GUIDA ALLE COSTELLAZIONI

REGIONI CELESTI SCELTE
È permesso riprodurre, distribuire, comunicare al pubblico, esporre in pubblico, rappresentare, eseguire e recitare quest'opera alle seguenti condizioni:

- attribuendo la paternità dell'opera nei modi indicati dall'autore o da chi ha concesso l'opera in licenza e in modo tale da non suggerire che essi avallino te o il modo in cui tu usi l'opera;
- in caso di alterazioni, trasformazioni o aggiunte sull'opera originale, ridistribuendo l'opera derivata solo sotto una licenza simile o compatibile.

Prendendo atto che:
- Rinuncia — È possibile rinunciare a qualunque delle condizioni sopra descritte se ottieni l'autorizzazione dal detentore dei diritti.
- Pubblico Dominio — Nel caso in cui l'opera o qualunque delle sue componenti siano nel pubblico dominio secondo la legge vigente, tale condizione non è in alcun modo modificata dalla licenza.
- Altri Diritti — La licenza non ha effetto in nessun modo sui seguenti diritti:
 - Le eccezioni, libere utilizzazioni e le altre utilizzazioni consentite dalla legge sul diritto d'autore;
 - I diritti morali dell'autore;
 - Diritti che altre persone possono avere sia sull'opera stessa che su come l'opera viene utilizzata, come il diritto all'immagine o alla tutela dei dati personali.

Nota — Ogni volta che usi o distribuisci quest'opera, devi farlo secondo i termini di questa licenza, che va comunicata con chiarezza.

Copyright testi

Parte dei testi della presente guida sono tratti da it.wikipedia.org, dove sono stati in massima parte pubblicati nel periodo 2007-2014 dall’autore stesso di questa guida (consultare la cronologia delle voci relative alle stelle/costellazioni/oggetti per una lista esaustiva dei contributori alle voci); sono state inoltre aggiunte alcune informazioni e modificati alcuni testi per adattarli alla presente opera. La licenza d’uso dei testi, sia di Wikipedia che di quest’opera, è CC-BY-SA 4.0.

Copyright immagini

Le immagini utilizzate in questo libro sono tratte da Wikimedia Commons, dove sono ospitate nell’anno 2019. Per le rispettive licenze, valgono quelle scelte dagli autori (NASA, enti di ricerca, privati) e ricadono tutte nei seguenti casi:

- Pubblico Dominio
- CC0
- CC-BY
- CC-BY-SA

Consultare le categorie delle immagini astronomiche su Wikimedia Commons per individuare gli autori delle singole immagini.

Le carte delle costellazioni, di dettaglio e mensili sono opera propria dell’autore della presente guida e sono elaborate con l’ausilio di programmi di grafica, lavorando sulla base di immagini prodotte da software di simulazione astronomica (Perseus, StellaRium) che rilasciano i diritti all’autore delle immagini; queste carte sono qui rilasciate sotto la licenza CC-BY-SA 4.0.

Autore: Roberto Mura.

Versione: 1.4
SOMMARIO

Introduzione ... 1
Le regioni di formazione stellare .. 3
La struttura a grande scala dell’Universo .. 23

Regioni celesti scelte .. 37

- Il polo nord celeste ... 41
 Gruppi di galassie nel Drago .. 43
 Nubi e associazioni in Cefeo .. 53
 L’Arco di Cassiopea .. 65

- Fra Orsa Maggiore e Leone ... 81
 Galassie nell’Orsa Maggiore .. 83
 Regione della Galassia di Bode .. 99
 Gruppi di galassie nel Leone .. 107

- Il Triangolo Estivo e dintorni .. 119
 Il cuore del Cigno ... 121

- Da Pegaso a Perseo .. 137
 Ammassi di galassie fra Andromeda e Perseo .. 139
 Sul Braccio di Perseo ... 151

- Auriga, Orione e il Triangolo Invernale ... 163
 Il Complesso di Orione .. 165
 Gruppi stellari nell’Unicorno .. 179

- Arturo, Spica e il Polo Galattico Nord .. 193
 Galassie nella Chioma .. 195
 Attorno all’Ammasso della Vergine .. 205
 Galassie sul lato orientale della Vergine .. 227
 La Vergine meridionale ... 235

- Verso il centro della Via Lattea ... 243
 La Testa dello Scorpione ... 245
 Lo Scorpione meridionale ... 253
 Davanti al Centro Galattico ... 265

- Aquario, Balena e il Polo Galattico Sud ... 279
 Galassie fra la Gru e il Pesce Australe .. 281
 Gruppi di galassie fra Balena e Pesci .. 289

- Eridano e i dintorni .. 297
 Le galassie della Fornace .. 299

- Lungo il dorso dell’Idra ... 313
 Galassie fra l’Idra e la Macchina Pneumatica .. 315

- La regione del Centauro .. 327
 Gruppi di galassie nel Centauro .. 327
 Fra le zampe del Centauro ... 337

- La Nave Argo e dintorni .. 351
 La Poppa settentrionale .. 353
 L’Arco della Carena .. 369

- Il polo sud celeste ... 389
 Gruppi di galassie nel Pavone .. 391
 Le Nubi di Magellano ... 399

- Curiosità galattiche .. 415

Carte di dettaglio dei principali ammassi .. 431
Bibliografia .. 441
INTRODUZIONE

In questo corposo supplemento vengono presentate 28 regioni di cielo scelte per la loro ricchezza di oggetti interessanti, oppure osservabili anche con la maggior parte degli strumenti in mano agli appassionati.

Il presente lavoro è pensato infatti per accompagnare l’evoluzione dell’appassionato da osservatore o astrofotografo occasionale a osservatore o astrofotografo meticoloso, che inizia ad avere una piena consapevolezza delle grandi strutture interne alla Via Lattea, oppure a grande scala dell’universo osservabile.

Questo supplemento non ha la pretesa di presentare descrizioni approfondite dell'esperienza visuale dei singoli oggetti attraverso i vari strumenti o di descrivere in grande dettaglio ogni oggetto trattato, ma di fornire spunti di osservazione basati sulla consapevolezza della disposizione reale di oggetti e strutture nella Via Lattea o nello spazio esterno.

Per raggiungere questo scopo, assieme all’indicazione degli oggetti stessi, vengono date informazioni sull’ambiente galattico di riferimento, per gli ammassi stellari e le nebulose, mentre per le galassie è presentata una descrizione basata sulla loro appartenenza a gruppi, ammassi o superammassi.

La parte iniziale di quest’opera contiene informazioni sulla teoria che è utile conoscere nel momento in cui si intenda iniziare un approccio più approfondito. Non vengono fornite accurate spiegazioni sulla chimica delle stelle o sulle dinamiche che governano l’Universo e la sua nascita ed evoluzione, ma delle informazioni che servono per costruire una sorta di mappa mentale abbozzata di come sia fatto realmente lo spazio che ci circonda.

La prima sezione è dedicata alla comprensione delle dinamiche di formazione stellare a catena, dal collasso di una nube molecolare fino all’impatto che un’esplosione di supernova può avere sull’ambiente circostante e sui futuri eventi di formazione stellare. Diverse mappe aiutano a capire quanto queste strutture influenzino anche l’osservazione ad occhio nudo della Via Lattea.

La seconda sezione è invece dedicata alla comprensione delle strutture a grande scala, dai gruppi di galassie ai giganteschi filamenti cosmici. Anche qui diverse mappe aiutano a focalizzare il contesto in cui si trova la Via Lattea nello spazio profondo.

La parte centrale dell’opera è la più importante e si focalizza sugli oggetti celesti. Vengono presentate le descrizioni di 28 regioni della volta celeste particolarmente ricche, secondo un ordine che ricalca il medesimo presentato nell’opera principale Guida alle costellazioni, compresi i margini colorati in base ai settori celesti già individuati e descritti. Di queste regioni, 14 si trovano nell’emisfero boreale e 14 nell’emisfero australe; 12 sono dedicate a regioni interne alla Via Lattea e 16 sono invece incentrate su oggetti extragalattici.

Oltre alle centinaia di nuovi oggetti, nelle sezioni verranno anche ripresentate le descrizioni di oggetti già trattati nell’opera principale, qualora fossero presenti nelle regioni in oggetto; questo per facilitare la consultazione e non dover ricorrere alla lettura dell’opera principale per recuperarne le descrizioni.

Nelle descrizioni, oltre alle carte generiche della regione in oggetto, vengono anche fornite ulteriori carte di dettaglio di aree ed oggetti particolarmente interessanti o che richiedono una focalizzazione ulteriore.

È da notare che le descrizioni fornite in questo supplemento si riferiscono a condizioni osservative di alta qualità, ossia senza Luna, con scarsa umidità e soprattutto il più possibile lontano da fonti di inquinamento luminoso; come si è infatti già visto, la ricerca di un cielo di aperta campagna o meglio ancora di aree naturali distanti dalle città è di fondamentale importanza per poter sfruttare le potenzialità osservative dei propri strumenti.

La parte finale è invece dedicata ad alcuni oggetti della Via Lattea o temi definiti come curiosi, il cui interesse risiede nella loro importanza o unicità, oppure nello spunto che possono offrire per fare alcune riflessioni.

Sono infine presentate alcune carte di dettaglio di 6 fra gli ammassi aperti più luminosi e di facile osservazione della voltastellata.
L’ESPERIENZA OSSERVATIVA

Rispetto all’opera principale, si potrà notare che in questo supplemento per molti oggetti, compresi alcuni già descritti, ne verrà indicata la possibile osservabilità anche con telescopi più piccoli: oggetti di cui si indicava la visibilità con strumenti da 150mm, qua possono essere indicati come osservabili già con telescopi da 120mm.

Perché questa differenza?

Questa differenza nasce dal fatto che con l’incremento dell’esperienza osservativa, lentamente matura un processo di consapevolezza diverso nell’osservatore: egli impara cioè, non solo ad osservare ma soprattutto cosa e come farlo.

Cosa - per cosa non si intende quale oggetto, ossia uno specifico ammasso o una specifica galassia, ma di che natura è l’oggetto osservato. Se infatti quando si è alle prime armi può essere più difficile apprezzare l’aspetto di un oggetto, con la consapevolezza che un ammasso staglie può essere osservato anche senza arrivare a una piena risoluzione oppure che una galassia si rivela anche senza mostrare i suoi bracci di spirale, si impara a riconoscere queste tipologie di oggetti in modo più naturale e senza generare alcun tipo di aspettativa.

Come - con l’uso delle tecniche osservative più comunii, si sviluppa una maggiore sensibilità alla luce; l’esperienza viene anche in aiuto in quanto si conosce già che aspetto può mostrare un ammasso o una galassia sotto varie condizioni osservative. Il risultato è che col tempo si impara a individuare e a riconoscere un oggetto debole anche con l’ausilio di strumenti di diametro minore di quelli normalmente utilizzati; oppure, viceversa, si impara a vedere e a riconoscere oggetti laddove all’inizio della propria esperienza osservativa non si notava altro che un campo stagile o il buio del cosmo profondo.

Un appassionato di lungo corso è infatti in grado di notare una debole galassia anche con uno strumento da 100mm, laddove un neofita potrebbe avere delle difficoltà a notarla anche con telescopi da 120mm o persino da 150mm. Questo fa parte della naturale evoluzione dell’astrofilo e può richiedere un tempo variabile a seconda diversi fattori: alcuni sono oggettivi e sono legati, come visto, alla quantità e alla qualità dell’esperienza; altri sono invece soggettivi, come la sensibilità personale alla luce, e l’età (con l’avanzare dell’età infatti si tende a perdere questa sensibilità).

Ciò nonostante, non di rado accade che appassionati di lungo corso e in età avanzata siano in grado di vedere oggetti deboli anche laddove una persona giovane non ci riesca: in buona sostanza l’esperienza osservativa è anche in grado di alleggerire alcuni limiti soggettivi.

LA VISIONE DISTOLTA

La visione distolta è una tecnica di osservazione fondamentale nell’osservazione amatoriale, perché consente di guadagnare un buon margine di luminosità, pari anche a una magnitudine; se si vuole osservare un oggetto che appare poco luminoso, non lo si deve guardare direttamente, ma si deve indirizzare lo sguardo lateralmente, mentre si continua a concentrare l’attenzione sull’oggetto da osservare. Questa tecnica è basata sul fatto che la parte laterale dell’occhio è più sensibile alla luce della parte centrale, grazie alla presenza di particolari cellule chiamate bastoncelli, assenti al centro dell’occhio.

Nell’immagine sopra è mostrato il campo visivo dell’essere umano: in rosso la visione centrale e paracentrale, in azzurro la medio-periferica e in verde la periferica lontana; nella zona verde è difficile inquadrare gli oggetti in dettaglio, mentre è possibile farlo ancora nella zona celeste.

Un appassionato di lungo corso è infatti in grado di notare una debole galassia anche con uno strumento da 100mm, laddove un neofita potrebbe avere delle difficoltà a notarla anche con telescopi da 120mm o persino da 150mm. Questo fa parte della naturale evoluzione dell’astrofilo e può richiedere un tempo variabile a seconda diversi fattori: alcuni sono oggettivi e sono legati, come visto, alla quantità e alla qualità dell’esperienza; altri sono invece soggettivi, come la sensibilità personale alla luce, e l’età (con l’avanzare dell’età infatti si tende a perdere questa sensibilità).

Ciò nonostante, non di rado accade che appassionati di lungo corso e in età avanzata siano in grado di vedere oggetti deboli anche laddove una persona giovane non ci riesca: in buona sostanza l’esperienza osservativa è anche in grado di alleggerire alcuni limiti soggettivi.

Resta fermo il fatto che, ancora una volta, per poter fare osservazioni proficue di oggetti deboli e sfuggenti sia indispensabile un cielo molto buio. Per osservazioni da un cielo suburbano o rurale si può fare riferimento agli oggetti indicati nell’opera principale, che sono comunque molto numerosi; per sfruttare bene questo supplemento occorre invece un cielo di qualità.
LE REGIONI
DI
FORMAZIONE STELLARE
PREMESSA - LE COORDINATE GALATTICHE

Quando si descrivono gli oggetti della Via Lattea, gli scienziati fanno spesso ricorso al sistema delle coordinate galattiche.

Il sistema di coordinate galattiche è un sistema di coordinate celesti centrato sul Sole e allineato col centro della Via Lattea. L’equatore galattico è così allineato con il piano galattico. Similmente alle coordinate geografiche, le coordinate galattiche si basano sulla longitudine e sulla latitudine.

L’Unione Astronomica Internazionale (IAU) definì questo sistema riferendosi alle coordinate equatoriali nel 1958. Il polo nord galattico è definito alle coordinate celesti 12h49m : e +27,4° : (B1950), mentre lo zero di longitudine è un grande semicerchio che si origina da questo punto. La **longitudine** aumenta nella stessa direzione dell’ascensione retta e nel sistema di coordinate galattiche è indicato col la lettera l. La **latitudine galattica** è positiva verso il polo nord galattico, mentre è negativa verso il polo sud galattico; l’equatore galattico ha latitudine 0. Nel sistema la latitudine si indica con b.

Il sistema equivalente riferito a J2000 ha il polo nord galattico a 12h51m26,282s , +27°07′42,01″ (J2000), in direzione della Chioma di Berenice, e lo 0 di longitudine all’angolo di posizione di 122,932°. Il polo sud ricade invece nello Scultore.

Il punto del cielo in cui sia latitudine che longitudine sono pari a 0 è 17h45m37,224s, -28°56′10,23″ (J2000), leggermente spostato rispetto alla radiosorgente astromonica Sagittarius A, il miglior indicatore del centro galattico. Sagittarius A* si trova alle coordinate celesti 17h45m40,04s, -29°00′28,1″ (J2000), o alle coordinate galattiche $l = 359°56′39,4″$ e $b = -0°2′46,2″$.

Il sistema delle coordinate galattiche sta alla base della suddivisione del piano galattico in quattro quadranti, dove il grado 0 corrisponde al centro della Via Lattea e il grado 180 corrisponde all’Anticentro galattico, ossia la direzione opposta al centro della nostra galassia.

Il **primo quadrante** è compreso fra 0° e 90° e comprende la Via Lattea fra le costellazioni del Sagittario e del Cigno; indicativamente il primo quadrante è quello che si osserva guardando il cielo verso sud durante le notti estive.

Il **secondo quadrante** è compreso fra 90° e 180° e comprende la Via Lattea fra le costellazioni dell’Auriga e dell’Auriga; indicativamente corrisponde al tratto che si osserva guardando il cielo verso nord durante le notti autunnali.

Il **terzo quadrante** è compreso fra 180° e 270° e comprende la Via Lattea fra le costellazioni del Toro e delle Vele; indicativamente corrisponde al tratto che si osserva guardando il cielo verso sud durante le notti invernali.

Il **quarto quadrante** è compreso fra 270° e 0° e comprende la Via Lattea fra le costellazioni della Carena e dello Scorpione; indicativamente corrisponde al tratto invisibile alle latitudini medie boreali.

Questa suddivisione è spesso utilizzata dagli astronomi per la descrizione delle grandi strutture galattiche e delle regioni di formazione stellare.

Questo sistema di coordinate è chiaramente di tipo **elio-centrico**, ossia è centrato sulla nostra prospettiva di osservazione dal Sistema Solare.
<table>
<thead>
<tr>
<th>Classe stellare</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>Stelle di Wolf-Rayet. Esistono vari sottotipi: WN (WNE, WNL), WN/C, WC (WCE, WCL, WO)</td>
</tr>
<tr>
<td>O</td>
<td>Stelle blu e molto massicce</td>
</tr>
<tr>
<td>B</td>
<td>Stelle bianco-azzurre, massicce</td>
</tr>
<tr>
<td>A</td>
<td>Stelle bianche, medio-grandi</td>
</tr>
<tr>
<td>F</td>
<td>Stelle bianco-gialle, medio-piccole</td>
</tr>
<tr>
<td>G</td>
<td>Stelle gialle, piccole</td>
</tr>
<tr>
<td>K</td>
<td>Stelle arancioni, molto piccole</td>
</tr>
<tr>
<td>M</td>
<td>Stelle rosse, nane</td>
</tr>
<tr>
<td>L, T, Y</td>
<td>Nane brune e subnane brune</td>
</tr>
<tr>
<td>C, S</td>
<td>Stelle di carbonio</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ordine di grandezza</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Stelle ipergiganti</td>
</tr>
<tr>
<td>I (Ia-0, Ia, Iab, Ib)</td>
<td>Stelle supergiganti</td>
</tr>
<tr>
<td>II (II1, IIa, IIb)</td>
<td>Stelle giganti brillanti</td>
</tr>
<tr>
<td>III (IIia, IIab, IIib)</td>
<td>Stelle giganti</td>
</tr>
<tr>
<td>IV (IVa, IVb)</td>
<td>Stelle subgiganti</td>
</tr>
<tr>
<td>V (V a, Vab, Vb, Vz)</td>
<td>Stelle di sequenza principale (nane)</td>
</tr>
<tr>
<td>VI (sd, esd)</td>
<td>Stelle subnane</td>
</tr>
<tr>
<td>wD / WD (VII)</td>
<td>Nane banche</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sigle peculiari</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>:</td>
<td>Classe spettrale incerta e/o mista</td>
</tr>
<tr>
<td>...</td>
<td>Esistono peculiarità spettrali non riportate</td>
</tr>
<tr>
<td>!</td>
<td>Peculiarità speciali</td>
</tr>
<tr>
<td>comp</td>
<td>Spettro composito</td>
</tr>
<tr>
<td>e</td>
<td>Linee di emissione presenti</td>
</tr>
<tr>
<td>[e]</td>
<td>Linee di emissioni “proibite” presenti</td>
</tr>
<tr>
<td>er</td>
<td>Il centro delle linee di emissione è più debole dei margini</td>
</tr>
<tr>
<td>ep</td>
<td>Linee di emissione peculiari</td>
</tr>
<tr>
<td>eq</td>
<td>Linee di emissione con profilo P Cygni</td>
</tr>
<tr>
<td>ev</td>
<td>Linee di emissione che esibiscono variabilità</td>
</tr>
<tr>
<td>f, f*, f+, (f), ((f))</td>
<td>Linee di emissione N III e He II</td>
</tr>
<tr>
<td>h / ha</td>
<td>Stella di Wolf-Rayet con linee di emissione dell'idrogeno / Stella di Wolf-Rayet con linee di emissione e di assorbimento dell'idrogeno</td>
</tr>
<tr>
<td>He wk</td>
<td>Linee dell'elio deboli</td>
</tr>
<tr>
<td>k</td>
<td>Spettro con linee di assorbimento dovute al mezzo interstelare</td>
</tr>
<tr>
<td>m</td>
<td>Forti linee dei metalli</td>
</tr>
<tr>
<td>n</td>
<td>Linee di assorbimento allargate dovute alla rotazione della stella</td>
</tr>
<tr>
<td>nn</td>
<td>Linee molto allargate per l’alta velocità di rotazione della stella</td>
</tr>
<tr>
<td>neb</td>
<td>Lo spettro della stella si sovrappone con quello di una nebulosa</td>
</tr>
<tr>
<td>p</td>
<td>Stella peculiare.</td>
</tr>
<tr>
<td>pq</td>
<td>Spettro peculiare, simile a quello delle novae</td>
</tr>
<tr>
<td>q</td>
<td>Linee spostate verso il rosso e il blu</td>
</tr>
<tr>
<td>s / ss</td>
<td>Linee di assorbimento assottigliate / Linee di assorbimento molto assottigliate</td>
</tr>
<tr>
<td>sh</td>
<td>Linee molto amplify, come nelle variabili y Cassiopeiae</td>
</tr>
<tr>
<td>v</td>
<td>(o anche “var”) Stella variabile</td>
</tr>
<tr>
<td>w</td>
<td>(o anche “wl” e “wk”) Linee deboli</td>
</tr>
</tbody>
</table>
La Via Lattea così come ci appare nella notte stellata è profondamente modellata dalle dinamiche di formazione stellare: nel corso di milioni di anni infatti banchi di nubi possono aggregarsi e disgregarsi, come possono collassare e dare origine a nuove stelle, le quali col tempo disperdono i gas residui col loro vento stellare o esplodendo come supernovae. L’onda d’urto causata da un’esplosione di supernova può a sua volta influenzare le nubi vicine, facendole disgregare o collassare in nuove stelle, in un ciclo continuo.

Scopo di questa sezione non è esaminare nel dettaglio tutta la fisica che sta dietro la nascita di nuove stelle o l’esplosione di una supernova, per la quale esistono ottimi testi in grado di spiegare anche in modo molto semplice e chiaro; ciò che si desidera ottenere in questa sezione è l’emergere di una consapevolezza diversa nell’osservazione della Via Lattea e dei suoi oggetti, portando gli appassionati ad avere una certa comprensione della grande complessità della nostra galassia e a ricercare nel cielo stellato strutture reali che vadano dunque al di là della mera suddivisione del cielo in costellazioni. Ciò potrebbe portare, col tempo, a osservare e soprattutto a fotografare ammassi e nebulose seguendo un approccio nuovo e più consapevole.

CONCETTI DI BASE

Il modello attualmente più accreditato presso la comunità astronomica, detto modello standard, prevede che una stella nasca a partire dal collasso gravitazionale delle porzioni più dense (dette “nuclei”) di una nube molecolare e dal successivo accrescimento dell’embrione stellare, originatosi dal collasso, a partire dai materiali presenti della nube. Tale processo ha una durata che può variare tra meno di centomila e alcune centinaia di milioni di anni, a seconda del tasso di accrescimento e della massa che la stella nascitura riesce ad accumulare: si stima che una stella simile al Sole impieghi all’incirca un centinaio di milioni di anni per formarsi completamente e in seguito per raggiungere la fase stabile della propria vita, mentre per le stelle più massicce il tempo è notevolmente inferiore, nell’ordine dei 100.000 anni.

Il modello spiega bene le modalità che conducono alla nascita delle singole stelle di massa piccola e media (tra 0,08 e 10 volte la massa solare) e trova riscontro anche nella funzione di massa iniziale, che descrive la distribuzione delle masse di una popolazione di stelle di recente generazione in base alla loro teorica massa iniziale al momento della formazione; risulta più lacunoso invece per quanto riguarda la formazione dei sistemi e degli ammassi stellari e delle stelle massicce. Per tale ragione sono stati sviluppati dei modelli complementari che includono gli effetti delle interazioni tra gli embrioni stellari e l’ambiente in cui si formano ed eventuali altri embrioni nelle vicinanze, importanti ai fini delle stesse dinamiche interne dei sistemi e soprattutto della massa che le stelle nasciture riusciranno a raggiungere.

IL MEZZO INTERSTELLARE

Il mezzo interstellare (spesso abbreviato in ISM) è il materiale rarefatto costituito da gas e polvere che si trova tra le stelle all’interno di una galassia. Fino alla fine del XIX secolo, lo spazio interstellare era considerato sostanzialmente vuoto. Nel 1904, l’astronomo tedesco Johannes Hartmann scopri il gas interstellare, mentre ventisei anni dopo, nel 1930, lo svizzero Robert Trumpler scopri la polvere interstellare, che causava l’arrossamento del colore delle stelle lontane.

Il mezzo interstellare consiste di una miscela piuttosto rarefatta di ioni, atomi, molecole, granuli di polvere, raggi cosmici e campi magnetici; in massa il 99% della materia è costituito dai gas, il restante 1% dalle polveri. Le densità variano da poche migliaia ad alcune centinaia di milioni di particelle per metro cubo, con un valore medio attestato nella Via Lattea di un milione di parti-
celle al m3 (1 particella al cm3). Il Sole, ad esempio, sta attualmente viaggiando, nel corso della sua orbita attorno al centro galattico, all'interno della Nube Interstellare Locale (con densità di 0,1 atomi cm$^{-3}$), posta a sua volta all'interno della Bolla Locale (con densità di 0,05 atomi cm$^{-3}$).

Il gas del mezzo interstellare è costituito all'incirca all'89% da idrogeno e per il 9% da elio, con un 2% di elementi più pesanti, definiti nel gergo astronomico "metalli", e composti in tracce.

Il mezzo interstellare gioca un ruolo importante in astrofisica per via del suo ruolo di "via di mezzo" tra ordini di grandezza stellari ed ordini di grandezza galattici, ossia fra le dinamiche alla scala delle stelle e quelle su scala galattica.

Le stelle inoltre interagiscono in molteplici modi col mezzo interstellare: innanzi tutto si formano all'interno delle regioni più dense del mezzo interstellare stesso, ossia le nubi molecolari; in seguito ne plasmano le strutture, grazie ai loro venti, disperdendone gli addensamenti vicini e accumulando materia secondo dei processi su lunga scala temporale descritti in seguito.

Infine, ne modificano la composizione, arricchendola degli elementi più pesanti prodotti al loro interno: una volta giunte al termine della loro evoluzione infatti, le stelle “contaminano” il mezzo interstellare tramite l’emissione di una nebulosa planetaria o l’esplosione di una supernova; quest’ultimo meccanismo in particolare è alla base della produzione degli elementi più pesanti del ferro, l’ultimo elemento sintetizzabile nel nucleo di una stella.

Queste continue interazioni tra stelle e mezzo interstellare aiutano a determinare il tasso al quale una galassia consuma le sue riserve gassose, e dunque permette di misurare il tempo in cui questa va incontro a un’attiva formazione stellare.

Col progresso della tecnologia astrofotografica, la ripresa delle zone più dense del mezzo interstellare è divenuta anche alla portata degli appassionati: ne sono un chiaro esempio le numerose foto amatoriali delle galassie M81 e M82 nell’Orsa Maggiore, in cui spesso sovrapposto ad esse si nota un velo intricato di gas e polveri, che viene denominato Integrated Flux Nebula; questo complesso intreccio di gas e polveri forma lunghi filamenti o anche piccoli bozzoli più densi che ricevono il flusso di luce e radiazione integrato (integrated flux) di tutte le stelle della Via Lattea situate nelle vicinanze, rendendoli così illuminati, seppur molto debolmente.

DAL MEZZO INTERSTELLARE ALLE NUBI MOLECOLARI

Una tipica galassia spirale, come la Via Lattea, contiene grandi quantità di mezzo interstellare, che si dispone principalmente lungo i bracci che delineano la spirale, ove la gran parte della materia che lo costituisce, qui convogliata a causa del moto di rotazione della galassia, può formare strutture diffuse. La situazione cambia procedendo lungo la sequenza di Hubble, fino ad arrivare alle più esigue quantità di materia presenti nel mezzo interstellare delle galassie ellittiche; conseguentemente, man mano che si riduce la quantità di mezzo interstellare vien meno la possibilità che si formino strutture nebulari diffuse, a meno che la galassia carente non acquisisca materiale da altre galassie con cui eventualmente interagisca.

Il mezzo interstellare, come si è visto, è inizialmente piuttosto rarefatto. La dispersione di energia sotto forma di radiazione nell'infrarosso, traducendosi in un raffreddamento della nube, fa tuttavia in modo che la materia del mezzo si addensi in nubi distinte, dette genericamente nubi interstellassi, classificate in maniera opportuna a seconda dello stato di ionizzazione dell'idrogeno. Le nubi costituite in prevalenza da idrogeno neutro monoatomico sono dette regioni H I.
La mappatura delle emissioni alle lunghezze d'onda dell'H I con un radiotelescopio è una tecnica largamente utilizzata per determinare la struttura di una galassia spirale. Tale tecnica trova impiego anche per definire le perturbazioni gravitazionali tra galassie interagenti; infatti, quando due galassie si urtano, la materia viene trascinata via in varie strisce, che consentono agli astronomi di comprendere in che direzione e in che modo le galassie si stanno muovendo.

Man mano che il raffreddamento prosegue, le nubi divengono sempre più dense; quando la densità raggiunge le 1000 particelle al cm³, la nube diviene opaca alla radiazione ultravioletta galattica. Tale condizione, unita all'intervento dei granuli di polvere interstellare in qualità di catalizzatori, permette agli atomi di idrogeno di combinarsi in molecole biatomiche (H₂): si ha così la formazione di una nube molecolare.

I maggiori esemplari di queste strutture, chiamate nubi molecolari giganti, possiedono solitamente diametri di oltre 100 anni luce, masse superiori a 6 milioni di masse solari e temperature medie, al loro interno, di 10 K. Si stima che circa la metà della massa complessiva del mezzo interstellare della nostra galassia sia contenuta in queste formazioni e sia suddivisa fra circa 6000 nubi molecolari giganti, ciascuna con più di 100.000 masse solari di materia al proprio interno. La presenza, frequentemente riscontrata, di molecole organiche anche molto complesse come amminoacidi e idrocarburi policiclici aromatici (IPA) all'interno di queste formazioni è il risultato di reazioni chimiche tra alcuni elementi (oltre all'idrogeno, carbonio, ossigeno, azoto e zolfo) che si verificano grazie all'apporto energetico fornito dai processi di formazione stellare che hanno luogo al loro interno.

Visivamente, questo tipo di nubi sono quelle che vengono definite in astronomia osservativa nebulose oscure. L'aspetto di questi oggetti è essenzialmente dovuto alla presenza di una piccola frazione di polvere, responsabile dell'assorbimento della luce, specialmente nella parte blu dello spettro. Le nubi oscure quindi si possono osservare se oscurano parte di una nebulosa a emissione o nebulosa a riflessione (come la Nebulosa Testa di Cavallo) o se bloccano la luce delle stelle di fondo (come la Nebulosa Sacco di Carbone).

Le nubi molecolari sono più numerose di quanto molti appassionati possano pensare: sono infatti queste a conferire alla scia chiara della Via Lattea il suo aspetto irregolare. Se per ipotesi le potessimo rimuovere, il chiarore della Via Lattea assumerebbe la forma di un fuso omogeneo più grosso verso il centro, in direzione del Sagittario, e progressivamente più tenue verso l'Auriga, senza però mai sparire; anche il suo gradiente di luminosità sarebbe regolare e passerrebbe dalla zona più luminosa in direzione dell’equatore galattico, fino a disperdersi sempre più alle alte latitudini galattiche.

La loro presenza invece fa in modo che, per esempio, gran parte dell’equatore galattico appaia fortemente oscurato, come è ben chiaro lungo l’intera Fenditura del Cigno e la Fenditura dell’Aquila, oppure che interi tratti del piano galattico siano oscurati, come si osserva in direzione di Perseo e della Giraffa o in alcuni punti fra Aquila e Scudo.

Nella pagina seguente è presentata una carta generale che mostra quanto questi complessi nebulosi siano in grado di influire sulla visibilità della Via Lattea.

VERSO IL COLLASSO

Una nube interstellare rimane in uno stato di equilibrio dinamico finché l'energia cinetica del gas, che genera una pressione verso l'esterno, e l'energia potenziale della
Carta molto generale che mostra la distribuzione dei principali sistemi di nebulose oscure e banchi di gas e polveri che oscurano la scia del piano della Via Lattea. La carta in alto contiene in gran parte la Via Lattea boreale ed è quella dove i banchi di polveri sono più spessi e vicini; la carta in basso contiene in gran parte la Via Lattea australe, dove i complessi di nubi oscure sono meno consistenti e, in generale, più remoti.
gravità, con verso centripeto, si equivalgono. Dal punto di vista matematico questa condizione si esprime tramite il teorema del viriale, il quale stabilisce che, per mantenere l'equilibrio, l'energia potenziale gravitazionale deve essere uguale al doppio dell'energia termica interna. La rotura di questo equilibrio a favore della gravità determina il manifestarsi di instabilità che innescano il collasso gravitazionale della nube.

La massa limite oltre la quale la nube andrà certamente incontro al collasso è detta massa di Jeans, che è direttamente proporzionale alla temperatura ed inversamente proporzionale alla densità della nube: quanto più bassa è la temperatura e quanto più alta la densità, tanto minore è la massa necessaria perché possa avvenire tale processo. Per una densità di 100.000 particelle al cm3 e una temperatura di 10 K il limite di Jeans è pari a una massa solare.

Il processo di condensazione di grandi masse a partire da locali addensamenti di materia all'interno della nube, dunque, può procedere solo se questi ultimi possiedono già una massa sufficientemente grande. Infatti, via via che le regioni più dense, avviate al collasso, inglobano materia, a livello locale si raggiungono masse di Jeans meno elevate, che portano quindi a una suddivisione della nube in porzioni gerarchicamente sempre più piccole, finché i frammenti non raggiungono una massa stellare.

Il processo di frammentazione è agevolato anche dal moto turbolento delle particelle e dai campi magnetici che si vengono a creare. I frammenti, detti nuclei densi, hanno dimensioni comprese tra 6000 e 60.000 unità astronomiche (UA), densità dell'ordine di $10^5 - 10^6$ particelle per cm3 e contengono una quantità di materia variabile; l'intervallo di masse è assai ampio, ma le masse più piccole sono le più comuni. Questa distribuzione di masse ricalca la distribuzione delle masse delle future stelle (ovvero la funzione di massa iniziale), pur considerando che la massa dell'intera nube ammonta a circa il triplo della somma delle masse delle stelle che da essa avranno origine; questo indica che appena un terzo della massa della nube darà effettivamente origine ad astri, mentre il resto si disperderà nel mezzo interstellare. I nuclei densi turbulentoni sono supercritici, ovvero la loro energia gravitazionale supera l'energia termica e magnetica e li avvia inesorabilmente al collasso.

CAUSE DEL COLLASSO:

L'INFLUENZA DELL'AMBIENTE ESTERNO

Pur esplicando in modo chiaro le modalità attraverso cui avviene, il modello standard non spiega che cosa dia inizio al collasso. Non sempre la formazione di una stella inizia in maniera del tutto spontanea, a causa delle turbolenze interne oppure per via della diminuzione della pressione interna del gas a causa del raffreddamento o della dissipazione dei campi magnetici. Anzi, più spesso, come dimostrano innumerevoli dati osservativi, è necessario l'intervento di qualche fattore che dall'esterno perturbi la nube, causando le instabilità locali e promuovendo dunque il collasso.

A tal proposito numerosi sono gli esempi di stelle, per lo più appartenenti ad ampie associazioni stellari, le cui caratteristiche mostrano che si sono formate quasi contemporaneamente: dal momento che un simultaneo collasso di nuclei densi indipendenti sarebbe un'incredibile coincidenza, è più ragionevole pensare che questo sia la conseguenza di una forza applicata dall'esterno, che ha agito sulla nube causando il collasso e la successiva formazione stellare. Tuttavia non sono infrequenti gli esempi di collassi iniziati spontaneamente: alcuni esempi di questo sono stati individuati tramite l'Osservazione infrarossa in certi nuclei densi isolati, relativamente quiescenti, posti in nubi vicine tra loro. In alcuni di essi, come nel globulo di Bok B355, sono state riscontrate tracce di lentì moti centripeti interni e sono state anche osservate delle sorgenti infrarosse, segno che potrebbe essersi avviata la formazione di nuove stelle.

Diversi possono essere gli eventi esterni in grado di promuovere il collasso di una nube; fra questi eventi sono compresi schematicamente i seguenti:

- onde d'urto generate dallo scontro di due nubi molecolari o dall'esplosione nelle vicinanze di
una supernova;
- forze di marea che si instaurano a seguito dell’interazione tra due galassie, che innescano una violenta attività di formazione stellare su scala galattica definita starburst;
- energici super brillamenti (flare) di un’altra vicina stella in uno stadio più avanzato di formazione;
- pressione del vento o l’intensa emissione ultravioletta di vicine stelle massicce di classe O e B, che può regolare i processi di formazione stellare all’interno delle nubi di idrogeno ionizzato.

Si ipotizza inoltre che la presenza di un buco nero supermassiccio al centro di una galassia possa avere un ruolo regolatore nei confronti del tasso di formazione stellare nel nucleo galattico: infatti, un buco nero che sta accrescendo materia con tassi molto elevati può diventare attivo ed emettere un forte getto collimato in grado di limitare la successiva formazione di stelle. Tuttavia, l’emissione radio attorno ai getti, così come l’eventuale bassa intensità del getto stesso, può avere un effetto esattamente opposto, innescando la formazione di stelle qualora si trovi a collidere con una nube che gli transita nelle vicinanze.

L’attività di formazione stellare risulta fortemente influenzata dalle condizioni fisiche estreme che si riscontrano entro 30–300 anni luce dal nucleo galattico: intense forze di marea, incremento dell’entità delle turbolenze, riscaldamento del gas e presenza di campi magnetici piuttosto intensi; a rendere più complesso questo quadro concorrono inoltre gli effetti dei flussi microscopici, della rotazione e della geometria della nube. Sia la rotazione che i campi magnetici possono ostacolare il collasso della nube, mentre la turbolenza favorisce la frammentazione, e su piccole scale promuove il collas-so.

DALLE STELLE AGLI AMMASSI STELLARI

Eccettuando la lacuna sopra discussa, il modello standard descrive bene ciò che accade in nuclei isolati in cui sta avvenendo la formazione di una stella. Tuttavia, la stragrande maggioranza delle stelle non nasce in solitaria, ma in folti ammassi stellari, e il modello non spiega l’influenza che tale ambiente esercita sulle stelle nascenti. Inoltre, rispetto a quanto ritenuto in passato, la formazione stellare è un evento piuttosto violento: infatti l’osservazione infrarossa ha mostrato che la formazione di una stella interferisce negativamente sulla nascita degli astri adiacenti, dal momento che la radiazione e il vento prodotti nelle ultime fasi della formazione possono limitare la quantità di gas che può accrescere liberamente sulle vicine protostelle.

Per sopperire a tale lacuna sono state sviluppate due teorie. La prima, detta teoria dell’accrescimento competitivo, si concentra sulle interazioni tra nuclei densi adiacenti. La versione più estrema di questa teoria prevede la formazione di numerose piccole protostelle, che si muovono rapidamente nella nube entrando in competizione tra loro per catturare quanto più gas possibile. Alcune protostelle tendono a prevalere sulle altre, divenendo le più massicce; altre potrebbero persino essere espulse dall’ammasso, libere di muoversi all’interno della galassia. La concorrente, la teoria del nucleo turbolento, privilegia invece il ruolo della turbolenza dei gas: la distribuzione delle masse stellari rispecchia, infatti, lo spettro dei moti turbolenti all’interno della nube piuttosto che una successiva competizione per l’accumulo di massa. Le osservazioni sembrano dunque favorire questo mo-dello, anche se la teoria dell’accrescimento competitivo potrebbe sussistere in regioni in cui la densità protostellare è particolarmente elevata.

È inoltre ormai assodato che il processo di formazione stellare raramente porta alla nascita di un singolo ogget-
to; anzi, più spesso il risultato è la formazione di un gruppo di oggetti più o meno intensamente legati dalla forza di gravità, poiché, come si è visto, solo una nube sufficientemente grande può collassare sotto la sua stessa gravità, dando origine a un certo numero di frammenti da cui nasceranno altrettante stelle o sistemi stellari multipli, che andranno a costituire un ammasso o un'associazione stellare.

Gli ammassi e le associazioni stellari sono il prodotto del collasso e della frammentazione di una vasta porzione di una nube molecolare gigante, processo questo che può durare diverse migliaia di anni; si stima che il tasso di formazione degli ammassi aperti nella Via Lattea sia di circa uno ogni poche migliaia di anni.

LANTERNE NELLA VIA LATTEA:
LE ASSOCIAZIONI OB

Le prime stelle dell'ammasso a vedere la luce sono le più massicce, calde e luminose e di classe spettrale O e B, la cui intensa emissione ultravioletta ionizza rapidamente il gas della nube rendendola una regione H II. Il vento da queste prodotto e la pressione di radiazione spazzano via il gas non ancora collassato, isolando i bozzoli avviati alla formazione delle stelle di massa intermedia e piccola. Dopo alcuni milioni di anni, l'ammasso sperimenta la prima esplosione di supernova, che contribuisce ulteriormente ad espellere i gas residui. In questo scenario solamente una quantità di materia compresa tra il 10% e il 30–40% del gas originario della nube collassa per formare le stelle dell'ammasso, prima di essere espulso; di conseguenza viene a perdersi la gran parte della massa che potrebbe potenzialmente collassare in ulteriori stelle.

L'insieme di stelle giovani che emerge dalla nube ed è responsabile della sua ionizzazione è chiamata associazione OB.

Queste associazioni possono contenere da poche unità fino a centinaia di stelle (in quest'ultimo caso si chiamano superassociazioni OB) e, in genere, si trovano nei dischi delle galassie a spirale, nei quali sono in atto dei processi di formazione stellare molto intensi.

Il fatto che le stelle di tipo O e B abbiano vita breve implica che anche le associazioni OB siano molto giovani: hanno infatti un'età solitamente compresa tra 1 e 10 milioni di anni. Si tratta quindi di zone privilegiate dove studiare la formazione stellare.

LE ASSOCIAZIONI R

Le stelle di classe spettrale B da sole, pur essendo anch’esse di grande massa, non possiedono una radiazione così energetica da essere in grado di ionizzare i gas delle nubi che le circondano; la loro luce è tuttavia più che sufficiente per illuminarli su ampia scala, formando così vasti complessi di nebulose a riflessione il cui colore tende all’azzurro, poiché riflettono la luce nella medesima lunghezza d’onda.

Questi gruppi stellari così strettamente legati a sistemi di nebulose a riflessione prendono il nome di associazioni R.

In aggiunta a ciò, il loro vento stellare non è in grado di disperdere i densi banchi di nubi da cui si sono formate e ciò consente agli astronomi di esaminarne le proprietà. Poiché inoltre le associazioni R sono più comuni rispetto alle associazioni OB, gli studiosi le utilizzano per tracciare la struttura dei bracci di spirale della Via Lattea.

LE BOLLE DI VENTO STELLARE

Le stelle massicce di classe O e B possiedono un forte vento stellare, che progressivamente scava una sorta di cavità all’interno della nube, dove la materia è più rarefatta perché spazzata via: si viene così a creare una bolla di vento stellare.

Le bolle di vento stellare possiedono una struttura a doppio shock. La parte più interna della bolla si scalda in un termination shock (shock di terminazione), in cui la sua energia cinetica viene convertita in energia termica, che riscalda i gas sino alla temperatura di 10^6 K;
Carta molto generale che indica la distribuzione delle principali associazioni OB osservabili dalla nostra prospettiva all'interno della Via Lattea. Si nota una grande concentrazione in direzione del Sagittario (a destra nella carta in alto) e in Cassiopea (al centro nella carta in alto); nell'Aquila invece colpisce la totale assenza di associazioni: questo è dovuto al forte oscuramento ad opera delle polveri oscure, che in questa direzione sono piuttosto vicine e nascondono completamente la luce delle associazioni OB situate al di là. La distribuzione nel tratto della Via Lattea australe (la carta in basso) appare invece più omogenea.
forma così un plasma altamente ionizzato che emette raggi X. Il vento riscaldato e ad elevata pressione si espande, causando uno shock all'interno del gas interstellare circostante. Se il gas circostante è abbastanza denso (con densità maggiore di 0,1 cm$^{-3}$), il gas delle regioni più esterne si raffredda molto più velocemente di quello delle parti più interne, formando un sottile ma piuttosto denso involucro attorno al vento stellare.

Più una stella è calda e massiccia e più forte è il suo vento stellare, maggiore sarà la capacità di creare estese bolle attorno ad essa; gli astri più famosi in grado di formare grandi bolle di vento stellare sono le stelle di Wolf-Rayet.

SUPERGIGANTI E STELLE DI WOLF-RAYET

Il modello dell’evoluzione stellare prevede che la sequenza principale, ossia la fase stabile della vita di una stella, termini non appena l'idrogeno contenuto nel suo nucleo sia stato completamente convertito in elio dalla fusione nucleare; la successiva evoluzione della stella segue vie diverse a seconda della massa dell’oggetto celeste.

Quando termina il processo di fusione dell'idrogeno in elio e inizia la conversione di quest'ultimo in carbonio, le stelle massicce (con massa superiore a 8 masse solari) si espandono raggiungendo lo stadio di supergigante rossa. Non appena si esaurisce anche la fusione dell'elio, i processi nucleari non si arrestano ma, complice una serie di successivi collassi del nucleo ed aumenti di temperatura e pressione, proseguono con la sintesi di altri elementi più pesanti: ossigeno, neon, silicio e zolfo.

In tali stelle, poco prima della loro fine, può svolgersi in contemporanea la nucleosintesi di più elementi all'interno di un nucleo che appare stratificato; tale struttura è paragonata da molti astrofisici agli strati concentrici di una cipolla. In ciascun guscio avviene la fusione di un differente elemento: il più esterno fonde idrogeno in elio, quello immediatamente sotto fonde elio in carbonio e via dicendo, a temperature e pressioni sempre crescenti man mano che si procede verso il centro. Il collasso di ciascuno strato è sostanzialmente evitato dal calore e dalla pressione di radiazione dello strato sottostante, dove le reazioni procedono a un regime più intenso. Il prodotto finale della nucleosintesi è il nichel-56 (56Ni), risultato della fusione del silicio, che viene completata nel giro di pochi giorni.

Il nichel-56 decade rapidamente in ferro-56 (56Fe). Poiché i nuclei del ferro possiedono un'energia di legame superiore a quella di qualunque altro elemento conosciuto, la loro fusione, anziché essere un processo esoterico (ossia che produce ed emette energia), è fortemente endotermico (cioè richiede e consuma energia). La supergigante rossa può anche attraversare uno stadio alternativo, che prende il nome di supergigante blu. Durante questa fase la fusione nucleare avviene in maniera più lenta; per via di tale rallentamento, l'astro si contrae e, poiché una grande quantità di energia viene emessa da una superficie fotosferica più piccola, la temperatura superficiale aumenta, da cui il colore blu; l'astro tuttavia, prima di raggiungere questo stadio, passa per la fase di supergigante gialla, caratterizzata da una temperatura e da dimensioni intermedie rispetto alle due fasi. Una supergigante rossa può in qualunque momento, a patto che rallentino le reazioni nucleari, trasformarsi in una supergigante blu.

Nelle stelle più massicce, ormai in una fase evolutiva avanzata, un grande nucleo di ferro inerte si deposita al centro dell'astro; in tali astri gli elementi più pesanti, spinti da moti convettivi, possono affiorare in superficie, formando degli oggetti molto evoluti noti come stelle di Wolf-Rayet, caratterizzate da forti venti stellari che provocano una consistente perdita di massa.

Si tratta di stelle molto luminose, con una luminosità compresa fra centinaia di migliaia e milioni di volte
quella del Sole, sebbene nella banda del visibile non siano eccezionalmente luminose, in quanto la maggior parte della radiazione viene emessa sotto forma di raggi ultravioletti.

Le stelle visibili a occhio nudo γ Velorum e θ Muscae sono Wolf-Rayet, così come lo è la stella più massiccia attualmente conosciuta, R136a1 nella Nebulosa Tarantola.

LE SUPERNOVAE: GRANDI MODELLATRICI DELL’AMBIENTE GALATTICO

Una supernova è un'esplosione stellare estremamente energetica che si verifica al termine del ciclo vitale delle stelle di grande massa (oltre le 10 masse solari). Le supernove sono molto luminose e causano un’emissione di radiazione che può per brevi periodi superare quella di una intera galassia.

Durante un intervallo di tempo che può andare da qualche settimana a qualche mese, una supernova emette tanta energia quanta ne emette il Sole durante la sua intera esistenza e, per una quindicina di secondi, raggiunge una temperatura di cento miliardi di Kelvin.

L'esplosione espelle la maggior parte o tutto il materiale che costituisce la stella a velocità che possono arrivare a 30.000 km/s (10% della velocità della luce), producendo un'onda d'urto che si diffonde nel mezzo interstellare. Ciò si traduce in una bolla di gas in espansione che viene chiamata **resto di supernova**.

Col tempo si viene a creare una grande cavità, chiamata **superbolla**, in cui la densità è notevolmente inferiore rispetto alle regioni non investite dall’onda d’urto.

I resti di supernova possono rivelarsi degli ottimi alleati dei processi di formazione stellare: la loro forte onda d’urto è infatti in grado di modellare l’ambiente circo-

La gigantesca Nebulosa di Gum è un esempio di cosa è in grado di generare una superbolla originatasi da più esplosioni di supernovae.

La Nebulosa Velo nel Cigno è un famoso resto di supernova.

stante, spazzando via il mezzo interstellare e accumulandolo sui bordi della superbolla in espansione, finché non incontra una nube o un sistema di nubi più denso. Esplosioni multiple di supernovae, piuttosto comuni nelle associazioni OB più estese ed evolute, hanno un effetto ancora più importante, poiché la loro onda d’urto si somma generando una superbolla ancora più violenta, riuscendo talvolta ad aprirsi fino alle alte latitudini galattiche, formando un cosiddetto **chimney** (comignolo) galattico.

All’interno della cavità formata dalla superbolla, le stelle di massa minore formatesi assieme alle stelle esplose vengono liberate dal denso manto nebuloso che prima le circondava, rendendosi ben visibili all’esterno come giovani ammassi aperti di stelle che devono ancora raggiungere la fase stabile della loro vita.

L’onda d’urto generata dall’esplosione delle supernovae può viaggiare per centinaia di anni luce trascinando con sé gas e polveri derivanti dalla disaggregazione della nebulosa originaria. Se quest’onda raggiunge una regione del mezzo interstellare più densa o una nube molecolare inerente, la sua propagazione ne risulta distorta, mentre nella nebulosa tamponata si possono innescare processi di collasso che portano alla formazione di una nuova popolazione di stelle.

Questi nuovi processi di collasso possono interessare nubi di massa variabile, da piccoli bozzoli isolati fino a grandi banchi nebulosi. L’effetto stesso dell’onda d’urto può essere responsabile della formazione di nuove nebulose nel momento in cui essa attraversa una regione la cui densità del mezzo interstellare è maggiore, accumulando il gas.

COLLASSO DI BOZZOLI ISOLATI:

I GLOBULI COMETARI

L’onda d’urto dell’esplosione, ma anche, più semplicemente, la radiazione ultravioletta delle stelle massicce di
un’associazione, sono in grado di erodere gli strati esterni delle nubi molecolari più piccole; il gas asportato si orienta nella direzione opposta rispetto a quella di provenienza della fonte di energia, creando una lunga chioma dietro il nucleo di queste nubi, che diventano così simili a delle comete. Questi particolari oggetti vengono infatti denominati globuli cometari.

Il nucleo dei globuli, che resiste all’onda d’urto, sperimenta invece un collasso favorito dall’onda d’urto stessa, assumendo le caratteristiche di un globo di Bok; al suo interno si generano frequentemente stelle isolate o coppie di stelle di piccola massa.

COLLASSO DI NUBI MAGGIORI

Quando l’onda d’urto raggiunge nubi più massicce, la deformazione è in genere meno traumatica, sebbene al loro interno possano prendere il via processi generativi anche di discreta portata.

Le nubi più estese possono generare anche stelle molto massicce, riproponendo in tal modo il modello della nube iniziale e generando una nuova associazione OB, che potranno essere in certi casi anche più ricca della precedente generazione, a seconda della massa della nube in via di collasso.

Nonostante ciò, la gran parte delle nubi investite dall’onda d’urto saranno comunque di piccola massa, poiché più comuni, e daranno quindi luogo a grandi raggruppamenti di stelle di massa media o piccola, aggregati in associazioni di oggetti stellari giovani e corredate da una nutrita popolazione di oggetti di massa substellare, come le nane brune. Altre nubi possono invece risentire solo marginalmente dell’influenza dell’onda d’urto e generare così pochissime stelle.

LE ASSOCIAZIONI T

La maggior parte delle stelle che si generano da un episodio di formazione stellare, come si è detto in prece-

denza, possiede una massa non superiore alle due masse solarie; le associazioni composte da queste stelle sono chiamate associazioni T.

Il nome deriva dal fatto che le stelle giovani di tale massa che non hanno ancora raggiunto la fase stabile della loro vita vengono chiamate stelle T Tauri. Una stella T Tauri (così chiamata dal nome del prototipo di questa classe, T Tauri) è una stella pre-sequenza principale, ossia nei primi stadi della propria evoluzione, che deve ancora posizionarsi sulla sequenza principale del diagramma H-R.

La fase corrispondente alle T Tauri nelle stelle di massa medio-grande (fra 2 e 8 masse solarie) è quella delle stelle Ae/Be di Herbig, con linee di emissione simili alle T Tauri. Le stelle più massicce ancora e di classe O non attraversano una fase analoga perché evolvono molto più velocemente: quando diventano visibili sono infatti già entrate nella sequenza principale.

Le stelle T Tauri hanno masse e temperature simili a quelle del Sole, ma alcune volte sono più grandi in termini di diametro e decisamente più luminose. Ruotano velocemente su sé stesse, tipicamente in pochi giorni (invece che in un mese come il Sole), e sono molto attive. Hanno campi magnetici estremamente intensi, che attraggono i gas vicini risucchiandoli lungo le linee di campo, provocando massicci brillamenti ed estese macchie sulla loro superficie. Le stelle T Tauri hanno, inoltre, emissioni di raggi X e radio intense e variabili, circa 1000 volte superiori a quelle del Sole, e molte hanno venti stellari estremamente potenti.

Le stelle T Tauri contengono molto litio rispetto alla nostra stella. Tale elemento è facilmente distrutto già a un milione di Kelvin, una temperatura relativamente bassa per un nucleo stellare, e le stelle più evolute ne contengono pochissimo. Prendendo in considerazione tutti questi indizi, si pensa che le T Tauri siano molto giovani e che la maggior parte della loro energia derivi dal collasso gravitazionale, non dalle reazioni di fusione nucleare, perché il loro nucleo è ancora troppo freddo: queste reazioni infatti richiedono come minimo temperature di qualche decina di milioni di kelvin.

Circa la metà delle stelle T Tauri hanno dei dischi cir-

La Nube della Corona Australe presenta segni di tamponamento (a destra) e segni di dissolvimento (a sinistra).
cumstellari, che potrebbero essere il residuo della nebulosa da cui si sono formate, e che potrebbe dare origine a dei pianeti. La maggior parte sono anche stelle binarie.

Affinché una stella esca dalla fase di T Tauri per entrare nella sequenza principale possono occorrere fino a 100 milioni di anni.

Un fenomeno tipico della fase T Tauri sono gli oggetti di Herbig-Haro, caratteristiche nebulose a emissione originate dalla collisione tra i flussi molecolari in uscita dai poli stellari e il mezzo interstellare. Si calcola che tali fenomeni abbiano una durata relativamente breve: l’esistenza degli oggetti di HH giungerebbe infatti ad alcune decine o al massimo a qualche centinaia di migliaia di anni, al termine dei quali si disperderanno nel mezzo interstellare sotto l’azione del vento prodotto dalle stelle di nuova formazione. Le osservazioni condotte dal Telescopio spaziale Hubble rivelano anche che questi oggetti si evolvono rapidamente nel giro di pochi anni.

VERSO LA TOTALE DISSOLUZIONE

Le stelle di piccola massa producono un fronte di ionizzazione notevolmente più scarso rispetto alle stelle delle classi spettrali O e B; ciò comporta che esse non siano in grado di fornire ai gas circostanti l’energia necessaria per generare una regione H II. La massima parte di queste nubi infatti risulterà semplicemente illuminata da queste stelle, rendendosi visibili come nebulose a riflessione.

Solo le parti della nube più vicine alle stelle ne risulteranno illuminate; le aree più remote e periferiche restano oscure e possono essere individuate indirettamente poiché oscurano i campi stellari di fondo.

Molto lentamente, il gas residuo si fa meno denso, sia per effetto dell’azione combinata del vento stellare delle giovani stelle, sia per eventuali interazioni col mezzo interstellare e l’ambiente galattico circostante. Gli effetti dell’onda d’urto iniziale generata dalle supernovae sono ormai assenti e le regioni circostanti sono state in massa parte ripulite da gas e polveri.

Via via che il gas si disperde e si allontana dalle stelle, le nebulose a riflessione progressivamente si affievoliscono fino a scompersi del tutto.

Il risultato ultimo, dopo un periodo che può durare anche diverse decine di milioni di anni, è un gruppo di ammassi aperti dalle caratteristiche differenti fra loro, situate in una regione di alcune centinaia di anni luce di diametro.

Gli ammassi aperti più ricchi e compatti possono essere in grado di sopravvivere a lungo come tali, grazie alla maggiore interazione gravitazionale reciproca; di frequente questi ammassi tendono a deviare dal piano galattico, portandosi a latitudini galattiche progressivamente più elevate.

Col tempo, le dinamiche interne dei bracci di spirale porteranno le singole componenti degli ammassi aperti ad allontanarsi le une dalle altre e a disperdersi progressivamente, degradando le reciproche interazioni gravitazionali. Gli ammassi assumeranno forme allungate trasformandosi dapprima in associazioni stellari e infine in correnti stellari e gruppi cinematics dispersi; tutte queste tipologie di gruppi stellari condividono ancora il medesimo moto proprio, muovendosi insieme nello spazio in maniera simile fra loro.

A un certo punto, dopo altre decine o centinaia di milioni di anni, le stelle che le compongono si confonderanno totalmente con la popolazione stellare del disco galattico; a quel punto, ogni stella avrà preso la sua strada.
L’AMBIENTE DEL SOLE

Appare dunque chiaro quanto profonde siano le dinamiche di formazione stellare a catena nella morfologia delle strutture osservabili nella Via Lattea.

Il Sole attualmente si trova all’interno di una di queste grandi strutture, per la precisione in un residuo di un’antica superbolla chiamata Bolla Locale.

La Bolla Locale è dunque una sorta di cavità del mezzo interstellare, estesa per circa 300 anni luce; possiede una densità di idrogeno neutro variabile tra circa 0,05 e 0,07 atomi per centimetro cubo, mentre il mezzo interstellare galattico ha una densità circa dieci volte superiore. L’alta temperatura del gas (circa 6000 K) è all’origine di una discreta emissione di raggi X da parte della nube.

Il Sistema Solare è entrato nella Bolla Locale circa 3 milioni di anni fa; attualmente si trova nella Nube Interstellare Locale, una regione di materiale più densa rispetto al resto della Bolla; questa regione si forma laddove la Bolla Locale incontra la Bolla Loop I, una regione adiacente con densità maggiore, di circa 0,1 atomi per centimetro cubo.

La Nube Interstellare Locale è una nube interstellare estesa per circa 30 anni luce attraverso la quale si sta muovendo attualmente il Sistema Solare. Non è del tutto chiaro se il Sole si trovi proprio immerso nella nube o se si situi nella regione dove la nube interagisce con le strutture confinanti.

Si ritiene che il Sole sia entrato in questa nube in un periodo compreso tra 44.000 e 150.000 anni fa e che vi resterà per i prossimi 10.000 o 20.000 anni.

La forma della Bolla Locale non è esattamente sferica, ma sembra avere la forma di un elissioide ristretto in corrispondenza del piano galattico, mentre al di sopra e al di sotto del piano si dilata assumendo la forma quasi di una clessidra.

Molti astronomi credono che questo sistema di bolle si sia formato tra alcune centinaia di migliaia e pochi milioni di anni fa, a causa dell’esplosione di una supernova, il cui resto è probabilmente identificabile nella pulsar Geminga, nella costellazione dei Gemelli, che riscalda la materia circostante, rendendola più rarefatta. La Bolla Loop I si sarebbe invece formatà dall’espansione di una superbolla generata da una supernova probabilmente esplosa nella grande Associazione Scorpius-Centaurus, l’associazione OB più vicina al Sole, a 500 anni luce di distanza.

Altre bolle adiacenti sono la Bolla Loop II e la Bolla Loop III; nella Bolla Loop I è contenuta la stella Antares, che fa parte di un sottogruppo della già citata Associazione Scorpius-Centaurus.
Illustrazione generica delle principali strutture conosciute all’interno della Via Lattea. È indicata anche la posizione del Sole.
Illustrazione della disposizione dei principali oggetti e strutture entro un raggio di circa 10.000 anni luce dal Sole. In giallo le principali associazioni OB, in verde le principali regioni H II, in grigio le nubi oscure.
La suddivisione in quadranti della Via Lattea, col Sole all’origine dei quadranti e con indicata la direzione delle costellazioni situate sul piano galattico.

Schema che mostra l’andamento dei bracci di spirale nella Via Lattea dalla prospettiva osservativa terrestre. Al centro il Centro Galattico, poi verso sinistra la regione del Cigno e di Cassiopea, mentre a destra la regione di Orione e della Nave Argo.
LA STRUTTURA A GRANDE SCALA DELL’UNIVERSO
PREMESSA - L’UNIVERSO OSSERVABILE

 Quando si studiano le strutture a grande scala dell’Universo, solitamente ci si riferisce alla porzione che è possibile osservare, che però non coincide con le reali dimensioni dell’Universo. Ecco perché quindi si parla di universo osservabile.

 In cosmologia l’universo osservabile è una regione di spazio racchiusa da una sfera centrata su un osservatore, sfera che contiene tutto ciò che egli può osservare. Generalmente si intende la porzione di universo indagabile dall’Uomo, quindi la sfera centrata sulla Terra, ma ogni posizione nello spazio possiede il suo universo osservabile.

 Se l’Universo non fosse in continua espansione, il raggio dell’universo osservabile sarebbe pari alla distanza percorsa dalla luce nell’arco di tempo trascorso dall’inizio dell’Universo (ossia l’età dell’Universo), pertanto l’orizzonte dell’universo osservabile sarebbe posto a circa 13,8 miliardi di anni luce; poiché però l’Universo si sta espandendo continuamente, la distanza effettiva di questo orizzonte è più grande: una radiazione elettromagnetica partita 13,8 miliardi di anni fa che giungesse ora ad un osservatore sarebbe relativamente a una sorgente che nel frattempo si è allontanata dall’osservatore a causa dell’espansione. Alcune stime ipotizzano che lo spazio si potrebbe essere espanso per circa 46,5 miliardi di anni luce (4,7×10^23 km).

 Sulla base di questa stima, il diametro della sfera dell’universo osservabile sarebbe pari a 93 miliardi di anni luce; il volume di questo spazio sferico è pari a circa 5×10^32 anni luce cubi; queste dimensioni potrebbero contenere circa 7×10^22 stelle, organizzate in circa 2×10^12 galassie (duemila miliardi, secondo una stima effettuata nel 2016), agglomerate in gruppi e ammassi di galassie e superammassi.

 Osservazioni condotte col telescopio spaziale Hubble suggeriscono un numero medio di galassie ancora maggiore.

 Per quanto riguarda la parte osservabile, nelle zone più distanti dall’osservatore la recessione (allontanamento) avviene a velocità apparentemente superluminale (ossia più velocemente della luce); inoltre l’espansione risulterebbe, da un certo punto della vita dell’Universo in avanti, in accelerazione. Ciò non permette alla luce emessa oggi dagli oggetti che si trovano in questo momento oltre una certa distanza di raggiungerci, poiché in queste regioni più remote lo spazio si dilata apparentemente più velocemente della velocità della luce e incrementa la sua velocità di dilatazione. Ciò crea un orizzonte dell’universo osservabile.

 Oltre l’orizzonte dell’universo osservabile, posto alla distanza pari a 46,5 miliardi di anni luce dall’osservazione, leggi fisiche, spazio e tempo perdono contatto causale, cioè non esisterà mai la possibilità di osservare o scambiare con queste regioni alcun segnale o informazione generato d’ora in avanti. In pratica queste regioni escono dalla realtà dell’osservatore e quindi, di fatto, “al di fuori” del suo universo.

 Un errore comune è ritenere che il raggio dell’universo osservabile sia di 13,8 miliardi di anni luce. L’età dell’Universo è di 13,8 miliardi di anni e sebbene nessun oggetto possa accelerare fino a raggiungere e superare la velocità della luce, è un errore limitarlo a tali misure. Nell’Universo lo spazio-tempo è infatti curvato in modo che corrisponda all’espansione dello spazio stesso, come evidenziato dalla Legge di Hubble: distanze ottenute moltiplicando la velocità della luce per un intervallo di tempo cosmologico non hanno alcun significato fisico.
QUADRO RIASSUNTIVO DELLA CLASSIFICAZIONE ESTESA DELLE GALASSIE
Secondo De Vancouleurs

Galassie spirali

<table>
<thead>
<tr>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA</td>
</tr>
<tr>
<td>Galassie a spirale senza barra, con bracci progressivamente svolti secondo la sequenza SAA, SAb, SAC, SAd</td>
</tr>
<tr>
<td>SB</td>
</tr>
<tr>
<td>Galassie a spirale barrate, con bracci progressivamente svolti secondo la sequenza SBA, SBB, SBC, SBD</td>
</tr>
<tr>
<td>SAB</td>
</tr>
<tr>
<td>Galassie a spirale con una barra molto debole, con bracci progressivamente svolti secondo la sequenza SABA, SABB, SABC, SABD</td>
</tr>
</tbody>
</table>

Galassie lenticolari

<table>
<thead>
<tr>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA0</td>
</tr>
<tr>
<td>Galassie lenticolari senza barra, di morfologia “iniziale” e meno discoidale SA0-; “intermedia” SA00, e “finale” SA0+</td>
</tr>
<tr>
<td>SB0</td>
</tr>
<tr>
<td>Galassie lenticolari barrate, di morfologia “iniziale” e meno discoidale SB0-; “intermedia” SB00, e “finale” SB0+</td>
</tr>
<tr>
<td>S0</td>
</tr>
<tr>
<td>Galassie lenticolari indistinte, di morfologia “iniziale” e meno discoidale S0-; “intermedia” S00, e “finale” S0+</td>
</tr>
</tbody>
</table>

Notazioni spirali/lent.

<table>
<thead>
<tr>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r)</td>
</tr>
<tr>
<td>Presenza di strutture ad anello</td>
</tr>
<tr>
<td>(s)</td>
</tr>
<tr>
<td>Assenza di strutture ad anello</td>
</tr>
<tr>
<td>(rs)</td>
</tr>
<tr>
<td>Galassie con morfologia intermedia fra le due precedenti</td>
</tr>
</tbody>
</table>

Galassie irregolari

<table>
<thead>
<tr>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sd / Sbd</td>
</tr>
<tr>
<td>Galassie diffuse senza barra / diffuse con barra, con bracci disagregati costituiti da ammassi stellari e nebulose, bulge entrale debole</td>
</tr>
<tr>
<td>Sm / Sbm</td>
</tr>
<tr>
<td>Galassie magellaniche senza barra / con barra, di aspetto irregolare senza bulge evidente</td>
</tr>
<tr>
<td>Im</td>
</tr>
<tr>
<td>Galassie fortemente irregolari</td>
</tr>
</tbody>
</table>

Galassie ellittiche

<table>
<thead>
<tr>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>cE</td>
</tr>
<tr>
<td>Galassie ellittiche compatte (sferiche)</td>
</tr>
<tr>
<td>E</td>
</tr>
<tr>
<td>Galassie ellittiche normali (intermedie)</td>
</tr>
<tr>
<td>E+</td>
</tr>
<tr>
<td>Galassie ellittiche “finali” (compresse)</td>
</tr>
</tbody>
</table>

Nota: secondo Hubble le galassie ellittiche si dividono in base alla loro ellitticità da E0 (sferoidali) a E6 o E7 (ellittiche e schiacciate); questa classificazione è ancora in uso per praticità in diversi casi.

LE GALASSIE ATTIVE E LE LORO CARATTERISTICHE
Secondo la classificazione in uso

Una galassia attiva (sigla AGN - Active Galaxy Nucleus, nucleo galattico attivo) è una galassia dove una frazione significativa dell’energia viene emessa da oggetti diversi dai normali componenti di una galassia: stelle, polveri e gas interstellare. Questa energia, a seconda del tipo di galassia attiva, può essere emessa lungo tutto lo spettro elettromagnetico, onde radio, infrarossi, visibile, ultravioletto, raggi X e raggi gamma.

Secondo il modello standard degli AGN, l’energia che li alimenta è generata dalla materia che cade all’interno di un buco nero supermassiccio di massa compresa tra 1 milione e 10 miliardi di volte quella del Sole.

Galassie di Markarian

| Con forti emissioni nell’ultravioletto; spesso con stelle delle prime classi spettrali nel nucleo. |

Galassie di Seyfert

| Con forti sorgenti nella banda dell’ultravioletto e dei raggi X. |

Tipo Seyfert 1

| Con forti sorgenti nella banda dell’infrarosso. |

Tipo Seyfert 2

Galassie LINER

| Con linee di emissione a bassa ionizzazione; forti linee da atomi a bassa ionizzazione, deboli linee da atomi ad alta ionizzazione. |

Radiogalassie

| Con emissioni di energia molto intense. |

Quasar

| Con forti sorgenti di materia catturata dal buco nero centrale, che genera grande energia. |

Blazar

| Come i quasar. Comprendi i quasar altamente variabili e gli oggetti BL Lacertae. |

Oggetti BL Lacertae

| Tipo di blazar, particolarmente luminoso. La differenza fra BL Lacertae, blazar e certi tipi di quasar è data dalla loro angolazione. |

Nota: per una descrizione dettagliata dei singoli oggetti si rimanda a Wikipedia oppure a testi specifici.
Q
uando si legge o si sente parlare di struttura a grande scala dell’Universo, si pensa inevitabilmente alle immagini del Telescopio Spaziale Hubble e ai giganteschi ammassi di galassie remoti; tuttavia riuscire a costruirsi una mappa mentale di tutta questa immensità resta difficile, sia per i limiti intrinseci della nostra mente, sia perché non sempre è facile contestualizzare questi grandi sistemi nel cielo a cui siamo abituati, pieno di stelle e suddiviso in costellazioni.

Lo scopo di questa sezione non è quello di descrivere nel dettaglio la fisica del cosmo e la nascita e l’evoluzione dell’Universo, per le quali, ancora una volta, esistono ottimi testi in grado di spiegarne i segreti anche con un linguaggio semplice e comprensibile; ciò che si desidera raggiungere qui è uno spunto e un supporto per costruirsi un’idea iniziale di come e dove sono distribuite alcune delle grandi strutture dell’Universo, in particolare quelle a noi più vicine che quindi possono maggiormente interessare l’appassionato o l’astrofotografo amatoriale.

L’UNITÀ PIÚ SEMPLICE:
IL GRUPPO DI GALASSIE

I gruppi di galassie sono gli aggregati di galassie più piccoli: tipicamente contengono non più di 50 galassie in un diametro da 3 a 7 milioni di anni luce, la maggior parte delle quali nane; la massa totale media è di circa 10^{13} masse solari. La differenza di velocità tra le galassie è di circa 150 km/s. Tuttavia, questa definizione dà solo una linea guida, perché anche sistemi di galassie più grandi e massivi sono talvolta classificati come gruppi di galassie.

I gruppi sono le strutture di galassie più comuni dell’Universo e comprendono almeno il 50% delle galassie presenti nell’Universo stesso; sono suddivisibili in tre tipologie principali in base alle loro caratteristiche più appariscenti.

Un gruppo compatto consiste di un piccolo numero di galassie, tipicamente intorno a cinque, situate in prossimità l’una dell’altra e relativamente isolate dalle altre galassie. Il primo gruppo compatto ad essere stato scoperto è il Quintetto di Stephan, nel 1877, ed è un gruppo di quattro galassie più una galassia isolata ma che dalla Terra risulta casualmente sovrapposta alle altre quattro. L'astronomo Paul Hickson creò un catalogo di tali gruppi nel 1982, il Hickson Compact Groups.

I gruppi compatti rendono evidente l’effetto della cosiddetta materia oscura, dato che la massa visibile è di gran lunga minore di quella necessaria per tenere insieme le galassie con la forza di gravità. I gruppi compatti sono inoltre instabili dinamicamente.

Un gruppo fossile si ritiene che sia il risultato di una fusione di galassie all’interno di un gruppo normale di galassie, che si lascia dietro l’alone di raggi X del gruppo progenitore; le galassie all’interno di un gruppo di questo tipo interagiscono e si fondono tra loro. I gruppi fossili sono probabilmente sistemi vecchi e indisturbati che hanno attratto a sé poche galassie luminose dal momento della loro formazione; per questo motivo si ritene che siano un importante laboratorio per studiare la formazione e l’evoluzione di galassie e il mezzo intra-gruppo in un sistema isolato. I gruppi fossili potrebbero ancora contenere delle galassie nane non in interazione, ma i membri più massivi si sono condensati nella galassia centrale.

Il gruppo fossile più vicino alla Via Lattea è quello della galassia NGC 6482, una galassia ellittica distante circa 180 milioni di anni luce nella costellazione di Ercole.

I protogruppi sono infine gruppi in fase di formazione. Contengono perciò galassie singole inserite nei loro singoli aloni di materia oscura che sono in procinto di fondersi in gruppi di galassie con un unico alone di materia oscura.

Spesso i gruppi di galassie non presentano tuttavia dei confini ben netti e precisi, ma capita molto spesso che due gruppi di galassie adiacenti sfilino progressivamente uno nell’altro, formando delle concatenazioni.

Il Gruppo Locale, dove è compresa la Via Lattea, è formato da 70 galassie finora note, fra cui due spirali gi-
ganti, tre o quattro intermedie e un cospicuo numero di galassie nane.

LE NUBI DI GALASSIE

Insiemi estesi di galassie singole e gruppi di galassie possono formare una **nube di galassie**, ossia una struttura più complessa che può contenere anche diverse centinaia di galassie di grande e media massa; simili nubi hanno dimensioni di alcune decine di milioni di anni luce e possono essere a loro volta connesse ad altre strutture analoghe, o anche a dei veri e propri ammassi di galassie.

In questo senso, si può intendere come il Gruppo Locale, assieme ai gruppi di galassie più vicini come il Gruppo di M81, il Gruppo Centaurus A/M83, il Gruppo di M101, il Gruppo dello Scultore e altri formino una struttura paragonabile a una nube di galassie.

GLI AMMASSI DI GALASSIE

Un **ammasso di galassie** è una struttura che consiste di un insieme che va da centinaia a migliaia di galassie che sono tenute insieme dalla gravità; tipicamente le masse sono intorno alle 10^{14} o 10^{15} masse solari. Nell'universo conosciuto sono le strutture più grandi tenute insieme dalla gravità e si credeva che fossero le strutture meglio osservate nell'universo prima dell'indicazione di superammassi. Una delle caratteristiche principali degli ammassi è il mezzo intra-ammasso (in inglese *intracluster medium*, da cui ICM), che consiste di gas caldo intergalattico e dipende dalla massa totale dell'ammasso; la sua temperatura può raggiungere i 100 milioni di Kelvin ed emettere pertanto una forte radiazione nella banda dei raggi X. La maggior parte della massa del mezzo intragalattico è formata da idrogeno ionizzato ed elio.

Solitamente al centro degli ammassi di galassie si trovano alcune ellittiche giganti con un diametro che può estendersi anche per centinaia di migliaia di anni luce (e in certi casi anche superare il milione di anni luce), circondate da una popolazione di svariate migliaia di ammassi globulari, diverse galassie nane e anche galassie maggiori; si ritiene che questi giganti dell’universo siano il risultato di progressive fusioni fra galassie avvenute nel corso di miliardi di anni. Spesso al loro centro si trova un buco nero supermassiccio.

L’ammasso di galassie più vicino a noi è l’Ammasso della Vergine, situato a una distanza media di 50-60 milioni di anni luce; ad esso si collegano diverse nubi di galassie estese per alcune decine di milioni di anni luce. Il secondo ammasso più vicino è l’Ammasso della Fornace, situato a 60 milioni di anni luce e molto meno massiccio del precedente.

VERSO I SUPERAMMASSI DI GALASSIE

I **superammassi di galassie** sono grandi aggregati di ammassi, nubi e gruppi di galassie e sono tra le più grandi strutture conosciute dell’universo. Un tipico superammasso può contenere diverse decine di migliaia di galassie ed estendersi per alcune centinaia di milioni di anni luce; ciò nonostante, le sue dimensioni continuano a restare piuttosto contenute se confrontate alle dimensioni dell’intero universo osservabile: si ritiene infatti che quest’ultimo contenga ben 10 milioni di superammassi di galassie.

La Via Lattea è situata nel Gruppo Locale e, insieme ad altri gruppi ed ammassi, costituisce il Superammasso della Vergine; quest’ultimo, con altri superammassi, confluisce a formare il Superammasso Laniakea, una superstruttura che si estende per oltre 500 milioni di anni luce.

Da tempo si indaga sul come siano disposti i superammassi nello spazio, approntando mappe accurate, anche tridimensionali, delle posizioni di milioni di galassie,
calcolandone per ognuna la posizione e il redshift. Le mappe hanno fatto comprendere come le galassie non seguano una distribuzione uniforme né casuale, ma si dispongono lungo strutture allungate, chiamate filamenti galattici, che circolizzano a loro volta enormi vuoti, strutture spesso sferiche dove sono presenti pochissime tenui galassie o nubi d'idrogeno, mentre la maggior parte delle galassie si trovano nei filamenti intorno ai vuoti. In complesso l'aspetto è quello di una spugna, dove le cavità sono i vuoti e la struttura della spugna i filamenti e i superammassi.

OLTRE I SUPERAMMASSI: I FILAMENTI

I filamenti di galassie (che comprendono i **Complessi di superammassi**, i **Muri di galassie** e i **Piani di galassie**), sono tra le più grandi formazioni dell'Universo; si tratta di enormi formazioni filiformi, con una lunghezza tipica di 200-300 milioni di anni luce, e formano i confini tra i grandi vuoti dell'universo. Nel loro insieme, i superammassi e i ponti di galassie che li collegano fanno parte di un'unica struttura filaumentosa, cioè di un unico Filamento; tutti questi elementi sono disposti in modo tale da disegnare una forma che ricorda una spugna. Se consideriamo complessivamente questi elementi, si deduce che nell'Universo a grande scala tutta la materia, luminosa ed oscura, sia distribuita piuttosto omogeneamente.

Osservati a grande scala, i filamenti formano una matrice intricata che ricorda una ragnatela o un intreccio di neuroni; possono possedere numerose ramificazioni secondarie orientate in modo differente nello spazio e delimitano delle aree che invece appaiono quasi completamente vuote; si tratta dei già accennati **vuoti cosmici**, che se raggiungono le dimensioni di alcune centinaia di milioni di anni luce vengono denominati **supervuoti**. Alcuni supervuoti possono anche superare il migliaio di anni luce di diametro.

Il filamento di galassie più grande conosciuto è la Grande Muraglia di Ercole-Corona Boreale, un’immensa struttura di galassie che misura oltre 10 miliardi di anni luce; si trova alla distanza attuale (**comovente**) di 15-17 miliardi di anni luce, mentre al momento dell’emissione della luce che arriva a noi (per via dell’espansione dell’Universo) si trovava a 9-10 miliardi di anni luce. A fronte di una simile larghezza, il suo spessore è tuttavia pari a “soli” 900 milioni di anni luce, ossia meno di un decimo della sua larghezza.

Questa enorme struttura è stata scoperta nel novembre 2013 da una mappatura dei lampi gamma che si verificano nell'universo distante. I lampi gamma sono fra i più potenti eventi che si verificano nell'universo conosciuto e sono lampi molto luminosi di raggi gamma che annunciano la morte di stelle lontane di grande massa con esplosioni potentissime. I lampi di raggi gamma sono fenomeni rari; in una galassia come la Via Lattea ne verifica in media uno ogni milione di anni. Gli astronomi teorizzano che le stelle che causano questi eventi siano molto luminose e di grande massa, più frequenti dove la materia è più densa; pertanto, una maggiore frequenza di raggi gamma in una regione del cielo indica una disomogeneità nella distribuzione della materia.
Gruppo Locale è il nome proprio dato al gruppo di galassie di cui fa parte la nostra galassia: la Via Lattea. Il Gruppo Locale comprende più di 70 galassie, per la maggior parte di piccole dimensioni, e il suo centro di massa si trova in un punto compreso fra la Via Lattea e la Galassia di Andromeda. Il gruppo ha un diametro di circa 10 milioni di anni luce, diviso principalmente in due grossi centri, con una forma assimilabile a un manubrio.

Il Gruppo Locale è un tipico esempio di gruppo di galassie come ce ne sono tanti nell'Universo. Esso, con gli altri 5 gruppi più vicini noti come Gruppo dello Scultore, Gruppo di galassie di Maffei 1, Gruppo di M81, Gruppo di Centaurus A/M83 e Gruppo di M94, con l'Ammasso della Vergine e altre strutture, fa parte come visto di una struttura più ampia ed estesa conosciuta come Superammasso della Vergine, costituito da vari ammassi e gruppi di galassie.

I membri più massicci del Gruppo sono le due grandi spirali presenti: la Galassia di Andromeda e la Via Lattea, seguite dalla Galassia del Triangolo. Ognuna di esse forma un sottogruppo formato da un sistema di galassie "satelliti".

Il termine Gruppo Locale fu introdotto nel 1936 da Edwin Hubble, definendolo come un tipico piccolo gruppo di nebulose isolate nello spazio più ampio. Nel libro egli mise in ordine decrescente di luminosità le 11 galassie allora conosciute e identificò IC 10 come possibile membro del gruppo.

Dalla sua iniziale classificazione il numero di galassie facenti parte del Gruppo Locale è cresciuto significativamente, in particolare dopo la scoperta di numerose galassie nane o a bassa luminosità.

L'AMMASSO DELLA VERGINE

L'Ammasso della Vergine è il più ricco ammasso di galassie tra quelli più vicini al nostro Gruppo Locale. Si tratta di un tipico ammasso ricco, con circa 1500 galassie membri conosciute; la sua grande massa è causa delle grandi velocità peculiari di molte delle sue galassie, a volte fino a 1600 km/s (rispetto al centro dell'ammasso). Per confronto, lo spostamento verso il rosso dell'ammasso preso nella sua interezza corrisponde a una velocità di soli 1100 km/s. La galassia dominante dell’ammasso è la gigantesca ellittica M87, una galassia attiva il cui diametro è stimato sui 500.000 anni luce, quasi cinque volte quello della Via Lattea, senza contare che il suo volume è ancora più grande in quanto possiede una forma sferoidale (ellittica), mentre la Via Lattea ha la forma di un disco spiraliforme.

Come in altri ammassi ricchi di galassie, il mezzo intergalattico dell'ammasso della Vergine è pieno di plasma a temperature molto elevate (milioni di Kelvin), rilevabili attraverso l'emissione di raggi X, ed un numero relativamente elevato di stelle intergalattiche (circa il 10% della massa totale in stelle dell'ammasso), tra cui un certo numero di nebulose planetarie, che si pensa siano state espulse dalle loro galassie d’origine a causa delle interazioni gravitazionali con altre galassie. Sono presenti anche vere e proprie regioni di formazione stellare intergalatiche, nonché ammassi globulari, forse strappati per lo più da galassie nane.

IL SUPERAMMASSO DELLA VERGINE

Il Superammasso della Vergine è il superammasso di galassie che contiene l’intero Ammasso della Vergine appena descritto, più il nostro Gruppo Locale e i gruppi di galassie vicini al nostro. Ha la forma di un disco appiattito, con un diametro di circa 100 milioni di anni luce, e contiene circa 100 tra gruppi e ammassi di galassie; prende il nome dall'Ammasso della Vergine, che si trova vicino al suo centro. Il Gruppo Locale si trova al...
bordo del superammasso e si muove lentamente verso il suo centro.

Osservando gli effetti gravitazionali sui movimenti delle galassie, è possibile stimare la massa totale del Superammasso della Vergine in circa 10^{15} volte quella del Sole. La sua luminosità è però troppo poca per rendere conto di questa cifra, e si pensa quindi che gran parte della sua massa sia composta di materia oscura.

Un’anomalia gravitazionale conosciuta come il Grande Attrattore si trova da qualche parte nel superammasso. Le osservazioni sono ostacolate dal fatto che la sua posizione lo fa apparire nel nostro cielo proprio nel piano della galassia, dove gas e polveri oscurano la vista.

La densità numerica delle galassie nel Superammasso della Vergine diminuisce con il quadrato della distanza dal suo centro, situato nei pressi dell’Ammasso della Vergine, suggerendo che le componenti di questo ammasso non siano disposte in modo casuale. In complesso, la grande maggioranza delle galassie luminose, ossia di grandezza assoluta più brillante di -13, è concentrata in un piccolo numero di nubi di galassie.

Il 98% si trova nelle seguenti undici nubi, elencate in ordine decrescente di galassie luminose: Canes Venatici, Ammasso della Vergine, Virgo II (ramo sud), Leo II, Virgo III, Crater (NGC 3672), Leo I, Leo Minor (NGC 2841), Draco (NGC 5907), Antlia (NGC 2997) e NGC 5643. Delle galassie luminose localizzate nel disco, un terzo si trova nell’ammasso della Vergine, mentre le rimanenti si trovano nella nube Canes Venatici e nella nube Virgo II, con l’aggiunta del piuttosto insignificante gruppo di NGC 5643. Un’altra utile analogia che corrisponde alla distribuzione osservata è quella delle bolle di sapone. Ammassi piuttosto piatti e superammassi si trovano all’intersezione delle bolle, che sono grandi, approssimativamente sferiche (con diametri dell’ordine di 60-200 milioni di anni luce) e vuote al loro interno. Le strutture filamentose lunghe sembrano essere predominanti; un esempio è il Superammasso Idra-Centaur, il superammasso più vicino al nostro, che inizia ad una distanza di circa 100 milioni di anni luce e si estende fino a 200 milioni di anni luce.

Il Superammasso della Vergine e, di conseguenza anche il Gruppo Locale con la nostra Via Lattea, risulta essere parte del più grande Superammasso Laniakea, detto anche Superammasso Locale.

LANIAKEA E OLTRE

Il Superammasso Laniakea è, come appena visto, il superammasso di galassie in cui è compreso il Superammasso della Vergine, che contiene a sua volta il Gruppo Locale con la Via Lattea e, di conseguenza, il Sistema solare con la Terra.

I superammassi confinanti con Laniakea sono il Superammasso di Shapley, il Superammasso di Ercole, il Superammasso della Chioma e il Superammasso di Persseo-Pesci, di cui non sono chiari i contorni al momento della scoperta di Laniakea.

A loro volta, il Superammasso Laniakea e alcuni degli altri citati sono compresi all’interno della struttura a filamento chiamata **Complesso di Superammassi dei Pesci-Balena**, che è una delle più grandi strutture conosciute dell’Universo.

Laniakea fu individuato nel settembre 2014, quando un gruppo di astronomi pubblicò uno studio su un nuovo metodo per la definizione dei superammassi in accordo con le velocità relative delle galassie. La nuova definizione riduce il già esteso Superammasso della Vergine ad una mera appendice della megastruttura oggi nota come Laniakea, che a sua volta non è che una frazione dell’immenso complesso Pesci-Balena.
Carta dell'emisfero galattico nord con indicate le galassie fino alla magnitudine 13. Il centro della carta coincide col polo nord galattico, mentre la circonferenza esterna corrisponde all'equatore galattico.
Carta dell’emisfero galattico sud con indicate le galassie fino alla magnitudine 13. Il centro della carta coincide col polo sud galattico, mentre la circonferenza esterna corrisponde all’equatore galattico.
Carta dell’emisfero galattico nord con indicate le principali strutture a grande scala entro un raggio di un miliardo di anni luce. In blu le più vicine, a seguire le altre fino al rosso per le più lontane. Sono inclusi solo i gruppi, gli ammassi e i superammassi più importanti e la carta non è intesa per essere completa di tutte le strutture osservabili.
Carta dell’emisfero galattico sud con indicate le principali strutture a grande scala entro un raggio di un miliardo di anni luce. In blu le più vicine, a seguire le altre fino al rosso per le più lontane. Sono inclusi solo i gruppi, gli ammassi e i superammassi più importanti e la carta non è intesa per essere completa di tutte le strutture osservabili.
Illustrazione che mostra gli ammassi e i superammassi di galassie entro un raggio di un miliardo di anni luce dalla Via Lattea.
REGIONI CELESTI SCELTE
1. Gruppi di galassie nel Drago
2. Nubi e associazioni in Cefeo
3. L’Arco di Cassiopea
4. Galassie nell’Orsa Maggiore
5. Regione della Galassia di Bode
6. Gruppi di galassie nel Leone
7. Il cuore del Cigno
8. Ammassi di galassie fra Andromeda e Perseo
9. Sul Braccio di Perseo
10. Il Complesso di Orione
11. Gruppi stellari nell’Unicorno
12. Galassie nella Chioma
13. L’Ammasso della Vergine
14. Galassie sul bordo orientale della Vergine
15. La Vergine meridionale
16. La testa dello Scorpione
17. Lo Scorpione meridionale
18. Davanti al centro galattico
19. Galassie fra la Gru e il Pesce Australe
20. Gruppi di galassie fra Balena e Pesci
21. Le galassie della Fornace
22. Galassie fra l’Idra e la Macchina Pneumatica
23. Gruppi di galassie nel Centauro
24. Fra le zampe del Centauro
25. La Poppa settentrionale
26. L’Arco della Carena
27. Gruppi di galassie nel Pavone
28. Le Nubi di Magellano
IL POLO
NORD CELESTE
La parte meridionale del Drago al confine con l’Orsa Maggiore comprende alcune galassie di facile osservazione, la cui individuazione è per altro facilitata dalla presenza delle brillanti stelle del timone del Grande Carro; queste si rivelano di fondamentale aiuto anche alla luce della scarsa presenza di altre stelle apparenti nei dintorni.

Benché sia in apparenza povera di oggetti interessanti, il tratto di Via Lattea di Cefeo si presenta come uno dei più ricchi di nebulose dell’intera volta celeste, sebbene queste non siano visibili con la maggior parte della strumentazione in mano agli appassionati; ciò porta spesso gli amanti delle osservazioni visuali a non includere, se non marginalmente, questa regione nei loro programmi osservativi.

Fra Cefeo e Cassiopea, e in particolare fra le stelle α Cephei (Alderamin) e β Cassiopeiae (Sadr), è compreso uno dei tratti di Via Lattea più ricchi in assoluto di nebulose; in questa direzione infatti si possono osservare diverse regioni di formazione stellare sovrapposte una dietro l’altra lungo la nostra linea di vista, dalle più vicine, che appartengono al nostro Braccio di Orione, fino alle più lontane, sul Braccio di Perseo e oltre ancora.
lato del timone del Grande Carro si estende un’area di cielo povera di stelle appariscenti, situata al confine fra le costellazioni dell’Orsa Maggiore, del Drago e del Boote; è tuttavia interessante per via della presenza di alcuni gruppi di galassie relativamente appariscenti.

Questa regione si presenta molto alta nei cieli boreali durante le sere della tarda primavera e dell’inizio dell’estate, prima che il Triangolo Estivo prenda progressivamente il posto del Grande Carro come figura dominante.

CARATTERISTICHE

La parte meridionale del Drago al confine con l’Orsa Maggiore comprende alcune galassie di facile osservazione, la cui individuazione è per altro facilitata dalla presenza delle brillanti stelle del timone del Grande Carro; queste si rivelano di fondamentale aiuto anche alla luce della scarsa presenza di altre stelle appariscenti nei dintorni.

La gran parte delle galassie più appariscenti sono com prese in gruppi situati entro poche decine di milioni di anni luce dalla Via Lattea; fra queste spicca il gruppo della celebre M101, una delle galassie più brillanti ed estese del cielo, che si trova entro i confini dell’Orsa Maggiore.

I gruppi più remoti alla portata di piccoli strumenti invece si trovano a circa un centinaio di milioni di anni luce e formano una nube di galassie estesa per oltre una decina di gradi; a molte delle loro componenti si sovrappongono le galassie dei gruppi più vicini.

Oltre queste galassie, specialmente in direzione sud, si estende una delle regioni più povere di galassie appariscenti dell’intera volta celeste, dove mancano quasi del tutto galassie alla portata anche di grandi telescopi; ciò è dovuto alla presenza di alcuni grandi vuoti, ossia regioni dell’Universo quasi del tutto prive di galassie.

Fra questi, il più vicino è il Supervuoto Locale Settentrionale, esteso per 300 milioni di anni luce e col suo centro situato a 200 milioni di anni luce da noi; ciò lo rende il vuoto più vicino a noi ed è la principale causa dell’assenza di galassie brillanti fra Boote ed Ercole.

Più lontano ancora si trova invece il Vuoto del Boote, che possiede un diametro di 350 milioni di anni luce.
Fra le costellazioni del Drago, dell’Orsa Maggiore e del Boote si possono osservare alcuni gruppi sparsi di galassie, alcuni dei quali alla portata di piccoli strumenti.
Gli appassionati di astrofotografia possono provare a riprendere i remotissimi ammassi di galassie osservabili in questa direzione, molti dei quali situati a oltre un miliardo di anni luce; in alternativa possono cimentarsi nella ripresa dei gruppi di galassie più vicini, relativamente facili.

GRUPPI VICINI

Fra i gruppi in primo piano, il più importante non si trova nel Drago ma entro i confini dell’Orsa Maggiore ed è il Gruppo di M101, dal nome della sua galassia dominante; si tratta di un insieme piuttosto sparso, con 7 galassie membri conosciute, molte delle quali di facile osservazione sebbene spesso passino in secondo piano per via della presenza di M101. La distanza media del gruppo è di circa 20-25 milioni di anni luce e ciò lo colloca nella medesima regione di altri gruppi visibili nelle vicinanze, come il Gruppo di M51; tuttavia molte delle galassie visibili nel campo di M101 fanno parte di un gruppo molto più distante, che verrà trattato più avanti.

M101 domina il gruppo; è nota anche come Galassia Girandola ed è una galassia di grandi dimensioni. In condizioni eccezionali M101 può essere osservata anche con un semplice binocolo; infatti, grazie alla sua estensione e alla sua relativa vicinanza a noi, M101 è una delle galassie più brillanti del cielo, benché la sua luminosità sia piuttosto bassa, motivo per cui occorre un cielo molto buio e limpido per poterla scorgere facilmente. Individuare la sua posizione in cielo è facile, grazie alla presenza di un’apparizione concatenazione di stelle di sesta e settima magnitudine ad est della brillante stella Mizar. Le sue dimensioni impongono l’uso di ingrandimenti abbastanza bassi per la sua osservazione; occorre comunque un telescopio di almeno 250mm per iniziare a distinguere il nucleo, più brillante, e i frammenti dei bracci a spirale. Gli stessi bracci offrono, in buone condizioni, un bello spettacolo con un telescopio da 400mm a largo campo. M101 è una galassia di notevole estensione se comparata con la Via Lattea; secondo diversi studi la sua massa sarebbe di circa 16 miliardi di masse solari, ma sembrerebbe essere un valore troppo basso, forse dovuto alla bassa luminosità superficiale della galassia; secondo le nuove scoperte, che comprendono l’individuazione di regioni H II e una forte velocità di rotazione, la massa di M101 sarebbe

PRINCIPALI OGGETTI NON STELLARI

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NGC 5204</td>
<td>13h 29m 37s</td>
<td>+58° 25' 07"</td>
<td>Gal</td>
<td>11,1</td>
<td>5,0</td>
<td></td>
</tr>
<tr>
<td>NGC 5218</td>
<td>13h 32m 08s</td>
<td>+62° 44' 00"</td>
<td>Gal</td>
<td>12,3</td>
<td>1,8</td>
<td></td>
</tr>
<tr>
<td>NGC 5308</td>
<td>13h 47m 00s</td>
<td>+60° 58' 23"</td>
<td>Gal</td>
<td>11,4</td>
<td>3,7</td>
<td></td>
</tr>
<tr>
<td>NGC 5322</td>
<td>13h 49m 15s</td>
<td>+60° 11' 26"</td>
<td>Gal</td>
<td>10,1</td>
<td>6,0</td>
<td></td>
</tr>
<tr>
<td>NGC 5376</td>
<td>13h 55m 16s</td>
<td>+59° 30' 24"</td>
<td>Gal</td>
<td>12,1</td>
<td>2,1</td>
<td></td>
</tr>
<tr>
<td>NGC 5377</td>
<td>13h 56m 17s</td>
<td>+47° 14' 09"</td>
<td>Gal</td>
<td>11,3</td>
<td>4,7</td>
<td></td>
</tr>
<tr>
<td>NGC 5389</td>
<td>13h 56m 06s</td>
<td>+59° 44' 31"</td>
<td>Gal</td>
<td>12,0</td>
<td>4,1</td>
<td></td>
</tr>
<tr>
<td>NGC 5422</td>
<td>14h 00m 42s</td>
<td>+55° 09' 52"</td>
<td>Gal</td>
<td>12,0</td>
<td>3,9</td>
<td></td>
</tr>
<tr>
<td>NGC 5430</td>
<td>14h 00m 46s</td>
<td>+59° 19' 42"</td>
<td>Gal</td>
<td>12,0</td>
<td>2,3</td>
<td></td>
</tr>
<tr>
<td>NGC 5448</td>
<td>14h 02m 50s</td>
<td>+49° 10' 22"</td>
<td>Gal</td>
<td>11,2</td>
<td>3,8</td>
<td></td>
</tr>
</tbody>
</table>
| M101 | 14h 03m 12s | +54° 20' 00" | Gal | 8,3 | 28,8 | Gal.Girandola
| NGC 5473 | 14h 04m 43s | +54° 53' 33" | Gal | 11,4 | 2,2 |
| NGC 5474 | 14h 05m 02s | +53° 39' 44" | Gal | 10,6 | 4,7 |
| NGC 5480 | 14h 06m 22s | +50° 43' 30" | Gal | 12,3 | 1,6 |
| NGC 5485 | 14h 07m 11s | +55° 00' 06" | Gal | 11,3 | 2,3 |
| NGC 5585 | 14h 19m 48s | +56° 43' 45" | Gal | 10,5 | 5,8 |
| NGC 5602 | 14h 22m 19s | +50° 30' 05" | Gal | 12,5 | 1,5 |
| NGC 5631 | 14h 26m 33s | +56° 34' 07" | Gal | 11,4 | 1,7 |
| NGC 5660 | 14h 29m 50s | +49° 37' 22" | Gal | 11,7 | 2,7 |
| NGC 5667 | 14h 30m 23s | +59° 28' 11" | Gal | 12,5 | 1,7 |
| NGC 5673 | 14h 31m 31s | +49° 57' 31" | Gal | 12,5 | 2,4 |
| IC 1029 | 14h 32m 27s | +49° 54' 16" | Gal | 12,5 | 2,6 |
| NGC 5676 | 14h 32m 48s | +49° 27' 28" | Gal | 11,2 | 4,0 |
| NGC 5678 | 14h 32m 06s | +57° 55' 17" | Gal | 11,4 | 3,3 |
| NGC 5687 | 14h 34m 52s | +54° 28' 33" | Gal | 11,7 | 2,5 |
| NGC 5689 | 14h 35m 30s | +48° 44' 30" | Gal | 11,9 | 3,3 |
| NGC 5820 | 14h 58m 40s | +53° 53' 10" | Gal | 12,3 | 1,3 |
| NGC 5866 | 15h 16m 30s | +55° 46' 00" | Gal | 10,0 | 5,2 | Galassia Fusco
| NGC 5874 | 15h 07m 52s | +54° 45' 10" | Gal | 12,5 | 2,3 |
| NGC 5879 | 15h 09m 47s | +57° 00' 01" | Gal | 11,4 | 4,2 |
| NGC 5894 | 15h 11m 41s | +59° 48' 32" | Gal | 12,7 | 3,0 |
| NGC 5905 | 15h 15m 23s | +55° 31' 03" | Gal | 12,1 | 4,0 |
| NGC 5907 | 15h 15m 54s | +56° 19' 44" | Gal | 10,3 | 11,0 |
| NGC 5908 | 15h 16m 43s | +55° 24' 33" | Gal | 12,0 | 3,3 |
| NGC 5963 | 15h 33m 28s | +56° 33' 35" | Gal | 12,3 | 3,3 |
| NGC 5965 | 15h 34m 03s | +56° 41' 08" | Gal | 11,9 | 5,2 |
| NGC 5982 | 15h 38m 50s | +59° 21' 21" | Gal | 11,0 | 2,6 |
| NGC 5985 | 15h 39m 37s | +59° 19' 55" | Gal | 11,1 | 5,5 |
| NGC 5987 | 15h 39m 57s | +58° 04' 46" | Gal | 11,9 | 4,2 |
| NGC 6015 | 15h 51m 25s | +62° 18' 36" | Gal | 11,0 | 5,4 |

M101 è una grande galassia spirale vista di faccia, con un lato deformato a seguito dell’interazione con un’altra galassia vicina.
compresa fra 100 e 1000 miliardi di masse solari. Da un lato la galassia presenta un’asimmetria, che si crede si sia formata in tempi astronomicamente recenti a causa dell’interazione con una delle sue galassie satellite (forse NGC 5474), che ne ha deformato i bracci a causa delle potenti forze mareali. Inoltre, questo incontro ha amplificato le onde di densità dei bracci della galassia, che ha causato a sua volta la compressione del mezzo interstellare con conseguente aumento dell’attività di formazione stellare. La sua distanza è stimata sui 23,8 milioni di anni luce.

Meno di un grado a sudest si osserva NGC 5474, che fra le galassie fisicamente legate a M101 è la più vicina; può essere individuata anche con strumenti da 100mm, dove appare come una piccola macchia quasi circolare, mentre con strumenti di diametro maggiore può rendersi visibile una leggera deformazione con un alone chiaro sul lato meridionale. È un raro esempio di galassia nana a spirale, sebbene i suoi bracci siano irregolari.

NGC 5204 è fra le galassie membri del gruppo la più remota, nonché la più vicina a noi, trovandosi a una distanza di 14 milioni di anni luce; ciò nonostante, è meno appariscente delle altre galassie già descritte, tanto da essere fuori portata per strumenti di diametro inferiore ai 120-140mm. Con telescopi da 150mm appare come una macchia ellissoidale molto sfuocata allungata in senso nord-sud. Si tratta di una galassia nana di tipo magellano, situata 4 gradi a nord di Mizar; il suo diametro è di circa 19.000 anni luce lungo il suo asse maggiore e presenta un accenno di bracci di spirale. Benché le sue dimensioni siano maggiori della Grande Nube di Magellano, la distribuzione delle sue stelle è molto più diffusa, tanto che la massa totale della galassia è appena il 10% della Grande Nube. Come molte galassie irregolari, anche questa appare ricca di polveri e gas, sebbene la formazione stellare proceda a stento, tanto che mancano del tutto grandi regioni di formazione stellare; tuttavia la sua caratteristica più notevole si osserva ai raggi X ed è una sorgente ultraluminosa situata a breve distanza dal suo nucleo: la sua natura resta controversa, ma potrebbe trattarsi, secondo le teorie più accreditate, di un buco nero di massa intermedia accompagnato da una stella molto massiccia la cui massa viene erosa dal buco nero stesso.

Le altre galassie membri sono decisamente meno appariscenti e fuori dalla portata di piccoli strumenti.

Il secondo fra i gruppi vicini della regione è il Gruppo di NGC 5866, compreso interamente nel Drago a sud-ovest della stella ι Draconis, di magnitudine 3,3. Si tratta di un gruppo molto esiguo, formato da appena tre galassie, ed è situato a circa 40-50 milioni di anni luce; secondo alcuni studi, a queste ne andrebbe aggiunta anche una quarta, NGC 5963. Nel medesimo campo visivo si osserva anche un gruppo di galassie più lontano, che...
verrà descritto in seguito.

La galassia più famosa del gruppo è la celebre Galassia Fuso (NGC 5866), una galassia classificata come spirale, vista esattamente di taglio e dunque estremamente appiattita; si individua circa 5 gradi a sudovest della stella ι Draconis. Molti astronomi ritengono che la Galassia Fuso sia l’oggetto M102, l’unico “oggetto perduto” rimasto tale nel Catalogo di Messier; è stata probabilmente scoperta da Pierre Méchain o Charles Messier nel 1781 e indipendentemente riscoperta da William Herschel nel 1788. Secondo altri studiosi invece M102 non sarebbe altro che una riosservazione accidentale della Galassia Girandola (M101), nell’Orsa Maggiore.

La sua distanza è di circa 40 milioni di anni luce e il suo diametro angolare di 5,2' corrisponde a circa 60.000 anni luce. È visibile anche con un telescopio da 80mm, con il quale si osserva come un lungo fuso chiaro orientato in senso nordest-sudovest; anche con strumenti di diametro maggiore non si notano ulteriori dettagli e il suo aspetto permane fusiforme e sottile. La galassia presenta un disco di polveri scure che la attraversa in senso longitudinale, caratteristica abbastanza insolita per una galassia creduta inizialmente di tipo lenticolare: nella maggior parte di queste infatti il disco di polveri è sempre in prossimità del bulge, mentre in questo caso potrebbe avere una forma ad anello, ma la sua reale morfologia fisica è di difficilissima osservazione per via della visuale che noi dalla Terra abbiamo dell’oggetto, ovvero esattamente di taglio. Per lo stesso motivo oggi si ritiene che sia una galassia spirale e in questo caso la banda di polveri non sarebbe così insolita.

Circa 2 gradi a nordest si trova la galassia NGC 5907, anch’essa di facile osservazione anche se un po’ meno appariscente della precedente; si individua con strumenti da 100mm, dove appare come un lungo fuso simile alla galassia precedente, ma orientato in senso nordovest-sudest. È stata a lungo considerata una galassia spirale compressa, con un diametro di 45.000 anni luce, situata alla distanza di 41 milioni di anni luce. Nel medesimo campo visivo si osserva anche la galassia NGC 5879, situata a 400 milioni di anni luce, è stata a lungo considerata un esempio di galassia spirale barrata con un nucleo medio-piccolo e dei bracci di spirale ben avvolti e parzialmente ramificati, con un diametro di 120-140.000 anni luce.

Secondo alcuni studi, al Gruppo di NGC 5866 appartiene anche la galassia NGC 5963, una spirale di dimensioni intermedie, con un diametro di 30.000 anni luce e una distanza di 36 milioni di anni luce; la sua debole luminosità tuttavia la pone al di là della portata dei piccoli diametri e può essere notata solo con strumenti da 200-250mm.

GRUPPI LONTANI

I gruppi di galassie più popolosi visibili con strumenti di
Il diametro comune in questa regione celeste si trovano tutti entro una fascia di distanza compresa fra 90 e 150 milioni di anni luce. Fra questi il più vicino è noto con la sigla LGG 360 e si trova circa 5-6 gradi a NNW della galassia M101; comprende una decina di galassie tutte situate a circa 90 milioni di anni luce di media.

Fra queste la più appariscente è NGC 5322, una galassia ellittica di notevoli dimensioni reali situata circa 6 gradi a nordest di Mizar. Può essere notata anche con telescopi da 80mm di diametro, con cui appare come una sorta di stellina sfocata leggermente allungata in senso est-ovest; con telescopi più grandi si può notare un alone più esteso attorno al nucleo. Il suo diametro reale è di circa 140.000 anni luce ed è situata a circa 85 milioni di anni luce di distanza; possiede un nucleo attivo di tipo LINER, con un buco nero supermassiccio la cui massa non è stata stabilita con certezza. Osservata alle onde radio, la galassia è una sorgente debole e presenta due getti simmetrici che si originano nel nucleo, con una lunghezza di oltre 5000 anni luce.

Meno appariscente è la galassia NGC 5308, visibile con strumenti da 120mm come un sottile fuso chiaro orientato in senso nordest-sudovest, con un nucleo più luminoso al centro; si tratta di una galassia lenticolare vista di taglio, con una ricca popolazione di ammassi globulari molto voluminosi e visibili direttamente nelle foto riprese dal Telescopio Spaziale Hubble, che appaiono come piccoli puntini luminosi che circondano la galassia. È accompagnata da una galassia nana irregolare molto più piccola, nota come PGC 2802348. La distanza di NGC 5308 è stimata sui 95 milioni di anni luce.

Le altre galassie del gruppo sono meno appariscenti e possono essere notate solo con strumenti da 200mm a salire; si distribuiscono principalmente a sudest delle due galassie principali, entro un’area di 4 gradi di diametro.

Il gruppo di galassie visibile sullo sfondo rispetto alla galassia M101 è noto come Gruppo di NGC 5485 o con la sigla LGG 373; si trova alla distanza media di 90 milioni di anni luce e comprende 8 membri, più una popolazione di galassie sparse per alcuni gradi verso nordest. Queste galassie sono sempre ben visibili nelle foto a grande campo di M101 e si confondono con quelle realmente associate ad essa.

Fra le più notevoli vi è NGC 5485, che però è alla portata solo di strumenti da 120mm di diametro; si trova meno di un grado a nordest di M101 e appare come una sorta di debole stella sfocata, senza ulteriori dettagli; con strumenti più aperti si evidenzia un leggero alone vagamente allungato. Si tratta di una galassia lenticolare vista con una bassa angolazione, situata a circa 90 milioni di anni luce e con un diametro di circa 90.000 anni luce; il suo nucleo sembra attraversato da alcune venature di polveri.

NGC 5473 si osserva invece circa 20 minuti d’arco a NNE di M101 e presenta un aspetto molto simile alla precedente, solo appena più piccola; con strumenti da 120mm si mostra come una stella sfocata molto debole, mentre l’alone diventa più chiaro con telescopi da 200mm. Anche in questo caso si tratta di una galassia lenticolare vista quasi di faccia, la cui distanza è però leggermente superiore, sui 96 milioni di anni luce; le dimensioni reali dunque sono molto simili a quelle della precedente, posta in primo piano. Sono inoltre qui assenti le bande di polveri che attraversano il nucleo dell’altra galassia.

Più debole appare la galassia NGC 5422, ma soprattutto perché, a differenza delle altre due, appare vista perfettamente di taglio; è anch’essa infatti una galassia lenticolare, situata a circa 87 milioni di anni luce, che diven-
La visibile con strumenti da 180-200mm come un sottile fuso chiaro. Le sue dimensioni sono pari a circa 95.000 anni luce.

Circa 6 gradi a sudest di M101, entro i confini del Boo-te, si trova il Gruppo di NGC 5676, noto anche come LGG 384; è formato da una decina di galassie di dimensioni medio-grandi, situate alla distanza media di 100 milioni di anni luce. La loro individuazione è facilitata dalla presenza del gruppo di stelle dominato dalla θ Bootis, di magnitudine 4,04.

L’unica galassia alla portata di piccoli diametri è NGC 5676, visibile con strumenti da 120mm come una macchia chiara molto debole e allungata in senso nordest-sudovest; si tratta di una spirale semplice dalla forma asimmetrica: i bracci di spirale sul lato meridionale appaiono irregolari e caotici, mentre sul lato settentrionale questi sono molto ben definiti. Inoltre, il disco appare più esteso sul lato meridionale, fino al doppio rispetto al lato nord, mentre il lato nord ospita i maggiori fenomeni di formazione stellare. La sua distanza è stimata sui 100 milioni di anni luce.

A breve distanza verso WNW si trova NGC 5660, un po’ meno appariscente ma alla portata di telescopi da 150mm, con cui si mostra come una macchia di forma irregolare molto pallida. Si tratta di una galassia spirale vista di faccia e leggermente asimmetrica, con una barra estremamente piccola e appena tracciata, da cui partono i bracci di spirale spessi ma parzialmente frammentati e ricchi di globuli più densi; il nucleo è molto piccolo. La sua distanza è stimata sui 109 milioni di anni luce.

