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The dairy industry produces enormous amount of cheese
whey containing the major milk nutrients, but this remains
unutilized all over the globe. The present study investigates
the production of -cryptoxanthin (3-CRX) by Kocuria marina
DAGII using cheese whey as substrate. Response surface
methodology (RSM) and an artificial neural network (ANN)
approach were implemented to obtain the maximum (-CRX
yield. Significant factors, i.e. yeast extract, peptone, cheese
whey and initial pH, were the input variables in both the
optimizing studies, and 3-CRX yield and biomass were taken
as output variables. The ANN topology of 4-9-2 was found to be
optimum when trained with a feed-forward back-propagation
algorithm. Experimental values of 3-CRX yield (17.14mg1~!)
and biomass (5.35g1"!) were compared and ANN predicted
values (16.99mgl~! and 5.33g17!, respectively) were found
to be more accurate compared with RSM predicted values
(16.95mgl~! and 523gl~!, respectively). Detailed kinetic
analysis of cellular growth, substrate consumption and product
formation revealed that growth inhibition took place at
substrate concentrations higher than 12% (v/v) of cheese
whey. The Han and Levenspiel model was the best fitted
substrate inhibition model that described the cell growth in
cheese whey with an R? and MSE of 0.9982% and 0.00477%,
respectively. The potential importance of this study lies in the
development, optimization and modelling of a suitable cheese
whey supplemented medium for increased 3-CRX production.

© 2018 The Authors. Published by the Royal Society under the terms of the Creative Commons
Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted
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1. Introduction

In recent years, microbial ability to grow on variable substrates has been widely explored for production
of different secondary metabolites such as antibiotics, pigments and biosurfactants. The nutritional
versatility of microbes makes them highly adaptable and culturable in laboratory conditions. This often
leads to novel application of microbes on non-conventional substrates for industrial, pharmaceutical
and environmental benefits. In our previous study, the inherent ability of Kocuria marina DAGII for
production of B-cryptoxanthin (3-CRX) was reported [1]. -CRX is a mono-oxygenated pro-vitamin
A xanthophyll mostly provided by citrus fruits [2]. Administration of 3-CRX has revealed various
beneficial effects such as anti-oxidant, anti-inflammatory, anti-cancer, anti-obesity and anti-diabetic
properties in different in vitro and in vivo studies [3,4]. B-CRX exerts cardio-protective action and also
exhibits a unique regulatory role by maintaining bone health [5,6]. Research on health beneficiary
roles of 3-CRX is highly progressive, which has promoted development of innovative approaches for
-CRX production. Several methods such as extraction from citrus fruits, chemical transformation of
commercial lutein to 3-CRX as well as metabolic engineering of microbial hosts for 3-CRX recovery
have been developed [7]. However, to our best knowledge, no natural 3-CRX producer has been
reported to date except for K. marina DAGII [1]. As a result, K. marina DAGII holds high significance
in research and development due to its ability to naturally produce 3-CRX as the final and major
product [8].

One of the major obstacles of carotenoid production, however, is the use of overpriced substrates [9].
Thus, replacement with a low-cost substrate might significantly help in cost reduction. The dairy and
cheese industry is an integral part of India’s economy and, by far, India is one of the largest producers
and consumers of milk and dairy products. However, during production of cheese and other products
such as cottage cheese, 85-95% of the milk volume is removed as whey [10]. Whey is the liquid remnant
produced during separation of coagulated casein and fat from milk [11]. It is considered that whey
consists of 55% milk nutrients of which the majority includes lactose (4.5-5% w/v), soluble proteins
(0.6-0.8% w/v), lipids (0.4-0.5% w/v), mineral salts (8-10% of dried extract), lactic (0.05% w/v) and
citric acids, non-protein nitrogen compounds (urea and uric acid) and B group vitamins [12]. Production
of 1kg of cheese results in the generation of approximately 9 kg of whey which is mostly disposed of
unutilized [13]. It is roughly estimated that India accounts for an annual whey production of 2 million
tonnes [14]. Thus, disposal of this huge quantity of whey is an environmental concern due to its high
biological oxygen demand (30-50g1~!) and chemical oxygen demand (60-80g1~') [15]. Mostly, whey
is dumped into sewers or disposed of on land, which leads to detrimental impacts on health and
the environment [16]. On the other hand, disposal into water bodies causes serious threat to aquatic
life [10]. Thus, utilization of this whey for value addition could be a possible solution from health
and environmental aspects. Cheese whey being a rich source of lactose could serve as an inexpensive
fermentation medium for many microorganisms. To date, cheese whey has been used in different
biotechnological processes for obtaining value added products such as ethanol, lactic acid, enzymes,
biopolymers, biogas and single-cell protein [16]. In this context, our previous study on 3-CRX production
by K. marina DAGII using dual substrates has been extended by substituting the carbon sources with
cheese whey for improved 3-CRX production by K. marina DAGII [1].

