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PREFACE.

THE immediate incentive to the present work was the hope of explaining by

gravitational theory the observed variations in the mean longitude of the Moon,
shown by more than two centuries of observation to exist, but not yet satisfactorily

accounted for. The author has published a number of papers and memoirs on this

subject during the last forty years, terminating with a summary of the case, which

appeared in the Monthly Notices of the Royal Astronomical Society for March,

1904. The deviations in question offer the greatest enigma yet encountered in

explaining the motions of the heavenly bodies, and the present paper may be

regarded as a contribution to the study of the problem thus offered.

While the work was in progress the completing chapter of Professor Brown's

Theory of the Moorfs Motion appeared. The actual work being based on De-

launay's theory, it seemed to be desirable to revise and correct it by Brown's

results. In doing this the imperfections of Delaunay's theory as a basis became so

evident, and the later theory proved to be so much better adapted to the purpose
of the investigation, that the completed work gradually became step by step prac-

tically based upon Brown's theory, except in those parts requiring derivatives

which could not be readily obtained except from Delaunay's literal expressions.

Acknowledgment is due to Professor Brown for courteous advice and assistance

which facilitated the use of his work for the purpose.
The theory of the action of the planets on the Moon being, in several points, the

most intricate with which the mathematical astronomer has to deal, it is important
that its development should be presented in a form to render as easy as possible the

detection of errors or imperfections. In the arrangement of the work this end has

been kept constantly in view. It is hoped that any investigator desiring to test the

processes will find few difficulties except those necessarily inherent in the nature

of the work.

To form a general conception of the arrangement it may be stated that the work

naturally divides itself into four parts. One of these treats of the theory of the

subject, including under this head not only the general equations, but the numerical

details on which all the computations are based. In this part the fundamental

quantities are reduced to products of two factors, one of which depends upon the

coordinates of the planet; the other upon the geocentric coordinates of the Moon.
The first factors, termed planetary, are numerically developed in Part II. This

development falls into two parts, one treating the direct action of the planet, the

other the indirect action through the Sun. In Part III is found the numerical
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VIII ACTION OF THE PLANETS ON THE MOON.

development of the factors depending upon the Moon alone, and of their partial

derivatives as to the lunar elements. In Part IV is presented the combinations of

these two factors and the final results of the work.

A more complete summary in detail is found in the table of contents. An effort

has been made to lessen the trouble of finding the definitions of the symbols used

by collecting in the introduction definitions or references to these symbols as to

the meaning of which doubt might be felt.

A word may be added as to the part taken by the author's assistant. At an

early stage in the work Dr. Ross made a practically independent computation of

the principal periodic inequalities, using the methods of Hill and Radau. In doing

this he discovered the error of the Jovian evection as computed by them, which

arose from the omission of what we may call the side-terms in the indirect action.

His result for the coefficient was i".i6, in exact agreement with that originally

found by Mr. Neville. In this early stage of the work the writer did not intend to

do much more than revise these computations, and make a thorough investigation

of the terms of long period. But he found the theory of the subject so interestingj
and the opportunity for recasting the methods so attractive, that he was led to

carry the work through, with Dr. Ross's assistance, on the basis of his own

developments.
The next step in logical order is the rediscussion of the moon's mean longitude

since 1650, as derived from occultations of stars, with a view of learning what
modifications will be produced by the use of the more rigorous data now available,

and the addition of thirty years to the period of available observations. This redis-

cussion will, the writer hopes, be his next contribution to the subject of the motion

of the Moon.
It remains to add that the work has been prosecuted under the auspices of the

Carnegie Institution of Washington, without the help of which it could not have

been undertaken.

SIMON NEWCOMB.
WASHINGTON, MAY, 1907.



ACTION OF THE PLANETS ON THE MOON.

INTRODUCTION.

MORE than thirty years ago the author proposed to treat the action of the

planets on the Moon by using the Lagrangian differential equations for the variation

of the elements by considering as simultaneously variable, not only what are com-

monly called the elements of the Moon, but those of the orbit of the centre of mass

of the Earth-Moon around the Sun also.* Twelve elements would thus come in,

and the coordinates both of the Moon and of the Sun would be expressed in terms

of the osculating values of all these elements.

Notwithstanding the favorable opinion of this method expressed at the time by-

Professor Cayley, and later, as to some of its processes, by Professor E. W. Brown,
the author found that, in applying it unmodified, which he did during the years

1872-77, very long and complex computations were required in its application.

The result was that the work, so far as it was carried, remained unpublished for

nearly twenty years. Hoping that the general developments of the work and some
of the details might be of use to subsequent investigators, the incomplete work
was finally published in 1895.

About the same time with the publication of this work appeared the very elabo-

rate one of Radau. f This work contains a seemingly exhaustive enumeration of

possible inequalities of long period, and the numerical computation of a great num-
ber of lunar inequalities due to the action of the planets which had not previously
been suspected.

On recommencing the work in 1904 it became very clear to the author that its

completion by his former method, unmodified, would be impracticable, and that

satisfactory results could best be reached by regarding the solar elements as con-

stants, or known variables from the beginning. In the present investigation, there-

fore, the method has been modified so that the final values of the coordinates of

the Moon, instead of being expressed as functions of the instantaneous elements

of the Earth's disturbed motion, are expressed as functions of the mean elements.

As thus modified it is substantially a continuation of that of Delaunay, as applied

* LiouvHie, Journal des Mathematiques, 1871, March.

t Annales tie I' Observatoire de Paris, Me'mofres, vol. XXI.



2 INTRODUCTION.

first by Hill and then by Radau. In this method the coordinates of the Sun,
relative to the centre of gravity of the Earth and Moon, are regarded as known

functions of the time. Then, when the action of the Sun alone is considered,

the coordinates of the .Moon relative to the Earth are found by the method of

Deteiin2y^>c9ftiijBet^d.if necessary, as functions of six purely arbitrary constants.

This solution of the problem of three bodies is supposed to be complete in

advance. When the action of the planets is then taken into consideration, the

only elements whose variations are to be determined by the Lagrangian equations
are the six final elements of the Moon's motion. The variations in the coordinates

of the Sun, due to the same action, are derived with great ease, and enter into the

differential equations. In this way a system of six differential equations for the

determination of the changes in the lunar elements is all that is necessary.
In setting forth the subject it is deemed unnecessary to repeat the derivation of

the equations already found in astronomical literature. For this branch of the

subject, reference may be had to Hill's paper in the American Journal of Mathe-

matics, Vol. VI, and to Chapter XIII of the Treatise on the Lunar Theory by
E. W. Brown. It is deemed necessary only to explain fully, at each point, the

application of the method, and the meaning of the symbols introduced.



PART I.

DEVELOPMENT OF THE THEORY.





CHAPTER I.

FUNDAMENTAL DIFFERENTIAL EQUATIONS.

i. Notation. The following notation is mostly used in this work:

G, when designating a point, centre of mass of Earth and Moon; m', mass of the

Sun; ; 2 ,
mass of the Earth; / 3 ,

mass of the Moon; m4 ,
mass of the Planet.

H = m
2 + m3 fj.' m' + /*

x, y, z, r, geocentric coordinates and radius vector of the Moon, referred

to the moving ecliptic;

x', y', z', r', coordinates and radius vector of the Sun, referred to the point
G and the moving ecliptic;

, 17, ,
and p, the ratios of x, j, z, and r of the Moon to the mean dis-

tance of the latter: x = at;, etc. When unmarked the coordinates

are referred to a moving J^-axis directed toward the mean Sun;
#1, jj, Moon coordinates referred to the mean Moon as the Jf-axis;

A, distance of the Planet from G;
S, cosine of angle between rand r'\

S', cosine of angle between r and A
;

/>(,, potential function of mutual action of Earth and Moon;
11, potential function for action of Sun on Moon;
7?, potential function for action of Planet on Moon;
/, TT, 6, mean longitude, longitude of perigee, longitude of node of Moon;
TTj, #!, motions of IT and in unit of time (quantities of dimensions T~l

) ;

N, motion of argument in unit of time;

n, ratio of motion of an argument to n, the mean motion of the Moon;
v, the integrating factor, generally =W/N;
a, e, g, defined in (43), 22;

K> C, D, planetary coefficients for the direct action, defined in 20;

p, y, K4 ,
lunar coefficients, 20 Eq. (36) ;

6r,y, /, planetary coefficients for the indirect action, defined in 24;
G is also used for a combined lunar and planetary argument;
a, logarithm of a, the Moon's mean distance;

v, M, j, s, the mean longitudes of the respective planets, Venus, Mars,

Jupiter, and Saturn measured, in each case, from the Earth's peri-
helion: TT' for i8oo= 99.5.

5



6 ACTION OF THE PLANETS ON THE MOON.

The abbreviation " Action " has been used to designate the previous work of

the author on this subject "Theory of the Inequalities in the motion of the Moon

produced by the Action of the Planets"; forming Part III of Astronomical Papers

of the American Ephemeris, Vol. V.

2. Dimensions of quantities. In this subject it will be found helpful to the

reader and investigator to have, in the case of the principal equations, a statement

of their dimensions in terms of the fundamental units of Mass, Time, and Length.

In strictness an independent unit of mass is not necessary in gravitational astronomy,

because the most convenient unit is that mass which, on an equal mass at unit

distance, exerts a unit force of gravitation. But it is still sometimes convenient to

use this unit in the equations, although it is a derived one.

In the case of each system of equations which are regarded as fundamental will

be found the dimensions of the terms which form its members, the signification

being as follows:

T, Time ; Z, Length ; M, Mass.

The definition of the unit of mass just given leads to the relation

In this way it will be much easier than it would be without this help to appreciate

the degree of magnitude of small quantities. Considered by itself, no concrete

quantity can be regarded as small or great; it is so only when compared with other

quantities of the same kind, or, to speak more accurately, of the same dimensions

in fundamental quantities. The ratios of two fundamental quantities of the same

kind are pure numbers, and these may be large or small to any extent.

3. Fundamental differential equations.

Putting

x
\t y z\i tne geocentric coordinates of the Moon referred to any system

of fixed axes,

P, the total potential

the differential equations to be integrated may be written

dP dP dP-
[ Dimensions = AfZ.-' = LT~*1 (j)dx

l dyl
oz

l

4. Transformation to the moving' ecliptic. In the preceding equations the

coordinates are referred to fixed axes. In astronomical practice the coordinates

of the heavenly bodies are referred to the moving ecliptic. The latter carries the

plane of the Moon's orbit with it in its motion. It therefore seems desirable to

refer the motion, in the first place, to the moving ecliptic.
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To do this let us put

x, y, z, coordinates referred to the moving ecliptic;

K, the speed of motion of the plane of the ecliptic;

II, the longitude of the ascending node of the moving on the fixed ecliptic,

or of the instantaneous axis of rotation of the ecliptic. At the

present time we have II = 173, nearly.

Then, regarding nt as infinitesimal, the expression for the moving coordinates in

terms of the fixed ones will be

x =
.*, zjic sin II

y = y l + Z^K cos II

z = z
l + x^tic sin II y^K cos 13

Putting for brevity
p = K sin II q = K COS II [Dim. of /, y, and= T~ l

],

these expressions become

(2)

Differentiating them twice as to the time, regarding p and q as constant, we have

Dfx = Dfx,-ptDfzl -2pD^

?y, + qtDfz, + 2qDtz, (3)

Dfz = Df

Regarding P, originally a function of xi9 yly and zlt
as becoming a function of*, y,

and z through the substitution (2) we have

dP dP dP dP dP dP dP dP dP dP
dx~

==
'6X + **& =~d~ qt te aF

"
dz ~^dx + qt S

Substituting these expressions for D\x^ D\y^ and DIZ^ in (3) and dropping terms

of the second order in pt and qt we find

dP

+ *qDfl (4)

dPD?z =-B-z
+

Equations of this form were used by Hill for the same purpose.

*
Annalfyf Maihematict, vol. I, 1890,
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It follows that if we add to P the terms

A* = 2p(zD^ - *Dfl) + 2q(yD^ - zD t y,} (5)

so that the potential shall become
P + LR [Dim. = 3/z,-' = z," r-']

the fundamental differential equations in x, y, and z, will retain the form (i)

unchanged, and the coordinates referred to the moving ecliptic will be determined

by the general equations

dP dP BP
>'x = -f D?y = if- D

t

2z = -
(6)dx dy dz

In A/? the symbols x
1} y1}

and zi have the same meanings as x, y, and z, but they

are to be regarded as constant when AT? is differentiated as to the lunar elements.

5. Preliminaryform of the potentialfunction.

We put fl for the part of the potential P due to the action of the Sun. This

part is developed in a series proceeding according to the powers of r\r' in the

well-known form

where S, the cosine of the angle between the radii vectores of the Moon and Sun

from the point G, is determined by the equation

rr'S = xx' + yy' + zz'

When we assign to x', y', z', and r
1

their elliptic values, we have what may be

called the Delaunay part of the potential. We put

f!
,
the Delaunay part of fi.

Op, the increment of fl produced by the action of the planets on the Earth.

The part /? of P, due to the direct action of the planet in changing the coordi-

nates of the Earth relative to the Moon, may be formed from fl in (7) by replacing

m'
'

, r' , x', y', and z'

by
m

t , A, X, Y, and Z

where ;., is the mass of the planet, and A, X, K, and Z its distance and coordi-

nates relative to the point G. Putting R for this part we have for its principal term
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where S' is determined by the equation

r*S' = (*' + xjx + (y' + yjy + + z^z

*4> J and ^4 being the heliocentric coordinates of the planet.

We have thus separated the potential of all the actions changing the coordinates

of the Moon relative to the Earth into the following five parts.

A. The part generated by the mutual action of the Earth and Moon, /> = /*/ r,

which taken alone would give rise to an undisturbed elliptic motion of the Moon
around the Earth.

B. The part fig generated by the action of the Sun, assuming the point G to move
in an elliptic orbit.

C. The part ftp ,
the increment of ft due to the action of the planets on the

point G.

D. The part /? due to the direct action of the planet. Developed in the same

way as the highest term of ft the principal term of this part is formed from SI by

replacing m', *', y', and z' by the mass and G-coordinates of the planet. The value

of its principal term is given in (7).
E. The part A/? arising from the reference of the coordinates to the moving

ecliptic.

The complete value of P thus becomes

p= p
e + n + n

p + j? + A/?
(8)

and we are to consider this expression as replacing P in the equations (6).

6. Reduction of the terms of the potentialfunction for the indirect action.

By substituting tor S in (7) its value, the first and principal term of ft becomes a

linear Junction of the six squares and products of the lunar coordinates *, y, and z,

which we may write

ft = 7>J + TJ + 7X + * T
txy + a 7>* + 2 T

tyz (9)

Moreover, since we form the part ftp of the potential by assigning increments to

T, and the part R by making T & function of the elements of the planet, it follows

that both of these parts as well as ft are of this same form.

For the first and principal term of ft in which the higher powers of rjr' are

dropped we have

-^ x'

y>

-,-,-- -. . (10)
r'

3

\2 r>* 2J 2 r'* r'*

(S -\ T - 3 m> y'z
'

r's \2 r>> 2)
2'~ 2 r>*' r>*
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The study of the second term, which it may be advisable to examine for sensible

results, is postponed, and ft is taken as equal to its principal part. The value of flp

is then found by adding to the preceding values of T
t
their increments produced

by the action of the planets upon the coordinates #', y' ,
and z' of the Sun. If we

put
v', the longitude of the Sun

and take the moving ecliptic as the plane of reference, we may regard z', the

periodic perturbations of the latitude, as infinitesimal and write

x' = r' cos v' y' = r' sin v' z' = r' sin /S'

where /3' is the Sun's latitude, a minute purely periodic quantity.

Substituting these values in (io), the expressions for the coefficients T become

T, -
^,(t

+ f cos 2') T
t
= ~

(i
-

| cos 2*') T*=-~
(LOO)

3 m' . 3 ;' sin /3' cos z/ ~ 3 '' sin /3' sin r'
y, = --s sin 2z' / =-

r
i =--

53
2 r'3

If we assign to these quantities their elliptic values, (7) will become fl for which

the integration is assumed in advance. We have now to assign to v' and /' the

increments 8v' and r'8p', p' being the Naperian logarithm of r' . The resulting
increments of the coefficients are

87;= ^j {-2 sin 2w'8'-3 cos 2v'&p'-&p'} 87>= ^73 {
2 sin 2^'Sz;' + 3 cos 2'8/'-V}

(ii)

5r
3
=

-3 V 8T
t
= ^3 {

2 cos 2r'Sw' - 3 sin iv'Bp' }
2^* 4^*

The values of 8T5 and 87"6 will be the original values (9) of 7"5 and T6 as they
are due wholly to the action of the planet. With them the expression for flp

derived from (9) becomes

fl
f
= 87>2 + 8T

2y
2 + 87> + 28 7>j + 2 7>* + 2 7^* (12)

7. Reduction of R, the potential of direct action.

By substituting for S' in the principal term (7) of ./? its expression in terms of

the G-coordinates of the planet we shall have

where
-f Cz2

-f 2/?*_y -f lExz + iFyz [Dim. = z,-'
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the values of the coefficients being

(*' + *
4)

2
i i n (*' +- ~

3

[Dun. = Z, ] (14)

3 A3

It should be noted that these coefficients require the factor f to make them directly

comparable with ZJ, T2, etc., in (10).

8. Completeform of the fundamental equations.

Comparing the expressions (12) to (14) we see that flp and R are of the

same form, and that the principal terms of each are products of two factors, of

which one depends solely on the heliocentric coordinates of the Sun and planet,

and the other is a square or product of the coordinates of the Moon. Moreover, if

we put, for brevity,
/ = o, + R + A;? (is)

the fundamental differential equations may be written

where x, y, and z are coordinates referred to the moving ecliptic as the fundamental

plane.

We shall now consider these differential equations as solved for the case when

PI is dropped from the second members. The problem will then be that of the

solution when Pt is included; and this problem will be attacked by the Lagrangian
method of variation of elements.





CHAPTER II.

DEVELOPMENT AND INTEGRATION OF THE DIFFERENTIAL EQUATIONS
FOR THE VARIATION OF THE ELEMENTS.

9. The problem being to integrate equations (16), we shall regard as known

quantities the coordinates x', y', z' of the Sun, which enter implicitly into the equa-

tions, as well as those of the planets relative to the Sun. The problem then is to

express the values of x, y, and z in terms of the fundamental constants implicitly

contained in the differential equations, and six other arbitrary constants which we

regard as elements of the Moon's motion.

The solution of the equations is separated into two parts by applying the La-

grangian method of the variation of elements. We have first the Delaunay solu-

tion, in which Pt is dropped. This solution gives the orbit of the Moon around

the Earth under the influence of the Sun's and Earth's attraction alone. From it

we are to pass, by the method of variation of elements, to a solution when P is

taken account of.

We accept the results of Delaunay, as found in his work, as forming the basis of

the first solution, the results needing only certain modifications in the terms depend-

ing on the Sun's parallax, arising from the tact that he did not take into account

the mass of the Moon, and certain reductions, to reduce them to the required form.

This being done we have values of the Moon's coordinates satisfying the differential

equations in the case P=p/r-\-tl and expressed as functions of six arbitrary

constants

c, 7 4)' "o> ^o

and of the time /. The latter enters only through the quantities /, IT, and 0, named
and defined thus

Mean longitude : lt^+nt Long, of perigee : TTTr^+irJ Long, of node : 0=0 +fy (17)

where n, irt ,
and 0, are functions of a, e, and y.

I use the quantities 7, IT, and 6 instead of Delaunay's /, g, and h, which are the

mean anomaly, the angle node to perigee, and the longitude of the node. The

expressions for the symbols used here in terms of those used by Delaunay are

therefore

/ =3 Delaunay's // + g + J TT = Delaunay's h + g 6 = Delaunay's h (18)

13
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The fundamental idea of the Lagrangian method, which we propose to apply
to the present problem, is that the six arbitrary elements are to become such

functions of the time that the solution which satisfies (16) when Pt
= o shall still

satisfy it when the variable values of the elements are substituted for the constant

values in the expressions for the coordinates. The derivatives of the elements as to

the time may be formed by known processes, but the details of these processes are

unnecessary, because Delaunay gives their results in a form most convenient for

our purpose.

10. Canonical form of the differential equations.

We see from (5), (12), (13), and (15) thatPt
is a function of given quantities and of

the Moon's coordinates. By substituting for the latter their expressions in terms of

the six arbitrary constants of the first integration, /\ becomes a function of a, e, y, /,

TT, and 0. The differential variations of the elements are then expressed in the most

condensed form by replacing a, e, and y by three other quantities c
lf

c2,
and c3,

func-

tions of a, e, y, so chosen that the differential equations to be solved shall be

(19)

The variable elements c
a ,

c2, and c3 are functions of Delaunay's Z, G, II.

CI
= L C,= G-L CS

= H-G (20)

[Dim. = L\M*=

ii. Transformation of the canonical elements.

The canonical elements cw c2 ,
and cs can not be used explicitly in the processes

of solution. We have therefore to express them in terms of a, e, and y. The
values of Z, ?, and H are not given by Delaunay in terms of the final a, e, and y,

but of preliminary ones from which the required expressions are to be derived as

follows :

1. In Vol. II, pp. 235-236, Delaunay gives the expressions for Z, G, and // in

terms of the a, e, and y which resulted immediately from his processes of

integration.

2. On p. 800 he gives the transformation of these a, e, y, into the final values of

these quantities which appear in the expression for the Moon's coordinates, which

are those we are to use.
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To find from these data the expressions for the derivatives of Z, G,H in terms

of the final a, e, y, I shall write a, e, g, n, for the quantities a, e, y, ,
as found on

pp. 235-236 of Delaunay, Vol. II, and shall also put

n'
m = -

n

The forms which we have to use are:

L, G, Jf=/(a, e, g, m) a, e, g =/(, e, 7, z) (21)

Noticing that m is a function of a and m of a, we shall then have

dL (dL dLdm\da dL de dL dg^ I i I i i __o. / 2 2 ^
da \ da dm da J da de da dg da

with similar forms for G and H.

12. Form of the partial derivatives. Two points in the use of the partial

derivatives are these:

a. In taking the partial derivatives I use the logarithm of a and of a instead of

these quantities as the variables with respect to which derivatives are to be formed.

