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INTRODUCTION.

Tae Doctrine of Limits is now very generally adopted as
the basis of the Differential and Integral Calculus.

Of the methods which were formerly in use it may be
advantageous to the mathematical student to glance at some
of the most prominent.

By inscribing successively in a circle, regular polygons of
four, eight, sixteen, thirty-two, &c. sides, we may at length
suppose a polygon to be inscribed whose area shall be less
than that of the circle by a quantity so small as to be unas-
signable. In this manner the area of the circle may be said
to be exhausted. Hence, the method which was based upon
this mode of operation was termed the Method of Eax-
haustions.

In the early part of the seventeenth century a work was
published, in which all quantity was assumed to be composed
of elements so small that it would be impossible to divide
them. An infinite number of points in continued contact
were supposed to form a line, an infinite number of lines to
form 8 surface, and an infinite number of surfaces to form a
solid. Now, since a line has magnitude, namely, length,
and a point has no magnitude, it is obvious that a line
cannot properly be considered to be made up of a series of
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points. The method founded upon these suppositions is
consequently objectionable. Cavalerius, the inventor of it,
called his work “ Geometria Indivisibilibus ;" and hence this
method was styled the Method of Indivisibles.

Sir Isaac Newton considered all quantity to be generated
by motion ; a point in motion producing a line, a line in
motion producing a surface, and a surface in motion pro-
ducing a solid. This motion or flowing of a point, a line,
and a surface, gave rise to the terms fuents and fluxions :
the quantity generated by the motion being called the fluent
or flowing quantity, and the velocity of the motion, at any
instant, the fluxion of the quantity generated at that instant.
The method founded upon these considerations has been
long known as the Method of Fluxions.

As applications of this method are continually met with
in mathematical works, it may not be inappropriate to give
a few instances of its notation, compared with that proposed
by Leibnitz, and now generally adopted by writers on the
Differential Calculus :

0 W 4% ¥ o mns  {(@=1)m}
du, d%u, d%, du, d™u, dsinz, d"(22-1)"

The fluxional symbols in the first line are placed exactly
over the corresponding differential symbols in the second.

Leibnitz considered every magnitude to be made up of an
infinite number of infinitely small magnitudes. His mode of
reasoning was as follows. Any quantity  consists of an infi-
nite number of differentials, each equal to pk+ gh2+rh3+ &e.,
and % being infinitely small, each term in the series is infi-
nitely less than the next preceding term, and consequently
the sum of the terms after the first is infinitely less than
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that first term. Hence pk is the only term necessary to be
retained to represent the series.

Lagrange, in his “ Calcul des Fonctions,” endeavoured to
simplify the subject by rejecting the consideration of infi-
nitely small differences and limits, referring the Differen-
tial Calculus to a purely algebraic origin. He defined the
differential of a quantity to be the first term of the series
ph+qh?+rh3+&c. This is the foundation of his theory.

Each of these methods has found numerous advocates
among mathematicians, a fact which excites no surprise
when we consider the extraordinary genius of the great men
whose names are associated with the origin of these various
and most interesting theories.

In our own day several highly talented men have directed
their attention to this subject, and it seems now to be very
generally admitted that the method best adapted to ele-
mentary instruction is that founded on the Doctrine of
Limits.

Among the valuable works which have recently enriched
this subject may be mentioned those of Whewell, Hall,
O’Brien, De Morgan, Thomson, Young, Price, and Walton,
in our own language, and Duhamel, Cauchy, Moigno, and
Cournot, in the French.

Let us suppose a certain magnitude » to be dependent
for its value upon some wariable magnitude z, so that the
value of # may be represented by some expression into which
z enters, then « is a function of #. We will assume, for
instance, that u=2% and, in this simple example, supposing
« to undergo a change of value, we will trace the corres-
ponding effect produced upon the function .

Let z take the increment 4, that is, let # change its value

A2
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and become 2+ %, then if we represent the corresponding

value of % by »,, we shall have
u=(x+hpP=a3+323h+3 2k + A3,

& u,—u=32% + 3 2h%+ h¥=corresponding increment of u,

E';,:—'-‘=3x2+3zlc+lz3= ratio of increment of function to

increment of variable.

Now the first term of this expression for the ratio being
342 it is obvious that 2 may undergo any change of value
whatever, without affecting this first term.

Let % then continually decrease in value until it is=0,
then the expression for the ratio will be simply 342
Hence this first term is the limit towards which the ratio
approaches as % is diminished, and which limit the ratio

cannot reach’until A=0.

Now if u=a3, du=322.dr, %’5:3:02, where du is
the differential of u, dx the differential of x, and id-'f the

dx
differential coefficient derived from the function, that is the
coefficient of dz. Thus the limit 322 is equal to the differen-
tial coefficient.

These remarks are offered to the reader in this place, not
only with a view to remind him of what the Method of
Limits is, and to regard it in its connexion with the methods
above alluded to, but also in the hope of inducing him con-
stantly to recollect that, when he is performing that very
common operation in the Differential Calculus of ascertaining
the differential coefficient, he is virtually seeking the limat of
the ratio of the increment of the function to the increment
of the variable.



EXAMPLES

ON THE

DIFFERENTIAL CALCULUS.
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CHAPTER I

DIFFERENTIATION OF FUNCTIONS OF ONE VARIABLE.

du
Ex. (1.) Let u=az. Then o=

du
9 —_ =4,
(2) Let u=a+42. Then _dw—4

(8) Lot y=3aa? 412 Then 2=2x 3ae=6axz.

—— du 3 a2
(4.) Let u= w“’—a". Then E—m-
_ 2 du__(a®—2?). 823 —2.4.(—22)
(5.) Let U= Thend—w_ @@=

__8a%3—825+ 4.5 8a?ad-- 4a°
N BT
(6.) u=(14242%.(1+42%)=14222+423+8.

%:43:-{-12.@2-]-40.04:41: (1 +324+1029).

B



ALGEBRAIC FUNCTIONS
(7.) u=(142)% (142732
%:(1 FR2(1+23). 20+ (1 + 232 4(1 +2)
=41+ (14+2%). {((1+2)z+(1 +2%)}
=4 (142 (1+22) {1+2+222}.
(8) u=(ab+a)(323+3).
iz_(xs+a) 62+ (33 +8). 3a2
=62+ 6azx+ 9244+ 3ba?2=1524+43 02?4 6azx.
(9.) u=(a+bda™)"

%: n(a+ba™)* . mbam ' =bmn(a +ba™)), 2™,

(10) u={a+'\/b+£»2}4
—6.9 ( 3

4fa+N/b+ } e 46.(“«/”52}.
2'\/b+wz zM/b+£2

(11) u=A/ 2+ Vit + a2, Squaring, we have
w=x 4+ vV 1+a2
du 2z &r
2u—=1 =1
W v LIV, wrp
14—=Z 14—
du_ JTxa _ V1 + 22
dz 2u 2\/m+~/1+w2
V14 a2tz ANz+v1+a?

Y v NG v B W,
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a%u=7zizs.mm@ﬁgmmmmmm”m
denominator by +a?+4%+2, we have

_.zx/a"+.z3+w2_ 1 5
—m—?(”"”“ -
a?+ }

du_1(
+ m}

2
a:+2

dz a2\

Y
= i
—1—{2.1: 224 a? 4 22 _2_.2: 222+ a?
Va4 x? }—az a?v a?4a?
(13.) u=(a+2) (b+2)(c+a).

du a+
=(o+2) (o+a)- LD

+(e+a) (a+a). 2012

+(ata) (b-+2)-2EED

=@+2) (c+2)+(c+2) (a+:v)+(a+:c) (b+2)
=be+bx+cx+al+ac+ar+cr+22+ab+ax + bz + 22
=32242ax+2bx+2cx+ab+ac+be
=322+2(a+b+c)x+ab+tac+be.
(14) u=1 + 2™ (1 4+ a™)™.

d(l +:c )™

+ (1 4arym AT

O (1)
=(1+2™)" m(1 +x")"“ . nzh?
+(L+a%) n (12"~ man=t
=mn(l+2m)" (142 %{(1+2™) 2" (1 +2%) 2™}
=mn(l 42 (14271 {21 p gn-1 4 2 n-1)
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5yu=A/ (a_%+ v(:zr—az)**:{a_if(cz-zz);}a

d{a—-%+(c2—-x’)§} be—te

First, - = 2;/—+2 (2—a2) 3. (—22)
b 4z
T2z 3@—a
L du

___1 ——+(62 x’)@r {2;:/;_3(;:3)*}

3 b _ 4x ) 35 _ 4z
_ (2;::\/5 3V cE—a? 2wV VE—at

Y a———j—;-}- V= A/ a—%+ V@@

X

16. _——
(16) u x4+ V1 —a?

P i G e

52 (.70+v 1 -—x-)

a?
/1___ ]
Tt Aee_ 1-a4a
22vI—a2+1 2a(l—a?)4 V1 —a?
_ 1
T 2u(l—a?) + V1 —aF

(17) u=\/a+w+\/a+x+ Va+a+ & in inf.

u2=a+x+\/a+x+ va+z+ &e. in inf.
=a+x+u.
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du

%’
Ldu_ 1
Cde 2u—1"

But - uz——u=a+m’

du du
2u2;=1+ (2u—1)(—1;=1,

1 _4da+4z+1
=
1 ~4z+4a+1

2 2

du__ 1
Vdw vVix+4a+1l

1)2
uz—u-{-;’ =a+z+

, 2u—1=+4z+4a+ 1,

x

(18.) u=1+

1+

1 T
T1¥ & in inf,

x
Su=l + wW—u=zx, Qu———=1,

du

) 1)2 1 4z+1 1 Viz+1

2u—1=+v4x+1, .'.f-ii‘=—7-1;-

(19.) 2ux+au?—b22=0. This is an implicit function.

du

c»

du du du
2u+2x-‘75+2au--———26x=0, u+w£+au d—;—bz:O,

dx

du du bx—u
(au+z)-za-:_bx-—u, ..‘E—-m'

B 2
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But °: ba?— ux=au®+ ux, (bx—u) r=(au+x)u,

Jbx—u _, (ig “
“autw =z Cdx @
— U _>5
(20.) u=2a+52. e 5.
du
(2l) u=m+nur. ="
du
5 — 3 —— e O
(22.) u=c—22 e 6
(23.) u=242— 3+ 6. ;‘%‘3:@—3
(24) u=4ad—222+ 3. %:12902—4904,3
(25.) u=(a+bx) 2> j——(4llx+3a2w2
du 2
26. =2 2, = .
(26) w ta Valra®
» du na"!
(27) u= (1+m) ' 7z (I+ay+
x? du "x(a—- a3)
(28.) u= a+:v"2' P ’
(
(29.) u={a+(a+22)i}}.
a'u x ®
dx \/xz-j— ~/a+a:2 "\/a+.l +&2 v a + 2
dy b x
30.) a2y?+ b22=a2l A —
(30.) ay*+iai=a de a vai—at
—_— Tu 1-3z
31) u=(1+2)vI—z. e 0T,
@L) u=(1+2) x de 21—
(32) u=—=2 ‘ du_ 32
' V(=22 de (1 —a?)k
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@ du 202 4+ 1
Vaatltz TVZE+1

_ 1—vz du__ 1
(34) u= V1+ Ve  dx 21+ V) Va—a?

(35.) u=(azd+b)2+ (z—0b) v a2— 22

(33 ) L —92.

du__ . 2(a?+ b —2a?)
E—Gaw(aa,-"+b)+ m—

(lu 8& 3a:v—-4.r2

8% —
36.) u=— 2+ ax—a?. .
(36.) u 3a @ da: 3a 2~/aw w‘

37) at du  —a*(a?—2x?)
D) Um—m————— _———— .
( 2V a%a?— o de  2a(a®—a?)k
(38) (w+a)‘3‘ (2_3 /\/;:T(—I, _l /\/((ﬂ-}-d)s
T w—a)t  dr 2 r—a 2 z—a
(39 n= Vil —z d_u_ —2
' VEflix (I.v—s/a:-°+1.(vw2+l+x)2
(40)) 3«/a-+.1:~ du__ 3a2+4ax—a?
’ ~/a —x dx—6(a2+m2)§. (a—-w)§
du a4+a?.7c-—4z'4
41.) u=x(a+22) (a2—a2)}. = .
(1) u=sle'+2) @=) o Ve
(42.) u= V2w—l—¢2w—l— vV 2x—1—é&e. in inf.
du 2 )
v 8x — .5
- du na-!
(43.) u= pe (E__Vl__:m

"

1-—1_-—_ &ec. in inf.
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(44) u

2P
T1+(1—4dam)t

du_ 2x{1+(1—4a")}  nan(1 —4a)~ 1}
da 14 (1 —4dam)b— 227

CHAPTER II.

TRANSCENDENTAL FUNCTIONS OF ONE VARIABLE.

If u=sinz;
u=cosx;
u=tanx;
u=cotzx;
u==seczx ;
u=cosec ;
u=v.sinz;
u=logazx;

u=6";

du
T 08 @
du .
d—;: —8I1n .
%: 1 +tan2;z=sec2x=;$a;_-
%: —(1 + cot?x) = —cosec’r = —Si—I}Tx’
du
35':8% . tan .
"
25: —cosec x. cot x.
du .
-d—a;=8111 X
du a
dz
du_
dx~

dsinz

Ex. (1) Let w=sin’x. Thenizf=2sinz.———=2sinx.cos:c.
dz dx
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2. =cosmz. 1ie. the cosine of the product of
P
m and x.

du dcosmax dmax

dz_—_d_a;—_—_ —sinmz. —7.‘0—= —_m sin m .
3.) u=sin 3z. cos .

du—sin“’ dcosz + 008 dsin3z

- ' dz *dz

=sin 3z. (—sid z)+cos z. 3sin%r. cos »
=3 sin2x cos?xr —sin4w=sinZz (3 cos%r —sin%z)
=sin?z (3. T —sin%r —sin%r) =sinz (3 — 3 sin?z — sin%r)
=sin2zr (3 —4 sin?r).
4.) w=¢". cosxz, ¢ being the base of the Napierian
system of logarithms.

du__ d cosx + &
— cow. —
dz dx dx
=¢%. (—sinz)+ cosz. e*=¢" (cos #—sin z).
.) u=gz. 8%,
CO8 X
du__ d” 460087 _‘Z'f=x. RITES d cosx+ecosr
dz dx . dx
=z, °®% (—sing) + 8 T=¢8T (1 —zsin z).
sin™x
(6.) g
cos™x

du__cos™z.msin™—x. cosxr—sin™z. n cos®— o —sins)
dz cos2ny

mcos""' lp.sin™—1g nsin™+lr, cos"— 1o
cos2ng cosny

_m sin®—lx nsinmt ‘:v
cosn— g cosnt g
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(7.) u=cos—'2+'1—4% This is an inverse function.
PutovI—z2=z. Then u=cos=z;

SCoBU=Z
—smu.i’-‘=1 .'.‘—iﬁ=- ! = 1 =— !
dz dz sin % /1 —cos?u V1—22
RS et
dz
But'.'z::cx/i:z?, So—= s/'l_z-2+~/———
_—la?_ 122
G w2 V1—22
Hence ig=ii1—‘-‘1f=— ! 122
dr dz dzx Vi—Zgat V1—2a2
3 1-242
T VA2 rA(—a)

(8) u=a (sin z—cos z).
g__z=“ (cosz+sinz). Squaring, we have
2 .
(g;) =a?(cos?r+sin2z+ 2sinzcosx)=a?(1 + 2 sinx cosx).
u?=a?(cos?z + sin2zr— 2 sinzcosz) =a?(1 —2 sinzcosz).
duy? duy\2 du__
(a-::) +u?=2a?% . ((75) =2a?—ul. o= VIiad=u2,
®) u=(log z")™.
Put z for log 2®, then u=2", ,_d"

S ——=maml
.dz nan-l g
and °’ z=loga", o
du du dz n mn(logaﬂ)m—l
ptagii i ooy -1.2=
Henee =T &="""""2 P
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(10.) logu=~/l+z2.
x e
@ x? N
‘1’1.1= V1422 _a:’-1+x2_ -1
dz u 23 Ta2VTtaz e2Vita?

.du %
P R, -
(11.) w=getau™'s,
" logu=log x+4tan—1z. loge
=logz+tan—lz, ‘- loge=]1,
_1, 1 _l4de
z' 142" a(1+4a2)
1+.z'+.z3 et&n""(l-{-x-{-ﬁ)

) un—:, -(1+4%) w(i+2)

. du__cta” '(1+x+a:2)

“dz 1422
¢* (asinz — cosx)
a?+1

du 1
dz u

(12.) u=

Since the denominator is constant, and since the differen-
tial coefficient of ¢%* is ae¢®,

_du 1

S Pt o l{ae (asinz—cosx) +¢*(acosz+sins) }

{a2sinz—a cosz+a cosx+sinz'}

_ e
Tat+1

Cand .
=aF 1-(a2+ 1) sinz

= ™. sinz.
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(13) u= log i*‘j__
VB )
dz (Va— V2P Vet vV
_ Vavasvasyva s i
T2Vg(Va—Va)(Va+ Vz) 2Va(a—z) Va(a—q)

(14.) u=a*t*

log u=c*"+*. log a.

log (log %) =(22+) log ¢+ log (log a).

dr_1 1
Put >=log «, then T T

log z=(22+z) log ¢ +log (log a),

dz 1 .
a-;:logc(2x+l). But z=¢*"+*, log a,

?:z. log ¢ (2z+1)=loga.loge. c#"+* (22 +1).

Hence %:Z——:-g—l-‘_loga loge. a®'*% c*+x (224 1),
(15.) w=sinazv —1—cosz. %:wsa:v —1+4dina.
. du o .
(16.) w=cos(sinz). o= —coszsin (sinz).
(17) w=sinL, VIR,
(18) u=esinz, ‘zz—‘—e'““‘ cos &,
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19 —gn1 1= 2 du__ 2
(19.) w=sin y——y dz~ 1442
22 —a? du x
—_—ain—1 e 8 —— .
(20.) w=sin e i Vo) )
(21.) w=cosx+cos2x+cos3zr+ &c.
%:— (sinz + 2sin 22 4 3sin 3z 4+ &c.).
du 2m (mz 4-a)
(22)) u=cot™(mz+a) = (m-
l—2 du 1
23. =tan™! —_— D
(23.) wu=tan e T 2~/_1__
bx+a du Vi—a
24. =tan™! —_— ——
(24) w=tan b—a di 2(l+x)~/bx a
(25.) w= Vi—a2 — % 4sin~ . (h‘ /\/1+x
26. = “maZ. ——
(26 u=coseo dx a:s/ mxi—1
d:
(27.) wu=log (sinx). = =cotar
(28.) w=sin (logx). 7, =008 (logz)
2 du 1 1
29.) wu=log———. b
(29, ga:+ V14 ¢ dr « 1+
(30) u=(log)"z. * du !

dz_ zlogx (log)2x. .. (log)* 'z’
* This expression means the nth logarithm of z, not the 2* power of

the logarithm of x. Log (logz), which means the logarithm of the

logarithm of z, might be written (log)%z.

C
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du a

31. =logr—log (a— vVa*—a?), —=— —m=e=-
(51) u=loge—log (a—Va—). T=— —Le
(32.) u=logvsinz+log v cosz. %:cot 2.
du  Virta -
33) wu=l Vg %, _vIra
(83) w=log{z+ s e dr zvVz—a
(3L) wu=lo e+ TS du_ VI
LA BV wpe dr (1—2)vI+a2
35.) u=a" dau_.r’ (logz+1).
du a8 loga
- log e _=__.__.° .
(36.) wu=ales”, T .
ar _ du Moo (loer n
37.) u=a". p =" x-'tlo gx (logr+1)+- o
(38) wu=psnr, i—t—x‘m‘(ﬂx +cosa. log.z)
d: .
(39.) u=c*cosra. d—l::c”‘ (acosra—rsinre).
-1 du__ o2 et
(40.) w=getr . e =¢ton ( 21 )
1 duw 1 1 e
(41.) u=zx=- %=E-xllog (;) .

(42.) u=e®(sinrae)™, %:e‘"(sinrx)"‘“(asinrw+ mrcosry).

(log)"s
(43.) u=elos™, . i :
dz  logz (log)?x... (log)"'»

(44.) wu=ytanz”, ¥ being a function of .

du_ dy .
d—x_ta.nx"d—”+nyx" sec?z™.
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(45.) u==z"", 2, v, and y being functions of z.
du { 1 dz
(E-—/« oY log~ logv%+-l gz d$+— —}

(46.) u=gz+sinz4azcosz, s=a—acosz.

