
Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2011-03

Long-range forecasting in support of

operations in Pakistan

DeHart, Jeremy A.

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/5729

Downloaded from NPS Archive: Calhoun



 

 
NAVAL 

POSTGRADUATE 
SCHOOL 

 
MONTEREY, CALIFORNIA 

 

 
 

THESIS 
 

Approved for public release; distribution is unlimited 

LONG-RANGE FORECASTING IN SUPPORT 
OF OPERATIONS IN PAKISTAN 

 
by 
 

Jeremy A. DeHart 
 

March 2011 
 

 Thesis Co-Advisors: Tom Murphree 
  David Meyer 



THIS PAGE INTENTIONALLY LEFT BLANK 



 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing 
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection 
of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including 
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction 
Project (0704-0188) Washington DC 20503. 
1. AGENCY USE ONLY (Leave blank) 
 

2. REPORT DATE   
March 2011 

3. REPORT TYPE AND DATES COVERED 
Master’s Thesis 

4. TITLE AND SUBTITLE  Long-Range Forecasting in Support of 
Operations in Pakistan 
 
6. AUTHOR(S)  Jeremy A. DeHart 

5. FUNDING NUMBERS 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Naval Postgraduate School 
Monterey, CA  93943-5000 

8. PERFORMING ORGANIZATION 
REPORT NUMBER    

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
N/A 

10. SPONSORING/MONITORING 
   AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES  The views expressed in this thesis are those of the author and do not reflect the 
official policy or position of the Department of Defense or the U.S. Government.  IRB Protocol number ___N.A___.  

12a. DISTRIBUTION / AVAILABILITY STATEMENT   
Approved for public release; distribution is unlimited 

12b. DISTRIBUTION CODE 

13. ABSTRACT (maximum 200 words)  
Skillful long-range forecasts (LRFs; leads times of several weeks or longer) are a critical component of 
mission planning for both military and nonmilitary operations.  This is especially true for countries that are 
susceptible to persistent climate variations, such as Pakistan.  The environmental, economic, and political 
impacts of climate variations can be severe—particularly for countries that are economically and politically 
unstable, or at risk of such instability.  The United States (U.S.) has characterized stability in Pakistan as a 
priority for U.S. national security.   
     These considerations led us to investigate the potential for skillful LRFs of climate variations in Pakistan 
summer precipitation.  These variations can lead to floods and droughts, and major economic impacts, as 
demonstrated by, for example, the extreme flooding in the summer of 2010.  In this study, we developed 
methods for long-range forecasting of Pakistan precipitation during the main precipitation period of July–
August.  We investigated the correlations between regional and global scale climate variables and Pakistan 
precipitation to identify the processes associated with extreme summer precipitation events in Pakistan.   
     From these correlations, we identified a set of 850 hecto-Pascal (hPa) geopotential heights (GPH) in the 
region surrounding Pakistan as a potentially skillful predictor.  We developed several LRF approaches 
based on this predictor and linear regression, tercile matching, and optimal climate normal methods.  We 
tested these approaches by conducting independent hindcasts for the 41-year period of 1970–2010, and 
found good skill in predicting above and below normal precipitation events.  We also determined that using 
sea surface temperatures (SSTs) as a predictor of the 850 hPa heights has the potential to provide skillful 
LRFs of Pakistan July-August precipitation at lead times out to six months or longer.  We propose that 
additional research be conducted using statistical and statistical-dynamical forecast methods to develop 
and validate a long-range forecasting system for operational use. 

15. NUMBER OF 
PAGES  

107 

14. SUBJECT TERMS Pakistan, Southwest Asia, SWA, Precipitation, Precipitation Rate, 
Long-range Forecasting, Climate, Climate Analysis, Climate Variations, Climate Forecasting, 
Climate Prediction, Teleconnections, Reanalysis, Statistical Forecast, Statistical-Dynamical 
Forecasting, Meteorology, Smart Climatology 16. PRICE CODE 

17. SECURITY 
CLASSIFICATION OF 
REPORT 

Unclassified 

18. SECURITY 
CLASSIFICATION OF THIS 
PAGE 

Unclassified 

19. SECURITY 
CLASSIFICATION OF 
ABSTRACT 

Unclassified 

20. LIMITATION OF 
ABSTRACT 
 

UU 
NSN 7540-01-280-5500 Standard Form 298 (Rev. 8-98) 
 Prescribed by ANSI Std. Z39.18 



 ii

THIS PAGE INTENTIONALLY LEFT BLANK 



 iii

Approved for public release; distribution is unlimited 
 
 

LONG-RANGE FORECASTING IN SUPPORT OF OPERATIONS IN 
PAKISTAN 

 
 

Jeremy A. DeHart 
Captain, United States Air Force 

B.S., North Carolina State University, 2004 
 
 

Submitted in partial fulfillment of the 
requirements for the degree of 

 
 

MASTER OF SCIENCE IN METEOROLOGY 
 
 

from the 
 
 

NAVAL POSTGRADUATE SCHOOL 
March 2011 

 
 
 

Author:  Jeremy A. DeHart 
 
 
 

Approved by:  Tom Murphree 
Thesis Co-Advisor 

 
 
 

David Meyer 
Thesis Co-Advisor 

 
 
 

Philip Durkee 
Chair, Department of Meteorology 



 iv

THIS PAGE INTENTIONALLY LEFT BLANK 



 v

ABSTRACT 

Skillful long-range forecasts (LRFs; leads times of several weeks or longer) are a 

critical component of mission planning for both military and nonmilitary 

operations.  This is especially true for countries that are susceptible to persistent 

climate variations, such as Pakistan.  The environmental, economic, and political 

impacts of climate variations can be severe—particularly for countries that are 

economically and politically unstable, or at risk of such instability.  The United 

States (U.S.) has characterized stability in Pakistan as a priority for U.S. national 

security.   

These considerations led us to investigate the potential for skillful LRFs of 

climate variations in Pakistan summer precipitation.  These variations can lead to 

floods and droughts, and major economic impacts, as demonstrated by, for 

example, the extreme flooding in the summer of 2010.  In this study, we 

developed methods for long-range forecasting of Pakistan precipitation during 

the main precipitation period of July–August.  We investigated the correlations 

between regional and global scale climate variables and Pakistan precipitation to 

identify the processes associated with extreme summer precipitation events in 

Pakistan.   

From these correlations, we identified a set of 850 hecto-Pascal (hPa) 

geopotential heights (GPH) in the region surrounding Pakistan as a potentially 

skillful predictor.  We developed several LRF approaches based on this predictor 

and linear regression, tercile matching, and optimal climate normal methods.  We 

tested these approaches by conducting independent hindcasts for the 41-year 

period of 1970–2010, and found good skill in predicting above and below normal 

precipitation events.  We also determined that using sea surface temperatures 

(SSTs) as a predictor of the 850 hPa heights has the potential to provide skillful  
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LRFs of Pakistan July-August precipitation at lead times out to six months or 

longer.  We propose that additional research be conducted using statistical and 

statistical-dynamical forecast methods to develop and validate a long-range 

forecasting system for operational use. 
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I. INTRODUCTION  

A. BACKGROUND 

Pakistan has regularly been in the global spotlight in recent decades due 

to political unrest, national and international security threats, and numerous 

natural disasters that have plagued the country (State Department Documents 

2010).  Most recently, severe weather events—and specifically, the linking of 

these events to climate change—have generated many of these headlines.  

In late July of 2010, one of the most severe monsoonal rain events on 

record led to devastating floods in northern Pakistan.  The event began on July 

12, 2010, and lasted for several weeks, with ten inches of rain falling on a single 

day in the largest city affected.  The subsequent flooding drowned 2,000 people 

and displaced 20 million others (or 12% of the population), while submerging 

20% of Pakistan’s territory, an area roughly the size of Italy (Washington Post 

2011; Financial Post 2010a).  

An event of this magnitude was sure to spark discussion of Pakistan’s 

vulnerability to climate change.  While R K Pachauri, chief of the United Nations’ 

(UN) Intergovernmental Panel on Climate Change (IPCC), stipulated that it would 

be scientifically incorrect to link any single set of events with climate change, he 

said, “The floods of the kind that hit Pakistan may become more frequent and 

more intense in the future in this and other parts of the world” (Global Information 

Network 2010).  In fact, Pakistan has since found itself on lists of countries that 

are the “most vulnerable to climate change” according to the European Union 

and the UN (Financial Post 2010a and 2010b).  While funding for humanitarian 

aid and potential economic risk largely dictated the categorization of these 

particular lists, they do underscore: (a) the wide scope of detrimental impacts 

caused by severe weather events in Pakistan; and (b) rapidly increasing public 

awareness of these impacts.  
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The threat to global security is perhaps an even more important 

consideration.  In the aftermath of the July 2010 floods, many desperate refugees 

sought aid from militant groups in the northern regions of the country, where 

government aid was too slow or too little.  A similar reliance by refugees on 

militant groups occurred in the wake of the 2005 earthquake in Pakistan, leading 

to greater legitimacy for militant groups (Berger 2010).  This phenomenon 

undoubtedly poses a security threat to every country with interests in the region, 

including the United States (U.S.; Berger 2010).  In fact, the United States took 

an official stance on the security implications of climate change as a whole in 

February 2010 when the U.S. Department of Defense (DoD) released the most 

recent version of the Quadrennial Defense Review (QDR), a four-yearly report on 

the direction of national security strategy.  It stated that “climate change [is a] key 

[issue] that will play a significant role in shaping the future security environment."  

The report added that “while climate change alone does not cause conflict, it may 

act as an accelerant of instability or conflict, placing a burden to respond on 

civilian institutions and militaries around the world” (U.S. DoD 2010).  The U.S. 

Congressional Research Service wrote a separate report before these floods 

occurred on “security and the environment in Pakistan,” which listed some ways 

that climate change could undermine security (Berger 2010).  The potential 

threats included rising tensions from refugee migration and the creation of 

conditions that "foment extremists or terrorists."  Former U.S. Senator and 

Secretary of the Navy John Warner later commented, "They do have a fragile 

governmental situation [in Pakistan] and this flood poses risks to the central 

government system, and this indeed affects our national security" because of the 

close links between the United States and Pakistan (Berger 2010).   

The direct link between climate change and the 2010 flooding in Pakistan 

is debatable, but the implications of a severe climate variation of this magnitude 

in this part of the world are clear. Thus, there is a clear need for skillful long-

range forecasts (LRFs; lead times of two weeks or longer) for Southwest Asia 

(SWA).  In this particular case, the European Centre for Medium-range Weather 



 3

Forecasts (ECMWF) had predicted an 80% probability of severe rainfall 8–10 

days in advance.  However, the ECMWF simply does not have the resources to 

provide specific medium-range (or long-range) forecasts to the governments of 

individual nations and has stated it is not their role to do so (see Chapter I, 

Section D.2.b.1).  Instead, ECMWF posts global weather simulations online for 

members of the World Meteorological Association, including Pakistan, to use as 

they see fit (Washington Post 2011).  In this case, the ECMWF forecast went 

largely unnoticed and Pakistan was ill prepared for the massive flooding that 

occurred.  This case exposes critical gaps in the timeliness of the production and 

dissemination of forecasts.  It also raises the question of what could have been 

done to prepare for heavy precipitation at various lead times (e.g., a lead of 8-10 

days, two weeks, two months, etc.).  

In this study, we have investigated the potential for improving LRFs of 

extreme precipitation events in Pakistan. We developed and tested long-range 

forecasting systems in order to meet our major objectives for this study:  

1. Understand the physical processes that lead to anomalous summer 
precipitation events in Pakistan.  

 
2. Develop and test methods for forecasting anomalous summer 

precipitation events in Pakistan. 
 

3. Develop the basic research foundation for skillful operational LRFs 
at the intraseasonal and longer lead times needed for effective 
planning by military and nonmilitary organizations.  

 

B. PAKISTAN CLIMATE SYSTEM 

1. Geography 

To understand the climate system of Pakistan, we first must have a grasp 

of the geography.  Pakistan is bordered by Iran on the west, Afghanistan on the 

northwest, China on the northeast, India on the east and the Arabian Sea on the 

south (Figures 1, 2).  
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Figure 1.   Map of Southwest Asia.  The red box overlays Pakistan.   

