
Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2019-06

A CASE FOR SOFTWARE-DEFINED

NETWORKING IN THE UNITED STATES MARINE

CORPS: AUTOMATING DISTRIBUTED FIREWALLS

Logan, Brent E.

Monterey, CA; Naval Postgraduate School

http://hdl.handle.net/10945/62815

Downloaded from NPS Archive: Calhoun

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

A CASE FOR SOFTWARE-DEFINED NETWORKING IN
THE UNITED STATES MARINE CORPS: AUTOMATING

DISTRIBUTED FIREWALLS

by

Brent E. Logan

June 2019

Thesis Advisor: Geoffrey G. Xie
Second Reader: Justin P. Rohrer

Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction
Project (0704-0188) Washington, DC 20503.
 1. AGENCY USE ONLY
(Leave blank) 2. REPORT DATE

 June 2019 3. REPORT TYPE AND DATES COVERED
 Master's thesis

 4. TITLE AND SUBTITLE
A CASE FOR SOFTWARE-DEFINED NETWORKING IN THE UNITED
STATES MARINE CORPS: AUTOMATING DISTRIBUTED FIREWALLS

 5. FUNDING NUMBERS

 6. AUTHOR(S) Brent E. Logan

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

 8. PERFORMING
ORGANIZATION REPORT
NUMBER

 9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES)
N/A

 10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

 11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.
 12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited. 12b. DISTRIBUTION CODE

 A
13. ABSTRACT (maximum 200 words)
 Software Defined Networking (SDN) is a field in computer science that has seen rapid adoption in
industry and academia. SDN reduces network administration and cost, empowers fine grain network control,
and enables programmability and innovation in a relatively stagnant area of computer science. In this
research, we make a case for more rapid adoption of software defined network (SDN) technology in the
DoD by demonstrating that distributed firewall operation can be virtualized, automated, and assured of
security properties with SDN. Specifically, we have developed and evaluated a distributed firewall
application within the standard ONOS SDN control platform. The application enforces access control
between arbitrary end points and intelligently distributes processing of filter rules across network devices,
even after the network topology changes. The test bed evaluation results confirm the reachability control
performance and show that the application and virtual switches built upon commodity computers are capable
of handling more than 50,000 filter rules. The automated distributed firewall is a viable proof of concept that
provides flexibility and improved security in a world where ubiquitous, ad hoc, and zero-trust networking
are becoming the new normal. Lastly, we provide an acquisition heuristic for purchasing and fielding SDN
solutions to the Marine Corps’ operating forces.

 14. SUBJECT TERMS
software defined networking, firewall, distributed firewall, acquisition, United States Marine
Corps, networking, information technology, programmable networks, hybrid networks,
tactical networks, ubiquitous networking, reachability control, flow control, network
segmentation, automation, ad hoc networking, Zero Trust, network segmentation

 15. NUMBER OF
PAGES
 147
 16. PRICE CODE

 17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

 18. SECURITY
CLASSIFICATION OF THIS
PAGE
Unclassified

 19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

 20. LIMITATION OF
ABSTRACT

 UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release. Distribution is unlimited.

A CASE FOR SOFTWARE-DEFINED NETWORKING IN THE UNITED
STATES MARINE CORPS: AUTOMATING DISTRIBUTED FIREWALLS

Brent E. Logan
Major, United States Marine Corps

BS, U.S. Naval Academy, 2008

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 2019

Approved by: Geoffrey G. Xie
 Advisor

 Justin P. Rohrer
 Second Reader

 Peter J. Denning
 Chair, Department of Computer Science

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

 Software Defined Networking (SDN) is a field in computer science that has seen

rapid adoption in industry and academia. SDN reduces network administration and cost,

empowers fine grain network control, and enables programmability and innovation in a

relatively stagnant area of computer science. In this research, we make a case for more

rapid adoption of software defined network (SDN) technology in the DoD by

demonstrating that distributed firewall operation can be virtualized, automated, and

assured of security properties with SDN. Specifically, we have developed and evaluated a

distributed firewall application within the standard ONOS SDN control platform. The

application enforces access control between arbitrary end points and intelligently

distributes processing of filter rules across network devices, even after the network

topology changes. The test bed evaluation results confirm the reachability control

performance and show that the application and virtual switches built upon commodity

computers are capable of handling more than 50,000 filter rules. The automated

distributed firewall is a viable proof of concept that provides flexibility and improved

security in a world where ubiquitous, ad hoc, and zero-trust networking are becoming the

new normal. Lastly, we provide an acquisition heuristic for purchasing and fielding SDN

solutions to the Marine Corps’ operating forces.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

Table of Contents

1 The Resurgence of Great Power Competition 1
1.1 Problem Statement. 3
1.2 Research Questions . 4
1.3 Thesis Organization . 5

2 Background 7
2.1 Software Defined Networks . 7
2.2 Hybrid SDN . 14
2.3 Firewalls. 15
2.4 Distributed Firewalls . 17
2.5 Mininet Emulation Tool. 17
2.6 USMC Networking Technology and Policy 18
2.7 Related Work . 23

3 Experimentation 25
3.1 Design of Experiments . 25
3.2 Marine Corps Infantry Task Organization. 35
3.3 Experiment 1: Validation and Stress Test 36
3.4 Experiment 2: Infantry Regiment Testing 41
3.5 Experiment 3: Hybrid Network Evaluation 44
3.6 Recap . 46

4 Findings 47
4.1 Experiment 1: Validation and Stress Test 47
4.2 Experiment 2: Infantry Regiment Testing 58
4.3 Experiment 3: Hybrid Network Evaluation 72
4.4 Summary . 79

5 Conclusion and Future Work 81

vii

5.1 Conclusions . 81
5.2 Limitations and Future Work. 83
5.3 Closing Remarks . 84

Appendix: Literary Review, SDN Software, and Source Code 85
A.1 SDN Literary Review . 85
A.2 Open Network Operating System, Mininet, and Open vSwitch 85
A.3 Distributed Firewall Command Line Class 86
A.4 Distributed Firewall Graph Class 99
A.5 Distributed Firewall Dijkstra Class 101
A.6 Access Control List Rule Generator 103
A.7 Mininet Custom Topologies . 103
A.8 Experiment Automation Shell Scripts 107
A.9 Experiment Analysis Code . 111

List of References 117

Initial Distribution List 125

viii

List of Figures

Figure 1.1 Competition-Conflict Spectrum for theMilitaryDimension of Power.
Source: [10] . 2

Figure 2.1 View of the Management, Control, and Data Planes. Source: [14] 9

Figure 2.2 View of SDN Architecture and Abstractions. Source: [14]. . . . 12

Figure 2.3 Example Hybrid Network Software Defined Network (SDN) . . . 15

Figure 3.1 Ford Fulkerson Method: Edmonds-Karp Variation. Source: [57] 28

Figure 3.2 Sample Flow Network (Directed Graph) with Max FlowMin Cut Set
Calculated. Source: [59] . 29

Figure 3.3 Relax(u, v, w) Pseudocode. Source: [57] 30

Figure 3.4 Di jkstra(G, w, s) Algorithm Pseudocode. Source: [57] 30

Figure 3.5 Undirected Graph Converted from a Directed Graph, from Source:
[59], with Max Flow Min Cut Set Calculated. 31

Figure 3.6 Distributed Firewall Program Code 34

Figure 3.7 Task Organization of Marine Infantry Battalions and Regiments.
Source: [64] . 35

Figure 3.8 Experiment 1: 2 x 2 Tree Topology with Three Network Devices 37

Figure 3.9 Experiment 1: Rule Installation Process and Timing 39

Figure 3.10 ONOS Client URL (cURL) Request With Deny Rule. 39

Figure 3.11 Experiment 2: Homogeneous SDN Infantry Regiment Topology . 42

Figure 3.12 Experiment 3: Homogeneous SDN Infantry Battalion Topology with
Seven Network Devices . 45

Figure 3.13 Experiment 3: Heterogeneous SDN Infantry Battalion Topology
with Seven Network Devices 45

ix

Figure 4.1 Experiment 1: Firewall Invocation 49

Figure 4.2 Experiment 1: Average Per Rule Installation Time Comparisons . 51

Figure 4.3 Experiment 1: Linear Regression of Average Rule Installation Time
Over All Tests . 51

Figure 4.4 Experiment 1: Overall Delay Test Comparison 52

Figure 4.5 Experiment 1: Overall Delay with Linear Regression 52

Figure 4.6 Experiment 1: Iperf TCP Throughput Test Comparison 54

Figure 4.7 Experiment 1: Iperf TCP Throughput with Linear Fit 54

Figure 4.8 Experiment 1: CPU Utilization per Test Comparison 56

Figure 4.9 Experiment 1: CPU Utilization with Linear Regression 56

Figure 4.10 Experiment 1: Triangle Topology for Link Change Detection . . 58

Figure 4.11 ONOS Point to Point Intent cURL 59

Figure 4.12 Experiment 2: Baseline Test: Host 1 to Host 6 Data 61

Figure 4.13 Experiment 2: Baseline Test: Host 2 to Host 5 Data 61

Figure 4.14 Experiment 2: Random Adjacent Link Establishment Test: Host 1
to Host 6 Regression Data . 64

Figure 4.15 Experiment 2: Random Adjacent Link Establishment Test: Host 2
to Host 5 Data . 64

Figure 4.16 Experiment 2: Random Core Link Loss Test: Host 1 to Host 6
Regression Data . 66

Figure 4.17 Experiment 2: Random Core Link Loss Test : Host 2 to Host 5 Data 67

Figure 4.18 Experiment 2: Intent and Distributed Firewall Shortest Path : Host
1 to Host 6 Scatter-plot. 69

Figure 4.19 Experiment 2: Intent and Distributed Firewall Shortest Path : Host
1 to Host 6 CDF. 69

Figure 4.20 Experiment 2: Intent and Distributed Firewall Shortest Path : Host
2 to Host 5 Scatter-plot. 70

x

Figure 4.21 Experiment 2: Intent and Distributed Firewall Shortest Path : Host
2 to Host 5 CDF. 71

Figure 4.22 Experiment 2: The Intent Versus Distributed Firewall Shortest Path
: Host 5 Histogram . 72

Figure 4.23 Experiment 3: Example Infantry Battalion Physical Layout . . . 73

Figure 4.24 Experiment 3: Example Homogeneous Battalion SDN Structure . 74

Figure 4.25 Experiment 3: Heterogeneous Battalion SDN Structure 75

Figure 4.26 Experiment 3: Logical Heterogeneous Battalion SDN Structure . 76

Figure 4.27 Experiment 3: Heterogeneous Battalion SDN Structure 2 77

Figure 4.28 Experiment 3: Logical Heterogeneous Battalion SDN Structure 2 77

Figure 4.29 Experiment 3: Heterogeneous Battalion SDN Structure 3 78

Figure 4.30 Experiment 3: Logical Heterogeneous Battalion SDN Structure 3 78

xi

THIS PAGE INTENTIONALLY LEFT BLANK

xii

List of Tables

Table 2.1 Example Access Control List Table. Source: [36] 16

Table 4.1 Experiment 2: BaselineTestUsing aMarine InfantryRegiment Topol-
ogy and 100 Flow Rules . 62

Table 4.2 Experiment 2: Random Outer Link Up Using a Marine Infantry
Regiment Topology and 1000 Flow Rules 65

Table 4.3 Experiment 2: Random Core Link Down Using a Marine Infantry
Regiment Topology and 1000 Flow Rules 67

Table 4.4 Experiment 2: The Intent Versus Distributed Firewall Shortest Path
Using a Marine Infantry Regiment Topology and 1000 Flow Rules 72

xiii

THIS PAGE INTENTIONALLY LEFT BLANK

xiv

List of Acronyms and Abbreviations

ACL Access Control List

API Application Planning Interface

ARP Address Resolution Protocol

C2 Command and Control

CDMA Code Division Multiple Access

COMMEX Communications Exercise

COTS Commercial Off the Shelf

CSN Circuit Switched Networks

DHS Department of Homeland Security

DHS Department of Homeland Security

DoD Department of Defense

DoN Department of the Navy

EIGRP Enhanced Interior Gateway Protocol

FDMA Frequency Division Multiple Access

GUI Graphical User Interface

HADR Humanitarian Assistance Disaster Relief

HTTP Hypertext Transfer Protocol

ICMP Internet Control Message Protocol

IETF Internet Engineering Task Force

xv

IOS Inter-network Operating System

IPv4 Internet Protocol version 4

IPv6 Internet Protocol version 6

IP Internet Protocol

IRTF Internet Research Task Force

ISR Intelligence, Surveillance, and Reconnaissance

IT Information Technology

IT Information Technology

IoT Internet of Things

MAC Media Access Control

MAGTF Marine Air Ground Task Force

MANET Mobile Ad-Hoc Network

MASINT measurement and signature intelligence

MCCES Marine Corps Communication-Electronics School

MCDP Marine Corps Doctrinal Publication

MCWP Marine Corps Warfighting Publication

MEB Marine Expeditionary Brigade

MEF Marine Expeditionary Force

MEU Marine Expeditionary Unit

MOC Marine Operating Concept

MOOTW Military Operations Other Than War

MOS Military Occupational Specialty

xvi

MSC Major Subordinate Command

NOS Network Operating System

NOTM Network on the Move

NPS Naval Postgraduate School

OEF Operation Enduring Freedom

OF Open Flow

OIF Operation Iraqi Freedom

OODA Observe Orient Decide Act

OSI Open System Interconnection

OS Operating System

OVS Open vSwitch

PIOM plan, install, operate, and maintain

QoS Quality of Service

REST Representational State Transfer

REST representational state transfer

RFC Request for Comments

ROMO Range of Military Operations

SDN Software Defined Network

SRWBR short range wide band radio

SSH Secure Shell

STRAPEX bootstrap exercise

SYSCON Systems Control

xvii

TCP/IP Transmission Control Protocol/Internet Protocol

TCP Transmission Control Protocol

TDMA Time Division Multiple Access

Telnet Terminal Network

UDP User Datagram Protocol

URL Uniform Resource Locator

USAF United States Air Force

USA United States Army

USB Universal Serial Bus

USCG United States Coast Guard

USG United States government

USMC United States Marine Corps

USN U.S. Navy

VM Virtual Machine

VOIP Voice over IP

VSAT Very Small Aperture Terminal

WWW World Wide Web

cURL Client URL

xviii

Acknowledgments

I am deeply appreciative for the opportunity to attend the Naval Postgraduate School. This
journey would not have been possible without the support of the leadership at the Marine
Corps Communication-Electronics School, who encouraged me to pursue my graduate
education. During my time at NPS, I would have struggled had it not been for the support of
my cohort: Joe "Peepers" Plot, Lucas Burke, Teal "Koala" Peterson, Nate Richardson, Ryan
"Dad" Keller, Britney Snelgrove, Michael Whitaker, Britt Campbell, and John Mutton. I
was humbled every day by your work ethic, ingenuity, and creativity. Your friendship made
attending NPS an experience I’ll never forget. I would also like to thank Scott Tollefson
and Terry Kvitchko, who helped me during my thesis with coding assistance, guidance, and
pointers. I would not have been able to get as much done in such a short period without you.
I am lucky to have had Dr. Geoffrey G. Xie as my advisor. Dr. Xie fostered my intellectual
curiosity and developed my critical thinking, writing, and computer science skills. I am
a better leader today because of Dr. Xie’s guidance. Lastly, I’d like to thank my parents,
Suzanne and Ed Logan, and my family for being there to lean on throughout my career. I
love you guys very much.

xix

THIS PAGE INTENTIONALLY LEFT BLANK

xx

CHAPTER 1:
The Resurgence of Great Power Competition

For the first time since the fall of the Soviet Union, we are experiencing a return
to great power competition. With a rising China and a resurgent Russia, the
U.S. does not enjoy a monopoly on sea power or sea control. Rogue regimes
like North Korea and Iran persist in taking actions that threaten regional and
global stability.

—Admiral John M. Richardson, 31st Chief of Naval Operations [1]

A common definition of warfare is of two nation-state’s meeting in combat (e.g., World
War 2) [2]. The reality is modern warfare does not adhere to a strict definition. The
global operating environment is becoming increasingly gray with the emergence of, “gray
zones” defined as, “conceptual space[s] between peace and war ... threaten[ing] US and
allied interests by challenging, undermining, or violating international customs, norms, or
laws” [3], [4]. In particular, the global operating environment is becoming rapidly more
dynamic and complex due to the proliferation of information technology, cyber operations,
information warfare, and the pervasive use of disruptive technologies [1], [5]. Informa-
tion technology proliferation has lowered the cost of entry into warfare [6]. Accordingly,
information technology has created an explosion of war participants from those who are
interested in viewing and reporting war to those who are actively engaged in it [7]. Rapid
technology advancement has outpaced the Department of Defense (DoD)’s ability to pur-
chase, field, and train to new equipment and concepts [8] forcing the U.S. armed services
to reexamine their acquisition and war fighting paradigms.

As a result, Admiral Richardson, referencing Colonel John Boyd’s Observe Orient Decide
Act (OODA) loop (a decision making model) in an address at the 68th Current Strategy
Forum at the U.S. Naval War College, stated that the United States’ observation (raw
information gathering) advantage is gone and that the winner of strategic competition will
be decided by the team [or nation-state] who can “orient” (distill,filter and sort information)
and “decide”(make an informed decision) faster than the other [9]. Admiral Richardson

1

elaborated that the problem of “orientation” is a technical one, pointing to the need to
rapidly sort through “avalanches” of information to make informed decisions [9]. Moreover,
a “networked navy” is a pillar of Admiral Richardson’s plan to increase the lethality of the
Naval service [1]. Admiral Richardson’s “A Design For Maintaining Maritime Superiority”
states that the Navy and Marine Corps team must create the capability to act at any point
on the Competition Conflict Spectrum emphasizing the need for capabilities that can be
used in an increasing diverse and gray operating environment (Figure 1.1: a diagram that
accounts for the shift from the old definition of war to the new by visualizing the shift from
the older Joint Phasing Model to the non-linear sliding scale of the Competition Conflict
Spectrum [10]).

Figure 1.1. Competition-Conflict Spectrum for the Military Dimension of
Power. Source: [10].

However, according to theMarine Operating Concept (MOC), theMarine Corps is not ready
to meet the demands of the future and has fallen short of its congressional mandate to, "be
ready when the nation is least ready" [11] citing technology proliferation and information
warfare as drivers of change. The purpose of the MOC is to acknowledge the Marine
Corps’ readiness deficit and provide a framework to begin building up the Marine Corps’
capabilities to address the future operating environment and the reemergence of the great
power competition [11]. The Marine Corps is expected to undertake any mission within
the Range of Military Operations (ROMO) on the continuum of operations outlined in
the Joint Phasing Model referenced in [12]. ROMO includes everything from a peaceful
presence mission, to humanitarian assistance, to total war. This research seeks to help close
the orientation gap referenced by Admiral Richardson and realize the imperatives of the
Marine Operating Concept by testing networking technology with the potential to improve
orientation speed and multiply innovation potential.

2

1.1 Problem Statement
In theMarine Corps, the ability to begin the OODA loop decision cycle is entirely dependent
on the availability of a Command and Control (C2) network consisting of telecommunica-
tions and information technology equipment enabling communication and data exchange
between relevant parties. Marine Corps War fighting Publication 3-40.3,MAGTF Commu-
nications, states that, “ the Marine Corps requires a robust C2 capability to execute actions
across the range of joint military operations” [13]. Without an enabling C2 network, war
fighting cannot occur.

Therefore, the time that it takes to plan, install, operate, andmaintain (PIOM) aC2 network is
a factor that must be considered in the OODA loop decision cycle speed. Computer network
network engineering, installation, and management is part of C2 network installation time
and is a difficult, manpower-intensive, and complex undertaking [14]. To exacerbatematters,
the trend of networking nearly everything hasmanifested in the formof the Internet of Things
(IoT) [15]. More devices, more users, and more sensors generally equates to more data
making the task of administering and managing network traffic extremely challenging [16].
The state of networking appears to be approaching exponential growth in the amount of
data and devices on the network [17], [18]. Networking in the United States Marine Corps
(USMC) is no different and suffers from the same difficulties as the civilian sector, but is also
compounded by time, resource, and policy constraints inherent in tactical environments.
This is the challenge that Marine Corps and the armed services must overcome to win the
“orientation” battles of the future. To compete and win in the next great power competition,
the Marine Corps needs to rethink how it approaches networking and network operations.

To that end, this research studies Software Defined Networks because it is a key technology
that could improve theUSMC’sOODA loop decision speed. SDN is a promising technology
that is advancing rapidly outside of academic research and is taking strides in industry [15],
[19]. Software Defined Network (SDN) promises to improve the limits of traditional
networking through centralized control and network programmability giving operators
efficient granular control of the network [14]. Moreover, SDN has applicability across
a multitude of areas including, but not limited to, security [20], rapidly re-configurable
networks [21], fifth generation (5G) cellular networks [22], and big data [23]. The promise
and potential impact of SDN has motivated companies like Google, Microsoft, Facebook,
Yahoo, Verizon, and Deutsche Telekom to support the Open Networking Foundation (ONF)

3

with the hopes of creating SDN standards and promoting SDN on the internet [14]. SDN’s
potential make it a prime technology of interest to improve the Navy and Marine Corps
ability to orient faster.

Parts of the United States Government have begun investing in SDN with benefits rang-
ing from improved operating costs to improved network performance and efficiency [15].
The former USA Chief Information Officer (CIO), Lieutenant General Robert S. Ferrell,
stated that SDN is part of the Army’s strategic investments that will shape the battlefield of
the Army in 2025—2040 [24]. Lieutenant General Ferrell also argued that the battlefield
will be shaped by, "so-called leap-forward technologies" like SDN and warrant research
and investment to maintain a leg up in combat [15]. SDN thus has the potential to make
USMC networks agile, resilient in a contested environment, and rapidly configurable and
programmable in response to requirements in “A Cooperative Strategy for 21st Century
Seapower” [25], “The Marine Operating Concept” [11], “A Design for Maintaining Mar-
itime Superiority” [10], and the Marine Corps’ concept for “Expeditionary Advanced Base
Operations” [26].

1.2 Research Questions
The following are the research questions that this research seeks to answer.

1. Using the greedy heuristic algorithm for Access Control List Access Control List
(ACL) placement shown in [27], what are the effects of deploying an SDN distributed
firewall application, in a traditional and hybrid USMC network? What are the effects
in terms of security, throughput, and resilience in comparison to a traditional USMC
network?

2. Given the work done in [28] how can the USMC begin incrementally purchasing
and fielding SDN equipment to maximize immediate networking gains and minimize
fiscal cost for the organization?

If SDN is a viable technology for improving the efficiency of network operations, it may
serve as an enabler for solving the Navy andMarine Corps’ “orientation” problem in support
of the current great power competition.

4

1.3 Thesis Organization
This research is organized as follows:

Chapter II surveys the origins and technical underpinnings of Software Defined Networking
to provide context for comparing SDN to existing networking technologies and for under-
standing the experimental design, set forth in Chapter III. Chapter II also details Firewall
technologies and network access control as a primer for contextualizing the distributed
firewall program. Lastly, it outlines the state of networking and information technology per-
sonnel in the United States Marine Corps USMC. Chapter III covers experimental design
and is broken into two major parts. The first part articulates the algorithms that comprise
the distributed firewall program as well as the heuristics used as decision making criteria for
flow rule placement. The second part of the chapter outlines the methodology for testing the
research questions and the motivations behind the various topological designs. Chapter III
provides a detailed outline of how each variable is tested, measured, and evaluated. Chapter
IV summarizes the results of the experiments. Chapter V examines the experimental results
and evaluates their relevance to the research questions and the conclusions that are reached.
Chapter V also discusses limitations of the experiments and future research areas and the
impact the research has towards Marine Corps Networks.

5

THIS PAGE INTENTIONALLY LEFT BLANK

6

CHAPTER 2:
Background

Fundamental to our character as a Marine Corps is our role as the Nation’s
force-in-readiness. We must continue to be ready for operations across the
range of military operations (ROMO). At the same time, we recognize the
current and future fight may not be what we experienced in the past. It will
encompass not just the domains of land, air, and sea, but also space and the
cyber domain. It will include information operations and operations across
the electromagnetic spectrum. It will involve rapidly changing and evolving
technologies and concepts, which will force us to be more agile, flexible,
and adaptable. Most importantly, it will require Marines who are smart, fit,
disciplined, resilient, and able to adapt to uncertainty and to the unknown.

—General Robert B. Neller, 37th Commandant of the Marine Corps [11]

This chapter will discuss the key capabilities and constraints of two foundational technolo-
gies: SDN and Distributed Firewalls. The purpose of describing these technologies is to
lay a foundation for describing the current state of networking in the USMC and advo-
cating for change and innovation. Lastly, related work will be addressed with respect to
distributed firewall technologies, SDNs, and hybrid networks consisting of both SDN nodes
and traditional switches and routers.

2.1 Software Defined Networks
In the information technologyworld, SoftwareDefinedNetworking has gained traction as the
successor to the traditional networking paradigm [14], [23]. The defining feature of an SDN
is the separation of the data plane from the control plane and network programmability [23].
There are a handful of models that can be used to describe how networking works. The
most commonmodels are theOpen System Interconnection (OSI) and Transmission Control
Protocol/Internet Protocol (TCP/IP) models. Both frameworks are comprised of layers that
provide a specific function that enable network communication to happen. The networking

7

layer, also called layer 3, is the layer that deals with the Internet Protocol (IP) and the actual
movement of packets through a network. Generally, networking can be divided into three
fundamental "layers": the management, control, and data planes [14] which can be seen in
Figure 2.1. The data plane’s responsibility is to forward packets according to a set of rules
while the control plane’s role is to serve as the mechanism for communicating those rules
to data plane switches. In an SDN the control plane and data plane are decoupled and the
control plane functionality is removed from the network devices. The last plane is called the
management plane which is the interface from which network operators implement policy
and management at a high level.

According to the work done in [29], an SDN has two defining characteristics: In an SDN,
the control plane is separated from the data plane. This means that SDN devices that route
packets (data plane) are separate and distinct from devices that make control decisions (SDN
controllers) for the network. Data plane devices are analogous to mail sorters. They simply
store and forward mail to the appropriate destination. If they have an issue, they consult
higher headquarters.

The control plane for an SDN, where network intelligence and logic are implemented, is
amalgamated into a single device (the controller) that has centralized control over multiple
data plane devices.

It is important to note that SDN enables innovation but does not offer capabilities “out of the
box” beyond the aforementioned. SDN is simply a tool out of which innovation can grow
bringing with it the limitless possibilities of programming [14]. Moreover, commercial
networking devices today now typically include an OpenFlow Application Programming
Interface (API) for SDN implementation [14]. The SDNwave is gaining inertia and pushing
the networking industry forward.

2.1.1 A Brief History of SDN
SDNs improve the way networks are designed and managed [29]; however, the idea of
software defined networking is not new and has roots in Circuit Switched Networks (CSN)
and old computer networks present during the birth of the world wide web (at least publicly
available internet) [29]. In CSN, also known as telephony networks, the control and data
planes were separated enabling simplified management of network services [29] through a

8

Figure 2.1. View of the Management, Control, and Data Planes. Source:
[14].

combination of in band and out of band control channels. This allowed operators to make
configuration changes without adversely affecting network traffic or its available bandwidth.

When the internet exploded into public view it became the victim of its own success by
complicating networking management and infrastructure [29], [30] through rapid growth.
The demand for services forced providers to rapidly expand to accommodate the burgeoning
influx of traffic. The primary concerns of internet providers during this time period were
a general frustration with the time it took to enable capabilities across the network, the
deployment of middle-boxes, dynamic fine-grain control of network resources, and vendor
lock in [29]. These concerns can be trivial on small networks but are complex, expensive,
and onerous on large networks. Any large-scale change to the network architecture is
viewed as an extremely difficult and task that borders on impossible in practice [14]. As an
example, consider the task of upgrading the software on your network. The provider must
install the software on every piece of equipment on the network. The equipment could be
located in small geographic area but is likely to be spread across great distances in numerous
communications closets and buildings. Installation of the software and subsequent reboot
time are multiplied by the number of pieces of equipment on the network. The cumulative
time, labor, and monetary cost of upgrading the network grows rapidly based on the number

9

of devices within it. This process repeats itself anytime the provider needs to upgrade,
replace, or remove network equipment. It is important to remember that this simple
example does not examine how the provider plans to incrementally upgrade the equipment,
failure plan, or testing of the upgrade in a sandbox environment. To say the least, managing
and administering a network is a difficult and complex task [14], [29].

2.1.2 SDN Structure
SDN programmability translates into improved network management through computer
science abstractions rather than complex scripts and instructions deployed throughout the
network [20]. In layman’s terms, an operator can change the whole network from a central
point at the proverbial touch of button. According to Feamster et al., “Making computer
networks more programmable enables innovation in network management and lowers the
barrier to deploying new services” [29]. This is made possible from an SDN’s structure.
To understand SDN structure one needs to understand basic networking concepts and
terminology in order to grasp the entire picture:

1. SDN: A new networking framework that enables network programmability, and
consolidation of network control to a singular entity called the controller [14]. SDN
accomplishes this by separating packet switching functionality (data plane) from
routing decision intelligence (control plane) [29].

2. Control Plane: Traffic routing decisions and intelligence as well as the data structures
that communicate these decisions form the data plane. Several studies describe the
controller as the “brain” of the network [14], [23], [31]. Figure 2.2 depicts the Control
Plane in with other SDN constructs.

3. Data Plane: Networking devices responsible for forwarding traffic throughout the
network in accordance to the logic (forwarding tables) received from the control
plan. [14]. Figure 2.2 depicts the Data Plane in with other SDN constructs.

4. Management Plane: Inclusive of the software and services, enabled by the northbound
interface, that serve to configure network policy, monitor network health (status), and
network functionality. Applications can be invoked from the interface to employ
programs like firewalls, load balancers, and intrusion detection [14].

5. Network Operating System: A NOS is software that provides a user an interface into
the management plane of a Software Defined Network. The NOS is the medium

10

through which holistic policy decisions are dictated to the network and subsequently
translated into low level protocols to enable those decisions. Moreover, it is where
operators can view SDN’s global network view [29].

6. Open Flow: is a standard originally defined in [32], by researchers at Stanford,
as a method of running and testing experimental networks over existing network
infrastructure without adversely affecting production traffic. The OF standard took
SDN from the theoretical to the practical by creating a standard for the data plane and
enabling a control plane API from which real networks could be built [14].

7. Network Function Virtualization (NFV): is an abstraction of a part of the network
from the physical infrastructure [29].

8. Forwarding Devices: Any network devices, hardware or software, whose role is sort
and forward packets, based upon logic received from the control plane of the network
(controller).

9. Middlebox: An intermediate network device, within the data plane, that serves in
a capacity different from that of a traditional router or switch [33] (e.g., firewall,
Network Address Translation [NAT] device, or Intrusion Detection System [IDS]).

10. Northbound Interface: The northbound interface is the API from which programmers
can modify control plane logic via the NOS. This interface abstracts away the instruc-
tions used to program data plane devices [14]. Figure 2.2 depicts the Northbound
Interface with other SDN abstractions.

11. Southbound Interface: The southbound interface is anAPIwhich defines the protocols
which communicate between the controller and the devices within the data plane.
Figure 2.2 depicts the Southbound Interface with other SDN abstractions.

2.1.3 Software Defined Networking Versus Traditional Networking
Traditional networks are comprised of devices whose control and forwarding logic are
combined within the same machine. This means that a single device is in control of
both forwarding and routing decisions. This makes the network highly decentralized as
each device independently determines the best path to get from point a to point b. Using
this method, it is extremely difficult for network administrators and engineers to design
the network to behave in fine grain detail without meticulously configuring the network,
device by device, to perform as intended [14]. Even after such a configuration is created,
there is no absolute way to dictate behavior under varying network conditions without

11

Figure 2.2. View of SDN Architecture and Abstractions. Source: [14].

complex configuration control using load balancing and quality of service techniques. The
decentralized nature of traditional networking was considered a critical design feature of
the internet in order to ensure network resilience [14]. Traditional networking is effective
and has been successful in supporting the modern internet; however, the difficulty with the
traditional networking is in configuration control, network management, and administration
[14] caused by the aforementioned decentralization. Traditional networking has also long
been beholden to vendor specific equipment, command line languages, and even protocols.

Vendor lock in occurs once a specific internet Service Provider (ISP), carrier, or network
administrator purchases a particular piece of equipment and builds the network using
that equipment set. For the administrator, it is more pragmatic to continue to purchase
vendor specific equipment than another vendor’s equipment for many reasons. Typically,
compatibility between equipment from different vendors can be issue. Different vendors
use proprietary protocols, command line languages, and closed operating systems [14]. It
is very expensive to retrain personnel in different vendor specific languages and equipment
[14]. Lastly, the closed operating systems and languages mean custom configurations,
functionality, and protocols outside of included software are none. In order to obtain
specialty functionality outside of vendor specific capabilities, specialized middleware is
typically employed to fill in in-line gaps in a network [14] which simultaneously increases
the logical and physical complexity of the network.

Traditional networks are difficult to configure and easily mis-configured [14], [29]. A

12

network administrator could have thousands of network devices under their purview. Each
devicemust be properly secured, configured, and operated tomaintain network functionality.
A single mis-configuration can devastate a network [14]. In the author’s experience, a single
command run on a distant node can reduce network usability drastically. For example, a
local administrator advertised an entire class C vice a subnet within that network. The
result was that every layer device in the class C network looked for addresses at the router
advertising the class C. The problem was that node b was only reachable through high
latency, low bandwidth links. The result was a classified network was unusable for a period
of several hours while network admins troubleshot the issue.

SDNs are markedly different from traditional networks. As mentioned before, SDN have
a control plane and a data plane that are decoupled [14] meaning data plane devices are
dumb packet forwarders (switches). Secondly, all forwarding decisions are based on what
is called flows rather than simple forwarding rules [14]. A flow is simply a set of fields
that match information in the packet header that corresponds to an action taken by that
forwarding device. All flows across the network are coordinated by the controller and all
forwarding devices apply the same criteria to given flow creating a coordinated and holistic
method of handling packets moving throughout a network [14]. Flows provide fine grain
control over packet movements giving network administrators absolute control over traffic
paths. Moreover, because the controller maintains a current view of the network state, any
topology, load, or state changes within the network can be dynamically handled by the
controller without operator intervention. This is in contrast to traditional networking where
control is possible, with meticulous device configuration, under steady state conditions but
difficult to control under dynamic ones.

2.1.4 The Advantages
Overall, SDN has many benefits that stem directly from the decoupling of the control plane
from the data plane:

1. Applications benefit from a shared view of the network through the control plane
(NOS and or controller) [14]. This means any application can appropriately apply
policy, load balancing, and any programmable function even in dynamic networks.

2. Network policymodification is less error prone due to high level abstraction the control

13

layer provides [14]. Instead of device to device configuration, network operators can
holistically define policy and exert control over the network via the control plane.
This eliminates the potential for error and eases trouble shooting efforts.

3. The controller maintains a global view of the network and its state. This gives
administrators a real-time view of the network without configuring a third party
program to maintain this view [34].

4. The ability to program an SDN enables innovation [29] and gives network adminis-
trators the ability to modify and augment the network as they see fit.