Pl

CHAPTER III.
SUCCESSIVE DIFFERENTIATION.

Ex. (1). Let u=an
Differentiating, we obtain the first differential coefficient,
%—'ﬂx" _l
Differentiating, we obtain the second differential coefficient,
d?u s
W-n(n—l)x" .

Differentiating as before, we have the third,

%‘”(”—1) (n—2) 2™,
%zn(n—l) (n—2) (n—3)a"*.
%:n(n—l) (n=2)....(n—T—T)*"

It must be borne in mind that d?u, d3u, d4u, &c. d™u are
merely symbols ; and that da?, dad, dat, &c. da” are powers
of daz.
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2.) u=loga.
du_1 Pu_ 1 ddu__ 2
dr o’ A2 2 Py
du_ 23 &r_ 2.3.4 .
dedA~ A’ M_T: C.
5
(3.) w=a® %z(loga)%x.
T
(4.) w=sinnar. i;:nrsm(w+rg).
4
(O.) u=c". %:a"u"’.
I+ ddu 240
® = P (l_x)s

Leibnitz’s Theorem, which is useful in finding the diffe-
rential coeflicient of the product of two or more simple
functions, may be thus enunciated, » and » being both func-
tions of x,

dr(ue) du  dod'u r(r—1)d*z d™ %

Rl Al r mE R VRN = i R

CHAPTER 1V.
TAYLOR'S THEOREM.

This theorem may be thus enunciated.
If u=f (x), and x take the increment /4,
d%u 1?2 d3u A d"e  *
Fe+iy=ut Z s gt s Tt 2 T
+ &e.
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This theorem, written according to the notation of
Lagrange, is

Hat Iy =F (@) +F @ b7 (&) o 47" (o) ooy

In using it, if we take n terms of the series, the error we
shall commit by leaving out the terms beyond the »th, will lie
between the greatest and least values of f™(z+ 91:)1—2—]"3—1;
which values will depend upon giving to 6 various values
between (0) its least value, and (1) its greatest.

Maclaurin’s Theorem is easily deducible from this.

Ex. (1.) Expand cos(z+4) in a series of powers of 4.
du__ . d?u _ ddu__ . &
dx 1Ny, ——,;= —Co8x, —(z;s =smux, «cC.

Let w=cosz, then — e

‘Whence, substituting these values of u, Z—% &c. in Taylor’s

theorem, we have
cos(z+h)=cosr—sinz. k—cosz- }I—'2+sina:—-}‘3 + &ec.
1.2 1.2.3
Cor. By making =0, we have
h? A4
121231
(2.) Expand sin~'(x+7%), according to ascending powers
of k.

cosh=1— — &ec.

du 1

Let u=sin"2, then-(};= —1—x2=(1—ﬁ)-*’
d?u_ 1 -3 —r(l—a?) =% .
= 3= ()= (1—a)" T
‘j,%fm-{—E(I—xz)‘*(—zx)}w—ﬂ)'*

—_— — —& — =_1.i“:i.

=(1—a2)"}(322+ (1—a?)} T

c 2
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‘Whence, by substitution in the theorem,

k h2x
3=l B)=sin"!
sin~'(z+ A)=sin x+(l-—x‘3)i+2(l-—z2)"}
131+ 242)
—_— &e.
2.3(1—a2f  °°

(3.) Expand log(x+£%) by Taylor’s theorem.

de_1 d?u 1 dPw_2
Let u=logr, the en =, TR =T = &e.

‘Whence, by substitution,

A2 3
log(z+4)= log.z'+— 7);2——+3ﬁ3 &e.

(#.) If u=f(x), show that
du 22 d% at
(=)=

T+~ & Trzt a2 20402
d3u 25
& T 301ap T v
x x2
Let.z'+/¢—i—;— thenlz_1+ x_._m,

A &
Tap =~ azar *

uzf(d‘), f(-T"}‘]‘) f(1+.‘t)

Substituting these values in Taylor’s theorem, we have
x du 22 d%u at
/(5 7)=v dz Ty »t da? 30 122
__d% b
— 33y ap T &

hi=

(5.) If f(z)=tan~'z, and we put =siny,

1
T+
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L
or tan~lx= §— ¥, then, tan™'(z+k)=tan"'z+sinysiny - i

—sin2y smzy +sm3/ sm’-’yL — &e.

Now, since # may have any value whatever, put A= —az,
» being an arc in the first quadrant ; then
tan~!(z+A)=tan"'0=0,

z2 . L. X
Sotan~ .z:=sing/sin_1/-§+siu2‘// 8in2y -5-+51n3y51n3 —3—+ &e.

T _ __cosy
But tan r=5 =Y, and a=coty= sy’

.‘.g=y+siny cosy +%sin2y. cos'-’y+%sin3y cos?y + &e.

1

- , we have
siny cosy

. . . 1
Similarly, putting A= — (a:+;) —

w siny 1 sin2y 1 sin3y
2= cosy+§ cosZy *3 cosdy +é&e.

And, putting A=—+v'1 + 2%,
1
='%+sin_y+% sin2_y+§ sin3y + &e.
Hence, by differentiation,
1
§+cosy+cos2y+cos3_1/+&c.=0.

These formule are deductions of Euler’s.
Taylor'’s theorem may be applied to find approximate roots
f equations of the higher degrees.
(6.) Show that Taylor's theorem comprehends the Bino-
nial theorem.
(7.) Expand sin(2+2%) by Taylor’s theorem
A2

. . /I
sin(z+/4)=sinz + Co8Z T —Sinz o cosx2—§+&c
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(8.) Show, by Taylor’s theorem, that

(a +a:+la)"—(a+x)“+n(a+x)”-lIe+n(" 1)(a+x)"-’]¢2
+ &e.

(9.) Show that tan(z+/4)=tanz+ sec?,z'—lf

+"sec'-'.rt1na'—h—+"sec-.r(l + 3 tan?z) +&c

1

(10.) If u=cot~'x, show that
. ok k2
cot Nz 4A)=wu—sinu sinwy +sinZu sin2u 7 —&e.

(11.) Iff(x):%%:, prove that

l+at+h_ 14 ( & h2 3 ).
ey Al e 13wy R s pn

CHAPTER V.
MACLAURIN'S THEOREM.

This theorem, which is used for the development of a
function according to the ascending powers of the variable,
may be thus enunciated, U,, U,, U,, U,, &c. representing

du d%u d3u
the values of u, —— o TR TR &c. when x—O
22 a8 x4
u=Uo+ le-l— U’.T—E_’- Ua.ﬁ+ U‘-m-l—&c.
a®
Cor. —_U+2U, i 2+3U. 3. 3+4U. 73, 4+&

This theorem was first given in Stirling’s “ Lines Tertii
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Ordinis Newtoniane.” It is, however, generally attributed to
Maclaurin, and is improperly styled ¢ Maclaurin’s Theorem.”

Ex. (1.) Expand (a+z)% n being any number whatever,
positive or negative, integral or fractional, rational or
irrational.

Let u=(a+2)" whence if x=0, U,=a™
du
d—£=n(a+x)"”‘, .o e, Ui=na,

d2u

—:n(n—— D(a+z)** . , Uy=n(n—1)a""

:{—I-_n(n— D(n=2)(a+2)*? , Uy=n(n—1)(n—2)a""

&e. d&ec.
Substituting these values of U, U}, &c. for v, g—z, &e.
in Maclaurin’s theorem, we have
(a+a)=a"+na" x4 ——— ( =1 ar" ,I2+n(n-l)(n =2) a3

+ &ec., which is the Binomial Theorem.
(2.) Develop a*.

Let u=a* whence if v=0, Uy=a’=1.
du__, y
—=*der . . . .. .0 = A
([J/' Iﬂ ’ 1
M-A"’a‘ e Oy = 42
dz*
d3u
—=A%, . . . .. . U = 45
da® ?

* 4 is here put for the hyp. log. of base a, that is, for the expres-
sion (@~1)— :12-(«—1)'* + 313- (a—~1)—&e.
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‘Whence, by substitution in Maclaurin’s theorem,

A A33
=14+ 42+ — x2+1 R 3+&c,

which is the Exponential Theorem.

» A=loga, :.a*=1+zloga+ %(xloga)2+ 2—13-(xloga)3+ &e.

1
When =1, a=1+loga +§(loga)2+ ;ﬁ(loga)3+ &e.

an expression for any nwmber a, in terms of its Napierian

logarithm.
If for @ we write the Napicrian base ¢, we have, since

loge=1,
e*=1+x+%2+§%+&c.
And, when r=1,
c_..1+l+ + 1 +&c =2-71828 &c.

(3.) Expand tan~'z by the method of indeterminate coef-
ficients,
u=tan"'z, whence if =0, U,=tan™0=0.

du 1 . . o
dzr 1+ =1—22+ 24 —28%+ &c., by actual division.
But (Maclaurin’s Theor. Cor.),
du 22 23
o= Uit+2Us +3Ua 55 H4Uegggtde

s U +20,- +3U3 +4642 3 4"*‘50'5'2-3'4_5‘*'&0-
=1—-:c2+.r‘—.z‘°+&c. H

Equating coefficients of like powers of z, we have
U,=1, U;=0, U;=-2, U,=0, U;=2.3-4, &e.;
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whence by substitution, u=z— 22 —t5aT= 2:3-42 —d&e.

2.3 2.3.4.5

tan"‘x_x—f+a'5—--”;-7+&

34 tanbx tan’
> tanu=ux, .'.u:tzmu—tm?;l u+ ar51 “_ a,171 u+&c

which is an expression for the arc, in terms of its tangent.

By help of this and Machin’s Formula, we may find an
approximate expression for the length of the circumference
of a circle.

Let tana:%, A=4a, then A=4 tan”% 5

4 4
tand = 4tana—4tan’s 5 1% _120
an ‘I—Gtan?a—}-tanm—l 6 1 119
~25765
120 1
w_tand—1_ 1197 1
Now tan(xl--45) tan4+1 ﬂ_*_l—%’
119
. A 4!'0,_t, -1 1 .
S A—49 =tan m,
1 T 1 1
RO A — —— -1 _ -1_" %
S45°=4 —tan™! 339 or4 4tan 5 tan 339
1 1 1
=45 3(5)3+o(5)5 TGO +ée)

1 1 1
~(5— 32307 T 5(239) —&e),

* This is Machin’s Formula.
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a very convergent series, by which, taking seven terms in
the first row, and three in the second, we obtain
7=3-141592653589793,

which is the approximate length of the semicircle, the radius
being unity. By taking three terms in the first row, and
one in the second, we obtain 7#=3-1416, an approximation
sufficiently near for ordinary purposes.

(4.) Expand seca, in ascending powers of .

Put #=secx, whence if =0, secx=1, U,=1.

l
i—'i=sec.ttan.r, .« o« . . . tana=0, U;=0.

dr

d2u
T secz(1l +tanr) + tanx secr tana

=secx+ 2seca tan’r, U,=1.

d?u
T —seca tanx + 2secr. 2tanz(1 + tanr) 4+ 2tanr seca tana
=Jjsecxr tana+ Gsecrtanr, . . . . U,=0.
dir
= Sseca (1 +tanr) + Stana secax tana
+ 6secx. 3tan%r(1 4 tan?r) 4+ 6 tan®x secx tana
=5seca+ 28secx tan?r+ 24 secx tandr, . . U,=0.

‘Whence, by substitution,
2 b
u=secr=1 +2—+m+ &e.

9.

(5.) Expand cos’z.

Put u=cos’r, whence if =0, cos’r=1, . U,=l.
d
2;:3cos"’.r(—sinx)=3sin-"x—3sinx, . . U=0.
d? .
——',‘:95m'~'.rcosx——3cosx, e e e e U=,

da?
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3
-‘;—;=9dn2z(—-sina:) +cosz.18gin# cosx+ 3sinz

=3sing—9sindr+18sinzcos?z, . . . U;=0.

4,
Za:" =3 cosx — 27 sin%» cosz + 18sin . 2 cosx (—sinz)
. +18cos?x.cosz, . . . . . . . U=21

. 322 2124 322 Tat

sou=coslr=1— T+m —&e.=1— —+—— —d&ec.

(6.) Develop (1+¢°)" according to ascending powers of .
Let u=(14¢*)", whence if z=0, (1+)*=(1+1)%

U,=2".
d" n—1 n-—1
-J—_n(1+e') e, . . . . . . .. U=a2
dz
=n{l46)"e"+e. n(n—1)(1+¢*)"%*; make r=0,
d%u
W—n""“ + n(r—1)2"% U;=n2"*(n+1).
dau n—-1 -2
@=n(l+e") e+ ef.n(n—1)(146*)*2e*
+n(n—1)(1+e)* 2?2+ n(n—1)(n—2)(1 +*)* ¢ ;
make =0,
d3u

-‘-t-x,—-n2""’(n+l)+n(n-l)2"" 24+n(n—1)(n—2).2"3

=n(n+1)2"+n(n—1)2"'+n(n—1) (n—2)2"2

=n2"{(e+1)24+(n—1)2°+(n—1)(n—2)}

=n2"2{2n4+2+4+4n—4+n*—3n+2}

=n2*{n+32}, . . . . . U=n22"%n+3).
‘Whence, by substitution in the theorem,

"~ on nz nr+l) & n*(n+3) o
A+ey=21{l+537+=g 13+~ 133+%}

D
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(7.) Prove that log(1+2)=2— £+£ - ":

Let u=log(1+2), whence if =0, U,=log(1)=0.

+ &e.

_=L_1——z+m"’—x"+x4 &e. by actual division.

But (Maclaurin’s Theorem. Cor.)

du U, U, U,
E_U+Uz+ x2+2 .z"’+234.z4+&c

And, equating coefficients of like powers of z,

v, . U U,
U=1, U=—1, =1, ge=—1, to=1;
LU=l Uy=—1, U,=2, U=-2.3, U,=2.3.4.

‘Whence, by substitution in the theorem,

log(1+x)=x—§+§ a“+&c
Cor. Writing —& for 2 we have
2 2B at
log(l—:v)_.-a'—--z——é—-—-‘i--—&c

(8.) Show, by help of the last example, that

1 1 1 1

x 1
log (z—l)zz-—l “IE=irtiE=ip ~ %

Put =1—2z, then

log (14 2)=2— ~1-z2+%z3 &e. (Ex. 7.)

z 1__a:—:z:+1_ 1 ,
.z-—l— T a—1 T z—1

1 1 1 1
1°3(:-.1) -1 §(w—l)’+§(w—1)’—&c'

But 2=
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(9.) If a, and &, respectively represent the coefficients
of 2* in the expansions of u=f(x), and log «; show that

na,=ba, ,+2ba, y+3b,0,_;+ . ... +nb.a,
Assume u=a,+a,x+a,2* . . . . +a,z" then
%=a1+2a,x ...... +na,z™,

du_ 1_a,+2a,2+3a,2* . . +na, 2™
iy = diff. coeff. .
iz u aytax+aad .. Faat difl. coeft. of log u

Now log u=by+b,a+0b2® . . . . +b,2"
. Z—: l_b AF 202 .. .. $nba™?
-1
Hence at2as ... +na.et =b+2bx... +nba

ay+ax4aa . .. +a, a0
And, multiplying by the denominator, and equating coef-
ficients of like powers of z, we have
Na,=b,8p_1+2b30, 3+3b30,_ 3+ . . . +nd,a,
(10.) Develop sinz and cosz in ascending powers of z.

. o b
sing=s—yos+1g.3.4 %
2 o

cosx=1— i.—.'2+m—4 — &e.

(11.) Prove Euler’s formulee,
. e’:f-—l_g—aﬂ’:l ez«/:T_,_e—zJ—_l
sing= »  cosg= .
v 2
(12.) Prove De Moivre’s formula,

cosmz+ v —1 sinmaz=(cosz+ v —1 sinz)™,

(13.) Prove that (tanz)t=at+ 5ot + o>+ e

(14.) If u=sin~"2, show that
siny ~ 3%sindu 32, 52gin’u
s=dnut oot st s n5.6.7
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(15.) Develop u=cotz by the method of indeterminate
coefficients.

o=l _T_ 2 _ 28
MR N N
(16.) Prove, by Maclaurin’s theorem, that
(1+2x+3z2)"*=1-—.r+2.1:3—gx‘+g.r5—&c.
o 3225
-1 —— e e ——
(17.) Show that cos :v_2 T— o333 AE &e.
(18.) Show that sin (a+bx+ca?)=sina+ba cosa
2¢ cosa—Ul%sina , 6lcsina+13cosa

3 2% — 33 3 — &e.
(19.) Prove that G _xz Ca il

T T2 133 %
(20.) If cosx+sinzv —1=c’“’:’, and « take the parti-

cular value g: prove the two formule of John Bernouilli
namely,

r=—+ —1l.log(—-1),

and
(/D= )~ rs () +

Implicit Functions.

(1.) Given u3—3u+a2=0, to expand « in a series of as-
cending powers of 2.

‘When 2=0, u3—3u=0,
,du du du 1 1 1

W —3gtI=0 F=—ya—r - by
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9 du
du_ 173 3w -1
- 3(@—1)¢ 3 (WP—1p 3(—1)
2 u
=—§(u2— 1)32 ............. U‘—-O

du du
21)8— — 2..1)2 —_—
2 2(u l)"dx u. 3(u?—1) '2udw

PZ I (2=T)8
__2=bw—1 -1 _ 2 5w4l .3
T @@= 3=1)" 27 (F—1p T
du du
2 1510w <% _ (542 2__ 1)t 924,%%
du_ 2 (u2—1) lOudx (Ou?+1).5(u?—1)4 2u
da 27 (u—1)10
20 —4uS—2u 48 2uP+u U =0
T8l (1Y Bl (@—1y ' U=
dou 40 22u'4194%41 Ui 40
4 243 (@I 7EN
‘Whence, by substitution in Maclaurin’s theorem,
2 o
w=g 45+t e

(2.) 2u®—ux—2=0; expand u in a series of ascending
powers of 2.
x a8

v=lt g —mm

+ &e.

1 48 A
3.) w— ——-6.@' showthatu_2+a:—-§2 3+z 3 4+&o.

3
(4.) ¥r—8u—8x=0; show that u=~z— -2“:; - —21: —&e.
(5.) 4uPs—u—4=0; show that u= ~4 — 445~ 3(4)’4*— ke,
D2
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(6.) u?—a?u+aur—a®=0 ; show that

(7.) sinu=asin(a+u), show that

+ &ec.

x 22 a3
_ L& Kl . Aing
u.._nr+smal+sm2a1_2+2sma(3 4smu)1‘2‘3

CHAPTER VL

EVALUATION OF INDETERMINATE FUNCTIONS.

. P .
‘When the two terms of any fraction — contain a common

¢
factor, as #—a, and the particular value a be given to z,
then, since #—a will be equal to 0, the fraction will assume

the form g-: and be indeterminate.

Such a fraction is improperly termed a vanishing fraction ;
since its values may be finite, infinite, or nothing.

‘When the common factor is obvious by inspection, it may
of course be removed by division.

The method of John Bernouilli is to differentiate the
numerator and denominator, separately, until they do not
vanish simultaneously by making 2=a, and thus to deter-
mine the true value of the fraction in that case.

—_a)™
If the fraction be of the form M, and m or n be a
Q(z—a)*
fraction, this method of successive differentiation will not
apply, since, however often we differentiate, we shall never

eliminate the common factor.
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In this case we may put ¢ = % for z, expand both terms
of the fraction in a series of ascending powers of %, and
then put A=0.

The process of evaluation of indeterminate functions
enables us to find the sum of a series for a particular value
of the variable.

Ex. (1.) Find the real value of the fraction
ax®—2acr+ac?
ba2— 2bcx+ be?

Here P=aas?—2acx+ac?, Q=0ba2—2bcx+ b2,

4P _

when a=c.

