \sin q \tan \delta_0 \sin p + \cos p]$$

Substituting

$$X = s \sin p$$

$$Y = s \cos p$$

$$G = \tan \zeta \sin q$$

$$H = \tan \zeta \cos q$$

we obtain

$$\Delta (a' - a) = k X \sec \delta_0 (I + H^2) + k Y (G - \tan \delta_0) H \sec \delta_0$$

$$\Delta (\delta' - \delta) = k X (G + \tan \delta) H + k Y (I + G^2)$$

These formulas become identical with those of Professor Jacoby when we change k into β in order to allow for the increased refrangibility of photographic rays.

One point in the above deduction deserves mention; the quantities δ_0 , etc., were intended by Bessel to be the means of corresponding quantities for the two stars whose distance along the arc of the great circle joining them has been measured. We have treated them as though they referred to one end of that arc; however, this merely amounts to neglecting terms in the second and higher powers of s, which may be done for most photographic plates.

If we omit the middle term in each bracket in Bessel's formulas we obtain the formulas given by Professor Turner; the omission of these terms, as has been repeatedly pointed out, corre-

ANNALS N. Y. ACAD. SCI., X., June, 1898-18.

sponds to a rotation of the axes, and is, therefore, of no importance when we determine the constants of a plate by comparing the measured coördinates of some of the stars with their known places. Turner's formulas are

$$\Delta X = kX \cdot (\mathbf{I} + H^2) + kY \cdot GH$$

$$\Delta Y = kX \cdot GH + kY \cdot (\mathbf{I} + G^2)$$

These formulas may be simplified when we use the above method for determining the constants, as I pointed out in the Astronomical Journal, No. 430; rejecting so much of the correction for refraction as may be regarded as either an orientation correction or a scale-value correction, we have remaining

$$\Delta X = kX \cdot (H^2 - G^2)$$
$$\Delta Y = kX \cdot 2 GH$$

These formulas might have been used for the reduction of the Præsepe plates, but as we wished to know the true orientation and scale-value for each plate, extra corrections to these constants would have been necessary. Only four of the comparison stars used need corrections for refraction; so that in the present case nothing would have been gained by the use of the last formulas. When, however, the number of comparison stars is greater, or when we do not care especially to know the true orientation and scale-value of a plate, these formulas will save some labor.

GENERAL INDEX TO VOLUME X.

Names of authors are in heavy face type. Generic and specific names in *italics*.

PAGE	PAGE
Aberration; correction of distances	Begoniaceæ; stipules in, Clos, . 12
for Table III,	Belopolsky; ref 159
Adanson; ref., Clos.,	Belt; ref. note 41
Aesculus : bud scales in, Gobel. 16	Bentham and Mueller: note 41
Agardh, J. G., on stipples, 6	Bessel: refs 159, 241, 283, 285
Agrimonia : stipules in	Besselian day-numbers : logs of
Agrimonia striata Michx, embry-	59, 161
onic leaf forms in 42 43	Retulaceze : hnd scales in Henry, 6
Ailanthus alandulosa Desf leaf de-	Retulites : stimules of Lesa 90
velopment in 30	Bischoff G W : on stimules 5
Althonia filiformie Petit leaf de-	Blastomeres : dev of isolated 50
velopment in	isolation of Assidian 52
American Enha orige day num	Plastula : complete 55
here from 50 161	Bastura; complete
during the stimular in Decol 7	Bolancal Gazette, quoteu, Hor-
Angiospermae; stipules in, Regel, 7	
common origin oi, 25	DRADLEY 3077;" RUTHERFURD
relating to Gymnospermæ, 23	PHOTOGRAPHIC MEASURES OF
primitive plant,	THIRTY-FOUR STARS NEAR, . 161
Angles, measures of (Bradley 3077)	General data, Table, 163
Table VI, 169	Corrections, Tables, 164-7
Araceæ, leaf development in,	Results, Tables, 168-9
petiole in, \ldots 33	Mean results, Table, 186
Aralia racemosa L. petiole, , 32	Proper motion, Table, . 184–5
Arisæma triphyllum (L.) Torr. do. 34	Catalogue of stars, Table, 187
Argelander; on "Bradley 3077," 162	Bradley; observations of, 236
Artemisia vulgaris L.; leaf dev. in, 31	Braun; ref. on stipules, 10
ASCIDIAN HALF-EMBRYO, THE,	Brongniart, Ad.; quoted on stip-
C rampton, 15	ules, Trecul, 10
Ascidian egg; blastomeres of, . 50	Bryophyta; relation to Pterido-
Ascidiella ; $\frac{4}{8}$ embryo, 53	$phyta, etc., \ldots 23$
$\frac{8}{16}$ embryo,	buds; leaf-buds; primitive leaf
Aspidiophyllum; basilar append. of 20	forms in,
Astaix: on stipules	formation of, Linnæus 3
Aster undulatus L. leaf. dev. in . 31	kinds distinguished. De
Asterophyllites : leaf sheath in.	Candolle 45
Vuillemin. 17	in Figus and Magnolia 5
Authors : review of on stinules . 3	in Rosacez, 5
Auwers, ref. 64, 71, 115, 148, 159	bud-scales: Agardh, 6: Rossman.
	11 · Gobel 16
Balfour F. M : ref 95	Burnham: ref
Ball : ref 150	Durinkun, 100, 100
Rantisia tinctoria (L.) R. Br. Loof	California · Platanue Lesa 10.90
der in 20	Comphell: rof
advato stipulos in 41.9	Candolle De: on stinules 24 10
Remarks D , rof	Candone, De; on supures, . 5-4, 10-
Danurun, D.; rei	11, 15-10, 27