NGC 5689 è la più meridionale del gruppo ed è ancora meno appariscente; si tratta di una galassia spirale vista quasi di taglio e distante 102 milioni di anni luce, alla portata di telescopi da 150-180mm a salire.

Fra i più remoti vi è il Gruppo di NGC 5908, cui si sovrappongono lungo la medesima linea di vista le galassie del già descritto Gruppo di NGC 5866; la sua distanza è stimata sui 150 milioni di anni luce e consta di 7 galassie, due delle quali (NGC 5905 e NGC 5908) sono visibili con strumenti da 150mm e compaiono molto spesso nelle foto a grande campo di NGC 5907 e NG 5866.

NGC 5908 è la più appariscente del gruppo ed è una galassia spirale vista di taglio, probabilmente con una piccola barra centrale a causa della debole struttura chiara a X che sembra sovrimporsi al suo nucleo e che si evidenzia in alcune foto; ciò nonostante, viene spesso catalogata come una spirale semplice. Con strumenti da 150mm appare come uno stretto fuso chiaro orientato in senso NNW-SSE; nelle fotografie si evidenzia chiaramente una banda scura che attraversa il piano longitudinalmente e che la fa rassomigliare a una versione molto ridotta della famosa Galassia Sombrero (M104). La sua distanza è di circa 140-150 milioni di anni luce e la sua massa è composta in massima parte da un grande alone di materia oscura, stimato in alcuni studi come pari a ben 10 mila miliardi di masse solari, rendendola di fatto una delle galassie più massicce entro un raggio di 150 milioni di anni luce da noi; la massa espressa in stelle è invece pari a 250 miliardi di masse solari, non troppo dissimile da quella della Via Lattea.

A breve distanza angolare e a circa 4-5 milioni di anni luce da questa, si trova la galassia NGC 5905, una spirale barrata vista quasi di faccia; appare in un telescopio da 150mm come una macchia tondeggiante molto vaga e sfuocata, mentre in fotografia si rivelano facilmente i suoi due bracci di spirale principali, che si presentano molto aperti e con ramificazioni che si richiudono seguendo il disco galattico. La sua distanza è stimata sui 50
145-155 milioni di anni luce.
Più debole ancora appare la galassia NGC 5874, di morfologia a spirale, mentre la più remota del gruppo, NGC 5820, è una galassia lenticolare di dimensioni più contenute e vista quasi di taglio, con una morfologia deformata tanto da essere stata compresa nel catalogo delle galassie peculiari di Halton Arp.

A una distanza simile (160 milioni di anni luce) ma in posizione più isolata si trova NGC 5965, una galassia spirale di grandi dimensioni reali, tanto che il suo diametro è stimato sui 260.000 anni luce; è di tipo a spirale ed è vista quasi perfettamente di taglio, con un bulge a forma di X tipico delle spirali barrate. Con strumenti da 150mm appare come un fuso molto debole e relativamente esteso, fino a 5'. Il suo piano è attraversato da una densa cintura di polveri e appare disturbato verso i bordi, mostrando un debole warp; possiede un nucleo attivo di tipo LINER.

Il Gruppo di NGC 5985, infine, è relativamente compatto e si trova a metà via fra le stelle τ e 0 Draconis; è formato da 4 galassie, due delle quali sono alla portata di strumenti di piccolo-medio diametro, e si trova mediamente a circa 120 milioni di anni luce di distanza.
NGC 5985 è la galassia dominante del gruppo; può essere osservata con strumenti da 120mm o persino inferiori, dove si mostra come una sorta di stella molto debole circondata da un piccolo alone leggermente allungato in senso nord-sud, meglio evidente con telescopi di diametro maggiore. È una galassia spirale di grandi dimensioni, con un diametro stimato sui 190.000 anni luce; presenta una barra molto piccola che attraversa un nucleo di dimensioni medio-piccole rispetto al disco, mentre i bracci sono ben delineati e avvolti e presentano numerose piccole diramazioni sul lato più esterno. La sua distanza è stimata sui 120 milioni di anni luce.

Pochi minuti d’arco verso ovest si trova NGC 5982, una galassia ellittica moderatamente allungata; con strumenti da 120mm appare come una piccola chiazza chiara evidentemente allungata in senso est-ovest, priva di ulteriori dettagli, così come appare anche in strumenti di diametro maggiore. La sua distanza è stimata sui 130 milioni di anni luce e il suo diametro reale è di 110.000 anni luce almeno; la sua struttura con diversi gusci stellari concentrici è interpretata come il risultato della fusione con un’altra galassia ellittica più piccola avvenuta in passato. Il suo nucleo contiene un buco nero supermassicchio la cui massa è stata stimata sugli 830 milioni di masse solari.
Ancora più a ovest si trova NGC 5981, una galassia spirale vista di taglio e molto più debole, tanto da essere fuori dalla portata di strumenti inferiori ai 250mm almeno; la sua appartenenza al gruppo è controversa, dato che alcune stime la indicano come posta a 86 milioni di anni luce di distanza. Le tre galassie costituiscono un facile soggetto per le riprese astrofotografiche in alta definizione.

Circa un grado e mezzo più a sud si osserva la galassia NGC 5987, visibile con strumenti da 120-140mm con un po’ di difficoltà; si tratta di una spirale vista quasi di taglio, che è considerata un membro certo del Gruppo di NGC 5985.

GALASSIE ISOLATE

Nell’area di cielo fra M101 e NGC 5866 sono presenti diverse galassie sparse e di campo, mediamente situate alla distanza di 90-100 milioni di anni luce e dunque nella medesima regione fisica degli ultimi gruppi descritti, in particolare il Gruppo di NGC 5485, LGG 360 e LGG 384.

Fra queste spicca NGC 5448, visibile circa 3 gradi a est della stella Alkaid; con telescopi da 120mm appare come una macchia chiara allungata in senso est-ovest. Si
La galassia NGC 5448.

tratta di una spirale barrata di grandi dimensioni, con un diametro pari a 105.000 anni luce almeno; la sua distanza è invece stimata sui 95 milioni di anni luce. Presenta un nucleo di tipo LINER.

Circa 3 gradi a sudovest si trova la galassia NGC 5377, anch’essa alla portata di telescopi da 120mm, sebbene con qualche difficoltà; con strumenti da 150mm è evidente la sua forma allungata in senso nordest-sudovest. È una spirale barrata con una barra molto prominente e un nucleo assai compatto; dalle due estremità partono due bracci molto ben marcati e aperti, sebbene tenui, che compiono mezzo giro attorno al bulge. Le sue dimensioni reali si aggirano sui 110.000 anni luce e la sua distanza è stimata sugli 84 milioni di anni luce.

NGC 5631 si individua circa 5 gradi a nordest di M101, o 1 grado a ESE della galassia NGC 5585; è alla portata di telescopi da 120mm e appare come una stella sfuocata e molto debole, con un leggerissimo alone attorno. Strumenti più aperti non consentono di individuare ulteriori dettagli, a parte un alone un po’ più marcato ed esteso. Si tratta di una galassia lenticolare vista di faccia, con un nucleo molto ben marcatto e un disco del tutto privo di dettagli; è anche una galassia attiva di tipo Seyfert 2. La sua distanza è stimata sui 93 milioni di anni luce circa.

Circa 2 gradi a nordest si trova NGC 5678, anch’essa visibile con strumenti da 120mm; appare come una macchia di aspetto ellittico e sfumato, allungata in senso nord-sud. È una galassia spirale barrata vista con una forte angolazione, con un nucleo attivo e una barra molto piccola da cui partono degli spropositi marcati e aperti, sebbene tenui, che compiono mezzo giro attorno al bulge. Le sue dimensioni reali si aggirano sui 85.000 anni luce e la sua distanza è stimata sugli 92 milioni di anni luce circa.

Alcuni gradi più a sud si osserva anche la galassia NGC 5687, che però è meno luminosa e può essere notata con telescopi da 150mm; distante 102 milioni di anni luce, è di morfologia lenticolare e si presenta di aspetto allungato in senso est-ovest.

In posizione molto distaccata, circa 4 gradi a ovest della stella η Draconis, di magnitudine 2,7, si trova la galassia NGC 6015; appare isolata rispetto ad altre galassie altrettanto appariscenti e può essere notata anche con strumenti da 100mm, sebbene con difficoltà. Con telescopi da 120mm appare come una macchia chiara allungata leggermente in senso nordest-sudovest, senza un’apparente maggiore luminosità al centro. È una galassia spirale priva di barra, situata a 45 milioni di anni luce di distanza e dunque in primo piano rispetto alle altre galassie di campo fin qui descritte, più vicina al Gruppo di NGC 5866.

Un cenno infine alla coppia di galassie interagenti NGC 5218 e NGC 5216, note collettivamente con la sigla Arp 104 o col nome proprio di Sistema di Keenan; la più brillante è NGC 5218 ed è una galassia ellittica, mentre la compagna è una spirale molto deformata e con bracci disallineati rispetto al disco. Le due galassie sono unite da un punte di materia lungo circa 124.000 anni luce, formatosi a seguito dell’interazione gravitazionale iniziata circa 300 milioni di anni fa. La loro distanza è stimata sui 137 milioni di anni luce.

Alcuni gradi più a sud si trova NGC 5448, anch’essa alla portata di telescopi da 120mm; appare come una stella sfuocata e molto debole, con un leggerissimo alone attorno. Strumenti più aperti non consentono di individuare ulteriori dettagli, a parte un alone un po’ più marcato ed esteso. Si tratta di una galassia lenticolare vista di faccia, con un nucleo molto ben marcatto e un disco del tutto privo di dettagli; è anche una galassia attiva di tipo Seyfert 2. La sua distanza è stimata sugli 93 milioni di anni luce circa.

Circa 2 gradi a nord si trova NGC 5687, anch’essa visibile con strumenti da 120mm; appare come una macchia di aspetto ellittico e sfumato, allungata in senso nord-sud. È una galassia spirale barrata vista con una forte angolazione, con un nucleo attivo e una barra molto piccola da cui partono gli spropositi marcati e aperti, sebbene tenui, che compiono mezzo giro attorno al bulge. Le sue dimensioni reali si aggirano sui 85.000 anni luce e la sua distanza è stimata sugli 92 milioni di anni luce circa.

Alcuni gradi più a sud si osserva anche la galassia NGC 5687, che però è meno luminosa e può essere notata con telescopi da 150mm; distante 102 milioni di anni luce, è di morfologia lenticolare e si presenta di aspetto allungato in senso est-ovest.

In posizione molto distaccata, circa 4 gradi a ovest della stella η Draconis, di magnitudine 2,7, si trova la galassia NGC 6015; appare isolata rispetto ad altre galassie altrettanto appariscenti e può essere notata anche con strumenti da 100mm, sebbene con difficoltà. Con telescopi da 120mm appare come una macchia chiara allungata leggermente in senso nordest-sudovest, senza un’apparente maggiore luminosità al centro. È una galassia spirale priva di barra, situata a 45 milioni di anni luce di distanza e dunque in primo piano rispetto alle altre galassie di campo fin qui descritte, più vicina al Gruppo di NGC 5866.

Un cenno infine alla coppia di galassie interagenti NGC 5218 e NGC 5216, note collettivamente con la sigla Arp 104 o col nome proprio di Sistema di Keenan; la più brillante è NGC 5218 ed è una galassia ellittica, mentre la compagna è una spirale molto deformata e con bracci disallineati rispetto al disco. Le due galassie sono unite da un punte di materia lungo circa 124.000 anni luce, formatosi a seguito dell’interazione gravitazionale iniziata circa 300 milioni di anni fa. La loro distanza è stimata sui 137 milioni di anni luce.

Coloro che sono dotati di strumentazione astrofotografica di qualità potrebbero cimentarsi nella ripresa di alcuni ammassi di galassie remoti. Fra questi si segnala Abell 1999, visibile fra ι Draconis e 0 Bootis; non è particolarmente attraente se confrontato con altri ammassi ben più famosi, ma trovandosi a circa un miliardo di anni luce è uno degli ammassi più remoti alla portata di strumentazione amatoriale relativamente facile da procurare. Le sue galassie più brillanti sono di magnitudine 15 e sono la spirale PGC 53221 e l’ellittica PGC 2460838.

Pochi minuti d’arco più a nord si trova Abell 2000, dominato dalla galassia ellittica PGC 140413, di magnitudine 15.
La Via Lattea in direzione di Cefeo appare fortemente oscurata, tanto che anche a occhio nudo non si notano campi stellari di rilievo; è tuttavia molto ricca di oggetti e in particolare di nebulose, molte delle quali però individuabili solo nelle fotografie.

Trovandosi direttamente stretta fra le apparentemente più interessanti regioni del Cigno e di Cassiopea, spesso questa zona viene trascurata soprattutto dai visualisti, ma è al contrario ben nota agli astrofotografi.

CARATTERISTICHE

Benché sia in apparenza povera di oggetti interessanti, il tratto di Via Lattea di Cefeo si presenta come uno dei più ricchi di nebulose dell’intera volta celeste, sebbene queste non siano visibili con la maggior parte della strumentazione in mano agli appassionati; ciò porta spesso gli amanti delle osservazioni visuali a non includere, se non marginalmente, questa regione nei loro programmi osservativi.

Osservando con la maggior parte dei telescopi più comuni infatti questa regione appare semplicemente come un campo stellare relativamente ricco di stelle di fondo, con alcuni piccoli addensamenti osservabili anche a occhio nudo.

Fra questi campi sono identificabili alcuni ammassi aperti, ben risolvibili sebbene non particolarmente luminosi, mentre solo un paio di nebulose sono alla portata di questi telescopi.

Fra le stelle di fondo si possono riconoscere alcuni gruppi stellari che mostrano un colore azzurro; si tratta dei membri delle numerose associazioni OB qui osservabili, come Cepheus OB2, Cepheus OB3, Cepheus OB6 e, più in disparte, Cepheus OB4 (che verrà trattata nel capitolo successivo, sull’Arco di Cassiopea).

Chi è dotato di apparecchiatura astrofotografica, al contrario, avrà alla portata dei suoi strumenti un numero davvero notevole di nebulose, dalle dimensioni più svariate e facilmente fotografabili, talvolta persino dai cieli suburban. Si tratta del corteo nebuloso che accompagna le associazioni OB sopra menzionate, reso luminoso dai fronti di ionizzazione delle stelle più calde e massicce.

La maggior parte di queste nebulose si trovano sul lato meridionale di Cefeo e verso il confine con Cassiopea, mentre la parte settentrionale è popolata da alcune nebu-
La Via Lattea in direzione di Cefeo è particolarmente ricca di nebulose, che sebbene non siano alla portata di piccoli strumenti, si rivelano molto belle nelle foto astronomiche.
L’ASSOCIAZIONE CEPHEUS OB2

L'area di cielo in cui si trova l'associazione Cepheus OB2 occupa la porzione meridionale della costellazione di Cefeo, lungo la Via Lattea boreale; le sue componenti stellari si confondono facilmente con i ricchi campi di stelle delle associazioni sopra menzionate.

PRINCIPALI OGGETTI NON STELLARI

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NGC 6939</td>
<td>20h 31m 30s</td>
<td>+60° 40'</td>
<td>A Ap</td>
<td>7,8</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>B150</td>
<td>20h 50m</td>
<td>+60° 18'</td>
<td>Osc</td>
<td>-</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>NGC 7023</td>
<td>21h 00m 30s</td>
<td>+68° 10'</td>
<td>A+N</td>
<td>7,7</td>
<td>10</td>
<td>Neb. Iride</td>
</tr>
<tr>
<td>Sh2-129</td>
<td>21h 11m</td>
<td>+59° 57'</td>
<td>Neb</td>
<td>-</td>
<td>140</td>
<td></td>
</tr>
<tr>
<td>B152</td>
<td>21h 14m 29s</td>
<td>+61° 44' 00''</td>
<td>Osc</td>
<td>-</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>vdB 140</td>
<td>21h 17m 19s</td>
<td>+58° 36' 41''</td>
<td>Neb</td>
<td>-</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Sh2-133</td>
<td>21h 29m</td>
<td>+64° 18'</td>
<td>Neb</td>
<td>-</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>Sh2-134</td>
<td>22h 12m</td>
<td>+58° 59'</td>
<td>Neb</td>
<td>-</td>
<td>160</td>
<td></td>
</tr>
<tr>
<td>Sh2-140</td>
<td>22h 19m 18s</td>
<td>+63° 18' 49''</td>
<td>Neb</td>
<td>-</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>vdB 141</td>
<td>21h 16m 26s</td>
<td>+68° 15' 37''</td>
<td>Neb</td>
<td>-</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>vdB 142</td>
<td>21h 37m 36s</td>
<td>+56° 13' 00''</td>
<td>Neb</td>
<td>-</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>IC 1396</td>
<td>21h 39m</td>
<td>+57° 30'</td>
<td>A+N</td>
<td>-</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>vdB 143</td>
<td>21h 36m 57s</td>
<td>+68° 11' 07''</td>
<td>Neb</td>
<td>-</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>B160</td>
<td>21h 37m 58s</td>
<td>+56° 13' 00''</td>
<td>Osc</td>
<td>-</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>NGC 7129</td>
<td>21h 42m 59s</td>
<td>+66° 06' 47''</td>
<td>Neb</td>
<td>11,5</td>
<td>7</td>
<td>(vdB 146)</td>
</tr>
<tr>
<td>NGC 7133</td>
<td>21h 44m 27s</td>
<td>+66° 10' 06''</td>
<td>Neb</td>
<td>-</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>NGC 7139</td>
<td>21h 46m 09s</td>
<td>+63° 47' 31''</td>
<td>NP</td>
<td>13,3</td>
<td>1,2</td>
<td></td>
</tr>
<tr>
<td>NGC 7142</td>
<td>21h 45m 20s</td>
<td>+65° 46' 49''</td>
<td>A Ap</td>
<td>9,3</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>NGC 7160</td>
<td>21h 53m 36s</td>
<td>+62° 36'</td>
<td>A Ap</td>
<td>6,1</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>B169</td>
<td>21h 58m 52s</td>
<td>+58° 45' 00''</td>
<td>Osc</td>
<td>-</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>B170</td>
<td>21h 58m 02s</td>
<td>+58° 57' 00''</td>
<td>Osc</td>
<td>-</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>vdB 152</td>
<td>22h 13m 25s</td>
<td>+70° 15' 05''</td>
<td>Neb</td>
<td>-</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>NGC 7235</td>
<td>22h 12m 24s</td>
<td>+57° 16'</td>
<td>A Ap</td>
<td>7,7</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Sh2-140</td>
<td>22h 19m</td>
<td>+63° 17'</td>
<td>Neb</td>
<td>-</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>NGC 7261</td>
<td>22h 20m 07s</td>
<td>+58° 07' 41''</td>
<td>A Ap</td>
<td>8,4</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Sh2-132</td>
<td>22h 19m</td>
<td>+56° 05'</td>
<td>Neb</td>
<td>-</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Sh2-135</td>
<td>22h 22m</td>
<td>+58° 44'</td>
<td>Neb</td>
<td>-</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>NGC 7354</td>
<td>22h 40m 20s</td>
<td>+61° 17' 09''</td>
<td>NP</td>
<td>10,2</td>
<td>0,3</td>
<td></td>
</tr>
<tr>
<td>NGC 7380</td>
<td>22h 47m 18s</td>
<td>+58° 08'</td>
<td>A Ap</td>
<td>7,2</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Sh2-142</td>
<td>22h 47m</td>
<td>+58° 03'</td>
<td>Neb</td>
<td>-</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Sh2-154</td>
<td>22h 52m</td>
<td>+61° 10'</td>
<td>Neb</td>
<td>-</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>NGC 7429</td>
<td>22h 55m 53s</td>
<td>+59° 57' 36''</td>
<td>A Ap</td>
<td>8,5</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Sh2-155</td>
<td>22h 52m</td>
<td>+62° 29'</td>
<td>Neb</td>
<td>10</td>
<td>50</td>
<td>Neb. Grotta</td>
</tr>
</tbody>
</table>
Una precedente generazione di stelle massicce, le cui compagne superstiti possono essere ricercate fra i membri dell'ammasso aperto NGC 7160.

IC 1396 è una designazione collettiva riferita sia alla grande nebulosa che al blando ammasso aperto situato al suo interno; in maniera più precisa, l'ammasso aperto ha la sigla specifica **Cr 439**, mentre la regione di gas ionizzato è nota anche come **Sh2-131**. Dell'ammasso è facilmente individuabile la sua posizione, subito a sud della stella μ Cephei, una delle stelle più rosse che si conoscano; individuare però l'ammasso in sé non è facile, perché è molto disperso e quasi si confonde con il campo stellare circostante. Ciò che invece nelle foto appare ben evidente è il grande complesso nebuloso che circonda l'ammasso; il suo aspetto è rozzamente circolare e attraversato da numerose macchie scure, che ad un'analisi più attenta si rivelano essere dei globuli di Bok, ossia regioni della nebulosa particolarmente concentrate dove avviene la formazione di nuove stelle. I gas del complesso nebuloso di IC 1396 sono eccitati dal vento stellare della gigante blu HD 206267, appartenente all'associazione Cepheus OB2. Sembra che l'espansione di questa regione H II abbia creato un ampio anello di gas molecolare dal raggio di circa 40 anni luce, in un lasso di tempo di almeno 3 milioni di anni. La struttura ad anello si estende per circa 3° ed è circondata da un gran numero di globuli scuri, al cui interno probabilmente avviene la formazione di nuove stelle a causa della compressione ad opera della ionizzazione, del fronte dell'onda d'urto dei venti stellari e della pressione di radiazione; i globuli maggiori si trovano sul lato nordoccidentale della regione nebulosa. Negli anni ottanta sono stati identificati 32 globuli, che hanno ricevuto una designazione numerica da 1 a 32 con prefisso **GRS** (**Globules of Radial Systems**); quattro sistemi radiali di globuli sono stati identificati nei pressi di IC 1396, mentre uno di questi è centrato esattamente sulla nebulosa. Fra i globuli è presente anche la famosa struttura nota come **Proboscide d'elefante**, nota anche con la sigla **vdB 142** e spesso ripresa dagli appassionati per via della sua forma molto particolare che ricorda una proboscide. All'infrarosso sono state invece condotte delle ricerche per la localizzazione degli oggetti stellari giovani associati ai globuli; si è scoperto così che solo sei sorgenti associate con globuli possiedono una struttura e luminosità tali da poter essere state causate da un riscaldamento esterno, mentre la gran parte di queste non sarebbero legate ai fenomeni di formazione stellare. Nel 2005, tramite uno studio condotto nel vicino infrarosso, sono stati identificati 25 globuli, dei quali quattro non erano stati riportati nel catalogo SIMBAD; per tutti i globuli eccetto quattro, fu possibile determinare la massa, mentre non fu possibile misurare il diametro per sette di essi. Cinque globuli contengono una ricca popolazione di oggetti dalla luce arrossata, probabilmente stelle in formazione; questi cinque globuli possiedono il più alto tasso di estinzione, che farebbe pensare ad una relazione fra l'intensità dell'attività di formazione stellare e la massa dei globuli stessi. Nei globuli con la massa più piccola si crede che la formazione stellare sia spesso influenzata dalla pressione indotta dalla radiazione elettromagnetica di una stella brillante posta nelle vicinanze; in uno studio condotto su uno di questi, illuminato dalla brillante gigante blu HD 206267, è stato evidenziato un legame con la distanza di questa stella, suggerendo che l'evaporazione a causa della fotoionizzazione influenzi la distribuzione della massa del globulo attor-
La famosa nebulosa vdB 142, nota anche col nome di Proboscide d’Elefante.

no alla gigante blu. L’influenza della stella è data dalla compressione dei gas ad opera della pressione di radiazione.

All’associazione Cepheus OB2 sono legate numerose altre nebulose, sparse per gran parte della costellazione di Cefeo; fra queste una delle più estese, sebbene non sia certo appariscente, è il vasto filamento nebuloso di Sh2-133, visibile circa 2 gradi a nordest della stella Alderamin ed evidente solo nelle foto astronomiche ad alta sensibilità. Possiede una forma ad arco che si estende per oltre un grado e si ritiene che sia parte di un lungo fronte di gas ionizzato che circonda le stelle più vecchie dell’associazione; la sua distanza è stimata sui 2600 anni luce.

Sh2-134 si individua nella parte meridionale della costellazione ed è più o meno centrata attorno alla stella λ Cephei; si tratta in realtà di un esteso sistema di nebulose, bordato verso ovest da banchi di polveri oscure catalogate come B173 e B174 e facilmente riconoscibile nelle foto ad alta sensibilità e a grande campo. La sua distanza è pari a 2900 anni luce e riceve la radiazione ionizzante della stella λ Cephei, situata anche fisicamente negli immediati dintorni. Si ritiene che questa nebulosa, così come le vicine Sh2-131 e Sh2-133, siano associate alla grande superbolla in espansione nota come Bolla di Cefeo. La componente non ionizzata del sistema nebuloso di Sh2-134 comprende alcune nubi molecolari visibili alla lunghezza d’onda del CO, fra le quali spiccano due che hanno una massa pari rispettivamente a 510 e 450 masse solari. Fenomeni di formazione stellare nella regione sono testimoniati dalla presenza di alcune sorgenti di radiazione infrarossa.

Sh2-140 è più piccola ma più appariscente e si trova circa 5 gradi a nord della stella ζ Cephei; si trova sul bordo di un vasto complesso oscuro e può essere ripresa con discreta facilità. Al suo interno si trova un gruppo di stelle giovani di nona e decima magnitudine dominate da HD 211880, una stella bianca-azzurra di sequenza principale di classe spettrale B0.5V con una magnitudine 7.74, che è anche la principale responsabile della ionizzazione dei suoi gas. La nube si trova sul bordo sudoccidentale della nebulosa oscura LDN 1024, situata a sua volta nella Bolla di Cefeo, a 2900 anni di distanza. Su questa nebulosa sono state condotte diverse osservazioni a più lunghezze d’onda, centrate soprattutto nella regione brillante sul bordo di LDN 1204 e sulle sorgenti infrarosse situate posteriormente ad essa. Le osservazioni su tutta la banda dell’infrarosso sono state condotte principalmente allo scopo di individuare eventuali giovani stelle presenti nella regione; a seguito di questi studi fu redatto un primo catalogo comprensivo di tutti gli oggetti stellari giovani di Sh2-140, consistente in tre sorgenti infrarosse identificate con le sigle IRS 1, IRS 2 e IRS 3, a cui vennero aggiunte altre due sorgenti scoperte in seguito. Dagli indici spettrali delle prime tre sorgenti si dedusse che queste si originano da una debole regione H II ionizzata dai fotoni provenienti da una singola stella di sequenza principale di classe B. Dall’osservazione delle protostelle è stato invece sviluppato un modello semplificato della regione che è stato utilizzato per ottenere le condizioni fisiche delle polveri e dei gas qui presenti; la sorgente IRS 1 appare circondata da un denso disco di polveri, illuminato in parte dai fotoni che emergono dalle sue regioni polari assieme al bordo interno di un involucro di gas molecolare. Il modello sviluppato a partire da queste osservazioni è in grado di spiegare la distribuzione diffusa dell’intensità di luce; il colore blu delle regioni circostanti implica poi l’esistenza di un campo di radiazione con temperature relativamente basse, di 800-900 K.

Più a nord si trova la nebulosa a riflessione NGC 7129, una delle strutture più remote della regione di Cepheus OB2 e situata a una distanza di 3300 anni luce. Può essere osservata anche visualmente con telescopi di grande diametro, dove appare come una macchia pallida marcatamente nebulosa circondata da alcune stelle de-
La nebulosa riceve e riflette la luce delle stelle vicine, principalmente di classe spettrale B ed è circondata da un anello di idrogeno neutro esteso per mezzo grado, che fa parte di un sistema più vasto di nubi molecolari, centrato su una stella azzurra catalogata come BD+65° 1638; studiando lo spettro di questa stella, si è scoperto che si tratta di un raro tipo di “stella dissociante” appena emergente dalla nube di gas che l’haiformata, con un’età stimata in poche migliaia di anni e una massa pari a 6 masse solari. Per stella dissociante si intende un giovanissimo astro sufficientemente caldo da dissociare l’idrogeno molecolare situato nei suoi dintorni, ma non abbastanza da ionizzarlo.

La sezione più orientale della nebulosa, che appare un po’ distaccata, ha ricevuto una designazione a parte ed è nota come NGC 7133.

Il restante corteo di nebulose a riflessione legate all’associazione si estende principalmente ancora più a nord; si tratta in gran parte di oggetti deboli, tenui filamenti o addensamenti appena illuminati dalle componenti dell’associazione di classe spettrale B e A. Fra queste la più appariscente è vdB 143, che si individua nella parte centrale della costellazione, circa due gradi e mezzo a SSE della stella Alföhrk; i suoi gas vengono illuminati da HD 206135, una stella azzurra di tipo Be di sequenza principale con classe spettrale B3V, avente magnitudine apparente pari a 8,27. La sua determinata tramite la misura della parallasse, sarebbe pari a 3880 anni luce.

L’ammasso aperto che costituisce l’addensamento dominante dell’associazione Cepheus OB2 è NGC 7160, che sebbene sia piccolo e poco popolato è uno dei più appariscenti della costellazione. Si individua 4 gradi a est della stella Alderamin, in direzione di un ricco campo stellare pervaso da numerose nebulosità. Un binocolo 10x50 è sufficiente per individuarlo e anche per risolverlo in parte: appare dominato da cinque stelline di nona magnitudine, molto raccolte; un telescopio da 100mm individua fra queste altre componenti meno luminose, fino alla magnitudine 11, mentre strumenti ancora più grandi si limitano a separare ulteriormente le stelle più brillanti, che appaiono di un colore marcata-mente azzurro. Situato alla distanza di circa 2570 anni luce, è un ammasso piuttosto giovane: la sua età si aggira infatti sui 10 o 12 milioni di anni e contiene pertanto numerose stelle delle prime classi spettrali. Si ritiene che circa 2-3 milioni di anni fa una delle stelle originariamente più massicce di NGC 7160 sia esplosa come supernova, generando la già citata grande struttura a superbolla nota come Bolla di Cefeo.

L’ASSOCIAZIONE CEPHEUS OB3

Cepheus OB3 è un po’ meno estesa della precedente e si estende verso il confine fra Cefeo e Cassiopea; dista circa 2400 anni luce e comprende alcune nebulose molto famose, fra le quali spicca la Nebulosa Grotta. Le sue stelle azzurre si confondono facilmente coi ricchi campi stellari di fondo visibili in questa direzione. Le componenti più luminose sono di magnitudine visuale 7 e 8 e non possono essere individuate ad occhio nudo, ma è comunque sufficiente un binocolo per poterle notare, a patto di riuscire a distinguere fra le numerose stelle di pari luminosità osservabili in questa direzione. La più brillante, HD 217312, è di magnitudine 7,42. Cepheus OB3 contiene una quarantina di stelle giovani e brillanti, fra le quali spiccano tre stelle blu di sequenza principale, due stelle azzurre anch’esse nella sequenza principale e una gigante blu di classe B0III. Fra queste, le più luminose in termini di magnitudine assoluta sono HD 217086, di classe O7V e magnitudine -4,9, e la gigante sopra citata, di magnitudine -4,8. Studi fotometrici condotti negli anni novanta hanno ridefinito questa lista di componenti, estendendola alle stelle più deboli. Da notare tuttavia che uno studio del 2005 indica che due delle componenti di classe O indicate come appartenenti all’associazione potrebbero far parte di un ammasso aperto più remoto, denominato ASCC 1125, con un’età di 10 milioni di anni e situato a 4900 anni luce dal Sole. In quest’associazione ci sono evidenze di una suddivisione delle sue stelle membri in due sottogruppi, catalo-
gati come Cepheus OB3a e Cepheus OB3b, la cui caratteristica discriminante è l'età: Cepheus OB3a sarebbe infatti il sottogruppo più giovane, con un'età inizialmente stimata sui 4 milioni di anni, mentre il secondo avrebbe circa 8 milioni di anni; con l'affinarsi delle tecniche di rilevazione, è stata in seguito indicata un'età di 5,5 milioni di anni per il primo e di 7,5 milioni di anni per il secondo. Le stelle più luminose del sottogruppo Cepheus OB3b eccitano i gas di una vicina nebulosa, la regione di idrogeno ionizzato Sh2-155 (la famosa Nebulosa Grotta). Secondo uno studio condotto sfruttando i dati del Satellite Hipparcos, è stato avanzato il dubbio che la stella fuggitiva λ Cephei possa essere originaria di quest'associazione, piuttosto che dell'adiacente Cepheus OB2. Tramite una mappatura al 12CO dell'area dell'associazione, è stato individuato fin dagli anni settanta un complesso nebuloso molecolare dell'estensione di 65x200 anni luce, nel quale si possono distinguere alcune aree nebulose più dense, catalogate con sigle progressive da Cepheus A a Cepheus F; in alcune di queste, specialmente nella prima, sarebbe molto attiva la formazione stellare, provocata dell'interazione della nube stessa con la regione H II in espansione Sh2-155. Cepheus OB3 può pertanto essere considerata come un esempio di fenomeno di formazione stellare sequenziale. Cepheus A è una delle regioni nebulose più studiate del cielo: si tratta di una regione di formazione stellare di grande massa estremamente attiva, al cui interno sono note diverse sorgenti di origine termica e non termica, alcune piccole regioni H II e forti emissioni di radiazione infrarossa, il tutto in un'area di cielo inferiore a un primo d'arco. La nube Cepheus B si trova invece di fronte alla nebulosa Sh2-155, la cui ionizzazione è dovuta alle componenti più luminose del sottogruppo Cepheus OB3b; questa nebulosa è la più attiva della regione e si ritiene che qui stia avendo luogo la formazione della terza generazione di stelle all'interno di Cepheus OB3. Studi nel continuum radio hanno evidenziato che la regione ionizzata compatta situata fra Sh2-155 e la nube Cepheus B è suddivisa in quattro regioni distinte; la più estesa di queste, denominata Ridge, (la cresta) è eccitata dal fronte di ionizzazione proveniente da oggetti stellari giovani molto luminosi. Le altre tre parti invece nascondono protostelle ancora ben avvolte nei bozzioli nei quali si stanno formando.

Una delle nebulose più interessanti e famose di questa regione galattica è la già citata Sh2-155, nota anche come C9 o col nome Nebulosa Grotta per via della sua forma arcuata che ricorda l’antro di una cavità nella roccia. Può essere individuata circa 4 gradi a SSE della stella τ Cephei, nei pressi di un campo molto ricco di stelle di magnitudine 7 e 8. Invisibile con piccoli strumenti, può essere notata con un telescope da 200mm di diametro se la notte è particolarmente buona, sebbene con qualche difficoltà e limitatamente alla parte che contiene l’arco che delinea la “grotta”; un filtro UHC potrebbe essere d’aiuto in questo senso per aumentarne leggermente il contrasto. Nelle fotografie invece è molto ben evidente. Questa nebulosa appare come un insieme disomogeneo di parti brillanti e di nebulose oscuri: la parte settentrionale è la meno oscurata e mostra nelle foto i caratteristici colori rossastri tipici delle regioni HII; la parte meridionale è invece interessata da locali oscuramenti ad opera di banchi di polveri non illuminati; in questa zona la nebulosa oscura più notevole, quella che conferisce alla nebulosa il suo aspetto di “grotta”, si trova nell'angolo ad ovest. A breve distanza da questa vi è una piccola nebulosa a riflessione, nota come LBN 524, che circonda un gruppo di stelle di nona magnitudine. La distanza del complesso nebuloso è stimata sui 2400 anni luce.

Molto meno appariscente e visibile solo nelle fotografie è la nebulosa Sh2-154, situata circa un grado a SSW; è di discreta estensione e presenta una forma allungata per circa 25'; appare circondata da diverse nubi oscuri che possono aiutare ad esaltarla nelle foto. La responsabile della sua ionizzazione sarebbe una gigante blu di classe spettrale B0III. Attorno a questa nebulosa si trovano diverse nubi molecolari, la cui presenza è ben evidente alla lunghezza d'onda del 13CO; fra queste la più notevole è [YDM97] CO 50, la cui massa è pari a 1800 masse solari, seguita da [YDM97] CO 43, con una massa di 440 masse solari, e [YDM97] CO 45, con una massa di 200 masse solari.
A queste nebulose si aggiunge Sh2-161, visibile nei pressi dell’Arco di Cassiopea; in realtà sarebbe formata da due nubi distinte, di cui solo una, denominata Sh2-161A, sarebbe fisicamente legata alla regione di Cepheus OB3, mentre Sh2-161B si troverebbe sul Braccio di Perseo, a una distanza tre volte maggiore. Tuttavia alcuni studiosi collocano entrambe le nubi sul Braccio di Perseo, nella regione di Cassiopeia OB2.

L’ASSOCIAZIONE CEPHEUS OB6

L'associazione Cepheus OB6 è visibile in sovrapposizione all'associazione Cepheus OB2; fu scoperta nel 1999, identificando un gruppo di 27 stelle riportate nel catalogo Hipparcos, fra le quali spicca la celebre supergigante δ Cephei, il prototipo delle variabili cefeidi. Queste componenti mostrano una debole concentrazione e, a differenza delle altre associazioni di Cefeo, si distinguono per una gamma più ampia di classi spettali: le componenti maggiori sono infatti 6 di classe B, 7 di classe A, 1 di classe F, 2 di classe G e 3 di classe K; si tratta dunque di un gruppo di stelle più antico, ossia un'anica associazione OB in fase evoluta: la stella più tendente al blu è di classe B5III, che indica un'età di circa 50 milioni di anni. La distanza di quest'associazione è stimata sugli 880 anni luce. Non sono stati scoperti sottogruppi di quest'associazione. In uno studio delle orbite galattiche delle stelle vicine è stata avanzata l'ipotesi che alcuni membri dell'Associazione di AB Doradus siano state in interazione con Cepheus OB6 circa 38 milioni di anni fa; quest'incontro avrebbe fatto scattare la formazione delle stelle dell'associazione AB Doradus, le cui stelle fra l'altro sono coetanee di quelle dell'associazione di Cefeo.

L'ASSOCIAZIONE DI AB DORADUS

L'Associazione di AB Doradus è un'associazione stellare formata da una trentina di stelle che possiedono lo stesso moto proprio, muovendosi così assieme nello spazio intragalattico; prende il nome da una delle sue stelle più importanti, la variabile AB Doradus. Queste componenti possiedono un'età e metallicità simile e un'origine comune. Questo gruppo dista circa 65 anni luce dal nostro sistema solare ed è pertanto il gruppo cinematico più vicino a noi fra tutti quelli conosciuti. Le sue componenti sono quasi esclusivamente di piccola massa e, a causa della loro vicinanza a noi, appaiono sparpagliate in un'area di cielo vastissima, che va dalle costellazioni dell'Idra, della Poppe e del Dorado fino a quelle di Perseo e Andromeda. Secondo uno studio del 2011, quest'associazione comprende 53 membri, 46 dei quali individuati dal Telescopio Spaziale Spitzer.

ALTRI OGGETTI

Gli altri oggetti visibili in questa regione di cielo si trovano a diverse distanze, sia in primo piano che al di là delle associazioni OB di Cefeo.

Fra questi spicca NGC 7023, nota anche come C4 e soprannominata Nebulosa Iride, che circonda una stella di magnitudine 7. Si trova nella parte occidentale della costellazione e può essere scorta anche con un grande binocolo, se le condizioni di osservazione sono ottimali; un telescopio di 200mm di diametro è già in grado di rivelare alcuni particolari della nebulosa, come una sorta di barra centrale che si estende da nord a sud. NGC 7023 è una nebulosa a riflessione, ossia riflette la luce di alcune stelle vicine; probabilmente la stella principale responsabile della sua illuminazione è proprio la stellina di settima grandezza visibile al suo centro, catalogata come HD 200775, la quale si troverebbe avolta dalla nebulosa, assieme ad altre stelle meno brillanti nate dalle sue polveri e che vanno a formare il piccolo ammasso aperto situato al suo interno, noto con la sigla Cr 429. La nebulosa probabilmente dista da noi circa 1400 anni luce e misura circa 6 anni luce. L'ammasso situato al suo interno è di piccole dimensioni apparenti ed è difficilmente osservabile attraverso la maggior parte degli strumenti amatoriali.

A breve distanza si trova la nebulosa vdB 141, nota anche come Sh2-136; si tratta di un globulo di Bok isolato, situato a circa 1470 anni luce di distanza. Il globulo centrale è noto con la sigla CB 230 e ospita una sorgente di radiazione infrarossa associata a un oggetto stellare giovane, posto al centro di un getto bipolare. Assieme a una vicina sorgente visibile nel vicino infrarosso forma una coppia di protostelle che potrebbero costituire un...
sistema binario in formazione. Il getto è orientato in senso nord-sud e ha una lunghezza complessiva di circa 0,06 anni luce.

Ancora più a nord, circa 4 gradi a est della stella Alfarix, si trova vdB 152, una piccola nebulosa a riflessione; al suo interno si trova una stella bianco-azzurra di sequenza principale, BD+69 1231, di magnitudine 9,29, la cui radiazione imprime ai gas circostanti un colore netta mente azzurrognolo. La stella si trova sull'estremità più meridionale di una nebulosa oscura dall'aspetto cometa rio, con una lunga chioma che si disperde in direzione nord. Nella parte settentrionale della nube si trova LDN 1217, una nube molto densa in cui la presenza di diverse sorgenti di radiazione infrarossa fanno pensare alla presenza di fenomeni di formazione stellare. La distanza della struttura è stimata sui 400 parsec (circa 1300 anni luce).

A nordovest del grande complesso nebulo so di IC 1396 si trova la nebulosa Sh2-129, tanto grande quanto impossibile da osservare direttamente con la gran parte dei telescopi in possesso degli appassionati. Questa nebulosa presenta una forma ad arco molto pronunciata, quasi una sorta di grande anello; a causa della sua forma, tal volta viene soprannominata Nebulosa Pipistrello Volante. Nonostante le sue dimensioni, appare piuttosto tenue e la parte più densa e appariscente coincide col suo lato orientale. La sua distanza è stata stimata attorno ai 1300 anni luce e ricade così a breve distanza dal bordo della Cintura di Gould. I dintorni di questa nebulosa sono particolarmente ricchi di nubi molecolari, primo fra tutti il grande sistema nebuloso oscura che responsabile dell'occlusione di buona parte della Via Lattea in direzione di Cefeo; numerose altre nubi molecolari minori, in gran parte censite in uno studio del 1994, si estendono in particolare verso ovest, gran parte delle quali possedono una massa che solo raramente supera le 30-40 masse solari.

Circa un grado a sudest del bordo meridionale dell’arco di Sh2-129 e circa 4 gradi ad ovest della stella μ Cephei, si trova la piccola nebulosa a riflessione vdB 140; si tratta di un tenui nebulosa a riflessione molto rarefatta, illuminata dalla vicina stella V421 Cephei, una gigante blu di sesta magnitudine distante circa 2500 anni luce. La nube può essere scorta quasi esclusivamente attraverso le foto ad alta sensibilità, mentre l'osservazione diretta risulta piuttosto difficoltosa. La nube appare attraversata da una banda scura o non illuminata, che la divide in due sezioni diseguali: la più grande quasi si sovrappone alla stella, mentre la seconda parte, verso est, è molto più sottile.

Altre nebulose si osservano nei pressi dell’equatore galattico, ma si trovano a distanze ben maggiori, ricadendo sul Braccio di Perseo. Fra queste vi è Sh2-132, situata a una distanza di quasi 10.400 anni luce, nella regione di Cepheus OB1, una grande e luminosa associazione OB. Le stelle responsabili della ionizzazione dei suoi gas sono molto calde e massicce; in particolare sono state individuate due stelle di Wolf-Rayet, note con le sigle HD 211564 e HD 211853 (quest'ultima anche la sigla WR 153), oltre a una stella di classe spettrale O8.5V e una decina di stelle di classe B. Attorno alla stella di classe O e a una delle stelle di Wolf-Rayet si estende una bolla ben visibile nella banda delle onde radio, identificata con la sigla Shell B, probabilmente originata dal vento stellare delle due stelle massicce. Una struttura simile ma di minori dimensioni, Shell A, ospita vicino al suo centro una stella di classe K. Si ritiene che nella nebulosa abbiano avuto luogo in passato processi di formazione stellare a catena; attualmente questi processi sembrano essere sospesi, dal momento che non vi è traccia di attività recente. In direzione della nebulosa sono state individuate nove sorgenti di radiazione infrarossa.

A breve distanza si trova Sh2-135, una regione H II legata a una nebulosa oscura di polvere interstellare, che
mostra un fronte di ionizzazione pronunciato e in espansione; un modello che può spiegare bene la situazione è il cosiddetto blister model: secondo questo schema, il gas ionizzato è spazzato via dal fronte di ionizzazione a seguito dell’interazione fra la regione H II e la nube molecolare adiacente. La stella responsabile della ionizzazione dei gas è di classe spettrale O9,5V; stime sulla distanza forniscono un valore di circa 6200 anni luce. Numerose sorgenti di radiazione infrarossa sono state individuate attorno a questa nebulosa dal satellite IRAS, indicando così la presenza di recenti processi di formazione stellare.

Gli ammassi aperti sono oggetti facilmente osservabili anche con strumenti di diametro più comune; in Cefeo questi non sono particolarmente appariscenti, ma sono comunque di facile osservazione.

Fra questi vi è NGC 7235, individuabile circa 1 grado a sud della stella ζ Cephei e a soli 25' da ε Cephei, in direzione dell’equatore galattico e visibile anche con un binocolo 10x50, seppur con difficoltà. Appare in un telescopio da 120mm di apertura come un gruppetto di una decina di stelle, la più brillante delle quali è una gigante gialla di magnitudine 8,9; con strumenti da 200mm è un oggetto ampio e completamente risolto a ingrandimenti piuttosto spinti. Si tratta di un oggetto molto giovane, con un’età che può essere stimata attorno agli 11 milioni di anni o forse anche inferiore; comprende diverse stelle massicce, fra le quali spicca una supergigante blu di classe spettrale A1Ia o B8Ia. Studi incentrati sulla determinazione di stelle variabili fra le sue componenti più massicce hanno permesso di individuare una decina di stelle con variazioni; fra queste vi è una supergigante blu simile a Deneb e una variabile di tipo Beta Cephei, quest’ultima la stella più luminosa dell’ammasso. La sua distanza è pari a 9200 anni luce, ben al di là della maggior parte degli oggetti visibili in Cefeo.

NGC 7261 è un ammasso molto più difficile da individuare, oltre che di piccole dimensioni apparenti; si trova a metà via fra le stelle δ e ζ Cephei e non è alla portata dei più comuni binoccoli. Con strumenti da 80mm appare come un debolissimo anello di stelle incompleto e dominato sul lato orientale da una stella di magnitudine 9,6; con strumenti da 150mm l’anello appare completo, mentre si possono individuare anche altre stelle più deboli sparse nei dintorni e in particolare sul lato nord, comprese entro pochi minuti d’arco. L’ammasso sembra contare una trentina di stelle fino alla magnitudine 15 e giace in un’area difficile da studiare a causa della sovrapposizione di numerosi campi stellari e nebulose oscure; ciò si riflette sui dati ottenuti dalle differenti pubblicazioni, in forte contrasto fra loro. I primi studi fotometrici condotti su quasi 150 stelle hanno fornito un’età di appena 10 milioni di anni e una distanza di circa 10.500 anni luce, collocandolo così in una zona remota del Braccio di Perseo; studi successivi hanno invece indicato per l’ammasso un’età di 200 milioni di anni, mentre la distanza è stata ridimensionata a circa 7200 anni luce, sempre sul Braccio di Perseo. Uno studio fotometrico ancora più recente (2013) ha invece indicato un’età di 160 milioni di anni, mentre la distanza è stata riportata a 9200 anni luce. Oltre a questi dati, mancano studi specifici su altre proprietà di quest’oggetto, che resta dunque poco indagato.

Circa mezzo grado a sudest della nebulosa NGC 7129 appare un ammasso più compatto noto come NGC 7142; le sue componenti sono molto deboli, tanto che l’ammasso resta invisibile ai piccoli e medi diametri, iniziando a palesarsi soltanto con telescopi da 150-200mm e solo come un blando addensamento di stelle di magnitudine 12 e 13, dominate a nordest da tre stelle di magnitudine 10. Con telescopi da 300mm a salire è più evidente una concentrazione di alcune decine di stel-
le di magnitudine 14, mentre nelle foto ad alta risoluzione e di dettaglio si palesa come un oggetto molto ricco, con oltre un centinaio di stelle fino alla magnitudine 16 ammassate entro un diametro di 10 minuti d’arco. Oggetti come questo sono studiati con attenzione in quanto si tratta di ammassi di età antica e situati a latitudini galattiche molto alte; i più brillanti e famosi appartenenti a questo genere sono M67 nel Cancro e NGC 188, visibile in Cefeo nei pressi della Stella Polare. Ciò nonostante, l’arrorossamento delle sue componenti a causa della presenza di banchi di polveri oscure lungo la sua linea di vista lo ha reso piuttosto difficile da studiare rispetto agli altri ammassi simili: questo si riflette sulle stime dell’età, che in base alle pubblicazioni è indicata come pari a 2 miliardi di anni o fino a 7 miliar-di di anni. Conoscere l’età di questi ammassi con precisione è utile per comprendere l’evoluzione della Via Lattea attraverso le caratteristiche delle popolazioni stellari nel corso del tempo, con particolare riferimento alla metallicità. Gli studi fotometrici più recenti hanno indicato per NGC 7142 un’età di circa 4 miliardi di anni, relativamente simile dunque a quella di M67, come pure la metallicità delle sue componenti è risultata indistinguibile da quella di M67. La sua distanza è invece stimata sui 6800 anni luce.

Un breve accenno infine alle nebulose planetarie presenti in questa regione, che sebbene siano slegate dalle associazioni OB costituiscono un motivo d’interesse ulteriore. NGC 7139 può essere individuata con strumenti da 200mm come un debolissimo dischetto dai bordi sfumati e molto ben esaltabile con un filtro OIII; la sua forma simmetrica appare invece evidente in strumenti di diametro più grande. In fotografia è possibile invece rivelare le sue caratteristiche principali, che la rendono molto simile a M27, ossia con una morfologia bipolare toroidale. La sua distanza è stimata sui 4300 anni luce e le sue dimensioni reali sono pari a 1,5 anni luce. Molto più difficile la nebulosa NGC 7354, visibile non lontana dalla Nebulosa Grotta e situata a circa 4200 anni luce di distanza; appena alla portata di un telescopio da 200mm, si rivela con molta più facilità nelle fotografie, specialmente ad alta risoluzione e alta sensibilità. Possiede un involucro esterno di forma quasi circolare, con all’interno un secondo involucro allungato, con duegetti simmetrici che escono da entrambi i lati; il suo diametro reale è di circa mezzo anno luce.

Sull’estremità sudorientale della costellazione è presente NGC 6939, uno degli ammassi aperti più brillanti di Cefeo; le sue due stelle principali, che brillano di decima magnitudine, sono poste ai vertici di nordovest e sudest dell’oggetto, mentre le componenti centrali sono di magnitudine a partire dalla 12. Un binocolo 10x50 è sufficiente per scorgere ma permette di intravedere solo una leggera chiazza chiara; con un telescopio di 100mm di apertura appare invece già in massima parte risolto, mentre con uno strumento da 200mm si contano diverse decine di stelle fino alla magnitudine 14 e nessuna nebulosità apparente di fondo. La sua età, determinata tramite studi fotometrici e probabilmente compresa fra 1,0 e 1,3 miliardi di anni, lo rende un ammasso piuttosto vecchio, anche se non fra i più vecchi conosciuti; ulteriore indizio della sua grande età è la sua posizione a latitudini galattiche elevate. Al suo interno sono state rilevate evidenze che alcune delle sue componenti possano essere stelle doppie; poche delle sue componenti sono state invece identificate come stelle variabili: ne sono infatti note soltanto sei fra le giganti rosse, due delle quali sono variabili a eclisse del tipo Algol e una del tipo W Ursae Majoris, quest’ultima nota come V466 Cephei. L’ammasso disterebbe da noi circa 3860 anni luce.

Un breve accenno infine alle nebulose planetarie presenti in questa regione, che sebbene siano slegate dalle associazioni OB costituiscono un motivo d’interesse ulteriore. NGC 7139 può essere individuata con strumenti da 200mm come un debolissimo dischetto dai bordi sfumati e molto ben esaltabile con un filtro OIII; la sua forma simmetrica appare invece evidente in strumenti di diametro più grande. In fotografia è possibile invece rivelare le sue caratteristiche principali, che la rendono molto simile a M27, ossia con una morfologia bipolare toroidale. La sua distanza è stimata sui 4300 anni luce e le sue dimensioni reali sono pari a 1,5 anni luce.

Molto più difficile la nebulosa NGC 7354, visibile non lontana dalla Nebulosa Grotta e situata a circa 4200 anni luce di distanza; appena alla portata di un telescopio da 200mm, si rivela con molta più facilità nelle fotografie, specialmente ad alta risoluzione e alta sensibilità. Possiede un involucro esterno di forma quasi circolare, con all’interno un secondo involucro allungato, con due getti simmetrici che escono da entrambi i lati; il suo diametro reale è di circa mezzo anno luce.
L’Arco di Cassiopea

La Via Lattea fra Cassiopea e Cefeo, pur essendo povera di stelle particolarmente luminose, è caratterizzata dall’altissimo numero di ammassi aperti e di nebulose di ogni tipo, dalle tenui nebulose a riflessione alle grandi regioni di idrogeno ionizzato. Questo tratto di cielo appare molto alto nei cieli boreali verso il finire dell’estate, quando nelle prime ore della notte il brillante Triangolo Estivo lascia progressivamente spazio al Quadrato di Pegasus.

CARATTERISTICHE

Fra Cefeo e Cassiopea, e in particolare fra le stelle α Cephei (Alderamin) e β Cassiopeiae (Sadr), è compreso uno dei tratti di Via Lattea più ricchi in assoluto di nebulose; in questa direzione infatti si possono osservare diverse regioni di formazione stellare sovrapposte una dietro l’altra lungo la nostra linea di vista, dalle più vicine, che appartengono al nostro Braccio di Orione, fino alle più lontane, sul Braccio di Perseo e oltre ancora.

Gran parte delle nebulose qui visibili appartengono però al Braccio di Orione e formano un imponente arco di regioni di formazione stellare che attraversa l’intera costellazione di Cefeo; sono tuttavia parzialmente oscurate da polveri interstellari, che le rendono meno appariscenti di quanto potrebbero apparire.

La particolare disposizione delle nubi oscure fra Cefeo e Cassiopea fa assumere a questo tratto di Via Lattea la forma di uno stretto arco chiaro, dominato da svariati ammassi aperti appartenenti al Braccio di Perseo su cui spicca il famoso M52: questa conformazione viene chiamata Arco di Cassiopea ed è molto ben evidente sotto cieli limpidi e cristallini.

Numerosi ammassi stellari si osservano anche nei pressi della famosa W delineata dalle stelle principali di Cassiopea, fino al confine con Perseo e oltre. Sebbene le nebulose siano in massima parte fuori dalla portata dei telescopi più diffusi presso gli appassionati, molti degli ammassi aperti sono invece osservabili anche con strumenti di piccolo diametro e alcuni persino con un binocolo 10x50, come il già citato M52; sempre con un binocolo si possono apprezzare i ricchi campi stellari dell’Arco di Cassiopea e delle regioni centrali di Cefeo.

Con un telescopio da 150mm di diametro è possibile risolvere in stelle buona parte degli ammassi di questa regione e inizia ad essere visibile anche qualche nebulosa; se poi la montatura permette di muovere lo strumento liberamente, come nel caso dei Dobson, vale la pena di esplorare alla cieca l’intera zona di cielo, che si mostra particolarmente ricca di campi stellari, con svariate concatenazioni molto ben marcate e tendenzialmente

STELLE PRINCIPALI DELLA REGIONE

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>γ Cas</td>
<td>Cih</td>
<td>00h 56m 42s</td>
<td>+60° 43' 00"</td>
<td>2.15</td>
<td>613</td>
<td>azzurro</td>
</tr>
<tr>
<td>α Cas</td>
<td>Schedar</td>
<td>00h 40m 30s</td>
<td>+56° 32' 15"</td>
<td>2.24</td>
<td>228</td>
<td>arancio</td>
</tr>
<tr>
<td>β Cas</td>
<td>Caph</td>
<td>00h 09m 10s</td>
<td>+59° 09' 01"</td>
<td>2.28</td>
<td>54</td>
<td>giallo</td>
</tr>
<tr>
<td>ζ Cep</td>
<td>Tsao Fu</td>
<td>22h 10m 51s</td>
<td>+58° 12' 04"</td>
<td>3.39</td>
<td>726</td>
<td>arancio</td>
</tr>
<tr>
<td>η Cas</td>
<td>Alchird</td>
<td>00h 49m 05s</td>
<td>+57° 49' 00"</td>
<td>3.46</td>
<td>19</td>
<td>giallo</td>
</tr>
<tr>
<td>i Cep</td>
<td>Alvahe</td>
<td>22h 49m 41s</td>
<td>+66° 12' 03"</td>
<td>3.50</td>
<td>115</td>
<td>arancio</td>
</tr>
<tr>
<td>ξ Cas</td>
<td></td>
<td>00h 36m 58s</td>
<td>+53° 53' 49"</td>
<td>3.69</td>
<td>597</td>
<td>azzurro</td>
</tr>
<tr>
<td>δ Cep</td>
<td>Al Radif</td>
<td>22h 29m 10s</td>
<td>+58° 24' 55"</td>
<td>4.07</td>
<td>982</td>
<td>giallo</td>
</tr>
</tbody>
</table>
L’area dell’Arco di Cassiopea è molto ricca di ammassi aperti e di nebulose, alcune delle quali visibili anche direttamente al telescopio.
orientate in senso nordest-sudovest.
Chi invece è dotato di apparecchiatura astrofotografica troverà molto interessante e appagante riprendere le numerose nebulose qui presenti, che mostrano svariate morfologie e accostamenti di colori laddove le rosse nebulose di idrogeno ionizzato lasciano il posto alle nebulose a riflessione, spesso di colore azzurro a causa della vicina presenza di diverse stelle giovani e massicce.

L’ASSOCIAZIONE CEPHEUS OB4

Come visto in precedenza, la costellazione di Cefeo sembra a prima vista priva di oggetti di rilievo: non vi sono infatti ammassi particolarmente appariscenti e molte delle sue nebulose non sono visibili con piccoli strumenti. Tuttavia nelle fotografie emerge un gran numero di nubi che nascondono giovani gruppi stellari; la maggior parte di queste si trova sul Braccio di Orione a distanze comprese fra 2300 e 3200 anni luce e sono state descritte nella sezione sulla Via Lattea di Cefeo.

L'associazione Cepheus OB4 si trova nella parte orientale di Cefeo, vicino al confine con Cassiopea. Le sue componenti più luminose sono di magnitudine visuale 9 e si confondono facilmente con quelle dei campi stellari di fondo, né possono essere individuate ad occhio nudo; è comunque sufficiente un binocolo per poterle notare, nella regione attorno alla grande nebulosa Ced 214. La più brillante, BD+66 1675, è di magnitudine 9,05. L’associazione è centrata attorno all'ammasso aperto Berkeley 59, costituito da una ventina di stelle di magnitudine compresa fra la 9 e la 13. Cepheus OB4 è composta da 42 giganti blu, poste alla distanza di 2740 anni luce dal Sole; esiste inoltre una correlazione fra la luminosità e l’arrossamento di queste componenti: infatti le sue stelle di classe spettrale O e B sembra che si trovino solo nelle regioni interne alla nube, mentre le componenti di classe B più tendenti al bianco pare siano poste al di fuori, anche se ciò potrebbe essere dovuto soprattutto dell’incompletazza dei rilevamenti condotti in questa regione. L’età dell'associazione sarebbe compresa fra 0,6 e 6 milioni di anni. Cepheus OB4, così come le vicine Cepheus OB2 e Cepheus OB3, consiste in due aree con proprietà dinamiche ed evolutive differenti: la più antica e più dispersa si estende in un'area di 15' (pari a 15 anni luce) di diametro ed è situata sul bordo meridionale di una struttura nebulosa circolare chiamata Cepheus Loop (Anello di Cefeo); tramite il moto proprio delle sue componenti si è individuato il suo possibile punto di formazione, situato presso il centro di quello che è ora il Cepheus Loop, il quale sarebbe stato originato dal vento stellare delle stelle dell'associazione Cepheus OB2 e dall'esplosione di una o più supernovae in essa contenute, espandendosi in seguito fino a raggiungere altre nubi molecolari; dall'esito di questi scontri si sarebbe poi formato l'ammasso aperto Berkeley 59.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sh2-140</td>
<td>22h 19m :</td>
<td>+63° 17’</td>
<td>Neb</td>
<td>-</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>NGC 7261</td>
<td>22h 20m 07s</td>
<td>+58° 07’ 41”</td>
<td>A Ap</td>
<td>8,4</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Sh2-132</td>
<td>22h 19m :</td>
<td>+56° 05’</td>
<td>Neb</td>
<td>-</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Sh2-135</td>
<td>22h 22m :</td>
<td>+58° 44’</td>
<td>Neb</td>
<td>-</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>NGC 7354</td>
<td>22h 40m 20s</td>
<td>+61° 17’ 09”</td>
<td>NP</td>
<td>10,2</td>
<td>0,3</td>
<td></td>
</tr>
<tr>
<td>NGC 7380</td>
<td>22h 47m 18s</td>
<td>+58° 08’</td>
<td>A Ap</td>
<td>7,2</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Sh2-142</td>
<td>22h 47m :</td>
<td>+58° 03’</td>
<td>Neb</td>
<td>-</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Sh2-154</td>
<td>22h 52m :</td>
<td>+61° 10’</td>
<td>Neb</td>
<td>-</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>NGC 7429</td>
<td>22h 55m 53s</td>
<td>+59° 57’ 36”</td>
<td>A Ap</td>
<td>8,5</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Sh2-155</td>
<td>22h 52m :</td>
<td>+62° 29’</td>
<td>Neb</td>
<td>10</td>
<td>50</td>
<td>Neb. Grotta</td>
</tr>
<tr>
<td>IC 1470</td>
<td>23h 05m 10s</td>
<td>+60° 14’ 31”</td>
<td>Neb</td>
<td>-</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>NGC 7510</td>
<td>23h 11m 00s</td>
<td>+60° 34’ 00”</td>
<td>A Ap</td>
<td>7,9</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>NGC 7538</td>
<td>23h 13m 37s</td>
<td>+61° 30’ 00”</td>
<td>Neb</td>
<td>-</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Mrk 50</td>
<td>23h 15m 15s</td>
<td>+60° 26’ 02”</td>
<td>A Ap</td>
<td>8,5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Sh2-157</td>
<td>23h 16m 04s</td>
<td>+60° 02’ 06”</td>
<td>Neb</td>
<td>-</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>NGC 7635</td>
<td>23h 20m 46s</td>
<td>+61° 12’ 45”</td>
<td>Neb</td>
<td>11</td>
<td>15</td>
<td>Neb. Bolla</td>
</tr>
<tr>
<td>M52</td>
<td>23h 24m 12s</td>
<td>+61° 35’ 00”</td>
<td>A Ap</td>
<td>7,3</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>NGC 7762</td>
<td>23h 49m 52s</td>
<td>+68° 01’ 30”</td>
<td>A Ap</td>
<td>10</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>H21</td>
<td>23h 54m 13s</td>
<td>+61° 44’ 24”</td>
<td>A Ap</td>
<td>9,0</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>NGC 7788</td>
<td>23h 56m 38s</td>
<td>+61° 24’ 02”</td>
<td>A Ap</td>
<td>9,4</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>NGC 7789</td>
<td>23h 57m 24s</td>
<td>+56° 42’ 30”</td>
<td>A Ap</td>
<td>6,7</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>NGC 7790</td>
<td>23h 58m 24s</td>
<td>+61° 12’ 30”</td>
<td>A Ap</td>
<td>8,5</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>NGC 7822</td>
<td>00h 01m :</td>
<td>+67° 25’</td>
<td>Neb</td>
<td>-</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Ced 214</td>
<td>00h 01m :</td>
<td>+67° 25’</td>
<td>Neb</td>
<td>-</td>
<td>180</td>
<td></td>
</tr>
<tr>
<td>IC 10</td>
<td>00h 20m 23s</td>
<td>+59° 17’ 35”</td>
<td>Gal</td>
<td>9,5</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>NGC 103</td>
<td>00h 25m 05s</td>
<td>+60° 20’ 24”</td>
<td>A Ap</td>
<td>9,8</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>NGC 129</td>
<td>00h 30m 00s</td>
<td>+60° 13’ 06”</td>
<td>A Ap</td>
<td>6,5</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>NGC 133</td>
<td>00h 31m 12s</td>
<td>+63° 22’ 00”</td>
<td>A Ap</td>
<td>9,4</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>NGC 136</td>
<td>00h 31m 36s</td>
<td>+61° 30’ 36”</td>
<td>A Ap</td>
<td>11</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>NGC 146</td>
<td>00h 33m 06s</td>
<td>+63° 18’ 00”</td>
<td>A Ap</td>
<td>9,1</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>NGC 189</td>
<td>00h 39m 29s</td>
<td>+61° 06’ 54”</td>
<td>A Ap</td>
<td>8,8</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>NGC 225</td>
<td>00h 43m 39s</td>
<td>+61° 46’ 30”</td>
<td>A Ap</td>
<td>7,0</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>
Il grande complesso nebuloso di Ced 214 e NGC 7822, costituente un’importante regione di formazione stellare.

Circa 8 gradi a nord della stella Caph si estende il vasto sistema nebuloso di Cepheus OB4, che comprende una zona centrale di forma più o meno triangolare nota con la sigla Ced 214 e una fascia allungata a nord nota con la sigla NGC 7822; si trovano in un tratto di Via Lattea che appare fortemente oscurato da gas e polveri interstellari e assieme formano la regione di formazione stellare legata all’associazione Cepheus OB4. Il complesso è apparentemente dominato da una stella arancione di magnitudine 5,68, nota come HD 225216; tuttavia questa non ne fa parte, trovandosi in primo piano alla distanza di 302 anni luce circa. Per poter osservare qualche dettaglio di questa nube complessa occorrono telescopi di diametro molto grande, essendo infatti fuori dalla portata della maggior parte degli strumenti in possesso degli ammiratori, anche di grande apertura come i 300-400mm; in ogni caso, l’aiuto di filtri potrebbe rivelarsi utile. Nelle fotografie a grande campo invece appare ben evidente, soprattutto per quanto riguarda la struttura nastriforme che delimita il complesso a nord e che è più propriamente catalogata come NGC 7822. Al centro del complesso, nella sezione identificata come Ced 214, si trova il giovane ammasso aperto Berkeley 59, visibile anche con un telescopio da 100mm come un piccolo e compatto gruppito di stelle di magnitudine compresa fra la 9 e la 13 poco a nord della già citata HD 225216; fra le sue componenti ci sono nove stelle blu con classi spettrali comprese fra la O7 e la B3, fra le quali spicca, nella parte a nord dell’ammasso, BD+66 1673, una delle stelle più calde situate entro un raggio di 3000 anni luce dal Sole: si tratta di una binaria a eclisse (con sigla V747 Cephei) di magnitudine 10 in cui la stella primaria, di classe O5V, ha una temperatura superficiale pari a 45.000 K e una luminosità di 100.000 luminosità solari. L’intensa radiazione ultravioletta di queste stelle si rende responsabile della ionizzazione dei gas dell’intera nebulosa e produce un fronte di ionizzazione che si estende sulla superficie di due dense nubi molecolari vicine; la compressione che ne deriva destabilizza l’equilibrio delle nubi stesse, facendole collasare in più punti. Per questa ragione, il complesso di Ced 214 è un importante teatro per lo studio dei processi di formazione di stelle di piccola massa stimolati dall’azione delle vicine stelle di grande massa.

Sul bordo nordoccidentale del complesso, poco a nord della stella azzurra HD 223274 di magnitudine 5,05, si trova l’ammasso aperto NGC 7762, che sebbene si trovi apparentemente legato alle nubi, si troverebbe a una distanza leggermente maggiore, sui 2900 anni luce. È un oggetto piuttosto ostico a causa della bassa luminosità delle sue componenti principali, di magnitudine 14 e 15; con un telescopio da 200mm di diametro appare come un leggero alone chiaro sotto cieli ottimali e in assenza di inquinamento luminoso, Per notare le sue stelle occorrerebbero strumenti di almeno 300-350mm di diametro, con cui è anche possibile risolverlo in decine di componenti deboli. Si tratta di un ammasso piuttosto vecchio, con un’età che oscilla sui 2,5 miliardi di anni e dunque in nessun modo legato al complesso nebuloso; la metallicità delle sue componenti è simile a quella del Sole, con l’eccezione del bario, che appare meno abbondante in quest’ultimo. Alcuni studi lo mettono in relazione, come età all’ammasso NGC 6774, situato nel Sagittario a una distanza di circa 980 anni luce dal Sistema Solare.

L’ARCO DI CASSIOPEA

L’Arco di Cassiopea in senso stretto è un sottile ponte di campi stellari, ammassi e nebulose la cui luminosità viene evidenziata ed esaltata da due addensamenti di polveri che oscurano la Via Lattea a nord e a sud; ha origine apparentemente a est di δ Cephei e termina fra κ e β Cassiopeiae. L’Arco è dominato dalla grande nebulosa Sh2-157, situata al suo centro; all’osservazione visuale è ben fuori dalla portata dei più comuni telesco-
pi, avendo una bassa luminosità superficiale, ma è molto ben chiara nelle foto astronomiche a lunga esposizione, in cui si mostra come una vasta e tenue nebulosità diffusa, con delle regioni più luminose al centro e un grande arco in direzione nord. Si estende per circa un grado: la parte settentrionale possiede una forma ad anello, causata dall'azione del vento stellare di diverse stelle giganti, mentre il settore meridionale appare eccitato dalla radiazione luminosa delle stelle di classe spettrale O. Sh2-157 si trova sul Braccio di Perseo, uno dei bracci di spirale principali della Via Lattea, a una distanza di 11.000 anni luce e in cui sono situate anche le principali associazioni OB visibili nella costellazione di Cassiopea, come Cassiopeia OB5 e Cassiopeia OB2; in particolare, Sh2-157 si osserva in direzione di quest'ultima. La nebulosa è associata a un gran numero di stelle giovani, come è tipico delle regioni H II, fra le quali la brillante WR 57, una stella di Wolf-Rayet dall'età stimata in 7,5 milioni di anni, situata all'interno dell'ammasso Mrk 50, che è posto nella parte settentrionale della nube. I modelli evoluzionistici della regione suggeriscono che i processi di formazione stellare attraverso questa regione del Braccio di Perseo abbiano dapprima interessato la regione da cui ha avuto origine l'associazione Cassiopeia OB2 e che poi si sia estesa alla formazione dell'ammasso NGC 7510 e infine di Mrk 50, che risulta dunque il prodotto dell'ultima generazione di stelle della regione.

NGC 7510 è visibile a pochi minuti d'arco dalle zone centrali della nebulosa e a differenza di quest'ultima è discretamente visibile come una piccola macchia chiara anche con un binocolo 10x50, mentre ad alti ingrandimenti con un telescopio da 80mm di diametro, dove appare come un piccolo addensamento compatto di stelle di magnitudine 10 e 11 allungato in senso est-ovest; una risoluzione ottimale fino alle componenti di magnitudine 13 è possibile con telescopi da 150mm, mentre con diametri molto grandi si possono contare componenti fino alla magnitudine 15. Come parte dell'associazione Cassiopeia OB2, quest'ammasso è formato da stelle giovani e massicce, con un'età stimata inferiore ai 10 milioni di anni; la stella dominante sarebbe una gigante di classe spettrale O6.

L'ammasso Mrk 50 è invece l'oggetto dominante nelle regioni centrali della nebulosa Sh2-157; le sue dimensioni sono racchiuse in appena due minuti d'arco ed è pertanto difficile da scorgere con un binocolo; a forti ingrandimenti è però visibile con un telescopio da 80mm, con cui si possono scindere alcune stelle di magnitudine 10. Un telescopio da 200mm di diametro, sempre con forti ingrandimenti, è in grado di mostrare fino a una dozzina di stelle fino alla magnitudine 13, molte delle quali disposte in coppia. Come visto, Mrk 50 è l'oggetto più giovane di questa regione, dove i processi di formazione stellare sono più recenti; quest'ammasso è composto da alcune stelle di grande massa molto vicine fra loro, fra le quali spicca HD 219460, una supergigante facente parte della classe delle Wolf-Rayet catalogata anche come WR 157: si tratta di una stella binaria la cui compagna secondaria è una gigante brillante di classe spettrale B1III, con un periodo orbitale di circa due giorni.

Circa 5 gradi a sudovest si trova un altro complesso nebuloso, legato questa volta all'associazione Cepheus OB1 (o forse Cepheus OB5), sempre sul Braccio di Perseo: si tratta della nebulosa Sh2-142, talvolta indicata col soprannome di Nebulosa Mago per via delle sue protuberanze che lo farebbero rassomigliare, nelle foto a lunga esposizione e in alta risoluzione, a un mago coperto con un mantello che gesticola. Per individuarne la posizione si può fare riferimento alle stelle ζ Cephei e δ Cephei, dalla prima alla seconda e prolungando la direzione deviando poco verso sud. Non è visibile all'osservazione diretta attraverso un telescopio, ma come tante altre nebulose situate nei dintorni è invece ben evidente nelle fotografie a lunga posa; la sua distanza è
La nebulosa Sh2-142, talvolta soprannominata “Nebulosa Mago”, ospita l’ammasso aperto NGC 7380.

stimata sui 11.300 anni luce e appare legata all’ammasso aperto NGC 7380. Talvolta questa sigla viene erroneamente utilizzata anche per indicare la nebulosa, in luogo della più appropriata Sh2-142. La stella responsabile della ionizzazione dei suoi gas è la binaria a eclisse DH Cephei, formata da due stelle di classe spettrale O6 e situata all’interno dell’ammasso citato. La massa ionizzata si stima che sia pari a 4000 masse solari, ma associata ad essa si trova anche una nube molecolare contenente almeno il doppio di questa massa e forse fino a 15.000 masse solari.

L’ammasso aperto NGC 7380 invece è visibile anche direttamente all’osservazione visuale e appare dominato da un vento stellare della sua stella più massiccia, una gigante blu.

Proseguendo invece verso Cassiopea, a est di Sh2-157, si trova NGC 7635, la famosa Nebulosa Bolla, il cui nome è dato della sua caratteristica struttura quasi perfettamente circolare visibile sul suo lato meridionale. Con telescopi di grande apertura e a bassi ingrandimenti appare quasi nello stesso campo visivo del vicino ammasso aperto M52; tuttavia è da notare che questa nebulosa resta invisibile coi telescopi più diffusi presso gli appassionati, come quelli con 150mm o i 200mm di diametro. La sua caratteristica principale è una "bolla" di vuoto circondata da una nebulosa, ben evidente nelle foto a lunga posa, causata dal vento stellare della giovane stella centrale, di magnitudine 8,7 e distante da noi circa 11.000 anni luce. Questa stella è una gigante di colore blu, avendo classe spettrale O6III, è denominata SAO 20575 (o anche BD +60°2522) ed è uno dei membri più luminosi e massicci dell’associazione Cassiopeia OB2; il suo vento stellare raggiunge la velocità di 2000 km/s, mentre la sua intensa radiazione è responsabile della ionizzazione della nebulosa stessa, che emette luce propria.

A breve distanza, circa mezzo grado a nordest, si trova il famoso ammasso aperto M52, indubbiamente uno degli oggetti più notevoli e facili dell’intero settore di Via Lattea. Si individua con molta facilità sia per la sua brillantezza, sia tramite il proseguimento dell'allineamento fra le stelle α Cassiopeiae e β Cassiopeiae, per la stessa distanza delle due stelle. È già ben visibile anche con un binocolo come un 8x30 o un 10x50, sebbene siano identificabili solo poche delle sue stelle membri, dominate da una stella giallognola di magnitudine 8,26, nettamente più luminosa delle altre, situata sul lato occidentale dell’ammasso; con un telescopio da 120-150mm di apertura sono invece già visibili fino a una cinquantina di componenti molto deboli e vicine fra loro fino alla magnitudine 13, mentre con un 250mm diventano oltre 150, fino alla magnitudine 14. M52 è un ammasso molto ricco e ben contrastato rispetto ai campi stellari di fondo grazie alla sua compattezza, con centinaia di stelle concentrate entro un diametro apparente di 12 minuti.

La nebulosa NGC 7635 è soprannominata Nebulosa Bolla a causa della sua struttura causata dal vento stellare della sua stella più massiccia, una gigante blu.
d’arco e una densità media stimata di circa 3 stelle per parsec cubico, che sale addirittura fino a 50 stelle per parsec cubico nella zona centrale. Per la sua distanza esatta esistono varie stime, che vanno dai 3900 ai 4900 anni luce, ma viene accettato un valore sui 4500 anni luce; queste differenze di valori sono dovute principalmente al forte assorbimento interstellare che la sua luce incontra nella nostra direzione, che complica notevolmente il raggiungimento di una stima precisa. Comunque sia, tutte queste stime lo collocano a una distanza nettamente inferiore rispetto ai complessi nebulosi visibili sull’Arco di Cassiopea e solo poche centinaia di anni luce al di là delle associazioni OB visibili in Cefeo e appartenenti al Braccio di Orione.

All’estremità orientale dell’Arco di Cassiopea, circa 2 o 3 gradi a nordovest della stella Caph (β Cassiopeiae), si trova un’interessante concatenazione di ammassi aperti orientata in senso nordovest-sudest; sebbene gran parte di questi oggetti siano sfuggenti o scarsamente contrastati, ce ne sono due che sono osservabili con relativamente facilità.

Il più notevole è NGC 7790, grazie soprattutto al suo maggiore contrasto rispetto ai campi circostanti. Si può scorgere anche attraverso un binocolo 10x50, sebbene con qualche difficoltà, e appare come una macchia chiara di dimensioni ridotte e sicuramente non risolvibile in stelle; attraverso un telescopio da 100mm si scorgono alcune stelline su uno sfondo che permane nebuloso, due delle quali hanno rispettivamente magnitudine 10 e 11; con un telescopio da 150mm la risoluzione è quasi completa, mentre lo è del tutto con strumenti da 250mm e forti ingrandimenti, con cui si scorgono non più di una trentina di componenti fino alla magnitudine 14. NGC 7790 è un ammasso piccolo ma relativamente ricco situato a circa 9600 anni luce di distanza, corrispondente a una zona centrale del Braccio di Perseo, uno dei due bracci di spirale maggiori della Via Lattea, nei pressi dell’associazione OB Cassiopeia OB4. Anche accettando le stime con valori di distanza più grandi, ossia fino a 10.800 anni luce, l’ambiente galattico resta abbastanza simile, trovandosi fisicamente adiacente agli altri ammassi visibili nelle vicinanze, in particolare a NGC 7790 e Harvard 21. La sua età è stata stimata sui 60-80 milioni di anni al massimo. Al suo interno sono state identificate alcune stelle variabili, fra le quali spiccano ben tre variabili cefeidi; due di queste sono disposte in coppia e fanno parte di un sistema binario, così da aver ricevuto le designazioni CEa e CEb Cassiopeiae. L’altra delle tre è invece nota come CF Cassiopeiae.

A soli 15 minuti d’arco verso nordovest si trova NGC 7788, che sembra leggermente più esteso solo perché nella sua direzione si osserva un gruppetto di stelle di magnitudine 9 non legate però fisicamente all’ammasso stesso. Con un binocolo 10x50 in effetti si apprezzano soltanto queste stelle di campo, più una leggera piccola catena di ammassi aperti visibili a nordovest di β Cassiopeiae: sopra, immagine reale; sotto, a colori invertiti e mappata.
macchia chiara fra di queste osservando con grande attenzione. Con un telescopio da 120mm è possibile notare alcune stelle di magnitudine dalla 11 alla 13 su un fondo che però appare ancora debolmente nebuloso. Strumenti maggiori ne consentono una completa risoluzione fino alla magnitudine 14. NGC 7788 appare come un ammasso piuttosto concentrato, anche se relativamente povero di stelle, specie se confrontato con altri ammassi vicini; una stella di magnitudine 9,55, relativamente brillante se confrontata con le componenti reali, rende più difficoltoso distinguere le stelle delle sue regioni centrali. Al suo interno sono state identificate diverse stelle di pre-sequenza principale, che si presentano distribuite in modo uniforme, senza evidenze di concentrazione. Uno studio del luglio 2013 basato sulla fotometria di 113 stelle membri ha permesso di definire una distanza di 7800 anni luce e un'età di 93 milioni di anni.

Harvard 21 è invece piuttosto difficile da inquadrare, perché è poco concentrato e si confonde facilmente con ricchi campi stellari di fondo; le sue componenti più luminose sono di magnitudine 11 e formano un piccolo trapezo invisibile sia con binoculi 10x50 che con piccoli telescopi da 60-70mm di apertura. L'assenza di concentrazione invece lo rende di difficile osservazione anche con telescopi in grado di risolverlo completamente, come i grandi riflettori da 250mm e oltre. Tutti e tre sono ammassi relativamente giovani, anche se presentano alcune caratteristiche differenti: in particolare NGC 7790 non possiede un alone di stelle giovani blu, presente invece negli altri due: ciò potrebbe indicare che, sebbene essi possano aver avuto origine nella stessa regione di formazione stellare, si siano formati in tempi diversi e da differenti nubi molecolari.

Altri ammassi aperti si osservano nei dintorni, sebbene siano più difficili ancora da individuare: più a nord vi è King 12, formato da alcune stelle di magnitudine 12 e 13 la cui visione è disturbata da una stella di magnitudine 10 posta in primo piano; Berk 58, situato a sudest di NGC 7790 e visibile con telescopi da oltre 250mm di diametro come un discreto addensamento di stelle di magnitudine 14 e 15 abbastanza ben contrastato; infine, separato rispetto alla catena delineata da questi ammassi, vi è Florov 1, blando e molto difficile da staccare da fondo cielo.

Circa 2 gradi più a nord si osserva invece il debole anello nebuloso di CTB 1, coincidente con un antico resto di supernova.

OLTRE L’ARCO DI CASSIOPEA

La sezione di Via Lattea posta subito a est dell’Arco di Cassiopea, e in particolare fra le stelle Caph (β Cassiopeiae) e Cih (γ Cassiopeiae), contiene un gran numero d'ammassi e gruppi stellari racchiusi in un diametro di appena 5 gradi; tuttavia, si tratta in gran parte di oggetti molto deboli o difficili da staccare dai ricchi campi stellari circostanti. Quasi tutti questi ammassi si trovano sul Braccio di Perseo, a distanze superiori ai 5000 anni luce.

Fra questi, il più notevole è probabilmente NGC 129, situato quasi esattamente a metà strada fra le brillanti stelle β e γ Cassiopeiae; la sua caratteristica più evidente anche attraverso un binocolo è un piccolo triangolo di stelle di magnitudine 8 e 9, situate proprio al centro dell'ammasso. Attraverso un telescopio da 120mm di apertura è possibile scorgere alcune decine di stelle sparse fino alla magnitudine 12, formanti un addensamento poco risaltato rispetto ai campi stellari circostanti, di per sé molto ricchi; con telescopi da 200mm di apertura la risoluzione è ottimale già a bassi ingrandimenti. Quest'ammasso risulta essere studiato estensivamente per via della presenza al suo interno di alcune variabili cefeidi, in particolare per la coppia di stelle costituenti il sistema binario noto come DL Cassiopeiae; con una magnitudine media attorno a 8,84 è di fatto la stella più luminosa dell'ammasso, tuttavia le sue pulsazioni la fanno oscillare fra le magnitudini 8,64 e 9,26.
La curva della sua oscillazione fa ritenere che si tratti di una binaria spettroscopica. Oltre a questa sono note altre quattro stelle che mostrano segni di variabilità. L’età dell’ammasso è relativamente giovane ed è stimata sui 77 milioni di anni; indice di ciò è anche la presenza di alcune stelle massicce di classe spettrale B. Dista circa 5300 anni luce.

Poco più di un grado a nord si trova il piccolo ammasso NGC 103, la cui sigla non va confusa con quella del più appariscente ammasso M103, situato sempre in Cassiopea una decina di gradi più ad est; giace in un ricco campo stellare ed è circondato da numerosi altri piccoli ammassi aperti. Non è apprezzabile attraverso un binocolo 10x50 se non con difficoltà, sia per via delle sue ridotte dimensioni che per la sua luminosità; con un telescopio da 120mm è possibile notarlo come una macchia chiara molto pallida su cui si sovrappongono alcune deboli stelline. Una buona risoluzione in stelle è possibile soltanto con uno strumento da almeno 200mm di apertura, attraverso cui sono evidenti alcune decine di stelle fino alla magnitudine 13, molte delle quali disposte lungo un allineamento in senso nord-sud. NGC 103 è un ammasso aperto moderatamente ricco e di ridotte dimensioni, assai poco studiato; la sua distanza è stimata attorno ai 9900 anni luce e potrebbe trovarsi nei pressi dell’associazione OB Cassiopeia OB4. A questa distanza, le sue dimensioni reali sono pari a circa 5,9 anni luce; la presenza di componenti azzurre di classe spettrale B è indice della giovane età delle sue stelle. Studi fotometrici hanno premesso di individuare oltre un centinaio di componenti reali, fra le quali vi sono alcune stelle variabili.

Circa mezzo grado a NNW della stella κ Cassiopeia si trova una coppia di deboli ammassi che tuttavia possono essere distinti senza troppe difficoltà osservando con telescopi di grande diametro. Il primo di questi è NGC 133, in realtà individuabile anche con strumenti di 80mm come una piccola sequenza di stelle di magnitudine 9 molto vicine fra loro; ingrandimenti spinti lo mostrano come un gruppo di meno di una decina di stelle fino alla magnitudine 11 disposte a formare una sorta di Y con la gambeta rivolta verso nord. NGC 133 è un ammasso aperto poco appariscente e di debole concentrazione, nonché scarsamente studiato; la sua distanza è stimata attorno ai 2100 anni luce ed è quindi situato all’interno del Braccio di Orione, più o meno in direzione della parte meridionale dell’associazione Cepheus OB4. La sua età è molto giovane ed è stimata sui 10 milioni di anni; indice di ciò è anche la presenza di alcune stelle massicce di classe spettrale B. Spesso, proprio a causa della sua bassa concentrazione, è stato considerato un asterismo piuttosto che un reale ammasso aperto, formato da sole cinque stelle e comprendente la stella doppia BD+6293, la cui primaria ha classe spettrale B3; studi fotometrici e di moto proprio hanno messo in evidenza che in realtà in questa direzione sembrerebbe esserci realmente un ammasso, formato forse da una ventina di componenti, di cui 13 fino alla magnitudine 14,5.

NGC 146 è ancora più difficile da individuare, sebbene si trovi a soli 11 minuti d’arco dal precedente; le sue componenti più luminose infatti sono di magnitudine 11. La sua risoluzione è possibile attraverso un telescopio da 120 o 150mm di apertura, ma appare come un debole addensamento di forma leggermente allungata in senso est-ovest. Stime sulla sua distanza variano da 9900 anni luce fino a 11.400 anni luce; in ogni caso, è evidente che la vicinanza all’ammasso NGC 133 è solo apparente. La sua età risulta essere piuttosto giovane, dell’ordine dei 10 milioni di anni al massimo, come è anche ben evidente dalla presenza di numerose stelle di classe spettrale B di sequenza principale e dall’assenza di supergiganti evolute, oltre che dall’esistenza di una popolazione di stelle di pre-sequenza principale; fra le sue stelle più massicce vi sono due stelle Be di Herbig.

La coppia di deboli ammassi aperti NGC 133 e NGC 146, visibili a brevissima distanza a nord della stella κ Cassiopeiae.
A metà strada fra le stelle γ e κ Cassiopeiae, in direzione di un campo stellare molto ricco di stelle deboli, si trova NGC 225. Può essere individuato anche con un binocolo 10x50, attraverso cui si presenta come una macchia chiara nella quale sono evidenti diverse stelle poco appariscenti; con un telescopio da 100mm si notano una ventina di componenti fino alla magnitudine 11 ben separate fra loro e disperse su un diametro di 12'. I campi stellari verso nord appaiono fortemente oscurati da dense nubi di polveri; nelle foto a lunga esposizione si evidenzia in questa direzione la nebulosa a riflessione vdB 4. NGC 225 è un ammasso aperto poco concentrato la cui distanza è stimata attorno ai 2100 anni luce, in una zona interna al Braccio di Orione a breve distanza dall'ammasso NGC 133 e dalla regione di Cepheus OB4; lungo la sua linea di vista si estende un sistema di nebulosità situate in primo piano, su cui spiccano la nebulosa oscura LDN 1297 e la nebulosa a riflessione vdB 4. La sua età è stimata sui 120-130 milioni di anni al massimo ed è limitata verso l'alto dalla presenza di una stella di classe spettrale B6.5 ancora nella fase di sequenza principale; sono note 28 componenti fino alla magnitudine 16,1, cui si aggiunge una possibile stella fuggitiva. La massa totale dell'ammasso è stimata fra le 59 e le 88 masse solari.

Poco meno di 1,5 gradi a est di Caph (β Cassiopeiae) è infine da segnalare la galassia IC 10, che sebbene ovviamente non sia un oggetto appartenente alla Via Lattea, si trova in direzione dei suoi ricchi campi stellari e di polveri, venendone per altro parzialmente oscurata. Classificata inizialmente come un oggetto appartenente alla nostra Galassia, intorno agli anni 1930 si è avanzata l'ipotesi che si trattasse di un oggetto extragalattico. Edwin Hubble suggerì che poteva trattarsi di un oggetto appena al di fuori del Gruppo Locale, ma la questione venne risolta solo nel 1996, quando, a seguito della scoperta di variabili Cefeidi al suo interno, se ne stabilì l'esatta distanza. Oggi si sa che IC 10 si trova alla stessa distanza della Galassia del Triangolo rispetto alla Galassia di Andromeda: questo può suggerire che si tratti dunque di una galassia appartenente al sottogruppo di M31. È anche dell'unica galassia starburst nota all'interno del Gruppo Locale; ha una notevole densità di stelle del tipo Wolf-Rayet, se paragonata alle Nubi di Magellano (a questo proposito si può dire che le sue dimensioni sono inferiori a quelle della Piccola Nube di Magellano, sebbene la sua magnitudine assoluta sia paragonabile a quella di quest'ultima). Il livello elevato dell'ossigeno nella galassia, confrontato con quello della Piccola Nube, suggerisce che l'attività di formazione stellare è continuato per un periodo di tempo più lungo e continua tuttora a ritmo discreto, dato che ogni anno si formano al suo interno oltre 50.000 stelle. L'idrogeno ionizzato qui forma regioni H II molto estese, in particolare verso il centro.

Una nota finale meritano alcune delle stelle variabili visibili in questo tratto di cielo fra Cefeo e Cassiopea: qui vi sono infatti alcune fra le variabili più famose e studiate dell'intera volta celeste.

La prima è la famosa δ Cephei, ben visibile nella parte meridionale della costellazione di Cefeo. Questa stella è il prototipo di una classe di stelle variabili molto importanti, le Cefeidi, nonché una delle variabili di questa classe più vicine al Sole. La sua variabilità venne scoperta da John Goodricke nel 1784 e fu la seconda variabile di questo tipo ad essere stata individuata, dopo la stella η Aquilae, la cui variabilità fu riconosciuta tale da Edward Pigott all'inizio dello stesso anno. Per la sua luminosità e per l'ampiezza delle fluttuazioni, δ Cephei è una delle stelle più semplici per astrofili e astronomi dilettanti che iniziano a dedicarsi allo studio delle stelle variabili, perché la stella è sempre visibile nelle ore notturne di gran parte dell'emisfero boreale. La variabilità di δ Cephei è dovuta a delle pulsazioni della stella; essa varia dalla magnitudine 3,48 a 4,37 in un periodo di 5,36634 giorni, anche se impiega meno tempo a raggiungere il massimo della luminosità, mentre necessita di più tempo per arrivare al minimo; nello stesso arco di
tempo varia anche la sua classe spettrale, da F5 a G3. Si ritiene che stelle di questo genere si formino con una massa 3–30 volte superiore a quella solare, e che abbiano già da tempo passato la fase di sequenza principale come stelle di Classe B. Dopo aver esaurito il loro combustibile nucleare, l'idrogeno, presente nel nucleo, queste stelle instabili passano ora attraverso gli ultimi stadi della loro evoluzione. La δ Cephei emette circa 2.000 volte la luminosità del Sole, producendo un forte vento stellare, che, in combinazione con le pulsfazioni stellari, producono un'espulsione di massa al tasso di circa $1,0 \pm 0,8 \times 10^{-6}$ masse solari all'anno, equivalente a una massa solare circa ogni milione di anni. Questa materia confluisce verso l'esterno ad una velocità di circa 35 km/s. Il risultato di questo gas espulso è la formazione di una nebulosa di circa un parsec di diametro, centrata su δ Cephei, e contenente 0,07-0,21 masse solari di idrogeno neutro. Grazie alla correlazione periodo-luminosità e alla grande precisione con cui viene misurato il periodo delle pulsfazioni, le variabili Cefeidi possono essere usate come candele standard per determinare la distanza degli ammassi globulari e delle galassie in cui sono contenute. Poiché la relazione periodo-luminosità può essere calibrata con grande precisione usando le stelle Cefeidi vicine, le distanze trovate con questo metodo sono tra le più accurate disponibili.

Altra variabile di rilievo è la stella VV Cephei, famosa per essere una delle stelle più grandi conosciute. Si tratta in realtà di una stella binaria, formata da una supergigante rossa e da una stella bianco-azzurra probabilmente di sequenza principale. Le due stelle si trovano a circa 3.000 anni luce di distanza dalla Terra; inizialmente erano state considerate far parte dell'associazione stellare Cepheus OB2, ma da recenti studi parrebbe non ci sia relazione tra VV Cephei e quest'associazione OB. La magnitudine apparente media totale del sistema è pari a 4,9. Come visto, la componente principale, nota come VV Cephei A, è una delle stelle più grandi conosciute. È di tipo spettrale M2 e il suo raggio era stato stimato fino a 1.900 volte quello del Sole; tuttavia, come per altre grandi stelle, non è sempre facile misurare le reali dimensioni di stelle in questo stato: l'essere circondate da gusci opachi nell'estesa atmosfera, l'oscuramento del bordo, la luminosità instabile ed altri fattori concorrono nel rendere difficile la stima del raggio stellare. Nel 2010 il diametro angolare di VV Cephei è stato misurato con metodi astrometrici ed è risultato essere di 0,00638 secondi d'arco, che alla distanza alla quale si trova la stella, corrisponde un raggio di circa 1.050 volte quello del Sole, una stima nettamente inferiore a quelle mostrate in studi precedenti ma sostanzialmente simile a quella ottenuta con metodi spettroscopici in un altro studio del 2008. Anche la sua massa è stata rimisurata: è oggi indicata sulle 64 masse solari, dalle 100 inizialmente stimate. VV Cephei A non ha forma sferica, bensì ha forma di goccia dovuta alle forze mareali prodotte dal campo gravitazionale della vicina e calda compagna, la quale viene pesantemente oscurata da un disco di materia che la fredda supergigante cede. É anche una variabile pulsante semiregolare; si conoscono periodi di 58, 118 e 349 giorni, oltre a uno più lungo di 13,7 anni. Una stella con queste caratteristiche quasi certamente finirà la propria esistenza esplodendo in supernova, evento che potrebbe espellere la compagna convertendola in una stella fuggitiva.

Un'altra stella notevole è la γ Cassiopeiae, che porta anche il nome proprio Cih (o Tsib). Si tratta di una variabile eruttiva, con cambiamenti irregolari della sua luminosità tra le magnitudini 2,15 e 3,40, ed è il prototipo delle stelle variabili Gamma Cassiopeia. La magnitudine media di questa stella è stata di 2,2 nel 1937, 3,4 nel 1940, 2,9 nel 1949, 2,7 nel 196, mentre attualmente è circa 2,15. Negli anni dal 1935 al 1940 la sua luminosità è variata dalla magnitudine 1,6 alla 3,0, con il massimo avvenuto nell'aprile del 1937. Alla massima luminosità γ Cassiopeiae è la stella più luminosa della costellazione. La sua distanza è di circa 550 anni luce. Nelle foto a lunga posa si evidenziano a nord di questa stella due piccoli addensamenti nebulosi di forma più o meno triangolare: si tratta delle nubi IC 59 e IC 63, facenti parte del più vasto sistema catalogato come Sh2-185. Questo sistema si trova alla stessa distanza di γ Cassiopeiae e riceve l'intensa radiazione di questa stella, subendo la ionizzazione dei suoi gas. IC 63 mostra una struttura filamentososa, mentre IC 59 è più irregolare.
AMMASSI SUL LATO ORIENTALE

Numerosi altri ammassi aperti giacciono nella parte centro-orientale di Cassiopea; la quasi totalità di questi giace sul Braccio di Perseo.

Circa un grado e mezzo a nordest di γ Cassiopeiae si trova il debole ammasso NGC 366, le cui componenti più brillanti sono solo di magnitudine 11; individuarlo può risultare difficoltoso, in quanto si presenta come un piccolissimo addensamento di stelle parzialmente risolvibile anche con telescopi da 200-250mm, sul bordo di un campo stellare molto ricco. Oltre alle tre stelle di magnitudine 11, le restanti componenti sono solo di magnitudine 14 e 15. Si tratta di un ammasso poco studiato, la cui distanza è stimata sui 5800 anni luce.

A breve distanza angolare si trova NGC 381, che sebbene sia più esteso ed appariscente del precedente, si individua comunque con difficoltà, sia a causa della debolezza delle sue componenti, sia perché giace in un campo stellare molto ricco e staccarlo diventa arduo; all’osservazione visuale appare come un leggero addensamento sparso di stelle di magnitudine 11 e 12, con altre stelle di fondo nel mezzo. In fotografia è invece molto più evidente. La sua distanza è stimata sui 3300 anni luce e ricade nel Braccio di Perseo, presentandosi anche parzialmente oscurato; si tratta tuttavia di un ammasso piuttosto ricco, con 350 stelle possibili membri. La sua età è stimata sui 320 milioni di anni.

Leggermente più facile da localizzare è invece il piccolo ammasso NGC 433, lungo la linea che congiunge le stelle γ Cassiopeiae e δ Cassiopeiae; il suo aspetto è abbastanza ben definibile ed è dominato da una stella

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NGC 366</td>
<td>01h 06m 26s</td>
<td>+62° 13′ 44″</td>
<td>A Ap</td>
<td>11,0</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>NGC 381</td>
<td>01h 08m 20s</td>
<td>+61° 35′ 02″</td>
<td>A Ap</td>
<td>9,3</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>NGC 433</td>
<td>01h 15m 12s</td>
<td>+60° 08′ 00″</td>
<td>A Ap</td>
<td>9,0</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>NGC 436</td>
<td>01h 15m 58s</td>
<td>+58° 48′ 42″</td>
<td>A Ap</td>
<td>8,8</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>NGC 457</td>
<td>01h 19m 40s</td>
<td>+58° 17′ 18″</td>
<td>A Ap</td>
<td>6,4</td>
<td>13</td>
<td>Amm. Civetta</td>
</tr>
<tr>
<td>NGC 559</td>
<td>01h 29m 33s</td>
<td>+63° 18′ 05″</td>
<td>A Ap</td>
<td>9,5</td>
<td>4,4</td>
<td></td>
</tr>
<tr>
<td>Sh2-188</td>
<td>01h 30m 33s</td>
<td>+58° 24′ 51″</td>
<td>NP</td>
<td>-</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>M103</td>
<td>01h 33m 12s</td>
<td>+60° 42′ 00″</td>
<td>A Ap</td>
<td>7,4</td>
<td>6,0</td>
<td></td>
</tr>
<tr>
<td>Tr 1</td>
<td>01h 35m 38s</td>
<td>+61° 16′ 30″</td>
<td>A Ap</td>
<td>8,1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>NGC 609</td>
<td>01h 36m 24s</td>
<td>+64° 32′ 12″</td>
<td>A Ap</td>
<td>11,0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>NGC 637</td>
<td>01h 43m 03s</td>
<td>+64° 02′ 12″</td>
<td>A Ap</td>
<td>8,2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>NGC 654</td>
<td>01h 44m 00s</td>
<td>+61° 35′ 06″</td>
<td>A Ap</td>
<td>6,5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>NGC 659</td>
<td>01h 44m 24s</td>
<td>+60° 40′ 00″</td>
<td>A Ap</td>
<td>7,9</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>NGC 663</td>
<td>01h 46m 09s</td>
<td>+61° 14′ 06″</td>
<td>A Ap</td>
<td>7,1</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>IC 166</td>
<td>01h 52m 23s</td>
<td>+61° 51′ 54″</td>
<td>A Ap</td>
<td>11,7</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>NGC 743</td>
<td>01h 58′ 37″</td>
<td>+60° 09′ 25″</td>
<td>A Ap</td>
<td>9,5</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>
arancione di magnitudine 7,9, sul lato orientale, mentre il centro dell'ammasso è formato da un gruppetto di stelle di magnitudine 13 incorniciato da un piccolo triangolo di astri di magnitudine 9 e 10. Non dev'essere confuso con un altro piccolo addensamento di stelle visibile poco più a nord, dominato da due stelle di magnitudine 7 e che non costituisce un ammasso. Si tratta di un ammasso di età molto giovane, considerato in alcuni studi come un’associazione OB in stadio iniziale della sua fase evolutiva e associato a nubi molecolari. La sua distanza è stimata sui 7600 anni luce.

NGC 436 è ben più facile da individuare, sebbene non sia comunque un ammasso luminoso; è visibile poco meno di due gradi a sudovest di δ Cassiopeiae e si può individuare con un telescopio da 120mm come una piccola macchietta risolvibile con difficoltà dominata da alcune stelle di magnitudine 11. Molte delle sue componenti sono però di magnitudine 13 e per risolverlo bene occorrono strumenti da 200-250mm. Si tratta di un ammasso relativamente compatto, formato da alcune decine di componenti, con un’età stimata sui 63 milioni di anni; la sua distanza è stimata sugli 8500 anni luce, venendosi così a trovare in una regione esterna del Braccio di Perseo.

NGC 457 (C13), soprannominato Ammasso Civetta per via del suo aspetto, è uno degli ammassi più famosi di Cassiopea. È un ammasso di facile individuazione e osservazione; si trova quasi 2 gradi a sud della stella δ Cassiopeiae (Ruchbah) ed è visibile anche con un binocolo 10x50 o, meglio, 15x80, attraverso i quali si presenta già parzialmente risolto in stelle. Un telescopio da 150mm è tra i migliori strumenti per l'osservazione di quest'oggetto celeste, che alle latitudini medie boreali si presenta circumpolare; già a bassi ingrandimenti è un oggetto ben risolto che occupa buona parte del campo visivo. Strumenti di apertura superiore permetteranno di notare che molte delle sue componenti più luminose, tra le quali la stella φ Cassiopeiae, sul bordo meridionale dell'ammasso, sono doppie. Si tratta di un ammasso dall’aspetto molto caratteristico: la sua forma particolare lo ha reso noto con il nome di Ammasso Civetta: in fatti è dominato da due stelle di sesta magnitudine (una delle quali è φ Cassiopeiae), da cui parte una concatenazione di astri che ricordano bene le ali di un uccello in volo; le due stelle di sesta sono gli "occhi" della civetta. In realtà, le stelle più brillanti dell'ammasso, come φ Cassiopeiae, sarebbero molto più vicine a noi, e si mostrano in direzione dell'ammasso per un effetto prospettico. NGC 457 è composto da una sessantina di componenti stellari accertate fino alla quattordicesima magnitudine e dista dal Sole quasi 8000 anni luce. Come la gran parte degli ammassi brillanti situati in direzione di Cassiopea, anche questo presenta un’età piuttosto giovane, stimata attorno ai 21 milioni di anni. Nella sua direzione sono note diverse decine di stelle variabili, molte delle quali sono in realtà fisicamente separate dall'ammasso; fra le variabili accertate come appartenenti a NGC 457 vi è la V466 Cassiopeiae, una gigante rossa evoluta appartenente alla classe delle variabili pulsanti, e V765 Cassiopeiae, una binaria a eclisse di classe spettrale B5, cui se ne aggiungono altre quattro con diversi gradi di probabilità di appartenenza. Fra le stelle situate sulla stessa linea di vista ma sicuramente non appartenenti all'ammasso, vi sono diverse variabili ceffidi e alcune variabili RR Lyrae.

Molto più piccolo ma ugualmente appariscente è NGC 559 (C8); si individua 2,5 gradi a WSW della stella ε Cassiopeiae (Segin) e appare come un piccolissimo e concentrato gruppo di stelline, le più brillanti delle quali sono di magnitudine 10. La magnitudine complessiva dell'ammasso è invece pari a 9,5, rendendolo un po’ difficile da scorgere con un semplice binocolo; attraverso un telescopio da 150mm è possibile iniziare una risoluzione soddisfacente, che si completa comunque con strumenti di 200-250mm di apertura. L'ammasso appare discretamente compatto e ricco, con dei bordi irregolari, e contiene circa 150 stelle, una quarantina delle quali sono di dodicesima grandezza; la sua distanza è stimata attorno ai 3000 anni luce e appare molto concentrato, con un diametro spaziale di circa 10 anni luce. Le componenti più massicce, con una massa pari o superiore a 1,4 masse solari appaiono più concentrate nelle regioni centrali rispetto alle stelle meno massicce, mostrando
così tracce evidenti di segregazione di massa. Poco a nordovest dell'ammasso è presente un resto di supernova, indicato con la sigla G127.1+0.5: quest'oggetto, che possiede una forma quasi perfettamente sferica ed emette onde radio, è stato studiato allo scopo di determinare eventuali legami con l'ammasso; se i due oggetti sono legati, tale resto si estenderebbe per oltre 50 anni luce di diametro. Tuttavia, una correlazione fra i due oggetti sembra essere improbabile, dato che il resto di supernova sembra avere un'età di 18.000 anni, ossia 100.000 volte più giovane dell'ammasso, che secondo alcune stime avrebbe invece un'età stimata in 1,8 miliardi di anni. Uno studio del 2002 basato su indagini fotometriche fornisce tuttavia un'età dell'ammasso pari a 400 milioni di anni, decisamente inferiore alle stime precedenti.

Il famoso M103 è uno degli ammassi meno appariscenti fra quelli di Messier, ma si individua con estrema facilità meno di un grado a nordest della stella δ Cassiopeiae, al punto che la luce di questa stella quasi lo oscura. Appare nello stesso campo visivo in un binocolo 10x50, il quale consente anche una prima parziale risoluzione. Un telescopio da 114mm lo mostra di forma triangolare e dominato da alcune stelline di ottava grandezza; con strumenti superiori l'ammasso è completamente risolto. M103 è uno dei più lontani ammassi aperti elencati nel Catalogo di Messier, trovandosi a circa 9400 anni luce dalla Terra, in un angolo remoto del Braccio di Perseo; esso possiede un diametro apparente di 6 minuti d'arco che, tenendo conto della distanza, corrisponde a un diametro reale di 15 anni luce. Attraverso le misurazioni sul moto proprio sono state individuate 77 componenti fino alla quattordicesima magnitudine facenti sicuramente parte dell'ammasso (con un indice di sicurezza non inferiore all'80%), cui se ne aggiungono 151 la cui probabilità di appartenenza è inferiore; i due membri più brillanti di M103 sono una supergigante di tipo B5Ib e una gigante di tipo B2III. Fra queste componenti sono note anche alcune stelle variabili, fra le quali due bianche a eclisse, una delle quali con un'oscillazione di oltre una magnitudine, una probabile variabile Gamma Doradus (o forse una variabile pulsante di lungo periodo di classe spettrale B), una stella Be e una gigante rossa pulsante; nello stesso campo visivo, ma non legata fisicamente a M103, si trova un'altra sospetta variabile Gamma Doradus. Estendendo l'indagine alle stelle fino alla diciottesima magnitudine, vengono incluse diverse altre variabili, fra cui sette di tipo Delta Scuti e otto a eclisse. Le stime sull'età dell'ammasso hanno fornito un valore pari a 16±4 milioni di anni. Data quest'età, è piuttosto improbabile che in esso siano ancora presenti delle stelle di pre-sequenza principale.

NGC 609 si individua due gradi a WN della stella ε Cassiopeiae; è estremamente debole, ma essendo anche piuttosto compatto è visibile anche con strumenti da 150mm come una macchia indistinta e nebulosa estesa per due minuti d'arco, tuttavia irrisolvente. La sua componente più luminosa è di magnitudine 13,8, mentre tutte le altre hanno magnitudine dalla 15. Sebbene non sia considerato un ammasso ricco, è molto ben definito e contrastato, grazie all'assenza di campi stellari importanti nei dintorni; la regione di cielo in cui si trova è infatti fortemente oscura. La sua distanza è stimata sui 10.000 anni luce almeno ed è pertanto anche al di là del Braccio di Perseo; si tratta di un ammasso di età avanzata, stimata sui 200 milioni di anni, e intrinsecamente luminoso, le cui componenti principali avrebbero una magnitudine assoluta pari a -0,5. Il suo diametro reale sarebbe pari a 9 anni luce.

Molto più brillante, anche se meno ricco, è l'ammasso NGC 637, visibile poco più di un grado a WN di ε Cassiopeiae; si individua anche con strumenti da 80mm, con cui appare come una piccola macchieta su cui si risolvono tre stelline di magnitudine 10. Con strumenti da 150mm la risoluzione è completa, in particolare a forti ingrandimenti. Si tratta di un ammasso molto giovane, la cui età è stimata sui 5-15 milioni di anni; la sua distanza è di oltre 7000 anni luce e viene dunque a trovarsi in una regione remota del Braccio di Perseo, mentre il suo diametro reale è stimato sui 10 anni luce.
NGC 654 si individua 2,5 gradi a nordest della stella δ Cassiopeiae, sulla linea che la congiunge a ε Cassiopeiae; è un ammasso di dimensioni molto piccole, individuabile solo con un 20x80 o un piccolo telescopio. Le componenti principali si trovano nella parte meridionale, e sono una supergigante gialla di magnitudine 7,3 (HD 10494) e una supergigante blu di 9,6, catalogata come HIP 8074 e circondata dalla nebulosa a riflessione vdB 6. Le restanti non raggiungono la magnitudine 10 e possono essere osservate con strumenti da almeno 100-120mm di apertura. L'ammasso contiene una sessantina di stelle, fra le quali ve ne sono diverse di presenza principale; queste sembrano avere un'età di circa 10 milioni di anni o anche meno, mentre le restanti stelle dell'ammasso hanno un'età che si aggira sui 15-20 milioni di anni, e ciò sarebbe indice del fatto che la formazione stellare sarebbe andata avanti anche dopo la formazione delle stelle principali dell'ammasso. Le componenti con massa pari o superiore a 1,7 masse solari, ossia, in questo caso, una magnitudine apparente pari a 17, avrebbero invece già raggiunto la fase di sequenza principale. Il mezzo interstellare all'interno di NGC 654 appare particolarmente vuoto, come testimoniato dallo scarso arrossamento osservato nelle stelle centrali dell'ammasso, a differenza di quelle poste nelle regioni periferiche; ciò farebbe pensare che i gas residui sarebbero stati spazzati via o dall'azione del forte vento stellare delle stelle più massicce, oppure dall'esplosione di una supernova. L'ammasso e la nebulosa associata vdB 6 fanno parte dell'associazione OB Cassiopeia OB8, che si estende in direzione del settore più centrale della costellazione di Cassiopea; con una distanza stimata sui 7900 anni luce, viene a trovarsi nel Braccio di Perseo fra le vicine associazioni Cassiopeia OB1 e Perseus OB1.

A breve distanza si trova anche NGC 659, circa 2° e 20’a ENE della stella δ Cassiopeiae. È facilmente individuabile anche con un binocolo 10x50, dove appare come una macchia chiara non risolvibile in stelle; con un telescopio da 120mm di apertura e medi ingrandimenti è possibile scorgere alcune componenti di magnitudine 11, su cui domina una stella di magnitudine 10,55. Con strumenti da 200mm la risoluzione è pressoché completa. NGC 659 è un ammasso aperto di piccole dimensioni e piuttosto concentrato; la sua distanza è stimata attorno ai 6300 anni luce e giace sul Braccio di Perseo, a breve distanza da alcune brillanti associazioni OB, in particolare Cassiopeia OB8 e Cassiopeia OB1. Secondo altre stime tuttavia la distanza di quest'ammasso va ricondotta fino a quasi 16000 anni luce; se queste ultime stime sono corrette, NGC 659 verrebbe a trovarsi sul Braccio del Cigno, in una zona remota e periferica della Via Lattea. La sua età è stimata sui 35 milioni di anni ed è dunque piuttosto giovane.