Qax—2ac=0 if z=c

(—IQ=2bx—2 be=0 fax=c
dx
d2P

—=2a
dx? . 2a _a
d20_26 } ~. the fraction = "‘?-(; = Z-
== *
(2.) Let u=f—t—iai_fx—:~2- Find u, when z=1.
Here P=23+22%—x—2, Q=s3-1;
dP .
Iz_-=3.z3+4a:—1=6 if =1 "
1Q Su=-=2.
¥ 342 =3 ifa=l1
dx
¢ —etn®
3.) uzx——sinz=1’ when 2=0.
dP .
-E::e“'— e cosr=1—-1=0 if #=0,
dQ

P —cosz=1-1=0 if2=0,
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D er— ot (—sina) —conar %, conwr=0 if =0,

2
‘(ll—wg=sinx=0 if 2=0,

3
g:e’-‘}- &°% cosx+ sinz 0% cosx — cos?x ¢¥°7, cosx

+ 6% 2cosrsing=1414+0—140=1 if £=0,
d*Q . 1

ﬁ=cosw=1 if =0, .'.u=T=1 .
4) u=(1-2) ta.n%r 1-2 =2 when 2=1.
cot% r

Here P=1—gz, Q=cotE

g%
k(g
dP dQ 2
—=—1. —_—— s make 2=1, then
d’ ]‘ dt sin21:3
"_l’ k.3
Q__ 2 __ 2 - 1.2
dz ﬂinzz— 1— 2 'u—_z-vr
2 2
2__ 2\ g —
4.) u= (@) +a Find », when z=a.

(a®— xs)%+(a-x)i
Put x=a—4h, then
{a*—(a—h)*H+a—(a—1)
{a*—(a—Ay} i+ {a—(a—A)}H
__ {2ah—m}4n

T {3a?h—3ak?+ A3} 4 Ad

u=
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__ M@a—miyh Qa—m+ar
(3a2—3ah+m)b4ht (3a2—3ah+A2)t 41
: 2q)t
Now, putting 2=0, we have i::l
(6.) u_.t—i.il-l—-%{m—z—%, when #=0.

dP

E_sec"’.t—cosm_ 1 1—cos’z_1—cos’x

r_l_(_)— 342 " costx 322 32

de

since the factor L_,:l when 2=0;
cos’z

d?P  3cos?r.sinx sinz

J—Q—.j=——3z——-= 5, cos?z=1, when z=0;
%?:?:%. hence w:; when 2=0.
(7.) Find the real value of = 6;3:;2_ 5 when z=1.
Ans. .
] 1
B) If u= ,2) when z=0, u=5-:
2__al i
9.) u—2;7-._a < when z=a, u=3a.
axr—a
—alr—ari+ad
(10.) u='13;———a—'—r2——(‘:—f:ﬂ, when r=a, u=0.
2
(11.) u=gj%3%%:T(;, whena:=2, U=
cot .+ cosec z—1 g
il i h =— u=l.
(12) u cot.l:—cosec.z--}-l vhen r=g ¥
z §in z—=
(13) u=———2, when z=Ts u= —1.

CO8 & 2
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(.'o:—a)i +¢*—a*

14.) u @ —a when z=a, =
(15) Ifin 11‘”' w=1, show that 1 +o+22+ . . a*1=n,
1- .t" n
(16.) ‘“-—1+x,, i~ when z=1, u=-2-;-
ar) u m”(”?':f *=2), when #=0, u=4.
e —e*
(18.) ll—m-g—(l—-':.t—)! when .Z'=0, u=2.
(19.) u t:z:;;:: when 2=0, u=%2.
aler o a
(20.) u= TR when z=1, u=log (;)
~1(1_
(21.) u___co; @ ;) when =0, u=1.
22—
V9%azr—94
@22, u=2" “f/;"; 2¢°_1, when z=a.
(23.) uzg. when z=w, u=0.
(24.) u :;lgg%—_%i—;—); when z=1, u=2.
(25.) u=ze~*=0, when a=w.
1x
(26) u= ”z. when z=0, u=’§.
cot 1—;—-

(27.) If ye*—2=0; show that when & approaches o the
limiting values of ¢~ and y are identical, and that the limit-
ing value of y is zero.
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!
(28.) u % when 2=0, u=1.
(29.) » (z"'+;7-)—f;z’:.—a) = when zr=a.
22—
30.) u= z)a tan%- when z=aq, u=—-§--
T
em_ema
(BL) u= p— when z=a, u=me™s,

(32) u (z+1) (=D =sin 45°, when z=1
7 (e—1)24sind(2—1) ’ -

log (1+nx)
(33.) u=e = |, when =0, u=e"
2
(34.) u s‘n—i—:z” when =0, u=2.
(35.) If the fraction —— assume the form o —

f() ¢()

when 2#=a ; show that this illusory form o« — o, and also

0 x o are each identical with the form (9)

CHAPTER VIL
MAXIMA AND MINIMA.
ONE VARIABLE.

If a quantity increases to a certain extent, and then
decreases to a certain extent, its values at these limits
respectively are a maximum and a minimum.

If it repeatedly increases and decreases alternately, it
has several maxima and minima.
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If it increases continually or decreases continually, it has
no maxima or minima.

Let w=f(r) ; then, to determine the values of # which
du
dz
substitute the possible roots of the resulting equation in
d?u

render » & maximum or minimum, put —-=0 or w0, and

then, if iﬂ—“:a negative quantity, the value of # which

dz 4
. . .o d2 .
is substituted renders » a maximum ; if a—;’-:za positive

quantity, the value of 2 which is substituted renders u a

A maximum or minimum can exist only when the first
differential coefficient which does not vanish is of an even
order.

If ¥ = a maximum or minimum, then az and — are
a

maxima or minima. Hence, before differentiating, we may
reject any constant positive factor in the value of u.

If ¥=a maximum or minimum, then #” is a maximum or
minimum if » is positive ; but when #=a maximum =" is a
minimum, and when ¥ =a minimum «~” is a maximum.
Hence, hefore differentiating, we may reject a constant
exponent.

If u=a maximum or minimum, log# is a maximum or
minimum. Hence, when the function consists of a product
or quotient of powers or roots, we may use the logarithms.

Ex. (1.) Find when 2®—5u044-527+1 is either a maxi-
mum or a minimum,

Let u=ab—5244523+1, then

du

dz=5:¢4-—20z3+ 1522  and putting this=0,
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2?(2?—42+3)=0, =0, a?—424+3=0,
a?—dr=-3, z=3, z=Il,
d?u o .
y .cl_20.c-" —60424+ 302, and substituting successively
the values of z, (0, 1, 3) in this expression,
&2

T "_O from which we can infer nothing,

Z;: 20—60430= —10, which indicates a maximum,

2
%:540_5404- 90= + 90, which indicates a minimum.
£
Hence, when #=1, =2, a maximum,
and, when r=3, u=—26, a minimun.
(2.) If u=+'4a%22—2as", ascertain those values of =
which make & maximum or minimum.

Rejecting the radical and the common factor 24, put

u=2ax*—a?, :—ll—'-‘—4ax—-3z3 (4a—3z) =0,

Sda—3x=0, =0, .'.:c=é3f» =0,

du
dxz_4a--6x_4a 8a=—4a,

d%u
'd_xl_‘ia 6:0—-+4a

_4a _ /64a4 l28a4_ /644‘
chce:c-—g makes u= g " T = 953

8a?
T3v3

=0 makes ¥=0, a minimum.
E

—_— ma.xlmum,
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(3.) Determine the maxima and minima values of the

. x2?
function u-m-
14 22

3

Putting u=lv’ we shall have v=

Q=x2x—(l+x2)=m271=0’ Lr=+4+1, x=-1,

dx x? a2
d’v 2. 2z—(?—1)2z 2z 2
az o R
%: +%. which indicates 4 minimum,
d?e 2 .
=T maximum,
1 1 .
..u=-l—ﬁ==§, a maximum,
u=-:l= — — & minimum.
1+1 2

(4.) Divide a number @ into two such parts that the pro-
duct of the mth power of the one and the nth power of the
other shall be the greatest possible.

Let #, and a—z be the parts, then
u=x" (a—zx)"
du
—=x"n (a—z)* }(— 1)+ (a—z)"ma™-1
dx

=z a—2)* ' {—an+(a—x)m}
=zl (a—2z)*! {ma—(m+n)z}=0;

ma
m+n

Sx=0, r=a, =

Or thus, log u=m log x+n log (a—=),

dul m n ¢_1_t:_ am —mx—nx
dzu_ z a—z dz™ ( (a—=)x )
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du am—(m+n)x
S, — = —_—) e — =
T 2™ (a—x) -z )
am
sa=0, r=a, =

m4n

Now the values 0 and a may be rejected, since there can
be no division of the line if =0 or a.

Hence, differentiating again, and substituting
the second differential coefficient, we have
d2
E’:: —(m+n). which indicates a maximum,

in
m+n

-

™ and a—2=—22_ are the parts.
m+n m+4+n

(5.) If u=sin®zcosz, show that % is a maximum when
z=60°.

du e -
— = —sin3x sinx 4 cosx 3 sin%x cosx
dz

=3 sin?x cos?xr —sindx =0,

. 3sin%x cos’x=sin‘z, 3 cos?r=sin%x=1—cos?z,

so4costr=1, cosx:lv s x=60°
d2u . . .
d—xz=3sm2x. 2 cosx (—sinx) + 3 cos’e. 2sinz cosx
—438in3%x cosz= — 6 sindx cosz 4 6sinx cos’x
— 4 sinx cosz= — 10sin3z cosx+ 6sinz cos®z.
V3 3v3
Now smx_——i 33::-—3,
2 8
du 30v3 1 -}-6‘/5 l— — /' 3, a negative result
8 37z 8 6 v ’
u—3~/§ I—E- 3, & maximum
T8 2716
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(6.) Divide a number n into two such factors that the
sum of their squares shall be the smallest possible.

Let x be one factor, g the other ; then

2 du 2n2
= - —=2p =
u=x?+4 x"’ Iz x = 0,
z=?—;: HA=n?, =+,
d?u 602 6n2

—d—;2=2+?=2+_117=2+6= +8, a positive result,

s.u is a minimum. Hence the sum of the squares will be
the smallest possible when the factors are equal, each being
the square root of the given number.
(7.) Into how many equal parts must 8 number n be
divided that their continued product may be a maximum ?
Let there be x equal parts, then

gis the magnitude of each, and
u= (2)' is their continued product,
logu=xlog (g) =2z (logn—logx),

g—;—: %::co (-— %) +logn—logz= —1+logn—loga,

du
‘E:u{ —1+logn—loga} =0,

slogr=logn—1 =logn—loge=log(g), =g.
%:u(— i) +(—1+logn—logz) j—:
=(g)‘(—- é) +0=02(-— 5), a negative result,

n »

X
.'.u=(;) =ef, a maximum.
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(8.) Show that ———— T tons + t 15 a maximum when x=45°

du (1 +tana:) cosz—sinz (1 4 tan?z)
dz (1 +tanx)?
cosx 4 sinx —sin x—sinz tan%x
(14 tanx)?
cosT—sinz tanZr
= (14tanz)? =5

~.sing tan2r=cosz,

sin
-tan"’z:l, tandz=1, .. or=45°
z

d%u 3
—_——— \/— 1
e i 2, a negative result,
_—ﬂgx—-_—l-ﬁ, & maximum.
1+ tanz 4

(9.) If a be the hypothenuse of a right-angled triangle,
find the length of the other sides when the area is a maxi-
mum.

Let x be one of the other sides, then

v/a®Z 32 is the remaining side.

And area =;x al—a2

1
3’ We may take

u=a%(a?—2a%)=a2%2— o4,

du

—_— 2 — 2 — ——
=2 r—43=2x(a2—22%)=0, ..2=0, x_/_
d%u

7;2=2a'*’—-12.'¢"-’=2a2—-6a'*’=—4(12, a negative result,

Now, rejecting the constant

s i3 a maximumn, and the area is a maximum when the

. a
two sides are each =—

V2
E 2
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(10.) What fraction exceeds its nth power by the greatest
number possible

Let « be the fraction, then u=a—a", id:: l1—na*1=

da
Snarl=l, wz—l__,
'_Vﬂ
d?y
=—n(n—1)z*2=—n(n—1). » which is negative,
d e
nn n-1
S % 18 & maximum. Ans, 1

n-i/—
v'n

(11.) Within an angle BAC a point P is given, through
which it is required to draw a straight line so that the

triangle cut off by it shall be the smallest A
possible.

Let PN =a AN=0 AD=1x then X \,
ND=g—b, ND:PN :AD:AEor , 7 T

/ \

B

z—b:a: x:4E, SAE=

z—10

1 ax

Now area A DA E':%A D-AEsinAd =§.z'

gind,

22 du_(r— ’;)21'—-.2- 72— b .r(.z:—%)

=iTh d @b b R

Sa=2b,
dn__(z—b)2. (22—2b) — (22— 2ba) . 2(2—1)
da? (z—0b)
_2eZlp-2-200) 212 21 2
= (z—by Tty ¢ b

a positive result, .. the area is a minimum.
Since AD=24N, .. DE=2DP, .. the line must be
so drawn as to be bisected by the given point 2.
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(12.) From two points 4, B, to draw two straight lines to
a point P in a given line ON, so that A P+ BP shall be a

minimum.

Let O be the origin of co-ordinates, and the given line the

axis of .

Let OP=x, and let the co-ordinates of 4 be a, b, and
those of B be a,, ,. Then B

A P= VAN ¥ PM= Vi § (z—ap,
BP=VBN?Y PN?= 421 (a—2),

Lu=AP+ BP= V{24 (r—a)2+ v'b2 4 (a,—2)%aminimum,

du r—a a,—zx

—_—= — =0,
dr Vhiy(w—a) VEIF (a—a)
. r—a a,—zx
.o = » Or
Vi (z—a) «/1;,2+(a.—.17)2
MP NP
:ATP=E’, . L APM—BPN.

(13.) If the length of an arc of a circle be 2a, find the
angle it must subtend at the centre so that the correspond-
ing scgment may be a maximum or minimum.

Draw C D bisecting the arc, and let & be the

radius, then §= L ACD.
Now area segment 4 DB=sector ACB— A ACB

== rad x arc— ;xi’ﬁnACB

2 2
1,.,. ACB ACB
=ax—§z2..4’mn 7 —5

, . B @
S u=ax—a2sin — cos —»
x  x
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du . a . a a a a a
—-:a—x’sm»(—sm-) (-— —,—)—x"‘cos—cos~(— --)
dx x x ) r =z a2
.a a
—2asin - cos—
x x
. oG 2@ .a a
=a—asin?~+q cos? - —22sin~ cos ~—
x x r =z

a .a a
=a—a+2acos?~ —z2sin —cos -
z x

a a . a
=2cos~(acos— —zsin-) =0.
x x x

a a = 2a .1
Take cos~=0, ..—~=3, #=—, and the segment is a =O
x xr 2 ™ 2
-
= maximum.
. a
sin — B
a . a x a
Take acos —=xsin — =tan -=-»
x x r
cos —
.a . .
S=—=0, Lr=w and % = minimum.
x

(14.) Within a given circle to inscribe the greatest isos-
celes triangle.
Let radius 0d=4a, AB=AC=x, BC=2y,

AB.AC-BC 2%
BD=y. Then a="—Frm==7Y, _ ;,
. 2_RBI)?
Also A=BC2AD___BC~/A§' BB_ o

.'.;—Z‘Z=yv -y, ?=2avVF—y,
HA=4a%2—4a%? 4a’y’=4a%2—2A 2ay=2xv4a’—2,
1
Ly=guev 4a?—2a?
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Now A& =2~1—x2y= -}—m’l zv 4a%2—2?, a maximum.
a 2a " 2a
Put u=2%(4a?—a?)=4a%F—a5,

Z—:=24a2.z5—8x7=0, ~ 8a27=24a%5,

2=3e% . .z2=av3,
1 —_—
BC=2y=;a~/§~/4a2—3a2=a V3, and A is equilateral.

(15.) Of all equiangular and isoperimetrical parallelo-
grams, show that the equilateral has the greatest area.

The perimeters of the figures being all equal, the perimeter
of cach may be considered as one line, and the proposition
then resolves itself into the following. ¢ To divide a given
straight line into two such parts that the rectangle contained
by those parts shall be the greatest possible.”

Let a be the line, » one part, then ¢ —a is the other,

z(a—z) is the rectangle, and ¥=az—2? a maximum.
%:a—-2x=0, Sr=s-

- the line must be divided into two egual parts, and the
parallelogram will be equilateral.

(16.) Of all triangles on the sime base and having equal
vertical angles the isosceles has the greatest perimeter.

Let a be the base, a the vertical angle, # and y the two
sides, then 4 =@+ 2+ y=a maximum.

du_ Ar_

y_ = 2__q2
o 1+d_.z'—0’ = b 2zy cosa=2a%+y?—a?,

[ 357 I~

dy = dy. =
2cosa-x‘—1; +2ycosa= 2x+2y%, —zcosa+ycosa=xr—y,

;o= (z—y)eosa=2—y, . x—y=0,
;. 2=y, and the A is isosceles.
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(17.) The segment of a circle being given, it is required
to inscribe the greatest possible rectangle in it.

Let BAD be the segment, radius =a, , 2
A M=z, draw 4 C through the centre per- @_ ] N
pendicular to PM or BD. Let AC=b.

Then PM?=(2a—ux)z, Eue. B. iii. p. 35.
NPM=+V2az—22°, MC=b—z,
Area rectangle =MC .2 PM=2(b—z)v2az—a>.
Put u=(b—2)?.(2ax—2a?),
2 = (b —a) 2a—2a) + 2aa—a)-2 (b—2) (—1)=0

L(b—2)(a—a)=2az—a°, ab—ar—br+a?=2azx—a°,

’ b
22— (Batb)o=—ab,  a— ”th_'x: -,
_3a+bx+9a2—2ab+1?

4

(18.) To cut the greatest parabela from a given right
cone.

Let BD=a, AD=b, BC=z, CD=a—z,

Then < BNDM is a circle, and M C=NC,
WMC*=BC.-CD, MC=+vaz(a—az),
MN=2vaz—2. o
Also BD : AD :: BC: PC, ~PC _AD BC_la,
BD a
2bx

Area pa.mbola_ PC.-MN=% 37 -2vax—2%, a maximum.

Put u=a?(ax—a?)=aa®— 24,

du__ . A8 _3
E—3aa:2—4.z'_0, S 43=3aa?, r=za.

9
— 2 1 1 1 1 .
e i —a?, which indicates & maximum
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(19.) Within a given parabola to inscribe the greatest
parabola, the vertex of the latter being at the bisection of
the base of the former.

Let BAC be the given parabola, L its latus rectum.
AD=a, BD=}, DN=z, PN=y. \ ]
Area parabola =§-2PN-ND=§-2yx. B b ¢
Now - the square of any ordinate to the axis = the rect-
angle under the latus rectum and abscissa,

=L.-AN=L(a—z), W¥=L.-AD=L.a,

Loa—e =t vz
=TT y=vams
~. area parabola —£~7b—_ va—uz.

Put u=2?(a—2) =as?— 23,

‘i'i=2aa;—3x2=0, s 32%=2auz, a,'=-2-a,
dz 3

(20.) Inscribe the greatest cylinder within a given right
cone.

Let ABC be the cone, AD—a, BD=b, DN=a, PN=y,
AN=a—ua. .

Volume of cylinder =Z- (2PN)2 ND=ryz.
AD : BD :: AN : PN, N__B—ﬁ AN, or \
b .
y=;(a—x), ~ cylinder =7r--a—2(a—x)2x.
Put u=(a—2)’r=a%r—2as?+5,

g‘f:a2—4ax+3z'2=0, S3a2—4dar=—a?, x=aor 2.
x

3
b 2 ) 412 a 4xab?
y=g(e—3)=5b elinder=r---3=—
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(21.) If the volume of a cylinder be ¢, find its form when
its surface is the least possible.

Let AB=2, BC=y. 4
Surface = convex surface + 2 area of base

=BC~1r~AB+2BC2-§=7rxy+gy2. B0

Volume =a=302-§-AB=§xy2, w=$—;%
Hence u=7r-:7‘;y+gy2=47a+;—ry2,
du 4a .y 4a
2;:—?2-}-1;-3/:0, ..y——;’
z“:fg—-a—s‘:—ﬁ(i:éf, LX=Y.
wys . 1622 =« ’
g
or altitude = diameter of base.
%:%y wz%t-hr: + 37, a positive result,

Z. the surface is a minimum.

(22.) The latitude of a place and two circles parallel to
the horizon being given ; to determine the declination of a
heavenly body, whose apparent time of passage from one
circle to the other shall be a minimum.