The total land area consists of 803,940 square kilometers (14 Weather 

Squadron; 14 WS 2010).  Western and northern Pakistan is mountainous, while 

eastern Pakistan is a lowland river basin, which is commonly called the Trans-

Indus basin (Figure 2).  The mountains have steep, heavily forested slopes and 

sharp, snow-capped peaks tower to more than 25,000 feet (7,620 meters) in the 

Hindu Kush Mountains (14 WS 2010).  Southwestern Pakistan has extensive 

mountain ranges, but the mountain peaks do not exceed 8,000 feet (2,500 

meters). The Indus River complex meanders through the central plains and 

divides the northern region into three major plateaus: the Peshawar, the Potwar 

and the Silakot. The Indus River and its tributaries form a north-to-south oriented 

drainage basin, with the main river emptying into the Arabian Sea (Figure 2). The 

lower lying regions of Pakistan are very arid and prone to dust storms (14 WS 

2010).  The Thal and Thar Deserts in are located in east-central Pakistan and the 

Kacchi Desert and Nok Kundi area lie in southwest Pakistan (14 WS 2010). 
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Figure 2.   Physical relief map of Pakistan and surrounding countries.  Elevation 
changes are extreme between the high peaks of the Hindu Kush 
mountains in the north, and the Thar Desert in the south.  (“Pakistan 
Topography,” after Wikipedia 2010; available online at: 
http://upload.wikimedia.org/.../Pakistan_Topography.png) 

2. Long-Term Mean Climate 

Arid to semiarid conditions characterize Pakistan’s overall climate.  The 

Indus River basin in the east and the mountains in the west and north separate 

the country into two distinct climate zones.  The mountains, especially in the 

north, receive the majority of their precipitation during the northeast monsoon, 

which dominates the weather pattern from November–March (14 WS 2010). 
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North-facing slopes get the heaviest precipitation and fiercest winter weather 

during this time of year.  The south-facing mountains and Indus basin get their 

brunt of the precipitation during the southwest monsoon, which runs from June 

through early September (14 WS 2010).  See Vorhees (2006) and narratives 

issued by the 14 WS for more information on the climate regimes of SWA and 

Pakistan. 

a. July-August Focus 

To meet our objectives for this study (see Chapter I, Section A), we 

needed to select a focus period that gave us the best opportunity for studying 

anomalous precipitation events in Pakistan.  Figure 3 shows the monthly annual 

long-term mean (LTM) precipitation rate (PR) from 1970–2010 for an area 

representative of the majority of the Indus River basin.  Notice that the majority of 

the precipitation falls during July-August (Jul-Aug).  Jul-Aug is also the period 

with the highest standard deviation in PR, indicating high variability (large, 

frequent anomalies) in the amounts of interannual precipitation.  For these 

reasons, we chose Jul-Aug as our focus period.   
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Figure 3.   Monthly precipitation rate (PR; mm/day; dark blue bars) and 
standard deviation of the PR (SD; mm/day; light blue bars) in central 
Pakistan (27o–32oN, 67o–75oE).  The Jul–Aug period falls during the 
southwest monsoon, which occurs from June–September. The PR 
during Jul–Aug is clearly the highest of the year in both intensity and 
SD.  The high Jul-Aug PR and variability make this a particularly 
important variable to predict at long lead times.  Thus, we chose Jul–
Aug PR in Pakistan as our primary long-range forecasting (LRF) 
target, or predictand, for the LRFs we developed and tested in this 
study.  PR data from global reanalysis data set described in Chapter 
II, Section A.1.  

Figure 4 shows the spatial distribution of PR during our Jul-Aug 

focus period.  Notice that Pakistan essentially separates the extremely wet south 

Asian region from the arid SWA region.  While Jul-Aug is the wettest period of 

the year for the majority of Pakistan, this is especially the case for the south-

facing mountains as noted in Chapter I, Section 2.  A comparison of Figure 2 and 

Figure 4 indicates that the highest PR totals are along the slopes and foothills of 

these mountains.   
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Figure 4.   LTM composite of surface PR (mm/day) during Jul–Aug for 1970–
2010.  Jul–Aug is a period of relatively high precipitation for Pakistan 
(see Figure 3).  Pakistan precipitation in this period is: (1) highest in 
the northern half of the country where there is higher terrain (see 
Figure 2); and (2) less than in south Asian nations further to the east 
but higher than in Southwest Asia (SWA).  PR data from global 
reanalysis data set described in Chapter II, Section A.1.  

As noted in Chapter I, Section 2, the southwest monsoon is 

responsible for the influx of moisture into Pakistan during Jul-Aug.  Figure 5a 

gives a schematic graphical description of the lower tropospheric circulation that 

drives this moisture influx.  Note a broad area of low heights from SWA eastward 

through southern China.  The surface wind vectors in Figure 5b give a more 

thorough illustration of the resulting flow.  The Somali jet is the predominant 

feature in this figure, as it flows northeastward over the northwestern Indian 

Ocean (IO) and Arabian Sea.  A northern branch of the Somali jet (blue arrow in 

Figure 5b) brings warm, moist air into Pakistan.   
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Figure 5.   (a) Schematic low level circulation during the summer southwest 
monsoon (from Danielson et al. 2003).  Low pressure over south 
Asia forces a moist, onshore flow from the Indian Ocean leading to 
heavy rainfall (see Figures 3–4).  (b) Surface vector winds (m/s) for 
June-July-August-September (JJAS; from Kripalani 2007).  The 
Somali jet is evident as it flows northeastward along the east coast of 
Africa and the Arabian Peninsula and across the Arabian Sea.  The 
blue arrow represents a branch of the Somali Jet that provides 
Pakistan with a relatively high PR during the JJAS.   

A map of the Jul-Aug LTM 850 hecto-Pascal (hPa) geopotential 

height (GPH) shows a pronounced trough across southern Asia, from SWA to 

southern China (Figure 6).  The most prominent feature of this thermally-induced 

trough is the Pakistani Heat Low (14 WS 2010) that forces the low-level flow into 

convergence over Pakistan, which characterizes the southwest monsoon during 

JJAS (cf. Vorhees 2006; 14 WS 2010).   
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Figure 6.   LTM composite of 850 hPa GPH (m) for Jul–Aug.  Note the low 
heights from Pakistan through southern China, which leads to the 
circulation and precipitation patterns described in Figures 3–5.  PR 
data from the global reanalysis data set described in Chapter II, 
Section A.1. 

C. CLIMATE VARIATIONS AND IMPACTS ON PAKISTAN 

A teleconnection is a dynamical linkage between weather or climate 

variations occurring in widely separated regions of the globe (Murphree 2010d).  

Teleconnections resulting from the major climate variations, such as El Nino–La 

Nina (ENLN), the North Atlantic Oscillation (NAO), and the Indian Ocean Zonal 

Mode (IOZM) can be very significant (see Chapter II, Section A.2–A.4).  While 

numerous studies have focused on the impact of these major climate variations 

to the Americas, east Asia, and the Pacific, relatively little research has been 

done to assess the impacts of these variations on SWA.   

Vorhees (2006) assessed how these major climate variations influenced 

the fall-winter climate and weather in SWA.  He found that anomalous convection 

in the maritime continent (MC) generates an anomalous tropical Rossby-Kelvin 

wave response (Matsuno 1966; Gill 1980) that often extends westward into the 
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northwest Indian Ocean (IO), affecting circulation patterns and moisture 

advection into SWA (Barlow et al. 2005, Vorhees 2006).  ENLN and IOZM are 

often responsible for persistent fluctuations in MC convection and the resulting 

Rossby-Kelvin patterns (Vorhees 2006, LaJoie 2006).  Climate variations in the 

Atlantic Ocean lead to the NAO, which also can affect conditions in SWA 

(Mariotti 2002, Cullen 2002, Vorhees 2006).  See Vorhees (2006) for more 

information on the impact of these climate variations to SWA.  Table 1 presents a 

summary of Vorhees’ findings. 

Table 1.   Fall and winter precipitation anomalies in SWA due to climate 
variations (from Vorhees 2006).  The pluses and minuses indicate a 
positive or negative phase of the climate variation, respectively.  

 

The Vorhees (2006) findings: (a) are not specific to Pakistan; and (b) are 

for the fall and winter seasons only.  There have been very few studies of the 

impacts of climate variations on Pakistan in the peak precipitation months of Jul-

Aug.  Such studies have been conducted for neighboring regions in SWA and 

south central Asia (e.g., India).  However, Pakistan is located on the boundary 

between the more arid regions of SWA to the west and the wetter south central 

Asian region to the east during the summer.  The relative lack of prior studies of 

Pakistan climate variations during the summer was one of our motivations for 

conducting this study.   



 12

D. OPERATIONAL CLIMATE PRODUCTS FOR PAKISTAN 

1. DoD Products 

The Air Force Weather Agency (AFWA) is the chief Field Operating 

Agency (FOA) for Air Force Weather (AFW).  AFWA’s mission is to maximize 

America's power through the exploitation of timely, accurate, and relevant 

weather information.  It oversees production of a suite of analysis and forecast 

products intended for use by warfighters (AFWA 2010b).  AFWA is organized into 

two groups—the 1 Weather Group (WXG) and the 2 WXG.  The 1 WXG is 

subdivided into operational weather squadrons (OWS) which offer weather 

support for specified regions of the world, while the 2 WXG provides specialized 

terrestrial, space and climatological global environmental intelligence information 

to both military and nonmilitary organizations.  The 28 OWS (part of 1 WXG) and 

the 14 WS (part of 2 WXG) are the primary sources of DoD operational weather 

and climate products for Pakistan. 

a. 28 Operational Weather Squadron   

The 28 OWS, located at Shaw AFB, SC, provides weather 

information directly to Army, Navy, Marine, Air Force, and Coalition warfighters in 

the United States Central Command (CENTCOM) area of responsibility (AOR), 

which includes Pakistan (AFWA 2010b).  While its primary responsibility to 

CENTCOM is to issue short-term forecasts and watches, warnings, and 

advisories (WWA), it has available to its forecasters a limited library of 

climatological data in the form of forecast reference notebooks (FRN).  These 

FRNs and other analysis and forecast products are available at 

https://weather.shaw.af.mil/.  Users need a password or a U.S. government 

common access card to view the suite of products at this site.   

b. 14 Weather Squadron   

The 14 WS, formerly known as the Air Force Combat Climatology 

Center, is located in Asheville, NC, and is the primary operational climate support 
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center for the U.S. Air Force and much of the rest of the DoD.  Its mission is to 

rapidly disseminate climatological data to maximize combat effectiveness of DoD 

personnel and weapon systems (14 WS 2010).  Customers include all branches 

of the military, and many civilian organizations within the DoD.   

The 14 WS has recently started producing narrative-only LRFs 

(lead times of one to six months) of Pakistan surface air temperature, 

precipitation, and cloud ceilings.  They include discussions of the state of ENLN 

as well as the expected departure from normal conditions. These LRFs are an 

attempt to improve on the traditional climatological products based only on LTM 

conditions that were until recently all that were available from the DoD (see 

Chapter I, Section E.4).   Our study is an effort to improve the capability of DoD 

and others to produce skillful LRFs for Pakistan.   

Long-range forecasts, narratives, and other products and services 

from the 14 WS are available at https://notus2.afccc.af.mil/scis/.  Users need a 

U.S. government common access card to view the suite of products.   

2. Non-DoD Products 

a. U.S. Products 

One of the missions of the National Oceanographic and 

Atmospheric Administration (NOAA) is “to understand and predict changes in 

climate” (NOAA 2011).  NOAA provides the large majority of U.S. operational 

climate products currently available.  The following list of U.S. based 

organizations that provide operational climate products includes three of NOAA’s 

subagencies directly responsible for creating such products. 

(1)  Climate Prediction Center (CPC).  The CPC is the 

United States’ main provider of operational products for the prediction and 

monitoring of climate variability.  Headquartered in Camp Springs, MD, its 

mission is “to deliver climate prediction, monitoring, and assessment products for 

timescales from weeks to years to the Nation and the global community for the 

protection of life and property and the enhancement of the economy” (CPC 
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2011).  CPC provides a wide variety of climate assessments, outlooks, analyses, 

and forecasts for lead times of one week up to three months.  Their suite of 

products is readily available at http://www.cpc.ncep.noaa.gov/.  

(2)  National Climatic Data Center (NCDC).  The NCDC 

located in Asheville, NC, “is the world's largest active archive of weather data. 

NCDC produces numerous climate publications and responds to data requests 

from all over the world” (NCDC 2011).  They operate the World Data Center 

(WDC) for Meteorology, which is one component of a global network that 

facilitates international exchange of meteorological data.  The NCDC “acquires, 

catalogues, and archives data and makes them available to requesters in the 

international scientific community” (NCDC 2011).  Much of this data is available 

online at http://www.ncdc.noaa.gov/oa/ncdc.html.  

(3)  Earth System Research Laboratory (ESRL), Physical 

Sciences Division.  The focus of the ESRL Physical Sciences Division, located in 

Boulder, CO, is “to conduct weather and climate research to observe & 

understand Earth's physical environment, and to improve weather and climate 

predictions on global-to-local scales” (ESRL 2010).  ESRL’s interactive plotting 

and analysis tools give users access to a very useful datasets, the National 

Centers for Environmental Prediction (NCEP) / National Center for Atmospheric 

Research (NCAR) reanalysis dataset. These plotting tools are available at 

http://www.esrl.noaa.gov/psd/. We extensively used the ESRL tools and the 

NCEP/NCAR reanalysis dataset in this study, as discussed in Chapter II, Section 

A. 

(4)  International Research Institute for Climate and Society 

(IRI).  IRI is a component of Columbia University located in Palisades, NY.  IRI's 

mission is to increase society’s awareness of the impact of climate on developing 

countries, and to provide scientific support for anticipating and managing these 

impacts more effectively (IRI 2011).  The IRI produces seasonal climate 

forecasts including products for SWA and south central Asia 

(http://portal.iri.columbia.edu/portal/server.pt).  
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b. Non-U.S. Products 

(1)  European Centre for Medium-range Weather Forecasts 

(ECMWF).  ECMWF is an international organization based in Reading, UK, that 

provides medium-range weather forecast support to European meteorological 

organizations. The ECMWF develops numerical methods for medium-range 

weather forecasting and distributes medium-range forecasts to its customers.  

ECMWF also runs a seasonal forecasting system that produces forecasts out to 

six months (http://www.ecmwf.int/).  