Infine, NGC 663 (C10) si individua due gradi a nord-est di δ Cassiopeiae; è visibile con un binocolo 10x50 come un alone chiaro circondato su quattro lati da stelle di ottava e nona magnitudine. Per risolvere la parte centrale dell'oggetto occorrono strumenti più potenti, in grado di rilevare stelle di undicesima e dodicesima magnitudine; con un telescopio amatoriale da 100-120mm è possibile risolverlo completamente e già a 70x si evidenziano diverse decine di componenti. Con strumenti ancora maggiori la risoluzione è ottimale e le componenti appaiono anche abbastanza separate. L'ammasso conta un centinaio di componenti; le stelle più luminose si concentrano sul lato nord, in particolare due stelle di ottava grandezza e due di nona, da cui partono due "grappoli" distinti di stelle meno appariscenti. Nelle sue regioni centrali sono presenti alcune stelle variabili di classe spettrale B; queste stelle si pensa che ruotino ad alta velocità e che possiedano una forma schiacciata ai poli, simile ad un'elica. Una di queste componenti è anche una sorgente di raggi X, il che potrebbe indicare una relazione con una stella di neutroni. Fra le stelle di NGC 663 sono note alcune variabili, fra le quali una binaria a eclisse di tipo EA e una di tipo EB, una variabile Beta Cephei, e diverse stelle di classe spettrale B con forti emissioni elettromagnetiche; a queste si aggiungono due variabili RR Lyrae, le quali sarebbero però stelle di campo probabilmente non legate fisicamente all'ammasso. Entro un raggio di 30' dal centro dell'ammasso sono note 25 stelle Be, fra le quali alcune presentano una lieve variabilità. NGC 663 fa parte dell'associazione OB Cassiopeia OB8. L'età media dell'ammasso è stata stimata attorno ai 13-15 milioni di anni, sebbene alcune stime indichino età leggermente maggiori, attorno ai 20-25 milioni di anni.
Fra Orsa Maggiore

E Leone
Durante i mesi primaverili boreali l’Orsa Maggiore appare allo zenit; nella sua parte centrale, nei pressi del quadrilatero delineato dalle stelle occidentali del Grande Carro, sono presenti numerose galassie e gruppi di galassie ben evidenti soprattutto nelle fotografie a lunga esposizione.

Il settore nordoccidentale dell’Orsa Maggiore al confine con la Giraffa e col Drago, sebbene non sia così ricco di galassie come la parte meridionale della costellazione, presenta comunque diverse galassie facilmente osservabili, alcune della quali particolarmente luminose.

Il Leone è una grande costellazione caratteristica delle serate primaverili boreali; la sua posizione lontano dalla Via Lattea favorisce l’osservazione di numerosi gruppi di galassie, alcune delle quali alla portata anche di piccoli telescopi.
La figura del Grande Carro è probabilmente alla base del più antico mito cui l’Umanità faccia ancora riferimento; è una delle più caratteristiche del cielo boreale ed è spesso riconosciuta anche da chi non segue l’astronomia.

Al di là delle sue stelle brillanti, con un telescopio da 200mm di diametro è possibile osservare diverse galassie, alcune delle quali sono anche relativamente semplici e alla portata anche di telescopi più piccoli.

CARATTERISTICHE

Durante i mesi primaverili boreali l’Orsa Maggiore appare allo zenit; nella sua parte centrale, nei pressi del quadrilatero delineato dalle stelle occidentali del Grande Carro, sono presenti numerose galassie e gruppi di galassie ben evidenti soprattutto nelle fotografie a lunga esposizione.

In realtà, alcune di queste galassie sono individuabili anche visualmente e con telescopi di diametro medio-piccolo, come quelli da 100-120mm; sono infatti presenti galassie incluse nel Catalogo di Messier, come M108, M109 e, a breve distanza, M106.

I gruppi di galassie più vicini in realtà si trovano nella parte settentrionale della costellazione e sono le famose M81 e M82, la cui distanza da noi si aggira sugli 11 milioni di anni luce; tuttavia, a circa 60-80 milioni di anni luce di distanza si trovano diversi gruppi di galassie molto popolosi, come il gruppo di M109 e quello di NGC 3610, le cui componenti principali sono distinguibili anche con strumenti molto diffusi presso gli appassionati.

Tutti questi gruppi appartengono a loro volta al Superammasso della Vergine, di cui anche la Via Lattea e le galassie del Gruppo Locale fanno parte, trovandosi in una posizione a questo marginale.

Sullo sfondo, a distanze notevolmente più grandi, si trovano diversi altri ammassi di galassie, i più importanti dei quali sono compresi nel Catalogo Abell; questi sistemi fanno parte di un altro grande superammasso situato alla distanza di 560 milioni di anni luce circa, noto come Superammasso dell’Orsa Maggiore. Queste galassie non sono visibili con facilità a causa della loro grande distanza e sono comunque fuori dalla portata dei più comuni telescopi in possesso degli appassionati, anche
L’area al centro del famoso astenismo del Grande Carro è molto ricco di galassie, organizzate in struture allungate e in remoti ammassi.
se di diametro grande. Sono tuttavia evidenti nelle fotografie composte da numerose esposizioni integrate e possibilmente riprese a grande campo ma ad alta risoluzione fotografica.

L’unico oggetto appartenente alla Via Lattea fra quelli qui visibili è la famosa nebulosa planetaria M97, che non verrà descritta in questo capitolo.

L’AMMASSO DELL’ORSA MAGGIORE

La maggior parte delle galassie più appariscenti visibili in quest’area di cielo appartenono all’Ammasso di galassie dell’Orsa Maggiore, la cui distanza media si aggira sui 60 milioni di anni luce.

Si tratta di un insieme di galassie in gran parte a spirale, esteso per circa 15 gradi di volta celeste; l’addensamento principale è costituito dal **Gruppo di M109**, che comprende la galassia omonima asseme a una trentina di altre galassie più piccole o meno appariscenti, in massima parte situate a una distanza compresa fra 55 e 60 milioni di anni luce. A queste se ne aggiungono alcune che appartenenza è dubbia, ma la cui distanza potrebbe in effetti essere compatibile.

La galassia dominante, nonché la più appariscente, di questo gruppo è **M109**, che dà appunto il nome al gruppo stesso. La sua posizione è facilissima da individuare, trovandosi solo un grado a sud est della brillante stella Phedea (γ Ursae Majoris), che fa parte dell’asterismo del Grande Carro; con un binocolo da 10x50 non è osservabile, così come non è nei comuni cercatori da 50mm di apertura; tuttavia può essere trovata con facilità inquadrandoli direttamente la stella γ. La sua luminosità è piuttosto bassa e la luce della vicina stella infastidisce
un po’ la sua osservazione se si osserva con un oculare a grande campo; la struttura maggiormente visibile è il nucleo, da cui parte la barra centrale, a cui sono legati due bracci di spirale. Questa galassia dista sui 55 milioni di anni luce e si trova nei pressi dell’estremità settentrionale del gruppo; possiede un diametro reale di circa 130.000 anni luce, dunque leggermente superiore a quello della Via Lattea. Ha inoltre tre galassie satelliti, note con le sigle UGC 6923, UGC 6940 e UGC 6969, cui se ne potrebbero aggiungere altre ancora non riconosciute come tali. La distribuzione delle regioni di idrogeno neutro di M109 è regolare, con un’estensione radiale di basso livello all’esterno del disco galattico, mentre nella regione della barra è presente un buco nella sua distribuzione.

L’estremità meridionale del gruppo è invece centrata sulla galassia a spirale barrata NGC 3726, che si trova 2 gradi e mezzo a sudovest di χ Ursae Majoris ed è anch’essa alla portata di piccoli strumenti, sebbene con difficoltà; attraverso un telescopio da 200mm di diametro si evidenzia il nucleo e la galassia assume una forma ovale allungata. Questa galassia si trova sul lato del gruppo rivolto verso la Via Lattea, trovandosi infatti a circa 45 milioni di anni luce; possiede un nucleo piccolo e una barra sottile, che termina in una struttura ad anello dalla quale partono i bracci di spirale, di aspetto inizialmente ben marcato ma che dopo mezzo giro tendono a diventare sfilacciati. La struttura del disco è molto ricca di stelle giovani e calde, nonché di regioni H II; all’esterno si trova invece un alone di materia oscura molto massiccio. Il diametro della galassia è di circa 85.000 anni luce.

Ad appena 15 minuti d’arco dalla χ Ursae Majoris, di magnitudine 3,69, si trova NGC 3877, uno dei membri più massicci del gruppo; con strumenti da 100mm e ingrandimenti oltre i 50x è visibile come una piccola macchia specialmente con la visione distolta, mentre con un 200mm si può apprezzare il suo aspetto allungato in senso nordest-sudovest. Si tratta di una galassia spirale vista quasi di taglio e perciò dall’aspetto simile a un fuso; benché la sua morfologia sia di difficile studio a causa della sua angolazione, sembrerebbe una spirale senza barra, di tipo Sc. La sua distanza è stimata sui 50 milioni di anni luce.

Andando invece un grado a nordest sempre della stella χ Ursae Majoris si trova NGC 3893, un’altra spirale vista quasi di faccia. È visibile anche con telescopi da 100-120mm, con cui appare come una piccola macchia circolare uniforme e sfumata; telescopi da 180-200mm permettono di notare attorno al nucleo un leggero alone chiaro e qualche venatura più luminosa. La sua morfologia è quella di una spirale molto ben definita e chiara, con due bracci maggiori e altre strutture minori estesi su un disco molto ricco di regioni H II; il suo diametro reale è pari a 70.000 anni luce, mentre la sua distanza è di 50 milioni di anni luce, al pari delle galassie circostanti. Appare in interazione con la vicina NGC 3896, molto più piccola, la quale è responsabile delle strutture deformate e i ponti stellari che circondano la galassia principale, frutto dell’interazione mareale.

Un grado e mezzo a est di χ Ursae Majoris si trova un’altra galassia abbastanza semplice, la NGC 3949; se l’inquinamento luminoso è del tutto assente può essere notata anche con un telescopio da 120mm, sebbene sia molto d’aiuto la visione distolta, mentre con un 200mm è molto più evidente come un ovale chiaro dai contorni sfumati orientato in senso nordovest-sudest. Si tratta di una galassia spirale semplice con un nucleo piuttosto...
corposo circondato da una struttura di bracci molto fra-stagliata, con numerose diramazioni, su cui giacciono numerosi vasti complessi di regioni H II; al pari delle sue compagne, la sua distanza è stimata sui 50 milioni di anni luce.

Nelle foto a lunga esposizione emergono numerose al-tre galassie nei dintorni, fra le quali spicca NGC 3769, una spirale barrata vista di taglio e visibile anche con telescopi da 180-200mm di diametro; è accompagnata dalla più piccola NGC 3769A, con la quale sembra in interazione.

Fra Phecda (γ Ursae Majoris) e χ Ursae Majoris si trova il secondo insieme del Gruppo di M109, quello che, come visto, comprende anche la stessa M109.

Qui la più facile è la galassia NGC 3953, la quale è visibile anche con un telescopio da 100mm come una macchia tonda luminosa; anche con telescopi da 150mm l’aspetto resta simile, ma con due piccole protuberanze ai lati, che costituiscono l’anello luminoso che circonda la barra centrale e le conferiscono un aspetto allungato: si tratta infatti di una spirale barrata di tipo intermedio, con una struttura dei bracci molto ben sviluppata in cui si contano quattro bracci principali e numerosi speroni minori su cui sono attivi in più punti processi di formazione stellare, con un aspetto generale che potrebbe essere molto simile a quello della Via Lat-tea. Anche le dimensioni sarebbero molto simili. La sua distanza è stimata fra i 50 e i 64 milioni di anni luce.

Meno di un grado a sudovest si trova NGC 3917, una galassia spirale vista quasi di taglio e dunque di aspetto molto allungato; nonostante ciò, è relativamente lumi-nosa ed è alla portata anche di un telescopio da 150mm di diametro, dove appare con un piccolo fuso chiaro sotto ottime condizioni osservative. Nelle fotografie si evidenzia a meno di 10 minuti d’arco verso ovest un’altra piccola galassia anch’essa vista di taglio e molto sotto-tile, la UGC 6802, molto più debole.

Circa 3 gradi a sudest di Phecda (γ Ursae Majoris) si trova la NGC 4026, una galassia lenticolare vista di taglio e quindi con l’aspetto di un lungo fuso orientato in senso nord-sud, con un nucleo piuttosto brillante; proprio il nucleo è la caratteristica visibile attraverso stru-menti da 100mm di diametro, con cui appare come una macchia luminosa di aspetto quasi stellare. Con telesco-pi da 200mm è evidente ad alti ingrandimenti anche il fuso che forma il disco. La sua distanza è stimata sui 50 milioni di anni luce, mentre le sue dimensioni reali sarebbero di circa 80.000 anni luce. Nel suo nucleo si trova un buco nero supermassiccio con una massa stimata compresa fra 166 e 275 milioni di masse solari.

Circa un grado a sudest si trova NGC 4088, un po’ meno appariscente della precedente ma sempre alla portata di strumenti di 100-120mm di diametro, dove appare come una macchia dalla forma irregolare e sfuggente, molto più staccata usando la visione distolta. Per apprezzarne meglio la presenza occorrono strumenti da 200mm e oltre, con cui può evidenziarsi la struttura de-formata. La galassia presenta un’evidente deformazione dei suoi bracci di spirale, i quali sono comunque molto ben definiti e chiari; la sua distanza è pari a 52 milioni di anni luce.

A soli 11 minuti d’arco verso sud appare la galassia compagna, NGC 4085, con la quale è in interazione; per
individuarla occorrono però telescopi da 150mm di apertura, con cui appare solo come una piccola macchia simile a una debole stellina sfumata. Nelle fotografie ad alta risoluzione è possibile inquadrare con facilità sia questa che la precedente.

Ancora più a est di questa coppia, in posizione un po’ isolata, vi è la galassia NGC 4157, più difficile delle precedenti in quanto meno luminosa; per individuarla con sicurezza occorrono telescopi da almeno 200mm, con cui appare per altro solo come un debolissimo aloni allungato. Si tratta di una spirale probabilmente barrata vista di taglio, con un disco attraversato da polveri oscure e in cui sono attivi estesi fenomeni di formazione stellare, come testimonia la presenza di un gran numero di stelle giovani e brillanti. La sua distanza è un po’ incerta, ma è compresa fra i 40 e i 60 milioni di anni luce circa.

La galassia NGC 4102 appare invece più vicina a M109, dalla quale è separata da circa un grado e mezzo, verso sudest. Con un telescopio da 120mm apparne come un piccolo batuffolo chiaro con un nucleo più luminoso; l’alone diventa molto più evidente con telescopi da 200mm e ingrandimenti spinti oltre i 100x. Sul lato occidentale è presente una stella di magnitudine 11,5 (che si rivela doppia ad altissimi ingrandimenti), che potrebbe inizialmente confondere dando l’idea di una supernova esplosa fra i suoi bracci. NGC 4102 è una galassia spirale di tipo intermedio, con due bracci particolarmente sviluppati e spessi su cui sono attivi forti ed estesi processi di formazione stellare, come è ben evidente dalle numerose associazioni di stelle giovani e blu; è presente inoltre un anello di starburst del diametro di 1000 anni luce contenente almeno 3 miliardi di masse solari. La sua distanza è stimata sui 69-70 milioni di anni luce ed è quindi uno dei membri più lontani del Gruppo di M109.

Sul lato opposto, circa 3 gradi a WSW da Phecda (γ Ursae Majoris) si trova la galassia NGC 3729, una piccola ma appariscente spirale barrata, visibile con strumenti da 120-150mm di diametro come una macchia circolare di aspetto compatto e quasi stellare; le strutture della sua barra restano invisibili fino a che non si osserva con diametri superiori ai 200mm. Questa galassia ha un nucleo brillante nascosto in una barra molto ben marcata, alle cui estremità si diparte una struttura ad anello formata dai suoi bracci, molto stretti e su cui si trovano diversi noduli più luminosi; all’esterno si estende un complesso sistema apparentemente nebuloso, probabilmente risultato di qualche interazione con galassie vicine. La sua distanza è stimata sui 60 milioni di anni luce, mentre il suo diametro è di circa 60.000 anni luce. A breve distanza verso ovest si trova anche la galassia lenticolare NGC 3718, leggermente meno apparscante e vista di faccia, con la quale forma una coppia; la sua caratteristica più notevole è una fitta banda di polveri oscura che l’attraversa passando davanti al brillante nucleo: in ciò ricorda la famosa galassia Centaurus A. La sua morfologia deformata si ritiene che sia stata causata dall’interazione con la vicina galassia NGC 3729. Sul bordo occidentale si trova il quintetto di deboli galassie Hickson 56, distante circa 365 milioni di anni luce; troppo deboli per essere osservate con gli strumenti più comuni, diventano evidenti in fotografia.

Circa 2 gradi più a est si trova NGC 3631, una galassia spirale visibile di faccia e coi bracci molto ben definiti circondanti un nucleo piuttosto piccolo. Nonostante abbia delle discrete dimensioni appa一处 apparenti possiede una luminosità superficiale piuttosto bassa, per cui è difficile notare particolari al di là del suo nucleo rotondo, che per altro è già visibile con telescopi da 120mm di diametro. I suoi due bracci principali sono caratterizzati da numerose ramificazioni e appaiono punteggiati da numerosi gruppi di stelle giovani e regioni H II; la galassia possiede una debole emissione di raggi X diffusa e contiene ben 6 possibili sorgenti di raggi X ultraluminose (nella Via Lattea non ne è nota alcuna): si ritiene che solitamente queste sorgenti sono associate a stelle di neutroni o a buchi neri. Fra i suoi bracci si sono anche osservate diverse supernovae. Stime sulla sua distanza variano da 35 a 60 milioni di anni luce.

La galassia NGC 4102, in cui sono attivi fenomeni di starburst.

NGC 3631, uno dei membri più regolari del Gruppo di M109.
A breve distanza dalla stella Merak (β Ursae Majoris) si può osservare infine M108, che è talvolta considerata come un membro distaccato del Gruppo di M109. È visibile anche con un binocolo 20x80 in una notte buia e limpida e la sua individuazione è facilitata notevolmente dalla presenza di Merak. È alla portata anche di un telescopio da 60mm, dove si mostra come un fuso piuttosto allungato in senso est-ovest, mentre con uno strumento da 150mm sono già visibili alcune condensazioni più luminose, sebbene l’oggetto resti comunque poco contrastato rispetto al fondo cielo. M108 è una galassia spirale vista quasi perfettamente di taglio ed è attraversata dai grandi complessi di nebulose oscure e polveri interstellari situati sui suoi bracci, che rendono visibile con difficoltà anche il nucleo galattico. Sono note anche alcune regioni H II, in cui hanno sede fenomeni di formazione stellare. La massa totale della galassia sarebbe di 125 milioni di masse solari, dunque inferiore di gran lunga a quella della Via Lattea, mentre nel suo alone ci sarebbero circa 300 ammassi globulari. La sua distanza si aggira sui 45 milioni di anni luce.

A breve distanza dalla stella Merak (β Ursae Majoris) si può osservare infine M108, che è talvolta considerata come un membro distaccato del Gruppo di M109. È visibile anche con un binocolo 20x80 in una notte buia e limpida e la sua individuazione è facilitata notevolmente dalla presenza di Merak. È alla portata anche di un telescopio da 60mm, dove si mostra come un fuso piuttosto allungato in senso est-ovest, mentre con uno strumento da 150mm sono già visibili alcune condensazioni più luminose, sebbene l’oggetto resti comunque poco contrastato rispetto al fondo cielo. M108 è una galassia spirale vista quasi perfettamente di taglio ed è attraversata dai grandi complessi di nebulose oscure e polveri interstellari situati sui suoi bracci, che rendono visibile con difficoltà anche il nucleo galattico. Sono note anche alcune regioni H II, in cui hanno sede fenomeni di formazione stellare. La massa totale della galassia sarebbe di 125 milioni di masse solari, dunque inferiore di gran lunga a quella della Via Lattea, mentre nel suo alone ci sarebbero circa 300 ammassi globulari. La sua distanza si aggira sui 45 milioni di anni luce.

Un’altra galassia qua visibile è NGC 3998, di morfologia lenticolare e visibile come una piccola macchia di aspetto quasi stellare anche con telescopi da 100-120mm di diametro; la sua distanza è stimata sui 51 milioni di anni luce. Fra le altre galassie del gruppo vi è NGC 3972, una spirale vista quasi di taglio con bracci molto ben avvolti e punteggiati di regioni H II, e NGC 3982, una spirale attiva di tipo Seyfert 2, grande un terzo della Via Lattea, vista quasi perfettamente di faccia e mostrante bracci di aspetto ramificato attraversati da grandi regioni H II; entrambe possono essere individuate con telescopi da 150mm di apertura.

GRUPPI SPARSI E ISOLATI

Una galassia in primo piano rispetto a tutte le altre visibili qua è NGC 3738, una galassia nana irregolare che trovandosi a soli 12 milioni di anni luce appartiene al Gruppo di M81, adiacente al nostro Gruppo Locale. Si tratta di una galassia di aspetto compatto, con un diametro di appena 10.000 anni luce ma ricco di gas: qui infatti hanno avuto luogo recenti intensi fenomeni di formazione stellare che hanno portato alla presenza di numerose stelle blu e massicce. La galassia è visibile anche con strumenti da 150mm di diametro.

A un’altra galassia in primo piano rispetto a tutte le altre visibili qua è NGC 3738, una galassia nana irregolare che trovandosi a soli 12 milioni di anni luce appartiene al Gruppo di M81, adiacente al nostro Gruppo Locale. Si tratta di una galassia di aspetto compatto, con un diametro di appena 10.000 anni luce ma ricco di gas: qui infatti hanno avuto luogo recenti intensi fenomeni di formazione stellare che hanno portato alla presenza di numerose stelle blu e massicce. La galassia è visibile anche con strumenti da 150mm di diametro.

A una distanza di circa 26 milioni di anni luce si trova il Gruppo Canes II, con una trentina di componenti, la cui dominante è senza dubbio la famosa M106, situata nei Cani da Caccia. Si trova circa due gradi a sud della stella 3 Canum Venaticorum, una stella di magnitudine 5,28 posta alcuni gradi a sudest di Phecda (γ Ursae Majoris); può essere notata anche con un binocolo 10x50 sotto un cielo molto buio, in cui appare come una macchia di forma ovoidale. Un telescopio da 150mm di apertura permette di individuare alcuni particolari, come l’irregolarità della luminosità dell’alone. La sua forma ricorda quella della Galassia di Andromeda, ma con una diversa inclinazione, al punto da rendere visibili tutte le strutture delle nubi di polveri sul piano galattico; i bracci di spirale sono ricchi di regioni H II che nelle immagini si mostrano di colore blu e rosso, a seconda se siano associate o meno ad ammassi di stelle particolarmente calde e luminose. La sua distanza è stimata sui 21-25
milioni di anni luce.

A circa mezzo grado verso est si trova NGC 4217, talvolta considerata come una galassia compagna di M106, sebbene le stime sulla sua distanza varino sensibilmente: alcune stime indicano circa 36 milioni di anni luce, mentre altre indicano oltre 60 milioni di anni luce. Può essere notata anche con un telescopio da 150mm, dove appare come un esile fuso chiaro, si tratta infatti di una galassia spirale vista perfettamente di taglio, con una densa banda di polveri che la attraversa nascondendo le regioni del nucleo.

Circa 2 gradi e mezzo a NNW della stella Phecda (γ Ursae Majoris) si trova NGC 3898, una spirale con sottili bracci molto ben avvolti attorno a un nucleo piuttosto luminoso e dominante. Fuori dalla portata di piccoli strumenti, inizia ad essere visibile con un telescopio da 150mm, dove si mostra come una piccola macchia sfocata di aspetto quasi stellare, circondata da un leggero alone; strumenti più grandi non permettono di mostrare molti dettagli aggiuntivi. La sua distanza è stimata sui 56 milioni di anni luce ed è pertanto compatibile con quella del Gruppo di M109, ma vi sono dubbi sulla sua reale appartenenza fisica al gruppo.

Un discorso analogo riguardo la loro appartenenza al gruppo è valido anche per le due galassie a spirale NGC 3733 e NGC 3756, situate a un terzo della distanza fra le stelle Phecda (γ Ursae Majoris) e Merak (β Ursae Majoris); entrambe visibili solo con strumenti da 200mm a salire, distano rispettivamente 56 e 66 milioni di anni luce.

A nord del Grande Carro, seguendo un allineamento di stelle di magnitudine 6 e 7 che da Dubhe (α Ursae Majoris) prosegue verso est, si arriva a una coppia di galassie che costituiscono la coppia dominante di un gruppo di galassie noto con la sigla LGG 266, la cui distanza media si aggira sui 65 milioni di anni luce. La coppia dominante è NGC 4036, di morfologia lenticolare e visibile anche con telescopi da 100mm di diametro, dove appare come un’ellisse luminosa estesa per alcuni minuti d’arco; con strumenti più grandi non aumentano i dettagli, pur mostrandosi molto più chiara ed evidente. Benché considerata lenticolare, nelle foto riprese da telescopio Hubble mostra un accenno molto vago di struttura a spirale, attraversata da tre sottili bande oscuri che si estendono fino alle regioni in vicinanza del nucleo. La sua distanza è stimata sui 62 milioni di anni luce.

Appena 15 minuti d’arco a NNE si trova NGC 4041, compagna della precedente e un po’ meno appariscente: è infatti visibile chiaramente solo con telescopi da 120-150mm di diametro, dove appare come una macchia tondeggianti di aspetto simile a una stellina sfocata; la sua bassa luminosità superficiale non aiuta a contrastarla se il cielo non è in ottime condizioni atmosferiche. Si tratta di una galassia spirale visibile quasi di faccia, con un nucleo appariscente e dei bracci molto esili e a tratti frammentati, dove giacciono diversi gruppi stellari giovani. Curiosamente però, la formazione stellare risulta più attiva nelle regioni centrali, fenomeno che può essere spiegato con una recente fusione con una galassia nana avvenuta negli ultimi 100 milioni di anni. La sua distanza è stimata sui 70 milioni di anni luce.

La zona occidentale del Grande Carro è occupata dal Gruppo di NGC 3642, che include una decina di galassie poste alla distanza media di 85 milioni di anni luce dalla Via lattea. Tuttavia, poiché sulla distanza di NGC 3642 permangono delle incertezze, con stime che la collocano ad appena 27 milioni di anni luce (e quindi molto in primo piano), talvolta ci si riferisce a questo gruppo come “Gruppo di NGC 3610”.

NGC 3642 è una delle galassie più appariscenti in direzione di questo gruppo: è individuabile anche con telescopi da 150mm di diametro, dove appare come un’ellisse luminosa estesa per alcuni minuti d’arco; con strumenti più grandi non aumentano i dettagli, pur mostrandosi molto più chiara ed evidente. Benché considerata lenticolare, nelle foto riprese da telescopio Hubble mostra un accenno molto vago di struttura a spirale, attraversata da tre sottili bande oscuri che si estendono fino alle regioni in vicinanza del nucleo. La sua distanza è stimata sui 62 milioni di anni luce.

La galassia spirale NGC 3898 presenta bracci molto ben avvolti attorno a un nucleo molto brillante.
scopi da 120mm di diametro come una piccola macchia di forma circolare, mentre un leggero alone sfumato diventa visibile con strumenti più grandi. I bracci sono invece molto tenui e fuori dalla portata di telescopi comuni. Si tratta di una galassia spirale priva di barra, il cui nucleo è circondato da un singolo braccio di spirale che gli si avvolge attorno formando una sorta di anello; al suo esterno partono i bracci veri e propri, che hanno un aspetto sfilacciato e tenue. Se la distanza di 30 milioni di anni luce è considerata corretta, questa galassia non può far parte del gruppo sopra citato, trovandosi in primo piano; a questa distanza, le sue dimensioni reali corrispondono a circa 50.000 anni luce di diametro.

NGC 3610, visibile circa mezzo grado a sudest, è invece sicuramente legata al gruppo; può essere notata anche con telescopi da 120mm di diametro, sebbene occorrano cieli molto limpidi; appare come una macchia circolare di aspetto stellare, priva di ulteriori dettagli. Con telescopi da 200mm appare invece di aspetto leggermente allungato. Si tratta di una galassia ellittica di morfologia schiacciata (tipo E5), sebbene sia presente comunque una struttura a disco assai prominente: ciò si spiega col fatto che questa galassia avrebbe assunto l’aspetto ellittico solo recentemente, a seguito della collisione fra galassie a spirale, pertanto questa struttura non è ancora sparita del tutto. La sua distanza è di circa 83 milioni di anni luce.

Poco meno di un grado a sud si trova **NGC 3613**, anch’essa di morfologia ellittica ma un po’ meno appariscente della precedente. Con un telescopio da 120-150mm appare come una debole macchia leggermente allungata in senso est-ovest, con un contorno leggermente sfumato. La sua distanza è stimata sui 95 milioni di anni luce circa.

Appena 15 minuti d’arco a SSE è visibile la galassia **NGC 3619**, un po’ meno luminosa e infatti alla portata solo di telescopi da 150mm a salire; con un 150mm è appena visibile come una tenua macchia circolare molto debole e difficile. Si tratta di una galassia di morfologia a cavallo fra le lenticolari e le barrate, situata a circa 90 milioni di anni luce.

Altre galassie legate a questo gruppo sono più deboli; fra queste vi è **NGC 3669**, una spirale vista di taglio e individuabile solo con telescopi da almeno 250mm di diametro. La sua distanza sarebbe di oltre 110 milioni di anni luce ed è quindi situata sul bordo a noi più remoto del gruppo.

Anche **NGC 3674** appare piuttosto debole e anch’essa è infatti fuori dalla portata di telescopi di diametro inferiore ai 250mm; si tratta di una galassia lenticolare vista quasi di taglio, situata alla distanza di circa 95 milioni di anni luce.

Fra le componenti più remote di questo gruppo vi sono le galassie interagenti **NGC 6390A** e **NGC 6390B**, note collettivamente anche con la sigla Arp 299. Possono essere notate con difficoltà attraverso un telescopio di 200mm di diametro, ma i loro splendidi dettagli non sono visibili in alcun modo se non in fotografia ad alta risoluzione; queste due galassie sono in fase di profonda interazione, dalla quale sono derivate intense ed estese regioni di starburst. La loro distanza è di circa 130 milioni di anni luce.

In posizione un po’ isolata sia apparentemente che effettivamente da altri gruppi di galassie è la **NGC 3780**, situata circa a metà strada fra le stelle Merak (β Ursae Majoris) e Megrez (δ Ursae Majoris); è alla portata di telescopi da 150mm di diametro, sebbene sia visibile con difficoltà e appaia come una piccola macchia senza dettagli appariscenti. Si tratta di una galassia spirale vista di faccia, con un nucleo brillante da cui si dipartono dei bracci di spirale di aspetto sfilacciato; la sua distanza è di circa 65 milioni di anni luce.

Un’altra galassia relativamente isolata è **NGC 3945**, una bella galassia lenticolare visibile anche con telesco-
La galassia lenticolare NGC 3945, individuabile anche con strumenti da 120mm di diametro.

pi di 120mm di diametro come un ovale chiaro ben contrastato, mentre con strumenti di 250mm si rende parzialmente visibile anche l’alone. La sua distanza è stimata sui 62 milioni di anni luce, cui corrisponde un diametro reale di circa 90.000 anni luce.

IL SUPERAMMASSO DELL’ORSA MAGGIORE

Il Superammasso dell’Orsa Maggiore è una struttura molto larga e relativamente appiattita situata alla distanza di circa 800 milioni di anni luce da noi; si estende per circa 130 milioni di anni luce lungo l’ascensione retta, proprio in direzione del Grande Carro, e per circa 50 milioni di anni luce lungo la declinazione. La sua profondità, ossia le sue dimensioni lungo la nostra linea di vista, sarebbero invece di ben 400 milioni di anni luce, da cui la definizione di “muro” (wall) da un punto di vista della classificazione morfologica. Si tratta di uno dei superammassi compatti di galassie a noi più vicini; appare diviso in tre strutture filamentose e la parte centrale è formata da numerosi ammassi di galassie, alcuni dei quali inclusi anche nel catalogo di Abell e fotografabili con relativa facilità, mentre sono al di là della portata dell’osservazione visuale, specialmente se si ha l’accortezza di tagliare la luce della stella sopra citata, che può essere una fonte di disturbo. Sono qui visibili una trentina di galassie suddivise vagamente in due gruppi, fra i quali quello più ricco è apparentemente quello occidentale; le componenti più luminose sono di magnitudine 15 circa, fra le quali la più notevole è PGC 36774, una galassia gigante di tipo lenticolare o forse ellittico dal diametro di 0,7 minuti d’arco. Molte altre componenti mostrano una morfologia ellittica, come spesso accade negli ammassi di galassie massicci e compatti.

Fra gli altri ammassi di galassie facenti parte di questo grande superammasso c’è Abell 1318, decisamente più difficile da individuare anche nelle fotografie perché più sparso e meno contrastato. La sua posizione si trova con facilità, individuando una stella di magnitudine 5,7 situata esattamente sulla linea congiungente le stelle Merak (β Ursae Majoris) e Phecda (γ Ursae Majoris), più vicina a quest’ultima; l’ammasso si trova ad appena 10-15 minuti d’arco ed è formata da alcune decine di galassie molto deboli, fra le quali sono alcune sono più luminose della magnitudine 16. La sua importanza è data non tanto dal suo aspetto quanto dal fatto che si tratta

La galassia lenticolare NGC 3945, individuabile anche con strumenti da 120mm di diametro.

Mappa dell’ammasso di galassie Abell 1377.

<table>
<thead>
<tr>
<th>PRINCIPALI AMMASSI DI GALASSIE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sigla</td>
</tr>
<tr>
<td>A1270</td>
</tr>
<tr>
<td>A1291A/B</td>
</tr>
<tr>
<td>A1314</td>
</tr>
<tr>
<td>A1318</td>
</tr>
<tr>
<td>A1377</td>
</tr>
<tr>
<td>A1383</td>
</tr>
<tr>
<td>A1436</td>
</tr>
</tbody>
</table>
dell’ammasso di galassie principale e dominante dell’intero Superammasso dell’Orsa Maggiore; la sua distanza è stimata sui 775 milioni di anni luce. La galassia dominante è la PGC 35872, probabilmente una ellittica gigante dato il suo aspetto circolare e forse visibile con telescopi di diametro di 400mm a salire, data la sua alta luminosità superficiale.

Nella sua direzione si osservano numerose galassie più appariscenti che però non fanno parte fisicamente dell’ammasso, trovandosi in primo piano: fra queste vi sono NGC 3737, NGC 3737A, NGC 3759 e NGC 3759A, tutte facenti parte di un gruppo di galassie situato a circa 260 milioni di anni luce. La maggior parte di queste è visibile con telescopi da 300mm di diametro a salire e presentano una magnitudine integrata pari a circa 13.

Altri ammassi di galassie compresi nel Superammasso dell’Orsa Maggiore sono Abell 1270, il più occidentale nonché uno dei più remoti, trovandosi a 940 milioni di anni luce, Abell 1291, formato in realtà da due addensamenti sovrapposti lungo la nostra linea di vista e distanti rispettivamente 700 milioni e 785 milioni di anni luce, Abell 1383, situato a 820 milioni di anni luce, e Abell 1436, a 890 milioni di anni luce. Tutti questi ammassi sono piuttosto difficili da riprendere a causa della debolezza delle loro componenti; inoltre sulla loro linea di vista capita spesso che si trovino galassie un po’ più appariscenti che però non ne fanno parte, trovandosi in primo piano.

A sud del Grande Carro, a circa 3 gradi in direzione nordovest rispetto alla stella χ Ursae Majoris si trova l’ultimo degli ammassi di galassie di una certa rilevanza in questo settore, Abell 1314; si tratta in realtà anche del più cospicuo e di gran lunga del più facile, dato che

alcune delle sue stelle membri sono visibili anche con strumenti da 250mm di diametro, seppur con una certa difficoltà. Situato a 447 milioni di anni luce circa, questo ammasso è evidentemente in primo piano rispetto a quelli facenti parte del Superammasso dell’Orsa Maggiore e infatti viene considerato membro del più vicino Superammasso del Leone, di cui costituisce l’estremità più settentrionale. Questo superammasso si estende per 420 milioni di anni luce, con una larghezza di circa 200 anni luce, e ha il suo centro nell’ammasso Abell 1185, situato al confine fra Orsa Maggiore, Leone e Leone Minore. La componente più brillante e più massiccia è la IC 712, di tipo ellittico o forse lenticolare e situata presso il centro geometrico dell’ammasso, anche se non è evidente alcun aumento di concentrazione delle galassie membri attorno a questa galassia gigante; il suo diametro è di circa 150.000 anni luce ed è anche una galassia attiva. A breve distanza verso sudovest si trovano IC 708 e IC 711, due galassie molto studiate per via della loro interazione col mezzo intergalattico dell’ammasso: si tratta infatti di due radiogalassie di tipo cosiddetto “head-tail” (testa-coda), dove è visibile alle onde radio una lunga coda di gas espulso ad alta temperatura, la cui forma è stata distorta dalla collisione col mezzo intergalattico; in particolare IC 711 possiede una delle code più lunghe mai individuate nell’Universo osservabile, con un’estensione che arriva fino a 2 milioni di anni luce. Fra queste due galassie si trova anche IC 709, un altro dei membri più importanti dell’ammasso. Fra le altre galassie membri, almeno una trentina sono più luminose della magnitudine integrata 16, sebbene molte di queste abbiano una luminosità superficiale piuttosto bassa. L’assenza nei dintorni di galassie situate in primo piano che alterano l’aspetto di quest’ammasso consente di avere un facile quadro d’insieme della sua reale morfologia.
VERSO I CANI DA CACCIA

Numerose galassie appariscenti si osservano in direzione dell’adiacente costellazione dei Cani da Caccia; qua si possono notare alcuni gruppi facenti parte del Superammasso della Vergine e situati a poche decine di milioni di anni luce di distanza.

Il più vicino è il Gruppo Canes I, che comprende una quindicina di galassie situate alla distanza media di 13 milioni di anni luce; è anche noto come Gruppo di M94, dalla sigla della sua galassia più appariscente. La galassia M94, se la notte è limpida e buia, può essere osservata anche con un semplice binocolo; l’alone inizia a mostrarsi anche in un binocolo molto potente o in un piccolo telescopio da 80mm. Con strumenti da 120-140mm di apertura si presenta di forma quasi circolare e coi bordi molto sfumati, al punto che ricorda un ammasso globulare come aspetto; anche ad ingrandimenti maggiori la vista rimane molto simile, con un alone molto esteso con tracce di macchie scure e che aumenta progressivamente in luminosità verso il centro, i cui bordi sono sfumati. Non si osserva alcuna traccia di spirali. La galassia è classificata come spirale semplice (Sab) ed è vista quasi perfettamente di faccia; la sua distanza si aggira sui 16 milioni di anni luce. Dalle osservazioni si può notare un anello di attive regioni di formazione stellare, marcate dalle giovani stelle azzurre nelle immagini a colori, che la dividono bruscamente dal molto meno brillante anello esterno, il quale è formato da una popolazione stellare giallastra molto più vecchia; nelle aree periferiche, tuttavia, queste regioni terminano nuovamente in un altro anello di moderata attività di formazione stellare, così M94 appare come una delle relativamente rare galassie in cui possono essere osservate due “onde” di formazione stellare. Nelle lunghissime esposizioni diviene visibile un ulteriore debolissimo anello.

Due gradi e mezzo a NNW di β Canum Venaticorum si trova NGC 4449, nota anche come C21; si tratta di una galassia di forma irregolare visibile già con strumenti da 100mm di apertura, sebbene la sua morfologia irregolare diventi visibile con facilità solo con strumenti da almeno 200-250mm di diametro. Nelle foto astronomiche...
ad alta risoluzione sono ben evidenti gli enormi banchi di gas ionizzato che delineano imponenti regioni di formazione stellare. Le dimensioni reali della galassia sono simili a quelle della Grande Nube di Magellano, pertanto viene considerata una galassia nana; tuttavia al suo interno si è sviluppato uno starburst, testimoniato non solo, come visto, dalla presenza di grandi regioni H II, ma anche dalla diffusa presenza di stelle giovani; in ciò si differenzia dalla Grande Nube, che ha invece un tasso di formazione stellare pari alla metà di NGC 4449. Sono presenti anche alcuni superammassi di stelle giovani e molto massicce, uno dei quali è stato individuato nelle regioni centrali, fatto questo relativamente ins usuale. La galassia è circondata da un largo involucro di idrogeno neutro che si estende su un’area di 75 minuti d’arco, dunque 14 volte più grande del diametro apparente della galassia stessa, che presenta distorsioni causate dall’interazione con galassie vicine; proprio queste interazioni si crede che possano aver influenzato la formazione stellare in NGC 4449: due piccole galassie vicine e in interazione con questa, sono state in effetti individuate nel 2012, una delle quali è una nana sfereoidale e l’altra è apparentemente un ammasso globulare con due code di stelle giovani, fatto che induce a pensare che si trattasse in origine del nucleo di una piccola galassia molto ricca di gas. La distanza di NGC 4449 è di circa 12 milioni di anni luce.

Un’altra galassia facente parte del gruppo, sebbene appaia distaccata dalle altre, è NGC 4244, visibile circa due gradi e mezzo a sudovest della stella 6 Canum Venaticorum e nota anche con la sigla C26. È un’altra galassia spirale, vista di taglio, ben evidente come un luogo e stretto fuso chiaro anche in telescopi da 120mm di diametro; strumenti da 200-250mm non consentono di rivelare ulteriori dettagli, a parte una maggiore luminosità nel tratto centrale. Di fatto l’unica caratteristica ben evidente di questa galassia è il suo piano galattico, attraversato da una lunga e sottile fenditura oscura causata da nubi di gas e polveri non illuminate. Presso il suo centro di massa è stato individuato un ammasso stellare massiccio; altre due grandi concentrazioni stellari sono invece evidenti sul disco, disposte simmetricamente rispetto al nucleo. La sua distanza è pari a 10-12 milioni di anni luce, come gran parte delle altre galassie brillanti del gruppo.

Altre galassie meno luminose facenti parte del gruppo sono IC 4182, visibile a breve distanza da Cor Caroli, e UGC 8320, nella parte nord della costellazione.

Al già citato Gruppo Canes II invece appartengono altre galassie appariscenti, oltre alla già descritta M106. Fra queste vi è NGC 4242, visibile un grado e mezzo a sud di M106; possiede una bassa luminosità superficiali-
le, nonostante le sue dimensioni apparenti, perciò può essere alla portata solo di strumenti a partire da 100-120mm, dove appare come una debole macchia irregolare. Con strumenti maggiori si può notare come diventi gradualmente più luminosa al centro. È classificata come galassia a spirale di tipo intermedio, ma presenta dei bracci molto aperti e di morfologia irregolare, con un nucleo asimmetrico e una sorta di blanda barra centrale; il suo tasso di formazione stellare sembrerebbe essere stato piuttosto alto nel suo recente passato, data la presenza di numerose regioni H II lungo i suoi bracci. Il suo diametro reale è di circa 35.000 anni luce ed è dunque una galassia nana; si sospetta che possa essere satellite di M106.

Un po' meno luminosa appare NGC 4346, visibile meno di un grado a SSE di M106; può essere notata con strumenti da 120mm con qualche difficoltà, dove appare come un piccoloalone circolare. Con strumenti più grandi o nelle foto ad alta risoluzione appare invece più simile a un lungo fuso, con un nucleo luminoso. Si tratta infatti di una galassia lenticolare vista di taglio, di dimensioni contenute, essendo il suo diametro di 35.000 anni luce (come la precedente); tuttavia sussistono alcuni dubbi sulla sua reale appartenenza al Gruppo Canes II: alcuni studiosi la collocano a 40 milioni di anni luce, nel Gruppo di NGC 4051.

A circa mezzo grado dalla stella β Canum Venaticorum si trova la coppia di galassie interagenti NGC 4490 e NGC 4485, soprannominate Galassie Bozzolo; si tratta di due galassie molto brillanti e in particolare la prima è alla portata di strumenti da 80mm, dove appare come una macchia irregolare a forma di sacco. La compagna è invece osservabile con strumenti da 100-120mm come un piccoloalone chiaro situato a breve distanza. Le due galassie sono in forte interazione, come è ben evidente dalla loro forma irregolare e dalla distorsione di NGC 4490 rivolta verso la piccola compagna. Il nucleo di NGC 4490 è molto luminoso e domina sull'intera galassia; i bracci sono invece disposti in senso est-ovest, con quello occidentale rivolto verso NGC 4485. Il sistema dista dalla Via Lattea circa 23 milioni di anni luce.

Meno luminosa è invece la galassia NGC 4618, una spirale barrata di tipo magellanoic alla portata di telescopi da 120-130mm di diametro, coi quali si mostra come un alone leggermente allungato in senso nordest-sudovest. A differenza della maggior parte delle galassie a spirale, NGC 4618 ha un solo braccio, che le conferisce un aspetto asimmetrico. Si era ipotizzato che questa morfologia fosse il risultato dell’interazione gravitazionale con la vicina e meno appariscente NGC 4625: simili strutture sono infatti abbastanza comuni tra le galassie interagenti. Tuttavia, osservazioni sull'idrogeno neutro nelle due galassie suggeriscono che solo una parte del gas al di fuori del disco di NGC 4618 sia influenzata dalle interazioni gravitazionali. Questo indica che la forma a braccio unico della galassia possa essere il risultato di un processo intrinseco alla galassia stessa.

La parte settentrionale dei Cani da Caccia è dominata dalle galassie del Gruppo di M51, che comprende alcune galassie situate alla distanza media di 30 milioni di anni luce.

La più importante del gruppo è naturalmente la celebre M51, nota anche come Galassia Vortice, in realtà una coppia di galassie interagenti il cui membro principale è una spirale molto brillante, nota anche come NGC 5194; la vista della galassia è di faccia, pertanto sono perfettamente osservabili le sue strutture a spirale, ricche di regioni di formazione stellare. È abbastanza luminosa da poter essere osservata anche con un binocolo se la notte è propizia, in cui si mostra come una macchia chiara di forma ovale; un telescopio di piccole dimensioni è sufficiente sia per localizzare la compagna minore, sia per individuare l'alone esteso della galassia principale. Un telescopio da 130mm di apertura è sufficiente per poter osservare la struttura a spirale della Galassia Vortice; il braccio più notevole si trova in direzione est-ovest, ma l'andamento delle spire resta difficile da capire anche ad ingrandimenti maggiori. La Galassia Vortice è una delle più luminose e interessanti dell'intera volta celeste: dista circa 23 milioni di anni luce e ha un diametro di quasi 100.000 anni luce. Buona parte della sua intensa luminosità è dovuta alla presenza, nei bracci, di giovani ammassi stellari, la cui formazione è stata notevolmente favorita dalle intense forze gravitazionali generate dall'incontro con NGC 5195, la galassia minore...
della coppia, alla quale è unita da un involucro comune di gas e polveri. La forma a spirale così marcatamente pronunciata della galassia principale si crede sia dovuta all’interazione con la vicina galassia citata, che potrebbe averne attraversato il piano galattico in un periodo compreso fra 500 e 600 milioni di anni fa; secondo questo scenario, NGC 5195 attraversò il disco della principale arrivando da dietro, rispetto alla nostra linea di vista, quindi rattraversò il piano in direzione opposta circa 50-100 milioni di anni fa, mostrandosi oggi leggermente al di là della galassia principale. La più piccola NGC 5195 è una galassia nana che si presenta altamente deformata proprio dall’interazione con la vicina galassia maggiore; una sua classificazione è estremamente difficile ed è stato proposto talvolta di inserirla fra le galassie lenticolari, oppure fra le irregolari. Di fatto, la sua morfologia sfugge all’attuale sistema di classificazione morfologica delle galassie.

Anche la brillante Galassia Girasole (M63) fa parte del gruppo. Si trova con una certa facilità a circa 20 milioni di anni luce da qui, a nord di una concatenazione di stelle composta da 19, 20 e 23 Canum Venaticorum, situate a loro volta tre gradi a nord-est di Cor Caroli; può essere individuata senza difficoltà anche con un binocolo 10x50 in notti particolarmente nitide, in cui si mostra come una macchia diffusa senza condensazione. Un telescopio da 60-80mm la mostra come una chiazza estesa per alcuni primi d’arco piuttosto appariscente, mentre l’alone diventa visibile in uno strumento da 150mm; il nucleo appare quasi di aspetto granuloso in un 300mm, mentre diventano visibili anche i due bracci, come delle estensioni leggere del nucleo stesso a WNW e a ESE. Il nome proprio girasole è dovuto al grandissimo numero di segmenti di spirali che circondano il nucleo, ben avvolti attorno ad esso e pervasi da un gran numero di nubi di polvere interstellare; la massa totale della galassia sarebbe compresa fra gli 80 e i 140 miliardi di masse solari, con un diametro di 90.000 anni luce, ossia un po’ più piccolo della nostra Via Lattea. La sua distanza è stimata sui 37 milioni di anni luce.

Al di là del Gruppo Canes II si trova la galassia NGC 5005, nota anche come C29, visibile due gradi e mezzo a sud-est di Cor Caroli; con strumenti da 150mm appare come una macchia ovoidale più luminosa verso il centro, mentre con telescopi da 200mm appare più evidente una banda oscura che taglia la galassia da nord-est a sud-ovest sul suo lato settentrionale. Si tratta di una galassia spirale con bracci brillanti e ben avvolti attorno al suo nucleo, anch’esso molto appariscente sebbene di piccole dimensioni; la sua distanza è incerta ed è stimata come compresa fra 45 e 110 milioni di anni luce (mediamente si stima una distanza sui 68 milioni di anni luce). Contiene una regione nucleare a linee di emissione a bassa ionizzazione (LINER).

A breve distanza vi è NGC 5033, anch’essa a spirale, con una luminosità simile; può essere individuata con telescopi da 120-150mm di diametro, dove appare come un ovale chiaro. Si tratta di una galassia compagna della precedente, con cui costituisce quindi una coppia di galassie fisicamente legate fra loro, situate però a una distanza tale da non comportare una distorsione marcatamente dei reciproci bracci di spirale. Questa galassia presenta un nucleo attivo, al cui centro si troverebbe un buco nero supermassiccio.

Una menzione finale merita infine il gruppo compatto HCG 68, visibile sul lato orientale della costellazione e situato alla distanza media di 110 milioni di anni luce. Appare dominato dalla galassia lenticolare NGC 5353, alla portata di strumenti da 120mm, dove si mostra come un fuso chiaro; possiede un diametro di circa 70.000 anni luce. Fa coppia con la vicina galassia NGC 5354, visibile a stretto contatto poco più a nord e leggermente meno luminosa, individuabile anche con strumenti da 120-130mm; è anch’essa di tipo lenticolare ed è gravitazionalmente legata alla precedente. Ancora più a nord si trova infine la spirale barrata di faccia NGC 5350, più debole e visibile con strumenti da 130-150mm. Altre componenti sono le ben più deboli NGC 5355 e NGC 5358.

Nelle vicinanze si osserva la galassia NGC 5371, una brillante spirale barrata alla portata di strumenti da 130mm, e NGC 5395, una spirale interagente con la vicina NGC 5394 e fortemente deformata.
REGIONE DELLA GALASSIA DI BODE

L’area di cielo che corrisponde alla testa dell’Orsa Maggiore contiene alcune fra le galassie più brillanti e famose del cielo, spesso oggetto non solo di osservazione ma anche di fotografia, grazie alla facilità con cui è possibile riprenderle.

Attorno alle galassie principali se ne osservano diverse altre meno appariscenti, ma molte delle quali pur sempre alla portata di strumenti da 200mm e anche inferiori.

CARATTERISTICHE

Il settore nordoccidentale dell’Orsa Maggiore al confine con la Giraffa e col Drago, sebbene non sia così ricco di galassie come la parte meridionale della costellazione, presenta comunque diverse galassie facilmente osservabili, alcune delle quali particolarmente luminose.

Fra queste spiccano indubbiamente le celeberrime galassie M81 e M82, due fra le più brillanti dell’intera volta celeste grazie anche alla loro relativa vicinanza. M81 in particolare è nota col nome di Galassia di Bode ed è la più cospicua delle due, la dominante del suo gruppo di galassie; è visibile anche con un semplice binocolo ed è una delle galassie più fotografate del cielo.

Nelle immediate vicinanze si trova M82, soprannominata Galassia Sigaro a causa del suo aspetto allungato; si tratta di una galassia peculiare, la cui natura è stata notata già dall’Ottocento, sebbene non ne fosse stata compresa la sua reale natura.

DETtaglli

Costellazioni | Orsa Maggiore, Giraffa, Drago
Ascensione Retta (media) | 09h 40’
Declinazione (media) | +70°
Tipo | Campi ricchi di galassie
Oggetti | Galassie e ammassi di galassie

Queste due galassie appaiono circondate da altre più piccole, ma spesso sempre alla portata di piccoli strumenti.

Il fondo cielo al di là di queste galassie in primo piano appare molto ricco di gruppi e remoti ammassi di galassie, in particolare a ridosso del confine con la Giraffa e col Drago; molte di queste sono alla portata di telescopi di diametro inferiore ai 200mm.

In posizione ancora più remota si trovano numerosi ammassi di galassie, che però sono spesso fuori dalla portata dei telescopi di diametro più comune. Sovrapposte a questi lontani gruppi si osservano diverse galassie isolate poste fisicamente in primo piano, essendo più vicine a noi.

| STELLE PRINCIPALI DELLA REGIONE |
|-----------------|-----------------|-----------------|-----------------|
|α Uma | Dubhe | 11h 03m 44s | +61° 45’ 04” | 1.81 | 124 | giallo |
|ο Uma | Muscida | 08h 30m 16s | +60° 43’ 06” | 3.35 | 184 | giallo |
|23 Uma | | 09h 31m 32s | +63° 03’ 42” | 3.65 | 75 | giallo |
|λ Dra | Giausar | 11h 31m 24s | +69° 19’ 52” | 3.82 | 334 | rosso |
|24 Uma | | 09h 34m 29s | +69° 49’ 49” | 4.54 | 106 | giallo |
|π Uma | | 08h 40m 13s | +64° 19’ 40” | 4.59 | 252 | arancio |
|τ Uma | | 09h 10m 55s | +63° 31’ 00” | 4.67 | 122 | bianco |
|ρ Uma | | 09h 02m 33s | +67° 37’ 46” | 4.74 | 287 | rosso |
Il bordo settentrionale dell’Orsa Maggiore contiene alcune galassie molto famose e appariscenti, più alcuni gruppi di galassie remoti.
Il Gruppo di galassie di M81 è uno dei più vicini al nostro Sistema Solare e al nostro vicino Gruppo Locale; contiene oltre una trentina di galassie fra maggiori e minori ed è dominata in senso assoluto dalla coppia di galassie M81 e M82. Il centro pressoché simmetrico di questo gruppo si trova alla distanza di 11,7 milioni di anni luce e fa parte, come il nostro, delle regioni periferiche del Superammasso della Vergine.

M81, M82 e NGC 3077 sono in forte interazione fra loro, come è mostrato chiaramente dalla presenza di un flusso di idrogeno neutro che connette le tre galassie e che è stato strappato loro via a causa della reciproca interazione gravitazionale. Queste interazioni hanno causato la caduta di parte del gas interstellare verso il nucleo di M82 e di NGC 3077, causando l’insolita e violenta attività di formazione stellare rilevabile proprio nei loro nuclei.

M81, chiamata Galassia di Bode in memoria del suo scopritore che la notò nel 1774, è, come visto, la più luminosa delle galassie del gruppo. Se la notte è particolarmente adatta all’osservazione astronomica può essere individuata con discreta facilità anche con un semplice binocolo poco meno di due gradi a sudest della stella 24 Ursae Majoris; uno strumento da 60-80mm la mostra come una macchia chiara senza particolari estesa per alcuni minuti d’arco e allungata in direzione NNW-SSE. Un telescopio più grande, sui 150mm, consente di poter notare discretamente anche la struttura del nucleo, molto più brillante rispetto alle regioni periferiche, le quali sembrano sfumare gradualmente nel buio del fondo cieco; con strumenti da 250-300mm si evidenziano pure le prime strutture della spirale, sotto forma di variazioni della luminosità dell’alone attorno al nucleo. Si stima che M81 contenga approssimativamente 250 milioni di stelle, è quindi leggermente più piccola della nostra Via Lattea. La sua distanza è ben nota ed è stata stimata in 12 milioni di anni luce, grazie alla scoperta di un gran numero di variabili Cefeidi, molte delle quali sono state osservate per la prima volta grazie al Telescopio Spaziale Hubble.

A breve distanza verso nord si può osservare M82; anche questa può essere individuata con un semplice binocolo; attraverso un telescopio da 60-80mm appare come

La galassia M81, nota anche come Galassia di Bode, è la dominante dell’omonimo gruppo di galassie.

IL GRUPPO DI M81

Il Gruppo di galassie di M81 è uno dei più vicini al no-

PRINCIPALI OGGETTI NON STELLARI

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NGC 2366</td>
<td>07h 28m 55s</td>
<td>+69° 12' 57"</td>
<td>Gal</td>
<td>10,9</td>
<td>8,1</td>
<td></td>
</tr>
<tr>
<td>NGC 2441</td>
<td>07h 21m 55s</td>
<td>+73° 00' 56"</td>
<td>Gal</td>
<td>12,1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>NGC 2523</td>
<td>07h 15m 05s</td>
<td>+73° 34' 44"</td>
<td>Gal</td>
<td>11,8</td>
<td>2,9</td>
<td></td>
</tr>
<tr>
<td>UGC 4305</td>
<td>08h 19m 05s</td>
<td>+70° 43' 12"</td>
<td>Gal</td>
<td>11,1</td>
<td>7,9</td>
<td></td>
</tr>
<tr>
<td>NGC 2551</td>
<td>08h 24m 30s</td>
<td>+73° 24' 43"</td>
<td>Gal</td>
<td>12,2</td>
<td>1,6</td>
<td></td>
</tr>
<tr>
<td>NGC 2629</td>
<td>08h 47m 16s</td>
<td>+72° 59' 08"</td>
<td>Gal</td>
<td>12,3</td>
<td>1,5</td>
<td></td>
</tr>
<tr>
<td>NGC 2633</td>
<td>08h 48m 05s</td>
<td>+74° 05' 56"</td>
<td>Gal</td>
<td>12,0</td>
<td>2,3</td>
<td></td>
</tr>
<tr>
<td>NGC 2634</td>
<td>08h 48m 25s</td>
<td>+73° 58' 02"</td>
<td>Gal</td>
<td>11,7</td>
<td>0,9</td>
<td></td>
</tr>
<tr>
<td>IC 520</td>
<td>08h 53m 42s</td>
<td>+73° 29' 27"</td>
<td>Gal</td>
<td>11,8</td>
<td>1,5</td>
<td></td>
</tr>
<tr>
<td>NGC 2655</td>
<td>08h 55m 38s</td>
<td>+78° 13' 03"</td>
<td>Gal</td>
<td>10,1</td>
<td>4,9</td>
<td></td>
</tr>
<tr>
<td>NGC 2748</td>
<td>09h 13m 43s</td>
<td>+76° 28' 31"</td>
<td>Gal</td>
<td>11,5</td>
<td>3,1</td>
<td></td>
</tr>
<tr>
<td>IC 529</td>
<td>09h 18m 33s</td>
<td>+73° 45' 34"</td>
<td>Gal</td>
<td>11,3</td>
<td>3,3</td>
<td></td>
</tr>
<tr>
<td>NGC 2787</td>
<td>09h 19m 19s</td>
<td>+69° 12' 56"</td>
<td>Gal</td>
<td>10,9</td>
<td>3,1</td>
<td></td>
</tr>
<tr>
<td>NGC 2805</td>
<td>09h 20m 20s</td>
<td>+64° 06' 10"</td>
<td>Gal</td>
<td>10,9</td>
<td>6,3</td>
<td></td>
</tr>
<tr>
<td>NGC 2810</td>
<td>09h 22m 05s</td>
<td>+71° 50' 38"</td>
<td>Gal</td>
<td>12,2</td>
<td>1,7</td>
<td></td>
</tr>
<tr>
<td>NGC 2880</td>
<td>09h 29m 35s</td>
<td>+62° 29' 26"</td>
<td>Gal</td>
<td>11,5</td>
<td>2,0</td>
<td></td>
</tr>
<tr>
<td>UGC 5139</td>
<td>09h 40m 32s</td>
<td>+71° 10' 56"</td>
<td>Gal</td>
<td>12,5</td>
<td>3,6</td>
<td></td>
</tr>
<tr>
<td>NGC 2976</td>
<td>09h 47m 15s</td>
<td>+67° 54' 59"</td>
<td>Gal</td>
<td>10,8</td>
<td>5,9</td>
<td></td>
</tr>
<tr>
<td>NGC 2985</td>
<td>09h 50m 22s</td>
<td>+72° 16' 43"</td>
<td>Gal</td>
<td>10,4</td>
<td>4,6</td>
<td></td>
</tr>
<tr>
<td>M81</td>
<td>09h 55m 42s</td>
<td>+69° 04' 00"</td>
<td>Gal</td>
<td>6,8</td>
<td>26</td>
<td>Gal. di Bode</td>
</tr>
<tr>
<td>M82</td>
<td>09h 55m 52s</td>
<td>+69° 40' 47"</td>
<td>Gal</td>
<td>9,3</td>
<td>11,2</td>
<td>Gal. Sigaro</td>
</tr>
<tr>
<td>NGC 3027</td>
<td>09h 55m 41s</td>
<td>+72° 12' 13"</td>
<td>Gal</td>
<td>11,5</td>
<td>3,9</td>
<td></td>
</tr>
<tr>
<td>NGC 3065</td>
<td>10h 01m 55s</td>
<td>+72° 10' 13"</td>
<td>Gal</td>
<td>11,6</td>
<td>1,7</td>
<td></td>
</tr>
<tr>
<td>NGC 3077</td>
<td>10h 03m 20s</td>
<td>+68° 44' 01"</td>
<td>Gal</td>
<td>9,8</td>
<td>4,5</td>
<td></td>
</tr>
<tr>
<td>NGC 3147</td>
<td>10h 16m 54s</td>
<td>+73° 24' 03"</td>
<td>Gal</td>
<td>10,6</td>
<td>3,9</td>
<td></td>
</tr>
<tr>
<td>NGC 3183</td>
<td>10h 21m 49s</td>
<td>+74° 10' 37"</td>
<td>Gal</td>
<td>11,8</td>
<td>2,3</td>
<td></td>
</tr>
<tr>
<td>UGC 5612</td>
<td>10h 24m 06s</td>
<td>+70° 52' 56"</td>
<td>Gal</td>
<td>12,5</td>
<td>2,8</td>
<td></td>
</tr>
<tr>
<td>IC 2574</td>
<td>10h 28m 22s</td>
<td>+68° 25' 00"</td>
<td>Gal</td>
<td>10,2</td>
<td>13'</td>
<td></td>
</tr>
<tr>
<td>NGC 3259</td>
<td>10h 32m 35s</td>
<td>+65° 02' 28"</td>
<td>Gal</td>
<td>12,2</td>
<td>1,7</td>
<td></td>
</tr>
<tr>
<td>NGC 3348</td>
<td>10h 47m 10s</td>
<td>+72° 50' 20"</td>
<td>Gal</td>
<td>11,1</td>
<td>2,0</td>
<td></td>
</tr>
<tr>
<td>NGC 3359</td>
<td>10h 46m 37s</td>
<td>+63° 13' 25"</td>
<td>Gal</td>
<td>10,3</td>
<td>7,2</td>
<td></td>
</tr>
<tr>
<td>NGC 3403</td>
<td>10h 53m 54s</td>
<td>+73° 41' 24"</td>
<td>Gal</td>
<td>12,2</td>
<td>3,0</td>
<td></td>
</tr>
<tr>
<td>NGC 3471</td>
<td>10h 59m 09s</td>
<td>+61° 31' 50"</td>
<td>Gal</td>
<td>12,3</td>
<td>1,7</td>
<td></td>
</tr>
<tr>
<td>NGC 3516</td>
<td>11h 06m 48s</td>
<td>+72° 34' 07"</td>
<td>Gal</td>
<td>11,5</td>
<td>1,9</td>
<td></td>
</tr>
<tr>
<td>NGC 3562</td>
<td>11h 12m 59s</td>
<td>+72° 52' 46"</td>
<td>Gal</td>
<td>12,2</td>
<td>1,7</td>
<td></td>
</tr>
</tbody>
</table>
una macchia chiara molto allungata, estesa per alcuni primi e allungata in direzione ENE-WSW. Con un telescopio con aperture sui 150mm si nota la struttura del nucleo e un gran numero di irregolarità specie in direzione sud, le quali diventano molto più evidenti con strumenti da 250-300mm. M82 subisce gli effetti gravitazionali della sua galassia vicina, la più grande M81; queste forze mareali hanno deformato M82 fin da circa 100 milioni di anni fa, causando anche un forte aumento dei fenomeni di formazione stellare. Qualche centinaio di milioni di anni fa infatti questa galassia ha avuto un incontro ravvicinato con M81; come risultato di ciò, una gran quantità di gas si è riversata su M82 e in particolare nelle sue regioni centrali. Il più recente incontro fra queste due galassie si è avuto circa 250 milioni di anni fa e ha causato un forte picco della formazione stellare in entrambe le galassie, come è testimoniato dalla distribuzione e dall’età degli ammassi aperti delle due galassie. In seguito sono avvenuti altri due potenti fenomeni di starburst, l’ultimo dei quali circa 4-6 milioni di anni fa, causando la formazione di superammassi stellari. La distanza che separa le due galassie è di circa 300.000 anni luce.

La terza galassia principale del Gruppo di M81 è NGC 3077, di morfologia peculiare, visibile a est di M81 e situata alla stessa distanza angolare che separa M81 e M82, ma con un’angolazione di circa 110°. È visibile co strumenti da 150mm di diametro come una debole macchia chiara priva di dettagli. Nonostante il suo aspetto la faccia somigliare a prima vista a una galassia ellittica, è classificata fra le galassie peculiari per due ragioni: la prima è legata all’aspetto granuloso e sfrangiato dei suoi bordi, con nubi interstellari diffuse che sono probabilmente il risultato di un’intensa interazione gravitazionale con le galassie vicine, similmente a quanto si osserva in M82; inoltre, questa galassia possiede un nucleo attivo, che la fece classificare in un primo momento fra le galassie di Seyfert. Tuttavia, sebbene sia una galassia con linee di emissione notevoli, oggi non è più classificata come tale, ma come una semplice galassia attiva. La sua distanza è stimata sui 13 milioni di anni luce, simile dunque a quella delle due galassie principali M81 e M82.

Poco meno di un grado e mezzo a sudovest di M81 si trova la galassia NGC 2976, un oggetto piuttosto debole a causa della sua bassa luminosità superficiale; può essere notato con qualche difficoltà con un telescopio da 150mm, dove appare come una chiazza chiara di aspetto uniforme o vagamente granuloso, senza alcuna evidenza di un nucleo più luminoso. Questa galassia viene classificata come a spirale, ma i suoi bracci sono estremamente difficili da definire, anche a causa della notevole presenza di bande e lineamenti di nebulose oscure e gas interstellare che ne rendono la morfologia più irregolare e ne nascono quasi completamente la ragione del nucleo; tuttavia il suo disco possiede dei bordi ben definiti. La sua distanza è stimata sui 11,6 milioni di anni luce.

IC 2574 è un membro più lontano del gruppo e si trova a circa tre gradi a ESE di M81; la sua individuazione può essere difficoltosa anche a causa della sua morfologia irregolare, benché sia classificata come galassia a spirale, e con un telescopio da 150mm appare come una macchia ovale. Si tratta di una galassia nana i cui bordi esterni sono soggetti a intense onde di formazione stellare, generanti stelle di massa molto grande raggruppate in estesi ammassi; grandi regioni H II circondano queste stelle e spesso contengono al loro interno delle grandi strutture a bolla causate dall’azione del vento stellare o dall’esplosione di supernovae. Si ritiene che il 90% della massa di questa galassia si trovi nella forma di materia oscura. La sua distanza è stimata sui 13 milioni di anni luce.

Le altre galassie facenti parte del Gruppo di M81 sono
meno appariscenti, oppure si trovano a grande distanza angolare dalle due galassie dominanti. È questo il caso di NGC 2366, situata entro i confini della costellazione della Giraffa e individuabile con strumenti da 120-150mm di diametro come una macchia debolmente irregolare e chiamata allungata in senso nord-sud. Si tratta di una galassia ricca di peculiarità: è classificata come una galassia nana di tipo magellanico (ossia simile alla Grande Nube di Magellano) e ospita sul bordo meridionale una grande e brillante regione di formazione stellare tanto marcata da aver ricevuto la denominazione separata di NGC 2363; entro questa regione si trova la stella variabile blu luminosa NGC 2363-V1, che con una luminosità pari a 6,3 milioni di volte quella del Sole è una delle stelle più intrinsecamente brillanti conosciute. La distanza della galassia è stimata sugli 11,4 milioni di anni luce.

Una menzione a parte merita la galassia nana UGC 4305, nota anche come Holmberg II, dal nome del suo scopritore; si trova vicino al confine con la Giraffa circa 6 gradi a WNW della stella 24 Ursae Majoris ed è visibile con difficoltà con strumenti da 200mm di diametro. Questa galassia possiede una morfologia irregolare ed è dominata da grandi bolle di gas ionizzato originate dall’azione del vento stellare e dall’espulsione di supernovae in estese regioni dove è intensa la formazione stellare; la galassia ospita anche una sorgente ultraluminosa di raggi X, che potrebbe corrispondere a un buco nero di massa intermedia la cui gravità sta attraiendo gas e materia interstellare verso di sé. La distanza di Holmberg II è stimata sugli 11 milioni di anni luce.

GALASSIE ISOLATE

Fra le numerose galassie visibili in questo settore celeste ve ne sono diverse che non appaiono legate a gruppi di galassie ben definiti e talvolta si trovano in posizione isolata nello spazio; le loro distanze sono assai diverse fra loro e vanno da alcune decine di milioni fino a oltre cento milioni di anni luce.

Una delle più notevoli fra queste è la NGC 3359, visibile circa due gradi e mezzo a nordovest della brillante stella Dubhe; è alla portata di strumenti da 120mm, con cui appare come una macchia chiara vagamente allungata in senso nord-sud, con un leggero alone chiaro più esteso che si rende evidente con strumenti di diametro maggiore. Si tratta di una galassia spirale barrata con due abbozzi di bracci di spirale maggiore che si frammentano in più strutture più esili poco dopo il loro innesco alle estremità della barra; il nucleo è relativamente piccolo rispetto alle dimensioni del disco, mentre la barra è ben sviluppata e secondo alcuni studi si ritiene che possa essersi formata circa 500 milioni di anni fa. La sua distanza è stimata sui 49 milioni di anni luce.

NGC 2787 è visibile circa 3 gradi ad ovest di M81 e 1,5 gradi a sudovest di 24 Ursae Majoris; può essere notata con strumenti da 120mm di diametro, dove appare come una macchia diffusa e sfocata vagamente tondeggiante o appena schiacciata, con un leggero aumento di luminosità verso il centro. Il suo aspetto non migliora particolarmente con strumenti da 200mm, oltre a mostrare una maggiore estensione dell’alone chiaro. Questa galassia è classificata come lenticolare barrata, con un disco attraversato da diverse sottili bande di gas non illuminato formante anelli concentrici attorno alle regioni centrali; il suo nucleo ospita un buco nero supermassiccio con una massa stimata di 40 milioni di masse solari. La sua distanza è compresa, a seconda delle stime, fra 24 e 36 milioni di anni luce, dunque ben al di là del Gruppo di M81.

NGC 2810 si trova circa due gradi e mezzo a nordovest di 24 Ursae Majoris; è una debole galassia visibile con strumenti da 150-200mm come una piccola stellina sfocata senza ulteriori dettagli e ciò è dovuto alla sua morfologia ellittica. Si tratta di una galassia di per se
piuttosto luminosa, considerando che è situata a ben 165 milioni di anni luce di distanza, ben oltre tutte le altre galassie circostanti alla portata di telescopi di 200mm.

Un po’ più debole appare NGC 2441, situata entro i confini della Giraffa in una regione povera di stelle visibili a occhio nudo e sul bordo della regione celeste descritta in questa sezione; può essere notata con difficoltà con strumenti da 200mm di diametro ed è una spirale barrata vista di faccia, con un disco molto ben sviluppato attraversato da de bracci molto ramificati e parzialmente deformati. La sua distanza è stimata sui 180 milioni di anni luce e le sue dimensioni reali sarebbero di 130.000 anni luce, dunque superiori a quelle della Via Lattea.

GRUPPI REMOTI

Molte delle galassie visibili sul bordo fra Orsa Maggiore, Giraffa e Drago appartengono a diversi gruppi di galassie posti a varie distanze; sovrapponendosi l’uno l’altro lungo la stessa linea di vista e dunque non dando luogo a suddivisioni chiare, non è possibile distinguere questi gruppi sulla base delle semplici distanze angolari reciproche, ma occorrono dei dati basati sulla loro distanza.

Uno dei gruppi più appariscenti è il **Gruppo di NGC 2985**, situato alla distanza media di 70 milioni di anni luce e comprensivo poche galassie visibili attorno alla galassia principale, NGC 2985.

NGC 2985 è situata a mezzo grado a est della stella 27 Ursae Majoris ed è pertanto di facile individuazione; può essere vista anche con strumenti da 100-120mm, dove appare come un oggetto quasi stellare e appena sfocuato, talvolta più simile a una sorta di nebulosa planetaria molto concentrata che a una galassia anche con strumenti di diametro maggiore. Si tratta di una galassia spirale priva di barra le cui dimensioni sono molto simili a quelle della Via Lattea, con bracci di spirale notevolmente frastagliati e ramificati che si arrottolano attorno a un nucleo brillante e attivo con al centro un buco nero supermassiccio; il disco è circondato sul bordo esterno da un’unica struttura simile a un anello formata da un braccio molto grosso. Notevoli sono i fenomeni di formazione stellare attivi soprattutto nelle aree interne del disco.

Le altre galassie principali del gruppo si trovano tutte ad est di questa galassia. In particolare vi è NGC 3027, visibile come una macchia irregolare di piccole dimensioni con strumenti da 200mm mezzo grado a est della precedente; sebbene non tutte le stime concordino sull’appartenenza di questa galassia al gruppo (altrimenti indicano una distanza di soli 48 milioni di anni luce), viene solitamente indicata come membro reale. Si tratta di una spirale barrata con un braccio più sviluppato dell’altro, su cui si concentrano i maggiori fenomeni di formazione stellare.

NGC 3065 è invece una galassia lenticolare, allineata alle due precedenti galassie e a mezzo grado da NGC 3027; può essere individuata con strumenti da 150mm, con cui appare come una sorta di debole stellina un po’ sfocuata. Anche in questo caso, alcune stime di distanza farebbero pensare a una non appartenenza al gruppo, dato che forniscono valori di 91 milioni di anni luce.

NGC 3403 è invece situata in posizione molto deilita rispetto alle altre, circa 5 gradi a nordovest di λ Draconis; piuttosto debole, è visibile solo con strumenti da 200mm e oltre, dove appare come una macchia allungata in senso est-ovest.
Il Gruppo di NGC 3147 giace invece a circa 130 milioni di anni luce e si sovrappone parzialmente alla stessa linea di vista del precedente; è formato da quattro galassie maggiori e alcune galassie minori.

NGC 3147 è la galassia dominante; si tratta di una spirale formata da un nucleo piccolo e brillante circondato da un esteso sistema di bracci molto ben avvolti e assai ramificati su cui sono ospitate numerose regioni H II, specialmente sui tratti più esterni. Si trova quasi 5 gradi a nordest di 24 Urase Majoris, nella costellazione del Drago, e si nota con telescopi da 120mm, con cui appare come una macchia simile a una stella sfuocata e priva di particolari; con strumenti più grandi si può evidenziare un margine più sfumato.

NGC 3183 si trova circa un grado a nordest ed è visibile con strumenti da 150mm come una piccola macchia ben allungata in senso nordovest-sudest; si tratta di una spirale barrata, la cui barra è molto ben pronunciata ed è la struttura dominante della galassia. I suoi bracci sono invece piuttosto esili. Posta a una distanza di 141 milioni di anni luce, potrebbe essere uno dei membri più remoti del gruppo.

NGC 3348 si trova circa 5 gradi a nordovest di λ Draconis e un grado a sudovest della già citata NGC 3403; è una galassia ellittica visibile con telescopi da 150mm come una macchina ben allungata in senso nord-sud. A causa del suo aspetto deformato è stata inclusa nel catalogo di Arp, con la designazione Arp 80; la sua distanza è stimata sui 98 milioni di anni luce.

Poche minute d’arco a sud si trova la compagna NGC 2655, sulla cui nomenclatura è presente uno ‘po’ di confusione (potrebbe essere lo stesso oggetto catalogato come NGC 2630); anche questo potrebbe avere fascia buona con strumenti di grande diametro ed è una galassia ellittica situata a 103 milioni di anni luce di distanza.

Le altre due galassie del gruppo sono ancora meno appariscenti. NGC 2551 è visibile circa due gradi a sudovest ed è una galassia spiral situata a 107 milioni di anni luce di distanza; IC 529 si trova invece due gradi e mezzo a ovest ed è una galassia spirale.

Oltre il confine con la Giraffa si trova il Gruppo di NGC 2633; consta di quattro galassie maggiori e alcune minori, situate alla distanza media di 102 milioni di anni luce e tutte piuttosto deboli.

La dominante è NGC 2633, una galassia spirale barrata specchiabile visibile solo con strumenti da almeno 250mm di diametro, dove appare come una macchia allungata in senso nord-sud. A causa del suo aspetto deformato è stata inclusa nel catalogo di Arp, con la designazione Arp 80; la sua distanza è stimata sui 98 milioni di anni luce.

In posizione più staccata e sul bordo settentrionale dell’area descritta da questa sezione si trova infine il Gruppo di NGC 2655, interamente compreso nella costellazione della Giraffa e dominato dall’omonima galassia; la sua distanza media è stimata sui 60 milioni di anni luce.

La galassia NGC 2655 è ben visibile anche con strumenti da 80mm di diametro, con cui appare come una macchina di forma chiaramente ovale dai bordi sfumati e orientata in senso est-ovest; con strumenti da 150mm è molto ben visibile assieme al suo ancile chiaro e di aspetto lenticolare. La sua posizione in cielo è tuttavia difficile da recuperare a causa dell’assenza di stelle appariscenti, che costringere a fare diversi passaggi. Si tratta di una galassia lenticolare, con un nucleo attivo che la rende una galassia di Seyfert e delle bande di gas oscuro disposte asimmetricamente. Nella banda dell’infrarosso è stata individuata una debole struttura a forma di barra.

Le altre componenti del gruppo sono decisamente meno appariscenti: NGC 2715 è una spirale vista quasi di taglio e visibile con telescopi da 200mm di diametro poco meno di un grado a est della precedente. Anche NGC 2748 è una spirale vista quasi di taglio ed è individuabile circa 4 gradi a nordovest di 27 Urase Majoris; al suo centro ospiterebbe un buco nero supermassiccio.
Durante i mesi primaverili boreali, la figura del Leone domina le prime ore della notte; il suo grande trapezio di stelle brillanti è facilmente riconoscibile anche dalle città.

Al suo interno sono presenti numerose galassie, alcune delle quali anche di facile osservazione con strumenti di diametro piccolo.

CARATTERISTICHE

Il Leone è una grande costellazione caratteristica delle serate primaverili boreali; la sua posizione lontano dalla Via Lattea favorisce l’osservazione di numerosi gruppi di galassie, alcune delle quali alla portata anche di piccoli telescopi.

Quando il Leone è molto alto nel cielo, il piano della Via Lattea si trova nei pressi dell’orizzonte; è pertanto la condizione migliore per osservare i più importanti gruppi e ammassi di galassie della volta celeste, che sono compresi fra Orsa Maggiore, Leone, Chioma di Berenice e Vergine.

La maggior parte delle galassie luminose visibili in questa zona sono organizzate in piccoli gruppi, quasi tutti situati a distanze comprese fra 35 e 60 milioni di anni luce; fra i più vicini vi è quello che comprende il famosissimo Tripletto del Leone, formato dalle due galassie M65 e M66, incluse nel Catalogo di Messier, più NGC 3628.

Un altro gruppo vicino, nonché uno dei più popolati, è quello che comprende altre tre galassie catalogate dal Messier, ossia M95, M96 e M105.

Tutte e cinque le galassie di Messier sono visibili anche con strumenti molto piccoli, come quelli da 70-80mm di diametro; molte altre galassie sono invece già alla portata di un telescopio da 120mm.

Al di là di questi gruppi si estendono numerosi ammassi di galassie veri e propri, alcuni dei quali contenenti centinaia di galassie raggruppate attorno ad alcune ellittiche giganti; molti di questi ammassi fanno parte del Superammasso del Leone, situato a una distanza compresa fra i 330 e i 450 milioni di anni luce. Le sue galassie, a parte pochissimi casi, sono però al di là della portata dei più comuni telescopi in possesso degli appassionati, ma risultano molto ben evidenti nelle fotografie a lunga esposizione.
L'area centrale della costellazione del Leone, che contiene un gran numero di galassie, alcune delle quali sono di facile osservazione anche con piccoli strumenti.
A parte le stelle, sono qui del tutto assenti oggetti appartenenti alla Via Lattea, proprio grazie alla grande distanza dal piano galattico. Il Leone ospita, in realtà, anche alcune nebulose planetarie, ma sono estremamente deboli e di difficile percezione persino nelle foto astronomiche.

GRUPPI VICINI

Il gruppo di galassie più notevole del Leone è senza dubbio il Gruppo di M96, talvolta indicato come Leo I (da non confondere con la galassia nana Leo I); comprende una decina di galassie relativamente appariscenti visibili nella parte centrale della costellazione, più diverse altre minori, e giace alla distanza media di 35-37 milioni di anni luce. Appare suddiviso in due sotto gruppi, di cui il più esteso è quello occidentale, comprendente la galassia da cui il gruppo trae il nome. Il sottogruppo orientale tuttavia è il più appariscente, perché contiene tre galassie molto luminose e ben conosciute che for mano il famoso Tripletto del Leone, visibile anche con telescopi di piccolo diametro o persino con grandi binocoli come un 20x80 e, in parte, coi comuni 10x50.

La galassia M66 è la più brillante ed è anche facile da localizzare, grazie alla sua posizione esattamente a metà via fra le stelle θ Leonis e ι Leonis; può essere scorta come una piccola macchia ovale anche con un binocolo 10x50, sebbene con qualche difficoltà, mentre con strumenti da 100mm di diametro è un oggetto veramente molto facile. Con un telescope da 300mm si osservano anche le tracce delle spirali, che appaiono orientate in senso antiorario, mentre il nucleo ha la forma di una barra; sul lato nordoccidentale si nota una stella di decima magnitudine appartenente alla Via Lattea. La galassia dista 35 milioni di anni luce da noi e il suo diametro è stimato sui 100.000 anni luce; la sua morfologia è quella di una galassia spirale barrata, con una barra esile su cui si innestano dei bracci blandamente avvolti. Nei suoi bracci sono state osservate diverse supernovae.

Anche la galassia M65 è abbastanza facile da localizzare, 20 minuti d'arco ad est della precedente; a differenza della precedente, con un 10x50 si osserva con ben più difficoltà e appare ben staccata dal fondo cielo con uno strumento da 100mm di apertura. Con un 300mm si mostra come un fuso di colore argentato, disposto in senso nord-sud, mentre l'alome è attraversato da una banda scura di polveri. La galassia dista anch'essa 35 milioni
di anni luce da noi ed è leggermente meno luminosa della sua compagna M66. Si tratta di una galassia spirale con un nucleo molto grande, sebbene sia vista da un'angolazione molto inclinata, per cui la si può osservare quasi di taglio; i bracci di spirale sono attraversati da un sistema di polveri oscure, in cui nelle immagini ad alta risoluzione sono evidenti stelle azzurre molto luminose, segno che è in atto la formazione stellare. Il suo diametro reale sarebbe di 70.000 anni luce e la sua massa pari a 85 miliardi di masse solari.

Completa il trio NGC 3628, che sebbene appaia meno luminosa delle altre due, risulta essere più estesa. Attraverso un telescopio da 100mm appare come un lungo fuso chiaro privo di dettagli; per poter notare la sua banda oscura che la attraversa in senso longitudinale occorrono strumenti con diametri notevoli. Con telescopi da 150-200mm di apertura e oculari grandangolari è possibile apprezzare tutte e tre le galassie e alcuni loro dettagli in un’unica visione d’insieme.

Poco a ovest si trova NGC 3593, proprio 2,5 gradi a sud della stella θ Leonis, poco più di mezzo grado a sudovest della stella 73 Leonis. Può essere notata anche con telescopi da 90-100mm di diametro, nei quali si mostra come una piccola macchia circolare più luminosa verso il centro. Con telescopi superiori ai 200mm di diametro si può rendere visibile anche la sottile banda oscura che passa poco a nord del nucleo. Si tratta di una galassia lenticolare vista quasi di taglio, nonché una galassia starburst per via del suo altissimo tasso di formazione stellare, in particolare lungo la sua banda oscura; dal suo anello interno parte una singola struttura a braccio. La sua distanza è stimata sui 21 milioni di anni luce, il che la renderebbe la più vicina fra le galassie del gruppo.

Il sottogruppo occidentale è quello che contiene il numero maggiore di galassie ed è dominato da M96. La sua individuazione è complicata dal fatto che si trova in un'area povera di stelle di riferimento: occorre partire dunque dalla linea che congiunge Regolo a θ Leonis, fermarsi a metà via e spostarsi a sud di circa 2 gradi. Con un binocolo 10x50 è appena visibile e si mostra come una vaga nebulosità chiara senza particolari evidenti; stessa cosa con un telescopio da 80mm di aperture. Con strumenti da 150mm si individua il nucleo, brillante e di forma ellittica e allungato in senso sudest-nordovest, più un vago alone orientato nella stessa direzione, con presenza di alcuni chiaroscuri che fanno pensare ad una struttura a spirale. M96 una grande galassia spirale posta alla distanza di 31 milioni di anni luce; a questa distanza, le sue regioni centrali più luminose possiedono una dimensione reale di oltre 65.000 anni luce, mentre la struttura ad anello che le circonda, relativamente debole, appare estesa per oltre 100.000 anni luce e possiede un gran numero di stelle giovani e blu molto luminose, che le conferiscono il caratteristico colore azzurro. Questa regione è sede di importanti fenomeni di formazione stellare; le regioni centrali sono invece composte da stelle più vecchie e il colore dominante è il giallo. La massa della galassia è stata stimata essere di 160 miliardi di masse solari; l'inclinazione sulla nostra linea di vista del suo piano galattico è di 35 gradi.

Meno di un grado a ENE si trova M95, leggermente meno luminosa della precedente e quindi sostanzialmente al di là della portata di un binocolo 10x50; occorrono telescopi da almeno 70-80mm per poterla individuare anche solo come una macchietta chiara. Strumenti di aperture comprese fra 150 e 300mm aumentano molto il numero dei dettagli visibili, come la presenza di un nucleo di 40" di diametro di decima magnitudine e un alone molto debole di 5° attraversato da una debolissima barra centrale. M95 è una delle galassie più studiate dal telescopio spaziale Hubble al fine di determinare la co-

Il Tripletto del Leone, formato da M65 (in alto a destra), M66 (in basso) e NGC 3628 (a sinistra).

M96 ripresa dal Very Large Telescope dell’ESO. Si può notare un’altra galassia molto più lontana e vista di taglio, la cui luce filtra attraverso il suo braccio di spirale in alto a destra.
stante di Hubble, attraverso lo studio delle variabili Cefei-
di, una distanza di circa 33 milioni di anni luce con uno
scarto di 1,4 milioni di anni luce. Questa galassia pre-
enta una regione centrale molto attiva, in particolare in
anello del diametro di circa 2000 anni luce attorno al
centro, composto probabilmente di gas diffuso non uni-
forme. Le emissioni di raggi X provengono da numero-
se fonti, che sono concentrate in regioni di gas caldo; la
morfologia dell'emissione può spiegarsi se nella galas-
sia si sta verificando una serie di starburst istantanei
situati in diverse zone dell'anello. L'estensione dei raggi
X arriva fino ad almeno 1600 anni luce oltre l'anello,
che può essere interpretato come un’uscita di gas al di
là dello stesso.

M105 è un po’ in disparte rispetto alle altre due. An-
ch’essa è al limite della portata di un binocolo di medie
dimensioni come un 10x50, dunque occorrono telescopi
da almeno 80mm per poterla individuare anche solo
come una macchieta chiara. In un 150mm si osserva
chiaramente assieme ad altre due galassie vicine, NGC
3384 e NGC 3389, con le quali forma un triangolo ret-
tangolo il cui vertice ad angolo retto si trova su NGC
3384; il nucleo è molto brillante e tutt’attorno è circon-
dato da gas caldo; la sua distanza è stimata sui circa 32 o
36 milioni di anni luce. Si tratta di un perfec-

to esempio di galassia ellittica, grazie all’estrema uni-

mente meno luminosa e di aspetto chiaramente un po’
allungato: si tratta di NGC 3384 (talvolta indicata come
NGC 3371, ma si tratta dello stesso oggetto), una delle
sue compagne più strette; le due galassie si osservano
nello stesso campo visivo anche a ingrandimenti spinti.
Con una distanza di circa 35 milioni di anni luce, appare
alla luce anche vicina anche fisicamente a M105.

Una terza galassia, la spirale NGC 3389, è inoltre visi-
bile pochi minuti d’arco a sudest; la sua magnitudine è
pari a 11,8 ed è quindi visibile solo con telescopi di
grande diametro. Non fa tuttavia parte del Gruppo di
M96, trovandosi molto più distante, a 60 milioni di anni
luce; è in effetti parte del gruppo di galassie LLG 214,
descritto più avanti.

Circa 1 grado e mezzo a nord si trova NGC 3377, situa-
ta a soli 25 minuti d’arco a sudest dalla stella 52 Leonis.
Può essere notata anche con un telescopio da 80mm,
sebbene sia al limite della visibilità, mentre con un
100mm si distingue bene come una piccola ellisse lumin-

sosamente minuscola e leggermente irregolare, mentre il suo alone diventa vagamente visibile
con strumenti da 150mm, dove appare orientato in senso
 nordovest-sudest. La sua distanza è stimata sui 40 milio-

ni di anni luce ed è quindi uno dei membri più lontani
della galassia ellittica NGC 3377.

M105 (a destra), NGC 3384 e, in basso a sinistra, NGC 3389.
NGC 3489; la sua posizione è individuabile con un po’ di difficoltà, dal momento che non si trovano stelle appariscenti nelle sue immediate vicinanze. Con un telescopio da 100mm è visibile come una macchia circolare abbastanza uniforme e appena più luminosa al centro. Con un telescopio da 200mm è invece chiaramente visibile un alone orientato in senso est-ovest che circonda un nucleo più brillante. L’assenza di ulteriori dettagli è data dal fatto che si tratta di una galassia lenticolare, probabilmente dotata di una tenue barra centrale; possiede un nucleo attivo di tipo Seyfert 2 ed è generalmente considerata una galassia che ha subìto un fenomeno di starburst nel suo recente passato, sebbene nelle sue regioni centrali pernanga una discreta quantità di gas che potrebbe in futuro condurre ad un nuovo fenomeno. Le sue dimensioni sono contenute, dato che possiede un diametro di appena 30.000 anni luce; si ritiene che il suo nucleo ospiti un buco nero supermassiccio con massa di circa 6 milioni di masse solari. La sua distanza è di circa 30 milioni di anni luce.

GRUPPI DI GALASSIE DI LEO II

Al di là del Gruppo di M96, a una distanza compresa fra i 40 e i 70 milioni di anni luce, si trovano diversi piccoli gruppi di galassie che tutti assieme costituiscono il più esteso Gruppo Leo II; tutti assieme coprono una regione estesa per 30 milioni di anni luce e si osservano in una fascia di cielo posta mediamente 5 gradi a nord del gruppo precedentemente descritto.

A circa 54 milioni di anni luce, a metà strada fra le stelle γ Leonis e θ Leonis, si trova il gruppo LLG 219, noto talvolta anche come Gruppo di NGC 3370, formato da tre galassie dominanti e alcune galassie minori. La galassia dominante è NGC 3370, la quale però non è alla portata di telescopi di piccolo diametro: per notarla bene occorre infatti uno strumento di 250mm, dove appare come una macchia ovale debole e sfumata, con un nucleo appena più luminoso. Si tratta di una galassia spirale con un nucleo molto piccolo e un estesissimo sistema di bracci, formato da due principali e da diverse ramificazioni secondarie; la sua distanza è stimata sui 60 milioni di anni luce, anche se alcuni studi riportano una distanza ben maggiore, fino a 98 milioni di anni luce; in quest’ultimo caso non farebbe ovviamente parte del gruppo LLG 219.

Più difficile da osservare e alla portata solo di telescopi di grande diametro è NGC 3447, una galassia spirale barrata fortemente deformata dall’interazione con la vicina galassia NGC 3447A; una parte dei suoi bracci sono stati strappati via e costituiscono un addensamento separato, mentre tutta la galassia sperimenta intensi fenomeni di formazione stellare diffusi soprattutto sulle regioni periferiche del disco. La sua distanza è stimata sui 50 milioni di anni luce o di poco inferiore.

Il cuore del Gruppo Leo II coincide con le galassie che si osservano attorno al Gruppo di NGC 3607; la sua distanza media è di circa 54 milioni di anni luce ed è formato da una dozzina di galassie maggiori, alcune delle quali sono alla portata anche di strumenti di piccolo diametro.

Fra queste vi è la galassia dominante, NGC 3607. La sua luminosità la rende individuabile, sebbene a fatica, anche con un binocolo 15x70, mentre è decisamente evidente con un telescopio da 80mm, dove appare come una macchia di aspetto circolare; con telescopi da 120mm l’oggetto è molto ben contrastato ed è percepibile anche un leggero alone attorno al nucleo. Si tratta di una galassia di tipo lenticolare, anche se inizialmente era classificata come ellittica; presenta dei sottili anelli di polvere che circondano il nucleo, il quale è molto luminoso e contiene un buco nero supermassiccio la cui massa è stimata sui 120 milioni di masse solari. Il resto del disco è invece molto povero di gas interstellare e ciò è insolito per galassie di questo tipo. La sua distanza è stimata sui 44 milioni di anni luce.
NGC 3607 è anche la principale di un trio di galassie molto vicine fra loro, note con la sigla NGC 3605 (visibile a sud) e NGC 3608 (a nord).

NGC 3605 è la più vicina e dista da NGC 3607 appena 2 minuti d’arco. Sebbene sia più piccola e anche la meno luminosa delle tre, è comunque visibile anche con un telescopio da 120mm, dove appare come una macchia di aspetto vagamente allungato con l’asse maggiore rivolto verso la galassia compagna. Anch’essa è una galassia ellittica, ma stime sulla sua distanza la collocano a 30 milioni di anni luce, pertanto in primo piano rispetto alle altre due.

NGC 3608 è invece più appariscente e più estesa; si trova circa 6 minuti d’arco a NNE di NGC 3607 ed è visibile anche con telescope da 90-100mm, dove appare come una macchia circolare di aspetto marcatamente stellare, circondata da un debole alone. Anche in questo caso si tratta di una galassia ellittica, la cui distanza è stimata sui 57 milioni di anni luce; ciò la rende una delle galassie più lontane del gruppo.

NGC 3626, nota anche con la sigla C40, si trova circa 2,5° a sudest della stella δ Leonis (Zosma) ed è probabilmente una galassia lenticolare (o forse a spirale con bracci molto stretti) visibile anche con un telescopio da 120mm, sebbene non sia particolarmente appariscente. Nonostante vi siano galassie più appariscenti nelle vicinanze, curiosamente questa è stata scelta per essere inserita nel Catalogo Caldwell. Possiede un disco di polveri e gas neutri che ruota in senso contrario rispetto alle stelle del piano galattico. La sua distanza è stimata sui 75 milioni di anni luce; ciò la rende una delle galassie più lontane del gruppo.

La galassia NGC 3626, una delle galassie più importanti del Gruppo Leo II.

NGC 3655, a meno di un grado a WNW della stella 81 Leonis; per individuarla con chiarezza occorrono strumenti da 120-150mm di diametro, nei quali si presenta come una piccola ellisse chiara orientata in senso nordest-sudovest. Con strumenti da 200mm e oltre si nota che la luminosità aumenta verso il centro. Si tratta di una spirale barrata con un esteso sistema di bracci, formati da numerose piccole ramificazioni e attraversati da diversi addensamenti di stelle giovani e brillanti. La sua distanza è stimata sui 65-70 milioni di anni luce e pertanto la sua reale appartenenza al Gruppo Leo II è talvolta messa in dubbio; il suo diametro reale è di 30.000 anni luce ed è pertanto una galassia di piccole dimensioni.

Molto isolata verso ovest, ma pur sempre facente parte da cui partono due o tre bracci principali e una ramificazione minore, che si presentano molto ricchi di stelle giovani e azzurre. La sua distanza è stimata fra i 50 e i 54 milioni di anni luce.

Entro meno di un grado a sudovest si trovano le due galassie NGC 3681 e NGC 3684, entrambe alla portata di telescopi non inferiori ai 120-150mm di diametro. La prima è una spirale barrata con una barra molto prominente e dei bracci molto ben avvolti e stretti che formano una sorta di anello attorno ad essa; la seconda invece ha una barra molto meno appariscente e dei bracci più irregolari, con numerosi addensamenti di stelle giovani e massicce. Le loro distanze sono rispettivamente di 58 milioni e 54 milioni di anni luce ed entrambe hanno un diametro di 45.000 anni luce.

Molto più difficile è scorgere, anche con strumenti di grande diametro, NGC 3691, una galassia spirale barrata con una bassa luminosità superficiale; possiede dei bracci molto corti sviluppati attorno a una barra spessa e le sue dimensioni totali sono molto contenute, dell’ordine dei 20.000 anni luce. Dista circa 50 milioni di anni luce.

C’è poi NGC 3655, a meno di un grado a WNW della stella 81 Leonis; per individuarla con chiarezza occorrono strumenti da 120-150mm di diametro, nei quali si presenta come una piccola ellisse chiara orientata in senso nordest-sudovest. Con strumenti da 200mm e oltre si nota che la luminosità aumenta verso il centro. Si tratta di una spirale barrata con un esteso sistema di bracci, formati da numerose piccole ramificazioni e attraversati da diversi addensamenti di stelle giovani e brillanti. La sua distanza è stimata sui 65-70 milioni di anni luce e pertanto la sua reale appartenenza al Gruppo Leo II è talvolta messa in dubbio; il suo diametro reale è di 30.000 anni luce ed è pertanto una galassia di piccole dimensioni.

Molto isolata verso ovest, ma pur sempre facente parte...
del gruppo, è la NGC 3507, visibile circa 2 gradi a sud della stella 60 Leonis; è difficile da individuare, non solo per la sua posizione isolata, ma perché poco luminosa e dunque solo alla portata di strumenti dai 150mm a salire. È una spirale barrata dalla morfologia molto chiara ed evidente, con una barra centrale da cui partono due bracci marcati e quasi senza ramificazioni che compiono un giro completo esatto. Dista circa 40-45 milioni di anni luce e possiede un diametro di circa 40.000 anni luce; possiede un nucleo attivo.

A circa 60 milioni di anni luce giace il Gruppo di NGC 3338, anche noto come LGG 214; a questo si sovrappone parzialmente il gruppo di galassie attorno a M96, come visto nel caso di NGC 3389, appartenente a LGG 214 ma visibile in mezzo alle componenti del gruppo più vicino. La galassia dominante è NGC 3338, una galassia spirale attiva che è visibile anche con strumenti da 120-150mm, dove appare come una macchia sfumata leggermente allungata in senso est-ovest e dominata da una stella di magnitudine 9,0 poco a ovest; la sua posizione è rintracciabile circa un grado sudovest della stella 52 Leonis. La galassia presenta due bracci ben marcati e un po’ aperti e deformati verso l’esterno, mentre il nucleo è poco cospicuo; la sua distanza è stimata sui 55-60 milioni di anni luce e possiede un diametro di 55.000 anni luce circa.

Oltre alla già descritta NGC 3389, un’altra componente di rilievo del gruppo è NGC 3346, visibile meno di un grado a nordovest di 52 Leonis; la sua bassa luminosità la pone al di fuori della portata di telescopi più piccoli di 200mm di diametro, se non in condizioni eccezionali. Si tratta di una spirale barrata vista di faccia, con una barra molto corta e due bracci principali da cui partono svariate ramificazioni regolari che si dirigono verso l’esterno. La sua distanza è stimata sui 55-60 milioni di anni luce e possiede un diametro di 45.000 anni luce. Nei pressi si osservano diverse galassie più deboli.

GALASSIE ISOLATE

Fra le galassie che apparentemente non fanno parte di alcun gruppo c’è la NGC 3485, che è visibile poco meno di un grado a nord della più brillante e già citata NGC 3489; è una spirale barrata con una barra molto evidente e dei bracci strettamente avvolti attorno ad essa. Per individuarla servono però telescopi da 200mm di diametro. La sua distanza è di 60-65 milioni di anni luce.

Circa 40 minuti d’arco a SSE della stella θ Leonis si trova NGC 3596, una spirale intermedia con un nucleo piccolo ma brillante e dei deboli ma larghi bracci di spirale; per poterla osservare occorrono telescopi da 200-250mm e un cielo molto buio. La sua distanza è di 55 milioni di anni luce.

NGC 3705 è visibile circa 2,5 gradi a sudovest di ι Leonis e può essere osservata anche con telescopi da 150mm con cui appare come una macchia allungata in senso nordovest-sudovest. È una grande galassia spirale barrata vista da un’angolazione intermedia e dunque di aspetto allungato; possiede un nucleo attivo e delle dimensioni che sarebbero superiori anche a quelle della Via Lattea, dato che avrebbe un diametro di 175.000 anni luce. La sua distanza è stimata sui 45 milioni di anni luce ed è circondata da alcune galassie più deboli, che però sono anche molto remote e dunque non fisicamente legate ad essa.

Circa 4 gradi a ENE della stella ι Leonis, in posizione molto isolata, si trova NGC 3810; è visibile anche con telescopi da 100mm sotto ottime condizioni osservative, dove appare come un piccolo ovale chiaro orientato in senso nord-est sud-ovest. Con strumenti da 150mm è più chiaro un leggero aumento della luminosità verso il centro, che assume una forma più irregolare. Si tratta di una spirale semplice, con una struttura molto simile a quella di M77: presenta infatti un nucleo molto luminoso con bracci di spirale strettamente avvolti attorno a esso, che si aprono progressivamente verso l’esterno; nei pressi delle regioni centrali sono concentrati i maggiori fenomeni di formazione stellare, responsabili della grande luminosità di queste regioni. Dense bande di polveri attraversano i bracci, dove si trovano anche numerosi ammassi di stelle giovani e brillanti. La sua distanza è stimata sui 48 milioni di anni luce e il suo diametro reale sarebbe di circa 60.000 anni luce. Benché sia posta in posizione isolata, questa galassia è accompagnata dalla meno appariscente NGC 3773, con cui costituisce il Gruppo di NGC 3810.
Circa un grado e mezzo a nord di M96, in direzione del suo gruppo di galassie, si trova infine NGC 3367. È una galassia di fondo e dunque assolutamente non legata a questo gruppo, dato che la sua distanza si aggira sui 120 milioni di anni luce; le sue grandi dimensioni la rendono visibile anche con strumenti da 250mm di diametro, ma non con telescopi più piccoli. Si tratta di una spirale barrata quasi di faccia e con una forma marcatamente asimmetrica, con una barra all’estremità della quale partono due bracci che per il primo mezzo giro si richiudono a formare una struttura ad anello, per poi ramificarsi e formare una struttura a più bracci; questi bracci sono punteggiati da numerose regioni H II e al loro interno si sono osservate diverse supernovae. La sua forma asimmetrica non è dovuta all’interazione con altre galassie, dato che si trova in una posizione dello spazio molto isolata, ma probabilmente da un fenomeno di accrezione di massa che ha avuto luogo nell’ultimo miliardo di anni a causa forse dell’interazione con una nube di gas freddo intergalattico. Il diametro della galassia è di circa 85.000 anni luce.

A1367 E IL SUPERAMMASSO DEL LEONE

Ad appena un grado e mezzo a sudovest della stella 93 Leonis, di magnitudine 4,5, si trova il grande ammasso di galassie Abell 1367, noto anche come “Ammasso del Leone”; si compone di almeno 70 galassie maggiori e un gran numero di galassie nane e si trova alla distanza di 330 milioni di anni luce circa. Assieme all’Ammasso della Chioma (Abell 1656), è uno dei due ammassi più importanti del Superammasso della Chioma, una grande struttura di forma sferica estesa per circa 20 milioni di anni luce contenente oltre 3000 galassie; a sua volta questo si trova nei pressi della zona centrale del Filamento della Chioma, a sua volta parte della Grande Muraglia (Great Wall): quest’ultima è una delle megastrutture più grandi conosciute dell’Universo osservabile, con un’estensione che arriva a 500 milioni di anni luce di lunghezza, 300 milioni di anni luce di larghezza e appena 16 milioni di anni luce di spessore. È formato da tre grandi superammassi di galassie: Ercole, Chioma e Leone; fra questi, quello della Chioma è il più vicino. Benché in massima parte gli ammassi di galassie più densi come questo tendono ad essere formati principalmente da galassie ellittiche, Abell 1367 contiene in prevalenza galassie a spirale; ciò suggerisce che l’età dell’ammasso sia relativamente recente e pertanto le galassie che ne vengono attratte non hanno ancora sperimentato forti interazioni e fusioni che portano alla formazione delle galassie ellittiche. In ciò si distingue anche dal vicino Ammasso della Chioma. Sebbene le sue galassie non siano alla portata dei più comuni telescopi amatoriali, nelle fotografie l’ammasso si rivela un oggetto piuttosto facile, con in evidenza diverse decine di galassie fino alla magnitudine 16, tutte concentrate entro un diametro di un grado; molte altre galassie più sparse si osservano anche a nordest della stella 93 Leonis, su uno spazio di un grado.

La galassia più massiccia e dominante dell’ammasso è NGC 3842, una ellittica gigante che può essere osservata con telescopi a partire da 250mm di diametro; possiede nel suo nucleo uno dei buchi neri più grandi conosciuti, la cui massa sarebbe di 9,7 miliardi di masse solari, ossia quanto una piccola galassia. Un altro membro importante è NGC 3862, meno appariscente e situato circa 15 minuti d’arco a sud-est della precedente: possiede un lungo getto di materia che si origina dal suo nucleo, di circa 2800 anni luce di lunghezza.

A una distanza superiore, pari a circa 450 milioni di anni luce, si estende il già citato Superammasso del Leone, facente parte della Grande Muraglia; è un grande sistema di ammassi di galassie che si estende per 420 milioni di anni luce, con una larghezza di circa 200 anni luce, e ha il suo centro nell’ammasso Abell 1185, situato al confine fra Orsa Maggiore, Leone e Leone Minore.
VERSO LA TESTA DEL LEONE

La regione celeste in direzione della testa del Leone appare povera di galassie, ma quelle presenti sono comunque interessanti e possono essere oggetto di fotografie ad alta risoluzione, in particolare quelle formanti piccoli gruppi.

Uno di questi è il Gruppo di NGC 3190, noto anche con la sigla Hickson 44; la sua posizione si individua con facilità, trovandosi esattamente a metà strada fra le brillanti stelle γ Leonis (Algieba) e ζ Leonis ed è formato da quattro galassie fisicamente legate fra loro, poste a una distanza media di circa 55 milioni di anni luce: appartiene pertanto al gruppo di galassie Leo II, che a sua volta appartiene al Superammasso della Vergine.

La galassia più brillante del gruppo, sebbene non sia anche la più grande, è NGC 3193, che è anche alla portata di strumenti da 100mm, con cui appare come un piccolo alone circolare delle dimensioni di un minuto d’arco; telescopi di diametro maggiore non consentono di rivelare ulteriori dettagli. Si tratta di una galassia ellittica di tipo E2, il cui nucleo è attivo con emissioni a bassa ionizzazione (LINER).

Appena 5 minuti d’arco a sudovest si trova la galassia dominante del gruppo, NGC 3190; con telescopi da 100mm appare come una piccola ellisse chiara e un po’ più luminosa al centro, orientata in senso nordovest-sudest, mentre con strumenti da 150mm diviene più chiara la sua forma leggermente distorta. Con telescopi di grande diametro è possibile individuare anche la banda di emissioni a senso longitudinale, a sud del suo nucleo. Si tratta di una grande galassia a spirale, talvolta denominata anche NGC 3189, il cui diametro è...
stimato di circa 100.000 anni luce; è vista quasi di taglio e ciò mette in evidenza il suo warp, molto ben definito dalla banda oscura che ne attraversa il piano, causato dall’interazione con la vicina galassia NGC 3187. Fra i suoi bracci di spirale sono state osservate alcune supernovae, di cui due nel medesimo anno, il 2002.

La galassia compagna è la appena citata NGC 3187, che però è di difficile osservazione essendo molto più debole, tanto da essere alla portata solo di strumenti di diametro superiore ai 200mm. Si tratta di una galassia a bassa luminosità superficiale, dove probabilmente gran parte della massa è espressa sotto forma di gas e non di stelle; appare come una spirale barrata fortemente deformato, con due bracci principali molto aperti, a causa della forte interazione con le galassie vicine e in particolare con NGC 3190.

In posizione più defilata a sudovest si trova la galassia NGC 3185, anch’essa poco appariscente e visibile solo con strumenti da almeno 150mm di diametro, dove appare come una piccola ma spessa ellisse chiara allungata in senso nordovest-sudest; si tratta di una galassia a bassa luminosità superficiale, dove probabilmente gran parte della massa è espressa sotto forma di gas e non di stelle; appare come una spirale barrata fortemente deformato, con due bracci principali molto aperti, a causa della forte interazione con le galassie vicine e in particolare con NGC 3190.

Appena 50 minuti d’arco ad est della brillante γ Leonis (Algieba) si trova la coppia di galassie interagenti NGC 3226 e NGC 3227, definite collettivamente anche come Arp 94. La principale, NGC 3227, è la più meridionale delle due ed è visibile anche con strumenti da 100mm come una chiazza allungata in senso nordovest-sudest priva di dettagli; telescopi da 150mm rivelano la presenza di un nucleo di aspetto stellare circondato da un vago alone lenticolare. Col medesimo strumento si rivelano anche la vicina NGC 3226, che appare come un piccolo alone circolare dai bordi sfumati e più luminoso al centro. NGC 3227 è una spirale barrata che presenta un nucleo attivo di tipo Seyfert 1, con all’interno un buco nero supermassiccio la cui massa è stimata sui 14 milioni di masse solari; la barra appare prominenti e molto spessa e dalle due estremità partono altrettanti bracci che compiono mezzo giro attorno ad essa. Il diametro totale della galassia è stimato sui 60.000 anni luce. La compagna NGC 3226 è invece una nana ellittica con un diametro di 45.000 anni luce. La distanza della coppia è stimata sui 50 milioni di anni luce.

Un grado e mezzo a sud della stella λ Leonis si trova la brillante NGC 2903, tanto luminosa da essere visibile anche con un telescopio da 60mm di apertura. Con strumenti da 120mm si nota la sua forma allungata in senso nord-sud, mentre con un telescopio da 200mm si nota un nucleo centrale più luminoso. NGC 2903 è una galassia spirale barrata situata a 30 milioni di anni luce, per molti versi simile alla Via Lattea: la sua dimensione è solo leggermente più piccola della nostra Galassia, con un diametro di circa 80.000 anni luce. La regione centrale della galassia presenta un tasso eccezionale e in termini di formazione stellare, concentrate in un anello intorno al nucleo, che ha un diametro di poco più di 2000 anni luce e comprende non solo un gran numero di stelle giovani e brillanti, ma anche un certo numero di nebulose di gas ionizzato con luminosità paragonabili a quelle della Nebulosa Tarantola, con elevate frequenze radio, infrarossi, raggi ultravioletti e raggi X. Fra i suoi bracci di spirale sono presenti alcune “nubi stellari” particolarmente dense e luminose, una delle quali ha ricevuto una denominazione separata del New General Catalogue: NGC 2905. Nei dintorni sono note infine tre piccole galassie che le orbitano intorno come satelliti.