5. SDN equipment and software are supported by most vendors and readily available
[14], [29].

6. Explicit fine grain control over packet path through the flow abstraction [14].

2.2 Hybrid SDN
Migrating from an SDN from a traditional network can be fiscally prohibitive, complicated,
and time consuming [28]. Research in Hybrid networks is promising [33], [28] and shows
that hybrid networks work and SDN can be adopted incrementally creating immediate
capability and cost savings. In this paper, when the term hybrid is used the author is
referring to the physical makeup of the network. A hybrid SDN network is a network
that uses SDN and non-SDN equipment together. Weitzel [33] showed that heterogeneous
Marine Corps tactical networks are possible and functional. Moreover, Weitzel showed that
SDN equipment is backward compatible and able to function as a traditional networking
device in the absence of an SDN controller. The work done by Levin et al. in [28] suggests
that SDN networks can be built using both SDN and traditional networking equipment. An
example of hybrid network from is shown below:

Figure 2.3 is a hypothetical example of a network which includes traditional networking
equipment and SDN equipment. This type of setup is within the scope of possibilities in
today’s environment because of the high cost of information technology equipment and
likelihood that SDN adoption will be an incremental process [33]. Network Engineers may
choose to adopt an incremental approach over time, due to monetary constraints, instead
of a full overhaul in order to maintain service and cut down on costs [28]. The research
outlined in this paper looks to expand upon the work shown in [33] and demonstrate
SDN programmability at work SDN functionality in a hybrid network. Using the design

14

Figure 2.3. Example Hybrid Network SDN

principles outlined in [28] this research looks to outline a methodology for prescribing the
minimum number of SDN devices in a hybrid network in order to realize a logical SDN
using a heterogeneous equipment set. Secondly, the work will expand the hybrid research
in [33] by evaluating an application running in a hybrid network.

2.3 Firewalls
Firewalls in computer networking are an homage to their less-complex cousins that operate
in the physical world. Fire walls in building construction are walls meant to shield parts
of a building from the more flammable sections such as a kitchen or a furnace [35]. In
reality, firewalls slow down fires rather than completely stopping them in their tracks.
Furthermore, walls in the real world served to segregate parts of a house into definable
sections. Walls also kept bad entities out and provided a safe haven for those within it.
Computer firewalls embody all of the characteristics of the aforementioned and serve as a
barrier to keep malicious entities from entering your network. According to Kurose et al.,
Computer Networking: A Top Down Approach [36] explains firewalls typically have three
primary goals:

1. Everything must pass through the firewall: Any traffic the goes between the internet
and the intranet must pass through the firewall to enforce security policy [36].

2. Authorized traffic only: Only traffic authorized by the system administrator, through
security policy, is allowed to pass through the firewall. All other traffic is blocked [36].

3. The firewall must be immune to penetration: if the firewall is not under your control
then the security of the whole network is lost.

15

Firewalls today, can filter traffic at multiple layers within the ISO network model with a
predominant focus on data-link, network, transport, and application layers [35]. Firewalls
are typically classified in three categories: traditional packet filters (stateless), Stateful
filters, and application gateways [36]. This paper will address four types of firewalls. The
simplest firewall is a traditional packet filter, also known as a stateless firewall, which simply
filters traffic based on header information contained within the IP packet. The traditional
packet filter will look at the header, and go down a sequential list of rules until a match is
obtained. If match happens, the traditional packet filter will allow the packet access to the
network. If a match does not happen, the firewall will typically drop (discard) the packet.
The aforementioned matching occurs using a construct called an ACL. The ACL is the filter
through which each packet is inspected and compared to. If a packet’s criteria matches the
criteria listed within the ACL then the Firewall will allow or drop the packet. Each interface
on a router can have an ACL applied to it to properly filter traffic on a network. ACLs
typically start from the least restrictive rules to the most restrictive and look visually akin
to a funnel. A generic ACL is shown in Table 2.1 illustrating rules that might be applied in
a stateless firewall from [36].

Action Source Address Dest Address Protocol Source Port Dest Port Flag Bit

Allow 222.22/16 Outside of
222.22/16 TCP >1023 80 Any

Allow Outside of
222.22/16 222.22/16 TCP 80 >1023 ACK

Allow 222.22/16 Outside of
222.22/16 UDP >1023 52 -

Allow Outside of
222.22/16 222.22/16 UDP 53 >1023 -

Deny All All All All All All
Table 2.1. Example Access Control List Table. Source: [36].

The next type of firewall is a stateful filter. Stateful filters have the same functionality as
a stateless firewall plus some more advanced features. Stateful filters can keep track of
information exchanges between entities outside and inside the network. This provides some
intelligence to the firewall helping it sort between legitimately initiated "conversations"
and social engineering like attacks initiated by malicious entities outside of the network.
Application gateways go beyond packet filtering. Application gateways are servers that
provide application specific security to the network [36]. An example use casewould require

16

a host to authenticate themselves to the application gatewaywhichwould subsequently allow
connections to the outside world under the gateway’s supervision.

2.4 Distributed Firewalls
The final type of firewall is a distributed firewall. A distributed firewall is based upon the
assumption that those within your network are potentially untrustworthy [35]. Therefore,
it is pragmatic to take internal precautions to block illegitimate behavior by posting rules
within your network to stop such activity.

Firewalls are typically placed at the edge of the network between the outside world, the
internet, and the inside world, the intranet. In the first distributed firewall proposed in [37]
described a basic framework where a policy file was distributed to each host within a
network. The policy file outlined what was allowed on a particular host and each host used
a cryptographic authentication scheme to validate sender communication. This form of
firewall reduced the bottleneck encountered by traditional firewalls and introduced important
communication between an intranet host and its distant end receiver (e.g., a host knows if
it did or did not start a conversation between itself and another entity) [37]. In later
implementations, such as in Sung et al. Towards Systematic Design of Enterprise Networks
2011 [27], access control (the core of firewall functionality) is specified by distributing
ACLs to an edge cut set of network devices.

2.5 Mininet Emulation Tool
Network simulation and emulation are effective tools for testing and evaluating networks
because they abstract away details and provide greater flexibility and control over a test
network [38]. The Mininet emulation tool is a program written in Python (with a little C)
to support research, design, testing and evaluation of networks [39]. Mininet is useful for
modeling Software Defined Networks because it provides a platform to cheaply test SDN
networks at scale without requiring SDN enabled equipment [40]. Each virtual network
switch in Mininet is emulated using Open vSwitch [an SDN enabled virtual switch] [41].
Mininet creates a network utilizing virtual hosts, devices, links, and controllers running
in a Linux environment [39]. Mininet is useful because it is faster than equivalent full
virtualized networks because its scalability, speed, installation speed, and bandwidth [39].

17

2.6 USMC Networking Technology and Policy
TheUSMC is a unique organizationwithin theU.S.DoD. They are the smallest of theArmed
Services (with the exception of theUnited States Coast Guardwho normally falls underneath
the Department of Homeland Security (Department of Homeland Security (DHS)) and can
fall under the Department of the Navy Department of the Navy (DoN) during times of
war) [42]. The legal roles and responsibilities of theUnited StatesMarine Corps are outlined
by the United States Code Title 10 section 5063 [43]. However, these responsibilities are
best articulated by the USMC’s 35th Commandant James F. Amos:

The Marine Corps is America’s Expeditionary Force in Readiness - a balanced
air-ground-logistics team. We are forward deployed and forward engaged,
shaping, training, deterring, and responding to all manner of crises and contin-
gencies. We create options and decision space for our Nation’s leaders. Alert
and ready, we respond to today’s crisis with forces available today. Responsive
and scalable, we team with other Services, inter-agency partners, and allies.
We enable and participate in joint and combined operations of any magnitude.
A “middleweight force”, we are light enough to carry the day upon arrival, and
capable of operating independent of local infrastructure. We operate through-
out the spectrum of threats - irregular, hybrid, conventional - particularly in the
gray areas where they overlap. Marines are always ready to respond whenever
the nation call...wherever the President may direct. Source: [44].

USMC units operate in groups called a Marine Air Ground Task Force (MAGTF). The
MAGTF is a symbiotic grouping of different Marines with complementary capabilities.
Grouping theseMarines intoMAGTFs creates self sustaining and supporting task organized
units who are capable of executing a wide variety of missions fromHumanitarian Assistance
/ Disaster Relief Humanitarian Assistance Disaster Relief (HADR) to Counter Insurgency
Operations to full scale war. The word MAGTF “Marine Air Ground Task Force” is self
describing and illustrates the basic capabilities that come organically to each MAGTF.
Each MAGTF has four elements, a Ground Combat Element (GCE), a Air Combat Element
(ACE), a Logistics Combat Element (LCE), and a Command Element (CE). These elements
each bring skills and capabilities that create the, “balanced, air-ground, combined-arms
formations under a single commander” [45]. Not explicitly stated, but critical to the

18

functionality of the MAGTF, are the communications Marines whose responsibilities lie in
the, “planning, installation, operation, displacement and maintenance” [46] of C2 networks.

2.6.1 The Communications Occupational Field
The communications field is large and multifaceted and encompasses every telecommuni-
cations task from operating hand-held radios, managing enterprise information technology
systems, and maintaining equipment to enable command and control for the MAGTF com-
mander [46]. Each occupational field within theMarine Corps is given a four digit code that
represents the breadth of job specialties that have similar functions and capabilities [46].
The communications OccFld has the code 06xx and accounts for the more than 18 job
specialties within the community. The Marines who enable C2 for the Marine Corps are
known as Communicators.

The communications field enables C2 for every unit within the Marine Corps from a fire
team of fourMarines to theMarine Expeditionary ForceMarine Expeditionary Force (MEF)
of over forty-five thousandMarines. This includes everything from tactical hand-held radios
to large scale enterprise information technology networks. Communications and communi-
cators tie theMAGTF together. Moreover,“MAGTFC2 enhances lethality and effectiveness
across the ROMO through better decisionmaking and shared understanding” [13]. Artillery
and aircraft cannot drop precision guided munitions without positive communications be-
tween the requester and the pilot. Logisticians cannot resupply Marines in need nor can
intelligence analysts disseminate much needed information without reliable communica-
tions. Communications and communicators are the proverbial nervous system to the body
of the Marine Corps and the MAGTF

All Marine Communicators are trained at the Marine Corps Communication-Electronics
School Marine Corps Communication-Electronics School (MCCES) in 29 Palms, Califor-
nia. Each prospective communicator learns universal 06xx skills at the Basic Communi-
cation Course (BCC) [46], [47]. A Marine’s performance in BCC dictates their follow on
training and, ultimately, their career path. Most communicators have three career paths:
transmissions (radio frequency), networking, or data systems. Other career paths include
spectrum management and information security. The primary supervisors of communica-
tions Marines are Communications Officers (0602) and Chiefs (0699) who are responsible

19

for the Planning, Installation, Operations, and maintenance PIOM of C2 architectures in
the Marine Corps [13], [46].

A large part of the 06xx skill set involves planning, engineering, configuring andmaintaining
IP-based networks and technologies. In fact, approximately one half of the communications
officer training curriculum is dedicated towards IP-based technologies. In the experience of
the author, the Marine Corps has heavy reliance on networked systems to enhance decision
making, enable collaboration, and speed up war fighting processes. The Marine Corps
C2 strategy states that, “Marines around the globe, both in garrison and forward deployed,
require a networked C2 environment that is ready, responsive, and resilient” [48].

2.6.2 Marine Corps Networks
Networking is a critical part of USMC C2 architectures and is arguably the center of gravity
of current Marine Corps C2 plans. The Marine war fighting functions of fires, intelligence,
maneuver, force protection, and logistics all utilize USMC IP networks to quickly and
accurately coordinate their functions, in real time, while providing cognizance of their
actions to a higher headquarters. Each one of these functions can be run without IP-based
networks; however, the preferred method of operation within the Marine Corps is with an
IP-based solutions.

Marine Corps operations are heavily invested in and reliant upon a redundant and effective
C2 infrastructure [48]. Due to the complex nature of telecommunications and information
technology enterprise networks, communications units are either in an exercise or preparing
for one. The complexity and importance of Marine Corps communications networks do
not allow for procrastination or ill-conceived plans. To successfully provide services on
“game day” communications Marines must constantly prepare and hone their skills sets to
successfully execute their mission. This means a series of preparatory evolutions occur
prior to every exercise and operation. The first preparatory evolution is called a bootstrap
exercise or bootstrap exercise (STRAPEX).

The STRAPEX in the simplest sense is a formal validation of equipment settings. A
STRAPEX involves systematically connecting every piece of equipment that is going to be
used and validating its functionality while in a garrison environment (office). STRAPEXs
involves setting up radio networks, internet services, and transmission systems together to

20

form a coherent C2 architecture. The STRAPEX is essential to ensuring that all of the
right equipment is available, functional, and configured properly. The STRAPEX serves as
an opportunity to shake out planning, equipment, and configuration shortfalls before a unit
uses them operationally. If the system works in garrison, it serves as a confidence builder
and tangible measure of performance that the system will work in the field.

In a STRAPEX every issue, equipment/personnel/ or process-based, is troubleshot with the
full complement of Marine communicators in a unit. The STRAPEX itself is conducted
indoors, where possible, and all the equipment is setup in a localized space to assist in
equipment setup, configuration documentation, troubleshooting, tear-down, and packing.
A STRAPEX can be more difficult and tedious than the operation itself. It is the point
where communicators finalize and iron out any and all configuration settings for an exercise.
This can involve deploying hundreds of computers, radios, and phones on top of dozens
of transmissions pieces, server racks, networking devices, and encryption devices. A
STRAPEX can take as long as a month for a large exercise. The largest amount of time
is typically spent setting up the network and aligning the myriad of equipment pieces and
suites to the overall Quality of Service (QoS) and security strategy. Once the architecture
is functional, every setting for every piece of equipment is meticulously documented, shut
down, and packed away for immediate use in a COMMEX, exercise, or operation.

A communications operation to prepare to support Marine Corps Operations is called a
communications exercise or Communications Exercise (COMMEX). The purpose of the
COMMEX is to ensure digital services are operational down to the user level and serves
to sharpen the skills of the communicators and prepare the unit for an upcoming operation.
The primary difference between the COMMEX and the STRAPEX is the environment [33].
A COMMEX is executed in the field to replicate or simulate the actual environment that the
operations will be conducted in. Because each site is separated by large distances, the whole
C2 system must be configured and troubleshot over the radio. This method of installation is
how the communications architectures are built in reality and test eachMarine’s knowledge,
skill, and patience beyond what can be done in a STRAPEX. Any shortfall in equipment,
personnel, or knowledge must be worked around until services are validated at each site.

The USMC uses traditional networking and employs complicated plans to deploy network
wide capabilities. Thousands of man hours are spent planning, installing, operating, dis-

21

placing, and maintaining these networked systems. The amount of time troubleshooting
and administering these systems is only going to grow worse as the number of technologies
and services increases. TheMarine Corps needs to either reduce its information technology
footprint and or streamline the manner in which deploys and manages information technol-
ogy systems. This is whereSDN could benefit the USMC. SDN could be the means to
alleviate the cumbersome administrative and operational load that traditional networking
presents and creates an opportunity to leverage the flexibility of programmatic networking.
Any policy, application, tool, or middleware box could be distilled into an application.
Moreover, conducting network operations and maintaining cognizance over network health
could easily be maintained through the control plane.

2.6.3 DoD Acquisitions
The military industrial complex is a large bureaucratic process known for its inefficiency
[49], [50]. It can take years, even decades, from inception to conception of a program of
record [50]. Thismeans that personnel workingwithin the acquisition branches of the armed
services must be able to anticipate needs of their organizations years and even decades into
the future. Moreover, the whole process is driven by stringent fiscal constraints that do not
account for change. The budget of the DoD is the responsibility of the legislative branch.
This creates two issues: first congress must approve the budget. Secondly, the budget has to
accurately predict development, production, and maintenance costs for a future technology.
To put this in perspective, congress has only passed a budget four times in the last 42 years
(Fiscal years 1977, 1989, 1995, and 1997) necessitating continuing resolutions every time
the budget wasn’t passed [51]. The point here is that the process, while both legal and well
meaning at its inception, hinders the purchase of timely, useful, and fiscally responsible
equipment for the armed forces. Congress has corroborated the fact that the acquisition
process is broken and needs fixing [49], [50].

Generally, the larger and more expensive the need, the more time and oversight it will
take to field that need. Moreover, as stewards of the American public, fiscal responsibility
is an inherent guideline when procuring new equipment. Military viable systems that fit
within budgetary constraints are an ideal and fall directly in line with the fiscal values of the
USMC. The USMC has a historical precedence for frugality canonized in General Victor
H. Krulak’s "First to Fight" [52]. Given this precedence, and the difficulties of the DoD

22

acquisitions process, the logical method of improving USMC networks is a frugal approach
that can be aligned with the current acquisitions construct and a slow fielding process. This
research seeks to show that SDN networks are a fiscally responsible choice because they
can be fielded incrementally and implemented in the form of hybrid networks consisting of
traditional networking equipment and SDN equipment. Moreover, this research is looking
to show that SDNprocurement can save theMarine Corpsmoneywhile improving operating
cost, efficiency, and capability.

2.7 Related Work
Similar SDN research has been conducted by Weitzel in [33] and Levin et al. in [28].
Weitzel focused on primarily on the feasibility of integrating SDN technology into Marine
Corps tactical networks as a means to alleviate the administrative load of administering a
large tactical network. Weitzel demonstrated that an SDN can help to automate many low
level tasks that would otherwise take up operators time and effort [33]. More importantly,
Weitzel showed that hybrid SDN networks work [33]. Levin et al. focused on innovative
ways to incorporate SDN technology into traditional networking architectures. Levin et
al. stated that deploying an SDN is difficult and a complete replacement of traditional
equipment is impractical if not impossible [28]. Therefore, Levin et al. proposed a hybrid
SDN architecture called Panopticon to realize the benefits of SDN without necessitating the
replacement of the whole architecture [28]. Lastly, Sung et al. in [27] proposed a systematic
design approach for VLANs and reachability control [27]. Sung et al.’s algorithm for
reachability control and VLANs demonstrated that systematic approach is necessary and
feasible for large enterprise networks to improve performance, reduce configuration error
and the resulting vulnerabilities that come from them [27].

23

THIS PAGE INTENTIONALLY LEFT BLANK

24

CHAPTER 3:
Experimentation

We need to streamline our ability to evaluate and acquire advanced technologies
to ensure we gain advantages from innovations faster than our competitors and
adversaries.

—The Marine Operating Concept [11]

The following chapter outlines the research’s experimental design to provide sufficient
technical depth and adequate coverage of the design space to allow for follow on research.
The experiments sought to simulate Marine Corps networks, examine the strengths and
weaknesses of the distributed firewall program and Open vSwitch, and offer a software
defined solution utilizing both a hybrid and homogeneous equipment set. The homogeneous
network design reflects an idealized equipment set comprised solely of SDN equipment
while the heterogeneous architecture reflects the fiscal and physical realities of incremental
network upgrade and improvements as stated in [28].

3.1 Design of Experiments
The experiments were designed to provide empirical evidence to answer the research ques-
tions. Does the distributed firewall algorithm, adapted from [27], work in an SDN environ-
ment and how well? How viable is Open vSwitch as a virtual switching platform for the
United States Marine Corps? Are Software Defined Networks a viable network model for
the United States Marine Corps and how should they be implemented? How well does a
hybrid SDN network operate utilizing the distributed firewall program?

3.1.1 The Hardware and Software
The experiments were run on one physical system using a virtual machine to emulate the
computer networking environment. The experiment is considered an emulation because it
replicates the networking environment and behavior in software using theMininet emulation

25

tool. The Mininet emulation tool has been shown to be a reliable, scalable, and accurate
tool for SDN research [40], [53], [54], [55]. This made Mininet an ideal choice for the SDN
research. The following is the specification of the physical system running the experiments:

Computer Model ASUS Strix Republic of Gamers (ROG) GL502VMK Laptop
Processor Intel Core i7 7700HQ @ 2.80GHz
System Type 64-bit OS, x64 based processor
Memory 24 GB RAM: 8 GB DDR4 2400MHz SDRAM Onboard Memory, 16GB DDR4

2400MHz SDRAM SO-DIMM socket
Storage Hard Drive: 1 TB 7200RPM SATAHDD, Solid State: 256GB PCIE Gen3x4 SSD
Operating System Windows 10 Home

The following is a list of the software used to build and create. Detailed instructions on how
to build and learn the software suites are detailed in the appendices. All of the software is
open source and freely available online.

Hypervisor Oracle VM VirtualBox Version 5.2.26 r128414 (Qt5.6.2)
SDN Network Operating System Open Networking Operating System (ONOS version

1.15.0d7b6c33) is a “carrier-grade” SDNNetwork Operating System (NOS) designed
with transitioning from traditional to SDN networking environments. [56]

Network Emulation Software Mini-net Emulation Software (version 2.2.1) is used to
create virtual networks running actual code (such as Open VSwitch) on a VM. [39]

Virtual SDN Switch Open vSwitch (version 2.5.5) [41]
Network Protocol Analyzer Wireshark (version 2.6.6)

3.1.2 Demonstrating SDN’s Programmability: Distributed Access
Control

One of the benefits of SDNs is its programmability [15]. The bar for entry is a basic under-
standing of programming. Using these skills, a network administrator or another interested
party is capable of creating a program and incorporating it onto an SDN. Traditional
networks do not have the flexibility of SDNs and are constrained to vendor specifications.
Programs cannot be written in high level programming languages and subsequently loaded
onto network devices much less installed onto a single machine and distributed network
wide. As an example, a distributed firewall is not a feature that is available in traditional

26

networking equipment. Distributed firewalls are a service that you can purchase or a ca-
pability that you can create using a combination of software, hardware, and or careful
configuration. To enable this capability in a traditional network, additional equipment and
or software would need to be incorporated into the existing architecture. This is not the case
in an SDN environment. To demonstrate the programmable nature of SDN and experiment
with automated distributed firewall operations, a programwas written to create a distributed
firewall in accordance with the reachability control specifications described in [27].

The program is installed on the controller (ONOS controller) which populates selected
network devices with operator defined flow rules (modeling access control lists) using the
systematic reachability framework described in [27]. Furthermore, the program uses an
algorithm to determine the minimum edge cut set of devices to place flow rules on based
upon a source s and destination node t.

1. Let R(s, t) be defined as the set of flow rules that controls traffic from source s to sink
t.

2. Let E{R} be defined as the set of routers with flow rules to control traffic from source
s to sink t.

The effect of the program is that any IP-based traffic originating at the source s,
destined for the sink t will be filtered by a network device in the set E{R} containing
R(s, t) (flow rules) within its flow tables. In layman’s terms, the program ensures all traffic
from point a to point b is filtered. The difference between the “firewall” in this research
and a traditional firewall is that any SDN enabled switch can act as a firewall through flow
rules. In a traditional setup, middle-boxes, host-based software, and network monitoring
tools would be required to enable a similar capability.

3.1.3 Program Components
Cormen et al. in [57] define a minimum cut of a network as, “is a cut whose capacity
is minimum over all cuts of the network.” The minimum edge cut in the case of the
aforementioned distributed firewall, is similar to a border checkpoint that all cars must pass
through or a passport check at an international airport arrivals section. In a network, a flow
is defined as the rate at which some unit moves (in this case packets) [57]. In a computer
network graph, edge weights can be defined as any metric other than distance such as cost

27

or time [57]. In this case, the summation of edge weights along a specific path equate
to a flow and can be used to ascertain useful information about a network. For example,
the Ford-Fulkerson method was developed in the to determine the minimum number of
locations to bomb (minimum edge cut set) on the Soviet rail system to completely and
accurately cut off Eastern Europe from the Soviet Union [58].

The maximum flow is the process of finding a possible flow from source s to sink t that
is the maximum [57]. In the case of maximum flow, the term maximum is defined as the
capacity of the minimum cut (the summation of the weights of all the edges in the minimum
cut) [57]. The algorithm that was used to find the Maximum Flow Minimum Cut was
a variation of the Ford-Fulkerson algorithm called the Edmonds-Karp Algorithm (Figure
3.1 adapted from [59]). The basic premise of Edmonds-Karp is that it uses a Breadth First
Search (BFS) in the Ford-Fulkerson implementation to pick aminimum edge path [59], [57].
The overall time complexity of Edmonds-Karp algorithm, in the worst case is O(VE2) [57].
The specific implementation adapted from [59] in the code has a time complexity ofO(EV3)

because it uses an adjacency matrix for the BFS.

1 initialize flow f to 0;
2 while there exists an augmenting path p : using breadth first search do
3 augment flow f along p ;
4 return f ;

Figure 3.1. Ford Fulkerson: Edmonds-Karp variation (G, s, t). Source: [57].

As an example, examine Figure 3.2 from [59]. The source s is node 0 while the sink is t
node 5. The min-edge cut set in this case is the set of edges: 1 -> 3, 4 -> 3, and 4 -> 5. If
this graph was a computer network, then devices 1,3,4, and 5 would be the vertices of the
edges in the minimum-edge cut set. In the context of a distributed firewall, devices 1,3,4,
and 5 would seem to require flow rules. The set of vertices in the minimum edge cut set
(1,3,4,5) works; however, it is not optimized in the sense that it needlessly installs rules on
devices that do not need it.

Visually you can see in Figure 3.2 that vertexes 3 and 5 donot needflow rules as vertices 1 and
4 will filter incoming traffic before it reaches either vertex 3 and 5; therefore, placing rules

28

Figure 3.2. Sample Flow Network (Directed Graph) with Max Flow Min Cut
Set Calculated. Source: [59].

on vertices 3 and 5 is a waste of system resources. In the case of a small enterprise, vertices
like 3 and 5 will likely be handling large amounts of IP traffic meaning high throughput is a
desirable performance specification. Each packet that comes into an interface is inspected
and run through the long list of flow rules that is present on each device. The longer the list
the longer the inspection time. If the traffic is high, a network will experience an increase
a significant growth in delay as the number of rules grows [60]. Given the aforementioned
problem, optimization was required to prevent overburdening the network.

As mentioned before, sometimes only one vertex of an edge requires flow rule installation
to successfully filter all traffic. Moreover, a single vertex can satisfy multiple edges in a
minimum edge cut set. Algorithms do exist to determine what is the called the minimum
node/vertex cut set such as algorithm 11 in [61], which is used in the Python Library
NetworkX [62]. These algorithms were not used in this research. To minimize the number
of nodes that required flow rules, Dijkstra’s shortest path algorithm (See Figures 3.3 & 3.4
for algorithms — See [63] for source code) was used to determine the shortest path from
the source s to the set of vertices in the minimum edge cut set. The running time Dijkstra’s
algorithm is OV2 [57]. The premise is to find the first vertices in the edge cut set that would
be encountered along all known paths from s to t. Vertex 1 has a cumulative weight of 16,
vertex 3: 28, vertex 4: 27, and vertex 5: 31. For edge 1->3 vertex 1 has the lowest weight.
For edge 4->3 vertex 4 has the lowest weight. For edge 4->5 vertex 4 has the lowest weight.
This implies that vertexes 1 and 4 are the best candidates for flow placement.

29

Data: u, v, w
/* nodeu, nodev, weightw */
Result: void
/* d[v] is a shortest path estimate */
/* w(u, v) is the weight of the edge between u and v */
/* πisthenewnodevaluedistance */

1 if d[v] > d[u] + w(u, v) then
2 d[v] ←− d[u] + w(u, v);
3 π[v] ←− u;
Figure 3.3. Relax(u, v, w) Pseudocode. Source: [57]. The process of relaxing an edge
consists of systematically testing whether we can improve the shortest path to v by going
though u and updating d[v] and π[v] accordingly.

Data: G, s

/* Graph representing a network and source node s */

Result: D

/* vector representing distance of shortest path from s to every

other node in G */

1 Initialize: Single Source Shortest path (G, s);
2 S ←− ∅ ;
3 Q←− V[G];
/* Min-Priority Queue of vertices in G */

4 while Q , ∅ do
5 u←− E XT RACT − MIN(Q);

/* extract minimum value */

6 S ←− S ∪ {u};
7 for each vertex v ∈ Adj[u] do
8 Relax (u, v, w);

Figure 3.4. Di jkstra(G, w, s) Algorithm Pseudocode. Source: [57]. Dijkstra’s algorithm
solves single source shortest paths problems on weighted directed graph G = (V, E) for
non-negative weight edges w.

Another way to calculate the optimal flow placement is to use hop count from the source s.

30

Vertex 1 has a count of 1, vertex 3: 2, vertex 4: 2, and vertex 4: 2, and vertex 5: 3. For
edge 1->3 vertex 1 is the lowest hop count. For edge 4->3 both vertexes are equal; however,
vertex 1 already accounts for edge 1->3 therefore, vertex 4 is optimal. Lastly, for edge 4->5
edge 4 has the lowest hop count and account for both edges 4->3 and 4->5. Figure 3.2
illustrates the flow rule placement optimization. Flow rule optimization, in this case, results
in a 50% cost savings in terms of reachability control flow rule placement.

To make the maximum flow minimum cut theorem applicable to computer networks we
made the assumption that a computer network could be modeled as an undirected graph
versus a directed graph in 3.2. This was implemented by making reverse edges of equal
weight (see Figure 3.5).

Figure 3.5. Undirected Graph Converted from a Directed Graph, from [59],
with Max Flow Min Cut Set Calculated.

In the case of the undirected graph depicted in 3.5 the s-t cut with s=0 and t=5 results in the
edges between vertices 3, 4, and 5. The optimal choice of flow placement in this example
would be nodes 3 and 4.

The aforementioned flow rule placement criteria are a hybrid of several placement strategies
proposed in [27] for reachability control. [27] proposed four different reachability control
strategies for ACL placement. The variable b(r) represents the number of ACL/Flow rules
placed on a switch and c(r) represents the ACL/Flow Rule limit that can be configured on
switch r. The fifth strategy is the strategy for the distributed firewall program.

1. Minimum rules (MIN) strategy: Minimize the total number of rules installed

31

network wide [27].
Minimize

∑
r

b(r) (3.1)

2. Load Balancing (LB) strategy: Spread load the processing overhead across the
network to avoid over taxing any singular network device [27].

Minimize max
r
{b(r)} (3.2)

3. Capability-based (CB) strategy: Provision reachability controls in accordance with
network device capability (filtering capacity) [27].

Maximize min
r
{c(r) − b(r)} (3.3)

4. Security centric (SEC) strategy: Place reachability controls (ACL/Flow Rules) as
close as possible to the source to reduce security risk. Let h(f) represent hop count
from the router on which flow rule is installed to the gateway router of the traffic
sources targeted by f . H represents the average h values averaged over all rules
placed on to the network [27].

Minimize H (3.4)

5. Per-Rule SEC strategy (Min Min Cut): The previous four strategies are called
offline solutions since they assume the entire set of flow rules required for the network
to be known a priori and they aim to find optimal solutions for placing the entire
set in one iteration. For this thesis, we focus on an online placement strategy where
firewall flow rules are placed one rule at a time when and in the order that they
become necessary. This is because we consider placing firewall rules at the internal
switches of the network, not simply at its ingress point(s). The internal firewall
rules are heavily driven by internal traffic, which are sometimes difficult to anticipate,
particularly upon topology changes. More specifically, we enforce the SEC strategy
per rule, by placing the rule at the switch closer to source s for each edge in the given
min edge-cut set. Consider the more general case where multiple min edge-cut sets
exist for a source destination pair. Let EC(s, t) denote the set of min edge-cut sets.
Let h(u) denote the minimum hop count from s to a switch u. The following defines

32

a collective minimum distance to s for all edges in an edge-cut set c:

H(c) =
∑

edge <a,b>∈c

min(h(a), h(b)) (3.5)

Now the Min Min Cut strategy can be formulated as a two-step process as follows.
Step 1 finds the min edge-cut set EC* whose edges are collectively closest to s:

EC∗ = arg min
c∈EC(s,t)

(H(c)) (3.6)

Step 2 then chooses the closer switch to s for each edge in EC*.

The distributed firewall program combines several aspects of the aforementioned ACL/Flow
Rule placement strategies. First, the program places flow rules as close as possible to the
source s which is a characteristic of the SEC strategy. Secondly, the program minimizes
the amount of the vertices (SDN switches) that have reachability control mechanisms (flow
rules) thereby minimizing the total number of rules installed on the network. Minimizing
rules on the network is line with the MIN strategy. Lastly, the program pulls each edges
weight from an edge weigher method within the ONOS Java Application Planning Interface
(API) and assigns that weight as an integer representing reachability and weight in the
adjacency matrix data structure. The weight of each edge can be used to devise a capability-
based strategy that combines the weight of the link (cost) and the c(r) of the SDN device as
a metric to place flow rules on. Overall, the distributed firewall program is a combination
of the MIN and SEC methods from [27] with the ability to incorporate the CB strategy if
necessary. The correctness and feasibility criterion for reachability control from [27] state:

• Reachability matrix: Consider a networkwithNVLANS. The network’s reachability
policy can be completely described by an N by N reachability matrix, denoted by MR,
where element MR(i,j) denotes the maximum RS that will always reach an intended
destination host in VLAN j if originated by a host of VLAN i.

• Managed event set: The resilience requirement of a networks reachability control
policy can be completely described by a managed set, denoted by Em, with each
element in the set specifying a topology-changing event to which the network must
respond without causing the reachability matrix to change.

• Correctness criterion: The network’s reachability matrix is invariant and as specified

33

in Mr under all events Em.
• Feasibility criterion: Let c(r) represent the limit on the total number of ACL rules
that can be configured on a router r, including all of its interfaces and in both traffic
directions, without overloading r. Let b(r) be the number of ACL rules that has been
configured on router r. Then ∀r, b(r) ≤ c(r). [27]

The same feasibility and correctness criteria apply to the distributed firewall program and
will be measures of effectiveness for program evaluation. The, the Min Min Cut strategy
runs in polynomial time as each of its sub-components (Dijkstra, Edmonds-Karp, etc.) run
in polynomial time. The pseudo code for the distributed firewall program is shown in Figure
3.6 and serves a polynomial time heuristic for node selection.

Data: s, t,G
/* input source, sink, and adjacency matrix */
Result: flow rule placement on min min cut

1 s, t ←−input source and sink;
2 G←− adjacencymatrix with link weights from ONOS;
3 Array result←− ∅;
4 Hashmap nodedistance;
5 shortestpath←− Di jkstra(G, w, s);
6 result ←− EdmondsKarp(G, s, t);
7 for edge: result do
8 for vertex: edge do
9 distance1←− shortestpath[vertex1];
10 distance2←− shortestpath[vertex2];
11 if distance1 < distance2 then
12 nodeddistance.add(vertex1, distance1);
13 if distance1 > distance2 then
14 nodeddistance.add(vertex2, distance2);
15 if distance1 == distance2 then
16 nodeddistance.add(vertex2, distance2);
17 nodeddistance.add(vertex1, distance1);
18 for object : nodeddistance.keyset() do
19 add flow rule(s);

Figure 3.6. Distributed Firewall Program Code

34

3.2 Marine Corps Infantry Task Organization
The networks in these experiments are modeled after Marine Corps Infantry units. The base
unit of Marine Infantry is the Marine fire team. The fire team has four members: one fire
team leader, one automatic rifleman, one assistant automatic rifleman, and one rifleman.
The next unit is the squad which consists of three fire teams and one squad leader. The
next unit up is the rifle platoon, led by a Second Lieutenant which consists of three rifle
squads. Three rifle platoons and a weapons platoon makes a company and three companies
and a headquarters company makes a battalion. The pattern of three subordinate units
and one headquarters unit repeats itself throughout the Marine Corps up to the MEF level
(keep in mind there are exceptions to this rule). Figure 3.7 depicts the organization of the
Infantry Battalion and Regiment to include the number of enlisted and officer personnel for
both the U.S. Navy (USN) and the USMC. These numbers indicate a high upper limit of
potential users on the tactical network; however, take these numbers with a grain of salt as
the majority of users are going to be leaders which is going to be approximately 1/8 of the
total population.