(2)  United Kingdom Meteorological Office (UKMO).  The 

UKMO is the UK’s National Weather Service and supports UK defense forces.  

They have a subsidiary climate service branch which focuses on the research 

and science of climate change (http://www.metoffice.gov.uk/).  

E. MOTIVATION AND SCOPE OF THIS STUDY 

1. Geopolitics and National Security 

In Chapter I, Section A, we introduced the threats posed to U.S. national 

security by climate-related natural disasters in Pakistan.  The nation of Pakistan, 

in a broad sense, is a key ally of the United States, as both countries have taken 

a similar stance in combating terrorism (Ahmad 2010).  The two governments 

maintain an open dialogue with one another regarding security within the region.  

Despite this generally civil dialogue, many challenges remain.  United States and 

Pakistani counterterrorism policies have converged in some areas, yet noticeable 

incompatibilities remain in others, as Pakistan has yet to undertake the shift in its 

regional counterterrorism approach that the U.S. demands (Ahmad 2010).  For 

example, a disconnect still exists between Pakistan’s “approach of practicing 

toughness toward home-grown domestic terrorists and leniency toward home-

based regional terrorists” (Ahmad 2010).  While the United States would like to 

have a long-term strategic relationship with Pakistan, there is a significant risk  

 

 



 16

that an unforeseen destabilizing event could create conditions that allow 

extremists groups to exert more influence within Pakistan’s government structure 

(Ahmad 2010). 

The 2010 floods brought to the forefront the reality that climate and 

weather play a critical role in the stability of Pakistan.  In early July 2010, before 

the floods occurred, U.S. Secretary of State Hillary Rodham Clinton announced 

more than $500 million in assistance projects for Pakistan, including funds for 

improving health and medical facilities, water management and distribution, farm 

productivity and agricultural marketing opportunities, and energy (Kaufman 

2010). The Jul-Aug 2010 floods wiped away many of those projects.  The United 

States was quick to pledge another $390 million in immediate relief and recovery 

efforts for Pakistan, as well as technical and military assistance, in what officials 

said was the largest humanitarian crisis the international community had ever 

confronted (Kaufman 2010).  The Office of the U.S. Special Representative for 

Afghanistan and Pakistan specifically cited the “strategic nature of the 

relationship with Pakistan” as the reason for the overwhelming response by the 

U.S. (Kaufman 2010).   

The United States has made clear its intent to maintain the integrity of this 

strategic relationship.  The summer of 2010 drew attention to the threat that 

climate variations pose in destabilizing Pakistan and undermining this 

relationship, thus impinging on the national security interests of the United 

States.  The ability to forecast the conditions that lead to these extreme weather 

events at long lead times could mitigate the impact by allowing U.S. civilian 

leadership adequate time to converse with Pakistan about the potential risks and 

allowing both countries to prepare accordingly. 

2. Military Operations 

The DoD’s 2010 QDR (see Chapter I, Section A) stated that “climate 

change will shape the operating environment, roles, and missions that we 

undertake” (U.S. DoD 2010).  The 2010 floods in Pakistan provide evidence of 



 17

the truth of this statement.  While the primary mission of U.S. military forces in 

SWA is to support both war efforts and peacekeeping within the region, in this 

case the U.S. military took on the role of humanitarian assistance and disaster 

relief (HA/DR).  During the height of the crisis, 26 U.S. helicopters rescued more 

than 23,000 people and delivered more than 16 million pounds of refugee 

supplies (Kaufman 2010).  U.S Air Force (USAF) Special Operations Weather 

Team (SOWT) member Captain Jonathan Sawtelle submitted an essay to us that 

further confirmed the ever-increasing role of HA/DR, and the types of missions 

required: 

It is imperative from a regional security standpoint to assist 
populations whose governments are requesting HA/DR.  HA/DR 
operations require air mobility: global reach to rapidly transport 
equipment, manpower and supplies to the region, and intra-theater 
airlift, which includes airdrops, helicopters, short take-off and 
landing (STOL) aircraft. Vehicles and ATVs have a limited reach 
but can be essential to localized distribution. (J. Sawtelle, personal 
communication) 

Sawtelle also commented on the complexity and urgency of HA/DR plans, and 

stressed how dependent they are on long-range and short-range forecasts to 

best synchronize efforts and ensure safety of friendly forces.   

The U.S. Navy also recognizes the rising interest in HA/DR and related 

contingencies.  It recently conducted a gaming exercise at the Naval War College 

in Newport, RI, to practice scenarios in which the Navy might have to support 

U.S. or international relief efforts to help maintain regional and global stability. In 

each scenario, a climate-induced disaster triggered a catastrophic death toll, 

migration, and panic affecting regional or global security. The UN then issued a 

humanitarian response resolution. The training effort was the first of its kind to 

address this level of strategic military planning for a climate-induced disaster.  It 

brought together a unique collaboration of climate scientists, water experts, 

health practitioners, logisticians, diplomats, aid workers, and military officers to 

think through options and responses (Baker 2010). 
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Of course, military missions in Pakistan are not only limited to HA/DR.  

Pakistan is also a major supply route for the war effort in Afghanistan (Baker 

2010).  Air Force Special Operations Command (AFSOC) frequently calls on the 

SOWT to perform environmental reconnaissance, in addition their routine work of 

collecting and communicating weather observations. The SOWT also deploys to 

survey rivers with handheld kits and fly small unmanned aerial vehicles so they 

can report critical information on rapidly changing environmental conditions.   

Regardless of the mission, the U.S. military is becoming increasingly 

aware of the impact of climate to its forces in the field.  “Therefore forecasting 

long-range changes in weather (2–4 months), climate, and having the capability 

to articulate these effects to the right planners can ensure safe and timely 

mission execution and enable an advantaged planning cycle over enemy forces” 

(Sawtelle 2010). 

3. Air Force Weather Operations 

More specifically, the Air Force Weather (AFW) career field needs 

accurate LRFs to be able to perform its mission more effectively.  One of the 

topics currently among the highest priorities according to AFW is long-range 

forecast improvement with a focus on the SWA region (AFWA, personal 

communication).  The research conducted in this study directly addresses this 

topic.  We anticipate that the methods and results of this study will ultimately 

improve the day-to-day operations of AFW. 

4. Advanced Climate Analysis and Long-Range Forecasting in 
DoD 

Rear Admiral David Titley, Oceanographer of the Navy, and Dr. Tom 

Murphree of the Naval Postgraduate School (NPS) have advocated for improved 

climate analysis and long-range forecasting by DoD to improve the planning and 

outcomes of DoD operations.  In simple terms, they have supported the 

application of state-of-the-science climate data sets and methods to support DoD 

operations (Murphree 2010a).  This concept is also known as smart climatology, 
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warfighter climatology, and climate science and operational support.  The main 

idea is to use data sets and models with high spatial and temporal resolution, 

plus advanced statistical and dynamical forecasting methods, to provide more 

complete analyses and long-range forecasts of Earth’s climate system than are 

presently being provided by DoD.  Advanced climate analysis and long-range 

forecasting have the potential to substantially improve long-range support for 

warfighters (Murphree 2010a).  Figure 7 provides a simple example of how 

traditional climatology and smart climatology differ from each other.   

 

Figure 7.   Time series of Jul–Sep surface temperature (oC) in Iraq from 1968–
2005.  The solid and dashed blue lines represent the long-term mean 
surface temperature and long-term mean range, which are the basis 
for the traditional climatology approaches typically used by DoD in 
providing climate support. The solid red line and red ovals highlight 
the interannual and long-term trend in the surface temperature, 
which are examples of the additional types of climate information that 
are exploited when using smart climatology approaches to provide 
climate support.  (From Murphree 2010a) 

A number of prior studies conducted at the Naval Postgraduate School 

(NPS) have investigated the use of advanced climate analysis and long-range 

forecasting approaches to improving DoD climate support.  Several of these 



 20

studies have extensively tested and developed methods to create long-range 

forecast systems for regions deemed a high priority by the DoD.  These 

prioritized regions include SWA, Africa, and North America (e.g., Vorhees 2006, 

LaJoie 2006, Stepanek 2006, Moss 2007, Hanson 2007, Montgomery 2007, 

Tournay 2008, Lemke 2010), as well as oceanic regions around the globe (e.g., 

Turek 2007, Twigg 2008, Mundhenk 2009, Ramsaur 2009, Heidt 2009, Stone 

2010).   

5. Research Questions 

This study explored the viability of using advanced climate datasets and 

methods to skillfully forecast atmospheric conditions at intraseasonal to seasonal 

lead times (e.g., leads of 0-6 months) to improve the planning processes of both 

DoD and non-DoD organizations. We focused primarily on investigating the 

following questions: 

(1) What atmospheric variables in Pakistan are both operationally 
significant and predictable at long lead times? 

 
(2) What climate system variables are the most viable predictors of 

climate variations in Pakistan, and can these variables be used to 
skillfully predict atmospheric conditions in Pakistan at long lead 
times? 

 
(3) What are the best LRF methods to use at all lead times in 

Pakistan? 
 

(4) What are the best formats for presenting LRFs to planners 
preparing for operations in Pakistan? 

Chapter II provides an overview of the datasets and the methodology for 

climate analysis and LRF testing that we used in this study.  Chapter III presents 

the results of our climate analysis and long-range hindcasts, and proposes 

potential LRF models.  Chapter IV contains a summary of our results, 

conclusions, and recommendations for future research.   
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II. DATA AND METHODS 

A. DATASETS AND SOURCES 

1. NCEP/NCAR Atmospheric Reanalysis 

The primary dataset we used in this study was the NCEP/NCAR 

reanalysis (R1) dataset (Kalnay et al. 1996; Kistler et al. 2001).  This dataset is 

the result of a global retrospective analysis (i.e., a reanalysis) of atmospheric and 

sea surface conditions from January 1948 to present.  The reanalysis is based 

on global observations collected via satellite, rawinsonde, aircraft, and land and 

sea-based in situ sensors.  The dataset has a standard temporal resolution of six 

hours and a spatial resolution of 2.5° at standard tropospheric and stratospheric 

levels (Kalnay et al. 1996).   

The NCEP/NCAR R1 dataset is particularly useful due to its uniform global 

coverage, accessibility, and ability to capture climate variations.  Additionally, 

NOAA’s ESRL website provides analysis and plotting tools to produce graphical 

representations of the data (see Chapter I, Section D.2.a.3). We used the R1 

dataset and the ESRL website to generate many of the analysis figures for this 

study.  NCEP has recently released a new coupled atmosphere-ocean-land-ice 

reanalysis dataset called the Climate Forecast System Reanalysis (CFSR).  See 

Chapter IV, Section B for a discussion of the CFSR.   

Even though the R1 dataset dates backs to 1948, we chose to focus our 

study from 1970–2010 only.  The reason for this was to maximize the impacts of 

satellite era data by eliminating data prior to 1970, while also working with a 

period long enough to represent interannual and decadal climate variations.  Our 

main atmospheric variables of interest were sea surface temperature (SST, °C), 

surface air temperature (°C), GPH (m) at multiple levels, 850 hPa vector winds 

(m/s), and PR (mm/day). 
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2. Multivariate ENSO Index (MEI) 

The MEI is a comprehensive representation of the ENLN phenomenon 

based on the six main observed variables over the tropical Pacific (MEI 2010). 

These six variables are: (1) sea-level pressure, (2) zonal surface wind, (3) 

meridional surface wind, (4) sea surface temperature, (5) surface air 

temperature, and (6) total cloudiness fraction of the sky (MEI 2010).  Since the 

index is comprised of multiple variables, it is considered a more stable and 

integrated representation of ENLN than other indices that monitor only a single 

variable (e.g., Nino3.4 SST). Negative (positive) values of the MEI represent LN 

(EN), also known as the cold (warm) ENLN phase.  For the purposes of our 

study, we analyzed the MEI as a possible predictor of Pakistan PR. 

3. North Atlantic Oscillation (NAO) 

A number of different methods have been developed to quantify the 

positive and negative phases of the NAO.  The traditional definition for the NAO 

is the normalized pressure at a station in the Azores minus that of a station in 

Iceland.  The intent is to measure the oscillation of mass between the Azores 

High and the Icelandic Low.  An extended version of the index can be derived for 

the winter half of the year by using a station in the southwestern part of the 

Iberian Peninsula (Hurrell 2006).  NOAA’s ESRL uses the former method to 

construct an NAO index (NAOI), and we tested that index as a potential predictor 

of Pakistan PR for our study.   

4. Indian Ocean Dipole Mode Index (DMI) 

Another variable we analyzed as a possible predictor for Pakistan PR was 

the IO Dipole Mode Index (DMI), also known as the Indian Ocean Zonal Mode 

(IOZM).  The DMI is based on the SST anomaly (SSTA) in an area of the eastern 

tropical IO minus the SSTA in an area of the western tropical IO (Saji et al. 

1999). The area in the eastern tropical IO is at approximately 90°E–110°E and 

10°S–0°N.  The area in western tropical IO is at approximately 50°E–70°E and 

10°S–10°N.  A positive (negative) value in the DMI indicates a positive (negative) 
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phase in the Indian Ocean Dipole (Saji et al. 1999).  We obtained values for the 

DMI from the Bureau of Meteorology (BOM 2010) in Australia and the Japanese 

Agency for Marine-Earth Science and Technology (JAMSTEC 2010).   