Media design, optimization and kinetic modelling are crucial steps in a bioprocess. An effective
production of the desired product requires development of a proper fermentation medium. Statistical
approaches (response surface methodology (RSM) and artificial neural network (ANN)) are the ideal
ways for media design and optimization of multivariable systems compared with the conventional
‘one-factor-at-a-time’” method which is not only tedious and time-consuming but also complicated for
quantifying interactive effects of different factors in the process concerned [17]. In addition, analysis of
rate equations for microbial growth, substrate uptake and product formation facilitates prediction of the
behaviour of the biological system under different experimental conditions [18]. Thus establishment of
mathematical models is also an indispensible step for commercial production of bioproducts.

In this present study, utilization of cheese whey as a substrate for 3-CRX production was
studied. The optimum medium composition for improved B-CRX production was validated using
two statistical modelling approaches, RSM and ANN. Different unstructured kinetic models were
developed to correlate between microbial growth, substrate concentration and product formation.
The novelty of the research work lies in the utilization of a low-cost dairy residue, that is
mostly disposed of as waste, for enhanced production of -CRX. -CRX production using cheese
whey with optimization using ANN and validation with a kinetic model has not been reported
so far.
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2. Material and methods

2.1. Chemicals

All the media ingredients, i.e. brain heart infusion agar, yeast extract, peptone, glucose, maltose,
sodium chloride, were purchased from Himedia, India. Solvents like methanol, petroleum benzene
were HPLC grade and purchased from Merck, India. Reagents for lactose estimation, i.e. zinc
acetate, phosphotungstic acid, glycine, sodium hydroxide, methylamine, sodium sulfite and lactose
monohydrate, were purchased from Himedia, India. Standard 3-CRX was obtained from Sigma-Aldrich,
USA.

2.2. Microorganism, growth medium and inoculum preparation

Kocuria marina DAGII (accession number: KF498648) was isolated from soil in the Department of
Biotechnology, NIT Durgapur, West Bengal, India [2]. The bacterium was maintained on a growth
medium consisting of glucose (7.5g17!), maltose (10.0 g171), yeast extract (10.0g171), peptone (5.0g17")
and sodium chloride (4.0g 1=1) with an initial pH of 7.9 [1]. Inoculum preparation was done as described
by Mitra et al. [19]; 1% (v/v) of the inoculum with an optical density of 0.4-0.6 was used in all
experiments.

2.3. (heese whey preparation

Cheese whey was obtained from a local dairy shop (Durgapur, West Bengal, India). The precipitates were
removed by centrifugation at 3220¢ for 10 min. The clear liquid was collected for further use.

2.4. Cultivation medium and culture conditions

Cheese whey was added to the growth medium and the concentration of the constituents was varied
according to the experimental design. The Erlenmeyer flasks were incubated in a rotary shaker
(150 r.p.m.) at 25°C for 120 h.

2.5. Dry weight, lactose measurement and carotenoid estimation

Biomass concentration was measured by the dry weight method and expressed in g1~! [20]. The lactose
content was determined by following the method of Nickerson et al. [21]. Briefly, cheese whey samples
were reacted with methylamine in hot alkaline solution and the resulting red coloured solution was
spectrophotometrically measured at 540 nm. The lactose content in the samples was determined from the
standard curve of lactose and expressed in g 1-1. B-CRX was extracted by a two-stage solvent extraction
method as described by Mitra et al. [1]. Concentration of the extracted 3-CRX was determined from the
standard curve prepared using standard 3-CRX and expressed as mg1~! of culture.

2.6. Application of response surface methodology to optimize [(3-cryptoxanthin and biomass
production by Kocuria marina DAGII

2.6.1. Design of experiments

DESIGN-EXPERT software (v. 8.0.7.1, Stat-Ease, Minneapolis, USA) was used for optimization of 3-CRX
and biomass production by K. marina DAGII. Optimization of the 3-CRX and biomass production was
done by central composite design (CCD). Four independent variables, namely yeast extract (A), peptone
(B), cheese whey (C) and initial pH (D), were evaluated and coded to +1, 0 and —1 levels which
corresponded to high, medium and low values, respectively (electronic supplementary material, table
S1). In addition, the axial points were coded as +2 and —2 (electronic supplementary material, table
S1). The four variables and their respective ranges were chosen based on the literature and preliminary
experimental study. The 3-CRX yield and biomass were modelled as the responses.