Figure 3.7. Task Organization of Marine Infantry Battalions and Regiments.
Source: [64].

A Marine infantry battalion network topology will vary greatly from unit to unit and will
depend on the mission. High mobility operations will depend almost entirely on tactical
radios making very little use of enterprise Information Technology (IT) equipment organic
to the unit. High mobility operations are more likely to utilize convenient short range
and “long” haul communications such as satellite, High Frequency (HF), and Very High
Frequency (VHF) communications over tactical radio. It is likely the only networking

35

equipment that a Battalion will use will be Mobile Ad-Hoc Networking (MANET) radios,
a Very Small Aperture Terminal Very Small Aperture Terminal (VSAT) (Small Satellite
Dish) and or a Network on the Move (NOTM). The aforementioned equipment enables a
battalion to communicate quickly and conveniently while on the move. Military Operations
Other Than War (MOOTW), such as most of Operation Iraqi Freedom Operation Iraqi
Freedom (OIF) and Operation Enduring Freedom Operation Enduring Freedom (OEF)
tended to depend heavily on IP based technologies requiring long installation, operation,
and maintenance hours. Network topologies in MOOTW environments are larger and more
robust due to the permissiveness of the environment and high demand for services. Both
types of operations require a network; however, for the purposes of testing a larger and more
robust network, these experiments will assume that the infantry battalion is operating in a
permissive MOOTW and the network architectures reflect the experiences of the author.

3.3 Experiment 1: Validation and Stress Test
The purpose of Experiment 1 is to validate the distributed firewall program’s functionality
in a controlled setting. The topology is a tree, as shown in Figure 3.8, and there is only one
data path from end to end. The maximum flow minimum cut set in this case will naturally
be an edge between two devices closest to the source s and therefore simple to validate
flow rule addition and enforcement. Lastly, network performance parameters can easily
be measured in this environment and used as a baseline for the rest of the experiments to
follow. Remember that SDNs only allow traffic that is explicitly defined within an SDN
switch’s flow table. Any traffic that a switch receives for which there is no match within its
flow table is either dropped or sent to the controller for inspection. By default in ONOS, all
flows are denied unless explicitly allowed. For the purposes of testing, a reactive forwarding
program is enabled by default. The reactive forwarding program allows any traffic on the
network by installing flow rules for any traffic that is encountered on the data plane. This
program allows us to use commonly used networking utilities such as iperf, ping, and trace
route without ONOS denying the traffic.

36

Figure 3.8. Experiment 1: 2 x 2 Tree Topology with Three Network Devices

3.3.1 Experiment 1 — Test 1: Program Functionality
Hypothesis: The distributed firewall program will determine the Min Min Cut set, pick
the closest Open vSwitch (OVS) (Open vSwitch) and apply flow rules on it. The effect on
throughput should be negligible.

Procedure: The Distributed Firewall program is a command line program that takes three
arguments. The first two arguments are s and t respectively with the third argument taking
the number of flow rules that you want to install. The flow rules used in this experiment
simply deny traffic. Denying traffic from a specific IP space is easy to verify and configure.
Figure 3.10 depicts a sample Client URL (cURL) request containing a JSON file to add a
flow rule to a specific device on the network.

The cURL request takes advantage ofONOS’sRepresentational StateTransfer representational
state transfer (REST) API. The REST API is a method of incorporating outside programs
to interact with ONOS. ONOS’s flow rules can also be created within the ONOS Java API.
Both methods are valid for deleting, modifying, and or adding flow rules to ONOS. For the
purposes of experimentation, the ONOS Java API will be used to create rules for speed,
repeatability, and automation through shell scripting. Once the flow rule is added to a
specified device, its functionality will be validated. The speed of the flow rule deployment
will also be measured using metrics that will be gathered during the experiment using
Wireshark.

37

Flow rule deployment and installation speed will be measured through detailed examina-
tion; the pcap files produced through shell scripting. Pcap files are capture files produced
by the Wireshark packet analyzation program that contain information about every packet
that passes a specific interface(s) on a network. This includes the header and payload
information of every packet as well as timing information in reference to the first packet that
passes the specified interface. Every rule r, or set of rules r1, r2, ... , rn, that is installed on
a switch from a controller takes time t for installation to complete. The installation time is
a product of the handshake that takes place between controller and switch. The handshake
consists of the following (see Figure: 3.9): first the controller sends a OFPT_FLOW_MOD,
at time i, message to the switch dictating flow rule installation. Every OFPT_FLOW_MOD
message has a transaction ID associated with it. Transaction IDs can be unique to each
flow rule or can be used across a set of flow rules. Following the OFPT_FLOW_MOD mes-
sage, an OFPT_BARRIER_REQUEST, with the same transaction ID as the OFPT_FLOW_MOD
message, is issued to the switch forcing the switch to process all previously received
messages prior to the OFPT_BARRIER_REQUEST [65]. The OFPT_BARRIER_REQUEST en-
sures the OFPT_FLOW_MOD is processed. Lastly, once the switch has complied with the
OFPT_BARRIER_REQUEST it sends an OFPT_BARRIER_REPLY, at time j, (with the requisite
transaction ID) to the controller indicating all messages have been processed up to the
OFPT_BARRIER_REQUEST. The difference in time between sending the OFPT_FLOW_MOD
and receiving the OFPT_BARRIER_REPLY is the installation time. Therefore, flow rule in-
stallation time t for rule r is t = j - i. For multiple rules, the total installation time is the dif-
ference between the first OFPT_FLOW_MOD request time and the last OFPT_BARRIER_REPLY
(keeping in mind all rules or set of rules must be replied to).

38

Figure 3.9. Experiment 1: Rule Installation Process and Timing

1
2 c u r l −X POST −−u s e r onos : r o ck s −−heade r ’ Conten t−Type : a p p l i c a t i o n / j son ’ −−heade r ’ Accept : a p p l i c a t i o n / j son ’ −d ’ {
3 " p r i o r i t y " : 40000 ,
4 imeou t " : 0 ,
5 " i sP e rmanen t " : t r u e ,
6 " d e v i c e I d " : " o f : 0000000000000001 " ,
7 " t r e a tm e n t " : {
8 " a c t i o n " : "DENY"
9 } ,
10 " s e l e c t o r " : {
11 " c r i t e r i a " : [
12 {
13 " t ype " : "ETH_TYPE" ,
14 " e thType " : " 0x0800 "
15 } ,
16 {
17 " t ype " : " IPV4_SRC" ,
18 " i p " : " 10 . 0 . 0 . 4 / 32 "
19 }
20]
21 }
22 } ’ ’ h t t p : / / 192 . 168 . 123 . 1 : 8181 / onos / v1 / f l ows / o f%3A0000000000000001? appId=org . o n o s p r o j e c t . f lows ’

Figure 3.10. ONOS cURL Request With Deny Rule.

Data Collection: End to end throughput and latency will be captured by analyzing iperf
captures. Validating that the program works will be done through several mechanisms. The
number, type, and specification of flow rules installed on a device can be validated through
the same methods that flow rules can be created/modified/ or deleted: through the REST,
Graphical User Interface (GUI), and ONOS Java API.

39

3.3.2 Experiment 1 — Test 2: Stress Testing
The purpose of test 2 will be to stress test the distributed firewall program, Mininet, and
Open vSwitch to evaluate their limits and functionality under realistic network flow rules.
Hypothesis Test 2: The same topology will be utilized in the second test; however, the
number of rules installed on the Min Min Cut will be varied on a logarithmic scale up to
100,000 rules to determine the limits of single OVS switch, deployment speed and end to
end latency. Procedure Test 2: The number of rules will be increased until the network
experiences notable increases in latency and deployment speed. The type of rules will also
be varied from the strict deny rules used in Figure 3.10 to rules changing traffic from one
VLAN ID to another.

In order to stress test Open vSwitch, we plan to install flow rules following a logarithmic
scale starting at one rule and ending at one hundred thousand rules for a total of 6 planned
tests. Each test was repeated twenty-five times for statistical significance. After rule
installation, network performance data was gathered by measuring bandwidth and CPU
utilization performance.

Data Collection Test 2: End to end latency will be measured using Wireshark packet
traces. Deployment speed of flow rules will be gathered using the ONOS Java API to record
rule creation and implementation times. Wireshark captures can also be used to validate
flow rule updates by validating receipt of Open Flow Modification OPEN_FLOW_MOD
messages. Lastly, the iperf and iostat utilities will be used to measure throughput and cpu
usage.

3.3.3 Experiment 1 — Test 3:
The purpose of test 3 is to evaluate the distributed firewall program’s ability to react to
network topology changes that change the Maximum Flow Minimum Cut Set.

Hypothesis Test 3: The distributed firewall program is programmed to react dynamically
to topology changes. Once the topology changes in such a manner to change the Maximum
Flow Minimum Cut set, the distribute firewall deploys flow rules appropriately. The speed
of the deployment will depend on the size of the cut and the number of rules being deployed.

Procedure Test 3: The procedure will remain the same as test 2 and the only new variable

40

will be topology changes that change the Max Flow Min Cut simulating additions/losses in
connectivity. The topology will be changed such that an edge is created between the first
and last node. The topology changes will simulate natural changes in network connectivity
due to environmental effects, traffic, malicious entities, and insider threats. Data Collection
Test 3: The data collection method for test 3 will be the same as the previous experiments.

3.4 Experiment 2: Infantry Regiment Testing
The Infantry Regiment reflects the current size of the infantry component of SPMAGTF
deployments in support of Operation Secure Resolve. The purpose of this experiment is
to test the limits of the distributed firewall program when managing larger networks of
twenty-five or more SDN switches. In this experiment one regimental topology will be
evaluated: Figure 3.11. Links will be created and torn down in order to simulate link losses
and additions outside and inside of network operations control. Because new links cannot
be added to a Mininet topology post startup we chose to create links ahead of time and
tear them down prior to testing our baseline topology. Core links are depicted in green and
reflect approved links between units. Adjacent links are depicted in red and reflect the links
that will be used to circumvent normal traffic flow. Test 2 evaluates the distributed firewall
program under realistic network conditions using conservative bandwidths and latency.
LAN links use a 100 Mbits/s bandwidth and 1 millisecond delay while core links have
10 milliseconds in delay and bandwidths varying between 4 and 45 Mbits/s to simulate
microwave line of sight links.

3.4.1 Experiment 2: Baseline Test
Hypothesis: The purpose of test 1 is to validate the functionality of the distributed firewall
program under realistic conditions by deploying the MinMinCut after traffic has begun to
flow utilizing valid flow rules (ONOS Intents) and the iperf utility. MinMinCut will block
traffic in accordance with the deployment speeds discovered in experiment 1.

Procedure: We will utilize a shell script to automate the testing. We will start up the
network and establish intents (flows) between two sets of hosts. One point to point intent
will be for legitimate traffic while the other intent be illegitimate (once the distributed
firewall program is deployed). The number of flow rules in this experiment will be low (100

41

rules) and the test will be repeated twenty-five times for statistical significance.

Data Collection: In this test we are primarily concerned with blocking illegitimate flows
and allowing legitimate ones. Iperf output between two sets of hosts will be used to
evaluate throughput and effectiveness of the distributed firewall program. Iperf output will
give coarse grain indication of flow stop speed and impact on throughput.

Figure 3.11. Experiment 2: Homogeneous SDN Infantry Regiment Topology

3.4.2 Experiment 2: Random Adjacent Link Establishment Test
Hypothesis: The purpose of the adjacent link establishment test is to validate that the
distributed firewall program can quickly block traffic when the network topology changes
in such a manner as to purposely or inadvertently create flows around the MinMinCut. We
hypothesize that the distributed firewall program will block traffic and stop any flows within
the speeds discovered in experiment 1 taking into account the latency of the network.

Procedure: We will utilize a shell script to automate the testing. We will start with
connectivity using only core links. The distributed firewall program will be run and then
point to point intents will be established between two sets of hosts. One intent will be
legitimate traffic while the other intent be blocked by flow rules (once the distributed
firewall program is deployed). The number of flow rules in this experiment will be 1000

42

rules. Once intents and flow rules are set, an adjacent link will be established that changes
the MinMinCut.

Data Collection: In this test we are primarily concerned with blocking illegitimate flows
and allowing legitimate ones. Iperf output between two sets of hosts will be used to
evaluate throughput and effectiveness of the distributed firewall program. Iperf output will
give coarse grain indication of flow stop speed and impact on throughput.

3.4.3 Experiment 2: Random Core Link Loss Test
Hypothesis : The purpose of this test is to see whether or not core link loss has a significant
impact on throughput. I hypothesize that the impact will be in accordance to the rule set
size as discovered in experiment 1.

Procedure: The procedure for test 1 is the same as the previous with the exception that
instead of adding an adjacent link, we will tear down a core link and evaluate the effects.

Data Collection: In this test we are evaluating the throughput impact on a core link loss.
Iperf output between two sets of hosts will be used to evaluate throughput. Iperf output will
give insight into core link loss statistics.

3.4.4 Experiment 2: Malicious Adjacent Link Establishment
Hypothesis: Malicious Adjacent Link Establishment is to validate that the distributed
firewall program can quickly block trafficwhen the network topology and intents are aligned
such that the intent shortest path is only path on the network. This simulates using an intent
that specifically defines paths along specific interfaces to circumvent flow rules. This test
pits ONOS’s intent framework speed against the distributed firewall program speed. We
hypothesize that the distributed firewall program will block traffic and stop any flows within
the speeds discovered in experiment 1 taking into account the latency of the network.

Procedure: We will utilize a shell script to automate the testing. We will start with
connectivity using only core links. The distributed firewall program will be run and then
intents will be established between two sets of hosts. One intent will be legitimate traffic
while the other intent be blocked by flow rules (once the distributed firewall program is
deployed). The number of flow rules in this experiment will be 1000 rules. Once intents

43

and flow rules are set, all core links will be cut off segregating the origin network from the
destination network. Iperf will be started as in previous experiments. Lastly, an adjacent
link will be created forcing the intent framework to recalculate the shortest path and allow
for iperf traffic to traverse that path. Simultaneously the distributed firewall program will
calculate the MinMinCut and install flow rules. Traffic will be appropriately blocked at the
speeds discovered in experiment 1. Illegitimate traffic may reach the destination for small
periods of time.

Data Collection: In this test we are primarily concerned with blocking illegitimate flows and
allowing legitimate ones. Iperf output between two sets of hosts will be used to evaluate
throughput and effectiveness of the distributed firewall program. Iperf output will give
coarse grain indication of flow stop speed and impact on throughput.

3.5 Experiment 3: Hybrid Network Evaluation
As mentioned by previous research [33], SDN is still an emergent technology and as such
the specification is still under review by the Internet Research Task Force (IRTF) [66]
and the Internet Engineering Task Force (IETF) [67]. The purpose of experiment 3 is to
evaluate hybrid topologies to gain insight to provide a procurement recommendation to the
Marine Corps. Infantry battalions also continuously deploy on the Marine Expeditionary
Unit (MEU), the smallest MAGTF, and reflect the current standard of force forMarine quick
reactionary forces. Figures 3.12 and 3.13 illustrate the structure of the tested networks.
These networks were designed keeping in mind the principles from [28]. Some of the
primary points of [28] are stated below:

1) SDN’s benefits can be seen in hybrid networks consisting of SDN and traditional net-
working equipment (reflecting incremental network upgrades).

2) Upgrading the network can occur under a constrained budget and impact the network
minimally.

3) Reduce network disruption while building self-assurance in SDN capabilities during
incremental network upgrades.

4) “The benefits of SDN to enterprise networks can be realized for every source-
destination path that includes at least one SDN switch ” [28] (bold emphasis added).

The topology depicted in Figure 3.12 reflects an idealized homogeneous SDN architecture

44

Figure 3.12. Experiment 3: Homogeneous SDN Infantry Battalion Topology
with Seven Network Devices

Figure 3.13. Experiment 3: Heterogeneous SDN Infantry Battalion Topology
with Seven Network Devices

while Figure 3.13 reflects the reality of an incremental upgrade to SDN.

Hypothesis: The hybrid network, see Figure 3.13, will perform in exactly the same manner
as the homogeneous network except for the flexibility and granularity that comes with
having more SDN capable devices. The logical SDN will “appear” like an SDN of smaller
size. The topology shown in Figure 3.13 reflects the principles from [28] dictating that the

45

benefits of SDN can only be realized as long as the path between two devices contains at
least one SDN switch. Therefore, the outer nodes or access layer switches will generally be
the best candidates for legacy devices. This is why the access layer switches of the topology
are legacy and the core and distribution layer switches are SDN.

Procedure: We will demonstrate the functionality and flexibility of a hybrid network and
discuss the benefits of a hybrid network and demonstrate the negatives aspects.

3.6 Recap
The purpose of this research is to demonstrate the programmability of SDNs and their
effectiveness in homogeneous and hybrid networks. The experimental design addresses
topologies of varying sizes, SDN and hybrid equipment build outs, and realistic Marine
Infantry networks. The design varies experimental variables to provide meaningful metrics
of latency, deployment speed, and resilience to topology changes. The program will be
measured against the same correctness and feasibility criterion listed in [27] and basic
principles stated in [28]. The testing methodology will also provide evidence in support of
Open vSwitch as a virtual testing platform and a platform for use in the Marine Corps.

46

CHAPTER 4:
Findings

We live in an age that is driven by information. Technological break-
throughs...are changing the face of war and how we prepare for war.

—William Perry, 19th United States Secretary of Defense [6]

The following are experimental results. As a recap, the purpose of these experiments is
to validate the functionality of the distributed firewall program, stress test Open vSwitch
(Mininet’s native virtual switch platform), and evaluate both the firewall and Open vSwitch
on simulated homogeneous and heterogeneous Marine Corps topologies. The driving
purpose behind the research is to evaluate software defined networking, reachability control
frameworks from [27], and hybrid topologies for use and acquisition within the United
States Marine Corps. Remember, that ONOS by default denies all traffic on the network
unless explicitly allowed through flow rules. To enable testing, we enabled a reactive
forwarding program which installs flows for all traffic encountered on the network (white
listing everything).

4.1 Experiment 1: Validation and Stress Test
The purpose of experiment 1 is threefold. First, validate that the distributed firewall program
appropriately filters traffic and responds to topology changes when invoked. Second, find
Open vSwitch’s experimentally constrained upper limit for flow rules to gather insight for
DoD utilization. And finally, measure any effects on throughput and CPU utilization.

4.1.1 Experiment 1 — Test 1
The purpose of Experiment 1 is to validate the distributed firewall program’s functionality.
To answer this question, the program was installed, activated, and invoked on ONOS using
a basic tree topology (see Figure 3.8) with four hosts and three SDN switches (Open
vSwitch). Each host had an IP address ranging from 10.0.0.1 (host1) to 10.0.0.4 (host4).

47

Once ONOS and Mininet were activated, the ONOS GUI was visible at 192.168.123.1:
8181/onos/ui/index.html#/topo (see Figure 4.1). The ONOS-Mininet command line during
activation and invocation where are also visible on the right side of Figure 4.1. The output
of the program’s invocation revealed a correct adjacency matrix, MinMinCut (edge 0 - 2 :
node 3), and deployed rule (deny IP traffic with destination 10.0.0.4/32 - read in at run time
from a file).

A shell script automated the testing process by iterating the following sequence twenty- five
times for a specified number of rules :

1. Launch ONOS
2. Activate tshark (CLI Wireshark) and collect Openflow traffic on port 6653 or 6633

for a specified amount of time
3. Activate the distributed firewall program to beginMin Min Cut and rule installation
4. tshark ends and outputs a pcap file
5. Activate TCP iperf bandwidth test for 15 seconds between hosts on opposite sides of

theMin Min Cut and output the result in a text file
6. Activate iostat utility for CPU utilization data during the TCP iperf bandwidth test

and output the result to a text file
7. Close ONOS and Mininet

The results were then gathered using a Python script to parse through the data in the
following sequence:

1. read iostat output files and identify CPU utilization for a specified number of rules
and output the result to a CSV

2. read TCP iperf output files and identify overall throughput for a specified number of
rules and output the result to CSV

3. for each pcap file, for a specified number of rules, convert the file to xml and calculate
individual rule installation time and overall total rule installation time (see Figure 3.9.
Average rule installation time and overall rule installation time were output to a CSV
file.

The validity of the deployed flow rule was tested using ping and iperf tools. Any ping from
10.0.0.1 to 10.0.0.4 and from 10.0.0.4 to 10.0.0.1 failed due to the functionality of Internet

48

192.168.123.1:8181/onos/ui/index.html#/topo
192.168.123.1:8181/onos/ui/index.html#/topo

Figure 4.1. Experiment 1: Firewall Invocation. ONOS GUI (left) and CLI
(right) when the Distributed Firewall is Invoked on the Tree Topology (Tree
Topology — Figure: 3.8).

Control Message Protocol. No ICMP echo-replies are given for either set of pings resulting
in blank console messages. To further validate functionality, iperf UDP tests where ran.
Any traffic destined for 10.0.0.4 was blocked while any traffic from 10.0.0.4 for 10.0.0.1
made it to its destination.

4.1.2 Experiment 1 — Test 2
The purpose of test 2 is to stress test the distributed firewall program and Open vSwitch to
evaluate their limits and functionality under realistic network flow rules.

The maximum number of rules that were installed on Open vSwitch was 75,000 flow rules.
The original procedure called for logarithmic rule growth; however, 100,000 rules exceeded
the Open vSwitch’s capacity under experimental constraints (hardware and software speci-
fications). While the method to install 100,000 rules worked, it caused the network to crash.
The first indications of this failure was a lack of TCP iperf data for every test using 100,000
rules. Upon closer inspection, the failure occurred because 100,000 rules overloaded the
network and resulted in a dump of all rules (GUI showed 0 rules). Using the Linux utility
top, we discovered that the DFA Java process monopolized CPU time, spending 90% of
its time in user space. Keep in mind, the experimental constraints are fairly modest. As

49

the number of rules approached 100,000, the links from the Min Min Cut node turned red
indicating link failure. After the links failed, total flow rules across the network dropped
to zero. Once the limit of 100,000 rule was discovered, we backed off by 50,000 rules and
worked back towards the limit. Ultimately, 50,000, 64,000, and 75,000 rules were tested.
64,000 rules was chosen because it is representative of the number of null routes at an
enterprise level firewall in the Marine Corps.

Flow rule installation time was measured from an individual rule and a total rule set
installation time perspective. The statistics for individual rule installation time across the
set of tests is illustrated in Figures 4.2 and 4.3. Starting at 10,000 rules there is an increase
in per rule and total installation time (Figures 4.2 and 4.4), due to a 75ms pause for every
100 rules beyond 1000. The pause was instituted during testing as a congestion control
mechanism due to the low latency (bus latency of the test laptop) and high bandwidth
(correlated to computer clock speed [68]) of the test environment. Figure 4.3 is a regression
of all average per rule installation times across the range of tests. Theoretically, the per
rule installation time should be relatively flat across all tests but we saw in increase in time
from 1 to 2 ms for 1 - 10,000 rules to 6 - 10 ms for 50,000 - 75,000 rules. Average per rule
installation time, regardless of total rules, was 3.3394+−3.471ms. The total rule installation
time increased linearly (Figure 4.5) despite the almost logarithmic growth of rules indicating
a better than theoretical installation time despite congestion control mechanisms.

50

Figure 4.2. Average Per Rule Installation Time Comparisons. The depicted
bars are standard box plots showing the inter-quartile range, min, max, me-
dian and outliers of each test.

Figure 4.3. Linear Regression of Average Rule Installation Time Over All
Tests. The r2 Value for this regression was 0.930135.

51

Figure 4.4. Overall Delay Test Comparison. The depicted bars are standard
box plots showing the inter-quartile range, min, max, median and outliers of
each test.

Figure 4.5. Overall Delay with Linear Regression. The r2 value for this
regression was 0.99885

52

The measured overall times are accurate; however, there is error present in the per rule
installation time. The parsing program to calculate per rule installation time calcu-
lated the time based off having the complete set of packets including OFPT_FLOW_MOD,
OFPT_BARRIER_REQUEST, and OFPT_BARRIER_REPLY and the time difference between
the OFPT_FLOW_MOD and OFPT_BARRIER_REPLY. If any of the packets from the set listed
above were not present, the program ignored the set in the total calculation of average per
rule time and output an error message stating the transaction ID of the set. Due to the low
latency and high bandwidth of the environment, TCP would bundle multiple OpenFlow
Packets into single TCP segments consisting of multiple transaction IDs. This bundling
effectively hid multiple transaction IDs from the parsing program. Additionally, it was dis-
covered that there were multiple transaction IDs with the same ID of zero. Transaction ID’s
with same number also threw off the parser as these IDs had legitimate payloads despite the
seemingly erroneous ID. The total number of ignored sets was low; however, the average
per rule installation time was based off of what was found. Future work needs to correct this
error and further investigate the phenomenon. The total rule installation time is based off of
the first OFPT_FLOW_MOD and the last OFPT_BARRIER_REPLY (assuming a full correct set
for both). We know the overall rule set installation times to be accurate because the method
call to return the number of installed rules always returned the requested number of rules.

We performed bandwidth tests using iperf after each rule set installation. Increasing the
number of flow rules forces the affected Open vSwitch to inspect each incoming packet until
a match occurs. Iperf tests were performed between hosts whose flows were not filtered on
the rule list forcing each packet to be compared to each rule on the flow rule list theoretically
resulting in increased queuing delay (and latency) and a decrease in throughput. Figures 4.6
and 4.7 depict throughput versus total number of flow rules installed. There is a decrease
in throughput as rules are increased.

53

Figure 4.6. Iperf TCP Throughput Test Comparison. The depicted bars are
standard box plots showing the inter-quartile range, min, max, median and
outliers of each test. Notice that for 10,000 rules the range of values is much
higher than for other rules.

Figure 4.7. Iperf TCP Throughput with Linear Fit. The r2 value for this
regression was 0.21137 indicating the line is not useful for prediction.

54

CPU utilization versus total rules installed can be seen in Figure 4.8. There is an increase in
CPU utilization from 1 to 1000 rules and then a sharp reduction from 1000 to 10000 to the
baseline utilization after that (due to the 75ms pause). Given a linear regression (see Figure
4.9, there is a decrease of approximately five percent across the 8 tests; however, the curved
regression doesn’t appear to model the data accurately given the known 75ms pause. Lastly,
IOStat data was collected at large and future work should isolate the individual process ID
of the switch in question to more precisely capture per process CPU usage.

To analyze the data further, the IOstat and throughput data were averaged, across each
test, then compared as arrays using the Pearson correlation coefficient. The correlation
coefficient between the two sets of data is 0.4015 meaning there is a low to moderate
correlation between the data. Using a 4th degree polynomial in a curved regression reveals
an inverse relationship between CPU utilization and throughput. More data points are
needed to verify this relationship. The causality seems low given the fact the relationship
is likely linear.

55

Figure 4.8. CPU Utilization per Test Comparison. Notice that for 10,000
rules the range of values is large.

Figure 4.9. CPU Utilization with Linear Regression. r2 for this fit was low
at 0.061892

Examining Figures 4.9, 4.8, and 4.6, it is clear that the installation of 10,000 rules had a

56

much larger range of values than any other test and was an outlier. The individual box plots
in the figures above do not indicate any outliers because the values are so spread out and no
individual point within the tests lie more than 1.5 times away from the inter-quartile range.
This spreading effect is most pronounced in Figure 4.9. The contributor to CPU utilization
drop at 10,000 rules is likely our congestion control algorithm which instituted a 75ms

pause per 100 rules after 1000; however, this high range of values disappears again as the
rules increase. We believe this to be an effect of the law of large numbers (numbers being
rules in this case) post congestion control institution. Moreover, it may be experimental
error. Overall, the data shows that installation time was a useful metric based off of the r2

values of 4.5 and 4.3 but that CPU utilization and throughput were not.

4.1.3 Experiment 1 — Test 3
The purpose of test 3 is to evaluate the distributed firewall program’s ability to react
to network topology changes that change the Maximum Flow Minimum Cut Set. The
program is configured to react to any link change (Link update/add/drop) using the ONOS
Java API. Anytime a link change occurs, the program logs the link change and recalculates
the MinMinCut and reapplies flow rules. The results of the link change and MinMinCut

are logged and saved to file. To test link changes, a triangular topology was created (see
Figure 4.10) to simulate the addition or deletion of a third link to the tree topology (Tree
Topology: see Figure 3.8). Anytime the link was brought down or brought up (or any link
in the topology) the change was detected and MinMinCut was reran an rules deployed
as necessary. The output file contains the link change, the new adjacency matrix and
MinMinCut. One drawback with the reactive topology method is that the current iteration
of the code does not maintain state and completely re-installs the MinMinCut and flow
rules every time the topology changes (something that will be minimized in future work).
Secondly, the topology change methodology only does the MinMinCut on the current s

and t. The ability to dynamically change s and t will greatly improve the program’s ability
to react to threats from different parts of the network as necessary.

57

Figure 4.10. Experiment 1: Triangle Topology for Link Change Detection

4.2 Experiment 2: Infantry Regiment Testing
The purpose of experiment 2 was to evaluate the effect of the distributed firewall program
under realistic network conditions. The topology of the network simulated a Marine
infantry regiment (see Figure 3.11). The core links constitute legitimate links between a
regimental headquarters and its subordinate links while the outer links are used to evaluate
the distributed firewall program under changing topologies. Link speeds and latency
emulated line of sight and beyond line of sight links that infantry battalions and regiments
could potentially use. Overall, four tests were conducted to further validate the speed and
functionality of the distributed firewall program under normal, dynamic, and malicious
conditions to determine how effective the distributed firewall program is under realistic
network conditions. An example of a simple point to point intent using the ONOS REST
can be seen in Figure 4.11 dictating flow between two mac addresses. Intents can be strung
together to form routes throughout the network.

These tests take advantage of the intent framework available in the ONOS architecture.
Intents provide the high-level ability to create flows between devices without defining spe-
cific sub flows along a network path. This allows an administrator the ability to holistically
define flows between devices at the network level (management and control plane) without
having to spend time defining flows at the device level (data plane). ONOS intents give the

58

NOS the reins and force traffic between devices. Intents are used as a form of insurance
to ensure ONOS properly establishes links between desired end points. The intents are
juxtaposed against the distributed firewall program as a means of evaluating the distributed
firewall program’s effectiveness.

1

2 c u r l −X POST −−u s e r onos : r o ck s −−heade r ’ Conten t −Type :
a p p l i c a t i o n / j son ’ −−heade r ’ Accept : a p p l i c a t i o n / j son ’ −d ’ {

3 " t ype " : " Ho s tToHos t I n t e n t " ,
4 " appId " : " o rg . o n o s p r o j e c t . ovsdb " ,
5 " p r i o r i t y " : 55 ,
6 " one " : " 00 : 00 : 00 : 00 : 00 : 01 /−1 " ,
7 " two " : " 00 : 00 : 00 : 00 : 00 : 04 /−1 "
8 } ’ ’ h t t p : / / 192 . 168 . 123 . 1 : 8181 / onos / v1 / i n t e n t s ’

Figure 4.11. ONOS Point to Point Intent cURL

4.2.1 Experiment 2 — Baseline Test
The baseline test was used to validate the functionality of the distributed firewall program.
The following describes the fleshed out methodology of the test (repeated twenty-five times)
using a Linux shell script to automate the process (Shell Scripts in section A.8):

1. Launch ONOS & Mininet
2. Setup Mesh Regiment Topology
3. Disestablish all but six core links between the regiment and battalions
4. Establish an intent from host 1 to host 6 using the ONOS REST API. Host 1 to host 6

constitutes allowed traffic on the network with respect to the flow rules the distributed
firewall program uses.

5. Establish an intent from host 2 to host 5 using the ONOS REST API. Any traffic with
a destination IP address of host 5 is not allowed on the network with respect to flow
rules the distributed firewall program uses.

6. Start an iperf UDP server at Host 6 capturing throughput every second
7. Start an iperf UDP client at Host 1 for 30 seconds with a maximum throughput of 4

Mbits/s (bottleneck link speed) capturing throughput data every second and outputting

59

the result to a text file.
8. Start an iperf UDP server at Host 5 capturing throughput every second
9. Start an iperf UDP client at Host 2 for 30 seconds with a maximum throughput of 4

Mbits/s (bottleneck link speed) capturing throughput data every second and outputting
the result to a text file.

10. Wait 10 seconds
11. Activate the distributed firewall program to begin Min Min Cut and rule installation

for a total of 100 rules within the MinMinCut

12. Close ONOS and Mininet

To analyze that data, we simply iterated through every iperf client and server output file to
generate the graphed data. Using regular expressions we pulled the relevant values from
the iperf output file and graphed them. Regular expressions allowed us to parse though the
data quickly while selectively pulling the sending and receiving rate of the client and server
respectively. This method was applied to each of the following tests.

Figure 4.1 shows that hosts 1 and 2 maintain a constant stream of data at 4 Mbits/s. The
server hosts, 5 and 6, show very different outcomes than their client counterparts. At
approximately 11.36 seconds traffic to host 5 is cutoff by the distributed firewall program
while the traffic arriving at host 6 is maintained at a throughput equivalent to host 1’s output
(0.00029Mbits/s less than host 1’s output) which aligns with the results from Experiment 1.
Figure 4.12 shows that 100 flow rules have little effect on throughput. Figure 4.13 depicts
the blocking of traffic destined for host 5 at approximately 11.36 seconds (receiving rate
average over 25 runs). Table 4.1 depicts the raw statistics for this experiment. We entered
the value of 0 Mbit/s where iperf had zero data to reflect the change more dramatically
on the graph. There is error in the test. The iperf program’s time is not synchronized
with the shell scripts’s timing; therefore, it is impossible to measure the exact time that the
distributed firewall’s program’s rules took effect. From a coarse grain view, installation of
100 rules takes place approximately within the bounds discovered in experiment 1. The
difference between experiment 1 and experiment 2 is that experiment 2 has much larger
latency between devices.

60

Figure 4.12. Experiment 2: Baseline Test: Host 1 to Host 6 Regression
Data. Host 1 reflects iperf client sending rate while Host 6 reflects iperf
server receiving rate

Figure 4.13. Experiment 2: Baseline Test: Host 2 to Host 5 Data. Host 2
reflects iperf client throughput while Host 5 reflects iperf server arrival rate

61

Baseline Host1 Host 6 Host 2 Host 5
Sample Size (n) 25 25 25 25
Data Points 750 750 750 299

Session Active (Seconds) 30 30 30 11.36
Mean Rate (Mbps) 4.00157 4.00128 4.00157 3.7872
Median Rate (Mbps) 4.0 4.0 4.0 4.0
Standard Deviation 0.0048912 0.0077089 0.00640244 0.90057

Table 4.1. Experiment 2: Baseline Test Using a Marine Infantry Regiment
Topology and 100 Flow Rules

4.2.2 Experiment 2 — Random Adjacent Link Establishment Test
The purpose of the random adjacent link establishment test was to evaluate the distributed
firewall program’s ability to block illegitimate traffic outside of the normal core links. This
test simulated the establishment of adjacent links to enable mission accomplishment (con-
sistent with the author’s experience in Afghanistan where units established or disestablished
links without permission). Intents were created between two sets of hosts on the network
(H1 –> H6 and H2 –> H5) to reflect allowed and blocked traffic respectively. Additionally,
establishment of a random adjacent link forced ONOS to recalculate intent flows (shortest
paths) as well as the MinMinCut. The following describes the fleshed out methodology of
the test (repeated twenty-five times) using a linux shell script to automate the process:

1. Launch ONOS & Mininet
2. Setup Mesh Regiment Topology
3. Disestablish all but six core links between the regiment and battalions
4. Activate the distributed firewall program to begin Min Min Cut and rule installation

for a total of 1000 rules within the MinMinCut

5. Establish an intent from host 1 to host 6 using the ONOS REST API. Host 1 to host 6
constitutes allowed traffic on the network with respect to the flow rules the distributed
firewall program uses.