B. CLIMATE ANALYSIS AND FORECASTING METHODS 

The analysis and forecasting methods as investigated in this study are 

similar to those used by Heidt (2009) in her study of LRFs of ocean conditions in 

the western North Pacific, and Lemke (2010) in his study of LRFs of PR in the 

HOA. 

1. Predictand Selection 

The predictand, or forecast target, for our study was area-averaged 

precipitation rate (PR) for a selected region within Pakistan in July-August (Jul-

Aug).  Refer to Chapter I, Section E to see the rationale for choosing that 

predictand, and see Chapter I, Section B.2.a for why we chose that particular 

period.   

The rationale for choosing an area-averaged predictand was that it is 

simply a larger forecast target than a specific point, meaning that it tends to be 

less susceptible to spatial and temporal variations.  Area-averaged predictands 

also tend to: (a) make the development of the forecast method simpler; (b) 

increase predictability at long lead times; and (c) simplify forecast verification 

(van den Dool 2007).  However, an area-average predictand may average out 

important spatial and temporal variability within the region of interest, if the area 

is not well chosen.  

While choosing our predictand variable was straightforward, the process 

of choosing our predictand region within Pakistan was rather lengthy.  We 

analyzed long-term mean and interannual Jul-Aug PR anomalies within Pakistan 

to get an understanding of how precipitation is spatially distributed within the 

country.  These results prompted us to consider several different predictand 

regions, and ultimately we chose a single region that best met our requirements 
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(described in Chapter III, Section A).  The major features we considered in 

choosing the predictand region were: 

 Spatial patterns in LTM PR in and near the region 

 Spatial patterns in the interannual and decadal scale PR anomalies 
in and near the region  

 Anomalous PR in the most recent decade 

 The impact of anomalous PR in the region and on the rest of the 
country (e.g., downstream flooding) 

 Significant correlations between PR in the region and major climate 
variations (e.g., MEI, NAO, DMI) at lead times of zero to six months 

 Significant correlations between PR within the region and potential 
atmospheric and oceanic predictors (e.g., global SST) at lead times 
of zero to six months 

2. Composites, Correlations, and Teleconnections 

After we established our predictand region, we created a time series of PR 

from Jul-Aug 1970–2010 within that region.  We used this time series to 

determine the eight wettest (driest) years on record.  We then used the ESRL 

mapping and analysis tools to create Jul-Aug seasonal composites of other 

environmental variables during the same eight wettest (driest) years.  The 

purpose of this exercise was to identify the atmospheric patterns and processes 

that lead to above normal (AN), near normal (NN), and below normal (BN) PR 

anomalies in Pakistan.  We examined both composite means and anomalies of 

regional PR (mm/day), global SST (°C), GPH (m), 850 hPa vector winds (m/s), 

outgoing longwave radiation (OLR; W/m2), 850 hPa specific humidity (g/kg), and 

700 hPa omega (Pa/s).  We calculated all anomalies in this study using a base 

period of 1968–1996 (cf. ESRL 2010). 

Once we had an understanding of the basic atmospheric processes, we 

identified potential long lead predictors for the predictands.  We correlated the 

time series of Pakistan PR with other environmental variables (e.g., winds, SST, 

temperature, GPH) on a global scale, with the potential predictors leading the 
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Jul-Aug predictand by zero to six months at bi-monthly intervals.  We found 

teleconnections by identifying significant correlations between the predictand and 

remote potential predictors.  Based on the full study period of 1970–2010, we 

considered correlations greater than +/- 0.30 statistically significant at a 95% 

confidence level based on the standard normal distribution of a two tailed t test 

(Wilks 2006).  When we reduced the dataset to 11 years for our optimal climate 

normal analyses (2000–2010), we considered correlations greater than +/- 0.55 

to be statistically significant at a 95% confidence level.  We performed the 

correlation analyses using Microsoft Excel and the ESRL website (ESRL 2010).   

3. Predictor Selection 

We defined a potential predictor as a variable with significant long lead 

correlations, as well as dynamically plausible teleconnections, with the 

predictand.  We investigated the plausibility of several potential predictor 

variables, with particular focus on SST and GPH. 

We eventually chose 850 hPa GPH as our main predictor because: (a) it 

had the strongest correlations of any predictor analyzed; and (b) it had a clear, 

dynamically plausible relationship to the predictand.  Yet while the 

predictor/predictand relationship was straightforward, 850 hPa GPH predictors at 

multiple locations were needed to capture the entirety of the relationship.  Our 

final predictor for Pakistan PR was an index that combined the 850 hPa GPH 

anomalies of several regions in the general south central Asia region. 

4. Predictor and Predictand Time Series 

Once the main PR predictand and corresponding predictors were chosen, 

we analyzed their time series to identify intraseasonal to decadal patterns of 

variability in the predictors and predictands, and in their correlations with each 

other. We also used the time series to identify extreme events for use in 

conditional composite analyses and multi-year trends that might influence the 

selection of long-range forecasting methods. 
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After we chose the predictors, we compared the predictor and predictand 

time series to identify the correspondence of interannual variability as well as the 

significance of the overall correlation.  This process also allowed us to: (a) 

perform a visual quality control check of the predictor-predictand relationship; (b) 

identify periods and lead times for which the correlations were relatively strong 

and weak; and (d) identify case studies for additional composite, correlation, and 

dynamical analyses, and hindcast testing. 

5. Long-Range Forecast Method Development and Hindcast 
Testing 

We developed and assessed several LRF methods for this study in order 

to improve upon: (a) the LTM forecast methods commonly used by DoD 

forecasters, and (b) the LRF methods presently being used by 14 WS and other 

non-DoD organizations.  Prior studies have shown that forecasts that take into 

account deviations from the LTM (i.e., anomalies) have greater potential for 

accuracy than those based on the LTM alone (cf. Chapter I, Section E.4).  In 

addition, LRFs based on customized predictors selected for a specific forecast 

target often have more skill than those based on standardized climate variations, 

such as ENLN (e.g., Heidt 2009, Lemke 2010).   

In order to assess the viability of a predictor, we employed the forecast 

methods to conduct hindcast testing of the predictor-predictand relationship for 

the 1970–2010 period.  We then assessed the skill of the predictor using the 

thresholds we set for each individual method.  We used Microsoft Excel to 

perform the tests and quantify the results for each of the hindcast testing 

methods conducted. 

a. Linear Regression 

A simple linear regression model describes the relationship 

between two variables.  In our case, the two variables represent the predictor 

and the predictand (i.e., the independent variable and dependent variable, 

respectively; Wilks 2006).   
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As discussed in Chapter II, Section B.3, we formed our predictor by 

combining multiple predictors to create a single variable index.  To determine 

which predictors to include in the index, we ran single variable linear regressions 

between each individual predictor, each combination of predictors, and our 

predictand (Pakistan PR), at zero lead.  To measure the fit of each regression, 

we calculated the correlation coefficient, the coefficient of determination (R-

square), adjusted R-square, and significance F.  For this single variable 

regression, we compared the findings (particularly the correlation coefficient) to 

assess the viability of each predictor (cf. Chapter II, Section B.2 for statistical 

significance thresholds).   

We then conducted multivariate linear regressions to assess the 

viability of each predictor when combined into a single predictor index.  We 

calculated the same metrics as in the single variable regression, with the addition 

of p-values. We considered p-values < 0.05 to be statistically significant at a 95% 

confidence level.  We ran multiple instances of this multivariate regression 

method in order to eliminate predictors that exceeded this p-value threshold.  Our 

goal was to select an optimal combination of predictors from which to build a 

multivariate linear regression model to use in forecasting our predictand at leads 

of one to six months.  We then ranked each instance by its adjusted R-square 

value and compared the p-values.  Adjusted R-square is a preferred metric in 

multivariate regression (when compared to correlation or R-square), since it 

imposes a penalty for each added predictor (e.g., R-square only increases if the 

additional variable improves the model more than would be expected by chance), 

and is utilized to prevent overfitting.  We eliminated predictors with p-values > 

0.05 from consideration.  Refer to Wilks (2006) for further information on linear 

regression.   

b. Tercile Matching 

For the tercile matching method, we sequentially sorted the 41 

years of predictand and predictor values, and then identified for each year the 
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tercile categorical state of the predictand and predictor values.  These tercile 

states are above normal (AN), near normal (NN), and below normal (BN), with 

each tercile representing approximately one-third of the total years.  We used the 

sign of the predictor-predictand correlation to determine the expected 

relationships between the predictor tercile categories and the predictand tercile 

categories.  For example, we identified a positive correlation between our 850 

hPa GPH-based predictor index and Pakistan PR from Jul-Aug 1970–2010. 

Thus, we used the occurrence of an AN predictor value in 2010 to produce a 

hindcast of AN Pakistan PR for the same year.  Similarly, we used a BN (NN) 

predictor value in a given year to produce a hindcast of BN (NN) for that same 

year.  We then verified those hindcasts by comparing them to the tercile 

categorical state of the observed Pakistan PR.   

Perhaps the most beneficial feature of tercile matching is its 

conceptual and computational simplicity.  The results of this simple hindcast and 

verification method allowed for quick visual and quantitative assessments of the 

viability of the predictor-predictand relationship.  

c. Hindcast Verification Methods 

We verified the hindcasts by comparing the predictor and 

predictand AN, NN and BN tercile assignments for each year during 1970–2010.  

This allowed us to identify the hindcast for each year as a hit, miss, false alarm, 

or correct rejection.  We then sorted these hindcast verification results into a 2 x 

2 contingency table (Table 2; Wilks 2006).   
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Table 2.   Schematic contingency table used to verify hindcasts of Jul-Aug 
Pakistan PR.  The cells of the table represent the number and 
combinations of observed occurrences (obs Y), observed non-
occurrences (obs N), predicted occurrences (pred Y), and predicted 
non-occurrences (pred N) of Pakistan PR.  A separate contingency 
table was used for each of the three tercile categories for Pakistan 
PR (AN, NN, and BN).  We used the values from this table to 
calculate several hindcast verification metrics including accuracy 
rate, probability of detection (POD), false alarm rate (FAR), and 
Heidke skill score (HSS). (After Wilks 2006) 

 

We performed a separate contingency table test for each of the AN, 

NN, and BN categories.  The following is an explanation of the values that we 

input into the table for the AN category: 
 
 
a = AN was hindcasted and observed 

b = AN was hindcasted and BN (NN) was observed 

c = BN (NN) was hindcasted but AN was observed 

d = BN (NN) was hindcasted and BN (NN) was observed 

Total number of forecasts = n = a + b + c + d = total number of 

years = 41 

From our contingency table results, we calculated four different 

verification metrics:  accuracy rate or percent correct, false alarm rate (FAR), 

probability of detection (POD), and Heidke skill score (HSS). See Wilks (2006) 

for a definition of each metric.  The following equations show how each metric 

was calculated (Wilks 2006): 

1.  Accuracy = (a + d) / n  

2.  FAR = b / (b + d) 
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3.  POD = a / (a + c) 

4.  HSS = 2[(ad) – (bc)] / {[(a + c)(c + d)] + [(a + b)(b + d)]}  

Larger (smaller) values of accuracy rate, POD, and HSS indicate 

higher (lower) skill.  Smaller (larger) values for FAR indicate higher (lower) skill.  

The HSS essentially attempts to eliminate the probability of a correct forecast 

attributed to randomness.  It uses a scale of minus one to plus one, with the best 

HSS being equal to one.  A HSS of less than zero (equal to zero) means that the 

hindcast is worse (no better) than using LTM climatology. 

We used the following three criteria to determine the viability of 

each predictor-predictand pair. We considered hindcasts that met all three 

criteria to be skillful and viable: 

1.  Accuracy greater than 50% 

2.  POD equal to or greater than FAR 

3.  HSS values greater than 0.3 

d. Optimal Climate Normals 

Optimal climate normals (OCN) is an approach to long-range 

forecasting in which trends in the predictand over the most recent years are used 

to produce a LRF.  This approach is based on the concept that in a slowly 

varying climate, recent trends may provide better estimates of the upcoming 

expected value than other LRF approaches (van den Dool 2007).  The standard 

process of applying this method is to calculate a mean value for a selected range 

of consecutive recent years (e.g., most recent 10–15 years), then persist that 

mean forward in time to produce a forecast for the following year (van den Dool 

2007).   

We applied the OCN approach by regrouping our tercile categories 

(see Chapter II, Section B.4.b) based on the most recent 11 years of data (Jul-

Aug 2000–2010), and reinvestigated the predictor-predictand relationship 

through the hindcast testing methods described throughout this section. These 



 31

results yielded new, well-correlated, dynamically plausible predictors for the 

2000–2010 period.  We tested these new predictors by using the same hindcast 

testing methods.  The result was a separate and skillful predictor index for 

Pakistan PR based on predictand-predictor relations during 2000–2010. 

While we did adhere to the general principles of the OCN concept 

in our study, we did not replicate the standard OCN process of using the mean of 

the recent trend (2000–2010) to produce a forecast.  Instead, we simply applied 

the basic concept of emphasizing recent conditions when developing forecast 

methods, which led us to the development of a second predictor index for 

Pakistan PR based on just the last 11 years of data.   

6. Forecast Systems Development 

While the majority of our study focused on the hindcast testing discussed 

in the previous section, we did develop recommendations for developing a 

forecast system for Pakistan PR based on our results.  Those recommended 

forecast systems are: (a) a direct statistical model; (b) a direct dynamical model; 

and (c) statistical-dynamical model.  We also analyzed some preliminary data to 

assess the potential skill of each of these three models. 