Due gradi a nord della stella 15 Leonis si segnala infine la presenza della coppia di galassie NGC 2964 e NGC 2968, entrambe alla portata di telescopi da 150mm e distanti sui 60 milioni di anni luce.

La brillante galassia spirale barrata NGC 2903, visibile nei pressi della “Falce leonina” vicino al confine col Cancro anche con un piccolo telescopio.
IL TRIANGOLO ESTIVO E DINTORNI
La Via Lattea in direzione del Cigno è la più intensa e brillante dell’intero emisfero boreale ed è anche, in generale, una delle zone più ricche della volta celeste. Il suo chiarore diventa visibile già alla periferia dei centri abitati e la sua posizione è ulteriormente evidenziata grazie alla presenza del Triangolo Estivo, formato dalla brillante stella Vega, che con la sua magnitudine 0,03 è la quinta stella più luminosa del cielo, Altair, di magnitudine 0,77, e Deneb, di magnitudine 1,25.
IL CUORE DEL CIGNO

La grande costellazione del Cigno domina i cieli nelle notti estive boreali: dalle latitudini medie boreali si presenta infatti allo zenit in tarda sera verso la metà dell’estate. La regione compresa fra Deneb e Albireo è fra le più ricche del cielo e contiene diversi oggetti galattici di grande importanza scientifica, sebbene la loro grande distanza non consenta una facile osservazione visuale soprattutto dei grandi sistemi nebulosi.

CARATTERISTICHE

La Via Lattea in direzione del Cigno è la più intensa e brillante dell’intero emisfero boreale ed è anche, in generale, una delle zone più ricche della volta celeste. Il suo chiarore diventa visibile già alla periferia dei centri abitati e la sua posizione è ulteriormente evidenziata grazie alla presenza del Triangolo Estivo, formato dalla brillante stella Vega, che con la sua magnitudine 0,03 è la quinta stella più luminosa del cielo, Altair, di magnitudine 0,77, e Deneb, di magnitudine 1,25.

Il settore di cielo qua analizzato si trova proprio attorno a quest’ultima stella, la a della costellazione del Cigno, di cui rappresenta la coda.

Tutte le stelle e gli oggetti presenti in questa direzione appartengono al nostro braccio di spirale, il Braccio di Orione, che qui è possibile osservare lungo il suo asse principale comportando che molte delle regioni di formazione stellare in esso comprese si osservino in sequenza una dietro l’altra. Ciò è la causa principale del forte addensamento di stelle e oggetti visibili in questo tratto di cielo.

Questa regione appare a tratti fortemente oscurata dal grande sistema nebuloso che forma la cosiddetta Fenditura del Cigno, ben visibile come una lunga striscia scura che attraversa la Via Lattea in senso longitudinale dividendola a metà; la Fenditura si origina poco a sud di Deneb e prosegue per diverse decine di gradi verso sud. Proprio fra Deneb e Sadr (γ Cygni) si trovano i più grandi complessi nebulosi illuminati di questa regione, alcuni dei quali sono osservabili anche otticamente attraverso telescopi preferibilmente di grande diametro. Tuttavia anche un semplice binocolo 10x50 permette di apprezzare molte delle caratteristiche di questo settore celeste: a sud di Sadr si estendono infatti dei campi stellari particolarmente ricchi che, sotto un cielo buio, sono in grado di regalare delle appaganti osservazioni.

Chi possiede un telescopio su montatura Dobsoniana interamente manuale può dedicarsi alle cosiddette spazzolate: muovendo lentamente il tubo ottico su e giù lungo la Via Lattea restando con l’occhio all’oculare vedrà decine di migliaia di stelle entrare e uscire dal campo visivo, con allineamenti, concatenazioni e addensamenti.

STELLE PRINCIPALI DELLA REGIONE

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>α Cyg</td>
<td>Deneb</td>
<td>20h 41m 26s</td>
<td>+45° 16' 49"</td>
<td>1.25</td>
<td>3228</td>
<td>bianco</td>
</tr>
<tr>
<td>γ Cyg</td>
<td>Sadr</td>
<td>20h 22m 14s</td>
<td>+40° 15' 24"</td>
<td>2.23</td>
<td>1523</td>
<td>giallo</td>
</tr>
<tr>
<td>ε Cyg</td>
<td>Gienah</td>
<td>20h 46m 12s</td>
<td>+33° 58' 10"</td>
<td>2.48</td>
<td>72</td>
<td>arancio</td>
</tr>
<tr>
<td>δ Cyg</td>
<td>Rukh</td>
<td>19h 44m 58s</td>
<td>+45° 07' 50"</td>
<td>2.86</td>
<td>171</td>
<td>azzurro</td>
</tr>
<tr>
<td>ε Cyg</td>
<td>21h 12m 56s</td>
<td>+30° 13' 37"</td>
<td>3.21</td>
<td>151</td>
<td>giallo</td>
<td></td>
</tr>
<tr>
<td>τ Cyg</td>
<td>21h 04m 56s</td>
<td>+43° 55' 40"</td>
<td>3.72</td>
<td>1177</td>
<td>arancio</td>
<td></td>
</tr>
<tr>
<td>ζ Cyg</td>
<td>21h 14m 47s</td>
<td>+38° 02' 40"</td>
<td>3.74</td>
<td>68</td>
<td>giallo</td>
<td></td>
</tr>
<tr>
<td>ο Cyg</td>
<td>20h 13m 38s</td>
<td>+46° 44' 29"</td>
<td>3.80</td>
<td>1353</td>
<td>arancio</td>
<td></td>
</tr>
</tbody>
</table>

DETTAGLI

<table>
<thead>
<tr>
<th>Costellazioni</th>
<th>Cigno</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascensione Retta (media)</td>
<td>20h 20’</td>
</tr>
<tr>
<td>Declinazione (media)</td>
<td>+40°</td>
</tr>
<tr>
<td>Tipo</td>
<td>Campi stellari galattici</td>
</tr>
<tr>
<td>Oggetti</td>
<td>Ammassi aperti e nebulose</td>
</tr>
</tbody>
</table>
L’area del cuore del Cigno appare attirata da un tratto particolarmente ricco e intenso della Via Lattea.
dalle forme più svariate; si tratta in assoluto del tipo di osservazione più spettacolare che è possibile condurre in questa regione ed è tanto più appagante quanto più si utilizzano oculari a grande campo e possibilmente sfruttando bassi ingrandimenti, non oltre i 50x.

Con un telescopio di 100-120mm di diametro sono già visibili diversi oggetti singoli, soprattutto ammassi aperti e associazioni stellari, mentre con strumenti di diametro dai 200mm a salire è possibile osservare con relativa facilità anche diverse nebulose.

ATTORNO ALLA NEBULOSA NORD AMERICA

Pochi gradi ad est di Deneb si trova il grande sistema nebuloso che comprende la Nebulosa Nord America, la

PRINCIPALI OGGETTI NON STELLARI

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NGC 6811</td>
<td>19h 37m 17s</td>
<td>+46° 23' 18"</td>
<td>A Ap</td>
<td>6,8</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>NGC 6819</td>
<td>19h 41m 18s</td>
<td>+40° 11' 12"</td>
<td>A Ap</td>
<td>7,3</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Sh2-101</td>
<td>19h 59m 55s</td>
<td>+35° 16' 36"</td>
<td>Neb</td>
<td>-</td>
<td>20</td>
<td>Neb. Tulipano</td>
</tr>
<tr>
<td>NGC 6866</td>
<td>20h 03m 55s</td>
<td>+44° 09' 30"</td>
<td>A Ap</td>
<td>7,6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>NGC 6871</td>
<td>20h 06m</td>
<td>+35° 47'</td>
<td>A Ap</td>
<td>5,2</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>NGC 6883</td>
<td>20h 11m 18s</td>
<td>+35° 51' 00"</td>
<td>A Ap</td>
<td>8,0</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>NGC 6888</td>
<td>20h 12m 06s</td>
<td>+38° 21' 18"</td>
<td>SNR</td>
<td>10</td>
<td>20</td>
<td>Neb. Crescente</td>
</tr>
<tr>
<td>IC 4996</td>
<td>20h 16m 30s</td>
<td>+37° 38' 00"</td>
<td>A Ap</td>
<td>7,3</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>IC 1318</td>
<td>20h 22m</td>
<td>+40° 15'</td>
<td>Neb</td>
<td>-</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>Cr 419</td>
<td>20h 18m 07s</td>
<td>+40° 43' 54"</td>
<td>A Ap</td>
<td>5,4</td>
<td>4,5</td>
<td></td>
</tr>
<tr>
<td>Cr 421</td>
<td>20h 23m</td>
<td>+41° 42'</td>
<td>A Ap</td>
<td>10,1</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>6910</td>
<td>20h 23m 08s</td>
<td>+40° 46' 30"</td>
<td>A Ap</td>
<td>7,4</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>M29</td>
<td>20h 23m 56s</td>
<td>+38° 31' 24"</td>
<td>A Ap</td>
<td>7,1</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>LDN 889</td>
<td>20h 24m</td>
<td>+40° 10'</td>
<td>DN</td>
<td>-</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>IC 5068</td>
<td>20h 50m</td>
<td>+42° 30'</td>
<td>Neb</td>
<td>-</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>IC 5070</td>
<td>20h 50m</td>
<td>+44° 20'</td>
<td>Neb</td>
<td>8,0</td>
<td>60</td>
<td>Neb. Pellicano</td>
</tr>
<tr>
<td>LDN 935</td>
<td>20h 56m</td>
<td>+35° 52'</td>
<td>DN</td>
<td>-</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>NGC 6997</td>
<td>20h 56m 25s</td>
<td>+45° 28'</td>
<td>A Ap</td>
<td>10,0</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>NGC 7000</td>
<td>20h 59m</td>
<td>+44° 31'</td>
<td>Neb</td>
<td>7:</td>
<td>30</td>
<td>Neb. N. America</td>
</tr>
<tr>
<td>Cr 428</td>
<td>21h 03m</td>
<td>+44° 35'</td>
<td>A Ap</td>
<td>8,7</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>NGC 7026</td>
<td>21h 06m 19s</td>
<td>+47° 51' 05"</td>
<td>NP</td>
<td>12,7</td>
<td>0,3</td>
<td></td>
</tr>
<tr>
<td>NGC 7027</td>
<td>21h 07m 02s</td>
<td>+42° 14' 10"</td>
<td>NP</td>
<td>8,5</td>
<td>0,3</td>
<td></td>
</tr>
<tr>
<td>NGC 7039</td>
<td>21h 11m</td>
<td>+45° 39'</td>
<td>A Ap</td>
<td>7,6</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>IC 1369</td>
<td>21h 12m 06s</td>
<td>+45° 45' 18"</td>
<td>A Ap</td>
<td>8,0</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>NGC 7044</td>
<td>21h 12m 54s</td>
<td>+42° 29' 42"</td>
<td>A Ap</td>
<td>12,0</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>NGC 7062</td>
<td>21h 23m 30s</td>
<td>+46° 23' 24"</td>
<td>A Ap</td>
<td>8,7</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>NGC 7063</td>
<td>21h 24m</td>
<td>+36° 29'</td>
<td>A Ap</td>
<td>7,0</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>NGC 7067</td>
<td>21h 24m 12s</td>
<td>+48° 00' 59"</td>
<td>A Ap</td>
<td>9,7</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>NGC 7082</td>
<td>21h 29m</td>
<td>+47° 08'</td>
<td>A Ap</td>
<td>7,2</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>M39</td>
<td>21h 32m</td>
<td>+48° 26'</td>
<td>A Ap</td>
<td>4,6</td>
<td>32</td>
<td></td>
</tr>
</tbody>
</table>

La Nebulosa Nord America, nota anche con la sigla NGC 7000, è l’oggetto dominante di questa regione: si estende per ben 5 gradi, equivalenti a 10 volte il diametro apparente della Luna piena ed è molto ben evidente nelle fotografie anche con esposizioni relativamente brevi. Osservarla al telescopio è tuttavia più complesso: se il cielo non è in condizioni ottimali diventa particolarmente difficile da notare, mentre sotto cieli cristallini può essere persino visibile a occhio nudo; con strumenti di piccolo diametro è visibile con un po’ di difficoltà tranne la regione che delinea il “Golfo del Messico”, ossia la grande ansa situata sul bordo meridionale. Con telescopi da 200mm è molto più chiara ed evidente, soprattutto se la si contrasta con un filtro UHC; tuttavia è assolutamente opportuno utilizzare oculare di focale lunga e a grande campo, per ridurre gli ingrandimenti e poterne apprezzare appieno le sue dimensioni.

La vicina Nebulosa Pellicano (IC 5070) è apparentemente separata dalla Nebulosa Nord America da una banda scura, cui è assegnata la sigla LDN 935; entrambe fanno tuttavia parte dello stesso complesso, indicato come W80 e la cui distanza è stimata sui 2000 anni luce o poco inferiore.

Questo grande complesso nebuloso costituisce effettivamente la parte illuminata dell’estessissimo sistema della fenditura del Cigno, il quale a sua volta diventa ben evidente poiché si sovrappone alla luce delle stelle della Via lattea situate al di là di esso, oscurandole fortemente. La stella responsabile della ionizzazione dell'idrogeno del complesso non è Deneb, come apparentemente potrebbe sembrare, ma è stata individuata attraverso studi condotti a diverse lunghezze d'onda, che hanno permesso di individuare una ventina di sorgenti coinci-
identi con altrettante stelle situate all’interno del complesso stesso e spesso nascoste dai suoi gas; fra queste spicca 2MASS J205551.25+435224.6, una sorgente particolarmente isolata situata oltre la banda oscura di LDN 935 e ben visibile nella banda del vicino infrarosso, coincidente con una giovane stella blu di classe spettrale O5V. La posizione di questa stella è interessante poiché viene a trovarsi esattamente al centro geometrico del complesso nebuloso, rendendola di fatto la principale responsabile della ionizzazione dei gas circostanti. La regione di cielo in direzione delle nebulose Nord America e Pellicano presenta un gran numero di oggetti stellari giovani, come è testimoniato dalla presenza di stelle con emissioni nella banda dell’Hα; queste stelle si dividono in base alla loro massa in stelle Be e stelle T Tauri. Secondo gli scienziati che per primi catalogarono le popolazioni stellari in questa direzione, le stelle Be si trovano ad una distanza maggiore rispetto alle T Tauri, che invece sarebbero legate fisicamente alla Nebulosa Nord America. Gli studi che seguirono identificarono alcune centinaia di stelle con emissioni Hα centrate attorno alla nube LDN 935; su 430 stelle individuate, circa il 10% sarebbero nella fase di sequenza principale. Alcune di queste stelle di piccola massa formano un piccolo ammasso, immerso nei gas di LDN 935. A queste componenti si aggiungono oltre 700 stelle con un’ecceso di radiazione infrarossa, caratteristica tipica degli oggetti stellari giovani circondati da un disco circumstellare o immersi nei banchi gassosi. Ulteriori indizi che testimoniano la presenza di fenomeni di formazione stellare anche molto recenti sono dati dalla presenza di un gran numero di oggetti HH; gran parte di questi oggetti, in totale 44, sono stati individuati a cavallo fra gli anni novanta e gli anni duemila, ripartiti fra la Nebulosa Nord America e la Nebulosa Pellicano. Una parte di questi oggetti si addensano nella regione oscura che delinea idealmente il "Golfo del Messico", appartenente a LDN 935; in questa zona è stata scoperta una concentrazione di getti bipolari che confermano che la nube LDN 935 sia un importante sito di formazione stellare.

La Nebulosa Nord America ospita alcuni piccoli ammassi aperti, fra i quali spicca NGC 6997, identificato talvolta anche come NGC 6996 (l’identificazione in questo caso specifico è piuttosto confusa); si individua circa mezzo grado a nordest della stella 57 Cygni, di magnitudine 4,80 situata a metà fra le due grandi nebulose. Fuori dalla portata di un binocolo 10x50, inizia a essere visibile come una concentrazione di deboli stellici con un telescopio da 80mm; pur essendo poco concentrato, è abbastanza ben distinguibile a causa dell’assenza di stelle di campo di pari luminosità negli immediati dintorni. Con telescopi da 150mm e oltre appare ben risolto in alcune decine di stelle di magnitudine compresa fra la 10 e la 12, mentre strumenti più aperti permettono di notare un ricco sfondo di stelle di magnitudine 14. Nonostante la sua posizione, si tratta di un ammasso la cui età non risulta essere così giovane come ci si potrebbe aspettare: al suo interno mancano infatti stelle delle classi spettrali O e B e sono presenti diverse giganti arancioni e stelle di classe A; da ciò, è stata derivata un’età di circa 350 milioni di anni. La sua distanza è invece pari a circa 2500 anni luce, dunque superiore rispetto al sistema nebuloso circostante, sebbene comunque nello stesso ambiente galattico; tuttavia si ritiene che non vi sia alcun legame reale con le nebulose, ma che si tratti di un comune ammasso di età intermedia con caratteristiche simili alle ladi, situato casualmente poco al di là del complesso nebuloso.

Sul lato opposto della Nord America si osserva invece Cr 428, un oggetto più disperso e diradato e formato da stelle un po’ meno brillanti. Si individua circa 45° a nord-ovest della stella ξ Cygni, di magnitudine 3,72, e si evidenzia in un telescopio da 80-100mm come un blando raggruppamento di stelle di magnitudine 10 e 11. Con telescopi di 200mm di diametro emergono poche
altre stelle di fondo ed è evidente una leggera doppia concatenazione arcuata formata dalle sue stelle più luminose. Studi fotometrici e del moto proprio delle stelle presenti in quest’area hanno tuttavia mostrato che apparentemente non sia possibile individuare una sequenza principale caratteristica dell’ammasso, pertanto si tende a ritenere che Cr 428 non sia un vero ammasso aperto ma piuttosto un asterismo.

Circa due gradi a nordest della Nebulosa Nord America si trova l’esteso ed enigmatico ammasso NGC 7039; viene riportato su quasi tutte le carte celesti come un oggetto anche piuttosto esteso, ma all’osservazione non si presentano addensamenti stellari di rilievo. Si tratta in effetti di un grande campo stellare con componenti di magnitudine dalla 10 alla 14 circa, con due stelle di magnitudine 6,6 a fargli da contorno, su cui spiccano alcune stelle di magnitudine 9, sparse su un diametro di circa 20 primi d’arco; l’osservazione con strumenti di piccolo diametro pertanto non produce risultati apprezzabili. La vera natura di quest’ammasso è stata sempre dibattuta, come pure la sua età e persino il suo diametro apparente: secondo alcuni studi infatti avrebbe un’età di 66 milioni di anni e una distanza di 3100 anni luce, mentre in altri studi si afferma che la sua età sarebbe di ben 676 milioni di anni circa. Altri studiosi hanno derivato una distanza fra i 2200 e i 5000 anni luce, mentre qualcuno ha persino ipotizzato che in questa direzione si osservino due ammassi distinti, situati rispettivamente alle due distanze appena citate. Ciò che è certo è che NGC 7039 sia un oggetto relativamente poco noto e studiato.

Più semplice riconoscere un ammasso aperto in NGC 7044, situato due gradi a sudest della stella ξ Cygni; essendo tuttavia un oggetto molto debole, è visibile soprattutto nelle fotografie, oppure con telescopi di diametro di almeno 200-250mm, dove appare come una piccola macchia chiara granulosa. La sua chiara risoluzione è possibile solo con telescopi dai 300mm a salire. Si tratta di un ammasso piuttosto compatto, ma situato a una grande distanza: le stime in questo senso indicano valori compresi fra 9800 e 13000 anni luce, mentre le stime sull’età forniscono l’idea di un oggetto piuttosto vecchio, da 1,5 a 2,5 miliardi di anni.

Sempre nei paraggi, a 1°40’ a SSE della già citata ξ Cygni si trova una nebulosa planetaria, la NGC 7027; è molto appaissente, e può essere notata anche direttamente attraverso i comuni cercatori 9x50, sebbene sia molto piccola come dimensioni apparenti. Osservando con strumenti da 120mm di apertura usando bassi ingrandimenti appare come una stella sfuocata di colore azzurrognolo, mentre per scorgere dettagli sulla sua forma occorrono telescopi di diametro maggiore e maggiori ingrandimenti. La sua età è di circa 600 anni e ciò la rende una delle nebulose planetarie più giovani conosciute; ciò spiega anche le sue ridotte dimensioni, che non sono solo apparenti (dovute a una distanza di 3300 anni luce), ma anche reali, avendo un diametro di soli 0,2 anni luce, un quinto delle dimensioni consuete di una nebulosa planetaria. I suoi gas sono molto ricchi di carbonio, mentre risulta carente di molecole neutre se confrontata con la media delle altre nebulose planetarie. La stella centrale ha una massa di 0,7 masse solari, ma la sua luminosità è di ben 7700 volte superiore a quella del Sole.

Due gradi a nordovest della stella ρ Cygni, di magnitudine 3,98, si trova il piccolo ammasso aperto NGC 7062, facile da notare nonostante la sua bassa luminosità grazie alla sua posizione sul bordo di un vasto sistema di nebulose oscure, che ne esalta il contrasto. Con un telescopio da 80mm si può notare come una piccola macchia chiara sui cui si sovrappongono 3-4 stelle di magnitudine 9-10; per una completa risoluzione occorrono telescopi da 150mm e ingrandimenti moderati. NGC 7062 è un piccolo ammasso situato a circa 4800 anni luce di distanza, in una regione adiacente alla grande regione di formazione stellare di Cygnus X, una delle più estese della Via Lattea. A questa distanza, le dimensioni reali dell’ammasso corrispondono a circa 3,6 anni luce. Altre stime indicano un valore leggermente superiore, sui 5300 anni luce, il che non implica comun...
que grandi differenze. Date le sue dinamiche interne, sembra che quest'oggetto sia in una fase di restrin-
mento delle sue regioni centrali; ciò potrebbe essere causato da una nube molecolare situata nelle vicinanze e sarebbe il risultato di un processo di disgregazione. L'età dell'ammasso risulta essere piuttosto avanzata, dell'ordine di un miliardo di anni circa.

Assai più difficile è riconoscere un ammasso aperto nel campo stellare di NGC 7082, a mezzo grado dalla stella 71 Cygni, di magnitudine 5,20; come per NGC 7039, si presenta come un oggetto molto poco concentrato, al punto che non è facile individuarne i confini, nonostan-
te la sua luminosità integrata sia relativamente alta. Le componenti più luminose sono di magnitudine 8, ma gli strumenti più adatti per l'osservazione sono i piccoli telescopi muniti con oculari con bassi ingrandimenti e grande campo, attraverso cui se ne può apprezzare la visione d'insieme. Le stelle meno luminose si confon-
dono invece con i ricchi campi stellari circostanti. Dista 4700 anni luce e la regione galattica a cui appartiene è la medesima del già citato NGC 7062; a questa distan-
za, le sue dimensioni apparenti corrispondono a un dia-
metro reale di circa 17 anni luce. Si tratta di un oggetto
poco studiato. Non contiene stelle di classe spettrale O
e B e le sue stelle più calde sono di classe A; ciò è indi-
ce della sua età relativamente evoluta, stimata attorno ai 170 milioni di anni. Fra le sue componenti sono note 91
stelle di sequenza principale e 17 giganti rosse, 6 delle
quali sono situate nelle regioni centrali.

Si arriva infine a M39, un grande ammasso aperto visi-
bile poco meno di tre gradi a nord della stella ρ Cygni e situato in una regione molto ricca di stelle di fondo; è
visibile anche ad occhio nudo se la notte è particolari-
mente limpida, come una macchia chiara più contrasta-
ta rispetto al chiarore diffuso della Via Lattea; anche un binocolo 7x30 è sufficiente per risolverlo in massima
parte, consentendo di individuare una ventina di stelle
finó alla magnitudine 9,0 disposte a formare una figura
grosso modo triangolare, mentre con un 10x50 già le
componenti si mostrano ben separate e nette, permet-
tendo di notare anche alcune coppie. Un telescopio di

70mm lo risolve completamente e mostra le sue compo-
menti anche piuttosto sparpagiate, su un ricco campo
stellare di fondo. La distanza di quest’oggetto è pari a
circa 825 anni luce, mentre la sua età è stimata fra i 230
e i 300 milioni di anni; il suo diametro reale è di circa 7
anni luce e contiene almeno 30 stelle membri più lumini-
ose della magnitudine 11. Le sue 12 componenti più
brillanti sono tutte di tipo A e B e sono sparse per un
campo di oltre 30'. M39 presenta alcune analogie con
altri ammassi aperti molto famosi e studiati come le
Pleiadi e il Presepe, come la distribuzione delle compo-

menti stellari fra le regioni centrali e quelle periferiche
dell'ammasso.

SADR E LA REGIONE DI CYGNUS X

Attorno alla stella Sadr (γ Cygni) si concentra un note-
vole agglomerato di stelle, ammassi e nebulose, fra i più
cospicui non solo del nostro cielo, ma di fatto dell’intera
nostra Galassia; qui infatti si osserva l’imponente regio-

ne di Cygnus X, uno dei più grandi sistemi nebulosi
conosciuti nella Via Lattea in cui hanno luogo vigorosi
processi di formazione stellare generanti stelle di massa
molto grande.

Cygnus X domina la costellazione del Cigno, sebbene
non sia osservabile direttamente con la gran parte dei
telescopi in possesso degli appassionati: nonostante le
sue grandi dimensioni, non è possibile individuarla né
ad occhio nudo, né con un binocolo o un piccolo tele-

scopio; ciò che appare con un piccolo strumento è un
insieme di aggregati di stelle e piccoli ammassi aperti,
che formano un chiarore abbastanza evidente al punto che il tratto di Via Lattea di cui fanno parte è uno dei più luminosi del cielo. Per poter notare anche la nebulosità associata è necessario un potente telescopio, ma il metodo migliore per poterla rilevare è quello di sfruttare le potenzialità dell’astrofotografia; occorre poi tener presente che la parte di cielo in cui si condensa la nube è in gran parte oscurata da un grande complesso di nebulose oscure, noto nell’emisfero nord come Fenditura del Cigno. Al di là di questo sbarramento oscuro si trovano le grandi associazioni OB Cygnus OB7 e Cygnus OB4, più alcuni ammassi aperti osservabili senza eccessive difficoltà anche con piccoli strumenti, come NGC 6910 e il ben noto M29; entrambi si trovano ad oltre 5000 anni luce dal sistema solare. Nei pressi di questi ammassi si estende il Complesso nebuloso molecolare del Cigno, in cui è compresa Cygnus X, che assieme all’adiacente nebulosa Sh2-109 si estende per quasi 1400 anni luce. Sul bordo che dalla Terra appare essere quello "meridionale" del complesso, ad una distanza di 5100 anni luce, si trova un altro ammasso aperto facilmente osservabile, NGC 6871. Nel settore del complesso posto in direzione opposta alla nostra linea di vista giacciono invece alcune fra le più intrinsecamente brillanti associazioni OB: è il caso dell’associazione Cygnus OB1, la più "meridionale", Cygnus OB9 e soprattutto la brillantissima Cygnus OB2, che contiene alcune fra le stelle più luminose conosciute all’interno della nostra Galassia, fra le quali spicca Cygnus OB2-12.

Cygnus X è una delle regioni strutturalmente più complesse che giacciono sul piano galattico; si tratta di una vastissima nebulosità comprendente al suo interno delle strutture nebulose minori e un gran numero di associazioni OB. Originariamente nota come una singola e prominente sorgente di onde radio, fu chiamata con la sigla X per distinguherla dalla sorgente extragalattica Cygnus A. Con lo sviluppo delle tecniche di osservazione nelle varie lunghezze d’onda, sono state scoperte diverse centinaia di sorgenti radio, fino ad un numero di 800 negli anni ottanta; questi studi hanno anche mostrato che le regioni centrali del complesso sono anche le più fortemente oscurate.

Una delle strutture più dense e più facilmente osservabili facente parte di Cygnus X è formata dal sistema nebuloso di IC 1318 (Sh2-108). A rendere brillante la nebulosa non è, come può sembrare, la stella Sadr, dato che in realtà non è legata al complesso molecolare: anche se si tratta di una stella molto distante, posta attorno ai 1500 anni luce dal sistema solare, è decisamente in primo piano rispetto al campo nebuloso. Il sistema di IC 1318 si trova completamente immerso nelle regioni più centrali del complesso molecolare del Cigno, assieme ad un gran numero di piccole strutture minori. Una intensa linea oscura separa le due sezioni più orientali di questa nebulosa, poco a sud-est di Sadr; si tratta di una nebulosa oscura classificata come LDN 889; secondo degli studi condotti su quest’area di cielo, sembrerebbe più o meno accertato che non si tratta di una banda di polveri in sovrapposizione sulla nostra linea di vista, ma, a differenza della gran parte delle nebulose oscuri di questa regione, sarebbe proprio fisicamente legata a Cygnus X. Inoltre, la presenza di acqua nella forma di vapore come componente del mezzo interstellare locale sarebbe una diretta evidenza della presenza di protostelle; la formazione stellare, fenomeno per altro diffuso in questa regione della Galassia, sarebbe in via di rallentamento solo in alcune piccole aree alla periferia di questa sottostruttura. La parte più intensa osservabile direttamente è proprio la sezione di IC 1318 visibile nei pressi della banda oscura LDN 889; le parti più occidentali si
presentano invece più rarefatte e filamentose, il che farebbe pensare che questa parte è stata formata in realtà da una o più esplosioni di supernovae.

Cygnus OB2 è una delle associazioni OB più brillanti e concentrate della Via Lattea; è formata da un gran numero di stelle supergiganti di colore blu, alcune delle quali sono anche fra le più intrinsecamente luminose conosciute. Le sue componenti sono estremamente giovani e mostrano una velocità di rotazione moderatamente ridotta. Le stelle di classe spettrale O e B sarebbero in tutto circa 2600, fra le quali 90-100 di classe O; la massa totale delle stelle dell'ammasso si aggira attorno a 40.000-100.000 masse solari, concentrata entro un raggio di appena 30 parsec. Alcune delle componenti più massicce sono stelle binarie; fra queste sono note quattro binarie a eclisse e un sistema a tre stelle (Cygnus OB2-5) in cui una delle componenti sarebbe una stella di Wolf-Rayet. Poco in disparte rispetto al centro dell'associazione si trova Cygnus OB2-12, una stella ipergigante fra le più brillanti conosciute all'interno della Via Lattea; la sua magnitudine assoluta è pari a circa -12 e se non fosse per l'estinzione luminosa la stella avrebbe, vista dalla Terra, una magnitudine apparente pari a 1,5, ossia molto simile a quella apparente di Deneb. Tuttavia a causa dell'assorbimento operato dalle polveri la magnitudine visuale scende a 11,4, restando dunque invisibile ad occhio nudo. Alcuni studiosi, considerando la massa, la densità e le dimensioni dell'associazione, hanno ipotizzato che Cygnus OB2 sia in realtà un esempio di ammasso globulare in formazione; oggetti simili sono stati osservati sia nella Grande Nube di Magellano, sia nelle regioni di formazione stellare presenti in altre galassie; si è anche fatto notare che questo sarebbe il primo di questa classe di oggetti noto all'interno della Via Lattea.

Sh2-106 è una nebulosa dalla forma bipolare situata circa tre gradi in direzione SSE rispetto alla stella Sadr (γ Cygni); la sua osservazione risulta essere impossibile con piccoli strumenti, sia per le sue piccole dimensioni sia perché nella banda della luce visibile le sue emissioni sono assai scarse. La sua caratteristica predominante è la struttura marcatamente bilobata; questi lobi sono composti da materiale in espansione e sono separati da una banda di nubi non illuminate. Al centro della nebulosa è presente una sorgente di radiazione infrarossa, coincidente con una stella massiccia di classe spettrale O8 o, al più, dei primi numeri della classe B, con una temperatura superficiale che dovrebbe essere pari ad almeno 37.000 K. Questa stella è caratterizzata dal possedere un forte vento stellare che determina una perdita di massa pari a 10^{-6} masse solari all'anno, che viene spulsa alla velocità di circa 100 Km/s; la sua età è stimata attorno ai 100.000 anni e attorno ad essa si estende un grande disco circumstellare di polveri molto dense, che coincide con la parte centrale della nebulosa.

Sempre restando in tema nebulose diffuse, la ben nota

La nebulosa NGC 6888 è un famoso oggetto la cui forma gli è valso il nome di Nebulosa Crescente.
NGC 6888, soprannominata Nebulosa Crescente, è visibile solo con telescopi di almeno 200mm di diametro, possibilmente muniti di filtro UHC per facilitarne il contrasto, mentre con strumenti da 450-500mm si evidenzia piuttosto facilmente la sua forma simile al simbolo dell’Euro. Si tratta di una bolla originata dal forte vento stellare della stella di Wolf-Rayet, WR 136, nel momento in cui ha colliso col più lento vento originatosi in precedenza, quando questa stella è diventata una gigante rossa. Le dimensioni reali della nebulosa si aggirano sui 16 anni luce.

L’ultima delle nebulose importanti della regione è la famosa Nebulosa Tulipano, che porta anche la sigla Sh2-101. Si individua nella parte centro-meridionale della costellazione, al centro di un tratto della Via Lattea molto luminoso e ricco di campi stellari; si trova circa 45’ a nordest della stella η Cygni e si estende per una ventina di primi in senso NE-SW. Possiede una forma allungata e irregolare. Si tratta di una grande regione H II situata sul tratto iniziale del Braccio di Orione a circa 6100 anni luce di distanza dal sistema solare, al di là del grande complesso nebuloso di Cygnus X, dal quale disterebbe non più di 1000 anni luce. Tale distanza coincide con quella stimata per l’associazione OB Cygnus OB3, che contiene una ventina di stelle massicce delle prime classi spettrali con un'età di circa 8,3 milioni di anni. Si ritiene che la sorgente della radiazione ionizzante i gas della nebulosa sia la stella HD 227018, una gigante blu di classe O6.5III e una magnitudine apparente pari a 9,01. La nebulosa ospiterebbe alcuni fenomeni attivi di formazione stellare, come sarebbe testimoniato dalla presenza di quattro sorgenti di radiazione infrarossa riportate sul catalogo dell’IRAS, oltre ad alcune sorgenti di onde radio.

In questa direzione si osserva anche il celebre oggetto Cygnus X-1, una sorgente di raggi X formata da una supergigante blu variabile e da un oggetto compatto, probabilmente un buco nero la cui massa, secondo le stime più recenti, ammonterebbe a quasi 15 masse solari. I due oggetti orbitano attorno al baricentro del sistema ogni 5,6 giorni, con una separazione media di 0,2 UA; il vento emesso dalla stella spiraleggia attorno al buco nero alimentando un disco di accrescimento dalle cui regioni più interne, scaldate a temperature di milioni di K, si origina l’emissione di raggi X osservata. Perpendicolarmente al disco si dipartono due getti relativistici, che espellono nello spazio interstellare una parte della materia che va ad affluire verso il buco nero. Numerosi sono gli ammassi aperti osservabili in direzione di Cygnus X; alcuni sono anche legati fisicamente al complesso, mentre altri vi appaiono solo sovrapposti per effetto prospettico.

Il più famoso è M29, un piccolo ammasso aperto visibile 1,5 gradi a sud di Sadr (γ Cygni) stretto fra i ricchi campi stellari a ovest e la fascia scura della Fenditura del Cigno ad est. Si può notare anche con un binocolo 10x50, dove appare come una piccola macchietta chiara su uno sfondo ricco di stelle, specialmente nel settore nord-occidentale; nelle notti più limpidi se ne può già tentare la difficile risoluzione in stelle, cosa invece impossibile con binocoli più piccoli come un 8x30. Lo strumento più adatto per la sua osservazione è un piccolo telescopio: con un 80mm sono già visibili tutte le sue componenti principali, di cui sei sono disposte a formare un asterismo che ricorda la figura della costellazione di Pegaso in miniatura. Strumenti più grandi consentono di rivelare fino ad una trentina di componenti principali. La distanza di questo ammasso viene stimata tra i 4000 e i 7200 anni luce e pertanto vi è una certa incertezza, dovuta anche al parziale oscuramento ad opera delle polveri oscure situate lungo la sua linea di vista. La sua età sarebbe invece di circa 10 milioni di anni e i membri più brillanti del gruppo sono tutti di classe spettrale B. La componente più luminosa è generalmente indicata come di magnitudine apparente 8,4, ma è in realtà una binaria a eclissi oscillante fra le magnitudini 8,53 e 8,67.
Circa mezzo grado a nordest di Sadr (γ Cygni) si trova il piccolo ma relativamente brillante ammasso **NGC 6910**. Attraverso un binocolo appare come un piccolo gruppo concentrato di stelle di aspetto allungato e dominato da due stelle giallognole di settima magnitudine; con un telescopio da 130mm di apertura possono essere individuate alcune decine di stelle di decima magnitudine allineate a sud di entrambe le stelle più luminose. Strumenti di diametro maggiore non rivelano ulteriori dettagli e le numerose stelle deboli dell'ammasso si confondono con i ricchissimi campi stellari circostanti. L'ammasso è formato da alcune decine di stelle di magnitudine più luminosa della 12 e di fatto costituisce il nucleo più compatto della grande associazione Cygnus OB9; la sua stella più brillante è una supergigante blu di magnitudine 7,0, che mostra delle piccole oscillazioni di luminosità attorno a 0,07 magnitudini ed è per questo catalogata anche con la sigla di stella variabile V2118 Cygni. Quattro sono le variabili β Cephei appartenenti all'ammasso, tutte oscillanti attorno alla magnitudine 10. Fra le altre componenti, molte sono supergiganti blu di classe O e B e intrinsecamente molto luminose. Si ritiene che l'età media dell'ammasso sia compresa fra 7 e 13 milioni di anni. Circa un grado a nord del precedente si trova l'ammasso **Cr 419**, visibile circa 50' a nordovest di Sadr (γ Cygni); attraverso piccoli strumenti appare molto difficile anche a forti ingrandimenti e l'unico oggetto dominante nel campo visivo è una stella bianca di magnitudine 5,9 con una compagna di magnitudine 8,7 visibile poco a nord. Con un telescopio da 200mm e forti ingrandimenti si può notare un piccolo gruppo di stelle di magnitudini fra la 10 e la 13 che circondano l'astro prima citato, sebbene sia difficile notarvi un vero e proprio ammasso. Anche su quest'oggetto vi sono poche informazioni e risulta essere poco studiato. Circa 40' a ovest di M29 si trova il piccolo ammasso **Berkeley 86**, poco noto presso gli appassionati ma ben conosciuto e studiato presso la comunità scientifica. Il suo aspetto è in effetti modesto e appena si distingue dai ricchi campi circostanti: è dominato da alcune stelle di magnitudine 10 e 11 sparse entro 7' di diametro che ricordano vagamente una miniatura della costellazione australe dell’Altare, evidente se osservato con telescopi da almeno 120mm di diametro. Berkeley 86 fa parte dell’associazione Cygnus OB1 e si trova pertanto a una distanza di circa 5500 anni luce; possiede un’età di circa 5-6 milioni di anni. Poco meno di mezzo grado a SSW della famosa stella variabile P Cygni si trova l'ammasso **IC 4996**. Con un binocolo 10x50 si può notare con molta difficoltà e appare come un piccolissimo chiarore indistinto attorno a una stella di magnitudine circa 8; con un telescopio da 100mm e forti ingrandimenti si nota che questa stella è in realtà un tripletto di stelline di magnitudine 8 e 9, circondate da numerose stelle di magnitudine 11 e 12 fittamente addensate e disposte lungo due file leggermente ricurve e parallele. Un telescopio da 200mm per-
mette di avere una visione molto più chiara e di completarne la risoluzione con stelle fino alla magnitudine 13. Quest’ammasso è legato, come il precedente, all’associazione Cygnus OB1 e si colloca pertanto a una distanza di circa 5600 anni luce; l’età delle sue componenti è stimata come sicuramente inferiore a 10 milioni di anni, al pari degli altri ammassi legati al grande complesso di Cygnus X. L’intera associazione Cygnus OB1, compresi quindi IC 4996 e Berkeley 86, appare circondata da un vasto involucro di polveri, rilevato dalle osservazioni condotte all’infrarosso.

Ancora più a sud, nei pressi della stella 27 Cygni e due gradi a est di η Cygni, si trova NGC 6871. È visibile anche con un binocolo 10x50, tramite il quale si presenta inizialmente di difficile individuazione perché molto disperso e immerso in un grande campo stellare ricco di gruppi stellari; è formato da poche stelle di magnitudine 7 e 8 molto vicine fra loro, circondate da alcune stelle più deboli. Un telescopio di piccole dimensioni come un 100mm rivela che quasi la metà delle sue componenti principali sono doppie, mentre le stelle più deboli dell’ammasso si confondono coi campi stellari circostanti. La componente più luminosa è di magnitudine 6,75 e fa coppia con una stella di magnitudine 8,86, dalla quale è separata da 12”; un’altra coppia è formata da due stelle di magnitudine 7,86 e 8,86, separate da 21”. NGC 6871 è un ammasso piuttosto giovane la cui distanza è stimata attorno ai 5100 anni luce; la gran parte delle sue componenti di hanno un’età compresa fra 2 e 5 milioni di anni, che potrebbe essere compatibile con uno scenario secondo cui i processi di formazione stellare che hanno originato l’ammasso siano perdurati a lungo o abbiano avuto due picchi di attività. Fra le sue componenti si trovano anche alcune stelle variabili, fra le quali spicca la binaria a eclisse V453 Cygni, la cui età si aggira sui 10 milioni di anni. Nei dintorni dell’ammasso si osservano numerose nebulosità; verso nord si estende LBN 180 e a est LBN 182, mentre il bordo sudoccidentale è dominato da LBN 174 e LBN 179.

Fra le stelle presenti in questa regione spicca per la sua peculiarità la famosa P Cygni, una variabile molto massiccia di tipo S Doradus. L’astro era sconosciuto fino al XVII secolo, quando improvvisamente apparve un astro di terza magnitudine in una zona della volta celeste dove prima non era visibile nessuna stella. Durante gli anni seguenti calò la sua luminosità fino a divenire invisibile ad occhio nudo, fino al 1655 quando tornò a brillare di magnitudine 3,5. Rimase tale fino al 1659, quando calò di nuovo di luminosità per attestarsi attorno alla magnitudine 6 fino al 1675, quando tornò di nuovo ad aumentare di brillantezza. Seguirono altre fluttuazioni, fin quando, nel 1715, parve attestarsi attorno alla quinta magnitudine, fluttuando entro questo valore anche per i successivi 200 anni. Le variabili S Doradus, come P Cygni, sono molto rare, hanno una vita breve e si formano soltanto in regioni galattiche dove si ha un’intensa attività di formazione stellare. Hanno inoltre masse enormi (sulle 50 masse solari) e sono estremamente energetiche (migliaia di volte più luminose); pertanto esauriscono piuttosto rapidamente il loro combustibile nucleare. Dopo aver brillato per poche milioni di anni (al contrario dei miliardi di anni di vita delle stelle nane) esplodono in brillantissime supernovae. P Cygni dà il nome ad una caratteristica spettrale detta P Cygni profile (Profilo P Cygni), che consiste nella presenza di linee sia di assorbimento sia di emissione, il che indica l’esistenza di nubi di gas in espansione dalla stella. Il lobo di emissione presenta un accentuato redshift mentre il lobo di assorbimento presenta il blueshift conformatamente al resto delle lunghezze d’onda dello spettro elettromagnetico. Questi profili sono utili nello studio dei venti stellari in molti tipi di stelle. Spesso sono utilizzati per indicare le variabili S Doradus.
AMMASSI REMOTI

Gli ammassi aperti sparsi qui osservabili a maggiore distanza dal piano della Via Lattea sono tendenzialmente più vecchi e remoti; alcuni sono oggetto di attenti studi per via della loro grande età, che fornisce informazioni sulle popolazioni stellari antiche della nostra galassia.

Quasi 2 gradi a nordest della stella δ Cygni si trova NGC 6811, in un campo stellare piuttosto ricco di stelle di fondo sul bordo della Via Lattea. Può essere individuato anche attraverso un binocolo 10x50, in cui appare come una chiazza chiara e nebulosa, impossibile da risolvere in stelle; le sue componenti più luminose infatti, essendo di decima e undicesima magnitudine, diventano visibili solo con telescopi di almeno 80-100mm di apertura. Gran parte delle sue stelle sono di magnitudine dalla 12 alla 15, pertanto una piena risoluzione è possibile solo con strumenti di almeno 200mm di diametro. Si tratta di un oggetto piuttosto popolato e molto concentrato, al punto che sono presenti segni di segregazione di massa e di interazioni fra stelle, come è ben testimoniato dalla scoperta al suo interno di tre blue stragglers. Data inoltre l'individuazione di almeno tre binarie a eclisse distaccate di lungo periodo, sistemi di per sé di difficile individuazione, è possibile che nell'ammasso vi sia un discreto numero di sistemi di questo tipo. La sua età è stimata attorno ai 2,5 miliardi di anni e come molti altri ammassi molto vecchi si trova ad alte latitudini galattiche. La metallicità delle sue popolazioni è relativamente bassa, ma diversi processi dinamici come l'evoluzione e la dinamica interstellare mantengono l'ammasso stabile e permettono di osservare la sua evoluzione in tempo reale.

Un articolo su Nature è stata data la notizia che due pianeti sono stati scoperti orbitare attorno ad una stella appartenente all'ammasso analizzando i dati di Kepler. Si tratta dei primi esopianeti scoperti all'interno di un ammasso stellare mediante il metodo del transito. L'interno degli ammassi stellari è sempre stato giudicato come luogo non adatto alla formazione planetaria, in quanto le forze gravitazionali dovute alla vicinanza tra le stelle e l'intensa luce ultravioletta che proviene da giovani stelle, potrebbero disgregare in tempi brevi l'eventuale disco protoplanetario; su più di 800 pianeti conosciuti all'epoca infatti, solo quattro facevano parte di ammassi stellari. I pianeti scoperti hanno una raggio di 2,8 e 2,9 volte quello terrestre.

Anche NGC 6819 si può rinvenire utilizzando la stella δ Cygni, da cui bisogna spostarsi di 5 gradi a sud; si rице dei così in un ricco campo stellare situato sul bordo della Via Lattea. Attraverso un binocolo 10x50 appare come una piccola macchia chiara indefinita e apparentemente priva di stelle, mentre le sue componenti più brillanti possono essere risolate solo con telescopi di almeno 80mm di apertura. Gran parte delle sue stelle sono di magnitudine dalla 12 alla 15, pertanto una piena risoluzione è possibile solo con strumenti di almeno 200mm di diametro. Si tratta di un oggetto piuttosto popolato e molto concentrato, al punto che sono presenti segni di segregazione di massa e di interazioni fra stelle, come è ben testimoniato dalla scoperta al suo interno di tre blue stragglers. Data inoltre l'individuazione di almeno tre binarie a eclisse distaccate di lungo periodo, sistemi di per sé di difficile individuazione, è possibile che nell'ammasso vi sia un discreto numero di sistemi di questo tipo. La sua età è stimata attorno ai 2,5 miliardi di anni e come molti altri ammassi molto vecchi si trova ad alte latitudini galattiche. La metallicità delle sue popolazioni è relativamente bassa, ma diversi processi dinamici come l'evoluzione e la dinamica interstellare mantengono l'ammasso stabile e permettono di osservare la sua evoluzione in tempo reale.

La distanza di NGC 6819 si aggira sui 4000 anni luce, in una zona del Braccio di Orione particolarmente ricca di nubi molecolari e di gas ionizzato per via della presenza del grande complesso di Cygnus X, ma a una latitudine galattica ben più elevata. Nel 2013 con
componenti stellari è simile o al più di poco superiore a quella del Sole. Dista 7700 anni luce.

Non lontano si osserva NGC 6866, un altro ammasso di facile osservazione; per trovarlo si può utilizzare la coppia di stelle ο¹ Cygni e ο² Cygni, prolungando per circa 2,5 volte la direzione tracciata dalla coppia e deviando leggermente verso ovest. Si evidenzia anche in un binocolo 10x50 come una chiazza chiara e nebulosa, impossibile da risolvere in stelle; le sue componenti più luminose infatti, essendo di undicesima magnitudine, diventano visibili solo con un telescopio da almeno 120mm di apertura. Queste si dispongono principalmente nella parte sudovest dell'ammasso, mentre le componenti della parte centrale sono ancora meno luminose. A 100x l'ammasso è completamente risolto in diverse decine di stelle. Si tratta di un ammasso piuttosto ricco e di forma allungata in senso nord-sud, contenente almeno 130 stelle disperse su un diametro di circa 20'; presenta segni di segregazione di massa, fenomeno in cui le componenti più massicce tendono a concentrarsi al centro dell'ammasso, mentre la sua età è stimata attorno a 800 milioni di anni. Dista circa 3900 anni luce dal Sole.

Sul lato orientale, 2 gradi a sudest di τ Cygni, si trova NGC 7063; le sue stelle principali, di magnitudine 9, sono visibili anche con un binocolo 10x50, mentre quasi tutte le restanti si mostrano in telescopi da almeno 80mm. Con strumenti più grandi l'ammasso è pienamente risolto, ma ingrandimenti molto spinti non ne permettono una buona visibilità. Le stelle più luminose dell'ammasso sono in prevalenza azzurre e bianche e presentano una bassa concentrazione, confondendosi parzialmente con le stelle di fondo. Si tratta di un piccolo ammasso situato alla distanza di circa 2250 anni luce, nella medesima regione galattica del Braccio di Orione in cui si trovano i grandi complessi nebulosi della Fenditura del Cigno, anche se a una latitudine galattica più elevata. La sua età è stata stimata attorno ai 95-125 milioni di anni, non molto diversa da quella delle Pleiadi. Gran parte delle sue componenti sono molto deboli e di piccola massa; studi che hanno preso in esame il moto proprio delle stelle della regione circostante l'ammasso hanno permesso di individuare 209 componenti con una probabilità di appartenenza di almeno l'80%. Altri studi, basati sulla fotometria, hanno invece permesso di individuare fra le sue componenti almeno 7 possibili nane bianche.

Infine circa 3 gradi a sudest della stella ξ Cygni si trova l'ammasso NGC 7044, molto piccolo e debole; può essere individuato con difficoltà con telescopi da 200mm di diametro, dove appare come una debole macchia sfumata ed estesa per circa 5 minuti d'arco, ma irrisolvibile in stelle. Con strumenti da 300mm e oltre si può iniziare la risoluzione in alcune decine di stelle di magnitudine 14, ma per scioglierlo completamente servono telescopi ancora più grandi. Nelle fotografie ad alta risoluzione si mostra come un ammasso compatto formato da una sessantina di stelle fino alla magnitudine 16. A causa della sua debolezza, quest'ammasso ha ricevuto attenzione da parte degli studiosi solo in anni recenti; i primi studi hanno determinato una distanza di circa 13.000 anni luce, mentre l'età è stata stimata sul miliardo e mezzo di anni. In seguito la distanza è stata ridimensionata a 9800 anni luce, mentre l'età è stata portata fino a due miliardi e mezzo di anni; gli studi più recenti tendono ad accettare questo valore di distanza, ma a rivelare l'età sulla base di studi fotometrici approfonditi, riportandola al valore inizialmente stimato. Parte della difficoltà nel suo studio è dovuta al fatto che si tratta di un oggetto remoto e situato a breve distanza dal piano galattico. Nell'ammasso sono state identificate 23 stelle variabili.

![L'ammasso NGC 7063, un ammasso poco concentrato risolvibile anche con piccoli strumenti.](image1)

![Il piccolo e debole ammasso aperto NGC 7044.](image2)
FRA IL CIGNO E LA LUCERTOLA

Il tratto di Via Lattea fra Cigno e Lucertola appare tanto brillante quanto povero di stelle visibili ad occhio nudo e persino con un piccolo binocolo: ciò è dovuto in parte all'oscuramento provocato da alcuni banchi di polveri, e in parte all'assenza di campi stellari vicini formati da stelle intrinsecamente luminose. Sono tuttavia presenti alcuni oggetti degni di nota.

Uno di questi è l'ammasso NGC 7086, visibile tre gradi e mezzo a nordovest della stella π² Cygni, in un campo stellare che appare a tratti fortemente oscurato da polveri interstellari; è un oggetto di piccole dimensioni apparenti, formato da componenti invisibili ad un binocolo. Le sue stelle più luminose sono di magnitudine 11 e formano un addensamento ben evidente anche con un piccolo telescopio; con diametri superiori ai 150mm sono evidenti decine di stelle fino alla magnitudine 13. L'ammasso appare dominato da una stella rossa, non appartenente ad esso. NGC 7086 è un ammasso poco appariscente situato sul Braccio di Orione alla distanza di circa 4700 anni luce; la regione galattica a cui appartiene è dominata dalla presenza della grande regione di formazione stellare di Cygnus X. A questa distanza, le sue dimensioni apparenti corrispondono a un diametro reale di circa 7,2 anni luce. Studi fotometrici hanno permesso di individuare inizialmente una settantina di stelle come membri effettivi dell'ammasso, cui si aggiun-
Circa due gradi e mezzo a nord della stella π^1 Cygni si osserva NGC 7128, un ammasso molto piccolo ma facile da staccare. Sebbene le sue stelle più brillanti siano di magnitudine 9 e 10, le sue piccole dimensioni lo rendono invisibile con binoccoli 10x50 o con piccoli strumenti. Telescopi da 100mm mostrano ad alti ingrandimenti un gruppetto di 5-6 stelle racchiuse in appena 2', mentre strumenti da 150mm lo rivelano come un piccolo ammasso con una decina di stelle fino alla magnitudine 13. La stella dominante è di colore rosso e si trova sul lato meridionale; costituisce un trapezio con le altre tre stelle più appariscenti dell’ammasso. Si tratta di un oggetto molto giovane, la cui età è stimata sui 10 milioni di anni e la cui distanza è compresa fra 8200 e 9800 anni luce, che lo colloca sul Braccio di Perseo; al suo interno sono note alcune stelle variabili, fra le quali la variabile a eclisse V1481 Cygni, formata da due stelle massicce di classe B, e la variabile irregolare anch’essa di classe B catalogata come V1814 Cygni. L’ammasso si osserva sul bordo di un denso campo di nebulose oscure e presenta infatti un forte oscuramento.

IC 5146 (C19), soprannominato Nebulosa Bozzolo: è una nebulosa associata a un giovane ammasso aperto, visibile tre gradi e mezzo a est di M39; sotto buoni cieli può essere individuata con telescopi da 200mm di diametro, mentre nelle foto appare ben luminosa e connessa a una lunga nebulosa oscura che si estende per circa due gradi verso est. L’ammasso è invece più facile da osservare, sebbene non sia particolarmente ricco; è formato da alcune stelle di magnitudine compresa fra la 9 e la 12 ed è visibile anche con piccoli strumenti. La distanza del complesso è pari a 3300 anni luce, mentre le dimensioni reali della parte illuminata della nebulosa sono di circa 15 anni luce; la stella più brillante dell’ammasso associato è la principale responsabile della ionizzazione dei gas e si è formata appena 100.000 anni fa. Le regioni periferiche della nube appaiono non illuminate e circondano la parte ionizzata, estendendosi poi verso ovest formando una lunga scia oscura denominata B168. La formazione stellare è ancora attiva nella regione, come testimoniato dalla presenza di diversi oggetti stellari giovani.

NGC 7243, noto anche con la sigla del Catalogo Caldwell C16. Si individua con facilità due gradi ad ovest della stella α Lacertae, di magnitudine 3,76; le sue componenti più luminose sono di ottava e nona magnitudine, il che permette di osservarle anche con un binocolo 10x50. Per risolvere in modo soddisfacente l'oggetto occorrono però strumenti come telescopi da 100mm di apertura, attraverso il quale possono essere viste decine di stelle fino alla magnitudine 11,5; strumenti da 150mm ne permettono una piena risoluzione anche a bassi ingrandimenti. NGC 7243 è un ammasso aperto piuttosto cospicuo e di evoluzione intermedia, situato sul Braccio di Orione alla distanza di circa 2630 anni luce, in una regione attigua alle grandi associazioni OB delle regioni di formazione stellare di Cefeo. La sua età è superiore ai 100 milioni di anni. L’ammasso non è molto concentrato e si lascia risolvere con facilità; la sua parte sudoccidentale mostra delle concatenazioni semicircolari di stelle. Alcuni scienziati hanno avanzato nel corso del tempo dei dubbi che si trattasse di un ammasso aperto vero e proprio, ma che potesse trattarsi invece di un agglomerato di stelle lontane fra loro, visibili in gruppo per un effetto di prospettiva; con il satellite Hipparcos si è calcolato il moto proprio di alcune componenti ed è emerso che soltanto poche delle stelle visibili entro 20' dal presunto centro dell’ammasso appartengano effettivamente ad un ammasso aperto.

Circa due gradi a est della stella 2 Lacertae si trova NGC 7209, più debole del precedente e risolvibile con un telescopio da 80mm di diametro; giace sul bordo di un ricco campo stellare ed è dominato da una stella arancione di magnitudine 9,45. Con telescopi da 150mm è molto ben risolto in una cinquantina di stelle ben separate fra loro; molte di queste sembrano formare dei piccoli gruppi. Si ritiene che sia formato da almeno 150 componenti fino alla magnitudine 15; la sua età risulta essere di 410 milioni di anni e la sua distanza è stimata sui 3800 anni luce.
DA PEGASO
A PERSEO
Ammassi di galassie fra Andromeda e Perseo

Andromeda, Perseo e Triangolo sono note rispettiva-mente soprattutto per i brillanti ammassi stellari e per le due galassie maggiori che assieme alla Via Lattea formano il Gruppo Locale; tuttavia, gli esperti conoscitori del cielo sanno anche che fra queste costellazioni si trovano alcuni ammassi di galassie particolarmente ricchi, che sebbene non siano facilmente alla portata dell’osservazione amatoriale, si rivelano in tutto il loro splendore nelle fotografie.

Sul Braccio di Perseo

Ad est di Cassiopea e della sua eccezionale concentra-zione di ammassi aperti si apre un tratto della Via Latta-tea fortemente oscurato, che contiene però un gran nu-mero di oggetti molto interessanti sia per l’osservazio-ne visuale, con ricchi e brillanti ammassi aperti, che soprattutto per quella fotografica, grazie alla presenza di estesi ed appariscenti complessi nebulosi.
Fra Andromeda e Perseo vi sono ben poche galassie di rilievo e di facile osservazione; quelle poche presenti sono tuttavia eccezionalmente estese e appariscenti, nonché davvero famose, come la Galassia di Andromeda (M31) e la Galassia del Triangolo (M33).
Ciò nonostante, in questa parte del cielo autunnale boreale si possono non tanto osservare, quanto soprattutto fotografare, alcuni fra gli ammassi di galassie più notevoli e spettacolari dell’intera volta celeste.

CARATTERISTICHE

Andromeda, Perseo e Triangolo sono note rispettivamente soprattutto per i brillanti ammassi stellari e per le due galassie maggiori che assieme alla Via Lattea formano il Gruppo Locale; tuttavia, gli esperti conoscitori del cielo sanno anche che fra queste costellazioni si trovano alcuni ammassi di galassie particolarmente ricchi, che sebbene non siano facilmente alla portata dell’osservazione amatoriale, si rivelandino in tutto il loro splendore nelle fotografie.

Questi ammassi di galassie spesso non sono riportati nelle carte celesti più semplici, proprio a causa della loro grande distanza, che fa sì che le loro galassie maggiori restino comunque al di là della portata della gran parte dei telescopi amatoriali. Vengono però riportati negli atlanti a grande dettaglio e nelle guide del cielo più approfondite.

Con telescopi da 200-250mm è possibile individuare qualcuna delle galassie più appariscenti di questi ammassi, mentre per avere un quadro chiaro della loro ricchezza occorrono strumenti molto più aperti e in grado di rivelare anche galassie di magnitudine 14 e 15, come grandi Dobson da 500 o 600mm di diametro.

Riprendendo invece il cielo in alta definizione e possibilmente con un campo di alcuni gradi, questi ammassi diventano particolarmente chiari e definiti: si evidenziano facilmente le galassie dominanti, spesso ellittiche giganti molto vicine fra loro, più il corteo di galassie minori, spesso a spirale o lenticolari, che formano diversi addensamenti o concatenazioni.

L’ammasso dominante in questa regione è senza dubbio l’Ammasso di galassie di Perseo, noto anche come Abell 426, uno dei più estesi dell’intera volta celeste e...
Fra Andromeda e Perseo si trovano alcuni ammassi di galassie particolarmente popolosi, ben evidenti nelle foto in alta definizione e campi larghi.
Le galassie in primo piano, ossia quelle visibili anche con piccoli strumenti, sono invece presenti in numero visibile poco a est della famosa stella *Algol*. Un altro ammasso notevole è visibile nei pressi del grande ammasso aperto NGC 752, nella costellazione di Andromeda.

Nonostante, come visto, non siano qui presenti molte galassie e gruppi di galassie facilmente osservabili con gli strumenti più comuni, ve ne sono alcune che meritano attenzione. Non verranno qui trattate le galassie del Gruppo Locale (M31 e M33), né tantomeno gli ammassi stellari facenti parte della Via Lattea, come NGC 752.

Uno degli oggetti più notevoli in quest’area di cielo è **NGC 891** (nota anche come C23), una brillante galassia spirale vista perfettamente di taglio; attraverso un telescopio da 100mm appare come un lungo fuso molto stretto, caratteristica che si osserva anche con strumenti maggiori; nelle foto a lunga esposizione si nota che il suo disco è attraversato in senso longitudinale da una lunga scia di polveri oscure, che ne nascondono la regione del nucleo. L’angolo di vista e l’oscuramento del nucleo ci impediscono tuttavia di determinare con precisione la sua esatta morfologia; si ritiene comunque che si tratti di una galassia spirale, la cui forma potrebbe avere alcune caratteristiche assomiglianti alla Via Lattea, in particolare per la banda di polveri, che apparirebbe molto simile se la nostra Galassia fosse vista dalla stessa prospettiva. Dista circa 27 milioni di anni luce.

PRINCIPALI OGGETTI NON STELLARI

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>M33</td>
<td>01h 33m 50s</td>
<td>+30° 40′</td>
<td>Gal</td>
<td>5,7</td>
<td>73</td>
<td>Gal. del Triangolo</td>
</tr>
<tr>
<td>NGC 669</td>
<td>01h 47m 16s</td>
<td>+35° 33′ 48″</td>
<td>Gal</td>
<td>12,5</td>
<td>3,1</td>
<td></td>
</tr>
<tr>
<td>UGC 1281</td>
<td>01h 49m 32s</td>
<td>+32° 35′ 16″</td>
<td>Gal</td>
<td>12,5</td>
<td>4,8</td>
<td></td>
</tr>
<tr>
<td>NGC 679</td>
<td>01h 49m 44s</td>
<td>+35° 47′ 08″</td>
<td>Gal</td>
<td>12,3</td>
<td>1,9</td>
<td></td>
</tr>
<tr>
<td>NGC 687</td>
<td>01h 50m 33s</td>
<td>+36° 22′ 15″</td>
<td>Gal</td>
<td>12,3</td>
<td>1,4</td>
<td></td>
</tr>
<tr>
<td>NGC 736</td>
<td>01h 56m 41s</td>
<td>+33° 02′ 40″</td>
<td>Gal</td>
<td>12,2</td>
<td>1,5</td>
<td></td>
</tr>
<tr>
<td>NGC 750</td>
<td>01h 57m 33s</td>
<td>+33° 12′ 22″</td>
<td>Gal</td>
<td>12,0</td>
<td>1,6 (+ NGC 751)</td>
<td></td>
</tr>
<tr>
<td>NGC 752</td>
<td>01h 57m :</td>
<td>+37′ 51′</td>
<td>A Ap</td>
<td>5,7</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>NGC 753</td>
<td>01h 57m 42s</td>
<td>+35° 54′ 58″</td>
<td>Gal</td>
<td>12,2</td>
<td>3,0</td>
<td></td>
</tr>
<tr>
<td>NGC 769</td>
<td>01h 59m 36s</td>
<td>+30° 54′ 36″</td>
<td>Gal</td>
<td>12,5</td>
<td>0,8</td>
<td></td>
</tr>
<tr>
<td>NGC 777</td>
<td>02h 00m 15s</td>
<td>+31° 25′ 46″</td>
<td>Gal</td>
<td>11,5</td>
<td>2,5</td>
<td></td>
</tr>
<tr>
<td>NGC 812</td>
<td>02h 06m 52s</td>
<td>+44° 34′ 23″</td>
<td>Gal</td>
<td>11,6</td>
<td>2,2</td>
<td></td>
</tr>
<tr>
<td>NGC 828</td>
<td>02h 10m 10s</td>
<td>+39° 11′ 25″</td>
<td>Gal</td>
<td>12,2</td>
<td>2,5</td>
<td></td>
</tr>
<tr>
<td>NGC 846</td>
<td>02h 12m 12s</td>
<td>+44° 34′ 06″</td>
<td>Gal</td>
<td>12,3</td>
<td>1,9</td>
<td></td>
</tr>
<tr>
<td>NGC 890</td>
<td>02h 22m 01s</td>
<td>+33′ 15′ 58″</td>
<td>Gal</td>
<td>11,3</td>
<td>2,5</td>
<td></td>
</tr>
<tr>
<td>NGC 891</td>
<td>02h 22m :</td>
<td>+42′ 21′</td>
<td>Gal</td>
<td>10,0</td>
<td>13,5</td>
<td></td>
</tr>
<tr>
<td>NGC 910</td>
<td>02h 25m 27s</td>
<td>+41° 49′ 27″</td>
<td>Gal</td>
<td>12,2</td>
<td>1,6</td>
<td></td>
</tr>
<tr>
<td>NGC 925</td>
<td>02h 27m 17s</td>
<td>+33° 34′ 42″</td>
<td>Gal</td>
<td>9,7</td>
<td>10,5</td>
<td></td>
</tr>
<tr>
<td>UGC 1933</td>
<td>02h 28m 17s</td>
<td>+38° 25′ 25″</td>
<td>Gal</td>
<td>12,5</td>
<td>0,5</td>
<td></td>
</tr>
<tr>
<td>NGC 940</td>
<td>02h 29m 28s</td>
<td>+31° 38′ 27″</td>
<td>Gal</td>
<td>12,5</td>
<td>1,2</td>
<td></td>
</tr>
<tr>
<td>NGC 949</td>
<td>02h 30m 49s</td>
<td>+37° 08′ 12″</td>
<td>Gal</td>
<td>11,6</td>
<td>3,0</td>
<td></td>
</tr>
<tr>
<td>NGC 959</td>
<td>02h 32m 24s</td>
<td>+35° 29′ 41″</td>
<td>Gal</td>
<td>12,3</td>
<td>2,3</td>
<td></td>
</tr>
<tr>
<td>NGC 982</td>
<td>02h 35m 25s</td>
<td>+40° 52′ 11″</td>
<td>Gal</td>
<td>12,5</td>
<td>1,5</td>
<td></td>
</tr>
<tr>
<td>IC 239</td>
<td>02h 36m 28s</td>
<td>+38° 58′ 12″</td>
<td>Gal</td>
<td>11,0</td>
<td>4,6</td>
<td></td>
</tr>
<tr>
<td>NGC 1003</td>
<td>02h 39m 17s</td>
<td>+40° 52′ 20″</td>
<td>Gal</td>
<td>11,3</td>
<td>4,3</td>
<td></td>
</tr>
<tr>
<td>NGC 1023</td>
<td>02h 40m 24s</td>
<td>+39° 07′ 16″</td>
<td>Gal</td>
<td>9,2</td>
<td>7,5</td>
<td></td>
</tr>
<tr>
<td>M34</td>
<td>02h 42m :</td>
<td>+42′ 46′</td>
<td>A Ap</td>
<td>5,5</td>
<td>3,5</td>
<td></td>
</tr>
<tr>
<td>NGC 1058</td>
<td>02h 43m 30s</td>
<td>+37° 20′ 29″</td>
<td>Gal</td>
<td>11,2</td>
<td>2,5</td>
<td></td>
</tr>
<tr>
<td>NGC 1060</td>
<td>02h 43m 15s</td>
<td>+32° 35′ 30″</td>
<td>Gal</td>
<td>12,0</td>
<td>2,3</td>
<td></td>
</tr>
<tr>
<td>NGC 1129</td>
<td>02h 54m 27s</td>
<td>+41° 34′ 47″</td>
<td>Gal</td>
<td>11,9</td>
<td>2,9</td>
<td></td>
</tr>
<tr>
<td>NGC 1161</td>
<td>03h 01m 14s</td>
<td>+44° 53′ 50″</td>
<td>Gal</td>
<td>11,1</td>
<td>2,8</td>
<td></td>
</tr>
<tr>
<td>NGC 1167</td>
<td>03h 01m 42s</td>
<td>+35° 12′ 21″</td>
<td>Gal</td>
<td>12,4</td>
<td>3,3</td>
<td></td>
</tr>
<tr>
<td>NGC 1186</td>
<td>03h 05m 31s</td>
<td>+42° 50′ 08″</td>
<td>Gal</td>
<td>11,7</td>
<td>3,2 (+ NGC 1174)</td>
<td></td>
</tr>
<tr>
<td>IC 284</td>
<td>03h 06m 10s</td>
<td>+42° 22′ 19″</td>
<td>Gal</td>
<td>12,0</td>
<td>3,8</td>
<td></td>
</tr>
<tr>
<td>IC 310</td>
<td>03h 16m 43s</td>
<td>+41° 19′ 30″</td>
<td>Gal</td>
<td>12,5</td>
<td>1,1</td>
<td></td>
</tr>
<tr>
<td>NGC 1265</td>
<td>03h 18m 16s</td>
<td>+41° 51′ 28″</td>
<td>Gal</td>
<td>12,2</td>
<td>1,8</td>
<td></td>
</tr>
<tr>
<td>NGC 1272</td>
<td>03h 19m 21s</td>
<td>+41° 29′ 26″</td>
<td>Gal</td>
<td>12,0</td>
<td>2,2</td>
<td></td>
</tr>
<tr>
<td>NGC 1275</td>
<td>03h 19m 48s</td>
<td>+41° 30′ 42″</td>
<td>Gal</td>
<td>11,9</td>
<td>2,2 Perseus A</td>
<td></td>
</tr>
<tr>
<td>NGC 1278</td>
<td>03h 19m 54s</td>
<td>+41° 33′ 48″</td>
<td>Gal</td>
<td>12,5</td>
<td>1,4</td>
<td></td>
</tr>
</tbody>
</table>

NGC 891 è una brillante galassia spirale vista perfettamente di taglio; si può notare anche con piccoli telescopi.

PRINCIPALI AMMASSI DI GALASSIE

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A260</td>
<td>01h 51m 53s</td>
<td>+33° 09′ 48″</td>
<td>20</td>
<td>480 milioni</td>
</tr>
<tr>
<td>A262</td>
<td>01h 52m 50s</td>
<td>+36° 08′ 46″</td>
<td>100</td>
<td>220 milioni</td>
</tr>
<tr>
<td>A278</td>
<td>01h 57m 18s</td>
<td>+32° 13′ 36″</td>
<td>20</td>
<td>1,20 miliardi</td>
</tr>
<tr>
<td>A347</td>
<td>02h 25m 50s</td>
<td>+41° 52′ 30″</td>
<td>60</td>
<td>260 milioni</td>
</tr>
<tr>
<td>A372</td>
<td>02h 43m 36s</td>
<td>+41° 50′ 42″</td>
<td>18</td>
<td>1,46 miliardi</td>
</tr>
<tr>
<td>A376</td>
<td>02h 45m 45s</td>
<td>+36° 51′ 36″</td>
<td>40</td>
<td>650 milioni</td>
</tr>
<tr>
<td>A407</td>
<td>03h 01m 44s</td>
<td>+35° 49′ 48″</td>
<td>45</td>
<td>650 milioni</td>
</tr>
<tr>
<td>A426</td>
<td>03h 20m :</td>
<td>+41° 30′ :</td>
<td>200</td>
<td>250 milioni</td>
</tr>
</tbody>
</table>
NGC 891 è la galassia più occidentale di un gruppo di galassie situato a una distanza media di circa 20 milioni di anni luce e noto come Gruppo di NGC 1023, dal nome della sua galassia più notevole; si tratta di uno dei gruppi più vicini al nostro Gruppo Locale ed entrambi fanno infatti parte della medesima “nube” di galassie, ossia una sottostruzione appartenente a un superammasso di galassie e comprendente diversi gruppi: in particolare, la nube di cui facciamo parte è la Nube Canes Venatici I. Il Gruppo di NGC 1023 contiene principalmente galassie nane distribuite su due popolazioni: una nell’alone periferico del gruppo, costituita prevalentemente da galassie nane ellittiche, ed una nelle aree centrali intorno a NGC 1023, formata da galassie nane irregolari.

Come detto, la galassia più importante del gruppo è NGC 1023, una spirale barrata situata a circa 32 milioni di anni luce, visibile 1,5 gradi a SSW della stella 12 Persei; può essere osservata anche con un telescopio da 80-100mm, dove appare come una macchia allungata in senso est-ovest. Questa galassia è caratterizzata dal fatto di possedere degli ammassi stellari di aspetto inconsueto denominati faint fuzzies, che sembrano essere una sorta di ammassi globulari nati dalla fusione di altri ammassi: questo tipo di ammassi è stato trovato solamente in altre due galassie: NGC 3384 e NGC 5195, quest’ultima la compagna di M51; hanno anche la caratteristica di possedere una relativa abbondanza di idrogeno neutro. La galassia è anche inclusa nel catalogo Arp delle galassie peculiari, per via dei suoi curiosi “frammenti” luminosi visibili nelle sue immediate vicinanze; il suo nucleo si ritiene che ospiti un buco nero supermassiccio con una massa di circa 40-50 milioni di masse solari.

Poco meno di un grado a nordovest sempre di 12 Persei si trova la galassia NGC 1003, visibile con strumenti da 120mm con qualche difficoltà; si presenta come un piccolo fuso allungato in senso est-ovest, con qualche irregolarità nella sua forma apprezzabile con strumenti da 200mm. Si tratta di una spirale priva di barra vista qua-

di taglio, le cui dimensioni reali sono meno della metà di quelle della Via Lattea; la sua distanza è stimata sui 30 milioni di anni luce e i suoi bracci sono chiaramente popolati da ammassi di stelle giovani e massicce.

Circa due gradi a sudovest della stella 16 Persei si trova NGC 1058, una galassia meno appariscente delle precedenti; può essere notata con telescopi da 150mm di diametro, dove appare come una piccola macchia tondeggiante sfumata e con all'interno un piccolo nucleo brillante. Si tratta di una galassia spirale vista da faccia, con un nucleo attivo di Seyfert di tipo 2, situata alla distanza di circa 28 milioni di anni luce; il suo nucleo è molto piccolo rispetto alla struttura del disco, il quale è dominato da dei bracci fittamente attraversati da densi banchi di polveri oscure e da diversi addensamenti di stelle giovani.

Oltre il confine col Triangolo si trova NGC 949, anch’essa membro del Gruppo di NGC 1023; è visibile circa un grado a NNW di 14 Trianguli ed è una galassia debole, individuabile con strumenti da 150mm come una macchia dall’aspetto leggermente irregolare e allungata. Si tratta di una galassia spirale con un nucleo relativamente piccolo e dei bracci sfrangiati e ricchi di nebulose oscure; sulle regioni più esterne si trovano i gruppi stellari più appariscenti. Le sue dimensioni reali sono molto contenute, come del resto lo sono quelle di quasi tutte le galassie del gruppo: il suo diametro sarebbe di 25.000 anni luce, un quarto di quello della Via Lattea. La sua distanza è invece stimata sui 32 milioni di anni luce.

Una delle galassie più cospicue del gruppo è NGC 925, visibile circa due gradi e mezzo ad est della stella γ Trianguli; può essere osservata anche con un telescopio da 100mm di diametro, dove appare come una piccola macchia allungata in senso est-ovest, mentre con strumenti di grande diametro si possono notare alcune irregolarità nella sua forma. Si tratta di una spirale barrata dai bracci molto aperti, la cui distanza è stata stimata con precisione grazie all’osservazione di alcune sue va-
riabili Cefeidi ed è risultata pari a 30 milioni di anni luce. Studi concernenti la struttura e la formazione stellare in questa galassia hanno mostrato la presenza di varie asimmetrie: dai rilievi è emerso che il braccio settentrionale è più sviluppato di quello meridionale, il quale è invece più frammentato, facendo pensare a un’interazione con un’altra galassia in passato e avvicinando NGC 925 più alle galassie irregolari che a quelle barrate. La galassia più vicina a NGC 925 è una nube di idrogeno neutro di 10 milioni di masse solari, legata ad essa da un lungo ponte di gas. Non è chiaro se si tratti di una galassia satellite a tutti gli effetti, oppure se sia ciò che resta di un’interazione mareale con un’altra galassia, o ancora se sia semplicemente una nube di gas primordiale; i due oggetti sono separati da 650.000 anni luce.

Le altre galassie più appariscenti visibili in quest’area di cielo appartengono ad altri piccoli gruppi oppure sono galassie di campo, ossia isolate. Fra queste vi è NGC 777, una galassia ellittica visibile nella costellazione del Triangolo, circa 3 gradi a nord-est di α Trianguli; è visibile con un telescopio da 150mm come una macchia di aspetto stellare priva di dettagli di rilievo. Si tratta di una galassia gigante, il cui diametro è stimato sui 170.000 anni luce, di tipo E1 e dunque di aspetto quasi sferoidale; la sua distanza è notevole, di circa 230 milioni di anni luce, ed è una galassia attiva di tipo Seyfert 2, probabilmente al centro di un gruppo o un ammasso di galassie.

Un’altra galassia remota è NGC 890, visibile circa un grado e mezzo a WSW di γ Trianguli; è probabilmente una galassia lenticolare oppure ellittica a seconda degli studi, ed è individuabile con strumenti da 120-150mm come una chiazza allungata e lentiiforme, dai contorni abbastanza netti. Le sue dimensioni reali sono di circa 130.000 anni luce, mentre la sua distanza è stimata sui 180 milioni di anni luce; farebbe parte di un gruppo di galassie comprendente oggetti molto più deboli.

Più debole appare la galassia NGC 1060, visibile circa 3 gradi e mezzo a sudovest della stella 17 Persei e circa a metà strada fra 15 Trianguli e 39 Arietis; con strumenti da 150mm di diametro appare come una piccola macchia debole e di aspetto stellare, appena allungata in senso est-ovest se osservata con strumenti più grandi. È una galassia lenticolare con un nucleo attivo, situata alla distanza di oltre 250 milioni di anni luce. Assieme alla vicina NGC 1066 e ad una quindicina di altre galassie minori, costituiscono il gruppo LGG 72; le due galassie NGC appaiono collegate da un ponte di materia interstellare esteso per 250.000 anni luce, denotando una forte interazione fra di loro che è la probabile responsabile dell’attivazione del nucleo di NGC 1060.

IC 239 è una galassia spirale barrata vista perfettamente di faccia due gradi a sudovest di 12 Persei, in direzione delle galassie del Gruppo di NGC 1023 ma completamente slegata da esso, dato che si trova a 46 milioni di anni luce di distanza; con uno strumento da 120mm è appena visibile come un alone chiaro tondeggiante e dai bordi sfumati, circondato da tre stelline di magnitudine 8 e 9. Possiede una barra ben netta e sviluppata ma molto piccola rispetto alle dimensioni del disco; ai suoi estremi partono due bracci di spirale maggiori ben definiti che compiono oltre un giro completo e sono attraversati da regioni di formazione stellare e stelle giovani e brillanti. Il suo diametro è stimato sui 60.000 anni luce.

NGC 1161 è visibile un grado e mezzo a ovest di κ Persei ed è una galassia lenticolare vista con un’elevata angolazione; è alla portata di strumenti da 120mm, seppure con qualche difficoltà, con cui appare di forma ellissoidale ma ben definita, senza dettagli di rilievo. La sua distanza è stimata sui 90 milioni di anni luce ed è una galassia attiva di tipo Seyfert 2; fa coppia con la meno luminosa galassia NGC 1160, alla portata di telescopi da 250-300mm di diametro, ma non sarebbero fisicamente legate, dato che quest’ultima dista circa 116 milioni di anni luce.
Infine la galassia **NGC 1186**, visibile circa due gradi a NNW di *Algol*, è l’ultima delle galassie in primo piano relativamente appariscenti. Con un telescopio da 150mm di diametro appare come una chiazza allungata in senso nordovest-sudest, debolmente più luminosa al centro. Si tratta di una galassia spirale barrata vista con un’elevata angolazione, di dimensioni reali notevoli dato che il suo diametro sarebbe leggermente superiore a quello della Via Lattea; la sua distanza è stimata sui 128 milioni di anni luce. Assieme a **IC 284**, anch’essa di grandi dimensioni e appena meno luminosa, costituisce una coppia di galassie fisicamente vicine fra loro che dominano un gruppo identificato come **Gruppo di NGC 1186**, cui appare legata anche la più debole galassia NGC 1171 e altre ancora più deboli.

AMMASSI DI GALASSIE

Gli ammassi di galassie più appariscenti di questa regione di cielo si trovano a distanze comprese fra 220 milioni e oltre 1 miliardo di anni luce.

Uno degli ammassi più notevoli è **Abell 262**, visibile circa due gradi a sudovest del brillante ammasso stellare NGC 762. Si trova a circa 220 milioni di anni luce di distanza e fa parte di un grande filamento del **Superrammaso Perseo-Pesci**, una delle strutture più grandi dell’Universo osservabile ed esteso per circa 40 gradi di volta celeste che comprende anche l’ammasso di galassie di Perseo. Abell 262 è formato da circa 200 galassie, in prevalenza di tipo spirale, mentre al centro si trova la galassia ellittica gigante NGC 708, la dominante; altre galassie centrali significative sono NGC 703, NGC 704 e NGC 705, mentre in sede periferica troviamo un grande e luminosa galassia ellittica NGC 759. Gran parte di queste galassie diventano ben visibili tutte assieme nelle fotografie che inquadran no circa 2-3 gradi di campo, mentre sono al di là della portata dell’osservazione visuale con la gran parte dei telescopi più comuni.

NGC 708, in particolare, è di magnitudine 13,7 ed è visibile con telescopi a partire da 250mm; come tutte le galassie centrali di ammasso, anche questa ha dimensioni ragguardevoli, con un diametro che sfiorerebbe i 200.000 anni luce. Il suo nucleo attivo, di tipo Seyfert 2, contiene un buco nero supermassiccio la cui massa è stimata sui 290 milioni di masse solari; il suo enorme alone ospiterebbe una popolazione di ben 4700 ammassi globulari. A soli 67.000 anni luce di distanza si trova la galassia **NGC 705**, di morfologia lenticolare e vista perfettamente di taglio, con cui sarebbe in interazione. La maggior parte delle altre galassie dell’ammasso si orientano verso nord e verso est, più un piccolo addensamento a ovest.

Pochi gradi a sud, nella costellazione del Triangolo, si trova il più remoto **Abell 260**, la cui distanza è stimata sui 240 milioni di anni luce; le sue galassie più appariscenti sono di magnitudine 13 e 14 ed è dominata dalla galassia ellittica gigante **IC 1733**, appena visibile con strumenti da 250mm ma ben chiara in foto e facilmente riconoscibile come dominante di un gruppo compatto di galassie più deboli, fra cui si trova anche IC 1735. A breve distanza verso sudest si trova l’ammasso **Abell 278**, che potrebbe costituire una sfida per gli appassionati dell’alta risoluzione a causa della debolezza delle sue galassie membri, oltre la magnitudine 15; si avrebbe tuttavia la soddisfazione di riprendere un ammasso di galassie situato alla notevole distanza di 1,2 miliardi di anni luce, piuttosto compatto e di piccole dimensioni apparenti proprio per via della sua distanza.
Abell 347 è un altro ammasso facente parte del Superammasso Perseo-Pesci; si trova a 260 milioni di anni luce di distanza ed è facile da individuare perché posto circa un grado a sudest della brillante galassia NGC 891. Contiene una sessantina di galassie accertate, più diverse candidate membri, ed è un obiettivo molto facile per qualunque astrofotografo; molti appassionati solitamente lo riprendono assieme alla galassia NGC 891, collocandola sul bordo in alto a destra dell’immagine e facendo apparire l’ammasso al centro della foto oppure in basso a sinistra: l’effetto è quello di un forte contrasto fra una galassia che appare vicinissima e un ricco campo di galassie ben più remoto.

La galassia dominante è la ellittica gigante NGC 910, che essendo di magnitudine 12,2 è alla portata di telescopi da 200mm di diametro, dove appare come una debole macchia chiara circolare e quasi stellare; il suo diametro reale è stimato sui 110.000 anni luce. Nel 2008 è stata osservata al suo interno una brillante supernova di tipo Ia.

Altra galassia notevole è NGC 911, anch’essa ellittica e un po’ meno luminosa. A breve distanza si osserva anche NGC 906, una spirale barrata che però potrebbe trovarsi leggermente in primo piano, o essere un membro periferico dell’ammasso, e NGC 914, anch’essa spirale.

L’ammasso di galassie di gran lunga più imponente è però Abell 426, il celebre Ammasso di Perseo; si trova circa 2 gradi a ENE della brillante stella Algol ed è uno degli ammassi più ricchi conosciuti, con oltre un migliaio di galassie situate alla distanza di circa 240 milioni di anni luce e immerse in una vastissima nube di gas intergalattico; le sue emissioni di raggi X sono fra le più forti conosciute nell’Universo profondo.

Abell 426 è il membro dominante del Superammasso Perseo-Pesci ed è dominato in senso assoluto dalla gigantesca galassia NGC 1275, nota anche come C24 o come Perseus A; si tratta di una galassia di Seyfert di aspetto peculiare visibile con strumenti da 150-200mm di diametro. NGC 1275 consiste invero di due galassie: la galassia centrale dell'ammasso, una galassia gigante diffusa, e il cosiddetto "sistema ad alta velocità" che si estende di fronte a questa; questo sistema si muove alla velocità di 3000 km/s intorno al sistema dominante e si pensa che si stia fondendo con l’Ammasso di Perseo. Il sistema ad alta velocità non sembra influenzato dalla galassia gigante e si trova a 200.000 anni luce da questa. La galassia centrale dell'ammasso contiene una mazziccia rete di filamenti che emettono linee spettrali, che sembrano essere trascinati via da bolle in espansione di plasma relativistico generato dal nucleo della galassia attiva centrale. Lunghi filamenti di gas si estendono nei dintorni della galassia, nel mezzo composto da gas a milioni di gradi ed emettente raggi X che permea l'intero ammasso. La quantità di gas contenuta in un tipico filamento è circa un milione di volte la massa del nostro Sole; sono larghi appena 200 anni luce, sono spesso rettilinee e si estendono fino a 20 000 anni luce.

La seconda galassia più notevole è NGC 1272, visibile poco a ovest della precedente; si tratta di una galassia ellittica gigante alla portata di strumenti da 200-250mm, con un nucleo attivo e due getti visibili alle onde radio. NGC 1277 è visibile poco a nord di NGC 1275 ed è una galassia lenticolare non alla portata della gran parte dei telescopi, ma molto chiara in fotografia. Questa galassia possiede alcune caratteristiche notevoli: la più eclatante è la massa del suo buco nero centrale, stimata fra 2 e 5 miliardi di masse solari, che corrisponde a circa il 2% dell’intera massa della galassia; la seconda peculiarità è legata a un’ondata di formazione stellare occorsa 12 miliardi di anni fa, che nell’arco di appena 100 milioni di anni avrebbe formato la quasi totalità delle sue stelle dell’epoca. In seguito a quest’evento, la galassia si popolò di stelle particolarmente ricche di metalli, formatisi proprio a seguito della prima grande ondata. Le galassie principali dell’Ammasso di Perseo si dispongono su una lunga sequenza che da NGC 1275 si allunga verso WSW per circa mezzo grado, includendo la galassia NGC 1272 e terminando nei pressi della galassia IC 310; un secondo allineamento parte 15’ a sud dell’ammasso di galassie di Perseo.
di NGC 1275 e si allunga verso sudovest per 20', includendo la galassia NGC 1282. Il diametro dell’intero ammasso è di oltre 3 gradi.

Nella parte meridionale di Perseo si osserva una coppia di ammassi di galassie situati alla medesima distanza di 650 milioni di anni luce; si tratta di Abell 376 e Abell 407. Il primo in particolare è anch’esso uno dei più popolati conosciuti, con oltre 160 galassie membri e diverse altre candidate; la galassia dominante è UGC 2232, una ellittica gigante di magnitudine 14,6, fuori dalla portata di molti strumenti amatoriali ma visibile nelle foto assieme al suo corteo di galassie vicine. Abell 407 è formato da una sessantina di galassie, le più...
luminose delle quali sono di magnitudine 15; a que-
st'ammasso è legato il cosiddetto *Nonetto di Zwicky*,
un gruppo molto compatto di galassie tutte in forte inte-
razione fra di loro e immerse in un diffuso alone stella-
re, le cui magnitudini attorno a 18 le rendono al di là
anche della portata della gran parte della strumentazio-
ne fotografica in mano agli appassionati.

Una menzione infine per l'ammasso di galassie *Abell
372*, situato alla notevole distanza di 1,5 miliardi di anni
luce e formato da alcune galassie di magnitudine 17.
Numerosi altri gruppi di galassie si osservano in parti-
colare al confine fra Andromeda e i Pesci, pochi gradi a
nordest di M33, e costituiscono un interessante soggetto
per gli appassionati di astrofotografia.

ABELL 426

STELLE

0 2 4 6 8 10 12 14

AMMASSI APERTI

AMMASSI GLOBULARI

NEBULOSE PLANETARIE

NEBULOSE DIFFUSE

GALASSIE

ISOFOTE GALATTICHE
VERSO L’AMMASSO DEI PESCI

A metà strada fra la brillante stella Mirach (β Andromedae) e la galassia M33, al confine fra Pesci e Andromeda, si estende il grande Gruppo di NGC 507; facile da individuare, dista circa 230 milioni di anni luce e come dimensioni reali ricorda l’Ammasso della Fornace, il quale appare più grande solo perché situato molto più vicino a noi. Si tratta di un gruppo relativamente piccolo, che conta 22 membri accertati e diverse altre galassie possibili membri; la galassia dominante è NGC 507, che dà il nome al gruppo stesso, ed è una galassia ellittica gigante. Le dimensioni reali del gruppo sono stimate sugli 83 milioni di anni luce.

Circa 3-4 gradi a WSW si trova il più piccolo Gruppo di NGC 383, la cui distanza è stimata sui 240 milioni di anni luce; comprende una decina di galassie centrate attorno alla galassia lenticolare NGC 383, in gran parte allineate lungo un asse nord-sud.

Questi due gruppi costituiscono le due unità principali di cui è formato il grande Ammasso dei Pesci, che si estende in totale su circa 7 gradi di volta celeste.

Guardando a grande scala, l’Ammasso dei Pesci insieme al già descritto Ammasso di Perseo costituiscono il Superammasso di Perseo-Pesci. Quest’ultimo è a sua volta incluso nel Filamento di Perseo-Pegaso che si estende per una lunghezza di ben 980 milioni di anni luce e comprende al suo interno anche altri superammassì, come il Superammasso Perseo-Pegaso, diante 390 milioni di anni luce, e si connette al Superammasso dei Pesci-Balena, visibile più a sud e distante 800 milioni di anni luce. Insieme al Filamento di Pegaso-Pesci, la Regione dello Scultore, il Superammasso dell’Idra-Centauro e il Superammasso della Vergine, questo sistema concorre a costituire il Compresso di superammassi dei Pesci-Balena; questo si estende per oltre 1 miliardo di anni luce, e largo 150 milioni di anni luce e comprende circa 60 fra ammassì e superammassi di galassie.

Mappa della regione attorno all’ammasso di galassie attorno a NGC 507 e NGC 383, alla medesima scala della carta principale.

| PRINCIPALI OGGETTI NON STELLARI |
|-------|---------------|--------------|------|-----|------|------|
| M31 | 00h 43m | +41° 17′ | Gal | 4,4 | 190 | Gal. di Androm. |
| NGC 266 | 00h 49m 48s | +32° 16′ 40″ | Gal | 11,8| 3,0 | |
| NGC 295 | 00h 55m 08s | +31° 32′ 32″ | Gal | 12,4| 1,6 | |
| NGC 315 | 00h 57m 49s | +30° 21′ 09″ | Gal | 11,3| 3,2 | |
| NGC 383 | 01h 07m 25s | +32° 24′ 45″ | Gal | 12,2| 2,0 | |
| NGC 393 | 01h 08m 40s | +39° 38′ 40″ | Gal | 12,4| 1,7 | |
| NGC 404 | 01h 09m 27s | +35° 43′ 04″ | Gal | 10,2| 3,5 | |
| NGC 410 | 01h 10m 59s | +33° 09′ 07″ | Gal | 11,5| 2,4 | |
| NGC 499 | 01h 23m 12s | +33° 27′ 38″ | Gal | 12,2| 1,7 | (IC 1686) |
| NGC 507 | 01h 23m 40s | +33° 15′ 22″ | Gal | 11,3| 2,5 | |
| NGC 529 | 01h 25m 40s | +34° 42′ 48″ | Gal | 12,2| 2,4 | |
| NGC 536 | 01h 27m 22s | +34° 42′ 11″ | Gal | 12,4| 3,3 | |
Tornando alla “piccola” scala, la galassia NGC 507 è osservabile anche con un telescopio da 120mm e appare come una macchia simile a una stelle sfuocata; telescopi da 250mm o superiori mostrano attorno a questa alcune altre macchie più piccole e deboli, corrispondenti ad altrettante galassie, le più luminose del gruppo. NGC 507 possiede un diametro di 165.000 anni luce ed è in forte interazione con la vicina e più piccola galassia NGC 508; la coppia forma il sistema di galassie interagenti noto come Arp 229.

Nelle fotografie ad alta sensibilità e con un campo inquadrato di 6-7 gradi, si rivela molto bene l’intero Ammasso dei Pesci ed è dunque un interessante soggetto per le riprese.

La galassia NGC 383 è invece più debole e può essere individuata solo con telescopi da almeno 150mm o superiori; è la più luminosa di una sequenza di una decina di galassie disposte lungo un unico asse orientato in senso nord-sud, ben evidente nelle fotografie ad alta risoluzione. Si tratta di una galassia peculiare, indicata come ellittica o lenticolare, nonché una radiogalassia; le sue dimensioni reali sono pari a 135.000 anni luce.

Un’altra galassia dell’Ammasso dei Pesci di facile osservazione è NGC 410, visibile con strumenti da 150mm a salire; è una galassia ellittica attiva di tipo LINER e possiede un diametro di 170.000 anni luce.

![Il centro dell’ammasso di NGC 507.](image)

![Mappa di dettaglio dell’Ammasso dei Pesci.](image)
Fra Cassiopea e Perseo, la Via Lattea mostra apparentemente segni di discontinuità, sfilacciandosi e perdendosi in aree molto oscure e prive dei ricchi campi stellari che la contraddistinguono.

Ben visibile alta nel cielo durante le sere autunnali boreali, questo tratto è comunque noto per possedere alcuni interessanti ammassi aperti di facile osservazione, mentre in fotografia emergono anche degli oggetti d’eccezione.

CARATTERISTICHE

Ad est di Cassiopea e della sua eccezionale concentrazione di ammassi aperti si apre un tratto della Via Lattea fortemente oscurato, che contiene però un gran numero di oggetti molto interessanti sia per l’osservazione visuale, con ricchi e brillanti ammassi aperti, che soprattutto per quella fotografica, grazie alla presenza di estesi ed appariscenti complessi nebulosi.

A prima vista potrebbe sembrare che la Via Lattea in questa direzione sia effettivamente mancante, magari a causa del fatto che ci si trovi in direzione opposta al centro galattico; in realtà, la totale assenza di galassie in corrispondenza di queste aree scure è particolarmente indicativa del fatto che a causare l’apparente interruzione della Via Lattea siano dei grossi banchi di nebulose oscure, situate in gran parte sul nostro braccio secondario, a una distanza fra i 1000 e i 3000 anni luce.

Questi sistemi nebulosi nascondono le regioni di formazione stellare e gli ammassi stellari appartenenti ai bracci esterni e in particolare al Braccio di Perseo, il quale torna ad essere molto ben visibile fra l’Auriga e i Gemelli.

L’area oggetto di questa sezione è molto facile da inquadrare grazie alla brillante stella Capella, che ne deli-

<table>
<thead>
<tr>
<th>STELLE PRINCIPALI DELLA REGIONE</th>
</tr>
</thead>
<tbody>
<tr>
<td>-------</td>
</tr>
<tr>
<td>α Per</td>
</tr>
<tr>
<td>γ Cas</td>
</tr>
<tr>
<td>δ Cas</td>
</tr>
<tr>
<td>γ Per</td>
</tr>
<tr>
<td>δ Per</td>
</tr>
<tr>
<td>ε Cas</td>
</tr>
<tr>
<td>51 And</td>
</tr>
<tr>
<td>π Per</td>
</tr>
</tbody>
</table>

mita il bordo orientale, e la famosa “W” di Cassiopea, sul lato opposto; al centro si trova la stella Alfa Persei e il suo famoso e fitto gruppo di stelle, ben visibile anche ad occhio nudo. In effetti Alfa Persei è la stella dominante di una grande associazione stellare denominata Perseus OB3 e designata anche con la sigla di catalogo Mel 20.

Con un binocolo 10x50 si può osservare anche il famoso Ammasso Doppio, formato in realtà da due ammassi aperti distinti fra loro e probabilmente situati anche a distanze diverse, ma entrambi giacenti sul Braccio di Perseo; poco più a nord, i ricchi campi stellari dell’ammasso Stock 2 sono evidenti anche con un piccolo telescopio.

Con uno strumento da 200mm è possibile risolvere perfettamente la quasi totalità degli ammassi qui presenti e, se il cielo è particolarmente limpio e buio, si può notare anche qualche nebulosità.
Fra Cassiopea e Perseo, in un tratto molto oscurato della Via Lattea, si trovano numerosi ammassi alla portata di piccoli strumenti, come pure diverse nebulose.
Chi è dotato di apprezzata fotografia avrà modo di riprendere invece con soddisfazione i grandi complessi nebulosi di IC 1805 e IC 1848, entrambi sul Braccio di Perseo, dove hanno avuto luogo recenti fenomeni di formazione stellare, come è testimoniato dall’abbondanza di stelle giovani e azzurre.

GRANDI COMPLESSI NEBULOSI

Al confine fra Cassiopea, Perseo e Giraffa si osservano due dei più estesi complessi nebulosi conosciuti all’interno della Via Lattea, sia in termini apparenti che per dimensioni reali; si tratta del sistema di W3/W4/W5 e coincide con una vastissima regione di formazione stellare situata sul Braccio di Perseo a 7500 anni luce. Associata a W3 vi è la piccola ma densa nebulosa NGC 896, visibile all’osservazione diretta solo con diametri molto grandi; questa costituisce la parte più occidentale di un sistema nebuloso senza soluzione di continuità con la vicina e ben più estesa nube IC 1805, nota anche come Nebulosa Cuore e associata alla regione W4. È individuabile circa 6 gradi a sudest della stella ε Cassiopeiae, ma si può trovare anche partendo dall’Ammasso Doppio di Perseo e spostandosi di circa 4-5 gradi in direzione NNE. Per poterla individuare occorrerà un telescopio di grande diametro e possibilmente una focale non molto lunga, a causa delle grandi dimensioni di questa nebulosa. Benché la sua osservazione nel visuale non sia particolarmente agevole, nelle foto a lunga posa è molto bene evidente anche a veloci esposizioni. La sua caratteristica principale è la presenza di due grosse aree apparentemente vuote, di diverse dimensioni, che rendono la nebulosa simile ad un cuore. Nei pressi della nebulosa sono attivi degli episodi multipli di formazione stellare; tramite le immagini ottenute nell’Ha è stata scoperta una superbolla in espansione formata da idrogeno ionizzato dell’estensione di 3900 anni luce ed emergente dal piano galattico, la cui età, di circa 10-20 milioni di anni, è un’indicatrice del fatto che si sia originata a seguito dell’azione del vento stellare di una prima generazione di stelle massicce. Da questa regione emergono oltre 30 nubi molecolari e globuli dispersi nello spazio circostante, come visto sopra, la cui presenza suggerisce che una volta nella regione si trovava una nube molecolare gigante in seguito dissolta a causa di un intenso episodio di formazione stellare. Al suo interno si trova un sistema di piccoli ammassi aperti poco concentrati, responsabili della ionizzazione della nebulosa.

Il più notevole di questi è Mel 15, che contiene alcune stelle circa 50 volte più massicce del Sole, più altre più piccole ed un microquasar espulso milioni di anni fa. Può essere individuato ed osservato anche con un telescopio da 80mm, dove si presenta come un assorbiamento molto blando di una decina di stelle raccolte attorno a una stella di magnitudine 7,95; una seconda stella, di magnitudine 8,1; si trova più a sud.

Circa 50 minuti d’arco a SSW giace il piccolo gruppette di stelle che compone l’ammasso aperto Markarian 6.
(o Stock 7), formato da appena cinque componenti dominanti più o meno allineate fra loro, di magnitudine 8 e 9 e dunque individuabili anche con binocolo 10x50, sebbene sia difficile inizialmente riconoscerle come un ammasso vero e proprio; con telescopi di piccolo diametro e forti ingrandimenti si può notare che le sue due componenti più meridionali sono doppie.

In posizione defilata più ad est rispetto al centro della nebulosa, ma sempre nel suo campo visivo, si trova NGC 1027; anche questo è visibile con strumenti di piccole dimensioni e persino con un binocolo: è formato da una dozzina di stelle più luminose della magnitudine 11, sparse su un diametro di 12 minuti d’arco senza mostrare una forte concentrazione e tuttavia raccolte attorno a una stella di magnitudine 7,0 posta proprio al centro dell’ammasso. Con un telescopio da 200mm di diametro si notano diverse decine di stelle fino alla magnitudine 13 e oltre. Si tratta di un ammasso moderatamente ricco e poco studiato, nonostante la sua luminosità; giace a 2500 anni luce e dunque sarebbe in primo piano rispetto al complesso nebuloso e probabilmente più vicino al Braccio di Orione, nei pressi dell’associazione stellare Camelopardalis OB1, la quale ha il suo centro alcuni gradi più ad est. La sua età è stimata sui 160 milioni di anni ed è pertanto un ammasso evoluto, privo di componenti particolarmente massicce di classe spettrale O e B, le quali hanno già terminato il loro ciclo vitale. Il diagramma HR comprendente le stelle di quest’ammasso risulta piuttosto disperso e poco omogeneo, senza stelle orientate sulla sequenza principale.

A breve distanza verso est si trova IC 1848, la Nebulosa Anima, associata alla radiosorgente W5. Come per la precedente, la sua osservazione è possibile, pur con qualche difficoltà, solo sfruttando grandi diametri e bassi ingrandimenti, sotto cieli bui e limpidi. Il suo gas è illuminato dalle stelle di alcuni ammassi ed associazioni di stelle vicine, fra i quali spiccano Cr 33 e Cr 34, due ammassi aperti molto estesi ma privi di concentrazione, formati da stelle giganti blu nate dai gas della nebulosa. La luce viene poi riemessa dalla nebulosa nel colore rosso tipico delle linee di emissione dell’Hα. La nube, che strutturalmente possiede una forma a guscio come la precedente, è divisibile in due sezioni, indicate come W5-E e W5-W, rispettivamente estese per 114 e 170 anni luce. W5-E è la sezione orientale e contiene una stella di classe O7V (una stella di sequenza principale molto calda) il cui vento stellare sembra essere sufficientemente potente da ionizzare l’intera regione in cui si trova; W5-W, la sezione occidentale, contiene invece quattro stelle di classe O, ma ve ne potrebbero essere anche delle altre nella parte orientale della regione, non osservabili perché completamente nascoste dalle dense nubi. Le stelle brillanti del complesso W3/W4/W5 formano l’associazione Cassiopeia OB6, la cui origine ha avuto luogo circa 3 milioni di anni fa nella regione W4 (Nebulosa Cuore).

Gli ammassi aperti Cr 33 e Cr 34 sono meno facili da riconoscere come tali, in quanto appaiono piuttosto sparsi e poco concentrati; si tratta infatti semplicemente di addensamenti facenti parte dell’associazione Cassiopeia OB6. In direzione della Nebulosa Anima si trovano alcuni blandi addensamenti dominati da stelle di magnitudine 7 e 8, circondate da alcune decine di stelle fino alla magnitudine 12 molto sparse.

Circa 3,5 gradi a nordest di questa nebulosa si trova l’ammasso Tr 3, il quale può essere notato anche con un telescopio da 80mm, se però si ha l’accortezza di individuarlo: non è infatti facile riconoscerlo come ammasso, dato che le sue stelle sono piuttosto sparse e si mostra più come un vago addensamento esteso per circa 20 minuti d’arco di stelle dalla magnitudine 9 alla 12 circa; è dominata da una sequenza di tre stelle azzurre di magnitudine 9 lunga 6 minuti d’arco. La risoluzione è completa anche con un telescopio da 120mm di diametro. In letteratura vi sono poche informazioni su quest’oggetto;
la sua distanza sarebbe di circa 2250 anni luce, dunque abbastanza in linea con quello del già citato ammasso NGC 1027, mentre la sua età è stimata sui 70 milioni di anni ed è pertanto relativamente giovane, ma privo di stelle grande massa.

GRANDI AMMASSI STELARI

La parte nordoccidentale di Perseo comprende una delle zone più ricche di ammassi aperti dell’intera volta celeste, similmente a quanto si osserva nella vicina Cassiopea: in massima parte si tratta di ammassi e campi stellari situati sul Braccio di Perseo, oppure sul bordo esterno del Braccio di Orione.

Gli oggetti di gran lunga più prominenti di questa zona di cielo sono due ammassi piuttosto appariscenti e visibili molto vicini l’uno all’altro: questa caratteristica li ha resi famosi col nome di **Ammasso Doppio** e sono visuali con facilità anche ad occhio nudo sotto cieli anche moderatamente disturbati come le periferie urbane. Possiedono pure una lettera di riferimento (h e χ), nonché numeri di catalogo indipendenti (NGC 869 e NGC 884); collettivamente sono anche noti con la sigla C14. Senza strumenti appaiono come una macchia chiara allungata con una strozzatura centrale, che le conferisce la forma di un "8" rovesciato; un binocolo di piccole dimensioni come un 10x50 consente di risolvere in parte i due oggetti, che appaiono piuttosto simili fra loro: χ Persei è dominato da due stelle di settima magnitudine a nord, h Persei presenta due stelle di settima ad ovest; con un binocolo h Persei sembrerebbe appena più ricco del compagno, il quale però mostra un gran numero di componenti se visto con un piccolo telescopio. Con un telescopio da 200mm di apertura la visione è molto appagante: le componenti diventano centinaia; entrambi gli ammassi mostrano al loro interno una ventina di supergiganti rosse, che contrastano con il colore azzurro delle altre componenti. Entrambi gli ammassi si trovano nel Braccio di Perseo, il braccio di spirale della Via Lattea immediatamente più esterno rispetto al nostro, il Braccio di Orione. Tuttavia questi due oggetti si trovano fisicamente più lontani fra loro di quanto possa sembrare dalla Terra; se infatti le stime sulla loro distanza da noi sono corrette (6800 anni luce per NGC 869 e 7600 anni luce per NGC 884) e deriverebbe che la distanza reale tra i due ammassi sia di circa 800 anni luce.

NGC 869 (h Persei) è l’ammasso posto ad ovest (a sinistra nella foto): la sua età è stimata sui 19 milioni di anni e si trova nell’associazione Perseus OB1; in piccoli telescopi appare il più concentrato e il più luminoso dei due, con una magnitudine pari a 4,3. Appare dominato da un gran numero di stelle blu molto luminose, tra le quali spiccano alcune stelle arancioni, che rendono l’ammasso un insieme multicolore di stelle.

NGC 884 (χ Persei) è l’ammasso visibile ad est (a destra nella foto): è leggermente meno luminoso del precedente e anche più giovane, con un’età stimata sui 12,5 milioni di anni; si mostra meno compatto del suo compagno e quasi diviso in due piccoli gruppi più densi, mentre le sue componenti sono anch’esse azzurre con alcune stelline arancioni. A nord sono presenti due stelle di sesta e settima magnitudine, che estendono apparentemente i limiti dell’ammasso.

Poco più di 2 gradi a NNE dell’Ammasso Doppio si individua **Stock 2**, che giace in direzione di un ricchissimo campo stellare a cavallo fra Perseo e Cassiopea; la dispersione delle sue numerose componenti lo rende più simile a un vago addensamento che a un vero ammasso aperto. Attraverso un binocolo 10x50 sono visibili già diverse decine di stelle di magnitudine 8 e 9 formanti un insieme debolmente allungato in senso est-ovest; con un telescopio da 120mm a bassi ingrandimenti si può godere della visione migliore, con oltre un centinaio di stelle evidentemente fino alla magnitudine 12.
si confondono coi campi stellari di fondo. Ingrandimen-
ti oltre i 70x non permettono di avere una visione d'in-
sieme e l'ammasso appare troppo disperso. Si tratta di
un ammasso aperto molto esteso e assai popolato; la
sua distanza è stata stimata in alcuni studi attorno ai
990 anni luce, risultando così uno degli ammassi più
vicini conosciuti. Giace all'interno del Braccio di Orione,
in corrispondenza di diverse nubi molecolari che
contribuiscono a oscurare fortemente la Via Lattea fra
Cassiopea e la Giraffa. La sua età è stimata sui 170 mi-
lioni di anni, come è testimoniato anche dall'assenza di
stelle di classe spettrale O e B e dalla presenza di nu-
merose stelle evolute di classe A e F. La sua popolazio-
nne comprende quasi 200 stelle fino alla magnitudine 13,
disperse su un diametro di circa 1°, corrispondente a un
diametro di almeno 5 parsec. Grazie alla sua posizione
in una regione particolarmente ricca di polveri interstel-
lari, il suo studio è utile per determinare le proprietà del
mezzo interstellare nella fascia centrale del Braccio di
Orione; studi fotometrici sulle stelle di questo e
dell'Ammasso Doppio hanno infatti mostrato delle ana-
logie tali da far supporre che la massima parte dell'o-
scuramento in direzione dell'Ammasso Doppio dipenda
dalle polveri interstellari situate all'interno del Braccio
di Orione.

Poco meno di 4 gradi a ovest dell’Ammasso Doppio si
trova invece il più difficile Stock 4, il quale è però indi-
viduabile anche con un telescopio da 80mm; si tratta di
un oggetto molto disperso ma riconoscibile discretamente
come un addensamento di stelle di magnitudine 10 e 11 sparse su circa 20 minuti d’arco, le cui compo-
nenti formano in gran parte gruppetti di tre-quattro stel-
le. Uno strumento da 120mm è più che sufficiente per
una completa risoluzione. Vi è poco in letteratura su
quest’ammasso, al di là dei suoi dati principali; si tratta
di un oggetto di età piuttosto avanzata per essere un
ammasso aperto, dato che si sarebbe formato circa 500
milioni di anni fa. La sua distanza è stimata invece sui
3900 anni luce e ricadrebbe pertanto all’interno del
Braccio di Perseo, ad una latitudine galattica relativa-mente elevata.

Circa 3,5 gradi a sudovest dell’Ammasso Doppio e circa
2 gradi a sudest del precedente, si trova NGC 744, un
piccolo ammasso situato in una regione relativamente
povera di stelle appariscenti ma piuttosto ricca di campi
stellari di fondo; le sue componenti principali sono di
magnitudine 10 e la loro bassa concentrazione rende
l’oggetto non semplice da definire. Attraverso un bino-
colo è quasi invisibile, mentre con un telescopio da
120mm di apertura si può distinguere un addensamento
di una quindicina di stelle fino alla magnitudine 12;
l’oggetto è ben risolto anche a bassi ingrandimenti pro-
prio a causa della sua debole concentrazione. La sua
distanza è stimata attorno ai 3900 anni luce e giace sul
bordo esterno del Braccio di Orione, nello stesso am-
biente galattico in cui si trova la giovane associazione
Camelopardalis OB1. Si tratta di un oggetto molto poco
studiatò; la sua età è stimata sui 177 milioni di anni e
contiene diverse stelle di classe spettrale A e F, mentre
mancano del tutto stelle massicce delle classi O e B, le
quali, se presenti inizialmente, hanno già terminato il
loro ciclo vitale.