6. Establish an intent from host 2 to host 5 using the ONOS REST API. Any traffic with
a destination IP address of host 5 is not allowed on the network with respect to flow
rules the distributed firewall program uses.

62

7. Start an iperf UDP server at Host 6 capturing throughput every second
8. Start an iperf UDP client at Host 1 for 30 seconds with a maximum throughput of 4

Mbits/s (bottleneck link speed) capturing throughput data every second and outputting
the result to a text file.

9. Start an iperf UDP server at Host 5 capturing throughput every second
10. Start an iperf UDP client at Host 2 for 30 seconds with a maximum throughput of 4

Mbits/s (bottleneck link speed) capturing throughput data every second and outputting
the result to a text file.

11. Wait 10 seconds
12. Re-Establish a random adjacent link from host 1/2’s network to host 5/6’s network.
13. Close ONOS and Mininet

The results of test 2 shows that no illegitimate traffic was able to traverse the network.
Table 4.2 shows the raw statistics for this test. Moreover, we observe an expected drop in
throughput (approximately 0.05Mbits/s) due to flow rule installation (1000 rules). We chose
to increase the number of installed rule from 100 in the baseline test to 1000 in this test so
as to observe more obvious changes in throughput. Keep in mind that we 100 rule incurred
almost no delay on the network from experiment 1 whereas at 1000 rules we begin to see
more visible changes in bandwidth. No data was collected for the UDP server at Host 5 -
hence the null result in the table 4.2. Zero Mbits/s was entered into the graphical depiction
of the results (4.15) to illustrate the effect of the distributed firewall program. After closer
inspection of the results, it was determined that this test was a rudimentary examination of
the distributed firewall program as the intent framework wasn’t fully leveraged against it.
The intents’ shortest path had not changed despite the addition of the adjacent link because
the intent architecture was unaware of the distributed firewall program’s flow rules. The
results of this test validate this as no traffic destined for 10.0.0.5 arrived. The new adjacent
link was not the shortest path and therefore the intents pushed traffic towards flow rule
enforcing switches as shown by Figure 4.15. The results indicate that a more sophisticated
intent is required to circumvent the distributed firewall program either by rerouting traffic
around filters or elevating traffic priority levels beyond that of traffic filters. Of note, there
is an overall decrease in throughput from Host 1 over time (0.01 Mbits/s - Figure 4.14)
where the expected result was a constant transmission rate (as was the case in Figure 4.15).

63

Figure 4.14. Experiment 2: Random Adjacent Link Establishment Test:
Host 1 to Host 6 Regression Data

Figure 4.15. Experiment 2: Random Adjacent Link Establishment Test:
Host 2 to Host 5 Data

64

Random Outer Link Up

Random Outer Link Up Host1 Host 6 Host 2 Host 5
Sample Size (n) 25 25 25 25
Data Points 750 750 750 0

Average Transmit/ Receive Time 30 30 30 Null
Mean 3.99619 3.990506 4.001493 Null
Median 4.0 4.0 4.0 Null

Standard Deviation 0.14610 0.20657 0.0049969 Null
Table 4.2. Experiment 2: Random Outer Link Up Using a Marine Infantry
Regiment Topology and 1000 Flow Rules

4.2.3 Experiment 2 — Random Core Link Loss
The random core link test was used to evaluate the effect of core link loss on throughput in
the network utilizing the distributed firewall program. The test shows very similar results to
the random adjacent link test. The key difference is that the sending host (host 1) maintains
a constant transmission rate (see Figure 4.16) of 4 Mbits/s in the core link loss test while in
there is a drop in transmission rate in the random adjacent link test (Figure 4.14). As was
done with the random adjacent link test, the null values depicted in table 4.3 were depicted
as zeros in the Figure 4.17 to illustrate zero transmissions between hosts 1 and 5. The
following describes the fleshed out methodology of the test (repeated twenty-five times)
using a linux shell script to automate the process:

1. Launch ONOS & Mininet
2. Setup Mesh Regiment Topology
3. Disestablish all but six core links between the regiment and battalions
4. Activate the distributed firewall program to begin Min Min Cut and rule installation

for a total of 1000 rules within the MinMinCut

5. Establish an intent from host 1 to host 6 using the ONOS REST API. Host 1 to host 6
constitutes allowed traffic on the network with respect to the flow rules the distributed
firewall program uses.

6. Establish an intent from host 2 to host 5 using the ONOS REST API. Any traffic with
a destination IP address of host 5 is not allowed on the network with respect to flow

65

rules the distributed firewall program uses.
7. Start an iperf UDP server at Host 6 capturing throughput every second
8. Start an iperf UDP client at Host 1 for 30 seconds with a maximum throughput of 4

Mbits/s (bottleneck link speed) capturing throughput data every second and outputting
the result to a text file.

9. Start an iperf UDP server at Host 5 capturing throughput every second
10. Start an iperf UDP client at Host 2 for 30 seconds with a maximum throughput of 4

Mbits/s (bottleneck link speed) capturing throughput data every second and outputting
the result to a text file.

11. Wait 10 seconds
12. Deactivate a random core link from host 1/2’s network to host 5/6’s network.
13. Close ONOS and Mininet

Figure 4.16. Experiment 2: Random Core Link Loss Test: Host 1 to Host 6
Regression Data

66

Figure 4.17. Experiment 2: Random Core Link Loss Test : Host 2 to Host
5 Data

Random Core Link Down Host1 Host 6 Host 2 Host 5
Sample Size (n) 23 23 23 23
Data Points 690 685 690 Null

Average Transmit/ Receive Time 30 30 30 Null
Mean 4.0015507 3.96534 4.0014202 Null
Median 4.0 4.0 4.0 Null

Standard Deviation 0.0047914 0.35155 0.0048166 Null
Table 4.3. Experiment 2: Random Core Link Down Using a Marine Infantry
Regiment Topology and 1000 Flow Rules

4.2.4 Experiment 2 — Intent Versus Distributed Firewall Shortest
Path

The intent versus distributed firewall shortest path test evaluated the speed of the distributed
firewall program versus the speed of an ONOS point to point intent. This test was devised
after the first three tests results were examined. It was determined that the ONOS intent

67

framework utilized shortest a path algorithm and had no method of automatically rerouting
around DF program rules. Therefore, the methodology enabled the ONOS point to point
intent to send traffic down the shortest path while the distributed firewall program raced to
enforce security policy on the new data path. This test also simulates the case of malicious
link establishment. The results of the experiment are shown in Figures (4.18, 4.19, 4.20,
4.21, 4.22) and Table 4.4. The following describes the fleshed out methodology of the test
(repeated twenty-five times) using a linux shell script to automate the process:

1. Launch ONOS & Mininet
2. Setup Mesh Regiment Topology
3. Disestablish all but six core links between the regiment and battalions
4. Activate the distributed firewall program to begin Min Min Cut and rule installation

for a total of 1000 rules within the MinMinCut

5. Deactivate All core links from host 1/2’s network to host 5/6’s network
6. Establish an intent from host 1 to host 6 using the ONOS REST API. Host 1 to host 6

constitutes allowed traffic on the network with respect to the flow rules the distributed
firewall program uses.

7. Establish an intent from host 2 to host 5 using the ONOS REST API. Any traffic with
a destination IP address of host 5 is not allowed on the network with respect to flow
rules the distributed firewall program uses.

8. Start an iperf UDP server at Host 6 capturing throughput every second
9. Start an iperf UDP client at Host 1 for 30 seconds with a maximum throughput of 4

Mbits/s (bottleneck link speed) capturing throughput data every second and outputting
the result to a text file.

10. Start an iperf UDP server at Host 5 capturing throughput every second
11. Start an iperf UDP client at Host 2 for 30 seconds with a maximum throughput of 4

Mbits/s (bottleneck link speed) capturing throughput data every second and outputting
the result to a text file.

12. Wait 10 seconds
13. Re-Establish a random adjacent link from host 1/2’s network to host 5/6’s network.
14. Close ONOS and Mininet

68

Figure 4.18. Experiment 2: Intent and Distributed Firewall Shortest Path :
Host 1 to Host 6 Scatter-plot.

Figure 4.19. Experiment 2: Intent and Distributed Firewall Shortest Path :
Host 1 to Host 6 CDF.

69

Figure 4.18 displays the scatter-plot of the iperf data captured from host 1 (UDP iperf client)
and host 6 (UDP iperf server). Throughput at host 6 starts off with a significant amount
of variation then increasing in throughput consistency. Table 4.4 shows that host 6 has
an average of 3.68 Mbits/s and a median of 3.88 Mbits/s which is well within expected
tolerances given the variability of the throughput at the beginning of the capture. Figure
4.19 (Host 1 to Host 6 Cumulative Distribution Function) shows that there is a consistency
in the throughput from host 1 to host 6 which is what we expected for allowed traffic.

Figure 4.20. Experiment 2: Intent and Distributed Firewall Shortest Path :
Host 2 to Host 5 Scatter-plot.

70

Figure 4.21. Experiment 2: Intent and Distributed Firewall Shortest Path :
Host 2 to Host 5 CDF.

The data from host 2 to host 5 was the most revealing. Figure 4.20 shows that while the
distributed firewall program was able to adapt to the new link and block, traffic destined for
host 5 the majority of times, the speed of deployment varied. The CDF (Figure 4.21) of host
2 and host 5 showed that 100% of traffic is blocked within 6 seconds with approximately
76% of all traffic blocked within two seconds. The histograms of the host 2 and host 5 data
reinforce the CDF data and show that number of times traffic reached host 5 was small.
Given this information, further testing is needed to decrease the block time to less than one
second.

71

Intent vs DF Program Host1 Host 6 Host 2 Host 5
Sample Size (n) 25 25 25 19
Data Points 720 506 720 40

Average Transmit/ Receive Time 30 20.086 30 1.025
Mean 4.000805 3.684604 4.00056944 1.94699
Median 4.0 3.88 4.0 1.95

Standard Deviation 0.0565971 0.511490 0.0607781 0.308108
Table 4.4. Experiment 2: The Intent Versus Distributed Firewall Shortest
Path Using a Marine Infantry Regiment Topology and 1000 Flow Rules

Figure 4.22. Experiment 2: The intent versus distributed firewall shortest
path : Host 5 Histogram. The frequency in this graph equates to the number
of times, out of twenty-five, that traffic arrived at the iperf server (Host 5)

4.3 Experiment 3: Hybrid Network Evaluation
Hybrid networks are a necessity for any network looking to transition from a traditional
network to an SDN setup. Fully outfitting any network is a costly and difficult process
from the perspective of maintaining services for the user. In this experiment we outline
the basic procedures as well as the pros and cons of various strategies for potential USMC

72

deployment of hybrid SDN networks. Every network in the Marine Corps is different
and is built to suit the designer’s needs; however, for the purposes of proscribing a general
heuristic for purchasing of equipment we will assume there is a baseline structure forMarine
Infantry Battalions (see Figure 4.24). The baseline topology was created to represent a
possible layout for a Marine infantry battalion. The battalion’s logical topology was derived
from previously used physical topologies that provided network services to the battalion’s
different commodity sections (called ‘S’ shops where the number of the shop indicates its
function). Each battalion runs combat operations out of a “Combat Operations Center”,
run by the operations section (S-3), and has supporting sections that provide intelligence
(S-2), administrative (S-1), logistics (S-4), and communications (telecommunications / S-
6) services to the battalion. Figure 4.23 shows the generic battalion setup with switches
supporting the various commodity sections.

Figure 4.23. Experiment 3: Example Infantry Battalion Physical Layout

73

Figure 4.24. Experiment 3: Example Homogeneous Battalion SDN Structure

If we examine Figure 4.24, we assume this to be the final generic structure of a Marine
Infantry battalion network with a total of 7 SDN switches or 7 Legacy Network Devices.
SDN switches are all generically the same while legacy networking devices can vary greatly
depending on their use. The only similarities between them on a physical level is the number
of interfaces they have. This device total does not account for devices left in reserve or the
total amount of devices that a battalion should utilize based on average annual maintenance
requirements. The seven-node topology provides enough flexibility to physically separate
different commodity sections while also providing enough logical control to the operator.
Moreover, this number of devices can provide some semblance of fault tolerance to the
operator.

Ideally, an Infantry battalion would be fielded a full complement of SDN devices. More
SDN devices provide more control of network flows and break the battalion into boundaries
of control. Every SDN device can explicitly control traffic to and from itself and serve as
gatekeepers to other parts of the network. Legacy devices by default do not provide such
control and are therefore are prone to be the locations where illegitimate traffic flows can
begin and end. Take Figure 4.25 for example, illegitimate flows can start and begin from
nodes 0, 1, 6, 5. This can be a problem for different commodity sections trying to segregate
network traffic from each other.

Weitzel’s research into hybrid networks in [33] showed that hybrid networks can maintain
basic network segmentation mechanisms like VLANs and ACLs in heterogeneous setups.

74

This suggests that legacy devices could be maintained at the access layer as there are
mechanisms to control network traffic that work in hybrid setups. The primary negatives of
this setup are a knowledgeable inside threat and an unknowing operator. We believe this risk
is acceptable so long as the operator has properly enabled network controls such as MAC
address filtering, VLANs, and access control lists. Moreover, any connection from legacy
device to legacy device will be visible to an SDN Controller as it will result in a topology
change from the lens of an SDN to SDN connection. For example, if node 0 and node 6 are
connected together then another logical connection is formed between nodes 2 and 3 (SDN
switches - see Figure 4.26). The topological change will be visible to network operators.
With respect to the distributed firewall program, the MinMinCut would be ran again and
deployed; however, security policy will not be upheld on this link unless additional manual
configuration is conducted for the two legacy devices. Figure 4.26 shows the SDN logical
view of this setup.

Figure 4.25. Experiment 3: Heterogeneous Battalion SDN Structure

75

Figure 4.26. Experiment 3: Logical Heterogeneous Battalion SDN Structure

Figure 4.27 shows another possible hybrid battalion configuration where all but the core
switch are legacy devices. This setup logically appears in Figure 4.28 and provides absolute
control over the traffic within the battalion but performs poorly in context of the larger
network. Core device best practice are to let those devices perform routing and filtering
functions while access layer devices are best left to switching user traffic. In this case, one
device handles all local area network switching and routing to and from other networks.
This setup places too much traffic load on node 4 and is a central point of failure. This
should be the absolute worst case for use and fielding we highly recommend against it.

76

Figure 4.27. Experiment 3: Heterogeneous Battalion SDN Structure 2

Figure 4.28. Experiment 3: Logical Heterogeneous Battalion SDN Structure
2

Another methodology for deployment of SDN switches is to take the SDN deployment to
the access layer providing the most control over user traffic (Figures 4.29 and 4.30). From
a flow control perspective this setup is best because it provides total control over user traffic
and makes it unlikely that users will circumvent network controls. Users would have a very
large barrier to overcome to make illicit connections on the battalion network. From the
inside looking out, you would have four separate SDN devices needing flows outside of the
network. Flows outside of the network would be unwieldy and would be the drawback of
this setup. Moreover, when examining this from the firewall perspective, this is not best
practice. It is easier and less error prone to configure one edge device to handle external

77

flows than four separate ones. From a logical perspective (Figure 4.28) this constitutes a
poor use flows as a full mesh architecture is generally very wasteful from a bandwidth and
flow control perspective.

Figure 4.29. Experiment 3: Heterogeneous Battalion SDN Structure 3

Figure 4.30. Experiment 3: Logical Heterogeneous Battalion SDN Structure
3

Having examined some example architectures and their benefits and drawbacks we can
formulate a general heuristic for heterogeneous SDN architectures. We want to use the

78

least amount of SDN switches to conserve cost but also provide enough switches to main-
tain network ingress filtering, logical network segmentation and flow control at the user
level. Moreover, the heuristic must be applicable to any hybrid SDN setup regardless of
configuration or device count. At a minimum, a network administrator must adhere to the
principles in [28] to transition to SDN; however, our recommendation is to utilize the setup
in Figure 4.25 where the core and distribution switches are SDN devices. This provides
ingress traffic control and distribution layer traffic control without creating a single point of
failure. The general heuristic should be to place an SDN switch at the network edge (where
connections are made to external organizations) and at places in the distribution layer such
that there is an SDN device between every source and destination path within the intranet.
In the case of our example topology (Figure 4.25), this means 3 out of 7 switches (43%)
should be SDN devices.

4.4 Summary
Through a series of experiments, we examinedOpen vSwitch, a distributed firewall program,
and hybrid Marine Corps topologies in an effort to demonstrate the programmability and
control of Software Defined Networking and its advantages. Moreover, we have provided
more evidence of Mininet’s flexibility as a network testing platform and the capability of
Open vSwitch as virtual switching platform. We also examined the distributed firewall
program in depth looking at its capabilities and shortfalls. Lastly, we have also shown a
primitive heuristic for hybrid SDN topologies that can be applied towards setup but also
incremental procurement of SDN switches.

79

THIS PAGE INTENTIONALLY LEFT BLANK

80

CHAPTER 5:
Conclusion and Future Work

We’re behind the curve. And there’s a shame in that, in that, we literally
invented the Internet. And yet we’re the example that other nations point to
of, like, “The Americans, don’t be a victim like the Americans, don’t let what
happened to the Americans happen to us.” That’s the discourse in Sweden,
Estonia, France.

—P.W. Singer, Author of Ghost Fleet and Like War [69]

5.1 Conclusions
During this research we set out to answer two primary research questions:

1. Question 1: Using the greedy heuristic algorithm for Access Control List (ACL)
placement shown in [27], what are the effects of deploying an SDN distributed
firewall application in battalion and regimental size USMC tactical networks? What
are the effects in terms of security, throughput, and resilience in comparison to a
traditional USMC network?

2. Question 2: Given the work done in [28], how can the USMC begin incrementally
purchasing and fielding SDN equipment to maximize immediate networking gains
and minimize fiscal cost for the organization?

We examined software defined networking and software defined networking tools frommul-
tiple angles producing results that not only help answer these questions but also raise a few
new questions that deserve further research. The ability to create and refine an application
with the capability of the distributed firewall program demonstrates the power of software
defined networking’s programmability. Additionally, the distributed firewall program is a
practical means of dealing with ubiquitous networking and zero trust environments where
segmentation and automated reachability control are necessary. In testing the distributed
firewall program, we utilized open source software including Open Networking Operating

81

System (ONOS) network operating system, Mininet network emulation tool, and Open
vSwitch distributed virtual multi-layer switch. We found these software suites more than
capable of handling emulation and stress testing tasks, making them suitable alternatives
for networking use in tactical Marine Corps Networks.

The distributed firewall program is an effective tool for segmenting networks and filtering
traffic automatically between end points. The program automatically detects topology
changes and installs flow rules accordingly and could serve as a replacement for real firewalls
and are capable of handling a large amounts of flows. Given physical SDN hardware,
switching and memory performance should improve. Moreover, if the distributed firewall
program is iteratively run between endpoints for which traffic filtering is necessary, only
allowed traffic will traverse the network as traffic will immediately be filtered at the first hop
that is an SDN capable switch.

Open vSwitch has a high-performance capacity for a distributed virtual multi-layer switch.
Given the experimental constraints, topology, and devices, the upper bound for flow rules
for an individual switch is greater than or equal to 75,000 and less than 100,000 flow rules
— which is larger than typical Marine Corp network device access control list sizes. Flow
rule deployment speed is high for rule sets of size smaller than 1000 (less than a second);
however, flow rule set deployment speed is low for rule set sizes larger than 1000 (up to
60 seconds for 75,000 flow rules). Rule installation speed is a lower bound because of the
low latency inherent with the testing environment and the high bandwidth of experiment 1.
More research is needed to scale the distributed firewall program to larger equipment sets,
and networks with higher latency and lower bandwidth.

There is a large body of work evaluating and testing Mininet as an effective network
emulation tool and SDN prototyping platform [39], [40], [53]. Additionally, there is an
easier technical hurtle to overcome using Mininet than using network simulators like ns-
3 which are programmed in C; however, testing in Mininet can be slow in comparison
to simulators like ns-3 because it requires better knowledge of shell scripting and UNIX
command line tools to extract data. Mininet also runs Open vSwitch which enables SDN
testing since Open vSwitch is SDN capable by default. Lastly, Mininet is integrated with
ONOS, both of which are actively supported by the Open Networking Foundation. [65].

ONOS comes with Mininet support and a Python program called onos.py which integrates

82

the Mininet command line and the ONOS command line into a singular interface. The
drawback of using the onos.py is that it can take a long time to setup an environment
depending on the size of the topology [70]. With that in consideration, ONOS is a well
documented, supported, and actively updated SDN NOS. Learning ONOS can be relatively
straightforward because of the large user base, support structure, and active development
community [56].

5.2 Limitations and Future Work
This research is not exhaustive and has technical limitations that need to be explored in
future work.

1. This work only examined single controller environments. Multi-controller environ-
ments are currently in use and are an active area of research [71] in order to alleviate
single points of failure and balance processing load for network control. Future
research should investigate enterprise networks using multiple SDN controllers to
efficiently control flow rule installation and monitor reachability control at the core,
distribution, and access layers of the network.

2. The distributed firewall program only filters from a single source s to a single sink
t controlled from the ONOS command line. The program needs to be expanded
to simultaneously include multiple sources and sinks in one execution so that the
operator does not need to run the program multiple times.

3. The distributed firewall program is stateless and therefore wasteful with respect to
flow rule installation. A check is not done to see whether or not the same flow rules
have already been installed on a switch and sends flowmodification packets regardless
of the switch’s state. It would be faster to only install flow rules on the set of switches
that need them.

4. Flow rule batching is not done and typically a set of flow rule modifications and
enforcement packets are sent for every flow rule. Batching flow rules into sets can
lead to more efficient network bandwidth.

5. A potential method of increasing reachability control reaction time is pre-loading
flow rules onto inactive flow tables and activating them when necessary. This would
eliminate the need to load rules in real time, decrease switch CPU load until flow
rule activation is required, and increase reaction time to the time it takes to send an

83

activation message from controller to switch.
6. Algorithm optimization can be implemented to improve program reaction time and

improve scalability. One example of a start would be to utilize an adjacency list vice
a matrix to represent the network topology.

7. An in depth quantitative study of SDN’s cyber security risks and vulnerabilities
needs to be conducted beyond qualitative supposition to provide methods and means
of defending SDN’s from active and passive threats.

Our research also identifies several important questions in the areas of Operations Research,
Defense Systems Analysis, and Information Technology Management. Given the basic
fielding heuristic discussed in Section 4.3, what SDN-capable hardware should the Marine
Corps invest in that mimics the switching speed, port density, and memory of the Marine
Corps’ current networking inventory? Secondly, how should the Marine Corps train and
educate its networking and cyber security workforce on SDN? Lastly, besides Marine
infantry battalions, how can SDN optimally be phased into Marine Corps data centers in
Kansas City and base, posts, and stations?

5.3 Closing Remarks
Software Defined Networking is a networking technology that enables innovation, fine
grain control, and automation. It is a technology that can improve the Marine Corps’
ability to “orient” and “decide” and “act” in the information age where sorting through
avalanches of data are a daily occurrence. This research has shown that correct automated
reachability control (through flow rules) is possible without the burden of middleware, third
party software, or vendor proprietary software. Fine grain control of network flows are an
inherent benefit of Software Defined Networking but SDN’s programmability could be a
limitless means of innovation. Automation, machine learning, delay tolerant networking,
and dynamic resource control are possible with SDN as a platform. Moreover, Software
Defined Networks can be created utilizing a small amount of resources. We have suggested
an approach for device placement and procurement that could save theMarine Corps money
and improve its information capabilities.

84

APPENDIX: Literary Review, SDN Software, and
Source Code

Learning about Software Defined Networking can be overwhelming because of the sheer
amount of resources that are available to the uninitiated. The first step in learning about Soft-
ware Defined Networks is a good background in the fundamentals of traditional networking.
If you do not possess that, then studying SDN will be a difficult journey.

A.1 SDN Literary Review
The foundation of learning SDN is conducting a literary review to provide historical,
theoretical, and technical context for and about the subject. The book that introduced the
author to the subject matter was Kurose and Ross’s Computer Networking: A Top Down
Approach 7th Edition [36]. From there, A History of SDNs covered by The Road to SDN by
Feamster et al [29] and Software-defined networking: A comprehensive survey by Kreutz et
al [14] provide a thorough analysis of the history and technical underpinnings of the subject.

A.1.1 Openflow
Openflow and SDN are mutually supporting and intertwined subject matters. While Open-
flow is not SDN and SDN is not Openflow, you cannot have a complete understanding
of SDN without understanding the protocol that enables it. The foundational paper about
Openflow [32]

A.2 Open Network Operating System, Mininet, and Open
vSwitch

Open Network Operating System is an open-source carrier grade SDN Network Operating
System supported by the Open Networking Foundation. Tutorials in its used can be found
at [72]. ONOS offers a pre-built virtual machine on which to learn the system. Conversely,
you can build ONOS from the source code and create a development platform.

85

A.2.1 Mininet and Open vSwitch
Another method of learning Software Defined Networking is through using Open vSwitch
and Mininet. Open vSwitch is a virtual switching platform that supports the openflow
protocol. Using the Open vSwitch commands you can install and configure SDN switches
on your computer. Going a step further, mininet can do all of this manual labor for you
through instantiating multiple Open vSwitch devices in a topology and configuration of
your choice. Mininet tutorials can be found at [39] while Open vSwitch documentation is
available at [41].

A.3 Distributed Firewall Command Line Class
DF Command Line Class

/ ∗
∗ Copy r i gh t 2018− p r e s e n t Open Network ing Founda t i on
∗
∗ L i c en s ed under t h e Apache License , Ve r s i on 2 . 0 (t h e " L i c en s e ") ;
∗ you may no t use t h i s f i l e e x c ep t i n comp l i ance wi th t h e L i c en s e .
∗ You may o b t a i n a copy of t h e L i c en s e a t
∗
∗ h t t p : / /www. apache . o rg / l i c e n s e s / LICENSE−2.0
∗
∗ Un le s s r e q u i r e d by a p p l i c a b l e law or ag r e ed t o i n w r i t i n g , s o f tw a r e
∗ d i s t r i b u t e d under t h e L i c en s e i s d i s t r i b u t e d on an "AS IS " BASIS ,
∗ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND , e i t h e r e x p r e s s o r imp l i e d .
∗ See t h e L i c en s e f o r t h e s p e c i f i c l anguage gove rn i ng p e rm i s s i o n s and
∗ l i m i t a t i o n s under t h e L i c en s e .
∗ /

package org . g raph ;

impo r t o rg . apache . k a r a f . s h e l l . commands . Argument ;
impo r t o rg . apache . k a r a f . s h e l l . commands . Command ;
impo r t o rg . on l ab . g raph . Defau l tEdgeWeighe r ;
impo r t o rg . on l ab . g raph . Weight ;
impo r t o rg . on l ab . p a c k e t . I p 4 P r e f i x ;
impo r t o rg . on l ab . p a c k e t . VlanId ;
impo r t o rg . o n o s p r o j e c t . c l i . Abs t rac tShe l lCommand ;
impo r t o rg . o n o s p r o j e c t . c o r e . A p p l i c a t i o n I d ;
impo r t o rg . o n o s p r o j e c t . c o r e . D e f a u l t A p p l i c a t i o n I d ;
impo r t o rg . o n o s p r o j e c t . n e t . Dev i ce Id ;
impo r t o rg . o n o s p r o j e c t . n e t . d e v i c e . Dev i c eS e r v i c e ;
impo r t o rg . o n o s p r o j e c t . n e t . f low . ∗ ;
impo r t o rg . o n o s p r o j e c t . n e t . l i n k . L inkEven t ;
impo r t o rg . o n o s p r o j e c t . n e t . l i n k . L i n kL i s t e n e r ;
impo r t o rg . o n o s p r o j e c t . n e t . l i n k . L i n kSe r v i c e ;
impo r t o rg . o n o s p r o j e c t . n e t . t o po l ogy . ∗ ;

impo r t j a v a . i o . Bu f f e r edReade r ;
impo r t j a v a . i o . F i l eR e a d e r ;
impo r t j a v a . i o . F i l eW r i t e r ;
impo r t j a v a . i o . IOExcep t ion ;
impo r t j a v a . t e x t . S impleDateFormat ;
impo r t j a v a . u t i l . ∗ ;
impo r t j a v a . u t i l . r egex . Matcher ;
impo r t j a v a . u t i l . r egex . P a t t e r n ;
/∗∗
∗ Apache Kara f CLI command t o d e t e rm i n e t h e edge c u t b /w 2 nodes and dep loy ACLs

86

∗ /

@Command(scope = " onos " , name = " k i l l " ,
d e s c r i p t i o n = " Deploy Flow Rules t o Min Min Edge Cut Se t ")

p u b l i c c l a s s AppCommand ex t e nd s Abs t rac tShe l lCommand {

@Argument (i ndex = 0 , name = " s " , d e s c r i p t i o n = " s ou r c e " , r e q u i r e d = t r u e , mu l t iVa l u ed = f a l s e)
p r i v a t e i n t s = −1;
@Argument (i ndex = 1 , name = " t " , d e s c r i p t i o n = " d e s t i n a t i o n " , r e q u i r e d = t r u e , mu l t iVa l u ed = f a l s e)
p r i v a t e i n t t = −1;
@Argument (i ndex = 2 , name = " r " , d e s c r i p t i o n = "# of r u l e s " , r e q u i r e d = t r u e , mu l t iVa l u ed = f a l s e)
p r i v a t e i n t r = 1 ;

@Override
p u b l i c vo id e x e c u t e () {

l og . i n f o (" Graph App l i c a t i o n : S t a r t e d wi th min c u t be tween " + s + " and " + t) ;
L i n kL i s t e n e r l i n k L i s t e n e r = new L i n kL i s t e n e r () {

@Override
p u b l i c vo id ev en t (L inkEven t e v en t) {

i f (e v en t . t y p e () != n u l l) {
t r y {

i n t x , y = 0 , r u l e s b e f o r e = 0 , r u l e s a f t e r = 0 , r u l e s a d d e d = 0 , t o t a l r u l e s =0;
Dev i c eS e r v i c e d e v i c e S e r v i c e = g e t (Dev i c eS e r v i c e . c l a s s) ;
Topo logySe rv i c e t o p o l o g yS e r v i c e = g e t (Topo logySe rv i c e . c l a s s) ;
Topology topo = t o p o l o g yS e r v i c e . c u r r e n tTopo l o gy () ;
TopologyGraph graph = t o p o l o g yS e r v i c e . ge tGraph (topo) ;
Set <TopologyEdge > edges = graph . ge tEdges () ; / / g r ab t h e edges from c u r r e n t t o po l ogy
Set <TopologyVer tex > v e r t e x e s = graph . g e tV e r t e x e s () ; / / g r ab t h e v e r t e x e s from t h e c u r r e n t t opo logyon
HashMap<DeviceId , I n t e g e r > id tonum = new HashMap < > () ; / / d e v i c e i d t o i n t
HashMap< I n t e g e r , S t r i n g > idtonum2 = new HashMap < > () ; / / f o r r u l e s
HashMap<DeviceId , L i s t > i d t o s t a t s = new HashMap < >() ; / / d e v i c e i d t o edges
HashMap<DeviceId , L i s t > i d t o p o r t s = new HashMap < >() ; / / d e v i c e s and t h e i r a s s o c i a t e d p o r t s
Defau l tEdgeWeighe r edgeWeigher = new Defau l tEdgeWeighe r () ;
Me t r i cL inkWeigh t l i n kWe igh t = new Met r i cL inkWeigh t () ;
F lowRu leSe rv i c e f l owRu l eS e r v i c e = g e t (F lowRu leSe rv i c e . c l a s s) ;
i n t devicenum = v e r t e x e s . s i z e () ;
i n t [] [] a d jm a t r i x = new i n t [devicenum] [devicenum] ;
Dev i ce Id [] i d l i s t = new Dev i ce Id [devicenum] ;
Graph graph1 = new Graph (devicenum) ;
S t r i n g [] r e s u l t ;
S t r i n g p r i n t o u t = " " ;

f o r (Topo logyVer tex temp1 : v e r t e x e s) {
S t r i n g name = S t r i n g . va lueOf (temp1) ;
Dev i ce Id i d = temp1 . d e v i c e I d () ;
id tonum . pu t (id , y) ;
id tonum2 . pu t (y , name) ;
i d l i s t [y] = i d ;
L i s t p o r t s = d e v i c e S e r v i c e . g e t P o r t s (i d) ;
L i s t s t a t s = d e v i c e S e r v i c e . g e t P o r t S t a t i s t i c s (i d) ;
i d t o s t a t s . pu t (id , s t a t s) ;
i d t o p o r t s . pu t (id , p o r t s) ;
y ++;

}
S t r i n g l i n k c h a n g e t y p e = even t . t y p e () . t o S t r i n g () ;
S t r i n g l inkchangename = even t . t y p e () . name () ;
p r i n t o u t = p r i n t o u t . c o n c a t (" EVENT " + l i n k c h a n g e t y p e + " \ n " + "NAME" + l inkchangename + " \ n ") ;
p r i n t o u t = p r i n t o u t . c o n c a t (

"########################## dev i c e i d t o ma t r i x number ##########################" + " \ n ") ;
Se t s e t = id tonum . e n t r y S e t () ;
I t e r a t o r i t e r a t o r = s e t . i t e r a t o r () ;
wh i l e (i t e r a t o r . hasNext ()) {

Map . En t r y e n t r y = (Map . En t r y) i t e r a t o r . n ex t () ;
p r i n t o u t = p r i n t o u t . c o n c a t (" Device i d : " + e n t r y . getKey () + " ; ma t r i x number : " + e n t r y . g e tVa l ue () + " \ n ") ;

}
p r i n t o u t = p r i n t o u t . c o n c a t (

87

"########################### WEIGHTS ###" + " \ n ") ;
f o r (TopologyEdge edgetemp : edges) {

f o r (i n t j = 0 ; j < devicenum ; j ++) {
S t r i n g edge = S t r i n g . va lueOf (edgetemp) ;
S t r i n g s r c = n u l l ;
S t r i n g d s t = n u l l ;
S t r i n g p a t t e r n = " ((o f :) ([a−zA−z0 − 9] ∗)) " ;
P a t t e r n p = P a t t e r n . compi l e (p a t t e r n) ;
Matcher ma tche r = p . ma tche r (edge) ;
i f (ma tche r . f i n d ()) {

s r c = ma tche r . group (0) ;
}
i f (ma tche r . f i n d (4 4)) {

d s t = ma tche r . group (0) ;
}
Dev i ce Id s ou r c e = Dev i ce Id . d e v i c e I d (s r c) ;
Dev i ce Id d e s t i n a t i o n = Dev i ce Id . d e v i c e I d (d s t) ;
Dev i ce Id i d = i d l i s t [j] ;
i f (i d . e q u a l s (s o u r c e)) {

i n t row = idtonum . g e t (i d) ;
i n t column = idtonum . g e t (d e s t i n a t i o n) ;
Weight we igh t = edgeWeigher . we igh t (edgetemp) ;
Weight we igh t1 = l i nkWe igh t . we igh t (edgetemp) ;
S t r i n g s t r i n gw e i g h t = S t r i n g . va lueOf (we igh t) ;
i n t l a s t i n d e x = s t r i n gw e i g h t . l a s t I n d e xO f (’ } ’) ;
S t r i n g sw = s t r i n gw e i g h t . s u b s t r i n g (19 , l a s t i n d e x) ;

f l o a t f l o a t w e i g h t = F l o a t . va lueOf (sw) ;
i n t i n t w e i g h t = Math . round (f l o a t w e i g h t) ;
a d jm a t r i x [row] [column] = i n tw e i g h t ;
a d jm a t r i x [column] [row] = i n tw e i g h t ;