C. SUMMARY OF CLIMATE ANALYSIS AND FORECASTING METHODS 

Figure 8 summarizes the analysis and long-range forecasting and 

hindcasting methods we used in this study.  The reanalysis dataset allowed us to 

analyze the environmental patterns associated with anomalous values for our 

predictand, and to identify dynamically plausible predictor-predictand 

relationships.  We then tested the relationships via hindcasts, to form the basis 

for developing a forecast system that will produce LRFs with greater skill than 

what is currently available. 
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Figure 8.   Flow chart showing main datasets and methods used to conduct 
climate analyses and long-range forecasts in this study and 
recommendations for future studies.  (Adapted from Lemke 2010) 
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III. RESULTS 

A. CLIMATE ANALYSIS RESULTS 

1. Predictand Selection 

We chose our predictand variable as Jul-Aug Pakistan PR (see Chapter I, 

Section B.2.a).  However, as mentioned in Chapter II, Section B.1, the selection 

of our predictand region within Pakistan was a lengthy task.  We analyzed 

interannual composite mean and anomalous PR during 1970–2010 and during 

2000–2010, and discovered a range of PR and PR anomaly distribution patterns.  

We investigated three different predictand regions within Pakistan (Boxes 1-3 in 

Figure 9) and settled on one of these as our primary predictand region (Box 2 in 

Figure 9).  We first investigated Box 1 because it enclosed a region with 

pronounced LTM PR patterns (Figure 10a) and PR anomalies during 1970–2010 

(not shown).  However, Box 1 included regions with large PR anomalies during 

2000–2010 that differed in sign (Figure 10b).   Based on these PR anomalies, we 

investigated using Box 2 and Box 3 as PR predictand regions.  
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Figure 9.   Physical relief map of Pakistan overlaid with the three predictand 
regions considered in this study.  The coordinates for the predictand 
regions are: (a) Box 1:  27o–32oN, 67o–75oE; (b) Box 2:  32o–35oN, 
70o–75oE; and (c) Box 3:  30o–33oN, 67o–69oE.  After conducting the 
analysis methods described in Chapter II, Section B, we ultimately 
chose Box 2 (outlined in yellow) as our main predictand region.  
(“Pakistan Topography,” after Wikipedia 2010; available online at: 
http://upload.wikimedia.org/.../Pakistan_Topography.png) 
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Figure 10.   (a) Jul–Aug LTM PR (mm/day); and (b) Jul–Aug 2000–2010 PR 
anomaly (mm/day).  The predictand boxes considered for this study 
are overlaid.  We initially chose each box as a potential predictand 
after analyzing annual PR patterns from 1970–2010.  Ultimately, we 
selected Box 2 after considering: (1) the LTM PR amounts and 
variations; (2) the 2000–2010 PR amounts and variations; and (3) 
the impact to flooding. Thus, all references to Pakistan PR 
throughout the remainder of this study refer to the Box 2 predictand 
region.   

One of our criteria for selecting a PR predictand region was potential 

flooding impacts.  The Box 2 region in north central Pakistan is where the 

heaviest rainfall fell in the Jul-Aug 2010 flooding event described in Chapter I.  

Note from Figure 9, that Box 2 lies at a higher elevation than most of the rest of 

Pakistan, and that an extensive river system flows through the region into the 

lower elevations.  In 2010, heavy rain within the Box 2 region led to these rivers 

overflowing their banks downstream, which subsequently flooded much of the 

country.   

We chose Box 2 as our main predictand because it met our criteria of: (a) 

relatively high LTM Jul-Aug PR (Figure 10a); (b) high potential impacts on 

downstream flooding and water supply (Figures 9, 10); and (c) distinct PR 

anomalies observed during recent years (2000–2010; Figure 10b).  Additionally, 
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recall that the OCN approach places greater emphasis on the most recent trend, 

and Box 2 is an excellent representation of that trend.  Consequently, all 

references to Pakistan PR throughout the remainder of this study shall refer to 

the PR predictand in the Box 2 region (Figures, 9, 10). 

Figure 11 is a time series of that predictand, Pakistan PR, from 1970–

2010.  Clearly visible is an uptrend in PR since 1970, and especially since 2000, 

consistent with the anomaly in Figure 10b.  Note that the mean PR for 2000–

2010 is higher than the mean PR for 1970–1999.  Also, note the spike in 2010 

that resulted in major flooding event in Pakistan was the second highest Jul-Aug 

PR during the 41-year study period.   

We used the PR time series in Figure 11 to identify the eight most extreme 

AN and BN PR events from 1970–2010.  Based on this identification, we 

constructed composites of the atmospheric and oceanic conditions associated 

with extreme AN and BN Pakistan PR (see Chapter III, Section A.2).  The 

purpose of these composites was to identify: (a) the major spatial and temporal 

patterns associated with, and the dynamical processes that lead to, climate 

variations in Pakistan PR; and (b) potential predictors of Pakistan PR variations 

(see Chapter II, Section B.2). 
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Figure 11.   Time series of Jul–Aug Pakistan PR (mm/day) from 1970–2010.  
Note the uptrend of 0.35 mm/day per decade since 1970, and the 
spike in 2010 associated with the record flooding described in 
Chapter I, Section A. 

2. Composite Analysis 

a. Long-Term Means 

We analyzed the prevailing, or long-term mean, environmental 

conditions in Pakistan and nearby regions during Jul-Aug.  Understanding these 

climatological conditions is essential in determining the processes that produce 

Pakistan PR anomalies and in identifying potential predictors of Pakistan PR. 

Figure 12a shows the LTM Jul-Aug PR for the SWA/south Asian 

region, while Figures 12b–12d show corresponding atmospheric conditions.  

Note the strong upper level ridge (Figure 12b) overlying a broad area of low 

heights in the lower levels of the troposphere (Figure 12d).  The advection from 

the south of moist air into the lower tropospheric trough leads to high PR in south 

central Asia and arid conditions in the majority of SWA.  Pakistan lies on the 

boundary between the arid region to its west and the wet region to its east, and 

has some of the characteristics of each region.  The Somali jet, depicted in 

Figure 12c, flows northeastward along the coast of Somalia and into the Arabian 
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Sea.  A northern branch of this jet supplies Pakistan with much of its moisture 

and precipitation during Jul-Aug.  This summertime regime is known as the 

southwest monsoon (see Chapter I, Section B.2).   

 

Figure 12.   Jul–Aug LTM:  (a) PR (mm/day); (b) 200 hPa GPH (m); (c) 850 hPa 
vector winds (m/s); and (d) 850 hPa GPH (m).  Jul-Aug is 
characterized by a strong lower tropospheric trough over southern 
Asia (d) that is overlain by a strong upper tropospheric ridge (b).  
This height pattern allows for a northern branch of the Somali jet (red 
arrow in c, d) to bring moisture from the Arabian Sea into Pakistan 
(c, d) leading to high PR over much of southern Asia, with Pakistan 
lying just to the west of this high precipitation region.  

Figure 13 also shows the LTM Jul-Aug PR (Figure 13a) along with 

additional atmospheric variables for the same time frame.  Figures 13b and 13c 

are composites of outgoing longwave radiation (OLR) and 850 hPa specific 

humidity, respectively.  Low values of OLR tend to indicate deep convection, 
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while higher specific humidity levels indicate the availability of moisture for 

precipitation.  Pakistan is on the western (eastern) edge of the region in which 

conditions tend to be favorable (unfavorable) for precipitation.  This suggests that 

Pakistan PR in Jul-Aug may be sensitive to small changes in the circulation and 

moisture of neighboring regions.  For example, it suggests that above (below) 

normal PR periods in Pakistan may be associated with positive (negative) 

moisture advection anomalies into Pakistan from the south and east (north and 

west).   

 

 

Figure 13.   Jul–Aug LTM:  (a) PR (mm/day); (b) OLR (W/m2); (c) 850 hPa 
specific humidity (g/kg); and (d) 700 hPa omega (Pa/s).  As 
expected, high PR (a) tends to be associated with low OLR (b), high 
850 hPa specific humidity (c), and upward vertical motion (d).  
Pakistan lies on the western (eastern) edge of the region in which 
conditions are favorable (unfavorable) for high PR (cf. Figures 12–
13).  
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b. Conditional Anomalies 

Once we had an understanding of the normal atmospheric patterns 

and processes in and around Pakistan for Jul-Aug, we needed to select potential 

long lead predictors for Pakistan PR.  We used the Pakistan PR time series 

described in Chapter III, Section A.2, to identify for Jul-Aug 1970–2010 the eight 

most extreme high PR years (1971, 1989, 1992, 1995, 2002, 2003, 2006, 2010) 

and the eight most extreme low PR years (1972, 1973, 1974, 1979, 1980, 1986, 

1991, 2007).  We then constructed conditional composites of the anomalies for 

these extreme events.  We designated these as the wet and dry composites, 

respectively.  These composite anomalies conditioned on the occurrence of 

extreme AN and BN PR in our predictand region assisted us in indentifying 

regional and global scale patterns and processes that are related to extreme PR 

events in our predictand region.   

Figure 14 shows the regional wet and dry composite anomalies for 

PR.  Note that AN (BN) is associated with: (a) AN (BN) PR in the neighboring 

region of western India; and (b) BN (AN) PR in the eastern Bay of Bengal.  The 

largest PR anomalies within Pakistan in the wet and dry anomalies are mainly in 

the north-central part of the country, consistent with the low PR in the 

northernmost and southernmost parts of Pakistan (cf. Figures 10a, 12a).  These 

areas with the largest Pakistan PR anomalies are located within or near the PR 

predictand region (red boxes in Figure 14).  It is also interesting that dry 

conditions in southern India are observed during either wet or dry PR extremes in 

Pakistan. 
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Figure 14.   Conditional composite anomalies of PR (mm/day) for the eight most 
extreme wet (left panel) and dry (right panel) Pakistan PR events 
during Jul–Aug 1970–2010.  The red boxes outline our predictand 
region. Note the isolation of the anomalies to the north-central 
portion of Pakistan, in and close to the predictand region.   

Figure 15 shows the global wet and dry composite SST anomalies 

(SSTAs).  Notice the overall lack of strong SSTA patterns in either the wet or the 

dry years, and the absence of clear indications of ENLN patterns in the SSTAs.  

This indicates that SST is most likely not a good direct predictor of Jul-Aug 

Pakistan PR, even though SST is a good predictor for many other climate 

variations (e.g., Vorhees 2006, Moss 2007, Lemke 2010). 

 

Figure 15.   Conditional composite anomalies of SST (°C) for the eight most 
extreme wet (left panel) and dry (right panel) Pakistan PR events 
during Jul–Aug 1970–2010. Note the general absence of strong clear 
patterns in either wet or dry year composites.  This indicates that 
SST may not be a good direct predictor of Pakistan PR.  
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Figure 16 displays the wet and dry composite anomalies for 850 

hPa GPH.  The red arrows denote the direction of the corresponding implied 

anomalous flow.  In the wet composite, AN 850 hPa GPH are observed over 

Nepal, with less clear BN GPH over the Red Sea.  The resulting low-level flow is 

southerly and convergent over and near Pakistan, with an implied positive 

moisture advection from the tropical IO and Pacific, and from the Arabian Sea.  

Conversely, the dry composite shows BN 850 hPa GPH over Nepal coupled with 

AN GPH in the Caspian Sea region.  These anomalies lead to dry, offshore, 

divergent low-level flow over and near Pakistan.   

These results are analogous to those from Vorhees (2006) in 

indicating that low-level positive (negative) moisture advection anomalies from 

the south and east (north and west) contribute to anomalously wet (dry) periods 

in SWA, although Vorhees focused on the fall and winter seasons only.   

 

Figure 16.   Conditional composite anomalies of 850 hPa GPH (m) for the eight 
most extreme wet (left panel) and dry (right panel) Pakistan PR 
events during Jul–Aug 1970–2010.  The red arrows schematically 
represent the corresponding wind anomalies that are likely to affect 
Pakistan.  Note in the wet (dry) composite the anomalous high (low) 
over the Nepal region providing a moist easterly (dry westerly) flow 
into Pakistan.  Low-level convergent (divergent) flow also 
characterizes wet (dry) years over and near Pakistan.  

Figure 17 shows the wet and dry composite anomalies for 700 hPa 

omega.  Negative (positive) values of omega indicate upward (downward) 

vertical motion.  Note that wet (dry) years are associated with a negative 
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(positive) omega anomaly over our PR predictand region (red box in Figure 17), 

as expected.  This increase (decrease) in upward vertical motion is consistent 

with the low-level convergence (divergence) implied by Figure 16. 

 

Figure 17.   Conditional composite anomalies of 700 hPa omega (Pa/s) for the 
eight most extreme wet (left panel) and dry (right panel) Pakistan PR 
events during Jul–Aug 1970–2010. The red boxes outline our 
predictand region. Note in the wet (dry) composite the negative 
(positive) anomalies over Pakistan indicating an increase (decrease) 
in upward vertical motion.   