2.7. Artificial neural networks modelling

Artificial neural networks (ANNSs) are powerful learning systems that are based on the principles of
the human nervous system [22]. ANN is also known as neural nets, artificial neural system, parallel
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distributed processing system and connectionist system [23]. During the past few decades, ANN has
emerged as an attractive tool for nonlinear multivariate modelling. In this study, a three-layer feed-
forward network with sigmoid hidden neurons and linear output neurons was used to build an ANN
model where the four variables (i.e. yeast extract, peptone, cheese whey and pH) served as input and
the 3-CRX yield and biomass were output. Since the data distribution in CCD experimental design is
statistically uniform in the input domain, it is effectively used in ANN [24]. However for better accuracy,
a higher number dataset is suggested, and thus 200 data points were additionally developed using the
quadratic equation for 3-CRX yield and biomass (electronic supplementary material, equations S1 and
52) [25]. In total, 230 data points were fed to the ANN architecture. The Levenberg-Marquardt back-
propagation algorithm was employed for training the network. The ANN modelling was executed using
MATLAB R2014a (v. 8.3, MathWorks®, USA).

2.8. Kinetic modelling

In this study, unstructured mathematical models for kinetic analysis were developed by taking into
consideration the following assumptions:

(1) There was no oxygen limitation in the culture.
(2) There was no limitation by nitrogen.

2.8.1. Microbial growth

A logistic kinetic model was used to simulate the growth of K. marina DAGII under varying cheese whey
concentrations. Logistic equations are sets of equations that characterize growth in terms of maximum
attainable biomass concentration, which is identical to the ecological concept of carrying capacity [26].
It is an independent model that can adequately describe the growth inhibition, a phenomenon that
frequently occurs in batch culture [27]. The logistic model can be represented by equation (2.1), where
w is the specific growth rate (h~1), X is the biomass concentration (gl_l), Xm is the maximum biomass
concentration (g17!) that can be obtained from a particular fermentation system (corresponding to the
carrying capacity) and (1 — (X/Xm)) represents the unused carrying capacity [26].

dXx X
—=uX|{1——). 2.1
w-x(1-5) e
Integration of the above equation using boundary condition as X(0) = X results in a sigmoidal curve
representing both the exponential and stationary phases by the variation of X as a function of time, .

X — Xoe“t
-1 - (Xo/Xm)(1 —ent)’

2.2)

2.8.2. Lactose consumption kinetics

Cheese whey was used as the substrate for growth and B-CRX production by K. marina DAGII. The
lactose content in cheese whey was determined spectrophotometrically using the method of Nickerson
et al. [21]. Further, the lactose utilization was modelled by logistic mass balance equation, which can be
represented by equation (2.3), where Sy, is lactose concentration (gl’l), Yx/s; (8cell biomass gladosefl) is
the maximum yield coefficient and m¢ (glactose cell biomass _+ h~1) is the maintenance coefficient [28].
dsy, 1 dX
-—— = X. 2.3
dt Yx/s, dt tme 23)
Integration of the equation (2.3) using boundary condition as S (0) =Si at ¢ =0 results in equation
(2.4), where Sy g is the initial lactose concentration.

t
—[SL — Siol = [X15 + mc JO X dt. (2.4)

1
Yx/s

L

Taking into consideration the equation for X (equation (2.2)), equation (2.4) can be represented as:

—[SL — Sl =

E XoXmelt
+ch 02m® dt.  (25)

0 Xm — Xo + Xoett

1 XoXmert XoXme’
Yx/s, | Xm — Xo + Xoett X — Xo + Xoel
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To solve the integral part, temperature T was defined as an exponential function of ut [28] which can
further be differentiated to

dT = pettdt. (2.6)

Hence, the equation (2.5) can be finally written as:

X()Xme’u'l Xo . Xmmc lnXm — X0+ Xoe”t

Sy =510 — +
Yx/s, (Xm — Xo + Xoett) — Yxys, u Xm

2.7)

The values of Yx/s; and mc were estimated from the nonlinear regression of Si. and ¢.

2.8.3. Product formation kinetics

The B-CRX production by K. marina DAGII was described using the Leudeking-Piret kinetics equation
[29]. According to this equation, the rate of product formation is directly and linearly proportional to
growth rate and instantaneous biomass concentration and can be mathematically represented as:

dpP dx

— =a— + X, 2.8

ar ~%ar TP @8)
where « is the growth associated product formation coefficient (exponential phase) and g is the
non-growth associated product formation coefficient (stationary phase). The integrated form can be
represented as:

P t—At dx t—At
J dP =« J dt+ B J xdt. 2.9)
0 0-a¢ dt 0—Af

The term ‘At” was introduced to describe the delay in 3-CRX production with respect to cell growth
[28]. By substituting equation (2.2), equation (2.10) was generated which represents the nonlinear
relationship between the product (P) and time (¢).