}
}

}
p r i n t o u t = p r i n t o u t . c o n c a t (

"########################## MATRIX ##" + " \ n ") ;
/ ∗
f o r (i n t i = 0 ; i < devicenum ; i ++) {

p r i n t o u t = p r i n t o u t . c o n c a t (
"Row " + i + "−− Row " + i + " \ n ") ;

f o r (i n t j = 0 ; j < devicenum ; j ++) {
p r i n t o u t = p r i n t o u t . c o n c a t (a d jm a t r i x [i] [j] + " \ n ") ;

}
}
∗ /
p r i n t o u t = p r i n t o u t . c o n c a t (

"######################### SHORTEST PATHS #######################################" + " \ n ") ;
S h o r t e s t P a t h s h o r t y = new S h o r t e s t P a t h (devicenum) ;
i n t o r i g i n = s ;
i n t [] s h o r t y d i j k s t r a = s h o r t y . d i j k s t r a (a d jma t r i x , o r i g i n) ;
p r i n t o u t = p r i n t o u t . c o n c a t (" Ve r t ex D i s t a n c e from Source ") ;
f o r (i n t i = 0 ; i < devicenum ; i ++) {

p r i n t o u t = p r i n t o u t . c o n c a t (i + " " + s h o r t y d i j k s t r a [i] + " \ n ") ;
}
p r i n t o u t = p r i n t o u t . c o n c a t (

"########################## CUT ##" + " \ n ") ;
Vec to r d e v i c e l i s t = new Vec to r () ;
HashMap< I n t e g e r , I n t e g e r > n o d e d i s t a n c e = new HashMap () ; / / Key : node Value : D i s t a n c e from sou r c e
i f ((s != −1) && (t != −1)) {

r e s u l t = graph1 . minCut (a d jma t r i x , s , t) ;
x = r e s u l t . l e n g t h ;
y = 0 ;

f o r (i n t i = 0 ; i < x ; i ++) {
i f (r e s u l t [i] != n u l l) {

S t r i n g sub = r e s u l t [i] ;
S t r i n g [] subtwo = sub . s p l i t (" − ") ;
i n t d ev i c e0 = I n t e g e r . p a r s e I n t (subtwo [0]) ;

88

d e v i c e l i s t . add (y , (d ev i c e0)) ;
i n t d i s t a n c e 0 = s h o r t y d i j k s t r a [d ev i c e0] ;
n o d e d i s t a n c e . pu t (dev ice0 , d i s t a n c e 0) ;
y ++;
i n t d ev i c e1 = I n t e g e r . p a r s e I n t (subtwo [1]) ;
d e v i c e l i s t . add (y , (d ev i c e1)) ;
i n t d i s t a n c e 1 = s h o r t y d i j k s t r a [d ev i c e1] ;
n o d e d i s t a n c e . pu t (dev ice1 , d i s t a n c e 1) ;
y ++;
p r i n t o u t = p r i n t o u t . c o n c a t (r e s u l t [i] + " \ n ") ;

}
}

}
i n t d e v i c e l i s t s i z e = d e v i c e l i s t . s i z e () ;
f o r (i n t i = 0 ; i < d e v i c e l i s t s i z e ; i ++) {

Ob j e c t t empob j e c t = d e v i c e l i s t . g e t (i) ;
S t r i n g t emp s t r i n g = t empob j e c t . t o S t r i n g () ;
i n t t emp i n t = I n t e g e r . va lueOf (t emp s t r i n g) ;
p r i n t o u t = p r i n t o u t . c o n c a t (" Device ID : " + id tonum2 . g e t (t emp i n t) + " Ma t r i x i d : " + t emp i n t + " \ n ") ;

}
p r i n t o u t = p r i n t o u t . c o n c a t (

"######################### MIN MIN CUT #######################################" + " \ n ") ;
i n t i = 0 ;
r e s u l t = graph1 . minCut (a d jma t r i x , s , t) ;
HashMap< I n t e g e r , I n t e g e r > f i n a l n o d e d d i s t a n c e = new HashMap () ;
wh i l e (r e s u l t [i] != n u l l) {

S t r i n g sub = r e s u l t [i] ;
p r i n t o u t = p r i n t o u t . c o n c a t (r e s u l t [i] + " \ n ") ;
S t r i n g [] edgenodes = sub . s p l i t (" − ") ;
i n t node1 = I n t e g e r . p a r s e I n t (edgenodes [0]) ;
i n t node2 = I n t e g e r . p a r s e I n t (edgenodes [1]) ;
i n t d i s t 1 = n o d e d i s t a n c e . g e t (node1) ; / / g e t node 1 d i s t a n c e
i n t d i s t 2 = n o d e d i s t a n c e . g e t (node2) ; / / g e t node 2 d i s t a n c e
i f (d i s t 1 < d i s t 2) {

/ / n o d e d i s t a n c e . remove (node2) ;
f i n a l n o d e d d i s t a n c e . pu t (node1 , d i s t 1) ;

} e l s e i f (d i s t 1 > d i s t 2) {
/ / n o d e d i s t a n c e . remove (node1) ;
f i n a l n o d e d d i s t a n c e . pu t (node2 , d i s t 2) ;

} e l s e i f (d i s t 1 == d i s t 2) {
f i n a l n o d e d d i s t a n c e . pu t (node1 , d i s t 1) ;
f i n a l n o d e d d i s t a n c e . pu t (node2 , d i s t 2) ;

}
i ++;

}
Se t f i n a l s e t = f i n a l n o d e d d i s t a n c e . keySe t () ;
I t e r a t o r f i n a l n o d e d i s t a n c e i t e r a t o r = f i n a l s e t . i t e r a t o r () ;
wh i l e (f i n a l n o d e d i s t a n c e i t e r a t o r . hasNext ()) {

Ob j e c t ob j = f i n a l n o d e d i s t a n c e i t e r a t o r . n ex t () ;
I n t e g e r f i n a l c u t i n t = I n t e g e r . va lueOf (ob j . t o S t r i n g ()) ;
S t r i n g f i n a l c u t n o d e = idtonum2 . g e t (f i n a l c u t i n t) ;
p r i n t o u t = p r i n t o u t . c o n c a t (" f i n a l c u t node : " + f i n a l c u t n o d e + " \ n ") ;

}
p r i n t o u t = p r i n t o u t . c o n c a t (

"######################### ACL/FLOW RULES #######################################" + " \ n ") ;
/ / g e t r i d o f d u p l i c a t e s i n t h e l i s t
t r y {

f i n a l De f au l tF l owRu le . Bu i l d e r f l o w r u l e b u i l d e r = Defau l tF l owRu le . b u i l d e r () ;

p r i n t (" The t o t a l number o f f low r u l e s i s : ") ;
p r i n t o u t = p r i n t o u t . c o n c a t (" The t o t a l number o f f low r u l e s i s : ") ;
r u l e s b e f o r e = f l owRu l eS e r v i c e . ge tF lowRuleCount () ;
p r i n t (S t r i n g . va lueOf (r u l e s b e f o r e)) ;
p r i n t o u t = p r i n t o u t . c o n c a t (r u l e s b e f o r e + " \ n ") ;

p r i n t ("###################### Reading I n p u t Ru les #################################") ;
p r i n t o u t = p r i n t o u t . c o n c a t ("###################### Reading I n p u t Ru les #################################" + " \ n ") ;

89

Se t f i n a l e = f i n a l n o d e d d i s t a n c e . keySe t () ;
I t e r a t o r f i n a l e i t e r a t o r = f i n a l e . i t e r a t o r () ;

wh i l e (f i n a l e i t e r a t o r . hasNext ()) {
/ / c r e a t e # o f r u l e s e qu a l t o t h e # i n r
Ob j e c t f i n a l o b j = f i n a l e i t e r a t o r . n ex t () ;
I n t e g e r f i n a l e i n t = I n t e g e r . va lueOf (f i n a l o b j . t o S t r i n g ()) ;
Bu f f e r edReade r b u f f e r e dRe a d e r = new Buf f e r edReade r

(new F i l eR e a d e r (" / home / b r e n t / i n p u t r u l e s / r u l e s . t x t ")) ;
S t r i n g l i n e ;
S t r i n g r u l e ;
wh i l e ((l i n e = bu f f e r e dRe ad e r . r e a dL i n e ()) != n u l l) {

r u l e = l i n e ;
p r i n t (r u l e) ;
S t r i n g d e n y p a t t e r n = " (\ \ w+_ \ \w+_ ? \ \w+ ?) \ \ s (\ \ d + . \ \ d + . \ \ d + . \ \ d +) " ;
S t r i n g v l a n p a t t e n = " ((\ \ w+_ \ \w+_ ? \ \w+ ?) \ \ s (\ \ d +) _ (\ \ d +)) " ;

P a t t e r n deny = P a t t e r n . compi l e (d e n y p a t t e r n) ;
P a t t e r n v l an = P a t t e r n . compi l e (v l a n p a t t e n) ;

Matcher denymatche r = deny . ma tche r (r u l e) ;
Matcher v l a nma t ch e r = v l an . ma tche r (r u l e) ;

i f (denymatche r . f i n d ()) {
p r i n t ("DENY RULE") ;
S t r i n g d e n y i p a d d r e s s = denymatche r . group (2) ;
T r a f f i c S e l e c t o r . B u i l d e r s e l e c t o r b u i l d e r = D e f a u l t T r a f f i c S e l e c t o r . b u i l d e r () ;
T r a f f i c T r e a tm e n t . B u i l d e r t r e a t m e n t b u i l d e r = D e f a u l t T r a f f i c T r e a tm e n t . b u i l d e r () ;
/ / b u i l d r u l e one
Ap p l i c a t i o n I d a p p l i c a t i o n I d = new De f a u l t A p p l i c a t i o n I d (158 , " org . o n o s p r o j e c t . g raph ") ;
/ / Dev i ce Id d e v i c e I d = Dev ice Id . d e v i c e I d (" o f : 0000000000000001") ;
s h o r t t yp e = 0x800 ;
i n t p r i o r i t y = 40000 ;
i n t t imeou t = 10000 ;

I p 4 P r e f i x i p 4 P r e f i x d s t 1 = I p 4 P r e f i x . va lueOf (d e n y i p a d d r e s s + " / 3 2 ") ;
p r i n t o u t = p r i n t o u t . c o n c a t (r u l e + " \ n ") ;

S t r i n g tempname = idtonum2 . g e t (f i n a l e i n t) ;
/ / p r i n t (" r u l e p l a c e on to " + tempname) ;
p r i n t o u t = p r i n t o u t . c o n c a t (" r u l e p l a c e on to " + tempname + " \ n ") ;
Dev i ce Id d e v i c e I d = Dev ice Id . d e v i c e I d (tempname) ;
T r a f f i c S e l e c t o r s e l e c t o r = s e l e c t o r b u i l d e r .

matchIPDs t (i p 4 P r e f i x d s t 1) .
matchEthType (t yp e) .
b u i l d () ;

T r a f f i c T r e a tm e n t t r e a tm e n t = t r e a t m e n t b u i l d e r .
d rop () .
b u i l d () ;

FlowRule r u l e 1 = f l o w r u l e b u i l d e r .
w i t h S e l e c t o r (s e l e c t o r) .
w i t hT r e a tmen t (t r e a tm e n t) .
makePermanent () .
f o rDev i c e (d e v i c e I d) .
fromApp (a p p l i c a t i o n I d) .
w i t h P r i o r i t y (p r i o r i t y) .
wi thHardTimeout (t imeou t) .
b u i l d () ;

f l owRu l eS e r v i c e . app lyF lowRules (r u l e 1) ;
r u l e s a d d e d = r u l e s a d d e d + 1 ;

} e l s e i f (v l a nma t ch e r . f i n d ()) {
p r i n t ("VLAN RULE") ;
Sho r t v l an f rom = Sho r t . p a r s e S h o r t (v l a nma t ch e r . group (3)) ;
Sho r t v l a n t o = Sho r t . p a r s e S h o r t (v l a nma t ch e r . group (4)) ;

90

VlanId v l a n I d t o = VlanId . v l a n I d (v l a n t o) ;
VlanId v l an I d f r om = VlanId . v l a n I d (v l an f rom) ;

T r a f f i c S e l e c t o r . B u i l d e r s e l e c t o r b u i l d e r = D e f a u l t T r a f f i c S e l e c t o r . b u i l d e r () ;
T r a f f i c T r e a tm e n t . B u i l d e r t r e a t m e n t b u i l d e r = D e f a u l t T r a f f i c T r e a tm e n t . b u i l d e r () ;
/ / b u i l d r u l e one
Ap p l i c a t i o n I d a p p l i c a t i o n I d = new De f a u l t A p p l i c a t i o n I d (158 , " org . o n o s p r o j e c t . g raph ") ;
/ / Dev i ce Id d e v i c e I d = Dev ice Id . d e v i c e I d (" o f : 0000000000000001") ;
s h o r t t yp e = 0x800 ;
i n t p r i o r i t y = 40000 ;
i n t t imeou t = 10000 ;
p r i n t o u t = p r i n t o u t . c o n c a t (r u l e + " \ n ") ;
S t r i n g tempname = idtonum2 . g e t (f i n a l e i n t) ;
/ / p r i n t (" r u l e p l a c e on to " + tempname) ;
p r i n t o u t = p r i n t o u t . c o n c a t (" r u l e p l a c e on to " + tempname + " \ n ") ;
Dev i ce Id d e v i c e I d = Dev ice Id . d e v i c e I d (tempname) ;
T r a f f i c S e l e c t o r s e l e c t o r = s e l e c t o r b u i l d e r .

matchVlanId (v l a n I d f r om) .
matchEthType (t yp e) .
b u i l d () ;

T r a f f i c T r e a tm e n t t r e a tm e n t = t r e a t m e n t b u i l d e r .
s e tV l a n I d (v l a n I d t o)
. b u i l d () ;

FlowRule r u l e 1 = f l o w r u l e b u i l d e r .
w i t h S e l e c t o r (s e l e c t o r) .
w i t hT r e a tmen t (t r e a tm e n t) .
makePermanent () .
f o rDev i c e (d e v i c e I d) .
fromApp (a p p l i c a t i o n I d) .
w i t h P r i o r i t y (p r i o r i t y) .
wi thHardTimeout (t imeou t) .
b u i l d () ;

f l owRu l eS e r v i c e . app lyF lowRules (r u l e 1) ;
r u l e s a d d e d = r u l e s a d d e d + 1 ;

} e l s e {
p r i n t (" no bueno ") ;

}
}

}

r u l e s a f t e r = f l owRu l eS e r v i c e . ge tF lowRuleCount () ;
p r i n t (" O r i g i n a l Ru l ecoun t = " + r u l e s b e f o r e + " Ru l ecoun t A f t e r = " + r u l e s a f t e r

+ " Rules Added # " + r u l e s a d d e d) ;
p r i n t o u t = p r i n t o u t . c o n c a t (

" O r i g i n a l Ru l ecoun t = " + r u l e s b e f o r e + " Ru l ecoun t A f t e r = " + r u l e s a f t e r
+ " Rules Added # " + r u l e s a d d e d + " \ n ") ;

p r i n t ("############################# P r i n t i n g R e s u l t s ###############################" + " \ n ") ;
t r y {

S t r i n g r u l e s c r e a t e d = S t r i n g . va lueOf (r u l e s a d d e d) ;
S t r i n g r u l e s r e q u e s t e d = S t r i n g . va lueOf (r) ;
S t r i n g r u l e s = " " ;
A p p l i c a t i o n I d a p p l i c a t i o n I d = new De f a u l t A p p l i c a t i o n I d (158 , " o rg . o n o s p r o j e c t . g raph ") ;
I t e r a b l e i t e r a b l e = f l owRu l eS e r v i c e . g e t F l owEn t r i e sBy I d (a p p l i c a t i o n I d) ;
I n t e g e r coun t ed = 1 ;
f o r (Ob j e c t s : i t e r a b l e) {

r u l e s = r u l e s . c on c a t (" Rule " + coun t ed + " : " + s . t o S t r i n g () + " \ n ") ;
coun t ed = coun t ed + 1 ;

}
S t r i n g f i l eName = new SimpleDateFormat (" yyyyMMddHHmmssSS ’ . t x t ’ ") . f o rma t (new Date ()) ;
F i l eW r i t e r f i l eW r i t e r = new F i l eW r i t e r (" / home / b r e n t / ono s t opo l ogychange /LINK_CHANGE_DETECTEDRESULTS" + f i l eName + " . t x t ") ;
f i l eW r i t e r . w r i t e (f i l eName + " Rules c r e a t e d : " + r u l e s c r e a t e d + " \ n " +

" Rules r e q u e s t e d : " + r u l e s r e q u e s t e d + " \ n " + " Rules added : " + r u l e s + " \ n " + p r i n t o u t) ;
f i l eW r i t e r . c l o s e () ;

} c a t c h (IOExcep t ion e) {
S t r i n g n o t i f i c a t i o n = e . t o S t r i n g () ;
F i l eW r i t e r f i l eW r i t e r = new F i l eW r i t e r (

91

" / home / b r e n t / ono s t opo l ogychange / t o po l o gy ch ang ed ex c ep t i o n 1 . t x t ") ;
f i l eW r i t e r . w r i t e (n o t i f i c a t i o n) ;
f i l eW r i t e r . c l o s e () ;

}
} c a t c h (Excep t i on e) {

S t r i n g n o t i f i c a t i o n = e . t o S t r i n g () ;
F i l eW r i t e r f i l eW r i t e r = new F i l eW r i t e r (

" / home / b r e n t / ono s t opo l ogychange / t o po l o gy ch ang ed ex c e p t i o n2 . t x t ") ;
f i l eW r i t e r . w r i t e (n o t i f i c a t i o n) ;
f i l eW r i t e r . c l o s e () ;

}

} c a t c h (Excep t i on e) {
t r y {

S t r i n g n o t i f i c a t i o n = e . t o S t r i n g () ;
F i l eW r i t e r f i l eW r i t e r = new F i l eW r i t e r (

" / home / b r e n t / ono s t opo l ogychange / t o po l o gy ch ang ed ex c e p t i o n3 . t x t ") ;
f i l eW r i t e r . w r i t e (n o t i f i c a t i o n) ;
f i l eW r i t e r . c l o s e () ;

} c a t c h (IOExcep t ion i) {
}

}
}

}
} ;
/ ∗
Topo l o gyL i s t e n e r t o p o l o g yL i s t e n e r = new Topo l o gyL i s t e n e r () {

@Override
p u b l i c vo id ev en t (TopologyEvent e v en t) {

i f (e v en t . t y p e () == TopologyEvent . Type .TOPOLOGY_CHANGED){

I n t e g e r p r e s u l t = n u l l , c o u n t e r = 0 , l i m i t = 20 ;
S t r i n g [] o u t p u t = new S t r i n g [2 0] ;
t r y {

S t r i n g [] mycommand = new S t r i n g [] { " sh onos k i l l "+ s + " "+ t + " " + r } ;
P r o c e s s p = Runtime . ge tRun t ime () . exec (mycommand) ;
p r e s u l t = p . wa i t Fo r () ;

Bu f f e r edReade r r e a d e r = new Bu f f e r edReade r (new Inpu tS t r e amReade r (p . g e t I n p u t S t r e am ())) ;
S t r i n g r e a d l i n e ;
wh i l e ((r e a d l i n e = r e a d e r . r e a dL i n e ()) != n u l l & c o u n t e r < l i m i t) {

o u t p u t [c o u n t e r] = (r e a d l i n e) ;
c o u n t e r = c o u n t e r + 1 ;

}
p . d e s t r o y () ;
r e a d e r . c l o s e () ;

} c a t c h (Excep t i on e){
l og . i n f o (" Excep t i on " + e . t o S t r i n g ()) ;
t r y {

S t r i n g n o t i f i c a t i o n = e . t o S t r i n g () ;
F i l eW r i t e r f i l eW r i t e r = new F i l eW r i t e r (

" / home / b r e n t / ono s t opo l ogychange / t o p o l o gy c h a ng ed e x c e p t i o n . t x t ") ;
f i l eW r i t e r . w r i t e (n o t i f i c a t i o n) ;
f i l eW r i t e r . c l o s e () ;

}
c a t c h (IOExcep t ion i) {

}
}

t r y {
S t r i n g d a t e = new SimpleDateFormat ("yyyyMMddHHmm") . f o rma t (new Date ()) ;
S t r i n g n o t i f i c a t i o n = "1" + even t . t o S t r i n g ()

+ " ev en t t ime " + even t . t ime ()
+ " CPU t ime : " + d a t e
+ " p r o c e s s e x i t code : " + p r e s u l t
+ " o u t p u t " + Ar rays . t o S t r i n g (o u t p u t) ;

92

S t r i n g f i l eName = " t o p o l o g y i n f o " ;
F i l eW r i t e r f i l eW r i t e r = new F i l eW r i t e r (

" / home / b r e n t / ono s t opo l ogychange / "+ f i l eName + " . t x t ") ;
f i l eW r i t e r . w r i t e (n o t i f i c a t i o n) ;
f i l eW r i t e r . c l o s e () ;

}
c a t c h (IOExcep t ion e){

l og . i n f o (" c augh t e x c e p t i o n " + e . t o S t r i n g ()) ;
}

}
}

} ;
∗ /
/ / t o p o l o g yS e r v i c e . a d dL i s t e n e r (t o p o l o g yL i s t e n e r) ;
L i n kSe r v i c e l i n k S e r v i c e = g e t (L i n kSe r v i c e . c l a s s) ;
l i n k S e r v i c e . a d dL i s t e n e r (l i n k L i s t e n e r) ;
i n t x , y = 0 , r u l e s b e f o r e = 0 , r u l e s a f t e r = 0 , r u l e s a d d e d = 0 ;
Dev i c eS e r v i c e d e v i c e S e r v i c e = g e t (Dev i c eS e r v i c e . c l a s s) ;
Topo logySe rv i c e t o p o l o g yS e r v i c e = g e t (Topo logySe rv i c e . c l a s s) ;
Topology topo = t o p o l o g yS e r v i c e . c u r r e n tTopo l o gy () ;
/ / l i s t e n e r R e g i s t r y . a d dL i s t e n e r (t l) ;
TopologyGraph graph = t o p o l o g yS e r v i c e . ge tGraph (topo) ;
Set <TopologyEdge > edges = graph . ge tEdges () ; / / g r ab t h e edges from c u r r e n t t o po l ogy
Set <TopologyVer tex > v e r t e x e s = graph . g e tV e r t e x e s () ; / / g r ab t h e v e r t e x e s from t h e c u r r e n t t opo l ogyon
HashMap<DeviceId , I n t e g e r > id tonum = new HashMap < > () ; / / d e v i c e i d t o i n t
HashMap< I n t e g e r , S t r i n g > idtonum2 = new HashMap < > () ; / / f o r r u l e s
HashMap<DeviceId , L i s t > i d t o s t a t s = new HashMap < >() ; / / d e v i c e i d t o edges
HashMap<DeviceId , L i s t > i d t o p o r t s = new HashMap < >() ; / / d e v i c e s and t h e i r a s s o c i a t e d p o r t s
Defau l tEdgeWeighe r edgeWeigher = new Defau l tEdgeWeighe r () ;
Me t r i cL inkWeigh t l i n kWe igh t = new Met r i cL inkWeigh t () ;
F l owRu leSe rv i c e f l owRu l eS e r v i c e = g e t (F lowRu leSe rv i c e . c l a s s) ;
i n t devicenum = v e r t e x e s . s i z e () ;
i n t [] [] a d jm a t r i x = new i n t [devicenum] [devicenum] ;
Dev i ce Id [] i d l i s t = new Dev i ce Id [devicenum] ;
Graph graph1 = new Graph (devicenum) ;
S t r i n g [] r e s u l t ;
S t r i n g p r i n t o u t = " " ;

f o r (Topo logyVer tex temp1 : v e r t e x e s) {
S t r i n g name = S t r i n g . va lueOf (temp1) ;
Dev i ce Id i d = temp1 . d e v i c e I d () ;
id tonum . pu t (id , y) ;
id tonum2 . pu t (y , name) ;
i d l i s t [y] = i d ;
L i s t p o r t s = d e v i c e S e r v i c e . g e t P o r t s (i d) ;
L i s t s t a t s = d e v i c e S e r v i c e . g e t P o r t S t a t i s t i c s (i d) ;
i d t o s t a t s . pu t (id , s t a t s) ;
i d t o p o r t s . pu t (id , p o r t s) ;
y ++;

}
p r i n t ("########################## d ev i c e i d t o ma t r i x number ##########################") ;
p r i n t o u t = p r i n t o u t . c o n c a t (

"########################## dev i c e i d t o ma t r i x number ##########################" + " \ n ") ;
/ / g e t a s e t o f e n t r i e s
Se t s e t = id tonum . e n t r y S e t () ;
/ / g e t an i t e r a t o r
I t e r a t o r i t e r a t o r = s e t . i t e r a t o r () ;
wh i l e (i t e r a t o r . hasNext ()) {

Map . En t r y e n t r y = (Map . En t r y) i t e r a t o r . n ex t () ;
p r i n t (" Device i d : " + e n t r y . getKey () + " ; ma t r i x number : " + e n t r y . g e tVa lue ()) ;
p r i n t o u t = p r i n t o u t . c o n c a t (" Device i d : " + e n t r y . getKey () + " ; ma t r i x number : " + e n t r y . g e tVa l ue () + " \ n ") ;

}
p r i n t ("########################### WEIGHTS ###") ;
p r i n t o u t = p r i n t o u t . c o n c a t (

"########################### WEIGHTS ###" + " \ n ") ;
f o r (TopologyEdge edgetemp : edges) {

f o r (i n t j = 0 ; j < devicenum ; j ++) {
/ / De fau l tTopo logyEdge { s r c =of :0000000000000001 , d s t =o f :0000000000000002}

93

S t r i n g edge = S t r i n g . va lueOf (edgetemp) ;
S t r i n g s r c = n u l l ;
S t r i n g d s t = n u l l ;
S t r i n g p a t t e r n = " ((o f :) ([a−zA−z0 − 9] ∗)) " ;
P a t t e r n p = P a t t e r n . compi l e (p a t t e r n) ;
Matcher ma tche r = p . ma tche r (edge) ;
i f (ma tche r . f i n d ()) {

s r c = ma tche r . group (0) ;
}
i f (ma tche r . f i n d (4 4)) {

d s t = ma tche r . group (0) ;
}
Dev i ce Id s ou r c e = Dev i ce Id . d e v i c e I d (s r c) ;
Dev i ce Id d e s t i n a t i o n = Dev ice Id . d e v i c e I d (d s t) ;
Dev i ce Id i d = i d l i s t [j] ;
i f (i d . e q u a l s (s o u r c e)) {

i n t row = idtonum . g e t (i d) ;
i n t column = idtonum . g e t (d e s t i n a t i o n) ;
Weight we igh t = edgeWeigher . we igh t (edgetemp) ;
Weight we igh t1 = l i nkWe igh t . we igh t (edgetemp) ;
S t r i n g s t r i n gw e i g h t = S t r i n g . va lueOf (we igh t) ;
i n t l a s t i n d e x = s t r i n gw e i g h t . l a s t I n d e xO f (’ } ’) ;
S t r i n g sw = s t r i n gw e i g h t . s u b s t r i n g (19 , l a s t i n d e x) ;
f l o a t f l o a t w e i g h t = F l o a t . va lueOf (sw) ;
i n t i n t w e i g h t = Math . round (f l o a t w e i g h t) ;
a d jm a t r i x [row] [column] = i n tw e i g h t ;
a d jm a t r i x [column] [row] = i n tw e i g h t ;

}
}

}
p r i n t ("########################## MATRIX ##") ;
p r i n t o u t = p r i n t o u t . c o n c a t (

"########################## MATRIX ##" + " \ n ") ;
/ ∗
f o r (i n t i = 0 ; i < devicenum ; i ++) {

p r i n t ("Row " + i + "−− Row " + i) ;
p r i n t o u t = p r i n t o u t . c o n c a t (

"Row " + i + "−− Row " + i + " \ n ") ;
f o r (i n t j = 0 ; j < devicenum ; j ++) {

p r i n t (S t r i n g . va lueOf (a d jm a t r i x [i] [j])) ;
p r i n t o u t = p r i n t o u t . c o n c a t (a d jm a t r i x [i] [j] + " \ n ") ;

}
}
∗ /
p r i n t ("######################### SHORTEST PATHS #######################################") ;
p r i n t o u t = p r i n t o u t . c o n c a t (

"######################### SHORTEST PATHS #######################################" + " \ n ") ;
S h o r t e s t P a t h s h o r t y = new S h o r t e s t P a t h (devicenum) ;
i n t o r i g i n = s ;
i n t [] s h o r t y d i j k s t r a = s h o r t y . d i j k s t r a (a d jma t r i x , o r i g i n) ;
p r i n t (" Ve r t ex D i s t a n c e from Source ") ;
p r i n t o u t = p r i n t o u t . c o n c a t (" Ve r t ex D i s t a n c e from Source " + " \ n ") ;
f o r (i n t i = 0 ; i < devicenum ; i ++) {

p r i n t (i + " " + s h o r t y d i j k s t r a [i]) ;
p r i n t o u t = p r i n t o u t . c o n c a t (i + " " + s h o r t y d i j k s t r a [i] + " \ n ") ;

}
p r i n t ("########################## CUT ##") ;
p r i n t o u t = p r i n t o u t . c o n c a t (

"########################## CUT ##" + " \ n ") ;
Vec to r d e v i c e l i s t = new Vec to r () ;
HashMap< I n t e g e r , I n t e g e r > n o d e d i s t a n c e = new HashMap () ; / / Key : node Value : D i s t a n c e from sou r c e
i f ((s != −1) && (t != −1)) {

r e s u l t = graph1 . minCut (a d jma t r i x , s , t) ;
x = r e s u l t . l e n g t h ;
y = 0 ;

f o r (i n t i = 0 ; i < x ; i ++) {
i f (r e s u l t [i] != n u l l) {

94

S t r i n g sub = r e s u l t [i] ;
S t r i n g [] subtwo = sub . s p l i t (" − ") ;
i n t d ev i c e0 = I n t e g e r . p a r s e I n t (subtwo [0]) ;
d e v i c e l i s t . add (y , (d ev i c e0)) ;
i n t d i s t a n c e 0 = s h o r t y d i j k s t r a [d ev i c e0] ;
n o d e d i s t a n c e . pu t (dev ice0 , d i s t a n c e 0) ;
y ++;
i n t d ev i c e1 = I n t e g e r . p a r s e I n t (subtwo [1]) ;
d e v i c e l i s t . add (y , (d ev i c e1)) ;
i n t d i s t a n c e 1 = s h o r t y d i j k s t r a [d ev i c e1] ;
n o d e d i s t a n c e . pu t (dev ice1 , d i s t a n c e 1) ;
y ++;
p r i n t (S t r i n g . va lueOf (r e s u l t [i])) ;
p r i n t o u t = p r i n t o u t . c o n c a t (r e s u l t [i] + " \ n ") ;

}
}

}
i n t d e v i c e l i s t s i z e = d e v i c e l i s t . s i z e () ;
f o r (i n t i = 0 ; i < d e v i c e l i s t s i z e ; i ++) {

Ob j e c t t empob j e c t = d e v i c e l i s t . g e t (i) ;
S t r i n g t emp s t r i n g = t empob j e c t . t o S t r i n g () ;
i n t t emp i n t = I n t e g e r . va lueOf (t emp s t r i n g) ;
/ / i n t a r r a y [i] = t emp i n t ;
p r i n t (" Device ID : " + idtonum2 . g e t (t emp i n t) + " Ma t r i x i d : " + t emp i n t) ;
p r i n t o u t = p r i n t o u t . c o n c a t (" Device ID : " + id tonum2 . g e t (t emp i n t) + " Ma t r i x i d : " + t emp i n t + " \ n ") ;

}
p r i n t ("######################### MIN MIN CUT #######################################") ;
p r i n t o u t = p r i n t o u t . c o n c a t ("######################### MIN MIN CUT #######################################" + " \ n ") ;
r e s u l t = graph1 . minCut (a d jma t r i x , s , t) ;
HashMap< I n t e g e r , I n t e g e r > f i n a l n o d e d d i s t a n c e = new HashMap < >() ;
i n t i = 0 ;
wh i l e (r e s u l t [i] != n u l l) {

S t r i n g sub = r e s u l t [i] ;
p r i n t (r e s u l t [i]) ;
p r i n t o u t = p r i n t o u t . c o n c a t (r e s u l t [i] + " \ n ") ;
S t r i n g [] edgenodes = sub . s p l i t (" − ") ;
i n t node1 = I n t e g e r . p a r s e I n t (edgenodes [0]) ;
i n t node2 = I n t e g e r . p a r s e I n t (edgenodes [1]) ;
i n t d i s t 1 = n o d e d i s t a n c e . g e t (node1) ; / / g e t node 1 d i s t a n c e
i n t d i s t 2 = n o d e d i s t a n c e . g e t (node2) ; / / g e t node 2 d i s t a n c e
i f (d i s t 1 < d i s t 2) {

/ / n o d e d i s t a n c e . remove (node2) ;
f i n a l n o d e d d i s t a n c e . pu t (node1 , d i s t 1) ;

} e l s e i f (d i s t 1 > d i s t 2) {
/ / n o d e d i s t a n c e . remove (node1) ;
f i n a l n o d e d d i s t a n c e . pu t (node2 , d i s t 2) ;

} e l s e i f (d i s t 1 == d i s t 2) {
f i n a l n o d e d d i s t a n c e . pu t (node1 , d i s t 1) ;
f i n a l n o d e d d i s t a n c e . pu t (node2 , d i s t 2) ;

}
i ++;

}
Se t f i n a l s e t = f i n a l n o d e d d i s t a n c e . keySe t () ;
I t e r a t o r f i n a l n o d e d i s t a n c e i t e r a t o r = f i n a l s e t . i t e r a t o r () ;
wh i l e (f i n a l n o d e d i s t a n c e i t e r a t o r . hasNext ()) {

Ob j e c t ob j = f i n a l n o d e d i s t a n c e i t e r a t o r . n ex t () ;
I n t e g e r f i n a l c u t i n t = I n t e g e r . va lueOf (ob j . t o S t r i n g ()) ;
S t r i n g f i n a l c u t n o d e = idtonum2 . g e t (f i n a l c u t i n t) ;
p r i n t (" f i n a l c u t node : " + f i n a l c u t n o d e) ;
p r i n t o u t = p r i n t o u t . c o n c a t (" f i n a l c u t node : " + f i n a l c u t n o d e + " \ n ") ;

}
p r i n t ("######################### ACL/FLOW RULES #######################################") ;
p r i n t o u t = p r i n t o u t . c o n c a t (

"######################### ACL/FLOW RULES #######################################" + " \ n ") ;
/ / g e t r i d o f d u p l i c a t e s i n t h e l i s t
t r y {

f i n a l De f au l tF l owRu le . Bu i l d e r f l o w r u l e b u i l d e r = Defau l tF l owRu le . b u i l d e r () ;

