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We demonstrate that the diffusion currents do not depend only on gradients of their corresponding
charge density, but that the different diffusion charge currents are coupled. This happens in such a way that
it is possible for density gradients of a given charge to generate dissipative currents of another charge.
Within this scheme, the charge diffusion coefficient is best viewed as a matrix, in which the diagonal terms
correspond to the usual charge diffusion coefficients, while the off-diagonal terms describe the coupling
between the different currents. In this Letter, we calculate for the first time the complete diffusion matrix for
hot and dense nuclear matter, including baryon, electric, and strangeness charges. We find that the baryon
diffusion current is strongly affected by baryon charge gradients but also by its coupling to gradients in
strangeness. The electric charge diffusion current is found to be strongly affected by electric and
strangeness gradients, whereas strangeness currents depend mostly on strange and baryon gradients.
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Introduction.—Ultrarelativistic hadronic collisions, per-
formed in the largest particle accelerators, allow us to study
the properties of hot and dense hadronic and quark matter.
These experiments have played a crucial role in uncovering
novel transport properties of the quark-gluon plasma
(QGP), the state of nuclear matter in which quarks and
gluons are no longer confined inside hadrons. In particular,
several phenomenological studies [1–8] demonstrated that
the QGP has one of the smallest shear viscosity to entropy
density ratios in nature—a surprising result that is still not
well understood from first principles. Additional studies
[4,9–14] have also improved our understanding of the bulk
viscosity, unravelling novel behavior near the deconfine-
ment transition of nuclear matter. Recently, much attention
was paid to the electric conductivity; several studies on the
lattice [15–17], in perturbative QCD [18–20] and effective
theories [21–23] have been carried out.
On the other hand, at this stage, very little is known about

net-charge diffusion in hot and dense nuclear matter. This is
due to the fact that in high energy heavy ion collisions the
net-charge density of the matter produced is extremely
small in almost all space-time points, and it becomes very
difficult to observe any dissipative effects due to diffusion
[24]. Recently, the Relativistic Heavy-Ion Collider (RHIC)
started to perform hadronic collisions at lower energies

within the beam energy scan (BES) program in order to
investigate the phase diagram and transport properties of
nuclear matter at finite net-baryon (and net-electric charge)
density [25–27]. At beam energies down to, e.g.,

ffiffiffiffiffiffiffiffi
sNN

p ¼
7.7 GeV in the RHIC BES, the baryon chemical potential
can reach values up to μB ∼ 400 MeV which is significant
compared to the temperatures that are reached [28,29], and
strong gradients in the chemical potential of conserved
charges are expected. Therefore, one can expect that low
energy collisions are particularly useful to explore the
properties of net-charge diffusion of nuclear matter that
were out of reach in higher energy collisions.
In relativistic Navier-Stokes-Fourier theory, a net-charge

(q) diffusion 4-current, jμq, is determined by the following
constitutive relation,

jμq ¼ κq∇μαq; ð1Þ

where αq ≡ μq=T is the thermal potential, with μq being the
charge chemical potential, T the temperature, and κq the
corresponding net-charge diffusion coefficient. We further
defined the transverse gradient ∇μ ≡ Δμν∂ν and the pro-
jection operator Δμν ≡ gμν − uμuν, where uμ is the local
fluid velocity and gμν the space-time metric. We remark that
this relativistic constitutive relation also includes the effects
of heat flow.
However, we emphasize that Eq. (1) cannot be employed

to describe diffusion processes in the presence of more than
one conserved charge. This is exactlywhat happens inmatter
produced in heavy ion collisions, in which we must always
consider at least three conserved charges: baryon number
(B), electric charge (Q), and strangeness (S). Since several
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hadrons (and quarks) carry more than one of these charges, it
is not possible for one type of charge to diffuse independently
of any other, leading to a mixing between the diffusion
currents, with gradients of every single charge density being
able to generate a diffusion current of any other charge. The
most general expression for the diffusion current then is0