Let P be the pole, Z the zenith, S, S, the positions of the
heavenly body on the parallel circles, the polar distances
PS, PS, being equal,

L ZPS=P, ZPS=2P, polar distance PS or PS=uz,
arc Z8=a, Z8 =a,, latitude =/, declination =¢ ; then

*» the passage along the arc .S, is the shortest possible,

.. the angle SPS,=a fninimum,
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.dSPS,_d(P,—P)__O aP, dP =
iz = dr =0, oo d-'l«' —da' ’
But dP _cotS dP, cotS, A
W= sns dx-—sina:’
—~——————\Y e
. cotS cotS S=5.
sing  snz
) sin /—cosa cosx sin /—cosa, cosx
Agein cos S=— e =

sml-cosa cosz _sinl—cosa, cosx
B = - 1
sing sina,

cos % (a,+0)

€o8g=——————.8in/.
cos 5 (a,—a)
And ‘' the declination is the complement of the polar
08 % (a,+a)
distance, S 8in =————.5inl.
cos 5 (a,—a)

Cor. If azg’ and a,=§+2d, this expression becomes

gind=—tandsin/; and if the heavenly body be the sun,
and 2d=18° nearly = his depression below the horizon
when twilight begins in the morning or ends in the evening,
we are enabled to determine the time of shortest twilight by
means of the analogy rad : sin lat :: tan 9° : —gind, where
the negative sign indicates that, if the latitude be north, the
declination will be south, and vice versa.

(23.) The centres of two spheres (radii r,, ;) are at the ex-
tremities of a straight line 24, on which a circle is desaribed.

F



50 MAXIMA AND MINIMA.

Find a point in the circumference from which the greatest
portion of spherical surface is visible.

Let o and y be the distances of
the point from the centres of the
two spheres; draw tangents ¥4,
EB, ED, EF ; join AB, DF.

Then, of the sphere C the portion
visible is the convex surface of the
segment 4 HB S, whose area = height H.S x circumference
of the sphere.

2
Nowaz:rr: 08 CS:%: .~ height of segment

2
72 .
r— +=HS, circumference of sphere=2zr,,
x

2
2w, (rl— ;—‘) =visible portion of sphere ('; and similarly
2mry ('r,- %):visible portion of sphere c.

2 2
Hence 2 1r/( " (r, — 7—;—) + r,(r,— ”—"—) } =whole visible surface.

L J
3 3
Put u=»r2— o + r?— L then
x Y
dy
du__rd r"sd_ 3 2d,
du_rd Ddo_o rd__rddy
dz~ a2 = y? ’ a2 y? dx
— dy x
But y= ‘\/402-—.1,‘2, S — e
7 dz vViaT—z?
r? r3 z riz

H —_— " ——— ’
B E ld—F Vi (-

r,3(4a2—.z‘2)§=r,3w3, r,(4a2—-x2)*=r,7;, (40?2 —a?)=r2s2,

4a?r? 2ar
4a?r2—ria=rla?, =1 =—t.
r4 7yl ‘/"12 +rg?
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(24.) Of all ellipses that can be inscribed in a rhombus
whose diagonals are 2m and 27z, show that the greatest is

that whose major and minor semi-axes are ——

f f

respectively.

ABCD the rhombus, 0C=m, OB=n,
a and b the semi-axes of the ellipse.

Let ON=«, NP=y. Then by the
properties of the ellipse
0C.-ON=a?, OB-NP=102, or m-zr=a? n.y=10?

. 22 a2 y2 b2
som2a?=a2 a?, n2y2=1020?, = T
B
. z-z+322 m2+ . (), where @ and J alone

must be considered as variables.

But, area ellipse =rab= a maximum.

Rejecting the constant =, and differentiating this and
equation (1), we have

b db_O a b db_
ten=" @t e="
.a b b—-—O a2 B 2a2_2b2__1
m: n?a m: nt m2 w0
a 1 b 1 m n
—_——— ] Sd=—) b=—=-
m V2 n V2 V3 V32

(25.) If u=24—823+42222—242+12, find the values of »
which render » & maximum or a minimum,

Ans. When x=3, u is a minimum,
=2, u is a maximum,
=1, u is a minimum,

(26.) Find when 2°—642+92+10 is a maximum, and

when it is a ‘When =3, « is a minimum,

=1, » is a maximum.



52 MAXIMA AND MINIMA.

(27.) Find the maxima and minima values of the function
u=23a2s3 -4z +c5.

2 . . .
‘When a:=3—a « is & minimum,
a

2 . .
=~ —> wu is a maximum.
3a

2
(28) uzﬁ; ascertain when % is & maximum and
-

when a minimum. a -
When o= —a, u=— g’ & minimum,

= +a, U=0w, 8 maximum,
29.) u= .’2‘," find when % is a maximum.
)

r=e=2'T1828 &ec.

(30.) E:v +2;:.

when a minimum, =-—2, u=00, & maximum,

determine when % is & maximum and

=0, ©u=6%, a minimum.

(31 u=a+ vat-2bzx+a?; when is » a maximum ?
a?

‘When x—ﬂ-r u=g5y +b a maximum.
(32) u= /7%——-?5 show that » is & minimum
+

21 2
when o= ’\/a;-b.

(33.) u=secx+cosecz ; show that  is & minimum when
“
m=Z'
(34.) In a given triangle to inscribe the greatest paral-

lelogram.
Ans. Bide of parallelogram = 4 side of triangle.

(85.) A column a feet high has a statue on the top of it,
the height from the ground to the top of the statue is b feet ;
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find a point in the horizontal plane at which the statue sub-

tends the greatest angle. Ans. +/ab feet from the base.

(36.) Show that the difference between the sine and
versed sine is a maximum when the arc is 45°

(37.) Let AC and BD be parallel, and join 4 :
AD; it is required to draw from C a straight o
line so that the triangles £0D, 4 OC together
shall be a minimum., c D

Let AC=a, AD=1, AO=z; then 2= Vi.

(38.) The base and vertical angle of a triangle being given,
show that when it is isosceles its area is a maximum.

(39.) A farmer has a field of triangular form, which he
wishes to divide into two equal parts by a fence ; find the
points in the sides of the field from which he must draw the
line, for his fence to be the least possible expense to him.

Ans. If a, b, ¢ be the sides, the distance of each point

from the angle C'is /\/%, and the length

of the fence is /\/(0"0+b)(c+a_1,).
2

(40.) If the greatest rcctangle be inscribed in an ellipse,
the greatest ellipse in that rectangle, again the greatest rect-
angle in that ellipse, and so on continually ; show that the
sum of all the inscribed rectangles is equal to the area of any
parallelogram circumscribing the given ellipse.

(41.) Prove that the greatest area that can be contained
by four straight lines is that of a quadrilateral inscribed in a
circle.

(42.) Inscribe the greatest ellipse in a given isosceles
triangle.

Ans. Major axis =§ altitude of triangle.
F 2
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(43.) A tree, in the form of a frustrum of a cone, is
n feet long, and its greater and less diameters are a and b
feet respectively ; show that the greatest square beam that

can be cut out of it i8 ;— 5 ( — b) > feet long.
(44.) Describe the least isosceles triangle about a given
circle. The triangle is equilateral.

(45.) To inscribe the greatest right cone in a given sphere,
whose radius is 7.

Distance of base of cone from centre of sphere =g'

(46.) If the polar diameter of the earth be to the equato-
rial diameter as 229 : 230 ; show that the greatest angle
made by a body falling to the earth, with a perpendicular to
the surface, is 14’ 58", and that the latitude is 45° 7’ 29”.
See fig. ex. 9. page 84.

(47.) In a parabolic curve, whose vertex is 4, and focus
S, find a point P, such that the ratio 4P : SP shall be a
maximum. AP:S$P::2: V3

(48.) Inscribe the greatest parabola in a given isosceles
Crisngle Altitude of parabols =1 altitude of trisngle.

(49.) If in a circle, whose radius is 7, a right-angled tri-
angle be inscribed ; show that, when a maximum circle is
inscribed in the triangle, the area of the triangle is 12

(50.) Inscribe the greatest cylinder in a given prolate
spheroid.

(51.) Required the maximum and minimum values of %
in the equation u®—a?zx+a3=0.

(52.) u—c:: 5 find the maximum and minimum values

of w.
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(53.) Show that the greatest paraboloid that can be in-

scribed in a given right cone is g of the height of that cone.

(64.) u=a'""%*; ghow that when u is a maximum,
logx =3

(55.) Find that sphere which, being put into a conical
vessel of given dimensions, will displace the greatest possible
quantity of fluid.

(66.) Two circles of given radii intersect each other ; find
the longest straight line which can be drawn through either
point of intersection, and terminated by the circumferences.

(57.) If a tangent to a great circle of a sphere measure 5§,
and a perpendicular to a tangent meeting the great circle
measure 4 feet ; show that the volume of the sphere is to
the volume of its greatest inscribed semispheroid as 27 : 16.

(58.) Find what values of # make (r—2) (z+3) (5—2) a
maximum or minimum, and distinguish the one from the
other. '

(59.) Inscribe the greatest come in a given hemisphere
A BC, the vertex of the cone being at 4.

For other examples and solutions see chap. xi.

IMPLICIT FUNCTIONS OF TWO VARIABLES.
If u=f(x, y), u being an implicit function of the two
variables # and y, by putting %:0, we shall find the

values of # which render y a maximum or minimum.

2
By substituting the particular value of # in (z—-; = Z_:) ,
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if the result be positive, y will be,a maximum ; if negative,
& minimum.

Ex. (1.) Let u=a%—3a%+3y*=0; determine the maxi-
mum and minimum values of y.

Differentiate with respect to #, considering y constant.

du—3a:2 3a2=0, ..a?=a? r=+a, 2=—a.

dz

d?u . . . N

T 6. Differentiate the given function with
respect to y, considering « constant.

d

d_;= 3y% Substitute the values of z in u.

B-3a3+8=0, .pP=2a%, y=aV?3,
—34+3a3+8=0, pP=-—2a% y=—aV2

3

..‘__.__=___..__.___-+— a positive re-
da? dx 3y? 3a2.2§ a, P

sult, ..y=aV/? isa maximum.
du dy 6z _ —6a Ve .
—_——_——= =-——> a negative re-
da? dz 3y° 3a2.2§ a
sult, ..y=—a"?2 is a minimum.
(2) u=a3—~3azy+y°*=0; show that when =0, y=0,
a minimum ; and when 2=« V§, y=a W, a maximum.
(3.) 4zy—yA—at=2; show that when x=+1or —1,
y=+1or —1, neither being & maximum or minimum,
(4) ¥*=3=—2z(zy+2) ; show that when =1, y=—1,

. . 1
neither a maximum nor a minimum ; but when z=— 3’

=2, a maximum,
Y=a4,



CHAPTER VIIIL
FUNCTIONS OF TWO OR MORE VARIABLES.

Ifu=f(2,y), «andy being two variables independent
of each other, then

d’n _ d%u ddu _ dPu d3u __ ddu
dydz dedy  dytde dzdy?  dyda® dady
dntry (l"""u

and generally —— Tl = vl

In & function of any number of variables, the order of
differentiation is indifferent.

The total differential of two variables is equal to the sum
of the partial differentials ; or if u=f(, y),

du= (G2) e+ () 40
d"u— dz‘" nZ;_ld!-/dx"“’dy
n(n—l) d™u

T3 drtdp = W de

d?u

=32 .
Ex. (1.) Let u=a%?; find du, and Zody

To find the partial differential coefficient (%), consider
y constant, and differentiate with respect to # ; and to find
(%)’ consider & constant, and differentiate with respect

to y.
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(I"’u d2u du -
To ﬁnd r o 7y —— differentiate (Fa':) considering

du
constant, or differentiate ( dy) considering y constant.

u=2?
du du ;
(T) 3222, (E-)=2yx",
du ”
du= (dx) dz +(d )dj—3x‘y dz42ya3dy
=22 3y dx+2xdy).
d*u d u
x2+3/ d2u
2 = .
(2:) u= a?— 3/1’ nd dydx
(o) Betath ) 2 ey
(@ @~y @A
d*e _ (a®—p)-Bay—4ay?.2 (2*—p") (—2p)
dyda™ (@—y?)t
__8ay(—yA)+ 16z 8%y +8ay®
- @y @)
.z‘2+y d2u
== @y
d2%u
=sin1 il
(3.) u=sin pE find du, and dyda:’
sinu:lx, COBYU ——==—)
y dz y
_ ((lu)_ 11
‘\dz/ " ycosu  yo/1—sin?u 2
1

ST =2 Vp-a&
3/\/"/ = y
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Again sinu=§’ consider # constant.
_
cos U = — pri
(du) r x _ z
dyl ”  greosu 2V T_gntu gV

Hence du= (:ilu)d x4+ (d ) ly

_ 1 iz x dy= ydx—xd?/
I R -

y_

d?u _ \/1/ —x‘ —y d?u
dyda: P—a® (2 —:vz)’} (lde
“4) u= ;’u L4 5> find du, and show that
at—z
d*n _ 2z d2u d?u _ daxyz _ d%u
drdy” a*— P a’_/:lfu dxdz—(az—ﬂ)?_dzdx’
d?u __ 2a% _ d% and
dydz_(az—zz)z—dzdx,
d3u 4y d3u _ d3u

dzdydz (=) dsdydx  dydzds’
First differentiate considering y, » constant ; then consi-
dering «, = constant ; and lastly considering &, y constant.

du__ 2zy du__ 2% du__ °m2y~
dz a@d—3 @_az—zz, 7 (a®— (@2=222
du du du
sem ()t (B ()
Qzy 22 242z
a)_”dz+ dy-{— @27 dz.
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d . . .
Now ag: ;-,gx—({z Consider 2, z constant, and differentiate.

d%u 2z
drdy =a_

‘_12___,_21‘2_72_ Consider » constant, and differentiate.

dy a®—:
d’v _ 2z Hence 2L d?u 2z _ dPu
dydz ™ at—z! alrd_/ at—22 dydx

d . . .

Again a-;—- - zf’{ Consider #, y constant, and differentiate.

du _—2zy.(—22)  A4ay>
ded: (aP—z2)2 —(uz_z2)2'
du__ 2%z

*_@-2-:;—25—2- Consider y, z constant, and differentiate.

d*u _ dayz Hence d*v _ 4ayr _ d%
dzdy (a®—2%? drds™ (a—2%?" dzdx
L du 2

Again Zl:y—: ey Consider 2 constant, and differentiate.
d’ _ —a®(=2z)_ 24%
dyd"_ (a2—22)? _(a2 —z%)?

d 222z . ) )
- ————( 2 l; 7 Consider , z constant, and differentiate.
ai—

d*u _ 22% Hence d%u 222z d2u
dzdy” (a?—2%? ¢

dg/d:z(a?—-zz)z_dz dy
Now —d—2u—=——%‘—”— Consider 2, y constant, and differentiate.
dady  a?—2% ’ ’
du  —2x(—22)_ 4az
dzdyds (@2 —2F  (@@—20)°
% =Gg;;2)§- Consider y, z constant, and differentiate.

Py o
dzdyds (a¥—22)
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d*u _ 2x
dydr a*—2?
du _ —2x(—22)_  4azz
d.rd_ydz (a2 —2%? T(@2=2%?
dPu _ dxr d*sw _ d
dadyd:~ (a®—2%)% dzdydz dydxdz

(6.) u=a%y*; find du, and show that

d?u d2%u
Tl = Tedy’

Consider & constant, and differentiate.

Hence

ad 4
7. =—> du=— (bydx—3xdy).
()“y uy,.(y@' xdy)

(8.) u=a?; du=az¥ (%dx-{—logw dy), and
d?u /1y __d%u
z x) —dx(ly
d3u 2 . z & T d%u
vy datdy
(10.) u=ysinz+zsiny ; show that

d?u — cos __d%
Zyds x+cosy—d”—dy
(11.) w=sin (2%y); show that

d2u d?u
=9 20) — 1 2 —_——
Ty de=2 {eos(#%) =o'y sin (%) } =g

(12.) U=z +z' show that
dBu 22  dduw _ d%
d2dy Qatz)P dy d~2"dzdydz’
d3u 2y(z—4:v) d%u

dzd?~ (2z+2)* ‘ d.v “dvdads’
G
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(13) u=2t2; find du, and show that
oty
d2u zy d%u

dydx= T +y)3=dxdy.
(14.) u= {(a—x)2+(b—y)"’+(c-—z)2}_‘}; show that
du  d%u  d2

[EARTAR =
(15.) uw=sin~! .“i.;_"{/; find du, and show that
d%u - 1 _ d2u .
dydz y*(2es—y)3 dudy
(16.) u—sm“'r2 z,z show that

o A
2w 2@ —y%)  d%
dyd.z: (#4922 " dady

du_x. 7 (yde—zdy),

CHAPTER IX.

EULER'S THEOREM FOR THE INTEGRATION OF HOMOGENEOUS
FUNCTIONS OF ANY NUMBER OF VARIABLES.

If » be a homogeneous algebraic function of » dimensions
of any number of variables =, y, z, &c., then

+./d +” +&c =nu.

L T |
_a+at 1
EX. (1.) u= +y ) here n___.é..

du_(z+9)- 3o d—(@t+od) du_(s49)- 3y t—(d4sh)
v A T P
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L )" - ) e i ¥

e Yy (@+y)
I G k) o e 8 Wit i ) O
z+y 24y 2
.y fr—yn\t . vVe—y
2) u=sin~! {—=); h =0. =
(2.) u=sin (w+y) ere n sinu ity
1
Vory—ee— — Vz—y-
du x/w— Y 2Vz+y
COBYU —=
dx z+y
SRS A—
(@+y)vai—y?
cosu=+1—sinu=4A/ l—f—_—-_
z+y Vrty
Ldu_ y
dz V- (@+y)Va—y
du -z
Similarly —_— .
dy V2y@+n)Va—y
du+ du Ty —xY
dz ydy x/z‘/(.z'+y)~/a:-—y
3.) u= \/x3+y 5 here n=1.
(Z_ff (ﬁ_ . d%u %2y d?u a' u_
xdw+°”dy_u’ M+ 3y da:+‘1/
(4) u=(r+y+2)%; here n=2.
du  du du
.T—*—+ +« —-uu
dz
2
(5.) u=—'3‘2—"/—5 here n=3. ¢(-i-zf+vﬂ=3u

z+y
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CHAPTER X.

ELIMINATION OF CONSTANTS AND FUNCTIONS BY
DIFFERENTIATION.

Ex. (1.) Let y—az?+0=0; eliminate the constants and {.
dy _ _dy 1
dz —2ar=0, Tdz 2z
Substituting this value of a in the given equation,
dy «

— ;1;'§+ b=0, an equation from which a is eliminated.

To eliminate §, take the equation %:2 az, and proceed

to the second differential coefficient.

d2y dy 1
e ——=2a. But a«——%' -2-;’
. d% dy 1 . .
P e an equation from which ¢ and & are

.

both eliminated.
2.) y*—azx—ba?=0; eliminate @ and b.

q
2y et na=2y e ... ()
dz
Differentiating again, we have
d%y dy dy . d?y  rdy\?
et t=th =) @

Substituting from (1), (2), the values of @ and & in the
given equation, there results

2
y2—2xy d —a%y j;: —a? (%) , an equation from

which @ and b are eliminated.
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3) If y=asinz+bsin2x; (‘li;+5 dz‘+4 y=0.
dy d2%y . .
Pl cosz + 20 cos 2z, 2;-2— —asinz—4b sin 2z,
d3y
m: —a cosz—8b cos 2z,
ddy
D—a sing 4164 sin 2,
2 diy d?y
o‘iﬁ: —5a sinz—20) sin 2z, Attt iy=0.
4y=4asing+4bsin2a
(4.) y=a"+ae™ ; eliminate a.
dy_ .. . (y - 1
Iz_n.z" + ame™, ..a_(%— ng™ ) oy

Substituting this value of a in the given equation,

d. 1 dy
y=x"+(£ ——n.z"'")-h—za my:mx"+8'; —na™l,

Z% —my=na""1—ma"=(n—mz)z""L

A% ,d?
(5) Te=af (L) +o(@); oS5y di 0.

First, consider y constant, and differentiate with respect to «.

beme (A Q1 @) +ovien

==L () +7 () +ov @),
B L (=), O+ Q) (§) - L7 @) +9¢ @0

ZJ( ) +7" @y)-
¢ 2
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Again, zf (‘g) +¢(2y). Consider # constant, and differen-
tiate with respect to 3.