PAGE	PAGE
Carrifoliaceze : stipules in	Cucurbitace: Listiboudois
Castle W E : ref $52-3$	Kirochleger 8
$\mathbf{Castre, W. L., ret., \dots, ret.}$	Theories stated Close 10
Cauver, D.; on supmes, 13-15	Theories stated, Clos, 10
Cephalanthus occiaentalis L., stip-	<i>Cuputferæ</i> ; bud-scales in, Henry, 6
ules in, $$	CYGNI; RUTHERFURD PHOTO-
Chabry ; ref., $50, 53-4$	GRAPHIC MEASURES OF SIXTY-
Characeæ: relation to Pterido-	FIVE STARS NEAR, Davis, 58
phyta, etc., 23	PARALLAX OF 611 CYGNI. DE-
Chauvenet: ref 115	DUCED FROM RUTHERFURD
Chrussenlenium : seales of rhizomes	PHOTOGRAPHIC MEASURES 193
in Ochol 17	Character atimples in 22 4
111, Grobel,	Cyperaceæ; supules III,
Cistaceæ; stipules in, Clos, 10, 12	$Cosson, \ldots \ldots 12$
Cleavage of blastomeres, 53	
Cliffortia graminea L., stipules in, 44	Dahlia; nodal girdles in, Haus-
Clos, D.; on stipules, \ldots 10-16	tein, 11
ref., 45	Daphne mezereum L, buds of, DeC., 4
Colomb, G.: on stipules. 17-18	Darwin, Charles: quoted, note, 25
Comarum valustre L leaf dev. in. 32	Davis H S : RUTHERFURD PHO-
Comparison stars 193 137	TOCDADUIG MEASURES OF SIX.
Comparison stars,	TV. FIVE OT A DO NEAD GI OVONT EQ
Compositie, lear dev. III,	TY-FIVE STARS NEAR OF CYGNI, 50
Comptonia peregrina, stipule of, . 45	PARALLAX OF OF OYGNI,
Constants of photographic plates,	ETC.,
$Præsepe \text{ Group, } \dots $	THIRTY-FIVE STARS NEAR
Coördinates; probable error in	"BRADLEY 3077,", 161
measurements,	Davis, Mrs. H. S., ref 153
Corvlus: from Eocene, note 27	De Candolle: on stipules, 3-4, 10-11,
Corrections : (<i>Cuani</i>) Distance	15-16, 27
Measures $5961-627964-5$	Dentaria · scales of thizomes in
of Position angle Measures	Cohol 17
	Deutrin , stimples in 45
	Deutzia; supules III, 45
or orientation variation, .	Devonian Crategus; Lesq., 20
	Dicotyledons : relation to Mono-
Tangent, 60, 79	cotyledons, etc., \dots \dots $23-4$
("Bradley 3077") Scale va-	Dipsacus; nodal girdles in, Elins-
riation,	tein, 11
orientation variation, , 162, 184	reversion toward Monocot., 46
refraction	Distance Measures. 60, 80, 125-7, 168
precession, etc., 167	corrections of 59 61-2 79
Tangent 167	Diron: Alex onstinules 14
(Prosene Group) Instru-	Driesch H: ref 50 51 53-6
mental 916 95 980	Duchartre: on stimules 11
transformation 029 0 090	Ducharine, on supplies,
transformation, 230-9, 200	Du Petit-Thouars, ret 15, 10
refraction, $ 239-40, 280$	Dutany, G.; on supules, 13
precession, etc., 241, 281	Duval-Jouve, J.; do., 13
aberration,	
scale value,	East India; Magnolia fuscata Andr.,
Cosson, E.; on stipules, 12	Meehan,
Crampton, Henry E.; THE As-	Echinoderms ; development in. 26
CIDIAN HALF-EMBRYO 50	Eggs: Ascidian
Cratægus : stipules of. Lesa. 20	Ctenophore, 51
Cretaceous : leaf-forms 27	Ciona Molaula 59
Cross-fertilization of errors 51	eross fertilization of 51
Cruciforn , stimles in Krouse	animal series among
Oracijera; supules III, Mlause, . 8	Tichler A Miles among, 51
Clenophore egg; partial dev. or, . 51	Elemer, A. W.; on stipules, 12-22
Cucuronaceæ; tendril of, as leaf of	EMBRYO; THE ASCIDIAN HALF, 50
axillary bud, \ldots 45	specialized environment of, 26
De Candolle, 4	production of half-embryo, 50
Lindley , 5	complete,

