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ABSTRACT

This paper presents an elementary treatment of the first

order differential effects of the earth's oblateness on a

close satellite using the simple notion of a varied orbit.

The usual result of this approach is that the radial vari-

ation contains a secular term which is unbounded for infi-

nite time. The standard method of celestial mechanics for

removing this difficulty is to analyse the perturbed orbit

as an ellipse whose shape and space orientation are func-

tions of time. It is shown here that the secular term may

be avoided more simply by relating points on the varied and

unvaried orbits by a type of radial velocity correspondence

instead of the usual time correspondence, and by making

the varied orbit osculate at a latus rectum chord end point

of the unvaried orbit.
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INTRODUCTION

Let the origin of a non-rotating rectangular coordinate

frame Oxyz be at the center of the earth with the Oz axis point-

ing toward the North pole. Let the unit mass earth satellite at

S in Fig. 1 have the coordinates x,y,z. Adopt the equatorial

radius of the earth as a unit of length. If it be assumed that

the earth's mass distribution has axial symmetry about the Oz

polar axis, the gravitational potential V of the satellite may

1
be expanded in a series of zonal harmonics. Retention of the

two lowest order terms in this series gives

V=Hi[p-
1
+ep-

3 (l-3z 2 p-2
)] (1)

2 2 2 2where p. is the gravitational constant and p =x +y +z .A spher-

ically symmetric distribution of mass corresponds to e=0 in (1).

2
Lecar, Sorenson and Eckels have determined that the earth's

_3
oblate-spheroidal shape gives rise to the value €=0.541x10

squared units of length. The problem is to find the variations

of an unperturbe'd Keplerian elliptical orbit, corresponding to

e=0, caused by the small e perturbation term in (1).

Let z cosl-y sinl=0 be the equation of the unperturbed orbit

plane Oxv of. Fig. 1 , passing through the Ox axis with inclina-

tion angle I to the earth's equatorial plane. Introduce the

cylindrical coordinates r,^,w shown in Fig. 1 with the Ow

cylinder axis perpendicular to the Oxv plane. The equations

x=r c o s ^ , ( 2

)

y= r cosl sinl*-w sinl,

z=r sinl sin^+w cosl,
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Unperturbed

(€=rw=0) orbit plane

FIG. 1« Cylindrical coordinates based on the

Oxv plane of the unperturbed orbit.



relate the x,y,z and r,£,w coordinates. The kinetic energy T

and potential energy V of the unit mass perturbed satellite at

S are then

T=£(r 2
+r

2
?
2
-fw

2
) (3)

and

V=-(i[p +ep -3e(r sinlsin£+w cosl) p ] (4)

where p =r +w .

VARIATION OUT OP ORBIT PLANE

The Lagrangian function T-V may be constructed from (3) and

(4) , and the equation of satellite motion in the w coordinate

found to be

w+|_rp~ w=-|ie-r—[p~ -3(r sinlsin?+w cosl) p~ ] . (5)ov

Using the fact that w=0 in the unperturbed orbit, one finds

from (5) that the first order time-correspondence variation 6w

of the perturbed satellite out of the unperturbed orbit plane

Oxv of Fig. 1 satisfies the equation
1 A

6w+|jr~ 6v=-3e|ir~ sin2Isin§. (6)

Note that the operators 6 and d/dt commute in (6) since 6w is

defined to be a time-correspondence variation; i.e., 6w, w, r

and ? are a ll defined for the same value of time. Let §=uu be

the argument of the perigee P of the unperturbed elliptical

orbit of Pig. 2 measured from the ascending node N on the Ox

axis. Let 5=^ =u,-iTT De "the argument of the latus rectum chord

end point L which precedes perigee. If the satellite position

argument a is measured from L the equation of the unperturbed

Keplerian orbit may be written as

r=p/(1+e sina) (7)

= 5 =



FIG. 2. Unperturbed Keplerian orbit.