95

p r i n t (" The t o t a l number o f f low r u l e s i s : ") ;
p r i n t o u t = p r i n t o u t . c o n c a t (" The t o t a l number o f f low r u l e s i s : ") ;
r u l e s b e f o r e = f l owRu l eS e r v i c e . ge tF lowRuleCount () ;
p r i n t (S t r i n g . va lueOf (r u l e s b e f o r e)) ;
p r i n t o u t = p r i n t o u t . c o n c a t (r u l e s b e f o r e + " \ n ") ;

p r i n t ("###################### Reading I n p u t Ru les #################################") ;
p r i n t o u t = p r i n t o u t . c o n c a t ("###################### Reading I n p u t Ru les #################################" + " \ n ") ;

Se t f i n a l e = f i n a l n o d e d d i s t a n c e . keySe t () ;
I t e r a t o r f i n a l e i t e r a t o r = f i n a l e . i t e r a t o r () ;

wh i l e (f i n a l e i t e r a t o r . hasNext ()) {
/ / c r e a t e # o f r u l e s e qu a l t o t h e # i n r
Ob j e c t f i n a l o b j = f i n a l e i t e r a t o r . n ex t () ;
I n t e g e r f i n a l e i n t = I n t e g e r . va lueOf (f i n a l o b j . t o S t r i n g ()) ;
Bu f f e r edReade r b u f f e r e dRe a d e r = new Bu f f e r edReade r

(new F i l eR e a d e r (" / home / b r e n t / i n p u t r u l e s / r u l e s . t x t ")) ;
S t r i n g l i n e ;
S t r i n g r u l e ;
I n t e g e r b a r r i e r = 1000 ;

I n t e g e r s l ow r o l l = 100 ;
I n t e g e r r u l e b a t c h = 10 ;
/ / A r r a yL i s t <FlowRule > r u l e l i s t = new Ar r ayL i s t <FlowRule > () ;
/ / s t a r t s l e e p i n g 200ms eve ry 100 r u l e s a f t e r 1000 r u l e s a r e a p p l i e d
wh i l e ((l i n e = bu f f e r e dRe ad e r . r e a dL i n e ()) != n u l l) {

r u l e = l i n e ;
t r y {

i f (r u l e s a d d e d > b a r r i e r) {
i f ((r u l e s a d d e d % s l ow r o l l) == 0) {

/ / System . gc () ;
Thread . s l e e p (7 5) ;

}
}

} c a t c h (Excep t i on e){
p r i n t (" s l e e p e r r o r ") ;

}
/ / p r i n t (S t r i n g . va lueOf (" r u l e s added " + r u l e s a d d e d)) ;
/ / i f r u l e s

S t r i n g d e n y p a t t e r n = " (\ \ w+_ \ \w+) \ \ s (\ \ d + \ \ . \ \ d + \ \ . \ \ d + \ \ . \ \ d +) " ;
S t r i n g v l a n p a t t e n = " ((\ \ w+_ \ \w+_ ? \ \w+ ?) \ \ s (\ \ d +) _ (\ \ d +)) " ;

P a t t e r n deny = P a t t e r n . compi l e (d e n y p a t t e r n) ;
P a t t e r n v l an = P a t t e r n . compi l e (v l a n p a t t e n) ;

Matcher denymatche r = deny . ma tche r (r u l e) ;
Matcher v l a nma t ch e r = v l an . ma tche r (r u l e) ;

i f (denymatche r . f i n d ()) {
/ / p r i n t ("DENY RULE") ;
S t r i n g d e n y i p a d d r e s s = denymatche r . g roup (2) ;
/ / p r i n t (d e n y i p a d d r e s s) ;
T r a f f i c S e l e c t o r . B u i l d e r s e l e c t o r b u i l d e r = D e f a u l t T r a f f i c S e l e c t o r . b u i l d e r () ;
T r a f f i c T r e a tm e n t . B u i l d e r t r e a t m e n t b u i l d e r = D e f a u l t T r a f f i c T r e a tm e n t . b u i l d e r () ;
/ / b u i l d r u l e one
Ap p l i c a t i o n I d a p p l i c a t i o n I d = new De f a u l t A p p l i c a t i o n I d (158 , " org . o n o s p r o j e c t . g raph ") ;
/ / Dev i ce Id d e v i c e I d = Dev ice Id . d e v i c e I d (" o f : 0000000000000001") ;
s h o r t t yp e = 0x800 ;
i n t p r i o r i t y = 40000 ;
i n t t imeou t = 10000 ;

I p 4 P r e f i x i p 4 P r e f i x d s t 1 = I p 4 P r e f i x . va lueOf (d e n y i p a d d r e s s + " / 3 2 ") ;
/ / p r i n t o u t = p r i n t o u t . c o n c a t (r u l e + " \ n ") ;

96

S t r i n g tempname = idtonum2 . g e t (f i n a l e i n t) ;
/ / p r i n t (" r u l e p l a c e on to " + tempname) ;
/ / p r i n t o u t = p r i n t o u t . c o n c a t (" r u l e p l a c e on to " + tempname + " \ n ") ;
Dev i ce Id d e v i c e I d = Dev i ce Id . d e v i c e I d (tempname) ;
T r a f f i c S e l e c t o r s e l e c t o r = s e l e c t o r b u i l d e r .

matchIPDs t (i p 4 P r e f i x d s t 1) .
matchEthType (t yp e) .
b u i l d () ;

T r a f f i c T r e a tm e n t t r e a tm e n t = t r e a t m e n t b u i l d e r .
d rop () .
b u i l d () ;

FlowRule r u l e 1 = f l o w r u l e b u i l d e r .
w i t h S e l e c t o r (s e l e c t o r) .
w i t hT r e a tmen t (t r e a tm e n t) .
makePermanent () .
f o rDev i c e (d e v i c e I d) .
fromApp (a p p l i c a t i o n I d) .
w i t h P r i o r i t y (p r i o r i t y) .
wi thHardTimeout (t imeou t) .
b u i l d () ;

f l owRu l eS e r v i c e . app lyF lowRules (r u l e 1) ;
/ / r u l e l i s t . add (r u l e 1) ;
r u l e s a d d e d = r u l e s a d d e d + 1 ;

} e l s e i f (v l a nma t ch e r . f i n d ()) {
/ / p r i n t ("VLAN RULE") ;
Sho r t v l an f rom = Sho r t . p a r s e S h o r t (v l a nma t ch e r . group (3)) ;
Sho r t v l a n t o = Sho r t . p a r s e S h o r t (v l a nma t ch e r . group (4)) ;

VlanId v l a n I d t o = VlanId . v l a n I d (v l a n t o) ;
VlanId v l an I d f r om = VlanId . v l a n I d (v l an f rom) ;

T r a f f i c S e l e c t o r . B u i l d e r s e l e c t o r b u i l d e r = D e f a u l t T r a f f i c S e l e c t o r . b u i l d e r () ;
T r a f f i c T r e a tm e n t . B u i l d e r t r e a t m e n t b u i l d e r = D e f a u l t T r a f f i c T r e a tm e n t . b u i l d e r () ;
/ / b u i l d r u l e one
Ap p l i c a t i o n I d a p p l i c a t i o n I d = new De f a u l t A p p l i c a t i o n I d (158 , " org . o n o s p r o j e c t . g raph ") ;
/ / Dev i ce Id d e v i c e I d = Dev ice Id . d e v i c e I d (" o f : 0000000000000001") ;
s h o r t t yp e = 0x800 ;
i n t p r i o r i t y = 40000 ;
i n t t imeou t = 10000 ;
/ / p r i n t o u t = p r i n t o u t . c o n c a t (r u l e + " \ n ") ;
S t r i n g tempname = idtonum2 . g e t (f i n a l e i n t) ;
/ / p r i n t (" r u l e p l a c e on to " + tempname) ;
/ / p r i n t o u t = p r i n t o u t . c o n c a t (" r u l e p l a c e on to " + tempname + " \ n ") ;
Dev i ce Id d e v i c e I d = Dev i ce Id . d e v i c e I d (tempname) ;
T r a f f i c S e l e c t o r s e l e c t o r = s e l e c t o r b u i l d e r .

matchVlanId (v l a n I d f r om) .
matchEthType (t yp e) .
b u i l d () ;

T r a f f i c T r e a tm e n t t r e a tm e n t = t r e a t m e n t b u i l d e r .
s e tV l a n I d (v l a n I d t o)
. b u i l d () ;

FlowRule r u l e 1 = f l o w r u l e b u i l d e r .
w i t h S e l e c t o r (s e l e c t o r) .
w i t hT r e a tmen t (t r e a tm e n t) .
makePermanent () .
f o rDev i c e (d e v i c e I d) .
fromApp (a p p l i c a t i o n I d) .
w i t h P r i o r i t y (p r i o r i t y) .
wi thHardTimeout (t imeou t) .
b u i l d () ;

f l owRu l eS e r v i c e . app lyF lowRules (r u l e 1) ;
/ / r u l e l i s t . add (r u l e 1) ;
r u l e s a d d e d = r u l e s a d d e d + 1 ;

97

} e l s e {
p r i n t (" no bueno ") ;

}
/ /
/ ∗
i f ((r % r u l e b a t c h != 0)) {

i f (r u l e s a d d e d > 0) {
i f ((r u l e s a d d e d % r u l e b a t c h) == 0) {

/ / F l owRu l eOpe r a t i on s f l owRu l eOpe r a t i o n s = f l ow r u l e o p s b u i l d e r . b u i l d () ;
f l owRu l eS e r v i c e . app lyF lowRules (

r u l e l i s t . g e t (0) ,
r u l e l i s t . g e t (1) ,
r u l e l i s t . g e t (2) ,
r u l e l i s t . g e t (3) ,
r u l e l i s t . g e t (4) ,
r u l e l i s t . g e t (5) ,
r u l e l i s t . g e t (6) ,
r u l e l i s t . g e t (7) ,
r u l e l i s t . g e t (8) ,
r u l e l i s t . g e t (9)

) ;
r u l e l i s t . c l e a r () ;

} e l s e {
f o r (i n t j = 0 ; j < r u l e l i s t . s i z e () ; j ++) {

f l owRu l eS e r v i c e . app lyF lowRules (r u l e l i s t . g e t (j)) ;
}
r u l e l i s t . c l e a r () ;

}
}

} e l s e i f ((r % r u l e b a t c h) == 0) {
/ / p r i n t (" 10 mod r u l e s ") ;
i f (r u l e s a d d e d > 0) {

/ / p r i n t (" r u l e s added > 0 ") ;
i f ((r u l e s a d d e d % r u l e b a t c h) == 0) {

/ / p r i n t (" r u l e s added mod 1 0 ") ;
/ / F l owRu l eOpe r a t i on s f l owRu l eOpe r a t i o n s = f l ow r u l e o p s b u i l d e r . b u i l d () ;
f l owRu l eS e r v i c e . app lyF lowRules (

r u l e l i s t . g e t (0) ,
r u l e l i s t . g e t (1) ,
r u l e l i s t . g e t (2) ,
r u l e l i s t . g e t (3) ,
r u l e l i s t . g e t (4) ,
r u l e l i s t . g e t (5) ,
r u l e l i s t . g e t (6) ,
r u l e l i s t . g e t (7) ,
r u l e l i s t . g e t (8) ,
r u l e l i s t . g e t (9)

) ;
r u l e l i s t . c l e a r () ;
/ / p r i n t (S t r i n g . va lueOf (" s i z e " + r u l e l i s t . s i z e ())) ;

}
}

}
∗ /

/ /
}

}

/ / r u l e s a f t e r = f l owRu l eS e r v i c e . ge tF lowRuleCount () ;
/ / p r i n t (" O r i g i n a l Ru l ecoun t = " + r u l e s b e f o r e + " Ru l ecoun t A f t e r = " + r u l e s a f t e r
/ / + " Ru les Added # " + r u l e s a d d e d) ;
/ / p r i n t o u t = p r i n t o u t . c o n c a t (
/ / " O r i g i n a l Ru l ecoun t = " + r u l e s b e f o r e + " Ru l ecoun t A f t e r = " + r u l e s a f t e r
/ / + " Ru les Added # " + r u l e s a d d e d + " \ n ") ;
p r i n t ("############################# P r i n t i n g R e s u l t s ###############################") ;
t r y {

S t r i n g r u l e s c r e a t e d = S t r i n g . va lueOf (r u l e s a d d e d) ;

98

S t r i n g r u l e s r e q u e s t e d = S t r i n g . va lueOf (r) ;
S t r i n g r u l e s = " " ;
/ / A p p l i c a t i o n I d a p p l i c a t i o n I d = new De f a u l t A p p l i c a t i o n I d (158 , " o rg . o n o s p r o j e c t . g raph ") ;
/ / I t e r a b l e i t e r a b l e = f l owRu l eS e r v i c e . g e t F l owEn t r i e sBy I d (a p p l i c a t i o n I d) ;
/ / I n t e g e r c o u n t e r = 1 ;
/ / f o r (Ob j e c t s : i t e r a b l e) {
/ / r u l e s = r u l e s . c o n c a t (" Rule " + c o u n t e r + " : " + s . t o S t r i n g () + " \ n ") ;
/ / c o u n t e r = c o u n t e r + 1 ;
/ / }
S t r i n g f i l eName = new SimpleDateFormat (" yyyyMMddHHmmssSS ’ . t x t ’ ") . f o rma t (new Date ()) ;
F i l eW r i t e r f i l eW r i t e r = new F i l eW r i t e r (" / home / b r e n t / c a p t u r e s /OUTCOME" + f i l eName + " . t x t ") ;
f i l eW r i t e r . w r i t e (" r u l e s c r e a t e d : " + r u l e s c r e a t e d + " \ n " +

" Rules r e q u e s t e d : " + r u l e s r e q u e s t e d + " \ n " + " Rules added : " + r u l e s + " \ n " + p r i n t o u t) ;
f i l eW r i t e r . c l o s e () ;

} c a t c h (IOExcep t ion e) {
p r i n t (e . t o S t r i n g ()) ;

}
} c a t c h (IOExcep t ion e) {
p r i n t (e . t o S t r i n g ()) ;

}
}

}

A.4 Distributed Firewall Graph Class
The graph class was used to gather the graph representation of the ONOS topology. This
code was taken from the Geeks for Geeks website at [59].

Graph Class
package org . g raph ;

import j a v a . u t i l . L i n k e dL i s t ;
import j a v a . u t i l . Queue ;

pub l i c c l a s s Graph {

/∗
Re t u rn s t r u e i f t h e r e i s a pa th
from sou r ce ’ s ’ t o s i n k ’ t ’ i n r e s i d u a l
graph . A l so f i l l s p a r e n t [] t o s t o r e t h e pa th
code p u l l e d from
h t t p s : / / www. g e e k s f o r g e e k s . org / minimum−cu t−in−a−d i r e c t e d −graph /
and mod i f i e d t o f o r use .
∗ /

pr i v a t e S t r i n g [] r e s u l t = nu l l ;

pub l i c Graph (I n t e g e r indy){
t h i s . r e s u l t = new S t r i n g [indy] ;

}

pub l i c s t a t i c boolean b f s (i n t [] [] rGraph , i n t s ,
i n t t , i n t [] p a r e n t) {

/ / Crea t e a v i s i t e d a r ray and mark
/ / a l l v e r t i c e s as no t v i s i t e d
boolean [] v i s i t e d = new boolean [rGraph . l e n g t h] ;

/ / Crea t e a queue , enqueue sou r c e v e r t e x
/ / and mark sou r c e v e r t e x as v i s i t e d
Queue< I n t e g e r > q = new L inkedL i s t < I n t e g e r > () ;

99

q . add (s) ;
v i s i t e d [s] = t rue ;
p a r e n t [s] = −1;

/ / S t andard BFS Loop
whi le (! q . i sEmpty ()) {

i n t v = q . p o l l () ;
f o r (i n t i = 0 ; i < rGraph . l e n g t h ; i ++) {

i f (rGraph [v] [i] > 0 && ! v i s i t e d [i]) {
q . o f f e r (i) ;
v i s i t e d [i] = t rue ;
p a r e n t [i] = v ;

}
}

}

/ / I f we reached s i n k i n BFS s t a r t i n g
/ / from source , t h en r e t u r n t rue , e l s e f a l s e
re turn (v i s i t e d [t] == t rue) ;

}

/ / A DFS based f u n c t i o n t o f i n d a l l r e a chab l e
/ / v e r t i c e s from s . The f u n c t i o n marks v i s i t e d [i]
/ / as t r u e i f i i s r e a chab l e from s . The i n i t i a l
/ / v a l u e s i n v i s i t e d [] must be f a l s e . We can a l s o
/ / use BFS t o f i n d r e a chab l e v e r t i c e s
pub l i c s t a t i c vo id d f s (i n t [] [] rGraph , i n t s ,

boolean [] v i s i t e d) {
v i s i t e d [s] = t rue ;
f o r (i n t i = 0 ; i < rGraph . l e n g t h ; i ++) {

i f (rGraph [s] [i] > 0 && ! v i s i t e d [i]) {
d f s (rGraph , i , v i s i t e d) ;

}
}

}

/ / P r i n t s t h e minimum s− t c u t
/ / p r i v a t e s t a t i c vo i d minCut (i n t [] [] graph , i n t s , i n t t)
pub l i c S t r i n g [] minCut (i n t [] [] graph , i n t s , i n t t) {

i n t u , v ;
i n t w = 0 ;

/ / Crea t e a r e s i d u a l graph and f i l l t h e r e s i d u a l
/ / graph w i t h g i v e n c a p a c i t i e s i n t h e o r i g i n a l
/ / graph as r e s i d u a l c a p a c i t i e s i n r e s i d u a l graph
/ / rGraph [i] [j] i n d i c a t e s r e s i d u a l c a p a c i t y o f edge i− j
i n t [] [] rGraph = new i n t [g raph . l e n g t h] [g raph . l e n g t h] ;
f o r (i n t i = 0 ; i < graph . l e n g t h ; i ++) {

f o r (i n t j = 0 ; j < graph . l e n g t h ; j ++) {
rGraph [i] [j] = graph [i] [j] ;

}
}

/ / Th i s a r ray i s f i l l e d by BFS and t o s t o r e pa th
i n t [] p a r e n t = new i n t [g raph . l e n g t h] ;

/ / Augment t h e f l ow wh i l e t e r e i s pa th from sou r ce t o s i n k
whi le (b f s (rGraph , s , t , p a r e n t)) {

/ / Find minimum r e s i d u a l c a p a c i t y o f t h e edhes
/ / a long t h e pa th f i l l e d by BFS . Or we can say
/ / f i n d t h e maximum f l ow th rough t h e pa th found .
i n t pa thFlow = I n t e g e r .MAX_VALUE;
f o r (v = t ; v != s ; v = p a r e n t [v]) {

u = p a r e n t [v] ;
pa thFlow = Math . min (pathFlow , rGraph [u] [v]) ;

}

100

/ / upda t e r e s i d u a l c a p a c i t i e s o f t h e edges and
/ / r e v e r s e edges a long t h e pa th
f o r (v = t ; v != s ; v = p a r e n t [v]) {

u = p a r e n t [v] ;
rGraph [u] [v] = rGraph [u] [v] − pa thFlow ;
rGraph [v] [u] = rGraph [v] [u] + pa thFlow ;

}
}

/ / Flow i s maximum now , f i n d v e r t i c e s r e a chab l e from s
boolean [] i s V i s i t e d = new boolean [g raph . l e n g t h] ;
d f s (rGraph , s , i s V i s i t e d) ;

/ / P r i n t a l l edges t h a t are from a r ea chab l e v e r t e x t o
/ / non−r e a chab l e v e r t e x i n t h e o r i g i n a l graph
f o r (i n t i = 0 ; i < graph . l e n g t h ; i ++) {

f o r (i n t j = 0 ; j < graph . l e n g t h ; j ++) {
i f (g raph [i] [j] > 0 && i s V i s i t e d [i] && ! i s V i s i t e d [j]) {

r e s u l t [w] = (i + "−" + j) ;
w++;
/ / Sys tem . ou t . p r i n t l n (i + " − " + j) ;

}
}

}
re turn r e s u l t ;

}
}

A.5 Distributed Firewall Dijkstra Class
This code was used to find the shortest paths from s to each node in the network to prune
the farthest node from the MinMinCut. This code was taken from the Geeks for Geeks
website at [73].

Djikstra Class
package org . g raph ;

/ / A Java program f o r D i j k s t r a ’ s s i n g l e sou r c e s h o r t e s t pa th a l g o r i t hm .
/ / The program i s f o r ad j a c ency ma t r i x r e p r e s e n t a t i o n o f t h e graph

c l a s s S h o r t e s t P a t h {
/ / A u t i l i t y f u n c t i o n t o f i n d t h e v e r t e x w i t h minimum d i s t a n c e va lue ,
/ / f rom t h e s e t o f v e r t i c e s no t y e t i n c l u d e d i n s h o r t e s t pa th t r e e
/ / adap ted from h t t p s : / / www. g e e k s f o r g e e k s . org / d i j k s t r a s − s h o r t e s t −path−a lgo r i t hm −greedy−algo −7/
pr i v a t e s t a t i c i n t V = 0 ;

/ / p r i v a t e i n t [] [] a d jma t r i x = n u l l ;
/ / c o n s t r u c t o r t o i n g e s t t h e a d jma t r i x from appcommand
pub l i c S h o r t e s t P a t h (i n t i ndy){

V = indy ;
}

i n t minDi s t ance (i n t [] d i s t , Boolean [] s p t S e t) {
/ / I n i t i a l i z e min va l u e
i n t min = I n t e g e r .MAX_VALUE, min_index = −1;

f o r (i n t v = 0 ; v < V; v++)
i f (s p t S e t [v] == f a l s e && d i s t [v] <= min) {

min = d i s t [v] ;
min_index = v ;

101

}

re turn min_index ;
}

/ / A u t i l i t y f u n c t i o n t o p r i n t t h e c o n s t r u c t e d d i s t a n c e a r ray
/∗
vo i d p r i n t S o l u t i o n (i n t d i s t [] , i n t n) {

Sys tem . ou t . p r i n t l n (" Ve r t e x D i s t a n c e from Source ") ;
f o r (i n t i = 0; i < V; i ++)

Sys tem . ou t . p r i n t l n (i + " t t " + d i s t [i]) ;
}
∗ /
/ / Fun t i on t h a t imp l emen t s D i j k s t r a ’ s s i n g l e sou r c e s h o r t e s t pa th
/ / a l g o r i t hm f o r a graph r e p r e s e n t e d u s i ng ad j a c ency ma t r i x
/ / r e p r e s e n t a t i o n
pub l i c i n t [] d i j k s t r a (i n t [] [] graph , i n t s r c) {

i n t [] d i s t = new i n t [V] ; / / The o u t p u t a r ray . d i s t [i] w i l l ho ld
/ / t h e s h o r t e s t d i s t a n c e from s r c t o i

/ / s p t S e t [i] w i l l t r u e i f v e r t e x i i s i n c l u d e d i n s h o r t e s t
/ / pa th t r e e or s h o r t e s t d i s t a n c e from s r c t o i i s f i n a l i z e d
Boolean [] s p t S e t = new Boolean [V] ;

/ / I n i t i a l i z e a l l d i s t a n c e s as INFINITE and s t p S e t [] as f a l s e
f o r (i n t i = 0 ; i < V; i ++) {

d i s t [i] = I n t e g e r .MAX_VALUE;
s p t S e t [i] = f a l s e ;

}

/ / D i s t a n c e o f s ou r c e v e r t e x from i t s e l f i s a lways 0
d i s t [s r c] = 0 ;

/ / Find s h o r t e s t pa th f o r a l l v e r t i c e s
f o r (i n t coun t = 0 ; coun t < V − 1 ; coun t ++) {

/ / P i ck t h e minimum d i s t a n c e v e r t e x from t h e s e t o f v e r t i c e s
/ / no t y e t p r o c e s s e d . u i s a lways equa l t o s r c i n f i r s t
/ / i t e r a t i o n .
i n t u = minDi s t ance (d i s t , s p t S e t) ;

/ / Mark t h e p i c k e d v e r t e x as p r o c e s s e d
s p t S e t [u] = t rue ;

/ / Update d i s t v a l u e o f t h e a d j a c e n t v e r t i c e s o f t h e
/ / p i c k e d v e r t e x .
f o r (i n t v = 0 ; v < V; v++)

/ / Update d i s t [v] on l y i f i s no t i n s p t S e t , t h e r e i s an
/ / edge from u t o v , and t o t a l we i gh t o f pa th from s r c t o
/ / v t h rough u i s sma l l e r than c u r r e n t v a l u e o f d i s t [v]
i f (! s p t S e t [v] && graph [u] [v] != 0 &&

d i s t [u] != I n t e g e r .MAX_VALUE &&
d i s t [u] + graph [u] [v] < d i s t [v])

d i s t [v] = d i s t [u] + graph [u] [v] ;
}

/ / p r i n t t h e c o n s t r u c t e d d i s t a n c e a r ray
/ / p r i n t S o l u t i o n (d i s t , V) ;
re turn (d i s t) ;

}
}

102

A.6 Access Control List Rule Generator
Below is the code used to randomly generate a list of IP addresses to block and VLANs to
change traffic to. This was used to create large lists of rules to replicate ACLs. This code
was generated with the help of Terry Kvitchko.

ACL Rule Generator

! / u s r / b i n / py thon3

impo r t s y s
impo r t i p a d d r e s s

i f l e n (sy s . a rgv) <2 :
p r i n t (" Needs command l i n e argument : number o f r u l e s . ")
e x i t ()

r u l e _ t y p e s = [
" ip_deny " ,
" v l a n_ i d_ change "
]

num_ru les = i n t (sy s . a rgv [1])
l o op_coun t = num_ru les / / l e n (r u l e _ t y p e s)
l e f t o v e r _ r u l e s = num_ru les%l e n (r u l e _ t y p e s)

c u r r I P = i p a d d r e s s . i p _ a d d r e s s (u ’ 1 0 . 0 . 0 . 1 0 ’)

r u l e f i l e = open (" r u l e g e n . t x t " , "w")

f o r i i n r ange (0 , l o op_coun t) :

f o r j i n r ange (0 , l e n (r u l e _ t y p e s)) :
r u l e f i l e . w r i t e (r u l e _ t y p e s [j]+" " + s t r (c u r r I P) + " \ n ")

c u r r I P +=1
i f (i !=0 and (i +10)%254 == 0) : # s k i p b r o a d c a s t and ne twork a d d r e s s e s

c u r r I P +=2

f o r j i n r ange (0 , l e f t o v e r _ r u l e s) :
r u l e f i l e . w r i t e (r u l e _ t y p e s [j]+" " + s t r (c u r r I P) + " \ n ")

r u l e f i l e . c l o s e ()
p r i n t (" Wrote t o r u l e g e n . t x t ")

A.7 Mininet Custom Topologies
Below is the Python Code used to generate custom topologies for use in Mininet that were
included in the ONOS.py file that comes with ONOS.

A.7.1 Regimental Topology
Regimental Topology

c l a s s Regiment (Topo) :
" Hybr id B a t t a l i o n Topology "

103

de f _ _ i n i t _ _ (s e l f) :
" C r e a t e custom b a t t a l i o n topo . "

I n i t i a l i z e t o po l ogy
Topo . _ _ i n i t _ _ (s e l f)

s14 = s e l f . addSwi tch (’ s14 ’)
s3 = s e l f . addSwi tch (’ s3 ’)
s23 = s e l f . addSwi tch (’ s23 ’)
s25 = s e l f . addSwi tch (’ s25 ’)
s28 = s e l f . addSwi tch (’ s28 ’)
s12 = s e l f . addSwi tch (’ s12 ’)
s21 = s e l f . addSwi tch (’ s21 ’)
s26 = s e l f . addSwi tch (’ s26 ’)
s6 = s e l f . addSwi tch (’ s6 ’)
s1 = s e l f . addSwi tch (’ s1 ’)
s18 = s e l f . addSwi tch (’ s18 ’)
s8 = s e l f . addSwi tch (’ s8 ’)
s15 = s e l f . addSwi tch (’ s15 ’)
s17 = s e l f . addSwi tch (’ s17 ’)
s24 = s e l f . addSwi tch (’ s24 ’)
s19 = s e l f . addSwi tch (’ s19 ’)
s20 = s e l f . addSwi tch (’ s20 ’)
s11 = s e l f . addSwi tch (’ s11 ’)
s5 = s e l f . addSwi tch (’ s5 ’)
s13 = s e l f . addSwi tch (’ s13 ’)
s10 = s e l f . addSwi tch (’ s10 ’)
s4 = s e l f . addSwi tch (’ s4 ’)
s16 = s e l f . addSwi tch (’ s16 ’)
s9 = s e l f . addSwi tch (’ s9 ’)
s7 = s e l f . addSwi tch (’ s7 ’)
s2 = s e l f . addSwi tch (’ s2 ’)
s22 = s e l f . addSwi tch (’ s22 ’)
s27 = s e l f . addSwi tch (’ s27 ’)

i n f o (’∗∗∗ Add h o s t s \ n ’)
h2 = s e l f . addHost (’ h2 ’)
h5 = s e l f . addHost (’ h5 ’)
h6 = s e l f . addHost (’ h6 ’)
h1 = s e l f . addHost (’ h1 ’)

i n f o (’∗∗∗ Add l i n k s \ n ’)
s e l f . addLink (s16 , s23 , c l s =TCLink , bw=4 , d e l a y = ’10ms ’ , l o s s =0 , u s e_h t b =True)
s e l f . addLink (s18 , s25 , c l s =TCLink , bw=4 , d e l a y = ’10ms ’ , l o s s =0 , u s e_h t b =True)
s e l f . addLink (s17 , s2 , c l s =TCLink , bw=4 , d e l a y = ’10ms ’ , l o s s =0 , u s e_h t b =True)
s e l f . addLink (s21 , s4 , c l s =TCLink , bw=4 , d e l a y = ’10ms ’ , l o s s =0 , u s e_h t b =True)
s e l f . addLink (s3 , s10 , c l s =TCLink , bw=4 , d e l a y = ’10ms ’ , l o s s =0 , u s e_h t b =True)
s e l f . addLink (s7 , s14 , c l s =TCLink , bw=4 , d e l a y = ’10ms ’ , l o s s =0 , u s e_h t b =True)
s e l f . addLink (s9 , s24 , c l s =TCLink , bw=4 , d e l a y = ’10ms ’ , l o s s =0 , u s e_h t b =True)
s e l f . addLink (s11 , s28 , c l s =TCLink , bw=4 , d e l a y = ’10ms ’ , l o s s =0 , u s e_h t b =True)
s e l f . addLink (s22 , s15 , c l s =TCLink , bw=45 , d e l a y = ’10ms ’ , l o s s =0 , u s e_h t b =True)
s e l f . addLink (s15 , s1 , c l s =TCLink , bw=45 , d e l a y = ’10ms ’ , l o s s =0 , u s e_h t b =True)
s e l f . addLink (s1 , s8 , c l s =TCLink , bw=45 , d e l a y = ’10ms ’ , l o s s =0 , u s e_h t b =True)
s e l f . addLink (s8 , s15 , c l s =TCLink , bw=45 , d e l a y = ’10ms ’ , l o s s =0 , u s e_h t b =True)
s e l f . addLink (s22 , s8 , c l s =TCLink , bw=45 , d e l a y = ’10ms ’ , l o s s =0 , u s e_h t b =True)
s e l f . addLink (s22 , s1 , c l s =TCLink , bw=45 , d e l a y = ’10ms ’ , l o s s =0 , u s e_h t b =True)
s e l f . addLink (s22 , s24 , c l s =TCLink , bw=100 , d e l a y = ’1ms ’ , l o s s =0 , u s e_h t b =True)
s e l f . addLink (s23 , s22 , c l s =TCLink , bw=100 , d e l a y = ’1ms ’ , l o s s =0 , u s e_h t b =True)
s e l f . addLink (s24 , s23 , c l s =TCLink , bw=100 , d e l a y = ’1ms ’ , l o s s =0 , u s e_h t b =True)
s e l f . addLink (s23 , s26 , c l s =TCLink , bw=100 , d e l a y = ’1ms ’ , l o s s =0 , u s e_h t b =True)
s e l f . addLink (s25 , s23 , c l s =TCLink , bw=100 , d e l a y = ’1ms ’ , l o s s =0 , u s e_h t b =True)
s e l f . addLink (s24 , s27 , c l s =TCLink , bw=100 , d e l a y = ’1ms ’ , l o s s =0 , u s e_h t b =True)
s e l f . addLink (s24 , s28 , c l s =TCLink , bw=100 , d e l a y = ’1ms ’ , l o s s =0 , u s e_h t b =True)
s e l f . addLink (s10 , s13 , c l s =TCLink , bw=100 , d e l a y = ’1ms ’ , l o s s =0 , u s e_h t b =True)
s e l f . addLink (s10 , s8 , c l s =TCLink , bw=100 , d e l a y = ’1ms ’ , l o s s =0 , u s e_h t b =True)
s e l f . addLink (s10 , s14 , c l s =TCLink , bw=100 , d e l a y = ’1ms ’ , l o s s =0 , u s e_h t b =True)
s e l f . addLink (s9 , s10 , c l s =TCLink , bw=100 , d e l a y = ’1ms ’ , l o s s =0 , u s e_h t b =True)

104

s e l f . addLink (s9 , s12 , c l s =TCLink , bw=100 , d e l a y = ’1ms ’ , l o s s =0 , u s e_h t b =True)
s e l f . addLink (s9 , s11 , c l s =TCLink , bw=100 , d e l a y = ’1ms ’ , l o s s =0 , u s e_h t b =True)
s e l f . addLink (s8 , s9 , c l s =TCLink , bw=100 , d e l a y = ’1ms ’ , l o s s =0 , u s e_h t b =True)
s e l f . addLink (s1 , s3 , c l s =TCLink , bw=100 , d e l a y = ’1ms ’ , l o s s =0 , u s e_h t b =True)
s e l f . addLink (s3 , s2 , c l s =TCLink , bw=100 , d e l a y = ’1ms ’ , l o s s =0 , u s e_h t b =True)
s e l f . addLink (s2 , s4 , c l s =TCLink , bw=100 , d e l a y = ’1ms ’ , l o s s =0 , u s e_h t b =True)
s e l f . addLink (s2 , s5 , c l s =TCLink , bw=100 , d e l a y = ’1ms ’ , l o s s =0 , u s e_h t b =True)
s e l f . addLink (s2 , s1 , c l s =TCLink , bw=100 , d e l a y = ’1ms ’ , l o s s =0 , u s e_h t b =True)
s e l f . addLink (s3 , s6 , c l s =TCLink , bw=100 , d e l a y = ’1ms ’ , l o s s =0 , u s e_h t b =True)
s e l f . addLink (s3 , s7 , c l s =TCLink , bw=100 , d e l a y = ’1ms ’ , l o s s =0 , u s e_h t b =True)
s e l f . addLink (s15 , s16 , c l s =TCLink , bw=100 , d e l a y = ’1ms ’ , l o s s =0 , u s e_h t b =True)
s e l f . addLink (s15 , s17 , c l s =TCLink , bw=100 , d e l a y = ’1ms ’ , l o s s =0 , u s e_h t b =True)
s e l f . addLink (s17 , s20 , c l s =TCLink , bw=100 , d e l a y = ’1ms ’ , l o s s =0 , u s e_h t b =True)
s e l f . addLink (s17 , s21 , c l s =TCLink , bw=100 , d e l a y = ’1ms ’ , l o s s =0 , u s e_h t b =True)
s e l f . addLink (s16 , s19 , c l s =TCLink , bw=100 , d e l a y = ’1ms ’ , l o s s =0 , u s e_h t b =True)
s e l f . addLink (s16 , s18 , c l s =TCLink , bw=100 , d e l a y = ’1ms ’ , l o s s =0 , u s e_h t b =True)
s e l f . addLink (s16 , s17 , c l s =TCLink , bw=100 , d e l a y = ’1ms ’ , l o s s =0 , u s e_h t b =True)
s e l f . addLink (h1 , s19 , c l s =TCLink , bw=100 , d e l a y = ’1ms ’ , l o s s =0 , u s e_h t b =True)
s e l f . addLink (h2 , s20 , c l s =TCLink , bw=100 , d e l a y = ’1ms ’ , l o s s =0 , u s e_h t b =True)
s e l f . addLink (s13 , h6 , c l s =TCLink , bw=100 , d e l a y = ’1ms ’ , l o s s =0 , u s e_h t b =True)
s e l f . addLink (h5 , s12 , c l s =TCLink , bw=100 , d e l a y = ’1ms ’ , l o s s =0 , u s e_h t b =True)