PAGE	PAGE
Embryology; evidence of, on stip-	Jacoby, Dr. H.: ref., 58, 123-4, 224,
ules 25-6	240 242 275
Engler and Prantl ref	Tohnson : ref
Focone : Complex from note	Torday Dr W. rof 66 119
Eucene, corgus from, note 27	Technick and the structure in the structure of the struct
Equisetum; lear sheath in,	Jugianaaceae; stipules in,
$Colomb, \ldots \ldots \ldots \ldots \ldots 18$	Juncaceæ; ligule in, Duvai-Jouve, 13
Erigeron annuum (L.) Pers., leaf	Jussien, Adrien; on stipules, . 9
dev. in,	
Exposure of Rutherfurd Plates;	Kansas : Betulites from, 20
data	Kaptevn: ref
······, · · · · · · · · · · · · · · · ·	Kirschleger, F.: on stimules 8 15
Fabre: on stimules 10	Kofoid C : ref
France stimulas in 20	Krauco G : on stimulos
Figure cohron in Colomb 17	Kranfold M , on stipules, 0
Ficus; ochrea in, Colomb 17	Kromeid, M.; on supules, 17
buds in, DC., 5	Kutzing; quoted on do., 15
Flint; ref., 160	
Foliar buds; De Candolle, 4	Labiate; scales of rhizomes in,
Foliola caduca; Malpighi,	Gobel, 17
Fragaria: stipules in	Lamarck: quoted on stipules 15
Francke Martin : on stinules 22	Lamina, development of in leaf 29
Fuleral huds : De Candolle 5	Lamp · ref
Function budds, De Candone,	Lamp, ICI.,
r un miniciliar Gatalog, 161., 02	Latamie, 1 iulanus, 1059., 20
G 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Larva, \ldots \ldots \ldots \ldots \ldots $$
Galum; stipules in, \ldots 46-8	Lathyrus Aphaca L., stipules in, . 38
Gasparini; quoted on stipules, . 10	Leaf; assimilative function, 24-5
Geology; evidence of, in stipules,	protective function,
24, 27	primitive,
Geraniacex: stipules in, Clos. 10, 12	reduced
Gobel: ref	three main types of devel-
on stinules 16	opment 29-48
Craminar stimules in 32-4	relation of stimules to
Correction 10	Tranfold 17
Coon.9,	origin of, vinblemin, 17
Gray; Asa, quoted 13	Leguminosæ; stipules of, 40-41
Gymnospermæ; relation to Angio-	bracts of, Clos, 10
spermæ, 23	Le Maout; quoted on stipules, . 11
	Ligule; origin, support, ve-
HALF-EMBRYO; THE ASCIDIAN, 50	nation,
Hall, ref.,	corona of Silene as 46
Haustein: J., on stipples. 11	conclusions relating to 48
Heliometer: results compared with	see review of literature on
nhotographic do 275-6 278	stimles 3
Honry: A on stimules	Lontandra Virginiga (I) Nutt
Honglows, Dor Coorgo on stin	stimples in 46
relisiow; Rev. George, on sup-	Tomodeus amilata Michar atimulos
ules,	Lespeaeza capitata Michx. supules
rei.,	¹ n ,
Herting; ref., 50	Lesquereux, L., on stipules, 20
Hicoria; stipules in, 39	Lestiboudois, Them; on stipules, 6
H ilburg; C ., on stipules, 15	reference, 45
Hollick; Arthur, on stipule, 20	F. J. , quoted, 11, 16
ref.,	Lindley, John; on stipules, 5, 11, 16
Hooker; quoted on stipules 15	Link; quoted on do., 10, 11
Humulus Lupulus : stipules in . 48	Linnæus, Carolus : on stipules, 3, 16
Hudroctules : stimules 36 45	Liriodendron: primitive leaf in
1940 00 900, Bupuros,	seedling 96
India Fast · Magnolia fuscata	nodal girdles of Haustoin 11
Andr 19	abnownal loss of Hal
Allur.,	liel-
Isoles: Ingule of	$11CK, \ldots 12$

DACE	DICE
Lividendron: hud scales in Gobel 16	Ochros of Platanue Honry 6
Landenaron, bud scales III, Gobel, 10	ochica, of Futures, Henry, 0
	of Stellate, Regel,
Logarithms; Besselian day-num-	Onagraceæ; scales of rhizomes in,
ber, $\dots \dots \dots$	Gobel,
Lubbock, Sir John; on stipules,	Ophioglossace ; stipule of, 24
19, 21	Orientation ; by Trails, 279
ref.,	variation : connection of, 67-70
,	106-8
Magnolia · stipules of Meehan 13	Osmundaceze : stimule in
ochrea in Colomb 17	oomantaliette, supuro III, •••• Si
M alayor T atimples of	Palaantalaan anidanaa an atin
M. glauca L., supules of,	rateontology, evidence on sup-
LUDDOCK,	ules, $$
Malphigi, Marcello; on stipules, 3	Palms; ochrea of, \ldots 36
Malvacex; stipulium of, Clos, . 10-13	PARALLAX OF 61 ¹ CYGNI, DE-
Marrattiacex; stipule of, 24	duced from the Rutherfurd
Martin, Miss Ida; ref., 58	PHOTOGRAPHIC MEASURES, . 123
Mass. : New Bedford 51	various values of, 154-5, 157-9
MEASUREMENT AND REDUCTION	correction of distance meas-
OF THE RUTHERFURD PHOTO.	pres for 64-5
OPADRIC PLATES, DR TSTDE	correction of orientation
Choup 100	variation for 67 106
Moshen Theman an stimler 10	Develler coefficients limiting
Meenan, Inomas; on supules. 10	Parallax coemclents; finiting
Melilotus alba Lam.; stipule in, . 34	values of,
Mercklin, C. E.; on stipules 8, 16	equations, 123-5, 129-44, 145-7
Meyer, Tobias; observations of, 236	Parlatore; quoted on do., 15
Mirbel; ref. on stipules, 11	Parthenocissus; stipules in, 45
Molyula manhattensis, 51	Pastinaca sativa L., sheathing peti-
Mollugo verticellata L., stipules in. 46	ole of
Monocotyledones : relation to Di-	Pax. F.: quoted on stipules, note, 13
cotuledones, etc. 23-4	Paver: do., 15
sheathing neticle in 33	Petals formation of Meehan, 13
stimules in De Candolle 4	Peters : ref 159
Couvet 13	Petioles : development of 29
Morgon: ref 51	of Composition 31-9
Muellor and Bontham ref note 41	choothing in Managatula
Munice , observe of stimples in 45	daman 22
<i>Ingrica</i> ; absence of supures in, . 45	
NT - 1 1 1 1 00	conclusions, 40
$Naradace $; ligule in, \ldots 33	buds, De Candolle, 4
stipules in, \ldots 34	appendages to, Hollick, . 20
Bischoff, 5	Phalaris arundinacea L.; ligule, in, 34
NATURE AND ORIGIN OF STIP-	Phallusia; ref. Driesch, 55
ULES; THE, Tyler, \ldots $1-22$	mammillata, eggs of, 50
Naudin; ref. on stipules, 10	Photographic plates; Refractive
Nelumbium; stipules in, Tricul, . 9	formulas,
New Bedford, Mass.: Molaula man-	Phyllodium, related to stipules, . 41
hattensis, 51	Pisum sativum : stipules in, 38
Newberry: J. S., ref.,	Platanus : ochreate stipules of 36
Nodal girdles of Stellate Haustein 11	ochrea of Henry, 6
Nomenclature of cleavage 51	Cclomb 18
romenerature or eleatinge, or	fossils of Hollick 20
Oake · stinnles in 20	nodal girdles in Haustein 11
Ochrop of Polygonggon 29 44	hegilar expansions of
of Dalma	Word 10
of Palms	vvara,
relation to ligule and peti-	Supures in, Lestid., 6
$01e, \ldots , 48-9$	Fleades, Rutherlurd photographs
of Polygonum, De Candolle, 4	01,
Bischoff, \ldots 5	Polygonum; ochrea of 33
Colomb	leaf development in 35