Figure 18 shows the wet and dry composite anomalies for 850 hPa 

specific humidity.  As expected, wet (dry) years are associated with higher 

(lower) specific humidity levels than normal.  Note that the BN anomaly for the 

dry years encompasses both Pakistan and Afghanistan, while the AN anomaly 

during the wet years is more confined to Pakistan.  We expect this is largely due 

to the topography of the region.  While broad offshore, divergent flow 

characterizes dry years, in the wet years the mountains along the Afghanistan 

border may restrict westward moisture transport by the southerly to southeasterly 

low-level wind anomalies implied by the height anomalies in Figure 16.  See 

Figure 9 to examine these topographical features.   
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Figure 18.   Conditional composite anomalies of 850 hPa specific humidity (g/kg) 
for the eight most extreme wet (left panel) and dry (right panel) 
Pakistan PR events during Jul–Aug 1970–2010.  The red boxes 
outline our predictand region.  

3. Correlations and Teleconnections 

We correlated the time series of Pakistan PR (Figure 11) with several 

potential predictors from the 1970–2010 period, with the potential predictors 

leading the predictand by zero to six months at bi-monthly intervals (e.g., Jul-Aug 

predictand correlated with May-Jun potential predictor).  We considered the 

correlations significant if the coefficient was greater than +/- 0.30.  The potential 

predictors included: (a) the MEI, DMI, and NAOI global scale climate variation 

indices; (b) global SST; (c) global 200 hPa, and (d) global 850 hPa GPH.   

One of the primary potential predictors we investigated in our correlation 

analyses was SST.  SST is often a good predictor in LRF systems because: 

  

(a) Climate variations in the ocean tend to be relatively persistent.  

(b) Relatively small changes in SST can greatly influence climate 
variations in the atmosphere. 
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(c) SST variations in one location can significantly impact 
atmospheric and oceanic conditions in very distant locations via 
teleconnections.  

(d) SST data is readily available in near real time. (van den Dool 
2007, Murphree 2010c)   

However, as expected based on Figure 15 results, the direct correlation of 

Pakistan PR with SST at all lead times indicated relatively low correlation values.  

We correlated Pakistan PR with the MEI, DMI, and NAOI climate variation 

indices, at bi-monthly intervals with the climate variation indices leading by zero 

to six months.  For all correlations of Pakistan PR versus the three climate 

variation indices, only the DMI at four to six month leads gave significant 

correlations, and only marginally.  We also correlated Pakistan PR with global 

SST for the same lead times, and found marginally significant correlations in the 

eastern Indian Ocean (IO) at two to four month lead times, roughly consistent 

with the correlations of Pakistan PR with the DMI.  These weak or marginal 

correlations led us to set aside the three global scale climate variation indices 

and SST as potential direct predictors of Pakistan PR. 

We found the most significant correlations with 850 hPa GPH at zero lead 

(Figure 19).  Notice the strong positive correlations in and around Nepal, as well 

as the strong negative correlation in the southern Red Sea.  A slight positive 

correlation near the Caspian Sea was also evident.  This strong correlation 

pattern of Pakistan PR with 850 hPa GPH existed mainly at zero lead.  A slight 

hint of this pattern was found at the one-month lead, but was absent at longer 

lead times. 
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Figure 19.   Correlation of Pakistan PR (mm/day) for Jul–Aug 1970–2010 with 
regional 850 hPa GPH (m) at zero lead. Note the strong positive 
correlation in the Nepal region, weak positive correlation in the 
Caspian Sea region, and strong negative correlation in the Red Sea 
region.   

These correlations in Figure 19 are dynamically plausible.  For example, in 

a wet (dry) year, the correlation pattern suggests that the 850 hPa GPH 

anomalies would be positive (negative) over Nepal, negative (positive) over the 

Red Sea, and positive (negative) over the Caspian Sea.  Consequently, the 

implied anomalous flow into Pakistan is southerly (northerly) and the implied 

moisture advection anomaly into Pakistan would be positive (negative), 

consistent with the composite circulation and moisture anomaly results, 

especially the AN composite anomalies (see Figures 16, 18).   

We also found a significant teleconnection between AN (BN) convection in 

the eastern IO and maritime continent (MC) region in May-Jun AN (BN) and both 

Pakistan PR and Nepal 850 hPa GPH in the following Jul-Aug (a two month lead 

correlation; not shown).  These correlations are consistent with our earlier 

assessment of marginal correlation of Pakistan PR and SST in the eastern IO, 
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because AN (BN) SST tends to lead to AN (BN) convection in the overlying 

atmosphere in May-Jun, which then forces AN (BN) lower tropospheric heights 

near Nepal in Jul-Aug leading to AN (BN) Pakistan PR in Jul-Aug. 

Figure 20 schematically represents these physical patterns and processes 

for wet and dry years. 

 

Figure 20.   Schematic of 850 hPa GPH anomalies and OLR anomalies for 
extreme wet (top panel) and dry (lower panel) Pakistan PR events 
during Jul–Aug 1970–2010.  Note during wet (dry) years, the 
teleconnection of AN (BN) convection near the maritime continent in 
May–June with higher (lower) tropospheric heights near Nepal in Jul-
Aug, indicating a two-month lead teleconnection.  Figures based on 
conditional composite anomaly and correlation results (cf. Figures 
14–19).   
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4. Predictor Selection 

a. Initial Predictors 

Based on our correlation results, we identified 850 hPa GPH in the 

Nepal, Red Sea, and Caspian Sea regions as potential predictors.  We further 

investigated the viability of these potential predictors by narrowing down our 

predictor regions.  Figure 21a shows the zero lead correlation of Pakistan PR 

with 850 hPa GPH for Jul-Aug 1970–2010, while Figure 21b is the same 

correlation for Jul-Aug 2000–2010.  We chose our 850 hPa GPH predictor 

regions based mainly on a combination of the strongest correlations from each of 

these figures (outlined by the red boxes in Figure 21).  Note the strength of the 

correlations in the Red Sea, Nepal West, and Nepal East boxes in the left panel.  

In the right panel, a stronger correlation appears in the Nepal boxes as well as 

the Caspian box and the Afghan box, while the Red Sea box’s significance 

diminishes.  The red boxes in Figure 21 account for the most pronounced 

significant correlations for both: (a) the entire 41-year study period (1970–2010) 

and (b) the most recent 11-year period (2000–2010).  Focusing on the recent 11-

year period allowed us to apply the OCN approach of placing emphasis on the 

trends of the most recent years.  See Chapter II, Section B.5.c for a detailed 

description of the OCN approach.  Note too that lower tropospheric GPH 

anomalies in red boxes could, with the right signs and in combination with each 

other, lead to circulation and moisture advection anomalies that could produce 

PR anomalies in the Pakistan PR predictand region in north central Pakistan (cf. 

Figures 16–20). 
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Figure 21.   Correlation of Pakistan PR in Jul–Aug with regional 850 hPa GPH for 
(a) 1970–2010; and (b) 2000–2010.  Strong zero lead correlations 
between Pakistan PR and 850 hPa GPH led to using 850 hPa GPH 
as our main initial predictor.  The red boxes in (a) and/or (b) outline 
the regions where we observed the strongest correlations.  We 
selected the regions enclosed by these five boxes as our initial 
predictor regions.  These boxes are referred to in this study as (from 
west to east): Red Sea box (12°–20°N, 35°–47°E), Caspian box 
(35°–45°N, 45°–55°E), Afghan box (28°–33°N, 75°–85°E), Nepal 
West box, and Nepal East box (25°–30°N, 85°–100°E). 

Once our initial predictor regions were selected, we needed to 

determine the correlation between the predictand and each of the predictors 

when averaged over their respective regions.  Table 3 shows the correlation 

values for each predictor for the full study period, 1970–2010. 
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Table 3.   Correlation of initial predictors with Jul–Aug 1970–2010 Pakistan PR.  
Each predictor represents the 850 hPa GPH anomaly within its 
respective bounded region (Figure 21).  The 5-Variable Index 
denotes a single predictor created by an equal weight combination of 
all five predictors.  Correlations > 0.30 are considered statistically 
significant at a 95% confidence level.   

 

 

Note that only the Nepal West and Nepal East boxes had 

correlations above our threshold.  Yet, when all five predictors were combined to 

form a single index, we obtained the highest correlation coefficient.  This 

suggested the possibility that each predictor may be useful in predicting Pakistan 

PR.  To determine precisely how much skill, we needed to test the predictors via 

linear regression.  The linear regression results are shown in Chapter III, Section 

B.1. 

b. Final Predictors and Pakistan Summer Precipitation 
Index (PSPI) 

The linear regression results allowed us to optimize our predictor 

set by eliminating the excess predictors (see Chapter III, Section B.1).  Based on 

these results, we selected 850 hPa GPH in the Nepal West box and the Red Sea 

box as our final zero lead predictor regions.  We combined these two variables to 

develop a single zero lead predictor index for analyzing and forecasting Pakistan 

PR in Jul-Aug, which we named the Pakistan Summer Precipitation Index (PSPI).  

We assigned a weight to each variable in the PSPI, equal to its linear regression 

coefficient.  The formula for the PSPI is: 
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PSPI = (0.07 x Nepal West 850 hPa GPH Anomaly)  

+ (-0.07 x Red Sea 850 hPa GPH Anomaly) 

The units of the PSPI are meters.  Figure 22 shows in red the 

regions for the two PSPI variables. 

 

Figure 22.   Correlation of Pakistan PR in Jul–Aug with global 850 hPa GPH for 
(a) 1970–2010; and (b) 2000–2010. This is a duplicate of Figure 21 
but with the 850 hPa GPH regions used in the Pakistan Summer 
Precipitation Index (PSPI) outlined in red and the eliminated 
predictor regions outlined in gray.  The red boxes are the Red Sea 
box and the Nepal West box (see latitude and longitude ranges in 
Figure 21).  

5. Predictor and Predictand Time Series  

Figure 23 compares the time series of our predictor (PSPI) and our 

predictand (Pakistan PR).  With a correlation of 0.694, the relationship is 

statistically significant at a >99% confidence level.  The PSPI correctly represents 

many of the interannual variations in the Pakistan PR, as well as the overall 

upward trend in the Pakistan PR (although with some notable exceptions for 

1973, 1985–1986, 1998, and 2000–2001).  These results indicate that the PSPI 

has potential as a zero lead predictor of Pakistan PR. 
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Figure 23.   Time series of 1970–2010 Jul–Aug Pakistan PR as observed   
(mm/day; gray line) and as modeled by the Pakistan Summer 
Precipitation Index (PSPI, m; blue line).  The correlation between the 
two time series is 0.694, which is statistically significant at a > 99% 
confidence level.  Note that the PSPI provides a good representation 
of many of the interannual variations, and of the long-term upward 
trend, in the Pakistan PR.  These results indicate that the PSPI is a 
high potential to be a skillful zero lead predictor of Pakistan PR.  

B. LONG-RANGE HINDCAST RESULTS 

1. Linear Regression 

We tested the predictors listed in Table 3 via a series of multivariate linear 

regression models to assess the significance of the predictors in forecasting Jul-

Aug Pakistan PR at zero lead.  The results of that test are summarized in Table 

4.  The multivariate results show a very strong relationship between the 

multivariate index (i.e., an equal weight combination of all five individual 

predictors) and Jul-Aug Pakistan PR.  However, the p-values for the individual 

predictors show relationships that do not meet our threshold of p-values < 0.05 

for significance at a 95% confidence level, except for the Red Sea predictor.  

This indicated that while the multivariate predictor has skill in predicting Pakistan 

PR, some of the variables within this index overlap with each other.   
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Table 4.   Multivariate linear regression results for our initial predictors (see 
Table 3) used to model Jul–Aug 1970–2010 Pakistan PR.  Each 
predictor represents the 850 hPa GPH anomaly (Z850) within the 
regions shown in Figure 21. The multivariate index denotes a single 
predictor created by an equal weight combination of all five individual 
predictors.  Correlations > 0.30, significance F < 0.05, and p-values 
< 0.05 are considered statistically significant at a 95% confidence 
level.   

 
 

To address this overlap problem, we conducted another multivariate linear 

regression to identify and eliminate the excess predictors.  We developed a 

series of additional multivariate regression models using all possible 

combinations of the five individual predictors.  We initiated these tests of the 

predictors by including all five original predictors, and then eliminated predictors 

one at a time.  The final round of regression tested only two predictors.  We took 

the additional step of combining predictors that were in close proximity to each 

other geographically, in other words, we combined the: (a) Nepal West and 

Nepal East boxes to form the Nepal combination box; and (b) Caspian and 

Afghan boxes to create the Caspian combination box.  We then ranked each of 

the resulting multivariate regression models according to its adjusted R-square 

value.  As discussed in Chapter II, Section B.5.a, adjusted R-square is a 

preferred metric to use in multivariate regression as it imposes a penalty for each 

added predictor (e.g., R-square only increases if the additional variable improves 

the model more than would be expected by chance), and is utilized to prevent 

overfitting.  The three most significant results from this round of multivariate 
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regression tests are summarized in Table 5.  The results in Table 5 are listed in 

order of their adjusted R-square values.  Note that Table 5.1 and 5.2 have 

predictors with p-values well over our threshold of 0.05.  The predictors in Table 

5.3 (outlined in red) had a relatively high adjusted R-square and p-values < 0.05.  

For this reason, we selected the Nepal West and the Red Sea regions as our 

main predictors of Pakistan PR.  To do so, we developed an index based on 

these two predictors with weightings for each predictor equal to its regression 

coefficient: (a) 0.07 for the Nepal West box; and (b) -0.07 for the Red Sea box.  