BB@
jμB
jμQ
jμS

1
CCA ¼

0
BB@

κBB κBQ κBS

κQB κQQ κQS

κSB κSQ κSS

1
CCA ·

0
BB@

∇μαB

∇μαQ

∇μαS

1
CCA; ð2Þ

with the diffusion coefficient being a matrix instead of a
number κqq0. Therefore, in order to describe diffusion
processes in heavy ion collisions, it is not sufficient to
simply know the usual baryon, electric, and strangeness
diffusion coefficients, i.e., the diagonal terms in the matrix
κBB; κQQ; κSS. Onemust also calculate the off-diagonal terms
or couplings terms κQB; κSB; κSQ (it is sufficient to calculate
only these three off-diagonal terms since Onsager’s theorem
[30,31] guarantees that the diffusionmatrix is symmetric, see
also Ref. [32]).
The dynamics of the thermal potentials αB, αS, and αQ and

their respective currents in heavy ion collisions is currently
not well known. It is expected that the influence of diffusion
currents on the hydrodynamical evolution of the net-charge
currents can be very pronounced at lower collision energies,
leading to significant effects on certain observables [24].
However, this cannot be properly investigated without first
understanding the order of magnitude of the cross-diffusion
effects discussed above. In this Letter, we derive from kinetic
theory the generalized expression for the diffusion current
shown in Eq. (2) and calculate for the first time the complete
charge diffusionmatrix for the three charges listed above.We
perform this task for a hadron resonance gas (HRG) and for a
kinetic theory toy model of the QGP. In contrast to previous
work [22], we disregard any external field. We find that the
coupling terms, currently neglected in all heavy ion collision
simulations, can be as large as the diagonal terms, and
consequently, these simulations may be missing crucial
ingredients. Furthermore, it may not be a good approximation
to perform simulations including only the dynamics of one
charge since its gradientswill necessarily give rise to diffusion
currents of the remaining charges. We use natural units ℏ ¼
c ¼ kB ¼ 1 and Minkowski metric gμν ¼ ð1;−1;−1;−1Þ.
First order Chapman-Enskog expansion.—We consider

a dilute gas consisting of Nsp particle species (either
hadrons or quarks and gluons), with the ith particle species
having degeneracy gi, electric charge Qi, strangeness
charge Si, baryonic charge Bi, and 4-momentum kμi . The
state of the system is characterized by the single-particle
momentum distribution function of each particle species
fiðx; kÞ≡ fik, with the time evolution of fik being given by
the relativistic Boltzmann equation.
The single-particle distribution of each particle species is

expanded in a Chapman-Enskog series, i.e., in a gradient

expansion [33,34]. In this case, the Boltzmann equation is
written as

ϵkμi ∂μfik ¼ −
XNsp

j¼1

Cijðxμ; kμÞ; ð3Þ

with Cijðxμ; kμÞ being the collision term and ϵ a book-
keeping parameter that will be set to 1 at the end of the
calculation. The Chapman-Enskog expansion is just an
expansion in powers of ϵ, fik ∼ fi0k þ ϵfi1k þ ϵ2fi2k þ � � �,
where fijk is the jth order solution of the expansion. The
zeroth order solution of this series is the local equilibrium
distribution function, leading to the equations of ideal fluid
dynamics, while the first order solution contains terms that
are of first order in gradients of velocity, temperature, and
chemical potential, leading to the equations of relativistic
Navier-Stokes theory and the diffusion equation [33,34].
For the purposes of this Letter, it is sufficient to calculate
the first order contribution, which is the order that deter-
mines the diffusion coefficients. Without loss of generality,
we only retain the terms of the expansion that contribute
directly to the diffusion terms, omitting all others that
contribute to shear and bulk viscosity.
The equation for the first order Chapman-Enskog cor-

rection will then be

−
XNsp

j¼1

Ĉð1Þ
ij f1k ¼

X
q∈fB;Q;Sg

fi0kk
μ
i∇μαq

�
Ei;knq
ϵ0þP0

−qi

�
; ð4Þ

where Ĉð1Þ
ij is the linearized collision operator,

Ĉð1Þ
ij f1k ¼

Z
k0pp0

Wij
kk0−pp0fi0kf

j
0k0

×

�
fi1p
fi0p
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1p0

fj
0p0

−
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−
fj
1k0

fj
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�
; ð5Þ

with Wij
kk0→pp0 ¼ð1−δij=2Þð2πÞ6sσijðs;θÞδð4Þðpiþp0

j−ki−
k0jÞ being the scattering amplitude, σijðs; θÞ the differential
cross section, and abbreviation