A.7.2 Battalion Topology
Battalion Topology

c l a s s B a t t a l i o n (Topo) :
" B a t t a l i o n Topology "

de f _ _ i n i t _ _ (s e l f) :
" C r e a t e custom b a t t a l i o n topo . "

I n i t i a l i z e t o po l ogy
Topo . _ _ i n i t _ _ (s e l f)

s2 = s e l f . addSwi tch (’ s2 ’)
s5 = s e l f . addSwi tch (’ s5 ’)
s3 = s e l f . addSwi tch (’ s3 ’)
s1 = s e l f . addSwi tch (’ s1 ’)
s6 = s e l f . addSwi tch (’ s6 ’)
s4 = s e l f . addSwi tch (’ s4 ’)
s7 = s e l f . addSwi tch (’ s7 ’)

h6 = s e l f . addHost (’ h6 ’)
h4 = s e l f . addHost (’ h4 ’)
h1 = s e l f . addHost (’ h1 ’)
h2 = s e l f . addHost (’ h2 ’)
h7 = s e l f . addHost (’ h7 ’)
h5 = s e l f . addHost (’ h5 ’)
h3 = s e l f . addHost (’ h3 ’)
h8 = s e l f . addHost (’ h8 ’)

s e l f . addLink (s3 , h2)
s e l f . addLink (h3 , s4)
s e l f . addLink (s4 , h4)
s e l f . addLink (h5 , s5)
s e l f . addLink (s2 , s1)
s e l f . addLink (s3 , s1)
s e l f . addLink (s1 , s4)
s e l f . addLink (s5 , s2)
s e l f . addLink (s2 , s6)
s e l f . addLink (s1 , s7)
s e l f . addLink (s7 , s2)
s e l f . addLink (s5 , h6)
s e l f . addLink (s6 , h8)

105

s e l f . addLink (h7 , s6)
s e l f . addLink (h1 , s3)
lower l i n k i s f o r add

A.7.3 Link Change Testing Topology
Link Change Tester

c l a s s L inkchange (Topo) :
" Tree f o r Topology change t e s t i n g . "

de f _ _ i n i t _ _ (s e l f) :
" Tree f o r t e s t i n g . "

I n i t i a l i z e t o po l ogy
Topo . _ _ i n i t _ _ (s e l f)

s2 = s e l f . addSwi tch (’ s2 ’)
s1 = s e l f . addSwi tch (’ s1 ’)
s3 = s e l f . addSwi tch (’ s3 ’)

Add h o s t s and sw i t c h e s
h1 = s e l f . addHost (’ h1 ’)
h2 = s e l f . addHost (’ h2 ’)
h3 = s e l f . addHost (’ h3 ’)
h4 = s e l f . addHost (’ h4 ’)

s e l f . addLink (s2 , s1 , c l s =TCLink , bw=15 , d e l a y = ’3ms ’ , l o s s =0 , u s e_h t b =True)
s e l f . addLink (s2 , s3 , c l s =TCLink , bw=5 , d e l a y = ’2ms ’ , l o s s =0 , u s e_h t b =True)
s e l f . addLink (s3 , h3)
s e l f . addLink (s3 , h4)
s e l f . addLink (s1 , h1)
s e l f . addLink (s1 , h2)
s e l f . addLink

A.7.4 S-T Cut Topology
S-T Cut Topology

c l a s s S t c u t (Topo) :
" B a t t a l i o n Topology "

de f _ _ i n i t _ _ (s e l f) :
" C r e a t e custom s− t c u t t opo . "

I n i t i a l i z e t o po l ogy
Topo . _ _ i n i t _ _ (s e l f)

s3 = s e l f . addSwi tch (’ s3 ’)
s1 = s e l f . addSwi tch (’ s1 ’)
s6 = s e l f . addSwi tch (’ s6 ’)
s2 = s e l f . addSwi tch (’ s2 ’)
s5 = s e l f . addSwi tch (’ s5 ’)
s4 = s e l f . addSwi tch (’ s4 ’)

i n f o (’∗∗∗ Add h o s t s \ n ’)
h2 = s e l f . addHost (’ h2 ’)
h5 = s e l f . addHost (’ h5 ’)
h3 = s e l f . addHost (’ h3 ’)
h4 = s e l f . addHost (’ h4 ’)

106

h1 = s e l f . addHost (’ h1 ’)
h6 = s e l f . addHost (’ h6 ’)

i n f o (’∗∗∗ Add l i n k s \ n ’)
s e l f . addLink (s4 , s3)
s e l f . addLink (s3 , s1)
s e l f . addLink (s1 , s2)
s e l f . addLink (s2 , s3)
s e l f . addLink (s3 , s5)
s e l f . addLink (s5 , s4)
s e l f . addLink (s4 , s1)
s e l f . addLink (s5 , s6)
s e l f . addLink (s6 , s4)
s e l f . addLink (h1 , s2)
s e l f . addLink (s1 , h3)
s e l f . addLink (h4 , s4)
s e l f . addLink (s3 , h2)
s e l f . addLink (s5 , h5)
s e l f . addLink (s6 , h6)

A.8 Experiment Automation Shell Scripts
These are simple shell scripts to automate experimentation utilizing multiple Linux com-
mand line tools, the ONOS.py file, and the merged ONOS-Mininet command line. This
streamlined experimentation and allowed us to rapidly manipulate topologies and output
results into text files that we could parse through. Once again, I’d like to thank Terry
Kvitchko for helping me in generating and testing this code.

A.8.1 Experiment 1 Automation
Experiment1 Automation

! / b i n / sh
l aunch wi th " sudo bash . / mn_she l l . sh "

i f [$USER != " r o o t "] ; t h en
echo " Th i s s c r i p t must be run as r o o t . (Try ’ sudo bash . / SCRIPT_NAME’) "
e x i t 1

f i
go i n t o onos d i r e c t o r y
cd ~ / onos

c o u n t e r =1

numRules=$ (wc − l / home / b r e n t / i n p u t r u l e s / r u l e s . t x t | g r ep −oP " ([0 −9]∗) " | x a r g s)
TIME=$ (d a t e +%s)

wh i l e [$ c oun t e r − l e 25]
do

mn −c
c l e a n up m in i n e t
echo " "
echo " l i n k s1 s3 down" >> / tmp / mn_she l l_ temp
echo " sh echo ’ s t a r t i n g t s h a r k c a p t u r e (60 s e c s) ’ " > / tmp / mn_she l l_ temp
echo " sh sudo −u b r e n t t s h a r k − i any −d ’ t c p . p o r t ==6633 ,
openf low ’ − j ’ openf low_v4 . t ype ==14 ’ −a d u r a t i o n : 60 −w
~/ c a p t u r e s r e s u l t s / ${TIME}_${numRules } _run_$

107

{ c o u n t e r } _pcap . pcap &" >> / tmp / mn_she l l_ temp
echo " sh sudo −u b r e n t t s h a r k − i any − f ’ t c p p o r t 6633 ’ −a d u r a t i o n : 60 −w ~/ c a p t u r e s r e s u l t s / ${TIME}_${numRules } _run_$
{ c o u n t e r } _pcap . pcap &" >> / tmp / mn_she l l_ temp
echo " sh sudo −u b r e n t t s h a r k − i any − f ’ p o r t 6653 ’ −a d u r a t i o n :220 −w ~/ c a p t u r e s r e s u l t s / ${TIME}_${numRules } _run_$
{ c o u n t e r } _pcap . pcap &" >> / tmp / mn_she l l_ temp
echo " onos app a c t i v a t e g raph " >> / tmp / mn_she l l_ temp
echo " sh s l e e p 2 s " >> / tmp / mn_she l l_ temp
echo " onos k i l l 0 2 50000" >> / tmp / mn_she l l_ temp
0 & 2 r e p r e s e n t s t h e S & T wh i l e t h e l a s t
number r e f l e c t s t h e number o f r u l e s i n t h e ACL f i l e i t s r e a d i n g from
HOST_A=3
HOST_B=1
SWITCH_A=1
SWITCH_B=2
SWITCH_C=3

echo " sh echo ’ s t a r t i n g t o s l e ep ’ " >> / tmp / mn_she l l_ temp
echo " sh s l e e p 30 s " >> / tmp / mn_she l l_ temp # s l e e p t ime a d j u s t a b l e a s n e c c e s a r y
echo " sh echo ’ done s l e e p i n g ’ " >> / tmp / mn_she l l_ temp

echo " h${HOST_A} i f c o n f i g > ~ / c a p t u r e s r e s u l t s / ${TIME}_${numRules } _run_$ { c o u n t e r }
IFCONFIG_SERVER_h${HOST_A} t e s t &" >> / tmp / mn_she l l_ temp
echo " h${HOST_A} i p e r f −s −p 5566 − i 2 >> ~ / c a p t u r e s r e s u l t s / ${TIME}_${numRules } _run_$ { c o u n t e r }
IFCONFIG_SERVER_h${HOST_A} t e s t &" >> / tmp / mn_she l l_ temp

echo " h${HOST_B} i f c o n f i g > ~ / c a p t u r e s r e s u l t s / ${TIME}_${numRules } _run_$ { c o u n t e r }
IFCONFIG_CLIENT_h${HOST_B} t e s t &" >> / tmp / mn_she l l_ temp
echo " h${HOST_B} i p e r f −c 1 0 . 0 . 0 . ${HOST_A} −p 5566 − t 15 >> ~ / c a p t u r e s r e s u l t s / ${TIME}_${numRules } _run_$ { c o u n t e r }
IFCONFIG_CLIENT_h${HOST_B} t e s t &" >> / tmp / mn_she l l_ temp

echo " s$ {SWITCH_A} i o s t a t > ~ / c a p t u r e s r e s u l t s / ${TIME}_${numRules } _run_$ { c o u n t e r }
IOSTAT_s${SWITCH_A} i o s t a t &" >> / tmp / mn_she l l_ temp
echo " s$ {SWITCH_B} i o s t a t >> ~ / c a p t u r e s r e s u l t s / ${TIME}_${numRules } _run_$ { c o u n t e r }
IOSTAT_s${SWITCH_A} i o s t a t &" >> / tmp / mn_she l l_ temp
echo " s$ {SWITCH_C} i o s t a t >> ~ / c a p t u r e s r e s u l t s / ${TIME}_${numRules } _run_$ { c o u n t e r }
IOSTAT_s${SWITCH_A} i o s t a t &" >> / tmp / mn_she l l_ temp

echo " sh echo ’ s t a r t i n g t o s l e ep ’ " >> / tmp / mn_she l l_ temp
echo " sh s l e e p 30 s " >> / tmp / mn_she l l_ temp
echo " sh echo ’ done s l e e p i n g ’ " >> / tmp / mn_she l l_ temp

cp / tmp / mn_she l l_ temp ~ / c a p t u r e s r e s u l t s / ${TIME}_${numRules } _run_$ { c o u n t e r } _m i n i n e t _ s r c . t x t

sudo −u b r e n t t s h a r k − i any −a d u r a t i o n : 60 −w ~/ c a p t u r e s / c a p t u r e 1 . pcap &

echo " "
echo " "
echo " "
echo " "

l aunch min ionos
cd ~ / onos / t o o l s / dev / m i n i n e t
echo " s ou r c e / tmp / mn_she l l_ temp " | mn −−custom onos . py
−− c o n t r o l l e r onos , 1 −− t opo b r e n t t r e e #−− l i n k tc , d e l a y =1ms , bw=1000 and change t opo l ogy as needed

c l e anup
rm / tmp / mn_she l l_ temp
echo " Outpu t t o ~ / c a p t u r e s r e s u l t s / ${TIME}_${numRules } _run_$ { c o u n t e r }"
((c o u n t e r ++))

done

108

A.8.2 Experiment 2 Automation
Experiment 2 had four tests. We used different variations of the code below to run the
baseline test, random outer link addition, random core link loss, and the race condition
between the ONOS intent and our DF program. You simply manipulate which links you
want up and down when collecting iperf data.

Experiment2 Automation
! / b i n / sh
l aunch wi th " sudo bash . / mn_she l l . sh "

i f [$USER != " r o o t "] ; t h en
echo " Th i s s c r i p t must be run as r o o t . (Try ’ sudo bash . / SCRIPT_NAME’) "
e x i t 1

f i
go i n t o onos d i r e c t o r y
cd ~ / onos
f i r s t wh i l e loop c o u n t e r
c o u n t e r =1
t ime and d a t e f o r f i l e naming
TIME=$ (d a t e +%s)

v a r i a b l e s f o r i n t e n t cURL r e q u e s t b u i l d
DATA1=" ’{ " \ " t yp e \ " " : " \ " Ho s tToHos t I n t e n t \ " " ,
" \ " appId \ " " : " \ " o rg . o n o s p r o j e c t . ovsdb \ " " , " \ " p r i o r i t y \ " " : 55 , " \ " one \ " " : " \ " 0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0 1 / − 1 \ " " , " \ " two \ " " : " \ " 0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0 4 / − 1 \ " " } ’"
DATA2=" ’{ " \ " t yp e \ " " : " \ " Ho s tToHos t I n t e n t \ " " ,
" \ " appId \ " " : " \ " o rg . o n o s p r o j e c t . ovsdb \ " " , " \ " p r i o r i t y \ " " : 55 , " \ " one \ " " : " \ " 0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0 2 / − 1 \ " " , " \ " two \ " " : " \ " 0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0 3 / − 1 \ " " } ’"
URL=" ’ h t t p : / / 1 9 2 . 1 6 8 . 1 2 3 . 1 : 8 1 8 1 / onos / v1 / i n t e n t s ’ "
HEADER=" ’ Conten t−Type : a p p l i c a t i o n / j son ’ "
HEADER2=" ’ Accept : a p p l i c a t i o n / j son ’ "
v a r i a b l e s f o r l i n k command b u i l d i n g
c o r e l i n k s = (" s15 s8 " " s22 , s1 " " s15 s22 " " s22 s8 " " s1 s8 " " s1 s15 ")
o u t e r l i n k s = (" s18 s25 " " s16 s23 " " s17 s2 " " s21 s4 " " s24 s9 "
" s28 s11 " " s3 s10 " " s7 s14 ")
h 1 h 2 s i d e l i n k s =(" s16 s23 " " s18 s25 " " s17 s2 " " s21 s4 ")
c o r e t h r e e =(" s15 s22 " " s15 s1 " " s15 s8 ")
LINK=" l i n k "
DOWN=" down"
UP=" up "
wh i l e [$ c oun t e r − l e 1]
do

c l e a n up m in i n e t
echo " S t a r t i n g . "
echo " "
echo " "
echo " "
mn −c
c r e a t e l e g i m i t a t e t r a f f i c t o i n s t a l l f l ows and i n t e n t s
echo " sh s l e e p 5 s " >> / tmp / mn_she l l_ temp
echo " p i n g a l l f u l l " >> / tmp / mn_she l l_ temp
echo " sh s l e e p 5 s " >> / tmp / mn_she l l_ temp
t a k e down unn e c e s s a r y o u t e r L inks (ba se l i n e | r and co r e l i n k cd | r and o u t e r l i n k)
c n t r =0
wh i l e [$ c n t r − l t 8]
do

echo " ${LINK}${ o u t e r l i n k s [$ c n t r] } ${DOWN}" >> / tmp / mn_she l l_ temp #~/ c a p t u r e s r e s u l t s / f i l e 1 . t x t
((c n t r ++))

done
a c t i v a t e
echo " onos app a c t i v a t e g raph " >> / tmp / mn_she l l_ temp
echo " sh s l e e p 2 s " >> / tmp / mn_she l l_ temp
echo " onos k i l l 5 24 1000" >> / tmp / mn_she l l_ temp
t a k e down co r e l i n k s (r a c e c o n d i t i o n on ly)

109

echo " sh s l e e p 8 s " >> / tmp / mn_she l l_ temp
num=0
wh i l e [$num − l t 3]
do

echo " ${LINK}${ c o r e t h r e e [$num]} ${DOWN}" >>
/ tmp / mn_she l l_ temp #~/ c a p t u r e s r e s u l t s / f i l e 1 . t x t
((num++))

done
i n s t a l l i n t e n t s
echo " sh c u r l −X POST −−u s e r onos : r o ck s −−heade r ${HEADER} −−heade r ${HEADER2} −d ${DATA1} ${URL}" >> / tmp / mn_she l l_ temp
echo " sh c u r l −X POST −−u s e r onos : r o ck s −−heade r ${HEADER} −−heade r ${HEADER2} −d ${DATA2} ${URL}" >> / tmp / mn_she l l_ temp
s t a r t i p e r f t e s t s H1 −> H6
echo " sh s l e e p 5 s " >> / tmp / mn_she l l_ temp

echo " sh echo " $ (d a t e +%T.%N) " > ~ / c a p t u r e s r e s u l t s / e xpe r imen t 2 / ${TIME} _ h 6 i p e r f s e r v e r _ r u n $
{ c o u n t e r } &" >> / tmp / mn_she l l_ temp
echo " h6 i f c o n f i g >> ~ / c a p t u r e s r e s u l t s / e xpe r imen t2 / $
{TIME} _ h 6 i p e r f s e r v e r _ r u n $ { c o u n t e r } &" >> / tmp / mn_she l l_ temp
echo " h6 i p e r f −s −u − i 1 >> ~ / c a p t u r e s r e s u l t s / e xpe r imen t 2 / ${TIME} _ h 6 i p e r f s e r v e r _ r u n $
{ c o u n t e r } &" >> / tmp / mn_she l l_ temp
echo " sh echo " $ (d a t e +%T.%N) " > ~ / c a p t u r e s r e s u l t s / e xpe r imen t 2 / ${TIME} _ h 1 i p e r f c l i e n t _ r u n $ {
c o u n t e r } &" >> / tmp / mn_she l l_ temp
echo " h1 i f c o n f i g >> ~ / c a p t u r e s r e s u l t s / e xpe r imen t2 / $
{TIME} _ h 1 i p e r f c l i e n t _ r u n $ { c o u n t e r } &" >> / tmp / mn_she l l_ temp
echo " h1 i p e r f −c 1 0 . 0 . 0 . 4 −u −b 4m − i 1 − t 30 >> ~ / c a p t u r e s r e s u l t s / e xpe r imen t 2 / ${TIME} _ h 1 i p e r f c l i e n t _ r u n $
{ c o u n t e r } &" >> / tmp / mn_she l l_ temp
s t a r t i p e r f t e s t s H2 −> H5
echo " sh echo " $ (d a t e +%T.%N) " > ~ / c a p t u r e s r e s u l t s / e xpe r imen t 2 / ${TIME} _ h 5 i p e r f s e r v e r _ r u n $
{ c o u n t e r } &" >> / tmp / mn_she l l_ temp
echo " h5 i f c o n f i g >> ~ / c a p t u r e s r e s u l t s / e xpe r imen t2 / $
{TIME} _ h 5 i p e r f s e r v e r _ r u n $ { c o u n t e r } &" >> / tmp / mn_she l l_ temp
echo " h5 i p e r f −s −u − i 1 >> ~ / c a p t u r e s r e s u l t s / e xpe r imen t 2 / ${TIME} _ h 5 i p e r f s e r v e r _ r u n $
{ c o u n t e r } &" >> / tmp / mn_she l l_ temp
echo " sh echo " $ (d a t e +%T.%N) " > ~ / c a p t u r e s r e s u l t s / e xpe r imen t 2 / ${TIME} _ h 2 i p e r f c l i e n t _ r u n $
{ c o u n t e r } &" >> / tmp / mn_she l l_ temp
echo " h2 i f c o n f i g >> ~ / c a p t u r e s r e s u l t s / e xpe r imen t2 / $
{TIME} _ h 2 i p e r f c l i e n t _ r u n $ { c o u n t e r } &" >> / tmp / mn_she l l_ temp
echo " h2 i p e r f −c 1 0 . 0 . 0 . 3 −u −b 4m − i 1 − t 30 >> ~ / c a p t u r e s r e s u l t s / e xpe r imen t 2 / ${TIME} _ h 2 i p e r f c l i e n t _ r u n $
{ c o u n t e r } &" >> / tmp / mn_she l l_ temp
pause
echo " sh s l e e p 10 s " >> / tmp / mn_she l l_ temp
l i n k down
echo " ${LINK}${ c o r e l i n k s [(($RANDOM%6))]} ${DOWN}" >> / tmp / mn_she l l_ temp
#random s i d e l i n k up
echo " ${LINK}${ h 1 h 2 s i d e l i n k s [(($RANDOM%4))]} ${UP}" >> / tmp / mn_she l l_ temp
echo " sh echo " $ (d a t e +%T.%N) " >> ~ / c a p t u r e s r e s u l t s / e xpe r imen t 2 / ${TIME} _ h 6 i p e r f s e r v e r _ r u n $
{ c o u n t e r } &" >> / tmp / mn_she l l_ temp
echo " sh echo " $ (d a t e +%T.%N) " >> ~ / c a p t u r e s r e s u l t s / e xpe r imen t 2 / ${TIME} _ h 5 i p e r f s e r v e r _ r u n $
{ c o u n t e r } &" >> / tmp / mn_she l l_ temp
echo " sh echo " $ (d a t e +%T.%N) " >> ~ / c a p t u r e s r e s u l t s / e xpe r imen t 2 / ${TIME} _ h 2 i p e r f c l i e n t _ r u n $
{ c o u n t e r } &" >> / tmp / mn_she l l_ temp
echo " sh echo " $ (d a t e +%T.%N) " >> ~ / c a p t u r e s r e s u l t s / e xpe r imen t 2 / ${TIME} _ h 1 i p e r f c l i e n t _ r u n $
{ c o u n t e r } &" >> / tmp / mn_she l l_ temp

o u t e r l i n k s down
echo " ${LINK}${ o u t e r l i n k s [(($RANDOM%8))]} ${DOWN}" >> / tmp / mn_she l l_ temp #~/ c a p t u r e s r e s u l t s / f i l e 1 . t x t

echo " sh s l e e p 50 s " >> / tmp / mn_she l l_ temp

cd ~ / onos / t o o l s / dev / m i n i n e t
echo " s ou r c e / tmp / mn_she l l_ temp " | mn −−custom onos . py −− c o n t r o l l e r onos , 1 −− t opo r e g imen t −−mac
echo " "
echo " "
echo " "
echo " Ending . "
cp / tmp / mn_she l l_ temp ~ / c a p t u r e s r e s u l t s / e xpe r imen t 2 / ${TIME} _ i n p u t s _ r u n $ { c o u n t e r } . t x t
rm / tmp / mn_she l l_ temp

110

echo " Outpu t t o ~ / c a p t u r e s r e s u l t s / e xpe r imen t 2 / ${TIME}_${ bandwid th }mbs_run_$ { c o u n t e r }"
((c o u n t e r ++))

done

echo " ${LINK}${ o u t e r l i n k s [(($RANDOM%8))]} ${DOWN}" >> / tmp / mn_she l l_ temp #~/ c a p t u r e s r e s u l t s / f i l e 1 . t x t

A.9 Experiment Analysis Code
Below is the code that was used during Experiment 1 to analyze rule installation time, iperf,
and iostat output files. The following generates a csv from which you can use for analysis
or graph creation. Terry Kvitchoko created this code from ground up to analyze xml.

Analysis.py for Experiment 1
NOTE: make s u r e t o run t h i s from i n s i d e t h e r e l e v a n t f o l d e r o f c a p t u r e s

###

impo r t g lob
impo r t r e
impo r t s y s
from c o l l e c t i o n s impo r t d e f a u l t d i c t
impo r t os

t c p _ p o r t = 6633 # change i f openf low p o r t upda t e f i l e s !

d e f i o s t a t _ s c r a p e () :
f i l e s = []
f o r name i n g lob . g lob (’∗ i o s t a t ’) :

f i l e s . append (name)
i f no t f i l e s :

p r i n t " no i o s t a t f i l e s found ! "
r e t u r n []

r e s u l t s = d e f a u l t d i c t (l i s t)
cpuRE = r e . compi l e (" ([0 1 2 3 4 5 6 7 8 9 \ .] +) ")
numRulesRE = r e . compi l e (" ([0 123456789]+) _run ")

n um I o s t a t s = l e n (f i l e s)
i = 1
f o r f i l e i n f i l e s :

t r y :

p r i n t S t r = " i o s t a t : Working wi th f i l e " +
s t r (i) + " o f " + s t r (n um Io s t a t s) + " \ r "
p r i n t p r i n t S t r ,
s y s . s t d o u t . f l u s h ()
i +=1

wi th open (f i l e , ’ rb ’) a s i o f i l e :
l i n e = ""
wh i l e " avg−cpu " no t i n l i n e :

l i n e = nex t (i o f i l e)
l i n e = nex t (i o f i l e) # a c t u a l l i n e wi th d a t a
m = cpuRE . s e a r c h (l i n e) # g e t cpu num
n = numRulesRE . s e a r c h (f i l e) # g e t number o f r u l e s
r e s u l t s [n . group (1)] . append (m. group (1))
r e s u l t s [num r u l e s] += l i s t e n t r y f o r t h i s cpu num

exc ep t Excep t i on as e :

111

p r i n t s t r (e) + " e r r o r i n f i l e " + f i l e + " , s k i p p i n g "
c o n t i n u e

r e t u r n r e s u l t s

d e f b andw id t h_ s c r ap e () :
f i l e s = []
f o r name i n g lob . g lob (’∗CLIENT∗ ’) :

f i l e s . append (name)
i f no t f i l e s :

p r i n t " no i f c o n f i g _ c l i e n t f i l e s found ! "
r e t u r n []

r e s u l t s = d e f a u l t d i c t (l i s t)
bandwidthRE = r e . compi l e (" ([0 1 2 3 4 5 6 7 8 9 \ .] +) Gb i t s ")
numRulesRE = r e . compi l e (" ([0 123456789]+) _run ")

n um I o s t a t s = l e n (f i l e s)
i = 1
f o r f i l e i n f i l e s :

t r y :

p r i n t S t r = " bandwid th : Working wi th f i l e " + s t r (i)
+ " o f " + s t r (n um Io s t a t s) + " \ r "
p r i n t p r i n t S t r ,
s y s . s t d o u t . f l u s h ()
i +=1

wi th open (f i l e , ’ rb ’) a s i o f i l e :
l i n e = ""
wh i l e " Gb i t s " no t i n l i n e :

l i n e = nex t (i o f i l e)
m = bandwidthRE . s e a r c h (l i n e) # g e t cpu num
n = numRulesRE . s e a r c h (f i l e) # g e t number o f r u l e s
r e s u l t s [n . group (1)] . append (m. group (1))
r e s u l t s [num r u l e s] += l i s t e n t r y f o r t h i s cpu num

exc ep t Excep t i on as e :
p r i n t s t r (e) + " e r r o r i n f i l e " + f i l e + " , s k i p p i n g "
c o n t i n u e

r e t u r n r e s u l t s

d e f p c a p_h e l p e r () :

r e qu e s tT ime s = {}
r e sponseT imes = {}
de l a y = []
l i n e c o u n t = 0
p a c k e t c o u n t = 0

f i r s t R e q u e s t T im e = 0
l a s tRe spon s eT ime = 0

timestampRE = r e . compi l e (" v a l u e = \ " ([0 1 2 3 4 5 6 7 8 9 \ .] ∗) \ " ")
t r a n s a c t i o nRE = r e . compi l e (" T r a n s a c t i o n ID : ([0 − 9] ∗) \ " ")
ofptTypeRE = r e . compi l e (" Type : (. ∗ ?) \ " ")

w i th open (’ temp . xml ’ , ’ rb ’) a s xm l f i l e :
l i n e = ""
t r y :

wh i l e (1) :
l i n e = nex t (xm l f i l e)
l i n e c o u n t +=1
p r i n t s t r (l i n e c o u n t) + " \ r " ,

i f "< packe t >" i n l i n e : # keep go ing u n t i l new pa ck e t s t a r t s

112

p a c k e t c o u n t +=1

t imes t amp = 0 # r e s e t t h e s e v a l u e s j u s t i n c a s e
t r a n s a c t i o n I D = 0
ofp tType = 0

f o r i i n r ange (0 , 5) :
g rab packe t ’ s t imes t amp (w i l l d i s c a r d l a t e r i f no t openf low)

l i n e = nex t (xm l f i l e)
l i n e c o u n t +=1

t imes t amp = l i n e

f o r i i n r ange (0 , 1 0 0) :
l i n e = nex t (xm l f i l e)
l i n e c o u n t +=1

f o r i i n r ange (0 , 2 0) :
l i n e = nex t (xm l f i l e)
i f " openf low " i n l i n e o r " </ packe t >" i n l i n e :

b r e ak
l i n e c o u n t +=1

i f " openf low " no t i n l i n e :
s k i p i f i t ’ s no t an openf low

con t i n u e

wh i l e " openf low_v4 . t yp e " no t i n l i n e :
g rab o f p t t yp e and t r a n s a c t i o n l i n e s

l i n e = nex t (xm l f i l e)
l i n e c o u n t +=1

o fp tType = l i n e
l i n e = nex t (xm l f i l e)
l i n e = nex t (xm l f i l e)
l i n e c o u n t +=2
t r a n s a c t i o n I D = l i n e

i f "BARRIER_REPLY" no t i n o fp tType and
"OFPT_FLOW_MOD" no t i n o fp tType :
i t ’ s o fp t , bu t no t t h e r i g h t o f p t . go on t o nex t p a ck e t

c o n t i n u e

m = timestampRE . s e a r c h (t imes t amp) # e x t r a c t f i e l d s
i f m:

t imes t amp = m. group (1)
e l s e :

p r i n t (" F a i l e d r egex i n t imes t amp l i n e : " + s t r (t imes t amp)
+ " , r e l e v a n t t r a n s a c t i o n ID l i n e # : " + s t r (l i n e c o u n t))
c o n t i n u e

i f f i r s t R e q u e s t T im e == 0 :
f i r s t R e q u e s t T im e = t imes t amp

m = t r a n s a c t i o nRE . s e a r c h (t r a n s a c t i o n I D)
i f m:

t r a n s a c t i o n _ t e s t = t r a n s a c t i o n I D
t r a n s a c t i o n I D = m. group (1)

e l s e :
p r i n t (" F a i l e d r egex i n t r a n s a c t i o n ID l i n e : "
+ s t r (t r a n s a c t i o n I D) + " , r e l e v a n t t r a n s a c t i o n ID l i n e # : " + s t r (l i n e c o u n t))
c o n t i n u e

m = ofptTypeRE . s e a r c h (o fp tType)
i f m:

o fp tType = m. group (1)
e l s e :

p r i n t (" F a i l e d r egex i n OFPT_TYPE l i n e : " + s t r (o fp tType)
+ " , r e l e v a n t t r a n s a c t i o n ID l i n e # : " + s t r (l i n e c o u n t))
c o n t i n u e

113

i f "REPLY" i n o fp tType : # i s i t a r e q u e s t o r r e s p on s e ?
r e sponseT imes [t r a n s a c t i o n I D] = t imes t amp
l a s tRe spon s eT ime = t imes t amp

e l i f "OFPT_FLOW_MOD" i n o fp tType :
i f t r a n s a c t i o n I D no t i n r e qu e s tT ime s . keys () :

r e qu e s tT ime s [t r a n s a c t i o n I D] = t imes t amp
e l s e :

p r i n t (" Unexpec ted OFPT_TYPE : " + s t r (o fp tType) +
" , r e l e v a n t t r a n s a c t i o n ID l i n e # : " + s t r (l i n e c o u n t))
c o n t i n u e

ex c ep t S t o p I t e r a t i o n as e :
p a s s

f o r key i n r e qu e s tT ime s . keys () :
t r y :

d e l ayVa l = f l o a t (r e sponseT imes [key]) − f l o a t (r e qu e s tT ime s [key])
e x c e p t KeyError a s e :

i f s t r (key) ! = " 0 " : # some k ind of openf low e r r o r c r e a t e s m u l t i p l e 0s , i g n o r e
p r i n t (" F a i l e d t o f i n d r e s p on s e f o r t r a n s a c t i o n ID " + s t r (key))

c o n t i n u e
d e l a y . append (’%.9 f ’%de l ayVa l)

avgDelay = 0
amtKeys = 0
f o r v a l u e i n d e l a y :

amtKeys+=1
avgDelay+= f l o a t (v a l u e)

avgDelay = avgDelay / f l o a t (amtKeys)

r e t u r n [avgDelay , (f l o a t (l a s tRe spon s eT ime) − f l o a t (f i r s t R e q u e s t T im e))]

d e f p c ap_ s c r a p e () :
f i l e s = []
f o r name i n g lob . g lob (’ ∗ . pcap ’) :

f i l e s . append (name)
i f no t f i l e s :

p r i n t " no pcap f i l e s found ! "
r e t u r n []

p r i n t "Working wi th " + s t r (l e n (f i l e s)) + " t o t a l f i l e s . "

r e s u l t s = d e f a u l t d i c t (l i s t)
numRulesRE = r e . compi l e (" ([0 123456789]+) _run ")

f o r f i l e i n f i l e s :
t r y :

t s h a r k S t r i n g = ’ t s h a r k − r ’ + s t r (f i l e) + ’ −d " t c p . p o r t == ’ + s t r (t c p _ p o r t) +
’ , openf low " −T pdml −V > temp . xml ’
t s h a r k S t r i n g = ’ t s h a r k − r ’ + s t r (f i l e) + ’ −d " t c p . p o r t ==6633 , openf low "
−d " t c p . p o r t ==6653 , openf low " −T pdml −V > temp . xml ’
p r i n t " pcap : " + t s h a r k S t r i n g + " \ r " ,
s y s . s t d o u t . f l u s h ()

os . sys tem (t s h a r k S t r i n g)

p r i n t " pcap : Working on xml f i l e f o r " + s t r (f i l e) + "
\ n " ,

s i n g l e _ f i l e _ r e s u l t = p c a p_h e l p e r ()

p r i n t " pcap : Done working on xml f i l e f o r " + s t r (f i l e) + " , found avg de l a y "
+ s t r (s i n g l e _ f i l e _ r e s u l t [0]) + " and o v e r a l l t ime " + s t r (s i n g l e _ f i l e _ r e s u l t [1]) + " . "

n = numRulesRE . s e a r c h (f i l e) # g e t number o f r u l e s
r e s u l t s [n . group (1)] . append (s i n g l e _ f i l e _ r e s u l t) # r e s u l t s [num r u l e s] += l i s t e n t r y f o r t h i s cpu num

114

e x c ep t Excep t i on as e :
p r i n t s t r (e) + " e r r o r i n f i l e " + f i l e + " , s k i p p i n g "
c o n t i n u e

r e t u r n r e s u l t s

i f __name__ == " __main__ " :

p r i n t " "

p r i n t " Running i o s t a t d a t a s c r a p e . . . "
i o s t a t s = i o s t a t _ s c r a p e ()
p r i n t "Done . "
p r i n t "===RESULTS=========\n (num r u l e s : l i s t o f cpu t ime s) "
p r i n t i o s t a t s

p r i n t " "

p r i n t " Running bandwid th d a t a s c r a p e . . . "
bandwid th s = bandw id t h_ s c r ap e ()
p r i n t "Done . "
p r i n t "===RESULTS====\n (num r u l e s : l i s t o f bandwid th s found i n c l i e n t s) "
p r i n t bandwid th s

p r i n t " "

p r i n t " Running pcap s c r a p e . . . "
r u l e t i m e s = pc ap_ s c r a p e ()
p r i n t "Done . "
p r i n t "===RESULTS========\n (num r u l e s : t u p l e o f av e r ag e d e l a y and o v e r a l l d e l a y) "
p r i n t r u l e t i m e s

p r i n t " "

wi th open (’ o u t p u t _ i o s t a t . csv ’ , ’w’) a s f :
f o r key i n i o s t a t s . keys () :

l i n e = s t r (key)
f o r e n t r y i n i o s t a t s [key] :

l i n e += " , " + e n t r y
f . w r i t e (l i n e + " \ n ")

wi th open (’ ou t pu t _b andw id t h . csv ’ , ’w’) a s f2 :
f o r key i n bandwid th s . keys () :

l i n e = s t r (key)
f o r e n t r y i n bandwid th s [key] :

i n e += " , " + e n t r y
f2 . w r i t e (l i n e + " \ n ")

wi th open (’ o u t p u t _ a v gd e l a y . csv ’ , ’w’) a s f3 :
w i th open (’ o u t p u t _ o v e r a l l d e l a y . csv ’ , ’w’) a s f4 :

f o r key i n r u l e t i m e s . keys () :
l i n e 1 = s t r (key)
l i n e 2 = s t r (key)
f o r e n t r y i n r u l e t i m e s [key] :

l i n e 1 += " , " + s t r (e n t r y [0])
l i n e 2 += " , " + s t r (e n t r y [1])

f3 . w r i t e (l i n e 1 + " \ n ")
f4 . w r i t e (l i n e 2 + " \ n ")

115

THIS PAGE INTENTIONALLY LEFT BLANK

116

List of References

[1] J. M. Richardson, “Review of the FY2019 Budget Request for the U.S. Navy & Ma-
rine Corps,” April 24, 2018. [Online]. Available: https://www.appropriations.senate.
gov/download/042418_-richardson-testimony

[2] “War,”Merriam-Webster. Accessed May 14, 2019. [Online]. Available: https:
//www.merriam-webster.com/dictionary/war

[3] USMC. Command and Staff College AY18 8906 Coursebook: Lesson 6: Module 1:
Global Security Challenges. Marine Corps University, Command and Staff College
Distance Education Program, 2017.