where e is the orbit eccentricity and p is the semi latus rec-

tum. The constant angular momentum of the unit mass satellite

in this orbit is

h=r 2a=(pM)*=2nab/T (8)

where a,b are the semiprincipal axes and T is the period of the

orbit. Equations (7) and (8) may be used to replace time by a
i

as the independent variable and to replace 6w by r~ 6w as the

dependent variable in (6) so that it reduces to

(r"
1 6w)"+r" 1

6w=-3ep~2sin2I(l+e sina) sin(\+a) (9)

where the primes indicate differentiation with respect to a. The

simplicity of presentation of this paper depends on making the

varied orbit osculate the unperturbed orbit at the latus rectum

chord end point L. Equation (9) is therefore integrated with the

initial conditions 6w(0)=6w' (0)=0 at a=0 to obtain

2p
26w =3acos^-cos\(3sina+8esin f?a)-4esin\sinasin §a. (10)

ersin2I'

The term proportional to a in (10) is a secular term which is

unbounded for infinite time. To remove this undesirable term

consider a plane through the origin in Fig. 3, which is init-

ially coincident with the Oxv plane of the unperturbed orbit at

a=0, and which precesses around the Oz polar axis to the west

at the differential angular rate 6cp always maintaining a con-

stant inclination angle I with the Oxy equatorial plane. The

equation of this precessing plane is

-xsinlsin6cp-ysinlcos6cp+zcosl=0 ( 1 1

)

where 6cp=0 when a=0. The distance 6w* of the perturbed satellite

from the precessing plane may be found by substituting its coor-

dinates x+6x*y+6y,z+6z from (2) into the left member of (11)*

- 4 -



Unperturbed orbit

Precessing plane

FIG. 3. Satellite variations 6w out of the un-

perturbed orbit plane and 6w* out of

the precessing perturbed orbit plane.



noting that w=0. Using the approximations sin6cp«6cp and cos6cp«*1
,

and neglecting other second order differentials, one obtains

6w*=6w-rsinIcos§6cp. (12)

On comparing (12) with (10) it is seen that the distance 6w* is

periodic and contains no secular term if

6cp=3ecccosl/p . (13)

We conclude that the mean plane (11) of the perturbed orbit

precesses around the Oz axis at the angular rate

6cp=3eacosl/p , (14)

and that the satellite has periodic excursions 6w* from this

plane given by

6w*=6w-[3earsin2Icos(x+a)/2p2
]. (15)

The relation between 6w*/r and a is shown graphically in Fig. 4

for a few values of X and e. The trace 0M of the precessing

plane (11) in the equatorial Oxy plane has the equation y=-x6cp,

so that the ascending node N of the perturbed orbit in Fig. 3

moves westward along the equator through the angle

6cp(2TT)=6necosl/p (16)

on successive transits of the equator. This nodal regression

from N
1

to N~ is shown in Fig. 5. If the node ]SL corresponds to

a on the unperturbed orbit one must not conclude that the next

ascending node N~ corresponds to cx.+2tt since the variations Ar

and Ace in the unperturbed orbit plane of Fig. 3 have not yet

been considered. It is shown later in (46) that the point Q of

Fig. 5, corresponding to a+2n , is at a positive or negative dif-

ferential angle A^(2tt) of order e from N~ thus justifying the

assignment of 6cp(2n) of (16) to .the angle N.O^.

- 5 -



X=e=0

a radians

+ 1.0

+0.5

-0.5

-1.0

-1.5

ir 2.TT

FIG. 4. Relation between r" 6w* and a.



FIG. 5. Regression 6cp(2tt) of the ascending

node in the equatorial plane and pre-

cession Af(2n) of the perturbed orbit.