PAGE
Polygonum: stipule in
Colomb 18
Destronomation 50-1
Determenter enterne T loof dor in 25
Potamogeton crispus L., lear dev. In, 55
stipules in. Corson,
Potentilla fruticosa L., stipule in, 44-45
PRÆSEPE GROUP; MEASURE-
MENT AND REDUCTION OF THE
RUTHERWIPD PHOTOGRAPHS 189
itomentono inoroditarino, 100
$expositive data, \dots \dots$
measurement, \dots 192
daily records,
recording sheets,
instrumental corrections, 216-25
corrected coordinates 226
constants of the plates, 941.6
constants of the plates, . 241-0
catalogue of stars,
heliometer results com-
pared,
orientation by trails 279
Prantl and Engler: ref 45
Decession - connection for 167
Precession; correction for, 107
Primitive leaf, \ldots \ldots \ldots $26-9$
Pritchard , ref., 159
Proper motion: correction of orien-
tation variation for
Projection errors measurement of
Drogono Crown 005
Præsepe Group,
Protective functions of leaf, . 24, 25
Prunus; obscure venation of, 42
bud scales in, Gobel, 16
Pleridophyta: relation to Sperma-
tonbuta etc 23
Dumus Malus I stimula in 49
ryrus matus L., supute III, 42
Quercus rubra L., lamina in, 39
bud scales in. Gobel 16
, and sources 12, are son, et al.
Bombout 1 rof 160 920 40
Rambant, 101, 100, 239-40
Kanunculaceæ; lear development
in, \dots \dots \dots \dots \dots \dots $34, 46$
Ranunculus aquatilis L.,
Ranunculus bulbosus L.,
Rees' J K ref 58
Recording sheets star measure-
100 miles star measure-
urements,
Reference Books; Parallax of 61 ²
Cygni, 159
Refraction: means of,
corrections for
formulas for photographic
plotos of photographic
plates,
Regel; E., on stipules, 7
Repsold ; ref.,
Review of lit. on stipules
Rhizomes: scales of Gobel 17
Rhizomes; scales of, Gobel, 17 Rhodotymus: stipules in 45