Z—;W'},f' (3;/) +2¢'(zy)=S" (;) +a¢'(2y),
%il, ( ) +4%" (z3)-
2

“3="/;/” ' (;) +2%%" (xy),

2 = z Q. 1
el (%) +a22" ().
L%z d?z
H — —y? —=0.
ence a° =Y a7 0
(6.) Let y=ma®; eliminate the constant m, and show that
dy
3J .TI”

(7.) Let y=+'maz + n; eliminate m and », and show that

A 2 d2

(8.) Let a+c(cx—y)=0; eliminate ¢, and show that
dy dy\?
yd _a+ ( .r)
(9.) Let w2+—~ ﬁ——, eliminate the constants a and &,
a

2
and show that xy ifz +x (’]'/) yi“%:o.

(10.) Let (a—1)(¢+y)—ay+a=0; eliminate a, and
show that  g2+y+1+(@2+a+ 1)%=



BY DIFFERENTIATION. 67

(11.) Let ctanmae — ysecma + a=0 ; eliminate a and ¢,

2y
and show that ‘; T —m?y. .
(12.) Let y=e¢*cosz ; eliminate the circular and exponen-
. . dy 1d%
tial functions, and show that =t "3 0
(13.) Let y=ncos(rz+a) ; eliminate  and », and show
d 2.:/_ 2
that i 2
(14.) Let y=sin (logaz); eliminate the functions, and
2y
show that r((l-l?&+wdy+y=0.
(15.) Let y=ae* sm(3w+ ) ; eliminate @ and b, and
show that (flxyz 4 - + 13y =0.

(16.) Let (.z'—-a)2+(y-—/3)2=r~; eliminate « and 8, and
(14 (%))
ll + (11.1:) } 2
——d—,{72—=r 0
(z2)

e+t e o . .
(17.) Let V=g eliminate *the exponentials, and

show that

show that yi=1— 4‘%

(18.) Let ;—&Tzﬁ =¢ (+2—%%) ; eliminate the arbitrary

dx >
=mz.

dz | 2%
Yoty
(19.) Let %xzz(pg ; eliminate the function ¢, and show

ds
d.c'”’ d

function ¢, and show that

that +z—0
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(20.) Let : Z—«p——b ; eliminate the function ¢, and

show that (y="0) -J;+ (z—y) £=x—a.

CHAPTER XI.

MAXIMA AND MINIMA.
FUNCTIONS OF TWO OR MORE VARIABLES.

If u be a function of two variables 2 and 4, then putting
du__ du_o ) o A% d?u (dzu )2 d%u and d?u
e dy ’ d2' df ~ \dydz)’ d2° dyt
having both the same algebraic sign, u will be a maximum
when that sign is megative, and a minimum when it is
positive.

If, on substituting the particular values of x and y, de-
termined by putting (‘L du _0 in the second differen-
tial coefficients, these shou]d vanish, then the third diffe-
rential coefficients must also vanish, or the function will not
be & maximum or minimum.

du du

If u=f(z, y, z), then we must put :—I;=O’ 7

du

o =0, and we must have the condition fulfilled that

d%u d?u d2u \? d%u d?u d2y \?
(G~ ) | G5 — () | exceeds
d*u d%  d%u  d%u \?

(dydz' iz dxdy’dxdz>

=0,
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Ex. (1.) Let u=at+y4—4azy?; find « and y when u is
a maximum or minimum.

Differentiate, first considering % constant, and then
@ constant.

d
dr

sd=ay?, y*=2ax, B=2d4?%x, a?=2a?
La=+av. y?=2a2v2=0a2V8, sy=aV8.

=48 —4ay?=0, %:43/3—8aa'y=0,

23_12”’2 =24a?,
‘fh“ 1242 —8ar=1242v8—8a2v2=1642v2,
j;;y_—Say=—8a2y§,
%%>d%g~/, and since the algebraic sign of
d%u d?u

— an
da?

%= a minimum.

d e is positive, r==a+v'2, and y=a+ V8, give
y

2
If we take the values 2=0, x=0, then %:O, and

2
JT;_:—_ 0, and also the third differential coefficients
d3u du
2 — — =
—=242=0, a7 24y=0,

Hence also £=0, y=0, give #»= a mininlum.
(2.) To determine the greatest right cone that can be cut
out of a given oblate spheroid.
Let ABDE be the ellipse which generates the spheroid,
a, b its semi-axes, CN=g, NP=y= radius of base of cone.
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Then y'~’=2—: (a®—a?), equation to
ellipse ; and a
-+ altitude of cone =4 N=a+2,

and =y*>= area of base,
5 its volume v =3} =32 (¢ + ), a maximum,
~9% (a + x) = a maximum,

dy o d 1
2."/3%(“'*‘“‘)4‘1’/‘:0 '.'E%=—2(a+x) Y
511/: ! bx/ a®—a?. But, differentiating the

dr 2 (a +x) a
equation to the ellipse, y=§v a?—a?, we have

dy__t_=
dr a Vai—a?
Y ~/a2_j_.r'~’_ - at—a?=2z (a+7)
"2ate) Va2 . ’
a 12 8a2 8
—_—r=2 S == P~ —=— 2,
a—z=2z, a=3z V= ‘)L
1 8 40 32
=2 =5 2,20 _ 2
Hence v=gwyh (a+2z) b 3 =g ral

(3.) Let u=at+34—2(x—y)*; ﬁnd the values of z and y

which render # a maximum or minimum.

Z"_w 4(z—y)=0, s ad—(z—y)=0,
du
y--4./3+4(’—./) =0, ¥+ (r—y)=0,
234-18=0, =P —2(x—y)=0,
B=—17, Lx=—y, 34 a3—2(x+2)=0,
2a8=4r, a?=2, Srx=+ ~/§, y=F V3.
D 94t 4=94—4=20, ‘5—?--12.,2 4=24—4=20,

d:
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du _ . & d2u> d*u ’ and since the
e RS = R i€ T

algebraic sign of ‘;—P and d > is positive,

La=++2, ady=7F ~/§, give u= a minimum,

(4.) Let u=a{sinz+siny+sin(z+y)}; show that z isa
maximum when r=y=60°

du du
E:a{cosx+cos(-v+y)} =0, d—y:a{cosy+cos(x+y)} =0,

Sox=y, cosx+cos(r+y)=cosz+cos2z
=coszx + 2cos?r—1=0,
1 1 1
cosz.z+-2- cosz=5 S COBT= 5 2=60°=y.
d?u . . . .
w:a{ —sing—sin(r+y)} =—a{sin 60 4sin120}

_ ff V3 _

2
¢ ”._.a{ —st~sxn(x+J)}_—a~/_

d%u /3
d.z;(]y—a{ 81n("”'*':'/)}_ asmay asinl20 @& ,

2
L d%u (_i_2_14> dzu
a2 dy” dedy’

d2u
Ty -3 is negative, U= _? f = & maximum.

and - the algebraic sign of cfi—.z,-‘ and

(5.) A cistern, which is to contain a certain quantity of
water, is to be constructed in the form of a rectangular
parallelopipedon ; determine its form, so that the smallest
possible expense shall be incurred in lining its internal
surface.
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Let a®= its content, z = length, y = breadth, then
3

a
— = depth.
Y -
3 3
.. surface =u=xy+2%+2(—;-/-, a minimum, z 4
) du__? _ .?_c_lf_o du__ 245 _
T YT ==Y @—1’— ?;—— y

Laty=ay?,  w=y, aly=ad=2a3, az=y=2%a.
@ a® 2%
—_——_—= Hence the base must be a square,
ry 282 2
and the depth equal to half the length or breadth.

. @u 4a® 4ad d%y d2u
—— =9 —_— —— =],
Agein de?t a3 257 dyt™ 7’ dedy 1

lﬂlzg—u > (—(—Iili)z- Hence « is a minimum.
de? dy? " \dady
(6.) In a given circle to inscribe a triangle whose peri-
meter shall be the greatest possible. B
Let r be the radius, and 6 and ¢ two of \
the angles of the triangle; draw BD L * e
4 C the base : then, Kuc. B. 6. prop. C, /

D
c-a=BD.2r, .'.a=2r--]ic-=2r siné,

sin¢g

Se=—

c__simp’
a sinf
_b__sinB_sin(-;r-—B)__sin(()-i—¢)’

a sinf sin 6 sind
_sin(8+9)

sin 6
Hence u=a+c+b=2r{sin0+sin¢+sin(0+¢)},
du

a9

x a=2rsing,

b ca=2rsin(6+¢),

=2r{cos6+cos(8+¢)} =0,
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%=2r{cos¢+cos(6+¢)} =0,

S.cosf=cos ¢, 0=¢, 0+9=29,
s co804-cos20=0, cosf+ 2cos?9—1=0,
1 1 1
cos20+§ c050=§: cosﬂ=§» 0=60°=¢.
Hence the £s are all equal, and the A is equilateral.

d?
=9 { —sinf—sin (0 +¢) } = —2r {sin 60+ sin 120}

do?
3 —-2r \/57
“%%=21‘{—Sin‘/"‘ﬁin(o'*"/’)}:‘z“/g’

2
i—’—'—: —2r{sin(0+¢)} = —2rsin120= —2r-lg—§= —rV3,

. d%u dzu__12r2 and d2u (lzu> d?u
Tae? de?” T do* do? ~ dodg

Hence the perimeter is & maximum.

(7.) To determine the least polygon that can be described
about a given circle.

Let 6,, 6,, 6,,...0,, be the successive angles contained
between the lines from the centre to the angular points of
the polygon and the radii of the circle ; then if the radius
be r, and the first of those lines be /, the area of the right-
angled triangle whose angle at the centre is 6, will be

1., 1 . r
§'rlsm()1=§7'.rsec(),. sm01=-2— tand, ;
and similarly of all the n triangles successively, into which
the polygon may be supposed to be divided ; so that the

entire area of the polygon will be
2
—;—(tan01+tan0,,+tan0,,+ ... +tand,).

H
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But tanf,=—tan {2r—(0,+6,+.. +0,) } = —tan(2z —y,),
where ¢,=0,+6;+ ... +0,;.
.. u=tan6, +tan6,+tan6,+ .. —tan(2r—¢,), & min.
Now, differentiating with respect to 6,, considering the
others constant, and remembering that 6, is contained in ¢,,
the assumed sum of the series, we have
i12:&45'078,—--secz(27r—-—(,1>,)=0, 50, =27r—¢,=0,.
de,

And similarly, any one of the angles is equal to the angle
immediately preceding ; hence all the angles are equal, and
the polygon is consequently equilateral.

(8.) Of all triangular pyramids of a given base and alti-
tude, to find that which has the least surface.

Let a, 4, ¢ be the sides of the base, /4 the
altitude of the pyramid, 6, ¢, , the inclina-
tion of the faces to the base. R

Then, if p be a perpendicular from the ver-

¥

. A k
tex on the side ¢, sinf=-, .. p=-——=/ cosect),
P sin @
f face = LY h
area of face _Eap_.ga cosecf,
1 1 1
. area of the three fa.ces:EaIL cosecl + §blz cosecp + 5k cosecy,

u=%h (@ cosecO+0 cosecg+c cosecd). . . . .. . . (1).

Also, the base of the pyramid may be divided into three
triangles whose altitudes are readily determined ;
a0

h . L 4.
A a—o-__ta.no, o -}z—-_cot(), ~. altitude 0=/ tané,

S area A4 00=%a-a0=%ah coth,
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;. area base:%—alz oot6+%bh cot¢+%rlz cot,

and putting this area =m? we have
m2=%h (acotO+bcotgp+ccoty) .. . .. (2).

From (1), Z—Z:g{—a cosec()cotﬂ—ccosec\boot\pd‘z}_o

du_k
@ 2{ bcosec¢cot¢—ccosec|[zcot|[/——f—0

d;
2+ a cosecl cot = —c¢ cosecy cot d‘—'g’

dy

{ cosec ¢ cot ¢ = — ¢ cosecy) cotx,b——-

ay__ dy dJ:
acosecOcotOdfq)———ccosec\[,cot\{zd d¢
dy_ o dy
¥ cosec cotp — 76 —c cosecy cot - a0 dq)
. di_ di
..acosec@cot(il—l—;_bcosecq»cotgb(—w A )]

2m?
From (2), -5 = cot @+ b cotp+c cotf,
2
c cot¢=2—1:- —acot§—b cot ¢,
—c(1+cot?y) :j—\g=a (1 4 cot?9),

—c(1+cot?y) %:b (1 4 cot?p),

. dy__  acosec’y
O o comdy Substitute these values in (3
d‘P bcosec2¢ ubstitute these values in (3).

dg ¢ cosect)
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b cosec?p a cosec’B
t6. —-—————_b
a cosecl co ) cosece cotg- ccosec%
<. cot § cosecp=cot ¢ cosec,
cos6 1 =200 1 So0=¢.

sinf sing ~ sing “sinf
Similarly, by finding the partial differential coefficients
du du
do’ dy
shown that 6=1).
Hence 6=¢=1, or the faces are equally inclined to the

— considering first | and then 6 constant, it may be

base.

(9.) Required the dimensions of an open cylindrical vessel
of given capacity, so that the smallest possible quantity of
metal shall be used in its construction, the thickness of the
side and base being already determined upon.

Let a be the given thickness, ¢ the given capacity,
z=radius of base inside, y=altitude inside. Then

Whole volume v=r (z+a)?-(y+a),

Interior volume ¢c==2y, hence the quantity of metal

v—c= (¢ +a)? (y+a)—c=a minimum,

5 (w4 a)?-(y+a)=a minimum.

dy 2(J+(l)
2 .9 Yde= Sy ——Tm —
(z+a)2dy+(y+a)-2(x+a)dx=0, - P
L ia
Buyol L, it _c2 T o
Y= “dx  n o " Tata o add

Whence r=y = (7—:)* Therefore the altitude must be

made equal to the radius of the base.
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(10.) v=a3—3azy+3*; find the values of » and y which

render # & maximum or minimum.
z=a, y=a, u=a minimum when a is positive,
and a maximum when & is negative.

(11.) u=as®—ba’y+y?; find the values of # and y which
make ¥ & maximum or minimum,

(12.) u=as'y?—aty?—23y?; find the values of 2 and y
which make » a maximum or minimum.

e —a ab im
.1‘__2’ y—§’ u—-—-432 a maximum.
_ a b AW
(13.) u_(l—-; _5). ( - T) find the values of z

and y which render » a maximum or minimum.

(14.) u=a cos?xr+ b cos?y, where y=§+x; find the values

of cosx and cosy which make « a maximum or minimum.

1 .
costr=n b — e, cos? =l + ’
2 2Vai402 2 2Va?4 4?2

uzé (a+0£ va?+0%), a maximum with the upper, and

a minimum with the lower sign.
(15.) Divide a given number a into three such parts z, g,

zy x2 Y=z

and z, that -2—+? +—;— shall be a maximum or minimum,

and determine which it is.
(16.) Inscribe the greatest triangle within a given circle.
The triangle is equilateral.

(17.) A given sphere is to be formed into a solid composed
of two equal cones on opposite sides of a common base, in
such a manner that its surface may be the least possible :
find the dimensions of the solid, and compare its surface
with that of the sphere.

H 2
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(18.) Show that the greatest polygon that can be inscribed
in a given circle is a regular polygon.
22 :
(19.) In agiven ellipsoid, whose equation i i85 5+53 Zj +;Tl =],
to inscribe the greatest parallelopipedon.

If 2, , = be the half-edges of the parallelopipedon,
a b c 8abe

~

TWTE TR T
(20.) To find a point P within a given triangle, from
which, if lines be drawn to the angular points, the sum of
their squares shall be & minimum.
If A, B, C be the angles, a, {, ¢ the sides of the triangle ;

then CP=g (2a%+ 20—}

The point is the centre of gravity of the triangle.
(21.) Divide the quadrant of a circle into three parts,
such that the sum of the products of the sines of every two
shall be & maximum or minimum, and determine which it is.

CHAPTER XII.
TANGENTS, NORMALS, AND ASYMPTOTES TO CURVES.
If y=f () be the equation to a curve, ‘
Y- y:% (¢ —z) is the equation to a tangent.
If u=¢(, y)=c be the equation to the curve,

gi; («'— )+ ( ¥’ —y)=0 is the equation to the tangent.
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The equations to the normal are
d d
—W--7 & @—9)=0.

—y=— :j—:; (@' —z), and
dy\2
1+(3):

The tangent=y V 1+ (le';) Normal=y
dy

dx
S =y—> =
ubtangent v 7 Subnormal =y = g
The portion of the axis of y intercepted between the

d
ﬁz.’/o-

origin and the tangent is y—z o

The portion of the axis of x so intercepted is x—y =%

Ex. (1.) Draw a tangent and normal to a given p.oint P

in the comnon or conical parabola.
?=4ax is the equation to the curve
2, d dy_ . .
Y m 4a, C ey
(l.’l! ./ A > N G
NT= =22.
Subtangent N7'= Y= = 2a x
Hence to draw the tangent, let fall the perpendicular PN,

take NT=2AN, and join PT; PT will be the tangent

Subnormal A¢G'=3 J 7w %Y _2a.
Hence to draw the normal, take NG=2 43, and join PG

P@G will be the normal.
(2.) Let y"=a"1z be the equation to a curve ; find the

subnormal and subtangent.
dy dy an-1
n-1, Y e an—1 L=
A~ “dx ngt U
yﬂ
')/(1" -1 gn-1 ) ,1/2 ;

Subnormal NG= —y d g —‘nyn—? ny™? “nx’
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Subtangent NT'=y d_ M: 23’-'-’=nx.

If n=29, y?=ax, No=g, NT=2¢, and the curve is a

parabola.

(3.) Let u=a%—3axy+12=0 be the equation to a curve;
determine the subtangent.

du__ dy dy___

o _3x2—30y—3ax35+3y3—._0,
. dy_ 2 y ay — :v"’
* (¢ —a2) de= % dz ¥ —az

. Subtangent NT=y 9 % -”: y‘_f‘:f

(4.) If ?=4a(z+a) be the equation to a parabola, the
origin in the focus; show that the points of intersection of
the tangents with perpendiculars from the focus are deter-

mined by the equations 2,= —a, y,:‘-”- .

2
S the focus, AS=a, SN=x, AN=x+a, NP=y,
y*=4a(x+a) ... (1), eq" to curve,

d
y,-—y:a%/;(w,—x). . (2), eqn to tan.,

dex T A 8K

y=— d_ym' ..... (3), eq™. to ppdr. from origin,
. . _ dx dy dy
~. by subtraction, y=— ;l:z; z,— d—;z,-i-ﬁx, ...... (4).
dy 2a dz__y ¥ P
( ) '@—2—;’ :c+a...4-51 x—n—a,
dy

4 (E*E@) a="Lao—y, .. by substitution
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2
)= (G o)

ity =y 2 20y dal+y
i B Rk B e
la:,=--—1, r=—a,
a
dx
N B

(5.) The equation x™y"=a, which includes the common
hyperbola, is said to belong to hyperbolas of all orders. Find
the subtangent at a given point in the curve.

a
ﬂ:’"-':—;!
K4
mey 2 amy®!  an de__ an
i dy=  ma Lt
. Subtan. A'T:g/d-fz—- 'l..—“ 8—_ _._Zl_:_l.z"l:._ 2.
dy ma™=1 yn ma™ m

(6.) Given two points 4 and B, find the locus of P when
the angle 2284 is double of the angle PAB, and draw an
asymptote to the curve traced by P.

4 the origin, AB=a, AN=x, NP=y, 4=0, B=26.

PN g PN oy 2tan6
—_—== —_— == =tan24d=——-»
AN " x tanf, BN a—x tan B=tan24 1—tan?9
v P
.Yy 2'5 _ Zay
" a—-z—l _vz_a:z—_l/'-’
-z B NoO i
5 oy?=3a%—2ax, the equation to the curve.

2
‘Whence, if y=0, w=§a, and taking 40= §AB, the
curve will pass through O.
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The origin may be changed to O by putting x,=0¥, and
substituting the resulting value of # in the equation to the

2a\t
curve ; whence y=za (3+ —5) )
1/1
g
=+zl3hy l3-1.2 1 35 (22 D)
y=zaz3}+ 3.3 3 (Z) — Ske
2 D
=t3bex SF——F - Fde
RFTIPI PO
y=zzvV3+ _ag is the equation to the asymptote.
a a
Ifz=0, y=+-—; ify=0, z=Fo
z Y =73 Y *3

L= 3=tan 60°, and the asymptote cuts the axis of

x at an £ of 60°, and at a distance = —% from the point 0.