P XoXmet=AD  XpXme HA!
Xm — Xo + Xpett=2) X, — Xo + Xge At
X X — Xo + Xoett=Ah Xm — Xo + Xoge #A!
+ Z‘ﬂ {m ( m 0;; 0e “In ( m °X+ o€ ) . (2.10)
m m

2.9. Statistical analysis

All experiments were conducted in triplicate and results were reported as their averaged values.
GraphPad PRrisM® v. 6.07 (GraphPad Software, Inc., USA) was employed in order to estimate the kinetic
parameters from the model equations. The method of least squares was used to minimize the sum of
the squares of the vertical distances between the points and the curve during regression analysis. The
sum of the squares (SS) was calculated by equation (2.11), where y; and f; are the predicted data and
experimental data, respectively, and 1 represents the length of the actual data period.

SS=Y (i —fi)*. (2.11)

i=1

The goodness of estimation was expressed by correlation coefficient R?, variance (o), standard
deviation of residuals (S, .x) and mean squared error (MSE). R? and variance (o) were determined using
MS EXCEL. Sy x (expressed in the same units as y-axis) was calculated from the sum of squares (SS) and
degrees of freedom (d.f., equal to number of data points minus the number of parameters fit) as:

SS
=] 2.12
Syx df. 212)

The MSE value was calculated by dividing the sum of squares by length of actual data period as:

MSE(%) = (55’) x 100. (2.13)
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3. Results and discussion

3.1. Screening of significant factors

The growth medium was supplemented with cheese whey and the effect of each medium component
on B-CRX production was studied by deleting one or more factors. A set of 33 experiments with
different medium composition was designed. Fourfold increase in 3-CRX production (p <0.05) was
observed when glucose and maltose were substituted with cheese whey. Thus, yeast extract, peptone
and cheese whey were selected as the significant contributing factors for CCD design. Additionally, pH
was considered because it is an important parameter determining the growth of microbes.

The optimization of the factors responsible for 3-CRX and biomass production by K. marina DAGII was
performed.

3.1.1. Experimental results and analysis of variance

To examine the relationship between the responses and the four independent factors, a series of
experiments were performed. The number of experiment required for the development of CCD was
defined as:

N =2"+2n+ nc. 3.1)

where N is the total number of experiments, n is the number of factors and nc is the number of
central points [30]. With four factors, CCD consists of 16 factorial design runs, eight axial runs and
six central points. The series of experiments and the corresponding values for the responses are
shown in table 1. A multiple regression analysis was performed using DESIGN-EXPERT and a quadratic
model was suggested for the best fit model of B-CRX (R%=0.9888, RAdjz =0.9783, Rpge? =0.9590,
Adeq. precision =34.403) and biomass production (R?=0.9820, RAd]-2 =0.9801, Rpge? =0.9606, Adeq.
precision =37.344). Higher R? values and Adeq. precision greater than 4 indicate high adequacy of
a model. Thus, in our case, the values justified the model fitting. The results were analysed using
analysis of variance (ANOVA) (table 2). The model F-values, p-values and lack of fit were used as
a tool to evaluate the significance of the models. The F-value of 129.0 and 343.77 for $-CRX and
biomass production, respectively, implied the model was significant. Model p-values (Prob > F) were
significant (<0.0001) whereas the lack of fit was found to be insignificant (p-valueg_crx =0.8213, p-
valuepiomass = 0.2032). To understand the interacting effects, the p-values were further used to check
the significance of the coefficients. A Pareto chart was designed to understand the contribution
of each factor (figure 1). In the Pareto chart, effects have been standardized and arranged in the
order of significance. The lengths of the bars are proportional to the magnitude of the estimated
coefficients of the effects. The vertical line represents the minimum magnitude of the statistically
significant effects of the response with a 95% CI. The coefficient estimates and the corresponding
p-values suggested that individual factors were significant (p <0.05) but yeast extract (A) had the
largest effect, followed by cheese whey (figure 1). in the case of 3-CRX production, the significance
of peptone was more than that of pH. The interactive effect of yeast extract-peptone (AB) was
found to be highest, followed by yeast extract-cheese whey (AC) and peptone—cheese whey (BC).
The other interactive effects were found to be insignificant. All the quadratic terms (A2, B2, C? and
D?) were found to be significant (p <0.0001). The final model equation in terms of coded factors is
given below:

B-CRX yield(mg 171) =16.09 + 2.17A + 1.27B + 1.34C + 0.37D — 0.98AB
— 0.81AC — 0.18AD — 0.67BC — 0.14BD + (1.184 x 107°%%)CD
— 1.84A% — 0.84B% — 0.92C? — 1.53D?, (3.2)

where positive terms signified synergistic effect and negative terms signified antagonistic effect [31].
The contour diagram along with 3D response surface diagrams of the significant interactions are
shown in figure. 2. Figure 2a shows the effect of yeast extract and peptone and their correlation
between each other. When yeast extract and peptone concentrations were kept at minimum levels
(i.e. 5 and 2.5g17, respectively), the B-CRX yield was approximately 9mgl~!. The B-CRX yield
increased to 15mgl~! when the yeast extract concentration increased at fixed peptone concentration
of 2.5g171. However, when the peptone concentration was increased by keeping yeast extract fixed
at 5g171, B-CRX concentration increased to 13mgl~!. This showed that the contribution of yeast
extract was more compared with peptone for 3-CRX production and, thus, justified the variation in
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Table 1. CCD design matrix of independent variables and their corresponding values of responses.