VARIATIONS IN THE ORBIT PLANE

The gravitational force on the satellite has no moment around

the earth's polar Oz axis because of the axial symmetry of the

earth's mass distribution assumed in (1). Hence the moment of

momentum of the perturbed satellite around the Oz axis is con-

served. The moment of momentum vector is found most easily by

first computing its components in the Oxw frame of Fig. 1 , and

then transforming them to the Oxyz frame. It follows from (8)

that conservation of the Oz component of moment of momentum of

the unit mass perturbed satellite requires

[ (vr-rv) cos^-wr^sin^Jsinl+r 5 cos I=hcosI (17)

where it is assumed that the orbit osculates the unperturbed

orbit (7) at §=X , i.e. a=0. On expressing (17) in terms of first

order time-correspondence variations from the w=w=0 unperturbed

orbit, and using (8) to replace time by a as the independent

variable, one obtains

'da rcos§' 1
2r~

1 6r+6a ' =tanIcos 2?^-(-^4r)=F
1 ( 1 8)

where, using (10),

-p
2F

1 2 35—=2e[sin §a(2cosa+cos2a) sin2\+sin acos2\]+3sinasin(2\+a) . (19)
esin I

From (3) and (4) it is seen that conservation of the total

energy T+V of the unit mass perturbed satellite requires

§(r2+r2a2+w2 )-[i[p~
1
+ep~3-3e(rsinIsin£+wcosl) 2 p~ 5

] . (20)

=E-|iep""
3

( 1 -3 s in
2
I s in

2
\

)

where it is assumed that the orbit osculates the unperturbed or-

bit (7) of total energy E at E,=\ , i.e. a=0. On expressing (20)

in terms of first order time-correspondence variations from the

- 6 -



w=w=0 unperturbed orbit one obtains

r6r+( ra
2
+Mr~

2
) 6r+r

2
a6d=ke [

r~3 -p~3
+3 sin

2
I (p~3 sin2X-r~3 sin

2
?) ] . ( 21

)

On using (8) to replace time by a as the independent variable

(21 ) becomes

r""
2
r , 6r , +(r"

1 +p" 1
)6r4-6a , =F

2
(22)

where

F
2
=e[l-r3 p"3 -3sin

2l(sin2 ?-r3 p~3 sin2\)]/pr. (23)

If the rather complicated Eqs. (18) and (22) are integrated as

they stand it will be found that 6r contains a secular term,

exhibited later in (53), which is unbounded for infinite values

of a. The secular nature of 6r raises doubt about its ability to

give a sufficiently accurate description of the radial perturba-

tion when a is more than a few multiples of 2n, and makes for

unwieldy mathematics in the determination of 6a. Sterne has re-

moved the radial secular term in the present problem by a stan-

dard method of celestial mechanics which analyzes the perturbed

orbit as an ellipse whose shape and space orientation are set up

from the beginning to be functions of time. The secular term dif-

ficulty is avoided here in a simpler fashion by relating points

on the varied and unvaried orbits by a type of radial velocity

correspondence instead of the usual time correspondence implied

by the use of the symbols 6r and 6a. We assume that the differ-

ential change in radial velocity Ar from a point on the unper-

turbed orbit to a corresponding point on the varied orbit is

Ar=6r+rAt=rF(a)/r (24)

where At is the corresponding time difference. The function

F(a) , of order e, is chosen later to avoid a singularity. The

- 7 -



function F will also be chosen so that exact radial velocity

correspondence, Ar=0, is achieved at perigee and apogee, thus

facilitating a discussion of the precession of the apsidal line

of the perturbed orbit. The symbol A, used in this section to

denote the velocity-correspondence variation operator, does not

commute with the operator d/dt since the correspondence of po-

ints defined in (24) is not based on equal values of time. The

velocity-correspondence variations in r, a and a, consistent

with (24) , are

Ar=6r+rAt, (25)

Aa=6a+aAt, (26)

and

A<x=6a+aAt. (27)

Note that At may be found from (25) after Ar-6r has been deter-

mined in (53). Note also that Aw=s6w+wAt=6w and Aw*=6w* since

w=0 on the unperturbed orbit.