PA	GE
<i>Richardia</i> ; venation of ligule in,	33
sheathing netiole in	34
Dight according and declination .	01
Right ascension and decimation;	
probable error in, 2	273
Rosa : highest adnation of stipules	
in Af	1 2
111,	-0
Rosa humilis Marsh., stipules in, .	43
Rosa bracteata Lindley.	5
Rosacen · leaf division in	39
the succes, real division in,	4.4
stipules in, $$	44
buds in, De Candolle,	5
adnate stinules in Lestih	6
hands of salar in Oler	10
bracts of calyx in, Clos, .	10
Rossman ; J ., on stipules,	11
Rotation corrections	220
Deurs With a pof	EC
$\mathbf{ROUX}, \mathbf{vv}., \mathbf{rel}., \ldots \ldots \mathbf{s00},$	00
Rubia tinctorium L., stipules in, .	48
Rubiaceæ, do., 39.	46
Pubuo ossidentalio I stimulos in	10
Luous occuentatis L., supures In,	44
villosus Ait., do.,	42
Rumer: leaf development in.	35
Punnia : do	35
$Luppin$; $uo., \ldots \ldots \ldots$	00
RUTHERFURD PHOTOGRAPHIC	
MEASURES OF SIXTY-FIVE	
STADE NEAD 61 CYCNI	58
Dians MEAR OF OTONI,	00
RUTHERFURD PHOTOGRAPHIC	
MEASURES OF THIRTY-FOUR	
STARS NEAR "BRADLEY 3077 "	161
	LOT
Duthasfurd Tamia Mr.	
Rutherfurd, Lewis M.; refs.	
Rutherfurd, Lewis M.; refs. 58, 60, 1	189
Rutherfurd, Lewis M.; refs. 58, 60, 1	189
Rutherfurd, Lewis M.; refs. 58, 60, 1	189
Rutherfurd, Lewis M.; refs. 58, 60, 1	189
Rutherfurd, Lewis M.; refs. 58, 60, 1 Sachs; ref. on stipules,	189 15
Rutherfurd, Lewis M.; refs. 58, 60, 1 Sachs; ref. on stipules, Salix: stipules in. Lindley	189 15 5
Rutherfurd, Lewis M.; refs. 58, 60, 3 Sachs; ref. on stipules, Salix; stipules in, Lindley,	189 15 5 41
Rutherfurd, Lewis M.; refs. 58, 60, 5 Sachs; ref. on stipules, Salix; stipules in, Lindley, Sambucus; vestigial stipules in, .	189 15 5 41
Rutherfurd, Lewis M.; refs. 58, 60, 1 Sachs; ref. on stipules, Salix; stipules in, Lindley, Sambucus; vestigial stipules in, . Haustein,	189 15 5 41 11
Rutherfurd, Lewis M.; refs. 58, 60, 1 Sachs; ref. on stipules, Salix; stipules in, Lindley, Sambucus; vestigial stipules in, . Haustein, Lubbock,	189 15 5 41 11 21
Rutherfurd, Lewis M.; refs. 58, 60, 1 Sachs; ref. on stipules, Salix; stipules in, Lindley, Sambucus; vestigial stipules in, . Haustein,	189 15 5 41 11 21
Rutherfurd, Lewis M.; refs. 58, 60, 58, 60, 58, 60, 58, 60, 58, 60, 50, 58, 60, 50, 50, 50, 50, 50, 50, 50, 50, 50, 5	189 15 5 41 11 21
Rutherfurd, Lewis M.; refs. 58, 60, 58, 60, 58, 60, 58, 60, 58, 58, 60, 58, 60, 58, 60, 50, 50, 50, 50, 50, 50, 50, 50, 50, 5	189 15 5 41 11 21 40
Rutherfurd, Lewis M.; refs. 58, 60, 1 Sachs; ref. on stipules, Salix; stipules in, Lindley, Sambucus; vestigial stipules in, . Haustein, Sanguisorba Canadensis L., stipules in, Sassafras; leaf development in, .	189 15 5 41 11 21 40 30
Rutherfurd, Lewis M.; refs. 58, 60, 1 Sachs; ref. on stipules, Salix; stipules in, Lindley, Sambucus; vestigial stipules in, . Haustein, Sanguisorba Canadensis L., stipules in, Scabiasa; leaf development in, . Scabiasa; leaf development in, .	189 15 5 41 11 21 40 30
Rutherfurd, Lewis M.; refs. 58, 60, 58, 60, 58, 60, 58, 60, 58, 58, 60, 58, 60, 58, 60, 50, 50, 50, 50, 50, 50, 50, 50, 50, 5	189 15 5 41 11 21 40 30
Rutherfurd, Lewis M.; refs. 58, 60, 58, 60, 58, 60, 58, 60, 58, 60, 50, 58, 60, 50, 50, 50, 50, 50, 50, 50, 50, 50, 5	189 15 5 41 11 21 40 30 11
Rutherfurd, Lewis M.; refs. 58, 60, 1 Sachs; ref. on stipules,, Salix; stipules in, Lindley, Sambucus; vestigial stipules in, Haustein,, Sanguisorba Canadensis L., stipules in, Sassafras; leaf development in, . Scabiosa; nodal girdles in, Haus- tein, Scale-value; approx. of,	189 15 5 41 11 21 40 30 11 237
Rutherfurd, Lewis M.; refs. 58, 60, 1 Sachs; ref. on stipules, Salix; stipules in, Lindley, Sambucus; vestigial stipules in, . Haustein, Sanguisorba Canadensis L., stipules in, Sassafras; leaf development in, . Scabiosa; nodal girdles in, Haus- tein, Scale-value; approx. of, 20-4, 277	189 15 5 41 11 21 40 30 11 237 -84
Rutherfurd, Lewis M.; refs. 58, 60, 1 Sachs; ref. on stipules, Salix; stipules in, Lindley, Sambucus; vestigial stipules in, . Haustein, Sanguisorba Canadensis L., stipules in, Sassafras; leaf development in, . Scabiosa; nodal girdles in, Haus- tein,	189 15 5 41 11 21 40 30 11 237 -84
Rutherfurd, Lewis M.; refs. 58, 60, 1 Sachs; ref. on stipules, Salix; stipules in, Lindley, Sambucus; vestigial stipules in, Haustein, Sanguisorba Canadensis L., stipules in, Sassafras; leaf development in, . Scabiosa; nodal girdles in, Haus- tein, Scale-value; approx. of, corrections, 220-4, 277 Scale variation; correction of Dis-	189 15 5 41 11 21 40 30 11 237 -84
Rutherfurd, Lewis M.; refs. 58, 60, 1 Sachs; ref. on stipules, Salix; stipules in, Lindley, Sambucus; vestigial stipules in, . Haustein, Sanguisorba Canadensis L., stipules in, Sassafras; leaf development in, . Scabiosa; nodal girdles in, Haus- tein,	189 15 5 41 11 21 40 30 11 237 -84 61
Rutherfurd, Lewis M.; refs. 58, 60, 1 Sachs; ref. on stipules, Salix; stipules in, Lindley, Sambucus; vestigial stipules in, . Haustein, Lubbock, Sanguisorba Canadensis L., stipules in, Sassafras; leaf development in, . Scabiosa; nodal girdles in, Haus- tein,	189 15 5 41 11 21 40 30 11 237 -84 61 -17
Rutherfurd, Lewis M.; refs. 58, 60, 1 Sachs; ref. on stipules, Salix; stipules in, Lindley, Sambucus; vestigial stipules in, . Haustein, Sanguisorba Canadensis L., stipules in, Sassafras; leaf development in, . Scabiosa; nodal girdles in, Haus- tein, Scale-value; approx. of, corrections, Scale variation; correction of Dis- tance Measures for, Scale-division errors, Scale-division errors, Scale Trank The Peter	189 15 5 41 11 21 40 30 11 237 -84 61 -17