[4] N. Freier, C. Compton, and T. Magsig, “Gray Zone: Why we’re losing the new era
of national security,” Defense One. June 9, 2016. [Online]. Available: https://www.
defenseone.com/ideas/2016/06/gray-zone-losing-new-era-national-security-strategy/
128957/

[5] R. B. Neller, “Review of the FY2019 Budget Request for the U.S. Navy & Marine
Corps,” April 24, 2018. [Online]. Available: https://www.appropriations.senate.gov/
download/042418_-neller-testimony

[6] R. C. Molander, A. Riddle, P. A. Wilson, and S. Williamson, “Strategic informa-
tion warfare: A new face of war,” RAND Corp., Santa Monica, CA, USA, MR-661,
1996. [Online]. Available: https://www.rand.org/pubs/monograph_reports/MR661/
index2.html

[7] J. Turrito, “Understanding warfare in the 21st century,” International Affairs Review,
vol. 18, no. 3, Winter 2010. [Online]. Available: http://www.iar-gwu.org/node/145

[8] W. Matthews, “Innovation at work: Can DoD get tech and acquisition in
sync?” GovTechWorks, November 30, 2016. [Online]. Available: https://www.
govtechworks.com/innovation-at-work-can-dod-get-tech-and-acquisition-in-sync/

[9] R. Kalinyak, “CNO: It’s ‘Imperative’ the Navy speeds up to keep up,” C4ISRNET,
June 15, 2017. [Online]. Available: https://www.c4isrnet.com/it-networks/2017/06/
15/cno-it-s-imperative-the-navy-speeds-up-to-keep-up/

[10] J. M. Richardson, “A design for maintaining maritime superiority version 2.0,”
December 2018. [Online]. Available: https://www.navy.mil/navydata/people/cno/
Richardson/Resource/Design_2.0.pdf

117

https://www.appropriations.senate.gov/download/042418_-richardson-testimony
https://www.appropriations.senate.gov/download/042418_-richardson-testimony
https://www.merriam-webster.com/dictionary/war
https://www.merriam-webster.com/dictionary/war
https://www.defenseone.com/ideas/2016/06/gray-zone-losing-new-era-national-security-strategy/128957/
https://www.defenseone.com/ideas/2016/06/gray-zone-losing-new-era-national-security-strategy/128957/
https://www.defenseone.com/ideas/2016/06/gray-zone-losing-new-era-national-security-strategy/128957/
https://www.appropriations.senate.gov/download/042418_-neller-testimony
https://www.appropriations.senate.gov/download/042418_-neller-testimony
https://www.rand.org/pubs/monograph_reports/MR661/index2.html
https://www.rand.org/pubs/monograph_reports/MR661/index2.html
http://www.iar-gwu.org/node/145
https://www.govtechworks.com/innovation-at-work-can-dod-get-tech-and-acquisition-in-sync/
https://www.govtechworks.com/innovation-at-work-can-dod-get-tech-and-acquisition-in-sync/
https://www.c4isrnet.com/it-networks/2017/06/15/cno-it-s-imperative-the-navy-speeds-up-to-keep-up/
https://www.c4isrnet.com/it-networks/2017/06/15/cno-it-s-imperative-the-navy-speeds-up-to-keep-up/
https://www.navy.mil/navydata/people/cno/Richardson/Resource/Design_2.0.pdf
https://www.navy.mil/navydata/people/cno/Richardson/Resource/Design_2.0.pdf

[11] USMC. Command and Staff College AY18 8906 Coursebook: Lesson 3: Mod-
ule 2: Marine Operating Concept: Public Affairs Playbook (2017). Marine Corps
University, Command and Staff College Distance Education Program, 2017. [On-
line][Published for USMC Command and Staff Students].

[12] Joint Operations, JP 3-0, Joint Chiefs of Staff, Washington, DC, 2017. [Online].
Available: https://www.jcs.mil/Portals/36/Documents/Doctrine/pubs/jp3_0ch1.pdf?
ver=2018-11-27-160457-910

[13] USMC,MAGTF Communications System, MCWP 3-40.3, Marine Corps Logistics
Base, Albany, GA, 2011, pCN:143 000042 00.

[14] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodolmolky, and
S. Uhlig, “Software-defined networking: A comprehensive survey,” Proceedings of
the IEEE, vol. 103, no. 1, pp. 14–76, 2015. [Online]. Available: https://ieeexplore.
ieee.org/stamp/stamp.jsp?tp=&arnumber=6994333

[15] J. H. Cox, J. Chung, S. Donovan, J. Ivey, R. J. Clark, G. Riley, and H. L. Owen, “Ad-
vancing software-defined networks: a survey,” IEEE Access, vol. 5, pp. 25,487–
25,526, 2017. [Online]. Available: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=
&arnumber=8066287

[16] M. Knight, “Data management and the internet of things,” DATAVERSITY, Decem-
ber 12, 2018. [Online]. Available: https://www.dataversity.net/data-management-
internet-things/#

[17] L. Columbus, “10 charts that will challenge your perspective of IoT’s growth,”
Forbes, June 6, 2018. [Online]. Available: https://www.forbes.com/sites/
louiscolumbus/2018/06/06/10-charts-that-will-challenge-your-perspective-of-iots-
growth/#5d24a2b23ecc

[18] D. Edwards, “Commentary: exponential growth of IoT becoming the next tech
revolution,” Robotics & Automation News, July 17, 2018. [Online]. Available:
https://roboticsandautomationnews.com/2018/07/17/commentary-exponential-
growth-of-iot-becoming-the-next-tech-revolution/18338/

[19] B. Heller, “Reproducible network research with high-fidelity emulation,” Ph.D.
dissertation, Stanford University, Palo Alto, CA USA, 2013. [Online]. Available:
https://stacks.stanford.edu/file/druid:zk853sv3422/heller_thesis-augmented.pdf

[20] D. Yu, A. W. Moore, C. Hall, and R. Anderson, “Security: a killer app for sdn?”
Indiana University at Bloomington, Bloomington, IN, Tech. Rep. AFRL-RI-RS-TP-
2014-048, October 2014. [Online]. Available: https://apps.dtic.mil/dtic/tr/fulltext/u2/
a613601.pdf

118

https://www.jcs.mil/Portals/36/Documents/Doctrine/pubs/jp3_0ch1.pdf?ver=2018-11-27-160457-910
https://www.jcs.mil/Portals/36/Documents/Doctrine/pubs/jp3_0ch1.pdf?ver=2018-11-27-160457-910
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6994333
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6994333
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8066287
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8066287
https://www.dataversity.net/data-management-internet-things/#
https://www.dataversity.net/data-management-internet-things/#
https://www.forbes.com/sites/louiscolumbus/2018/06/06/10-charts-that-will-challenge-your-perspective-of-iots-growth/#5d24a2b23ecc
https://www.forbes.com/sites/louiscolumbus/2018/06/06/10-charts-that-will-challenge-your-perspective-of-iots-growth/#5d24a2b23ecc
https://www.forbes.com/sites/louiscolumbus/2018/06/06/10-charts-that-will-challenge-your-perspective-of-iots-growth/#5d24a2b23ecc
https://roboticsandautomationnews.com/2018/07/17/commentary-exponential-growth-of-iot-becoming-the-next-tech-revolution/18338/
https://roboticsandautomationnews.com/2018/07/17/commentary-exponential-growth-of-iot-becoming-the-next-tech-revolution/18338/
https://stacks.stanford.edu/file/druid:zk853sv3422/heller_thesis-augmented.pdf
https://apps.dtic.mil/dtic/tr/fulltext/u2/a613601.pdf
https://apps.dtic.mil/dtic/tr/fulltext/u2/a613601.pdf

[21] J. R. Agre, K. D. Gordon, and M. S. Vassiliou, “Commercial Technology at the
Tactical Edge,” presented at the 18th International Command and Control Re-
search Technology Symposium, Alexandria, VA, June 2013. [Online]. Available:
https://apps.dtic.mil/dtic/tr/fulltext/u2/a587552.pdf

[22] N. Cvijetic, A. Tanaka, K. Kanonakis, and T. Wang, “Sdn-controlled
topology-reconfigurable optical mobile fronthaul architecture for bidirec-
tional comp and low latency inter-cell d2d in the 5g mobile era,” Optics
Express, vol. 22, no. 17, pp. 20,809–20,815, 2014. [Online]. Available:
https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-22-17-20809id=299642.

[23] L. Cui, F. R. Yu, and Q. Yan, “When big data meets software-defined network-
ing: Sdn for big data and big data for sdn,” IEEE network, vol. 30, no. 1, pp. 58–
65, 2016. [Online]. Available: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=
&arnumber=7389832

[24] U.S.Army, “Shaping the Army Network: 2025-2040,” U.S. Army, Office of the
Chief Information Officer, Mar 2016. Available: https://www.hsdl.org/?view&did=
791846

[25] U.S.Navy, “A Cooperative Strategy for 21st Century Seapower,” Mar 2015. [Online].
Available: https://www.navy.mil/local/maritime/150227-CS21R-Final.pdf

[26] “Expeditionary Advanced Base Operations,” U.S. Marine Corps Concepts Pro-
grams, accessed March 5, 2019. [Online]. Available: https://www.candp.marines.
mil/Concepts/Subordinate-Operating-Concepts/Expeditionary-Advanced-Base-
Operations/

[27] Y.-W. E. Sung, X. Sun, S. G. Rao, G. G. Xie, and D. A. Maltz, “Towards sys-
tematic design of enterprise networks,” IEEE/ACM Transactions on Networking
(TON), vol. 19, no. 3, pp. 695–708, 2011. [Online]. Available: delivery.acm.org/
10.1145/2050000/2042979/p695-sung.pdf?ip=205.155.65.226&id=2042979&acc=
ACTIVE%20SERVICE&key=B318D1722F7F4203%2E44DF46464A4B769E%
2E4D4702B0C3E38B35%2E4D4702B0C3E38B35&__acm__=1557884650_
a713f8a48b4ff85ce43ed428c779a76b

[28] D. Levin, M. Canini, S. Schmid, F. Schaffert, and A. Feldmann, “Panopticon: Reap-
ing the benefits of incremental sdn deployment in enterprise networks,” in USENIX
Annual Technical Conference. USENIX Association, 2014, pp. 333–345. [On-
line]. Available: https://www.usenix.org/system/files/conference/atc14/atc14-paper-
levin.pdf

[29] N. Feamster, J. Rexford, and E. Zegura, “The road to sdn,” Queue, vol. 11,
no. 12, p. 20, 2013, [Online]. Available: http://delivery.acm.org/10.1145/

119

https://apps.dtic.mil/dtic/tr/fulltext/u2/a587552.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7389832
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7389832
https://www.hsdl.org/?view&did=791846
https://www.hsdl.org/?view&did=791846
https://www.navy.mil/local/maritime/150227-CS21R-Final.pdf
https://www.candp.marines.mil/Concepts/Subordinate-Operating-Concepts/Expeditionary-Advanced-Base-Operations/
https://www.candp.marines.mil/Concepts/Subordinate-Operating-Concepts/Expeditionary-Advanced-Base-Operations/
https://www.candp.marines.mil/Concepts/Subordinate-Operating-Concepts/Expeditionary-Advanced-Base-Operations/
delivery.acm.org/10.1145/2050000/2042979/p695-sung.pdf?ip=205.155.65.226&id=2042979&acc=ACTIVE%20SERVICE&key=B318D1722F7F4203%2E44DF46464A4B769E%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35&__acm__=1557884650_a713f8a48b4ff85ce43ed428c779a76b
delivery.acm.org/10.1145/2050000/2042979/p695-sung.pdf?ip=205.155.65.226&id=2042979&acc=ACTIVE%20SERVICE&key=B318D1722F7F4203%2E44DF46464A4B769E%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35&__acm__=1557884650_a713f8a48b4ff85ce43ed428c779a76b
delivery.acm.org/10.1145/2050000/2042979/p695-sung.pdf?ip=205.155.65.226&id=2042979&acc=ACTIVE%20SERVICE&key=B318D1722F7F4203%2E44DF46464A4B769E%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35&__acm__=1557884650_a713f8a48b4ff85ce43ed428c779a76b
delivery.acm.org/10.1145/2050000/2042979/p695-sung.pdf?ip=205.155.65.226&id=2042979&acc=ACTIVE%20SERVICE&key=B318D1722F7F4203%2E44DF46464A4B769E%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35&__acm__=1557884650_a713f8a48b4ff85ce43ed428c779a76b
delivery.acm.org/10.1145/2050000/2042979/p695-sung.pdf?ip=205.155.65.226&id=2042979&acc=ACTIVE%20SERVICE&key=B318D1722F7F4203%2E44DF46464A4B769E%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35&__acm__=1557884650_a713f8a48b4ff85ce43ed428c779a76b
https://www.usenix.org/system/files/conference/atc14/atc14-paper-levin.pdf
https://www.usenix.org/system/files/conference/atc14/atc14-paper-levin.pdf
http://delivery.acm.org/10.1145/2610000/2602219/p87-feamster.pdf?ip=205.155.65.226&id=2602219&acc=ACTIVE%20SERVICE&key=B318D1722F7F4203%2E44DF46464A4B769E%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35&__acm__=1557884977_d056b3dcba2fae4257372e150266719f
http://delivery.acm.org/10.1145/2610000/2602219/p87-feamster.pdf?ip=205.155.65.226&id=2602219&acc=ACTIVE%20SERVICE&key=B318D1722F7F4203%2E44DF46464A4B769E%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35&__acm__=1557884977_d056b3dcba2fae4257372e150266719f

2610000/2602219/p87-feamster.pdf?ip=205.155.65.226&id=2602219&acc=
ACTIVE%20SERVICE&key=B318D1722F7F4203%2E44DF46464A4B769E%
2E4D4702B0C3E38B35%2E4D4702B0C3E38B35&__acm__=1557884977_
d056b3dcba2fae4257372e150266719f

[30] D. L. Tennenhouse, J. M. Smith, W. D. Sincoskie, D. J. Wetherall, and G. J. Minden,
“A survey of active network research,” IEEE Communications Magazine, vol. 35,
no. 1, pp. 80–86, 1997. [Online]. Available: https://ieeexplore.ieee.org/stamp/stamp.
jsp?tp=&arnumber=568214

[31] L. Xu, J. Huang, S. Hong, J. Zhang, and G. Gu, “Attacking the brain: Races in the
sdn control plane,” in 26th USENIX Security Symposium (USENIX Security 17).
USENIX Association, 2017, pp. 451–468. [Online]. Available: https://www.usenix.
org/system/files/conference/usenixsecurity17/sec17-xu-lei.pdf

[32] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford,
S. Shenker, and J. Turner, “Openflow: enabling innovation in campus networks,”
ACM SIGCOMM Computer Communication Review, vol. 38, no. 2, pp. 69–74, 2008.
[Online]. Available: http://ccr.sigcomm.org/online/files/p69-v38n2n-mckeown.pdf

[33] J. P. Weitzel, “Innovating tactical networks: A software defined network approach,”
M.S. Thesis, Dept. Computer Science, Naval Postgraduate School, Monterey, CA,
2018. [Online]. Available: https://apps.dtic.mil/dtic/tr/fulltext/u2/1060105.pdf

[34] P. Goransson, C. Black, and T. Culver, Software Defined Networks: A Comprehen-
sive Approach. Waltham, MA: Morgan Kaufmann, 2016.

[35] K. Ingham and S. Forrest, “A history and survey of network firewalls,” University
of New Mexico, 2002. [Online]. Available: https://www.cs.unm.edu/~treport/tr/02-
12/firewall.pdf

[36] J. F. Kurose and K. Ross, Computer networking: A top-down approach, 7th Edition.
London, United Kingdom: Pearson Education Inc., 2017.

[37] S. M. Bellovin, “Distributed firewalls,” USENIX, 1999. [Online]. Available: http:
//static.usenix.org/publications/login/1999-11/features/firewalls.html

[38] “Network simulation and emulation,” class notes for Network Modeling an Simula-
tion, Dept. of Computer Science, Naval Postgraduate School, Monterey, CA, Winter
2019.

[39] Mininet, “Mininet: An instant virtual network on your laptop (or other pc),” ac-
cessed on January 7, 2019. [Online]. Available: http://mininet.org/

120

http://delivery.acm.org/10.1145/2610000/2602219/p87-feamster.pdf?ip=205.155.65.226&id=2602219&acc=ACTIVE%20SERVICE&key=B318D1722F7F4203%2E44DF46464A4B769E%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35&__acm__=1557884977_d056b3dcba2fae4257372e150266719f
http://delivery.acm.org/10.1145/2610000/2602219/p87-feamster.pdf?ip=205.155.65.226&id=2602219&acc=ACTIVE%20SERVICE&key=B318D1722F7F4203%2E44DF46464A4B769E%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35&__acm__=1557884977_d056b3dcba2fae4257372e150266719f
http://delivery.acm.org/10.1145/2610000/2602219/p87-feamster.pdf?ip=205.155.65.226&id=2602219&acc=ACTIVE%20SERVICE&key=B318D1722F7F4203%2E44DF46464A4B769E%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35&__acm__=1557884977_d056b3dcba2fae4257372e150266719f
http://delivery.acm.org/10.1145/2610000/2602219/p87-feamster.pdf?ip=205.155.65.226&id=2602219&acc=ACTIVE%20SERVICE&key=B318D1722F7F4203%2E44DF46464A4B769E%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35&__acm__=1557884977_d056b3dcba2fae4257372e150266719f
http://delivery.acm.org/10.1145/2610000/2602219/p87-feamster.pdf?ip=205.155.65.226&id=2602219&acc=ACTIVE%20SERVICE&key=B318D1722F7F4203%2E44DF46464A4B769E%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35&__acm__=1557884977_d056b3dcba2fae4257372e150266719f
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=568214
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=568214
https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-xu-lei.pdf
https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-xu-lei.pdf
http://ccr.sigcomm.org/online/files/p69-v38n2n-mckeown.pdf
https://apps.dtic.mil/dtic/tr/fulltext/u2/1060105.pdf
https://www.cs.unm.edu/~treport/tr/02-12/firewall.pdf
https://www.cs.unm.edu/~treport/tr/02-12/firewall.pdf
http://static.usenix.org/publications/login/1999-11/features/firewalls.html
http://static.usenix.org/publications/login/1999-11/features/firewalls.html
http://mininet.org/

[40] R. L. S. De Oliveira, C. M. Schweitzer, A. A. Shinoda, and L. R. Prete, “Using
mininet for emulation and prototyping software-defined networks,” in 2014 IEEE
Colombian Conference on Communications and Computing (COLCOM), pp. 1–6.
[Online]. Available: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=
6860404

[41] “Production quality multilayer open virtual switch,” accessed on January 7, 2019.
[Online]. Available: https://www.openvswitch.org/

[42] Title 14 U.S. Code: Coast Guard. Aug 14, 1949. Code of Federal Regulations. [On-
line]. Available: https://www.govinfo.gov/content/pkg/USCODE-2010-title14/pdf/
USCODE-2010-title14.pdf

[43] Title 10 U.S. Code: Armed Forces. January 7, 2011. Code of Federal Regulations.
[Online]. Available: https://www.govinfo.gov/content/pkg/CPRT-112HPRT67342/
pdf/CPRT-112HPRT67342.pdf

[44] USMC, “United states marine corps concepts and programs 2013,” 2013. [Online].
Available: https://www.marines.mil/Portals/59/Publications/U.S.%20Marine%
20Corps%20Concepts%20and%20Programs%202013_1.pdf

[45] USMC,MCDP 1-0 (w/change 1): Marine Corps Operations, 26 July, 2017. [On-
line]. Available: https://www.marines.mil/Portals/59/Publications/MCDP%201-
0%20W%20CH%201.pdf?ver=2017-09-25-150919-793

[46] USMC, NAVMC 1200.1D Military Occupational Specialty Manual, 2018. Ac-
cessed on February 18, 2019. [Online]. Available: https://www.trngcmd.marines.
mil/Portals/207/Docs/wtbn/MCCMOS/FY19%20MOS%20Manual%20NAVMC_
1200.1D.PDF?ver=2018-05-16-070623-087

[47] “Basic Communications Course BCC,” Marines.mil. Accessed on January 17,
2019. [Online]. Available: https://www.trngcmd.marines.mil/Units/West/MCCES/
MCCES-Schools/

[48] USMC,Marine Corps Strategy for Assured Command and Control: Enabling C2 for
Tomorrow’s Marine Corps, Today, March 2017. [Online]. Available: https://www.
hqmc.marines.mil/Portals/61/Marine_Corps_Strategy_for_Assured_Command_
and_Control_March_2017.pdf?ver=2017-05-30-160731-940

[49] M. Schwartz, “Defense acquisitions: How DoD acquires weapon systems and recent
efforts to reform the process,” Washington DC: CRS Report No. RL34026, Tech.
Rep., 2014. [Online]. Available: https://fas.org/sgp/crs/natsec/RL34026.pdf

121

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6860404
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6860404
https://www.openvswitch.org/
https://www.govinfo.gov/content/pkg/USCODE-2010-title14/pdf/USCODE-2010-title14.pdf
https://www.govinfo.gov/content/pkg/USCODE-2010-title14/pdf/USCODE-2010-title14.pdf
https://www.govinfo.gov/content/pkg/CPRT-112HPRT67342/pdf/CPRT-112HPRT67342.pdf
https://www.govinfo.gov/content/pkg/CPRT-112HPRT67342/pdf/CPRT-112HPRT67342.pdf
https://www.marines.mil/Portals/59/Publications/U.S.%20Marine%20Corps%20Concepts%20and%20Programs%202013_1.pdf
https://www.marines.mil/Portals/59/Publications/U.S.%20Marine%20Corps%20Concepts%20and%20Programs%202013_1.pdf
https://www.marines.mil/Portals/59/Publications/MCDP%201-0%20W%20CH%201.pdf?ver=2017-09-25-150919-793
https://www.marines.mil/Portals/59/Publications/MCDP%201-0%20W%20CH%201.pdf?ver=2017-09-25-150919-793
https://www.trngcmd.marines.mil/Portals/207/Docs/wtbn/MCCMOS/FY19%20MOS%20Manual%20NAVMC_1200.1D.PDF?ver=2018-05-16-070623-087
https://www.trngcmd.marines.mil/Portals/207/Docs/wtbn/MCCMOS/FY19%20MOS%20Manual%20NAVMC_1200.1D.PDF?ver=2018-05-16-070623-087
https://www.trngcmd.marines.mil/Portals/207/Docs/wtbn/MCCMOS/FY19%20MOS%20Manual%20NAVMC_1200.1D.PDF?ver=2018-05-16-070623-087
https://www.trngcmd.marines.mil/Units/West/MCCES/MCCES-Schools/
https://www.trngcmd.marines.mil/Units/West/MCCES/MCCES-Schools/
https://www.hqmc.marines.mil/Portals/61/Marine_Corps_Strategy_for_Assured_Command_and_Control_March_2017.pdf?ver=2017-05-30-160731-940
https://www.hqmc.marines.mil/Portals/61/Marine_Corps_Strategy_for_Assured_Command_and_Control_March_2017.pdf?ver=2017-05-30-160731-940
https://www.hqmc.marines.mil/Portals/61/Marine_Corps_Strategy_for_Assured_Command_and_Control_March_2017.pdf?ver=2017-05-30-160731-940
https://fas.org/sgp/crs/natsec/RL34026.pdf

[50] Defense Acquisition Reform is a National Security Issue. Grayline Group. Accessed
March 22, 2019. [Online]. Available: https://graylinegroup.com/defense-acquisition-
reform-is-a-national-security-issue/

[51] J. V. Saturno, B. H. Jr., and M. S. Lynch, “The congressional appropriations process:
An introduction,” Washington DC: CRS Report No. R42388, Tech. Rep., November
30, 2016. [Online]. Available: https://fas.org/sgp/crs/misc/R42388.pdf

[52] V. H. Krulak, First to fight: an inside view of the US Marine Corps. Annapolis, MD:
Naval Institute Press, 2013.

[53] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and N. McKeown, “Mininet per-
formance fidelity benchmarks,” October 21, 2012. [Online]. Available: https:
//hci.stanford.edu/cstr/reports/2012-02.pdf

[54] B. Lantz and B. O’Connor, “A mininet-based virtual testbed for distributed sdn de-
velopment,” in ACM SIGCOMM Computer Communication Review. ACM, vol. 45,
no.4, 2015, pp. 365–366. [Online]. Available: https://conferences.sigcomm.org/
sigcomm/2015/pdf/papers/p365.pdf

[55] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: rapid prototyping for
software-defined networks,” in Proceedings of the 9th ACM SIGCOMM Workshop
on Hot Topics in Networks. ACM, 2010, p. 19. [Online]. Available: conferences.
sigcomm.org/hotnets/2010/papers/a19-lantz.pdf

[56] “Open networking operating system,” ONOS. Accessed March 15, 2019. [Online].
Available: https://onosproject.org/

[57] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to algorithms
second edition. Cambridge, MA: The MIT Press, 2001.

[58] “Networks II,” March 10, 2015. [Online]. Available: https://blogs.cornell.edu/
info4220/2015/03/10/the-origin-of-the-study-of-network-flow/

[59] “Find minimum s-t cut in a flow network,” Geeks for Geeks. May 2018. [Online].
Available: https://www.geeksforgeeks.org/minimum-cut-in-a-directed-graph/

[60] J. N. Davies, P. Comerford, and V. Grout, “Principles of eliminating ac-
cess control lists within a domain,” Future Internet, vol. 4, no. 2, pp. 413–
429, 2012. [Online]. Available: https://pdfs.semanticscholar.org/b895/
9a8084d485dac508fb237c06305e7666edbc.pdf?_ga=2.184932841.1390330342.
1557893448-1634724069.1557893448

122

https://graylinegroup.com/defense-acquisition-reform-is-a-national-security-issue/
https://graylinegroup.com/defense-acquisition-reform-is-a-national-security-issue/
https://fas.org/sgp/crs/misc/R42388.pdf
https://hci.stanford.edu/cstr/reports/2012-02.pdf
https://hci.stanford.edu/cstr/reports/2012-02.pdf
https://conferences.sigcomm.org/sigcomm/2015/pdf/papers/p365.pdf
https://conferences.sigcomm.org/sigcomm/2015/pdf/papers/p365.pdf
conferences.sigcomm.org/hotnets/2010/papers/a19-lantz.pdf
conferences.sigcomm.org/hotnets/2010/papers/a19-lantz.pdf
https://onosproject.org/
https://blogs.cornell.edu/info4220/2015/03/10/the-origin-of-the-study-of-network-flow/
https://blogs.cornell.edu/info4220/2015/03/10/the-origin-of-the-study-of-network-flow/
https://www.geeksforgeeks.org/minimum-cut-in-a-directed-graph/
https://pdfs.semanticscholar.org/b895/9a8084d485dac508fb237c06305e7666edbc.pdf?_ga=2.184932841.1390330342.1557893448-1634724069.1557893448
https://pdfs.semanticscholar.org/b895/9a8084d485dac508fb237c06305e7666edbc.pdf?_ga=2.184932841.1390330342.1557893448-1634724069.1557893448
https://pdfs.semanticscholar.org/b895/9a8084d485dac508fb237c06305e7666edbc.pdf?_ga=2.184932841.1390330342.1557893448-1634724069.1557893448

[61] A.-H. Esfahanian, “Connectivity algorithms.” Cambridge, England: Cambridge Uni-
versity Press, 2013. [Online]. Available: https://www.cse.msu.edu/~cse835/Papers/
Graph_connectivity_revised.pdf

[62] “Minimum s-t node cut,” Network X. accessed November 21, 2018. [Online]. Avail-
able: https://networkx.github.io/documentation/networkx-1.9/reference/generated/
networkx.algorithms.connectivity.cuts.minimum_st_node_cut.html

[63] “Dijsktra’s algorithm,” Geeks for Geeks. Accessed November, 15, 2018. [Online].
Available: https://www.geeksforgeeks.org/dijkstras-shortest-path-algorithm-greedy-
algo-7/

[64] USMC, “MCRP 1-10.1 Organization of Marine Corps Forces,” 1998. [Online].
Available: https://www.marines.mil/Portals/59/Publications/MCRP%201-10.1%
20(formerly%20MCRP%205-12D).pdf?ver=2016-05-09-113114-630

[65] "SDN Technical Specifications". Open Networking Foundation. [Online]. Available:
https://www.opennetworking.org/software-defined-standards/specifications/. Open
Networking Foundation.

[66] E. Haleplidis, K. Pentikousis, S. Denazis, J. H. Salim, D. Meyer, and
O. Koufopavlou, “Software-defined networking (sdn): Layers and architecture ter-
minology,” Tech. Rep., January 2015. [Online]. Available: https://tools.ietf.org/html/
rfc7426

[67] M. Boucadair and C. Jacquenet, “Software-defined networking: A perspective from
within a service provider environment: RFC7149 ISSN:2070-1721,” Tech. Rep.,
March 2014. [Online]. Available: https://tools.ietf.org/html/rfc7149

[68] zim7563zim7563 334 and M. 4, “The default link bandwidth in mininet,” ac-
cessed February 15, 2019. [Online]. Available: https://stackoverflow.com/questions/
45907540/the-default-link-bandwidth-in-mininet

[69] A. Pasternack, “War is memes. "don’t be a victim like the americans",” Fast Com-
pany. Oct 25, 2018. [Online]. Available: https://www.fastcompany.com/90253809/
war-is-memes-pw-singer-likewar

[70] “ONOS.py troubleshooting guide,” accessed February 12, 2019. [Online]. Available:
https://wiki.onosproject.org/display/ONOS/Troubleshootingonos.py

[71] T. Hu, Z. Guo, P. Yi, T. Baker, and J. Lan, “Multi-controller based software-defined
networking: A survey,” IEEE Access, vol. 6, pp. 15,980–15,996, 2018. [Online].
Available: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8314783

123

https://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf
https://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf
https://networkx.github.io/documentation/networkx-1.9/reference/generated/networkx.algorithms.connectivity.cuts.minimum_st_node_cut.html
https://networkx.github.io/documentation/networkx-1.9/reference/generated/networkx.algorithms.connectivity.cuts.minimum_st_node_cut.html
https://www.geeksforgeeks.org/dijkstras-shortest-path-algorithm-greedy-algo-7/
https://www.geeksforgeeks.org/dijkstras-shortest-path-algorithm-greedy-algo-7/
https://www.marines.mil/Portals/59/Publications/MCRP%201-10.1%20(formerly%20MCRP%205-12D).pdf?ver=2016-05-09-113114-630
https://www.marines.mil/Portals/59/Publications/MCRP%201-10.1%20(formerly%20MCRP%205-12D).pdf?ver=2016-05-09-113114-630
https://www.opennetworking.org/software-defined-standards/specifications/
https://tools.ietf.org/html/rfc7426
https://tools.ietf.org/html/rfc7426
https://tools.ietf.org/html/rfc7149
https://stackoverflow.com/questions/45907540/the-default-link-bandwidth-in-mininet
https://stackoverflow.com/questions/45907540/the-default-link-bandwidth-in-mininet
https://www.fastcompany.com/90253809/war-is-memes-pw-singer-likewar
https://www.fastcompany.com/90253809/war-is-memes-pw-singer-likewar
https://wiki.onosproject.org/display/ONOS/Troubleshooting onos.py
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8314783

[72] “ONOS wiki,” accessed January 8, 2019. [Online]. Available: https://wiki.
onosproject.org/

[73] “Dijkstra’s algorithm,” Feb 2019. Available: https://en.wikipedia.org/wiki/Dijkstra’
s_algorithm

124

https://wiki.onosproject.org/
https://wiki.onosproject.org/
https://en.wikipedia.org/wiki/Dijkstra's_algorithm
https://en.wikipedia.org/wiki/Dijkstra's_algorithm

Initial Distribution List

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

125

	19Jun_Logan_Brent_First8
	19Jun_Logan_Brent
	The Resurgence of Great Power Competition
	Problem Statement
	Research Questions
	Thesis Organization

	Background
	Software Defined Networks
	Hybrid SDN
	Firewalls
	Distributed Firewalls
	Mininet Emulation Tool
	USMC Networking Technology and Policy
	Related Work

	Experimentation
	Design of Experiments
	Marine Corps Infantry Task Organization
	Experiment 1: Validation and Stress Test
	Experiment 2: Infantry Regiment Testing
	Experiment 3: Hybrid Network Evaluation
	Recap

	Findings
	Experiment 1: Validation and Stress Test
	Experiment 2: Infantry Regiment Testing
	Experiment 3: Hybrid Network Evaluation
	Summary

	Conclusion and Future Work
	Conclusions
	Limitations and Future Work
	Closing Remarks

	Appendix: Literary Review, SDN Software, and Source Code
	SDN Literary Review
	Open Network Operating System, Mininet, and Open vSwitch
	Distributed Firewall Command Line Class
	Distributed Firewall Graph Class
	Distributed Firewall Dijkstra Class
	Access Control List Rule Generator
	Mininet Custom Topologies
	Experiment Automation Shell Scripts
	Experiment Analysis Code

	List of References
	Initial Distribution List