B +ax?

pr be the equation to a curve ; find the

(7) If 2=

equation to the asymptote.
z+a 2a 2a?
p=t () =2 (14 + 5+ &o)
. a a?

.. y=1= (x+a) is the equation to two asymptotes, and -
if =0, y=a, .. an asymptote cuts the axis of y at the
distance a from the origin ; and ' if y=0, x=—a, . an
asymptote cuts the axis of x at the distance —a from the
origin.

dy

Again - d—‘z= +1=tan 45° or tan 135° .. these asymp-



ABYMPTOTES TO CURVES. 83

totes cut the axes at an angle of 45°, and are consequently
at right-angles to each other.

Putting x=a in the equation to the curve, we have

y2=—2-—: or y=——r—=00
0 0 ’

~. there is another asymptote parallel to the axis of y.

(8) If y—2=(x—1)vz—2 be the equation to a curve ;
find the point and angle at which the curve cuts the axis
of , and the values of x and y when the tangent is perpen-
cular to that axis.

If =0, y—2=—-'\/:2—, Sy=2— V2.

If y=0, (z—1)vVo—2==2, (P—2z+1)(z—2)=4,

B—4a24+52—6=0,
28 —3a2—a24 32+ 22—6=0,

a? (x—3)—z (x—3)+ 2 (x—3)=0, sox=3.
dy 1 c—1422—4 3x—5
—=(zx—1). Vz—2= = .
=@ WA 2vVz—2  2vz—2

. dy _ _ 95 4
Hence, if x=3, E_tanﬂ_m_2_.,, and the

curve cuts the axis of x at a distance 3 from the origin, and
at an angle whose tangent is 2.
Again, if =2, va—2=0, . y—2=0, y=2,
dy 8x—5 6—-5_1
A= = =——=0w when z=2.
de 2vz—2 0 0
Hence the tangent cuts the axis of x at an angle of 90°,
or it is perpendicular to that axis when =2 and y=2.
(9.) If from any point P in an ellipse a straight line be
drawn to the centre making an angle 6 with the normal,
and if ¢ be the inclination of the normal to the axis major ;

tanl (a2—102)
show that tanﬂ_m.
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Let CA=aqa, CB=b, CN=x, NP =y, B
¢ CPG=0, CGP=l. A n

2 2,2
=-b; (a2—a?)=0%— I%‘—, eq". to ellipse.p

Iz
Ne=—CN= -3, by a property of the ellipse,

y _ay
tanl=- =t —=_"—
A(, Pz bz

aZ

%] 2
. 1’_—t nl,  alsoZ=tan PCN:L—ztanl,
£ x a

0=CPG=PGN—PCN,
tan 7 ’(1_‘\'-— tan C'N
1+ tan PGV - tan PCN

tanf=tan (PGCN —PCN )=

12
_ tanCGP—tanpCy M gtent

=1 +tanCGP- tan PCN

1+4ta nl ta.nl

_a*tanl—0*tanl _tanl(«*—4? )
T ¥ tan® a2+ 0% tan¥
(10.) From the centre C of a circle a radius C'R is drawn
cutting the chord BD in M, MP is drawn at right-angles to
BD and equal to MR ; determine the locus of P, and draw
the asymptotes.

Let BD, CO be the co-ordinate axes,

4 the origin,
CR=a,C4d=c, AM =z, MP=y. Then
MP=MR=CR—-CM 5 s

=CR— v/ CAZ+ AM?, or
y=a— v ¢’+a% the equation required.
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If =0, y=a—c=CR—C4=00—-C4A=
If y=0, z= ViZ=3d=(F?=(4?
= v/(CF+ C4) ((F—Cd)= vAF-40= V4D,
s ax=AD or 4B.

If z=+w, y=—wo. Hence the curve passes from O
through B and D to infinity.

To determine the direction of the tangents at these three

. dy x .
ints ; ~=tanf=F ——=—=0 if =0, ..at O the
PO tVara
tangent is parallel to the axis of x.
2_ o2
EI—:Z=tan(9=$ LA _f{D_ =Y%¥"%, which
de Vit a: JCA+ AD? a

determines the direction of the tangents at D and B.

Again, putting #,=0N=00—CN=a—(c+y), we have
y=a—c—u,; and putting = NP =z ; and substituting
these values of # and y in the equation to the curve, the
origin will be transferred to O. Thus

a—c—xz,=a— v c*+y2 ctyl=c+a,
At yl=c?+2cx,+ 22,
o y2=2ca,+ a2 which is the equation to the rectangular
hyperbola.

To find the equation to its asymptotes,
y=(22+2 ca:)*
1)
1

-+{(02)*+—(x’) b o)+ L (o) 20a + de -
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]

y=z (r+c) is the equation to the two asymptotes
and : putting y=0, we have r=—c¢, and
putting =0, we have y=ztc; also
flJ =tanf==1; .. the asymptotes cut the axis OF
23
t £s=45° and 315° at the distance —c from the origin O
Take OT= (4, and draw the lines 7, 7S at £Zs=45
and 315° respectively, these will be the twymptotm

(11.) The normal to the curve whose equation is

=4aur,
.4 ;
is a tangent to the curve defined hy y*= ' (x—2a)%
N dy  2a _ v | "
=4dar, ‘—1—5_—;‘7, =—5 (., —.r), eg®. to normal,
9
LY== T 4y (z+“q) . Let #,=0, then
,=.1'+..u=part cut off from axis of »
4
y2_"7a (x—2a)% 2 logy-log -+ 3 log (x—2a),
dy 1 1 dx 2
2dx.)—r_ x—2a Yoy~=3 (x—2a),
ax 2 x4 4a
—_y—=X—=(x—2a¢) = = X
L X—Y pr X 3(x «) 3 part cut off from
axis of .

Hence, that the normal and tangent may cut the axis of
z at the same point, we must have the equation
b + 4a

=x+42a, Sox=3x+2a.

But, the angles they make with the axis of .« ought to be
the same, and since

dz_y dy_3 y
@—%’ anddx 2'x—2a
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5 3x=x—2a, x=3z+2a, the same as before,

Hence, the normal and tangent, cutting the axis of z in
the same point and at the same angle, must be coincident.

(12.) In the curve defined by y3=az?+2* prove that the
portion of the axis of y intercepted between the origin and

the tangent = (a :’: .v)g'

3]/2/_,/: Q=2aa:+3x2’
du dw 3y?

2 .3 _ 2 .
AD=.70=y—zd~y=y_ 2a2® + 3 _3.7/3 2a.r 3.8

2ax4 322,

dx 3yt 3y?
__3(;1/3-—.13)——2@:),2_ a.r?__a a?
T e e

_° @2 _n a2 _a x \%
T3 {(a -}-.r).'a:"’}§ 3 (a+.v)§x3 3 (a+.z) '

(13.) If y8=a¥—a%; draw a tangent to the curve, and
show that the part of the tangent intercepted between the

axes =a, and that perpendicular on tangent = 3’/«1.1'3/.

Aededd,  A=d— r
_.y = =27 L=,
3 (lc 3 de IE g vy x
£ %;:-— L&(/!— —J’ (a\%_y*) J—(tﬁ"/i

AD:y—miﬂza%y!}-

3
(IJ %)

= —ut (y§+.z'§)= —a¥af,
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Now DT?=AD*4 AT?=abyk 4 at ot =at (s} 4 oF)

=(1j’.a§=a2’
s DT=a= part of tan. intercept;ad between the axes.
. FD AD AD? atyb
Agin Gp=pp  PD=pp=—r=abi

_4F2=AD2__FD2=aiy§——(1§!/a'=q§";/§ (ag'—yg')za‘iy‘x&,
;. AF=a¥rtyt= length of perpendicular on tangent.
(14.) Suppose a rigid rod BP slides along the line Az in
such a manner that its extremity P shall
be constantly in a given curve whose equa-

tion is y=7(r), and let BQ be an ath part W B
of BP; determine the equation to the locus
of Q.

Let BP=a, AN=x, NP=y, AM=z,, M@=y, Then

MQ:NP:: BQ:BP, or y.:y::%:a,
1
Ly= 1/_— S
But AN=AM—NM=4 11_( NB—MB)=z,~(nMB—MB)
=z,—(n=1) MB=x—(n—-1) /\/-a—: —y2,
ne

ymbslet=

\/ a?—n2y -} the equation required.

(15.) Determine the subtangent to the curve of which the
normal =2 a?.(abscissa)?.
Let x be its abscissa, y its ordinate. Then

ay W :
-+ Normal PG=y o o yd—;=2a2.v" an equation
Vol
evidently derivable by differentiation from - 7=

. y=ax? is the equation to the curve.
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Now - 111_2a2md—2/t2¢3_2ax Ldo_ 1
“de oy T a2 T dy~ 2az
dr a2? =z
. Subtangent N '=y — d_/—2—(l.’;'=_2"

The equation to the curve may be put into the form

1
.r'":; ¥, therefore the curve is a parabola, whose parameter

.1 . .. . .
is o and whose line of abscisse is perpendicular to the hori-

zontal axis.
x

(16.) The equation to the catenary is 2y=c (r,é-}-e “);
find the length of the normal.

d:lz, ;{ ( )+6 "(——1:)} ;{0"—6 r}, .

2x 22’ 3' 2"
AP € —24c € dyf | e —24e ¢
w1 Mty
— 2z _¥xox %
. dy® 4246 ° ey
' \/”M" T -2 ¢

. _ dy> _ y 1 ,
..nmma,lPG'_g//\/l-f-(—l;_Jc ==y

(17.) If yr—(a+b2) y*~ 1+ (c +ex + fu?) y*~2 — &e. =0 be
the equation to a curve of n dimensions, prove that, if each
ordinate be divided by the corresponding subtangent, the
sum of the quotients will be a constant quantity.

Let 7, vy, 7y, ....7, be the values of y which satisfy
the given equation, and
8, 8, 8, . - - « 8, the subtangents corresponding to thes
values of y ; then, by the theory of equations,
r4rgtry .. ., =0+ba,
12
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dr,

Ldry dry dny Moy
Cde Tde T den T Tde T

and, taking the differential expression for the subtangents,

_rdr _rde _rdx
= Yy =,
L n_dn ry__dr, Ty_dr,
.o ;‘:-—Z:) E_:l.—l" e s—n—-—;'
Hence ﬁ-l-ﬁ-{-ﬁ S +r—~"=b.
8, 8 8 8,

(18.) If y*—24+2ba2y=0 be the equation to a curve;

find the equation to the asymptote.

Assume y=uxz, then A—23 420435 =0,

2h 2132 hi both 1 (i
=i y=1r—= which both become infinite

when 24=1 or +=1.
"}(_li‘/.._ 9 :'(_I-Z Qby -2 ax=
43/'d 423420 (I£+~by 22=0,

dy dy _2.3—20ry
298 4 ha”) L =2,3-2 =" S
( y + 2 )d.‘,' oL IIJZ/, d‘E 2'7/_';-*_(’.‘.2

228 =20ty 2yt haty—2.0 4 2la%y

dy
AD=y—g L=y~ =
YT YT AT 2+ b2

_2(f =)+ 30y —4laty+3baty bty
T 2yyed T T 2p%b 2Pt iet

baz which, when z=1, and consequently

== T
b h 14

r=w, becomes AD:—m—Z:——Z——_§.

Hence y=2— -;:, y= —z-g are the equations to

two asymptotes.
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(19.) Investigate an expression for the subtangent : and
in the parabola of the nth order, whose equation is y=az",
find the subtangent and subnormal.

Subtangent =;L z, subnormal=mna222n-1,

2
(20.) The equation to the ellipse being y’:;l:—2 (2ax—a?);
find the subtangent and subnormal.

Qar— a2 2
Subtaugcnt::—ai———‘?-, subnormal=—; (a —).
a—x a?

d;
(21.) Prove that ﬁ equals the tangent of the angle at

which a curve, referred to rectangular co-ordinates, is inclined
to the axis,

(22.) y*=a2—a? being the equation to the circle, the
origin at the centre, show that the curve cuts the axis of z
at an angle of 90°.

(23.) y*=2azr—a? being the equation to the circle, the
origin in the circumference, find the subtangent and normal.

Subtangentzgﬂ——x-z: normal=a.
a—zx

(24.) If an ordinate NP in an cllipse be produced until it
meets the tangent, drawn from the extremity of the latus
rectum, in 7'; prove that the distance of 2 from the focus
is equal to the distance of 7' from the axis of abscisse.

(25.) In the ellipse, if it be assumed that #=acost;
prove that the equation to the tangent will be

ba cost+ ay sint=ab.

(26.) Find the locus of the intersection of pairs of tangents
to an ellipse, the tangents always intersecting each other at
right angles. 224 y?=a?+ 12



92 TANGENTS, NORMALS, AND

as

(27.) _1/2=')a - being the equation to the cissoid of

Diocles, find the equation to the tangent, and show that
there is an asymptote which cuts the diamecter at its extre-
nity at right-angles.
Equation to tan. z,= = W {Ba—a)x,—ax} -
THEa—a)}Y '

(28.) Prove that half the minor axis of an ellipse is & mean
proportional between the normal and the perpendicular from
the centre upon the tangent.

(29.) In the logarithmic curve, whose equation is y=a*,
show that the subtangent is equal to the modulus of the
system whose base is a.

(30.) Prove that the curve whose subnormal is constaut
is a parabola.

2
(31.) In the hyperbola, whose equation is y*= ‘—ﬁ(2ax+a""),

b . .
show that y= i; (z+a) is the equation to two asymptotes

passing through the centre and cqually inclined to the axis
of a.

(32.) Draw the rectilinear asymptotes of the curve defined
by 4423y =a%7 and determine the form of the curve at
the origin.

(33.) Let 2*—3°+aa®=0 be the equation to a curve;
show that the equation to the asymptote is y=x+§-

(34.) If ayP=UbaP—c%zy be the equation to a curve ; show
that y= (g)* (x— Ezc-:—b;) is the cquation to the asymptote.

(85.) In the common parabola, whose equation is y?=4au,
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find that point at which the angle, made by a straight line

from the vertex with the curve, is a maximum. 9
z=2a.

(36.) A rectangular hyperbola, and a circle whose radius
is 2a, have the same centre ; find the angle of intersection
of the two curves. Anglo=tan-! _/4_T§ .

(37.) Find that point in an ellipse at which the angle
contained between the normal and the line drawn to the
centre is a maximum.

(38.) Determine the angle at which the curve, called the
lemniscata of Bernouilli whose equation is (y?+a%)?
=2a?(22—y%), cuts the axis of .

(39.) If 4 be the vertex, P and ¢ corresponding points in
the cycloid and its generating circle, prove that the tangent
at P is parallel to the chord 4Q.

(40.) The centre of an ellipse is the vertex of a parabola,
the axis of the parabola intersects the axis of the ellipse at
an angle of 90° and the curves also intersect each other at
right angles ; show that major axis : minor axis :: V2.1

(41.) If y>=mx+na? show that an asymptote cuts the

axes at points indicated by r=— 2 and y=ﬁ~-
. 2n 2nt

(42.) Show that the locus of the intersection of tangents
to the rectangular hyperbola and perpendiculars upon them
from the centre is the lemniscata.

5
(43.) Draw the asymptotes of the curve _7/2=g i:;s’ and

determine the distance of its minimum ordinate from the
origin.
(44.) Find that tangent to a given curve which cuts off

from the co-ordinate axes the greatest area.
gre x,=22, y,=2y.
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(45.) Draw a tangent to the curve, whose equation is
m-1
y=az ™, and show that the tangent always cuts from the

axis of y a portion equal to an m' part of the ordinate at the
point of contact.

(46.) If P+ 23— 322=0, show that y=—a+1 is the
equation to the asymptote, and that the maximum ordinate
is at the point indicated by #=2.

(47.) If C'be the centre of an ellipse, and AP any ordinate,
and if in NP a point @ be so taken that its distance from C'
shall be equal to NP ; show that the locus of @ is an ellipse
whose major axis is the minor axis of the given ellipse.

(48.) Draw a tangent to the curve whose equation is

3
y= ,2:— -» and determine whether the curve has an asymp-
« oL

tote.

(49.) ABD is a semicircle, centre €' and diameter 4D ;
EF is a chord parallel to 4D, ('QRF a radius cutting £ in
Q; QR is bisected in P. Find the locus of P.

ay=(2y—1) (@ +r7)%

(50.) Show that the curve, whose equation is #3+aly
—axy=0, has a rectilinear asymptote at the distance 4 from
the origin, and also a parabolic asymptote, whose equation

is ay— g R= (x-— %b)‘, the latus rectum of the parabola
being @, and its axis parallel to the axis of y.

(51.) BAC is a triangle, right-angled at 4 ; a straight rod
moves through the fixed point C, while one end slides down
the line B4 : show that the curve described by the other
end is a conchoid whose equation is 2%y?=(z—0)? (®—a®),
and determine its subtangent.
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CHAPTER XIIL

POLAR CO-ORDINATES. SPIRALS.

If r=f(6), or p=f(r), and u=%5 then

Tangent of angle (¢) contained by radius vector (r) and a

tangent to the curve, is tan SPY =rﬁ —u a8,
dr du

Perpendicular on tangent,

SIr:]}: /\/ ™ —
Subtangent S7'=r? (j:f
—12-=u2+£]—l-l—_:’- ﬁ:——l)——— .
r dd dr rvir?i—p?
If A=area ANDP, d—-=lr2 .
dy 2
Ex. (1.) Find the polar equation to the common parabola.
SP=r, £ ASP=6.
r=DN=24854+SN=2a+7rcos PSN=2a—r cosf.
r+rcosf=2a =20 T
- -0 T cost o0
CO! §

(2.) The equation to the spiral of Archimedes is r=a8 ;
find the angle between the radius vector and tangent, and
the subtangent.

ﬂ:a, SPY:ta,n‘lrﬁztan-lrl;—_tan-de.
do dr a
d9 2
Subtangent ST:ﬂd—a_’;.



96 POLAR CO-ORDINATES.

(3.) If r=a (1+cosb), find the equation between p and r.

o e 1 du__ asinf
—=a-+acosf. U e cos0 do~ (a + acosd)’

((Jlu)2 a’sin?0 _ a?(1—cos?0)

46) ~(atacost) (atacost)t
1 2
But a 0036=}- —a, a? cos’8=—-§ — -—(E+a?,
u u u
1
(z"’---a‘*’cos?():&5 —_—— a+a cosﬂzl-
w u- u
20 1
. (du\? R VN s 2a
st () =W = e =y
ut
1 2a
— T —— 2:.—
poon g 2

(4.) The tangents at the vertex and extremity of the
latus rectum of a conic section intersect; prove that the
distance of the point of intersection from the vertex is equal
to the distance of the focus from the vertex.

Let 4 be the vertex, S the focus, and 7' the point of in-
tersection.

//
The equation y=;lv 2uzx=F 22 will, by using

the negative sign, comprehend all the conic —z\—s
sections excepting the hyperbola; and, by using
the positive sign, it is the equation to that
curve.

Also y,— y#j—-ﬁ_ (2,—) I8 the equation to the tangent.
aFzx

———m )

V9axFa?

Differentiating the assumed equation, %

_b
a
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and substituting the values of y and Z—Z in the equation to

the tangent, we have
.z/.—-~/2a.1:+x2+— _2FL . (0—a).
a vV2arFa?
But at the ongm #,=0, and 2=A485=m suppose. Then

agxm
——V 2am+m‘—- A A
a v2amFm?

___b (2am+m2—am+m2) bm
a V' 2amnF m? 2am=F m?

Now a’=0%+ (aFFm)? by a property of the curve,
S 2amEmi=02, S Td=y,=m=54.

(5.) In the ellipse, if p be the perpendicular from the
centre on the tangent, and r be the distance of the point in
the curve frem the centre, prove that p"’:-(—zz—_*_gzgér—? .

Perpr CP=r, <« PCN=0, then r=rcos, y=rsind;

2?2 9t

+ = =1, equation to the ellipse.
. rzcosi’() rsin%)__ <cos20 sin'-’())_.1
e R P 2 )=
a?l? a?)?