Sul lato opposto rispetto all’Ammasso Doppio, a circa
1,5 gradi verso est, giace NGC 957, circondato da un
campo stellare fortemente oscurato da polveri interstel-
lari che contribuisce a renderlo più staccato rispetto al
fondo cielo. Attraverso un binocolo 10x50 sono visibili
due stelle di magnitudine 8 attorno alle quali si concen-
tra una leggera nebulosità; con un telescopio da 100mm
si possono risolvere una quindicina di stelle fino alla
magnitudine 12, situate prevalentemente a nord delle
due stelle più luminose. Strumenti da 200mm permetto-
no di individuare ulteriori componenti, ma a ingrandi-
menti troppo spinti l'oggetto appare disperso. NGC 957
è un ammasso poco popolato e scarsamente concentrato;
sua distanza è stimata attorno ai 5900 anni luce e rica-
de così sul bordo interno del Braccio di Perseo, nella
stessa regione in cui si trova il grande sistema di nebu-
lose di IC 1805 e IC 1848, l'Ammasso Doppio e nume-
rose stelle giovani e brillanti appartenenti ad alcune as-
sociazioni OB. Tutti gli studi concordano nell’assegnare

L’ammasso aperto NGC 957 è risolvibile anche con telescopi di 80-
100mm di apertura.
a quest'oggetto un'età molto giovane; secondo alcuni si sarebbe formato circa 11 milioni di anni fa, mentre secondo altri la sua formazione non deve risalire a più di 4 milioni di anni fa. Esso contiene diverse stelle blu massicce, fra le quali spiccano due stelle Be, in procinto di lasciare la fase di sequenza principale per evolversi verso lo stadio di gigante; il suo diametro reale corrisponde a circa 14 anni luce. Ricerche svolte al fine di individuare stelle variabili in direzione di quest'ammasso hanno permesso di scoprire 10 binarie a eclisse, 3 variabili pulsanti e 1 variabile semiregolare; fra queste, soltanto una delle variabili a eclisse con corto periodo sembra appartenere fisicamente all'ammasso.

A breve distanza dall'Ammasso Doppio si trova un altro ammasso piuttosto appariscente, anche se poco noto; si tratta di Tr 2, situato sul bordo di un ricco campo stellare. Comprende diverse stelle giallastre di magnitudine 7 piuttosto sparse e disposte lungo una concatenazione orientata in senso est-ovest, su cui domina una stella arancione di magnitudine 7,44. Con un binocolo 10x50 appare già risolto in una decina di stelle; attraverso un telescopio da 100mm si possono individuare una trentina di componenti sparse fino alla magnitudine 12 senza particolari accenni di concentrazione. Ingrandimenti oltre i 120x non permettono di avere una facile visione d'insieme. La sua distanza è stimata attorno ai 2120 anni luce e ricade così sul bordo esterno del Braccio di Orione. La sua età è stimata sui 150 milioni di anni e mancano in esso stelle massicce di sequenza principale di classe spettrale O e B. Nella sua direzione sono state scoperte alcune dozzina di stelle variabili, fra le quali sei hanno un'elevata probabilità di appartenere fisicamente all'ammasso; si tratta per la maggior parte di stelle le cui oscillazioni avvengono fra la magnitudine 12 e 13, dunque molto deboli. Fra queste vi sono alcune variabili a eclisse e una semiregolare.

Due ammassi aperti un po' più ostici si trovano più a sud. In particolare, circa 1 grado ad est di γ Persei giace il piccolo NGC 1220, poco conosciuto a causa della sua debole luminosità; per notarlo come una piccola macchia con alcune stelle in mezzo occorrono strumenti da 200mm di diametro, dove appare peraltro poco risolto a causa delle sue ridotte dimensioni di appena 2 minuti d’arco. Parte delle sue componenti sono di magnitudine 14 e 15 e sono pertanto solo alla portata di telescopi da 300mm di diametro e oltre. Si tratta di un ammasso piccolo ma molto compatto, di cui vi sono pochissime informazioni in letteratura; appare formato da poche decine di stelle e la sua distanza è stimata sui 5900 anni luce circa situandolo pertanto sul Braccio di Perseo. Un po' più facile appare l'ammasso King 5, visibile 45 minuti d’arco a sudovest del precedente, sebbene anch’esso sia composto da stelle deboli; con un telescopio da 200mm di diametro è possibile notare un addensamento di stelle di magnitudine 13 sparso su un diametro di circa 7 minuti d’arco, dominato a nordovest da una stella di magnitudine 11. Molte delle restanti componenti, di magnitudine 14 e 15, si rendono visibili solo con strumenti da 300mm a salire; con questi la visione è notevole, con vari archi di stelle disposti a formare una sorta di corona a nordovest del nucleo principale dell’ammasso. Anche su quest’oggetto ci sono pochi studi; si sa che la sua distanza è di circa 6200 anni luce, in pieno Braccio di Perseo, mentre la sua età pari a 1 miliardo di anni è notevole per un ammasso aperto; si ritiene che circa il 10% delle sue componenti siano stelle doppie e non si esclude anche la presenza di qualche blue straggler.

FRA PERSEO E GIRAFFA

L’area di cielo fra Perseo e la parte meridionale della Giraffa resta però dominata in senso assoluto dalla grande associazione di stelle brillanti che compongono l’Ammasso di Alfa Persei, noto anche con la sigla Mel 20. Si tratta di un oggetto di notevole splendore, nonché uno degli ammassi aperti più vicini al sistema solare; si trova nella parte settentrionale della costellazione e appare dominato dalla stella Mirfak, α Persei, una gigante...
bianco-gialla di magnitudine 1,79, che dà pure il nome all'intero oggetto. Le sue componenti principali sono ben distinguibili anche a occhio nudo, essendo di quarta e quinta magnitudine, e formano un ricco addensamento stellare molto evidente attorno a Mirfak. Anche un piccolo binocolo come un 7x30 è sufficiente per risolvero in decine di stelle sino alla magnitudine 8, mentre con un 10x50 le stelle osservabili diventano oltre un centinaio; l'ammasso si presenta di forma allungata in senso nordovest-sudest ed è delimitato dalle stelle δ Persei e ε Persei. Ingrandimenti maggiori sono sconsigliati in quanto si perde la visione d'insieme, a causa della sua notevole estensione; lo strumento ideale per la sua osservazione è pertanto il binocolo, o al più un piccolo telescopio.

Dall'analisi dei dati raccolti col satellite Hipparcos emerge che l'Ammasso di Alfa Persei è costituito da almeno 30 stelle di classe spettrale B, 33 di classe A, 12 di classe F, 2 di classe G e due di classe K; data la relativa giovane età delle sue componenti e l'abbondanza di stelle delle prime classi spettrali, l'ammasso viene considerato un'associazione OB a tutti gli effetti e noto anche con la sigla Perseus OB3. Gli altri oggetti descritti in questa sezione si trovano tutti nella costellazione della Giraffa, la quale, nonostante sia ben poco conosciuta e spesso ignorata dagli appassionati, ospita alcuni oggetti galattici interessanti. Fra questi vi è Stock 23, un raggruppamento stellare dalla natura ambigua. Può essere individuato con relativa facilità, grazie alla presenza delle due stelle HD 21291 e HD 21389, entrambe di magnitudine 4, che costituiscono una delle zampe della Giraffa; in particolare, l'ammasso si trova 1,5° a est della prima, sul confine con Cassiopea. Le sue componenti principali sono di magnitudine 7 e 8 e sono chiaramente risolvibili anche con un binocolo 10x50 sotto buone condizioni osservative; un telescopio da 80-100mm di apertura può permettere le migliori osservazioni, date le dimensioni dell'oggetto e la distanza che intercorre fra le sue componenti. Con strumenti di diametro maggiore e lunghe focali si perde facilmente la visione d'insieme e le sue componenti appaiono troppo disperse. Stock 23 è un ammasso sparso e poco popolato, la cui natura di oggetto reale è messa in dubbio: la sua distanza è stata stimata in alcuni studi attorno ai 1240 anni luce. Gli studi fotometrici condotti sulle sue stelle farebbero tuttavia ritenere che si possa trattare più che altro di un asterismo, le cui componenti non sarebbero quindi fisicamente legate fra loro ma si troverebbero a diverse distanze. Alcune delle stelle delineanti l'ammasso sono doppie; la più cospicua è nota come Struve 362 ed è formata da un raggio compreso fra 650 e 1600 anni luce e formando così un grande anello di gas, chiamato Anello Lindblad. Il gas accumulato iniziò in seguito a collas...
due stelle biancastre di magnitudine 8,27 e 8,31, separate da 7". Una seconda doppia fisica (BGO 1) è costituita da una stella azzurra di magnitudine 8,05 con una compagna di 11,82, separate da 17".

Circa 7 gradi a nord di Mirfak (α Persei), in un campo stellare fortemente oscurato, si trova l’ammasso aperto King 6, quasi sempre ignorato dagli appassionati pur essendo alla portata anche di strumenti da 80-100mm, dove appare come un gruppetto di 5-6 stelle di magnitudine 9 e 10 racchiuse in un diametro di 7 minuti d’arco, in cui è però difficile riconoscerci un vero e proprio ammasso stellare. Con telescopi da 200mm la sua natura di ammasso aperto diviene più chiara, con la presenza di alcune decine di stelle fino alla magnitudine 13,8; appare anche evidente, con forti ingrandimenti, che due delle componenti principali sono doppie facili da risolvere. Anche per quest’oggetto sono stati condotti pochi studi; è nota la sua distanza, che è stimata sui 2800 anni luce ed è pertanto situata nel Braccio di Orione, nella regione di Camelopardalis OB1, così come la sua età, di circa 220 milioni di anni, che lo rende pertanto molto più vecchio della vicina associazione OB e dunque non legato a questa.

La parte meridionale della Giraffa è interessata da un vasto complesso di nubi molecolari non illuminate, responsabili del forte oscuramento di questa regione del piano della Via Lattea; la distanza di queste nubi è stimata sui 3300 anni luce e nei loro pressi si trova un gran numero di oggetti stellari giovani legati all’associazione Camelopardalis OB1, che è composta da alcune stelle brillanti di classe spettrale O e B, più diverse decine di stelle di classe A. Alcune di queste stelle giovani illuminano grandi banchi di polveri interstellari e gas neutro, rendendoli visibili come nebulose a riflessione: fra questi spiccano vdB 14 e vdB 15, associate rispettivamente alle stelle HD 21291, di magnitudine 4,29, e HD 21389, di magnitudine 4,55. Entrambe le nebulose sono osservabili con difficoltà con strumenti da 200-250mm di apertura, ma diventano molto ben evidenti nelle fotografie a lunga posa come dei tenui ma spessi drappi azurri circondanti queste due stelle.

La nube vdB 14, in particolare, appare come un drappo allungato posto a sudest della supergigante azzurra HD 21291, la quale è anche nota con la sigla CS Camelopardalis, essendo infatti una variabile di tipo Alfa Cygni con escursioni di luminosità comprese fra 4,29 e 4,34. La nube vdB 15 è invece più estesa e circonda completamente la stella HD 21389, anch’essa una supergigante azzurra di tipo Alfa Cygni, che presenta escursioni molto contenute fra le magnitudini 4,54 e 4,57 ed è nota anche come CE Camelopardalis.

Fra gli altri ammassi aperti della zona, sempre fortemente oscurati, vi è l’ostico Tombbaugh 5, ostico non tanto per il suo contrasto quanto per la debole luminosità della gran parte delle sue componenti. Si trova poco più di 2 gradi a est della già citata stella HD 21389, visibile chiaramente anche a occhio nudo, e sebbene le sue componenti più luminose siano visibili anche con telescopi da 80mm, la massima parte di queste ha magnitudine compresa fra 13 e 15 ed è pertanto difficile riconoscerli un ammasso con strumenti di diametro inferiore ai 250-300mm; con strumenti di queste dimensioni l’ammasso diventa chiaramente un vero e proprio ammasso, studiato solo di recente anche a causa del suo forte oscuramento; la sua età è di circa 200 milioni di anni ed è pertanto in fase evolutiva avanzata, privo di stelle di grande massa. La sua distanza è stimata sui 5700 anni luce ed è pertanto situata sul Braccio di Perseo; si tratta in effetti di uno di quegli oggetti che testimoniano l’esistenza di ricchi campi stellari galattici in direzione della Giraffa, al di là dei fortissimi banchi oscuri che ne mascherano la luminosità.

L’oggetto tuttavia più cospicuo situato nella parte meridionale della Giraffa è senza dubbio l’ammasso aperto NGC 1502, situato all’estremità sudoccidentale di una lunga e famosa concatenazione di stelle nota come Ca-
NGC 1502 è un giovane ammasso che potrebbe costituire uno degli addensamenti di una grande associazione di stelle giovani e calde, posta sul bordo esterno del Braccio di Orione.

Scatta di Kemble. Attraverso un binocolo 10x50 l'ammasso appare come un piccolo e fitto addensamento di stelle azzurre di magnitudine 7 e 8, circondate da un'apparente nebulosità; un telescopio da 100mm è già sufficiente per risolverlo in alcune stelle ravvicinate fino alla magnitudine 12, senza lasciare traccia di nebulosità residua. Con strumenti ancora più grandi la risoluzione è ottimale e le componenti, spesso disposte in coppia, sono ben distaccate fra loro. NGC 1502 è molto giovane, con appena 11 milioni di anni. È formato da almeno 19 componenti di magnitudine più luminosa della 11, la più brillante delle quali è SZ Camelopardalis, una variabile a eclisse situata al centro dell'ammasso. Si ipotizza che anche la supergigante blu α Camelopardalis in origine fosse un membro dell'ammasso, ma poi sarebbe stato espulso da esso, diventando una stella fuggitiva. L'ammasso si trova alla distanza di 3400 anni luce e ricade sul bordo esterno del Braccio di Orione. Si ritiene che quest'oggetto appartenga alla già citata associazione Camelopardalis OB1, la cui età deve essere stimata con maggiore accuratezza, ma che sembra aggirarsi sugli 11 milioni di anni al massimo; ad esso sono legate diverse nebulose, fra le quali la regione H II Sh2-205 e le già citate nebulose a riflessione vdB 14 e vdB 15.

Un cenno a parte meritano invece le due galassie Maffei 1 e Maffei 2, visibili direttamente a sud della Nebulosa Cuore (IC 1805). Si tratta di due galassie molto vicine al Gruppo Locale, che appaiono molto deboli soltanto perché vengono a trovarsi proprio al centro della cosiddetta “zona di evitamento”, ossia quella fascia di cielo occupata dal piano della Via Lattea dove non è quasi possibile osservare gli oggetti extragalattici a causa del forte oscuramento causato dalle polveri e dai gas galattici; la zona di evitamento presenta il massimo spessore in direzione del centro galattico, ma è presente anche lungo tutto il piano della Via Lattea, anche nella direzione opposta al suo centro, poiché vasti sistemi nebulosi sono presenti anche in questa direzione e anzi proprio la regione fra Perseo e Giraffa ne è una dimostrazione, dato che come visto anche l’osservazione degli stessi ammassi stellari situati a grandi distanze ne risulta fortemente penalizzata.

Il Gruppo di galassie Maffei 1 (conosciuto anche come Gruppo IC 342) è il gruppo di galassie più vicino al nostro Gruppo Locale: probabilmente un tempo ne faceva anche fisicamente parte, ma a un certo punto durante i primi stadi della sua formazione le sue galassie ne sono state espulse in seguito alla violenta interazione con la vicina Galassia di Andromeda (M31). L'elemento principale del gruppo è la galassia a spirale IC 342, ma il gruppo ha preso il nome dalla galassia ellittica gigante Maffei 1, che, insieme a Maffei 2, fu scoperta con filtri infrarossi nel 1968 dall'astronomo italiano Paolo Maffei (1926-2009). Entrambe le galassie si trovano vicino all'equatore galattico nella costellazione di Cassiopeia nella zona d'ombra galattica e perciò risultano fortemen-
Maffei 2 è una galassia a spirale barrata di media grandezza e luminosità, lontana circa 9 milioni di anni luce, mentre la distanza di Maffei 1 è stata stimata intorno ai 10 milioni di anni luce.

Nel dettaglio, Maffei 1 è una galassia ellittica, la galassia ellittica gigante più vicina alla Via Lattea. Inizialmente classificata come oggetto a emissione infrarossa e inclusa nel Catalogo Sharpless con la sigla Sh2-191, la sua natura di galassia ellittica è stata riconosciuta soltanto nel 1971, valutandola come un potenziale membro del Gruppo Locale. Dopo circa un ventennio di studi ne è stata esclusa l'appartenenza, arrivando a definire il nuovo gruppo di galassie che da essa prende nome. Può essere osservata solo con telescopi di diametro superiore ai 300mm sotto un cielo ottimale, dove appare per altro come una macchia molto confusa in mezzo a dei ricchi campi stellari. La sua vicinanza, se non si trovasse in direzione del piano galattico, sarebbe una delle galassie più luminose e ben conosciute del cielo, visibile anche con un semplice binocolo 10x50 e forse anche ad occhio nudo, con un diametro apparente pari ai 3/4 della Luna piena. La sua classificazione nella sequenza di Hubble è E3, ossia una galassia ellittica intermedia leggermente schiacciata, con l’asse minore pari al 70% dell’asse maggiore; le sue dimensioni reali sarebbero, pur con qualche incertezza, pari a 75.000 anni luce, mentre la sua magnitudine assoluta è molto simile a quella della Via Lattea. Si ritiene che il suo nucleo abbia sperimentato una recente ondata di formazione stellare, come è testimoniato dalla presenza di idrogeno ionizzato nei suoi pressi. Data la sua vicinanza, se non si trovasse in direzione del piano galattico, sarebbe una delle galassie più vicine a noi.

La galassia ellittica Maffei 1, fortemente oscurata dalle polveri galattiche, è una delle galassie più vicine a noi.

La compagnia Maffei 2 è invece una galassia spirale intermedia attraversata da una barra centrale; è più debole della compagnia ed è pertanto anche più difficile osservarla. Anche questa galassia è stata classificata inizialmente come un oggetto a emissione infrarossa, tanto da essere stata inclusa nel Catalogo Sharpless con la sigla Sh2-197. Possiede un nucleo brillante attraversato da una lunga barra, dalla cui estremità partono due bracci di spirale, di cui uno, quello meridionale, sembra essere molto più sviluppato.

L’intero gruppo di galassie cui appartengono si trova fra le costellazioni di Cassiopea e della Giraffa e quasi tutte giacciono proprio in direzione del piano galattico; fra le altre componenti di spicco del gruppo vi sono le due galassie Dwingeelo 1 e Dwingeelo 2, la prima una spirale barrata e la seconda irregolare e satellite della prima, entrambe situate in direzione del bordo meridionale della Nebulosa Anima (IC 1848). La loro distanza è stimata rispettivamente sui 9 e 10 milioni di anni luce. L’unica galassia di questo gruppo osservabile con facilità anche con telescopi più comuni è la IC 342, una spirale intermedia fra il tipo barrato e non barrato visibile quasi di faccia e distante 10,7 milioni di anni luce. Numerose altre galassie potrebbero far parte di questo gruppo, sebbene la loro appartenenza è incerta proprio a causa della loro grande difficoltà di studio; fra queste quasi tutte si trovano nella parte meridionale della Giraffa, nei pressi del piano galattico, oppure nella parte settentrionale di Perseo.
Auriga, Orione e il Triangolo Invernale
Il Complesso di Orione

Orione, con la sua caratteristica forma, domina i cieli invernali boreali; le sue due stelle più brillanti sono di prima grandezza e sono poste alle due estremità del rettangolo che ne delinea la figura: l’azzurra Rigel rappresenta il piede e ha magnitudine 0,13, mentre Betelgeuse è una supergigante rossa la cui magnitudine oscilla attorno a 0,58.

Gruppi stellari nell’Unicorno

Fra le stelle Betelgeuse e Procione, a sud dei Gemelli e ad est di Orione, si trova una delle regioni celesti più ricche di ammassi stellari galattici e di nebulose, in gran parte situati sul Braccio di Orione; qua si osservano infatti alcune associazioni stellari giovani legate ad estese regioni di formazione stellare, oltre a un discreto numero di ammassi situati nelle vicinanze o anche a distanze maggiori.
Il Compresso di Orione

Quella di Orione è la costellazione più famosa di tutte: è molto luminosa, ha una forma inconfondibile e si trova a cavallo dell’equatore, rendendosi così visibile allo stesso modo da entrambi gli emisferi terrestri.

Dall’emisfero nord Orione domina i cieli delle notti invernali e appare a mezza altezza in direzione sud; le sue stelle brillanti sono ben visibili anche dalle aree urbane.

CARATTERISTICHE

Orione, con la sua caratteristica forma, domina i cieli invernali boreali; le sue due stelle più brillanti sono di prima grandezza e sono poste alle due estremità del rettangolo che ne delinea la figura: l’azzurra Rigel rappresenta il piede e ha magnitudine 0,13, mentre Betelgeuse è una supergigante rossa la cui magnitudine oscilla attorno a 0,58.

Completano la cornice le stelle Bellatrix, di magnitudine 1,64, e Saiph, di magnitudine 2,07.

Al centro della costellazione vi è una sequenza di tre stelle allineate molto appariscenti e molto ravvicinate fra loro, che formano la famosa Cintura di Orione: si tratta di stelle giovani e massicce, azzurre e facenti parte della randa associazione OB nota come Orion OB1.

L’intera regione inclusa nel rettangolo di Orione coincide con una grande regione di formazione, che in effetti è per noi la più vicina fra le regioni generanti stelle di massa molto grande. Questo sistema prende il nome di Compresso nebuloso molecolare di Orione e si trova a una distanza di circa 1500-1600 anni luce; a questo appartengono tutte le nebulose qui osservabili, a partire dalla famosa Nebulosa di Orione, nota anche con la sigla M42 e visibile anche con un piccolo binocolo.

Numerose sono tuttavia le nubi osservabili in questa direzione; alcune di queste sono visibili anche con strumenti da 150-200mm di diametro, come M43, M78, NGC 1977 e il sistema di NGC 1024, noto come Nebulosa Fiamma.

Nelle fotografie astronomiche più semplici queste nebulose sono visibili con estrema chiarezza e se ne mostrano con estrema chiarezza e se ne mostrano anche delle altre, come la famosissima Testa di Cavallo (B33) e diversi bozzoli nebulosi isolati sia nei pressi della Cintura che attorno a M78.

Fotografie di grande campo e riprese con esposizioni molto lunghe o con numerosissime esposizioni sovrapposte portano facilmente alla saturazione delle nebulose più brillanti come M42, ma in compenso emerge la reale portata di questo complesso: l’intera costellazione di Orione appare immersa in un enorme velo di nubi, con numerosissimi addensamenti minori in particolare nella sezione meridionale della costellazione; l’intero sistema

STELLE PRINCIPALI DELLA REGIONE

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>β Ori</td>
<td>Rigel</td>
<td>05h 14m 32s</td>
<td>-08° 12' 06"</td>
<td>0.13</td>
<td>773</td>
<td>azzurro</td>
</tr>
<tr>
<td>α Ori</td>
<td>Betelgeuse</td>
<td>05h 55m 10s</td>
<td>+07° 24' 25"</td>
<td>0.58v</td>
<td>427</td>
<td>rosso</td>
</tr>
<tr>
<td>γ Ori</td>
<td>Bellatrix</td>
<td>05h 25m 08s</td>
<td>+06° 20' 59"</td>
<td>1.64</td>
<td>243</td>
<td>azzurro</td>
</tr>
<tr>
<td>ε Ori</td>
<td>Alnilam</td>
<td>05h 36m 13s</td>
<td>-01° 12' 07"</td>
<td>1.69</td>
<td>1342</td>
<td>azzurro</td>
</tr>
<tr>
<td>ζ Ori</td>
<td>Alnitak</td>
<td>05h 40m 46s</td>
<td>-01° 56' 33"</td>
<td>1.74</td>
<td>817</td>
<td>blu</td>
</tr>
<tr>
<td>κ Ori</td>
<td>Saiph</td>
<td>05h 47m 45s</td>
<td>-09° 40' 11"</td>
<td>2.07</td>
<td>721</td>
<td>azzurro</td>
</tr>
<tr>
<td>δ Ori</td>
<td>Mintaka</td>
<td>05h 32m 00s</td>
<td>-00° 17' 57"</td>
<td>2.25</td>
<td>916</td>
<td>blu</td>
</tr>
<tr>
<td>i Ori</td>
<td>Nair Al Saif</td>
<td>05h 35m 26s</td>
<td>-05° 54' 36"</td>
<td>2.75</td>
<td>1325</td>
<td>blu</td>
</tr>
</tbody>
</table>
La costellazione di Orion è di gran lunga la più imponente del cielo; al suo interno numerose nebulose compongono la regione di formazione stellare massiccia più vicina a noi.
appare poi circondato da un vasto semicerchio luminoso, disposto sul lato est e delimitante i confini orientali del complesso: si tratta dell’Anello di Barnard. Un binocolo 10x50 invece permette di avere una visione molto appagante dei campi stellari immersi nel complesso nebuloso, le cui stelle, giovani e massicce, formano l’associazione stellare Orion OB1; i maggiori addensamenti si rinvengono, oltre che sulla Spada, soprattutto attorno alla Cintura e a nordovest di questa, fino alla brillante stella Bellatrix.

IL COMPLESSO DI ORIONE

Il Complesso di Orione è una grande nube molecolare che prende il nome dalla costellazione in cui è visibile, quella di Orione. La sua distanza dalla Terra è stimata fra i 1500 e i 1600 anni luce e il suo diametro corrisponde ad alcune centinaia di anni luce; si tratta del complesso nebuloso molecolare meglio osservabile, nonché il più studiato e conosciuto, grazie al fatto che non è mascherato da complessi oscuri. Alcune parti della nube possono essere osservate attraverso binocoli o semplici telescopi, alcune addirittura ad occhio nudo, come la celebre Nebulosa di Orione.

La regione centrale del complesso si estende per diversi gradi di volta celeste, dalla Cintura di Orione fino alla sua spada, ed è divisibile in due regioni distinte: la più brillante, sulla Spada, è nota come **Orion A**, mentre la regione ad est della Cintura è nota come **Orion B**. Il Complesso di Orione costituisce anche una delle regioni di formazione stellare più attive che possono essere osservate nel cielo notturno, nonché una delle più ricche di dischi protoplanetari e stelle giovaneissime. Il complesso si rivela soprattutto nelle immagini prese alla lunghezza d’onda dell’infrarosso, dove si scorgono anche le regioni di formazione stellare più nascenti. Il complesso annovera fra le sue componenti nebulose oscure, ad emissione e regioni H II. Come risultato dell’azione del vento stellare delle stelle più calde e giovani della regione, raggruppate nell’Associazione Orion OB1, si è generata una superbolla in espansione dell’estensione di svariate centinaia di anni luce, individuabile nella banda dell’infrarosso e dei raggi X, che avvolge l’intero complesso estendendosi verso l’esterno, la Bolla Orione-Eridano. Lo studio di questo complesso molecolare ha contribuito grandemente nello sviluppo delle scienze astronomiche, specialmente nel campo dell’evoluzione stellare e nella comprensione delle dinamiche legate alla loro formazione. Il Complesso di Orione, come visto, ingloba completamente quella che dalla nostra linea di vista è chiamata “costellazione di Orione”; le sue dimensioni apparenti sono dell’ordine di oltre 30° sulla volta celeste, mentre la superficie di cielo occupata si aggira sugli oltre 500 gradi quadrati.

La parte più cospicua e interessante dal punto di vista astronomico è la struttura chiamata **Orion A**: essa rac-

PRINCIPALI OGGETTI NON STELLARI

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>IC 2118</td>
<td>05h 05m :</td>
<td>-07° 00′ :</td>
<td>Neb</td>
<td>-</td>
<td>180</td>
<td>Testa di Strega</td>
</tr>
<tr>
<td>Ori OB1</td>
<td>05h 30m :</td>
<td>0° :</td>
<td>A Ap 1 :</td>
<td>900</td>
<td>(include Cr 70)</td>
<td></td>
</tr>
<tr>
<td>IC 423</td>
<td>05h 33m 21s</td>
<td>-00° 38′ 00″ :</td>
<td>Neb</td>
<td>-</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>NGC 1977</td>
<td>05h 35m :</td>
<td>-04° 51′ :</td>
<td>Neb</td>
<td>-</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>M42</td>
<td>05h 35m :</td>
<td>-05° 23′ :</td>
<td>A+N</td>
<td>4,0</td>
<td>90</td>
<td>Neb. di Orione</td>
</tr>
<tr>
<td>NGC 1980</td>
<td>05h 35m 26s</td>
<td>-05° 54′ 35″ :</td>
<td>A Ap 2,5 :</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NGC 1981</td>
<td>05h 35m 10s</td>
<td>-04° 25′ 30″ :</td>
<td>A Ap 4,2</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M43</td>
<td>05h 35m 31s</td>
<td>-05° 16′ 03″ :</td>
<td>Neb</td>
<td>9,0</td>
<td>20</td>
<td>N. De Mairan</td>
</tr>
<tr>
<td>NGC 1990</td>
<td>05h 35m :</td>
<td>-01° 42′ :</td>
<td>Neb</td>
<td>-</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>IC 426</td>
<td>05h 36m 28s</td>
<td>-00° 16′ 36″ :</td>
<td>Neb</td>
<td>-</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>IC 431</td>
<td>05h 40m 14s</td>
<td>-01° 27′ 45″ :</td>
<td>Neb</td>
<td>-</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>IC 432</td>
<td>05h 40m 56s</td>
<td>-01° 30′ 26″ :</td>
<td>Neb</td>
<td>-</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>IC 434</td>
<td>05h 41m 00s</td>
<td>-02° 24′ 00″ :</td>
<td>Neb</td>
<td>-</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>B33</td>
<td>05h 40m 59s</td>
<td>-02° 27′ 30″ :</td>
<td>Osc</td>
<td>-</td>
<td>8</td>
<td>Testa di Cav.</td>
</tr>
<tr>
<td>NGC 2023</td>
<td>05h 41m 38s</td>
<td>-02° 15′ 33″ :</td>
<td>Neb</td>
<td>-</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>NGC 2024</td>
<td>05h 41m 43s</td>
<td>-01° 51′ 23″ :</td>
<td>Neb</td>
<td>-</td>
<td>30</td>
<td>Neb. Fiamma</td>
</tr>
<tr>
<td>IC 435</td>
<td>05h 43m 01s</td>
<td>-02° 18′ 45″ :</td>
<td>Neb</td>
<td>-</td>
<td>2,6</td>
<td></td>
</tr>
<tr>
<td>M78</td>
<td>05h 46m 46s</td>
<td>+00° 04′ 45″ :</td>
<td>Neb</td>
<td>8,0</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>NGC 2071</td>
<td>05h 47m 07s</td>
<td>+00° 17′ 39″ :</td>
<td>Neb</td>
<td>-</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Sh2-276</td>
<td>05h 48m :</td>
<td>+01° :</td>
<td>Neb</td>
<td>-</td>
<td>600</td>
<td>An. di Barnard</td>
</tr>
</tbody>
</table>
racchiude tutti i sistemi nebulosi presenti lungo l'asterismo della Spada di Orione, comprendendo pertanto la Grande Nebulosa di Orione, a sud, e la nube NGC 1977 che assieme alle sue stelle di quinta e sesta grandezza rappresentano la parte settentrionale della Spada. La parte settentrionale di Orion A è anche la regione di formazione stellare più attiva compresa entro un raggio di circa 1600 anni luce dal Sole ed è anche una delle più studiate; tuttavia, la massima parte delle osservazioni si concentra nella sezione meridionale, dove risplende la Nebulosa di Orione e le sue aree circostanti. La regione compresa fra i due estremi è occupata da alcune piccole nubi e da filamenti di gas eccitati dalla luce delle stelle vicine, prive però dell'intensa radiazione ultravioletta che caratterizza l'ambiente della Nebulosa di Orione. La regione possiede un aspetto a forma di chio- ma (aspetto cometary), con delle creste di gas molto compatto sul bordo settentrionale e delle code di gas in evaporazione diretta nella direzione opposta al centro dell'associazione Orion OB1.

La regione situata sull'estremo sudorientale della Cintura di Orione è chiamata Orion B (o anche LDN 1630); con una distanza di circa 1340 anni luce, viene a trovarsi anche fisicamente molto vicina alla struttura precedente e comprende le più tenui nebulose NGC 2024 (nota anche come Nebulosa Fiamma), NGC 2023, NGC 2071 e M78. Le prime due sono situate nel settore sudoccidentale della regione e presentano un'elevata attività dei fenomeni di formazione stellare. Verso est è presente una rete di filamenti gassosi e di polveri, spazzati via dall'azione del vento dell'associazione Orion OB1.

L'associazione Orion OB1 è una delle associazioni OB meglio conosciute e studiate della volta celeste, sia a causa della sua breve distanza, sia per la luminosità delle sue componenti, che appaiono per la maggior parte poco oscurate dalle polveri galattiche; lo studio delle varie fasi evolutive di quest'associazione ha permesso di comprendere meglio le dinamiche e la scala evolutiva dei gruppi stellari di recente formazione. Orion OB1 è suddivisibile in base alla sua evoluzione e alla dislocazione delle sue componenti in quattro sottogruppi prin-
cipali; il più antico è definito Orion OB1a: le stelle di questo sottogruppo sono dislocate a nordovest della Cintura di Orione e possiedono un’età compresa fra 8 e 12 milioni di anni. Il secondo gruppo per età è Orion OB1b, che corrisponde alle stelle di fondo della Cintura e possiede un’età compresa fra 1,7 e 8 milioni di anni, sebbene fra queste ricadano anche le tre supergiganti che fanno parte della Cintura stessa, con un’età compresa attorno ai 5 milioni di anni. Orion OB1c coincide invece con le stelle visibili nella Spada di Orione e che si addensano attorno e davanti alla Nebulosa di Orione; di questo sottogruppo fanno parte pure due associazioni stellari poco concentrate, catalogate come NGC 1980 e NGC 1981, rispettivamente ai limiti meridionali e settentrionali dell’asterismo della Spada. La loro età è compresa fra i due e i 6 milioni di anni. Di questo sottogruppo non fanno parte le stelle più giovani direttamente avvolte nel sistema nebuloso e nella stessa Nebulosa di Orione, che invece compongono il sottogruppo OB1d. Tramite la misurazione della parallasse, sono state determinate le distanze di vari sottogruppi, scoprendo anche che quelli più vicini al sistema solare di quelli più giovani; il gruppo OB1a è dunque anche il più vicino, con una distanza media stimata sui 1150 anni luce. OB1b e OB1c si trovrebbero a distanza simili fra loro, stimati sui 1300 anni luce, mentre le giovani stelle di OB1d avrebbero una distanza paragonabile a quella della Nebulosa di Orione (1370 anni luce).

Dal gruppo OB1c provengono anche le celebri stelle fuggitive AE Aurigae e μ Columbæ, due astri che si muovono in direzioni opposte nello spazio; tramite i dati del satellite Hipparcos è emerso che circa 2,6 milioni di anni fa queste due stelle e la brillante binaria ι Orionis si trovavano nella stessa posizione nello spazio, e su questa scoperta è stata formulata l’ipotesi secondo cui queste stelle subirono un’interazione in seguito alla quale due binarie dello stesso ammasso si scambiarono; il risultato fu che le due stelle più massicce subirono i reciproci influssi gravitazionali diventando un nuovo sistema binario, l’attuale ι Orionis, mentre le due stelle meno massicce furono sospinte via a grande velocità dall’intensa energia gravitazionale, allontanandosi dalla regione della loro formazione.

Nel Complesso di Orione, se si considera un mezzo interstellare standard per i complessi nebulosi molecolari, si è determinato che nella regione negli ultimi 12 milioni di anni si sarebbe formato un numero di stelle con massa maggiore alle 8 masse solari compreso fra 30 e 100; il limite di 8 masse solari è indicativo poiché si tratta della massa minima necessaria affinché una stella esploda come supernova. In base a questi calcoli, data la vita breve delle stelle supermassicce, si suppone che gran parte di esse abbiano concluso il loro ciclo vitale esplodendo come supernovae negli ultimi 10 milioni di anni. Per il sottogruppo OB1a, tramite la relazione età-massima, tutte le stelle con una massa superiore alle 13 masse solari sono esposte; nei sottogruppi OB1b e OB1c le stelle esposte sarebbero invece quelle con massa superiore alle 20 masse solari. L’energia rilasciata da queste esplosioni ha creato una superbolla in espansione ben individuabile ai raggi X.

Il primo rilevamento della superbolla avvenne sul finire dell’Ottocento, quando Edward Emerson Barnard scoprì 170 L’Anello di Barnard circonda il Complesso di Orione sul lato orientale.
una struttura nebulosa di vaste proporzioni a forma di semicerchio che avvolgeva e delimitava il lato orientale delle regioni nebulose di Orione, il cosiddetto Anello di Barnard; questo anello fu in seguito riconosciuto come la parte più luminosa e più orientale di una superbolla di grandi dimensioni che si estendeva per oltre 40° di diametro angolare, fino a sconfinare e penetrare in profondità nella costellazione di Eridano. La bolla si estende in direzione quasi perpendicolare al piano galattico, discostandosene notevolmente, mentre le sue dimensioni reali corrispondono a 460x980 anni luce, valore ottenuto calcolando le dimensioni apparenti (20°x40°) e conoscendo la distanza (circa 1300 anni luce di media); la sua velocità di espansione è compresa fra 10 e 20 km/s. A causa dell'effetto eccitante della radiazione ultravioletta e della presenza di alcune deboli sorgenti di raggi X, la temperatura interna del mezzo interstellare della bolla è compresa fra 10.000 e 50.000 K. Il confine della bolla più prossimo alla nostra direzione sembrerebbe trovarsi a circa 590 anni luce dal Sole, ossia a meno della metà della distanza fra quest'ultimo e la regione centrale del complesso nebuloso molecolare; secondo alcune teorie, queste estesi dimensioni, unite alla presenza del plasma caldo osservato nel settore più esterno della bolla, sarebbero un indizio che farebbe pensare all'esplosione di una supernova avvenuta negli ultimi milioni di anni in una posizione intermedia fra il sistema solare e la regione di Orione. Il bordo esterno dell'involucro formato dalla superbolla in espansione è ben visibile nel lontano infrarosso, mentre alcuni tratti, come l'Anello di Barnard, sono ben rilevabili anche nelle normali foto astronomiche a lunga esposizione ottenute con strumenti amatoriali in dotazione agli astrofili; all'infrarosso e nella banda dell'emissione 21 cm caratteristiche dell'idrogeno neutro, l'involucro mostra una struttura filamentosa, mentre la gran parte delle emissioni proviene da una regione situata all'esterno del guscio di idrogeno. La massa di questo gas è di circa 23.000 masse solari.

I tenui filamenti della superbolla visibili in direzione di Eridano prendono il nome di Bolla di Eridano; qui è possibile individuare due strutture disposte ad arco: quella più orientale è anche la più grande, ed è stata chiamata Arco A; tramite l'analisi a più lunghezze d'onda e lo studio della velocità radiale, è emerso che l'arco A potrebbe essere una struttura indipendente sia dall'arco più occidentale, l'Arco B, sia dall'Anello di Barnard, del quale potrebbe sembrare invece quasi un naturale proseguimento ad ovest. L'Arco B, anche se più piccolo, sarebbe invece più vicino a noi, a una distanza di circa 490 anni luce, contro i 680 anni luce stimati per l'Arco A.

LA SPADA DI ORIONE

La Spada di Orione è una sequenza di ammassi stellari e nebulose diffuse orientata in senso nord-sud, pochi gradi a sud dell’equatore celeste e direttamente a sud della Cintura di Orione. È perfettamente riconoscibile anche ad occhio nudo sotto cieli suburban, mentre già con un binocolo 10x50 si scindono molte delle sue strutture, come i due addensamenti stellari alle due estremità, catalogati come NGC 1980 e NGC 1981, e la Nebulosa di Orione (M42). Con telescopi da 200mm diventano evidenti anche altri sistemi nebulosi, come quello di NGC 1977.

L'oggetto di gran lunga più cospicuo non solo della Spada, ma anche dell'intera costellazione, è la famosissima M42, la grande Nebulosa di Orione. A occhio...
nudo sotto un cielo buio e limpido è già chiaramente
visibile e ha un aspetto nettamente nebuloso, che conti-
nua a mostrarsi tale anche con piccoli binoccoli come un
7x30 o un 10x50, attraverso cui è però anche possibile
notare diverse stelline a farle da contorno; uno strumen-
to da 100-120mm è sufficiente per individuare, al suo
interno, un gruppo di stelline azzurre, quattro delle quali
sono disposte a formare un piccolo e caratteristico
asterismo chiamato **Trapezio**. La distanza della nebulosa
è di circa 1270 anni luce e si estende per circa 24 anni luce; si tratta della regione di formazione stellare massiccia più vicina al Sistema solare. Si tratta di uno degli oggetti più fotografati e studiati della volta celeste ed è sotto costante controllo a causa dei fenomeni cele-
sti che hanno luogo al suo interno; gli astronomi hanno
scoperto nelle sue regioni più interne dischi protoplanetari, nane brune e intensi movimenti di gas e polveri. La nebulosa possiede una forma grosso modo circolare, la cui massima densità si trova in prossimità del centro; la sua temperatura si aggira mediamente sui 10.000 K, ma
scende notevolmente lungo i bordi della nebulosa. Di-
versamente alla distribuzione della sua densità, la nube
mostra una variazione di velocità e turbolenza in parti-
colare nelle regioni centrali. I movimenti relativi super-
rano i 10 km/s, con variazioni locali fino a 50 km/s e
forse superiori. La Nebulosa di Orione è un esempio di
"fornace" in cui le stelle prendono vita; varie osserva-
zioni hanno infatti rilevato all'interno della nebulosa
circa 700 stelle in vari stadi di sviluppo. Recenti osser-
vazioni col telescopio spaziale Hubble hanno scoperto
un numero così elevato di dischi protoplanetari, che al
diario d'oggi la gran parte di quelli conosciuti sono stati osservati entro questo complesso nebuloso. Il tele-
scopio Hubble ha infatti rilevato più di 150 dischi protoplanetari, che sono considerati come lo stadio prima-
rio dell'evoluzione dei sistemi planetari. Questi dati
sono utilizzati come evidenza che ogni sistema planetario ha origini simili in tutto l'Universo.
La parte più settenzionale della Nebulosa di Orione ap-
pare separata dal corpo centrale della nube da una banda
di nebulosità oscure, che la fanno sembrare un oggetto indipendente, al punto che ha ricevuto dal Messier una
denominazione separata ed è oggi nota come **M43**, non-
ché un nome proprio indipendente (**Nebulosa De Mai-
ran**). Al suo interno si trova la stella variabile NU Ori-
onis, che oscilla fra le magnitudini 6,5 e 7,6.
L'estremità meridionale della **Spada** è rappresentata
dall'ammasso **NGC 1980**. A occhio nudo si nota senza
difficoltà la stella **ι** Ori, dominata da stelle calde e azzurre di classe spettrale O e B; se si escludono
uno di più stelle che paiono appartenere all'ammasso
solo per un effetto prospettico, sovrapposendosi in rea-
tà ad esso, la maggior parte delle stelle di NGC 1980
appartiene all'associazione OB Orion OB1. Si tratta di
una vastissima associazione cui appartengono almeno
10.000 stelle, poste a una distanza media di circa 1400
anni luce.
L'estremità settentrionale della **Spada** è invece marcata
dall'ammasso **NGC 1981**, che è visibile ad occhio nudo
come una macchia sfocata; le sue componenti sono stel-
le giovani e azzurre di magnitudine compresa fra 6 e 8,
le più luminose delle quali formano un arco nella parte
ad est dell'ammasso, mentre quelle meno luminose si
dispengono ad ovest. L'ammasso viene risoltò comple-
tamente con un binocolo 10x50 in nottate limpide; con
un telescopio da 100mm offre una bella visione anche a

Fra NGC 1981 e la nebulosa M42 si trova la nebulosa NGC 1977, illuminata da un brillante gruppo di stelle giovani; questa nebulosa inizia ad essere evidente anche con un telescopio da 150mm, seppure con difficoltà. La fonte di ionizzazione dei gas della regione è principalmente la stella azzurra 42 Orionis, sebbene molte altre stelle concorrano ad illuminare le nubi, come altre due stelle simili e la gigante gialla 45 Orionis; la responsabile del piccolo lembo nebuloso catalogato come NGC 1973 è invece la variabile KX Orionis.

LA CINTURA DI ORIONE

La brillante sequenza delle stelle Alnitak, Alnilam e Mintaka costituisce la celeberrima Cintura di Orione; tutte e tre queste stelle sono giovani e piuttosto massicce e dominano su un ricco campo stellare formato dalle componenti del sottogruppo Orion OB1b, il quale è classicamente catalogato con la sigla Cr 70. La visione al binocolo è molto appagante, con finanche un centinaio di stelle visibili fino alla magnitudine 9; un telescopio anche di piccole dimensioni permette di ingrandire le zone dell’associazione in dettaglio, ma rischia di far perdere la visione d’insieme. Con strumenti di grande diametro diventano invece visibili le numerose nebulose associate a questo importante gruppostellare.

Pochi minuti d’arco a est di Alnitak si trova la Nebulosa Fiamma, nota anche come NGC 2024; è visibile con telescopi di 200mm di diametro, meglio se muniti di filtro UHC, ed è molto ben evidente nelle fotografie a lunga esposizione. La grande luminosità di Alnitak disturba però la sua osservazione. La sua caratteristica fisica principale, che le conferisce pure il nome, è una grande banda scura di polveri che l’attraversa da nord a sud, allargandosi progressivamente e conferendo alla parte brillante della nebulosa una forma a fiamma; la sorgente illuminante non è, come potrebbe sembrare, Alnitak, poiché questa stella si trova a circa 820 anni luce, dunque in primo piano a una distanza quasi dimezzata rispetto alla nebulosa, che sta invece a 1500 anni luce circa. La fonte potrebbe essere un giovane ammasso di circa 300 stelle scoperte nella parte meridionale della nube nel corso degli anni novanta, le cui componenti possiedono una magnitudine apparente che arriva fino alla tredicesima, o anche meno luminose.
A sud della stella Alnitak si può osservare nelle foto a lunga posa o direttamente con strumenti di diametro molto grande la lunga nebulosa IC 434, che mostra una forma a lama orientata in senso nord-sud, che si assottiglia nella parte meridionale. Il suo gas riceve la radiazione ionizzante direttamente dalla stella σ Orionis, un brillante membro della grande associazione Orion OB1. La temperatura della regione è stata misurata tramite varie metodologie e sfruttando vari rapporti di radiazione, ottenendo inizialmente dei valori compresi fra gli 8000 K e i 7600 K; successivamente questo valore fu ridotto a 3360 K e anche meno a seconda della mappa presa come riferimento.

È proprio grazie a questa nebulosa che si rende visibile un getto di gas oscuro che si sovrappone ad essa mascherandone la luce; questo getto prende il nome di Nebulosa Testa di Cavallo (nota anche con la sigla B33) ed è uno degli oggetti più famosi e caratteristici del cielo. Tuttavia è molto difficile poterla osservare visualmente: la sua forma caratteristica si può individuare principalmente attraverso le fotografie dell'area, oppure solo sfruttando telescopi di diametro davvero molto grande, oltre i 300mm. È talvolta confusa con IC 434, che è in realtà la nebulosa a emissione alle sue spalle, di colore rosso. L'oscurità della nebulosa è principalmente causata da polvere densa, anche se la parte più bassa del "collo" getta un'ombra sulla sinistra. I flussi di gas che lasciano la nebulosa sono incanalati da un forte campo magnetico; le macchie brillanti alla base di questa nebulosa sono invece giovani stelle in formazione. La Testa di cavallo dista circa 1500 anni luce e la sua massa è di circa 27 masse solari; possiede una velocità radiale di 5 km/s, con uno spostamento verso il rosso nella parte sudorientale; quella che appare come una "testa di cavallo" è di fatto una colonna di gas in sovrapposizione con IC 434, da cui emerge una sporgenza nella parte settentrionale (il "naso") che possiede una velocità radiale leggermente superiore, indice che sta subendo una spinta accelerativa a causa delle turbolenze.

Pochi minuti d’arco a nordest della Testa di Cavallo si trova NGC 2023, una piccola nebulosa che brilla per riflessione della luce prodotta dalla stella HD 37903, di classe spettrale B5, da cui prende il colore marcatamente azzurrognolo; si tratta della parte illuminata più meridionale di Orion B. Gli studi condotti all'infrarosso hanno mostrato che al suo interno si trova un ammasso composto da 16 sorgenti infrarosse coincidenti con alrettante stelle giovani, circondate dai gas da cui si sono originate; fra queste l'unica osservabile anche nella banda della luce risulta essere la stessa che illumina la nube, essendo la più massiccia e l'unica non oscurata dalle polveri direttamente. La nebulosa costituisce inoltre una delle sorgenti di idrogeno molecolare più brillanti dell'intera volta celeste; ciò la rende un perfetto laboratorio per lo studio della fluorescenza di questo gas. La sua struttura forma una cavità sulla superficie del complesso nebuloso in cui è immersa, mentre la radiazione ultravioletta delle stelle in essa avvolte opera una fotolisi sulle sue molecole.

In direzione della Cintura di Orione è visibile anche un gran numero di piccole nebulose a riflessione, talvolta difficili da scorgere coi comuni telescopi ma molto ben evidenti nelle fotografie. Fra queste vi è la piccola nebulosa IC 435, situata circa 20 primi d'arco ad est di NGC 2023; fa parte della nube molecolare gigante LDN 1630, la stessa che crea la "Testa di Cavallo" in sovrapposizione alla nebulosa IC 434. La stella responsabile della sua illuminazione è nota come HD 38087, una stella bianco-azzurra di sequenza principale di classe spettrale B5V, situata a oltre 1700 anni luce di distanza dal sistema solare, nella regione di Orion B. La nebulosa possiede un'elevata densità ed è divisa in due regioni, denominate IC 435-1 e IC 435-2, distinguibili dai rispettivi spettri di luminosità superficiale; le polveri che le compongono sono formate da granuli di dimensioni maggiori rispetto alla media osservata in nebulose simili.

A nord di Alnitak spiccano altre due nebulose a rifles-
sione. Una di queste è IC 431, che appare circondata da un gran numero di altre nebulose, in particolare dalla vicina IC 432, che appare pochi primi d'arco ad est, e si illumina da una stella catalogata come HD 37674, una stella bianco-azzurra di sequenza principale di classe spettrale B3V, la cui misura della parallasse fornisce un valore di distanza pari a circa 990 anni luce dal sistema solare; questa stella imprime ai gas della nebulosa un colore marcatamente bluastro. La regione di cielo in cui la nube fisicamente si trova è la medesima di quella di Alnitak, la quale potrebbe concorrere alla illuminazione di tutti i gas circostanti, che appaiono di un colore azzurro pallido. Pochi primi d'arco ad est si trova IC 432, un'ultra piccola nebulosa a riflessione illuminata da una stella catalogata come HD 37776, una stella subgigante azzurra di classe spettrale B2IV, la cui misura della parallasse fornisce un valore di distanza pari a circa 1075 anni luce dal sistema solare. La regione di cielo in cui la nube fisicamente si trova sarebbe la medesima di quella di Alnitak, la quale potrebbe concorrere alla illuminazione di tutti i gas circostanti, che appaiono di un colore azzurro pallido.

Circa 2 gradi in direzione NNE rispetto alla brillante stella Alnilam, l'astro centrale del ben noto asterismo della Cintura di Orione, si trova vdB 48; si presenta come una nube allungata in senso est-ovest con sovrapposte delle stelle di classe spettrale B allineate nello stesso senso, che imprimono ai gas un intenso colore bluastro. La principale fonte di illuminazione proviene dalle stelle HD 37370 e HD 37371, la cui distanza di circa 740 anni luce le colloca in primo piano rispetto alla regione di Alnilam, la quale non concorrerebbe dunque all'illuminazione dei gas della nebulosa. Alcuni altri addensamenti nebulosi si trovano fra Alnilam e Mintaka, come IC 426 e IC 423, che testimoniano la grande presenza di gas che avvolge la regione attorno all'associazione Orion OB1 e in particolare il sottogruppo Orion OB1b. L'insieme dei veli nebulosi parzialmente a riflessione e parzialmente debolmente ionizzati attorno alla stella Alnilam è invece indicato con la sigla NGC 1990 e si rende visibile solo in fotografia con numerose integrazioni. Il complesso sistema di nebulose che senza soluzione di continuità si estende invece fra Alnilam e Mintaka è invece talvolta indicato con la sigla IC 424.

ALTRE NEBULOSE

Un gran numero di altre nebulose si aggiunge al corteo di nubi di varia natura visibili in questo settore di cielo; le più importanti fra queste giacciono in particolare a nordest della Cintura di Orione, a ridosso dell'Anello di...
La nebulosa a riflessione M78 è visibile facilmente anche con piccoli strumenti.

La nebulosa a riflessione IC 2118 è un oggetto legato al grande complesso nebuloso di Orione e giace a nordest di Rigel.

Barnard e fanno parte del complesso scarsamente illuminato di Orione B; si tratta in prevalenza di nebulose oscure, ma alcune parti sono illuminate da stelle giovani ed emettono una luce bluastra. Fra queste si trova M78, che si individua molto facilmente partendo dalla stella Mintaka, una delle tre stelle della Cintura di Orione, e spostandosi di 3° verso est e mezzo grado a nord. L’oggetto è anche alla portata di un binocolo 10x50, sebbene occorra un cielo molto nitido per la sua osservazione, come pure osservandolo con un telescopio da 60-80mm di apertura; si vede invece molto ben chiaramente in un 140mm, dove si mostra come una macchia ampia di colore grigiastro o azzurrognola e circondante una coppia di stelle. In un 300mm il lato settentrionale possiede un bordo netto, causato dalla presenza di una banda oscura. M78 è la nebulosa a riflessione più brillante del cielo; fa parte di un gruppo di nebulose che comprende NGC 2064, NGC 2067 e NGC 2071, lontano 1.600 anni luce dalla Terra. Le due stelle che illuminano la nube di polvere in M78 sono catalogate come HD 38563A e HD 38563B e sono di magnitudine 10; l'estensione reale della nebulosa è pari a circa 4 anni luce. Nel gennaio del 2004 la stella V1647 Orionis, una giovane variabile eruttiva situata sul bordo nordestiale della nube, subì un improvviso picco di luminosità, illuminando una parte dei gas della nube: questo evento ebbe notevole importanza nello studio delle dinamiche correlate alle giovani stelle di pre-sequenza principale e fu intensamente studiata per due anni, corrispondenti al periodo in cui mantenne una luminosità superiore alla norma; nell’ottobre del 2005 la sua luminosità scese bruscamente.

Poco a nord di M78, sempre alla distanza di 1600 anni luce, si trova la già citata NGC 2071, anch’essa piuttosto brillante, anche se meno della precedente; può essere osservata con un telescopio da 200mm ed è ben evidente nelle foto a lunga esposizione. Possiede al suo interno una grande popolazione di stelle T Tauri e una piccola nube di idrogeno ionizzato individuata alla banda delle onde radio e catalogata come NGC 2071-OH, al cui interno è presente una stella massiccia ancora avvolta nel suo bozzolo originario. Sono quindi presenti numerosi indizi che fanno ritenere che i fenomeni di formazione stellare siano ben attivi anche nei pressi di queste nebulose.

In Eridano si trova infine IC 2118, nota anche col soprannome di Nebulosa Testa di Strega. Si tratta di una nebulosa a riflessione ben nota, situata poco a sud della stella Cursa (β Eridani) e circa otto gradi ad ovest di Orione A; la fonte della luce che la nebulosa riflette sarebbe la brillante stella Rigel, situata circa due gradi ad est. La sua luminescenza la rende visibile nelle fotografie, in cui appare di un netto colore azzurrognolo dovuto alla riflessione della luce blu proveniente dalle stelle vicine. La nebulosa dista circa 685 anni luce, venendo così a trovare sulla parte più esterna del Complesso di Orione, rivolta verso la nostra direzione; contiene alcune regioni più dense e luminose, catalogate come LBN 968, LBN 959 e LBN 975. Da un punto di vista evolutivo, questa nebulosa e i banchi di gas ad essa associati sarebbero classificabili come un residuo di una nube molecolare; al suo interno sono presenti dei limitati fenomeni di formazione stellare, che sono testimoniati dalla presenza di alcune sorgenti infrarosse che possiedono delle intensità di flusso all'infrarosso tipiche degli oggetti stellari giovani. Alcune delle sottostrutture della nube mostrano inoltre una forma a cometa con la coda rivolta in direzione opposta a quella delle associazioni Orione OB1, indice che i gas della nube sono soggetti all’azione fotoevaporante delle sue stelle più massicce.
VERSO LAMBDA ORIONIS

La Regione di Lambda Orionis è un complesso di nubi molecolari e regioni H II visibili in direzione della parte settentrionale della costellazione di Oriione; fa parte delle regioni più esterne del grande Complesso nebuloso molecolare di Oriione.

La λ Orionis è la stella che rappresenta la testa di Oriione; si trova a nord del grande rettangolo centrale che delimita la figura della costellazione, delineato dalle stelle Betelgeuse, Bellatrix, Rigel e Saiph. Questa stella si trova al centro di un ammasso aperto costituito da stelle giovani e calde, ben visibili anche ad occhio nudo essendo di quarta e quinta magnitudine; l'ammasso di cui fanno parte è catalogato come Cr 69 ed è perfettamente risolvibile con un binocolo, col quale è possibile scorgere numerose altre componenti fino alla nona magnitudine. Della regione non fa parte la stella φ2 Orionis, una gigante gialla visibile sul lato sudorientale dell'ammasso e posta a soli 116 anni luce dal Sole, contro gli oltre 1400 dell'ammasso e della nebulosa ad esso associata, nota come Sh2-264. La nube in sé invece non è visibile né con un binocolo né con piccoli telescopi amatoriali; essa diventa visibile specialmente nelle foto astronomiche a lunga posa, dove si evidenzia come un debole arco nebuloso più brillante in direzione ovest, mentre l'ammasso e la parte racchiusa dall'arco mostra una tenue nebulosità di fondo.

La nebulosa che circonda λ Orionis si presenta come una regione H II strutturalmente molto evoluta; la gran parte dei fenomeni di formazione stellare, in particolare quelli di stelle di grande massa, si sono esauriti circa 6 milioni di anni fa, con la nascita delle stelle più brillanti poste al centro della nube e costituenti un'associazione OB che corrisponde all'ammasso Cr 69. L'età della regione può essere determinata tramite lo studio delle

Mappa della regione settentrionale di Oriione, alla medesima scala della carta principale.

<table>
<thead>
<tr>
<th>PRINCIPALI OGGETTI NON STELLARI</th>
</tr>
</thead>
<tbody>
<tr>
<td>-------</td>
</tr>
<tr>
<td>vdB 37</td>
</tr>
<tr>
<td>vdB 38</td>
</tr>
<tr>
<td>Sh2-264</td>
</tr>
<tr>
<td>B30</td>
</tr>
<tr>
<td>Cr 69</td>
</tr>
<tr>
<td>vdB 49</td>
</tr>
<tr>
<td>NGC 2022</td>
</tr>
<tr>
<td>Ced 59</td>
</tr>
<tr>
<td>NGC 2141</td>
</tr>
<tr>
<td>NGC 2169</td>
</tr>
<tr>
<td>Sh2-261</td>
</tr>
<tr>
<td>NGC 2186</td>
</tr>
<tr>
<td>NGC 2194</td>
</tr>
<tr>
<td>Sh2-267</td>
</tr>
</tbody>
</table>
stelle massicce, in particolare λ Orionis e la vicina HD 36822, due stelle giganti evolute che stanno lasciando la fase di sequenza principale; l'età di queste due stelle, la cui massa è di 24 e 17 masse solari, è rispettivamente di circa 5,5 milioni e 7,5 milioni di anni, con uno scarto di 0,3-0,4 milioni di anni. Dopo la nascita delle stelle di massa maggiore, i fenomeni di formazione stellare hanno riguardato esclusivamente stelle di piccola e media massa, come è testimoniato dalla presenza di molte stelle di pre-sequenza principale; tali fenomeni sono ancora in atto all'interno della nube e nelle regioni circostanti, come nelle nebulose oscure B30 e B35.

Tramite lo studio della sequenza dei fenomeni di formazione stellare e le dinamiche della nube, è stato sviluppato un modello dettagliato per spiegare l'evoluzione della regione nebulosa. In origine, circa 10 milioni di anni fa, nella regione vi era una lunga sequenza di nubi molecolari, estesa in senso est-ovest, costituita da tre addensamenti particolarmente massicci e da alcune nubi minori; nelle nubi maggiori ha avuto luogo, 6 milioni di anni fa, la formazione di alcune stelle massicce, fra le quali la stessa λ Orionis, raggruppate in un'associazione OB. Il tasso di formazione stellare è aumentato progressivamente nel corso del tempo, favorito anche dalle onde d'urto generate dal vento stellare e dalla radiazione delle nuove stelle, che comprimendo il gas circostante ha esteso i fenomeni anche nelle regioni esterne del complesso nebuloso molecolare, in parte ionizzato. Circa un milione di anni fa, o secondo alcuni studi 300.000 anni fa, una delle stelle più massicce dell'associazione esplose come supernova, generando una potente onda d'urto che ha disperato il gas presente nella regione centrale del complesso generando una superbolla in espansione e alterando le dinamiche dell'associazione OB di cui faceva parte; il gas espulso si dispone a formare un grande anello attorno alla nuova bolla, oggi noto come Anello di Gamma Orionis, in cui la formazione stellare è proseguita, favorita dalla forte compressione dei gas, in particolare nella nube B35. La stella esplosa come supernova sarebbe stata una compagna fisica della stessa λ Orionis. Oggi la nascita di nuove stelle prosegue nelle aree più esterne dell'anello, come nelle due nubi oscure sopra citate, mentre all'interno della bolla si è completamente arrestata a causa della mancanza di gas che si è venuta a creare.

I modelli evolutivi che prendono in considerazione l'evoluzione futura della regione mostrano l'esaustione dei fenomeni di formazione stellare all'interno della nube B35 nel giro di tempiastronomicamente molto brevi e la dislocazione delle stelle di Cr 69 dalla loro attuale posizione situata al centro della bolla; queste stelle, a causa del loro moto proprio, tenderanno infatti a disperdersi su un'ampia regione attorno alla nube nel corso dei prossimi 10 milioni di anni.

Attorno al complesso si trova un piccolo corteo di nebulose principalmente a riflessione, che sebbene siano visibili solo con telescopi di diametro molto grande, diventano molto ben chiare nelle fotografie. Fra queste spicca la già citata vdB 38, che si individua con facilità circa due gradi a NNW di Bellatrix; la responsabile dell'illuminazione dei suoi gas è HD 34989, una stella bianco-azzurra di sequenza principale di magnitudine 5,78, ben visibile anche ad occhio nudo nelle notti più limpide. La nube appare distinta in una parte che brilla per riflessione della luce della stella, e infatti mostra un colore marcatamente azzurro, e una parte sullo sfondo che appare ionizzata e presenta una luce rossastra; quest’ultima parte è anche nota come Sh2-263. Parte della nube di gas di cui fa parte vdB 38 non è illuminata e appare come una nebulosa oscura che maschera la luce proveniente dalle stelle retrostanti; questa parte oscura riporta la sigla LDN 1588 (B223).

Altre piccole nubi visibili nei dintorni sono vdB 37, illuminata dalla gigante rossa semiregolare V1057 Orionis, e più a sud vdB 49, illuminata dalla gigante blu di tipo Be ω Orionis; la prima tuttavia non fa parte fisicamente del complesso, trovandosi molto in primo piano: il gas che illumina fanno infatti parte delle regioni più estreme del vasto complesso nebuloso che avvolge gran parte della costellazione del Toro (comprese le Pleiadi), situato a una media di 400-500 anni luce di distanza.
I tratto di Via Lattea compreso all’interno del Triangolo Invernale si presenta piuttosto povero di stelle appariscenti, ma è estremamente ricco di ammassi stellari e di nebulose, in particolare il suo lato settentrionale.

Questa regione è ben visibile in direzione sud nelle notti invernali boreali, da poco dopo il tramonto fino a notte inoltrata, ed è facile da individuare proprio grazie alla presenza di stelle luminose nelle vicinanze.

CARATTERISTICHE

Fra le stelle Betelgeuse e Procione, a sud dei Gemelli e ad est di Orione, si trova una delle regioni celesti più ricche di ammassi stellari galattici e di nebulose, in gran parte situati sul Braccio di Orione; qua si osservano infatti alcune associazioni stellari giovani legate ad estese regioni di formazione stellare, oltre a un discreto numero di ammassi situati nelle vicinanze o anche a distanze maggiori.

Gran parte di questi oggetti sono legati a due sistemi principali: quello più settentrionale corrisponde alla regione di formazione stellare della Nebulosa Cono, un’area particolarmente ricca di nebulose sia composte da gas ionizzato sia che brillano per riflessione della luce delle stelle vicine.

Quello meridionale invece è dominato dalla Nebulosa Rosetta, un oggetto tanto esteso quanto sfuggente per molti strumenti; contiene un numero minore di nebulose ma molte più associazioni di stelle giovani e massicce, distribuite in vari ammassi più o meno estesi.

Sebbene gran parte delle nebulose qui osservabili siano al di là della portata dei più comuni telescopi in mano agli appassionati, il grande numero di ammassi e associazioni stellari rende questa zona di cielo molto interessante da esplorare con strumenti che siano in grado di fornire grandi campi visivi ma allo stesso tempo siano dotati di aperture generose.

Ciò nonostante, è interessante esplorare questa regione anche con telescopi di piccolo diametro, alla ricerca di ammassi appariscenti, oppure con strumenti aperti e di lunga focale, che consentono di raggiungere facilmente ingrandimenti discreti per scindere i gruppi di stelle più stretti o alcune nebulose.

Con un binocolo 10x50 l’esplorazione risente un po’ del...
Al centro del Triangolo Invernale, la parte settentrionale della costellazione dell'Unicorno ospita un vasto e interessante sistema di ammassi e di nebulose.
Questo sistema è formato da una grande regione H II.

PRINCIPALI OGGETTI NON STELLARI

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cr 91</td>
<td>06h 21m 50s</td>
<td>+02° 22' 26"</td>
<td>A Ap</td>
<td>6,4</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Cr 92</td>
<td>06h 22m 55s</td>
<td>+05° 06' 00"</td>
<td>A Ap</td>
<td>8,5</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>NGC 2236</td>
<td>06h 29m 40s</td>
<td>+06° 49' 50"</td>
<td>A Ap</td>
<td>8,5</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>IC 2169</td>
<td>06h 31m</td>
<td>+10° 06'</td>
<td>Neb</td>
<td>-</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>IC 446</td>
<td>06h 31m</td>
<td>+10° 27'</td>
<td>Neb</td>
<td>-</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Cr 96</td>
<td>06h 30m 30s</td>
<td>+02° 50' 42"</td>
<td>A Ap</td>
<td>7,3</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Cr 97</td>
<td>06h 31m 18s</td>
<td>+05° 55' 00"</td>
<td>A Ap</td>
<td>5,4</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>NGC 2237</td>
<td>06h 31m</td>
<td>+05° 03'</td>
<td>Neb</td>
<td>6,0</td>
<td>90</td>
<td>N. Rosetta</td>
</tr>
<tr>
<td>NGC 2244</td>
<td>06h 31m 56s</td>
<td>+04° 56' 35"</td>
<td>A Ap</td>
<td>4,8</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>NGC 2245</td>
<td>06h 32m 41s</td>
<td>+10° 09' 24"</td>
<td>Neb</td>
<td>11,0</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>NGC 2247</td>
<td>06h 33m 04s</td>
<td>+10° 19' 21"</td>
<td>Neb</td>
<td>-</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>IC 448</td>
<td>06h 34m</td>
<td>+07° 18'</td>
<td>Neb</td>
<td>-</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>NGC 2251</td>
<td>06h 34m 38s</td>
<td>+08° 21' 59"</td>
<td>A Ap</td>
<td>7,3</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>NGC 2252</td>
<td>06h 34m 43s</td>
<td>+05° 21' 59"</td>
<td>A Ap</td>
<td>7,7</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Sh2-280</td>
<td>06h 34m</td>
<td>+02° 28'</td>
<td>Neb</td>
<td>-</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>NGC 2254</td>
<td>06h 35m 45s</td>
<td>+07° 40' 24"</td>
<td>A Ap</td>
<td>9,1</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Tr 5</td>
<td>06h 36m 29s</td>
<td>+09° 28' 12"</td>
<td>A Ap</td>
<td>10,9</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Cr 104</td>
<td>06h 36m</td>
<td>+04° 26'</td>
<td>A Ap</td>
<td>9,6</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Cr 106</td>
<td>06h 37m</td>
<td>+05° 57'</td>
<td>A Ap</td>
<td>4,6</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>Cr 107</td>
<td>06h 38m</td>
<td>+04° 44'</td>
<td>A Ap</td>
<td>5,1</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Sh2-282</td>
<td>06h 38m</td>
<td>+01° 25'</td>
<td>Neb</td>
<td>-</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Cr 110</td>
<td>06h 38m 35s</td>
<td>+02° 02' 24"</td>
<td>A Ap</td>
<td>10,5</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Cr 111</td>
<td>06h 38m 50s</td>
<td>+06° 54' 54"</td>
<td>A Ap</td>
<td>7,0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>NGC 2261</td>
<td>06h 39m 10s</td>
<td>+08° 44' 39"</td>
<td>Neb</td>
<td>9,0</td>
<td>2</td>
<td>Var. di Hubble</td>
</tr>
<tr>
<td>NGC 2262</td>
<td>06h 39m 38s</td>
<td>+01° 08' 37"</td>
<td>A Ap</td>
<td>11,3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>NGC 2264</td>
<td>06h 40m 58s</td>
<td>+09° 53' 44"</td>
<td>A+N</td>
<td>3,9</td>
<td>20</td>
<td>N. Cono</td>
</tr>
<tr>
<td>NGC 2269</td>
<td>06h 43m 17s</td>
<td>+04° 37' 28"</td>
<td>A Ap</td>
<td>10,0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Sh2-284</td>
<td>06h 45m</td>
<td>+00° 18'</td>
<td>Neb</td>
<td>-</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Do 25</td>
<td>06h 45m</td>
<td>+00° 18'</td>
<td>A Ap</td>
<td>7,6</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>NGC 2282</td>
<td>06h 46m 51s</td>
<td>+10° 18' 58"</td>
<td>A Ap</td>
<td>10,0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Cr 115</td>
<td>06h 46m 35s</td>
<td>+01° 47' 49"</td>
<td>A Ap</td>
<td>9,1</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>NGC 2301</td>
<td>06h 51m 45s</td>
<td>+00° 27' 33"</td>
<td>A Ap</td>
<td>6,0</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

(Sh2-273) connessa ad una nube molecolare gigante, situata in direzione della costellazione dell'Unicorno; comprende diverse nebulose a riflessione e diverse regioni oscure, nonché la celebre Nebulosa Cono, situata in una posizione centrale rispetto alla nube. Dista circa 2480 anni luce dal sistema solare e si trova sul bordo esterno del Braccio di Orione. La regione è ionizzata ed eccitata dalle stelle massicce dell'associazione OB Monoceros OB1, che coincide quasi interamente con l'ammasso aperto noto come NGC 2264 o Albero di Natale, a causa del suo aspetto; la stella dominante è S Monocerotis, una stella blu di sequenza principale, visibile anche ad occhio nudo e principale responsabile dell'illuminazione dei gas del complesso. In totale nella nube sono presenti 27 stelle di grande massa. I fenomeni di formazione stellare sono attivi in particolare nel settore a nord della Nebulosa Cono e generano soprattutto stelle di piccola e media massa; le giovani stelle con una massa inferiore alle 3 masse solari attorno all'associazione Monoceros OB1 sarebbero in totale oltre 1000, molte delle quali presentano delle emissioni nella banda dell'Hα. Al complesso è associata anche la celebre Nebulosa Variabile di Hubble, una nube di aspetto cometa-rd generata dalla stella R Monocerotis, posta al suo interno.

Il complesso è uno dei più studiati della volta celeste, sia a causa della sua relativa vicinanza, sia a causa della sua somiglianza col Complesso nebuloso molecolare di Orione: entrambe le regioni infatti sono ben osservabili ad occhio nudo e principale responsabile dell'illuminazione dei gas del complesso. In totale nella nube sono presenti 27 stelle di grande massa. I fenomeni di formazione stellare sono attivi in particolare nel settore a nord della Nebulosa Cono e generano soprattutto stelle di piccola e media massa; le giovani stelle con una massa inferiore alle 3 masse solari attorno all'associazione Monoceros OB1 sarebbero in totale oltre 1000, molte delle quali presentano delle emissioni nella banda dell'Hα. Al complesso è associata anche la celebre Nebulosa Variabile di Hubble, una nube di aspetto cometa-rd generata dalla stella R Monocerotis, posta al suo interno.

Il complesso è uno dei più studiati della volta celeste, sia a causa della sua relativa vicinanza, sia a causa della sua somiglianza col Complesso nebuloso molecolare di Orione: entrambe le regioni infatti sono ben osservabili senza l'anteposizione di banchi di polveri oscure che ne mascherano la vista, entrambe presentano una ricchissima vecchie e giovane popolazione stellare ed entrambe generano stelle di grande massa, sebbene nel complesso di
Monoceros OB1 la formazione di tali stelle sia inferiore a quella della regione di Oriione. Nel complesso sono contenute oltre mille componenti, raggruppate in giovani ammassi aperti e associazioni di stelle massicce, gruppi di stelle di piccola e media massa e un gran numero di stelle di pre-sequenza principale. La stella dominante è la S Monocerotis, una stella blu di sequenza principale di classe spettrale O7V, che possiede diverse stelle compagne di massa inferiore; la radiazione di questa e delle stelle vicine illumina e ionizza i gas della nube circostante, compresa quella davanti a cui si staggia la piramide oscura della Nebulosa Cono. La regione centrale è costituita dalla nube ionizzata da S Monocerotis, la stessa Nebulosa Cono e le regioni a nord della stella; questa struttura ha una massa pari a 52.000 masse solari. Attorno alla regione centrale si raggruppano una ventina di nubi molecolari relativamente dense, la cui massa è compresa fra 100 e 10.000 masse solari, associate all'associazione OB che domina la regione e a cui appartengono tutte le stelle massicce originate dai gas del complesso, l'associazione Monoceros OB1; in queste nubi molecolari ha luogo la formazione stellare, come è testimoniato dalla presenza di numerose protostelle situate in profondità nelle nubi stesse, come getti molecolari e altri oggetti. La massa totale della regione nebulosa di Monoceros R1 è di circa 7000 masse solari.

L'ammasso dell'Albero di Natale (NGC 2264), a differenza del complesso nebuloso che resta invisibile negli strumenti di diametro medio-piccolo, invece è visibile anche con un binocolo 10x50, dove appare come un gruppetto di stelle azzurre poco concentrate, con le componenti più luminose situate nella parte settentrionale.

Le componenti più orientali dell'associazione Mon OB1 illuminano dei frammenti di gas che brillano per riflesso, emettendo a loro volta una luce bluastra, ricevuta dalle stelle vicine; fra queste vi sono NGC 2245 e NGC 2247, vdB 76, vdB 78 e vdB 79, tutte situate sul bordo occidentale del complesso, cui si aggiungono le maggiori nubi IC 446 e IC 2169, in associazione col gruppo di stelle Monoceros R1, legato a Monoceros OB1. IC 2169 è la nube dominante fra quelle associate al gruppo Monoceros R1, a ovest della Nebulosa Cono, e a questa sono legate alcune delle stelle più brillanti e massicce di questo gruppo stellare. Questa nube possiede una forma ad anello ed è dinamicamente separata rispetto al complesso nebuloso più prossimo a Monoceros OB1, di cui fa parte la Nebulosa Cono. Questa struttura a bolla è stata probabilmente causata dal vento stellare delle stelle più massicce, che ha generato una bolla in espansione in cui il mezzo interstellare è più rarefatto; in alternativa, la bolla potrebbe essere stata causata dall'esplosione di una supernova.

La nebulosa NGC 2245 appare come un bozzolo visibile a nordest della precedente. Questa nube circonda per intero la stella V699 Monocerotis, una variabile Orione di classe spettrale A0 che oscilla irregolarmente fra le magnitudini 10,36 e 10,84; l'aspetto della nube è cometary, ossia presenta una chioma di gas in rarefazione. Poco più a nord si trova NGC 2247, che circonda per intero la stella HD 259431, nota anche come V700 Monocerotis, un'altra brillante variabile Orione di grande massa che oscilla irregolarmente fra le magnitudini 8,62 e 8,91; la nube si concentra attorno alla stella senza mostrare segni di strutture allungate. Agli infrarossi e alle lunghezze d'onda submillimetriche è una delle sorgenti più compatte della regione.

A nord di IC 2169 si trova invece IC 446, la cui stella dominante è la variabile VY Monocerotis, una stella di pre-sequenza principale di classe spettrale B e di magnitudine 13,68, appartenente alla classe delle stelle Ae/Be.
di Herbig o alle T Tauri, sebbene sia meno luminosa di una T Tauri; l'età della nube sarebbe di circa 2-4 milioni di anni e in essa hanno avuto luogo fenomeni di formazione stellare, come testimoniato dalla presenza della stessa VY Mon. Nella nube si osserva anche un globulo di Bok, la cui temperatura dei granuli di polvere è di circa 15 K.

Sul bordo sudorientale di IC 446 è presente una piccola nube più densa, catalogata indipendentemente come vdB 79, appartenente al medesimo sistema nebuloso; al suo centro vi è HD 258973, una stella bianca di sequenza principale di magnitudine 10,06. Circa un grado a sudovest delle stelle dell’Albero di Natale si trova la cosiddetta Nebulosa Variabile di Hubble (NGC 2261 o C46), visibile chiaramente anche con un telescopio da 150mm e famosa per le sue continue variazioni di forma e luminosità; le variabilità vennero scoperte su una serie di lastre fotografiche prodotte lungo alcuni anni verso la metà del Novecento da Carl Otto Lampland. Queste variazioni non coincidono con il ciclo di variabilità della sua stella interna, R Monocerotis, mentre la nebulosa diventa periodicamente oscurata sempre nella stessa parte; ciò indusse Lampland a credere che ci fosse una nebulosa oscura ruotante che quando transitava sulla nostra linea di vista la oscurava sempre nello stesso punto. In seguito venne notato che la stella centrale era in realtà una brillantissima e minuscola nebulosa di forma triangolare, che a sua volta conteneva una stella appena formata. Si ritiene che la variabilità della nebulosa possa essere invece dovuta al fatto che i filamenti di gas vengano espulsi dal disco protoplanetario in una forma a doppio cono, seguendo le linee del campo magnetico della stella, provocando così le variazioni osservabili. Dista dal Sole circa 2500 anni luce. Un corteo di ammassi aperti circonda apparentemente il complesso nebuloso di Monoceros OB1, ma si tratta in realtà di oggetti in gran parte molto più remoti e spesso anche assai difficili.

Fra questi vi è NGC 2259, visibile poco più di un grado a NNW dell’Albero di Natale; è un ammasso piuttosto debole, le cui componenti principali sono appena di magnitudine 13 e pertanto visibili solo con telescopi da 120-150mm di diametro. Tuttavia, per poterne apprezzare appieno la natura di ammasso stellare vero e proprio occorrono aperture notevoli, a partire da 300mm, per individuare le componenti di magnitudine 14. Si tratta di un oggetto molto remoto, la cui distanza è stimata sui 10.800 anni luce e pertanto posto anche al di là del Braccio di Perseo, forse in una fascia inter-braccio, in una zona periferica della Via Lattea; la sua età di circa 320 milioni di anni lo rende un ammasso di età avanzata, sebbene non certo fra i più vecchi.

Un altro ammasso piuttosto difficile è Tr 5, noto anche come Cr 105; si tratta di un oggetto fortemente oscurato, le cui componenti principali sono di magnitudine 14 e pertanto è visibile con telescopi da 200mm di diametro come una blanda macchia chiara ed estesa per alcuni minuti d’arco circa un grado ad ovest dell’Albero di Natale. Uno strumento da 400mm di diametro rivela tuttavia svariate decine di stelle di magnitudine 14, circondanti apparentemente una stella rossa di magnitudine 9,6. Oggetti come questo, fortemente oscurati, sono difficili da studiare, tuttavia la sua grande età compresa fra 3 e 4 miliardi di anni, non comune per un ammasso aperto, l’hanno relativamente famoso e studiato. Anc’esso si trova alla periferia esterna del Braccio di Perseo, a una distanza di 9800 anni luce. È anche uno degli ammassi aperti più poveri di metalli, con le sue componenti che presentano una metallicità inferiore a quella del Sole.

Un po’ più appariscente, sebbene poco cospicuo, è l’ammasso aperto NGC 2251, circa 2 gradi a sudovest dell’Albero di Natale. Con un telescopio da 120mm appare come un gruppetto di una decina di stelle di magnitudine 9 e 10 allungato in senso nordovest-sudest, abbastan-
L’ammasso aperto NGC 2254, piccolo ma molto concentrato.

za contrastato ma allo stesso tempo non intuibile e riconoscibile nell’immediato come un ammasso aperto ma piuttosto come un raggruppamento casuale di stelle. Con telescopi da 200mm diventano evidenti diverse stelle di magnitudine 13 sul lato sudoccidentale dell’ammasso. Con una distanza di circa 4300 anni luce, si colloca in una zona intermedia fra il Braccio di Orione e quello di Perseo, nonché fra il complesso della Nebulosa Cono e quello della più distante Nebulosa Rosetta; la sua età sarebbe di circa 270 milioni di anni e sono note al suo interno tre giganti rosse. La metallicità delle componenti dell’ammasso risulta essere piuttosto bassa.

Un po’ più complesso da osservare risulta essere NGC 2254, situato 40 minuti d’arco a sudest del precedente, o volendo anche 50 minuti d’arco a nordest della stella 13 Monocerotis; si presenta come un oggetto piccolo, poco popolato ma relativamente compatto e dunque abbastanza facile da staccare dai campi circostanti, a patto però di osservare con strumenti da 200mm di diametro. Molte delle sue componenti sono di magnitudine 13 e 14 e solo una raggiunge la magnitudine 11.6. Si tratta di un oggetto scarsamente studiato, formato da un centinaio di componenti fino alla magnitudine 16 e situato alla distanza di 7700 anni luce, dunque sul Braccio di Perseo, ben più lontano dei più grandi complessi nebulosi visibili nell’Unicorno. La sua età sarebbe di circa 200 milioni di anni e dunque non appare legato ad alcuna regione di formazione stellare.

IL SISTEMA DELLA NEBULOSA ROSETTA

Circa 5 gradi a SSW del sistema nebuloso di Monoceros OB1 si trova la celebre Nebulosa Rosetta. Una designazione univoca per quest’oggetto è piuttosto complessa: il New General Catalogue non lo considera come un’unica entità ma la suddivide in vari spezzoni, a cominciare da NGC 2237, sigla che spesso viene utilizzata per indicare l’intera nebulosa ma che in realtà si riferisce solo alla sua estremità più occidentale; seguono poi NGC 2238 e NGC 2239, per arrivare infine a NGC 2246, per l’estremità nordorientale. NGC 2244 si riferisce invece al giovane ammasso aperto centrale. Una sigla davvero univoca e comprensiva per l’intera nebulosa è quella fornita dal Catalogo Sharpless, che la designa come Sh2-275. L’osservazione della nebulosa in sé può presentare alcune difficoltà se si dispone di un classico binocolo 10x50: sebbene l'ammasso associato si possa distinguere con facilità, nei campi stellari di questo tratto di Via Lattea, la nebulosità è visibile solo con determinate condizioni atmosferiche; in ogni caso, un cielo buio e nitido è fondamentale, anche se si dispone di strumenti più potenti. Un telescopio da 120mm è sufficiente per rivelarne a grandi linee la struttura, compresa la minore densità centrale attorno all’ammasso, sebbene con difficoltà; strumenti di 200mm a salire consentono di scorgere diverse venature scure, specie nel lato occidentale della nube. L’astrofotografia fornisce indubbiamente la maggiore soddisfazione, dato che in foto si rivela perfettamente sia la nebulosa, che la gran parte delle strutture; non a caso si tratta di uno degli oggetti più fotografati del cielo. Le dimensioni apparenti della nebulosa sono paragonabili con quelle della ben nota Nebulosa di Orione; tuttavia, trovandosi ad una distanza oltre tre volte superiore (e dunque situata a circa 5200 anni luce), le sue dimensioni reali superano di gran lunga quelle di M42. La nebulosa circonda un ammasso aperto di forma rozzamente rettangolare, noto come NGC 2244, i cui oltre cento membri occupano la cavità osservabile nella regione centrale della nube. Le regioni più esterne della nebulosa sono costituite principalmente da gas non illuminato: questo è dovuto alla lontananza delle stelle luminose, responsabili della ionizzazione e della luminosità delle aree centrali della regione H II, che corrispondono alla nebulosa osservabile. Questo volume di massa scura ha un raggio di circa 2° e si può assumere che la sua densità sia paragonabile a quella della parte ionizzata (e brillante) più esterna, La famosa Nebulosa Rosetta, tanto estesa quanto difficile da osservare con piccoli strumenti.
laddove sfuma appunto nella zona oscura, il che avviene a 24' dal centro geometrico della nebulosa; questa densità è di circa 13 atomi per centimetro cubo, arrivando così ad ottenere una massa di circa 140.000 masse solari. Se si assume che la massa totale delle stelle dell'ammasso aperto è pari a circa 10.000 masse solari, si può desumere la massa originaria della nebulosa da cui l'ammasso stellare si è formato, ossia 150.000 masse solari.

Il centro della nebulosa è dominato da un brillante ammasso aperto, NGC 2244; a differenza della nebulosa, è facilmente visibile anche con un binocolo 10x50, dove appare come una sorta di breve doppia sequenza di stelle di magnitudine compresa fra la 5 e la 7. Quest'ammasso, formatosi nella regione centrale della nebulosa, ha successivamente spazzato via i gas circostanti tramite l'azione del vento stellare delle sue componenti, diventando così ben visibile; l'esito di questo spostamento di gas è ben evidente, e si tratta della grande “bolla” vuota che circonda l'ammasso, struttura che ha fatto guadagnare alla nebulosa il nome stesso di “Rosetta”. Questa bolla continuerà ad espandersi finché le stelle dell'ammasso non saranno completamente libere da ogni residuo. NGC 2244 è un ammasso estremamente giovane, la cui età non supera il milione di anni. Le due stelle più calde dell'ammasso, le giganti blu HD 46223 e HD 46150, sono anche le due stelle responsabili della quasi totalità delle emissioni ultraviolette provenienti dalla Nebulosa Rosetta.

Sul bordo nordorientale della nebulosa si trova l'enigmatico ammasso NGC 2252, le cui coordinate fornite sembrano essere leggermente spostate ad est rispetto quello che potrebbe davvero somigliare a un ammasso stellare, ossia un raggruppamento di stelle fortemente allungato e leggermente arcuato e orientato in direzione nord-sud, dominato da una stella arancione di magnitudine 9 e formato da stelle fra la magnitudine 10 e 13.

Può essere notato anche con un telescopio da 100mm di diametro, dove è evidente circa 40 minuti d’arco a nord-est di NGC 2244; con un telescopio da 200mm è perfettamente risolto in una trentina di stelle. Si tratta di un ammasso particolarmente poco studiato, al punto che non si potrebbe escludere che si possa trattare di un raggruppamento casuale di stelle; sarebbe dunque da considerare sostanzialmente come un campo ricco.

Molti degli addensamenti stellari visibili in direzione della Nebulosa Rosetta sono catalogati come ammassi aperti, trattandosi però più che altro di associazioni stellari, molte delle quali incluse nel Catalogo Collinder; va tuttavia segnalato che fra questi gruppi stellari soltanto alcuni sono realmente legati alla Nebulosa Rosetta, mentre altri si trovano in primo piano e molto più vicini, fisicamente, alla Nebulosa Cono.

Fra questi vi è Cr 97, un blando gruppo di stelle bianche di magnitudine 7, 8 e 9, visibile anche con un binocolo 10x50 poco meno di un grado a nord di NGC 2244; tuttavia può sembrare più un raggruppamento casuale di stelle che un’associazione reale. La sua distanza è stimata sui 2000 anni luce e pertanto non sarebbe associato alla Nebulosa Rosetta, ma risulterebbe ben più vicino al sistema della Nebulosa Cono; l’età sarebbe stimata fra i 100 e i 600 milioni di anni, rendendolo per altro pure slegato dalle regioni di formazione stellare attuali.

Un importante gruppo di stelle legato invece alla Nebulosa Rosetta è il giovane ed esteso Cr 107, visibile circa un grado e mezzo ad est di NGC 2244 e formato da alcune decine di stelle sparse su un’area di quasi un gra- do. Con un binocolo 10x50 è possibile scorgere un gruppo di stelle di magnitudine 6 e 7 che delineano una sorta di cerchio molto deformato in particolare sul lato meridionale, mentre al centro mancano stelle visibili; i deboli campi stellari centrali diventano visibili con telescopi da 120mm, ma non presentano alcuna concentra-
zione. Le componenti dell’ammasso formano un anello di stelle giovani la cui età è stimata sui 10 milioni di anni, mentre le stime sulla distanza, sui 5600 anni luce, sembrano più o meno compatibili con quelle della Nebulosa Rosetta.

Poco ad est si trova l’enigmatico Cr 104, che appare con un telescopio da 100-120mm di diametro come una sequenza lineare di una quindicina di stelle di magnitudine compresa fra 9 e 12 lunga una ventina di minuti d’arco e orientata in senso nord-sud; con strumenti di diametro maggiore non vi sono ulteriori dettagli visibili, se non una migliore definizione di questa sequenza, che ricorda vagamente il simbolo matematico dell’integrale. Vi è pochissimo in letteratura su quest’oggetto e mancano anche stime sulla distanza o sull’età.

Cr 106 è invece un po’ più conosciuto; si trova circa un grado e mezzo a nordest di NGC 2244; con un binocolo 10x50 è visibile come un esteso gruppo di stelle azzurre di magnitudine compresa fra 6 e 8, al cui centro non si nota alcuna concentrata. Strumenti da 120mm di diametro permettono di notare alcune stelle di magnitudine 11 e 12 presso la zona centrale, in un campo tuttavia non particolarmente ricco. L’ammasso ha un’età di 5,5 milioni di anni, si trova a circa 5200 anni luce ed è dominato a nord dalla famosa Stella di Plaskett (V640 Mon), di magnitudine 6, di cui sembra fare effettivamente parte; si tratta di uno dei sistemi binari più massicci conosciuti, le cui componenti non sono però state risolte otticamente, ma scoperte grazie all’analisi dello spettro che ha evidenziato degli spostamenti periodici delle linee spettrali, che la rendono una binaria spettroscopica. Il periodo di rivoluzione delle due componenti attorno al centro di massa del sistema è di appena 14,40 giorni, con una separazione media di 0,5 UA. La componente principale, Plaskett A, è la più "fredda" delle due ma senza dubbio la più brillante, con una luminosità di circa 630.000 luminosità solari e un raggio 21 volte quello del Sole. I parametri della componente secondaria, Plaskett B, sono più approssimativi: la sua luminosità è compresa tra 372.000 e 870.000 luminosità solari e il suo raggio è di circa 14 raggi solari. Le rispettive masse sono 54 e 56 masse solari.

AMMASSI SPARSI

Numerosi ammassi più o meno estesi e concentrati si affollano nella parte settentrionale dell’Unicorno, particolarmente ricca di campi stellari.

Verso il confine con la costellazione di Orione si trova Cr 91, un piccolo ammasso scarsamente studiato. Si individua a partire dalla Nebulosa Rosetta, andando per circa tre gradi in direzione sud-ovest; si può individuare anche con un binocolo 10x50, dato che le sue stelle principali sono di magnitudine 6 e 7. Uno strumento come questo è anche in grado di risolverlo completamente in stelle, senza traccia alcuna di apparente nebulosità. La componente più luminosa è HD 44333, una stella doppia di magnitudine 6,29; le altre stelle, circa una decina in tutto, sono composte fra la magnitudine 7 e 8.

Molto più difficile è riconoscere un ammassostellare in direzione di Cr 92, visibile poco più di 2 gradi ad ovest della Nebulosa Rosetta. Nella sua direzione si trovano solo alcune stelle sparse di magnitudine compresa fra la 10 e la 12, con un astro azzurrognolo di magnitudine 8,3 a dominare il gruppo; manca ogni accenno di concentrazione e dunque è di difficile osservazione ancora con un telescopio di grande diametro sfruttando bassi ingrandimenti. L’oggetto è poco studiato e non sono noti i dati della distanza e dell’età.

Circa 2 gradi a nordovest della Nebulosa Rosetta si trova invece NGC 2236, un ammasso piuttosto ricco e compatto, anche se assai remoto e quindi formato da stelle deboli; attraverso un telescopio da 120mm appare come una macchia allungata estesa per una decina di minuti d’arco, con sovrapposte alcune stelle di magnitudine 12 e 13. Con uno strumento da 200mm si diventano visibili alcune decine di stelle deboli su un campo che permane di aspetto vagamente nebbioso e indistinto; una totale risoluzione è possibile con telescopi da 300mm e forti ingrandimenti. Si tratta di un ammasso molto denso, dominato da una stella di magnitudine 10 e alcune altre di magnitudine 11; a causa del forte oscuramento che subiscono le componenti, gli studi in
merito sono stati condotti con difficoltà. Studi fotometrici condotti su 13 possibili membri riconosciuti come stelle giganti hanno permesso di notare che la metallicità delle sue componenti sia piuttosto bassa; il diametro reale dell’ammasso si aggira sui 7 anni luce, mentre le sue regioni centrali si estendono per circa 4 anni luce. La sua distanza è stimata sui 9500 anni luce ed è pertanto un oggetto remoto, situato al di là dei grandi complessi nebulosi dell’Unicorno; la sua età è invece indicata come pari a 350 milioni di anni.
Poco meno di 3 gradi ad est di NGC 2244, dunque al doppio della distanza angolare fra questo e il già citato Cr 107, si individua NGC 2269, un ammasso non particolarmente facile in quanto appare difficile staccarlo dai ricchi campi di fondo in cui è immerso; con un telescopio da 100mm è tecnicamente già visibile, ma staccarne le poche componenti di magnitudine 12 da quelle del fondo cielo è arduo. Con strumenti da 200mm è visibile una blanda concentrazione di stelle di magnitudine 12 e 13 divisa in due gruppi, uno settentrionale un po’ più ricco e uno meridionale dominato da una stella di magnitudine 11. Vi sono poche informazioni su quest’oggetto, al di là della sua distanza, che sarebbe pari a 5500 anni luce e che dunque lo farebbe ricadere nella medesima regione galattica della Nebulosa Rosetta, e l’età, che essendo pari a 260 milioni di anni farebbe escludere una qualsiasi reale appartenenza fisica alle vicine regioni di formazione stellare.

Cr 110 è invece un ammasso molto ricco, ma le cui componenti sono di scarsa brillantezza e risulta pertanto difficile osservarlo senza disporre di telescopi di grande diametro; si trova poco più di 3 gradi a sud-est della Nebulosa Rosetta e 2,5 gradi a WSW della stella 18 Monocerotis, di magnitudine 4,45. Con un telescopio da 200mm appare come una macchia nebbiosa su cui si impostano alcune debolissime stelline ed è visibile chiaramente sotto cieli molto bui e cristallini; con un telescopio da 400mm è un oggetto molto bello e perfettamente risolto in oltre un centinaio di stelle fino alla magnitudine 15. Si tratta di un ammasso in età molto avanzata, stimata attorno a 1,4 miliardi di anni; è un oggetto per altro molto ricco e appare oscurato da polveri interstellari poste lungo la sua linea di vista. La sua distanza è stimata sui 6350 anni luce ed è pertanto superiore a quella della Nebulosa Rosetta, pur trovandosi comunque sempre sul Braccio di Perseo.
Poco meno di un grado a SSE si trova il più piccolo ma più compatto NGC 2262, il quale è però al di là della portata di telescopi di diametro inferiore a 200mm; già questo strumento è il limite minimo per poter notare quest’oggetto come una piccola macchia nebulosa con alcune stelle di magnitudine 13 strette in un diametro di appena 2 minuti d’arco. Con un telescopio da 300mm la risoluzione è completa e l’ammasso è ben staccato dal fondo cielo. Si tratta anche in questo caso di un ammasso di età avanzata, stimata attorno a 1 miliardo di anni; la sua distanza è invece pari a 11.700 anni luce ed è pertanto situato in una zona remota del Braccio di Perseo, oltre la gran parte degli oggetti visibili in questa direzione.

Infine poco più di 2 gradi a SSE di 18 Monocerotis si trova l’ammasso NGC 2301, relativamente facile al punto da essere visibile con un po’ di attenzione anche con un binocolo 10x50, dove appare come una piccola macchia chiara su cui si sovrappongono 3-4 stelle di magnitudine 8 e 9. Con un telescopio da 100mm è già perfettamente risolto ad alti ingrandimenti in una quarantina di stelle fino alla magnitudine 12, che diventano cinquanta fino alla magnitudine 13 con un telescopio da 200mm. La stella più brillante dell’ammasso è apparentemente una stella subgigante gialla di magnitudine 8,0, ma si tratta probabilmente di una stella in primo piano; la sua età si aggira sui 160 milioni di anni e si riprova di ciò si segnala la totale assenza di stelle delle classi spettrali O e B. La sua distanza è invece stimata sui 2800 anni luce e risulta pertanto essere un ammasso posto in primo piano rispetto agli oggetti circostanti.
L’UNICORNO MERIDIONALE

La parte meridionale dell’Unicorno è meno ricca della regione fin qui descritta, ma sono comunque presenti oggetti interessanti.

A breve distanza dall’ammasso NGC 2301 si trova il debole complesso nebuloso di Sh2-284, un oggetto invisibile all’osservazione visuale ma interessante nelle fotografie, oltre che per le scienze astronomiche. Si tratta di una grande regione HII la cui distanza è stata dibattuta: nel corso degli anni ottanta è stata posta una distanza di circa 17.000 anni luce, collocandola così in una regione intermedia fra il Braccio di Perseo e il Braccio del Cigno; nel 2007, tramite lo studio delle dinamiche dei bracci di spirale galattici, è stata assegnata alla nube una distanza 25.700 anni luce, dunque nelle regioni più esterne della Via Lattea, sul Braccio del Cigno. Il centro della nebulosa ospita il grande ma debole ammasso aperto Dolidze 25 (Do 25), le cui componenti sono deboli e sparse ed è quindi difficile riconoscerlo come ammasso aperto. Di fatto si tratta di un’associazione OB composta da una gigante blu di classe spettrale O9III e da quattro stelle più o meno massicce di classe B, inclusa una subgigante di classe B0.5IV; queste cinque stelle sono anche le principali responsabili della ionizzazione dei gas di Sh2-284. Le stelle della regione sono tutte molto povere in metalli, una caratteristica che sembra essere relativamente comune per le stelle situate nelle regioni più esterne della Via Lattea. Nella nube sono anche attivi dei fenomeni di formazione stellare generanti stelle di piccola massa. Circa 4 gradi più a sud, in una regione povera di stelle luminose, si trova l’ammasso aperto NGC 2286, relativamente esteso ma di difficile individuazione; è infatti

PRINCIPALI OGGETTI NON STELLARI

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NGC 2170</td>
<td>06h 07m 32s</td>
<td>-06° 23' 58"</td>
<td>Neb</td>
<td>-</td>
<td>2</td>
<td>(vdB 67)</td>
</tr>
<tr>
<td>NGC 2182</td>
<td>06h 09m 31s</td>
<td>-06° 19' 35"</td>
<td>Neb</td>
<td>-</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>NGC 2183</td>
<td>06h 10m 47s</td>
<td>-06° 12' 43"</td>
<td>Neb</td>
<td>-</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>NGC 2185</td>
<td>06h 10m 50s</td>
<td>-06° 12' 01"</td>
<td>Neb</td>
<td>9:5</td>
<td>5</td>
<td>(vdB 73)</td>
</tr>
<tr>
<td>NGC 2215</td>
<td>06h 20m 49s</td>
<td>-07° 17' 02"</td>
<td>A Ap</td>
<td>8,4</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>NGC 2232</td>
<td>06h 28m 01s</td>
<td>-04° 50' 51"</td>
<td>A Ap</td>
<td>4,2</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>NGC 2250</td>
<td>06h 33m 50s</td>
<td>-05° 05' 04"</td>
<td>A Ap</td>
<td>8,9</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>NGC 2286</td>
<td>06h 47m 40s</td>
<td>-03° 08' 52"</td>
<td>A Ap</td>
<td>7,5</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>NGC 2299</td>
<td>06h 51m 57s</td>
<td>-07° 05' 04"</td>
<td>A Ap</td>
<td>8,9</td>
<td>3</td>
<td>(NGC 2302)</td>
</tr>
<tr>
<td>NGC 2309</td>
<td>06h 56m 04s</td>
<td>-07° 10' 28"</td>
<td>A Ap</td>
<td>10,5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>NGC 2311</td>
<td>06h 57m 48s</td>
<td>-04° 36' 41"</td>
<td>A Ap</td>
<td>9,6</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>NGC 2313</td>
<td>06h 58m 03s</td>
<td>-07° 52' 42"</td>
<td>Neb</td>
<td>-</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>NGC 2316</td>
<td>06h 59m 41s</td>
<td>-07° 46' 38"</td>
<td>Neb</td>
<td>-</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>vdB 87</td>
<td>07h 00m 30s</td>
<td>-08° 51' 38"</td>
<td>Neb</td>
<td>-</td>
<td>1,4</td>
<td></td>
</tr>
<tr>
<td>M50</td>
<td>07h 02m 42s</td>
<td>-08° 23' 26"</td>
<td>A Ap</td>
<td>5,9</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>
 formato da una concentrazione di stelle deboli che difficilmente si staccano dai ricchi campi stellari di fondo. Con un telescopio da 120mm è appena intuibile come un vago addensamento di stelle di magnitudine 11 e 12 che lascia trasparire sul fondo stelle non risolte, mentre una buona risoluzione è possibile con telescopi da 200mm a salire; anche con questi strumenti tuttavia l’ammasso resta scarsamente concentrato e contrastabile. Si tratta di un oggetto poco studiato e di difficile analisi; alcuni studi hanno persino messo in dubbio la sua reale esistenza, a causa della difficoltà nella determinazione del moto proprio delle sue stelle. Studi successivi hanno invece permesso di determinare alcune stelle effettivamente membri, stabilendone un’età di circa 60 milioni di anni; le stime sulla distanza restano incerte, con valori compresi fra 500 e 9400 anni luce: in entrambi i casi si tratta comunque di un ammasso piuttosto remoto.

Molto più appariscente è invece l’ammasso NGC 2232, individuabile circa 13 gradi a est della Nebulosa di Orione, oppure circa 3,5° a nordest della stella γ Monocerotis. Appare molto sparso, con le componenti principali disperse su una superficie di mezzo grado e raccolte intorno a due punti distinti, il più meridionale dei quali è il più ricco. Un binocolo 10x50 risolve l'oggetto completamente; la sua stella più luminosa è la 10 Monocerotis, di magnitudine 5,05. Ingrandimenti elevati ottenibili con telescopi di lunga focale non permettono di averne una visione d'insieme. NGC 2232 è un ammasso piuttosto giovane e poco popolato, situato alla distanza di 1170 anni luce; la sua posizione ricade così all'interno del Braccio di Orione, nei pressi del Complesso nebuloso molecolare di Orione e all'interno della Cintura di Gould. L'età dell'ammasso è stimata sui 50 milioni di anni circa e sue componenti più luminose appartengono alla classe spettrale B; a queste si aggiungono alcune stelle di classe A e F e diverse altre di classi inferiori, molte delle quali mostrano un eccesso di radiazione infrarossa a causa della presenza di densi dischi di polveri. Proprio per questa ragione, l'ammasso è stato oggetto di studi per trovare possibili indizi della formazione di pianeti, in particolare attorno alle stelle di classe spettrale A, dove sembra comune la formazione di giganti ghiacciati.

Un grado e mezzo a est si trova il molto più debole ammasso NGC 2250, piccolo e difficilmente riconoscibile a causa della sua scarsa concentrazione; strumenti da 150-200mm permettono di individuare una debole concentrazione di stelle di magnitudine 12 e 13 appena staccabili dai campi di fondo, racchiusa in un diametro di 10 minuti d’arco e dominata ad est da una stella bianca di magnitudine 8,7. È un oggetto molto poco studiato, di cui esiste una stima sulla distanza che lo indica a circa 5900 anni luce, mentre mancano misure sulla sua età.

Nei pressi della stella γ Monocerotis, una gigante arancione di magnitudine 3,99, si trova il sistema di nebulose a riflessione facente parte del complesso nebuloso di Monoceros R2. Utilizzando questa stella come riferimento, il complesso può essere osservato a partire da un grado di ovest; in particolare, proprio a 1° si ritrovano alcune nebulose a riflessione, catalogate come NGC 2185 e NGC 2183, che sono anche le più luminose della regione. Queste nubi possono essere osservate anche direttamente senza l’aiuto di filtri, grazie alla loro luminosità, con un telescopio amatoriale di media potenza; sebbene occorra un cielo molto buio e nonostante le piccole dimensioni delle nebulose, queste si rivelano come delle piccole macchie chiare che circondano delle stelle bluastro di decima e undicesima magnitudine. Circa un grado ad ovest di queste nubi si trova la parte centrale del complesso; qui si estendono altre nebulose a riflessione, più ampie delle precedenti, di sparse ad arco. La più meridionale è anche la più luminosa ed è catalogata come NGC 2170 (vDB 67); ad illuminarla vi è una stella blu di classe spettrale B di decima magnitudine. A nord, le altre due nubi, vdB 68 e vdB 69, sono illuminate da altrettante stelle di grande massa. Tutte queste nebulose sono osservabili con facilità e sono illuminate dalle stelle più massicce del complesso nebuloso, membri dell’associazione OB Monoceros R2. La caratteristica più notevole della regione è, come visto, un’ampia sequenza di nebulose a riflessio-
ne, estesa fino a due gradi sulla volta celeste; queste nebulose sono illuminate da un gruppo di stelle giovani e molto calde, di grande massa e di classe spettrale B e A, che costituiscono un'associazione stellare. La regione centrale del complesso nebuloso si trova in coincidenza delle nubi vdB 67 e vdB 69, in cui sono attivi dei fenomeni di formazione stellare. Le stelle dell'associazione sono in prevalenza di classe B, ossia stelle dal colore azzurro; la loro età si aggira sui 6-10 milioni di anni e rappresentano la generazione stellare più massiccia che abbia avuto luogo nella regione. Queste stelle illuminano le stesse nubi da cui si sono formate; infatti, data la loro giovane età, il loro vento stellare non ha ancora disperso i banchi di gas attorno ad esse. Le stelle dell'associazione Monoceros R2 si sono formate durante il primo ciclo di formazione stellare che ha interessato la regione, circa 6 milioni di anni fa; ad innescarla sarebbe stata una superbolla in espansione del diametro di diverse centinaia di anni luce. L'intero complesso dista sui 2700 anni luce circa.

La nebulosa più brillante, come visto, è NGC 2170, che può essere osservata con un telescopio da 150mm come un debole velo nebuloso attorno alle stelle principali della zona, di magnitudine 7, 9 e 10; nelle fotografie è invece molto ben evidente e costituisce un interessante soggetto ad alta risoluzione. La responsabile della sua illuminazione è BD-06 1415, una stella blu di classe spettrale B1, che conferisce alla nube un colore marcatamente azzurrognolo.

Poco a ovest si trova la nube NGC 2185, anch'essa alla portata di strumenti da 150mm o anche inferiori, se si ha una vista molto allenata; si mostra come un piccolo raggruppamento di nebulose apparentemente separate fra di loro e illuminate da alcune stelle di nona e decima magnitudine, al punto che la nube è stata catalogata come due oggetti separati: NGC 2185, la parte centro-orientale, e NGC 2183, la sezione nordoccidentale. La stella dominante, nonché la principale responsabile dell'illuminazione della sezione occidentale, è GSC 4795 829, una stella azzurra di classe spettrale B e di magnitudine 9,18; le stelle immerse nella sezione orientale (NGC 2185) sono meno appariscenti, ma anch'es elle della medesima classe, fra le quali spicca BD-06 1440. Tutte queste stelle conferiscono alla nube un colore marcatamente azzurrognolo.

La nebulosa vdB 69 è visibile poco a sud e molto vicina alla nube NGC 2170; la responsabile della sua illuminazione è BD-06 1418, una stella azzurra di classe spettrale B2.5V e magnitudine 9,68.

Le nebulose a riflessione costituiscono una piccolissima parte illuminata di un grande complesso nebuloso molecolare, ben percepibile nelle foto astronomiche molto sensibili alla luce e che evidenziano i campi stellari di fondo, tracciando una serie di sagome oscure in questa parte del cielo. Il cuore del complesso è costituito da quattro maggiori addensamenti, noti come LDN 1643, 1644, 1645 e 1646, le cui parti illuminate coincidono con le nubi a riflessione del catalogo van den Bergh. La massa totale del complesso si aggira sulle 90.000 masse
Non molto distante da questo complesso si osserva l'ammasso aperto **NGC 2215**, piccolo ma relativamente facile da individuare; la sua posizione si può rintracciare collegando le stelle β Monocerotis e γ Monoceroris, fermandosi a metà strada e spostandosi circa mezzo grado verso sud. Può essere notato anche con un telescopio da 80mm, dove appare come una macchia pallida di circa 6 minuti d'arco su cui brillano alcune deboli stelline; con uno strumento da 150mm l'ammasso è pienamente risolto in una trentina di stelle fino alla magnitudine 13. Si tratta di un ammasso relativamente piccolo e raccolto, con un diametro reale stimato sui 7 anni luce; le sue componenti comprendono alcune giganti rosse e diverse stelle bianche. L'età è stimata sui 700 milioni di anni basandosi su studi più recenti, mentre studi precedenti hanno indicato età via via inferiori. Anche la sua distanza è stata oggetto di dibattito, con stime che andavano dai 3000 ai 4200 anni luce e anche molto oltre; gli studi più recenti gli attribuiscono una distanza di 2600 anni luce, pur con alcune incertezze.

Sul confine col Cane Maggiore si osservano i numerosi ammassi e nebulose legati al complesso della Nebulosa Gabbiano. Poco a nord tuttavia spicca il famoso e brillante ammasso **M50**, che sebbene non sia il più brillante della costellazione, è l'unico oggetto catalogato qui dal Messier. Si individua in una zona povera di stelle brillanti, sebbene molto ricca di piccoli addensamenti stellari e minute nebulose; lo si può raggiungere circa 7 gradi a nord della stella γ Canis Majoris, a sua volta vicina a Sirio, o alternativamente, a circa 1/3 della distanza fra Sirio e Procione, partendo dalla prima. Un binocolo da 50mm di apertura è sufficiente per iniziare la risoluzione in stelle: si osservano una quindicina di componenti su un fondo che resta ancora nebuloso; la visione migliore si ha con piccoli telescopi amatoriali (da 90mm a 150mm), in cui si mostra completamente risolto, con una cinquantina di componenti comprese entro 10' di diametro. Con uno strumento da 150mm si se disposte in coppia. M50 si trova ad una distanza di circa 3000 anni luce dal Sole (le stime però non sono ancora precise); ha un diametro angolare di 15' x 20' e quindi alla distanza determinata dovrebbe avere una dimensione lineare di circa 18 anni luce, mentre la regione centrale ne misura solo 9. Si stima che M50 possieda all'incirca 200 componenti; la stella più luminosa è di tipo spettrale B8 o B6 a seconda delle fonti. Una bella caratteristica di questo ammasso è che a 7' a sud del centro si trova una gigante rossa di tipo M, che con il suo colore contrasta con le stelle bianche e azzurre nelle vicinanze; l'ammasso contiene anche alcune gigan-
ti gialle. L'età di M50 è stimata sui 78 milioni di anni. A nordovest di M50 si possono individuare alcune nebulose, che però risultano molto meglio osservabili in fotografia. Fra queste vi è **NGC 2313**, una piccola regione H II posta all'interno del Braccio di Orione; per lungo tempo la sua distanza non era nota con precisione, dato l'elevato tasso di errore nelle sue misurazioni: alcune stime la posizionano a circa 3050±1695 anni luce; uno studio del 2003 la colloca a circa 3300 anni luce, ossia nella stessa regione galattica in cui si trovano i grandi complessi nebulosi moleculari di Monoceros OB1 e Monoceros R2. La nube è illuminata e ionizzata dalla gigante blu HD 51477, una stella Be che oscilla fra le magnitudini 8,02 e 8,21, nota anche come V747 Monocerotis.