R
ki
≡ R

d3ki=½ð2πÞ3Ei;k�.
For the sake of simplicity, we only consider elastic 2 ↔ 2
collisions between hadrons or quarks and employ classical
statistics.
This equation can be solved following the well known

procedure outlined in [22,35]. Since the collision operator

Ĉð1Þ
ij is linear, the solution for f1k must be of the general

form fi1k ¼ P
qa

i
qk

μ
i∇μαq, where the coefficient aiq is a

function of the energy in the local rest frame Ei;k ≡ uμk
μ
i .

Next, one expands aiq in powers of energy fi1k ¼P
qk

μ
i∇μαq

P
M
m¼0 a

i
q;m ðEi;kÞm, where the integer M char-

acterizes the truncation of the Taylor series. Finally, one
substitutes this expansion into Eq. (4), multiplies the
equation by the nth basis element of the expansion
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Δμ
νkνi ðEi;kÞn, and integrates it in momentum space. This

leads to the following equation for the expansion coef-
ficients ajq;m:

XM
m¼0

XNsp

j¼1

ðAi
nmδ

ij þ Cij
nmÞajq;m ¼ biq;n; ð6Þ

where we defined

biq;n ¼
Z
ki

fi0k

�
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− qi

�
En−1
i;k Δμνk

μ
i k

ν
i ;

Ai
nm ¼

XNsp:

j¼1

Z
kik0jpip0

j

Wij
kk0→pp0fi0kf

j
0k0En−1

i;k

× Δμνk
μ
i ðEm

i;pp
ν
i − Em

i;kk
ν
i Þ;

Cijnm ¼
Z
kik0jpip0

j

Wij
kk0→pp0fi0kf

j
0k0En−1

i;k

× Δμνk
μ
i ðEm

j;p0p0
j
ν − Em

j;k0k0j
νÞ: ð7Þ

In this work, the expansion in powers of energy is
truncated at the lowest level possible by setting M ¼ 1.
This assumption is mainly employed to simplify the
numerical calculations we perform. Nevertheless, we have
checked, in simpler examples solved using constant cross
sections, that higher truncation values lead to only small
corrections to the diffusion coefficients, as was also
demonstrated in previous work [22,35] for other transport
coefficients.
The qth charge diffusion current is given as

jμq ¼
XNsp

i¼1

qi

Z
d3ki

ð2πÞ3Ei;k
Δμ

νkνi f
i
1k: ð8Þ

Substituting the expansion for fi1k into Eq. (8) and
comparing to Eq. (2) leads to the following expression
for the diffusion coefficients:

κqq0 ¼
1

3

XNsp

i¼1

qi
XM
m¼0

aiq0;m

Z
ki

Em
i;kΔμνk

μ
i k

ν
i f

i
0k: ð9Þ

Therefore, calculating κqq0 is reduced to evaluating the
integrals in Eq. (7) and then solving the set of linear
equations satisfied by aiq0;m in Eq. (6). Both these tasks are
performed numerically.
In order to perform these numerical calculations, one has

to first specify the differential cross sections describing the
particle interactions. Our goal in this Letter is to provide a
first estimate for the cross-diffusion coefficients, providing
some intuition on how large they can be when compared to
the traditional diagonal terms. For this purpose, it is
sufficient to employ a simple, but reliable, model in which

we only consider elastic, isotropic (s-wave) scattering,
employing all available

ffiffiffi
s

p
dependent cross sections from

Ref. [36], as shown in Fig. 1. Due to the lack of
experimental data, we assume all missing hadronic cross
sections to be constant, as done, for example, in hadronic
transport models [37–39]. The hyperon cross sections thus
take constant values between 3–35 mb.
We also make a first estimate of the diffusion coefficients