Homogeneity in the equations is thus secured, the variables being all pure numbers,
or quantities of dimensions o. We put

a log a whence a = ea

ft. The quantities n and n are defined as functions of a and of a respectively by
the equations

a'n
2 = oW = p

It follows that if we have an expression M developed in powers of m or m,

we shall have

-fc
= a* (iM9 + (i + f)Mjn + (i + f ) Mpi* + ) (23)

13. Numerical values of thefundamental quantities.

Instead of effecting the preceding transformations analytically, to put the equa-
tions (21) into numbers, we use the numerical values of e, y, and m given by

Delaunay in his Vol. II, pp. 801-802, namely

e = .054 8993 7 = .044 8866 m = .074 8013 (24)
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We then find from his expressions on p. 800

a = 0.996 4930 = [9.998 474] a

an = i.ooi 758072 = [o.ooo 763] an

a2n = 0.998 245
2 = [9.999 237]

J

m = 0.994 7437/2
= [9.997 7n]? = 0.074 4082

e = 0.054 867 g = 0.044 993

We also find, from these numbers, the following values of the required partial

derivatives for the numerical transformation

^-
= 0.986 6910 s~

= ~ -7 37 e o-ooo 404
-j

= + 0.006 857 = o.ooo 308

da de dg
^ = -0.0013750 ^= + 0.99961 ^ = +0.000202

da de , dg
^-
= +0.0013530 5- = o.ooi 22e= 0.000067 _j-

= + 1.002 324

Then, from Delaunay, II, p. 236, we find

L = i .000 197 a
2n G = 0.998 586a

2n //= 0.994

dL dG dH
a = tS IS a a "" = <499 97 a " =

f^ T r\ f~* f) J-T

-^
= o.ooo o88a'n

-^-
= 0.052 4ioa

2n = 0.052 185 a
2n

dL dG dH
-v- = 0.0000073 n -- = 0.0000353 n ^- = 0.17947430

14. Formation of the transformed differential equations.

Let us now return to the equations (19), in which we have to replace c^ c2 ,

and c3 by a, e, and y. We have, for any c,

dc dc da dc de dc dg
di
=

da dt
+

de dt
+
dgdt

and
dc dc da dc de dc dg

f
i

[
O

da
~

da da de da dg da

In the case of c^ we have from (20)

da
~

da
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so that the numerical expressions need not be repeated. For the derivatives of

c2 and c3 we find

a ~-* = o.ooo 46ia
zn ~ = 0.052 322a

2n ~ = o.ooo O28a2n
da. de eg

dc. dc, Be,

a.fT-
= 0.002 ooi a2n -^

= + o.ooo 225 a
2n ~ = 0.179 43a

zn

By substitution in the form (22) we now find

dc dc. dc'
-r = 0.494 39 M ~= = o.ooo 777' -~ = o.ooo &jifrn

-r-
2 = o.ooo 435

2

~B*
~ ~ -5 2 2 9

2

~B~~
~

-oo O2Sa
*n

(
25)

.,

3 = 0.002 033
2 ~ = o.ooo igicfn ^~

3 = 0.179

We now have the data for transforming the equations (19), p. 14, so as to express
the differential variations of tf, ,

and y instead of c^ c2, and c3 ,
and to express those

of /
,

TTO ,
and in terms of the partial derivatives of R as to

, ,
and y. For this

purpose we need the nine partial derivatives of a, e, and y as to c
lt c2 ,

and cs . We
shall express these nine derivatives by means of the nine numerical factors

a
<

e 1* (*
= 1:2:3)

defined by the equations
da &? ^7

a. = az
^ c . = a 5 7. = aw 3-
dc

t
dc

f
dc

t

The numerical values of these coefficients are most expeditiously found in the

following way. Multiplying the first three equations (19) in order by the respective
lactors

da da da

&; ft; ^
we have

da dP. da dP. da dP.li_ \

with similar equations in D
t
e and D

t y. From the same three equations we have

d
Cl dc. dc.

,

dP

da de

dc, 7 dc, . dc, , dP
..^D

t
a + 5-

3 De + ~ Z>,7 = -33
1

da ^
de '

dy
" dO

It follows that if we solve these three equations for D
ta, Dte, and D,y the nine

partial derivatives required will be the coefficients of the second members in the
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solution. Replacing the coefficients of the unknowns by their numerical values

(25), we may reduce the solution to that of three numerical equations

0.494369^ .000777 Y+ 00067 *Z = P
.000435^ .05 2209Y .000025.?= Q

.002033^+ .000191 Y .179538^= ff

The solution of these equations so as to express JT, Y, and Z as linear functions

of P, Q, and R gives the following values of the factors which we seek. Along
with these values is given for comparison the values found in Action of Planets,

Clffi

p. 196, where the numbers are the coefficients of- . The two determinations
JWj*J

are completely independent, in that the earlier one is derived from the analytic

expressions for the coordinates of the Moon, while these last have been obtained

from Delaunay's expressions of the canonical elements L G H in terms of a, e, y.

a,
= -f 2.0228 Former value : -f 2.0225

a
2
= 0.0301 0.0293

3
= + 0.0075 + 0.0075

e
l
= 0.0168 0.0169

^=-19.1534 -ip^Si (26)

e
3
= + 0.0026 +0.0017

7,
= 0.0229 0.0233

72
= O.O2OO O.O2I6

73 =-5-5700 -5-5704

The fundamental differential equations for the variations of the elements now
become

BP. dP. dP.
,_-+ v_ + o,^-

*-st+ t
*-ti+

t it

dP. BP. dP
l-

BP
l

(27)

= a -3 e. -,- 7. -^~2 da * ce 2
cy

--
3 da 3

[Dim. = A/-']
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In order that we may, so far as possible, handle only pure numbers, with speci-

fications of the units as concrete quantities, we shall substitute nt, the total motion

of the Moon in mean longitude, and therefore a pure number, as the independent
variable. The first numbers will then take the form a2n2DHla, etc.

Since

a'n2 = -
a

the equations will now give

'

<*>

[Dim. =o]

with five others formed in the same way from (27) which need not be written.

15. Elimination of t from the partial derivatives of I, TT, and 6.

An important remark at this point is that since Pl is a function of /, TT, and 6,

the three quantities a, e, and y enter into Pl not only explicitly but implicitly

through n, TT, and 0, so that the complete differential variations of these functions

are

dl dL dn dtr dir dtr. dO d6n dd.

dt
=
df + " +

'dt *3t+*> +
<-3i ar-rf+ . + 'J

Pl being a function of the six quantities

a, e, 7, / + nt, TT, + TT,*, + Qj

its complete derivatives as to a, e, and y are

_ , ,

da
~

da.
^

dl Ba """
chr da "*" d0 da

with similar expressions for dP^Se and dP^dy. Thus we have for any canonical

element c

dc \ dc
^to^a^dPidK
dl dc

+
dir dc

" h
60 dc)
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The complete derivatives of /, TT, and are therefore

.

t (dn BP^dn BP, d-^ dP^d
\dt~' dl d

Cl
dw d

Cl

"
d0 d

Cl
dt
~

dt

dir dir ( cfrr dP dn dP STT BP 80

V
d_P^" ^3^ a^e^\"
dl ~6c

3
S-n- dc

3

"
d0 dcjdt

-
dt

'

v dt

It is a fundamental theorem of the development of the planetary coordinates in

periodic series that the terms of these equations containing t as a factor all vanish.*

The values of /, TT, and 6 are therefore

*A demonstration of this theorem in the most general case is found in the author's paper On the General Inte-

grals of Planetary Motion : Smithsonian Contributions to Knowledge, 1874.



CHAPTER III.

DEFINITIVE FORM OF THE DIFFERENTIAL VARIATIONS
OF THE ELEMENTS.

16. The differential equations (27) in the form (28) are the fundamental ones

of our problem, the integration of which is to be effected. This need be done only

to terms of the first order as to the disturbing function. This amounts to saying that

we regard the second members of the equation as known functions of the time, and

that the required integration is to be performed by simple quadrature.

We begin by studying the general form of the function f\. Besides A^?, this

function consists of two parts, one, 7?, arising from the direct action shown in 7,

and the other flp arising from the indirect action. We have reduced both these

parts to the general form

Ax2 + By* + Cz* + 2Dxy + lExz +

The coefficients, A, J5, etc., are functions of the heliocentric coordinates of two

points: the centre of gravity G of the Earth and Moon, and that of the planet.

They are, therefore, regarded as independent of the elements of the Moon's orbit.

The variables x2
, y

2

, etc., being functions of the geocentric coordinates of the Moon,
are independent of the position of the planet, and contain, besides the six lunar ele-

ments proper, the major axis and eccentricity of the Earth's orbit around the Sun.

The arguments on which the coefficients A, B, etc., depend are g and g' . The
coordinates #2

, y
2
, etc., depend on the four arguments /, IT, 0, and g' . It follows

that the terms of Pl depend on the five arguments

Although the two actions, the direct and indirect, admit of being treated together

by combining the corresponding coefficients of #2
, y

2
, etc., yet the coefficients are

so different in their form and origin that it will be better to treat them separately.

17. Reduction of the equationsfor the direct action.

We begin with the development of ^?, as given by (13) and (14). Since

x1
, y

1
, etc., each = a pure number x a2

A, B, C, etc., each = a pure number -=- a'

21
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it follows that R may be developed in the form

R-fr^H (30)

H being a pure number.

When the fundamental equations are taken in the form (28), and /*, is replaced

by R expressed in terms of A, the second members will all take the common
constant numerical factor

37<
2 p a >*

This factor may be simplified by the fundamental relations

V as ft a'V 2 = m' + p

where
p.
and m' are the respective masses of Earth -j- Moon and of the Sun.

Owing to the minuteness of
fi

relative to m' (i 1330000 -(-) we may drop it from

the quotient, thus obtaining
m' <? n ft

2
i = "- ^= 7W

M a'
3 *

The factor thus reduces to the pure number

* ^ nf
2 me

The ratio m^\ m' is what is commonly taken as the numerical expression of the

mass of the planet. We shall write

M= ? ->' = 0.008 392 86~4

2 '
2
r

The numerical values ofM for the four planets whose action is to be determined

are as follows:
'

^ M
Venus 408 ooo o".oo4 242
Mars 3 093 500 o .000 560

Jupiter 1047.35 i .653

Saturn 35OO o .4947

We have next to consider H and its derivatives. As this quantity has been

above introduced we have

(31)

The terms in E and fare omitted here, owing to their minuteness.



DIFFERENTIAL VARIATIONS OF ELEMENTS. 23

We have now to deal with two sets of factors :

1. The planetary fac

2. The lunar factors

i. The planetary factors, a'
3

A, a'
3

!?, etc.

x2

y"
1 z1

2xy
~tf' ~a"~tf' ~~Jr>

CtC<

for which we use

f
2
, if,

2
, 2l~r), respectively

1 8. Notation of the Planetary Factors. The development of these requires
numerical processes which, owing to their length and their distinctive character,

are given in Part II. We shall therefore assume this development to be effected,

referring to Part II for the methods and numerical results. Considering the latter

in their general form, we remark that these coefficients being of dimensions Z~8
,

if we compute their values, taking the Earth's mean distance as unity, the numbers

obtained for the several coefficients A^B, etc., will readily be the values of a'
3

A,
a'

3

B, etc. We shall therefore put

a'"A = 2 (A. cos JV
4 + A, sin JV

t)

a'
3S = 2

( c
cos 7V

4 + B. sin 7V
4) (33)

a'*C = 2 (Ct
cos 7V

4 + C. sin

where each argument is of the general form

/4 being the mean longitude of the planet, measured from a point which we shall

take as that corresponding to the earth's perihelion.

19. Notation of the lunarfactors. We have shown in Action, Chapter II,

how, from Delaunay's results, the squares and products of the Moon's coordinates

may be developed in the general form

r (34)

2%t]
= 2*

4
sinN 2%% == 2*

s
sinN 277? = 2*

6
cosN

Here the K are functions of
, e, y, a', and e', and the arguments JV may be

expressed in the general form

N= il +I'TT + i"

These developments comprise all the quantities necessary to the formation of

and its derivatives.
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20. Numericalform of thefundamental coefficients. The condition

A + B + C = o

enables us to reduce by one the number of terms in //, and at the same time to

simplify the computation. We have the identity

A? + B,f

Replacing A -\- B by C there results

A? + Br? +

Putting, for brevity,

K= \a'\A - B) C; = 0'
3C p = .J = p + i,+(?

which will make K, C and Dl pure numbers, we shall have

The planetaiy factors, A, C^ and D^ are taken as developed in a double trigo-

nometric series from the equations (33), by putting

We shall then have for //the double trigonometric series

//= 2 (Kc
cos 7V

4 + Kt
sin 7V

4) (*,
-

,)
cos 7V^

-^(\CC
cos Ar

4 + ^ C. sin /VJ (, + *
2
- 2

s)
cos .V (35)

+ 2 (Z>c
cos 7V

4 + /?, sin 7V
4)*4

sinN
Introducing, for brevity,

-/*
= M*! - *

2) ?=a J(l+*l)-"s (36)

the terms of the lunar factors will be expressed by

(f
2

7/

2

)
=

2/> cos 7V p
1

3?
2 = 2^ cosN ifr = K

t
sin N.

Every combination of a planetary argument Nt with a lunar argument yV^ will give
rise to a set of terms in H of the form

H= h. cos (JV+ .A
7

,) + A. sin (A
T+ /VJ + /// cos (TV- 7V

4) + /// sin (IV-Nt) (37)

where
^c
= K.I ~ \ C,g

-
JZ? *

4 ^ = - KJ -
JCf? + JZ?.*4

(38)

//.
= K.p-\ C,g + \Df,

h> = -JT
tp + i C.g
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The partial derivatives of If as to a, e, and y are to be found from

Dh
c
= K

cDp - JCcDq -

de

a%
dy

with three other sets formed by replacing p, q, and /c4 in (38) by their partial deriva-

tives. These derivatives of Ac ,
hn Ac', and hi being substituted in (37) give the

required partial derivatives of H. In forming the derivatives as to /, TT, and 6 we
note that these quantities enter only through the arguments jV, in which they have

the respective coefficients

Their formation is therefore a simple algebraic process after H is developed.
The elements e and y also enter R only through H. But a appears both in //",

which is a function of m, and in the factor a2
/ a'

3
. We therefore have from (30)

dR a1 / dH

For consistency in form and notation we shall put

D'H= 2H+ (40)

It may be remarked that the formation of D'H may be effected by the general

operation indicated in (23), by supposing H developed in powers of m and putting

M=d>H
so that

/= 2

We then have

and
dH

The sum of this -\-^H gives D'H as above expressed. In forming this sum we
need not use the analytic development of 2//, which is necessary to form dH/da,
but may use the numerical development when it is more accurate.

The partial derivatives ofR as to a, e, and y are

a 2 dR a2 dH dR a1 dH
3 ij __ T)t If- 9 ffl A '<

*-* J -*
__ _ _

1 - 9 ffl A '<
*-* J -*

~-^
-

iS Irl A ~~^ ~^ tffff, * ~^Da 2 t
a >

i de 2 4
fl

'
3 de dy

4
a '

s
dy
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21. The fundamental equations in the form (28) for the direct action now
become

dH dH djf\

dH dH dH\
i

^
~^i ~T~ ^~a i" ^a a ZT I

ol OTT uu f

dH\

-DJ, =

+e2

d
+y2 (42)

22. We have next to show how the second members of these equations may be

most readily reduced to numbers. There being a certain number of lunar argu-

ments N and also a certain number of planetary arguments N4 ,
it will conduce to

simplicity to carry forward the quantities depending on the argument of each class

as far as possible before making the combination.

Each lunar argument being of the general form

and each planetary one of the form

N
t
= k'g> + kl

t

it follows that by putting G for the general value of the combined final argument,NN
G=il+ i'-n + i"9 + (j k')g' k?

t

the general iorm (37) ofH may be written

osG + /i
i
sin G)

The derivatives ofH as to 7, IT, and 6 are

-^j-
= 2

(
t7i

c
sin G -f ih

s
cos G) -= = S( i'h

e
sin G + i'h

t
cos G)

-QQ
= 2(- f'h

t
sin G + i"h

t
cos G)

Substituting these values in (41) and putting

a = /a, + t'a
2 + i"a^ e = ie

l + i'e^ + i"e
t g = f^ + t'j2 + S"y3 (43)



DIFFERENTIAL VARIATIONS OF ELEMENTS. 27

the equations (41) become

Dp. = M(a.h t
cos G a/i

c
sin G)

D
nt
e = M(eh t

cos G eA
c
sin G) (44)

Z?
n(7 = M(ght

cos G gh c
sin G)

Every combination of a lunar argument TV with a planetary argument N4 gives

rise in each derivative of an element to four terms, which we shall express in the

form

DMa = /&, . cos (IV+ N.) + *
.
sin (JV+ 7V

4) + A, t .' cos (2V- N.) + *.. / sin (2V- Nj (45)

Replacing ^, and //,.
in (44) by their values (38) we have for each combination

(46)

(47)

- \MC,gq

+ \MD&*<

(48)

23. We now reduce in a similar way the group (42). We have for each

argument,

D'H= D'h
c
cos G + D'h, sinG en e + r*6 = f COS C + sin 6^

CC oe 5g ^77 C7 Cy

Replacing hc and ^ g by their values (38) and substituting the resulting partial

derivatives in (42) we have results which we may write in the form

-
Z>,,/

=
//,, . cos (N+ 7V

4) + A,,, sin (N+ 7V
4) + //,,/ cos (IV-Nt) + h

lt .' sin (IV- 2Vj

-Z>
n(
7r = h, ie

cos (N+ N,} + h, it
sin (^V+ yV4) + h,

t
.' cos (IV- N,} + A,

t
,' sin (IV- JV

t) (49)

-1)JS9
=

//, e cos (7T+ A
1

,) + //,, .
sin (yY+ JV

t) + h
ti / cos (JV- vV4) + A.. / sin (N- JV

t )
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where the values of the coefficients are found by the following computation. For

each lunar argument we form

(50)

Then for each pair of arguments

//,, .
=MK

C
L' - \MCC

L" - \MD.LI h
lt / = + MKC

L> - \MCC
L"

h
lt ,
= MK,L' - \MC,L" + \MDCL, h

lt / = - ^ff;Z' + \MCt
L"

h
fi .
= J/^P' - \MCJP" - \MD.P, h, t

/ = + J/7T/" - \MCC
P"

h,
t
,
= MK

t
P' - \MC,P" + \MDC P, A

Wi .'
= -MKf + \MC.P" + \MDJ\

h
tt ,
= MK

C
R' - \MCR" - \MDtRi h

tt c
' = + MKC

R' - \MCC
R"

h
lt ,
= MK,R> - \MC,R" + \MDCR, /<, ,'

= - MK
t
R ' + \MC.R"

24. Development of the indirect action,

The fundamental equations for the indirect action are found from (28) by replac-

ing PI by the function flp defined in (12). We first replace the coefficients SZ'by
the following:

v etc.

Taking, as we do throughout this work, the mean Sun as the origin of longi-

tudes, the true longitude, v', will be replaced by the Sun's equation of the centre

= E. We also put
r'

With these substitutions the equations (n) will be replaced by others which may
be written thus: Put

G = f 7-j-
s sin zElv' + %r-

3 cos

/- f^rV (52)

/= |ri
-3 cos 2ESv'-$r-

s
sin

Then
A' = -G-J B' = G-J C' = 2j D' = I

E' = f^-
3 cos E sin /8' F' = \r~* sin E sin '
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These substitutions lead to the replacement of expression (12) by

n,-=*' (54)

where
H' =A'? + B>'n*+C>?+2D'l;r,+ -.-

(55)

This function //', a pure number in dimensions, will hereafter be used as a fun-

damental quantity instead of flp.

By replacing P, by this value of flp in (27) the second members in the form (28)

take the common factor

Ha'
3

and the differential variations of the elements become

dH' dH' dH'

dH' BHD
nt
e = BH'\

-^ J
(56)

dH' dH' dH'

(57)

We have next to develop the values (52) of G, J, and / in terms of the mean

anomaly '. This may be done by means of Cayley's tables in the Memoirs of
the Royal Astronomical Society, Vol. XXIX, or the development given by
Leverrier in Annales de V Obseivatoire de Paris, Vol. I. Dropping unnecessary
terms and powers of e' we have

r~* cos lE = i |e'

2

+ (3^' tye'*) cosg' + Ij-e'

1

cos 2g'

r~3
sin 2E= ($e

r -
*e'*) sing-' + -^V'sin 2g'

r~* = i+ | e'
2

+ (3 e' + Qe'
3

}
cos g' + \e<* cos 2g (58)

r~* cos E = i + $e' cos g'

r~* sin E= "i
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The expressions for G,j, and /thus become

G = {(6e'
- -9/V

3

) sing-' + -\V
2

sin 2g'}&v'

+ {9
__ 45.e /

2

+ (]gt
- -VgV

3

) COS"' + lf^'
2

COS 2g'}Sp'

/=-(! + &'* +(!' + IX
3

) cosg-' + -\V
2

cos 2-'}V (59)

/= {|
- --e '

2

+ (K -We/s
)
cos "' + e/2 cos 2-'}&>'

-
{(9*'

- -VgV) sing-' + ifV
2

sin ig'} &p'

In reducing these expressions to numbers I take, with Delaunay and Brown, the

value of e' for 1850
e' = .016 771

With this datum the expressions for G,J, etc., become

G = (0.10058 sing-' + 0.00359 sin 2g')8v'

+ (2.24842 + O.II3I3 COS-' + O.OO538 COS 2g')Sp
r

J= (0.75032 + 0.03775 cos g 1 + 0.00095 cos 2g-')Sp' (60)

7= (1.49895 + 0.07542 cos^-' + 0.00359 cos 2g')Sv'

(0.15087 sin"' + 0.00538 sin 2g-')$p'

25. Abbreviated coefficientsfor the indirect action. Since

A' + B' + C> = o

we have, as in the direct action,

H> = \(A'- B')(?
-

rf)
- \C> (

Replacing A', ', and C' by their values (53)

H> = - G? - J -

As the last two terms of H' are important only in some exceptional cases, we

postpone their development to Part IV.

With the notation of (36), we have for each lunar argument

H' = (- 2 Gp cosN 2jq cosN+ 7*
4
sin N) (61)

The planetary factors, G,J, and /are to be developed in a periodic series of the

same form as that for A, B, and C, so that, for each planetary argument N we
shall have

G = G
c
cos JV

t + G, sin 7V
4 /=Jt

cos JV
t + J. sin 7V

4
/= /. cos 7V

4 + /. sin 7V
4 (62)
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With these values we shall have H' developed in a double series in which for

each pair of arguments j^Vand JV4 ,
H' will have the four terms

H' = h
t
cos (N+ JV

4) + h
c

' cos (JV- Nt} + h
t
sin (N'+ 7V

4) + h,' sin (IV- vVJ (63)

where
.i V = ~G

ep-Jcq + K.<

h.
= -G.p- J.q + J/A A/ = G,p + Jtq + K*4

Expressing the differential variations of the elements in the same form as before

we shall find

Ka/0 hJ = \ G.zp
(
64)

with two other sets of equations found by replacing a and a by e and e for the set

in e, and by y and g for the set in y. Also,

h
t> .
= nf(- Ge

L' -JC
L" - J/.A) h^' = m\- G

C
L' -JC

L"
(65)

A
lt .
= m*(- G.L' -J.L" + KA) *,.'