The formula for the resulting index, the Pakistan Summer Precipitation Index 

(PSPI) is shown in Chapter III, Section A.3.b.   
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Table 5.   The three most significant multivariate regression results, ranked by 
adjusted R-square, for modeling of. Jul–Aug 1970–2010 Pakistan 
PR.  Each predictor represents the 850 hPa GPH anomaly (Z850) 
within the regions shown in Figure 21.  Each of the three multivariate 
indices denotes a single predictor created by combining the 
predictors shown just below each of the indices. Correlations > 0.30, 
significance F < 0.05, and p-values < 0.05 are considered statistically 
significant at a 95% confidence level.  The red outline denotes the 
only multivariate regression model that met each of these thresholds. 
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2. Tercile Matching 

We used the PSPI predictor to generate tercile matching hindcasts of 

1970–2010 Jul-Aug Pakistan PR at zero lead.  Table 6 and Table 7 show the 

results of the tercile matching method.  Refer to Chapter II, Section B.5.b for 

further details on this method.  See Table 7 for an explanation of the thresholds 

we set for tercile categories.  All values that fell directly on a tercile threshold 

were rounded to the nearest second order decimal position.  See Chapter III, 

Section B.3 for calculations of the hindcast verification results.  Green indicates 

AN PR, white indicates NN PR, and red indicates BN PR.  Note that a correct 

hindcast for an individual year is indicated by matching colors in the two right 

columns for that year.  Note that BN (AN) hindcasts and observations are most 

common during the early (later) part of the study period, consistent with the 

results shown in Figure 11.  Note, too, that color matches are common 

throughout the study period, and especially in the early and later parts of the 

study period, consistent with the results shown in Figure 23. 
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Table 6.   Tercile matching hindcast results when using PSPI (modeled PR 
index) to hindcast Pakistan PR (observed PR, mm/day), sorted by 
year.  The years are shown in the left column and the PSPI and 
Pakistan PR values are shown in the two right columns.  Green=AN, 
white=NN, red=BN.  A color match between the two right columns 
indicates a correct hindcast.  
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Table 7.   Tercile ranges for the results in Table 6.  The tercile thresholds were 
selected by separating the PSPI and Pakistan PR data into thirds.  
Values in the highest third (middle third, lowest third) were placed in 
the AN (NN, BN) category. 

 

3. Hindcast Verification Results 

Table 8 summarizes the hindcast verification results for the zero lead 

tercile matching hindcasts using PSPI to predict Pakistan PR.  The overall 

hindcast verification metrics shown to the right of each sub-table in Table 8 

indicated good skill, especially for the hindcasts of AN conditions.  For example, 

HSS is > 0.4 for all categories and > 0.7 for the AN category.  The lower 

performance for the NN category is typical of many LRF systems, as these 

systems generally are designed to forecast deviations from the NN category (i.e., 

deviations from LTM conditions).  The high skill of the AN hindcasts is especially 

encouraging since AN PR has the potential to create the most adverse effects 

(e.g., rapid onset of extreme flooding). Overall, the hindcasts met our 

performance criteria (i.e., accuracy > 50%, POD > FAR, HSS > 0.3).  Given 

these results, we concluded that the PSPI is a skillful zero lead predictor of 

Pakistan PR. 
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Table 8.   Contingency table hindcast verification results for tercile matching 
hindcasts using PSPI to hindcast Jul–Aug 1970–2010 Pakistan PR.  
The upper (middle, lower) sub-table represents the verification 
results for the AN (NN, BN) hindcasts.  Four verification scores are 
shown to the right of each sub-table.  See Chapter II, Section 5.3 
and Table 2 for more information about contingency table-based 
verification methods. 

 

4. Optimal Climate Normals 

As noted in Chapter III, Section A.4, we selected our initial predictor 

regions based on correlation maps of Pakistan PR with 850 hPa GPH for both: 

(a) 1970–2010; and (b) 2000–2010. By considering the second of these periods 

when choosing our predictor, we took into account the OCN approach of placing 

emphasis on the trends of the most recent years.  

Figure 21 shows how correlations of Pakistan PR with 850 hPa GPH have 

changed during the study period, 1970–2010.  In particular, Figure 21 shows that 
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in the most recent 11 years Pakistan PR and 850 hPa GPH in: (a) the Red Sea 

region have become less correlated; and (b) the Caspian and Afghan region 

have become more correlated.  This is likely due at least partially to generally 

higher 850 hPa GPH values across the much of west Asia (e.g., the Caspian Sea 

region) during 2000–2010 (see Figure 24). 

 

 

Figure 24.   Mean 850 hPa GPH (m) for Jul–Aug 1970–1999 (left panel) and 
2000–2010 (right panel).  The red boxes represent the boundaries of 
our initial predictors (see Chapter III, Section A.4.a).  Note that mean 
850 hPa GPH was relatively high across much of west Asia (e.g., 
near the Caspian Sea) during 2000–2010.  This could be a cause of 
the changing correlation pattern between Pakistan PR and 850 hPa 
GPH when comparing the same periods (see Figure 21). 

Figure 11 showed the long-term uptrend in Pakistan PR during 1970–

2010, and that four of the top eight (50%) of the highest PR observations during 

the study period occurred during the last eleven years of the period, 2000–2010. 

To account for these trend changes and to assess the validity of our predictor for 

the most recent years, we applied an OCN approach by repeating the regression 

model development and hindcast testing using data from just 2000–2010.   

Table 9 shows our OCN multivariate linear regression results.  We found 

that the PSPI still performed well, but that its variables decreased in significance 

(e.g., Red Sea predictor p-value increased to 0.14). This indicated that we should 

investigate other potential predictor combinations.  We conducted another set of 
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multiple regression tests by eliminating variables one at a time, similar to the 

procedure in Chapter III, Section B.1, and then sorted the results using the same 

criteria as for the results shown in Table 5.   

Table 9 shows the results from this OCN approach.  In sub-table 9.a, the 

PSPI is based on data from just 2000–2010.  Note from this sub-table that the 

Red Sea predictor for the PSPI does not meet our p-value threshold for 

significance.  However, a new multivariate predictor index predictor based on the 

most significant predictors for 2000–2010 does meet all of our significance 

thresholds (see sub-table 9.b).  The predictors for this new index are the same as 

for the PSPI, but with the Red Sea predictor replaced by the Caspian and Afghan 

predictors.  These results indicate that for modeling Pakistan PR in Jul-Aug 

2000–2010, the Red Sea predictor in the PSPI should be replaced by the 

Caspian and Afghan predictors.  We refer to this new zero lead predictor index 

as the Updated PSPI (UPSPI). 
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Table 9.   Multivariate regression results for Jul–Aug 2000–2010 Pakistan PR 
using as a predictor: (a) PSPI; and (b) a second combination of 
predictors to potentially replace the PSPI.  Correlations > 0.55, 
significance F < 0.05, and p-values < 0.05 are considered statistically 
significant at a 95% confidence level.  Note in (a) that when PSPI is 
based on data from just 2000–2010, the Red Sea predictor has a p-
value outside our thresholds.  The predictors in (b) had the best 
regression results in modeling 2000–2010 Pakistan PR.   

 

For the UPSPI, we again assigned a weight to each variable based on its 

coefficients from the regression analysis:   

UPSPI = (0.19 x Nepal West 850 hPa GPH Anomaly)  

+ (0.11 x Caspian 850 hPa GPH Anomaly)  

+ (-0.16 x Afghan 850 hPa GPH Anomaly) 

 

We conducted the same tercile matching hindcasting and hindcast 

verification tests to assess the viability of the UPSPI as a zero lead predictor of 

Pakistan PR.  Those results are summarized in Table 10.  The first item to note is 

the perfect scores for the AN hindcasts.  However, the hindcast skills cores were 
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much lower for the BN and NN hindcasts.  We must point out that this is only an 

11-year data set, so a single correct or incorrect forecast can greatly change the 

results.  Overall, Table 10 indicates that the OCN approach increased 

(decreased) the skill of the AN (NN, BN) hindcasts.  

Table 10.   Contingency table hindcast verification results for tercile matching 
hindcasts using UPSPI to hindcast Jul–Aug 2000–2010 Pakistan PR.  
The upper (middle, lower) sub-table represents the verification 
results for the AN (NN, BN) hindcasts.  Four verification scores are 
shown to the right of each sub-table.  See Chapter II, Section 5.3 
and Table 2 for more information about contingency table based 
verification methods. 

 

 

We also compared the skill of the PSPI and the UPSPI by using each of 

them to perform zero lead hindcasts of Pakistan PR for: (a) the entire 41-year 

period; and (b) the most recent 11-year period.  We then condensed the results 

from all our long-range hindcast tests into two tables, one for each time period 

we tested.  These results (shown in Table 11) provide a much clearer 

understanding of which index is the most skilled in predicting Pakistan PR.  
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These results can be summarized as follows: (a) the PSPI is a better predictor 

than the UPSPI for zero lead hindcasts of AN, NN, and BN events during the full 

41-year period; (b) the UPSPI (PSPI) is a better zero lead predictor of AN (NN 

and BN) events during the most recent 11 years.  These findings indicate that, 

overall, the PSPI is a better zero lead predictor than the UPSPI.  However, this 

conclusion should be checked in the future as more data becomes available to 

update both the PSPI and UPSPI.  

Table 11.   Verification results for zero lead tercile matching hindcasts using 
PSPI and UPSPI to hindcast Jul–Aug Pakistan PR for 1970–2010 
(left table) and 2000–2010 (right table).  The upper (middle, lower) 
sub-table shows the verification results for the AN (NN, BN) 
hindcasts.  Four verification scores are shown in each sub-table.  
See Chapter II, Section 5.3 and Table 2 for more information about 
contingency table based verification methods. 

 

C. POTENTIAL LONG-RANGE FORECAST SYSTEMS 

Our study focused on developing and testing multivariate linear regression 

models using lower tropospheric GPH predictors for zero lead hindcasting of Jul-

Aug Pakistan PR.  This focus was determined mainly by the absence of 

significant, direct, and physically plausible non-zero lead predictors of Jul-Aug 

Pakistan PR.   The skill of the zero lead models is very encouraging but 
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additional model development is needed to identify methods for predicting at 

non-zero leads the GPH predictors in the regression models.  In this section, we 

describe three approaches for developing those methods and a non-zero lead 

LRF system for Jul-Aug Pakistan PR.   

1. Direct Statistical Approach 

The first LRF approach that we explored was the direct statistical 

approach, in which a statistical model would be used to predict the Jul-Aug PSPI 

at non-zero leads, and then this predicted PSPI would be used to predict Jul-Aug 

Pakistan PR using the multivariate regression model described in the prior 

sections.  Figure 25a shows a two-month lead correlation of SST with Pakistan 

PR (PSPI).  Note that there is no evidence of a strong, direct, non-zero lead 

relationship between SST and Jul-Aug Pakistan PR.  Similar results are found for 

leads of 0–6 months.  However, Figure 25b shows strong, large scale 

correlations between SST and the PSPI, with SST leading by two months.  

Similar strong, large scale correlations are found for leads of 0–10 months (not 

shown).  These results indicate that: (a) SST is not be a skillful direct predictor of 

Jul-Aug Pakistan PR at any leads; but (b) SST may be a skillful indirect predictor 

of Jul-Aug Pakistan PR when used in a statistical model to produce non-zero 

LRFs of the Jul-Aug PSPI, which are then used in a statistical model to produce 

zero lead LRFs of Jul-Aug Pakistan PR.   
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Figure 25.   Correlation for 1970–2010 of May-Jun SST with the subsequent Jul–
Aug: (a) Pakistan PR; and (b) PSPI (two-month lead correlations). 
Panel (a) shows a generally weak relationship between SST and 
Pakistan PR.  Panel (b) shows strong relationships between SST 
and Pakistan PR, and thus indicates a high potential for developing a 
direct two-step statistical model using SST to produce a non-zero 
lead forecast of PSPI, and then using this forecasted PSPI to 
forecast Pakistan PR.   

Another intriguing finding was the relationship of SST with the variables 

used in our PSPI predictor—850 hPa GPH in the Nepal West and the Red Sea 

regions.  Figure 26 shows strong correlations of SST at a two-month lead with 

these two GPH predictor regions.  Figure 26a shows that the Nepal GPH is well 

correlated with SST in the eastern IO and MC region.  Figure 26b shows that the 

Red Sea GPH is well correlated with SST in the tropical Pacific with patterns that 

indicate a strong correlation to ENLN variations in SST.  These findings provide 

evidence of the dynamical plausibility of, and potential skill from, using SST as a 

predictor in a statistical model of Nepal and Red Sea GPH.   They also provide 

indications of the complex and nonlinear relationships between SST, GPH, and 

Pakistan PR.  For example, note the clear differences between the correlation 

patterns in Figures 26a and 26b.  These differences indicate that SST impacts on 

Jul-Aug Nepal and Red Sea GPH are similar for some ocean regions (e.g., the 

eastern tropical Pacific) but different for other ocean regions (e.g., the ocean 

near the MC and in the subtropical western and central Pacific.  These 

similarities and differences are likely to lead to complex nonlinear interactions 

between SST and the GPH variables that affect Jul-Aug Pakistan PR.  These 
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nonlinearities may help explain why SST is: (a) poorly correlated with Jul-Aug 

Pakistan PR; but (b) well correlated with the Nepal and Red Sea GPH variables 

that are well correlated with Jul-Aug Pakistan PR. 