of the QGP. For this purpose, we assume three flavors of
massless quarks and gluons and choose a unique total cross
section σtot in such a way that the shear viscosity to entropy
density ratio is fixed to be η=s ¼ 1=ð4πÞ, leading to σtot ≈
0.72=T2 [40,41]. Further details on the choice of the cross
sections will be presented in a forthcoming publica-
tion [42].
Results.—We first remark that we checked that Onsager’s

theorem [30,31], which imposes that κqq0 ¼ κq0q, is fulfilled
in all our calculations. We display our results for the
diffusion coefficient matrix from Eq. (9) in Fig. 2 for
μB ¼ 0; 300; 600 MeV. We fix μQ and μS such that we
always retain an exact Isospin symmetry and vanishing net
strangeness since this is what approximately occurs in
heavy ion collisions [43,44]. For illustrative purposes, we
show the HRG results below T ¼ 160 MeV and the QGP
results above this temperature. [We also want to relate the
magnitude of the hadronic results to phenomenological
models (e.g., hydrodynamics) which successfully operates
often with fixed η=s.] We also compare here to the
nonconformal holographic results from Ref. [21,23] since
these results are the only ones in the literature that contain
all three diagonal coefficients. See Ref. [45] for, i.e., a
calculation of the strangeness diffusion coefficient. To the
best of our knowledge, the off-diagonal coefficients have
never been calculated before in any model.
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FIG. 1. Tabulated hadronic cross sections over
ffiffiffi
s

p
from

Ref. [36] we used for the Pion-Kaon-Nucleon-Lambda-Sigma
gas. The grey bars denote the minimal

ffiffiffi
s

p
of the particular

scattering process. The combinations which are not listed here are
assumed to be constant [37–39].
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At this point we remark, that the relativistic kinetic
theory which we employ here constitutes an effective
model, which is (for temperatures below the phase tran-
sition) well in its range of applicability (following the
reasoning of very successful transport models such as
UrQMD [38], PHSD [46,47], GiBUU [37], B3D [48], or
SMASH [49]). Above the phase transition, kinetic theory is
perhaps less reliable, but we nevertheless show our results
since first principles calculations are not available for most
of the coefficients we calculate.
First we note that the HRG results are much richer in

their T and μB dependence because of the multitude of
scales involved here (masses and resonances). In contrast,
the simple choice of a constant η=s in the QGP leads to the
expected flat behavior for all coefficients [20] (it is known
that a running strong coupling lets the coefficients increase
for higher T in the QGP, see, e.g., Refs. [15,18]). We note
that only κQB vanishes at μB ¼ 0 due to the common cross
section and the symmetry of the B and Q charges (quarks
[B ¼ 1=3] of different flavors carry positive or negative
electric charge). At higher μB, we see that these coefficients
are found to be generally smaller in the QGP phase than
they are in the hadronic phase (κSQ being the exception).
This surprising behavior will be investigated in more detail
in a forthcoming paper [42].
For the baryon diffusion current jμB, we expect a strong

dependence on both μB and T, and indeed, this can be seen
from the functional behavior of the coefficient κBB in Fig. 2.
For μB ≲ 300 MeV, this coefficient rises rapidly with

increasing temperature as the system is less meson domi-
nated at higher temperatures and mesons act purely as a
resistance for the diffusion of baryons. This effect is also
visible in the off-diagonal coefficients −κSB and κQB.
Comparing κQB to κBB, in Fig. 2, we infer that the electric
charge gradients contribute to the baryon diffusion current
about an order of magnitude less than the baryonic
gradients. We conclude that in practice the baryon-electric
charge coupling may well be neglected. In contrast,
gradients in strangeness can be as important as gradients
in the baryon charge, as can be seen in the bottom right
panel from the magnitude of the coefficient −κSB, which is
similar in magnitude to κBB. We remark that this is due to
the hyperons, which carry both B and S charge. The
negative sign of κSB indicates that gradients in strangeness
act to reduce the baryon current.
We now discuss the coefficients κQQ; κSQ; κQB, which