= m2

(G,L' + J,L" + \Ic
L

t)

with two other sets formed by replacing / and L by TT and P, for the set in IT, and

by 6 and R for the set in 0.

Comparing these with the corresponding coefficients (51) for the direct action

we see that the equations for the indirect action may be formed from those of the

direct action by replacing

K, \C and D by G, J, and /; and also Mby m?

It also follows that the two actions may be combined by replacing in the expressions
tor the coefficients h, given in (46), (47), (48) and (51),

MK by MK- m2G ; \MC by \MC + n?J ; MD by MD + ntl (66)

We shall make this combination to save labor in the formation of the products, but

shall give the separate parts of the coefficients, so that the parts of each term due

to the respective actions may be readily found.

26. Integration of the equations. The integration is effected by multiplying

each coefficient by the quotient of the mean motion of the Moon by the motion of

the argument itself, which factor is

n . , ,

" =
in + t'lr, + i"0

l (J + k')n' kn
4

^ 7 '
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The reciprocal of this factor, which we may use as a divisor, is

a form most convenient for numerical computation.
We shall thus have for the perturbations of the elements corresponding to each

pair of lunar and planetary arguments

Sa = vh^e
sin (IV N^ )

-
vh^ t cos

Se = vh, iC
sin (N JV

t )
- vh

tt .
cos (IV JV

4 ) (68)

S7 = vh
y<e

sin (N JV
4 )
- vA

y> . cos (JV JV
4 )

/ = -
/>&,_

sin (JV JV
t ) + vh

ti ,
cos (7V^ 7V

4 )

r = -
I/A,,,

sin (1V JV
t ) + ^ ffi.

cos (IV 7V
4 ) (69)

^ = -
i/A, ie

sin (N 7V
4 ) + f// 9 ,,

cos

Practically we use the perturbation of n, the mean motion, instead of a. From
the relation of 12, {$, we have

Dfi = \nDp.

Thus the first equation (68) is replaced by

Sn = -
\vnh^ e sin (IV 7VJ + fwiA.,. cos (^ 7V

4 ) (70)

27. We pass next to the inequalities of the actual mean longitude, /, and of the

perigee and node, IT and 6. Taking the equations (29) for these quantities

TT = TT
O + jrf/

=
0,,

the complete expressions are

8/ = S/ + fSndt Btr = 57r + fSv^t 80 = 80 + fse^t (71)

The motions n, TT^ and ^ are functions of the elements a (or a), e, and y. n is

given by the relation a3 2 =
/x, while TTJ and ^ have been developed by Delaunay,

whose results are found in Comptes Rendus, Vol. LXXIV, 1872, I, and are repro-
duced in part in Action, p. 190.

*.-*++* >-%+%><+%*>
From (70) and (71) we thus have, in the variation of/, the terms

0J*= -
!< . sin (^v W + 1"*., .

cos (^ ^*) (7 2)
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arising from the variation of n. Integrating and including the value of 8/ we
shall have for the complete perturbation of the mean longitude

U= l
t
cos (N JV

t) + I,
sin

where
l
c
= IMai c + Vh

lt ,
= v(f< . + //,, .) /.

=
fitt., .

- vh
lt ,
= v(f< .

-
A,, .) (73)

From the Delaunay developments in powers of m are found

433 1

(74)

BIT. BIT dir.
- = - .01480

-+ = - .ooio4 2 = - -433 1

B0. B0. 80
l

-^
= + .00377 j*

-- .ooi29 2

&j
= + -

Substituting these values and the values (68) and (70) we find that by putting

7T,
= .02220/Ja .00104/&e .00433^, e

7T
1|4
= .02220/1,, .OOIO^, .00433^,.

(75)

t
, .00129^,+ .

we shall have

STT,
= v {irlt e sin (vV^i TV7

;) ir^ . cos

l

= I/M {,, c sn ,
-

lt ,
cos

Then by integrating we have the terms

STT = - j/V, cos (TV
7"* ^V

4)
-

i/V, . sin

(76)

cos i
4
-

1/,, . sn

Adding the values (69) we have the complete periodic perturbations of IT and

expressed in the form

STT = TT
C
cos (JV .VJ + w, sin (TV^i 7VJ 8^ =

o
cos (^Vd= JVJ + 0, sin (JV JVJ

where

"c
=

"^-r, .
- "X, e

= K7̂ , .
-

^1, ) 7T.
= -

!///,_
-

Z^TT,, ,
= -

!</*, + OTT,, ,)

(77)

28. Treatment of the non-periodic terms in R.

In the preceding integration we have supposed all the arguments to be of the

form GQ+ N/. We have now to consider the special case in which N vanishes.

In the case of the direct action this occurs when, in the pair of arguments which

form G,
i=i' = i' = k = o j k' = o

We shall then have in H a term, H= thn which we shall call hc simply. It will

be affected by a minute secular variation which we need not consider at present,
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In the case of the indirect action we note that the coefficients of Sz/, Sp', and S/3',

as found in (59), are developed in the general form 2/, sin ig' or kt cos ig', in

which /&
, being a function of the eccentricity of the Earth's orbit, is a function

of the time. The coefficients of all the terms arising from the indirect action are

therefore aftected by a secular variation.

The perturbations 8v ' and 8p' contain terms independent of the mean longitude
of the disturbing planet, which may be treated separately, namely:

(1) A constant term in 8p'.

(2) Terms of the form c ^ ig' in 8v' and
S/>'.

(3) The secular variation of e' and of p' .

Omitting for the present the powers of t above the first, we shall have in 8t>
' and

8p' terms of the general form

(c + c'f) ig'

The product of these into (59) gives rise to terms of G, J, and /of the same form.

When we form the products of these terms by f
2
, rf, etc., we shall have in H' terms

of the form
h + h'nt +;

Substituting the derivatives of the non-periodic direct term in (41) and (42), and of

the indirect term in (56) and (57), omitting terms in /, and putting for brevity

P
%
= Mh

c + nth

we find

- Djr. -
(78)

-
. , 3 y3

. A"

Adding in the terms multiplied by /, these three equations may be written

DJ, - - A,
-

h,Ht D
nr, = - h> - h'nt DJ = -V -

A^'nt (78')

The integration of (78) and (78') will give

?>a = V ; S/o
= V -V -

JV2
'
2

Se = V ; &r. = V. ~ >>'* ~ P'V (78")

By = 8o7 ; S0 = B
a
d - h 'nt - J/;/V/<

8 designating, in each case, the arbitrary constant of integration.
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The completed expressions ior /, rr, and are to be found by the equations

d * &*, dTr, . dir. , 60. . 80. . 60. .

Sn = i- &a STT. = ^-' 8a + -,.-' &e + -=-
1

87 80. = -^ Sa + -^ Se + -^ 87 (79)
da. da de dy da de tty

87 = 8/ + f $>ndt Sir = STT
O + / Str^t $0 = S<? + f W^t (80)

In these equations the perturbations (78") are to be substituted. In doing this

the arbitrary constants 8/
,
8 7r

,
and 8 #

, being merely constant corrections to /, TT,

and 0, may be dropped as unimportant to the theory. We shall then have from

(78") and (80)

'V + 1V + *o7
- *

29. Adjustment of the arbitrary constants. Values are next to be assigned to

the arbitrary constants 8 a, S g, and 8 y. We shall do this so as to satisfy the condi-

tions that the coefficient of/ in S/, of sin g in the mean longitude, and of sin (16}
in the latitude, shall all remain unchanged. The first of these conditions gives

- f V =V or V = - l
(
82

)

We thus have

The determination of 8 e and 8 y must await the computation of the periodic

terms depending on the arguments^ and 10, which is found in Part IV. The
increments in the motions of TT and now become

(83)

30. Opposite secular effects of the direct and indirect action of a planet
near the Sun.

An important theorem of the planetary action on the Moon is that as the planet

is nearer the Sun, not only does each form of action become smaller, but the two

forms tend to cancel each other, so that when the mass of the planet can be con-

sidered as simply added to that of the Sun, the non-parallactic perturbations vanish.
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To find the effect of the direct action in this case, let the values of x4 , j4 ,
and 24

in (14) be so small that they may be neglected in comparison with x', y', and z'.

Then A will merge into r' and we shall have

For the indirect action we remark that the only effect of the action of the planet
on the position of the Earth, after so adjusting the constants of integration that the

mean motion shall remain unaltered, is to increase the mean distance, so that

instead of
.3 .2 .

a' n' = m'
we shall have

This gives, for the perturbation of a'

.3 ,2 .

a' n' = m -f- /
4

and the eccentricity e' being unaltered

-

3m>

The corresponding part of flp is found from (7) by assigning the increment r'Bp'

to r'. We thus have

,--

This cancels the value ofR found above.



PART II.

NUMERICAL DEVELOPMENT OF THE PLANETARY

COEFFICIENTS.
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that we could not be sure of this point without actual computation. In the case

of the Hansenian inequality of long period due to the action of Venus it was shown
that the perturbations in question, considered individually, were nearly of the

same order of magnitude as the coefficients to be determined. This proceeded
from the fact that, even when we consider only the formulae of the elliptic motion,

the coefficients of the term in question are in the nature of minute residual differences

of large quantities. In view of the undoubted fact of some apparent inequalities

of long period in the motion of the Moon of which theory has yet given no expla-

nation, it seems necessary to exhaustively discuss every possible mode of action

which might affect the result.

The most effective and certain way which the author could devise to over-

come this difficulty was to employ the purely numerical development sometimes

called "mechanical quadratures," but, more exactly, that of induction of general

formulas from special values. It is true that the numerical computations required

by this method would be very voluminous, possibly more so than those by other

methods. But the use of the method has the great advantage that the computations

are made on a simple and uniform plan, which can be executed by routine com-

puters, and in which the complexity incident to the analytic treatment does not enter

at all. Another important advantage of this purely numerical method is that the

mutual periodic perturbations of Venus and the Earth can be taken account of from

the beginning. This will readily be seen by a statement of the method.

The values of the planetary coefficients A, S, etc., being functions of the geocen-
tric coordinates of Venus, can be computed for any assigned mean longitude of the

Earth and Venus. They are therefore to be computed for a certain number of equi-

distant values of the mean longitude of each planet. For each of these values

there will be a definite perturbation of the coordinates of each planet, which may
be computed and applied in advance. Thus the first computation gives at once

numerical values of the coefficients in which the effect of periodic perturbation is

included. From these are developed by well-known formulae the coefficients of the

sines and cosines of the multiples of the mean longitudes.

The perturbations of Mars are so small that it was assumed that undisturbed

values of the coefficients would suffice. But the same method was used owing to

its simplicity in theory.

In the case of Jupiter the analytic development would not have involved the

difficulty which I have pointed out. But it was so convenient to apply the numer-

ical method that it was adopted for this planet also.

The action of Saturn is so minute that a very simple development suffices. It

was therefore unnecessary to employ the numerical method in this case.
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A. ACTION OF VENUS.

32. We shall now show how the computations were arranged in the case of

Venus. Let us first suppose that the orbits of both planets are circular. Then

assume the Earth to be in zero of longitude. We assign in succession 60 equidistant

longitudes to Venus, 6 apart. For each of these positions we compute the values

of the four principal coefficients. Numerical induction from these special values

will then give the values ofA, B, etc., in a series proceeding according to the cosines

of the multiples of the differences of the mean longitudes.

Now assign to the Earth a mean

longitude equal to any multiple of 6.
If we start with Venus at inferior con-

junction we shall have the same series

of values of the coefficients as before,

provided that we now take the line

joining the Sun and Earth as the axis of

X. Supposing all our coordinates re-

ferred to this axis we should then have

A, J3, etc., developed according to

cosines of multiples of the difference

of the mean longitudes.

It follows that in the actual case of

the two orbits having a small eccen-

tricity and inclination the other terms

which we require will be of the order of

magnitude of these quantities and will therefore be smaller than these principal

terms. It is therefore not necessary to divide the circle into so many parts in order

to obtain them.

The actual process was to take the direction of the solar perigee for 1800 as the

initial line, or axis of X. The way in which the coordinates were defined will then

be seen by the diagram. Here on the left, ir' marks the position of the Earth's

perihelion. The positive direction of X passes through the Sun and is therefore

directed toward the solar perigee. The Earth being in this
(
fixed position, the

coordinates of Venus are computed for 60 equidistant values of the mean longitude
of Venus differing by increments of 6. The initial or zero value corresponds to

the mean inferior conjunction of Venus, marked o in the figure, which determines

all the other values; a few of the others are numbered in order.

For each of these mean longitudes, the actual coordinates of Venus, including
the effect of perturbations by the Earth, were computed. The position of the Earth

at
TT', corresponding to the 6 positions of Venus, was then corrected in each of the

60 cases by the periodic perturbations due to each position of Venus. With
these coordinates 60 numerical values of the ^4 -coefficients are computed. I

Arrangement of Coordinate Axes, in Systems o, I, etc.,

for Venus.
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designate this system of 60 values, corresponding, perturbations aside, to one

position of the Earth, by the number o; and I distinguish the values by 60 indices

o, i, 2, ... 59.

In the next system, called system i, the Earth has moved through 30 of mean

longitude, or mean anomaly, to the position E. The set of 60 heliocentric coordi-

nates of Venus to be used will be the same as before, except lor the perturbations,
which will now be those for JSlt or for ^-=30. But the position corresponding
to the inferior conjunction in this system will be that corresponding to the index 5

in system o. A new axis of^ is now adopted, again passing through the mean

Sun, and therefore making an angle of 30 with the initial axis. The coordinates

of Venus are all transformed to this axis, and another set of 60 values of the

yl-coefficients are computed.
The remainder of the process consists in assigning to the mean longitude of the

Earth successive increments of 30 until it is brought around to the position EIV

in mean anomaly 330. In each case the axis of X is taken to pass through the

mean Sun.

From these 720 special values of the ^-coefficients the general values are sepa-

rately developed for each of the 12 systems. Then the general development for any

system is effected by a second quadrature. The final result will be the values of

A
y By etc., referred to an axis always passing through the mean Sun.

Were we to adopt a fixed system of coordinate axes, it would now be necessary
to transform these values referred to the moving axis, to the adopted fixed system.
But the necessity of this transformation is avoided by referring all the coordinates,

those of the Moon as well as of the planet, to the mean Sun from the beginning.
This is fully as simple as, perhaps even simpler than, referring them to a fixed axis.

The ease of doing it is all the greater from the fact that, in the actual computation of

the lunar coordinates, they are first referred to the mean Moon. The transformation

from the mean Moon to the mean Sun is probably simpler than the transformation

to a fixed axis.

33. Development of the A-coefficientsfor Venus.

The computations relating to Venus are shown in tabular form in Tables I-VIII,
and will now be explained. To obtain the 12 undisturbed values of the Sun's

coordinates, we derive the equation of the centre and the logarithm of the radius

vector from the tables of the Sun found in Astronomical Papers, Vol. VI.

For the argument of mean anomaly of the Sun the initial value is

corresponding to g' = o. The increment for each 30 is

b.M =30.43830

resulting in the value 188.0000 for^-'
= 180.
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With the 12 values ofM thus found are taken the equation of the centre, ,
for

1800, and log r'. Then
x' = r1 cos E y' = r' sin E

The resulting values of x' and y' are shown in Table I.

For Venus, we have
Initial mean longitude = 99 30' 7"

this being the longitude of the Earth's perihelion for 1800. . For the same epoch
we have

Longitude of perihelion of Venus = 128 45' i7".4
Initial mean anomaly of Venus = 330 44' 50". 2

To find the tabular argument corresponding to this mean anomaly we proceed thus:

Adding 5 increments of 6, we have

Mean anomaly of Venus for index 5 = o 44' 50". 25

For this mean anomaly the precepts of Tables of Venus, pp. 278-279, give

Tabular Arg. K ; K^ = 1. 11601

Increment of K ior 6 = 3.745014

We now add one period to A' and subtract 5 increments

K
&
= 1. 11601

P = 224.70084

225.81685

5 increments 18.72507
Initial K, 207.09178

which corresponds to the inferior conjunction of Venus in system o.

The resulting values ofK are found in Table II. With the values ofK thus

formed the equation of the centre and log r in the elliptic orbit of 1800 are taken

from the tables.

The data lor the rectangular coordinates are:

Node of Venus, 1800 H= 74 52' 48".75
Perihelion of Earth -IT = 99 30 7 .6

Node referred to Perihelion #=335 22 41 .2

Inclination for 1800 7 = 3 23 33 -45

The values of the coordinates x, y, and z in the initial system are now computed

by the formulae

u = Eq. Cent, -f 24 37' i8".8o m sinM'= cos 7 sin m cos M= cos 6

m' sin M' = sin m' cos M' = cos 7 cos

leading to

Jl/=24 35'i".84 ^' = 24 39'35".9 i

log m = 9.9998680 log m' = 9.9993706

x = ntr cos (M+ ) y = m'r sin (M1

-fa) z = r sin 7 sin u
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Designating the systems by suffixes, and putting c = cos 30, these coordinates

were transformed to the axes of the other 1 1 systems by the formulae

x
i
= cx

<> T jjXo y\
= c

y<> %xv

and then, in general,
x
n
== x*-t y* = j-6

34. Explanation of the tables. The periodic perturbations of the longitudes

of the Earth and Venus, and of the logarithms of their radii vectores, omitting

terms of long period, are now to be found.

TABLE III: Mutual periodic perturbations.
For the perturbations of Venus by the Earth, Su and

8/>,
the arguments of the

double entry Tables VIII and XVII are:

Hor. Arg. g=K od
.65o = 206^44 + 3.745*

Vert. Arg. II for System o and /= o, 104.35

Increment of II for each system All = 20

" " " " " index A
2
II = 2.461

For the single entry Tables XI and XX we have

Arg. A = i.62203(---')

For the index i g 330.75 + 6?'

For the/th system g' = 30 j

Hence, for / = o, j = o, Arg. A = 536.49

Increment for each unit of t, &A = -f 9.732
" " " " "

j, AM = 48.661

With the values of the arguments thus formed the periodic perturbations of Venus

by the Earth are taken from the Tables VIII, XVII, XI, and XX.
For the corresponding perturbations of the Earth by Venus, we have

Hor. Arg. -=30.43837
Vert. Arg. II for/= o; t = o 165.375

Increment for each unit of /; JA_-= 3

" " "
/; -24.383

Argument A has the same value as in the Tables of Venus.
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The perturbations of the longitude and log. radius vector of the Earth found with

these values of the arguments are given in the columns $v' and 8p.
TABLE IVa AND IV. The perturbations in Table III are transformed into

increments of the rectangular coordinates of Venus and the Earth.

Neglecting the cosine of the inclination we have for Venus when referred to the

initial system of axes

AA;
O
= y sin i"Su -f x&p Ay = x sin i"Bu + ySp

the tabular 8p being multiplied by the modulus of logarithms. For the other

systems the transformation is made by the formulas for the transformation of the

coordinates themselves. The results are given in full, in units of the 8th place of

decimals, in Table IV. Applying them to the undisturbed coordinates, we have

the coordinates of Venus for each position of the two bodies.

TABLE V. The values of the solar coordinates in Table I, of the Venus coor-

dinates in Table II, after being transformed to the axis of the system, and of the

increments in Table IV, are added so as to form the disturbed geocentric coordi-

nates of Venus in each system for each position of Venus.

TABLE VI. With the perturbations of latitude in the different systems the dis-

turbed geocentric coordinate Z was computed and tabulated.

With these geocentric coordinates are computed the 720 values of the four

coefficients A, Z?, C, and D defined in 7. Since

A + + C=o

the computation of C might have been dispensed with. It was, however, carried

through as an additional check on the accuracy of the work. The latter was, how-

ever, done in duplicate, the check being incomplete.
TABLE VII gives the values of the coefficients thus computed.
The coefficients E and Flead to appreciable inequalities only in the case of the

argument 0, and have been treated separately. Their special values were computed
for six systems and thirty indices only, and are found in Table VIII.

35. The process of developing the general value of each coefficient in a periodic
series is given by Briinnow in his S-ph'drischen Astronomic, Taking A as an

example we first develop the value for each system in the form

Ak
= '

(ak
cos iL + b

k sin t'L)

where k is the number of the system and L the difference of the mean longitudes
of Venus and the Earth,

L-v-f
We thus have 12 values of each of the coefficients ak and bk ,

one corresponding
to each value of g' . These values are then again developed in the form

' + b
k<j s'mjg-') b

h
= 2 (a*,/ cos ig

1 + b
ki
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Designating the systems by suffixes, and putting c = cos 30, these coordinates

were transformed to the axes of the other 1 1 systems by the formulae

and then, in general,

34. Explanation of the tables. The periodic perturbations of the longitudes

of the Earth and Venus, and of the logarithms of their radii vectores, omitting

terms of long period, are now to be found.

TABLE III: Mutual periodic perturbations.
For the perturbations of Venus by the Earth, 8u and 8p, the arguments of the

double entry Tables VIII and XVII are:

Hor. Arg. g =K od.65o = 2o6rf

.44 + 3-745*

Vert. Arg. II for System o and i= o, 104.35

Increment of II for each system All = 20

" " " " " index AJI = 2.461

For the single entry Tables XI and XX we have

For the index i g= 330. 75 + 6/'

For the/th system g' = 30 /

Hence, for / = o, j = o, Arg. A = 536.49

Increment for each unit of i, &.A = + 9.732
" " " " "

_/, AM = 48.661

With the values of the arguments thus formed the periodic perturbations of Venus

by the Earth are taken from the Tables VIII, XVII, XI, and XX.
For the corresponding perturbations of the Earth by Venus, we have

Hor. Arg. = 30.43837

Vert. Arg. II for/= o ; * = o 165.375

Increment for each unit of / ; JA<g'= 3
" " " " "

/; 24.383

Argument A has the same value as in the Tables of Venus.
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The perturbations of the longitude and log. radius vector of the Earth found with

these values of the arguments are given in the columns v' and Sp'.

TABLE IVa AND IV. The perturbations in Table III are transformed into

increments of the rectangular coordinates of Venus and the Earth.