Equations (7), (24), (25) and (26) yield

Ar=6r+[r'6r'/(r2p" 1 -r)]+P (28)

and

Aa=6a+[6r , /(r
2p" 1 -r)]+F/r'. (29)

Subtraction of (18) from (22) yields

r '

r~2
6r • +(p"

1
-r"

1
) 6r=F

2
-F.,

.

(30)

Substitution of (30) into (28) yields

Ar=F+[(F
2
-F

l
)/(p-

1
-r-

1

)]. (31)

Elimination of 6r* from (28) and (29) yields

Aa-aa^Ar-drVr'. (32)

Different! -ion of (32), together with the use of (7), (18)

- 8 -



and (28) , yields

^Aa=F
1
-f(r

2/r')[Fr~2tana-^(Ar/r2
)]. (33)

Use of (7), (19) and (23) gives

..p(F
2
-F

1
) 2 r 2 2 2= =—=sin I[sin acos2\+( sina+2sin |acos acsca) sin2X.] (34)

e(p~ -r" ) o o r o
+(3sin Isin \-l)[l+(r/p)+(r/p) ]

which is singular at a=#. To avoid the same singularity in Ar

choose F of (31 ) to be

F=esin Isin2\( cosa-1 ) cos a/psina. (35)

The differential change in radial velocity Ar is then found

from (24), with the aid of (7), (8) and (35), to be

1 o
Ar=eap~ sin Isin2\(l-cosa) cosa, (36)

giving exact radial velocity correspondence at osculation, peri-

gee and apogee. The differential change Ar is found from (31 ),

(34) and (35) to be

—1 o o
Ar=ep~ {sin I(sin acos2X+sinasin2\) (37)

-(l-3sin2Isin2\)[l+(r/p)+(r/p) 2
]),

giving

Ar(0)=3ep""
1
(3sin

2Isin2\ll). (38)

The variation Aa(0) at osculation, where 6r(0)=6a(0)=0, is

found from (7), (32) and (38) to be

Aa(0)=3e(l-3sin2Isin2\)/p
2
e. (39)

Equation (39) shows that the notion of a velocity-correspondence

variation cannot be used for e=0 as one would expect. An inte-

gration of (33) with the aid of (7), (19), (35) and (37) yields

Aa-Aa(0)= (40)

£ep~
2 {[(2-3sin

2
l) (3a+4esin2§a)+sin2Isina(9cosacos2X-2e~

1
sin2\) ] +

2 sin I sin ^a[2e( cos2a+2cosa.-2e~ )cos2\-(9+5cosa+4esina+esin2a) sin2X ]}

,

- 9 -
,



periodic in a except for the secular term

3ect(2-3sin
2l)/2p2 . (41)

The change in a+Acc from a=^n to a=3n/2 may be calculated from

(40) to be

TT4iep~
2 [3n(2-3sin2l)-4(2e+e" 1 )sin2Isin2X] (42)

so that the apsidal line of the perturbed orbit does not pass

through the earth's center unless the last terra of (42) happens

to be zero. The complex variable describing the projection of

the perturbed satellite orbit in the Oxv plane of Fig. 3 is

(r+Ar)exp[iU+cc+Aa) ] (43)

if the Ox axis is taken as the axis of the real part. Let 0M

of Fig. 3 be the trace of the precessing perturbed orbit plane

(11) in the earth's equatorial plane. Let A\|/(ct) of Fig. 3 be a

differential angle measured from the trace 0M to a moving ref-

erence radial line 0A in the precessing plane. Then the complex

variable describing the projection of the perturbed satellite

orbit in the precessing plane relative to the reference radial

line 0A as the axis of real numbers is

(r-t-Ar)exp i0 (44)

where the angle of Fig. 3 is

0=\+cx+Aa+6cpcosI-Ai|;. (45)