2

= Peos? 0+ azsin”0=a2(1 ZP)cos?0+ aZsinZ6’

)’
where 1 —02=-—§-
@

- e a2l b2
T R  200s™0 1 —¢2cos?0
du .
u2=bl—2 -(1—e%os%), 2u— 7 ﬁ{ —2¢%0s0(—sinb)} -
du_ 1 1 ¢2cosfsind
—=—{e%080s8inf} - —=—+ ———ee-"
do { b % b v'1T=¢%cos?9

K



98 POLAR CO-ORDINATES,
duy? 1 —e%os? | e4cos? (1—cos?0)
24 (=) =
w+(Z5) 7 TTR(I=Roost)
_1-2 ¢2c08%0 + e%cos40 + ¢4cos?6 —e‘gos“o
- 12(1 —e2cos?t)

__1—2¢%0s%0 4 ecos?d
0*(1 —c2cos?)
1 1—¢%cos? 2 1202
— = y oo2cosi=1~— —, 20 =¢2 — .
But o 02 Zcos?=1 p edeos?f=e pe
20 122 2
=24t — Bl — (2
T _1 tr+é—— _e 1 e (*—2)
P
)2 2 02 1 12
= i = 1,2
2
2 2 s
—--r~+a (1+(12) - a?l?
- a?l? b T
(6.) In the ellipse, if 4, be the origin, the equation is

e

V== (2ar—2%: let § be the pole, £A4S5P=0, and

;SP=r; show that the equation referred to polar co-ordi-
a(l —-—('2)

nates 18 r= g ecow

1
(7.) The equation to a curve being y=(2™+aa™ )" ;
determine the polar equation, and show that an asymptote
cuts the axis of absciss® at an angle of 45°, and at a dis-

a . .
tance = — — from the origin of co-ordinates.
m

~(8.) In the hyperbola, if S be the pole, the polar equa-



SPIRALS. 99

tion will be r—li_-g_e————ll, if the centre be the pole, the
b
olar equation will be r=—mxou-—_——
P 1 v e2cos?o — 1 1

(9.) Show that the polar equation to the lemniscata of
3

LT
37
(10.) Show that the polar equation to the conchoid of

Bernouilli is 72=2a?cos 20, and that p=

. . b .
Nicomedes is r=a+ o the equation between rectangular

co-ordinates being #%y%=(a+ z)? (12—a?).

(11.) Show that the equation 'r=6(ff represents two
™

polar curves, one having an exterior and the other an interior
asymptotic circle, and exhibit the general form of the two
spirals,
(12.) The polar equation to the cissoid of Diocles is
=2atanfsing. Prove this,

2
(13.) The equation to the lituus is #’:% ; show that the

subtangent =2a /0.

(14.) In the cardioid r=a (1 —cos6), and if 7, be a radius
in the direction of 7 produced backwards, »=a (1+cosb):
show that 2¢=6.

(15.) If the polar equation to a hyperbola, referred to its
a(?— )
I+ec
intersecting the axis of « at a distance a¢ from the origin, at

focus, be r= 5 show that there are two asymptotes

b
angles whose tangents are+;—I: and — P respectively.

(16.) If 6=72——1—;2 be the equation to a spiral ; show
ar—
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that a circle whose radius is 2a is an asymptote to the
spiral.
n
(17.) 1If Oz%’ and me"®=10"; show that the equation

between the radius vector and perpendicular on tangent is
b

= NiEorw

CHAPTER XIV.
SINGULAR POINTS. TRACING OF CURVES.

A curve is convex or concave to the axis according as

d? _
vy and (Tx—’: have the same or opposite signs.

To determine whether there be a point of contrary flexure,

we put ‘-i———-O or o ; and if « be one of the values of x so

da?

found, we substitute successively e+4+A and a—A for x in

d?, d?y . LAy . . .
bk 5 then if e have opposite signs, there will be a point of

contrary flexure denoted by z=a.

l
At a point of contrary flexure in polar curves :l—f=0.

0
If any values of x and y make %=6’ this circumstance

generally indicates a multiple point.
20\2  d? d2
For a true double point (-CLI—&-) - (J) ( l:) >0.

dzdy dx?/ \dy
For a point of osculation (%) (‘-2— :v"’) (“%—;) =0.
For a conjugate point (3‘-2%) — (%) (?;—;)< 0.
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At a cusp, if x=a, p ha.s but one value ; and, substituting

successively a4k and a—#h for , == has two values.

da:‘
For the ceratoid or cusp of the first species, the values of

a%y o Y
e ave opposite s1gns.
For the ramphoid or cusp of the second species, the values

2
of i—"! have the same sign.
«

Ex. (1.) If the equation to a curve be y=-(1;‘\/.z"’+c.z"‘;

show that the origin is a point of osculation, ascertain if
there be any maximum ordinate, and determine the general
form of the curve.

It is obvious that, by giving « successive positive values
from 0 to o, y will have successive positive and negative
values from 0 to o, conscquently there are two similar
branches extending from the origin to infinity, one branch
on cach side of the axis of & to the right of the axis of y.

dy 1 bart4dcsd x Szx+4c

Now — =~ + ——— = — . ———=0 when #=0,
dr a "s/.z"-}-c.z"‘ 2« vVz+e v

by

d
and *» when =0, yalso =0, and I: has

two values, one positive and the other ne-
gative, each =0, therefore the axis of # is
a common tangent to the two infinite branches at the origin;
hence the origin is a point of osculation.

Again - y=%vx+c; when 2= —¢, y=0, and while

« takes successive negative values from 0 to —¢, y will take
successive positive and negative values from O to 0 again,
K 2



102 SINGULAR POINTS,

and thereforc to the left of the axis of y there is a loop or
nodus.

dy x dSax+4c 4
And s —=—. =0, br+4c=0, andoe=——¢
dr 2a vz+¢ + ’ 5
determines the position of the maximum double ordinate ;
and ° Zl—[g__tan()— o when #=—¢, the tangent at this point

intersects the axis of x at right-angles.
Take AB=¢, and draw the tangent 7Bt1 A B, take

9 ]
AN:%C, and draw the double ordinate PN,7=3—; (g)%,
[

which is the value of 2y corresponding to = — %c the
loop will pass through 4, P, B, p.

v
(2.) Trace the curve, whose equation is y=7_f(a +a);
a

and show that there is an oval between #=0 and 2=a ; de-
termine the position of the maximum double ordinate, and
exhibit the form of the exterior branch.

, a? v, X
Firstly, y=—1 7 (a—-x) Vi— Wi
Let 2=0, .. y=0, Take AB=a. 2 i
r<a, yis=+, Then, *: while \
z=a, y=0, « increases
x>a, yisimpossible. | from O toa, yhaspositive

Putting —a for z, y is impossible. J and negative values from
0 to 0 again, .. there is
a maximum ordinate somewhere hetween 4 and B, and 4B
is the axis of an oval.
2 va 3

R A ALl
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_¢;3~/;
Vi va

the maximum double ordinate cuts the axis of x.

3r=a, . .1:=§ denotes the point where

Secondly, y= l/; (a+2).

va
Let 2=0, .. y=0, 1 Draw BP=2a. Then,
z<a, yis =+, +» while # increases from
r=a, y=2a, 0 to infinity, y has posi-
x>a, yis =+, t1ve and negative values
r=w, y=o, from O to infinity ; there
Putting —x for #, y isimpossible. J is a branch above and

below the axis of x exte-
rior to the oval.
No curve exists to the left of the origin.
(3.) ¥*(a®+4a%)=2a?(a®?—a?) is the equation to a curve;
trace it, determine the angles at which it cuts the axis of «,
and find its maximum ordinate.

- /\/u"’-—.z:’-’
y a?+ a2

If =0, then y=0 Put —x for z, then
z<a, y is possible & if =0, y=0
r=a, y=0 x<a, y is possible ¢
x>a, ¥ is impossible. r=a, y=0

& >a, y is impossible.
Take AB=a, Ab=—a, in the axis of , and the curve
will pass through the points 4, B, J.
And - when #>a, y is impossible, the curve cannot
extend beyond B, b.

a? 22)—(a2—a2) (22)  a?—a?
Now 3y gt D)= 09 s,
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dy_ —a%P—a®—a28+ 28+ alw—2d
Yar— (a2 + a2
_ 0% —2a23— o
(a®+ _,,2)2_‘
Cdo_1 (@4 2(@d =222 —ah) _ ad—2a%P—a*
Cdr =z (a‘-—.z"-)% (a?+22)2 (a3+.z'2)‘1} (a-'—.z‘z)’

and putting #=0 and *a in this expression, we have

4 4
tan()-—d—(’- a a = =1 =tan 45° or tan 135°,
de  (a?)} (a-)i a
—9h
= 2L= o =tan 90°,
(24%)3(0)

. the two tangents at the point 4 are inclined to the
axis of # at £ s=45°and 135° respectively, and the tangents
at B and b are L to the axis of z: .. the point 4 is a
double point.

a?—u2

To find the greatest ordinate, y=uz- M ——’ A IDax.
a“+x*
L dv_ ar—2a%2—at
Tl (@)Y (@ radE
A+23224ad=2a%, 2+aP=a2V'2, x_+a\/~/2—l
Hence the greatest ordinate cuts the axis of # at points

denoted by x=a\/~/§—1 and —a\/«/‘j—l, and the

length of this ordinate may be ascertained by substituting

a“—2az.z‘2—x4=0,

b

these values of z in the equation to the curve. Thus
—a2v/2 /2 +a? a2
=an/ V2-1. «/ i
y \/ a?4a? s/ 2—

— V2 .a2
—an/ V72— .4/%“2______.
a\/ 2-1 V2. a?

=an/ V2—1.A/ VI-1=a(V2-1)
=MP, MP,, mp, mp,.
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4) If Y=oy show that there are points of contrary

a,z

flexure when #=0 and a+/3, that the curve cuts the axis
of # at an angle of 45° that the axis of  is an asymptote to
the two infinite branches, and that there are maximum or-
dinates when 2= +a and —a.

azx
Let =0, .. y=0 Put —a for z, then y Y=

rz<a, Yis + Let 2=0, .. y=0

a .
r=a, y=3 r<a, Y18 —
ad
. a
r>a, yi1s + r=a, y= -3
r=w, y=0. z>a, yis —

r=0w, y=0.
Take AB=a, Ab=—a, and draw
the ordinates B¢, bq, equal to Zand—o
2 2=
respectively, the curve will pass
through the points 4, @, ¢,, its right-
hand branch being above the axis of #, and its left-hand
branch below it, the two branches meeting that axis again
only at an infinite distance from the origin 4. .. the axis

of x is an asymptote to the two infinite branches.
dy__(a’+2%) a’—a’x. 22_ a?(a®—a?%)

Now dx (a2 +x2)1 (a.. + z...)2
A%y (a24a2)? (—2a%0)—a?(a?—a?)-2(a®+ %) 22
da*™ (a4t

a% (a,z 3a )_0, if 2=a+v3 or 0.

@y
Substituting av'3—h, a /3 +h respectively for 2, we have
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d%y_24%(@a V3—h) {(av3—h)2—8a2}
do? {a®+(av3=h)2}®
_—2a%(av3—F) (2a+3 —h),
{a24(av/3—h)2}*
which is negative, since h<a '3 ;
d%_2a%h(av/3+h) (2av/3+h)
dz? {a4 (av3+1)2}*

Hence z=a +/3 indicates a point of contrary flexure ; and,

» which is positive.

substituting this value of # in the given equation, we have

/g wv'3
3/=a; 3, Take AN=a+'3, and draw NP= 43; when

P will be a point of contrary flexure.
Also substituting 0—#, 0+ A respectively for «,

d?y _ —2a%h (i? — 3a?) %y 2a%h (12— 3a%)
A2~ (B3¥E 2 @1y

one positive, the other megative. .. the origin 4 is also a
point of contrary flexure.

2
Hence also, y being positive and (-[Zz',% to the left of ¥/
[¢

negative, the curve from 4 to P is concave to the axis of a,
and consequently beyond P it is convex.

Again -: as x increases y at first increases and afterwards
decreases, having various finite values betwden its primary
value 0 and its ultimate value 0, there will be a maximum
ordinate somewhere on each side of the origin.

. 117/ a2(a2_1.2) 0 . a,2_x2=0’

=-+a.
‘I R F==a

But when s==+a, y==+ Draw BQ:g, it will be a

z
maximum ordinate,
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By substituting 0 for z in Z—: we have

4
tan0=%=1=tan45°. ~. the curve cuts the axis of x at

the origin 4 at an £ of 45°

9

a2+§ ; show that the branches of the

6.) If y=a-

curve pass through the origin, and are contained between
two asymptotes perpendicular to the axis of .

Let =0, .. y=0 Put — & for a, then
x<a, yis possible + if #=0, y=0
r=a, Y=o z<a, yis F
x>a, yis impossible. r=a, y=—o

#>a, yis impossible.

Take AB=a, Ab=—a ; then, since at the
origin 4 the ordinate is 0, and then as # in-
creases the ordinates increase until #=a, when
an infinite ordinate passes through B ; and,

since the values of y are Loth positive and ne-
gative, a branch extends on each side of the axis of a.

Also, since when x is negative, the ordinates take values
exactly corresponding to those when « is positive, the curve
Las similar branghes to the left of the origin.

44 9a22— )
Again (_];'f-__—_ aF ('z.v- aA : and, putting =0 and
da (a—a2)3 (a2 + a2}

d
+a in this expression, we have ta,nB:d;Z: +1 and .
5 tan 0 = 1 = tan 45°, tan 6= — 1 =tan 135°, tan 6 =
=tan 90°
Hence a tangent to the curve cuts the axis of « in the
origin 4 at an angle of 45°, another through the same point
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at an angle of 135°: and at B a tangent to the curve is L
the axis of #, and is coincident with the infinite ordinate.
This tangent is consequently an asymptote, the branches of
the curve do not extend beyond it, and they are convex to
the axis of «.

(6.) If (y—0)P=(r—a)’; show that there is a ceratoid
cusp when x=a, and that the tangent at that point is pa-
rallel to the axis of «.

If x=aqa, y=0. Take AB=a, BP=1, then P is the point.

5 . (]'7/ ) n
Now y —b= =+ (z —a)3, ..%z-_t§(x—a)§=0
when r=a; .. tanf=0, and the tangent to the curve at
the point denoted by x=a is || to the axis of a.
Apgain Zx’: 15 (.1: a)}—-O when r=a;

and, putting a+h, a—h successively for x,

Z, 2 15‘/ k, which has two values, one +, another —.
d 2.’/ 1 \/ e g s s .
TR T h, which is imaginary :

and since if z=a, Z—Z 0, ‘jl—",_o and if z=a—h, they are

both impossible . the curve cannot extend 31| . E

to the left of P: also -; if a=a+4, d.r{’ has 4 "

two values, one positive and the other negative, .. at the
point P there is a cusp of the first species.

9

6~
(7.) Show that the curve, whose equation is =g i T has

a point of inflection when r=§; and rectilinear and circular

agymptotes.
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r62—r=ab? (r—a) 02=r, .‘.9=/\/ .
r—a

r—a—r
do__  (r—a)? - a . But iq= P
dr 9 /\/ r 27t (r—a)k dr r(r2—pt
r—a
. pP______a r? a’r
' r(r2—p?t 214 (r—a)d r2—p2 4(r—a)3
P 4(r—a)® 1 _4(r—ap
PEET 2 7o ar +4
1 _ 4(r—a)P+a’r . ard
—_—_—————) . _————
2 a?rd » Vi (r— )+ a?r
24 42
—ar‘}~/4 (r—a)P+ a?r—ark. 12 (r—af+a
dp _ 2 2VE(r—a (r——a)3+a3r =0
dr— 4 (r—a)*+a’r )
* 3 {4 (r—a)+a¥}—12r (r—a)2—a?r=0,
2 134 r=—a? ; 'r—--g’—(f
ri— g r=—a’, L=

Hence there is a point of contrary flexure, when r=_3. a.

]

. 1 62—1 P
Again e Let r become infinitely great, then
l=—1—=0, S 62—1=0, 0==+1.
r o
do__ a dl) ar? _¢2( r )i.
dr 2% (r—a)k dr 2(r—a)§ 2\r—a/ ’
and, when 7 becomes infinitely great,
r 1 - 1 1 =1
r—a 1-% 12 1-0

r @’

. Subtangent S7'=r? Z——g: F

[ CTRS

L
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and, since S7 remains finite while §P is infinite, a tangent
may be drawn which will touch the curve at a point infi-
nitely distant from the origin ; this tangent is therefore a
rectilinear asymptote: and :: 6 and S7' have each two
values, .. there are two rectilinear asymptotes.

62—1 6°—1 1

1= =1——

ag? 62 62

1
Again, let r=a, .. ==

L1
o=

Also 6= A / ;——r—a: which is impossible when r<a.

Hence * r=a makes 6 infinite, and r<a makes 0 im-
possible, there is an asymptotic ©, radius =a, within the

0, S 0= when r=a.

curve.
In the logarithmic and many other spirals the curve makes
an infinite number of revolutions about the pole before
reaching it ; hence the pole may, in such instances, be con-
sidered as an indefinitely small asymptotic circle, that is, an
asymptotic circle whose radius =0.
The equation to the logarithmic spiral is r=a¥, or »=ac™},

8
or r=ce*; r increasing in a geometric ratio, while 6§ increases

in an arithmetic ratio ; the radii including equal angles are
proportional. Its evolute and involute are similar to the

original spiral.
(8.) Trace the curve whose equation is r==a (2 cos+1).
Let0=0, ..r=a(2+1)=3q,
0=30°, 7r=a (~/§ +1),whichis < 3a,
6=60, r=a(l+1)=2q,
0=90, 7r=a(0+1)=a,
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Let §=120, .. cosf= —cos60= —%» r=a(—1+1)=0,

0=150, cosf=—cos30= ——@: r=a(— s/§+ 1),
2 ..
which is < a,
6=180, cosf=-—1, r=a(-2+1)=—aq,

6=210, cosO:—cos30=——tg§, r=a(—v3+1),

which is < —a,

0=240, cosf=—cos60=— %: r=0,

0==270, cos6=0, r=a(0+1)=a,
6=300, cosf=cos60, r=a(l+1)=2aq,
0=330, cosf=cos30, r=a(~/§+ 1),
which is >2a,
0=360, cosf=1, r=a(2+1)=3a.

Divide the @ of a © into 12 equal parts, and draw
radii through the points of division. Take AB=3a, 4P,
Ap each =a(v3+1), AC, AK each =2a, AD, AH each
=a.

Take AE’, AG' each=a(— v'3+1),and AF'=—a. These
three, being negative values of r, must be measured in an
exactly opposite direction, as 4E, AF, AG.

The curve, which is the trisectrix, will pass through the
points B, P, C, D, 4, H, K, p ; and the interior oval will pass
through 4, E, F, G.

Taking r=a (2cos0—1), a precisely similar curve is pro-
duced, but turned the contrary way.

Taking — 0 for 6, the same curve is produced,
"> 2cos (—6)=2cosb.
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(9.) Show that the curve, whose equation is (y2+4?)3
=4a%"% has a quadruple point at the origin, and that
there are four loops or ovals; namely, one in each
quadrant.

Let the equation be transformed into one under polar co-
ordinates, putting #=r cosf, y=rsinf.

(r%in? + r%c08%0)3 =4 arin?0r%cos?h, r8=4 a?r4sincos?),

r3=4a%in?%0 cos?d, r=2asinf cosf. S r=asin 26
1st quad. If 6=0, r=0, By put-
0=15°% r=a sin30=2, ting — ¢
2 for 6 the
. V3 curve is
6=30, r=asinG0 =g % reproduced.
0=45, r=asin90=aq, Take the several
values of r at th
6=60, reasin120="3,, voluce of 78t the
2 7 corresponding
_ . _a angles.
6=T5, r=a sm150._2: In the second
=90, r=asinl80=0, and fourth quad-
ond quad.  9=105, r=asin210=—7, TNt the values
2" of r, being nega-
3rd quad. 6=195, r=a §in390=2, tive, -mu?t be
2 measured in op-
4th quad.  6=285, r=asin570=— . Dosite directions.
' 2 Hence, there

will be an oval whose axis =« in each quadrant : and the
origin is a quadruple point.

(10.) If r=atan6, show that the asymptotic subtangent
is @, and that the curve is included between vertical asymp-

totes.
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Let 6=0, . .r=0, Let 6==+45, ..r=a,
3
0=45°, r=a, B=-2I, r=ow,
6=2 r=ow 8-—37r+45 =—
=y =@, =9 , Tr=-—a,
0=135, r=—aq, 0=2nr, r=0.
6=m, r=0.