Neglecting the cosine of the inclination we have for Venus when referred to the

initial system of axes

A# = y sin i"Su + xSp Ay = x sin i"Su -f- ySp

the tabular 8p being multiplied by the modulus of logarithms. For the other

systems the transformation is made by the formulae for the transformation of the

coordinates themselves. The results are given in full, in units of the 8th place of

decimals, in Table IV. Applying them to the undisturbed coordinates, we have

the coordinates of Venus for each position of the two bodies.

TABLE V. The values of the solar coordinates in Table I, of the Venus coor-

dinates in Table II, after being transformed to the axis of the system, and of the

increments in Table IV, are added so as to form the disturbed geocentric coordi-

nates of Venus in each system for each position of Venus.

TABLE VI. With the perturbations of latitude in the different systems the dis-

turbed geocentric coordinate Z was computed and tabulated.

With these geocentric coordinates are computed the 720 values of the four

coefficients A, B, C, and D defined in 7. Since

A + B + C=o

the computation of C might have been dispensed with. It was, however, carried

through as an additional check on the accuracy of the work. The latter was, how-

ever, done in duplicate, the check being incomplete.
TABLE VII gives the values of the coefficients thus computed.
The coefficients E and F lead to appreciable inequalities only in the case of the

argument 6, and have been treated separately. Their special values were computed
for six systems and thirty indices only, and are found in Table VIII.

35. The process of developing the general value of each coefficient in a periodic
series is given by Briinnow in his Spharischen Astronomic. Taking A as an

example we first develop the value for each system in the form

A
li

= 'Z (ak cos iL + b
h sin iL)

where k is the number of the system and L the difference of the mean longitudes
of Venus and the Earth,

Z = v--'

We thus have 12 values of each of the coefficients ak and bk,
one corresponding

to each value of g'. These values are then again developed in the form

'

b
u
= 2

(<**,/ cos ig' + bk

'
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These being substituted in the general expression given above for A k gives the

value ofA itself in the form

A = 22 [> cos (iL +jg') + b sin (iL +jg')]

The development was effected in this way up to i = 8 only, this being the limit

for possible sensible terms other than the Hansenian term of long period depending
on the argument

2g' -g

36. The Hansenian Venus-term of long period. The computation of this

inequality requires the determination of the coefficients for i = 18, which we obtain

trom the general formulae thus. Putting, in any one system,

AH A lt
Av AM

for the 60 values of A, and
A cos i8Z + A sin i8Z

for the pair of terms depending on the argument i8Z, the general formulae give

A + A l
cos 108 + A2

cos 216 + .

T
>
oA

i
= A

l
sin 108 + A t

sin 216 +

the angles increasing by 108 in each term. The fifth angle will be 180 -j- 2ir,

so that the only numerically different values of the coefficients which enter into

the series besides i and o are

sin 18, cos 18, sin 36, and cos 36

For example, we have

A
tl

A
l
sin 18 A

t
cos 36 + A3

cos 36 + A< sin 18 +

30^4, = A l
cos 18 A

t
sin 36 A

3
sin 36 + AI cos 18 +

From the cyclic order of the coefficients the method of computing A c and A,
is as follows:

With the 60 values of any one coefficient, say A, in any one system,

A , A lt
Av , AM

compute
' = A

=

A
lt + Ait
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Next:
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J'-Aj-AJ A>'=A,'-A S

>

47

We then have, in each system

2oA c
=A " + ACil

s\ni8 + A
_ . . OQ A * .Q

with similar values for B, C, and D.

The numerical results of these processes for each system are shown in Table IX.

The next step is to develop each set of numerical values of any one pair of coeffi-

cients, say A c, and A, in the form

30^4 c
=

,,
+ ,

cos g' + a
2
cos 2g' + ft

l
sin g' + ftt sin 2g'

3oA t
= a

g

' + a/ cos g' + a
t

f cos 2g' + /3/ sin g' + ft2
' sin 2g'

These are to be substituted in the general form

A A
e
cos i8L + A t

sin i8L

Retaining only terms which may be wanted for our purpose, we shall have

30^4 = a cos i8L + <*' sin i8L

+ 1 (a,
-

/) cos (iSL + g') + \ (a/ + /3J sin (i8L + g')

+ i(a, - /8,') cos (i8Z + 2P-') + i(a,' + ft.) sin (i8Z, + 2^')

()

+ K 3
-

ft') cos (i8Z + 3 -') + HO,' + ft) sin (iSL + Zg')

TABLE I.

SUN'S GEOCENTRIC COORDINATES IN THE MEAN ORBIT OF 1800,

REFERRED TO MEAN SUN AS DIRECTION OF Axis OF X.

System.
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TABLE II.

COMPUTATION OF RECTANGULAR COORDINATES OF VENUS IN THE ELLIPTIC ORBIT OF

l8OO, REFERRED TO SOLAR PERIGEE AS AXIS OF X.

i
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TABLE III.

MUTUAL PERIODIC PERTURBATIONS OF VENUS AND THE EARTH.
The term of long period is omitted. The tabular unit is cf'.oi in <! and dvf

, and 10 8 in Sp and

i
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TABLE III. Continued.

MUTUAL PERIODIC PERTURBATIONS OF VENUS AND THE EARTH.

The term of long period is omitted. The tabular unit is o".oi in 6u and 6v', and 10 8 in 6p and

i
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TABLE III. Continued.

MUTUAL PERIODIC PERTURBATIONS OF VENUS AND THE EARTH.

The term of long period is omitted. The tabular unit is o".oi in fu and 6v', and 10 8 in Sp and Sp'.

i
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TABLE III. Concluded.

MUTUAL PERIODIC PERTURBATIONS OF VENUS AND THE EARTH.

The term of long period is omitted. The tabular unit is o".oi in tu and dv', and to 8 in <$/> and
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TABLE IV.

PERTURBATIONS OF THE G-COORDINATE X OF VENUS.

The tabular unit is io- 8
.

Sys-
tern

i
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TABLE IV*.

PERTURBATIONS OF THE G-COORDINATE Y OF VENUS.

The tabular unit is 10 8
.

Sys-
tem
i
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TABLE V.

RECTANGULAR G-COORDINATES X AND Y OF VENUS, REFERRED, IN EACH

SYSTEM, TO AN Axis OF X PASSING THROUGH THE MEAN SUN.

i
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TABLE V .Continued.

RECTANGULAR G-COORDINATES X AND Y OF VENUS, REFERRED, IN EACH

SYSTEM, TO AN Axis OF X PASSING THROUGH THE MEAN SUN.

I
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TABLE V'.Continued.

RECTANGULAR G-COORDINATES X AND Y OF VENUS, REFERRED, IN EACH

SYSTEM, TO AN Axis OF X PASSING THROUGH THE MEAN SUN.

i
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TABLE V.Concluded.

RECTANGULAR G-COORDINATES X AND Y OF VENUS, REFERRED, IN EACH

SYSTEM, TO AN Axis OF X PASSING THROUGH THE MEAN SUN.

i
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TABLE VI.

G-COORDINATE Z OF VENUS.

Sys-
tem
i
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TABLE VI. Concluded.

G-COORDINATE Z OF VENUS.

Sys-
tem
i
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TABLE VII.

VALUES OF A, B, C, AND D FOR THE ACTION OF VENUS ON THE MOON.

System o.
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TABLE VII. Continued.

VALUES OF A, B, C, AND D FOR THE ACTION OF VENUS ON THE MOON.

System 2.
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TABLE VII. Continued.

VALUES OB- A, B, C, AND D FOR THE ACTION OF VENUS ON THE MOON.

System 4.
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TABLE VII. Continued.

VALUES OF A, B, C, AND D FOR THE ACTION OF VENUS ON THE MOON.

System 6.
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TABLE VII. Continued.

VALUES OF A, B, C, AND D FOR THE ACTION OF VENUS ON THE MOON.
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TABLE Mil. Concluded.

VALUES OF A, B, C, AND D FOR THE ACTION OF VENUS ON THE MOON.

System 10.
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TABLE VIII.

DEVELOPMENT OF A, B, C, AND D FOR VENUS IN PERIODIC SERIES.

Coeff. of

V, g'
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TABLE VIII. Concluded.

DEVELOPMENT OF A, B, C, AND D FOR VENUS IN PERIODIC SERIES.

Coeff. of

V, g'
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TABLE IX.

COMPUTATION OF THE COEFFICIENTS FOR THE HANSENIAN VENUS-TERM OF

LONG PERIOD.

System.
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TABLE X.

COEFFICIENTS OF cos iSL AND SIN i8L FOR A, B, C, AND D IN EACH OF

12 SYSTEMS (L = V
"')

System.
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37. Coefficients E and Ffor Venus. Some preliminary computations ren-

der it doubtful whether the planetary coefficients E and F would lead to sensible

inequalities in any case. But, in order to leave no doubt, they are computed for

six ot the twelve systems and thirty alternate values of the index for Venus. The

separate numerical results are shown in Table XII. The general development
will be, so far as it seemed useful to use it, found in Part IV.

TABLE XII.

SPECIAL VALUES OF E AND F FOR THE ACTION OF VENUS ON THE MOON.

Coefficient E.
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and is, therefore, in longitude approximately TTO
' = 99.5. Mars starting from this

same mean longitude, TTO', takes the twenty-four consecutive mean longitudes TTO',

ITO
'

-f- 15, TTO
'

-j- 30, etc., to if
1 '

-f- 345. These twenty-four positions are designated

by the twenty-four indices o, i, 2, 3, ... 23.

In system i the Earth is in mean anomaly 30. Then, as before, Mars takes the

successive mean longitudes TTO
' + 30, TTO

'

-\- 45 ,
. . . up to TTO

'

-f- 15.
The same plan is carried through; the constant mean anomaly of the Earth in

the tth system being i X 30, while Mars, starting with the same mean longitude,

goes through its twenty-four consecutive mean positions, the indices which express
the mean longitude of Mars always starting with the value o when Mars is in mean

conjunction with the Earth.

As in the case of Venus, the elements were taken with their values for 1800, in

order to correspond to the mean of the period during which the longitude of the

Moon has been observed. The numbers and data for computing the longitude of

Mars are, then, as follows:

TT
O
'

; long, of 's perihelion for 1800; .... 99 30' 7".6

7T
4 ;

" " Mars' " " ";.... 332 22 42 .9

7r '-7r
4 ; initial mean anom. of Mars for 1800; 127 7 24 .7

Initial mean anomaly of Mars in system j
x/

M For system j and index i

Equinox

7'24".7 + 3o x/+ 15 x i

From the numbers found in Tables

of MarS) page 397, it is found that to

this initial mean anomaly corresponds

Fund. Arg. N= 243^.0948

and that the increment of JVfor 15 of

mean anomaly is

Arrangement of Coordinate Axes in Systems o, i, etc.,

for Mars. have :

For the numbers arising from the

inclination of the orbit of Mars we

Long, of node, 1800; . 6 = 48 o' 52".5

Node from e's perihelion ; 308 30' 44".9

Inclination, 1800; .... /=i5i' 3".6
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The results of the main steps in the computation of the coordinates of Mars are

shown in the following table. The first column corresponds to the indices of

system o. In they'th system they are diminished by 2;.

The second column shows the value of N actually used in entering the tables.

The discrepancy of two units in the fourth place results from using two computa-
tions of N. Columny gives the mean anomaly as taken from the tables, reduced

by the secular variation to 1800. Column u is formed by adding to^ the distance

from the node to the perihelion of Mars and applying the reduction to the ecliptic.

This reduction was applied in order to use for x and y simple formulae for the

ecliptic longitude. Actually, through a misapprehension, the rectangular coordi-

nates were computed on the supposition that u was counted along the orbit, as in

the case of Venus. There is therefore an error in the last figures of the coordinates,

the amount of which can readily be determined, but which has been deemed too

small to need correction for the present problem.

TABLE XIII.

COMPUTATION OF HELIOCENTRIC COORDINATES OF MARS.

i
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TABLE XIV.

G-COORDINATES OF MARS REDUCED TO THE DIFFERENT SYSTEMS.
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TABLE XIV. Concluded.

G-COORDINATES OF MARS REDUCED TO THE DIFFERENT SYSTEMS.
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TABLE XV .Continued.

SPECIAL VALUES OF A, B, C, AND D FOR MARS.

System 2.
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TABLE XV'. Continued.

SPECIAL VALUES OF A, B, C, AND D FOR MARS.

System 6.
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C. ACTION OF JUPITER.

39. The action of Jupiter being computed on the same general method as

Venus and Mars, but being much simpler, no detailed explanation seems

necessary. Six systems, which suffice to carry the coefficients to terms of the

third order in the eccentricities, were deemed enough.
The principal numbers used or derived are shown in the following tables. The

fundamental data in the first table were derived from Hill's Tables ofJupiter.

TABLE XVII.

ECLIPTIC COORDINATES OF JUPITER FOR THE 12 POINTS OF DIVISION.
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TABLE XVIII. Concluded.

JUPITER ; DIRECT ACTION ; SPECIAL VALUES OF THE A-COEFFICIENTS FOR 6 SYSTEMS.

System 4.
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D. ACTION OF SATURN AND MERCURY.

40. The inequalities due to the direct action of Saturn are so minute that an

approximate development will suffice. I have therefore used the development of

A~3 and A~5

by spherical harmonics. We put a^ for the mean distance of Saturn,

Z, as usual, for the difference of mean heliocentric longitudes of the planet and
Earth (L s g'}, and a for the ratio of the mean distances. With this notation

the developments to a4 are

J = i + fa* + -Yi
6- 4 + + (3 + -V-

2 + ) cos L

+ ( + -Vg
5-"2)*

2 cos 2^ + Y*3 cos 3Z + W*4 cos 4Z

^ o, i + -Y-
2 + HI40* + + (5 + JF 2 + )

cos Z
* cos 2Z + 1 -a' cos Z + 1la4 cos Z

This development is valid when the eccentricities are taken account of, provided
we use the true radii vectores and true longitudes instead of the mean ones. But
this is unnecessary in the present case. For Saturn we have

a = 0.1070

Reducing to numbers this gives

s
= 1.0262 + 0.328 cos L + 0.044 cos 2-^ + -o5 cos 3^

TT= 1.0741 + 0.557 cosZ + o.no cos 2Z + .016 cos 3Z +

For the geocentric coordinates X, Y, Z, of Saturn we have

X= a' a, cos Z = a
l (a cos Z) Y= a

l
sin Z Z= o

Then

2^=
^.(X*

- Y 2

)
= a3^ (a

2- 2<z cos Z + cos 2Z)

/- /'^
a3

i*
C. = ' C = --

3 &

Z>,
= a'

3
/? =

o|i- (} sin 2Z - a sin Z)

Reducing to numbers, and performing the necessary multiplications we find

= -f .0027 + .031 cos Z + .620 cos 2Z

ios

C, = .419 .135 cos Z .018 cos 2Z

io3

Z>,
=

.029 sin Z -(- .607 sin 2Z
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Then, the principal terms are

io3MK= + .0013 + .015 cos L + .307 cos zL

loU/C, = .208 .067 cos L .009 cos 2Z,

iosMD
l
= .014 sin L + .302 sin 2.Z,

41. The mass of Mercury is so minute that its action upon Venus, the only

planet whose motion it can sensibly affect, has never been determined with cer-

tainty. There is every reason to believe that the uncertain determinations of the

mass which have been made were too great by 2 or 3 times their entire amount.

From Hill's estimate, based on the volume and probable density of the planet, it is

very probable that the mass is less than i -=- 10000000 that of the Sun. From the

results of 30 it is inferred that its secular effect on the motion of the lunar elements

is proportionally yet smaller than its mass.

The only periodic inequalities that could become sensible are those of compara-

tively long period. Their probable limiting values are considered in Action,

p. 273, from which it appears that the largest inequality is that depending on the

argument
/ + TT + T,M' + g'

and that the limiting value of the coefficient was estimated at o".i. For another

argument the limiting value was o".o4. These estimates rest on a mass double of

what may now be considered the most probable value. For these reasons it was
intended to leave the action of Mercury entirely out of consideration in the present

investigation. But, for the sake of completeness, and to leave open as few questions
as possible, it was at length decided to compute the action in the same way as that

of Venus. Twelve systems and twelve indices were used. With 144 special

values, it is easy to compute not only the secular, but the principal periodic terms.

Among the results are the following constant terms and terms depending on the

above argument, the form being

A = A + A e
cos (3M' -|- ') + A, sin (3*1' + g')

A = + 0.867 A
c
= .00059 A. = o

B 0.381 B
c
= + .00035 B. = + -00008

C = 0.486 C
c
= + .00026 C

t
= .00006

Z> = -f 0.0022 D
c
= + .0005 D

t
= .0023

K^ == + 0.624 K
e
= .00047 K

t
= .00004

42. K-coefficients. From the preceding developments of A, B, C, and D for

the four disturbing planets the coefficients K = yz (A B) are formed, and

K, 0^ and Dt are multiplied by M.
This special set of coefficients, containing the factor M, are designated as K-

coefficients. Their values are tabulated for Venus, Mars, and Jupiter as follows.

The values for Saturn are found at the end of 40 preceding.
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D. ACTION OF SATURN AND MERCURY.

40. The inequalities due to the direct action of Saturn are so minute that an

approximate development will suffice. I have therefore used the development of

A~3 and A~5

by spherical harmonics. We put a
1 for the mean distance of Saturn,

Z, as usual, for the difference of mean heliocentric longitudes of the planet and
Earth (L = s g'}, and a for the ratio of the mean distances. With this notation

the developments to a4 are

J-
= i + fa* + *-a< + . . . + (3 + _45 a2 + . . .

)a CQS L

+ ( + 1
i<ra*)

af cos 2L + -^ cos 3^ + -3e-a4 cos 4Z

J - I + -V-
2 + iff**

4 + . . . + (s + IJia* + . .

.)
a cos L

' cos 2L + 1Aa* cos 3^ + JL -a< cos Z

This development is valid when the eccentricities are taken account of, provided
we use the true radii vectores and true longitudes instead of the mean ones. But
this is unnecessary in the present case. For Saturn we have

OL = O.IO7O

Reducing to numbers this gives

a 3

A = i .0262 + 0.328 cos L + 0.044 cos 2jL + 0.005 cos 3-

Ty = 1.0741 + 0.557 cos L + o.uo cos iL + .016 cos 3-Z, +

For the geocentric coordinates X, Y, Z, of Saturn we have

X'= a' a, cos L = a
l (a cos L) Y= a, sin L Z=o

Then
'*

a,
5

- F 2

)
= a?-~ (of 20. cos Z -f cos 2Z)

1

3 A

Z>,
= '

3
Z> = of

i- (i sin 2Z - a sin Z)

Reducing to numbers, and performing the necessary multiplications we find

io3
/if= + .0027 + .031 cos Z + .620 cos 2Z

lo'C
1

,
=

.419 .135 cos Z .018 cos 2Z

io3D
1
=

.029 sin Z -f .607 sin 2Z
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Then, the principal terms are

io3MK= + .0013 + .015 cos L + .307 cos iL

loWC, = .208 .067 cos L .009 cos 2L

ioWZ>, = .014 sin L + .302 sin iL

41. The mass of Mercury is so minute that its action upon Venus, the only

planet whose motion it can sensibly affect, has never been determined with cer-

tainty. There is every reason to believe that the uncertain determinations of the

mass which have been made were too great by 2 or 3 times their entire amount.

From Hill's estimate, based on the volume and probable density of the planet, it is

very probable that the mass is less than i -r- 10000000 that of the Sun. From the

results of 30 it is inferred that its secular effect on the motion of the lunar elements

is proportionally yet smaller than its mass.

The only periodic inequalities that could become sensible are those of compara-

tively long period. Their probable limiting values are considered in Action,

p. 273, from which it appears that the largest inequality is that depending on the

argument
/ + TT + $M' + g'

and that the limiting value of the coefficient was estimated at o".i. For another

argument the limiting value was o".o4. These estimates rest on a mass double of

what may now be considered the most probable value. For these reasons it was
intended to leave the action of Mercury entirely out of consideration in the present

investigation. But, for the sake of completeness, and to leave open as few questions
as possible, it was at length decided to compute the action in the same way as that

of Venus. Twelve systems and twelve indices were used. With 144 special

values, it is easy to compute not only the secular, but the principal periodic terms.

Among the results are the following constant terms and terms depending on the

above argument, the form being

A = A + Ae
cos (3f' + g') + At

sin (311' -f g')

A
a
= + 0.867 -A

c

~ ~
-oooSP A

t
= o

B^ = 0.381 B
e
= + .00035 B, = + -00008

C = 0.486 C
c
= + .00026 C

t
= .00006

D
a
= + 0.0022 D

c
= -f .0005 D

t
= .0023

Jf
Q
= + 0.624 K

e
= .00047 K

t
= .00004

42. K-coefficients. From the preceding developments of A, B, C, and D for

the four disturbing planets the coefficients K'= ^4 (A .?) are formed, and

K, C\, and D^ are multiplied by M.
This special set of coefficients, containing the factor M, are designated as K-

coefficients. Their values are tabulated for Venus, Mars, and Jupiter as follows.

The values for Saturn are found at the end of 40 preceding.
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TABLE XX.

K-COEFFICIENTS FOR DlRECT ACTION OF VENUS.

v, g'
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TABLE XXII.

K-COEFFICIENTS FOR DlRECT ACTION OF JUPITER.

J, g1





CHAPTER V.

PLANETARY COEFFICIENTS FOR THE INDIRECT ACTION.

43. Our next step is to form the coefficients G, J, and / which are the planetary
coefficients for the indirect action, and correspond to K, ^C, and D. These we have

found to be linear functions of the perturbations in the motion of the Earth around

the Sun produced by the action of all the planets. From the way in which they
are formed it will be seen that they should include all deviations in the motion of

the Sun from the actual formulae adopted for the expression of fl as used in deter-

mining the action of the Sun itself. It would therefore be necessary, in strictness,
to include the effect of any corrections that may be necessary to the elements of

the Sun's motion employed by Delaunay. But as the eccentricity of the Earth's

orbit enters as a symbolic quantity into the theories of both Delaunay and Brown,
it will not be necessary to apply any correction on this account. The same remark

applies to the position of the Earth's perihelion. But as the solar elements are

assumed to be constant in the first integration it is necessary to take into account

the eftects of their secular variations, as well as of the periodic inequalities.

Moreover, in developing the action of the Sun upon the Moon for the first inte-

gration, it is assumed that the mean distance of the Earth's orbit is strictly connected

with its mean motion by the fundamental relation

It is therefore necessary to include in 8p' the constant correction arising from the

action of the planets.