characterize the diffusion of electric charges (at μB ¼ 0,
κQQ=T2 is equal to the electric conductivity σel=T). We see
that κQQ=T2 decreases with temperature and for increasing
values of μB. This happens because the particle density grows,
but the ratio of charged to uncharged species stays the same.
The small ratio κQB=κQQ indicates the little importance of
baryon chemical potential gradients to the electric diffusion
current, whereas κSQ is (for T ≳ 100 MeV) of the same order
of magnitude as κQQ, indicating that strangeness gradients
contribute significantly to the electric diffusion current.
Looking at the diffusion coefficients related to strange-

ness diffusion, we find that κSS is larger than both −κSB and
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10-1

100 κBB/T2 κQQ/T2

holography:
μB =     0 MeV
μB = 300 MeV

κSS/T2
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100 200

κQB/T2

HRG:
μB =     0 MeV
μB = 300 MeV
μB = 600 MeV

100 200

κSQ/T2

T [MeV]

QGP:
μB =     0 MeV
μB = 300 MeV
μB = 600 MeV

100 200

-κSB/T2

FIG. 2. All diffusion coefficients for baryon, electric, and strangeness diffusion. The hadronic results include resonance cross sections
of the lightest 19 hadronic species, whereas the QGP uses massless quarks and gluons with fixed 4πη=s ¼ 1. For illustrative purposes,
we show the hadron resonance gas results for T ≤ 160 MeV and above that the QGP calculation. We compare to holographic results
from Ref. [21,23].
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κSQ, being even larger in magnitude than the baryon
diffusion coefficient (except for very small values of
temperature). However, we find that baryonic gradients
act to significantly reduce strangeness currents in both the
QGP and HRG since κSB is negative and its magnitude is
only about a factor 2 smaller than κSS. Therefore, it is
possible that cancellation effects due to coupling between
the currents can lead to small strangeness diffusion cur-
rents. On the other hand, κSQ is about an order of magnitude
smaller than κSS, indicating that electric gradients are less
important for strangeness transport. We remark that the μB
dependence of κSS; κQQ, and κSQ is very weak; however,
their dependence on μQ and μS can behave differently. This
dependence will be addressed in a future publication.
The holographic results from Refs. [21,23] match ours at

high T (conformal limit). Their μB dependence for the
diagonal coefficients is as weak as for our QGP results. It is
interesting how a simple kinetic calculation, that simply
fixes η=s ¼ 1=4π, is already capable of reproducing the
basic trends of such holographic calculations. It would be
interesting to see whether this holds for the off-diagonal
coefficients.
Conclusion.—We propose that diffusion processes in

heavy ion collisions must be described not only by a
diffusion coefficient of each conserved charge but also by a
diffusion coefficient matrix, which describes how diffusion
of different conserved charges couple to each other. We
have calculated for the first time the complete diffusion
coefficient matrix for the conserved baryon, electric, and
strange charges for a hot hadron resonance gas (19 massive
species) and QGP (fixed η=s) using kinetic theory. These
six transport coefficients include the three off-diagonal
transport diffusion coefficients κQB; κSB, and κSQ, which
describe the mixing between the different charge currents.
The diffusion coefficients can be readily used in, for

example, hydrodynamic simulations or other model
descriptions of high density heavy ion collisions. Those
models are and will be increasingly important for low
energy and high density experiments like RHIC BES,
NICA, or FAIR, where research has just begun.
Our results emphasize that the mixing between

different diffusion currents is important and should not
be neglected when simulating low energy heavy ion
collisions. For example, the contribution to the baryon
diffusion current from gradients of baryon number density
can be almost completely canceled by gradients in strange-
ness of comparable magnitude, whereas we found electric
gradients to be almost negligible for baryon transport.
Electric diffusion is mainly driven by electric and strange-
ness gradients. Strangeness diffusion is mostly affected by
strangeness and baryon number gradients. The relevance of
these effects for experimental observables remains to be
investigated.
It would be desirable to compare our results to, for

example, lattice QCD results (which at present are only

available for the electric conductivity). All coefficients
should also be accessible from hadronic transport models or
other dynamical approaches.
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