La nebulosa **vdB 87** si osserva nei dintorni ed è divisa in tre parti principali, catalogate come **vdB 87a, vdB 87b e vdB 87c**, illuminate da tre nane bianco-azzurre, una di classe spettrale B6V e le altre due di classe B1V; la principale, la responsabile dell'illuminazione di vdB 87c, è BD-08 1665, di magnitudine 11,15. La nube fa parte della regione di formazione stellare BFS64, una regione HII di dimensioni apparenti assai ridotte associata ad una nube molecolare gigante; in associazione a questa regione nebulosa vi sono pure l'oggetto stellare giovane CPM 33, due giovani e piccoli ammassi aperti fortemente oscurati, e una forte sorgente di radiazione infrarossa. La sua distanza è stimata invece sui 10.400 anni luce, dunque in una regione molto distante dalla maggior parte degli oggetti visibili nei dintorni.
Arturo, Spica e il Polo Galattico Nord
La Chioma di Berenice è una figura caratteristica delle sere stellate primaverili, facile da individuare nonostante non contenga stelle brillanti grazie al suo appariscente ammasso stellare, la cui forma a chioma ha conferito alla costellazione il medesimo nome.

Fra le costellazioni della Vergine e della Chioma di Berenice si estende l’ammasso di galassie più vicino alla Via Lattea; molte delle sue componenti sono osservabili anche con piccoli telescopi e persino con dei semplici binoculi, mentre con strumenti di grande diametro le galassie visibili diventano centinaia.

La parte orientale della costellazione della Vergine ospita alcuni gruppi di galassie di facile osservazione, sebbene spesso siano poco conosciuti e trascurati dagli appassionati; l’assenza di galassie di Messier e, al contrario, l’ingombrante presenza del globulare M5 contribuiscono a rendere più oscura questa piccola regione di cielo.

La quasi totale assenza di galassie di Messier a sudovest di Spica, assieme alla presenza delle numerose e brillanti galassie delle zone centrali dell’Ammasso della Vergine, fa spesso ritenere che le galassie osservabili nella Vergine meridionale siano relativamente meno interessanti, con le sole eccezioni di M104 (la Galassia Sombrero) e M83, visibile nell’Idra.
I mesi primaverili dell’emisfero nord portano a pochi gradi dallo zenit la Chioma di Berenice, una figura molto caratteristica grazie al suo ammasso stellare facilmente riconoscibile anche a occhio nudo. La costellazione tuttavia non è limitata a ciò, ma contiene anche diverse galassie relativamente facili e luminose, più tantissime altre raggruppate in ricchissimi ammassi.

CARATTERISTICHE

La Chioma di Berenice è una figura caratteristica delle serate stellate primaverili, facile da individuare nonostante non contenga stelle brillanti grazie al suo appariscenza ammasso stellare, la cui forma a chioma ha conferito alla costellazione il medesimo nome.

Osservando però oltre le stelle dell’ammasso aperto della Chioma (Mel 111), si evidenzia un gran numero di galassie in particolare verso nord e nei pressi della stella γ Comae Berenices; in massima parte si tratta di galassie facenti parte di un unico esteso ammasso di galassie, che prende il nome di Coma I, posto alla distanza media di circa 47 milioni di anni luce.

Una buona parte di queste galassie sono visibili anche con strumenti da 150-200mm di diametro se il cielo è propizio per l’osservazione degli oggetti deboli.

Molte altre galassie più o meno legate fisicamente al gruppo Coma I si osservano nei dintorni.

Andando più a nord, oltre i confini con la costellazione dei Cani da Caccia, appare un altro gruppo di galassie, più piccolo ma interessante perché ospita galassie più appariscenti: si tratta del Gruppo di NGC 4631, la cui componente dominante, da cui il gruppo prende il nome, è la famosa Galassia Balena, visibile anche con piccoli strumenti.

Alcuni gradi più ad est, non lontano dalla stella β Comae Berenices, si estende un ammasso di galassie particolarmente ricco e compatto, formato da oltre mille galassie membri accertate; la sua distanza è di circa 320 milioni di anni luce e pertanto molte delle sue componenti non sono a portata di telescopi di diametro più comune. Le sue galassie più brillanti, NGC 4874 e NGC 4889, sono delle ellittiche giganti.

Quest’ammasso, che prende il nome di “Ammasso della Chioma”, è però spettacolare in fotografia, dove mostra molte delle sue componenti racchiuse in un diametro di appena 3-4 gradi. Fotografie ottenute con più integrazioni e a campo relativamente largo permettono di delineare molto chiaramente la natura di diverse delle sue galassie membri.

Più a sud, i campi celesti al centro della costellazione contengono solo galassie sparse e apparentemente non raggruppate fra loro; fra queste spicca la famosa M64,
Entro pochi gradi dall’ammasso di stelle della Chioma si possono osservare alcuni ammassi di galassie, le cui componenti più appariscenti sono visibili anche con piccoli strumenti.
nota come Galassia Occhio Nero. Ancora più a sud, i grandi sistemi di galassie legati al famoso Ammasso della Vergine verranno descritti nella sezione successiva.

IL GRUPPO DI NGC 4631

La **Galassia Balena (NGC 4631)**, membro più appariscente del Gruppo di NGC 4631, formato da alcune galassie situate a 25 milioni di anni luce di distanza.

Oltre a questa, il gruppo è formato dalle galassie interagenti NGC 4656 e 4657, la galassia ellittica nana NGC 4627, compagna della Galassia Balena, e un numero di altre galassie estremamente variabile in base agli studi considerati; questa incertezza è data dal fatto che il gruppo si trova in una regione molto ricca di galassie facenti tutte parte dell’Ammasso della Vergine, per cui è molto difficile stabilire i confini di questo gruppo e dunque definirne le galassie membri. Le stime indicano un numero di galassie membri compreso fra appena 5 e ben 27.

Come visto, la galassia dominante del gruppo è **NGC 4631**, la celebre **Galassia Balena**, nota anche con la sigla del Catalogo Caldwell C32. La galassia è ben visibile anche in strumenti da 80-100mm come un fuso allungato e debolmente arcuato; strumenti di diametro superiore ai 250-300mm consentono di osservare delle bande di polveri oscure lungo il suo piano, nonché una sempre più evidente irregolarità nella sua forma. Si tratta di una galassia spirale vista di taglio con bracci molto ricchi di gas e stelle giovani, originatesi da un episodio di **starburst** causato dall’interazione con un’altra galassia. Gli intensi processi di formazione stellare sono ancora in atto e sono testimoniati dalle emissioni di idrogeno ionizzato e delle polveri riscaldate dalle giovani stelle formatesi nello **starburst**. Data la presenza di numerosissime stelle di grande massa, sul suo disco e anche nel nucleo si sono verificate diverse esplosioni di supernova, che hanno generato delle superbolle che stanno spingendo parte del gas interstellare fuori dal piano galattico; questo forte vento che sospinge i gas è evidente sia dalle emissioni di raggi X che dalle emissioni spettrali, mentre il gas spinto fuori dal piano galattico ha generato una grande e diffusa corona di gas attorno alla galassia, anch’essa evidente ai raggi X.

La Galassia Balena è accompagnata da una piccola galassia ellittica, catalogata come **NGC 4627** e visibile solo con strumenti di 150mm sotto un cielo molto buio; le due galassie sono in interazione fisica e sono state
infatti catalogate assieme nel catalogo di Arp della galassie peculiari.

A meno di un grado in direzione sudest si trova la galassia peculiare NGC 4656/7, formata apparentemente da due oggetti distinti ma in realtà formanti un’unica galassia, la cui natura di spirale barrata si mostra pesantemente deformata. A causa della sua forma curiosamente angolata, viene talvolta soprannominata “mazza da hockey”. È visibile anche con strumenti da 100-120mm di diametro, sebbene con qualche difficoltà a causa della sua bassa luminosità superficiale, dove appare come un piccolo fuso orientato in senso nordest-sudovest; la sua struttura ad angolo si evidenzia invece in strumenti da 200mm a salire, con l’aiuto della visione distolta.

IL GRUPPO COMA I

La parte settentrionale della Chioma di Berenice, attorno al suo famoso ammasso stellare, è occupata dal gruppo di galassie Coma I, la cui distanza media si aggira sui 47 milioni di anni luce.

Il gruppo Coma I è formato da 23 galassie riconosciute con maggiore sicurezza come membri, cui se ne aggiungono alcune decine minori o di dubbia appartenenza; il gruppo è particolarmente ricco di galassie a spirale specialmente barrate, mentre vi sono pochissime galassie ellittiche o lenticolari. Il membro più luminoso è la galassia NGC 4725, situata sul suo bordo orientale.

Coma I sembra essere suddiviso in due sottogruppi, dove il più ricco e densamente popolato è centrato sulle galassie NGC 4274 e NGC 4278, mentre il gruppo minore è quello che contiene NGC 4565 e la già citata NGC 4725. Tuttavia, secondo alcuni studiosi non ci sarebbe alcuna evidenza della presenza di due sotto-gruppi, ma semplicemente un leggero addensamento attorno a NGC 4274, mentre le altre galassie sarebbero uniformemente distribuite verso sudest rispetto a questo addensamento; le galassie inoltre tenderebbero a dispor-si lungo un orientamento preferenziale, una sorta di “barra” di circa 3x8 milioni di anni luce.

Coma I si sta muovendo nello spazio in direzione del grande Ammasso della Vergine.

Fra le galassie più facili da individuare appartenenti a questo gruppo vi è la NGC 4494, una delle pochissime galassie ellittiche di Coma I, la cui posizione è facilmente rintracciabile mezzo grado a ESE della stella 17 Comae Berenices, facente parte dell’ammasso aperto Mel 111. Può essere notata facilmente anche con un telescopio di 80mm di apertura sotto un cielo molto buio; il suo aspetto permane tuttavia indistinto, come spesso accade per le galassie ellittiche, anche con telescopi di diametro molto superiore, con cui si può al più rilevare il luminoso nucleo. Nonostante il suo aspetto apparentemente sferoidale che la fa collocare fra le galassie ellittiche, potrebbe anche trattarsi di una galassia lenticolare vista di faccia; al suo centro è presente un buco nero supermassiccio con una massa stimata di alcune decine di milioni di masse solari. Un anello di polveri con semiasse maggiore pari a 200 anni luce circonda il nucleo della galassia; la sua forma simmetrica lascia intendere che si sia generato a seguito della fusione con un’altra galassia molto ricca di gas interstellare.

Circa un grado a ENE di questa galassia, dunque 2,5 gradi a sudest di γ Comae Berenices, si trova la brillante NGC 4565 (nota anche come C38), una galassia spirale vista perfettamente di taglio il cui aspetto allungato le è valso il soprannome di Galassia Ago; è individuabile anche con piccoli strumenti, seppur con qualche difficoltà, mentre è ben visibile con un telescopio di 150mm di diametro.
di diametro. Con telescopi dai 200mm in su è evidente con facilità la banda scura che l’attraversa. Nelle foto o con strumenti di grande diametro si nota facilmente una banda scura che l’attraversa in senso longitudinale. Questa galassia è più luminosa della Galassia di Andromeda, in termini assoluti; la natura del suo bulge centrale è oggetto di dibattito, essendo di difficile studio a causa dell’angolo di posizione con cui è visibile: sembrerebbe infatti, data la sua forma e le rivelazioni effettuate con telescopio Spitzer, che sia presente una barra centrale, che di fatto renderebbero questa galassia una spirale barrata; è tuttavia presente anche uno “pseudobulge”, ossia un bulge simile a un disco in cui le stelle non mostrano orbite casuali ma in modo ordinato, sullo stesso piano delle stelle del disco. NGC 4565 possiede almeno due galassie satelliti, di cui una è in fase di interazione; la sua popolazione di ammassi globulari consiste di circa 240 oggetti, dunque più di quelli della Via Lattea. La sua distanza dalla Via Lattea è stimata sui 52 milioni di anni luce, simile a quella della maggior parte delle galassie di Coma I.

Un’altra galassia molto luminosa è **NGC 4559** (nota anche con la sigla di Caldwell C36), visibile con facilità due gradi a nord della precedente, o volendo anche due gradi ad est della stella γ Comae Berenices; è ben visibile anche con un potente binocolo, come un 20x80, dove appare come una chiazza chiara allungata ma senza dettagli; la vista diventa interessante con un telescopio da 200mm di apertura, nel quale si potrà distinguere il nucleo e un alone chiaro. Sembra non far parte di alcun gruppo di galassie vicine, trovandosi in posizione intermedia tra quello di NGC 4631, più prossimo a noi, e quello di NGC 4565. Questa galassia appartiene alla classe morfologica SAB(rs)cd, ossia a una classe intermedia fra le spirali semplici e quelle barrate, mentre rs sta a indicare che i bracci più interni formano una struttura ad anello che circonda il nucleo; cd indica che i bracci tendono ad essere molto aperti nelle regioni periferiche. NGC 4559 è una galassia di notevoli dimensioni reali, con un diametro di circa 100.000 anni luce, simile dunque a quello della Via Lattea; la sua massa sarebbe però inferiore, essendo probabilmente di circa 40 miliardi di masse solari; i suoi bracci di spirale presentano diverse regioni H II, segno che sono attivi processi di formazione stellare molto diffusi. Fra i bracci sono state osservate anche alcune supernovae, la più importante delle quali, nel 1941, raggiunse la magnitudine 13.

L’estremità orientale del Gruppo Coma I è segnata dalla grande galassia **NGC 4725**, una delle più brillanti della Chioma di Berenice; si individua cinque gradi a sud-ovest della stella γ Comae Berenices, o circa tre gradi ad est di NGC 4565; si tratta di una galassia spirale barrata, di notevoli dimensioni reali: sarebbe grande oltre il doppietto della Via Lattea e sembra superiore in grandezza pure la Galassia di Andromeda. Per individuarla in cielo è sufficiente un binocolo 11x80, nel quale si presenta come una chiazza allungata in senso nordest-sudovest; un piccolo telescopio consente di notare, ai lati estremi, due formazioni simili a "parentesi", fra le quali si trova il nucleo, molto brillante. Questa galassia è una spirale barrata di grandi dimensioni e possiede una struttura ad anello prominentemente all’interno del suo disco; si tratta anche di una galassia di Seyfert, con un nucleo attivo, al cui centro si trova un buco nero supermassiccio. La sua distanza è stimata attorno ai 40 milioni di anni luce. Ad appena mezzo grado a nordest di quest’ultima si trova la ben meno appariscente **NGC 4747**, una galassia spirale barrata vista di taglio; a differenza delle precedenti, può essere notata solo con strumenti di grande diametro, possibilmente dai 200mm a salire anche a causa della bassa luminosità superficiale. Le sue dimensioni reali sono circa la metà di quelle della Via Lattea, mentre la sua distanza è stimata sui 53 milioni di anni luce. Le sue regioni centrali appaiono attraversate da alcune bande scure e di aspetto irregolari ed è riportata anche nel catalogo di Arp delle galassie peculiari per via delle sue particolarità morfologiche.
Una galassia un po’ più debole si trova a circa mezzo grado a nordest della stella γ Comae Berenices, ed è la NGC 4448: può essere notata con qualche difficoltà con uno strumento da 200mm sotto un buon cielo ed è una spirale barrata con un nucleo piccolo ma molto più luminoso rispetto al suo disco, che è formato da bracci piuttosto esili e di aspetto flocculento. Il nucleo è l’unica caratteristica effettivamente osservabile coi telescopi di grande diametro più comuni.

La regione più densamente popolata del Gruppo Coma I si estende a circa 2-4 gradi dalla stella γ Comae Berenices; la galassia più orientale in questa direzione è NGC 4314, una spirale barrata alla portata di strumenti da 120mm, con cui appare come una macchia allungata della grandezza di circa tre minuti d’arco, su cui domina un nucleo ben più appariscente e di aspetto quasistellare. Il suo disco formato dai bracci è invece osservabile con strumenti di grande diametro. La caratteristica più notevole di questa galassia è la presenza di una grande struttura ad anello che attraversa i suoi bracci di spirale, in cui è avvenuta da qualche milione di anni una vivace attività di formazione stellare, con la presenza di un grande numero di stelle giovani e massicce circondate da grandi campi di nubi ionizzate. La sua distanza è stimata sui 40 milioni di anni luce, sebbene un po’ meno sfuggente della galassia appena descritta. È tuttavia alla portata di strumenti da 120mm, con cui appare come un’ellisse allungata rozzamente in senso est-ovest, con un nucleo leggermente più appariscente e lenticolare; con telescopi da 200mm si può notare maggiormente l’alone luminoso. Alla distanza di 45 milioni di anni luce, le sue dimensioni corrispondono a dimensioni reali simili a quelle della Via Lattea. I suoi due bracci maggiori esterni si sovrappongono formando così una struttura marcatamente ad anello, mentre il nucleo sembra attraversato da una struttura a barra che si dispone perpendicolarmente alla barra principale della galassia, dalle cui estremità si dipartono i bracci esterni.

Più debole appare la vicina NGC 4245, visibile appena mezzo grado ad ovest; questa galassia di morfologia lenticolare si individua con più difficoltà attraverso uno strumento da 120mm, mentre è decisamente più chiara con aperture leggermente maggiori. Appare in visione distolta come una piccola stellina sfuocata dai margini un po’ sfumati e di magnitudine circa 12, mentre il suo alone non è facilmente definibile e identificabile. La sua
struttura lenticolare non le impedisce di possedere comunque una barra centrale, da cui tuttavia non sembra-no dipartirsi dei chiari bracci di spirale.

In posizione più defilata, circa tre gradi a nord di γ Comae Berenices e sul confine coi Cani da Caccia, si trova NGC 4414, una galassia spirale visibile anche con telescopi da 100-120mm di diametro grazie alla sua elevata luminosità superficiale; appare con facilità con questi strumenti come una macchia chiara di forma ovale con al centro un nucleo quasi puntiforme e di aspetto stellare. Con strumenti di diametro maggiore questa galassia è molto più definita e chiara, con un nucleo ben visibile e brillante. Si tratta di una galassia spirale di tipo flocculento, ossia con numerosi segmenti di bracci molto corti e ramificati senza che però vadano a formare delle strutture maggiori ben definite; al loro interno sono attivi diversi processi di formazione stellare, in particolare procedendo verso le regioni più esterne. Si trova anche fisicamente in posizione defilata rispetto alle altre galassie del gruppo Coma I e nonostante non presenti alcun segno di passate interazioni con altre galassie e non si tratti di una galassia starburst, i fenomeni di formazione stellare sono comunque ben attivi. La sua distanza è pari a 62 milioni di anni luce.

Ancora più lontana e isolata si trova la galassia NGC 4203, di morfologia lenticolare e visibile circa 5,5 gradi a nordovest di γ Comae Berenices, nei pressi della stella arancione di magnitudine 5,0 nota come HD 106760. Può essere notata anche con telescopi da 120mm, ma con qualche difficoltà, con cui appare come una piccola macchia molto sfocata e poco distaccata dal fondo cielo. Secondo le stime sulla sua distanza, che la indicano come posta a 27 milioni di anni luce, è decisamente uno dei membri più vicini di Coma I, ma anche una delle più piccole, avendo un diametro di circa 30.000 anni luce, equivalente a meno di un terzo di quello della Via Lattea. Possiede un nucleo molto piccolo e dei bracci esili ma ben sviluppati.

A meno di un grado a nord si trova una galassia che viene ritenuta un possibile membro del Gruppo Coma I, seppur con qualche dubbio; si tratta di NGC 4150, una galassia considerata di morfologia ellittica o lenticolare, piuttosto compatta ma comunque abbastanza apparente da poter essere notata anche con strumenti da 120mm come una sorta di debole stellina leggermente fuori fuoco. La sua distanza pari a 45 milioni di anni luce la rende compatibile con la distanza media delle altre galassie del gruppo; possiede un alone esteso ma debole, che diventa progressivamente più luminoso verso il nucleo, il quale però non appare ben definito specie con strumenti non molto grandi. Attorno al nucleo si estendono diverse venature oscure di gas e polveri.

GRUPPI E GALASSIE ISOLATI

L’area di cielo fra la Chioma di Berenice e i Cani da Caccia appare molto ricca di galassie di fondo, ma spesso sono piuttosto deboli, anche a causa della loro grande distanza oppure perché piccole e con una bassa luminosità superficiale. Tuttavia vi sono alcune galassie che possono essere facilmente individuate anche con gli strumenti più comuni in mano agli appassionati.

La galassia più vicina in questa direzione si trova poco
oltre il confine coi Cani da Caccia, circa 5 gradi a nord di γ Comae Berenices, ed è la NGC 4395; la sua bassa luminosità superficiale la rende un oggetto sfuggente con piccoli strumenti, sebbene le sue dimensioni apparenti siano notevoli, dell’ordine degli 8 minuti d’arco. Si tratta di una galassia spirale con dei bracci molto aperti, in cui sono attivi forti ed estesi fenomeni di formazione stellare, testimoniati dalla grande abbondanza di stelle giovani e calde; spesso queste regioni densamente popolate formano degli estesi ammassi molto appariscenti circondati da estese nebulosità, tanto che all’epoca di compilazione del New General Catalogue ricevettero delle loro proprie designazioni indipendenti, quali NGC 4399, 4400 e 4401, da ovest verso est. Anche il suo nucleo ha delle caratteristiche peculiari: è infatti attivo e ciò rende NGC 4395 una galassia di Seyfert; contiene un buco nero supermassiccio fra i più piccoli conosciuti con una massa stimata con una certa accuratezza, pari a circa 300.000 masse solari. La distanza di questa galassia si aggira sui 14 milioni di anni luce.

Una galassia più difficile da individuare a causa della sua grande distanza è la NGC 4104, interessante però perché costituisce il membro più importante di un gruppo di galassie situato a ben 120 milioni di anni luce di...
La galassia ellittica gigante NGC 4889, nota anche come Coma B, è la galassia più grande dell’Ammasso della Chioma.

L’AMMASO DELLA CHIOMA

Pochi gradi a ovest della stella β Comae Berenices, in prossimità del polo nord galattico, si estende il grande Ammasso della Chioma, un ricchissimo ammasso di galassie situato alla distanza media di circa 350 milioni di anni luce e noto anche con la sigla Abell 1656; esso conta oltre mille galassie maggiori, più altrettante galassie minori e forse anche oltre. Assieme all’Ammasso del Leone (Abell 1367) formano i due addensamenti maggiori del Superammasso della Chioma, che a sua volta costituisce la parte centrale della Grande Muraglia e una parte del Filamento della Chioma.

Il Superammasso della Chioma è il superammasso di galassie più vicino al Superammasso della Vergine, di cui anche la Via Lattea fa parte, pur trovandosi in una sua zona periferica.

L’Ammasso della Chioma possiede una massa di ben 4x10^15 masse solari e appare dominato da due galassie ellittiche giganti, che a loro volta sono al centro dei suoi due sottogruppi principali. Il sottogruppo A in particolare è centrato sulla galassia NGC 4889 (nota anche con la sigla C35 o anche come Coma B), visibile a ovest di β Comae Berenices. Si tratta di un’ellittica gigante di classe E4 visibile solo con telescopi da almeno 120mm di diametro; data la sua posizione centrale all’interno del suo ammasso di galassie, con telescopi di grande diametro si possono osservare nelle immediate vicinanze anche altre galassie. Situata a 310 milioni di anni luce di distanza, NGC 4889 contiene un buco nero supermassiccio con una massa di 10 miliardi di masse solari. Questa galassia è probabilmente la più grande e la più massiccia fra quelle situate entro un diametro di 100 megaparsec (326 milioni di anni luce) dalla Via Lattea: il suo diametro apparente di circa 6 minuti d’arco corrisponde a un diametro reale di 240.000 anni luce, mentre il suo alone si estende fino a quasi 18 minuti d’arco, circa metà del diametro apparente della Luna piena, che corrisponde a un diametro reale di ben 1,3 milioni di anni luce. Date queste enormi dimensioni, NGC 4889 è anche estremamente massiccia, con stime sulla sua massa che arrivano a indicare anche valori attorno ai 15 mila miliardi di masse solari, ma potrebbe anche essere ben superiore a questa stima a causa della massa non espressa in stelle. Galassie così grandi si ritiene che siano il risultato di numerose fusioni fra galassie più piccole all’interno di ammassi di galassie; oggi non restano che tracce del materiale interstellare che in origine costituiva le nebulose da cui le stelle si sono formate, così questa galassia è dominata da stelle vecchie di popolazione II, che percorrono orbite casuali in tutte le angolazioni possibili, le quali conferiscono l’aspetto sferico o ovoidale a questa (come anche ad altre) galassia ellittica gigante.

La vicina NGC 4874, visibile poco a ovest, domina invece il sottogruppo B dell’Ammasso della Chioma, che si presenta apparentemente un po’ più ricco dell’altro sottogruppo. Si tratta di un’altra ellittica gigante, nota anche come Coma A, che appare però un po’ meno appariscente e visibile solo con telescopi di almeno 150mm di diametro. Benché sia più piccola della precedente, i suoi numeri sono pure assai notevoli: possiede infatti un alone che arriva a un milione di anni luce di diametro e si ritiene che possieda poco meno di 20.000 ammassi globulari, ossia cento volte più della Via Lattea.

A sudovest del centro dell’ammasso si estende una rami ficazione con diverse galassie deboli, che appaiono dominate dalla ellittica NGC 4839, di tipo E5 e visibile con strumenti da 150mm come una stella sfuocata e allungata in senso nordest-sudovest. È anch’essa uno dei membri più importanti dell’ammasso ed è una radiogalassia.
L’area di cielo al confine fra la Vergine e la Chioma di Berenice, molto alta nel cielo serale di primavera, è dominata dal grande Ammasso di galassie della Vergine. Le sue dimensioni apparenti sono notevoli e contiene diverse decine di galassie visibili anche con strumenti di piccolo diametro. Alcune di queste galassie sono state scoperte già da alcuni secoli e sono state incluse anche nel Catalogo di Messier.

In questa sezione verranno descritte sia galassie effettivamente appartenenti all’ammasso, sia galassie apparscenti di fondo visibili nella stessa direzione.

CARATTERISTICHE

Fra le costellazioni della Vergine e della Chioma di Berenice si estende l’ammasso di galassie più vicino alla Via Lattea; molte delle sue componenti sono osservabili anche con piccoli telescopi e persino con dei semplici binocoli, mentre con strumenti di grande diametro le galassie visibili diventano centinaia. La regione di cielo in cui si trova l’ammasso è rintracciabile con facilità a metà della linea che congiunge le stelle β Leonis (Denebola) e ε Virginis (Vindemiatrix), entrambe a loro volta molto facili da riconoscere essendo fra le più luminose di quest’area di cielo.

Uno strumento da 120mm è sufficiente a mostrare con grande chiarezza l’allineamento di galassie che forma il gruppo più luminoso dell’intero ammasso, che prende il nome di Catena di Markarian; dominata da due grandi galassie ellittiche incluse nel Catalogo di Messier (M84 e M86) e visibili anche con un binocolo, la Catena di Markarian consta di sette galassie principali più diverse altre minori visibili nei paraggi.

Con un telescopio da 200mm è possibile osservare fra Vergine e Chioma di Berenice oltre un centinaio di galassie; avendo a disposizione un Dobson, è sufficiente spostarsi alla cieca in questa direzione per trovare e osservare galassie via via sempre diverse, più o meno apparscenti.

Per chi è dotato di strumentazione fotografica, la ripresa a piccolo campo dà grandi soddisfazioni non solo sulla Catena di Markarian ma in tutta la zona descritta da questa sezione; le galassie visibili diventano centinaia

STELLE PRINCIPALI DELLA REGIONE

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>β Leo</td>
<td>Denebola</td>
<td>11h 49m 04s</td>
<td>+14° 34' 20"</td>
<td>2.14</td>
<td>36</td>
<td>bianco</td>
</tr>
<tr>
<td>ε Vir</td>
<td>Vindemiatrix</td>
<td>13h 02m 11s</td>
<td>+10° 57' 33"</td>
<td>2.85</td>
<td>102</td>
<td>giallo</td>
</tr>
<tr>
<td>δ Vir</td>
<td>Minelauva</td>
<td>12h 55m 36s</td>
<td>+03° 23' 51"</td>
<td>3.39</td>
<td>202</td>
<td>rosso</td>
</tr>
<tr>
<td>β Vir</td>
<td>Zavijava</td>
<td>11h 50m 41s</td>
<td>+01° 45' 55"</td>
<td>3.59</td>
<td>36</td>
<td>giallo</td>
</tr>
<tr>
<td>v Vir</td>
<td></td>
<td>12h 45m 52s</td>
<td>+06° 31' 47"</td>
<td>4.04</td>
<td>313</td>
<td>rosso</td>
</tr>
<tr>
<td>o Vir</td>
<td></td>
<td>12h 05m 13s</td>
<td>+08° 43' 58"</td>
<td>4.12</td>
<td>171</td>
<td>giallo</td>
</tr>
<tr>
<td>α Com</td>
<td>Diadem</td>
<td>13h 10m 00s</td>
<td>+17° 31' 45"</td>
<td>4.32</td>
<td>47</td>
<td>giallo</td>
</tr>
<tr>
<td>π Vir</td>
<td></td>
<td>12h 00m 52s</td>
<td>+06° 36' 52"</td>
<td>4.65</td>
<td>356</td>
<td>bianco</td>
</tr>
</tbody>
</table>

DETTAGLI

<table>
<thead>
<tr>
<th>Costellazioni</th>
<th>Vergine, Chioma di Berenice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascensione Retta (media)</td>
<td>12h 30’</td>
</tr>
<tr>
<td>Declinazione (media)</td>
<td>+12°</td>
</tr>
<tr>
<td>Tipo</td>
<td>Campi ricchi di galassie</td>
</tr>
<tr>
<td>Oggetti</td>
<td>Galassie e ammassi di galassie</td>
</tr>
</tbody>
</table>

205
La parte settentrionale della Vergine ospita il più grande assemblaggio di galassie dell’universo volta celeste.
PRINCIPALI OGGETTI NON STELLARI
Sigla

Nome

PRINCIPALI OGGETTI NON STELLARI
Sigla

NGC 4037 12h 01m 24s +13° 24’ 02” Gal

12,0 2,4

NGC 4377 21h 25m 12s +14° 45’ 44” Gal

11,7 1,7

NGC 4067 12h 04m 12s +10° 51’ 16” Gal

12,5 1,3

NGC 4378 12h 25m 18s +04° 55’ 31” Gal

11,7 2,9

NGC 4124 12h 08m 10s +10° 22’ 44” Gal

11,3 4,3

NGC 4379 12h 25m 15s +15° 36’ 27” Gal

11,6 2,9

NGC 4168 12h 12m 17s +13° 12’ 16” Gal

11,2 2,8

NGC 4380 12h 25m 22s +10° 01’ 01” Gal

11,9 3,5

NGC 4178 12h 12m 46s +10° 51’ 51” Gal

11,3 5,0

M85

Gal

10,0 7,1

M98

Gal

11,0 9,8

NGC 4383 12h 25m 26s +16° 28’ 12” Gal

12,1 2,0

NGC 4189 12h 13m 47s +13° 25’ 29” Gal

11,8 2,5

NGC 4387 12h 25m 42s +12° 48’ 38” Gal

12,0 1,7

NGC 4193 12h 13m 53s +13° 10’ 22” Gal

12,4 2,2

NGC 4388 12h 25m 47s +12° 39’ 44” Gal

11,0 5,6

NGC 4206 12h 15m 17s +13° 01’ 22” Gal

12,0 6,4

NGC 4394 12h 25m 56s +18° 12’ 51” Gal

10,9 3,4

NGC 4208 12h 15m 39s +13° 54’ 07” Gal

11,1 3,2

NGC 4402 12h 26m 08s +13° 06’ 48” Gal

11,8 3,9

NGC 4215 12h 15m 55s +06° 24’ 03” Gal

11,4 1,8

NGC 4405 12h 26m 07s +16° 10’ 52” Gal

12,2 1,6

NGC 4216 12h 15m 54s +13° 08’ 52” Gal

10,3 8,1

M86

9,8

NGC 4223 12h 17m 26s +06° 41’ 22” Gal

12,1 2,5

NGC 4407 12h 26m 32s +12° 36’ 40” Gal

11,9 2,3

NGC 4224 12h 16m 34s +07° 27’ 44” Gal

12,0 2,5

NGC 4412 12h 26m 36s +03° 57’ 53” Gal

12,4 1,4

NGC 4233 12h 17m 08s +07 37’ 27”

Gal

12,0 2,4

NGC 4416 12h 26m 47s +07° 55’ 08” Gal

12,3 1,7

NGC 4235 12h 17m 10s +07° 11’ 27” Gal

11,7 4,2

NGC 4417 12h 26m 51s +09° 35’ 03” Gal

11,1 3,3

NGC 4237 12h 17m 11s +15° 19’ 24” Gal

11,8 2,1

NGC 4419 12h 26m 56s +15° 02’ 51” Gal

11,2 3,3

M99

Gal

10,4 5,4

NGC 4421 12h 27m 03s +15° 27’ 41” Gal

11,5 2,7

NGC 4260 12h 19m 22s +06° 05’ 54” Gal

11,8 2,7

NGC 4424 12h 27m 12s +09° 25’ 14” Gal

11,4 3,5

NGC 4261 12h 19m 23s +05° 49′ 30″ Gal

10,5 4,1

NGC 4425 12h 27m 13s +12° 44’ 05” Gal

11,9 2,8

NGC 4262 12h 19m 31s +05° 49’ 28” Gal

11,5 1,8

PGC 40819 12h 27m 14s +14° 17’ 24” Gal

11,6 0,5

NGC 4267 12h 19m 45s +05° 32’ 17” Gal

10,8 3,0

NGC 4429 12h 27m 27s +11° 06′ 26″ Gal

10,2 5,6

NGC 4270 12h 19m 49s +05° 27’ 48” Gal

12,1 2,0

NGC 4430 12h 27m 26s +06° 15’ 46” Gal

11,8 2,3

NGC 4273 12h 19m 56s +05° 20’ 37” Gal

11,7 2,3

NGC 4434 12h 27m 37s +08° 09’ 16” Gal

11,9 1,4

NGC 4281 12h 20m 22s +05° 23’ 11” Gal

11,4 3,0

NGC 4435 12h 27m 40s +13° 04’ 47” Gal

10,8 3,0

NGC 4292 12h 21m 16s +04° 25’ 36” Gal

12,2 1,6

NGC 4438 12h 27m 46s +13° 00′ 31″ Gal

10,0 8,5

NGC 4293 12h 21m 12s +18° 23′ :

Gal

10,5 5,6

NGC 4440 12h 27m 56s +12° 17’ 36” Gal

11,9 1,8

NGC 4294 12h 21m 18s +11° 30’ 35” Gal

11,8 3,2

NGC 4442 12h 28m 04s +09° 48′ 14″ Gal

10,4 4,6

NGC 4298 12h 21m 33s +14° 36’ 24” Gal

11,4 3,2

NGC 4450 12h 28m 30s +17° 05′ :

Gal

10,3 5,2

NGC 4302 12h 21m 42s +14° 35’ 54” Gal

11,9 5,3

NGC 4451 12h 28m 41s +09° 15’ 32” Gal

12,6 1,5

M61

9,0

NGC 4452 12h 28m 43s +11° 45’ 18” Gal

11,9 2,7

12h 13m 48s +14° 54′ :

12h 18m 50s +14° 25′ :

12h 21m 55s +04° 28′ 25″ Gal

6,0

(NGC 4119)

(NGC 4212)

12h 25m 24s +18° 11′ :

12h 26m 12s +12° 56′ 46″ Gal

8,9

NGC 4307 12h 22m 05s +09° 02’ 31” Gal

12,1 3,5

IC 3392

12h 28m 43s +14° 59’ 58” Gal

12,2 1,7

NGC 4312 12h 22m 31s +15° 32’ 17” Gal

11,8 4,6

NGC 4457 12h 28m 59s +03° 34’ 14” Gal

10,8 2,6

NGC 4313 12h 22m 38s +11° 48’ 04” Gal

12,0 3,8

NGC 4458 12h 28m 58s +13° 14’ 31” Gal

11,8 1,4

M100

Gal

10,1 7,4

NGC 4459 12h 29m 00s +13° 59′ :

Gal

10,4 3,8

NGC 4324 12h 23m 06s +05° 15’ 00” Gal

11,6 2,9

NGC 4461 12h 29m 03s +13° 11’ 02” Gal

11,1 3,4

NGC 4339 12h 23m 35s +06° 04’ 55” Gal

11,3 1,9

NGC 4464 12h 29m 21s +08° 09’ 24” Gal

12,5 0,8

NGC 4340 12h 23m 35s +16° 43’ 22” Gal

11,3 3,0

NGC 4469 12h 29m 28s +08° 44’ 59” Gal

11,5 3,8

NGC 4342 12h 23m 39s +07° 03’ 16” Gal

12,2 1,2

NGC 4470 12h 29m 38s +07° 49’ 27” Gal

12,2 1,3

NGC 4343 12h 23m 39s +06° 57’ 16” Gal

12,4 2,3

M49

8,4

NGC 4344 12h 23m 38s +17° 32’ 30” Gal

12,4 1,7

NGC 4473 12h 29m 48s +13° 26′ :

Gal

10,1 4,5

NGC 4350 12h 23m 58s +16° 41’ 36” Gal

11,0 2,9

NGC 4474 12h 29m 54s +14° 04’ 07” Gal

11,5 2,5

NGC 4365 12h 24m 28s +07° 19′ 03″ Gal

9,6

NGC 4476 12h 29m 59s +12° 20’ 55” Gal

12,2 1,8

NGC 4371 12h 24m 55s +11° 42’ 15” Gal

11,0 4,0

NGC 4477 12h 30m 00s +13° 38′ :

Gal

10,4 3,8

M84

10,1 6,5

NGC 4478 12h 30m 17s +12° 19’ 43” Gal

11,4 1,8

208

12h 22m 55s +15° 49′ :

12h 25m 04s +12° 53′ 13″ Gal

6,9

12h 29m 47s +08° 00′ 02″ Gal

Nome

8,9

(NGC 4413)

(NGC 4443)


La Catena di Markarian domina l’Ammasso della Vergine ed è osservabile anche con comuni telescopi.
LA CATENA DI MARKARIAN

La Catena di Markarian è una brillante striscia di galassie che costituisce parte dell'Ammasso della Vergine. È chiamata “catena” per il fatto che, le sue galassie più brillanti si dispongono lungo una linea vagamente incurvata. Il suo nome è riferito all’astrofisico armeno B. E. Markarian, che scoprì il loro moto comune nei primi anni sessanta.

Almeno sette galassie della Catena di Markarian si muovono apparentemente in modo coerente, sebbene altre appaiano sovrapporsi del tutto casualmente. La distanza media di gran parte delle componenti è di circa 60 milioni di anni luce.

M84 costituisce il bordo occidentale della Catena di Markarian. È una galassia lenticolare visibile nella costellazione della Vergine; fa coppia con la vicina galassia M86, con cui condivide pure l’aspetto e la maggior parte delle caratteristiche fisiche. Si trova in una regione di cielo priva di stelle di riferimento, fra le costellazioni della Vergine e della Chioma di Berenice; si può individuare quasi a metà via partendo dalla stella Denebola e raggiungendo Vindemiatrix. Al binocolo non è osservabile, se non in casi di cieli perfettamente nitidi e in condizioni atmosferiche ottimali. L’alone diventa ben visibile con strumenti da 200mm di apertura, in cui si mostra come una macchia chiara che sfuma gradualmente sul fondo cielo; il nucleo appare invece brillante. Nei dintorni è possibile osservare anche numerose altre galassie, come NGC 4388 e NGC 4402. M84 e si trova estremamente vicina al centro dell'Ammasso della Vergine, alla distanza di circa 60 milioni di anni luce da noi; secondo la sequenza di Hubble M84 è di classe S0, ossia una galassia lenticolare, peraltro vista di faccia, a metà via fra le spirali e le ellittiche. Nel 1957 è stato scoperto che emette onde radio e mostra due piccoli getti che fuoriescono dalle regioni centrali, visibili appunto alla lunghezza d’onda delle onde radio; la sua massa è stimata sui 500 miliardi di masse solari e il suo diametro è stimato essere di 125.000 anni luce. La galassia possiede un gran numero di ammassi globulari. Osservazioni radio del telescopio spaziale Hubble hanno rivelato che due getti di materia vengono lanciati dall’esterno della galassia verso il centro, indicando la presenza di un grande buco nero di circa 300 milioni di masse solari.

A breve distanza verso est si trova M86, una galassia lenticolare che al binocolo è di difficile osservazione; con un telescopio da 200mm di diametro può intravedere l’alone, che appare come una macchia chiara attorno al nucleo che gradualmente sfuma verso il fondo cielo. La distanza di questa galassia è stata in dubbio per lungo tempo, dato che mostra una velocità radiale in avvicinamento a noi di 419 km/s, in forte contrasto con quello medio dell’Ammasso della Vergine, che è in via di allontanamento: si è infatti sospettato che si trattasse di un membro fuoriuscito dall’ammasso e visibile dunque in primo piano; il suo moto nello spazio la sta portando esattamente nella nostra direzione. Probabilmente ciò è dovuto alla forte azione gravitazionale dello stesso ammasso di galassie, che le avrebbe conferito una direzione anomala a seguito di un transito ravvicinato presso il suo centro. Secondo la sequenza di Hubble si tratta di una galassia ellittica o probabilmente lenticolare, esattamente come la vicina M84, con la quale condivide pure la caratteristica di possedere un gran numero di ammassi globulari.

Una terza galassia visibile a sud forma con le due precedenti un famoso terzetto: si tratta di NGC 4388, una galassia spirale vista quasi perfettamente di taglio e dunque visibile come un fuso chiaro; può essere notata...
anche con strumenti da 100mm, sebbene non siano evidentemente dettagli di rilievo. Si tratta di una galassia attiva la cui distanza è compatibile con l’appartenenza all’Ammasso della Vergine e pertanto si troverebbe anche fisicamente non molto distante dalla coppia di ellittiche appena descritta.

Una quarta galassia molto meno appariscente si trova esattamente al centro del triangolo definito dalle tre precedenti galassie; si tratta di NGC 4387, di morfologia ellittica, la cui minore luminosità e le ridotte dimensioni la rendono visibile solo con strumenti di diametro maggiore di 150mm, sotto buone condizioni osservative. Alcune stime sulla sua distanza la collocano a metà strada fra la Via Lattea e le altre tre.

Poco a nord di M86 si trova NGC 4402, una galassia spirale vista di taglio; con strumenti da 120mm è osservabile con difficoltà come un piccolo fuso chiaro allungato in senso est-ovest, leggermente più luminoso al centro ma senza evidenziare un nucleo chiaro. Questa galassia è attraversata da un denso banco di polveri oscure, che ne mascherano la regione centrale; si trova a circa 50 milioni di anni luce di distanza e si ritiene che sia entrando in interazione con le galassie dell’Ammasso della Vergine.

Proseguendo lungo la catena verso est si trova NGC 4435 e NGC 4438, in interazione fisica fra loro e note anche con la sigla Arp 120.

NGC 4438 è la più notevole delle due; si tratta di una galassia lenticolare con alcune peculiarità, visibile con facilità anche con un telescopio da 80mm di diametro. NGC 4438 è la più curiosa galassia interagente di tutto l’Ammasso della Vergine a causa dell’incertezza sul meccanismo di energia che riscalda la fonte nucleare: questo può essere una regione di starburst o un buco nero che rende attivo il nucleo galattico; entrambe le ipotesi sono ancora oggetto di indagine. Questa galassia si presenta con un disco altamente distorto con lunghe code mcareali a causa di interazioni con altre galassie. Essa mostra un considerevole deficit di idrogeno neutro e uno spostamento dei componenti del suo mezzo interstellare (idrogeno atomico, idrogeno molecolare, polvere interstellare, gas caldo). NGC 4438 si muove ad alta velocità all’interno dell’ammasso della Vergine.

NGC 4435 è invece una galassia lenticolare situata a soli 100.000 anni luce di distanza dalla precedente; anche questa è visibile con strumenti da 80-100mm di diametro, sebbene sia un pochino meno appariscente della precedente.

Proseguendo verso nordest, un altro punto della catena è formato dalla coppia di galassie NGC 4461 e NGC 4458, che in cielo si trovano vicine anche fisicamente, essendo entrambe attorno ai 50 milioni di anni luce di distanza.

NGC 4461 è la più appariscente delle due; può essere individuata con strumenti da 120mm come un fuso orientato in senso NNE-SSW, più luminoso al centro. Si tratta di una galassia lenticolare, mentre la compagna NGC 4458 è una galassia ellittica più piccola ma con il centro un buco nero supermassiccio con una massa pari a 200 milioni di masse solari; visibile con molta difficoltà con strumenti da 120mm, è decisamente più appariscente in un 150mm.

A breve distanza verso nordest c’è NGC 4473, uno dei membri più brillanti della Catena di Markarian. Con un telescopio da 100mm è visibile come una piccola stella leggermente sfuocata di magnitudine 11 circa; quest’aspetto quasi stellare permane anche con strumenti da 120-150mm, sebbene con la visione distolta appaia un leggero alone allungato in senso est-ovest. Si tratta di una galassia ellittica pienamente membro dell’ammasso della Vergine, data la sua distanza di circa 50 milioni di anni luce, simile a quella degli altri membri della catena; possiede un nucleo molto brillante circondato da un disco interno che presenta due strutture di natura stellare in rotazione contraria. Le sue dimensioni reali sono circa due terzi di quelle della Via Lattea, sebbene la popolazione di ammassi globulari sia più che doppia.
All’estremità nordorientale della Catena di Markarian, ampiamente entro i confini della Chioma di Berenice, si trova NGC 4477, una galassia lenticolare barrata visibile con strumenti da 120mm come una macchia chiara allungata in senso nord-sud con un nucleo brillante; è considerata una galassia di Seyfert a causa del suo nucleo attivo e possiede una barra molto ben definita immersa in un disco dalla morfologia chiaramente lenticolare dai bordi ben definiti.

Un’altra galassia lenticolare barrata è visibile a pochi minuti d’arco verso sudest ed è NGC 4479; molto più piccola e debole della precedente, si evidenzia con strumenti da 150mm come una sorta di stellina molto debole e sfocata con un debolissimo alone allungato in senso nord-sud. Entrambe le galassie si trovano a 55-60 milioni di anni luce e sono quindi incluse nell’Ammasso della Vergine.

Circa una trentina di minuti d’arco a nordovest, dunque apparentemente fuori dalla Catena di Markarian, si trova NGC 4459. È ben visibile con strumenti da 80-100mm come una macchia tondeggiante circondata da un debolissimo alone chiaro; il suo aspetto non migliora con strumenti da 150-200mm, pur divenendo molto più chiara la sua natura apparentemente “nebulare”. Si tratta di una galassia lenticolare, in cui il nucleo è circondato da un disco particolarmente ricco di gas e polveri che lo rendono flocculento e in cui sono attivi processi di formazione stellare; il nucleo contiene un buco nero supermassiccio la cui massa è stata stimata sui 70 milioni di masse solari. Alla distanza di 52 milioni di anni luce, il suo diametro reale corrisponde a circa la metà di quello della Via Lattea.

Staccata dalla Catena di Markarian, a circa un grado di distanza dall’alineamento principale verso sudest, si trova quella che è la galassia dominante dell’intero Ammasso della Vergine: si tratta di M87, una galassia ellittica gigante con un nucleo attivo denominato Virgo A. La galassia è anche alla portata di un binocolo di media potenza, come un 10x50, in cui si mostra, se il cielo è nitido e non inquinato, come una macchia molto debole e luminosa al centro; con telescopi di aperture comprese fra i 60mm e i 200mm il suo aspetto rimane lo stesso, mostrandosi come un oggetto dal nucleo molto piccolo e brillante e un alone molto esteso di colore biancastro che sfuma gradualmente nel fondo cielo. Il diametro dell’alone mantiene le sue dimensioni apparenti di 4’ anche con strumenti più grandi. M87 si trova nelle regioni più centrali dell’Ammasso della Vergine ed è probabilmente la galassia più estesa di questo ammasso di galassie. Nella banda della luce visibile è visibile solo come una macchia estesa e lattiginosa con un nucleo molto piccolo; tuttavia nel suo centro è presente una potente radiosorgente nota come Virgo A o 3C 274. La massa della galassia è pari ad almeno mille miliardi di masse solari; M87 possiede inoltre un numero molto alto di ammassi globulari, stimato tra 13.000 e 15.000, che costituisce il più alto numero conosciuto per una galassia. Un lungo getto rettilineo di materia si estende per almeno 5000 anni luce dal nucleo ed è composto da materia espulsa dal buco nero che sta al centro della galassia, il quale è diventato particolarmente famoso presso il pubblico perchέ nel 2019 è stato il primo di cui sia stata resa disponibile una fotografia, ottenuta da anni di riprese ad opera del progetto internazionale Event Horizon Telescope; attorno al buco nero è presente un grande disco di gas in rapida rotazione, mentre la massa totale di quest’oggetto sarebbe di circa 6,6 miliardi di masse solari. La galassia M87 è inoltre sorgente di onde radio, raggi X e raggi gamma. La sua vicinanza l’ha resa una delle radiogalassie più studiate; il getto che vediamo originarsi dal centro è solo la parte rivolta verso la nostra direzione di un doppio getto, la cui controparte è situata dall’altro lato della galassia ed è quindi invisibile a noi.

Pochi minuti d’arco a ovest di M87 si trova una coppia di galassie ben più deboli; la più vicina è NGC 4478, che è anche la più luminosa. Si tratta di una galassia ellittica visibile con strumenti da 120-150mm di diametro, che potrebbe essere una compagna fisica di M87: le due galassie distano infatti circa 130.000 anni luce, simile alla distanza che intercorre fra la Via Lattea e la
Grande Nube di Magellano.

Più debole e più lontana è NGC 4476, una galassia lenticolare probabilmente anche in interazione con M87; possiede un disco molto ricco di polveri interstellari, sebbene l'intera galassia sia particolarmente povera di idrogeno neutro, una caratteristica questa molto insolita per una galassia appartenente all'Ammasso della Vergine.

M98, M99 E IL GRUPPO DI NORDOVEST

Il gruppo di galassie situato a nordovest della Catena di Markarian ricade quasi per intero nella costellazione della Chioma di Berenice; alcune delle galassie maggiori di questo gruppo sono state anche osservate e catalogate da Charles Messier.

Una delle galassie più occidentali del gruppo è M98, una galassia spirale visibile circa sei gradi ad est della stella Denebola e mezzo grado a ovest di 6 Comae Berenices. La galassia è alla portata di un binocolo potente o di un piccolo telescopio amatoriale; in strumenti da 150mm si mostra come una macchia dalla forma molto allungata in senso nord-sud per circa 7'. Il nucleo, evidente maggiormente con un 200mm, ha una forma che appare lenticolare, mentre l'alune permane nebuloso anche con un telescopio da 300mm di apertura; dettagli maggiori si possono osservare tramite la visione distolta o in strumenti superiori. Questa galassia fu per lungo tempo creduta come non appartenente all'Ammasso della Vergine, a causa della sua velocità radiale, che la indicava in avvicinamento di 125 km/s; tuttavia in uno studio condotto negli anni novanta viene avanzata l'ipotesi che appartenga allo stesso sottogruppo di M99, che spesso al centro dell'ammasso di cui fa parte, la più alta fra tutte le galassie osservate dal Messier. Il diametro della galassia è di 87.000 anni luce e la sua massa sarebbe pari a circa 130 miliardi di masse solari; nei suoi bracci sono state osservate tre supernovae.

Circa un grado a sud di 6 Comae Berenices si trova la galassia NGC 4208; essa anche come NGC 4212 (errori di questo tipo, con designazioni multiple, sono relativamente comuni in zone ad altissima densità di galassie); è alla portata di strumenti da 120mm di diametro, sebbene con difficoltà, e si mostra come una piccola ellisse chiara più luminosa al centro. Si tratta di una galassia spirale vista quasi di faccia, con un disco contenente numerosi bracci frammentati, fenomeno tipico delle galassie del tipo flocculento; il suo nucleo è attivo e presenta linee di emissione a bassa ionizzazione. La sua distanza è pari a 53 milioni di anni luce circa, compatibile con le altre galassie dell'ammasso.

Circa un grado e mezzo a sudovest di questa galassia si individua NGC 4168, anch'essa alla portata di strumenti da 120-150mm di diametro; la sua morfologia ellittica non consente di evidenziare dettagli di rilievo al di là del suo nucleo brillante e del suo debole alone. Misurazioni della sua velocità radiale e della sua distanza, stimata talvolta oltre i 90 milioni di anni luce, fanno ritenere che questa galassia si trovi al di là dell'Ammasso della Vergine, in posizione più remota.

Circa due gradi a sud di 6 Comae Berenices appare la galassia NGC 4216; è decisamente brillante ed è infatti anche alla portata di strumenti da 100mm, con cui appa-
La galassia lenticolare barrata NGC 4262, piuttosto debole ma visibile perfettamente di faccia.

Le due galassie interagenti NGC 4298 e NGC 4302, situate a 53 milioni di anni luce da noi.
spicca NGC 4419, che sebbene non sia particolarmente luminosa è comunque alla portata di telescopi da 120-150mm, dove appare come un piccolo e spesso fuso chiaro orientato in senso nordovest-sudest. Si tratta di una galassia spirale barrata vista con un’elevata angolazione, ossia quasi di taglio; presenta un nucleo attivo e dista 52 milioni di anni luce.

Le galassie visibili a nordest di M100 sono in genere un po’ più appariscenti; fra queste vi è NGC 4350, visibile con strumenti da 120mm come una piccola ellisse chiara di aspetto uniforme, orientata in senso nord- sudovest e lunga meno di due minuti d’arco. È una galassia di morfologia lenticolare vista quasi di taglio, il cui diametro è circa la metà di quello della Via Lattea; la sua distanza è stimata sui 52 milioni di anni luce.

Pochi minuti d’arco a ovest si trova una galassia lenticolare vista quasi di faccia; possiede una morfologia peculiare: il suo nucleo, di aspetto quasi stellare a causa della sua compattezza, è circondato da una sorta di anello luminoso formato da stelle vecchie e di piccola massa, che attraversa per intero il disco galattico; nucleo e anello appaiono collegati da due bracci che attraversano il disco, il quale è formato da due bracci principali non particolarmente spessi ed estesi.

Circa due gradi a sudovest della stella doppia 24 Comae Berenices si trova NGC 4293; è un oggetto abbastanza appariscente e visibile chiaramente con uno strumento da 100-120mm come una macchietta allungata in senso est-ovest della lunghezza di 3-4 minuti d’arco. Si tratta di una galassia lenticolare vista con una forte angolazione, probabilmente avente una struttura a barra che attraversa il suo nucleo; il suo disco esterno presenta segni di allungamento debolmente in senso nord-sud. La sua distanza è stimata sui 50 milioni di anni luce.

La galassia M85, visibile a destra, è accompagnata dalla galassia spirale barrata NGC 4394, visibile a sinistra.
disturbo, forse a causa dell’interazione con altre galassie vicine. Il suo nucleo è attivo, con linee di emissione a bassa ionizzazione. Fatto che farebbe ritenere che al suo interno si possa trovare un buco nero supermassiccio di circa 60 milioni di masse solari. La distanza della galassia è stimata sui 54 milioni di anni luce ed è quindi uno dei membri più esterni dell’Ammasso della Vergine.

DA M88 A M90 E AL GRUPPO DI NORDEST

Il gruppo di galassie situato a nordest della Catena di Markarian è dominato dalle due spirali M88 e M91, cui si aggiunge verso sud M90, una delle galassie più appa-riscenti dell’intero Ammasso della Vergine.

M88 si individua con grande facilità a NNE dell’allineamento delineato dalle galassie dalla Catena di Markarian ed è al limite della visibilità con un binocolo 10x50, mentre con un telescopio da 80mm di apertura già si presenta come una chiazza chiara leggermente allungata; in un 150mm appare come un’ellisse allunga-ta in senso SE-NW, con un nucleo centrale più luminoso. Telescopi da 200 o 300mm mostrano un alone esteso in cui si evidenziano tracce dei bracci di spirale. M88 appartiene all’Ammasso della Vergine; la sua inclinazione rispetto alla nostra linea di vista è di circa 30°, sufficiente perché siano visibili le strutture dei bracci di spirale, che appaiono ben marcati; le sue dimensioni sono pari a 130.000 anni luce, dunque superiori a quelle della Via Lattea, così come la sua massa, stimata in circa 200 miliardi di masse solari. La distanza sarebbe di circa 50 milioni di anni luce. Nel maggio del 1999 è stata osservata una supernova classificata come SN 1999cl, che raggiunse una magnitudine apparente pari a 13,6.

Circa un grado ad est è visibile a galassia M91, uno degli oggetti di Messier più difficili in assoluto da individuare, pur essendo comunque fra le galassie più apparsi-centi dell’Ammasso della Vergine: la sua luminosità è al limite della visibilità con un binocolo di media potenza, ma la sua sfugetevolezza lo rende un oggetto piutto-sto difficile da osservare anche in strumenti come un telescopio da 80mm; la caratteristica più evidente è la sua barra centrale, visibile solo come una macchia allungata in senso ENE-WSW anche in un telescopio da 150mm di apertura. Il suo alone, esteso a nord e a sud, si evidenzia nelle foto digitali o a lunga posa, oppure con strumenti da 200 a 300mm di apertura. M91 possiede un diametro pari a circa 80.000 anni luce, dunque sarebbe più piccola della nostra Via Lattea; anche la sua massa, pari a 90 miliardi di masse solari, è inferiore. La classificazione secondo la sequenza di Hubble è SBb, ossia una galassia spirale barrata di tipo intermedio; la sua distanza è stimata sui 63 milioni di anni luce. La sua velocità radiale è di 400 km/s in recessione: ciò vuol dire che, rispetto all’ammasso della Vergine, M91 ha un considerevole moto di avvicinamento rispetto a noi (700 km/s). La velocità di recessione rispetto a noi dell’ammasso della Vergine, infatti, è di circa 1100 km/s. Nei suoi bracci di spirale non sono mai state osservate supernovae.

Poco più di mezzo grado a sudest di M91 si trova NGC 4571, un po’ meno apparscente e dunque più difficile, ma ancora alla portata di strumenti da 120mm di diametro, dove appare come una macchia chiara circolare con un punto più luminoso e quasi stellare al centro; si tratta di una galassia spirale vista perfettamente di faccia, con i suoi bracci estesi e molto ramificati. M90, una delle più luminose del gruppo della Vergine: può essere individuata persino con un binocolo, se la notte è particolarmente propizia, mentre un semplice telescopio amatoriale da 60-80mm è in grado di mostrarla come una macchia allungata e con un leg-
La galassia a spirale M90.

Il nucleo, ben visibile in strumenti a partire da 140mm, è di aspetto puntiforme e di dodicesima magnitudine, mentre l’alone è debole e tagliato in due da una barra più luminosa. Ha bracci a spirale molto stretti e uniformemente brillanti, che sembrano completamente "fossilizzati", nel senso che non sembra esserci formazione di stelle in corso, con la sola eccezione della regione interna del disco, vicino ad alcune linee scure di polvere. Probabilmente il suo mezzo interstellare è stato in gran parte strappato via dalle intense forze marine presenti all’interno dell’ammasso in cui si trova; altre teorie affermano che sia stato spazzato via da esplosioni multiple di supernovae avvenute nella regione del nucleo, dove la formazione stellare è ancora attiva. La sua distanza è pari a 60 milioni di anni luce.

NGC 4639 si trova circa un grado e mezzo a est di M90 ed è individuabile con strumenti da 120mm con qualche difficoltà come un piccolo dischetto chiaro circondato da un alone leggermente allungato; si tratta di una galassia spirale barrata con un nucleo attivo (galassia di Seyfert) e una barra dominante rispetto al disco. La sua distanza è stimata sui 70 milioni di anni luce.

Meno di mezzo grado a sudest vi è NGC 4710, una spirale o forse lenticolare vista perfettamente di taglio; appare come un disco brillante con bracci a spirale molto stretti e uniformement brillanti. Si tratta di una galassia ad alta densità di stelle, con strutture luminose a X sovrapposte alla direzione del nucleo e visibili dalle immagini del telescopio Hubble. La sua distanza è stimata sui 55 milioni di anni luce.

NGC 4689 si trova sul bordo orientale dell’Ammasso della Vergine, in direzione delle due stelle 28 e 29 Comae Berenices; è visibile con telescopi da 100-120mm come un globo chiaro delle dimensioni di circa due minuti d’arco, con un nucleo centrale solo appena accennato e meglio individuabile con strumenti da 200mm. L’alone è visibile in visione distolta anche con strumenti da 120-150mm. Si tratta di una galassia spirale vista di faccia con un nucleo molto piccolo e attivo, circondato da un disco con bracci di aspetto floculento, i cui bordi esterni mostrano un aspetto anulare; si trova a circa 54 milioni di anni luce di distanza.

Ben più staccata verso ovest è la galassia NGC 4710, una spirale o forse lenticolare vista perfettamente di taglio; appare come uno stretto dischetto chiaro orientato in senso nord-sud con strumenti da 150mm. La presenza di una struttura luminosa a X sovrapposta alla direzione del nucleo e visibile dalle immagini del telescopio Hubble è stata interpretata come il risultato di moti verticali delle stelle di una barra altrimenti invisibile dato l’angolo d’osservazione di questa galassia: NGC 4710 sarebbe pertanto una spirale barrata, oppure una lenticolare barrata.

NGC 4651, infine, è visibile circa 40 minuti d’arco a WSW della stella 27 Comae Berenices; può essere notata anche con telescopi da 120mm dove appare come una piccola ellisse chiara orientata in senso est-ovest. Viene talvolta soprannominata “Galassia Ombrello” per via di una struttura luminosa allungata che si estende dal suo disco e terminante in un arco, formata da una corrente di stelle comunemente interpretata come il resto di un’antica galassia minore deformata e disgregata dalle intense forze marine di NGC 4651. La sua distanza è incerta, ma viene indicata come un membro esterno dell’Ammasso della Vergine.

DA M89 AI GRUPPI ORIENTALI

Le galassie ad est della Catena di Markarian tendono a formare una lunga coda che si protende in direzione della stella Vindemiatrix; in questa regione dell’Ammasso della Vergine le galassie dominanti sono M89 e M58 e poi, più in disparte, la coppia formata da M59 e M60.

Una delle galassie più appariscenti di questa zona, visi-
bile poco meno di un grado a SSW della già citata M90, è M89. Si tratta di una galassia ellittica, la cui luminosità non eccessivamente elevata e la presenza di un gran numero di altre galassie ne rende difficile l'osservazione e il riconoscimento. La galassia si trova al di fuori della portata di un binocolo 10x50, mentre può essere individuata con un piccolo telescopio amatoriale, come un rifrattore da 60mm di apertura: qui si presenta come una macchia tondeggiante e priva di particolari; strumenti di aperture comprese fra 100 e 200mm consentono solo di osservare un alone più marcatto, di circa 1,5'. Osservazioni condotte negli anni novanta mostrano che M89 sia quasi perfettamente sferica nella sua forma: ciò non è usuale per le galassie ellittiche, che sono tutte ellissoidi allungati; è possibile che la galassia sia orientata in modo da apparire sferica ad un osservatore sulla Terra ma sia in realtà ellittica. La galassia inoltre è circondata da una struttura formata da gas o polveri che si estende fino a 150.000 anni luce dalla galassia. Sono anche presenti getti di particelle che arrivano fino ad una distanza di 100.000 anni luce, segno che la galassia poteva essere in origine un quasar o una radiogalassia. M89 contiene inoltre un'estesa popolazione di ammassi globulari, il cui numero potrebbe superare le 2000 unità.

Circa un grado a SSE si trova M58, una galassia spirale barrata che si può individuare lungo la linea che congiunge le stelle Denebola e Vindemiatrix, più vicina a quest'ultima di circa due terzi. Si trova al limite della portata di un binocolo di medie dimensioni, come un 10x50, in cui appare come un disco con una piccola senza particolari; un aspetto simile è osservabile in un telescopio da 80mm di apertura. Occorrono strumenti potenti, come un 200mm, per individuare alcuni dettagli, come la presenza di un nucleo brillante e un alone esteso fino a un diametro di 4'. La massa di M58 è stata stimata in 300 miliardi di masse solari, dunque maggiore rispetto a quella della nostra Via Lattea; il suo diametro sarebbe di 107.000 anni luce. La sua magnitudine assoluta è -21,1 e la sua magnitudine apparente è pari a 9,7. M58 appare allontanarsi alla velocità di 1517 km/s, con una distanza stimata in 64 milioni di anni luce, dunque paragonabile con quella delle galassie dell'Ammasso della Vergine di cui è parte.

Circa 45 minuti d’arco a sudovest di M58 si trova un trio di galassie tutte alla portata di strumenti da 120-150mm di diametro. La più settentrionale è NGC 4564, una galassia ellittica molto allungata (tipo E6) e visibile come un fuso orientato in senso nordest-sudovest, il cui diametro è poco superiore alla metà di quello della Via Lattea; al suo centro ospita un buco nero supermassiccio con una massa stimata sui 56 milioni di masse solari. Poco più a sud si osserva la coppia di galassie interagenti NGC 4567 e NGC 4568; si tratta di due galassie a spirale in fase iniziale di interazione fisica, talvolta soprannominate “Gemelle siamesi” a causa della loro fase di collisione ben visibile. Le due galassie mostrano un tasso di formazione stellare notevolmente maggiore nelle rispettive aree dove l’interazione fisica è avvenuta con più evidenza, ossia nel punto di collisione. Le loro distanza da noi è di circa 60 milioni di anni luce. M59 è una galassia ellittica facile da reperire in cielo, anche questa grazie alla presenza della stella Vindemiatrix: si trova infatti circa 4° ad ovest di questa stella; sebbene sia al limite estremo della portata di un binocolo di media potenza come un 10x50, è ben visibile in un telescopio da 60mm di apertura, in cui appare come una macchia ovoidale molto chiara. Strumenti molto grandi la mostrano come una sorta di “oggetto doppio”, grazie alla presenza, circa 20’ a nord-ovest, della galassia NGC 4606; molte altre galassie sono visibili anche nello stesso campo. M59 è una delle galassie ellittiche più grandi dell’Ammasso della Vergine, anche se meno luminosa e massiccia di M49, M60 e della gigante M87. La forma di M59 è fortemente schiacciata, tanto da essere classifi-
cata come una galassia ellittica di tipo E5; l’asse maggiore ha una dimensione apparente di 5′, che a 60 milioni di anni luce di distanza corrispondono a circa 90.000 anni luce di diametro.

Circa 20 minuti d’arco a sudest si trova NGC 4638, una galassia lenticolare vista perfettamente di taglio e visibile con strumenti da 150mm come un lungo fuso più largo al centro. Le sue dimensioni sono relativamente piccole, essendo meno della metà di quelle della Via Lattea; la sua distanza è stimata sui 50 milioni di anni luce.

A breve distanza si trova la brillante M60, una galassia ellittica che è rintracciabile anche partendo da Vindemiatrix e spostandosi di 4 gradi verso ovest; è visibile anche con un binocolo di media potenza come un lungo fuso più chiaro esteso fino a 3′, mentre la condensazione centrale è estremamente compatta e luminosa; in direzione nordovest è visibile pure una sorta di protuberanza dell’alone, che in un telescopio di maggiore potenza si rivela come una galassia indipendente, catalogata come NGC 4647. Nello stesso campo visivo sono osservabili anche un gran numero di altre galassie. M60 è la terza galassia più brillante dell’ammasso della Vergine ed è la maggiore del suo sotto-ammasso, che conta quattro galassie. La sua massa viene stimata in circa mille miliardi di masse solari, dunque diverse volte superiore a quella della nostra Via Lattea; il suo diametro sarebbe invece di 120.000 anni luce, anche se l’alone esterno potrebbe essere anche più ampio. La sua magnitudine assoluta è pari a -22,3 e possiede un vasto sistema di ammassi globulari. M60 sembra in pieno processo di interazione con un’altra galassia vicina, la già citata spirale di tipo Sc NGC 4647; tuttavia, sebbene la sovrapposizione dei loro aloni suggerisca che queste due galassie siano in processo di interazione, le immagini fotografiche non mostrano alcuna evidenza di deformazione, come sarebbe normale in caso di galassie realmente così vicine fra loro. Ciò suggerisce che in realtà queste due galassie si trovino sovrapposte solo per un effetto di prospettiva, e potrebbero trovarsi a distanze leggermente maggiori di come possa sembrare.

Circa mezzo grado a sudest di M60 si individua NGC 4660, visibile con strumenti da 120mm come una sorta di stella sfuocata di magnitudine 12 con due leggeri lobi chiari visibili soprattutto con la visione distolta. Si tratta di una galassia ellittica molto allungata (classe E5), probabilmente entrata in interazione con altre galassie nel suo recente passato, come è evidente dalla presenza di un lungo filamento di gas e polveri che parte da essa. La sua distanza è pari a circa 63 milioni di anni luce ed è parte dell’Ammasso della Vergine.

Circa due gradi e mezzo a WNW di Vindemiatrix si trova la coppia di galassie NGC 4754 e NGC 4762; sebbene appaiano molto vicine fra loro, non sarebbero in interazione diretta in quanto non sarebbero evidentemente segni in questo senso. La loro distanza da noi è rispettivamente stimata in 53 e 60 milioni di anni luce, per cui fra di loro vi sarebbero 7 milioni di anni luce. La prima è visibile con strumenti da 120mm come una macchia circolare di 1-2 minuti d’arco, con qualche difficoltà, mentre diventa molto più chiara con telescopi da 150mm; la seconda è più appariscente e si mostra come un lungo fuso orientato in senso nordest-sudovest con strumenti da 120mm. NGC 4754 è una galassia lenticolare barrata la cui distanza è stimata sui 53 milioni di anni luce, mentre NGC 4762 è una galassia lenticolare vista perfettamente di taglio, situata a 60 milioni di anni luce; entrambe si trovano sul bordo più orientale dell’Ammasso della Vergine, in un punto periferico.

Attorno alla stella ρ Virginis si trovano due galassie alla portata di strumenti da 120-150mm. La più occidentale è NGC 4596, una lenticolare barrata con una struttura a barra molto ben marcata che attraversa un nucleo molto compatto e di aspetto quasi stellare; le estremità della
M49 è una delle galassie più luminose della costellazione. Un grado a nord di M49 si trova NGC 4469, una galassia lenticolare vista perfettamente di taglio, che nelle foto ad alta risoluzione mostra alcuni banchi di polveri davanti al nucleo e la stessa struttura a X che si osserva in altre galassie come la recentemente citata NGC 4710; questa struttura è interpretata come indice della presenza di una barra, invisibile a causa dell’orientamento con cui la galassia ci appare: pertanto NGC 4469 sarebbe una lenticolare barrata. Non è particolarmente luminosa e si presenta con strumenti da 150mm come uno stretto fusso chiaro; il suo nucleo è attivo, con linee di emissione a bassa ionizzazione. La sua distanza è stimata sui 55 milioni di anni luce ed è pertanto legata all’Ammasso della Vergine.

NGC 4442 si trova a breve distanza dalle precedente, poco più di un grado a sudovest della stella 20 Virginis; appare con strumenti da 120mm come una debole stella sfuocata immersa in un vago alone allungato in senso est-ovest. Si tratta di una galassia lenticolare barrata la cui distanza di 22 milioni di anni luce la renderebbe in primo piano rispetto alle galassie dell’Ammasso della Vergine, o al più uno dei membri più vicini a noi. NGC 4442 è una delle galassie più appariscenti ad est di M49; è visibile anche con strumenti da 100mm, in cui appare come un alone uniforme piuttosto largo, fino a 4 minuti d’arco. Il nucleo si rende visibile come un punitone luminoso con telescopi da 150-200mm. Si tratta di una spirale barrata dominata da due bracci maggiori, da cui si diramanova varie strutture secondarie, ricche di stelle giovani e brillanti; la sua distanza è stimata sui 52 milioni di anni luce. Molto appariscente è anche la galassia NGC 4560, nota
anche come NGC 4526; la sua luminosità la rende visibile anche con strumenti da 80mm, con cui appare come una macchia luminosa allungata in senso nordovest-sudest. Dalle immagini sembra che al suo centro si trovi una struttura simile a una barra, come avviene per le galassie spirali barrate. Questa galassia appartiene all’Ammasso della Vergine ed è una delle galassie lenticolari più luminose conosciute; il nucleo interno presenta un aumento progressivo della velocità orbitale delle sue stelle, che indica la presenza di una massa oscura centrale. Il modello più verosimile per spiegare il movimento del gas molecolare nelle regioni centrali suggerisce che ci sia un buco nero supermassiccio con una massa pari a 450 milioni di masse solari; si tratta del primo buco nero la cui massa sia stata misurata tramite l’analisi della rotazione del gas molecolare che ruota attorno al suo centro attraverso l’uso di un interferometro astronomico. La distanza di questa galassia è stimata sui 55 milioni di anni luce.

NGC 4570 è visibile un grado a nordovest di 31 Virginis ed è una galassia lenticolare visibile con telescopi da 120mm come un piccolo fuso allungato in senso nordovest-sudest; appare vista di taglio, con un disco il cui diametro è 3/4 di quello della Via Lattea. La sua distanza è pari a 57 milioni di anni luce.

NGC 4612 è molto meno appariscente, ma la sua posizione è rintracciabile con facilità mezzo grado a nord di 31 Virginis; con telescopi da 150mm si presenta come un alone chiaro vagamente ovale, con un nucleo brillante. Si tratta di una galassia lenticolare barrata distante 57 milioni di anni luce.

NGC 4698 è situata all’estremità orientale dell’Ammasso della Vergine ed è visibile anche con strumenti da 120mm come una macchia leggermente allungata in senso nord-sud. É classificata come spirale barrata, ma presenta delle particolarità: il suo nucleo, attivo (si tratta di una galassia di Seyfert), appare allungato in senso perpendicolare al disco e anche le sue stelle sembrano muoversi nel medesimo modo; ciò potrebbe essere il risultato di un’antica interazione con altre galassie. La sua distanza è stimata sui 55 milioni di anni luce.

Circa un grado e mezzo a sudovest di M49 si trova infine NGC 4365, una galassia lenticolare piuttosto estesa e brillante, tanto da essere alla portata di telescopi da 80mm di diametro, seppur con qualche difficoltà; appare come un alone diffuso e luminoso con strumenti da 120mm, con un nucleo ben evidente. Questa galassia è di tipo E3 ed è un membro piuttosto massiccio dell’Ammasso della Vergine, con un diametro stimato sui 110.000 anni luce; la sua distanza è pari a 52 milioni di anni luce.

VERSOS M61

L’ultimo gruppo, il più meridionale, è formato da una lunga e blanda concatenazione di galassie disposta in senso nordovest-sudest (Complesso Virgo II) ed è dominata al centro dalla grande galassia spirale M61.

Fra le galassie più settentrionali vi è NGC 4339, una ellittica quasi sferoidale (classe E1) visibile con strumenti da 120mm come una sorta di stellina sfocata. La sua distanza è pari a 53 milioni di anni luce e il suo diametro reale è di circa 30.000 anni luce, dunque assai piccolo.

Più appariscente NGC 4261, che è visibile anche con strumenti da 100-120mm come un alone dai bordi molto sfumati e una zona centrale molto più luminosa; si tratta di una galassia ellittica con nucleo attivo, con due getti che si estendono dal nucleo verso i poli galattici. Si ritiene che al centro della galassia vi sia un buco nero supermassiccio con una massa di ben 400 milioni di masse solari. Le dimensioni reali di NGC 4261 sarebbero di circa 60.000 anni luce; non fa parte dell’Ammasso della Vergine, trovandosi alla distanza di ben 100 milioni di anni luce, ma appartiene a un gruppo a parte.

Anche NGC 4281 non fa parte dell’Ammasso della Vergine, trovandosi a ben 116 milioni di anni luce; è tuttavia visibile con strumenti da 120-150mm come un’ellisse di luce uniforme lunga 2 minuti d’arco e orientata in senso est-ovest. Si tratta di una galassia lenticolare di tipo S0 ed è probabilmente di dimensioni notevoli.

Si arriva così alla grande e brillante galassia spirale ca-
talogata come M61; si tratta di una galassia spirale situata a un terzo della linea congiungente le stelle Porrima e Denebola. Al binocolo 10x50 o 11x80 è quasi invisibile e si mostra come una macchia molto sfuggente; gli strumenti che consentono di osservare dettagli maggiori sono quelli superiori ai 140mm di apertura, in cui appare come una chiazza il cuialone si estende per 5' di diametro, con un nucleo piccolo e luminoso posto esattamente al centro. Ad un'osservazione approfondita si nota che la sua forma non è perfettamente circolare ma appare allungata leggermente in senso nordest-sudovest, con alcuni chiaroscuri sull'alone che lo rendono irregolare. M61 si trova a 60 milioni di anni luce e con il suo diametro di circa 100.000 anni luce (simile a quello della Via Lattea) è uno dei più grandi membri dell'Ammasso della Vergine. Particolarità di questa galassia è la struttura dei suoi bracci: essi mostrano diversi improvvisi cambi di direzione, dei veri e propri angoli che danno ad M61 un aspetto quasi poligonale. La sua massa è stata stimata in 50 miliardi di masse solari almeno e la sua magnitudine assoluta, rapportandola a quella appartenente di 9,7, sarebbe pari a -21,2. Il moto proprio della galassia tende a farla allontanare da noi alla velocità di 1464 km/s, simili a tutto l'Ammasso della Vergine, a cui appartiene.

Cira due gradi a sudovest di M61 si trova NGC 4457, decisamente molto meno appariscente ma sempre alla portata di strumenti da 120mm, con cui è visibile sebbene con difficoltà; si tratta di una galassia spirale con un aspetto molto simile a una lenticolare, con un nucleo circondato da un ovale chiaro in cui sono immersi due tenui bracci di spirale. Esternamente si individua invece un anello maggiore che appare completamente distaccato dal disco interno, ossia senza strutture a bracci che lo congiungano. Il nucleo della galassia è attivo e presenta linee di emissione a bassa ionizzazione (LINER). La sua distanza è stimata sui 35 milioni di anni luce, con un diametro, con un nucleo piccolo e luminoso posto esattamente al centro. Ad un'osservazione approfondita si nota che la sua forma non è perfettamente circolare ma appare allungata leggermente in senso nordest-sudovest, con alcuni chiaroscuri sull'alone che lo rendono irregolare. M61 si trova a 60 milioni di anni luce e con il suo diametro di circa 100.000 anni luce (simile a quello della Via Lattea) è uno dei più grandi membri dell'Ammasso della Vergine. Particolarità di questa galassia è la struttura dei suoi bracci: essi mostrano diversi improvvisi cambi di direzione, dei veri e propri angoli che danno ad M61 un aspetto quasi poligonale. La sua massa è stata stimata in 50 miliardi di masse solari almeno e la sua magnitudine assoluta, rapportandola a quella appartenente di 9,7, sarebbe pari a -21,2. Il moto proprio della galassia tende a farla allontanare da noi alla velocità di 1464 km/s, simili a tutto l'Ammasso della Vergine, a cui appartiene.

NGC 4527 è situata in posizione molto più distaccata, a circa 5 gradi a ESE della stella δ Virginis; appare con telescopi da 120mm come un fuso molto debole allungato in senso nord-est-sudovest e lungo 3-4 minuti d’arco. Si tratta di una spirale vista quasi di taglio, con una morfologia che la rende molto simile alla Galassia di Andromeda; a differenza di questa tuttavia, NGC 4527 sarebbe più piccola e soprattutto è una galassia starburst, con un tasso di formazione stellare molto elevato. La sua distanza è stimata sui 49 milioni di anni luce, sebbene per sua qualche incertezza; in ogni caso è tradizionalmente considerata parte dell’Ammasso della Vergine.

NGC 4536 è visibile poco a sud della precedente ed è visibile anche con strumenti da 100mm come una sorta di ellisse chiara orientata in senso nordovest-sudest; il suo nucleo di aspetto stellare è invece visibile con telescopi da 120-150mm. A differenza di NGC 4527 tuttavia, questa non viene considerata parte dell’Ammasso della Vergine, sebbene le stime sulla sua distanza la collocino a circa 48-50 milioni di anni luce da noi dunque teoricamente non molto distante dalla precedente. È una spirale barrata di notevoli dimensioni, con un diametro che supererebbe i 150.000 anni luce; possiede un nucleo molto piccolo con una quasi totale assenza di un bulge classico, che giace su una barra relativamente blanda dalle cui estremità si dipartono due bracci di spirale maggiori che appaiono ben poco avvolti; su questi bracci sono attivi notevoli fenomeni di formazione stellare. Il bulge presenta emissioni di raggi X che lasciano ritenere la presenza di un buco nero supermassiccio.

Altre galassie ancora si trovano entro pochi gradi a sudovest della stella δ Virginis; si ritiene tuttavia che non facciano propriamente parte dell’Ammasso della Vergine in senso stretto. Fra queste spicca NGC 4636, una ellittica molto luminosa, tanto da essere individuabile anche con telescopi da 80mm di diametro, dove appare come una stellina sfocata circondata da un debolissimo alone. Situata a 55 milioni di anni luce, possiede un diametro di circa 105.000 anni luce e giace all’estrema periferia dell’Ammasso della Vergine; possiede un nucleo attivo di tipo LINER la cui causa sarebbe la presenza di un buco nero supermassiccio di circa 80 milioni di masse solari circondato da uno spesso disco di accrescimento. La sua popolazione di ammassi globulari è notevole, con stime che ne indicano oltre 4000.

Altre galassie luminose sono NGC 4665 e NGC 4643.
IL COMPLESSO VIRGO II

A sud del nucleo centrale dell’Ammasso della Vergine si estende il già citato Complesso Virgo II, formato da diverse centinaia di galassie organizzate in più gruppi, più numerose galassie sparse; questo complesso si sviluppa su una regione estesa per circa 30 milioni di anni luce e si trova a una distanza compresa fra 55 e 80 milioni di anni luce. La sua parte meridionale contiene anche la famosa Galassia Sombrero (M104).

Circa 5 gradi a ovest di η Virginis e quasi 5 gradi a sud-est di β Virginis si trova uno dei gruppi più occidentali del complesso, dominato dalla galassia NGC 4030, che dà anche il nome al gruppo stesso; è anche alla portata di strumenti da 120mm, dove appare come una macchia chiara quasi circolare facilmente riconoscibile anche dalla presenza nelle vicinanze di due stelle di magnitudine 10. Il nucleo appare più luminoso. Si tratta di una spirale senza barra vista con una bassa angolazione, fatto che permette di identificare e studiare la struttura dei suoi bracci; questi appaiono numerosi, tanto che è difficile identificare quelli maggiori da quelli secondari. Le sue dimensioni totali sono di circa 80.000 anni luce, mentre la sua distanza è stimata sui 64 milioni di anni luce; le altre galassie del suo gruppo sono molto più deboli.

Il Gruppo di NGC 4179 si osserva attorno alla stella 10 Virginis: la galassia dominante è NGC 4179, che è visibile anche con telescopi da 120mm, dove appare principalmente la sua struttura del nucleo, simile a una stella sfuocata; con telescopi più aperti si nota anche il disco, che conferisce alla galassia la forma di un lungo e stretto fuso luminoso. Si tratta di una galassia lenticolare vista perfettamente di taglio, il cui diametro è stimato sui 70.000 anni luce; la sua distanza è invece di 54 milioni di anni luce.

Appena meno appariscente è la vicina galassia NGC 4123, visibile come una piccola macchia di aspetto stellare molto debole; è una spirale barrata con un nucleo...
PRINCIPALI OGGETTI NON STELLARI

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NGC 4030</td>
<td>12h 03m 24s</td>
<td>-01° 06' 01"</td>
<td>Gal</td>
<td>10,6</td>
<td>4,2</td>
<td></td>
</tr>
<tr>
<td>NGC 4046</td>
<td>12h 02m 42s</td>
<td>+01° 58' 37"</td>
<td>Gal</td>
<td>11,9</td>
<td>2,7</td>
<td>(NGC 4045)</td>
</tr>
<tr>
<td>NGC 4073</td>
<td>12h 04m 27s</td>
<td>+01° 53' 45"</td>
<td>Gal</td>
<td>11,4</td>
<td>3,2</td>
<td></td>
</tr>
<tr>
<td>NGC 4116</td>
<td>12h 07m 37s</td>
<td>+02° 41' 26"</td>
<td>Gal</td>
<td>11,6</td>
<td>3,8</td>
<td></td>
</tr>
<tr>
<td>NGC 4123</td>
<td>12h 08m 11s</td>
<td>+02° 52' 42"</td>
<td>Gal</td>
<td>11,0</td>
<td>4,3</td>
<td></td>
</tr>
<tr>
<td>NGC 4179</td>
<td>12h 12m 52s</td>
<td>+01° 17' 59"</td>
<td>Gal</td>
<td>10,9</td>
<td>4,2</td>
<td></td>
</tr>
<tr>
<td>NGC 4348</td>
<td>12h 23m 54s</td>
<td>-03° 26' 35"</td>
<td>Gal</td>
<td>12,5</td>
<td>3,2</td>
<td></td>
</tr>
<tr>
<td>NGC 4420</td>
<td>12h 26m 59s</td>
<td>+02° 29' 40"</td>
<td>Gal</td>
<td>12,0</td>
<td>2,0</td>
<td>(NGC 4409)</td>
</tr>
<tr>
<td>PGC 4121</td>
<td>12h 09m 07s</td>
<td>+02° 03' 09"</td>
<td>Gal</td>
<td>12,9</td>
<td>-</td>
<td>(3C 273)</td>
</tr>
<tr>
<td>3C 273</td>
<td>12h 09m 07s</td>
<td>+02° 03' 09"</td>
<td>QSO</td>
<td>12,9</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>NGC 4454</td>
<td>12h 28m 51s</td>
<td>-08° 56' 21"</td>
<td>Gal</td>
<td>11,0</td>
<td>2,3</td>
<td></td>
</tr>
<tr>
<td>NGC 4487</td>
<td>12h 31m 04s</td>
<td>-08° 03' 14"</td>
<td>Gal</td>
<td>11,0</td>
<td>4,0</td>
<td></td>
</tr>
<tr>
<td>NGC 4504</td>
<td>12h 32m 17s</td>
<td>-07° 33' 48"</td>
<td>Gal</td>
<td>12,3</td>
<td>3,2</td>
<td></td>
</tr>
<tr>
<td>NGC 4517</td>
<td>12h 32m 46s</td>
<td>+00° 06' 48"</td>
<td>Gal</td>
<td>10,5</td>
<td>10,5</td>
<td>(NGC 4437)</td>
</tr>
<tr>
<td>NGC 4536</td>
<td>12h 34m 27s</td>
<td>+02° 11' 16"</td>
<td>Gal</td>
<td>10,4</td>
<td>7,6</td>
<td></td>
</tr>
<tr>
<td>NGC 4546</td>
<td>12h 35m 29s</td>
<td>-03° 47' 38"</td>
<td>Gal</td>
<td>10,5</td>
<td>3,3</td>
<td></td>
</tr>
<tr>
<td>NGC 4581</td>
<td>12h 38m 05s</td>
<td>+01° 28' 40"</td>
<td>Gal</td>
<td>12,3</td>
<td>1,9</td>
<td></td>
</tr>
<tr>
<td>NGC 4592</td>
<td>12h 39m 19s</td>
<td>-05° 31' 55"</td>
<td>Gal</td>
<td>11,6</td>
<td>5,8</td>
<td></td>
</tr>
<tr>
<td>NGC 4593</td>
<td>12h 39m 39s</td>
<td>-05° 20' 39"</td>
<td>Gal</td>
<td>11,1</td>
<td>9,9</td>
<td></td>
</tr>
<tr>
<td>NGC 4597</td>
<td>12h 40m 13s</td>
<td>-05° 47' 57"</td>
<td>Gal</td>
<td>12,0</td>
<td>4,1</td>
<td></td>
</tr>
<tr>
<td>NGC 4602</td>
<td>12h 40m 37s</td>
<td>-05° 07' 59"</td>
<td>Gal</td>
<td>11,8</td>
<td>3,4</td>
<td></td>
</tr>
<tr>
<td>NGC 4632</td>
<td>12h 42m 32s</td>
<td>-00° 04' 57"</td>
<td>Gal</td>
<td>11,8</td>
<td>3,0</td>
<td></td>
</tr>
<tr>
<td>NGC 4636</td>
<td>12h 42m 50s</td>
<td>+02° 41' 16"</td>
<td>Gal</td>
<td>9,7</td>
<td>6,0</td>
<td></td>
</tr>
<tr>
<td>NGC 4643</td>
<td>12h 43m 20s</td>
<td>+01° 58' 42"</td>
<td>Gal</td>
<td>10,8</td>
<td>3,1</td>
<td></td>
</tr>
<tr>
<td>PGC 42868</td>
<td>12h 44m 04s</td>
<td>-05° 40' 34"</td>
<td>Gal</td>
<td>12,0</td>
<td>2,6</td>
<td></td>
</tr>
<tr>
<td>NGC 4653</td>
<td>12h 43m 51s</td>
<td>-00° 33' 40"</td>
<td>Gal</td>
<td>12,1</td>
<td>3,1</td>
<td></td>
</tr>
<tr>
<td>NGC 4665</td>
<td>12h 45m 06s</td>
<td>+03° 03' 21"</td>
<td>Gal</td>
<td>10,3</td>
<td>3,5</td>
<td>(NGC 4624/64)</td>
</tr>
<tr>
<td>NGC 4666</td>
<td>12h 45m 09s</td>
<td>-00° 27' 43"</td>
<td>Gal</td>
<td>10,8</td>
<td>4,5</td>
<td></td>
</tr>
<tr>
<td>NGC 4684</td>
<td>12h 47m 18s</td>
<td>-02° 43' 39"</td>
<td>Gal</td>
<td>11,5</td>
<td>2,8</td>
<td></td>
</tr>
<tr>
<td>NGC 4691</td>
<td>12h 48m 14s</td>
<td>-03° 19' 58"</td>
<td>Gal</td>
<td>11,1</td>
<td>2,7</td>
<td></td>
</tr>
<tr>
<td>NGC 4697</td>
<td>12h 48m 36s</td>
<td>-05° 48' 03"</td>
<td>Gal</td>
<td>9,2</td>
<td>7,2</td>
<td></td>
</tr>
<tr>
<td>NGC 4701</td>
<td>12h 49m 12s</td>
<td>+03° 23' 19"</td>
<td>Gal</td>
<td>12,1</td>
<td>2,8</td>
<td></td>
</tr>
<tr>
<td>NGC 4705</td>
<td>12h 49m 25s</td>
<td>-05° 11' 45"</td>
<td>Gal</td>
<td>12,5</td>
<td>3,1</td>
<td></td>
</tr>
<tr>
<td>NGC 4731</td>
<td>12h 51m 01s</td>
<td>-06° 23' 35"</td>
<td>Gal</td>
<td>11,5</td>
<td>6,6</td>
<td></td>
</tr>
<tr>
<td>NGC 4753</td>
<td>12h 52m 22s</td>
<td>-01° 12' 16"</td>
<td>Gal</td>
<td>10,5</td>
<td>6,0</td>
<td></td>
</tr>
<tr>
<td>NGC 4771</td>
<td>12h 53m 21s</td>
<td>-01° 16' 09"</td>
<td>Gal</td>
<td>12,3</td>
<td>3,8</td>
<td></td>
</tr>
<tr>
<td>NGC 4772</td>
<td>12h 53m 29s</td>
<td>+02° 10' 06"</td>
<td>Gal</td>
<td>10,7</td>
<td>3,4</td>
<td></td>
</tr>
<tr>
<td>NGC 4775</td>
<td>12h 53m 46s</td>
<td>-06° 37' 20"</td>
<td>Gal</td>
<td>11,1</td>
<td>2,2</td>
<td></td>
</tr>
<tr>
<td>NGC 4786</td>
<td>12h 54m 32s</td>
<td>-06° 51' 34"</td>
<td>Gal</td>
<td>11,8</td>
<td>1,6</td>
<td></td>
</tr>
<tr>
<td>UGC 8041</td>
<td>12h 55m 13s</td>
<td>+00° 07' 00"</td>
<td>Gal</td>
<td>12,5</td>
<td>0,6</td>
<td></td>
</tr>
<tr>
<td>NGC 4845</td>
<td>12h 58m 01s</td>
<td>+01° 34' 33"</td>
<td>Gal</td>
<td>11,3</td>
<td>4,9</td>
<td>(NGC 4910)</td>
</tr>
<tr>
<td>NGC 4900</td>
<td>13h 00m 39s</td>
<td>+02° 30' 03"</td>
<td>Gal</td>
<td>11,3</td>
<td>2,2</td>
<td></td>
</tr>
<tr>
<td>NGC 4904</td>
<td>13h 00m 59s</td>
<td>-00° 01' 38"</td>
<td>Gal</td>
<td>12,1</td>
<td>2,2</td>
<td></td>
</tr>
<tr>
<td>NGC 4915</td>
<td>13h 01m 28s</td>
<td>-04° 32' 47"</td>
<td>Gal</td>
<td>12,1</td>
<td>1,6</td>
<td></td>
</tr>
<tr>
<td>NGC 4928</td>
<td>13h 03m 01s</td>
<td>-08° 05' 06"</td>
<td>Gal</td>
<td>12,5</td>
<td>1,1</td>
<td></td>
</tr>
</tbody>
</table>

attivo e due bracci principali piuttosto spessi ma poco luminosi; il suo diametro è circa la metà di quello della Via Lattea e la sua distanza è stimata sui 55 milioni di anni luce.

Poco a sud si osserva anche NGC 4116, molto più debole e visibile con telescopi da 150mm come un esile fuso luminoso, corrispondente alla sua barra centrale; è infatti una spirale barrata con dei bracci molto deboli e con un nucleo attivo.

Nella medesima regione, un grado e mezzo a sudovest, si osserva NGC 4073, anch’essa visibile con telescopi da 150mm; tuttavia non fa parte né di questo gruppo, né in generale dell’Ammasso della Vergine, data la sua distanza di 260 milioni di anni luce. Si tratta di una galassia ellittica gigante posta al centro di un piccolo ammasso di galassie.

Poche gradi a nordovest della stella γ Virginis, a 60-70 milioni di anni luce di distanza, si trovano alcune galassie che appartengono al Gruppo di M61. Fra queste una delle più appariscenti è la grande e già descritta NGC 4536.

Due gradi più a sud si trova la galassia NGC 4517, anch’essa relativamente appariscente e visibile con strumenti da 100-120mm di diametro, dove appare come un fuso pallido orientato circa in senso est-ovest. Si trova leggermente in primo piano rispetto al Gruppo di M61, a una distanza di 46 milioni di anni luce, ma fa sempre parte del Compresso Virgo II.
L’area di cielo estesa per alcuni gradi a nordest di Porrima (γ Virginis) è occupata dal Gruppo di NGC 4753, che conta una dozzina di galassie sparse situate a una distanza media di 45-55 milioni di anni luce.

NGC 4753 è la più brillante ed è visibile anche con telescopi da 70-80mm, dove appare come una macchia ovale leggermente più allungata in senso est-ovest, estesa per 3'; strumenti da 120mm la rivelano come una macchia più luminosa al centro, la cui luminosità si diffonde progressivamente verso l’alone esterno, leggermente allungato. Strumenti più grandi possono iniziare a mostrare alcune venature presso il centro. Si tratta di una grande galassia lenticolare estesa per 100.000 anni luce, contraddistinta dalle sue bande oscure che ne attraversano il nucleo; è possibile che questo materiale provenga dalla fusione con una galassia più piccola e ricca di gas, avvenuta forse nell’ultimo miliardo di anni. Si ritiene che almeno 1000 ammassi globulari popolino il suo alone esterno.

NGC 4643 è meno appariscente, pur essendo comunque alla portata di strumenti da 120mm, dove appare come un’ellisse allungata in senso nordovest-sudest, con un nucleo brillante di aspetto stellare. Ciò che si nota all’osservazione visuale è principalmente la struttura della barra, mentre l’alone è molto più debole: si tratta infatti di una galassia lenticolare barrata, non particolarmente estesa, dato che il suo diametro sarebbe pari alla metà di quello della Via Lattea.

NGC 4772 appare con strumenti da 120mm come una piccola stella sfuocata, mentre il suo alone molto debole orientato in senso nordovest-sudest si distingue con telescopi di diametro maggiore; si tratta di una galassia spirale semplice grande la metà della Via Lattea, con un nucleo molto luminoso e attivo di tipo Seyfert; il suo disco è attraversato da bande di polveri oscure, visibili soprattutto a nordest del nucleo.

NGC 4845 fa anch’essa parte del gruppo; appare più debole, tanto che occorrono strumenti da 130-150mm per individuarla con chiarezza; benché sia infatti una galassia di grandi dimensioni, probabilmente sui 150.000 anni luce di diametro, la sua angolazione e la grande presenza di polveri sui suoi bracci la rendono poco appariscente. Si presenta allungata in senso est-ovest e possiede un nucleo molto piccolo circondato da bracci spessi e molto ricchi di gas; l’attività ai raggi X registrata in direzione del suo nucleo è dovuta alla presenza di un buco nero in procinto di assorbire materia da un oggetto di piccola massa, probabilmente una nana bruna.

NGC 4900 è visibile anche con telescopi da 100mm, ma con difficoltà; telescopi più grandi la mostrano come una macchia tondeggiante e diffusa senza un nucleo centrale visibile. Una stella di magnitudine 11 si trova sul bordo sudorientale e può essere confusa con una supernova esplosa nel suo disco. È una spirale barrata di aspetto peculiare, con una barra molto esile e un nucleo quasi assente, circondati da un disco attraversato da numerosi e corti bracci di spirale ricchi di stelle giovani; le sue dimensioni sono molto contenute (25.000 anni luce) ed è un esempio di galassia spirale nana.

Il Gruppo di NGC 4697 si concentra circa 5 gradi a sudest di γ Virginis ed è formato da 5 galassie maggiori e una decina di minori, situate a una distanza media di 50-60 milioni di anni luce.

NGC 4697, nota anche con la sigla C52, una galassia ellittica di tipo E6; è molto brillante e può essere osservata con facilità anche con un binocolo 20x80 o con un telescopio da 70-80mm, dove appare come una macchia allungata indistinta priva di dettagli. Quest’aspetto muta leggermente attraverso telescopi da 200mm di diametro, dove si evidenzia una forma marcatamente ellissoidale. Nonostante venga accettata come parte del Complesso Virgo II, stime sulla sua distanza variano fra 28 e 70 milioni di anni luce, con un valore più accettato attorno a 35 milioni di anni luce. Un altro aspetto interessante è l’attività di risonanza di tipo Seyfert; il suo disco è attraversato da bande di polveri oscure, visibili soprattutto a nordest del nucleo.

La brillante galassia lenticolare NGC 4753.

La brillante galassia NGC 4845.
NGC 4731 e NGC 4775 si osservano verso sudovest; entrambe sono alla portata di strumenti da 120mm, sebbene con difficoltà; sono entrambe di tipo spirale e la prima è anche di dimensioni notevoli, simili a quelle della Via Lattea, con dei bracci molto aperti che le conferiscono un aspetto molto inconsueto.

La parte orientale del gruppo comprende alcune galassie più deboli come NGC 4941, una spirale barrata con un brillante nucleo attivo e bracci molto ramificati, estesa per 60.000 anni luce; visibile con strumenti da 130-150mm di diametro.

NGC 4958 è invece più apparsicente ed è alla portata di strumenti da 100mm, dove appare come una macchia più o meno circolare con un nucleo di aspetto stellare; telescopi da 150mm la mostrano, al contrario, come una macchia allungata in senso nord-sud. È considerata una galassia lenticolare barrata, vista di taglio e con un diametro di 70.000 anni luce.

Circa 3-4 gradi a sud della stella θ Virginis si estende il piccolo Gruppo di NGC 4942, che però è formato da galassie tendenzialmente più deboli.

Delle quattro componenti, NGC 4981 e NGC 4995 sono alla portata di telescopi da 120mm; la prima in particolare è visibile come una macchia ovale e presenta vicino al suo bordo una stella appartenente alla Via Lattea che potrebbe essere scambiata per una supernova.

Un’altra galassia osservabile con strumenti da 120mm o inferiori è NGC 4665, visibile poco più di due gradi a WSW della stella δ Virginis; con questi strumenti appare come un alone circolare molto compatto, mentre con diametri superiori si può notare la barra centrale, più debole, orientata in senso nord-sud. Si tratta di una lenticolare vista quasi perfettamente di faccia, con un nucleo molto brillante e una barra più esile ma con alta luminosità superficiale, circondato da un alone che porta le dimensioni totali della galassia a circa 75.000 anni luce, data la distanza di 60 milioni di anni luce; dalle estremità della barra partono due strutture interpretate come accenni di bracci, che formano una struttura simile a un anello.

NGC 4666 si osserva invece un grado e mezzo a nord-est di γ Virginis; è più debole delle precedenti ma è sempre alla portata di strumenti da 120mm, con cui appare come una chiazza allungata in senso nord-est-sudovest. La sua distanza è stimata sui 65 milioni di anni luce e presenta un tasso di formazione molto spinto, che ha generato un forte vento galattico osservabile alla lunghezza d’onda dei raggi X.

A breve distanza si osserva la più debole NGC 4653.

La brillante galassia ellittica NGC 4697.
CARATTERISTICHE

La parte orientale della costellazione della Vergine ospita alcuni gruppi di galassie di facile osservazione, sebbene spesso siano poco conosciuti e trascurati dagli appassionati; l’assenza di galassie di Messier e, al contrario, l’ingombrante presenza del globulare M5 contribuiscono a rendere più oscura questa piccola regione di cielo.

Stella di riferimento assoluta per individuare molte di queste galassie è la stella 109 Virginis, che essendo di magnitudine 3,73 è ben evidente e risalta in un campo che contiene solo stelle di magnitudine 4 e 5.

La gran parte delle galassie più appariscenti è organizzata in piccoli gruppi più o meno compatti, orientati fra loro lunga una direttrice generale estesa da ovest verso est: si tratta infatti di un ramo appartenente al Superammasso della Vergine, noto in letteratura come Complesso Virgo III.

Le galassie più luminose sono visibili anche con strumenti da 100mm, mentre chi è in possesso di telescopi dobsoniani, che spesso sono di grande diametro, ha la possibilità di notare svariate decine di oggetti, gran parte dei quali concentrati attorno alla stelle 109 Virginis e 110 Virginis, a breve distanza dall’ammasso globulare M5.

Chi si dedica all’astrofotografia dei campi profondi troverà in questo settore di cielo anche numerosi ammassi di galassie remoti, soprattutto al confine con le costellazioni del Boote e del Serpente; fra questi spicca l’ammasso Abell 2029, non tanto per la sua luminosità, quanto perché ospita la famosa galassia ellittica gigante IC 1101, che è considerata la galassia più grande e massiccia conosciuta nell’Universo osservabile.
Gruppi di galassie si concentrano nella parte orientale della Vergine, mentre remo- ti ammassi ospitano alcune fra le galassie più grandi conosciute.
IL COMPLESSO VIRGO III

Il Compresso Virgo III è un allineamento di gruppi di galassie disposti in un'area che copre un'estensione di circa 40 milioni di anni luce. I gruppi sono situati prospetticamente nella costellazione della Vergine ad una distanza mediamente compresa tra 65 e 85 milioni di anni luce dalla Terra. Questo complesso rappresenta l'estremità orientale del Superammasso Locale e si collega ad un altro sistema di gruppi di galassie, il Compresso Virgo II, il quale a sua volta è in connessione con l'ammasso della Vergine; è verosimile che l'azione gravitazionale dell'ammasso stesso sia responsabile della distribuzione allungata delle galassie del Compresso Virgo III.

I principali gruppi di galassie che costituiscono l'ammasso sono il Gruppo di NGC 5248, il Gruppo di NGC 5364, il Gruppo di NGC 5506, il Gruppo di NGC 5566, il Gruppo di NGC 5678, il Gruppo di NGC 5746, il Gruppo di NGC 5775 e il Gruppo di NGC 5846, unitamente a svariate galassie sparse.

Nel Gruppo di NGC 5364, la galassia dominante è il Gruppo di NGC 5364; è visibile anche con strumenti da 100mm, con cui appare come un debole alone orientato in senso nordest-sudovest, con al centro un piccolo nucleo di aspetto stellare, poco meno di 5 gradi a nordovest della stella τ Virginis. Con strumenti più grandi è possibile intravedere un alone più esteso e debole. Si tratta di una galassia spirale di aspetto ben definito, con un nucleo molto piccolo da cui partono dei bracci che formano una struttura ad anello incompleto attorno ad esso, per poi aprirsi senza ramificazioni. Il braccio meridionale appare più aperto verso l'esterno, indice che probabilmente la galassia ha subito un’interazione nel suo passato. La sua distanza è stimata sui 54 milioni di anni luce e possiede un diametro reale simile a quello della Via Lattea.

Circa 15 minuti d’arco a nord si trova la galassia compagnia NGC 5363, anch’essa alla portata di telescope di 100mm, con cui è anche più facile staccarla dal fondo cielo grazie alla sua compattezza; si tratta infatti di una galassia lenticolare con un nucleo molto luminoso e ben definito. Con strumenti da 120-150mm si evidenzia an-
che un leggero allungamento in senso nordovest-sudest. Si tratta di una grande galassia, con un diametro di oltre 100.000 anni luce, la cui distanza è stimata fra i 50 e i 60 milioni di anni luce; il suo disco è attraversato da un filamento di polveri che presenta una morfologia spiraleggianti con barra centrale. Il suo nucleo è attivo con righe di emissione a bassa ionizzazione (LINER) e ospita un buco nero supermassiccio con una massa stimata sui 370 milioni di masse solari.

Fra le altre quattro componenti principali del gruppo, l’unica alla portata della gran parte degli strumenti è NGC 5366, che è visibile con telescopi da 200mm come uno stretto e tenue fuso appena percepibile circa 15 minuti d’arco a ovest della precedente. Si tratta di una galassia spirale barrata di piccole dimensioni reali, il cui diametro si aggira sui 15.000 anni luce soltanto. È vista quasi perfettamente di taglio, con bracci percorsì da diversi addensamenti di polveri e un nucleo molto piccolo; la sua distanza è stimata sui 60 milioni di anni luce.

Meno di un grado a ovest della coppia NGC 5363 e NGC 5364 si trova il remoto ammasso Abell 1809, distante circa 1 miliardo di anni luce e dominato dalla galassia spirale gigante NGC 5338.

Il Gruppo di NGC 5506 è anch’esso piuttosto compatto e si trova circa 2,5 gradi a sudovest della stella u Virginis, in una zona povera di stelle di facile riferimento; è formato da 5 galassie poco appariscenti e la sua distanza media è di circa 85 milioni di anni luce.

La galassia dominante è NGC 5506, ma è piuttosto difficile da individuare con strumenti inferiori ai 150mm di diametro; si tratta di una galassia spirale vista di taglio e appare come una macchietta allungata in senso est-ovest e leggermente irregolare ai bordi. Pur essendo la più importante del gruppo, il suo diametro di 65.000 anni luce la rende relativamente piccola; possiede un nucleo molto piccolo e quasi del tutto nascosto dalle polveri interstellari dei suoi bracci, e presenta la caratteristica struttura a X che denota l’esistenza di una barra centrale. La sua distanza è stimata sugli 81 milioni di anni luce.

NGC 5566 è la galassia considerata dominante; è visibile con uno strumento da 100mm come una piccola chiazza tondeggianti o leggermente elongata, dai bordi sfumati, mentre con telescopi da 200mm si evidenzia anche lo stretto fuso della vicina galassia NGC 5560, sua compagna, con cui potrebbe essere in interazione. NGC 5566 è una galassia spirale barrata ed è una delle più grandi dell’intero complesso Virgo III: il suo diametro è infatti stimato sui 150.000 anni luce; presenta due bracci di spirale maggiori molto aperti, mentre la barra centrale è circondata da una struttura ad anello. La più piccola NGC 5560 è anch’essa una spirale barrata, ma è vista di taglio; è molto ben evidente un forte warp, provocato dall’interazione.

Nelle fotografie ad alta risoluzione è inquadrabile anche la galassia NGC 5569, ancora meno appariscente; queste formano un trio di facile inquadramento. Poco meno di un grado a SSE si trova un’altra galassia membro del gruppo, NGC 5576; con strumenti da 100mm appare come una debole macchia netta dall’aspetto stellare. Con telescopi più aperti è possibile notare un leggero allungamento di questa macchia in senso est-ovest. Si tratta di una galassia ellittica di grandi di-

La galassia lenticolare NGC 5363.

La galassia spirale barrata NGC 5566, la principale nell’omonimo gruppo di galassie.
Il Gruppo di NGC 5746 è uno dei più importanti ed estesi del complesso; la sua posizione è facile da individuare poiché giace attorno alla stella 109 Virginis, di magnitudine 3,7. Il gruppo è formato da 14 galassie fra membri certi e possibili membri, alcune delle quali relativamente facili da osservare grazie alla loro luminosità; la distanza media è stimata sugli 80-90 milioni di anni luce, con alcune componenti che giacciono leggermente più vicino o più lontano. È possibile individuare due sottogruppi: il primo, che contiene la galassia dominante, è concentrato meno di un grado a ovest di 109 Virginis; il secondo gruppo si dispone invece 2-3 gradi più a sud, con le componenti disposte su un allineamento orientato in senso ENE-WSW.

NGC 5746 si individua appena 20 minuti d’arco a ovest di 109 Virginis, la cui presenza potrebbe effettivamente disturbare l’osservazione; è alla portata di strumenti da 100mm e anche inferiori, dove appare come un piccolo fuso chiaro con un nucleo più evidente. Con telescopi da 200mm può divenire evidente una traccia scura che attraversa il fuso in senso longitudinale dividendo la galassia in due parti diseguali, similmente a come appare nella famosa Galassia Sombrero (M104). Si tratta di una spirale barrata vista di taglio, la cui barra è definibile grazie alla struttura a X che si sovrappone al nucleo; le sue dimensioni reali sono notevoli, con un diametro di oltre 150.000 anni luce.

Meno di mezzo grado a SSW si trova la meno appariscente NGC 5740, visibile con telescopi da 200mm come una debole macchia leggermente allungata e molto sfuggente, con un nucleo puntiforme e di aspetto stellare. Si tratta di una spirale barrata con un nucleo e una barra molto piccoli, circondati da un esteso sistema di bracci a spirale ben avvolti e ramificati; il suo diametro è poco superiore alla metà di quello della Via Lattea.

La coppia di galassie NGC 5713 e NGC 5719.

NGC 5746 si individua appena 20 minuti d’arco a ovest di 109 Virginis, la cui presenza potrebbe effettivamente disturbare l’osservazione; è alla portata di strumenti da 100mm e anche inferiori, dove appare come un piccolo fuso chiaro con un nucleo più evidente. Con telescopi da 200mm può divenire evidente una traccia scura che attraversa il fuso in senso longitudinale dividendo la galassia in due parti diseguali, similmente a come appare nella famosa Galassia Sombrero (M104). Si tratta di una spirale barrata vista di taglio, la cui barra è definibile grazie alla struttura a X che si sovrappone al nucleo; le sue dimensioni reali sono notevoli, con un diametro di oltre 150.000 anni luce.

Menominzioni, il cui diametro è di quasi 100.000 anni luce. Nello stesso campo visivo si trova la molto più debole NGC 5577, che si evidenzia nelle fotografie.

NGC 5746 si individua appena 20 minuti d’arco a ovest di 109 Virginis, la cui presenza potrebbe effettivamente disturbare l’osservazione; è alla portata di strumenti da 100mm e anche inferiori, dove appare come un piccolo fuso chiaro con un nucleo più evidente. Con telescopi da 200mm può divenire evidente una traccia scura che attraversa il fuso in senso longitudinale dividendo la galassia in due parti diseguali, similmente a come appare nella famosa Galassia Sombrero (M104). Si tratta di una spirale barrata vista di taglio, la cui barra è definibile grazie alla struttura a X che si sovrappone al nucleo; le sue dimensioni reali sono notevoli, con un diametro di oltre 150.000 anni luce. Nello stesso campo visivo si trova la molto più debole NGC 5577, che si evidenzia nelle fotografie.

La coppia di galassie NGC 5713 e NGC 5719.

NGC 5746 si individua appena 20 minuti d’arco a ovest di 109 Virginis, la cui presenza potrebbe effettivamente disturbare l’osservazione; è alla portata di strumenti da 100mm e anche inferiori, dove appare come un piccolo fuso chiaro con un nucleo più evidente. Con telescopi da 200mm può divenire evidente una traccia scura che attraversa il fuso in senso longitudinale dividendo la galassia in due parti diseguali, similmente a come appare nella famosa Galassia Sombrero (M104). Si tratta di una spirale barrata vista di taglio, la cui barra è definibile grazie alla struttura a X che si sovrappone al nucleo; le sue dimensioni reali sono notevoli, con un diametro di oltre 150.000 anni luce. Nello stesso campo visivo si trova la molto più debole NGC 5577, che si evidenzia nelle fotografie.
nis; è alla portata di telescopi da 120mm, sebbene sia visibile con difficoltà, e appare come un alone irregolare e leggermente allungato in senso est-ovest. Si tratta di una galassia nana considerata spirale barrata ma con un braccio molto più sviluppato dell’altro, assieme ad altre irregolarità.