We may conveniently classify the various terms of 8v' and 8p which are to be

used in the expressions (60) as follows:

1. The terms arising from the secular variation of the eccentricity of the

Earth's orbit.

2. Constant and periodic terms independent of the mean longitude of the dis-

turbing planet.

3. Periodic terms containing that mean longitude.

44. Secular terms arising' from the variation of the eccentricity of the

Earth's orbit.

The action of the Sun upon the Moon being a function of the eccentricity of the

Earth's orbit it follows that the indirect action will vary with that element. The
variation may be taken account of by assigning to 8v' and 8p' the increments of the

87
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Earth's polar coordinates due to the variation of the eccentricity. It is not necessary
to take into account the variation of the solar perigee, because this element is

retained in its general form in the final expressions of all the perturbations.

To find the required values of oV and 8p' we differentiate the expressions for v'

and p' in terms of the eccentricity, thus obtaining

=-7 = (2 %e' ) sin^' + (|-' ^-e' ) sin 2g' + *e' sin %g' + Vr^' s 'n 4"'

(84)

- Hk' V***) cos zer' yc'
2
cos 3^-' 14-c'

3
cos $g'

Putting Ae' for the increment of e' due to secular variation, the values of 6V and

Sp' to quantities of the first order are found by multiplying these derivatives by Ae '.

To determine what terms of higher order are necessary we remark that for an

interval of 1000 years before or after 1900 we have

A*' = .000418 = 86".o

whence
(A*')

2 = o".o35

This quantity is so small that the powers of Ae' above the first order may be dropped.
But Ae' will contain terms in T2 which it will be well to include for the sake of

approximation to rigor in the theory.

Substituting in the values of the differential coefficients just found the numerical

value of e' for 1850,

e' = .0167711
we shall have

8v'
5-7
= 1.999 79 sin^-' -f .041 92 sin 2g' + .000 91 sin T,g' -\- .000 02 sin

ep
>

,
= .008 39 .999 68 cos^-' .025 15 cos 2g' .000 60 cos 3^-' .000 01 cos $g'

The value of Ae' by which these expressions are to be multiplied is that used in

the author's Tables of the Sun:

Ae' = -
8".595 T- o".026o T 2

T being counted in centuries from 1850.

The corresponding portions of G, J, and /are found by substituting for oV and

Sp' in the expressions (60) the quantities

e
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If we suppose that G, J, and /are expressed in the form

G=G
with similar forms forJ and /, we find by developing to e'

2

- -* cos *g - i -e cos

/, = -K -
(I + i^'") cos^' - ff' cos 25-'

-^' 2

cos 3^'

7
i
=

(3
~ W*'*)

' + -V-*' sin 2g' + *&e'
2

sin $g'

The following numerical values have not been formed from these, but by multi-

plying the numerical values of the factors given in (60) and (85), which are derived

from developments to e' .

<9,
= -f .06238 2.24517 cos^' .21296 cos 2g' .01115 cos 3g'

/, = .01257 0.75039 cosg-' .03771 cos 2g' .00140 cos 3g' (86)

/,
= + 2.96280 sin g' + .21366 sin 2g' + .04342 sin $g'

45. Terms independent of the mean longitude of the disturbing planet.
These terms arise from the terms of Sv ' and 8/>' which are either constants, or func-

tions ofg' alone. In the case of the longitude the eccentricity and perihelion of

the Earth's orbit are so adjusted that both the constant terms and those dependent
on Arg. g' shall vanish, leaving the only terms of 8v' to be considered those depend-

ing on Arg. 2g' etc. Both these terms themselves and the factors by which they
are subsequently multiplied to form G, f, and / are so minute that the results are

assumed to be insensible; we have, therefore, only to consider the terms of 8p'

which remain after the adjustment of the eccentricity and perihelion just mentioned.

These might be derived from the numbers in Tables of the Sun; but the author

finds that the results have not been carried out with the precision desirable in

the present problem. He has, therefore, computed these terms independently from

theory, using the method of variation of elements, and carrying the results to terms

of the second order in the eccentricities and mutual inclination. The general for-

mula are as follows.* The accented quantities refer to the outer planet.

Action ofan outer on an inner planet.

Bp = m'a{pa + jOj cos II + (/ 0>c + ft,,,
cos II) cos^ + ft,,

sin TI sing-}
where

*The derivation has appeared in the AstronomicalJournal, vol. xxv.
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Action of an inner on an outer planet.

V = m{pj + pj cos IF + (pa / 4- pliC

' cos IF) cosg-' 4- plt ,
sin IF sing'}

where
IF = TT' - TT

,
r

Pl=
2J

e e

Pi c C
2-^ + -^Mi ft / = ~

4 4

The two actions are mutually interchanged by replacing Z> by (i + D) in

either. They were, however, developed independently in order that this relation

might serve as a test of the accuracy of both.

The coefficients A and A are functions of the mutual inclination of the orbits

(<r
= sin -j/) and of the coefficients b^ defined by the development

(i 20. cos L 4 a2

)'
= JS^ cos iL

Dn means the nth derivative as to log a, or the symbolic value of [a(5/5a)]
n

.

If it be desired to use the usual successive derivatives as to a itself, we may do so

by the substitutions

D = Z>a Z?3 = aZ?a 4- / D\ IP = aDa + T
><D\ 4- a?D\

From the numerical values of the coefficients A
, A^ and their Z>'s we have the fol-

lowing results:

Action of Venus iog

&p' = + 1443.0 + 31 cosg-' 17 sing-'

Mars 30. 4- ncosg-' Ssing-'

Jupiter 1183.1 + 90 cosg-' 4- 50 sin g-'

Saturn 55.4
Uranus i.o

Total + 173.5 + 132 cos g-' + 25 sing'

Additional to these we have, for Mercury, with mass io~7

io9V = + 38.0 7 cos g' + 3 sing-'

which I treat separately.
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From these (60) gives the following coefficients for G,J, and /, these quantities

being expressed in the torm

G=G,+ G
e
cos g' + G, sing'

Action of
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we have to compute

to transform them into

b
c
= v

e
cos

t(-7rt IT')
v

t
sin t(irt TT')

b
t
= v

c
sin t(vt IT') + v

t
cos i(ir4 TT')

6, cos(/74 + i'g') + b, sm(t7t + i'g')

/4 being the mean longitude of the planet from TT', designated by v, M, j, and s in

the cases of the individual planets.

The original and transformed values of &V' and 8p' are shown in Tables XXIII
to XXVI.

The subsequent steps are shown in Tables XXVII-XXXIV in the following
order:

The values of G,J, and / given in Tables XXVII-XXX are formed from the

expressions of 8z>' and Sp in terms ofg by the formulae (60). These are then sub-

jected to the transformation of 46 and multiplied by the constant coefficient

io3w2 = 5.595. The factor io3
is introduced in order to have the most convenient

unit in subsequent computation. As a check upon the work the values ofy, G, and

/were also computed using the transformed expressions for &V and Sp', and the

results compared with the others. It has not been deemed necessary to set forth

the steps of this simple duplicate computation.

TABLE XXIII.

ACTION OF VENUS ON THE EARTH.

Arg.
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TABLE XXIV.

ACTION OF MARS ON THE EARTH.

Arg.
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TABLE XXVI.

ACTION OF SATURN ON THE EARTH.

Arg.
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TABLE XXVIII.

PLANETARY COEFFICIENT FOR THE INDIRECT ACTION OF MARS.

Arg.
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TABLE XXX.

PLANETARY COEFFICIENTS FOR THE INDIRECT ACTION OF SATURN.

Arg.
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TABLE XXXII.

G-COEFFICIENTS FOR MARS.

Arg.





PART III.

FUNCTIONS OF THE COORDINATES
OF THE MOON.





CHAPTER VI.

FORMATION OF THE LUNAR COEFFICIENTS.

47. In attacking the problem before us it has been assumed that we have

expressions of the Moon's coordinates relative to the centre of the Earth as func-

tions of the six arbitrary constants introduced through integrating the differential

equations in these coordinates. Moreover, the constants in question enter the

expressions for the disturbing function R only through these coordinates. It

follows from the general expression of R that if c represents any one of the six

lunar elements, the partial derivatives of the disturbing function may be derived

from the form

A n ^= A -sr + B-i: + C-.-+ z> -..-+ (i)oc dc dc dc

It is therefore necessary to have such expressions tor the squares and products of

the coordinates of the Moon that each of the required derivatives can be found as

easily as may be.

When the present work was commenced it was intended to make use of the

developments of the powers and products x2
, y

1

, etc., as derived from Delaunay's

theory, and found in Action, pp. 154-172 and 213-224, where the processes by
which these quantities may be expressed are fully set forth. But, before the work
was put into final shape, Brown's work on the Lunar Theory was completed and

published so far as the action of the Sun was concerned; and it therefore became
a question whether to use Brown's expressions instead of those of Delaunay, or to

go on with the latter. Each course was found to have its drawbacks. The former

developments from Delaunay's theory being intended mainly to make an exhaustive

search for possible terms hitherto unknown in the Moon's motion, were not com-

pleted beyond the third order, though the constant term was carried to the sixth

order. To speak more exactly, the development was carried to such a point that

the square of each coefficient would be correct to the sixth order.

It was found, however, that the use of Brown's more rigorous theory would be

quite convenient except in a single point. In this theory the coordinates are explicit

functions of all the lunar elements except the Moon's distance, which enters into /,

and of which Brown used only the numerical value in his developments. Brown
has shown how it is possible from the data and methods of his theory to form the

complete derivatives as to this element without using an analytic development in

powers of m. But as the application of this method would require a longer and

more laborious study of the subject than the author was prepared to enter upon, it

was decided to use the Delaunay developments for obtaining the derivatives as to
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log a. The outcome of these considerations has been that, for the sake of trial and

3oniparJson, both Delaunay's and Brown's developments have been to a large extent

independently used, and the results compared with a view of facilitating an esti-

mate of the errors to which the analytic development is subject.

48. Reduction of coordinates to the radius vector of the Mean Sun as

X-axis.

In the developments in Action the Sun's perihelion was taken as the origin

from which longitudes were measured. When the present work was undertaken, it

being found that the development of the vl-coefficients would be most easily effected

by taking the direction of the mean Sun as the axis of X, the same origin had to

be taken for the lunar coordinates. This has been done throughout the work; and

it must be understood in the subsequent developments that x and y are referred to

the radius vector of the mean Sun as axis of X except in terms arising from the

motion of the ecliptic.

In the use of either theory we 'take, as the initial data of the problem, the rec-

tangular coordinates of the Moon referred to the mean Moon as the axis of X,
which coordinates we represent by xl and y^ These coordinates are those which

Brown's theory gives in the first instance, and they are also those which I have

developed in powers of /, etc., from Delaunay's theory in Action, pp. 167 and 169.

The notation of arguments from the latter paper is:

gi the Moon's mean anomaly; g'',
the Sun's mean anomaly;

X, the mean elongation of the Moon from the Moon's ascending node,

equivalent to Delaunay's f, or the mean argument of latitude
;

X', the same for the mean Sun
;

0, the longitude of the Moon's node;
/ =g -\- IT -f- 6, the Moon's mean longitude; /' = g' + X' + 0, the Sun's

mean longitude ;

D = / /' = X X', as in Delaunay, the mean Moon's departure from the

mean Sun.

Putting Sv for the excess of the true longitude over /, we then have

x
l
= r cos ft cos f = aS,k cosN

y l
= r cos ft sin &v = d2,k' sinN (2)

z = r sin ft = aLc sin N'

where k, ', and c of dimensions o are developed in powers of e, e',y, and m.

The general form of the arguments TV^and N' is

N or N' = ig + i'g' +j\ +/X' (3)

where g = I - v
, g' = /' -

TT',
X = / - 0, X' = /' - 0.

The equations for transforming x
l
and yL

into x and y are

,v = x
l
cos D y l

sin D y = x
1
sin D + y l

cos D (4)
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If we put
h = \(k + V) h' = $(k

-
k')

the substitution of the development will give

- = 2A cos (D + N) + 2/*' cos (D - JV)
=

(5)

y- = 2A sin (D + JV) + 2A' sin (D - N} = r,

49. There are now two ways of proceeding in order to form the squares and

products. We may either form the last expressions for x and y and square them,
or we may torm the squares and products of x and yly

and transform them from

the mean Sun to the mean Moon. Following the latter method we have

x? = %(x? + y?) + \(x?
-

y?) cos 2D - x
ly l

sin 2D

/ = K*,
2 + y*) - \(x?

-
j,

2

)
cos 2D + Xly, sin 2D

(6)
x1

J
2 = (x* jKi

2

)
cos 2D 2x^yl

sin

2xy = 2x
ly l

cos 2D + (^
2

jy,
2

)
sin

The three junctions required in the work being

(x
2

y
2

),
r2

3^
2 and 2xy

we see from the preceding equations that the first and third can be formed at once

from the corresponding functions of x* and y* by a transformation through the angle

2D. If we have, for any argument ^V,

*,
2

y? = h
y
cosN 2x

ly l
= h

2
sinN (7)

the corresponding terms referred to the mean Sun are

** _/ = J(* + A) cos (iD + N) + $(*,
- /y cos

(8)

2xy = J(A, + /4
2)

sin (2Z> + ^V) 4- i(A,
-

A,) sin (2.O
-

TV)

There are some cases in which a reference to a fixed axis is convenient. Let us

put,
x

, y ,
coordinates referred to any fixed axis.

So long as this axis is unrestricted the coefficients for x and y will be equal, as

is seen from (5). Hence, if we write for any term of x and ofy depending on

any argument N
x

a
=

A, cosN y = A
t
sin N (9)

this term will be transformed into the corresponding term of AT and of y, and vice

versa, by means of the equations



104 ACTION OF THE PLANETS ON THE MOON.

x = x
t
cos /' + y sin /' y =ya

cos /' x sin /'

or
* = x cos I' y sin /' yg

= y cos /' + x sin /' (10)

The special term (9) will, therefore, transform into the terms of x and ofy

l') (n)

For the special functions required in the lunar theory we shall have the follow-

ing transformations of the same form as (6)

x2 -/ =
(*

2 -
jr

2

)
cos 2/' + 2x yv

sin 2/'

(12)

2xy = 2x yQ
cos 2l' (x* jy

2

) sin 2/'

^ 2

y
2 =

(x* jK
2

)
cos 2l' 2Ary sin 2/'

(13)
2x yQ

= 2xy cos 2!' + (x? y
2

)
sin 2l'

The transformation of any one term may be made by the equations (6) by writ-

ing + 2/' or 2/' for 2D.

If, as in most of the present work, the solar perigee is taken as the fundamental

fixed Jf-axis, we write g' instead of/' in these equations.
An important remark to be made on these transformations of terms from

one axis to the other is that the equality of coefficients expressed in the equations (9)

and (n) is true only when the fixed axis of J^is unrestricted. If, as will sometimes

be more convenient, we take the direction of the so'ar perigee for this axis, some
values of argument N in (9) will be equal with opposite signs. By combining the

terms depending on these arguments the equality in question will cease to hold.

If, however, the Sun's eccentricity is dropped, the general equations will remain

valid for the Sun's perigee also.

It thus happens that, in the developments given in Action, pages 213-215, the

coordinates are quite general, while the expressions for their squares and products

given on pp. 217-223 are not general, because the solar perigee is here taken as the

fundamental axis.

50. Recalling that throughout the work we use the symbol D to represent the

logarithmic derivative as to a of any function, a serious question is that of determin-

ing the value of this derivative with the necessary precision in each special class

of terms. In actually performing the work so many tentative combinations have

been made, as better and better methods were found, that it is difficult to present

any one process as the definitive one. The following method was at length seen

to be the best under the circumstances I have described. Let

u = a'<f>(i)

be any function of the coordinates of which D is to be formed. Practically i will
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be equal to i or 2 according as the expression we are dealing with is of the first or

second degree in the rectangular coordinates. If we can compute the value of

D(j)(m} with sufficient precision the complete value of Du will be

Du = /*<(*) -f al

D<f>(m) (14)

If it is developed in powers of m, <f>(tn)
= OQ + aim + <V

2 + and we shall have

><j>(m)
= fotjW + 3<x2

7
2 +

the coefficient of each term being f of the exponent of m. (v. 12, Eq. 23.)

If we have the numerically accurate value of any tf>(m) from Brown's theory
and an approximate one from the analytic development, the comparison of the two
will furnish a rude index to the probable value of the omitted powers of m in the

development. It follows that the nearest approximation to the value of Du will

be obtained by using in the first term of the second member of (14) the numerical

value of a{

(j)(m)
= u, the analytic development being used only for the second term.

Moreover, having an approximate estimate of the value of the omitted terms of the

analytic development of the second member of (14), we may use it to correct the

last term of this member. I conceive that no lack of theoretical rigor pertaining
to this process will lead to an error of the slightest importance in the present work.

51. Formation of the D'sfrom Delaunay's Theory.
In the final formation of the /^-derivatives I have extended the developments

given in Actto*, by the aid of Delaunay's results, as follows. Delaunay expresses
the reciprocal of the Moon's radius vector in a form which we may write

a
-

where tt\,
is put for the sum of an infinite' series of terms, each developed in powers

of ?, as well as of e, e'
',
and y. This quantity 77^ is related to the Moon's parallax TT

by the equation

sin TT = (i -f TT.)a ^

#! being the Earth's equatorial radius.

It is to be remarked that Delaunay's expression for the parallax was only carried

to terms of the fifth order, so that it does not suffice for all theoretical purposes.
It is indeed fairly probable that it would suffice for the object now in view. In

order, however, to lessen the danger of any insufficiency in this respect I have, in

forming the value of TT^ compared each coefficient in the expression of Delaunay's

parallax found in my transformation of Hansen's lunar theory with the more accu-

rate value derived from Hansen's or Brown's expression. We may conceive that

the correction necessary to reduce Delaunay's coefficient to Hansen's value is of

the form

STT,
=

ajn* + <+l w'
+1

-\
----
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in which i is the power of m next above the highest to which Delaunay has carried

his coefficient. From what we have already shown it follows that the corresponding
correction to Dtr^ is

an approximate value of which is

In order to make this correction rigorously exact we should know the values of

the coefficients of the omitted powers of i. This being unknown, the minute cor-

rection is to a certain extent a matter of estimation. I do not conceive, however,
that the uncertainty is at all important in the present investigation.
We have next to consider the Z>-derivatives of the three functions

p
2

3?
2

; fi* '"li > and 2 fi7?i

Starting with the equations (2) the values of 8v and ft, developed in powers of m,
are given at the end of Delaunay's TAeorie, Vol. II. The values of Dv are

formed from these with great lacility by means of the form (23) of 12, because

Delaunay gives the numerical value of each part of every term of the longitude.
The steps of the subsequent process consist in simple trigonometric multiplica-

tions, and are presented in tabular form on the following pages. The fundamental

quantities are
a a

7T. = i, Sz', ft and D -, Dov. Dfj
r r

which are formed from Delaunay's numbers in the way just shown.

The following functions are then formed by trigonometric multiplication

P = I
TTj + 7T,

2

7T,

3 + p~ = I 27T, + 37T,
2

4^,' + p*= I
377-, + 67T,

2

IO7r,
3+

In the final work, however, p has been formed from Brown's theory. Then

p>
= ? + r,* + t;*

2\/3' Cos2
/3 = i - Sin

2#

sinSz; = 8-|8^ cos &v = i - iSz;
2

%? V? /* cos2

/8(i 2 sin
2

8z>) ^,17,
= p* cos2

ft cos Sv sin Sv

S=ps'mft ?
2 =

/)

2
sin

2
y3 D p

2 = - 2p^hr l

> sin = cos ftDft D sin
2
ft = 2 sin ftD sin ft Z>p

2
cos* ft = cos2

ftDp2 + pW cos 2
ft (16)

Z7 sin
2
Sz> = 2 sin Sz^Z? sin Sy = 2 sin 8>v cos SvDSv

%?
-

*)*)
=

(i
- 2 sin

2

fo) Dp- cos2
/9
-

2/>
2 cos2

ftZ> sin2 w

?
Stfi

= sin Sy cos BvDp
2 cos2

y3 + p
2 cos2

/9(i 2 sin
2

Sv)2)&v

D C = p*D sin
2
ft + sin

2
ftZ) p

2
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The same method might be used to form the derivatives as to the e and y, but

this has been deemed unnecessary, as they can be formed with entire precision

from Brown's Theory, and probably with all necessary precision from the develop-
ments found in Action with some extensions in special cases. As a matter of

fact they have been formed by both methods.

52. Derivatives from Brown's theory. To form the partial derivatives as to

Delaunay's e and y from Brown's expressions it is to be noted that Brown uses

instead of e and y two constants e and k which, omitting unimportant terms, are

expressed thus in terms of the Delaunay elements:

e = (2.000543 + ,o^e
n
)c .3668^ 2.oi2ey*

k = (1.000128 .O004e'
2

)7 .4967* 0.499^7

A distinction is to be made between the a of the present work, defined by the con-

dition a3n? = p, and Brown's a, used in his work. Brown's e is defined as the

coefficient of sin g in the development of jj/a, or, using the notation of the present

paper, in the development of
a r . a

cos p sin 0v = i}
a a a

This will enable us to make a comparison of the preceding value of e with that

to be derived from the analytic development in Action, p. 168, from which we find

- e = (2
- ^' +^'' + *firW>

4 + V''> -
(| + i7

2 - T\VV - (2

Brown's 2k is the coefficient of sin X, X being the mean argument of latitude, in

the development of r/a sin
ft, tound on p. 159 of Action. From the coefficient as

developed in Action we find

a 2

Brown also gives

^=.999093; ^=1.000908

The two results are as follows, B indicating those from Brown's formulae, A those

Irom the analytic development.

B; e = 2.000557^ .367^ 2.oi2^y
2 B ; k = 1.0001287 .499^7 .4967*

A ; e = 2.000426^ .371^ 2.OO4C7
2 A ; k = 1.0001087 .501^7 .5007*

The difference, arising from the dropping of higher powers of m in the analytic

development, is too small to affect the solution of our present problem.
To find the partial derivatives of any function u of e and k with respect to e and

y we have from the preceding expressions
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du dude dudVi du du

d~e
=
dede + dkfo

= I '993 2 fe~ 99d]i

(17)
du du de du 5k Bu du
a~ = 5-=- + 5r=-= o.ggSo 5l .0025; -5-
dy de dy

T 3k 7
/yo 3k a de

These equations enable us to find the derivatives as to e and y from Brown's as to

e and k.

53. Tables of thefunctions and derivatives of the Moon's coordinates.

The numerical processes by which the required functions of the coordinates

were developed may be followed and tested by the aid of the following tables.