factor1 factor2 factor3 factor 4 response 1 response 2

A: yeast extract B: peptone C: cheese D:initial pH [3-CRX yield biomass
(g7 (glI=" whey (% v/v) (unit) (mgl~") (gI7"

1 10 10 10 1.75 14.8140 3.82

s 5 st sy tuisardissoseioros [

F-value. Probably the levels of amino acids and small peptides present in yeast extract were higher
and they were easily transported and used by the cell for metabolite production [32]. Figure 2b
shows an approximate increase in B-CRX yield from 9 to 13mgl~! when cheese whey concentration
was increased keeping yeast extract concentration fixed at 5g1~'. When both the factors were kept
at their maximum levels, the 3-CRX yield was almost 16 mg 1”1 In figure 2c, it was observed that
at a cheese whey concentration of 15% (v/v), the B-CRX yield increased from approximately 15 to
16.2mg1~! when peptone was varied from 2.5 to 7.5g17!. Even at low concentration of cheese whey
(i.e. 5% v/v) and peptone (2.5g171), the B-CRX yield was considerably higher (approx. 11 mg1~1). This
suggested that the nutritional components of cheese whey enhanced the 3-CRX production by K. marina
DAGIL



Table 2. Analysis of variance for the quadratic model for (3-CRX and biomass.

source sum of squares degrees of freedom mean square F-value p>F
B-CRX yield
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(a) )
A A2
A? D2
D? c?
C B2
B A
AB C
C? AB

Il Dpositive

AC AD
BC AC I negative
D D
AD B
BD BD
cD p=0.05 BC p=0.05
0 5 0 15 20 0 5 10 15 20 25

standardized effect standardized effect

Figure 1. Standardized Pareto chart for 3-CRX (a) and biomass (b).

In the case of biomass production, the interactive effects of yeast extract-peptone (AB), yeast extract—
cheese whey (AC), yeast extract-pH (AD) and cheese whey—-pH (CD) were found to be significant
(figure 1). Similar to 3-CRX production, all the quadratic terms were significant. The final equation for
regression was found to be

biomass = 5.18 + 0.26A + 0.038B + 0.24C + 0.081D
— 0.21AB — 0.14AC — 0.15AD + (1.969 x 1079%)BC — 0.046BD
+0.16CD — 0.51A% — 0.33B? — 0.33C> — 0.48D?. (3.3)

Figure 3 shows the contour plots and the corresponding 3D diagrams for biomass production.
Figure 3a shows an increase in biomass yield from 3.76 to 4.7 g1~ when the yeast extract was varied from
5.0 to 15g 17! at constant peptone concentration of 2.5 g1~ 1. Figure 3b depicted the relationship between
yeast extract and cheese whey and it was clearly evident that biomass production gradually increased
with cheese whey concentration. Figure 3¢,d shows the relationship of yeast extract and cheese whey
with pH, respectively. Both the figures suggested that variation of pH increased the biomass; however,
above pH 7.75 the biomass reduced. Probably alkaline pH slowed the bacterial growth [33].

The electronic supplementary material, figure S1 shows the correlation between the experimental
and predicted values of 3-CRX and biomass yield obtained from the model, respectively. Distribution
of the data points shows adequate agreement between the experimental and predicted values. This
proved that the predicted quadratic model was appropriate to navigate the design space defined by
the CCD. CCD has long been used as an important statistical tool for optimization. For instance in 2007,
cell growth and carotenoid biosynthesis in Xanthophyllomyces dendrorhous was successfully optimized
using CCD. Similarly, Imamoglu et al. [34] statistically evaluated the physical growth parameters of
Dunaliella salina strain EgeMacc-024 during batch production of chlorophyll a. In 2015, hydrolysis of
cassava fibrous waste (a hugely produced solid waste during processing of cassava tubers in sago
industries in India) to obtain maximum glucose yield was done using CCD and a quadratic polynomial
equation predicting the optimal points was developed [35]. In another study, CCD was employed for
enhanced co-production of xylanase and lichenase by Bacillus subtilis D3d using different agro-industrial
residues [36].