Il Gruppo di NGC 5775 è un quintetto di galassie deboli ma molto compatto e isolato, 2,5 gradi a nordest di 109 Virginis; la sua distanza media è stimata sui 78 milioni di anni luce. NGC 5775 è la galassia più apparsicente, sebbene sia osservabile senza eccessive difficoltà solo con strumenti da 130 o 150mm di diametro; essendo una spirale vista di taglio, appare come uno stretto e lungo fuso chiaro, leggermente più luminoso al centro e allungato in senso nordovest-sudest. Il disco della galassia è attraversato da un gran numero di regioni di formazione stellare e ammassi di stelle giovani e brillanti; probabilmente questi intensi processi sono stati attivati dall’interazione con le altre galassie del gruppo e in particolare con la vicina NGC 5774.

NGC 5774 è molto meno apparsicente ed è collegata alla precedente da un ponte di idrogeno neutro, drenato da questa alla precedente. Può essere scorta solo con telescopi da 200mm a causa della sua bassa luminosità superficiale e si presenta come un piccolo alone molto sfuggente con un piccolo nucleo luminoso leggermente allungato. Si tratta di una galassia spirale vista di faccia, con bracci di spirale frammentati e irregolari. Poco meno di mezzo grado a NNW della precedente coppia si trova NGC 5770, la cui individuazione è alla portata di telescopi da 120mm, sebbene con difficoltà; appare qui come una piccola macchia circolare quasi puntiforme e sbiadita. Si tratta di una galassia lenticolare barrata vista perfettamente di faccia, molto regolare e con un tipico aspetto “a volante”; è il membro che appare più vicino a noi, a 75 milioni di anni luce.

Circa 20 minuti d’arco a sudovest della coppia dominante si trova IC 1067, una galassia piccola e sfuggente e visibile solo con strumenti di oltre 150mm di diametro; è una spirale barrata i cui bracci delineano un anello interno, per poi ramificarsi all’esterno.

Il Gruppo di NGC 5846 è il più orientale del complesso ed è anche uno dei più estesi; si osserva ad est della stella 110 Virginis e alcune delle sue componenti sono osservabili anche con strumenti da 100mm. Comprende una decina di galassie fra grandi e intermedi e la sua distanza media è compresa fra 80 e 95 milioni di anni luce. NGC 5846 è di gran lunga la galassia più notevole dell’intero complesso: si tratta di una ellittica gigante di 110.000 anni luce di diametro, quasi perfettamente sferica (E0) e con un nucleo attivo, al cui centro si trova un buco nero supermassiccio con una massa stimata di 1,1 miliardi di masse solari; possiede una nutrita popolazione di ammassi globulari, forse oltre 1200. Può essere notata anche con strumenti da 80mm, dove appare come una macchia circolare abbastanza ben definita; con telescopi da 200mm il suo aspetto somiglia a quello di un ammasso globolare non risolvibile in stelle. Circa 10 minuti d’arco a sudest si trova la spirale barrata NGC 5850, con cui è in interazione: le due galassie hanno infatti avuto un incontro ravvicinato ad alta velocità circa 200 milioni di anni fa. Può essere notata anche con strumenti da 100-120mm, con qualche difficoltà, e appare come una chiazza chiara allungata con un nucleo centrale. La galassia presenta dei bracci ben definiti ma deformati.

A breve distanza sul lato opposto di NGC 5846 si trova la piccola galassia ellittica NGC 5845, che però risulta visibile solo con strumenti da 180-200mm. NGC 5854 si trova circa un grado a NNE e appare con strumenti da 150mm come un piccolo fuso chiaro con un nucleo distinguibile e di aspetto quasi stellare. Si tratta di una galassia lenticolare vista con un’alta angolazione, il cui nucleo è probabilmente attraversato da una barra. Misura circa 50.000 anni luce di diametro.

Le galassia NGC 5846 (a destra) e NGC 5850, situate al centro del Gruppo di NGC 5846 a circa 90 milioni di anni luce.
Di aspetto molto simile appare NGC 5864, visibile circa 45° a nordest e descrivibile allo stesso modo in con gli stessi strumenti. Anch’essa è infatti una galassia lenticolare barrata vista con una forte angolazione e con simili dimensioni; formano infatti una coppia di galassie “gemelle”.

NGC 5869 presenta simile luminosità, ma è vista con un’inclinazione meno marcata; si trova 2,5 gradi a sud-est di 110 Virginis ed è visibile con strumenti da 150mm come un punto luminoso simile a una stella sfuocata, circondato da un leggerissimo alone che di- viene più chiaro con diametri maggiori. Si tratta di una galassia lenticolare considerata uno dei membri più lon- tani del gruppo.

NGC 5831 è visibile circa un grado a SSE di 110 Virginis ed è un po’ più luminosa delle precedenti, tanto che sotto buoni cieli è possibile tentarne l’individuazio- ne con strumenti da 120mm; appare all’osservazione visuale come una piccola macchia di aspetto stellare, leggermente schiacciata se osservata con strumenti di diametro più grande e forti ingrandimenti. È una galas- sia ellittica di tipo E3, le cui dimensioni reali sono simi- li alle ultime galassie descritte, attorno ai 45.000 anni luce di diametro.

NGC 5813, infine, si trova mezzo grado a sudovest di 110 Virginis ed è una delle più brillanti del gruppo: è visibile anche con strumenti da 80mm come un piccolo alone chiaro simile a una stella sfuocata. Si tratta di una grande galassia ellittica di aspetto quasi sferoidale (tipo E1), spesso trascurata perché molto vicina alla 110 Virginis, il cui bagliore può creare disturbo se osservata a bassi ingrandimenti e con grandi inquadrate.

Fra le galassie probabilmente non legate al Complesso Virgo III vi è NGC 5838, che essendo situata a 60 mi- lioni di anni luce sarebbe una galassia in primo piano.

Può essere notata anche con strumenti da 120mm o per- sinno inferiori, dove appare come un dischetto chiaro circondato da un alone allungato. Si tratta di una galas- sia lenticolare vista con una forte angolazione e la sua posizione è facilmente individuabile circ 40° ad est di 110 Virginis.

Meno appariscente è la galassia spirale NGC 5806, si- tuata sempre a circa 60 milioni di anni luce, e individua- bile con strumenti da 150mm.

AMMASSI DI GALASSIE REMOTI

L’area di cielo al confine fra la Vergine, il Boote e il Serpente ospita numerosi ammassi di galassie remoti; fra questi, di grande interesse è l’ammasso di galassie Abell 2029, situato a circa 1,07 miliardi di anni luce e formato da un centinaio di galassie giganti, tutte comprese entro un diametro di 8 milioni di anni luce. L’ammasso costituisce la parte centrale di un superammasso particolarmente esteso denominato SCI 154 e appare dominato in senso assoluto dalla immensa IC 1101, una galassia ellittica gigante nota per essere la più grande conosciuta: il suo diametro, esteso da 2 a 6 milioni di anni luce a seconda delle stime, occuperebbe per intero il nostro Gruppo Locale, mentre il numero delle sue stelle è stimato sui 100.000 miliardi. La sua grande di- stanza però fa sì che la sua luminosità apparente non sia elevata: si mostra a noi come una macchia luminosa di magnitudine 14,7, ossia invisibile del tutto da telescopi con aperture inferiori ai 250mm. La sua morfologia sa- rebbe a metà strada tra il tipo ellittico (E) e quello lenti- colare (S0), ossia piatto, ma senza struttura a spirale. Al suo interno è presente un buco nero ultramassiccio la cui massa è stimata fra i 40 e i 100 miliardi di masse solari: è considerato in effetti uno dei buchi neri più massicci dell’intero Universo conosciuto.
La Vergine Meridionale

L’area di cielo a sudovest di Spica comprende un ramo periferico dell’Ammasso della Vergine noto in letteratura come Complesso Virgo II, in parte già descritto; molte delle sue galassie sono alla portata di strumenti di piccolo-medio diametro.

La grande ricchezza della zona centrale dell’Ammasso della Vergine fa però spesso trascurare agli appassionati le galassie di questa regione, tranne poche eccezioni, come la famosa Galassia Sombrero.

CARATTERISTICHE

La quasi totale assenza di galassie di Messier a sudovest di Spica, assieme alla presenza delle numerose e brillanti galassie delle zone centrali dell’Ammasso della Vergine, fa spesso ritenere che le galassie osservabili nella Vergine meridionale siano relativamente meno interessanti, con le sole eccezioni di M104 (la Galassia Sombrero) e M83, visibile nell’Idra.

In realtà molte delle galassie qui presenti sono alla portata degli strumenti più comuni e costituiscono un vasto complesso che si allunga verso sud, formando una ramifications dell’Ammasso della Vergine.

La loro individuazione è inoltre facilitata dalla presenza non solo della brillante Spica, ma anche dal quadrilatero del Corvo, nonché da una serie di stelle di magnitudine 4 e 5, fino ad arrivare alla isolata γ Hydrae, di magnitudine 3,0, che indica il termine ideale del Complesso Virgo II.

La gran parte di queste galassie si dispongono a formare delle concatenazioni orientate in diversi modi, principalmente in senso nord-sud ed est-ovest; all’estremità meridionale del complesso invece prevalgono i gruppi sparsi e più o meno isolati.

Fra le galassie del Complesso Virgo II se ne possono osservare alcune che tuttavia non ne fanno parte; queste costituiscono infatti alcuni gruppi isolati situati al doppio della distanza, oppure in primo piano, come M104.

Sebbene non vi siano molte galassie alla portata di strumenti da 80mm di diametro, la maggior parte di queste sono perfettamente individuabili con telescopi di media apertura; chi è invece in possesso di un dobsoniano avrà a portata d’osservazione numerose decine di galassie, quasi tutte facili da staccare dal fondo cielo.

Chi è dotato di apparecchiatura astrofotografica troverà
La parte meridionale della Vergine ospita alcuni gruppi periferici dell’omonimo grande ammasso di galassie, facilmente osservare e anche da fotografare.
molto interessante riprendere le concatenazioni di galassie del Compresso Virgo II; sullo sfondo inoltre sono presenti anche alcuni ammassi di galassie remoti che potrebbero rivelarsi una sfida interessante.

GALASSIE DEL COMPLESSO VIRGO II

Come già visto nella descrizione della regione centrale della Vergine, il **Compresso Virgo II** è formato da diverse centinaia di galassie organizzate in più gruppi, più numerose galassie sparse; questo complesso si sviluppa su una regione estesa per circa 30 milioni di anni luce e si trova a una distanza compresa mediamente fra 55 e 80 milioni di anni luce. Una parte di queste galassie è stata già descritta, dunque qui si procederà alla descrizione delle galassie della sezione meridionale del complesso.

NGC 4818 si trova circa 5 gradi a sudovest della stella θ Virginis ed è rintracciabile con strumenti da 120mm, dove appare come una macchia allungata in senso nord-sud per circa 4 minuti d’arco; nonostante le sue dimensioni apparenti siano dunque discrete, non appare parti-
La galassia spirale NGC 4699, molto luminosa.

colarmente luminosa. Si tratta di una galassia spirale barrata vista con una forte angolazione, con un nucleo di dimensioni intermedie circondato da un disco attraversato da molte bande oscurhe; la sua distanza è stimata sui 46 milioni di anni luce ed è dunque una delle galassie più vicine appartenenti al Complesso Virgo II. Le sue dimensioni reali sono pari a 60.000 anni luce.

Due gradi a sudovest appare la grande galassia NGC 4699, una delle più appariscenti non solo dell’intero complesso ma anche dell’intero Ammasso della Vergine; ciò nonostante viene spesso trascurata dagli appassionati in favore della ben più famosa M104, visibile non lontano. È anche alla portata di telescopi da 80mm, dove appare come una chiazza chiara compatta di forma ellissoidale, orientata in senso nordest-sudovest; con strumenti da 150mm è evidente un’estensione del suo alone che sfuma nel fondo cielo. Si tratta di una spirale barrata con un nucleo molto prominente, la cui massa è pari a oltre l’11% dell’intera massa della galassia; la barra al contrario è molto piccola e dà origine a numerosi bracci di spirale strettamente avvolti e molto ricchi di regioni di idrogeno ionizzato. Le sue dimensioni reali sono pari a 85.000 anni luce, mentre la sua distanza è stimata sui 65 milioni di anni luce; è anche il membro più luminoso del Gruppo di NGC 4699, che comprende una quindicina di galassie fra cui NGC 4697, NGC 4700, NGC 4742, NGC 4781 e NGC 4790.

Fra gli altri membri di questo gruppo una delle più appariscenti è NGC 4781, visibile un grado a sud della stella ψ Virginis e circondata da diverse altre galassie meno appariscenti; con uno strumento da 120mm è una macchia un po’ irregolare orientata in senso est-ovest, molto sfumata. Si tratta di una spirale barrata con un nucleo molto piccolo e dei bracci piuttosto aperti, su cui spiccano alcuni addensamenti più luminosi; le sue dimensioni reali sono pari a 60.000 anni luce, mentre la sua distanza è stimata sui 55 milioni di anni luce. In fotografia è visibile anche la sua compagna NGC 4784, molto più debole, con cui forma una coppia fisicamente legata catalogata come Holm 483.

Meno di mezzo grado a ovest appare la meno brillante galassia NGC 4760, visibile con strumenti da 130-150mm come una macchia di forma tondeggiante simile a una stella debole e sfuocata. Nonostante la sua posizione, non fa parte del Complesso Virgo II ma si trova molto più distante, a ben 208 milioni di anni luce; è infatti una ellittica gigante con un diametro di 125.000 anni luce, al centro di un gruppo di galassie ancora meno appariscenti.

A breve distanza verso ovest si trova NGC 4742, una galassia ellittica alla portata di strumenti da 120mm; appare fortemente allungata (tipo E4) ed è visibile come una macchia chiaramente allungata in senso est-ovest, priva di ulteriori dettagli anche con telescopi di grande diametro. La sua distanza è stimata sui 52 milioni di anni luce ed è dunque situata nella medesima regione del gruppo di galassie di NGC 4699, di cui fa parte.

Ancora più a sud e in primo piano rispetto alle altre galassie, si trova la famosissima M104, soprannominata Galassia Sombrero a causa del suo aspetto. È un oggetto non molto facile da reperire in cielo, poiché nelle sue immediate vicinanze non ci sono stelle luminose; può essere individuata circa 9 gradi a est della brillante stella Spica, oppure 4° a NNE di δ Corvi. Le sue dimensioni apparenti sono di 5’x2’. È già visibile in un binocolo 10x50 come un'ellisse chiara allungata in senso est-ovest, senza che si noti però alcun particolare; un telescopio da 60-80mm la mostra allo stesso modo, con la zona centrale più luminosa delle aree periferiche. Con strumenti da 150mm di apertura la galassia continua a non mostrare con facilità i suoi dettagli e la visione può restare deludente se si hanno in mente solo le classiche belle immagini ben note di questa galassia: si mostra infatti come un'ellisse in cui la parte settentrionale appa-
re notevolmente più luminosa, mentre ad un'osservazione particolarmente accurata è possibile individuare sui due lati un accenno di quella che è la banda oscura che conferisce alla galassia il suo tipico aspetto. Strumenti da 180-200mm già consentono di mostrare dei dettagli maggiori, come la linea oscura, visibile specialmente con la visione distolta. La sua distanza è stimata sui circa 29 milioni di anni luce da noi ed è quindi più vicina dell’Ammasso della Vergine, del quale non è considerato un membro. Il suo diametro è stimato in modo differente da vari astronomi: da 50.000 a 140.000 anni luce. Secondo il sito del telescopio spaziale Hubble, il diametro di M104 è di 50.000 anni luce e la sua massa è pari a 800 miliardi di masse solari. Ha un nucleo grande e luminoso, un bulge centrale stranamente grande e una prominente banda di polveri attorno al disco. Poiché si mostra di taglio, l’aspetto complessivo è simile ad un sombrero messicano, da cui il nome assegnatole. Questa galassia ha anche un sistema di ammassi globulari ben popolato, con almeno alcune centinaia di membri visibili ai grandi telescopi e una popolazione totale stimata di almeno 2000 oggetti, molti di più di quelli della Via Lattea. Foto recenti hanno inoltre mostrato che M104 ha un alone galattico molto esteso. La struttura maggiormente evidente della Galassia Sombrero è la grande banda oscura formata da polveri del mezzo interstellare che transitano di fronte alla regione centrale; questa banda oscura è in realtà un anello simmetrico che circonda il nucleo della galassia. Gran parte dell'idrogeno atomico freddo presente nella galassia e della polvere si estende attorno all'anello, il quale inoltre contrerrebbe in generale la gran parte del gas molecolare freddo di questa galassia; secondo alcuni queste sarebbe soltanto un'ipotesi o una speculazione basata sulle osservazioni a bassa risoluzione e con rilevamenti deboli. Sono infatti necessarie ulteriori osservazioni per confermare che il gas molecolare di questa galassia sia contenuto principalmente nell'anello; basandosi sulla spettroscopia infrarossa si è comunque confermato che quest'anello di polveri sia la sede principale dei fenomeni di formazione stellare che avvengono all'interno di M104.

Due gradi e mezzo a sud di ψ Virginis si trova NGC 4802, una galassia lenticolare alla portata di strumenti da 130-150mm; appare come una chiazza circolare o appena allungata, simile a una debolezza sfuocata.

La galassia Sombrero osservata agli infrarossi.

Più a sud, circa a metà strada fra le stelle Spica e δ Corvi, si trova un blando addensamento di galassie dominato da una concatenazione orientata in senso nord-sud; quest'allineamento è però solo apparente, poiché è formato da galassie che si trovano a distanze molto diverse fra loro, da 50 milioni fino a oltre 200 milioni di anni luce. L'unica galassia di rilievo appartenente al Compresso Virgo II è NGC 4856, che è alla portata di strumenti da 100mm, dove appare come un'ellisse molto allungata in senso nordest-sudovest, con un centro più luminoso e di aspetto stellare. Con telescopi di grande diametro appare piuttosto estesa, con un alone che alle due estremità sfuma gradualmente. Si tratta di una galassia di tipo lenticolare vista con una forte angolazione, apparentemente dotata di una piccola barra centrale; la sua distanza è stimata sui 55 milioni di anni luce, mentre il suo diametro sarebbe di circa 70.000 anni luce.

In posizione più isolata, circa un grado a nordovest di 53 Virginis, si trova NGC 4984, meno appariscente e visibile solo con strumenti da 120mm a salire; con questi strumenti si mostra come una macchia circolare con un nucleo più luminoso e un blando alone che lo circonda, mentre con strumenti più grandi il nucleo appare leggermente allungato in senso est-ovest per via della presenza di una piccola barra. Si tratta di una piccola galassia lenticolare barrata vista quasi di faccia; presenta una struttura ad anello esterna, come un accenno di spirale, che potrebbe renderla simile a una spirale coi bracci che si congiungono alle estremità. Il suo diametro è stimato sui 50.000 anni luce, mentre la distanza è di circa 58 milioni di anni luce.

La galassia spirale NGC 5054.
Un grado e mezzo a sudest di 53 Virginis si trova NGC 5054, un po’ più appariscente e osservabile con qualche difficoltà anche con telescopi da 100mm, dove appare come una stella sfocciata molto debole circondata da un leggerissimo alone appena percepibile. È una grande spirale di aspetto intermedio, con un nucleo appariscente circondato da numerosi bracci flocculenti e ramificati verso l’esterno; questi bracci ospitano diversi addensamenti più luminosi. La sua distanza è stimata sui 75 milioni di anni luce.

Ancor più a sud, nei pressi della debole stella 73 Virginis, si trova la grande galassia NGC 5170; nonostante le sue dimensioni, la sua osservazione con strumenti da 100mm è un po’ difficoltosa e appare come un esile fuso chiaro allungato in senso nordovest-sudest, mentre il nucleo, più luminoso, è meglio evidente con telescopi di diametro maggiore. Si tratta di una spirale vista perfettamente di taglio, con un disco attraversato da spessi banchi di polveri oscure; la sua distanza è stimata sui 62 milioni di anni luce ed è uno dei membri più periferici del Complesso Virgo II.

Circa due gradi a est si trova NGC 5247, una delle galassie più appariscenti della regione; può essere notata anche con telescopi da 80mm, dove appare come una macchia chiara di forma tondeggiante. I suoi bracci di spirale diventano visibili solo con strumenti di diametro molto grande. È una galassia spirale molto aperta e di discrete dimensioni, con un disco spesso circa 5000 anni luce; presenta un nucleo molto luminoso, dai cui lati partono due bracci di spirale molto spessi, che si biforcano dopo circa mezzo giro. I bracci originati da questa biforcazione seguono una spira più chiusa. I due bracci maggiori appaiono inoltre asimmetrici, ma data la posizione isolata della galassia non è chiaro se questa deformazione sia causata dall’interazione con altre galassie avvenuta in un lontano passato. La sua distanza è stimata sui 60 milioni di anni luce.

L’estremità meridionale del Complesso Virgo II è costituita dal Gruppo di NGC 5084 (o LGG 345), comprendente tre galassie maggiori e alcune minori, situate alla distanza media di 75 milioni di anni luce. NGC 5084 è una galassia lenticolare gigante, vista di taglio, il cui diametro reale si aggira sui 200.000 anni luce almeno; è visibile poco a nord dell’appariscente stella γ Hydrae con strumenti da 100mm senza grosse difficoltà e appare come una macchia con due deboli lobi sui lati est e ovest, che appaiono molto più estesi con telescopi di grande diametro o nelle fotografie e conferiscono alla galassia una forma a fuso. Si tratta di una delle galassie più grandi dell’intero Ammasso della Vergine, con una massa che è stimata fra 6000 miliardi e ben 10.000 miliardi di masse solari. Il suo spesso disco è attraversato da dense bande di polveri oscure, evidenti nelle fotografie.

NGC 5087 è anch’essa lenticolare, ma di dimensioni molto più contenute, con un diametro stimato sui 60.000 anni luce; è alla portata di strumenti da 120mm e si mostra come un alone chiaro allungato in senso nord-sud, priva di ulteriori dettagli anche se osservata con telescopi più aperti. La sua distanza è stimata sui 71 milioni di anni luce.

Di morfologia e dimensioni simili è anche la galassia NGC 5134, anch’essa alla portata di telescopi da 120mm e dall’aspetto allungato; tuttavia questa galassia
presenta sui bordi esterni del disco diversi addensamenti di polveri oscure.

Nella medesima direzione del gruppo appare anche la galassia NGC 5068, decisamente molto appariscente e visibile anche con strumenti da 80mm, seppure con difficoltà, come una macchia chiara irregolare. Si tratta di una galassia di campo, ossia solitaria, posta in primo piano e dunque slegata dal complesso, essendo a 22 milioni di anni luce di distanza; è una spirale barrata vista di faccia, con una barra molto luminosa circondata da bracci spessi e ramificati verso l’esterno. Le sue dimensioni reali sono relativamente contenute, essendo il suo diametro pari a 45.000 anni luce.

GRUPPI DI GALASSIE REMOTI

Come già visto, diverse galassie qui osservabili si trovano a distanze nettamente superiori rispetto al Compresso Virgo II.

Fra queste vi è il **Gruppo di NGC 4902** (o LGG 321) le cui galassie membri compongono parte della sequenza di galassie di cui si è accennato in precedenza, situata fra le stelle Spica e δ Corvi, e la cui distanza media è stimata sui 115 milioni di anni luce. NGC 4902 è la galassia più appariscente ed è visibile con telescopi da 120mm, con cui appare come una stella sfuocata molto debole; strumenti più grandi mostrano la presenza di un alone diffuso attorno al nucleo, di forma circolare. Si tratta di una galassia spirale barrata vista perfettamente di faccia, dalla struttura molto ben definita e di aspetto probabilmente simile alla Via Lattea; presenta una barra luminosa circondata da un anello altrettanto luminoso, da cui partono due bracci di spirale maggiori e alcuni minori, con alcune ramificazioni che intersecano più bracci. Il suo diametro è stimato sui 100.000 anni luce.

Molto meno luminosa è la spirale barrata NGC 4899, visibile poco a nord e anch’essa parte del gruppo. NGC 4939 è visibile più a nord, a breve distanza angolare dalla stella 49 Virginis; con strumenti da 120mm si presenta come una macchia allungata in senso nord-sud, molto debole. Si trova a 134 milioni di anni luce ed è una spirale di dimensioni ragguardevoli, con un diametro stimato sui 200.000 anni luce circa; il suo nucleo, che è classificato come attivo di tipo Seyfert 2, appare di morfologia leggermente ellittica e ciò può far ritenere probabile l’esistenza di una piccola barra. I suoi bracci di spirale sono ben definiti, sebbene siano sottili, e compiono quasi due giri completi attorno al nucleo.

Circa due gradi a sudovest di Spica si può osservare il **Gruppo di NGC 5044**, situato a circa 120 milioni di anni luce, la cui galassia dominante è l’ellittica NGC 5077, alla portata di strumenti da 120mm e con un diametro reale di 80.000 anni luce. Assieme alla vicina NGC 5079 e NGC 5088 formano un trio facilmente fotografabile; è da notare però che NGC 5088 non fa parte del gruppo ma è posta in primo piano, a 60 milioni di anni luce.

Circa un grado a ESE di 53 Virginis, vi è NGC 5018, un’altra galassia ellittica situata alla medesima distanza della precedente, il cui diametro è stimato sui 130.000 anni luce; con uno strumento da 100mm appare come una debole stella sfuocata. La galassia mostra segni di passata interazione con la galassia NGC 5022; con questa e altre vicine formano il **Gruppo di NGC 5044**.
Verso il centro della Via Lattea
Il gruppo di stelle che forma la testa dello Scorpione è dominato dalla brillante stella Antares, che con la sua magnitudine pari a 1,07 è una delle più brillanti del cielo ed è visibile anche dalle aree urbane. Antares è inoltre accompagnata da alcune stelle di magnitudine 2, giovani e azzurre, che dominano su uno sfondo ricco di stelle più deboli.

Lo Scorpione meridionale è delineato da una sequenza di stelle molto brillanti che lo rende inconfondibile anche quando si trova basso sull’orizzonte; è attraversato in pieno dalla Via Lattea in un tratto molto ricco e a breve distanza dal centro galattico, per cui abbondano qui ammassi stellari e nebulose.

In direzione del centro della Via Lattea si possono osservare le strutture galattiche appartenenti ai bracci più interni rispetto alla nostra posizione; in particolare, gli oggetti più notevoli sono compresi nel Braccio del Sagittario, che in questa direzione è il più vicino. Nonostante la maggiore distanza rispetto agli oggetti del Braccio di Orione, le loro grandi dimensioni e luminosità li rendono ben visibili anche con piccoli strumenti.
La testa dello Scorpione

La brillante costellazione dello Scorpione nell’emisfero nord è caratteristica dei mesi estivi; sebbene appaia abbastanza bassa sull’orizzonte meridionale, le stelle della testa si presentano abbastanza alte da poter essere osservate senza difficoltà.

Il gruppo di stelle della testa costituisce l’estremità settentrionale di una grande associazione stellare che si estende fino al Centauro e alla Croce del Sud, nel profondo emisfero australe.

CARATTERISTICHE

Il gruppo di stelle che forma la testa dello Scorpione è dominato dalla brillante stella Antares, che con la sua magnitudine pari a 1,07 è una delle più brillanti del cielo ed è visibile anche dalle aree urbane. Antares è inoltre accompagnata da alcune stelle di magnitudine 2, giovani e azzurre, che dominano su uno sfondo ricco di stelle più deboli.

Fra queste stelle si estendono grandi sistemi di nebulose; il gruppo di stelle occidentale, in particolare, è immerso in un intricato complesso di nebulose a riflessione molto ben evidenti nelle fotografie, i cui gas sono illuminati dalle stesse stelle che formano il brillante allineamento β-δ-π Scorpii.

La stessa stella Antares, pur trovandosi più ad est, illumina un banco di polveri situato nelle sue vicinanze, che ne riprende persino il colore rosso-arancione.

A nord di Antares si trova invece un sistema nebuloso molto più denso ed esteso, in cui sono in atto processi di formazione stellare: questo sistema si incentra sulla stella ρ Ophiuchi, la cui nomenclatura fa ben intendere che si trova oltre il confine con la vicina costellazione dell’Oriente, e prende infatti il nome di Nube di Rho Ophiuchi.

Dal sistema nebuloso attorno a ρ Ophiuchi si dipartono verso oriente degli spessi ed estesi banchi di nubi non illuminate, che sovrapponendosi al chiarore crescente del bulge della Via Lattea diventano chiaramente visibili come striature scure; questi banchi sono ben evidenti persino a occhio nudo, se le condizioni osservative sono ottimali e se vi è assenza di inquinamento luminoso. Se poi lo Scorpione è molto alto nel cielo, cosa possibile solo nella fascia tropicale o a sud dell’equatore, la loro osservazione visuale è ancora più facile.

STELLE PRINCIPALI DELLA REGIONE

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>α Sco</td>
<td>Antares</td>
<td>16h 29m 24s</td>
<td>–26° 25’ 55”</td>
<td>1.07v</td>
<td>604</td>
<td>rosso</td>
</tr>
<tr>
<td>δ Sco</td>
<td>Dschubba</td>
<td>16h 00m 20s</td>
<td>–22° 37’ 18”</td>
<td>2.29</td>
<td>401</td>
<td>azzurro</td>
</tr>
<tr>
<td>β° Sco</td>
<td>Graffias</td>
<td>16h 05m 26s</td>
<td>–19° 48’ 19”</td>
<td>2.56</td>
<td>530</td>
<td>azzurro</td>
</tr>
<tr>
<td>τ Sco</td>
<td>Al Niyat</td>
<td>16h 35m 53s</td>
<td>–28° 12’ 57”</td>
<td>2.82</td>
<td>430</td>
<td>azzurro</td>
</tr>
<tr>
<td>π Sco</td>
<td>Vrischika</td>
<td>15h 58m 51s</td>
<td>–26° 06’ 30”</td>
<td>2.89</td>
<td>459</td>
<td>azzurro</td>
</tr>
<tr>
<td>σ Sco</td>
<td>Al Niyat</td>
<td>16h 21m 11s</td>
<td>–25° 35’ 34”</td>
<td>2.90</td>
<td>734</td>
<td>azzurro</td>
</tr>
<tr>
<td>υ Lib</td>
<td>Derakrab Bor.</td>
<td>15h 37m 01s</td>
<td>–28° 08’ 06”</td>
<td>3.60</td>
<td>195</td>
<td>arancio</td>
</tr>
<tr>
<td>τ Lib</td>
<td>Derakrab Aus.</td>
<td>15h 38m 39s</td>
<td>–29° 46’ 40”</td>
<td>3.66</td>
<td>445</td>
<td>azzurro</td>
</tr>
</tbody>
</table>

DETTAGLI

<table>
<thead>
<tr>
<th>Costellazioni</th>
<th>Scorpione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascensione Retta (media)</td>
<td>16h 10’</td>
</tr>
<tr>
<td>Declinazione (media)</td>
<td>-24°</td>
</tr>
<tr>
<td>Tipo</td>
<td>Campi stellari galattici</td>
</tr>
<tr>
<td>Oggetti</td>
<td>Ammassi aperti e nebulose</td>
</tr>
</tbody>
</table>
Le stelle luminose che raggruppano la testa dello Scorpione sono legate fisicamente fra loro e fanno parte di un’unica estesa associazione stellare.
Nei dintorni di Antares si osservano anche tre ammassi globulari, la cui distanza naturalmente è notevolmente superiore rispetto alle stelle e alle nebulose visibili in questa direzione e non verranno pertanto descritti.

Due di questi ammassi sono stati notati anche da Charles Messier e inseriti nel suo catalogo: fra questi vi è M4, uno dei più brillanti dell’intera volta celeste, mentre l’altro è M80.

IL GRUPPO SCORPIONE SUPERIORE

Come accennato, le stelle visibili a occhio nudo che compongono la testa dello Scorpione fanno parte di un’unica estesa associazione stellare, pertanto condividono un’origine comune. Il gruppo stellare in oggetto è noto in dettaglio come Associazione di Antares, oppure con le sigle Cr 302 e Scorpius OB2.

L’Associazione di Antares è a sua volta parte della va-motion OB più vicina al nostro Sistema Solare; in questo specifico contesto, l’associazione che comprende le stelle della testa dello Scorpione è nota anche come Associazione Scorpione superiore (sigla US) ed è la parte più giovane del gruppo, con un’età stimata sui 5 milioni di anni.

L’Associazione di Antares contiene circa 120 componenti stellari di grande massa disperse su una regione di 115 anni luce, posta a circa 470 anni luce dal Sole. La classe spettrale di queste componenti varia fra B0.5 e G5 e la massima parte di esse giace sulla sequenza principale, sebbene vi siano alcune stelle evolute verso la fase di supergigante, fra le quali spicca Antares.

Nonostante la giovane età del gruppo, nella regione non sono presenti fenomeni di formazione stellare, attivi invece nell’adiacente Nebulosa di Rho Ophiuchi.

Le originarie componenti più massicce hanno già completato il loro ciclo vitale e sono già esplose come supernove; fra queste, la più massiccia probabilmente è stata la progenitrice della pulsar PSR J1932+1059, esplosa circa 1,5 milioni di anni fa, la cui massa originaria doveva aggirarsi attorno alle 50 masse solari. Sebbene si sia speculato che questa stella fosse la compagna maggiore della stella fuggitiva ζ Ophiuchi, misurazioni successive fanno pensare che si tratti di due stelle separate fin dalla loro origine.

In aggiunta alle stelle di grande massa, sono state scoperte alcune centinaia di stelle di piccola e media massa, nonché alcune stelle T Tauri; alcune di queste stelle tuttavia non sono legate fisicamente all’associazione, ma fanno parte della regione di formazione stellare di Rho Ophiuchi. Fra le stelle di piccola massa, molte potrebbero essere delle nane brune: la loro massa infatti è compresa fra 0,3 e 0,007 masse solari e una dozzina di queste possiede una massa pari o inferiore alle 15 masse giovaniane.

Attorno a questo gruppo sono presenti diversi veli nebulosi, osservabili in particolare nel settore sudoccidentale.
La nebulosa Sh2-1, una delle più estese della regione. La stella brillante poco a sinistra del centro è la π Scorpii.

e noti come Sh2-1 e Sh2-7, più diverse nubi a riflessione situatasi nella regione più settentrionale; la loro visibilità è data dalla vicinanza delle stelle azzurre e massicce, che li illumina facendo loro assumere una colorazione azzurrogna.

NEBULOSE A RIFLESSIONE

I più grandi sistemi di nebulose a riflessione della zona si osservano attorno all’arco di stelle brillanti delineato da β Scorpii (Graffias), δ Scorpii (Dschubba) e π Scorpii e si estende alle stelle circostanti.

Questa nebulose non sono osservabili visualmente con i più comuni telescopi, essendo molto deboli e diffuse; tuttavia diventano ben chiare se si riprende con diverse pose l’area sfruttando i grandi campi.

Una delle nebulose più notevoli è Sh2-1, il sistema che comprende la stella π Scorpii e si estende verso ovest fino alle vicine stelle 1 Scorpii, 2 Scorpii, 3 Scorpii e 4 Scorpii, tutte visibili anche con un piccolo binocolo e alcune anche ad occhio nudo. Per la sua ripresa integrale occorre fotografare un campo di almeno 5 gradi. La parte più brillante si trova nei pressi di π Scorpii ed è talvolta indicata con la sigla vdB 99, mentre una grande ansa vuota è individuabile fra le stelle 1 e 2 Scorpii, laddove la nebulosa appare più frastagliata. La massa di idrogeno molecolare contenuta in Sh2-1 è pari a circa 50 masse solari, mentre la distanza, coerentemente con quella media dell’associazione Scorpius OB2, è stimata attorno ai 650 anni luce.

Molto più debole è la nebulosa Sh2-7, che circonda la stella δ Scorpii (Dschubba); qua la componente a riflessione è meno cospicua e la ionizzazione dei gas è anch’essa meno evidente, per cui occorre un’esposizione decisamente maggiore per rivelarla nelle fotografie. La nebulosa si presenta di aspetto molto disomogeneo e si evidenzia soprattutto sul lato sudorientale della stella, ad alcune decine di minuti d’arco di distanza.

Il complesso di nebulose legato al gruppo della testa è dominato a nord dalla estesa IC 4592, che circonda la stella v Scorpii ed è talvolta soprannominata Testa di Cavallo Blu a causa del suo aspetto chiaramente evidente nelle foto. Si tratta di un vasto sistema nebuloso che riceve la luce blu della sua stella più vicina, la già citata v Scorpii, riflettendola e diventando così luminosa come una nube dal colore azzurro intenso; nelle vicinanze si trova anche la stella HD 145501, una stella azzurra di magnitudine 6,5 che fa coppia con la stella precedente. Il suo lato meridionale è molto netto ed è orientato in senso nordovest-sudost. IC 4592 ingloba l’oggetto nebuloso catalogato come vdB 100, una porzione di gas più luminoso visibile a contatto con v Scorpii; tutta la nube illuminata costituisce in realtà soltanto una piccola parte dei gas presenti nella regione, facenti parte della grande nube oscura LDN 1721. IC 4592 è la parte di questa nube più esposta alla radiazione della stella v Scorpii, da cui dista solo 5,5 anni luce; al suo interno sono comprese almeno 25 masse solari di idrogeno molecolare. La distanza del sistema nebuloso dal sistema solare è invece di 436 anni luce.

Il lato settentrionale di IC 4592 appare meno illuminato e sfuma gradualmente verso un sistema di nubi scarsamente illuminate, evidenti come una sorta di “fumo” grigo, un aspetto tipico della Integrated Flux Nebula e di altri sistemi non illuminati; questo sistema è stato individuato anche dal Barnard, che l’ha inserito nel suo catalogo e oggi porta la denominazione B40. Il lato orientale ha invece ricevuto una designazione a parte ed è noto come B41.

A sud-est, adiacente a IC 4592 e in continuità con questa, si trovano i bozzoli gassosi illuminati da un gruppetto di stelle di magnitudine 7. Benché si tratti dello stesso sistema nebuloso, questi bozzoli hanno ricevuto
una denominazione a parte; in particolare, il più cospi-
cuo è IC 4601, che riceve la luce della stella HD
147010, una gigante blu di classe spettrale B9III, varia-
bile α² Canum Venaticorum con una magnitudine me-
dia attorno a 7,40 e con oscillazioni minime, dell'ordine
di 0,045 magnitudini; la sua sigla di stella variabile è
V933 Scorpii. La massa gassosa più prossima a questa
stella è catalogata indipendentemente con la sigla
vdB 102. Altre stelle che concorrono all'iluminazione della
nube sono HD 147013, una stella binaria con compo-
nenti di magnitudine 7,5 e 8,4.
Le stelle responsabili dell'iluminazione di vdB 102
sono HD 147009 e la già citata HD 147010. La prima è
la meno luminosa, essendo di magnitudine 8,06; si trat-
ta di una stella bianca di sequenza principale. La secon-
da è invece la più luminosa, che come visto si tratta di
una gigante blu di magnitudine 7,40, che è anche una
variabile α² Canum Venaticorum.
La vicina vdB 103 è invece illuminata da una stella di
sesta magnitudine, la gigante arancione HD 146834; ciò
rende vdB 103 molto contrastante come colore rispetto
al dominante azzurro del sistema nebuloso in cui è
compresa. Questa stella ha una classe spettrale K0III ed
è in evoluzione verso l'ultimo stadio del suo ciclo vitale.
Ancora più a est si estende la densa nebulosa oscura
B43, ben evidente nelle fotografie perché maschera
fortemente la luce delle stelle di fondo.
La distanza di questo complesso nebuloso è di circa
450-460 anni luce e si colloca in una regione molto ric-
ca di polveri interstellari, fra le stelle dell'Associazione
Scorpius OB2 e la Nube di Rho Ophiuchi.
Sul bordo meridionale del gruppo di stelle della testa
dello Scorpione si trova la piccola nebulosa IC 4591,
un sottile velo nebuloso che riflette la luce di 13 Scorpii
(HD 145482), una stella azzurra sulla sequenza princi-
pale, ossia nella fase stabile del suo ciclo vitale, con una
magnitudine è 4,58 e una classe spettrale B2V, che con-
ferisce un colore marcatamente azzurrognolo alla nebu-
losa associata. La distanza di 13 Scorpii è di circa 468
anni luce, simile a quella della Nube di Rho Ophiuchi.
Infine verso sud-est spicca Sh2-9, una nebulosa piuttosto
estesa che riflette la radiazione azzurra di σ Scorpii, una
stella multipla la cui componente principale è una gi-
gante blu variabile pulsante di corto periodo e oscilla-
zioni dell'ordine di 0,06 magnitudini, con una magnitu-
dine media di 2,91; questa stella produce anche un fron-
te di ionizzazione che fa brillare la nube anche in manie-
ra autonoma. La parte più luminosa coincide infatti col
grande arco di gas ionizzato che riceve la radiazione
maggiore a causa della sua vicinanza alla stella; le re-
gioni più distanti invece ricevono una radiazione suffi-
ciente per renderle luminose, ma non così intensa da
produrre ionizzazione, limitandosi così a riflettere la
luce bluastra di σ Scorpii. La distanza da noi è stimata
sui 650 anni luce.

LA NUBE DI RHO OPHIUCHI

La Nube di Rho Ophiuchi è una nube molecolare gi-
gante composta in parte da idrogeno ionizzato luminoso
e in gran parte da polveri oscura; deve il suo nome alla
stella che domina la regione in cui si trova, ρ Ophiuchi,
situata tre gradi a nord di Antares, nella costellazione
dell'Ofiuco.
Con una distanza media di appena 420 anni luce, è una
delle regioni di formazione stellare più vicine in assolu-
to al sistema solare; appartiene allo stesso ambiente ga-
lattico dell'associazione Scorpius-Centaurus, dalle cui
perturbazioni ha avuto origine la compressione iniziale
che ha avviato al suo interno i processi di formazione

La nebulosa Sh2-9 circonda la stella σ Scorpii e fa parte delle regio-
ni periferiche della Nube di Rho Ophiuchi.
stellare. Morfologicamente appare divisa in due nubi principali, indicate con le sigle LDN 1688, che costituisce il nucleo maggiore, e LDN 1689, di massa inferiore; ad entrambe le nubi sono connessi diversi filamenti nebulosi oscuri. Grazie alla sua vicinanza, questa nube costituisce un interessante campo di ricerca sull'evoluzione delle stelle di piccola massa e sulle nane brune, nonché un laboratorio per lo studio dei fenomeni di formazione stellare a catena.

La nube è centrata fra le stelle \(\rho \) Ophiuchi e Antares; la sua caratteristica principale, all'osservazione con un binocolo in un cielo buio e sereno, è la quasi totale assenza di stelle di fondo: gli astri di quarta, quinta e sesta magnitudine infatti dominano questa parte di cielo in senso assoluto, mentre le stelle di settima, ottava e nona grandezza appaiono quasi del tutto assenti; al binocolo non si evidence tracce di nebulosità, ma l'oscuramento dei campi stellari di fondo è estremamente evidente. Telescopi di grande potenza consentono di rivelare alcune stelle dall'aspetto nebuloso nei pressi di \(\rho \) Ophiuchi, mentre tutta la regione ad est di quest'ultima continua ad apparire notevolmente povera di stelle poco luminose; lunghe scie completamente buie circondate da campi stellari relativamente poveri denotano la presenza di filamenti oscuri. Fotografie a lunga posa consentono di catturare diversi dettagli della nube, la cui colorazione varia dall'azzurro intenso nei pressi di \(\rho \) Ophiuchi all'arancione attorno ad Antares.

Il corpo principale della nube, indicato con la sigla LDN 1688, si colloca presso la stella \(\rho \) Ophiuchi, che lo illumina parzialmente rendendolo così visibile anche otticamente come nebulosa a riflessione e ad emissione, assumendo le sigle IC 4604 e IC 4603; la radiazione ultravioletta di questa stella e il suo colore bluastro imprima ai gas della nube un colore marcatamente azzurrogno. La nube si estende in direzione sud e SSE, verso la brillante supergigante rossa Antares; parte dei gas vengono illuminati direttamente da questa stella, come è ben evidente dal colore rossastro assunto dalla nube in questa regione. Altre stelle poste poco a sud di \(\rho \) Ophiuchi sono invece responsabili dell'illuminazione di varie sezioni della nube, come \(\text{vdB 105} \). Ad est della nube si stendono due lunghi filamenti periferici, indicati con le sigle LDN 1709, a nordest, e LDN 1704, in direzione nord.

Le regioni centrali di LDN 1688 appaiono di natura granulosa, con un gran numero di piccoli addensamenti nebulosi privi di un corpo centrale; in particolare, tre punti di densità maggiori, denominati con le lettere A, E e F, predominano sugli altri. Il nucleo A è a sua volta composto da tre dense concentrazioni di gas freddo con una massa pari a 0,5 masse solari, indicate come SM 1, SM 1N e SM 2, coincidenti a loro volta con nuclei prestellari. Ai tre nuclei principali si ne aggiungono oltre una cinquantina, con masse comprese fra 0,02 e 6,3 masse solari; queste nubi, che assieme costituiscono comunque una frazione minima dell'intera massa gassosa della nube, potrebbero costituire le primissime fasi di un futuro fenomeno di formazione stellare.

La nube secondaria, situata a sud-est rispetto alla principale, è indicata come LDN 1689; ad essa è connesso un filamento orientato verso nordest, noto come LDN 1712. L'insieme di questi filamenti oscuri costituisce due evidenti correnti parallele, indicate anche con le sigle B44 e B45, rispettivamente quella di sudest e quella di nordest. Le principali responsabili del riscaldamento diretto dei gas e delle polveri del complesso nebuloso...
sono le stelle di classe spettrale B, ossia le stelle blu di grande massa, poste all'interno della nube stessa, mentre le regioni più occidentali risentono dell'influenza di HD 147889, un astro di settima magnitudine situato a sud di ρ Ophiuchi. La componente luminosa della nube è invece indicata con la sigla IC 4605. In totale, il complesso nebuloso possiede una massa pari a 3000 masse solari, oltre la metà della quale è concentrata nella nube LDN 1688.

La parte meridionale è formata principalmente da nebulose a riflessione e circondano la stella Antares, divenendo luminose e note collettivamente con la sigla IC 4606.

L'ambiente galattico in cui si trova la Nube di Rho Ophiuchi è particolarmente complesso; essa viene a trovarsi sul bordo interno del Braccio di Orione, così che vista dalla Terra appare in direzione del bulge della Via Lattea. Pertanto, fisicamente è completamente slegata da altre nebulose visibili nelle vicinanze, ma poste in realtà a una distanza di gran lunga superiore, come la Nebulosa Laguna e la Nebulosa Aquila. La Nube di Rho Ophiuchi costituisce, di contro, l'estremità più settentrionale di un esteso sistema di nubi e associazioni di stelle che si estendono visivamente lungo quasi tutto il ramo australe della Via Lattea; a poche decine di anni luce, ad una latitudine galattica leggermente superiore, si trova l'associazione Scorpius OB2, che costituisce a sua volta l'estremità più orientale dell'Associazione Scorpius-Centaurus, come si è già detto. A quest'associazione sono conesse altre nubi oscure, prima fra tutte la Nube del Lupo, una densa nebulosa non illuminata in cui ha luogo la formazione di stelle di piccola e media massa. Secondo i modelli dinamici, a innescare tali processi in quest'ultima nube sarebbero state le onde d'urto provocate da esplosioni di supernova all'interno della parte orientale dell'associazione (ossia l'associazione Scorpius OB2).

Secondo gli stessi modelli, le medesime onde d'urto sarebbero le responsabili dell'innesto dei fenomeni di formazione stellare all'interno della stessa Nube di Rho Ophiuchi: circa un milione di anni fa le onde d'urto avrebbero compresso i gas della nube, facendola collasare in più punti e originando così le prime stelle.

Alla distanza di circa 420 anni luce dal sistema solare si trova la Nebulosa Pipa, una giovane nube molecolare che viene così a trovarsi nella medesima regione della Nube di Rho Ophiuchi; in questa nube i fenomeni di formazione stellare sono molto ridotti e confinati alla regione di B59, la sezione della nube più vicina a ρ Ophiuchi. Alla medesima distanza, ma ad una diversa latitudine galattica, si trova anche la Nube della Corona Australe, un piccolo complesso nebuloso in cui è attiva la formazione di stelle di piccola, media e grande massa, fino alle stelle di classe B.

Schema generale dei sottogruppi dell'Associazione Scorpius-Centaurus e delle nubi associate, cui sono legati importanti processi di formazione stellare che hanno interessato gli ultimi 20 milioni di anni. La stella luminosa a destra del centro è Alfa Centauri, all'interno del gruppo LCC c'è la Croce del Sud. Il Lupo è compreso nel gruppo UCL e la testa dello Scorpione ricade nel gruppo US.
La parte meridionale dello Scorpione è di difficile osservazione per molti di coloro che vivono nelle regioni boreali dell'emisfero nord e a seconda dei casi resta persino sempre sotto l'orizzonte, senza mai mostrarsi. Per coloro che riescono ad averne una visuale completa, seppure bassa sull'orizzonte, vale la pena di esplorarne gli ammassi stellari, abbastanza facili anche se si trovano a pochi gradi di altezza, avendo a disposizione un cielo pulito fino all'orizzonte meridionale.

CARATTERISTICHE

Lo Scorpione meridionale è delineato da una sequenza di stelle molto brillanti che lo rende inconfondibile anche quando si trova basso sull'orizzonte; è attraversato in pieno dalla Via Lattea in un tratto molto ricco e a breve distanza dal centro galattico, per cui abbondano qui ammassi stellari e nebulose. Osservando qui in direzione delle regioni più interne della nostra galassia, gli oggetti appartenenti a più bracci di spirale si sovrappongono sulla stessa linea di vista, rendendo dunque più difficile un loro studio sistematico.

La maggior parte degli ammassi stellari più appariscenti e delle nebulose comunque appartenne al Braccio del Sagittario, la struttura a spirale subito più interna della nostra; in molti casi questi oggetti appaiono fortemente oscurati a causa della presenza di densi banchi di polveri, che modellano la stessa sagoma della scia chiara della Via Lattea conferendole un aspetto disomogeneo, con una banda scura irregolare che segue il piano galattico.

Gli ammassi globulari qua visibili sono tendenzialmente piccoli oppure molto remoti e infatti sono in gran parte di difficile osservazione. Alcuni ammassi aperti sono invece osservabili già con un binocolo 10x50, come M6 e M7, cui si aggiunge anche qualche ammasso extra Messier, come NGC 6231. Osservando con un piccolo telescopio è possibile risolvere in stelle anche diversi altri oggetti e individuarne altri ancora come macchie indistinte.

L’unico vero limite all’osservazione è, come visto, legato alla declinazione molto meridionale della coda dello Scorpione, che penalizza molto chi osserva dall’Europa...
La parte meridionale dello Scorpione giace quasi in direzione del centro galattico ed è molto ricco di ammassi stellari appartenenti ai bracci di spirale interni.
Il complesso sistema attorno all’associazione Scorpius OB1.
bulose oscure, che sembrano frammentare la Via Lattea e che mostrano filamenti che paiono insinuarsi fra i campi stellari di fondo.

NGC 6231 E L’ASSOCIAZIONE SCORPIUS OB1

Nella parte sudoccidentale dello Scorpione si trova NGC 6231, uno degli ammassi aperti più appariscenti della volta celeste, sebbene sia molto compatto; questo costituisce il nucleo più denso di una grande associazione OB visibile con facilità anche al binocolo e persino intuibile a occhio nudo, denominata Scorpius OB1. La regione di Scorpius OB1 si osserva senza difficoltà anche con un piccolo strumento, come un binocolo; la sua posizione è facilmente individuabile, trovandosi poco a nord della coppia di stelle formata da ζ₁-ζ₂ Scorpii, che essendo di quarta magnitudine è ben visibile anche ad occhio nudo. Senza strumenti può essere individuato anche il nucleo della regione, il brillante ammasso aperto NGC 6231, che costituisce il corpo centrale dell’associazione, ed è visibile come una macchia apparentemente nebbiosa o di aspetto granulare. Un binocolo di medie dimensioni è in grado di risolvere quest’ammasso in decine di componenti molto vicine fra loro, mentre tutt’attorno ad esso si dispongono numerose stelle azzurre, immerse a loro volta in un ricchissimo campo stellare. Le nebulosità associate, specialmente sul lato settentrionale, sono ben rilevabili nelle foto a lunga posa o composite, in cui possono anche notarsi alcuni dei filamenti situati sul lato opposto, a sud della coppia di ζ Scorpii.

Il valore di distanza medio e più comunemente accettato sembra essere quello di circa 5200 anni luce, corrispondente a una regione interna al Braccio del Sagittario.

L’età dell’ammasso centrale è stata invece stimata fra i 2,5 e i 4,5 milioni di anni per quanto riguarda le stelle più massicce e fra 1 e 12 milioni di anni per le componenti stellari di piccola e media massa.

NGC 6231 contiene oltre 100 stelle di grande massa, incluse 15 stelle blu di classe O. La componente più luminosa è HD 152248, nota anche con la sigla di stella variabile V1007 Sco; si tratta di una forte sorgente di raggi X, nonché di una binaria spettroscopica e ad eclisse, con componenti entrambe di classe O e una massa di quasi 30 masse solari. A questa si aggiungono altre due binarie simili, CPD -41°7742 e HD 152219. Molte di queste stelle si sono rivelate delle doppie spettroscopiche con periodo molto breve, inferiore ai 10 giorni.

Le stelle di Scorpius OB1 più esterne si raggruppano in due blandi addensamenti visibili a nord di NGC 6231 ed estesi per oltre un grado; questi due addensamenti sono stati catalogati come Tr 24 (il più interno e meridionale) e Cr 316 (il più grande ed esterno). Le stelle di entrambi i gruppi sono ben visibili anche con piccoli strumenti e formano un esteso corteo vicino a NGC 6231; persino a occhio nudo se ne può intuire vagamente la presenza, sebbene non sia possibile una risoluzione in stelle: sono tuttavia responsabili del vago chiarore di aspetto nebuloso che dalla coppia ζ₁-ζ₂ Scorpii si estende verso nord e poi verso NNE, e che conferiscono all’intero sistema il soprannome di Falsa Cometa.

Scorpius OB1 è delimitata a nord dalla estesa nebulosa IC 4628, talvolta soprannominata Nebulosa Gambero; invisibile con strumenti di diametro più comune, può essere fotografata con grande facilità. Si tratta di una regione H II che riceve direttamente la radiazione delle stelle massicce dell’associazione Scorpius OB1, di cui NGC 6231 costituisce il nucleo centrale. La principale stella ionizzante sarebbe la gigante blu HD 152723, di classe spettrale O6, o forse HD 322417, anch’essa di classe O5 o O6, anche se questa potrebbe trovarsi a una distanza superiore rispetto alla regione di Scorpius OB1. Al suo interno vi sarebbero anche tre giovannissimi am-
massi aperti in formazione.

Il bordo sud di Scorpius OB1 è delineato dall’estesa ma più debole nebulosa RCW 113 (o Gum 55); appare come una nebulosa di discrete dimensioni dalla forma arcuata, fotografiabile attraverso un telescopio. Si tratta di una grande regione H II situata sul bordo meridionale della regione e possiede una forma insolita, simile ad un anello allungato centrato presso le stelle di NGC 6231, estesa fino a 5 gradi, modellata dall’azione combinata del vento stellare delle sue componenti più massicce. La parte nordoccidentale della nube presenta una grande protuberanza oscura nota colloquialmente come Grande Proboscide d’Elefante (LET), similmente a quella di Cefeo (vdB 142); al suo interno sono state individuate tre piccole nebulose a riflessione, indicate con le sigle vdBH 73a, 73b e 73c, la cui componente principale, vdBH 73a, appare illuminata dalla stella bianco-azzurra CPD -41°7613, situata sulla sequenza principale. Anche questa grande struttura a forma di proboscide sarebbe stata modellata dall’azione del forte vento stellare delle stelle più massicce di NGC 6231, il quale, oltre ad aver creato la grande bolla di vento stellare ben visibile nella forma ad anello di RCW 113, ha anche compresso il suo gas nelle regioni esterne, provocando così una seconda ondata di formazione stellare, osservata nella Grande Proboscide.

A nord dell’associazione si osservano due ammassi aperti situati anch’essi sul Braccio del Sagittario ma non legati fisicamente a Scorpius OB1.

Fra questi il più facile da osservare è NGC 6242, sia per la sua luminosità che per la sua posizione; si trova infatti a 1,5 gradi in direzione SSE rispetto alla brillante coppia di stelle μ1-μ2 Scorpii, poco a nord del brillante sistema stellare che comprende NGC 6231 e la regione di Scorpius OB1. Le dimensioni ridotte dell’ammasso rendono molto difficoltosa la risoluzione tramite un binocolo, nonostante le sue stelle più luminose siano di magnitudine 7 e 8. Con un telescopio anche di piccola apertura e ingrandimenti spinti l’ammasso è ben risolto in una trentina di stelle luminose, dominate da una stella rossa nella parte meridionale. Situato alla distanza di circa 4600 anni luce, possiede un’età di 40 milioni di anni ed è pertanto relativamente giovane. NGC 6242 è probabilmente l’ammasso in cui si è generato il microquasar GRO J1655-40, un oggetto estremamente compatto che emette raggi X e accompagnato da una stella di classe spettrale F; la sua posizione e la sua distanza, stimata come inferiore a 5500 anni luce, suggerisce una forte affinità con l’ammasso aperto, da cui si sarebbe allontanato in un secondo momento.

Più difficile è NGC 6268, le cui componenti più brillanti sono di magnitudine 9,5; può essere notato con un binocolo 10x50 o meglio 15x70 come una piccola macchia chiara di aspetto nebuloso circa 2,5 gradi a sudest della coppia μ1-μ2 Scorpii. La sua risoluzione è possibile anche con strumenti da 80mm, a pauro di avere l’oggetto abbastanza alto nel cielo: si contano una trentina di componenti fino alla magnitudine 12. Si tratta di un ammasso poco popolato, ma comunque ben contrastato a causa della scarsa presenza di stelle di simile luminosità nei paraggi; la sua distanza è stimata sui 3400 anni luce ed è quindi in primo piano rispetto alla regione di Scorpius OB1.

AMMASSI SPARSI E NUBI ISOLATE

Numerosi ammassi aperti e piccoli sistemi nebulosi sono disseminati nella parte meridionale dello Scorpione; si tratta prevalentemente di oggetti lontano e quindi spesso di piccole dimensioni e non molto appariscenti, ma abbastanza da poter essere osservati con piccoli telescopi.

Fra gli oggetti situati più a ovest vi è l’ammasso NGC 6124, noto anche come C75. Si trova circa 5 gradi a ovest di NGC 6231, vicino al confine con la costellazione della Norma; si trova in un tratto della Via Lattea fortemente oscurato da polveri interstellari e con un bi-
nocolo è già ben evidente la sua natura di ammasso stellare, tanto che sono riconoscibili alcune stelle gialle e rossastre di magnitudine 8 e 9. Un piccolo telescopio permette una completa risoluzione in diverse decine di stelle anche a bassi ingrandimenti e mette in evidenza alcune concatenazioni orientate in senso nordovest-sudest. NGC 6124 è un ammasso moderatamente ricco e contrastato, situato alla distanza di 1670 anni luce sul bordo interno del Braccio di Oriione, al di là delle stelle dell'Associazione Scorpius-Centaurus; contiene diverse giganti rosse e stelle evolute, che lasciano intendere un'età leggermente avanzata, stimata in effetti sui 140 milioni di anni. La presenza di banchi di gas oscuro nei dintorni fa sì che le stelle dell'ammasso appaiano soggette ad arrossamento differenziale. Effetti della polarizzazione della luce sono ben evidenti nelle stelle dell'ammasso e sono dovuti anche alla presenza di nubi oscure lungo la linea di vista, in particolare per la presenza della Nube del Lupo; questo fenomeno si è rivelato utile per la determinazione delle stelle fisicamente non appartenenti all'ammasso ma visibili nella sua direzione solo per un effetto prospettico.

Un addensamento molto blando di stelle è ciò che forma l'ammasso NGC 6169, visibile con difficoltà attorno alla stella μ Normae; benché appaia sulla gran parte delle carte celesti, raramente ne viene fornita una descrizione proprio per via della sua difficoltà di osservazione. È formato da un gruppo di stelle di magnitudine 12 e 13, più altre più deboli, che formano un vago addensamento visibile soprattutto a nordest di μ Normae, una super gigante blu la cui magnitude 4,85 lo oscura fortemente; questa stella si trova anche alla medesima distanza dell'ammasso (3300 anni luce) e ne farebbe fisicamente parte. Un altro piccolo ammasso visibile nei dintorni è NGC 6178, visibile circa 2 gradi a sud del precedente; può essere notato con un telescopio da 80mm come un minuto gruppeto di stelle di magnitudine 9, col vertice rivolto verso sud. La sua risoluzione è completa con strumenti da 150mm. Appare formato da una quindicina di stelle fino alla magnitudine 14 e si trova alla medesima distanza dell'ammasso μ Normae.

Ben più appariscente è invece l'ammasso NGC 6192, visibile poco meno di 2 gradi a nordest di μ Normae, nei pressi di una stella azzurra di magnitudine 5,8 denominata V1003 Scorpii. Sotto un cielo molto buio e avendo lo Scorpione molto alto in cielo, si presenta persino alla portata di un binocolo 10x50, sebbene la sua risoluzione sia impossibile e appare come una debole macchia chiara. Strumenti da 80mm iniziano a consentire una parziale risoluzione, con alcune stelle di magnitudine 12 su uno sfondo ancora nebbioso; telescopi da 200mm lo mostrano risolto in almeno una quarantina di stelle e permette anche di notare che il centro dell'ammasso è curiosamente povero di componenti stellari, le quali sembrano quasi disposti a formare una sorta di anello. Una concatenazione di stelle prolunga notevolmente l'ammasso verso est. La distanza di NGC 6192 è stimata sui 5000 anni luce e viene dunque a trovarsi nella medesima regione galattica dell'associazione Scorpius OB1.

Continuando con gli ammassi sfuggenti, vi è NGC 6216, visibile circa 3 gradi a SSW della coppia ζ1-ζ2 Scorpii e molto difficile da staccare poiché circondato e immerso in un campo di stelle di fondo particolarmente ricco. Può essere notato come un piccolo addensamento di stelle di magnitudine 12, individuabile con telescopi da 100-120mm di diametro; per la sua risoluzione ben chiara e definita occorrono strumenti da 200mm e forti ingrandimenti. Si tratta di un ammasso molto distante, le cui componenti stellari vengono quindi fortemente oscurate dal mezzo interstellare presente su una linea di vista di ben 14.000 anni luce.

NGC 6259 è un ammasso molto ricco rintracciabile con difficoltà circa 3 gradi a sudovest della stella η Scorpii, in direzione di un addensamento luminoso della Via Lattea; è visibile anche con un binocolo 15x70, sebbene appaia assolutamente irrisolubile, mentre qualche componente inizia a mostrarsi con telescopi da 80-100mm.
di diametro. Telescopi da 200-250mm offrono una vista notevole, con le componenti che diventano chiaramente centinaia fino alla magnitudine 14, in un contesto che resta ancora parzialmente nebuloso e che lascia intendere che un’ulteriore risoluzione sia possibile. Si tratta di un oggetto che ricorda per diverse caratteristiche l’ammasso M11 nello Scudo, tanto che talvolta è stato indicato come un suo “gemello” australe, meno appariscente perché più oscurato dalle polveri interstellari lungo la linea di vista; si presenta molto ricco e contiene un’età stimata sui 200-300 milioni di anni. La sua distanza è invece pari a circa 3400 anni luce, simile dunque a quella di π Normae e del suo ammasso stellare.

Pochi minuti d’arco a ovest si trova il ben più piccolo NGC 6249, visibile come un debole addensamento di ridotte dimensioni dominato da una stella di magnitudine 9,9 e un paio di stelle di magnitudine 10. I due ammassi si troverebbero relativamente vicini anche fisicamente, dato che la distanza di NGC 6249 è stimata sui 3200 anni luce.

NGC 6250 è situato oltre il confine con la costellazione dell’Altare, poco meno di 2 gradi a SSW dei precedenti due; appare decisamente più facile anche grazie al fatto che si presenta ben staccato dal fondo cielo, poiché si trova in direzione di una regione di fondo molto oscurata da banchi di nebulosità oscura. Con un binocolo 10x50 sono visibili le quattro stelle dominanti, di magnitudine 7 e 8, molto vicine fra loro e con un intermezzo vagamente nebuloso; con telescopi da 120mm la risoluzione è già completa, mentre con strumenti da 200mm si notano più componenti ed è anche possibile notare a forti ingrandimenti che una delle componenti principali è una stella doppia con separazione di 2". Si tratta di un ammasso giovane, con un’età stimata sui 26 milioni di anni e contenente infatti anche stelle di classe spettrale B, oltre a una discreta popolazione di stelle di classe A e F; due di queste stelle sono responsabili dell’illuminazione di una piccola nebulosa a riflessione visibile nei dintorni, fatto questo che testimonia come l’ammasso si trovi fisicamente in una zona molto ricca di polveri. La sua distanza è stimata sui 2800 anni luce e si colloca presso il bordo esterno del Braccio della Sagittario.

Poco più a est di η Scorpii si trova il piccolo ma facile ammasso NGC 6322; è visibile anche con un binocolo 10x50, dove appare come un piccolissimo triangolo di stelle di magnitudine 7, con al centro un’altra stella più debole, disegnando dunque una sagoma simile a una Y maiuscola. Con telescopi da 150mm si nota ben chiaro che la stella centrale è in realtà formata da due stelle di magnitudine 9, circondate da alcune stelle più deboli che formano il centro dell’ammasso. La sua distanza è stimata sui 3300 anni luce ed è dunque situata nella medesima regione galattica di diversi altri ammassi appena descritti.

Al di là della portata dei telescopi più comuni, ma evidenziabile nelle fotografie a lunga posa, è la nebulosa Sh2-3, nota anche come RCW 120 o soprannominata Bolla Perfetta a causa del suo aspetto; dista circa 4400 anni luce e si individua circa mezzo grado a sud del punto mediano della linea che congiunge la stella Le-sath (o Scorpii) alla coppia μ1-μ2 Scorpii. Sh2-3 appare appoggiata come una debole nebulosa, e tale fu ritenuta fino a quando non sono giunte le prime immagini riprese dal Telescopio Spaziale Spitzer, all’inizio degli anni duemila; da queste immagini risultava evidente una grande struttura circolare coincidente con una bolla di vento stellare, dalla forma talmente regolare che da allora venne indicata come un ottimo esempio di bolla perfetta. Questa bolla è stata generata da una stella estremamente massiccia non visibile nella banda della luce visibile; questo particolare ambiente crea le condizioni ottimali per l’accrescimento di una giovane stella gigante, visibile sul bordo della bolla stessa. Nonostante la sua apparente semplicità, questa bolla presenta alcune particolarità, prima fra tutte la sua apertura in direzione nord, da cui fuoriesce il gas ionizzato racchiuso al suo interno. La stella principale responsabile della ionizzazione dei gas della nube è CD -38°11636, di magnitudine 11,07 e di classe spettrale B1 o forse O8. La nebulosa è circondata da un grande quantitativo di polvere interstellare e gas neutro, dove si troverebbero alcuni oggetti stellari giovani.
A breve distanza si trova il debole e difficile ammasso NGC 6318, le cui componenti dominanti sono appena di magnitudine 11; si tratta di un oggetto sfuggente situato in direzione di un campo stellare molto ricco ma a tratti oscurato. La sua distanza è stimata sui 7200 anni luce.

NGC 6281 è stranamente poco conosciuto presso gli astronomi amatoriali, benché la sua luminosità sia discreta. La sua posizione si individua con facilità grazie alla presenza nei dintorni di stelle luminose; per trovarlo si può partire dalla coppia μ₁-μ₂ Scorpiori e procedere verso est di circa due gradi e mezzo. La stella variabile HD 153890, di magnitudine media 5,86 ne marca il bordo meridionale. Attraverso un binocolo si nota come una macchia chiara piuttosto piccola su cui si trovano alcune minute stelline; già con un piccolo telescopio da 80mm e ingrandimenti un po’ spinti è possibile risolverlo in diverse decine di componenti azzurrognole. Tra-mite la fotometria si è accertato che possiede 55 stelle membri accertati fino alla magnitudine 13,5, disperse in un raggio di 20’ dal centro, sebbene la maggior parte di esse giaccia entro un diametro di 8’. Le sue componenti più luminose sono invece di magnitudine 8. Studi basati su metodi statistici hanno indicato che il raggio mareale dell’ammasso è pari a 26 anni luce; la sua massa totale è invece pari a 214 masse solari. Al suo interno è nota una stella peculiare, catalogata come HD 153947 o NGC 6281-9, che ha classe spettrale A0p, la cui sigla di stella variabile è V974 Scorpii; si tratta probabilmente di una blue straggler, formata dalla fusione fra due stelle. L’età dell’ammasso è stimata sui 320 milioni di anni e la sua distanza è pari a circa 1800 anni luce.

La famosa Nebulosa Farfalla (NGC 6302 o C69) si trova nelle vicinanze; è possibile individuarla persino con un binocolo 10x50, sebbene occorrano cieli bui e l’oggetto deve trovarsi alto sull’orizzonte. Un telescopio da 140mm è sufficiente per osservare il getto da una parete esattamente dove la velocità del getto stesso è proporzionale alla distanza dalla sorgente centrale.

ATTORNO AL PUNGIGLIONE

A nord e nordovest del brillante gruppo di stelle che delinea il pungiglione dello Scorpione si trovano diversi gruppi di nebulose e ammassi stellari, molti dei quali giovani e piuttosto appariscenti; alcuni di questi oggetti sono noti da secoli o persino da millenni, come il famoso Ammasso di Tolomeo (M7). Una delle nebulose più notevoli visibili in questa dire-
zione è la NGC 6334, soprannominata *Impronta di gatto* per via della sua forma. Situata 3° a nordovest di Shaula (λ Scorpii), inizia ad essere visibile sotto ottimi cieli anche con strumenti da 200mm di diametro, dove si rivela debolmente la natura tripartita della nebulosa. Situata alla distanza di 5500 anni luce, è una grande regione di formazione stellare formata da un lungo e spesso filamento centrale con sette addensamenti; delle tre aree circolari da cui deriva il soprannome della nebulosa, il più cospicuo è quello centrale, dominato dalla gigante blu HD 156378, di magnitudine 9,35 e classe O6.5III.

Nelle foto a grande campo si può notare che questo sistema sia connesso ad altre grandi nebulose, come la NGC 6357, soprannominata *Aragosta* o anche *Guerra e Pace*. Questa nebulosa si estende per oltre un grado e, sebbene non sia visibile con strumenti amatoriali di modesta apertura, ricorda per certi versi l'aspetto della Nebulosa di Orione capovolta. NGC 6357 è una grande regione H II a forma di anello situata all'interno del Braccio del Sagittario; trovandosi a circa 5700 anni luce di distanza, si trova poche centinaia di anni luce in primo piano rispetto alla grande Regione di Scorpions OB1. I gas della nube ricevono la radiazione di un gran numero di stelle giovani e calde, gran parte delle quali facenti parte dell’ammasso aperto Pismis 24; quest’oggetto è costituito da diverse stelle massicce di classe spettrale O e B, fra le quali Pismis 24-1, prima ritenuta la stella più massiccia conosciuta ed ora osservata come composta da tre stelle comunque comprese tra le più massicce. A questa si aggiungono alcuni sistemi multipli, come quello di HD 319718, costituito da stelle di classe O, e di W93, dove la primaria è una stella di Wolf-Rayet. In aggiunta a queste, vi sono tre stelle di classe spettrale B esterne all’ammasso che concorrerebbero alla ionizzazione della nebulosa. Nei pressi di NGC 6357 si estende l’associazione Scorpions OB4, un’associazione OB costituita da 71 stelle con classi spettrali comprese fra O e B9 posta alla distanza media di 4600 anni luce. Le componenti di classe O mostrano una distribuzione uniforme senza apparenti concentrazioni.

Poco ad est di questa nebulosa, incoronciato da un triangolo di stelle di magnitudine 6, si trova l’ammasso aperto Cr 333, di cui pochissime informazioni si trovano in letteratura; le sue componenti principali sono di magnitudine 10. Può essere notato come un leggero addensamento stellare in una regione già molto ricca di stelle di fondo.

Un’altra grande nebulosa, sebbene molto meno marcata e contrastata, è RCW 132, nota anche come Sh2-12 (sebbene sia quest’ultima la designazione da preferire, è più nota con la sigla RCW). Si trova nella parte centro-meridionale della costellazione a breve distanza angolare dal brillante ammasso aperto M6; si estende per circa due gradi in una regione molto ricca di campi stellari. RCW 132 è una grande regione H II situata sul Braccio del Sagittario alla distanza di circa 5540 anni luce; la responsabile della sua ionizzazione sarebbe HD 159176, un sistema stellare binario composto da due stelle blu di sequenza principale con classe spettrale O7V situato all’interno dell’ammasso aperto NGC 6374, cui RCW 132 appare fisicamente associata. Secondo alcuni studi, la nube apparirebbe a una grande regione di formazione stellare comprendente tre sorgenti di radiazione infrarossa, fra le quali due individuate dall’IRAS. La sorgente più cospicua è IRAS 17302-3245, che coincide con una regione di gas ionizzato che presenta emissioni nella banda dell’infrarosso. Se si accetta come valida questa distanza, la nebulosa verrebbe a trovarsi nella medesima regione della già citata associazione Scorpions OB4. Altri studi, tuttavia, stimano la distanza di Sh2-12 attorno ai 985 parsec (circa 3210 anni luce), dunque in primo piano rispetto a Scorpions OB4 e sul bordo esterno del Braccio del Sagittario. Le medesime stime indicano una distanza inferiore anche per l’ammasso NGC 6383, che quindi dovrebbe trovarsi slegato dall’associazione OB.

A breve distanza si trovano anche i giovani ammassi Aperti Tr 27 e Tr 28, davvero molto difficili da rilevare all’osservazione visuale perché confusi coi ricchi campi stellari di fondo. Tr 28 si trova appena mezzo grado a
L'Ammasso Farfalla, noto anche con la sigla M6, è facilmente risolvibile in diverse decine di stelle anche con un semplice binocolo 10x50.

ovest di M6 ed è formato da stelle di magnitudine 11 e 12 dominate da una coppia di magnitudine 9; Tr 27 si trova esattamente 1 grado più a sud del precedente ed è dominato da una coppia di stelle di magnitudine 8.

Discorso analogo vale per l’ammasso NGC 6404, visibile circa 50’ a SSW di M6 e leggermente più facile da staccare rispetto ai precedenti due perché giace in una zona un po’ più povera di campi stellari di fondo. Molte delle sue componenti sono di magnitudine compresa fra 11 e 13 e sono dunque alla portata di strumenti da 150-200mm di diametro.

Si arriva così al famoso ammasso M6, l’Ammasso Farfalla: si trova infatti a metà via fra la coda dello Scorpione e la punta della freccia del Sagittario; è ben visibile ad occhio nudo e anche un piccolo binocolo è sufficiente per risolverlo in alcune decine di stelle molto vicine fra loro. Un 10x50 consente di vedere una quindicina di astri concentrati, mentre a ingrandimenti superiori l'ammasso è completamente risolto e le sue componenti ben distaccate; sul lato est è ben visibile la gigante rossa variabile BM Scorpii. L'ammasso si estende per circa 20 anni luce e dista, secondo stime diverse, da 1500 a 2000 anni luce dalla Terra; l'incertezza è data soprattutto perché l'ammasso si trova in una regione oscurata dalla polvere interstellare. Come gli altri ammassi aperti è formato prevalentemente da stelle giovani blu, sebbene la stella più luminosa sia arancione. L'età stimata di M6 è di circa 50 milioni di anni, il che lo rende simile a diversi ammassi aperti situati lungo l'Anello Lindblad, come l'Ammasso di Alfa Persei. Sono note circa 120 stelle che potrebbero essere membri fisici di M6; tuttavia, dato l'elevato numero di stelle che si sovrappongono sulla linea di vista, le componenti apparenti appaiono molte di più. La dimensione apparente dell'ammasso è di 25 minuti d'arco e la sua magnitudine apparente media è pari a 4,2; quest'ultima tuttavia appare piuttosto variabile poiché la stella più luminosa, BM Scorpii, è una variabile semiregolare con una magnitudine che varia da 5,5 a 7, comportando una notevole variabilità della magnitudine totale dell’ammasso. Fra le altre componenti vi sarebbe una debole variabile Delta Scuti che oscilla di pochi decimi di magnitudine; la sua magnitudine massima si aggira attorno a 11,5.

Nei pressi di M6 si osservano due ammassi aperti molto meno appariscenti ma comunque staccabili dal fondo cielo, specialmente se si osservano a bassi ingrandimenti con grandi diametri. Il più vicino di questi è NGC 6416, che appare come un blando addensamento di stelle di magnitudine 12 e 13 sparse su un’area del diametro di 15’; è visibile circa 40 minuti d’arco ad est di M6 e se osservato a forti ingrandimenti appare talmente disperso da essere irriconoscibile. La sua distanza è stimata sui 2400 anni luce, pur con un certo grado di incertezza; sarebbe comunque più lontano di M6.

Il secondo ammasso è NGC 6425 e si stacca con più facilità, anche se non è certo un oggetto facile; le sue componenti più brillanti sono di magnitudine 10 e sono sparse su un diametro di 10’. La sua posizione è rintracciabile circa un grado e mezzo a nordest di M6, vicino al confine col Sagittario; circa mezzo grado a sudest si trova la stella HD 161840, di classe B e di magnitudine 4,79, ben visibile anche a occhio nudo. La distanza dell’ammasso è stimata sui 2500 anni luce, pur con lo stesso margine d’incertezza valido per l’ammasso precedente; in ogni caso appare abbastanza evidente che questi due oggetti si trovino abbastanza vicini fra loro anche fisicamente.

L’ammasso stellare che appare dominante in questa regione di cielo è tuttavia il famoso M7, noto anche come Ammasso di Tolomeo in quanto era stato citato da questo ultimo nel suo Almagesto. M7 è un ammasso estremamente facile da osservare: si trova infatti poco a nord delle stelle che rappresentano la coda dello Scorpione e grazie alla sua luminosità è ben visibile anche ad occhio nudo, anche qualora si presenti molto basso sull’orizzonte; senza l’ausilio di strumenti appare come una macchia chiara di forma ovale più luminosa al centro, nella quale si possono distinguere sotto buoni cieli fino a 2-3
componenti. Un piccolo binocolo 8x40 o 10x50 è invece sufficiente per risolverlo completamente in decine di astri dalla sesta all’ottava magnitudine, principalmente di colore biancastro; al telescopio, specie a bassi ingrandimenti, la visione diventa eccellente, con centinaia di stelle visibili. Un ingrandimento eccessivo tuttavia è sconsigliabile perché si perde la visione di insieme dell’oggetto, le cui dimensioni sono molto estese. M7 è formato da alcune centinaia di stelle, principalmente stelle blu; circa un’ottantina di queste sono più brillanti della decima magnitudine. Il diametro apparente dell’ammasso è di circa 1,3°, che alla distanza di 1000 anni luce equivale a una dimensione reale di 25 anni luce; secondo studi condotti alla fine degli anni duemila, l’età dell’ammasso è di 200 milioni di anni, mentre i parametri di metallicità sono simili a quelli del Sole. M7 e il sistema solare si allontano alla velocità di 18 km/s. La stella più brillante di M7 è una gigante gialla di magnitudine 5,6, dunque visibile già ad occhio nudo sotto buoni cieli, e di classe spettrale G8; a questa si aggiungono tre giganti rosse e alcune decine di stelle di classe B e A. All’interno dell’ammasso sono note alcune binarie spettroscopiche con periodi compresi fra i 2 e i 9 giorni, più alcune doppie strette con una separazione molto ridotta; fra le prime spicca HD 162724, una variabile a eclisse azzurra che oscilla fra le magnitudini 5,96 e 6,43 con un periodo di 2,78 giorni. Uno studio condotto ai raggi X ha permesso di scoprire una cinquantina di componenti accettate di classe F - K0 e una settantina di stelle nane di classe K e M. Secondo lo stesso studio è emerso che alcune delle stelle di grande massa di M7 sono associate a sorgenti di raggi X; si ritiene che si tratti di stelle bianche, e che l’emissione a raggi X provenga dalle componenti secondarie, di piccola massa. Alcune componenti di massa intermedia dell’ammasso presentano delle forti anomalie nella composizione della loro fotosfera; queste stelle possiedono una sovrabondanza di alcuni elementi come il cromo e il manganese e una relativa scarsità di ossigeno e magnesio, nel caso delle stelle di classe A. Come ciò possa influire sull’evoluzione di queste stelle non è ancora ben chiaro.

Attorno a M7 i ricchissimi campi della Via Lattea sono attraversati da venature oscure date dalla presenza di banchi di polveri interstellari. La più notevole di queste nubi è catalogata come B283 e si trova a nordovest; corre un’area di circa 2 gradi ed è manto allungata in senso est-ovest.

Un secondo banco più vicino a M7 si trova pochi minuti d’arco a sud ed è nota come B287; è molto facile da evidenziare nelle fotografie grazie al fatto che maschera in modo molto netto la luce delle numerose stelle di fondo. Mezzo grado a nordovest di M7 si trova anche l’ammasso globulare NGC 6453, che appare fortemente oscurato poiché la sua luce deve attraversare una gran parte del disco galattico. Può essere notato solo con telescopi di diametro molto grande e dista circa 38.000 anni luce. Spostandosi verso le stelle del pungiglione, spicca l’ammasso aperto NGC 6400, che si individua con facilità grazie alla sua posizione lungo la linea che congiunge le stelle G Scorpii e λ Scorpii (Shaula), a due terzi del percorso verso quest’ultima. Attraverso un binocolo appare sotto un cielo pulito come una debole macchia chiara allungata in senso nord-sud priva di stelle; un piccolo telescopio permette di rivelarne la natura stellare già a 20x, mentre a 80x l’oggetto è già perfettamente risolto in alcune decine di componenti di magnitudine 10 e 11. NGC 6400 è un ammasso aperto moderatamente ricco e concentrato situato alla distanza di 3100 anni luce sul bordo esterno del Braccio del Sagittario; è formato da alcune decine di componenti la più luminosa delle quali è di magnitudine 10,6. Non è un oggetto particolarmente studiato; si tratta comunque di un ammasso relativamente vecchio, la cui età è stimata sui 600 milioni di anni.

Diversi altri ammassi estesi e difficolta da contrastare si trovano nei dintorni, come i grandi Cr 338 e Harvard 16, e i più difficili Cr 332 e Ru 123.
Il centro della Via Lattea raggiunge la sua massima visibilità nelle sere dei mesi di luglio e agosto. La costellazione di riferimento è quella del Sagittario, che pur trovandosi nell’emisfero australe è comunque visibile discretamente anche da gran parte dell’emisfero nord, con l’esclusione delle alte latitudini. Questo settore di cielo comprende molte fra le nebulose più famose e fotografate, nonché un gran numero di ammassi aperti e soprattutto globulari, molti dei quali di facile osservazione anche con piccoli strumenti.

CARATTERISTICHE

In direzione del centro della Via Lattea si possono osservare le strutture galattiche appartenenti ai bracci più interni rispetto alla nostra posizione; in particolare, gli oggetti più notevoli sono compresi nel Braccio del Sagittario, che in questa direzione è il più vicino. Nonostante la maggiore distanza rispetto agli oggetti del Braccio di Orione, le loro grandi dimensioni e luminosità li rendono ben visibili anche con piccoli strumenti. Già ad occhio nudo è possibile notare nel chiarore della Via Lattea alcuni piccoli addensamenti e oggetti più appariscenti, che se osservati con un binocolo 10x50 si rivelano essere ammassi stellari oppure oggetti nebulosi ma dai contorni ben definiti che li rendono chiaramente identificabili come oggetti.

Grazie alla loro luminosità, molti di questi oggetti erano noti già alcuni secoli fa, tanto da essere stati inseriti nel Catalogo di Messier.

Osservando con uno strumento da 200mm di diametro, gli oggetti visibili diventano svariate decine, in particolare ammassi aperti e globulari; ma anche nebulose: in questa direzione si osserva infatti la più alta concentrazione di nebulose alla portata di strumenti di diametro più comune. Grandi banchi di nebulose oscure mascherano e modellano la scia chiara della Via Lattea, facendole assumere un aspetto irregolare. Ciò è vero in particolare a nord, sconfinando verso la costellazione del Serpente, che assieme all’Aquila comprende il tratto più fortemente oscurato dell’intero piano galattico.

Verso ovest, i sistemi oscuri della Nebulosa Pipa si allungano fin verso la testa dello Scorpione, disegnando sottili venature scure.

STELLE PRINCIPALI DELLA REGIONE

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>σ Sgr</td>
<td>Nunki</td>
<td>18h 55m 16s</td>
<td>~26° 17' 48"</td>
<td>2,05</td>
<td>224</td>
<td>azzurro</td>
</tr>
<tr>
<td>δ Sgr</td>
<td>Kaus Media</td>
<td>18h 21m 00s</td>
<td>~29° 49' 41"</td>
<td>2,72</td>
<td>306</td>
<td>arancio</td>
</tr>
<tr>
<td>λ Sgr</td>
<td>Kaus Bor.</td>
<td>18h 27m 58s</td>
<td>~25° 25' 16"</td>
<td>2,82</td>
<td>77</td>
<td>giallo</td>
</tr>
<tr>
<td>π Sgr</td>
<td>Albaldah</td>
<td>19h 09m 46s</td>
<td>~21° 01' 25"</td>
<td>2,88</td>
<td>440</td>
<td>arancio</td>
</tr>
<tr>
<td>ϕ Sgr</td>
<td>Nanto</td>
<td>18h 45m 39s</td>
<td>~26° 59' 27"</td>
<td>3,17</td>
<td>231</td>
<td>azzurro</td>
</tr>
<tr>
<td>τ Sgr</td>
<td>Hekatebolos</td>
<td>19h 06m 56s</td>
<td>~27° 40' 11"</td>
<td>3,32</td>
<td>120</td>
<td>arancio</td>
</tr>
<tr>
<td>ε Σgr</td>
<td>Nergal</td>
<td>18h 57m 44s</td>
<td>~21° 06' 24"</td>
<td>3,52</td>
<td>372</td>
<td>giallo</td>
</tr>
<tr>
<td>ξ Σgr</td>
<td>Nergal</td>
<td>17h 37m 35s</td>
<td>~15° 23' 54"</td>
<td>3,54</td>
<td>105</td>
<td>giallo</td>
</tr>
</tbody>
</table>

DETTAGLI

<table>
<thead>
<tr>
<th>Costellazioni</th>
<th>Sagittario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascensione Retta (media)</td>
<td>18h 20'</td>
</tr>
<tr>
<td>Declinazione (media)</td>
<td>-20°</td>
</tr>
<tr>
<td>Tipo</td>
<td>Campi stellari galattici</td>
</tr>
<tr>
<td>Oggetti</td>
<td>Ammassi aperti e nebulose</td>
</tr>
</tbody>
</table>
La Via Lattea in direzione del Sagittario comprende un ricco assortimento di ammassi e nebulose di ogni sorta; si presenta tuttavia anche furtamente oscurata in diversi punti.
Le nebulose del Sagittario e le loro volute gassose.

La Nebulosa Laguna (M8) e la vicina Nebulosa Trifida (M20) appartengono entrambe al Braccio del Sagittario e sono circondate da altri sistemi nebulosi minori e da un esteso corteo di stelle giovani, raggruppate in ammassi e associazioni OB. Si tratta di due fra gli oggetti più famosi del cielo e fra i più fotografati.

M8, ossia la Nebulosa Laguna, è anche fra le più brillanti nebulose del cielo. Si individua con facilità anche ad occhio nudo in nottate particolarmente limpide; la sua posizione è facile da reperire, trovandosi circa 7° a nord della stella γ Sagittarii (Al Nasl), che rappresenta la punta della freccia del Sagittario. La regione che l’ospita è ricchissima di stelle di fondo e il chiarore della Via

La Nebulosa Trifida (M20) è un oggetto molto più vasto rispetto alla Laguna, con un diametro di circa 500 parsec. È composta da tre segmenti principali: la Nebulosa Trifida Centrale (M20), la Nebulosa Trifida Sud (NGC 6588) e la Nebulosa Trifida Nord (NGC 6572). Tutti e tre sono circondati da gruppi di stelle giovani e brillanti e sono facilmente individuabili ad occhio nudo in nottate limpide.

Gli appassionati di astrofotografia troveranno in questa regione celeste un gran numero di soggetti, dai grandi campi per mettere in risalto le nebulose oscure, fino all’alta risoluzione per le nebulose planetarie e gli ammassi globulari; oppure ancora i grandi sistemi nebulosi circondati da stelle giovani e brillanti.
Lattea è molto intenso, a causa della vicinanza del nucleo; un binocolo 10x50 è in grado di mostrare diversi particolari: appare come una macchia estesa e opaca, un po' allungata in senso est-ovest e circondata da diverse stelle. Un telescopio da 120-140mm consente di notare ulteriori particolari, come variazioni di intensità della luminosità, e anche diverse delle stelle associate; con strumenti da 200mm sono visibili un gran numero di dettagli secondari. Come anticipato, la Nebulosa Laguna appartiene al braccio di spirale galattico immediatamente più interno rispetto al nostro, il Braccio del Sagittario; dista circa 4100 anni luce dalla Terra ed è sede di alcuni oggetti e fenomeni astronomici interessanti, come ammassi aperti (fra cui NGC 6530), regioni di formazione stellare, nebulose oscure, giovani stelle, gas caldi. Il nome "laguna" deriva dalla presenza della nube di polvere visibile ad est dell’ammasso aperto centrale, che dà l’impressione di una "barriera sabbiosa" che separa il mare da una laguna. La Nebulosa Laguna si estende nel cielo per 90’x40’, che ad una distanza di 4100 anni luce equivalgono a 110x50 anni luce di estensione; al suo interno si osservano diversi globuli di Bok, ossia nubi di materiale protostellare collassato; i più notevoli di questi sono stati catalogati dal Barnard come B88, B89 e B296. La nebulosa contiene anche una struttura nota come "Nebulosa Clessidra" (nome datole da John Herschel), che però non è da confondere con la omonima nebulosa planetaria nella costellazione della Mosca. Nel 2006 sono stati scoperti all’interno della "clessidra" i primi quattro oggetti di Herbig-Haro, fra i quali spicca HH 870: questa scoperta fornisce la prova che nella regione sono attivi e persistenti i fenomeni di formazione stellare.

Alcuni frammenti e porzioni della Nebulosa Laguna hanno ricevuto denominazioni differenti, come nel caso di NGC 6526, NGC 6533 e IC 1271, generando spesso confusione nelle carte celesti; una denominazione abbastanza univoca è Sh2-28, che indica la regione di idrogeno ionizzato qui visibile, assieme a Sh2-25, che indica l’alone esteso della nebulosità.

L’ammasso aperto interno alla Nebulosa Laguna è catalogato, come visto, come NGC 6530; è parzialmente risolvibile anche con un binocolo 10x50, dove appare come un piccolo gruppo compatto di stelle. Con telescopi da 200mm e forti ingrandimenti si osservano decine di stelle fino alla magnitudine 13, dominate da alcuni astri di magnitudine 8, immerse nel chiarore nebuloso della Laguna. Si tratta di stelle giovani e calde che delineano la regione centrale della grande associazione Sagittarius OB1.

A breve distanza verso nord si trova invece la Nebulosa Trifida, nota anche come M20; è ben visibile anche con piccoli binocoli come una piccola macchia chiara nelle sere senza Luna. La regione che la ospita è ricchissima di stelle di fondo e il chiarore della Via Lattea è molto intenso, a causa della vicinanza del nucleo; un binocolo 10x50 è in grado di mostrare diversi particolari: appare come una macchia circolare e opaca, circondata da diverse stelle. Un telescopio da 120-140mm consente di notare ulteriori particolari, come variazioni di intensità della luminosità, e anche diverse delle stelle associate; fra le quali spicca una situata quasi in posizione centrale; con strumenti da 200mm sono visibili un gran numero di dettagli secondari, specialmente bande oscure che hanno conferito il nome alla nebulosa. Trovandosi a breve distanza dall’eclittica (meno di un grado) sono frequenti i casi di occultazione da parte dei vari corpi del sistema solare. La singola stella massiva visibile al centro è fonte della gran parte dell’illuminazione dell’intera nebulosa; ha un’età stimata di circa 300.000 anni, che farebbe di questa nebulosa la più giovane regione di formazione stellare conosciuta. Le altre stelle che eccitano i suoi gas sono giganti blu di classe spettrale O e di magnitudine assoluta pari a -5, dell’età di circa 7 milioni di anni; i vari colori sono dati dai diversi elementi: il
rosso è tipico dell'idrogeno, mentre l'azzurro dell'ossigeno. Le bande oscure sono invece polveri e gas freddi e non illuminati. Alla lunghezza d'onda di 9,4 cm la nebulosa emette onde radio, causata dalla collisione fra elettroni e protoni, che generano calore fino a raggiungere temperature di 10.000 K. Alla lunghezza d'onda di 9,4 cm la nebulosa emette onde radio, causata dalla collisione fra elettroni e protoni, che generano calore fino a raggiungere temperature di 10.000 K. Al centro si trova la stella ADS 10991, un sistema triplo con componenti di magnitudine 7,6, 10,7 e 8,7.

La Nebulosa Trifida è solitamente indicata come posta alla distanza di circa 5000 anni luce dalla Terra, venendo così a trovare nel Braccio del Sagittario, ossia il braccio di spirale immediatamente più interno del nostro. Se questo valore fosse confermato, le stelle che la circondano farebbero parte della medesima associazione di quelle della vicina Laguna, ossia Sagittarius OB1. Tuttavia, vi sono degli studi che la collocano alla distanza di 9800 anni luce; se queste misurazioni corrispondessero al vero, appare evidente che la Trifida sarebbe completamente slegata dal complesso della Nebulosa Laguna, tanto da trovarsi addirittura in un braccio di spirale ancora più interno, il Braccio dello Scudo.

Sempre sul Braccio del Sagittario si trova l’ammasso M21, situato a circa 2 gradi di separazione in direzione sudovest dalla stella μ Sagittarii; è visibile anche con un binocolo come un 10x50, anche se solo poche componenti sono facili da notare. Un telescopio da 114mm è invece in grado di mostrare diverse componenti a partire dalla decima magnitudine; con un 200mm l'ammasso è risolto completamente e le aree centrali si mostrano molto compatte. L'ammasso aperto ha una concentrazione centrale di stelle notevole per questo tipo di oggetto, essendo la distanza fra le stelle vicina all'anno luce. Una sessantina di stelle appartengono all'ammasso; le stelle più brillanti, di magnitudine 8, sono di tipo OB e quindi molto giovani: l'età dell'ammasso è stimata in meno di 5 milioni di anni e la sua distanza varia molto a seconda delle stime, ma si attesta sui 4000 anni luce.

NGC 6546 è un ammasso che si distingue solo vagamente rispetto ai campi stellari di fondo, molto ricchi; si trova 1,5 gradi a sudest di M21 e a 1,5 gradi a nordest dell’ammasso centrale della Laguna ed è definito da un piccolo triangolo di stelle di magnitudine 9 visibile poco a sud di un allineamento di due stelle di magnitudine 7, orientate in senso nord-sud. Molte delle componenti di quest’oggetto sono di magnitudine 14 e 15, proprio come i campi stellari di fondo, per cui è difficile staccarlo in modo netto. La sua distanza è stimata sui 3050 anni luce e dunque si troverebbe in primo piano rispetto ai complessi nebulosi appena descritti, sebbene pur sempre sul Braccio del Sagittario; tuttavia alcune stime lo collocano a quasi 4000 anni luce, dunque compatibile con quella di M8. Le sue componenti più massicce sono di classe B2 e ciò fa ritenere che l’età dell’ammasso sia sui 40 milioni di anni; la variabile AV Sagittarii si osserva in direzione di NGC 6546 ma sembrerebbe non farne parte, essendo in primo piano.

Poco più di un grado a ENE della Nebulosa Laguna si trova la nube NGC 6559, inquadrata in una regione di formazione stellare che comprende anche il più esteso sistema nebuloso noto talvolta con la sigla Simeis 188; NGC 6559 solitamente indica un orlo arcuato nebuloso brillante che spicca sul resto del sistema nebuloso, mentre le piccole nebulose a riflessione e a emissione che circondano le stelle nei suoi pressi sono indicate come IC 4674, 4675, 4684 e 4685. Molte delle giovani stelle visibili in questa direzione fanno parte di Cr 367, un ammasso molto disperso e con un’età stimata sui 7 milioni di anni. Tutto questo sistema è legato fisicamente alla regione della Nebulosa Laguna e si trova alla medesima distanza.

FRA M24 E SAGITTARIUS OB7

Circa 2 gradi a nord della stella μ Sagittarii spicca per luminosità una grande macchia brillante visibile anche a
occhio nudo; si tratta di **M24**, la *Piccola Nube Stellare del Sagittario*, una regione di cielo in cui è visibile una enorme densità di stelle anche con un semplice binocolo. Giace in un campo di stelle molto ricco a causa della presenza di grandi nubi stellari della Via Lattea e si mostra ad una semplice osservazione come una macchia chiara più brillante rispetto allo sfondo della Via Lattea, già molto luminosa in direzione del Sagittario per la presenza del centro galattico. Un binocolo 10x50 consente invece di rivelare centinaia di astri minuti, tutti concentrati in uno spazio di poco più di un grado quadrato. Un piccolo telescopio consente di individuare migliaia di stelle, spesso di colori contrastanti; si può inoltre notare come i confini occidentali siano più netti di quelli orientali, effetto causato dalla presenza di una nebulosa oscura presso i suoi bordi. M24 si estende in una regione galattica situata lungo il Braccio del Sagittario e possiede una larghezza di circa 600 anni luce; certe volte, a causa della sua notevole estensione (una nube stellare galattica) non viene considerato un "oggetto del profondo cielo" a tutti gli effetti: si tratta infatti di 32 milioni di anni; le stelle più brillanti hanno una magnitudine apparente pari a circa 9. L'ammasso è localizzato a circa 4900 anni luce dal sistema solare; tenendo conto del suo diametro apparente di 9 minuti di arco, il suo diametro reale risulta essere circa 17 anni luce.

Fra le stelle di M24 si trova anche **NGC 6567**, una piccola nebulosa planetaria di magnitudine circa 12, facilmente confondibile con le numerose stelle qui presenti; un filtro OIII è utile per staccarla, ma in ogni caso occorrono telescopi di grande diametro per via delle sue piccole dimensioni. Appare molto compatta e il suo aspetto è marcatamente stellare, ulteriore motivo di confusione.

Poco a sud del margine meridionale di M24 si estende invece la regione di **Sagittarius OB7**, una piccola ma ben visibile associazione OB legata ad alcune estese nebulose di gas ionizzato e a banchi di polveri oscure. L'associazione può essere individuata con facilità grazie alla brillante stella η Sagittarii, di magnitudine apparente 3,86, che costituisce l'estremità settentrionale dell'arco del Sagittario; l'associazione si trova infatti 1,5° a nordest rispetto a questa stella. Due delle componenti stellari sono osservabili pure ad occhio nudo e sono note oscure si sovrappongono ai campi stellari di M24; queste nubi sono catalogate come **B92** e **B93**, col numero crescente da ovest verso est. Sul bordo meridionale di B93 è individuabile con difficoltà un piccolissimo adensamento di stelle di magnitudine 11, che corrisponde al piccolo ammasso aperto **Cr 469**.

Meno di un grado a nord del margine settentrionale di M24 si trova l'ammasso aperto **M18**, è visibile, seppur con qualche difficoltà, anche con un binocolo come un 10x50, sebbene le sue componenti siano impossibili da osservare, così l'aspetto permane nebuloso. Un telescopio da 120-150mm lo risolve completamente senza lasciare traccia di nebulosità; le sue componenti sono comprese fra l'ottava e la dodicesima magnitudine e appaiono biancastre o azzurrognole. M18 contiene principalmente stelle di tipo spettrale B3, ciò significa che l'ammasso è relativamente giovane: la sua età stimata è infatti di 32 milioni di anni; le stelle più brillanti hanno una magnitudine apparente pari a circa 9. L'ammasso è localizzato a circa 4900 anni luce dal sistema solare; tenendo conto del suo diametro apparente di 9 minuti di arco, il suo diametro reale risulta essere circa 17 anni luce.

Fra le stelle di M24 si trova anche **NGC 6567**, una piccola nebulosa planetaria di magnitudine circa 12, facilmente confondibile con le numerose stelle qui presenti; un filtro OIII è utile per staccarla, ma in ogni caso occorrono telescopi di grande diametro per via delle sue piccole dimensioni. Appare molto compatta e il suo aspetto è marcatamente stellare, ulteriore motivo di confusione.

Poco a sud del margine meridionale di M24 si estende invece la regione di **Sagittarius OB7**, una piccola ma ben visibile associazione OB legata ad alcune estese nebulose di gas ionizzato e a banchi di polveri oscure. L'associazione può essere individuata con facilità grazie alla brillante stella η Sagittarii, di magnitudine apparente 3,86, che costituisce l'estremità settentrionale dell'arco del Sagittario; l'associazione si trova infatti 1,5° a nordest rispetto a questa stella. Due delle componenti stellari sono osservabili pure ad occhio nudo e sono note oscure si sovrappongono ai campi stellari di M24; queste nubi sono catalogate come **B92** e **B93**, col numero crescente da ovest verso est. Sul bordo meridionale di B93 è individuabile con difficoltà un piccolissimo adensamento di stelle di magnitudine 11, che corrisponde al piccolo ammasso aperto **Cr 469**.

Meno di un grado a nord del margine settentrionale di M24 si trova l’ammasso aperto **M18**, è visibile, seppur con qualche difficoltà, anche con un binocolo come un 10x50, sebbene le sue componenti siano impossibili da osservare, così l'aspetto permane nebuloso. Un telescopio da 120-150mm lo risolve completamente senza lasciare traccia di nebulosità; le sue componenti sono comprese fra l'ottava e la dodicesima magnitudine e appaiono biancastre o azzurrognole. M18 contiene principalmente stelle di tipo spettrale B3, ciò significa che l'ammasso è relativamente giovane: la sua età stimata è infatti di 32 milioni di anni; le stelle più brillanti hanno una magnitudine apparente pari a circa 9. L'ammasso è localizzato a circa 4900 anni luce dal sistema solare; tenendo conto del suo diametro apparente di 9 minuti di arco, il suo diametro reale risulta essere circa 17 anni luce.

Fra le stelle di M24 si trova anche **NGC 6567**, una piccola nebulosa planetaria di magnitudine circa 12, facilmente confondibile con le numerose stelle qui presenti; un filtro OIII è utile per staccarla, ma in ogni caso occorrono telescopi di grande diametro per via delle sue piccole dimensioni. Appare molto compatta e il suo aspetto è marcatamente stellare, ulteriore motivo di confusione.

Poco a sud del margine meridionale di M24 si estende invece la regione di **Sagittarius OB7**, una piccola ma ben visibile associazione OB legata ad alcune estese nebulose di gas ionizzato e a banchi di polveri oscure. L'associazione può essere individuata con facilità grazie alla brillante stella η Sagittarii, di magnitudine apparente 3,86, che costituisce l'estremità settentrionale dell'arco del Sagittario; l'associazione si trova infatti 1,5° a nordest rispetto a questa stella. Due delle componenti stellari sono osservabili pure ad occhio nudo e sono note oscure si sovrappongono ai campi stellari di M24; queste nubi sono catalogate come **B92** e **B93**, col numero crescente da ovest verso est. Sul bordo meridionale di B93 è individuabile con difficoltà un piccolissimo adensamento di stelle di magnitudine 11, che corrisponde al piccolo ammasso aperto **Cr 469**.

Meno di un grado a nord del margine settentrionale di M24 si trova l’ammasso aperto **M18**, è visibile, seppur con qualche difficoltà, anche con un binocolo come un 10x50, sebbene le sue componenti siano impossibili da osservare, così l'aspetto permane nebuloso. Un telescopio da 120-150mm lo risolve completamente senza lasciare traccia di nebulosità; le sue componenti sono comprese fra l'ottava e la dodicesima magnitudine e appaiono biancastre o azzurrognole. M18 contiene principalmente stelle di tipo spettrale B3, ciò significa che l'ammasso è relativamente giovane: la sua età stimata è infatti di 32 milioni di anni; le stelle più brillanti hanno una magnitudine apparente pari a circa 9. L'ammasso è localizzato a circa 4900 anni luce dal sistema solare; tenendo conto del suo diametro apparente di 9 minuti di arco, il suo diametro reale risulta essere circa 17 anni luce.
con le sigle 15 e 16 Sagittarii, rispettivamente di magnitudine 5,38 e 5,98; le altre componenti sono visibili nei dintorni anche con un piccolo binocolo. Le nebulose associate invece sono al di fuori della portata di piccoli strumenti, sebbene possano essere fotografate con facilità grazie al forte contrasto che si genera fra le nebulose oscure che le circondano e i ricchi campi stellari di fondo. La regione di Sagittarius OB7 è dominata dalla presenza di un vasto complesso di nubi molecolari giganti, ben evidenti grazie al retrostante campo stellare, che ne risulta oscurato; questo complesso riporta tre numeri del catalogo LDN, che lo tratta dunque come altrettante nubi distinte: LDN 291, LDN 314 e LDN 315. Tuttavia, identificare queste tre nubi come oggetti distinti risulta piuttosto difficile, pertanto ci si riferisce spesso con l'unico appellativo LDN 291, che dà il nome all'intero complesso. Fra le componenti stellari dell'associazione, la più brillante è la 15 Sagittarii; si tratta di una supergigante blu di classe spettrale B0Ia e magnitudine apparente 5,38. Seguono la gigante blu 16 Sagittarii, di classe O9.5II-III e magnitudine 5,98, BD-20°5053, di classe O6 e magnitudine 9,52, e BD-20°5060, di classe B0IV e magnitudine 8,84. Gran parte delle stelle di Sagittarius OB7 sono racchiuse nell'ammasso Cr 371. Fra le nebulose brillanti legate all'associazione spicca IC 1284, nota anche come Sh2-35, a sud di μ Sagittarii. Può essere notato come un leggero addensamento di stelle di magnitudine 11 e sebbene sia teoricamente visibile anche con strumenti da 100-120mm, i grandi diametri hanno il vantaggio di far emergere anche le stelle più deboli, che rendono più chiaro l'addensamento. Si tratta di un ammasso poco studiato; la sua età sarebbe stimata sui 500 milioni di anni, mentre la sua distanza si aggira sui 3300 anni luce. Poco più di un grado a SSE di μ Sagittarii si trova invece NGC 6583, più compatto e leggermente più contrastato del precedente, ma anche meno luminoso; è formato da una decina di stelle di magnitudine 11 e 12 con un corteo di stelle più deboli e può essere osservato con difficoltà, attraverso uno strumento da 200mm. Anche di quest'ammasso si trova poco in letteratura; sarebbe situato al doppio della distanza del precedente (6650 anni luce) ed è dominato da alcune stelle biancastre.

IL SISTEMA OMEGA-AQUILA

La Nebulosa Omega e la Nebulosa Aquila si presentano in cielo molto vicine, separate da appena 2,5 gradi; studiando le rispettive distanze emerge che esse si trovano vicine anche fisicamente, trovandosi a poche centinaia di anni luce l'una dall'altra. Le due nebulose sono effettivamente connesse da una debole fascia nebulosa, visibile anche nelle immagini multi-esposizione e sensibili anche al vicino infrarosso; ciò indicherebbe che le due nubi, alle quali si aggiunge una terza catalogata come Regione III a sudovest della Omega e una quarta nota come Sh2-54 a nord della Aquila (cui è connesso l'ammasso aperto NGC 6604), sarebbero parte di un vasto complesso nebuloso molecolare di cui esse rappresentano le aree più dense in cui ha iniziato ad avere luogo la formazione stellare.
La più meridionale del gruppo, nonché l’unica entro i confini del Sagittario, è la Nebulosa Omega, che ha anche la sigla M17. Grazie alla sua luminosità, La Nebulosa Omega è piuttosto facile da localizzare: si trova infatti a 2 gradi a sudest della stella γ Scuti. Si individua con discreta facilità anche con un binocolo 10x50 o anche più piccolo, se il cielo è buio e limpido: si mostra in questi strumenti come una macchia allungata; attraverso uno strumento da 120mm, munito di un filtro UHC, rivela buona parte delle sue sfumature e dei suoi giochi di luce. A partire da 200 mm la visione è eccezionale e conviene prendere una foto a lunga posa per catturare il colore rosato. Si tratta di una regione H II in cui è attiva la formazione stellare ed è resa brillante dalla radiazione luminosa delle stelle giovani e calde, di classe spettrale B (giganti blu), in essa formatesi; alcune di queste stelle sono radunate a formare un ammasso aperto di 35 stelle, molto oscurato dalle polveri. Il colore rosso vivo della nebulosa è dovuto all' eccitazione degli atomi di idrogeno, che emettono radiazione Hα; la massa della zona più luminosa è pari a 800 masse solari. Nell'infrarosso si è potuto osservare un numero elevato di nubi favorevoli alla formazione di stelle. Al centro della nebulosa si troverebbe un ammasso aperto di una trentina di stelle coperte dai suoi gas. Il diametro di M17 sfiora i 40 anni luce.

Poco più a nord, oltre il confine col Serpente, si trova la celebre Nebulosa Aquila (M16), la quale è una nebulosa diffusa associata ad un giovane ammasso aperto (ossia una regione H II). La nebulosa Aquila, di per sé piuttosto brillante, può essere individuata con facilità partendo dalla stella γ Scuti e spostandosi circa 3° a WSW; sebbene sia invisibile ad occhio nudo, un binocolo 10x50 è più che sufficiente per poterla individuare come una macchia chiara allungata e circondante un piccolissimo ammasso di stelle, il quale però può essere risolto solo con grande difficoltà. Con un telescopio da 120-150mm di apertura, l'ammasso domina con la sua luce la nebulosità, che si mostra sfuggente; l'ammasso appare invece ben risolto e conta circa una quarantina di stelle. Molti dettagli sulla nube possono essere osservati con aperture a partire dai 200mm, con le quali l'ammasso appare luminoso ed esteso, con diverse decine di stelle brillanti sparse su tutta la zona nebulosa. Quest'oggetto si trova sul Braccio del Sagittario alla distanza di circa 5700 anni luce ed è un'importante regione di formazione stellare, dove le stelle di grande massa ionizzano i gas circostanti rendendoli visibili. La causa principale della ionizzazione dei gas della nebulosa, e quindi della sua luminosità, sono le grandi stelle massicce dell'ammasso aperto NGC 6611, che si trova al suo interno; le stesse hanno anche modellato col loro vento stellare le nubi circostanti, causando delle lunghe strutture a chioma qualora il vento incontrasse delle regioni nebulose ultradense: è questo il caso ad esempio dei famosi Pilastri della Creazione o Proboscidi d'Elefante, visibili chiaramente e con facilità solo con strumenti di diametro molto grande (oltre i 400mm) che hanno conferito il nome "Aquila" alla nebulosa e che sono state rese famose dalle immagini del Telescopio Hubble. Sebbene non siano così dense come originariamente creduto, queste strutture mostrano delle evidenze di protrusioni, alcune delle quali sarebbero associate a degli oggetti stellari giovani, un segno questo che i fenomeni di formazione stellare sono ancora in atto. L'ammasso contiene infatti alcune decine di stelle di sequenza principale di classe spettrale O e B estremamente calde (supergiganti blu), di età stimata sugli appena 1,8 milioni di anni, più un numero considerevole di stelle di massa inferiore, circa 380 membri fino ad una massa pari a 2 masse solari. La principale sorgente della radiazione ionizzante i gas della nebulosa, nonché la stella più massiccia dell'ammasso, è HD 168076, una supergigante di classe O3-O5V con una massa pari a 75-80 masse solari.
Le stelle dell'ammasso aperto NGC 6604, circondate dai gas della nebulosa Sh2-54.

solari; le altre stelle possiedono una massa molto inferiore, sebbene siano comunque delle stelle giganti, e la loro radiazione totale è pari a quella prodotta dalla singola stella HD 168076. Molte di queste stelle massicce sono doppi.