Rutherfurd, Lewis M.; refs. 58, 60, 1 Sachs; ref. on stipules, Salix; stipules in, Lindley, Sambucus; vestigial stipules in, . Haustein, Lubbock, Sanguisorba Canadensis L., stipules in,	189 15 5 41 11 21 40 30 11 237 -84 61 -17 190
Rutherfurd, Lewis M.; refs. 58, 60, 1 Sachs; ref. on stipules,, Salix; stipules in, Lindley, Sambucus; vestigial stipules in, Haustein,, Lubbock,, Sanguisorba Canadensis L., stipules in,, Scalevalue; leaf development in, Scalevalue; approx. of,, corrections,, 220-4, 277 Scale variation; correction of Dis- tance Measures for,, 10, Scale-division errors,, 216 Schlesinger; Frank, THE PRÆ- SEPE GROUP,	189 15 5 41 11 21 40 30 11 237 -84 61 -17 189
Rutherfurd, Lewis M.; refs. 58, 60, 1 Sachs; ref. on stipules, Salix; stipules in, Lindley, Sambucus; vestigial stipules in, . Haustein, Sanguisorba Canadensis L., stipules in, Sassafras; leaf development in, . Scabiosa; nodal girdles in, Haus- tein,	189 15 5 41 11 21 40 30 11 237 -84 61 -17 189 7-8
Rutherfurd, Lewis M.; refs. 58, 60, 1 Sachs; ref. on stipules, Salix; stipules in, Lindley, Sambucus; vestigial stipules in, . Haustein, Lubbock, Sanguisorba Canadensis L., stipules in, Sassafras; leaf development in, . Scalevalue; approx. of, Scale-value; approx. of, Scale variation; correction of Dis- tance Measures for, 10, Scale-division errors, 216 Schlesinger; Frank, THE PRÆ- SEPE GROUP,	189 15 5 41 11 21 40 30 11 237 -84 61 -17 189 7-8 34
Rutherfurd, Lewis M.; refs. 58, 60, 1 Sachs; ref. on stipules, Salix; stipules in, Lindley, Sambucus; vestigial stipules in, . Haustein, Lubbock, Sanguisorba Canadensis L., stipules in, Sassafras; leaf development in, . Scabiosa; nodal girdles in, Haus- tein, Scalevalue; approx. of, corrections, 220-4, 277 Scale variation; correction of Dis- tance Measures for, Scale-division errors, Schlesinger; Frank, THE PRÆ- SEPE GROUP, Schur; ref.,	$ \begin{array}{r} 189 \\ 15 \\ 5 \\ 41 \\ 11 \\ 21 \\ 40 \\ 30 \\ 11 \\ 237 \\ -84 \\ 61 \\ -17 \\ 189 \\ 34 \\ 37 \\ -84 \\ 61 \\ -7 \\ 83 \\ 34 \\ 37 \\ -84 \\ 61 \\ -37 \\ -84 \\ 61 \\ -37 \\ -84 \\ 61 \\ -37 \\ -84 \\ 37 \\ -84 \\ 61 \\ -37 \\ -84 \\ 37 \\ -84 \\ 37 \\ -84 \\ 37 \\ -84 \\ 37 \\ -84 \\ 37 \\ -84 \\ 37 \\ -84 \\ 37 \\ -84 \\ 37 \\ -84 \\ 37 \\ 37 \\ -84 \\ 37 \\ 37 \\ -84 \\ 37 \\ 37 \\ -84 \\ 37 \\ 37 \\ -84 \\ 37 \\ $
Rutherfurd, Lewis M.; refs. 58, 60, 1 Sachs; ref. on stipules, Salix; stipules in, Lindley, Sambucus; vestigial stipules in, . Haustein, Lubbock, Sanguisorba Canadensis L., stipules in, Sassafras; leaf development in, . Scabiosa; nodal girdles in, Haus- tein,	$ \begin{array}{r} 189 \\ 15 \\ 5 \\ 41 \\ 11 \\ 21 \\ 40 \\ 30 \\ 11 \\ 237 \\ -84 \\ 61 \\ -17 \\ 189 \\ 7-8 \\ 34 \\ 25 \\ $
Rutherfurd, Lewis M.; refs. 58, 60, 1 Sachs; ref. on stipules,, Salix; stipules in, Lindley, Sambucus; vestigial stipules in, Haustein,, Lubbock,, Sanguisorba Canadensis L., stipules in,, Scalevalue; leaf development in, Scalevalue; approx. of,, corrections,, 220-4, 277 Scale variation; correction of Dis- tance Measures for,, 10, Scale-division errors,, 216 Schlesinger; Frank, THE PRÆ- SEPE GROUP,, Schur; ref.,, 234-6, 27 Scirpus polyphyllus Vahl.; ligulein, Seedewick; Adam, ref, Seedling; primitive leaf-forms in,	189 15 5 41 111 21 40 30 111 237 -84 61 -17 189 $7-8$ 34 255 26
Rutherfurd, Lewis M.; refs. 58, 60, 1 Sachs; ref. on stipules, Salix; stipules in, Lindley, Sambucus; vestigial stipules in, . Haustein, Sanguisorba Canadensis L., stipules in, Sassafras; leaf development in, . Scabiosa; nodal girdles in, Haus- tein,	$ \begin{array}{c} 189\\ 15\\ 5\\ 41\\ 11\\ 21\\ 40\\ 30\\ 11\\ 237\\ -84\\ 61\\ -17\\ 189\\ 34\\ 25\\ 26\\ 24\\ \end{array} $
Rutherfurd, Lewis M.; refs. 58, 60, 1 Sachs; ref. on stipules, Salix; stipules in, Lindley, Sambucus; vestigial stipules in, . Haustein, Lubbock, Sanguisorba Canadensis L., stipules in, Sassafras; leaf development in, . Scabiosa; nodal girdles in, Haus- tein,	189 15 5 41 11 21 40 30 111 237 -84 611 -17 189 $7-8$ 344 255 266 244 38
Rutherfurd, Lewis M.; refs. 58, 60, 1 Sachs; ref. on stipules, Salix; stipules in, Lindley, Sambucus; vestigial stipules in, . Haustein, Lubbock, Sanguisorba Canadensis L., stipules in, Sassafras; leaf development in, . Scabiosa; nodal girdles in, Haus- tein,	$189 \\ 15 \\ 5 \\ 41 \\ 11 \\ 21 \\ 40 \\ 30 \\ 11 \\ 237 \\ -84 \\ 61 \\ -17 \\ 189 \\ 7 \\ -8 \\ 26 \\ 24 \\ 38 \\ 34 \\ 25 \\ 26 \\ 34 \\ 34 \\ 34 \\ 34 \\ 34 \\ 34 \\ 34 \\ 34$
Rutherfurd, Lewis M.; refs. 58, 60, 1 Sachs; ref. on stipules, Salix; stipules in, Lindley, Sambucus; vestigial stipules in, . Haustein, Lubbock, Sanguisorba Canadensis L., stipules in, Sasafras; leaf development in, . Scabiosa; nodal girdles in, Haus- tein,	$189 \\ 15 \\ 5 \\ 41 \\ 11 \\ 21 \\ 40 \\ 30 \\ 11 \\ 237 \\ -84 \\ 61 \\ -17 \\ 189 \\ 7 \\ -8 \\ 34 \\ 25 \\ 24 \\ 38 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15$
 Rutherfurd, Lewis M.; refs. 58, 60, 1 Sachs; ref. on stipules,, 58, 60, 1 Salix; stipules in, Lindley,, Sambucus; vestigial stipules in,, Lubbock,, Sanguisorba Canadensis L., stipules in,, Scabiosa; nodal girdles in, Haustein,, Scabiosa; nodal girdles in, Haustein,, Scale-value; approx. of,, 216 Scale-division errors,, 216 Schlesinger; Frank, THE PRÆ-SEPE GROUP,, Schur; ref.,, 234-6, 27 Schur; ref.,, 234-6, 27 Schur; ref., Adam, ref, Seedling; primitive leaf-forms in, Selaginella; ligule of,, stipules in,, Selaginella; ligule of,, Selaginella; ligule of,, Seringe; ref. on stipules,, 10, 11, Seward; A.C., ref. on do 	$189 \\ 15 \\ 5 \\ 41 \\ 11 \\ 21 \\ 40 \\ 30 \\ 11 \\ 237 \\ -84 \\ 61 \\ -17 \\ 189 \\ 7 \\ -8 \\ 34 \\ 25 \\ 26 \\ 24 \\ 38 \\ 15 \\ 24 \\ 38 \\ 15 \\ 24 \\ 38 \\ 15 \\ 24 \\ 38 \\ 15 \\ 24 \\ 38 \\ 38 \\ 24 \\ 38 \\ 38 \\ 38 \\ 38 \\ 38 \\ 38 \\ 38 \\ 38$