3.1.2. Optimization and verification study

The optimum values of the four variables for 3-CRX and biomass production were obtained by
numerical optimization using DESIGN-EXPERT 8.0.7.1. 3-CRX yield and biomass were maximized by
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Figure 2. Contour plots and their corresponding 3D diagrams for 3-CRX yield.

keeping the four independent factors ‘in range’. The maximum production was obtained at 11.47 g1~
yeast extract, 5.29g1~! peptone, 12.00% (v/v) cheese whey and pH 7.83. The predicted values of
B-CRX (16.95 mg 171y and biomass (5.23 g 11 yield were further verified by conducting three additional
experiments at the obtained optimum condition. The average experimental values were found to be
17.14mgl1~! and 5.35g17!, respectively, which were in good agreement with the predicted values and,
thus, validated the model obtained by CCD. In a similar study by Khodaiyan et al. [37], maximum
canthaxanthin yield of 2.87140.076 mg 171 was obtained at whey lactose concentration of 55.54g1_1,
yeast extract concentration of 7.36 g1~ and pH of 7.66.
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Figure 3. Contour plots and their corresponding 3D diagrams for biomass.

3.2. Prediction of responses with artificial neural network

The electronic supplementary material, figure S2 shows the ANN model constructed with
input layer, hidden layer and output layer. The input layer consisted of four neurons, i.e.
concentrations of yeast extract, peptone, cheese whey and pH. The output layer consisted of
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two neurons, i.e. B-CRX yield and biomass. In a feed-forward back-propagation algorithm, input
information is transmitted to the output layer through neurons of a hidden layer. To determine
the number of neurons in the hidden layer, MSE and R? of different neural networks were
evaluated on a trial and error basis (figure 4). A network consisting of a hidden layer with
nine neurons gave the best result. The ANN model was trained with 160 samples, validated
with 35 samples and the accuracy of the model and prediction were further tested with
35 samples.

The Levenberg-Marquardt algorithm used in the present study is a standard iterative technique that
localizes local minimum of a multivariate function by expressing sum of squares of several nonlinear,
real-valued functions in a short time [38]. Using this algorithm training automatically stops when
generalization stops improving, which is indicated by an increase in the MSE of the validation samples.
From the electronic supplementary material, figure S3, it was observed that best validation was achieved
at epoch 7. The correlations between the experimental and the predicted results are given in figure 5. As
indicated by the R? values, ANN served as a reliable prediction model in our study. Moreover, the MSE
for the entire dataset was significantly low, as depicted by the error histogram (electronic supplementary
material, figure 54), which suggested that the ANN model possessed good approximation characteristics.
The ANN predicted yield of 3-CRX and biomass was found to be 16.99 mg 1! and 5.33 g1~!, respectively.
It was evident from the values of R? and predicted yield that even though both the models (RSM as
well as ANN) fitted well to the experimental design, ANN offered better predictive and approximation
accuracy. The better predictive accuracy of ANN can be attributed to the fact that it can universally
approximate the nonlinearity of any system and additionally it has the ability to calculate multiple
responses in a single run. By contrast, RSM can be implemented only upto second-order polynomial and
it must be run multiple times for multiple responses (run number equal to number of responses to be
predicted) [39]. In 2014, Rafigh et al. [40] successfully modelled the curdlan production from Paenibacillus
polymyxa using RSM and ANN and suggested that ANN reported more stable responses. In a study
by Azad et al. [41], the ANN model showed distinct superiority compared with the RSM model during
optimization of process parameters for adsorption of ternary dyes by nickel doped ferric oxyhydroxide
FeO(OH) nanowires on activated carbon. Recently, a feed-forward back-propagation algorithm was
effectively implemented to develop an ANN model for improved e-polylysine production by the marine
bacterium B. licheniformis [25].

From this entire work, it was found that substitution of the previous carbon source (i.e. glucose
and maltose) with the help of cheese whey gave fourfold increase in B-CRX production and 1.7-
fold increase in biomass. Finally, validation of RSM statistical data with the help of the ANN
method resulted into 4.67- and 2.34-fold increase in 3-CRX yield and biomass, respectively. Probably
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Figure 5. Experimental result versus ANN predicted output.

cheese whey utilization increases the acetyl-CoA pool in the bacterium which eventually increases
the production of isopentenyl pyrophosphate (IPP) and dimethylallyl diphosphate (DMADP) through
the mevalonic acid pathway. As IPP and DMADP are the key precursors of carotenogenesis,
an increased concentration of both the precursors is leading to increased PB-CRX production by
K. marina DAGIL.

3.3. Kinetic modelling of Kocuria marina DAGII

Kinetic modelling helps in accessing the interaction between microbial growth and the surrounding
environment. It helps in predicting the behaviour of microbial processes under different environmental
conditions. Most importantly, the quantitative knowledge of kinetic parameters helps in analysis,
optimization, design and operation of biological processes at large scale conditions [42]. Thus,
development of a mathematical model is an important step for better understanding of microbial
kinetics. Structured mathematical models involve intracellular metabolism of the biosystem, which
makes the process complicated. On the other hand, unstructured models consider only biomass as its
principal variable which makes its implementation simple and robust [43].