The notation of the arguments, expressed by the indices in the first column, has

been defined in 48.

Owing to the circumstances mentioned in 46, and to the widely different degree
of precision required in the coefficients of different arguments, the numbers of these

tables are not always consistently continuous. The terms of many, perhaps more
than half the arguments, lead to no sensible inequalities; with these pains were not

always taken to reach a higher degree of precision than was required to show the

order of magnitude of the results. In the preliminary steps of the investigation it

was deemed sufficient to carry the expressions for the Moon's coordinates to the

5th place of decimals, and those for the derivatives to the 3d or 4th place. But

when the inequalities of the elements themselves were reached by integration, it

was found that this degree of precision, while more than sufficient for the periodic
terms in general, was not sufficient either in the terms related to the evection, or

in those determining the secular variations and accelerations of /, IT, and 6. A
number of successive revisions was found to be necessary, in which the coefficients

depending on the argument g' were carried to the yth place of decimals. As the

last place was always more or less doubtful only the sixth place has been included

in the printing.

It may also be remarked that in commencing the tables it was supposed that the

analytic development in Action would suffice for the work. This expectation

proving ill-founded, the developments of the Moon's coordinates given by De-

launay, then those by Hansen, and finally those by Brown were successively
used in the case of those terms in which greater precision was needed. Finally
the /^-derivatives were, in their important terms, recomputed by formula; proposed

by Dr. Ross, which were much briefer than those already given in (16) of 51.

The want of homogeneity thus arising in the tables could be cured by a fresh

development from the fundamental data of Brown and Delaunay, but I do not think

any important change would thus result in the expressions for the inequalities of

the Moon's elements found in Part IV.
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TABLE XXXV.

FUNCTIONS OF THE LATITUDE AND THEIR DERIVATIVES.

109

Arg.
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TABLE XXXVII.

FUNCTIONS OF THE LONGITUDE AND THEIR DERIVATIVES.

Arg.
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TABLE XXXIX.

FUNCTIONS OF COORDINATES REFERRED TO MEAN MOON.

in

Arg.



112 ACTION OF THE PLANETS ON THE MOON.

TABLE XL.

FUNCTIONS OF COORDINATES REFERRED TO MEAN SUN.

Arg.



PART IV.

DERIVATION OF RESULTS.





CHAPTER VII.

CONSTANT AND SECULAR TERMS.

We recall the arrangement of the present work. In Part I, the general equations
have been formed, the theory outlined, and the methods developed so far as could

be done. Nearly all the fundamental quantities were developed as sums of prod-
ucts of two factors, one factor of each pair being a function of the Moon's coordi-

nates, the other a function of the coordinates of the planets. The latter functions

are developed in detail in Part II, one chapter of which is devoted to the develop-
ments of the coefficients of the direct action, the other to the coefficients of the

indirect action. In Part III, Chapter VI, have been developed the numerical

functions for the lunar coefficients. These are the same for both actions. The

present concluding Part is devoted to the combination of these factors and the

derivation and discussion of results.

We may divide the matter of this part into three chapters. In the first chapter
we consider the terms not purely periodic. By a purely periodic term is meant

one of which the coefficient of the sine or cosine is constant. We may, therefore,

define the terms to be first considered as constant and secular, two classes which

need not be considered separately.

54. The arguments on which the planetary and lunar factors depend are all

distinct except g', which is common to both. It follows that no constant or secular

term in the variations of the elements can arise by the multiplication of factors

depending on any other variable argument than^''. In all cases in which another

argument than this enters into either factor, the results will be periodic in form, the

coefficient, however, having, in the general case, a secular variation. Since no

terms of the class in question contain /, TT, or 0, they give

D. = o D = o Z>7 = o

To form the constant and secular terms we begin by collecting those planetary
factors which are either constant or depend on the argument g'. We shall con-

sider the direct and indirect actions separately. The planetary factors for the

direct action, as collected from 42, with some revision of the numbers there

found, are shown on the next page.

"5
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FACTORS FOR DIRECT ACTION.

Action of Venus.
' = + 5".9045 + o".44 cosg-' o".n sing-'
= 3 .4072 .30cosg-'+o .07 sing-'
== + o''.33 sing-' + o".O3 cosg-'

Action ofMars.

= + o".0468 o".O2O cosg-' o".O24 sing-'
= o .1006 + .028 cosg-' + o .029 sing-' (18)
= + o".oiosing-' o".oo8 cosg-'

Action ofJupiter.
\o*MK= + o".O9i3 o".oo2 cosg-' o".o32 sing-'

%io
3AfC 2 .1348 + .oO4Cosg-' + o .062 sing-'

= + o".oo5 sing-' o".O3O cos g 1

Action of Saturn,

= + p".ooi3 ioWC' = o".i040 io*J/Z> = o

The corresponding factors for the indirect action have been combined for the

five disturbing planets, Venus to Uranus. From the combined values of G, J,
and 7, reached in 44, we find, including Uranus, but omitting Mercury:

io*m*G = + o".459 + o".36 cosg-' + o".o6 sing-'

ios
/w

2/= + o .153 + .12 cosg-' + o .02 sing-'

io'wz'/= o .03 sing-'

55. Lunar Factors. If, for brevity, we put F for any one of the three lunar

factors, say
F=?-f F'={t-tf* F" = 2fr (19)

the terms of the fundamental equations (42) or (57) corresponding to each F will be :

From the tabular values of the functions of the coordinates and their derivatives

in Table XL, p. 112, noting that symbolically, D' D-\-2, we have the following
values of the terms of these functions which are independent of the lunar arguments

F= 2

??

2 = .013 96 .000 933 cosg-' .000 06 cos 2g-'

F' = p* 3?
2 = .990 74 + .000 264 cosg-'

F" 2^rj = .001 123 sing-' .000 06 sin 2g-'
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D'F= D'(? r)

2

)
= .080 02 .005 288 cosg'

- .000 38 cos 2g'

D'F' = -D'(p
2

3?
3

)
= 1-9770 + .001 239 cosg-' + .000 04 cos 2g'

D'F" = iD'ty) = .006 809 sing' .000 39 sin 2g'

de
'

de
= + .1705 + .001 109

dF"
-^ = = = + .006 220 sin g'de de

= + .0154 + .000 287 cos g'

<5375
~

' C S

= + .000469810^-'

The factors a,, e,-, etc., are derived in 14, and found in (26). From the preceding

scheme we find by using the preceding values and their derivatives in (20)

FI = 0.1641 .010 92 cosg-' .000 77 cos 2g'
F

t
= 2.1194 .086 40 COS-' + .OOO OI COS 2g'

FS= 0.0859 -001 63 cos g'

FI = + 4.0086 + .002 49 cosg-' + .000 08 cos 2g'

FJ = -3- 3 J 4 2 -.021 36 cos g' (20)

FJ = + 3.0093 .000 90 cosg"'

F" = .013 89 sin g' .000 79 sin 2g'

FJ' = .118 94 sing-' + .000 01 sin 2g'
F"= .002 64 sing-'

56. Secular motions of I, TT,
and 6. The function Aflf,as defined in 20, may

now be written

MH= MKF- \MCf + MD.F"

and introducing the linear functions of its derivatives which we have just formed

we have from (42)

DJ, = - MKF, + IMC^F' - MDF>'

Djf^ = - MKFi + \MCFJ - MDF? (21)

DJ = - MKF, + \MCFj - MDFl'

of all which factors we have just given the numerical values. For the indirect

action the second members are

..-(1=1,2,3) (22)
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Performing the multiplications we find the following secular motions of /, TTO,
and

arising from the terms of direct and indirect action under consideration.

Direct Action of io5/?n(/o

Venus 12.66 + 23.846 9-747
Mars 0.41 + 0.433 0.300
Jupiter 8.54 -}- 7.269 6.416
Saturn 0.42 + 0.346 0.318
Uranus o.oi -f- 0.007 0.006

Sum 22.04 + 3 1 -9 I 16.786
Indirect + 0.54 J-495 4- 0.422
Total 21.50 + 30.406 16.364

Taking the Julian century as unit of time n = 8400. The centennial motions

arising from the factors here employed are therefore:

Centennial motion of / = --
i8o".6, of TTO

= + 255.41, of = 137.46. (23)

From the vanishing of D
ta, Dte, and D

ty we have

Sti = const. STTJ
= const. B0

l
= const.

the constants being functions of the arbitrary constants of integration, determined

at the end of this chapter.

57. Terms arisingfrom the secular variation of the earth's eccentricity,
Both the direct and indirect actions contain, in rigor, terms of this class. They

enter into the direct action because the direct action of the planet on the Moon varies

with the variation of the orbit of the earth around the Sun. But the effect of this

variation is found to be so slight that it will be left out of consideration in the

present work. We therefore begin with the indirect action. The terms of the

coefficients G, /, and J, on which the action depends, have been developed in

Chapter V, 44.

Our fundamental quantity for the indirect action is H' of 25, of which the

only terms required are

H' = - G(? - O -J(P
* -

3O + 2/f, = - GF-JF' + IF" (24)

The terms of G, /, and / required for the present purpose are

G = Ge' I = 7,Ac' /= J^e'

Glt /i, andyi being found in 44 and

be' = -
8".595 T o".o26oT 2 = - 8".595 T(i + .00302 T)

The secular terms of these coefficients thus become

+ i".8^ cos 2g-')T(i + .00302 T)
/=(4-o".io8o4-6".44cos-' +o".32cos 2g')T(i + .00302 T) (25)
/= (- 25".45 sin^-'

- i".84 sin 2g')T(i + .00302 T)
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Using these values in (56) we find

If we put G',J', and /' ior the coefficients of Tin (25) we shall have from (20)
and (22) the following computation for the secular accelerations from the funda-

mental equations (57), in which only the non-periodic terms are to be used :

[/]
= G'F, + J'F{ - I'F," = + o".2467M = G'F, + J'Fj - I'F," = - i .6378

Iff]
= G'F, + /'/7 - f'F," = + o .3246

Then, postponing the terms in Z12

DJ=m*[l]T Djr=m*\*]T DJ = m 2

[0]T (26)

The terms in T2
in (25) are only those arising from the term of e' in T2

. To find

the complete values we note that all the terms of [/], [TT], and [0] contain e' as a

factor, and may therefore be expressed in the form e'k, k being a quantity which,

though containing minute terms in e'
2

, may be regarded as a constant. Then

D e'

/?,[/] = kDff = [/] -^-
= -

.002495 [/]

and the actual values of [/], [TT], and [0] may be written in the form

IX] = [/](! .00250 T) (I +.00302 T)= [/](! + .0005 2 T)

[/], etc., being the values computed above. Multiplying by T we find that the

terms of D
tl, D,TT, and D

t
O in T2 are found from those in T by multiplying the

latter by the factor -|- .00052 T.

Taking the Julian century as the unit of time, w2 = 46.998, whence

D
l
/= + ii".6oT+ o".oo6oT2 D

t
ir= -76".98 T-o".040T1

Z>,0= + i5.25^+0.00797^

Then by integration

8/=5".8or
2 + o".oo2or3 S7r=-38".497

12

-o".oi3r
3 W = f .62 T* + o".0026 T* (27)

This value of the secular acceleration of the mean longitude is, I believe,

markedly smaller than any heretofore found. Delaunay's last result was 6".n,

which, reduced to the now adopted value of the secular diminution of e', would

become 6".O2. The necessity of using Delaunay's development of the parallax in

forming the Z>'s of some of the coefficients leads to some uncertainty in the present
result. But my rough estimate would lead to the conclusion that the uncertainty

should be less than one per cent, of the whole amount. The question of the pre-

cision of the value here reached I must leave to other investigators.*

* As this work is going through the press the author notices that Brown's value found in Monthly Notices Royal
Astronomical Society, vol. LVir, is reduced from $".<)i to 5".8i when the now adopted Die' is used.



120 ACTION OF THE PLANETS ON THE MOON.

58. We have next to consider the secular variations of the periodic terms in

general. Taking any set of such terms depending on any argument N
?* i;*= 2p cos JV p* 3%* = 2q cos JV 2%i) = K

4
sin JV

we shall have the terms of H' in (24)

(i".o72/-o".2i6?) Tcos A'-(i9".3/+6".4sr+ 12".7 4)
Tcos (W-g 1

Forming the partial derivatives of these terms of H' as to /, TT, 0, a, e, and y, and

carrying them into the fundamental equations (64) and (65) by the processes of

22 and 23 we shall be led to

D ,a=m\i".o'j2ap+o".2i6ag)Tsin 7T+w2

(
I 9"-3 a/+ 6"-4a?+ I2"-7 a*<)^sin (Wg 1

)

(28)

with similar equations for e and y formed by writing e and g respectively for a.

Also, we shall have

(20)
-7 l

(i9". 3Z' + 6".4Z"- i.2".>]L t )

' v

with similar equations for D^ ir and D,u 6Q formed by writing P and R respectively

forZ

59. The special values ofN of most importance in the present connection are

on which depend, respectively, the constant term, the annual equation, the equation
of the center, and the evection

CASE I; 7V=o.

The factors for Z^a, Dnte, and Dnty all vanish. The values of the Z-coefficients

are found in the first line of Table XLIX, p. 147. The first or purely secular term

of (29) has already been computed. The remaining terms give

Z>/ = ws

(38".6Z' + i2".9L")Tcosg-'
Z?

(
7r = 2

2

(38 .6P' +12 .<)P")Tcosg'

Dfa = m2n (38 .6ft' + 1 2 .9^?") T cos g'

Substituting the numerical values of Z, /"*, /?, and 7
2 = 47.oo;

/?,/= + 1062"T cos g' Z>
(
TT

O
-- 296i"Tcosg' >&= +82f'Tcosg-'

We cite, for convenient reference, the following indefinite integrals/it C if
t sin titdt =

,
sin N/ -- cos N I / cos wtdt =

t
cos N/ + - sin N/

N N J N N
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The unit of t in these equations being 100 years, N is the motion of g' in this

period, for which we may take 200 TT, or N =628.

Integration by the above formulas then gives

S/ = + i".69T sin g' + o".oo3 cos^'
87r = 4 .71 Ts'mg-' .ooScosg-' (30)

S0 = -f i .32 T sing' + .002

CASE II; N=g'; the annual term.

Here also the variations of a, e, and y vanish, so that only those of /
,

ir
,
and

are affected. Carrying into the equations (29) the numerical values of the lunar

coefficients for the Arg. g' we find, dropping the constant terms, which have been

already computed,

m^n T(o".oo6i cosg-' o".o82 cos 2g') = o".2gTcosg' 3".8o Tcos 2g'
m 2

nT(o .0485 cos g' + o .131 cos 2g') = 2 .28T cos g' + 3 .^Tcos 2g'
nfn T(o".ooio cosg-' + o".O22 cos 2g) = o".tf Tcosg' + i .03 Tcos 2g'

Then, integrating, and dropping insignificant constant coefficients

8/ = -f o".ooo47 Tsing' o".0036T sin 2g'
8-7r = + 0.0037 Tsin g-' 0.0028 7"sin 2g'
S0

g
= + 0.0008 T sin g-' o.0016T sin 2g'

CASE III; N-ff.

For this argument I have used the following preliminary values of the lunar

coefficients, differing from those of Tables XLVIII and XLIX by amounts here

unimportant
L' = 0.1197 L" = 0.1962 Z.

4
= 0.2648

P'=+ 5.403 P" = + 18.734 PI = + "-688

7?'== 0.0028 R" = 0.1431 7?
4
= 0.0560

ap =0.03223 &q = 0.11049 a*
4
= 0.06970

e/ = 0.300 45 6^= 1.03340 e*
4
= 0.650 66

gp = + o.ooo 09 g?= + o.ooo 31 g*4= + o.ooo 10

Carrying these values into the equations (28) and (29) we find, for the terms depend-

ing on the argument g alone,

D
t
e= +

,
= + ^".o^Tcosg- Z?,7r

= - 82". 2 Tcosg-

For the motion of^f, N =8329.

Integration then gives

8ot= o".ooo 062 T cos -+(74"-r- io')sin^- Be = o".oo$6Tcosg-
S/

9
= + o".ooo 485 Ts'm g- b* =- o".oo9 87 Tsin g-
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We drop the terms with constant coefficients, owing to their minuteness, and

find, with #= 8400;

Sn = - |Sa = + o"-78 T cosg
Then by integration

= + o".ooo

This, added to 8/
, gives for the entire term in S/

8t= + o".ooo 578:Tsin- (31)

60. In order to determine the complete expressions for the coordinates them-

selves, the terms computed in the present section, together with those which may
be found in a similar way for the other periodic terms, are to be carried into the

expression for the Moon's true longitude in terms of the elements. I have not,

however, deemed it necessary to do this in the case of the secular variations of

the periodic terms, because these can be most readily determined by varying the

value of e' in the Delaunay or Brown expressions for the Moon's longitude.

I have, however, computed the preceding variations of some terms owing to the

theoretical interest which attaches to the relations implied by the equality of the

result of the present method to those of the other method. The two methods

correspond to the two methods by which the secular acceleration ma}' be deter-

mined. In Action, p. 191, it is shown that the secular acceleration of /, TT, and 6

may be derived from the secular change of e' by determining the corresponding
secular changes in a, e, and y. This theorem has been discussed and extended by
Brown in his paper on Transmitted Motions and Indirect Perturbations.*

By this method the secular variations in question appear as variations of
, rr^ and

&i, the latter being functions of the variables a, e, and y. But, in the present theory,

a, e, and y remain constant so far as the secular change of e' is concerned, and the

changes are thrown wholly upon /
,

TTO ,
and 6 .

There is therefore a seeming contradiction in that the lunar elements a, e, and y
are affected by a secular variation in one theory, while in the other they are prac-

tically constant. Referring to Brown's paper for the theory of the subject it will be

instructive to show the relation between the two methods.

In what I have, for brevity, called the Delaunay solution of the problem, the

Moon's coordinates appear as functions of the lunar elements, introduced as arbi-

trary constants, and of the Sun's eccentricity, which is regarded as a quantity given
in advance. But, when the action of the planets is introduced, the solar element

e', as well as the lunar elements a, e, and y, become variable. In what I may call

method A of treating the planetary action, which was that adopted in Action,
the final values of the coordinates as affected by planetary action are determined

by introducing the simultaneous variations of all four elements into the Delaunay
* Transactions of the American Mathematical Society, vol. vi, p. 332. See also, Monthly Notices, Roval Astro-

nomical Society, vol. LVII.
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expressions. But in method J3, adopted in the present work, the entire variations

have been thrown upon the lunar elements, the solar elements being regarded as

constant. In the case of the periodic perturbations this course is practically a

necessity, owing to the extreme complexity introduced into the formulae if we sup-

pose the coordinates expressed in terms of the value of e' affected by periodic

inequalities. But it is different in the case of the secular motion of e'. Here it

is more logical to consider that at any epoch the action of the Sun is computed
with the actual eccentricity at that epoch, and so to use method A.

Not having done this in the present work, but having regarded the value of e' at

the epoch 1850 as a fundamental constant, the values of G, J, and /, though func-

tions of e', and therefore variable, have appeared in the theory as constants.

In the present investigation the author has not, for want of time, investigated the

modifications which would be made in the problem if these coefficients were taken

as affected by their secular variations. One reason for refraining from this course

was that the determination of the secular acceleration from the equations given in

Action, page 191, require a much more extended development of the canonical

elements in terms of e' than it was practicable to undertake in the present paper.
The question is therefore left to others, reference being made to Brown's paper on

the variation of given and arbitrary constants.*

A comparison of the secular variation of the coefficient of sin g' with that found

by Delaunay's value of this term will, however, be of interest. With the eccen-

tricity of 1850 the coefficient of this annual term is 670". It contains e' as a

factor, the portion arising from higher powers of this element being unimportant in

the present case. It follows that the secular variation of the coefficient of sin g'
in 8v is

-670"^ = + i".6>jT
e'

The term found in (30) for 8/ is i".69 T. I have not computed 8v itself.

The two methods of treating the effect of the motion of the ecliptic are related

to each other in the same way as this just discussed. Had the method of the

present paper been strictly followed throughout, the coordinates of the Moon would

have been referred to a fixed ecliptic, because the ecliptic remains fixed when

planetary action is omitted. But it was seen that by a very slight and easily deter-

mined change, the coordinates could be referred to the actually moving ecliptic, and

and the work was carried on accordingly. In concluding the work, it is a matter

of regret to the author that he did not investigate the question whether the Moon's

coordinates could not, on the same principle, be expressed in terms of a varying
solar eccentricity, ab initio, thus simplifying the problem in conception at least.

Owing, however, to the theoretical interest attaching to the relation between the

two methods, the effect of the motion of the ecliptic might be treated by both methods.

* L. c., vol. iv, p. 333.
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61. Adjustment of the Arbitrary Constants. The problem before us may be

outlined thus. The preliminary solution of the problem of three bodies leads to

expression of the Moon's coordinates as functions of six arbitrary constants, through
the intermediary of three other functions of these constants /, IT, and 6. The solu-

tion in terms of the six elements a, e, y, /, TT, 6 takes the form:

the functions
<jt being of a form not necessary to specify at present. As already

mentioned, n, TT^ and 6l are functions of a (or ), e, and y. The solution of our

problem is now completed by adding to the expressions for the Moon's coordi-

nates = v, r, and /8, the quantities

dv - dv - dv . dv

with similar forms for r and /8, which we need not write. For our present purpose
it will be necessary and sufficient to consider the following terms in v, the true

longitude.
v = / + 2e sin (/ TT)

We then have

dv dv dv

dv . dv dir dv dv dl dv dir

de~ dir de da~ dl da dir da

Substituting in (32) and emitting unimportant terms

Bv =
fyit(\ + 2e cos-)8a 2c COS^TT + (i + ze cos^)8/ + 2 sing-Se

We put
H' 8<

*o' ^o' 8/
o'

the arbitrary constants to be added to the perturbations 8a, 8e, STT, and 87. We then

have the following perturbations depending on the purely lunar arguments

Sa = Sa o".ooi6 sing- Be = Sc o".oi$o cosg
&I= &t

g
",02i2nt + ".0059 sin- STT = STT

O + ".o$i$nt ".272

Substituting in the derivatives we have the result that the mean sidereal motion

of the Moon is

nt(i o".O2i2 |S a)

We now determine 8 a by the condition that the mean motion shall be repre-
sented by n. Thus

S a = o".0141 8 = o".o2i2 = + 178" (33)
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Also, the coefficient of sin g- in the expression for the longitude becomes

2e -f o

We now determine S e by the condition that the expression for the coefficient shall

remain unchanged. This gives

V = o".oo3

The longitudes, perigee, and node being given by the equations

ir = w, +V e = e
a + oj

the introduction of the perturbations of the elements will give rise to the increments

*,-'&, + >& + '

*y W, = f' Bn +% Be + %**,on ffe cy dn de dy

The eftects 8 e and 8 y are inappreciable. Taking only 8 from (33) we have

STT
I .014 8oS n = o".ooo 3i4 &0

t
= .001 oiS

a
n = ".ooo O2i

Taking the century as the unit, the adjustment gives

S7r1= -2".6 S0 = -o".i8 and Sir -- 2".6T S6 -- o".i8T

Adding thereto the secular terms of ITO and already found, we have the following

results, tor the entire secular effect of the action of the planets on TT and 6

D,v D&
Direct action of the planets Venus to Uranus + 267".97 141".oo

Indirect action of the planets Venus to Uranus 12 .56 + 3 .54

Total action of Mercury (/
== io~7

) + o .45 o .21

Adjustment of elements 2 .64 o .18

Sum + 253 .22 137 .85

This motion of the perigee, greater by 5" than that found by Brown, goes to

confirm his conclusion that the gravitation of the Earth does not deviate from

Newton's law of the inverse square.