PAGE	PAGE
Silphium; nodal girdles in, Haus-	Trails ; orientation by,
tein	Trecul : on stipules 9, 11, 16
Smilar · tendrils of 36	Treveranus: ref. 11
Lindley 5	Trifolium pratense L. stipules in 44
St Hilpire	Turner Prof : ref 930-40 986
Thion I	Tunier, 1101., 1er., 209-40, 200
	Tussilago, supules in, Agaran, .
theories stated, Clos, 11	Tyler, A. A.; THE NATURE AND
Colomb,	ORIGIN OF STIPULES, 1
Socoloff; ref., 159	
Solidago juncea Ait.; leaf dev. in, 31	Umbelliferæ; leaf development in,
Spermatophyta; relation to Pterido-	32, 36
$phyta, etc., \ldots 23$	
Spergularia marina; stipules of,	Vaccinium; leaf development in, 30
Dixon,	Valeriana; nodal girdles in, Haus-
Staphylea trifolia L., stipules in 41	tein,
Stars : comparison	Variation : orientation, correc-
Stellatæ: stipules in	tions for
Linnæus 3	scale corrections for 61-2
Regel 7	Vascular hundles : deflection of 37
nodel girdle Haustein 11	Verbeng: nodel girdles in Hous
Stormworth K 924 5	toin 11
Ct Hilding Aug on stimulos	Thuman stimler in
St. Hilane; Aug., on supules,	Winer C H, rof
······································	Villes, S. H.; rel.,
Stoks; ref. on stipules, 10, 15	viola obliqua min; scipules in, . 32-42
St. Plerre, G.; rei. do., 16	Vills Labrusca L., stipules in, 45
Stipel, De Candolle, \ldots 3, 40–1	Von Baer's law, \ldots 25
STIPULES; THE NATURE AND	Von Moni, rei., on stipules, 11
ORIGIN OF,	Vullemin, P.; on stipules, 17
Review of literature per-	
taining to, 3	Ward; L. F., on stipules, 17, 19
synopsis of article, 2	ref.,
conclusions relating to, 48	Weismann; A., ref., 50
See authors' names, and ge-	Willoughbya scandens (L.) Kuntze;
neric and specific names.	stipules in, \ldots 45
Stipulium; Clos, 10-12	Wilsing; measures, 143, 152–3, 158,
Struve; ref.,	168
Sambucus Canadensis L., stipules in, 40	Wilson; E. B., ref.,
Suringa vulgaris L., leaf dev. in 30	Winnecke: ref.,
bud scales in. Gobel 16	Wood's Holl, Marine Biological
,,,,	Laboratory,
Tangent corrections 60, 79, 167	Wydler: ref. on stipules 15
Tassi: ref on stimules 10	Wyoming : Devonian of
Tendril · of Cucurbitacese 45	ingoning. Deronau og e e e so
De Candolle	Vanthium eninceum L. spines of 45.
Lindley 5	Transition openosum In, spines of, 40
Lestoboudoic 6	Vellowstone Valley · Platanue of
	Word 10.
Tortiony , loof forma in	waid, 19
The bid of the second s	Zone competions mean of E and
Inducirum polygamum Muni., 33-4	Zero corrections, mean of E. and
Regel, 8	W.,