3.3.1. Microbial growth kinetics

Kocuria marina DAGII showed a classical growth trend in the presence of cheese whey as substrate.
Irrespective of the cheese whey concentration, the K. marina DAGII cells entered the exponential phase
after a lag phase of 4h. During lag phase, the physiologically active bacterial cells adapted to the new
experimental environment but no apparent growth was observed. Once the acclimatized cells entered the
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Figure 6. Fitting of the experimental data to the logistic model describing cell growth over time at 3.0-21.0% (v/v) of initial cheese whey
concentration.

exponential phase the biomass increased at a constant rate; however, the growth slowed down during
its transition to stationary phase at 38—48 h. In our previous study, it was observed that in the presence of
glucose and maltose as carbon source, K. marina DAGII achieved stationary phase at 25h [1]. However,
substitution of the carbon source with cheese whey delayed the onset of nutrient depletion by 24h and,
thus, the exponential phase continued for a longer time period. A logistic equation was employed to
describe the growth kinetics of the K. marina DAGII and it was observed that the simulated growth profile
was in good agreement with the experimental growth curve for all the cheese whey concentrations, as
indicated in figure 6. The kinetic parameters were obtained by fitting the experimental data into the
logistic equations (table 3). The low values of statistical parameters such as sum of squares (SS), standard
deviation of residuals (Sy,x) and MSE signified the good fit of the model. Additionally, the high R?
values (>0.90) suggested that the logistic model successfully described the sigmoidal growth pattern
of the bacterium taking into consideration the growth inhibition that took place in the stationary phase.
According to a number of researchers, logistic equations have been successful in predicting sigmoidal
growth patterns of different bacteria under a batch mode of operations [44]. However, it was noteworthy
that the specific growth rate (1) and maximum biomass yield (Xm) of K. marina DAGII increased when
the cheese whey concentration was increased from 3 to 12% (v/v), but after 12% (v/v) a gradual
decrease was noted (table 3). This indicated that above 12% (v/v), cheese whey played an inhibitory
role during the growth of K. marina DAGII and thus necessitated the implementation of a substrate
inhibition model for estimation of inhibition parameters. Cell growth during batch production of lutein
by heterotrophic Chlorella decreased as the glucose concentration was increased from 10 to 60 g 1-1 [45].
Similarly, carotenoid production by X. dendrorhous using Yucca fillifera date juice as substrate was studied
by Luna-Flores et al. [46], and it was found that cell growth decreased when substrate concentration was
increased from 20 to 40 g1~. In 2016, Kim et al. [47] reported that specific growth rate of Klebsiella oxytoca
during 2,3-butanediol production increased with increase in glucose concentration up to 32gl~! and
thereafter gradually decreased.

3.3.2. Substrate consumption

Substrate utilization is an important factor governing cell growth and B-CRX production. The lactose
utilization results were incorporated into the logistic mass balance equation and the kinetic parameters
were calculated as shown in table 3. The Sy, Yx/,s; and mc at the varying cheese whey concentrations
were calculated. The values of R?, SS, Sy.x, MSE% depicted that the fitting results were satisfactory
(table 3). Moreover, the graphical representation of the experimental and predicted lactose consumption
clearly justified the fitness of the experimental data into the logistic mass balance model (figure 7). The
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Table 3. Kinetic parameter for growth at different cheese whey concentrations.

parameter estimation cheese whey concentration (% v/v)

microbial growth 3 6
Xo(gl™) 0.0300 0.0320 0.0290 0.0310 0.0330 0.0260

values of Yx/s, exhibited an increasing trend when the cheese whey concentration was increased from
3 to 12% (v/v). After 12% (v/v), the Yx/s, decreased gradually. It could be inferred that after a certain
concentration of lactose, the bacterium was unable to use the excess substrate. In a similar study by
Goswami et al. [48], it was reported that the yield coefficient decreased when the glucose concentration
was increased beyond 15g1~! during batch production of canthaxanthin by Dietzia maris NITD. The
maintenance coefficient (mc) varied slightly with cheese whey concentration. According to Shuler &
Kargi [26], the maintenance coefficient (1) is the parameter that describes the specific rate of substrate
uptake for cellular maintenance and can be represented as

dS/dt .

mc = X (3.4)

The maintenance coefficient is considered as a measure for substrate utilization for non-growth related
activities such as energy required by the cell for repairing damaged cellular components, transferring
nutrients and products in and out of the cell, for mobility and for adjusting osmolarity of the cell
interior. Thus, it is likely that yield coefficient values will depend on the maintenance coefficient.
Depending upon the environmental conditions of the cell, the values of mc might vary from 0.02 to
4.0 glactose gbiomass_l h~1 [49]. During the kinetic modelling study of hyaluronic acid production by
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Figure7. Fitting of the experimental data to the model describing lactose consumption with time at varying cheese whey concentrations.