 

Figure 26.   Correlation for 1970–2010 of May-Jun SST with the subsequent Jul–
Aug 850 hPa GPH in the: (a) Nepal West region; and (b) Red Sea 
region (two-month lead correlations).  Panels (a) and (b) show strong 
large scale relationships between SST and the GPH predictor 
regions.  The Nepal GPH appears to have a strong link to SSTs in 
the tropical IO and MC region.  The Red Sea GPH appears to have a 
strong link to ENLN events in the tropical Pacific.  Both figures 
indicate: (a) the physical plausibility of using global scale SSTs to 
forecast the 850 hPa GPH variables used in the PSPI; and (b) the 
potential for using a two-step statistical model to forecast Jul-Aug 
Pakistan PR.  

2. Direct Dynamical Approach 

We also investigated the potential for a direct dynamical approach to 

predicting Jul-Aug Pakistan PR.  As the name suggests, this would involve using 

a dynamical model to directly forecast Pakistan PR, at lead times of, for example, 

one to six months.  An obvious choice for implementing this method would be 

NOAA’s Climate Forecast System (CFS; NCEP 2010, Saha et al. 2006).  The 

CFS is a dynamical modeling system that has demonstrated the ability to 

produce seasonal forecasts that rival the skill of the statistical methods used by 

the CPC (Saha et al. 2006).  We performed a brief case study of this approach, 

with representative results shown in Figure 27.  This figure shows the two-month 

lead CFS forecast of PR anomalies for August 2010 PR (left panel) and the 
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verifying anomalies from R1 (right panel).  Note that CFS failed to forecast the 

extreme AN anomaly in Pakistan and neighboring parts of India that led to record 

rainfall and flooding in Pakistan.  Similar results were found for CFS forecasts of 

August 2010 PR anomalies at other lead times (not shown).  These errors are 

indicative of the generally low skill of CFS in LRFs of sub-regional PR anomalies 

(cf. Saha et al, 2006).  These results cast doubt on the viability of a direct 

dynamical LRFs of Jul-Aug Pakistan PR.  

 

Figure 27.   NCEP CFS forecast of Aug 2010 PR at a two-month lead 
(mm/month, left panel) and verifying NCEP reanalysis of Aug 2010 
PR (mm/day, right panel).  Note that CFS did not accurately forecast 
the high PR anomaly over Pakistan. 

However, Figure 28 indicates that CFS may have useful skill in forecasting 

other climate variables related to Jul-Aug Pakistan PR.  Figure 28 shows the 700 

hPa GPH anomaly for August 2010 from the CFS two-month lead forecast (left 

panel) and from R1 (right panel).  For this case study, we used 700 hPa GPH 

rather than 850 hPa GPH because the latter is not readily available from NCEP 

in a graphical format (however, the R1 850 and 700 hPa GPH anomalies are 

very similar to each other).   In this case, CFS correctly forecasted a positive 

GPH anomaly over south Asia.  Similarly, accurate LRFs of 700 hPa GPH were 

also issued at other lead times out to about six months (not shown).  These 

accurate LRFs are indicative of the relatively good skill of CFS in LRFs of 

regional scale height anomalies (cf. Saha et al, 2006).  These results indicate a 



 69

potential for viable LRFs of Jul-Aug Pakistan PR based on a statistical-dynamical 

approach, as discussed in the following section. 

 

Figure 28.    NCEP CFS forecast of Aug 2010 700 hPa GPH at a two-month lead 
(m, left panel) and verifying NCEP reanalysis of Aug 2010 700 hPa 
GPH (m, right panel).  Note that CFS accurately forecasted the 
positive GPH anomaly over southern Asia (red oval).   

3. Statistical-Dynamical Approach 

The third LRF approach we investigated was a statistical-dynamical (S-D) 

approach.  In brief, an S-D approach combines the statistical and dynamical 

approaches described in the previous two sections.  The S-D approach has 

potential to be the most skillful, as it would exploit the strengths of the statistical 

and dynamical approaches, and use the strengths of each approach to 

compensate for the weaknesses of the other method (cf. Mundhenk 2006).  For 

example: (a) the problems that the dynamical approach has in LRFs of sub-

regional PR anomalies would be balanced by the skill of the statistical approach 

in GPH based zero lead forecasts of those anomalies; and (b) the skill of the 

dynamical approach in LRFs of GPH would compensate for the problems that the 

statistical approach has with GPH based non-zero lead LRFs of PR anomalies.  

Figure 29 summarizes the basic methodology behind the S-D approach. 
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Figure 29.   Overview of a statistical-dynamical system for producing LRFs of Jul-
Aug Pakistan PR.  (After Murphree 2010b) 

The basic framework of the S-D approach is to use a dynamical model 

(e.g., CFS) to produce skillful LRFs of an environmental variable (e.g., 850 hPa 

GPH) at one to six month leads, and then use those LRFs to force a statistical 

model that produces zero lead forecasts of the desired predictand (e.g., Pakistan 

PR).  Figure 30 summarizes two potential variations of the S-D approach for 

producing LRFs of Jul-Aug Pakistan PR.  Figure 30a describes the process of: 

(a) using CFS to forecast 850 hPa GPH (in our PPSI predictor boxes) at lead 

times of one to six months; then (b) plugging those values into a regression 

model (i.e., PPSI) at zero lead to forecast Pakistan PR.  Figure 30b adds a 

degree of difficulty by: (a) using CFS to forecast SST at lead times of four to six 

months; then (b) employing a two-step statistical model in which (1) the predicted 

SST is used as a predictor in a linear regression model to forecast 850 hPa GPH 

at lead times of one to three months and (2) the predicted GPHs are used as a 

predictors in a regression model (i.e., PPSI) at zero lead to forecast Pakistan PR.   
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Figure 30.   Two potential variations of the S-D approach to producing LRFs of 
Jul-Aug Pakistan PR.  (a) At leads of 1–6 months, use a dynamical 
model (e.g., CFS) to predict 850 hPa GPH in Jul-Aug, then use the 
predicted GPH to force a regression model that predict Jul-Aug 
Pakistan PR. (b) At leads of 4–6 months, use a dynamical model 
(e.g., CFS) to predict SST at leads of 1–3 months, then use the 
predicted SST as the predictor in a regression of 850 hPa GPH in 
Jul-Aug, and then use the predicted GPH in a regression to predict 
Jul-Aug Pakistan PR.  

The S-D approach in Figure 30a has potential because: (a) CFS has 

already demonstrated relatively good skill in predicting GPH (see previous 

section); and (b) we have demonstrated statistical skill in using GPH to forecast 

Pakistan PR via regression in this study.  The S-D approach in Figure 30b is 

more complex and difficult to implement.  However, it may be needed if the 

longer lead LRFs shown in Figure 30a have low skill (e.g., the six month or 

longer lead LRFs of SST).  The Naval Postgraduate School is presently using an 

S-D model to produce skillful LRFs for tropical cyclone formations in the western 

North Pacific at lead times out to 90 days and longer, which the CPC is using in 

its operational products (Mundhenk 2006, Murphree 2010b).   
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IV. CONCLUSION AND RECOMMENDATIONS 

A. SUMMARY AND KEY RESULTS 

This study explored the viability of using advanced climate datasets and 

methods to skillfully forecast atmospheric conditions at long lead times, in order 

to enhance the planning processes of both DoD and non-DoD organizations.  We 

stressed the vulnerability and sensitivity that Pakistan has demonstrated to 

extreme climate events, and the significant threats these events pose to: (a) the 

political and economic stability of Pakistan; and (b) U.S. national security 

interests.  We chose to focus on Pakistan due to its significance to both: (a) 

geopolitical and national security affairs; and (b) U.S. military operations.  

We specifically investigated the potential for improving long-range 

forecasts (LRFs) of extreme precipitation events in Pakistan during the summer 

monsoon (Jul-Aug).  Our objectives in this study were to:  

1. Understand the physical processes that lead to anomalous summer 
precipitation events in Pakistan.  

 
2. Develop and test methods for forecasting anomalous summer 

precipitation events in Pakistan.  
 
3. Develop the basic research foundation for skillful operational LRFs 

at the intraseasonal and longer lead times needed for effective 
planning by military and nonmilitary organizations.  

 

Based on the criteria outlined in Chapter I, we chose a customized 

predictand region within Pakistan for our focus as we developed our long-range 

forecasting methods for precipitation. We generated composite means and 

anomalies of a wide range of climate variables to better understand the patterns 

and processes associated with extreme PR events in Pakistan.  We investigated 

the correlations of these climate variables (e.g., SST and GPH) with Pakistan PR 

to identify teleconnections that influence anomalous precipitation.  We 

discovered high correlations of 850 hPa GPH with Pakistan PR at zero lead, 
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indicating the potential skill of this variable as a predictor.  We found several 

regions surrounding Pakistan where 850 hPa GPH showed high correlation with 

Pakistan PR including the Red Sea, the Caspian Sea, and Nepal.  We performed 

a multivariate linear regression to assess the statistical significance of the 

potential predictors in each of these regions, and consequently were able to 

eliminate excess and insignificant predictors.  We were left with 850 hPa GPH in 

specific portions of the Red Sea and Nepal regions as our final predictors.  We 

assigned appropriate weights to each of these predictors based on their 

respective regression coefficient and combined them in a single index that we 

classified as our sole predictor of Pakistan PR, which we named the Pakistan 

Summer Precipitation Index, or PSPI.   

We then performed tercile matching hindcasts and verified those 

hindcasts to assess the skill of our regression model of the predictor-predictand 

relationships.  We also applied the optimal climate normals (OCN) approach of 

emphasizing the trends of recent years.  Using the OCN method, we discovered 

a new set of predictors that potentially has better skill for the 2000–2010 period 

when compared to our results for the entire 1970–2010 study period.  We 

developed another index based on just the 2000–2010 period that we called the 

Updated PSPI (UPSPI).  These are the formulas for the two indices: 

PSPI = (0.07 x Nepal West 850 hPa GPH Anomaly)  

+ (-0.07 x Red Sea 850 hPa GPH Anomaly) 

 

UPSPI = (0.19 x Nepal West 850 hPa GPH Anomaly)  

+ (0.11 x Caspian 850 hPa GPH Anomaly)  

+ (-0.16 x Afghan 850 hPa GPH Anomaly) 

We then repeated our hindcasts and hindcast verification using both PSPI 

and UPSPI as predictors for 1970–2010 and 2000–2010.  We found that the 

PSPI was the best predictor for 1970–2010, and that the results were mixed for 

2000–2010.  We concluded that the PSPI is the best choice for forecasting  
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Pakistan PR, and that more years of data are required to adequately assess the 

merits of the UPSPI.  We found that SST has potential as a predictor of the PSPI 

at leads of zero to six months. 

We concluded the study by providing recommendations on how to 

incorporate our findings into a forecast system for Pakistan PR.  We briefly 

examined case studies for the forecast approaches that we suggested 

considering: (a) a direct statistical approach; (b) a direct dynamical approach; 

and (c) a statistical-dynamical (S-D) approach.  We determined that the direct 

statistical approach and the S-D approach are both physically plausible and have 

the potential produce skillful LRFs.  We determined that the direct dynamical 

model probably has limited potential for direct LRFs of Jul-Aug Pakistan PR.  We 

expect that further development of these approaches will achieve our final 

objective of creating timely and accurate LRFs for summer precipitation in 

Pakistan. 

B. RECOMMENDATIONS FOR FUTURE RESEARCH 

We have provided compelling evidence that climate analyses and long-

range forecasts based on advanced climate datasets and methods can provide 

immediate and relatively low cost improvements support to both military and 

nonmilitary planners.  This section emphasizes some topics that we recommend 

be pursued in the near future to ensure that our findings will be implemented into 

operational LRF processes and operational planning. 

1. Conduct further research on the dynamic processes that underlie 

Pakistan precipitation climate variations.  While we developed a basic 

understanding of the relationships between 850 hPa GPH and Pakistan PR, this 

is clearly a difficult problem driven by complex dynamical relationships.  A better 

understanding of these relationships will help in developing and testing potential 

LRF systems. 

2. Apply the same LRF data sets and methods to: (a) the other 

Pakistan precipitation predictand regions; and (b) other potential predictand 
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variables (e.g., surface temperature and winds); and (c) other potential 

predictors.  Expanding these methods to the other predictand regions will create 

a better sense of how climate variations affect the whole of Pakistan. 

3. Conduct future studies (and/or a repeat of this study) using the 

updated CFSR and CFS data sets.  NOAA has recently introduced upgrades to 

these products that were not available for the majority our study. The main 

benefit is that the data is now available in 0.5° resolution as opposed to the 2.5° 

resolution used for our study. 

4. Document correlations of 850 hPa GPH with Jul-Aug Pakistan PR 

for succeeding years.  We highlighted in Chapter III, Section B.4 that our results 

based on the correlations in 2000–2010 were still inconclusive.  If the correlations 

in the next several years continue to diverge from those for the pre-2000 years, 

then other predictors may need to be considered. 

5. Continue to work toward a skillful non-zero lead LRF system for 

Pakistan.  The statistical and statistical-dynamical approaches we proposed have 

considerable potential to produce skillful LRFs.  We expect that further research 

and expansion of these approaches will lead to a skillful LRF system for Pakistan 

in the very near future. 
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