On substituting Act from (40) and 6cp from (13) into (45) it is

found that the perturbed orbit projection (44) is periodic re-

lative to the moving line 0A and contains no secular term if

Aili=3ea(4-5sin
2l)/2p2 . (46)

Note that the rate of precession

(d/dt)Ai|,=3ea(4-5sin
2l)/2p2 (47)

- 10 -



of the periodic perturbed orbit (44 to 46) relative to the trace

OM is direct or retrograde according as sinl is less than or

greater than (4/5) . The arcsin(4/5) 2 is 63°26*. The preces-

sion AiJ; (2rr) =3 err (4-5 sin l)/p of the periodic perturbed orbit in

the precessing plane between the times of two successive ascend-

ing nodes BL and N~ has been pictured earlier in Fig. 5.

VARIATION IN NODAL PERIOD

The change from the period T of the unperturbed orbit to the

nodal period T+AT between the two successive nodes N.. and N
? of

Fig. 5 can be calculated only in terms of time-correspondence

variations. Let At represent the differential time changes from

the points z=6z at a=-\ and o.=-\+2tt on the varied orbit to the

corresponding nodes N. and N
2

at z=0 on the varied orbit, so

that

6z+zAt=0. (48)

The differential change in the nodal period is then

AT=At(-X+2n)-At(-X) (49)

=[6z(-X)-6z(-\+2tt) ]/z(-X) .

Substitution of (2) into (49) gives

i(-\)AT=[6a+r~ 1 cotl6w]"^
+2TT

. (50)

Equation (10) yields
;

-1 _xt*„i-X ^ -2_ 2-
r" ' cotl6w

|
~^

+2TT
=-6enp"

z
cos

z
I

.

( 51 )

The calculation of the time-correspondence variation 6a,

evaded thus far, is now required. Eliminate F
2
-F- from (30)

and (31 ) to obtain

^[(6r-Ar)seca]=-(Ftana+^)seca. (52)

Integrate (52) with the aid of (37) , using (38) and 6r(0)=0

- 11 -



a
n ri

as initial conditions at osculation, to obtain

(6r-Ar)seca =
d (53)

e e(3sin
2
I

2

SinVl)
{ecosa[(4_ e

2
) ^+(^ e

2
)

r!
]
_ e(5-ge

2
)
_3 (l _ e

2
)

2

p(l-e )
p p

^ 1 £^ a sin na+b (1-cos na)
+3(1-e

2 )-S[a+X 5 33
n=1

-ep~ sin l[4sin §acos2X+sinasin2x]

where a and b are coefficients in the Fourier series

(1-e )
2 (l+esina) =4-a

Q
+ ^ (a cos na+b sin na) (54)

n=1
and are defined by the complex number

+ibn
=2(ie)-n[l-0-e 2

)*]
n

. (55)

Comparison of (37) with (53) shows that the time-correspondence

variation 6r contains a secular term proportional to acosa, and

also shows the simplicity of the velocity-correspondence varia-

tion Ar versus the complicated 6r. Use of (32), (40) and (53)

gives

6a|^
+2iT

=6nep"
2 [(3sin2Isin2X-l)(l-e 2 )~ 5//2+|sin2I-l]. (56)

Use of (8), (50), (51) and (56) then shows that the fractional

change in the nodal period is

AT 3e r 3sin Isin X-l
, 5 • 2 T -i 1 cn\T=—Z —T2 [ Z 2^5/2 + 2
sin l-2 ±' (57)

abU-esmX) I'-e ) '

CONCLUDING REMARKS

The notion of varying an orbit by velocity-correspondence

variations instead of time-correspondence variations has been

shown to lead to a simple discussion of first order oblateness

effects. The variations obtained are less complicated -than those

3derived by an analysis in terms of an ellipse whose shape and

- 12 -



space orientation are functions of time, and have a more direct

physical interpretation. The analysis can be carried through for

a general point of osculation at the price of an increase in

mathematical complexity.
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