62. As the reason for the last correction may not be quite clear, it may be of

interest to state in a general way how it enters into the theory. The action of the

planets on the Moon is found on the supposition of what we may call an undisturbed

orbit of the Moon, meaning thereby an orbit in which the action of the Sun is com-

pletely taken account of, on the supposition that no other extraneous action enters.

We thus have a certain mean motion n determined from observations, and a certain

undisturbed mean distance, a, determined by the relation asn2 =
/i,

which requires a

constant A of correction to the mean distance computed from the action of the

Sun, giving rise to an expression for the constant of the Moon's radius vector

a -)- A^ = #! completely representing the action of the Sun on the supposition of

no planetary action.
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It is with this mean distance a, that the actions of the planets, both direct and

indirect, are computed. But, as a matter of fact, the action of the planet modifies

the relation between a^ and n, so that we must change either the mean motion or

the mean distance according to what values of the elements we assume. If we
take the arbitrary constants so that the mean motion remains unchanged, then the

actual mean distance will require a constant correction on account of the action of

the planets. If we regard the mean distance as an invariable quantity, then there

will be a correction to the mean motion.

It follows by either method that when we compute the motion of the perigee and

node under the action of the Sun alone, we must make one or the other of these

modifications produced by the action of the planet, and determine the effect upon
the motion of ir and 0. If we regard the actually observed mean motion as that

due to the Sun alone then we must introduce a correction to the mean distance, and

determine its effect upon -nv and 6^ But if, which is the more natural method, we

regard the mean distance of the Moon as the given actual element, then we must

compute that part of the motion of the perigee and node due to the Sun alone with

a different n from that given by observation; that is, with a value found by sub-

ducting the planetary effect from the observed value.

We ma)' therefore regard the corrections -- 2" .64 and o".i8 to 77^ and l
as

reducing ir^ and 0, to their true values under the action of the Sun alone.

63. Secular Variation of e. If we require, as we should, that the coefficient

of sin g in the Moon's true longitude should be represented by a function of e then

the expression (31) shows that this element will be affected by the secular variation

This being less than o".oi in a thousand years, is of no practical importance, though
of theoretical interest.

It may also be remarked in the present connection that the existence of this

variation, and the approximate algebraic expression for its amount, was first made
known by Adams.*

*
Monthly Notices, Royal Astronomical Society, vol. XIX, p. 207.



CHAPTER VIII.

SPECIAL PERIODIC INEQUALITIES.

64. Reduction to the moving ecliptic. Since when the Sun is the disturbing

body the plane of the ecliptic remains fixed, the inequalities of the coordinates so

lar reached are referred to the ecliptic of any date regarded as fixed. The only

way in which they are affected by the motion of the ecliptic is through the secular

variations of the coordinates of the planet arising from that motion. The effects of

these are supposed to be too small to need consideration at present. It is, however,

necessary to refer the elements to the moving ecliptic. I have shown in 4 how
this may be done by the simple device of adding to the perturbative function the

terms

AT? = 2z(pDi
x

l

- qDty^) + 2 (qy
-

j>x) Dft (33)

and then integrating the portions of the differential equations thus arising. In this

expression p and q are the coefficients expressing the speed of rotation of the

ecliptic around the axes ofy and x respectively, and are found by putting

II, the longitude of the ascending node of the moving on the fixed ecliptic;

K, the speed of rotation.

Then
p = K sin II q = K cos II (34)

It is to be noted that K is here used as the speed of rotation, and not as the actual

angle rotated through. It is, therefore, of dimension Z1"1 and the expression for

AT? is of dimensions Z*
2
T^~~, which, by introducing the dimensions of mass, become

identical with the dimensions of P as hitherto used.

The partial derivatives of AT? as to the lunar elements are to be taken only as they
enter through x, y, and z, so that the Z>, of the Moon's coordinates, the latter being
called for this purpose x

lt yv ,
and z

lf
are to be regarded as numerically given

quantities.

To form the partial derivatives of x, y, and z we use the developments of these

coordinates in terms of the lunar elements already given, substituting in x, y, and z

the values of
, TJ,

and . But in this part of the work it will be convenient to refer

the coordinates x and y to a general fixed X-axis, instead of the mean Sun, as here-

tofore. When this is done the expressions for the ratios of the coordinates to a

take the torm

7,
= 2/&sinyV =2csinJV' (35)

127
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where N and N' are of the general form

N= il + /> + i,0 +j'P +/X N1 = i
7/ -f ,V + i

t
'0 +//'

the indices satisfying the conditions

* + *, + *; +j + /,
= o ir + *,' + 1/ +/ + // = i

Informing the Z>,'s of these expressions we put n, n', the ratios of the motion of

the arguments N or N' to n, that of the Moon. We then have

sin TV -^(Ji = anS.kn cos TV -O^, = an"S.cn' cos TV'

The values (34) of ^> and q then give

//>,#,
- gDtyl

= anicZkn cos (TV
-

II) (36)

qypx = aiCLk sin (TV II) (37)

Our next step is to form the derivatives of z and qypx as to the lunar elements.

The partial derivatives as to z are found from the last equation (35)

Dz = alD'c sin TV' ~=2^sinTV' f = S^sinTV' (38)
cte fo dy dy

dz dz dz
=-. = aZt'c cos TV' a~ = aSz'.V cos TV' ~ = a2/c cos TV' (39)Ol CTT VO

By differentiating (37) on the same system we have

D(qy -PX) = aKLD'k sin (TV- H)

., {^_n) (4o)

cos y_

= a 2^ cos (TV- H)

We next have to form the products of (36) by the derivatives (38) and (39) and

of D
t
z by (40) and (41), and form their several sums. We thus find that the
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combination of any term of argument TV7
"

with any term of argument N' gives rise

to the following terms in the partial derivatives as to e and /:

-^ 2
w/c I nV^ nk^ \ sin (N -f N' II) + 2

/c I n'c^r + nk^ \ sin (TV
7
"

N' II)
cte

,

oe oe
)

oe Be
}

d

~~^
= a>nKck{m'

-
t'n} {cos (N+ N'- H) + cos (N- N'- II)} (42)

The derivatives as to log a and y are formed from the first of these equations by

simple substitution. Those as to ir and 6 are formed from the last equation by

writing t\ and /2 for z, and z'^ and z''2 for i' .

The derivatives thus formed being substituted in the fundamental equations the

integration of the latter will give the inequalities of the elements. It will be con-

venient to use the following formulae of substitution. We first put, in the combina-

tion of any term of argument JV with any term of argument JV' :

ka = n'cD'k + nkD'c k' = n'cD'k - nkD'c

,
dk Be

,
dk dc

K = n'c -^ (- n ^- k ' = n'c^-- nk =-
oe oe de oe

*,
,
dk

7
dc

,
dk ,dc

k = rfc jr- + nk jr- t'**n'c-s-- n^-
oy dy ey oy

The quantities ka, /&', etc., will then be the coefficients of the constant factor

crnK in the expressions for the derivatives of the elements. Substituting AT? for

P1
in the differential equations (27), p. 18, the latter will reduce to the form

Dp = (a/-, + OLJI, + a/,)* {cos (JV+ N' - II) + cos (N-N1 -
Df = (eft + e

2k, + e
3k,}

K
{
cos (N+JV'-U) + cos (N- N' - II) } (44)

ft
=

(7,*, + 7A + 7s*f) {cos (JV+ N' - H) + cos (N- N' - II)}

sin (^~ N>- n
) + (,*.'+ ?,*.'+ 7,V) sin

sm (N- JV'-U) + (of.'+ e&+ t&')e sin

sin (N- N'- H) + (a/a'+ '&+ 7^')* sin (^+ N>~ D
)

By integrating these equations we shall have, in the case of each argument, a

divisor which we may call N, equal to the motion of the argument in the unit of

time. The quotient K -^- N expresses the angular motion of the ecliptic during the

time required for the argument to move through the unit radian.

In the above differential equations we substitute for a,, e
t,
and yh their numerical

values and write, for brevity,

C
t

= 2.023^ 0.017^ 0.0229^

C, = - 0.0301^ - 19.153*.
- o.o2o

y (45)

Ct
= 0.0075^,, + o.oo26

e 5.570^
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with similar expressions for the accented quantities, and

Ca
=

2.023-6,
- 0.0301^ + 0.0075^

C
e
= 0.0168^, 19.153^, + O.0026/6,

C
v
=

0.0229/6, 0.0200/6,, 5.570/6,

(46)

We also put for brevity

A = TV- N' - A' = TV+TV' -n

The values of N and N', the coefficients of the time in A and A' respectively take

the form
N = (n n') N' = (n + n')

and the differential variations become

Dp. = Cjc (cos A + cos A') Z>,/
= C> sin A + C/K sin A'

Df= Cjc (cos A + cos A')

D
ty = Cyx(cos A + cos A')

We shall then have by integration

K 1C

:
= - Ca sin A + ,

C sin

if if

Se = - C
e
sin A H

-,

C
t
sin A*

N N

57 = ~ C
y
sin ^ + ~ C

y
sin ^'

Z>
(
TT

O
= C> sin .,4 + C> sin ^4'

D
t

= C> sin A + Ct 'ic sin A'

/,
=

C, cos ^4 + C/ cos A'

K K
i

=
N ' C S +

N"'
' C S

>

<=-Ct cosA + ^Qcos

(47)

(48)

The largest terms which enter into the theory are shown in Table XLI, for

Arg. TV, and Table XLI for Arg. TV'. The coefficients of the principal terms of

each have been derived from the numbers given in Part III.

TABLE XLIa.

COEFFICIENTS FOR FORMING pxqy ; ARG. TV.

NA
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TABLE XLI3.

COEFFICIENTS FOR ; ARG. N' .

7 a it ^.t
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It will be remarked that the only accented coefficients are those of the last two

lines; and that, as the combined argument 6 II is the only one included in sum-

mation, the accented and unaccented a, etc., may all be combined.

For these numbers we derive by (45) and (46)

C,= + 0.3157 C, = + 0.0506 C, = - 11.067

Ca
= + 0.001393 C

t
= + 0.000187 c-,= - -49S 2

We have from the adopted elements of motion of the ecliptic:

* = o".47i4 n = 173 30' + o'.59(/
-

1850)

The following are then the results for the argument 0:

8/ -- o".44 i cos (0
-

II) $7r =- o".oi cos (6
-

II) 80 =+ i5".45 cos (6
-

II)
(4Q/)

8a =- o".ooi945 sin (6 II) Se = o".ooo By = + o".6^i sin (0
-

II)

To these expressions for 8/
,
Sir

,
and 80 are to be added the respective increments

fSndt f&v^t and JX7
arising from substituting the values of 8(= f8a), 8e(= o), and 8y in the ana-

lytic expressions for n, TT,,
and 0,.

The value of 8a gives the inequality of n

BH = |w8ot
= o".oo292 sin (6 II)

This adds to the mean longitude the inequality

/= o". 002921; cos (6 II)

where v is the ratio n:(61 Z>
(H) = 248.7.

The complete inequality of the mean longitude thus takes the coefficient o".285.

We have from 27, (74)

BTT
I

= (.02283 .0043387) n

The substitution of the preceding values of Sot and Sy gives the increments

&ir
l

= .00304 sin (6 H) and 8?r = o".'j6 cos (0 II)

We find, in the same way, the increment

80= + o".n cos(0-II)

The inequalities of /, TT, and 6 now become

87= +o". 285 cos (6- H) 87r = -o".77cos(0-n) 80 = + is".s6 cos (6
-

II) (50)

The coefficients of the arguments 2-rr 6 and 2/' 6 seem so small that we leave

them out of consideration.
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65. Inequalities arising from the coefficients E and F.

These inequalities have been considered separately on account of their minute-

ness, and on their depending on arguments different from those of the other in-

equalities. Some special values of the coefficients E and /''for Venus are given in

tabular form in Table XII. In these expressions the axis of X passes through the

mean Sun, as in the case of the inequalities depending on the mean longitudes.

But, on essaying the computation of the principal inequalities arising from E and

F, it was found that a fixed axis of X would be more convenient to use. The ex-

pressions were therefore transformed so as to refer them to the Sun's perigee as the

initial axis. From the form of the expressions the equations of the transformation

for x and y are readily found to be

x' = x cos g' y sin^' y' = x sing-' + y cos g'

where the accents refer to the fixed solar perigee. It follows that if

E= a cosN+ b sinN F= a' cos N+ b' sinN
be any pair of the terms E and F depending on the argument A, the correspond-

ing transformed terms, which we represent by E' and F', will be

E' = l(a+ b') cos (N+g r

)
4- 1(

-
b') cos (JV-g f

)

+ l(b- a') sin (N+ g'} + %(b + a') sin (JV- g')

F' = \(a'
-

b) cos (N+ g 1

) + \(a' + b} cos (IV-g')

The transformed expressions thus arising are shown subsequently in Table XLII.

As a check against any large accidental error in the development of the coeffi-

cients, their approximate values, neglecting the small eccentricities of Venus and

the Earth, were also computed by analytic development as follows: Taking the

mean radius vector of the Earth as the unit of distance, and putting a for the corre-

sponding numerical expression for the radius vector of Venus, the Laplace-Gauss
form of development will give

A-5 = J23w cos t'L

L being the difference of the heliocentric longitudes of Venus and of the Earth

which we represent for the present by / and /' respectively.

The expressions for the rectangular geocentric coordinates of Venus will then

be, when powers of the eccentricities and inclination are dropped in the development

X = cos I' + a cos / Y = sin /' 4- a. sin / Z = a sin /sin (/ V)

where / is the inclination of the orbit of Venus, and 6V the longitude of its node,

reckoned from an arbitrary fixed origin. Forming the product of the several fac-

tors which form E and F, noting that the summation changes from positive to
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negative, changing and transforming the indices so as to reduce the summation to

its simplest form, the values of E and F take the following general form:

- a2

6
fi+2)

)
sin (iL zl' 4- V)}

sin IF= 2{ -(a6f
<*+ l > - a2

6 >) cos (iL + <?v) 4-W+1) - 2

6
('+2)

) cos (iL
- zl' + V)}

If we put, for brevity

fi. = J(ot3e
(l

'

+1) 2

5
(<)

)
sin / /8/ = i(a^5

( '+l) o23
s
(<+2)

) sin /

we shall have
E = 2/3. sin (iL 4-0)4- 2/3.' sin (iL zl' + V)

F= - 2/34
cos (iL 4- V) 4- 2/3.' cos (iL

- zl' 4- 6>v)

The numerical values of the coefficients b (i} may be taken from any one of various

publications. In Astronomical Papers of the American Epkemeris, Vol. V, Pt.

IV, p. 343, are found values of c5
(i)= 2 (i) for Venus and the Earth, as follows:

*= o i 2 3 4
c
5

("= 44.88 43.64 40.61 36.52 31.99

From these we find:

i = 2

fi<56
( '-*- 1) = 15.10

ft -f- sin 7= 4.95

ft'-*-sin/= 3.88

We thus have the following general expressions for E and /% the axis of X, in the

ecliptic, being arbitrary.

We use
sin /= .0592

Then
E= + .293 sin ( zL 4- V) 4- .229 sin

(
zL zl1

4- V)

+ .273 sin (- L 4- V) 4- .273 sin (- L zl' 4- <?v)

4- .229 sin V + .293 sin
( 2/'4- V )

4- .186 sin (L 4- #v) 4- -291 sin ( L zl' 4- V)

4- .148 sin (zL 4- V) 4- -274 sin (zL zl' 4- V)

F= .293 cos
(

zL 4- V) 4- -229 cos
(

2Z zl' 4- V)

.273 cos
( L 4- V) 4- .273 cos

(
L zl' 4- V)

.229 cos V 4- .293 cos
(

zl' 4- V)

.186 cos (L + V) + .291 cos (L zl' + V )

.148 cos (zL + V) 4- .274 cos (zL zl' 4- V)

Measuring #v from the solar perigee, in longitude 279.5, we have

V = 1550.4 P=g' 4-180

I
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The results both of this computation and of the analytic development are shown
in tabular form as follows:

TABLE XLII.

E AND F FOR THE ACTION OF VENUS.

Arg.
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27;?= + .0895 COS + .0039 COS (2/' 0) .OO06 COS (27T 0)

yrj%= + .1786
" + .0135

" .0012 "

= + .0137
" .0006 " .0218 "

Brit "
+.089 .014

The resulting terms of H, heretofore omitted, are

Taking the node of Venus as origin, we have, as shown on p. 135, the following
terms ofE and F

E= .285 sin 2/' F= -.216+ -285 cos 2/'

With these numbers we find for argument 6

H= .0182 cos D'H= .0348 cos -=r- = .0032 cos

- dJi- dJi- 5H_

These derivatives are to be substituted in the fundamental equations (41) and (42),

21, and each equation integrated. For the latter process the factor of integration is

j=- 248.8
i

The product of this into M for Venus
( 17) is i".o55

We thus have the following results:

= + .o6iMcos D^FQ = .o'joMcos -A.A = 2. 24^" cos

S/ = o".o64 sin 8ir = + ".074 sin 80
Q
= -f 2".36 sin

~)
,
= + .oooi36.fl/"sin D.e= + .ooood.'jMs'm0 D .7 = .loi^Ms'm

'

*t( v nt it nt * i

Sa= + o".000144 cos Be = -f ".000050 cos By = o".io7 cos

To find the complete inequalities in /, TT, and 6 we must add the respective quantities

f&ndt

of which the expressions in terms of 8, 8e, and 8y are formed by 27, Eq. 74.

We thus have, dropping unimportant terms,

= !8ot = o".ooo2i6w cos
STT,

= o.oi488w o.oo4387 = + o".ooo46w cos

&0
l

= + .00388^ -f .ooo66&y = .00007 1 M cos ^
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The completed values of 8/, 8?r, and 80 thus become

S/ = -f o".054 sin + 8/ = o".oio sin 6

STT = 0.115 sin & + ^""o
= ~

o".O4i sin 6 (52)

80 = + 0.018 sin 6 + 80 = + 2".38 sin

in all which expressions 6 is reckoned from the ascending node of Venus.

The coefficients of the term in 2ir 6 are, for 8y and 80, less than one hundredth

those for 0, and the integrating factor v is less than 0.3 as great. The coefficients

in 2/' 6 are but a fraction of those in 0, and the integrating divisor is nearly 40
times as great. We therefore conclude that the inequalities depending on these

arguments are inappreciable.

66. Action ofMars and Jupiter. In Mars the product J/sin /is about .08

that for Venus. I have therefore not computed the terms.

In the case of Jupiter the largest quantities which enter into the constant part
of F are

-^-=1.26
YZ = \a*ya\I sin 7=0.0231

Hence
a'*jF= 1.26 x .02310'= + .000103

The product io3J//r is, approximately,

For Venus o"-92 For Jupiter + o".i7o

The inequalities depending on 6 are proportional to this product. We conclude

that the inequalities arising from the action of Jupiter may be derived from those

of Venus by multiplying the coefficients by 0.185. We thus have, from the

action of Jupiter,

8(9 = - o".43 sin (0
-

0,) 87 = + 0.020 cos (0
-

6,) (53)

where 0j is the longitude of the ascending node of Jupiter on the ecliptic. The

inequalities of the other elements are unimportant.

67. Combination of terms depending' on the longitude of the Moorfs Node.

The inequalities (49), (50), (51), (52), and (53), all depending on the same argument

0, may now be combined. We shall do this for the two epochs, 1800 and 1900.

The value of II which I have derived in Elements and Constants, p. 186, there

called Z', is

n = i7329'.7 -f S4'-4^ (
from 1850)

Taking approximate values of the nodes of Jupiter and Saturn, and this value of II,

we have
1800 1900

n 173 2' 1 73 57'
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We take the nodes of Venus and Jupiter as constant, using the values for 1850

0y = 75-3 9, = 98.9

Carrying these values into the inequalities of the elements in question and combin-

ing them, we find:

SI = + o".029 sin o".27i cos

STT= o.io sin + 0.80 cos

50 = + 2.55 sin 17.33 cos (for 1800)
80 =+ 2.31 sin 17.34 cos ^ ' ' '

(*or 1900)

&y = o". 1 14 cos 0.769 sin (for 1800)

&y = 0.103 cos 0.770 sin (for 1900)

68. Special computation of the Hansenian Venus-term of long period.
The following are the planetary and lunar arguments whose differences make

up the argument
i8v i6g-' g

of the term in question.
Planetary Lunar

(1) l8v l&g-' g 2g'

(2) 18 17 g g'

(3) 18 -16 g
(4) 18-15 ff + g'

The coefficients h^, h^, etc., are computed by 22 and 23. The planetary
coefficients MK, MC, and MD are found in Table X. The lunar coefficients ap,

etc., are given in the next chapter, Tables XLVIII and XLIX. For the argument

g g' we change the signs of a, e, g and k, as given for the argument g-\-g'.
I have not computed the coefficients for the argument^ 2g' believing their

effect to be insensible. Their characteristic is ee'"
1 = .000050, and, in the principal

term of
17,

this is in Brown's theory multiplied by a factor of the order of magnitude

.04. The largest planetary coefficient being 0.5
-=- io3

,
the value of h^ will be of

the order of magnitude i" -=-
10, which would result in a term in 8/ of the order of

magnitude o".o2. Actually, the computation shows that the combinations (2) and

(4) are also much smaller than (3).