Streptococcus zooepidemicus, ‘mc’ ranged from 0.04 to 1.56 (Zglucose Scell biomass . h~!) with variation in
glucose concentration [28]. The ‘mc’ value was found to be 0.0699 g g_l d-! during ajmalicine production
from hairy roots of Catharanthus roseus using sucrose as the substrate [50]. Thus, the above discussion
suggests that the logistic mass balance equations adequately describe the lactose consumption by K.
marina DAGII during 3-CRX production.

3.3.3. B-Cryptoxanthin production

During the fermentation, 3-CRX production increased with time and the maximum concentration was
obtained at 120h of incubation. The corresponding 3-CRX concentration at 3, 6, 9, 12, 15, 18 and 21%
(v/v) of cheese whey was found to be 9.8, 13.5, 15.4, 17.14, 16.23, 15.84, 14.45mg 11, respectively.
The experimental data were fitted to the Luedeking—Piret model and the values of «, g and At were
determined from the resulting nonlinear regression (table 3). The high R? values indicated that the
experimental data fitted well into the model. The observation was further justified by the low values
of SS, Sy.x and MSE%. Moreover, the predicted data was in accordance with the experimental data as
depicted in figure 8. The variation in o and S values suggested that the maximum yield was obtained
at 12% (v/v) of cheese whey. Cheese whey concentrations beyond 12% (v/v) inhibited the B-CRX
production (table 3). The decrease could be due to catabolic repression and reduced specific growth
rate at higher concentrations of cheese whey [47]. During the fermentation process, the cells serve as
the factory for metabolite production, probably; thus growth inhibition at higher substrate concentration
results in the reduced product formation. The At was found to be in the range of 2.0-2.6 h which indicated
that the pigment production was mostly growth dependent and also justified the higher magnitude
of o compared to S. In the study by Don & Shoparwe [28], production kinetics showed that lag time
between the hyaluronic acid production and cell growth of S. zooepidemicus varied from 0.49 to 2.16 h. The
Luedeking—Piret model was also successfully implemented by Gutiérrez-Arnillas ef al. [51] to elucidate
the metabolic characteristics of lipolytic enzymes synthesized by halophilic microorganisms. The study
further reported the product to be a secondary metabolite based on the values of « and 8.

3.3.4. Model development for substrate inhibition

Based on the results of previous sections, it was observed that higher concentrations of cheese whey
inhibited the cell growth of K. marina DAGII. It was even plausible that higher product concentration
was responsible for the decreased cell growth. However, in the present study, the specific growth rate
remained fairly constant with respect to time during the exponential phase of the bacterial growth which
indicated that the inhibition occurred due to the substrate.
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When the p values (obtained from the logistic model) were fitted to the Monod model, it failed to
validate the experimental data. Thus, other unstructured kinetic models were used and the data were
validated (electronic supplementary material, table S2). The pn values at all the varying cheese whey
concentrations were fitted to the models and the biokinetic parameters such as pumax (maximum specific
growth rate), Ks (Monod half saturation constant), K; (substrate inhibition concentration), Sy, (maximum
substrate inhibition constant above which cells cease to grow), and Kj, Ky, n and m (constants correlating
between u and substrate) were evaluated and the results shown in the electronic supplementary material,
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table S3. The graphical representation of the simulated and the experimental data is shown in figure 9.
The fitness of the models was quantified by evaluating R?, o, SS, Sy.x and MSE%. Based on these
statistical analyses, it was observed that the highest R? value and lowest o, SS, Sy.x and MSE% values
were obtained in the case of the Han and Levenspiel model. The Han and Levenspiel model is a
generalized form of Monod kinetics which is based on the assumption that there exists a critical substrate
concentration above which cells cease to grow, and the constants of the Monod equation are functions of
this limiting inhibitor concentration [52]. The model equation describing the cell growth with cheese
whey as substrate can be represented as given in equation (3.5), where S is the initial cheese whey

concentration:
g 05576 S
= 0.2385<1 - —) :
2740 S +22.06(1 — (S/27.40))3868

(3.5)

4. Conclusion

Optimization and kinetic modelling of a fermentation process have been successfully described in the
present study. The statistical tools RSM and ANN were used for elucidating the optimal condition for
B-CRX production by K. marina DAGII using cheese whey as the substrate. Significantly high 3-CRX
yield was achieved when carbon sources were substituted with 12% (v/v) cheese whey. The results
suggested that both RSM and ANN showed stable predictive responses but ANN was more accurate
for data fitting and estimation capabilities. The kinetic models for cell growth, substrate consumption
and product formation were analysed. Logistic equations adequately described the growth profile of
K. marina DAGII under varying cheese whey concentrations and the substrate consumption was well
defined by logistic mass balance equation. The product formation coefficients were evaluated using
the Luedeking—Piret model with high accuracy. With reference to the substrate inhibition, the Han and
Levenspiel model fitted best with the experimental data. In our opinion, utilization of cheese whey for
production of valuable products such as carotenoids is an optimistic approach for value addition and a
cleaner environment.
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