Take therefore SB=a at an angle of 45“ with the axis
of x, the curve will pass from the origin § through B to
infinity.

And - those lines are said to be || which coincide only
at an infinite distance, and -; the asymptote will ultimately
coincide with the curve and consequently with SP when
both are infinite, .. the asymptote must be drawn || SP.

There are similar branches in all the four quadrants.

dr d6 1

o — 2, ——————y
Now dﬂ_a (1 + tan?p), dr—a (1+ tantt)
e a?tan?0 tan?6 © 7
dra(l +ta.n26)_a s o when 0—5'

& 8T=r? Z——?: a, the asymptotic subtangent.

Take ST=a, and draw 7'P, || SP; TP, produced is the
asymptote. Hence, this curve is included between vertical
asymptotes.

(11.) z=a (1 —cosb), y=ab are equations to the curve
called the companion to the cycloid; find the points of
contrary flexure.

Let BD@ be the generating circle, centre O, vertex D,

radius =a, DM=x, MP=y, £DOQ=0.
L2
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Let 6=0, ..2=0, y=0, A
n
6=§’ r=a, y=§ a, -
™ .
0=§+a, s c080= —sina. Tl 1‘,
e=a(l+ Bma‘)’}wluch increase L
T .
y=a|-+a), |asailncreases. /
G+) /

Let azg’ O0=m, . .cosb=-—1, —cosf=1,

r=a(l4+1)=2aq, y=mna.
Putting —0 for 6, a similar curve is produced on the
other side of the axis of .

Now H___®
dr  (az—a?)t
1
.. —5a(2ar—a2)¥2a—27) _
.‘_i_'u=_-2 = -a(a :r)q:O, if r=a.
da? Qaxr—a? (2ar—a?)3

Substituting a+ 4, a—*# respectively for # in this expres-
sion, we have
d21/ —a{a—(a+h)} __-—-a( —7)
a2~ {2a(a+h)—(a+AP2}E (a2—A2)}
d2 —a{a—(a—1)} —nk
d.z-2 {2a(a—h)—(a—h)2}E (a2 h2)E

2. there is a point of contrary flexure when 2=a, y=g a.

, which is positive,

» which is negative ;

DO=a. Take 0R=ga, 0r=—12—ra, each = arc Dn,

BA=na=arc DQB ; the curve will pass through D, R, 4,
and R, r will be the points of contrary flexure.
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(12.) Show that the curve y4+ 2 axy?—ax®=0 has a triple
oint at the origin, and determine the position of the
angents.

4y3p+2a($.2yp+y2)—3ax2=0, Wh(ﬂ‘ep:z—'z;
(44 +4azy)p=3as?—2ay?,
_3ax’—2ay®_0
P=y Ptdazy 0
. there may be a multiple point.
Differentiating numerator and denominator,

if =0 and y=0.

6 ux—4ayp 0 oo
p=12y2p+4axp+4a]/=6’ if =0 and y=0.
Differentiating as before,
_ 6a—4ayg—4ap® * here 44 —
r)—24yp”-l»-123/3q+4a.7cq-}—4a,p +4ap’ where T@- b

6a—4ap? 3—2p?
p= P~ _ P ,

if =0 and y=0.

8ap 4p
1
So4p?=3-2p3 Sop=t—r0ro
4 p P 73
3az? —2ay? 2 ay? . -
Also p= Tiriay — i if =0,
a a .
Lp=—g=—g=—e,  ify=0,
- the origin is a triple point; and - tan():g: +—1-
dz V2
1 .
and =— 7 and also =, .. the tangents cut the axis
at £ s=tan‘l(——l—) and tan~! (————1——) and at right-angles.
V3 Va2l

* These repeated differentiations are sometimes tedious: they may,
however, in such cases as this, be simplified by considering p constant,
as no error will arise from that assumption. Thus, instead of this
equation, we should have had, by considering p in the previous one
VW T wy

constant, p= o r'+ dap + dap

» whence p= +-—— as above.

V2
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(13.) In the diameter 4B of a circle take a point C, draw
a chord AP and an ordinate PN, and C@Q parallel to 4P,
meeting PN in @ : trace the curve which is the locus of @.
AB=a, AC=}, AN=gz, NQ:y. 4
NP=vVaz—23, equation to ©, ﬁa
CN : AN :: NQ : NP, or ’
z—b a2t y: Yar—a,
noay=(z—b)Var— 5, Ly=(e—10) A / a;x is
the equation to the curve which is the locus of @.
Let y=0, .. 2=0 and =a; let x>a, yis impossible.
y has finite values positive and negative when #>b and < a.
Hence the curve will pass through C, @, B, and form an
oval.
By the question no part of the curve can be to the left of C.
(14.) A rod PQ passes through a fixed point 4 ; find the
equation to the curve described by P when ¢ moves in the
circumference of a circle of given radius, and trace the curve.
PQ=R=length of rod, diameter /“’
of ® BQ=a, AB=}, gp position of » <8 ¥ e
rod when @ has moved along the
arc Qy, AN=2, Ng=y; then Ng?>=BN-NQ. Euc.iii. 35.
P=(@=0)-(a+d—a)=(x—0) (c—2), ifc=a+,
=—a2+(b+c)x—be.
Let Ag=n, L A=0, S y=rsinb, &=r cos®,
72 in29= —12 cos?0 + (b +c)  cos 6 —Uc,
r2—(b+c) cosf-r=—be,
r=—;— {(d+c)cosbt /WM} .

And :» Ap=qp—Ag=R—r, by giving successive values
to 0, and taking the corresponding values of 7, the curve,
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hich is the locus of P, will be traced. If BD be the posi-
on of the rod when @ has described a 1®, PD=B¢Q.
[ence the curve is an oval, whose axis PD=a.

(15.) The equation to the spiral of Archimedes is r=a6 ;
‘ace the curve, and show that the origin is a point of con-
-ary flexure.
et =0, .. »r=0,

0=45, r=a-3'14416=a('7854),
™ 3:1416 i
0_5’ r=e.—g =a(1:5708), \
0=, r:a(3'1416), _________
o="0  r=a(dT129)

6=2, r=a(6-2832),
0=, r=oa.
Take the angles, and draw the corresponding lines for the
values of 7, and the curve may be traced.
Put —0 for 6, and the values of r, being negative, must
se measured in a directly contrary direction.
r . do 1 a___ p
Now e—z) .. ;Z;-—E' But dr_¢\/,.2_p2
. Vi 1 qA_r?},z:az’ £=a2+r2,
rVrE=p: a ?? »
72
’ y=———
al+r2 vaiyr?
2r
2rvat4ri—rt— —— ,
ap T sVt 2r(at4r)—r
Tdr a+72 (227
2a% 4+ 242412
- =r =
@+ (@t

0, when r=0o0r 6=0;
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and % changes sign immediately before and after the
origin.
- the origin is a point of contrary flexure.

In the figure, if » commences its revolution above the
axis of x in the first quadrant, the branch of the spiral
ABCDEF will be generated. If negative values be given
to 6, and r be measured in a directly opposite direction, the
branch represented by the dotted line will be traced ; and
we shall have the double spiral. If » commences its revolu-
tion upwards in the second quadrant, two branches will be
generated, similar to the others, but turned in a contrary
direction, and intersecting them in the horizontal and ver-
tical axes. .

This spiral was invented by Conon : but Archimedes dis-
covered its principal properties.

If a fly were to move uniformly from the nave of a wheel
along one of the spokes whilst the wheel revolved uniformly
about a fixed axis, the fly would describe this spiral.

Teeth of this form are applied in the construction of
engines in which uniform motion in a given direction is
required.

(16.) Two points start from the opposite extremities of
the diameter of a circle, and move with uniform velocity in
the same direction round the circumference, their velocities
are in the ratio of 2 : 1. Determine the locus of the bisec-
tion of the chords which join the positions of the two points,
and find the polar subtangent of the curve.

Let the diameter 4B=2a, and 4 be the
position of the point which moves with a
velocity equal to double that of the point )
at B. Now when this latter point has made

c
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half a revolution, the former will have made a complete
revolution, and consequently the two points will coincide
at 4. Again, the motions continuing, if we take any arc
AC, and bisect it in D, € will be a position of the point
which started from 4, and D the corresponding position
of the point which started from B. Draw the chord CD,
bisect it in P, and join OP, OC, OD.
Let O be the pole, OP the radius vector =», £ A0P=0,

then POD:g: g D-.cos POD, or ;_cos; 6, the equation
to the locus of P.

To find the polar subtangent,

1 7 .1 de 1
00850—;: —sm§9 a—r—a’
do_ 1 1 _ 1
dr— . 1 - 2
" 481113-9 a /\/1—0052%0 /\/l—%
de 72
L= ——=the polar subtangent.
ir Va—g #
To trace the curve, r=a 008%0.
Put 6=0, then cos0=1, r;—_a,
V341 V341
0=45, cosld= r=a ——7w
? 2V 2V
3 3
0=90, cos30=—2—» r=a-—5-
6=135 cosdb= s p=2,
7 2 V2
1 a
0=180, c0360=§» r=g
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V3-1 v3-1
Let =225, then cosTH= —  r=a ’
22 22
6=270, c0s90=0, r=0,
3—1 V3-1
0=315, cosl06=— ) r=—a )
a3 2432
1 a
0=360, cos120=— 5’ r=—g
1 a
0———405, 008135=————:’ = ————)
V3 =TV
=150,  coslo0=— Y3, =g,
2 2
0=495,  cosltim— L3EL, 4o _ V34D
2v32 2v2
6=540, cos180=~—1, r=—a.

The negative values of », which are S
measured in an opposite direction, are W TR
distinguished in the figure by dotted
lines. :

By giving negative values to 6 the },\ /‘,('
same curve would be produced, but 3

turned in a contrary direction.

(17.) If a?y=3ba’—4®; show that there is a point of
3
contrary flexure when x=10, and y:%j; .

“(18)) If y=32a /\/2“"
2a

3a
ints of inflexion when #=—: =4+—:
po s YTF

z show that there are two

(19.) If ag?— (z—a) y*=0 be the equation to a curve;
show that there is a point of contrary flexure when 2= — 2a.
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(20.) If y=aw+ ba®—ca® ; show that there is a point of

. . b b
inflexion when r=g and y= Fig (9ac+20%).

(2l.) fy=c+ (xr—a)?(x—b)}; show that there is a
double point when x=a, and y=e.

x?
(22) 1If 3/__‘@ (a®—a?) ; show that there are points of

. S5a
inflexion whe =-_l——a—-, —_
n 75 y =

a? z+a z+a\? a2(a?— a2yt

2 . —_—— ) = —_— e ——

(23.) Iy o z—a Y a’(a:—-a) y (z—=b) (x—c)

be three equations having no mutual relation, and # becomes

infinitely great in each ; prove that in (1) y=c0, and j—i: o,

in (2) y=o, and %:1, and in (3) =0, and %:0.

(24.) If y? (22 —a?)=2a*; show that the equations to the
agymplotes are y=+a, y=—a, and that the curve lies
above the asymptote: also show that the curve has two
branches touching the axis of « at the origin, both being in
a plane perpendicular to the plane of the paper, between
two asymptotes which cut the axis of x at right-angles
when 2= +a, a= —a ; show that beyond these asymptotes
the curve is in the plane of reference, and approaches nearest
to the axis of # when #=a+'2, again receding towards the
asymptotes whose equations are y= *, and intersecting
them at o in a point of inflexion.

(25.) If P +2°—2aa?=0; show that the equation to the

asymptote is y= —x+-2-;-: that at the origin there is a cusp

of the first species, the two branches being above the axis
of « and concave to it, that the curve cuts the axis of z at
M
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right-angles at a point denoted by #=2a, where there isa
point of inflexion, beyond which it approaches the asymp-

2
tote whose equation is y=—az+ 2 ; show also that there is a

maximum ordmate whose length i ls 3 % Vi 4, when .z'._ga
a 2aty
26.) If r=——>5 show that p =—————> and that
(26 Vo ’ P Vi

there is a point of inflection when r=a+'2, the curve being

concave towards the pole when # is less than a~/§, and con-
vex towards it when r is greater than uv/2.

(27.) y=a+a¥ (r—a)}; determine the nature and posi-
tion of the cusp.

(28.) ¥ =a214 = being the equation to a curve referred

to rectangular co-ordinates ; show that the equation between

polar co-ordinates is r=atanf, and that the equation be-

tween the radius vector and the perpendicular from the pole
ar?

T 5 show also how the

upon the tangent is p=—"=—

branches of the curve are situated with regard to the plane
of reference.

(29.) If o=

prime radius or axis, at the distance a above it, is an
asymptote to the curve, that, when 6 is 4, the curve has
an interior asymptotic circle, and when 6 is —, it has an
exterior asymptotic circle. Trace the curve, and show that
the rectilinear asymptote is a tangent to the asymptotic
circle.

(30.) The equation to the Cardioid is r=a (14 cosf);
trace the curve.

— 5 show that a line drawn parallel to the
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0+sm0

(3L) If r=a ;——; trace the curve, and show that

there is an asymptotlc circle, radius=a, and that the curve,
coming from infinity, continually approaches the convex
circumference of the asymptotic circle on one side of the
diameter, and the concave circumference on the other side
of the diameter.

. Y 2242
(32.) The equation to a curve being o= A/ o

show that it has asymptotes, at right-angles to the axis of z,
at points denoted by #=+a, = —a, and other asymptotes
cutting fthe axis of x at 45°, and 135° respectively ; that

there are minimum ordinates when = ia\/ V241, De-
termine the value of these ordinates, and show the position
and direction of the branches of this curve.

(33) y=a= (ax—a2)4 ; determine the mnature and posi-
tion of the singular point.

(34.) 2%2+a?y?—at=0 is the equation to a curve ; show
that its asymptote coincides with the axis of x, and that
there are points of inflexion above that axis at distances

equal to +a /\/-g’ and —a /\/g from it, and at dis-

tances equal + % and — _aﬁ from the origin of co-ordi-

nates.

(35.) If a®—yP=a3; show that the curve cuts the axis
of z at right-angles, at the distance a from the origin, that
at each of these points there is an inflexion, the part of the
curve between them being concave to the axis, the part to
the left of the origin being convex, and the part to the right
of the point denoted by x=a, concave.
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(86.) If (#—a)*=(y—z)?; show that the common tangent
to the two branches of the curve is inclined to the axis of 2
at an angle of 45° that the curve cannot extend to the left
of the point denoted by x=a, and that, at the distance
above that point, there is a cusp of the first species.

3
(37.) If y= A / 04_1)%3 be the equation to a curve;

#
show that there is a point of inflexion at the distance ﬁ

above the origin, and another in the axis of z, at the dis-

a
c¥

tance o from the origin.
a

(38.) y:csing is the equation to the curve of sines;

show that, at all the intersections of this curve with the
axis of #, there are points of contrary flexure.

(39.) y?=a?+2+/2a7—22 being the equation to a curve ;
show that its branches intersect the axis of z at angles

1
=tan~14+ 7 and tan~14- v/2, that there are four double

points in the axes of co-ordinates, at the distance a from the
origin, and that the branches form two intersecting ovals.

(40.) If r2=a?:in20 ; show that there is an oval in each
of the first and third quadrants, and that no curve exists in
either the second or fourth quadrants.

(41.) If the equation to a curve be 22+ 3y2—2+vaxy=0;
show that the axes are tangents, that p=0 and oo, and
that the origin is a double point.

(42) ¥ ta.n30=—%; and tan0=a—'_1{-; define a curve;
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show that it has a maximum ordinate at the point denoted

J3
by z=a (1 - —2—§) , and trace the curve.

(43.) Trace the curve, whose equation is 2a3® + 3a%y?
+2a%?=a%+24 and determine the different angles at which
it cuts the axis of z.

(44.) Transform the equation (¢ —z) y?=a® from rectan-
gular to polar co-ordinates, and trace the curve.

(45.) Trace the curve, whose equation is y3—by?—aa?
=0, and determing whether it has a point of contrary
flexure. o

(46.) Prove that, in the logarithmic spiral, the equation
to which is r=a¢™¥, the tangent constantly makes the same
angle with the radius vector.

a—2zx

2
(47.) Trace the curve, whose equation is ‘L,: » and
a?

u—u
ascertain the angles at which it cuts the axis of a.

(48.) If the hour and minute hands of a watch were of
equal length, and an elastic thread, so extensible as not to
impede their motions, were attached to the extremity of
each index, the thread representing a straight line of va-
riable length, from O to the diameter of the dial-plate ;
determine the polar equation to the curve which would be
described by the middle point of the thread, and trace that
curve.

(49.) If perpendiculars be drawn to the diameter of a
circle, and from each of them a part be taken, measured
from the diameter, equal to half the sine of twice the arc
which it cuts off, the arc being measured from the same ex-
tremity of the diameter; show that the equation to the curve

M2
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passing through the points thus determined is a lemniscata,

whose equation is y=;v a’—gz? and trace the curve.

(50.) If y=‘ﬂf:;_ﬂ)_*_ +b; there is an isolated point, de-
a
termine its position, and exhibit the form of the curve.

(51.) In a?logz—a?y+y=0, show that the origin is a
point d'arrét; and in y+ye*—x=0 a point saillant, the
branch corresponding to the negative values of # starting at
an angle whose tangent is 225°.

(52.) Transform (224 y%)2=a?y* to an equation between
polar co-ordinates, show that the pole is a quadruple point,
and exhibit the form of the curve.

(53.) Show that the curve, the equation to which is
ay?*=(x—a)? (x—1), has a singular point when z=a, a con-
jugate point if b is greater than a, and a double point if a
is greater than b.

(54.) ACB is a semicircle whose diameter is 4B; draw an
ordinate NC and a chord AC, then NP being teken in the
ordinate, always equal to the difference between the chord
and the corresponding abscissa, show that the locus of Pisa
parabola, and that there is a maximum ordinate when the
abscissa and corresponding ordinate are equal.

a%x
abta?’
has three points of inflexion ; and that, when #= vab, the
tangent is parallel to the axis of 2.

(56.) If r=a6™; show that there are points of contrary

(65.) Show that the curve, whose equation is y=

flexure when =0, and r=a (—n2—n)?; and that this equa-
tion comprehends those of the spiral of Archimedes, the
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lituus, the hyperbolic or reciprocal spiral, and an infinite
number of spirals.

(57.) Show how the trisectrix, the equation to which is
r=a (2cos0—1), may be used to trisect an arc or angle; and
explain the difference between the generation of this curve
and that of the cardioid.

(68.) Prove that the angle at which the logarithmic or
equiangular spiral, whose equation is r=a¥, cuts the radius,
is constant, and that the radii which include equal angles
are proportional.

(59.) If z=a (9 —e¢sinf), and y=a (1 —ecos6) define
the trochoid ; show that, at a point of contrary flexure,

a2—12

a

y:

(60.) A circle, which continues constantly in the same
plane, rolls, like a carriage wheel, along a fixed horizontal
line ; the curve described by a point in the circumference is

. . . de _ y
the cycloid. Find the equations = (2“—__;/-) , and

dy  (2a—a\}
w=(=)"
(61.) Ascertain the loci of the transcendental equations
1) y=2a2+coszv =1,
@) y=a2%xvT—asecs.

(62.) Show that, in curves referred to polar co-ordinates,

2
s being the length of the spiral, %:;—7- Investigate the

2
» and between

equation between ~ and 6 when p2=r” e

2 and r when r=asinn6.

(63.) If @, and b, be two conjugate diameters of an ellipse,
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cos 0 sin?y_ 1

[ER
the polar equation to the ellipse referred to the centre ;
prove that a2+ b2=a?+1? and ab,=ab cosecy.

(64.) Trace the curve, whose equation is ay?=a3—0ba?
and determine the number and nature of its singular points.

(65.) Let BAC be a parabola, 4 the vertex, and BC the
latus rectum ; in BC take M and & equidistant from B and C,
draw MD aud NE perpendicular to BC, to meet the curve
in D and E, draw CD cutting NE in P. Determine the
equation to the locus of P, and trace the curve.

(66.) A straight line DAE, at right-angles to the dia-
meter ACB of a circle, moves, parallel to DAE, along the
diameter, whilst a line which at first lies on the radius C4,
revolves with a uniform angular motion about C, intersecting
the other moving line in 2 ; show that the equation to the

¢ the angle they make with each other, and ——

curve traced out by P is y=(a—az)-tan ;‘% ; that the curve,

which is the quadratrix of Dinostratus, has an infinite
number of infinite