We have now all the data for computing the coefficients h^, h^,', etc., from

the formulae of 22. The results are:

*.'-- "-5597 - 10"

A., .'
= + ".4880 -4-io6

hec
' = .0052 -4- io3 k

e ,'=+ .0047 -4- ios

h
liC

' = .00081 -T- io3
k, / = .00094 "^ IC>3

h, c
= + .084 -T- io3

k^
>
,'= + .095 -T- io3

The coefficients for y and are much smaller, and are omitted. The coefficients

we have given correspond to the argument

N Ar

4
= g + i6g' i8v = A
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of which the annual motion is

N = -
4747".8

giving
" = - 3649

We therefore have the following inequalities in IM IT, and e

S/ = o".oo3 sin A + o".oo3 cos A
STT + o .31 sin A o .35 cos A
Be = o .019 sin A o .017 cos A

The term of 8/ is so minute as to be unimportant. For the term in the mean

longitude arising from 8 we have

which gives

8/= - n".i8cos^ + 9".7Ssin^ = i4".83 sin (A 4855'.2)

It will be convenient to use the negative of this argument in order that its motion

may be positive. We shall therefore write

8/= i4".83 sin (i8v i6g' g+ 2285s'.2)

where v is the mean longitude of Venus measured from the earth's perihelion.

It will be of interest to compare this result with those reached by other investi-

gators. The following are arranged in the order of time. Putting

Z, the mean long, of Venus that of Earth

M= i8Z + ig' g

and reducing all results to the mass 1-^408,000 of Venus, there has been found, for

the direct action, by

Hansen* 8/ = 15".34 sin (M+ 229. 2)

Delaunayf = 16 .34 sin (M+ 228 .5)

NewcombJ = 14 .80 sin (M -f 229 .5)

Radau = 14 .14 sin (M+ 229 .o)

Newcomb (above) = 14 .83 sin (M'+ 228 .9)

To judge the precision of this value we have to estimate the error to which the

development by mechanical quadratures is liable. The circle being divided into

60 parts, any coefficient which we have taken as A 18 is really the sum of an infinite

series of which the first two terms are Aa A i . We have dropped all the terms

after the first. From the progression of the coefficients it would seem that the

* Tables de la Lune, p. 9. t Conn, des Temps, 1862, App., p. 58.

^Action ofPlanets, p. 286. \Inegalitts Planitaires, p. 113.
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ratio A ( : A i+ i is approximately i : 1.26, whence the ratio Aw : A& would be about

250. The error of the computed term may therefore well be o".o6. It has

been only as this work is in press that the author has looked into the possible effect

of the slow convergence ;
and while it seems likely that the error entering through

the coefficients J*C and C will not exceed that just stated, the same may not be true

of the coefficient D.
A quantitative estimate of the correction may be made in various ways; but

the author is unable to enter upon the subject in the present work.

It is also to be noted that the term as above computed contains the effect, what-

ever it may be, of the mutual perturbations of Venus and the Earth. A separate

computation has been made of the fundamental numbers due to these perturbations,

but as the final result of the coefficients amounts to only a fraction of a second, the

computation has not been completed. The effect being included in the computed

term, a knowledge of its amount is necessary to compare the result with that reached

by the ordinary method of development.
The change in the term as computed is too minute to account for the observed

variation of long period in the Moon's mean motion. As the period of this varia-

tion seems to be nearly the same as that of the inequality under consideration, the

question naturally arises whether the effect of the indirect action may be appreciable.

This being the most important question in the lunar theory, a computation of the

principal part of the indirect term has been made. The result being altogether un-

important, it seems unnecessary to do more than present such a brief statement of

the method as will enable the subject to be taken up by another in case the author's

conclusion is not well founded. The required perturbations of the Earth by Venus

are most easily computed for the case in question by using, instead of the Lagrangian

brackets, the corresponding functions of the coordinates. The formulae necessary
for the purpose are found in Moulton's Celestial Mechanics, p. 291. The eccen-

tricities have been dropped as unnecessary, and attention was confined to the longi-

tude elements. The terms dependent upon the action of the planet on the Sun are

also dropped, being appreciable only in terms depending on small multiples of mean
a'3

longitude. The development of -g-
used in the computation is that in Action,

pp. 248-251. The result for the indirect action is

81= + o".O44 cos A o".036 sin A.

This, being added to the terms already found, gives for the entire term

S/= i4"-77 sin (i8v \6g' g + 228 54')

which is the definitive result of the present investigation.
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69. The Radau terms oj long -period, Radau has computed certain addi-

tional terms of long period due to the action of Venus, with the following results,

the arguments being reduced to those adopted in the present work:

Sv = + o".i40 sin (ITT +g 2ov -f 19^-' + 171) Per. = 34^.8

-f o .no sin (g 26v + 29g-' + 62) 127.2

+ o .056 sin (g 2iv + 2ig) 8.35

+ o .019 sin (ir.+g- 23V -f 24^' + 295) 55.

+ O .016 sin (TT + g I5v + ng' + 219) 71.

o .012 sin (27r g + 24V 26g' + 159) 58.

+ o .012 sin (g 23v + 24g-' + 14) 7.6

+ o .008 sin (tr Q+g 23V + 24^+ 101) 28.2

+ o .004 sin (20---f 23V -24^-+ 183) 42.

+ O .003 sin (TT g+ 2IV 2lg' + 288) 148.

The first three of these terms are the only ones that need be considered for the

practical applications of the lunar theory. The third might also be omitted, but is

easily computed in connection with the first.

For all the terms except the second the planetary coefficients A, B, C, and D
may be derived with all necessary precision from the special values of these coef-

ficients given in Table VII, by the following process. Putting

let the value of the planetary arguments for which we desire the coefficients be

N= hL + kg'

Recalling that the 720 special values of each coefficient, say A, are arranged in

12 systems of 60 indices each, the special value of N~ corresponding to they'th sys-
tem and the index i will be

7Vy = 6 x hi+ 30 x kj

We may mark each special value of A in the same way. The values of the

coefficients A c and A, will then be given by the equations

= 2 AU cos N^

360^4, = 2 Afj sin JV
itJ

The terms of A for the special argument TV will then be

A = A
c
cos N+ A

t
sin TV

In most cases the computation may be simplified, as in the usual method of

executing periodic developments, by adding together in advance the special values of

A which are to be multiplied by the same sine or the same cosine. Another method
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may be used in computing these terms by the developments found in Action,

Chapter III, 18. Some modification is, however, necessary owing to the circum-

stance that in that work the rectangular coordinates are reckoned from a fixed axis

passing through the earth's perihelion or the solar perigee, while in the present
case the axes pass through the mean sun. It is therefore necessary to use the ex-

pressions for the geocentric coordinates of Venus referred to this moving axis, a

development which may readily be made from the special values already given
for the coordinates of Venus and the sun. It is necessary to transform the table

so that the arguments shall be the mean anomaly of Venus instead of its mean

longitude because the development for A"5 which are tabulated on p. 25 of

Action have the mean anomaly of Venus as an argument.
I have applied the method of development from special values to the first term

with the following results:

Planetary Coefficients for Arg. 2OV 2ig''.

A
C
= + -03562 A.= + .00694

B
c
=- .02999 B

t
= - .00583

C
c
= .00563 C

t
= .001 1 2

D
c
= + .00634 D

.
= -3 2S4

K
e
= -f .03280 K

t
= + .00638

C
e
= .00282 C

t
= .00056

The lunar portion of the argument is equivalent iD g, of which the indices in

Table XL are
( i, o, 2, 2). From the numbers in this table we find for the

direct action
7r 2ov + 19^ + 10)

IT being measured from the earth's perihelion.

This coefficient is less than that found by Radau
;
but the lunar argument is one

to which the present method is not well adapted and a redetermination is desirable.

None of the other Radau terms are completely computed in the present work.

Such computations as I have made seem to indicate even smaller coefficients than

those found by Radau.



CHAPTER IX.

PERIODIC INEQUALITIES IN GENERAL.

70. For convenience we mention the formulae derived in Part I, giving

them the special form adopted in the actual numerical work. We recall that the

combination of any lunar argument N with a planetary argument N gives rise to

two arguments G, N+N^ and N JV4 . For each argument there are two terms

in the Dnt of each of the elements, one a cosine term; the other a sine term. We
represent the coefficients of these terms for the element a by

&a,c, ^,. A
*,c',

and h^

with a similar notation for the remaining elements,

e, 7 / *> and e
o

except that the coefficients for the angular elements have the negative sign.

The expressions of these coefficients for the direct action are given in extenso in

Part I by the equations (46), (47), (48), (50), and (51). For the indirect action the

coefficients are given in (64) and (65), but we may use the equations for direct

action by making the substitution indicated in 25 (66), which gives the expres-

sions for the sum of the two actions.

For convenience in computation the coefficients are so used as to give the result

in terms of o".ooi as the unit. The numerical values of the planetary coefficients

practically used for the purely periodic inequalities are these

K
t

' = \MKc
- m*G

c) CJ = io\(\MCc + </J A' = 3(MDe + VJ

with corresponding values of Kj, C s', and D,'.

Since each combination of a lunar with a planetary argument gives rise to two

combined arguments, one equal to their sum the other equal to their difference,

the coefficients relating to the latter are distinguished by accents.

The numerical values of the planetary coefficients, as derived from the numbers

of Part II, and just defined, are shown in the following tables.
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Values of the Planetary K'-Coefficients, Combining Direct and Indirect Action.

TABLE XLIII.

ACTION OF VENUS.

Arg^
v, g1



PLANETARY COEFFICIENTS.

TABLE XLIV.

ACTION OF MARS.

Arg.
M . g*
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71. The lunar coefficients fall into two classes, one determining the elements

a, e, and y and called, for brevity, the a-coefficients; the other determining /, TT,

and 0, and called the Z-coefficients. Those of the first class are computed by
the formulae of 20 and 22

;
those of the second class by the formulae of 23,

Eq. (50). In the computation we write k for 4.

The a-coefficients are the nine products of the factors a, e, and g defined in 22,

Eq. 43, into p, y, and k.

From 22, (46) to (48), it will be seen that by using the planetary factors in the

form just given and taking the a-coefficients

a<7, etc.

the coefficients of the terms ofDRt (a., e, and y) will each be the sum of three prod-
ucts of two factors each. But the quantities we actually compute are the values

of 2e and zSy. We therefore double the coefficients for 8e and Sy, using

2eg, and gk

We have also multiplied the inequalities of TT and 6 by the factors 2e and 2y,

required to reduce them to inequalities of the actual longitude and latitude. To do

this we take for the nine Z-coefficients

L', L", 2cP", eP
t

Each of the coefficients to form a term of Dntlw 2eD,tlir or 2yDnl6t>
will then be

the sum of three products formed by taking one factor from one of the Tables XLIII
to XLVI, and the other from Table XLIX, the product Z>'Z 4 being divided by 2.

TABLE XLVII.

DATA FOR a-coEFFiciENTs.

Arg.

***.*



VALUES OP THE LUNAR COEFFICIENTS.

TABLE XLVIII.
LUNAR H-COEFFICIENTS FOR a, e, AND

7-.

Arguments.
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72. From these two tables the four coefficients for each element are formed by
the following computation, an adaptation of (46) to (51)

The inequalities of e have received the factor 2, and those of TT the factor 2e in

order to transform them into the principal terms of the true longitude without

further multiplication.

Two other points which may be recalled are these: (i) We use k instead of K
t

in the formulae; (2) it is to be recalled that Cc

' and C,' contain only ^C, as that

symbol is used in Part I.

Element a.

,
= *>.# - C,'ag 2

= - JT'a/ + C^q

Element e

y *,
= -

2/T/e/

Element y

Element /

\ = Kc
'L'-C

c
'L" \ = Xi

h
lt c
= \- \D:L, h

lt
/ = x,

+ \ *i. / = i

Element TTO

- \

- 2 C'eP"

=
TT,
- D.'ePt

= D
c
'eP

t + 7r
2

Element 6

In the exceptional cases when one of the constituent factors of either class,

planetary or lunar, is a constant, there will be a merging of the accented and unac-

cented arguments and terms.
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For the case JV= o, a, e and g all vanish, and we have

A (

= A/ = A,7 = o = o

while (49) of 23 may be written

- DJ. = (tK.'LJ -2Cc
'L

a") cos 7V
4 + (iK.'LJ

- 2C.'L9") sin N
t

We have, therefore, in this case, only to double the values of the Z-coefficients

for argument o.

In the combination of a constant planetary factor (7V4 = o)Vith a periodic lunar

factor we may use, instead of (46)

Then
Sa = vh^ , cos N

with similar equations for e and y, formed by writing e and g for a. We also have,

instead of (51)

Then
8/ = - vh

lc>
sin N

with similar equations for IT and 6.

As neither D nor /has a constant term, there are only cosine-terms of this class

in a, e, and y, and only sine-terms in /, TT, and 0.

From these coefficients for the Dnt of the elements we have those for the ele-

ments themselves by multiplication by the integrating factor v. The motion of the

lunar argument is

in + i'ir
l + t"0

l + jn'
= N

and that of the planetary argument

k'n' + kn
t
= N4

We compute
I

v =

Then the coefficients which we compute are

.
= Vk

a,c
= -

"/',, .'
=

"'^,
'

/ = - V'kJ
2e,' = 2v'h

etC

' 2ec

' = - 2v'/i
ti ,

f

27, = 2v/l
yiC 2J C

= 2V/l
y> , 2y,' = 2v'kyc

'

rs
= i/ x

Tr
= -f- 1/ x

with similar forms for when required,



150 ACTION OF THE PLANETS ON THE MOON.

The inequalities of the elements are then

SI = l
c cos (N+ N,} + 1. sin (N+ N^ + // cos (N- JV

t) + // sin (N- 1VJ

STT = 7T
C

" + TT.
" +7T/ " + IT.'

"

$0 = ec
" + e.

" + <?' " + e.'
"

A similar computation was made for y and 0; but the results were unimportant in

all but one of the arguments.

73. The motions of the arguments from which the integrating factors v or v

are to be computed are the following. The sidereal motion for a Julian year is

given in revolutions for the lunar, and in seconds for the planetary arguments.
Then follows the ratio of each to the mean motion of the Moon.

Motions ofArguments.
Mot. in 365

d
.25 n

;".= i3'-255 523 0.9915452
/; = 13 .368 513 i.

TT ;?!,= 0.112990 0.0084518
; 1

= o .053 765 0.004 0218

Venus 2106 64i".38 0.121 5913
Earth 1295 977 .43 0.074 8013
Mars 689 050 .9 0.039 777
Jupiter 109 256 .6 0.006 3061
Saturn 43 996 .2 0.002 5394

The elemental inequalities computed from these formulae are shown in tabular

form on the following pages. On making the computation it was found that the

coefficients for a were so minute that no terms in the parallax would need to be

considered, and only in some exceptional cases, generally terms of long period, did

the inequality of y affect the longitude. The coefficients for these elements are

therefore omitted in the tables of longitude elements. The given coefficients are

those for the mean longitude, 8/, 280, e8ir. It must be remembered that the accented

e' and ir' do not refer to solar elements, but designate only the coefficients depending

upon the differences between the lunar and the planetary arguments, while the

unaccented coefficients depend upon their sum.

It was also found that the inequalities of y and 6 were insensible in nearly all

cases. The few terms of these elements found to be sensible are therefore given

separately.

74. Terms -with purely Lunar Arguments. We here make a single com-

putation for the combined action of all the planets. To include the effect of the

indirect action, we have only to modify the values of MK, etc., as indicated in (66).
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Then, from the values of the constant term already given for the four principal dis-

turbing planets in 54 we find

io'2y]/^T = + 6".o7o iosI.MC -- 5".76
- io3w2 = - 0.459 loW/, = + 0.153

lo3

/^' = + 5.611 io3C ' = 2.727

For the terms in question we now have, for each lunar argument

and

the terms in y and 6 being omitted as unimportant.
The inequalities of /

, e, and IT may now be computed as in 26 and 27. The
most condensed formulae of computation are

ioV --

The elemental inequalities then are

SI = /
t
sin TV e&ir = eir

i
sin TV Se = e

e
cos TV

The results of this computation for the only terms which I have found to give

any appreciable result are, in units of o".ooi;

Arg.

g
?,D2g

2Z>*

The only corrections of the true longitude to be considered are the following

to the evection and variation.

I03
/.
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Periodic Elemental Inequalities in Units of o,"ooi.

TERMS INDEPENDENT OF THE LUNAR ARGUMENTS. (1V= o.)

Action of Venus.



INEQUALITIES OF ELEMENTS.

LUNAR ARGUMENT N= iD 2g = in ig' (EVECTION-TERMS).

'53

Planetary
Argument.
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LUNAR ARGUMENT zD = ig + in 2g' .

Planetary
Argument.
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ultimately be transformed for use into the inequalities of the coordinates, they are

to be combined with terms arising from the compression of the Earth having the

same argument. The two Venus-terms of very long period have not been trans-

formed because, as already remarked, they can be most conveniently applied to the

elements. To transform the other terms put Sv, the perturbations in longitude in

orbit. Then

v = I + 2e sin g + %# sin 2g

Sv = 8/ -f zSe sin g- + $e8e sin 2g + 2eSg cos g -f \e
2

Sg cos 2g

Substituting

81= l
c
cos G + /,

sin G STT = TT. cos G + ir
t
sin G Be = e

c
cos G + e

t
sin G

SI$Tr=8g=g-t
cos G+G,sin G

we shall have

Sv = S/ + 2<?
f
sin G sin g + 2e

e
cos G sin g

+ 2egc
cos G cos g + 2egt

sin G cos g
+ \eea

sin G sin 2g + ^cec
cos G sin 2g

+ \e
2gc

cos G cos 2g + f
2

g",
sin G cos 2^

= g/ _ (e,
- egc)

cos (6! + g) + (ec + eg) sin (G + g)

+ (. + eg.) cos (G-g)- (ec
-

eg,) sin (G - g)
-

\e(e,
- eg) cos (G + 2g) + \e(ec + eg,) sin (G + 2g)

cos ^ - 2 -
.
-

eg'. sin -
2^-)

In nearly or quite all cases we may drop terms of the second order in e and use

Sv = l
c
cos G + l.sinG + [_e(lc

-
TT,)

-
.] cos (G + g) + [>(/.

-
TT,) + e

e] sin (G + *)

T) + .]
cos (^ - ^) + [(/.

-
TT.)

-
e,-] sin(G- g)

The subsequent processes are so simple and familiar as to scarcely need statement.

All terms of 8v depending on the same argument are combined into two, one

depending on the sine, the other on the cosine of the argument. Their values are

shown for each argument in the following table. The two terms are then combined

into a monomial satisfying the equation

v
t
sin G + v

c
cos G = Sv sin (G + A)

Terms of which the coefficient St> was less than o".oo3, have generally, but not

always, been dropped. It will be seen that even exceeding this limit there are

more than 150 periodic inequalities. These are so arranged that any one argument

can, it is hoped, readily be found on a system which will be evident by a little

examination.

The constituents of the arguments, including ir, are all measured from the

Earth's perihelion (7r
=
99.5). The secular variations of the coefficients of the

periodic terms are omitted, because they can better be derived by varying the

eccentricity of the Earth's orbit in the expressions for the inequalities due to the

Sun's action.
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PERIODIC INEQUALITIES OF THE TRUE LONGITUDE.

ACTION OF VENUS.
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ACTION OF MARS.

Argument.
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ACTION OF JUPITER.

Argument.
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77. Inequalities of the elements -which have not been reduced to inequali-
ties of the longitude,

Mean longitude.

sin(8v 13^' + 86. 4) + o".O3O sin0 o".273 cos

Longitude'of Perigee.
TT = TT

O -f vj + 253". 22 T 38".49r
2 - o".oi3 T3 + o".tf sin (i8v - i6g'g + 228.5)

o".67 sin (8v 13^'+ 86.4) o".io sin + o".8o cos

Longitude ofNode.

=, + #,/
-

i37".8s T+ f'.62 Tz + o".oo262rs + 2".55 sin - i7"-33 cos (1800)

-f 2". 31 sin 17".36 cos (1900)

Sin y2 Inclination.

By = o".ii5 cos o". f
]6c) sin (1800)

o".iO4 cos o".77o sin (1900)

Hence:

Inclination.

87= o".230 cos i".S39 sin (1800)
o".2o8 cos i"-54i sin (1900)

It may be found advisable, in the construction of new lunar tables, to include

also the term

S/ = o".2S6 sin (27r 2/)

in the mean longitude. The effect of including this term in the preceding trans-

formations is that the Jovian evection, and the coefficient of the term of argument
27r ^J g, have each received the increment -|-o".oi4. Hence, if the term

were included in the mean longitude, the coefficient of the Jovian evection would

be i". 154, and of the other term named o".oo4.

78. Remarks on the Possibility of Unknown Terms ofLong Period. In his

Researches on the Motion of the Moon, published in 1878,* the author found that

the representation of the Moon's mean longitude during the period from 1650 to

1875 showed a discrepancy between existing theory and observation which might
be represented by a term having a period of two or three centuries, and a coefficient

of about 15". This coefficient may be somewhat reduced by the introduction of

the improved values of the terms of short period now available, but it does not

seem likely that the deviation can be brought below 10". One hypothesis on

which the discrepancy might be explained is that of minute fluctuations in the

*
Washington Obseri'ationsfor 1875, App. II, p. 268. See also Monthly Notices, Royal Astronomical Society,

vol. i.xiri. March, 1903, p. 316.
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Earth's diurnal rotation, which might be produced by the motion of solids and fluids

on its surface. Observations of transits of Mercury leave scarcely more than a

possibility of changes in the measure of time having the magnitude required to

explain the deviation. The observed phenomena, therefore, point very strongly
to the inference that there must be some term of long period still undiscovered

in the actual mean motion of the Moon. The preceding researches seem to

remove the possibility that there can be any undiscovered term in the action of the

planets. It is true that there are two possible classes of inequality which are not

considered in the present work. One of these has the solar parallax as a factor,

and may arise from two sources; one the development of the potential to terms of

higher order than the principal ones; the other to the parallactic terms in the

Moon's coordinates. The author had intended to carry the development of R and

flp one step further, so as to include these terms. But, on examining the periods
of the inequalities that might thus arise, none were found that could lead to any

important term.

Yet another class of terms comprises those of the second order arising from the

action of the planets being modified by their mutual perturbations. An examina-

tion which I believe to be exhaustive was therefore made for terms of long period
of this class. None have been found, and the writer believes that none can exist

more important than one of o".oi8 computed by Radau. This term has the argu-
ment $S ij of the great inequality between Jupiter and Saturn. In this connec-

tion it may be again remarked that, in determining the action of Venus in the

present work, the mutual perturbations of Venus and the Earth have been taken

account of. But no change is thus produced except in the Hansenian term of long

period.
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