292

ANNALS N. Y. ACAD. SCIENCES.

.

ANNALS N. Y. ACAD. SCIENCES.

•

NALS

· . ·

-

·

67 78

)

٢.

ANNALS N. Y. ACAD. SCIENCES.

1

4

B3

3

8

C61

16

•

C³

ANNALS N. Y. ACAD. SCIENCES.

·

•

•

.

.

LATE

Vol. X.

LYCEUM OF NATURAL HISTORY.

New york: PUBLISHED BY THE ACADEMY. 1898.

.

1997 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -

PUBLICATIONS

OF THE

NEW YORK ACADEMY OF SCIENCES.

[LYCEUM OF NATURAL HISTORY 1818-1876.]

The publications of the Academy at present consist of two series—The Annals (octavo) and The Memoirs (quarto). The Annals, which opened in 1824, contain the scientific contributions and reports of researches, together with the reports of meetings. The *Transactions*, in which the shorter papers and business reports have hitherto appeared, are now abolished and the matter appears in the Annals. The complete volumes of Annals will hereafter coincide with the calendar year, and beginning with the volume now in press will appear about April 30, August 31, and December 31.

The price of the **Annals** will hereafter be one dollar per part (three dollars per volume). By vote of the Academy, all publications will be sent free to members.

Subscriptions and inquiries concerning current and back numbers of any of the publications of the Academy should be addressed to the editor,

GILBERT VAN INGEN,

Columbia University,

New York City.

PRICES OF PUBLICATIONS.

Annals c	of the l	Lyceum	(Vols.	I.–XI.), .	•	per	• 7	/ol.,	\$5.00.
Proceedia	ngs "	**	(Vols.	I.—II.) , . .		66		66	5.00.
Trans. of	the A	cademy	(Vols.	I.–XVI.),		" "		66	5.00.
Annals	**	66	(Vols.	I.–X.),		"		6.6	6.00.
Memoirs	"	44	Vol. I.	, Part I.,					I.00.
Annals	46 L	46	Vol. X	I et seq., .					3.00.

CONTENTS OF VOLUME X.

I.—The Nature and Origin of Stipules ; Plates I—III. By A. A.	
	1-49
IIThe Ascidian Half-Embryo; Plates IV-V. By HENRY E.	
CRAMPTON, JR	50-57
III.—The Rutherfurd Photographic Measures of Sixty-five Stars near	
61 Cygni. By HERMAN S. DAVIS	58-122
IV -The Parallax of 61 ¹ Overni deduced from the Butherfurd Photo-	
The random of of ofghi, acaded from the fractionary random	00 100
graphic Measures. By HERMAN S. DAVIS 1	22-160
VThe Rutherfurd Photographic Measures of Thirty-four Stars	
near "Bradley 3077." By HERMAN S. DAVIS 1	61-187
VIThe Præsepe Group; Measurement and Reduction of the	
Rutherfurd Photographs By FRANK SCHLESINGER 1	89-286

IMPORTANT.

By resolution of the Council of the New York Academy of Sciences, the committee on library was authorized to remove from the Exchange List the names of libraries and institutions that issue no scientific publications; and to add to the list the names of one hundred societies that issue scientific papers.

In accordance with the above mentioned resolution institutions so dropped from the free list will cease to receive the future publications of the New York Academy of Sciences after the issue of Volume X. of the Annals. The series known as Transactions was discontinued with the issue of Volume XVI (1898).

A revised list of exchanges will soon be printed and sent to all on the present exchange list. Libraries and other institutions whose names do not appear on the revised list may then become subscribers to the new series of the Annals by payment of the fixed price of three (\$3.00) dollars a volume.

Beginning with Vol. XI. each volume of the Annals will coincide with a calendar year and will be issued in three parts.

Subscriptions and communications should be addressed to the Editor of the Annals.

GILBERT VAN INGEN, Columbia University, West 116th Street, New York City.

»1746®