Circa un grado a nordovest della Nebulosa Aquila si trova Sh2-54; non visibile con strumenti di diametro più comune, può essere rilevata facilmente con la fotografia. I processi di formazione stellare attualmente attivi nella nebulosa si concentrano principalmente nella parte settentrionale, dove è presente un denso bozzolo indicato con la sigla M1-88 o Gum 85; sebbene questo oggetto sia stato poco studiato, in esso sono state osservate alcune sorgenti di radiazione infrarossa e un debole ammasso di stelle giovani. Questi processi geneticamente sono stati probabilmente provocati dall'azione del vento stellare delle stelle del vicino e giovane ammasso aperto NGC 6604, che hanno generato una bolla in espansione la cui onda d'urto ha colpito e compresso i gas della nebulosa stessa.

NGC 6604, situato all'interno della nebulosa, coincide con la regione più densa dell'associazione Serpens OB2. Le sue componenti più luminose sono di settima e ottava magnitudine e ottava magnitudine e sono pertanto osservabili anche con un binocolo; tuttavia, la grande concentrazione fa sì che attraverso piccoli strumenti appaia come una stella unica "estesa", o come un densissimo agglomerato di piccole stelline. Con strumenti da 120mm a salire si possono distinguere le componenti con più facilità. NGC 6604 è un ammasso estremamente giovane e compatto: stime sulla sua età indicano che le sue componenti stellari più massicce non superano i 4-5 milioni di anni. La stella dominante dell'ammasso è HD 167971, una supergigante blu di classe spettrale O8I considerata fra le stelle di classe O più luminose della Via Lattea; essa è in realtà una stella tripla con componenti tutte di classe O, dunque stelle massicce e molto calde. Due delle componenti sono molto vicine fra loro e si eclissano a vicenda; ciò comporta una variazione della luminosità totale del sistema, che in circa 3,32 giorni oscilla fra le magnitudini 7,33 e 7,66. La sigla di stella variabile del sistema è MY Serpentis. A questo sistema si aggiunge HD 168112, una gigante blu di classe O5.5III con forti emissioni di onde radio.

Alcuni altri giovani ammassi più blardi si osservano nei dintorni, fra i quali Tr 32 e più a sud, NGC 6605; entrambi sono difficili da scorgere dal fondo cielo e l'ultimo in particolare si troverebbe in primo piano rispetto al complesso nebuloso appena descritto.

OGGETTI SPARSI

Gli oggetti in assoluto più numerosi visibili nel Sagittario sono le nebulose planetarie; la quasi totalità di queste tuttavia sono ben al di là della portata di un telescopio comune, inoltre spesso si tratta di oggetti davvero lontani e situati nei bracci più interni, per cui si presentano di aspetto stellare, ossia indistinguibili dalle stelle, e quindi virtualmente inosservabili.

Più facili possono essere gli ammassi aperti, sebbene la grande abbondanza di stelle di fondo non aiuti a definirli facilmente all'osservazione visuale.

Poco più di due gradi a WNW della Nebulosa Trifida si trova l'ammasso NGC 6469; la sua individuazione non è semplice per le ragioni appena esposte, sebbene appaia abbastanza ricco. È incorniciato da un quadrilatero di stelle di magnitudine 10 e si mostra come un esteso ma leggermente addensato di stelle a partire dalla magnitudine 12, con una concentrazione leggermente maggiore sul lato sudoccidentale. Come molti degli ammassi secondari visibili nel Sagittario, non sono stati oggetto di molti studi approfonditi; la sua distanza è stimata sui 1800 anni luce e dunque si troverebbe sul margine interno del Braccio del Oriione, nei pressi di una regione interbraccio.

Il centro della Via Lattea. Le numerose stelle visibili in questa direzione formano la Grande Nube Stellare del Sagittario.
Circa 40° a nordest, dispersa nei ricchi campi stellari, si trova la piccola nebulosa planetaria IC 4670, una delle poche in questa direzione ad essere alla portata di strumenti da 120-150mm. Si presenta come una piccola macchia di colore bianco-azzurrognola, di aspetto quasi stellare e leggermente sfuocata, ed è esaltata dall’utilizzo di un filtro OIII, senza il quale è facile confonderla fra le stelle di campo.

Un ammasso molto facile da osservare è M23, individuabile circa 3,5 gradi a nordovest dalla stella μ Sagittarii e giacente anch’esso in un campo di stelle molto ricco; con un binocolo 10x50 appare granulosamente riempito di stelle delle magnitudini 11 e 12, nonostante siano molto sparse. M23 si trova alla distanza di circa 2150 anni luce dalla Terra; il suo diametro si aggira intorno ai 15-20 anni luce. All’interno di M23 sono stati identificati circa 150 membri, le cui stelle più calde sono di tipo B9 e le più luminose raggiungono la magnitudine 10. L’età stimata si aggira fra i 220 e i 300 milioni di anni.

M25 è decisamente l’ammasso aperto più luminoso della costellazione del Sagittario. Si individua circa 4,5 gradi a NNE dalla stella μ Sagittarii e giace in un campo di stelle piuttosto ricco a causa della presenza di grandi nubi stellari della Via Lattea; è visibile anche a occhio nudo in cieli limpidi, mentre si scorge con estrema facilità con un binocolo come un 10x50, risolvendo anche alcune delle sue componenti. Con un telescopio da 200-250mm è visibile in parte anche con strumenti da 200mm. Al centro di questa nube si può notare un addensamento ancora più marcato, che definisce l’ammasso aperto NGC 6645.

Le sue stelle più brillanti sono di magnitudine 10 e 11 e sono raccolte entro un diametro di 10 minuti d’arco, mentre le componenti più deboli si addensano a formare una macchia chiara parzialmente risolvibile; anche un binocolo 10x50 ne rivela la presenza, sebbene non sia
Il piccolo ma ben definito ammasso aperto NGC 6645.

naturalmente risolvibile. Da quest’ammasso sembra avere origine una concatenazione di stelle di magnitudine 7 e 8 che si dirige verso ESE. NGC 6645 è un ammasso dall’aspetto disperso, an"#c se piuttosto ricco di stelle; la sua distanza è stimata attorno ai 4100 anni luce, corrispondente al bordo esterno del Braccio del Sagittario. Altre stime basate su metodi fotometrici hanno fornito una distanza più ridotta, pari a 2500 anni luce. In generale si tratta di un oggetto poco studiato. Studi rivolti ad analizzare le stelle nel campo di NGC 6645 basandosi sul diagramma HR hanno permesso di stabilire un’appartenenza fisica per 72 di esse. La sua età, determinata anch’essa tramite il diagramma, risulta essere particolarmente elevata per un ammasso aperto, aggiornandosi sui 9,7 miliardi di anni; si tratta in effetti di uno degli ammassi aperti più antichi che si conoscano.

Nella parte nordorientale del Sagittario, molti atlanti celesti riportano l’ammasso aperto Cr 394 come un oggetto an"#c abbastanza esteso (oltre 20’), ma poi all’osservazione visuale non se ne ha quasi traccia; visivamente vi è un vago addensamento di stelle di magnitudine 11 e soprattutto 12, pari a 2500 anni luce. In generale si tratta di un oggetto poco studiato. Studi rivolti ad analizzare le stelle nel campo di NGC 6645 basandosi sul diagramma HR hanno permesso di stabilire un’appartenenza fisica all’ammasso per 72 di esse. La sua età, determinata anch’essa tramite il diagramma, risulta essere particolarmente elevata per un ammasso aperto, aggiornandosi sui 9,7 miliardi di anni; si tratta in effetti di uno degli ammassi aperti più antichi che si conoscano.

AMMASSI DI ALONE

Data la direzione di osservazione rispetto al centro galattico, è naturale osservare nel Sagittario un numero particolarmente elevato di ammassi globulari. Alcuni di questi sono anche fra i più appariscenti del cielo, ma ve ne sono molti particolarmente deboli e difficili.

La nebulosa planetaria NGC 6629 è relativamente appariscente e presenta una morfologia complessa.
Fra gli ammassi più occidentali della costellazione del Sagittario vi è **NGC 6440**, che si presenta fortemente oscurato dalle polveri della Via Lattea. È visibile con uno strumento da 200mm come una piccola macchia chiara di aspetto circolare, con un nucleo concentrato e brillante; le sue stelle più luminose sono di magnitudine 17 e pertanto restano ben al di là della portata dei telescopi amatoriali. Nelle fotografie ad alta risoluzione è invece possibile una parziale risoluzione, specialmente bilanciando le necessarie integrazioni. Si tratta di un ammasso globulare di concentrazione media (classe V), oggetto di diversi studi per via delle pulsar millisecondo scoperte al suo interno, nonché 24 sorgenti di raggi X, legate sempre alla presenza di pulsar. La sua distanza è stimata come pari a 27.700 anni luce.

NGC 6544 si individua nella parte occidentale della costellazione, sul bordo di un ricco campo stellare; la sua posizione è facilmente recuperabile in quanto si trova a soli 50' in direzione sudest rispetto alla celebre Nebulosa Laguna. Può essere notato anche con un binocolo 10x50 come una debolissima macchia chiara simile a una stella nebbiosa; con un telescopio da 120mm e ingrandimenti attorno ai 100x è possibile notare qualche minuta stellina, ma nel complesso l'ammasso risulta pressoché irrisol-ibile. Strumenti dai 200mm in su e ingrandimenti più spinti permettono di risolvere diverse decine di deboli componenti. NGC 6544 è un globulare di densità media, stimata di classe V; la sua distanza è stimata sui 9450 anni luce dal Sole, che nella sua posizione corrisponde a una distanza di 20.000 anni luce dal centro della Via Lattea e di soli 330 anni luce dal piano galattico, al punto da essere uno degli ammassi globulari più vicini al piano galattico conosciuti. Le sue dimensioni angolari ridotte, pari a poco meno di 4' per il corpo principale dell'ammasso e corrispondenti ad appena 10 anni luce, lo rendono anche uno degli ammassi globulari più piccoli conosciuti. Sono note poche stelle variabili facenti parte di quest'ammasso.

NGC 6553 è un ammasso abbastanza facile da individuare; si trova esattamente un grado a SSE del precedente ed è visibile anche con un binocolo 10x50 come una debolissima macchia chiara. Le sue stelle principali sono molto deboli e pertanto occorrono strumenti di diametro notevole per iniziare una parziale risoluzione a forti ingrandimenti; alcune stelle di magnitudine 10 e 11 si sovrappongono lungo la sua linea di vista e possono tuttavia dare l’illusione che una parziale risoluzione sia possibile anche con piccoli strumenti. Si tratta di un globulare fra i meno concentrati (classe XI), situato alla distanza di circa 20.000 anni luce. A questo si affianca **M28**, che si trova meno di un grado a nordovest della stella λ Sagittarii, al punto che la sua luce può talvolta risultare fastidiosa nell’osservazione di quest’oggetto. Sotto un cielo in buone condizioni meteoro logically è visibile anche con un binocolo 10x50, sebbene si mostri come un semplice punto biancastro molto debole e sfumato; la risoluzione in stelle inizia...
con telescopi da 150mm. Il bordo sudorientale risulta meno ricco di stelle. M28 è un ammasso compatto di classe IV, il cui diametro lineare, ottenuto rapportando la sua dimensione apparente con la sua distanza, si aggirà sui 75 anni luce. In questo ammasso, distante più di 18.000 anni luce, sono state osservate 18 variabili del tipo RR Lyrae; nel 1987 M28 fu il secondo ammasso globulare dove fu osservata una pulsar superveloce; dopo l'ammasso M4. La sua velocità radiale è poco più di 1 km/s in recessione.

NGC 6638 si trova 40 minuti d'arco a ESE di λ Sagittarii ed è un oggetto molto debole e di piccole dimensioni apparenti; con un telescopio da 200mm appare come una macchia chiara circolare del tutto irrisolvibile e leggermente più luminosa al centro. La sua distanza è stimata sui 30.000 anni luce e ha una classe di concentrazione media (VI).

Circa 2 gradi a nordest di λ Sagittarii si trova NGC 6642, anch'esso assai difficile da osservare a causa della sua scarsa luminosità; il suo aspetto con uno strumento da 200mm è quello di una modesta macchia chiara circolare, simile al precedente. Si tratta di un ammasso di concentrazione medio-alta (classe IV) molto ricco di blue stragglers; tuttavia, la sua particolarità più notevole è la scarsità di stelle di piccola massa, se confrontato con altri ammassi globulari. La sua distanza è stimata sui 23.000 anni luce.

Altri globulari visibili in questo settore sono più deboli.
Aquario, Baleina e il Polo Galattico Sud
Fra le costellazioni della Gru e del Pesce Australe si trovano dei gruppi di galassie di facile osservazione e alla portata anche di piccoli strumenti; la loro stessa individuazione è inoltre semplificata dalla presenza di alcune stelle molto appariscenti. Tuttavia, trovandosi a declinazioni moderatamente meridionali, risultano fuori dalla portata degli appassionati che osservano dalle latitudini medie boreali.

L’area di cielo fra la Balena e i Pesci, a ridosso dell’equatore celeste, ospita alcuni piccoli gruppi di galassie situati a distanze variabili entro poche decine di milioni di anni luce, relativamente facili da osservare e soprattutto da fotografare; si presentano sparsi in un’area di oltre 20 gradi e non sembrano formare un sistema omogeneo.
GALASSIE FRA LA GRU E IL PESCE AUSTRALE

A sud della brillante stella *Fomalhaut*, nel profondo emisfero australe, si osservano alcuni gruppi di galassie relativamente appariscenti, sebbene poco conosciuti soprattutto dagli appassionati che osservano dalle regioni boreali. L’area di cielo è facile da inquadrare proprio grazie alla presenza di alcune stelle luminose, ma la sua osservazione è resa difficoltosa dalle medie latitudini boreali poiché si presenta molto bassa o anche parzialmente invisibile.

CARATTERISTICHE

Fra le costellazioni della Gru e del Pesce Australe si trovano dei gruppi di galassie di facile osservazione e alla portata anche di piccoli strumenti; la loro stessa individuazione è inoltre semplificata dalla presenza di alcune stelle molto appariscenti. Tuttavia, trovandosi a declinazioni moderatamente meridionali, risultano fuori dalla portata degli appassionati che osservano dalle latitudini medie boreali.

La stella *Fomalhaut* a nord e la coppia formata da *Al Na’ir* e *Gruid* a sud sono dei riferimenti irrinunciabili per l’individuazione sommaria di molte galassie. La maggior parte di questi gruppi di galassie si trovano a distanze comprese fra 30 e 80 milioni di anni luce e sono composti solitamente da tre o quattro galassie maggiori, più un numero simile di galassie meno brillanti.

A distanze notevolmente maggiori si trovano invece dei veri e propri ammassi di galassie, ma le loro componen-

ti sono così deboli da essere visibili sono nelle fotografie composte da più riprese e soprattutto in alta risoluzione.

Le galassie più appariscenti sono concentrate sul lato nordorientale della Gru e formano un vago allineamento discontinuo orientato in senso nordovest-sudest, sconfinando a nordovest nel Pesce Australe e a sudest nella Fenice.

Altri gruppi più o meno isolati si trovano invece nella parte meridionale del Pesce Australe e sono anch’essi visibili con telescopi da 150-200mm di diametro.

Il resto della costellazione della Gru contiene soprattutto galassie isolate e non molto appariscenti; foto a lunga esposizione consentono tuttavia di rivelare numerose

<table>
<thead>
<tr>
<th>STELLE PRINCIPALI DELLA REGIONE</th>
</tr>
</thead>
<tbody>
<tr>
<td>-------</td>
</tr>
<tr>
<td>α PsA</td>
</tr>
<tr>
<td>α Gru</td>
</tr>
<tr>
<td>β Gru</td>
</tr>
<tr>
<td>γ Gru</td>
</tr>
<tr>
<td>ι Gru</td>
</tr>
<tr>
<td>δ¹ Gru</td>
</tr>
<tr>
<td>δ² Gru</td>
</tr>
<tr>
<td>β PsA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DETTAGLI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Costellazioni</td>
</tr>
<tr>
<td>Ascensione Retta (media)</td>
</tr>
<tr>
<td>Declinazione (media)</td>
</tr>
<tr>
<td>Tipo</td>
</tr>
<tr>
<td>Oggetti</td>
</tr>
</tbody>
</table>
Fra la Gru e il Pesce Australe si trovano alcuni gruppi di galassie appariscenti, visibili anche con piccoli strumenti.
IL QUARTETTO DELLA GRU E I DINTORNI

Il Quartetto della Gru è un gruppo di quattro galassie visibile circa 2 gradi e mezzo a NNE della stella θ Gruis; sono tutte alla portata di strumenti da 150mm, a patto di avere la costellazione alta nel cielo, mentre i due membri più brillanti possono essere notati anche con strumenti più piccoli. La sua distanza media si aggira sui 60-70 milioni di anni luce e fa parte di un’estremità remota del Superammasso della Vergine. Alcune delle galassie membri sono collegate da un ponte di idrogeno neutro, che testimonia una loro interazione fisica, e presentano fenomeni di starburst.

La galassia principale di questo gruppo è NGC 7582, visibile anche con strumenti da 120mm come un piccolo fusso allungato in senso nordovest-sudest; strumenti più grandi permettono di notare un leggero albero chiaro ai lati, sebbene l’oggetto resti di aspetto decisamente allungato. Si tratta di una spirale barrata vista con una forte angolazione, dotata di una barra prominente e dominante rispetto alla struttura del disco; possiede un nucleo attivo, che fa ricadere quest’oggetto nella categoria delle galassie di Seyfert di tipo 2. Si ritiene che il buco nero centrale possieda una massa di circa 50 milioni di masse solari. Il suo diametro è di 70.000 anni luce. NGC 7590 è visibile pochi minuti d’arco a nordest e può essere notata con strumenti da 150mm come una macchia ellissoidale orientata in senso nordest-sudovest; si tratta anch’essa di una spirale barrata, ma con un disco dominato da dei bracci di spirale vagamente frammentati e strettamente avvolti attorno a una barra ben

Molte delle galassie della Gru hanno una denominazione confusa e ridondante: ve ne sono alcune incluse nel catalogo NGC e poi riosservate accidentalmente e incluse nel catalogo IC, oppure ancora galassie con una denominazione doppia del catalogo IC.

PRINCIPALI OGGETTI NON STELLARI

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>IC 5131</td>
<td>21h 47m 25s</td>
<td>-34° 53' 01"</td>
<td>Gal</td>
<td>12.3</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>NGC 7130</td>
<td>21h 48m 20s</td>
<td>-34° 57' 04"</td>
<td>Gal</td>
<td>12.1</td>
<td>1.6</td>
<td>(IC 5135)</td>
</tr>
<tr>
<td>NGC 7135</td>
<td>21h 49m 46s</td>
<td>-34° 52' 35"</td>
<td>Gal</td>
<td>11.7</td>
<td>2.1</td>
<td>(IC 5136)</td>
</tr>
<tr>
<td>NGC 7154</td>
<td>21h 55m 21s</td>
<td>-34° 48' 50"</td>
<td>Gal</td>
<td>12.3</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>ESO 404-12</td>
<td>21h 57m 07s</td>
<td>-34° 34' 56"</td>
<td>Gal</td>
<td>12.2</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>IC 5148</td>
<td>21h 59m 35s</td>
<td>-39° 23': NP</td>
<td>16</td>
<td>2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NGC 7166</td>
<td>22h 00m 33s</td>
<td>-43° 23' 23"</td>
<td>Gal</td>
<td>11.8</td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td>NGC 7172</td>
<td>22h 02m 02s</td>
<td>-31° 52' 11"</td>
<td>Gal</td>
<td>11.8</td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td>NGC 7173</td>
<td>22h 02m 03s</td>
<td>-31° 58' 25"</td>
<td>Gal</td>
<td>11.9</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>NGC 7176</td>
<td>22h 02m 08s</td>
<td>-31° 59' 23"</td>
<td>Gal</td>
<td>11.5</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>IC 5156</td>
<td>22h 03m 15s</td>
<td>-33° 50' 18"</td>
<td>Gal</td>
<td>12.1</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>NGC 7213</td>
<td>22h 09m 16s</td>
<td>-47° 10': 10,5</td>
<td>2 x 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NGC 7221</td>
<td>22h 11m 15s</td>
<td>-30° 33' 47"</td>
<td>Gal</td>
<td>12.1</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>IC 5181</td>
<td>22h 13m 22s</td>
<td>-46° 01' 04"</td>
<td>Gal</td>
<td>11.7</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>IC 5179</td>
<td>22h 16m 09s</td>
<td>-36° 50' 37"</td>
<td>Gal</td>
<td>11.8</td>
<td>2.4</td>
<td>(IC 5183/4)</td>
</tr>
<tr>
<td>NGC 7232</td>
<td>22h 15m 38s</td>
<td>-45° 51' 01"</td>
<td>Gal</td>
<td>12.0</td>
<td>2.6</td>
<td></td>
</tr>
<tr>
<td>IC 5186</td>
<td>22h 18m 47s</td>
<td>-36° 48' 06"</td>
<td>Gal</td>
<td>11.9</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>IC 5201</td>
<td>22h 20m 57s</td>
<td>-46° 02' 09"</td>
<td>Gal</td>
<td>10.8</td>
<td>8.5</td>
<td></td>
</tr>
<tr>
<td>NGC 7267</td>
<td>22h 24m 22s</td>
<td>-33° 41' 36"</td>
<td>Gal</td>
<td>12.0</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>NGC 7307</td>
<td>22h 33m 52s</td>
<td>-40° 56' 05"</td>
<td>Gal</td>
<td>12.2</td>
<td>3.4</td>
<td></td>
</tr>
<tr>
<td>IC 5240</td>
<td>22h 41m 52s</td>
<td>-44° 46' 02"</td>
<td>Gal</td>
<td>11.3</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>NGC 7361</td>
<td>22h 42m 18s</td>
<td>-30° 03' 28"</td>
<td>Gal</td>
<td>12.3</td>
<td>3.9</td>
<td></td>
</tr>
<tr>
<td>NGC 7410</td>
<td>22h 55m 01s</td>
<td>-39° 40': 10,4</td>
<td>5,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NGC 7412</td>
<td>22h 55m 46s</td>
<td>-42° 38' 29"</td>
<td>Gal</td>
<td>11.1</td>
<td>3.8</td>
<td></td>
</tr>
<tr>
<td>IC 1459</td>
<td>22h 57m 11s</td>
<td>-36° 27': 10,9</td>
<td>5 x 4</td>
<td>(IC 5265)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NGC 7424</td>
<td>22h 57m 18s</td>
<td>-41° 04' 14"</td>
<td>Gal</td>
<td>10,2</td>
<td>9,5</td>
<td></td>
</tr>
<tr>
<td>IC 5269</td>
<td>22h 57m 44s</td>
<td>-36° 01' 34"</td>
<td>Gal</td>
<td>12.1</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>IC 5270</td>
<td>22h 57m 55s</td>
<td>-35° 51' 29"</td>
<td>Gal</td>
<td>11.8</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>IC 5271</td>
<td>22h 58m 02s</td>
<td>-33° 44' 32"</td>
<td>Gal</td>
<td>11.0</td>
<td>2,2</td>
<td></td>
</tr>
<tr>
<td>IC 5273</td>
<td>22h 59m 27s</td>
<td>-37° 42' 10"</td>
<td>Gal</td>
<td>11.2</td>
<td>2.6</td>
<td></td>
</tr>
<tr>
<td>NGC 7456</td>
<td>23h 02m 10s</td>
<td>-39° 34' 09"</td>
<td>Gal</td>
<td>11.7</td>
<td>5.5</td>
<td></td>
</tr>
<tr>
<td>NGC 7462</td>
<td>23h 02m 46s</td>
<td>-40° 50' 08"</td>
<td>Gal</td>
<td>11.4</td>
<td>4.3</td>
<td></td>
</tr>
<tr>
<td>NGC 7496</td>
<td>23h 09m 47s</td>
<td>-43° 25' 39"</td>
<td>Gal</td>
<td>11.1</td>
<td>3.3</td>
<td></td>
</tr>
<tr>
<td>NGC 7531</td>
<td>23h 14m 48s</td>
<td>-43° 35' 56"</td>
<td>Gal</td>
<td>11.3</td>
<td>4.5</td>
<td></td>
</tr>
<tr>
<td>NGC 7552</td>
<td>23h 16m 12s</td>
<td>-42° 35': 10,7</td>
<td>3 x 3</td>
<td>(IC 5294)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NGC 7582</td>
<td>23h 18m 24s</td>
<td>-42° 22' 11"</td>
<td>Gal</td>
<td>10,5</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>NGC 7590</td>
<td>23h 18m 55s</td>
<td>-42° 14' 21"</td>
<td>Gal</td>
<td>11,3</td>
<td>2.6</td>
<td></td>
</tr>
<tr>
<td>NGC 7599</td>
<td>23h 19m 21s</td>
<td>-42° 15' 29"</td>
<td>Gal</td>
<td>11,5</td>
<td>4,4</td>
<td>(IC 5308)</td>
</tr>
<tr>
<td>NGC 7632</td>
<td>23h 22m 01s</td>
<td>-42° 28' 49"</td>
<td>Gal</td>
<td>12,1</td>
<td>2,4</td>
<td></td>
</tr>
<tr>
<td>IC 5325</td>
<td>23h 28m 43s</td>
<td>-41° 20' 00"</td>
<td>Gal</td>
<td>11,3</td>
<td>2,9</td>
<td></td>
</tr>
<tr>
<td>IC 5332</td>
<td>23h 34m 30s</td>
<td>-36° 06' 00"</td>
<td>Gal</td>
<td>10,6</td>
<td>6,6</td>
<td></td>
</tr>
</tbody>
</table>

Tre delle quattro galassie del Quartetto della Gru sono molto vicine fra loro e formano un gruppo molto compatto.
poco cospicua. Il diametro della galassia è pari a 60.000 anni luce e possiede un nucleo attivo di tipo Seyfert 2. A brevissima distanza si trova NGC 7599, leggermente più estesa ma più debole e con una luminosità superficiale inferiore, così da risultare un po’ più ostica delle precedenti. Anche questa è una spirale barrata, con una barra che si presenta di scarso rilievo rispetto alla struttura del disco, attraversata da numerosi bracci ben avvolti; con un diametro di poco inferiore a quello della Via Lattea, è la galassia più estesa del quartetto, ma anche la meno appariscente. Queste tre galassie appena descritte si trovano tutte entro una distanza compresa fra 69 e 73 milioni di anni luce e sono dunque a stretto contatto fra di loro.

Più staccata si trova il quarto membro del gruppo, NGC 7552; attraverso un telescopio da 120mm è visibile come un po’ più ostica delle precedenti. Anche questa è una spirale barrata, con una barra che si presenta di scarso rilievo rispetto alla struttura del disco, attraversata da numerosi bracci ben avvolti; con un diametro di poco inferiore a quello della Via Lattea, è la galassia più estesa del quartetto, ma anche la meno appariscente. Queste tre galassie appena descritte si trovano tutte entro una distanza compresa fra 69 e 73 milioni di anni luce e sono dunque a stretto contatto fra di loro.

Fotografie ad alta sensibilità e risoluzione permettono di notare in direzione del Quartetto della Gru numerosissime galassie di fondo. In particolare, pochi minuti d’arco a nord della coppia NGC 7590 e 7599, si trova il remoto ammasso Abell S1111, dominato da due galassie ellittiche giganti di magnitudine circa 14 e denominate PGC 71042 e PGC 71043, accompagnate da diverse altre galassie molto meno appariscenti. La sua distanza è stimata sui 650 milioni di anni luce.

Una ventina di minuti d’arco a sudovest di NGC 7552 si trova invece l’ammasso Abell S1101, meno appariscente e dominato dalla galassia ellittica gigante PGC 70747, di magnitudine circa 14; la sua distanza è di circa 800 milioni di anni luce.

Circa un grado ad est di θ Gruis si trova la galassia NGC 7531, individuabile con strumenti da 150mm e, con molta più difficoltà, con telescopi da 120mm; appare come una macchia ellissoidale allungata in senso nord-sud, con un nucleo debolmente più luminoso. È una galassia spirale di tipo intermedio appena più piccola della Via Lattea, la cui struttura più interna è contraddistinta da un anello luminoso in cui sono attivi notevoli fenomeni di formazione stellare; i due bracci di spirale maggiori sono ben definiti ma possiedono una bassa luminosità superficiale. Trovandosi a circa 70 milioni di anni luce, è considerata parte dello stesso gruppo di galassie del Quartetto della Gru, di cui sarebbe un membro periferico.

Sempre legata allo stesso gruppo è la molto più debole galassia NGC 7496, visibile circa 20’ a est di θ Gruis; visibile con telescopi da 150mm, è una spirale barrata con un nucleo attivo e un diametro pari a due terzi di quello della Via lattea. La sua distanza è stimata sui 73 milioni di anni luce.

Circa 2,5 gradi ad est della stella ρ Gruis si trova NGC 7424, una delle galassie più appariscenti della costellazione; per individuarla occorre uno strumento da 100-120mm di diametro, sebbene la sua bassa luminosità superficiale non aiuti: appare come un alone molto debole con una macchia più luminosa al centro, che a forti ingrandimenti può apparire debolmente allungata. È una galassia spirale barrata vista perfettamente di faccia, con un disco dominato da dei bracci di spirale molto ramificati e disposti, ricchi di giovani ammassi stellari; la barra centrale è piccola ma molto ben marcata e contiene una popolazione di stelle molto vecchie. La sua distanza è stimata sui 38 milioni di anni luce e sebbene talvolta venga considerata parte del gruppo di galassie di IC 1459, è più probabilmente una galassia di campo, ossia indipendente da qualsiasi gruppo.
Circa un grado a ENE si trova **NGC 7462**, visibile con strumenti da 150mm come uno stretto fuso chiaro orientato in senso nordovest-sudest. Si tratta di una galassia spirale barrata vista perfettamente di taglio, il cui disco è attraversato da spessi banchi di polveri oscure. La sua distanza è di circa 47 milioni di anni luce ed è uno dei membri più luminosi di un gruppetto di galassie sparso.

NGC 7456 è una delle altre galassie facenti parte del medesimo gruppo; meno luminosa della precedente, si individua circa un grado a nord di NGC 7462 con uno strumento da 150mm con difficoltà anche a causa della sua bassa luminosità superficiale. Si tratta di una galassia spirale con un nucleo molto piccolo e un disco con dei bracci molto frammentati, contenenti diversi addensamenti più brillanti.

NGC 7412 è invece visibile due gradi a sudovest di NGC 7462 e la sua reale appartenenza al medesimo gruppo è più incerta. Si tratta di una galassia spirale barrata vista di faccia e individuabile con strumenti da 120-150mm come una piccola macchia di aspetto quasi stellare con un debolissimo alone che la circonda e visibile più che altro in visione distolta.

Ben più appariscente è infine la galassia **NGC 7410**, visibile circa 3 gradi a nordest di ρ Gruis, oppure seguendo un facile allineamento che parte dalla stella arancione HD 216149, di magnitudine 5,43 e prosegue con una stella di magnitudine 8 e una di magnitudine 7. Può essere notata anche con strumenti da 100-120mm di diametro sotto cieli cristallini, dove si presenta come un fuso allungato in senso nordest-sudovest, pallido e con un punto più luminoso al centro. È una spirale barrata con un nucleo prominente e attivo, che fa coppia con la ben più debole **NGC 7404**, una galassia ellittica nana visibile a breve distanza e con cui è legata gravitazionalmente; la loro distanza è stimata sui 78 milioni di anni luce.

IC 1459 è la galassia dominante dell’omonimo gruppo di galassie situato alla distanza di circa 80 milioni di anni luce; si trova poco più di due gradi a sudovest della stella π Piscis Austrini ed è visibile anche con strumenti da 100-120mm di diametro, dove appare come una piccola macchia di aspetto quasi stellare ma leggermente sfocata ai bordi e appena allungata. Essendo una galassia ellittica, non sono visibili ulteriori dettagli neppure con strumenti più grandi, a parte una leggera estensione dell’alone. Il suo nucleo è attivo con emissioni a bassa ionizzazione e contiene un buco nero supermassiccio con una massa stimata sui due miliardi e mezzo di masse solari; il diametro totale della galassia sarebbe pari a 130.000 anni luce.

Molte delle galassie del **Gruppo di IC 1459** sono di tipo spirale; assieme al già citato gruppo del Quartetto della Gru forma una regione ad alta densità di galassie chiamata *Nube della Gru*. Quest’ultima, assieme alla vicina *Nube del Pavone-Indiano*, forma un addensamento situato al confine fra il Superammasso della Vergine e il Superammasso Pavone-Indiano.

Circa 40’ a sud si trova **NGC 7418**, una galassia spirale vista di faccia meno appariscente e individuabile con strumenti da 120mm con qualche difficoltà come un puntino luminoso circondato da un leggerissimo alone. Sembra presentare una piccola struttura a barra, mentre i bracci sono molto ben sviluppati, con degli addensamenti nelle parti più interne e più sfrangiati all’esterno. Si ritiene che nel suo nucleo si trovino a coesistere un buco nero supermassiccio e un massiccio ammasso stellare; negli ultimi 100 milioni di anni questa galassia ha inoltre subito un fenomeno di *starburst*. La sua distanza è stimata sui 60 milioni di anni luce, leggermente in primo piano dunque rispetto al resto del gruppo.

NGC 7421 si trova 20’ più a sud ed è osservabile solo con strumenti da 150-200mm di diametro; si tratta di una spirale barrata i cui bracci interni formano una struttura ad anello attorno alla barra, mentre esternamente si estendono i bracci, di aspetto ramificato. La sua distanza è stimata sugli 80 milioni di anni luce.

IC 5273 è uno dei membri più distaccati del gruppo; si trova due gradi a SSE di IC 1459 e può essere notata...
con strumenti da 150mm con relativa facilità. Si tratta di una spirale barrata con un nucleo molto piccolo e dei bracci molto estesi e ben avvolti, leggermente asimmetrici. La sua distanza è stimata sui 58 milioni di anni luce.

IC 5269 è situata oltre il confine col Pesce Australe, mezzo grado a nord di IC 1459; è una delle galassie meno appariscenti del gruppo e può essere notata solo con strumenti da 200mm a salire. È una galassia di tipo lenticolare barrato vista con una forte angolazione e dunque con un aspetto allungato, la cui distanza è stimata sugli 88 milioni di anni luce.

Anche la vicina IC 5270, visibile pochi minuti d’arco a nord, è assai debole ed è una spirale barrata vista quasi di taglio, con un nucleo e una barra luminosi e un disco sfumato; dista 89 milioni di anni luce.

Nelle galassie isolate e ammassi remoti

Molte delle galassie di campo osservabili in direzione della Gru sono al limite della portata di telescopi da 150 o 200mm di diametro. Si tratta di galassie isolate e situate a grande distanza da noi.

Ancora più lontano, si osservano diversi ammassi di galassie compatti, che sebbene siamo ben al di là della portata della maggior parte degli strumenti, si evidenziano bene in fotografie ad alta risoluzione.

Nel nord della Gru, circa 4-5 gradi a est di γ Gruis, si trova la coppia di galassie IC 5179 e IC 5186, visibili a mezzo grado di distanza l’una dall’altra ma probabilmente separate da oltre 50 milioni di anni luce. IC 5179 è una galassia spirale attiva distante 150 milioni di anni luce e visibile con uno strumento da 150mm come una piccola chiazza allungata in senso nordest-sudovest; IC 5186 invece una spirale barrata vista quasi di taglio,

NGC 7135; si tratta di una galassia ellittica o lenticolare ed è visibile con un telescopio da 150mm come una macchia di aspetto quasi stellare, con un debole alone apprezzabile in visione distolta. Il suo diametro è stimato sui 75.000 anni luce, mentre la sua distanza è indicata attorno ai 119 milioni di anni luce.

Meno di mezzo grado a WSW si trova la meno appariscente NGC 7130, che però è al di là della portata di piccoli strumenti e può essere notata con telescopi da 200mm di diametro a salire; è una galassia spirale non barrata di notevoli dimensioni reali, probabilmente simili a quelle della Via Lattea. La sua distanza è notevole, essendo stimata sui 220 milioni di anni luce. Presenta una morfologia distorta, con dei bracci asimmetrici probabilmente deviati dall’interazione con un’altra galassia; il nucleo è attivo, di tipo Seyfert 2, fatto che suggerisce che vi siano attivi fenomeni di starburst, e contiene un buco nero supermassiccio di 40 milioni di masse solari. La galassia è il membro dominante di un gruppo noto come LGG 445, che comprende numerose altre galassie molto più deboli, fra le quali si sarebbe anche IC 5131, appena visibile con strumenti da 200-250mm di diametro.

GALASSIE ISOLATE E AMMASSI REMOTI

Molte delle galassie di campo osservabili in direzione della Gru sono al limite della portata di telescopi da 150 o 200mm di diametro. Si tratta di galassie isolate e situate a grande distanza da noi.

Ancora più lontano, si osservano diversi ammassi di galassie compatti, che sebbene siamo ben al di là della portata della maggior parte degli strumenti, si evidenziano bene in fotografie ad alta risoluzione.

Nel nord della Gru, circa 4-5 gradi a est di γ Gruis, si trova la coppia di galassie IC 5179 e IC 5186, visibili a mezzo grado di distanza l’una dall’altra ma probabilmente separate da oltre 50 milioni di anni luce. IC 5179 è una galassia spirale attiva distante 150 milioni di anni luce e visibile con uno strumento da 150mm come una piccola chiazza allungata in senso nordest-sudovest; IC 5186 invece una spirale barrata vista quasi di taglio,
La galassia NGC 7213.

anch’essa appena individuabile con strumenti da 150 o 200mm e situata a 220 milioni di anni luce di distanza. Si ritiene che faccia parte di un gruppo di galassie assieme alla vicina e molto meno appariscente IC 5199.

Circa 4 gradi a NNW della brillante Al Nair (α Gruis) si individua NGC 7166, una galassia lenticolare visibile come una macchia allungata in senso nord-sud; la sua distanza è stimata sui 110 milioni di anni luce e il suo diametro sarebbe di poco inferiore a quello della Via Lattea. Assieme alle vicine NGC 7162 e NGC 7162A forma un trio di galassie probabilmente legate fisicamente fra loro.

Meno di mezzo grado a sudest della brillante Al Nair (α Gruis) si trova NGC 7213, una delle galassie più appa-riscenti della costellazione ma fortemente oscurata dalla lucentezza della vicina stella. È anche alla portata di strumenti di 100-120mm di diametro, dove appare come una macchia di aspetto quasi stellare; con strumenti più aperti è possibile notare un alone circolare attorno al nucleo. Si tratta di una galassia lenticolare vista di faccia, con un diametro reale pari a circa 3/4 di quello della Via Lattea e con un nucleo attivo, al cui centro si troverebbe un buco nero supermassiccio con una massa stimata fra 80 e 100 milioni di masse solari; attorno al nucleo si osserva un anello di regioni di formazione stellare e un motivo spiraleggiante tracciato da gas e polveri oscure. La sua distanza è stimata sui 70 milioni di anni luce.

NGC 7213 è la galassia dominante del Gruppo di NGC 7213, che comprende alcune galassie visibili nelle vicinanze, comprese NGC 7232 e IC 5181, entrambe alla portata di strumenti da 150-200mm di diametro.

A breve distanza si trova IC 5101, facile da individuare perché situata meno di 20° a est della coppia di stelle π¹ e π² Gruis; benché estesa, possiede una luminosità superficiale non particolarmente elevata, così con uno strumento da 120-150mm appare come una macchia molto pallida orientata in senso nordovest-sudest. È una galassia spirale barrata di grandi dimensioni, con un diametro poco inferiore a quello della Via Lattea e una barra dominante circondata da diversi bracci sottili ricchi di regioni H II. Dista 35 milioni di anni luce ed è considerata una galassia isolata.

A nordest della brillante stella β Gruis sono visibili alcuni ammassi di galassie molto remoti ma facilmente evidenziabili nelle fotografie in alta definizione e con diverse integrazioni.

Uno dei più notevoli è Abell 3925, la cui distanza è stimata di almeno 1 miliardo e 100 milioni di anni luce; la galassia dominante è PGC 130817, una ellittica gigante di magnitudine circa 15. Fra le altre galassie membri spicca PGC 194057, probabilmente anch’essa ellittica e poco meno luminosa della precedente.

Abell S1060 è un altro ammasso, piuttosto compatto, visibile nei intorni; appare dominato da una coppia di galassie ellittiche di aspetto allungato e magnitudine 15. La sua distanza è stimata sui 600 milioni o 700 milioni di anni luce, ma si vi trovano poche informazioni in letteratura.

Anche Abell S1067 è un ammasso molto compatto, la cui distanza è stimata sui 700 milioni di anni luce; è dominato dalla galassia ellittica gigante PGC 69849, di magnitudine 14, la quale appare accompagnata da diverse galassie di magnitudine 15 in particolare verso nord e verso est.

Altri ammassi si trovano vicino al confine col Pesce Australe, come Abell S1065, distante circa 400 milioni di anni luce; è dominato da PGC 69798, una galassia lenticolare gigante di magnitudine 15 e forse in interazione con la vicinissima PGC 69800, di simile luminosità.

A breve distanza si trova l’ammasso Abell S1050.

La galassia IC 5201, una spirale barrata situata in una posizione isolata.
el settore settentrionale della Balena e vicino al confine coi Pesci si trovano alcuni gruppi di galassie che sebbene non siano particolarmente ricchi, sono di facile osservazione.

Quest’area di cielo è ben visibile da entrambi gli emisferi celesti, trovandosi in corrispondenza dell’equatore celeste; mentre nell’emisfero nord è una figura tipica delle sere autunnali, dall’emisfero sud la Balena domina i cieli della primavera australe.

CARATTERISTICHE

L’area di cielo fra la Balena e i Pesci, a ridosso dell’equatore celeste, ospita alcuni piccoli gruppi di galassie situati a distanze variabili entro poche decine di milioni di anni luce, relativamente facili da osservare e soprattutto da fotografare; si presentano sparsi in un’area di oltre 20 gradi e non sembrano formare un sistema omogeneo.

Fra le galassie più appariscenti vi è la famosa M77, visibile vicino al gruppo di stelle della testa della Balena e identificata anche da Charles Messier, che la precessione degli equinozi ha portato nell’emisfero boreale nell’anno 2003.

Nei dintorni di M77 appaiono diverse galassie alla portata di piccoli strumenti, ma solo alcune sono davvero vicine ad essa anche fisicamente: molte infatti si trovano a distanze nettamente superiori, ma sono comunque visibili perché si tratta di galassie di dimensioni molto grandi.

Altri gruppi di galassie si osservano più a est, a cavallo del confine coi Pesci; gran parte di queste galassie si trovano fra 80 e 110 milioni di anni luce e alcuni dei loro membri più luminosi sono visibili anche con piccoli strumenti.

Come talvolta accade, la vicinanza di alcune galassie particolarmente appariscenti, come quelle situate in questo caso nella parte meridionale della Balena oppure come M77, fa in modo che le galassie meno brillanti visibili nei dintorni siano meno conosciute e osservate, specie da chi è alle prime armi nell’osservazione amatoriale.

Chi è dotato di apparecchiatura astrofotografica troverà molto interessante cimentarsi nella ripresa non solo dei gruppi di galassie menzionati, ma anche di alcuni remoti
La parte settentrionale della Balaena ospita alcune galassie di facile osservazione, raccolte in piccoli gruppi sparsi che si estendono fino alla vicina costellazione dei Pesci.
La galassia spirale M77 è visibile di faccia e mostra pertanto in maniera molto dettagliata la struttura dei suoi bracci di spirale.

ATTORNO A M77

Nella parte settentrionale della Balena domina la galassia M77, abbastanza luminosa da essere stata catalogata anche da Charles Messier nel suo famoso catalogo; in realtà fu scoperta da Pierre Méchain nel 1780, il quale la descrisse all'epoca come una nebulosa; Méchain comunicò in seguito la sua scoperta a Charles Messier, che inserì l'oggetto nel suo celebre catalogo. Questa galassia a spirale si individua con facilità, trovandosi ad appena mezzo grado a sudest della stella δ Ceti; può essere scorta con un binocolo potente, come un 11x80, o anche in un 10x50 se la notte è particolarmente nitida. In un telescopio fino a 200 mm di apertura si mostra come un semplice discochetto chiaro senza particolari caratteristiche, se si esclude che è sfumata ai bordi; con molte difficoltà si possono osservare i bracci di spirale e il loro andamento. M77 è distante circa 47 milioni di anni luce; si tratta di una galassia attiva il cui nucleo è oscurato nelle lunghezze d'onda visibili a causa della polvere interstellare. Il diametro del disco molecolare e del plasma caldo associato con la materia oscurante è stato misurato inizialmente alle onde radio; la polvere calda attorno al nucleo fu in seguito misurata dal Very Large Telescope; si tratta della galassia di Seyfert più luminosa ed è di tipo 2. Il suo diametro è stimato essere di 170.000 anni luce. Appena mezzo grado a NNW si osserva NGC 1055, facente parte del medesimo gruppo di galassia (Gruppo di M77); con un telescopio da 100mm è evidente come ammassi di galassie, come Abell 194, visibile a sud dei Pesci.
un fuso chiaro allungato in senso est-ovest, mentre con strumenti da 150mm si nota facilmente la banda scura che attraversa il nucleo e che la rende vagamente simile alla famosa Galassia Sombrero. Si tratta di una spirale barrata vista di taglio, con un nucleo piuttosto grande e luminoso; il suo disco è attraversato da una notevole quantità di polveri oscuri, che sovrapponendosi al bulge centrale si rende visibile come una spessa banda. Numerose regioni HII si concentrano lungo i suoi bracci. La distanza è stimata sui 45 milioni di anni luce circa, dunque molto vicina a M77, mentre il suo diametro reale sarebbe di circa 100.000 anni luce.

Circa un grado a nordest si trova NGC 1073, un altro membro del gruppo; è appena meno appariscente della galassia precedente, sebbene sia comunque alla portata di strumenti da 100-120mm, dove si mostra come un alone chiaro su cui è riconoscibile una struttura allungata e sottile. È anch’essa una spirale barrata, che però è vista di faccia, mostrando quindi la sua struttura in modo chiaro; presenta un nucleo molto piccolo situato al centro di una lunga barra, che si mostra come una delle strutture dominanti dell’intera galassia. I suoi bracci di spirale formano un anello attorno alla barra, per poi disperdersi verso l’esterno in modo disordinato e con varie ramificazioni. Dista circa 54 milioni di anni luce, mentre il suo diametro è pari a 80.000 anni luce.

Un grado a sud-est di M77 vi è NGC 1087, la cui appartenance al gruppo è messa in dubbio; anche la sua distanza è dibattuta, essendo stimata sui 68 o sugli 80 milioni di anni luce. Con strumenti da 120mm appare come una macchia irregolare vagamente ovale e molto pallida; con grandi diametri si può invece notare la barra centrale, molto esile. Si tratta dunque di una spirale barrata, con un nucleo molto piccolo e dei bracci molto frastagliati, ricchi di stelle giovani e luminose; il suo diametro sarebbe di 80.000 o 100.000 anni luce, a seconda delle stile di distanza accettate.

Meno appariscente è la vicina galassia NGC 1090, visibile pochi minuti d’arco a nord; tuttavia è sicuramente slegata dal Gruppo di M77, trovandosi a 124 milioni di anni luce di distanza. Può essere notata con telescopi da 150mm ed è una galassia spirale vista con una grande angolazione; le sue dimensioni reali sarebbero di almeno 145.000 anni luce.

Fra le altre galassie della zona vi è NGC 1032, visibile un grado a nord di δ Ceti e alla portata di telescopi da 150mm, con cui appare come uno stretto e debole fuso chiaro; si tratta di una galassia lenticolare vista di taglio, con una sottile banda oscura che attraversa longitudinalmente il piano galattico. La sua distanza è di 120 milioni di anni luce e ha un diametro di 120.000 anni luce.

Poco più a nord si trova NGC 1016, una galassia ellittica gigante visibile come una sorta di debole stella sfuocata con strumenti da 150mm; la sua distanza è stimata sui 300 milioni di anni luce ed è pertanto una delle galassie più lontane osservabili con telescopi di medio diametro. Le sue dimensioni sono pari ad almeno 175.000 anni luce.

Esattamente a metà strada fra le stelle Mira Ceti e δ Ceti si trova la galassia NGC 936; è piuttosto appariscente ed è anche alla portata di strumenti da 100mm, con cui appare come una macchia circolare sfuocata con un centro più luminoso. Si tratta di una galassia lenticolare barrata vista di faccia, con una barra molto ben evidente che attraversa un nucleo assai luminoso, circondata da un brillante anello. Il suo alone è molto regolare. Si trova a circa 60-65 milioni di anni luce ed è quindi situata a breve distanza da M77; il gruppo di galassia a cui appartiene, il Gruppo di NGC 936, si trova adiacente a quello di M77. Le sue dimensioni reali sono di circa 90.000 anni luce. Talvolta viene soprannominata Galassia di Dart Fener, a causa del suo aspetto che la renderebbe simile alle navicelle spaziali imperiali della saga di Guerre Stellari.

La galassia fa coppia con la molto più piccola e debole NGC 941, con cui però non sembra essere in interazione. Nel medesimo gruppo si trova anche la galassia NGC 955, una spirale vista di taglio visibile con strumenti da 200mm, e IC 225.

Verso nord, circa 3 gradi a SSE della stella ξ1 ceti, si
osserva la galassia isolata NGC 864, individuabile con telescopi da 120mm; è una galassia spirale barrata vista di faccia, con un nucleo molto piccolo e dei bracci di spirale molto ramificati verso l’esterno. La sua distanza è di circa 72 milioni di anni luce, mentre il suo diametro è di 95.000 anni luce.

Circa 6 gradi a sudest di Mira, dunque in posizione isolata, si trova la galassia NGC 1022, anch’essa meno appariscente e osservabile con telescopi da 120-150mm, dove appare come un alone chiaro dalla forma vagamente circolare; si tratta di una spirale barrata di dimensioni medio-piccole (45.000 anni luce di diametro), vista di faccia e distante circa 65 milioni di anni luce.

Un cenno infine sulla galassia II Zwicky 5, visibile a breve distanza dalla stella γ Ceti. Questa galassia viene riportata su diverse carte celesti, anche recenti e non di altissimo dettaglio, sebbene non sia ben chiara la ragione: il database SIMBAD la indica come di magnitudine circa 11, ma in verità questo valore appartiene a una stella visibile pochi secondi d’arco verso sud; la galassia in sé invece è un oggetto debolissimo e assai remoto, ben al di là della portata della quasi totalità dei telescopi in mano agli appassionati e visibile solo nelle fotografie ad alta sensibilità come una piccola e anonima macchietta chiara.

GRUPPI FRA BALENA E PESCI

Una quindicina di gradi a ovest del Gruppo di M77 si possono osservare alcune concatenazioni e piccoli gruppetti di galassie, in buona parte non molto luminose ma abbastanza da essere alla portata di telescopi di medio diametro. Questi gruppi si trovano a distanza spesso diverse fra loro, per cui non costituiscono un insieme omogeneo e legato.

Fra le galassie apparentemente più isolate vi è la ellittica gigante NGC 741, nella costellazione dei Pesci, visibile con telescopi da 120mm come una stella sfuocata molto debole, priva di dettagli visibili anche con strumenti maggiori; si tratta di una radiogalassia situata a ben 220 milioni di anni luce, il cui diametro è stimato sui 200.000 anni luce. Si trova al centro di un gruppo di galassie le cui restanti componenti sono però molto deboli e non alla portata di strumenti di diametro più comune; si ritiene che la galassia sia entrata in collisione con la più piccola e vicina NGC 742, causando solo blande distorsioni alle due galassie ma generando dei filamenti visibili alle onde radio.

Più a ovest si trova NGC 488, un’altra galassia spirale, visibile circa tre gradi a sudovest della stella μ Piscium; un telescopio da 120mm è sufficiente per poterla notare, sotto un cielo molto limpidio e buio, ma non mostra particolari rilevanti e appare come una specie di piccola stella dai contorni sfumati. Con un grande telescopio si può scorgere un alone chiaro attorno a un nucleo un po’ più luminoso. Questa galassia ricorda un po’ la precedente, se non fosse che i bracci di spirale sono un po’ più marcati; essi compiono diversi giri attorno a un nucleo non molto esteso. La sua angolazione non è perfettamente di faccia e quindi sembra assumere una forma leggermente allungata. Si ritiene che la sua distanza sia pari a 100 milioni di anni luce circa, mentre il suo diametro sarebbe di ben 150.000 anni luce. È la galassia più luminosa del Gruppo di NGC 488, che comprende 7 galassie visibili nei dintorni, come NGC 485 e NGC 490.

Corca due gradi a sudovest si trova la complessa coppia di galassie interagenti denominata NGC 520, nota anche con la sigla Arp 157; può essere vista con difficoltà anche con strumenti da 130-150mm, dove appare come una macchia dalla forma irregolare che nulla lascia intendere del suo reale aspetto. Ciò nonostante, è una delle galassie interagenti di Arp più luminose del cielo e una delle poche alla portata di strumenti comuni. Si tratta di due galassie nella fase iniziale della loro collisione, che secondo le simulazioni sarebbe iniziata circa 300 milioni di anni fa; la galassia più grande si osserva di
taglio e ciò la rende meno appariscente, mentre la secondaria è decisamente meno massiccia, sebbene appaia più luminosa. Osservazioni ai raggi X hanno mostrato che le due galassie appaiono meno luminose di quanto sarebbe lecito aspettarsi dalla loro fase di fusione; ciò sarebbe dovuto al fatto che la componente secondaria sia estremamente povera di gas, mentre la quasi totalità dei fenomeni di formazione stellare stanno avendo luogo nella galassia primaria. Il sistema si trova a circa 105 milioni di anni luce e fa parte del Gruppo di NGC 470.

A breve distanza verso sudovest si trova la coppia di galassie NGC 474 e NGC 470, che fornano a loro volta un sistema di galassie in interazione, ma non ancora in fusione, come il precedente. La galassia più appariscente è NGC 474, sebbene entrambe siano alla portata di strumenti da 120mm, mostrandosi come due macchie chiare; la forma piena è più regolare, a spirale, una vista di faccia (NGC 474) e una vista con angolazione intermedia (NGC 470). NGC 474 presenta un disco deformato e aperto in direzione della compagna, che invece si mostra meno deformata, ma molto ricca di gas e stelle giovani. La coppia si trova a circa 107 milioni di anni luce.

Pochi minuti d’arco a sudovest si trova anche la più debole NGC 467, alla portata di strumenti da 200mm di diametro; si tratta di una galassia lenticolare vista di faccia, la cui distanza è stimata sui 250 milioni di anni luce, con un diametro approssimativo pari a 120.000 anni luce. Tutta la parte della popolazione più vicina e facente parte del gruppo descritto in precedenza: in particolare, con NGC 470 e NGC 474 formerebbero il trio di galassie KTG 5, nonché il centro di un ammasso denominato Abell 227.

NGC 533 si trova circa tre gradi a sudost di questo gruppo ed è visibile con telescopi da 120mm, dove appare come una sorta di stellina sfuocata e vagamente allungata in senso nordest-sudovest; quest’allungamento è decisamente più marcato con strumenti di grande diametro. Si tratta di una galassia ellittica di forma intermedia (tipo E3), distante ben 250 milioni di anni luce; il suo diametro è stimato sui 280.000 anni luce almeno, rendendola una delle galassie più estese conosciute entro la medesima distanza dalla Via Lattea; si troverebbe all’interno dell’ammasso di galassie Abell 189.

Più a sud, circa due gradi e mezzo a nordest della stella θ Ceti, vi è il Gruppo di NGC 584 (o LGG 27); situato a circa 80 milioni di anni luce, comprende una decina di galassie i cui membri principali sono disposti lungo una sequenza di alcuni gradi orientata in senso WNW-ESE, di cui NGC 584, la galassia dominante del gruppo, costituisce l’estremità orientale.

La galassia NGC 584 è visibile anche con un telescopio da 100mm di diametro e si mostra come una piccola macchia pallida simile a una stella ma con un debole alone leggermente allungato in senso nordest-sudovest, priva di ulteriori dettagli anche se osservata con strumenti magiori. Si tratta di una galassia ellittica dalla forma molto allungata (tipo E4), il cui diametro è stimato sui 40.000 anni luce appena; con la vicina è molto più debole spirale NGC 586 forma una coppia di galassie legate dalla reciproca gravità.

Pochi minuti d’arco verso sudost si trova NGC 596, di aspetto e luminosità molto simile alla precedente, tanto che può essere osservata anch’essa con telescopi da 100mm, mostrandosi quasi come una gemella di NGC 586, solo appena meno appariscente e orientata nel medesimo modo. Anch’essa di forma ellittica di classe E4, sebbene sia meno luminosa possiede un diametro quasi doppio rispetto alla precedente.

Poco a sud si trova la galassia NGC 600, la quale è però molto più debole e visibile solo con telescopi da almeno 150-180mm di diametro; si tratta di una spirale barrata vista di faccia, molto tenue e con una barra circondata da dei bracci che delineano una forma ad anello, con diverse ramificazioni che procedono verso l’esterno. Ha un diametro di 70.000 anni luce circa.

Più appariscente la galassia NGC 615, alla portata di
telescopi da 120-130mm, dove si mostra come una macchia chiaramente allungata; è una galassia spirale di morfologia intermedia vista con una forte angolazione, con un nucleo piccolo e luminoso e dei bracci ben avvolti, con un diametro totale che si aggira sui 65.000 anni luce.

Infine, NGC 636, anch’essa visibile con telescopi da 120mm, si presenta come una sorta di stellina sfuocata circondata da un debole alone circolare; è una galassia ellittica che si estende per circa 70.000 anni luce di diametro.

In posizione molto più isolata si trova NGC 779, visibile circa 6 gradi a sudovest della stella Mira; con telescopi da 120mm appare come una macchia chiara allungata quasi precisamente in senso nord-sud e leggermente più luminosa al centro. È una spirale barrata vista quasi di taglio, con un nucleo piccolo e brillante e un disco esteso con dei bracci apparentemente molto ben avvolti; possiede un diametro di 75.000 anni luce e dista circa 63 milioni di anni luce.

Chi è dotato di apparecchiatura astrofotografica troverà interessante riprendere in alta risoluzione l’ammasso di galassie Abell 194, relativamente facile da fotografare. Si trova a circa 250 milioni di anni luce di distanza, una distanza simile a quella del vicino Superammasso Perseo-Pesci, e consta di circa un centinaio di galassie membri, dominate dall’ellittica gigante NGC 545 e da altre galassie notevoli, come NGC 547 e NGC 541. NGC 545 e NGC 547 in particolare formano una coppia di galassie ellittiche di luminosità molto simile, se-

Parate appena mezzo minuto d’arco; la prima ha un diametro di bel 180.000 anni luce, mentre la seconda si estenderebbe per 120.000 anni luce. Entrambe mostrano emissioni radio.

L’ammasso si estende verso sudovest con una concatanazione di galassie che comprende anche l’ellittica NGC 541, il cui diametro è stimato sui 130.000 anni luce. Tutte e tre le galassie sono osservabili con telescopi da 200mm a salire. Meno di un minuto d’arco a nordest di NGC 541 si osserva una galassia nana irregolare nota come Oggetto di Minkowski; si trova investita dal getto radio proveniente dalla vicina ellittica e vi sono forti evidenze che questo sia responsabile dello starburst della galassia nana.
ERIDANO
E I DINTORNI
La Fornace è famosa presso gli astronomi e gli appassionati per il suo ammasso di galassie, uno dei meglio osservabili della volta celeste; sebbene la costellazione si trovi nell’emisfero australe e sia difficile da riconoscere a causa della debolezza delle sue stelle primarie, resta comunque sufficientemente alta sull’orizzonte anche per gran parte di coloro che osservano a nord dell’equatore.
La costellazione della Fornace può essere più complessa da individuare specialmente per coloro che osservano dall’emisfero nord; le sue stelle più appariscenti sono di magnitudine 4 e 5 e nei dintorni non vi è alcuna stella appariscente, a parte forse Acamar.

Merita tuttavia di essere esplorata la parte sudorientale della costellazione, dal momento che contiene uno degli ammassi di galassie più vicini e meglio osservabili della volta celeste.

CARATTERISTICHE

La Fornace è famosa presso gli astronomi e gli appassionati per il suo ammasso di galassie, uno dei meglio osservabili della volta celeste; sebbene la costellazione si trovi nell’emisfero australe e sia difficile da riconoscere a causa della debolezza delle sue stelle primarie, resta comunque sufficientemente alta sull’orizzonte anche per gran parte di coloro che osservano a nord dell’equatore.

La stella Acamar, che una volta indicava la foce del fiume Eridano, aiuta nell’individuazione della regione, grazie alla sua magnitudine di 2,9; l’Ammasso della Fornace giace infatti circa 6-8 gradi a nordest di questa stella.

Alcune delle galassie più importanti sono osservabili anche con strumenti di piccolo diametro, come un 80mm, a patto di avere però la Fornace relativamente alta nel cielo e sotto un cielo molto cristallino.

Con telescopi da 200mm le galassie visibili diventano alcune decine, gran parte delle quali concentrate in una piccola regione del diametro di un grado quadrato, mentre altre, fra le quali ve ne sono di particolarmente brillanti, si dispongono in gruppi separati distanti anche 2 o 3 gradi dal centro.

Al di fuori dell’ammasso, diverse galassie relativamente appariscenti si trovano soprattutto a nord e a ovest; molte di queste sono in qualche modo legate fisicamente all’ammasso, essendo membri molto periferici, mentre altre sono galassie in primo piano o, talvolta, anche di fondo.

La fotografia astronomica a grande campo permette di esaltare tutte le caratteristiche principali di quest’ammasso, con svariate decine di oggetti visibili e chiara-

<table>
<thead>
<tr>
<th>STELLE PRINCIPALI DELLA REGIONE</th>
</tr>
</thead>
<tbody>
<tr>
<td>-------</td>
</tr>
<tr>
<td>θ Eri</td>
</tr>
<tr>
<td>υ Eri</td>
</tr>
<tr>
<td>α For</td>
</tr>
<tr>
<td>υ Eri</td>
</tr>
<tr>
<td>α Hor</td>
</tr>
<tr>
<td>d Eri</td>
</tr>
<tr>
<td>ε Eri</td>
</tr>
<tr>
<td>g Eri</td>
</tr>
</tbody>
</table>

DETTAGLI

Costellazioni | Fornace, Eridano
Ascensione Retta (media) | 03h 40'
Declinazione (media) | -35°
Tipo | Campi ricchi di galassie
Oggetti | Galassie e ammassi di galassie
mente raggruppati in un preciso punto; foto ad alta risoluzione e campo ristretto aiutano a mostrare facilmente molte caratteristiche e strutture delle galassie dominan-

| PRINCIPALI OGGETTI NON STELLARI |
|---------|-----------------|-------|-----|------|
| NGC 1097 | 02h 46m 19s | -30° 16' 28" | Gal. | 9,4 | 9,3 | |
| IC 1860 | 02h 49m 34s | -31° 11' 21" | Gal. | 12,4| 2,2 | |
| NGC 1201 | 03h 04m 08s | -26° 04' 11" | Gal. | 10,7| 3,6 | |
| NGC 1255 | 03h 13m 32s | -25° 43' 31" | Gal. | 10,7| 4,2 | |
| NGC 1288 | 03h 17m 13s | -32° 34' 33" | Gal. | 12,1| 2,3 | |
| NGC 1291 | 03h 17m 18s | -41° 06' 26" | Gal. | 8,6 | 9,8 | |
| NGC 1292 | 03h 18m 15s | -27° 36' 37" | Gal. | 12,0| 3,0 | |
| NGC 1302 | 03h 19m 51s | -26° 03' 40" | Gal. | 10,6| 3,9 | |
| NGC 1310 | 03h 21m 03s | -37° 06' 06" | Gal. | 12,1| 1,9 | |
| NGC 1316 | 03h 22m 42s | -37° 12' 30" | Gal. | 8,5 | 12,0 | Fornax A |
| NGC 1318 | 03h 22m 44s | -37° 06' 12" | Gal. | 11,1| 3,2 | (NGC 1317) |
| NGC 1326 | 03h 23m 56s | -36° 27' 53" | Gal. | 10,5| 2,9 | |
| NGC 1336 | 03h 36m 22s | 35° 42' 49" | Gal. | 12,1| 2,1 | |
| NGC 1339 | 03h 28m 07s | -32° 17' 10" | Gal. | 11,5| 1,5 | |
| NGC 1344 | 03h 28m 20s | -30° 04' 07" | Gal. | 10,3| 6,0 | |
| NGC 1350 | 03h 31m 08s | -33° 37' 44" | Gal. | 10,7| 5,2 | |
| NGC 1351 | 03h 30m 35s | -34° 51' 14" | Gal. | 11,5| 2,8 | |
| NGC 1365 | 03h 33m 36s | -36° 08' 25" | Gal. | 9,6 | 11,2 | |
| NGC 1366 | 03h 33m 54s | -31° 13' 39" | Gal. | 11,0| 2,1 | |
| NGC 1374 | 03h 35m 17s | -35° 13' 35" | Gal. | 11,0| 2,7 | |
| NGC 1375 | 03h 35m 17s | -35° 15' 57" | Gal. | 12,2| 2,3 | |
| NGC 1379 | 03h 36m 04s | -35° 26' 28" | Gal. | 10,7| 2,4 | |
| NGC 1380 | 03h 36m 27s | -34° 58' 34" | Gal. | 10,2| 4,8 | |
| NGC 1380A| 03h 36m 48s | -34° 44' 23" | Gal. | 12,4| 1,6 | |
| NGC 1381 | 03h 36m 32s | -35° 17' 43" | Gal. | 11,5| 2,6 | |
| NGC 1386 | 03h 36m 46s | -35° 59' 56" | Gal. | 11,2| 3,4 | |
| NGC 1387 | 03h 36m 57s | -35° 30' 23" | Gal. | 10,9| 2,8 | |
| NGC 1389 | 03h 37m 12s | -35° 44' 44" | Gal. | 11,4| 2,3 | |
| NGC 1398 | 03h 38m 52s | -26° 20' 12" | Gal. | 9,8 | 7,1 | |
| NGC 1399 | 03h 38m 29s | -35° 27' 04" | Gal. | 9,4 | 6,5 | |
| NGC 1404 | 03h 38m 52s | -35° 35' 35" | Gal. | 10,2| 3,3 | |
| NGC 1406 | 03h 39m 23s | -31° 19' 20" | Gal. | 11,7| 3,9 | |
| NGC 1425 | 03h 42m 11s | -29° 53' 36" | Gal. | 11,0| 5,8 | (IC 1988) |
| NGC 1427 | 03h 42m 19s | -35° 23' 36" | Gal. | 11,1| 3,6 | |
| NGC 1437 | 03h 43m 37s | -35° 51' 15" | Gal. | 11,7| 3,1 | (NGC 1436) |
| E 358-63 | 03h 46m 19s | -34° 56' 37" | Gal. | 12,4| 2,2 | |
| IC 1993 | 03h 47m 05s | -33° 42' 35" | Gal. | 11,6| 2,5 | |
| IC 2006 | 03h 54m 28s | -35° 58' 02" | Gal. | 11,2| 1,9 | |
| NGC 1531 | 04h 11m 59s | -32° 51' 03" | Gal. | 11,7| 1,2 | |
| NGC 1532 | 04h 12m 04s | -32° 52' 30" | Gal. | 10,6| 11,1 | |
| NGC 1537 | 04h 13m 41s | -31° 38' 46" | Gal. | 10,6| 3,9 | |

Foto a grande campo che riprende per intero l’Ammasso della Fornace; sono ben evidenti le morfologie delle galassie principali.

L’AMMASO DELLA FORNACE

Situato alla distanza media di 62 milioni di anni luce, l’Ammasso della Fornace è il secondo più ricco ammasso di galassie posto entro un raggio di 100 milioni di anni luce da noi; il più massiccio è l’Ammasso della Vergine, che è molto più grande e più ricco. Giace in massima parte entro i confini della costellazione della Fornace, sebbene sconfini parzialmente in Eridano, e copre un’area di cielo pari a 6 gradi di diametro, pari a 28 gradi quadrati. Contiene una sessantina di galassie fra grandi e nane, più un discreto corteo di galassie considerate possibili membri e un nutrito gruppo di galassie periferiche. L’ammasso può essere diviso in due subammassi: il principale, centratuo su NGC 1399, ed un sotto-gruppo 3 gradi a sudovest centrato sulla galassia lenticolare NGC 1316, che è in un processo di inglobamento con il subammasso maggiore per poi fondersi con esso, e le quali galassie stanno sperimentando una forte attività di formazione stellare.

L’Ammasso della Fornace è parte del Muro della Fornace, una superstruttura a filamento lunga 135 milioni di anni luce che comprende anche l’Ammasso di Eridano e ben 31 gruppi di galassie, fra le quali il Gruppo del Dorado, più numerose galassie sparse; risulta parallelo ad altri muri di galassie, come il Muro dello Scultore e il Muro della Gru.

La galassia centrale è NGC 1399, che è anche il secondo membro più brillante dell’ammasso. Anche questa è già visibile con telescopi di 80mm di diametro, sebbene non sia possibile notare dettagli di rilievo; l’aspetto indistintamente sferoidale resta inalterato anche osservan-
do con telescopi da 250mm di apertura. Si tratta infatti di una galassia ellittica, con un diametro stimato sui 135.000 anni luce. Come gran parte delle galassie ellittiche giganti, anche questa possiede un gran numero di ammassi globulari, stimati fra 5700 a 6200 a seconda degli studi (in confronto la Via Lattea ne possiede meno di 200); probabilmente nel suo nucleo si trova un buco nero supermassiccio, con una massa che è stimata sui 500 milioni di masse solari. Nel suo grande alone chiaro sono state individuate quasi una quarantina di nebulose planetarie, la cui magnitudine media si aggira attorno a 27. La sua distanza è invece stata determinata come pari a 65 milioni di anni luce.

NGC 1404 si individua pochi minuti d’arco a sudest della precedente ed è un’altra galassia ellittica individuabile con telescopi da 100-120mm come una macchia circolare dai contorni sfumati; situata a breve distanza dalla precedente, si trova anch’essa a 65 milioni di anni luce. Possiede un diametro di 85.000 anni luce ed è circondata da una popolazione di oltre 700 ammassi globulari; si ritiene tuttavia che parte dei suoi globulari originari sia stato ceduto alla vicina NGC 1399.

Leggermente meno appariscente è **NGC 1387**, una galassia lenticolare visibile 12 minuti d’arco a ovest di NGC 1399; è alla portata di strumenti da 120mm, con cui appare come una macchia circolare luminosa e dai bordi sfumati in un debole alone. Il suo diametro reale è pari alla metà di quello della Via Lattea; è visibile di
faccia e rivela chiaramente la sua struttura di galassia di tipo “primordiale”, con fenomeni di formazione stellare molto marginali. La sua distanza è pari a 53 milioni di anni luce ed è uno dei membri dell’ammasso più vicini a noi.

Circa 10’ più a sud si trova NGC 1389, che però risulta visibile con difficoltà con strumenti da 120mm e più alla portata di telescopi da 150mm a salire; appare come una pallida macchia leggermente allungata in senso nord-est-sud-ovest ed è considerata alternativamente una galassia ellittica o lenticolare con barra, a seconda degli studi. Le sue dimensioni reali sono contenute e probabilmente non sono maggiori del doppio della Grande Nube di Magellano.

Ancora più a sud e a una distanza simile (sebbene con delle incertezze) si trova NGC 1386, una galassia spirale vista con una forte angolazione e situata vicino al bordo meridionale dell’ammasso; può essere notata con strumenti da 120mm come una piccola ellisse chiara allungata in senso nordest-sudovest, che diventa un disco più marcatamente allungato a breve distanza dal nucleo; questa struttura non è ben evidente all’osservazione visuale ma è ben rilevabile nelle fotografie ad alta risoluzione e si ritiene che possa derivare dalla fusione con altre galassie. Si sospetta che il suo nucleo sia di tipo LINER (a linee di emissione a bassa ionizzazione) e contenga un buco nero supermassiccio con una massa di 220 milioni di masse solari. La distanza della galassia è stimata sui 60 milioni di anni luce.

Ben più difficile è notare la galassia NGC 1380A, visibile 10’ più a nord; è una galassia lenticolare vista di taglio e appare come un fuso molto stretto in strumenti da 200mm. Fa anch’essa parte dell’ammasso e la sua distanza è stimata sui 58 milioni di anni luce.

La coppia NGC 1374 e NGC 1375 è visibile mezzo grado a WNW della galassia NGC 1399 e talvolta è considerata una coppia di galassie interagenti, sebbene restino forti incertezze a causa del valore di distanza di una delle due. NGC 1374 è la più appariscente e può essere scorta con strumenti da 120mm con qualche difficoltà come un alone chiaro dal nucleo più brillante. Si
La coppia di galassie NGC 1374 e NGC 1375 probabilmente non formano un sistema di galassie in interazione fra loro.

tratta di una galassia ellittica sicuramente facente parte dell’ammasso, con un diametro di 50.000 anni luce (circa la metà della Via Lattea) e una leggera ellitticità (classe E1), con una popolazione di almeno 400 ammassi globulari dispersi nel suo alone; la sua distanza è di 59 milioni di anni luce. NGC 1375 è invece più debole e alla portata di strumenti da 150mm solo sotto eccellenti condizioni atmosferiche; di aspetto molto allungato, si tratterebbe di una galassia lenticolare vista da una forte angolazione, con un nucleo attraversato da una struttura a X che fa ritenere che si tratti di una lenticolare barrata. Stime sulla sua distanza indicano però valori di soli 34 milioni di anni luce, dunque si tratterebbe di una galassia in primo piano, forse legata ad altre galassie poste anch’esse in primo piano e per le quali è stata proposta la designazione di un gruppo di galassie indipendente, il Gruppo di NGC 1386.

Circa un grado a sudovest di NGC 1399 si trova la celebre NGC 1365, una delle galassie spirali barrate più famose e fotografate del cielo, grazie alla sua forma molto regolare e ai suoi bracci molto luminosi; può essere osservata anche con un telescopio da 80mm, in cui si mostra però come una macchia chiara allungata. I suoi bracci di spirale tendono a evidenziarsi debolmente osservando da grandi strumenti. Nelle fotografie si mostra invece molto bene la sua struttura. Il nucleo, molto piccolo, ha una forma ovale con una dimensione apparente di circa 50’ x 40’; i bracci di spirale si estendono in una curva a nord e a sud dalle estremità della barra, orientata in senso est-ovest, e formano quasi un alone a forma di Z simile a un anello; le loro dimensioni e spessore in confronto al nucleo sono notevoli. Sono state osservate in NGC 1365 numerose supernovae, in particolare lungo i suoi bracci, ricchi di stelle giovani e di gas interstellare. La sua distanza da noi è stimata sui 56 milioni di anni luce, cui corrisponde un diametro reale di circa 200.000 anni luce, circa il doppio di quello della Via Lattea.

Come già citato, a circa 3 gradi verso sudovest rispetto al centro dell’ammasso si trova una sezione distinta comprendente alcune galassie notevoli; fra queste spicca NGC 1316, conosciuta anche come Fornax A. È un’altra grande galassia, di forma lenticolare, nonché una brillante radiogalassia; è la quarta sorgente radio più luminosa del cielo visibile a 1400 MHz. Può essere notata anche con piccoli telescopi con diametro di 80mm, dove appare come una macchia chiara di forma tondeggiante un po’ appiattita; non si evidenziano ulteriori strutture neppure con grandi strumenti, a causa della sua morfologia lenticolare. L’involucro esterno comprende molte increspature e archi, mentre vicino al centro è presente un compatto disco di gas che sembra ruotare più velocemente delle stelle, oltre ad essere più inclinato. NGC 1316 è contenuta nell’ammasso della Fornace, di cui senza dubbio fa parte. Al contrario della galassia Virgo A, una galassia ellittica simile situata al centro dell’ammasso della Vergine, NGC 1316 si colloca invece al confine dell’ammasso della Fornace; anche la sua distanza, stimata sui 62 milioni di anni luce, la colloca in posizione distaccata rispetto ad altre galassie che costituiscono il nucleo dell’ammasso.

Pochi minuti d’arco a nord appare NGC 1317, indicata anche come NGC 1318 e molto meno appariscente, sebbene ancora alla portata di strumenti da 120mm di diametro, con cui appare come una evidente macchietta chiara molto piccola visibile a fianco alla precedente; si tratta di una spirale barrata vista di faccia, con una struttura molto regolare e una barra di grandi dimensioni circondata da spire ben avvolte e flocculente. La reale appartenenza all’ammasso è però in dubbio e diverse stime sulla sua distanza la collocano fra 55 e ben 88 mi-
lioni di anni luce di distanza, pertanto potrebbe anche trattarsi di una galassia posta in posizione più remota. Circa 20° a WNW di NGC 1316 si trova NGC 1310, poco appariscente e rintracciabile con ragionevole chiarezza solo con strumenti da 150mm come un debole alone chiaro; si tratta di una galassia spirale vagamente simile alla Galassia del Triangolo, con cui condividebbe probabilmente anche le dimensioni reali, ma con un nucleo più grande e marcato. La sua distanza è stimata sui 75 milioni di anni luce e sarebbe pertanto un membro molto remoto e periferico dell’ammasso.

A metà strada fra NGC 1316 e la stella χ¹ Fornacis si trova la facile e brillante galassia NGC 1326, che è individuabile anche con uno strumento da 100mm, con cui appare come una macchia ovale di aspetto quasi stellare circondata da un leggero alone; questo però diviene molto più chiaro con strumenti da 150-200mm. È una galassia lenticolare contraddistinta da un anello nucleare molto pronunciato e brillante, in cui sono attivi fenomeni di formazione stellare: il suo diametro è di 70.000 anni luce, mentre la sua distanza è stimata sui 63 milioni di anni luce.

Fra le stelle χ¹ e χ² Fornacis si trova la molto meno appariscente galassia lenticolare NGC 1336, anch’essa membro dell’ammasso, ma è solo alla portata di strumenti dai 150mm a salire.

Fra le galassie dell’alone esterno dell’ammasso, la gran parte di queste si osservano sul lato settentrionale. Fra queste, da sud a nord, vi è la NGC 1351, probabilmente di morfologia lenticolare con un nucleo molto marcato, visibile come una macchia ellittica con strumenti da 120-150mm; possiede un diametro pari alla metà della Via Lattea ed è posta alla distanza di 62 milioni di anni luce. NGC 1350 è visibile 2,5 gradi a NNE di χ² Fornacis ed è anch’essa alla portata di telescopi da 120 o, meglio, da 150mm, dove appare come un alone leggermente allungato in senso nord-sud con un nucleo luminoso e ben definibile, anch’esso oblungho. Si tratta di una galassia spirale di grandi dimensioni, paragonabili a quelle della Via Lattea; il suo nucleo è prominente e brillante e appare circondata da uno pseudo-anello anch’esso molto luminoso, circondato a sua volta da due bracci di spirale maggiori molto tenui, tanto che attraverso di questi è possibile scorgere galassie di campo più remote. La sua distanza è stimata sugli 87 milioni di anni luce ed è dunque un membro molto esterno dell’ammasso, o potrebbe persino non farne proprio parte.

Un’altra galassia non molto luminosa è NGC 1339, che però è facilmente staccabile grazie alla sua notevole luminosità superficiale; con un telescopio da 120mm appare di aspetto stellare o leggermente ellissoidale. È una galassia ellittica di piccole dimensioni reali, di aspetto allungato (classe E4), situata alla distanza di 57 milioni di anni luce; in cielo si trova a metà via fra le galassie centrali dell’ammasso e la stella α Fornacis. Ancora più remota, a quasi 4 gradi dall’ammasso, si trova NGC 1344, decisamente più appariscente: è visibile anche con strumenti da 80-100mm come una macchia definita e di aspetto quasi stellare, se non fosse per un suo leggero allungamento in senso nord-sud. Si tratta di una galassia ellittica molto ellissoidale (tipo E5) e di grandi dimensioni reali, con un diametro di 74.000 anni luce e situata alla distanza di 47 milioni di anni luce; ciò rende leggermente in primo piano rispetto alla maggior parte delle galassie dell’ammasso.

NGC 1336 si trova 2 gradi a WNW di χ Fornacis ed è una galassia lenticolare vista quasi di taglio; è alla portata di strumenti da 100mm, sebbene con qualche difficoltà, mentre è meglio evidente con diametri superiori, e appare come un piccolo fuso luminoso e più corposo al centro. Le sue dimensioni reali sono di appena 34.000 anni luce e la sua distanza è stimata sui 50 milioni di anni luce, rendendola uno dei membri più estremi dell’ammasso.

Circa un grado a nordovest di χ Fornacis si trova NGC 1406, più debole ed evanescente; è una galassia spirale barrata visibile quasi di taglio e appare come un fuso debole ma piuttosto esteso (quasi 4°) con strumenti da 150mm. Il suo disco è attraversato da una notevole quantità di gas e polveri non illuminate, intramezzate da regioni ricche di stelle giovani; con un diametro reale di 75.000 anni luce, è una delle galassie più grandi dell’ammasso, sebbene sia un membro periferico. La sua distanza è stimata sui 50 milioni di anni luce.

NGC 1425 è la componente più settentrionale dell’am-
masso ed è alla portata di strumenti da 130-150mm di diametro, con cui appare come una macchia leggermente allungata e dai bordi sfumati, con un nucleo marcato. Si tratta di una galassia spirale con dei bracci molto ben avvolti e piuttosto esili e sfrangiati; nonostante sia poco appariscente, è anch’essa una delle galassie più grandi dell’ammasso, con un diametro confrontabile con quello della Via Lattea. Dista 62 milioni di anni luce.

IC 1993 è piuttosto debole e può essere notata con strumenti da 150mm come un debole alone circolare più luminoso al centro e dai bordi sfumati, la cui osservazione è per altro resa difficoltosa dalla presenza di una stella in primo piano nelle vicinanze; nonostante il suo aspetto modesto, nelle foto ad alta risoluzione si evidenzia come una galassia spirale vista di faccia dall’aspetto molto regolare, con un nucleo relativamente piccolo circondato da due bracci di spirale regolari. La sua distanza è stimata sui 50 milioni di anni luce e le sue dimensioni reali sono pari alla metà di quelle della Via Lattea.

In posizione ben distaccata, a circa 8 gradi di distanza verso NNE dal centro dell’ammasso, si trova un gruppetto di galassie considerato come parzialmente legato all’ammasso stesso; questo gruppetto è dominato dalla galassia spirale barrata NGC 1532, visibile quasi di taglio e alla portata anche di uno strumento da 80mm. Appare come una stretta ellisse chiara allungata in senso est-ovest, con un nucleo più luminoso e due estremità che si allungano a fuso perdendosi nel fondo cielo. Con telescopi da 200-250mm si evidenzia poco a nord una seconda macchietta chiara molto meno appariscente, leggermente allungata in senso nord-sud: si tratta della piccola galassia compagna NGC 1531, di morfologia vagamente lenticolare. Le due galassie sono in interazione fisica, come è evidente dalla deformazione del disco della principale, con una ramificazione che si dirige verso lacompagna. NGC 1532 è una grande galassia con un diametro di quasi 200.000 anni luce, vista quasi di taglio, che possiede un nucleo brillante attraversato dalla classica struttura a X caratteristica delle barre centrali quando sono appunto osservate di taglio; i suoi bracci sono ricchi di gas e regioni di formazione stellare, con diverse popolazioni di stelle giovani. La distanza delle due galassie è stimata sui 50 milioni di anni luce. A breve distanza, circa 1,5 gradi più a nord, si trova la galassia ellittica NGC 1537, visibile anche con strumenti da 100-120mm come una chiazza simile a una debole stellina “allungata”; fa parte dello stesso gruppo delle due galassie precedenti e giace a 58 milioni di anni luce di distanza. Il suo diametro è di circa 70.000 anni luce ed è dunque relativamente notevole.
GALASSIE SPARSE E DI CAMPO

Fra le galassie non legate all’Ammasso della Fornace spicca la brillante NGC 1291, un esempio di galassia ad anello per altro ben visibile di faccia. Si individua poco più di 3 gradi a ESE della stella Acamar, poco a sud del confine con la Fornace. Un telescopio da 80mm di apertura o un potente binocolo è già in grado di individuarla; l’aspetto è quello di una stella molto sfocata, con un alone intorno. Uno strumento più grande mostra il disco, la cui larghezza si aggira sui 4’, al cui bordo si trova una struttura simile ad un anello. Un telescopio da 200mm di apertura mostra dettagliatamente la struttura lenticolare della galassia, compresa una piccola barra che sembra attraversi il nucleo.

Presso il vertice nordorientale della Fornace si trova un’altra galassia appariscente, la NGC 1398; è situata in una posizione particolarmente isolata. È già visibile con telescopi da 80mm di apertura, sebbene non presenti alcun dettaglio interessante; un aspetto allungato è invece rilevabile con telescopi da 200mm di diametro, dove sotto cieli particolarmente limpidi si possono notare due lobi simmetrici molto deboli. Questa galassia possiede una morfologia peculiare legata alla sua struttura a doppio anello. La barra è molto piccola e quasi invisibile, dominata da una prima struttura da anello che circonda un nucleo molto luminoso; un secondo, ben più esteso anello di stelle e gas circonda l’intera galassia ed è formato dai bracci di spirale, particolarmente ben avvolti ma allo stesso tempo distanti dal nucleo e dall’anello più interno. Il suo diametro reale è di circa 135.000 anni luce, dunque leggermente superiore a quello della Via Lattea, mentre si stima che contenga oltre 100 miliardi di stelle; la sua distanza è stimata sui 65 milioni di anni luce.

NGC 1302 si trova circa 4 gradi a NNE di α Fornacis, la galassia NGC 1398 mostra un aspetto peculiare legato alla morfologia del suo disco.

NGC 1255 è la dominante del gruppo, è visibile circa un grado a ovest della precedente ed è una spirale barrata con un esteso e ben sviluppato sistema di bracci ramificati; è visibile anche con strumenti da 120mm e possiede un diametro di 90.000 anni luce. Più isolata appare infine la brillante NGC 1097, nota anche come C67, una grande spirale barrata di aspetto irregolare situata presso il centro della Fornace; attraverso strumenti di piccolo diametro si mostra come una macchia di aspetto chiaramente allungato, con un piccolo nucleo più luminoso. I bracci di spirale sono molto più deboli e sono ben evidenti specialmente in fotografia. NGC 1097 appartiene alla classe delle galassie di Seyfert, con delle strutture simili a "jet" uscenti dal nucleo; si è poi dimostrato che tali strutture sono in effetti composte da stelle e non soltanto da gas, trattandosi dunque di code mareali legate all’interazione con le galassie satelliti. Come molte galassie, anche questa possiede un buco nero supermassiccio al suo centro; attorno ad esso si trova un anello di regioni di formazione stellare con dei gas e polveri che cadono a spirale verso il buco nero. Fra le sue galassie satelliti, la più importante è NGC 1097A, una galassia ellittica che orbita a 42.000 anni luce dal nucleo della principale e forse è la responsabile delle strutture a getto. La distanza di questo sistema di galassie è pari a 45 milioni di anni luce.
VERSO L’AMMASO DI ERIDANO

L’insieme di galassie al confine fra il lato nord della Fornace ed Eridano si trova nelle immediate vicinanze dell’Ammasso della Fornace e costituisce a sua volta un ammasso molto blando, denominato Ammasso di Eridano, talvolta indicato anche come Fornax II. Situato a una distanza media di 75 milioni di anni luce, contiene in totale circa 200 galassie, di cui 73 principali; circa il 30% sono galassie ellittiche o S0, mentre il 70% sono galassie spirali o irregolari. Le sue componenti sono raccolte in piccoli gruppi scarsamente legati tra loro dal punto di vista gravitazionale, il che suggerisce che il sistema, come previsto dalla legge di Hubble, sia ancora in fase di condensazione e potrà formare un ammasso di circa 1014 masse solari. Molte di queste galassie sono alla portata degli strumenti d’osservazione più diffusi presso gli appassionati.

Fra le galassie più isolate della zona vi è NGC 1232, visibile circa 2 gradi a nordovest della stella τ4 Eridani. Si evidenzia con qualche difficoltà anche in un telescopio da 100mm, dove però appare priva di particolari; uno strumento più grande consente di individuare il disco, la cui larghezza si aggira sui 4'. È una spirale vista di faccia, con un nucleo piccolo, attraversato da una piccola barra ed circondato da un sistema di bracci molto ben sviluppato ed evidente, con numerose ramificazioni. Un telescopio da 200mm di apertura consente di notare, nell’angolo ad est, una piccola galassia, nota come NGC 1232A, che probabilmente è satellite della galassia principale. Le stime sulla sua distanza riportano valori fra 59 e 68 milioni di anni luce.

Notevole per il suo aspetto, sebbene non particolarmente luminosa, è la grande galassia spirale barrata NGC 1300, visibile nei pressi del confine con la Fornace circa due gradi e mezzo a nord della stella τ4 Eridani. È ben
La brillante spirale NGC 1232, vista di faccia, è una delle galassie più appariscenti della regione, con dei bracci molto ben definiti e frastagliati.
70.000 anni luce.
Sempre nei dintorni, circa un grado e mezzo a sudest di τ Eridani, si trova la più appariscente NGC 1395; si presenta in un telescopio da 80mm di apertura come una macchia chiara circolare, priva di dettagli e di aspetto quasi stellare. Ad ingrandimenti maggiori la galassia si mostra leggermente allungata in senso est-ovest ed appare molto ben marcata. È di gran lunga la galassia più massiccia dell’ammasso, con un diametro di 130.000 anni luce; al suo centro si trova un buco nero supermassiccio la cui massa è stata stimata fra i 100 e i 400 milioni di masse solari. Le emissioni di raggi X che si osservano in direzione della galassia sono dovute principalmente alla presenza di stelle binarie a raggi X, dove una componente stellare degenere come una nana bianca o una stella di neutroni strappa via materia dalla compagna, una normale stella gigante o di sequenza principale. Il suo alone è popolato da un numero altissimo di ammassi globulari, che secondo alcune stime sarebbero oltre 6000; questi appaiono suddivisi in ammassi “blu” e ammassi “rossi”, in base al loro colore fotometrico: quelli rossi si trovano più vicini al centro, mentre quelli blu sono più esterni e potrebbero essere nuclei di antiche galassie nane cannibalizzate. La sua distanza è stimata sui 72 o 75 milioni di anni luce; nelle immediate vicinanze, entro un grado circa, si trovano altre galassie facenti parte del suo stesso gruppo, come NGC 1415, NGC 1438 e NGC 1426, meno appariscenti.

NGC 1385 si trova nella parte meridionale dell’ammasso, entro i confini della Fornace; si individua circa due gradi a sudovest della stella τ Eridani ed è alla portata di strumenti da 120mm, dove appare come una macchia leggermente allungata. Con telescopi da 250 mm a salire si notano ulteriori dettagli e anche il suo aspetto resta circolare, molto regolare. A differenza della quasi totalità delle galassie di questo tipo, NGC 1385 contiene più polveri interstellari; le sue dimensioni reali sono di circa 54.000 anni luce, mentre la sua distanza è stimata sui 70-75 milioni di anni luce.

NGC 1385 è un’altra delle galassie facenti parte del gruppo di NGC 1395 ed è anch’essa una ellittica, sebbene più piccola della precedente; può essere osservata con telescopi da 120mm, dove appare come una sorta di stella sfuocata; strumenti più grandi non consentono di mostrare ulteriori dettagli e anche il suo aspetto resta circolare, molto regolare. A differenza della quasi totalità delle galassie di questo tipo, NGC 1385 contiene più polveri interstellari; le sue dimensioni reali sono di circa 54.000 anni luce, mentre la sua distanza è stimata sui 70-75 milioni di anni luce.

Mezzo grado a sudovest si trova la galassia NGC 1367, che può essere osservata con strumenti da 100mm, sep- pure con difficoltà; con questi appare come una piccola macchia leggermente allungata in senso est-ovest. Tele- scopi più grandi permettono di rivelare un debole alone chiaro orientato secondo una diversa angolazione. È una spirale semplice molto compatta, con un nucleo brillante e dei bracci di spirale ben avvolti, che nelle regioni più periferiche tendono a formare una sorta di vago anello; le sue dimensioni reali si aggirano sui 100.000 anni luce e sono dunque confrontabili con quelle della Via Lattea. La sua distanza è stimata sui 61 milioni di anni luce.

Altre galassie si osservano alcuni gradi a nordest della stella τ Eridani, ma sono alla portata solo di strumenti
da almeno 150mm di diametro a salire.

All’estrema periferia settentrionale dell’Ammasso di Eridano si trova il Gruppo di NGC 1407, dalla sigla della sua galassia più appariscente; si trova in posizione separata rispetto al resto dell’ammasso, tanto da costituire una sub-unità a parte e talvolta non inclusa direttamente nell’ammasso. Comprende 9 galassie, in massima parte di tipo lenticolare e di dimensioni medioricche.

NGC 1407 è una galassia ellittica di grandi dimensioni, molto appariscente e alla portata anche di telescopi da 80mm, con cui appare come una macchia chiara ben evidente e dall’aspetto quasi circolare; una leggerissima elongazione in senso nordest-sudovest si evidenzia con strumenti di diametro da 120mm a salire, sebbene la sua forma resti quasi sferica. Sembra che questa galassia abbia sperimentato nel suo passato recente intensi fenomeni di formazione stellare, un fatto raro nelle galassie ellittiche; il suo nucleo tuttavia non ne sarebbe stato interessato, dato che appare formato da stelle antiche con un’età media di almeno 12 miliardi di anni. Al suo centro si trova un buco nero supermassiccio che secondo alcune stime arriva a possedere circa un miliardo di masse solari; se così fosse, il primato di buco nero più massiccio dell’ammasso spetterebbe a questa galassia invece che a NGC 1332. Le sue dimensioni reali sarebbero pari a 105.000 anni luce.

Appena 11 minuti d’arco a sudovest si trova NGC 1400, meno appariscente ma comunque alla portata di strumenti da 120mm, dove appare come una macchia chiara leggermente allungata in senso nordest-sudovest, molto compatta. La sua distanza è oggetto di dibattito; secondo alcune stime si trova a circa 68 milioni di anni luce, rientrandosi così fra le galassie membri del Gruppo di NGC 1407; altre stime la collocano però molto in primo piano, a soli 21 milioni di anni luce. Se quest’ultima stima fosse corretta, questa galassia avrebbe un diametro reale di appena 15.000 anni luce.

Fra le altre galassie membri vi è NGC 1440, visibile con strumenti da 150mm; si tratta di una galassia lenticolare il cui diametro è stimato sui 45.000 anni luce. Leggermente meno luminosa è la galassia NGC 1452, una spirale barrata con una barra molto cospicua da cui partono due bracci di spirale che delineano una evidente struttura ad anello; il suo diametro sarebbe di 60.000 anni luce. Le altre componenti si concentrano attorno a NGC 1407 e sono ben evidenti nelle fotografie, oppure con telescopi di grande diametro.

A una distanza di circa 110 milioni di anni luce, dunque ben al di là dell’Ammasso di Eridano, si trova il gruppo di galassie HCG 22, formato da cinque componenti e dominato dalla galassia NGC 1199. Tuttavia, solo tre di queste sono fisicamente vicine fra loro, mentre NGC 1191 e NGC 1192 (le due componenti più meridionali) si trovano a distanza notevolmente maggiore, a oltre 400 milioni di anni luce. Il gruppo si rintraccia circa 5 gradi a sudest della stella π Ceti.

NGC 1199 è anche alla portata di strumenti da 150mm, dove appare come una macchia allungata in senso nordest-sudovest; si tratta di una galassia ellittica attraversata da una sottile banda di polveri, con un diametro reale di circa 75.000 anni luce.
Lungo il dorso dell’Idra
La Macchina Pneumatica, nonostante sia poco appa-"rrente e oscurata dalle costellazioni vicine, contiene un numero molto alto di galassie, che sebbene siano spesso invisibili con piccoli strumenti, risultano alla portata di telescopi da 150-200mm; molte di queste fanno parte di piccoli gruppi.
L’area di cielo fra l’Idra e le Vele è occupata dall’oscura costellazione della Macchina Pneumatica; difficile da individuare sotto cieli meno buoni, questa costellazione è spesso trascurata da gran parte degli appassionati e il suo nome bizzarro probabilmente incrementa il senso di “costellazione oscura e povera di oggetti”.

Sebbene la gran parte degli atlanti riportino un gran numero di galassie in questa direzione, la grande ricchezza della vicina Via Lattea, la relativa vicinanza alle galassie del Leone e del Centauro e la scarsa altezza sull’orizzonte per chi osserva dall’Europa o dal Nordamerica ha contribuito a rendere queste galassie poco note presso gli appassionati.

CARATTERISTICHE

La Macchina Pneumatica, nonostante sia poco appariscente e oscurata dalle costellazioni vicine, contiene un numero molto alto di galassie, che sebbene siano spesso invisibili con piccoli strumenti, risultano alla portata di telescopi da 150-200mm; molte di queste fanno parte di piccoli gruppi.

L’unica galassia ben nota presso molti appassionati è la NGC 2997, sebbene sia oggetto di osservazione soprattutto dagli appassionati dell’emisfero sud.

Due grandi ammassi di galassie dominano l’area di cielo al confine fra l’Idra e la Macchina Pneumatica; sebbene solo alcune delle loro galassie siano alla portata di telescopi di diametro più comune (fino a 200-250mm di diametro), è nelle fotografie ad alta sensibilità e grande campo che emergono con grande chiarezza come degli insiemi molto compatti di galassie.

Diversi altri gruppi minori di galassie appaiono sparsi in tutta la costellazione; tuttavia la strumentazione adatta per individuarne visualmente le componenti occorre che possieda un diametro di 200mm, meglio ancora 250mm; altro fattore importante è l’altezza sull’orizzonte della costellazione stessa, che penalizza molto chi osserva dalle regioni temperate boreali e favorisce chi si trova ai tropici o a sud dell’equatore.

Ammassi e gruppi di galassie appaiono tendenzialmente allineati fra loro in senso nordovest-sudest; parte di questa concatenazione la si ritrova infatti nella vicina costellazione del Centauro.

<table>
<thead>
<tr>
<th>STELLE PRINCIPALI DELLA REGIONE</th>
</tr>
</thead>
<tbody>
<tr>
<td>--------</td>
</tr>
<tr>
<td>α Ant</td>
</tr>
<tr>
<td>β Crt</td>
</tr>
<tr>
<td>ε Ant</td>
</tr>
<tr>
<td>ι Ant</td>
</tr>
<tr>
<td>ι Hya</td>
</tr>
<tr>
<td>θ Ant</td>
</tr>
<tr>
<td>χ² Hya</td>
</tr>
<tr>
<td>δ Hya</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DETTAGLI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Costellazioni</td>
</tr>
<tr>
<td>Ascensione Retta (media)</td>
</tr>
<tr>
<td>Declinazione (media)</td>
</tr>
<tr>
<td>Tipo</td>
</tr>
<tr>
<td>Oggetti</td>
</tr>
</tbody>
</table>
L’oscura costellazione della Macchina Pneumatica racchiude un numero notevole di galassie e anche alcuni interessanti ammassi di galassie.
PRINCIPALI OGGETTI NON STELLARI

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ESO 434-28</td>
<td>09h 44m 13s</td>
<td>-28° 50' 57"</td>
<td>Gal</td>
<td>12,5</td>
<td>0,9</td>
<td></td>
</tr>
<tr>
<td>NGC 2997</td>
<td>09h 45m 39s</td>
<td>-31° 11' 25"</td>
<td>Gal</td>
<td>9,6</td>
<td>8,9</td>
<td></td>
</tr>
<tr>
<td>NGC 3001</td>
<td>09h 46m 19s</td>
<td>-30° 26' 15"</td>
<td>Gal</td>
<td>11,8</td>
<td>2,9</td>
<td></td>
</tr>
<tr>
<td>IC 2512</td>
<td>09h 49m 25s</td>
<td>-32° 50' 20"</td>
<td>Gal</td>
<td>12,2</td>
<td>1,6</td>
<td></td>
</tr>
<tr>
<td>NGC 3038</td>
<td>09h 51m 15s</td>
<td>-32° 45' 09"</td>
<td>Gal</td>
<td>11,7</td>
<td>2,5</td>
<td></td>
</tr>
<tr>
<td>NGC 3051</td>
<td>09h 53m 59s</td>
<td>-27° 17' 11"</td>
<td>Gal</td>
<td>11,8</td>
<td>2,1</td>
<td></td>
</tr>
<tr>
<td>NGC 3054</td>
<td>09h 54m 29s</td>
<td>-25° 42' 12"</td>
<td>Gal</td>
<td>11,4</td>
<td>3,8</td>
<td></td>
</tr>
<tr>
<td>NGC 3056</td>
<td>09h 54m 33s</td>
<td>-28° 17' 53"</td>
<td>Gal</td>
<td>11,7</td>
<td>1,8</td>
<td></td>
</tr>
<tr>
<td>IC 2522</td>
<td>09h 55m 09s</td>
<td>-33° 08' 14"</td>
<td>Gal</td>
<td>11,9</td>
<td>1,1</td>
<td></td>
</tr>
<tr>
<td>ESO 499-23</td>
<td>09h 56m 26s</td>
<td>-26° 05' 42"</td>
<td>Gal</td>
<td>11,9</td>
<td>1,2</td>
<td></td>
</tr>
<tr>
<td>NGC 3078</td>
<td>09h 58m 25s</td>
<td>-26° 55' 36"</td>
<td>Gal</td>
<td>11,1</td>
<td>2,7</td>
<td></td>
</tr>
<tr>
<td>NGC 3081</td>
<td>09h 59m 30s</td>
<td>-22° 49' 34"</td>
<td>Gal</td>
<td>12,0</td>
<td>2,2</td>
<td></td>
</tr>
<tr>
<td>NGC 3084</td>
<td>09h 59m 06s</td>
<td>-27° 07' 44"</td>
<td>Gal</td>
<td>12,4</td>
<td>1,8</td>
<td>(IC 2528)</td>
</tr>
<tr>
<td>NGC 3087</td>
<td>09h 59m 09s</td>
<td>-34° 13' 31"</td>
<td>Gal</td>
<td>10,8</td>
<td>2,0</td>
<td></td>
</tr>
<tr>
<td>NGC 3089</td>
<td>09h 59m 37s</td>
<td>-28° 19' 53"</td>
<td>Gal</td>
<td>12,5</td>
<td>1,8</td>
<td></td>
</tr>
<tr>
<td>IC 2531</td>
<td>09h 59m 56s</td>
<td>-29° 37' 01"</td>
<td>Gal</td>
<td>12,4</td>
<td>6,9</td>
<td></td>
</tr>
<tr>
<td>NGC 3095</td>
<td>10h 00m 06s</td>
<td>-31° 33' 10"</td>
<td>Gal</td>
<td>11,6</td>
<td>3,6</td>
<td></td>
</tr>
<tr>
<td>IC 2533</td>
<td>10h 00m 32s</td>
<td>-31° 14' 02"</td>
<td>Gal</td>
<td>12,0</td>
<td>1,8</td>
<td></td>
</tr>
<tr>
<td>NGC 3103</td>
<td>10h 00m 41s</td>
<td>-31° 39' 52"</td>
<td>Gal</td>
<td>11,1</td>
<td>3,2</td>
<td>(NGC 3100)</td>
</tr>
<tr>
<td>NGC 3108</td>
<td>10h 02m 29s</td>
<td>-31° 40' 39"</td>
<td>Gal</td>
<td>11,8</td>
<td>2,5</td>
<td></td>
</tr>
<tr>
<td>NGC 3109</td>
<td>10h 03m 07s</td>
<td>-26° 09' 31"</td>
<td>Gal</td>
<td>9,9</td>
<td>19,1</td>
<td></td>
</tr>
<tr>
<td>IC 2537</td>
<td>10h 03m 52s</td>
<td>-27° 34' 15"</td>
<td>Gal</td>
<td>12,1</td>
<td>2,5</td>
<td></td>
</tr>
<tr>
<td>NGC 3113</td>
<td>10h 04m 26s</td>
<td>-28° 26' 39"</td>
<td>Gal</td>
<td>12,6</td>
<td>3,3</td>
<td></td>
</tr>
<tr>
<td>NGC 3137</td>
<td>10h 09m 08s</td>
<td>-29° 03' 52"</td>
<td>Gal</td>
<td>11,5</td>
<td>6,2</td>
<td></td>
</tr>
<tr>
<td>IC 2552</td>
<td>10h 10m 46s</td>
<td>-34° 50' 41"</td>
<td>Gal</td>
<td>12,4</td>
<td>1,0</td>
<td></td>
</tr>
<tr>
<td>NGC 3175</td>
<td>10h 14m 42s</td>
<td>-28° 52' 19"</td>
<td>Gal</td>
<td>11,3</td>
<td>5,1</td>
<td></td>
</tr>
<tr>
<td>IC 2560</td>
<td>10h 16m 19s</td>
<td>-33° 33' 50"</td>
<td>Gal</td>
<td>11,7</td>
<td>3,1</td>
<td></td>
</tr>
<tr>
<td>NGC 3203</td>
<td>10h 19m 34s</td>
<td>-26° 41' 56"</td>
<td>Gal</td>
<td>12,2</td>
<td>2,8</td>
<td></td>
</tr>
<tr>
<td>NGC 3223</td>
<td>10h 21m 36s</td>
<td>-34° 16' 03"</td>
<td>Gal</td>
<td>11,2</td>
<td>4,1</td>
<td>(IC 2571)</td>
</tr>
<tr>
<td>NGC 3224</td>
<td>10h 21m 41s</td>
<td>-34° 41' 48"</td>
<td>Gal</td>
<td>11,3</td>
<td>1,9</td>
<td></td>
</tr>
<tr>
<td>NGC 3241</td>
<td>10h 24m 17s</td>
<td>-32° 28' 57"</td>
<td>Gal</td>
<td>12,1</td>
<td>2,4</td>
<td></td>
</tr>
<tr>
<td>PGC 704240</td>
<td>10h 28m 18s</td>
<td>-31° 31' 05"</td>
<td>Gal</td>
<td>12,2</td>
<td>0,6</td>
<td>(IC 25807)</td>
</tr>
<tr>
<td>ESO 436-27</td>
<td>10h 28m 54s</td>
<td>-31° 36' 32"</td>
<td>Gal</td>
<td>11,9</td>
<td>1,3</td>
<td></td>
</tr>
<tr>
<td>NGC 3258</td>
<td>10h 28m 53s</td>
<td>-35° 36' 18"</td>
<td>Gal</td>
<td>11,5</td>
<td>2,9</td>
<td></td>
</tr>
<tr>
<td>NGC 3268</td>
<td>10h 30m 01s</td>
<td>-35° 19' 02"</td>
<td>Gal</td>
<td>11,5</td>
<td>3,5</td>
<td></td>
</tr>
<tr>
<td>NGC 3269</td>
<td>10h 29m 57s</td>
<td>-35° 13' 28"</td>
<td>Gal</td>
<td>12,3</td>
<td>2,4</td>
<td></td>
</tr>
<tr>
<td>NGC 3271</td>
<td>10h 30m 27s</td>
<td>-35° 21' 34"</td>
<td>Gal</td>
<td>11,8</td>
<td>3,3</td>
<td>(IC 2585)</td>
</tr>
<tr>
<td>NGC 3273</td>
<td>10h 30m 29s</td>
<td>-35° 36' 38"</td>
<td>Gal</td>
<td>12,5</td>
<td>1,6</td>
<td></td>
</tr>
<tr>
<td>IC 2586</td>
<td>10h 31m 00s</td>
<td>-28° 43' 00"</td>
<td>Gal</td>
<td>12,5</td>
<td>0,8</td>
<td></td>
</tr>
<tr>
<td>IC 2587</td>
<td>10h 31m 00s</td>
<td>-34° 33' 47"</td>
<td>Gal</td>
<td>12,3</td>
<td>2,0</td>
<td></td>
</tr>
<tr>
<td>IC 2588</td>
<td>10h 31m 50s</td>
<td>-30° 23' 04"</td>
<td>Gal</td>
<td>12,5</td>
<td>1,1</td>
<td></td>
</tr>
<tr>
<td>NGC 3275</td>
<td>10h 30m 52s</td>
<td>-36° 44' 13"</td>
<td>Gal</td>
<td>11,4</td>
<td>2,8</td>
<td></td>
</tr>
<tr>
<td>NGC 3281</td>
<td>10h 31m 52s</td>
<td>-34° 51' 16"</td>
<td>Gal</td>
<td>11,9</td>
<td>3,2</td>
<td></td>
</tr>
<tr>
<td>NGC 3285</td>
<td>10h 33m 36s</td>
<td>-27° 27' 16"</td>
<td>Gal</td>
<td>12,1</td>
<td>2,7</td>
<td></td>
</tr>
<tr>
<td>ESO 375-71</td>
<td>10h 36m 09s</td>
<td>-37° 14' 16"</td>
<td>Gal</td>
<td>12,2</td>
<td>3,0</td>
<td></td>
</tr>
</tbody>
</table>

GRUPPI DI GALASSIE IN PRIMO PIANO

Le galassie visibili nella Macchina Pneumatica possono essere suddivise in due grandi raggruppamenti sovrapposti sulla stessa linea di vista in base alla loro distanza. Le galassie appartenenti ai gruppi più vicini giacciono a una distanza media compresa fra 40 e 60 milioni di anni luce, mentre i gruppi più remoti si trovano fra 120 e 180 milioni di anni luce e appartengono al Superammasso Hydra-Centaurus, che verrà descritto in seguito.

La più vicina in assoluto è però la galassia **NGC 3109**, che sebbene non sia particolarmente luminosa, è un membro periferico del nostro Gruppo Locale di galassie. Si trova vicino al confine fra l’Idra e la Macchina.
La galassia NGC 2997 è ben visibile anche con piccoli telescopi.

La galassia Pneumatica, entro i confini della prima. Può essere notata anche con un telescopio da 150mm di diametro, attraverso cui si presenta come un sottile fuso luminoso; il suo aspetto diventa più irregolare se osservata attraverso telescopi da 300mm di diametro. Questa galassia è classificata come di forma irregolare di tipo Magellanico, ossia che presenta una struttura simile alla Grande Nube di Magellano, con dei bracci abbozzati e fortemente distorti; tuttavia potrebbe anche essere una galassia spirale in senso stretto, nel cui caso si tratterebbe della più piccola galassia spirale del Gruppo Locale. Il suo aspetto reale è però di difficile studio perché questa galassia si presenta quasi perfettamente di taglio. Potrebbe contenere un disco e un alone, mentre il nucleo sembrerebbe del tutto assente; mentre le stelle del suo disco appartengono a diverse età, il suo alone sembra essere formato soltanto da stelle molto vecchie e povere di metalli. La sua forma irregolare è dovuta all’interazione con la vicina Galassia Nana della Macchina Pneumatica, avvenuta circa un miliardo di anni fa, come è dimostrato dalla velocità radiale dell’idrogeno atomico del suo alone, compatibile con quella dell’altra galassia. La sua distanza è stimata sui 4,2 milioni di anni luce, situandosi così all’estrema periferia del Gruppo Locale, a una distanza tale da non essere influenzata dalle forze mareali delle galassie maggiori.

Pneumatica, entro i confini della prima. Può essere notata anche con un telescopio da 150mm di diametro, attraverso cui si presenta come un sottile fuso luminoso; il suo aspetto diventa più irregolare se osservata attraverso telescopi da 300mm di diametro. Questa galassia è classificata come di forma irregolare di tipo Magellanico, ossia che presenta una struttura simile alla Grande Nube di Magellano, con dei bracci abbozzati e fortemente distorti; tuttavia potrebbe anche essere una galassia spirale in senso stretto, nel cui caso si tratterebbe della più piccola galassia spirale del Gruppo Locale. Il suo aspetto reale è però di difficile studio perché questa galassia si presenta quasi perfettamente di taglio. Potrebbe contenere un disco e un alone, mentre il nucleo sembrerebbe del tutto assente; mentre le stelle del suo disco appartengono a diverse età, il suo alone sembra essere formato soltanto da stelle molto vecchie e povere di metalli. La sua forma irregolare è dovuta all’interazione con la vicina Galassia Nana della Macchina Pneumatica, avvenuta circa un miliardo di anni fa, come è dimostrato dalla velocità radiale dell’idrogeno atomico del suo alone, compatibile con quella dell’altra galassia. La sua distanza è stimata sui 4,2 milioni di anni luce, situandosi così all’estrema periferia del Gruppo Locale, a una distanza tale da non essere influenzata dalle forze mareali delle galassie maggiori.

La galassia più notevole dell’intera regione è però la celebre NGC 2997, una grande spirale visibile nella parte nordoccidentale della costellazione e fra le più brillanti di questa parte di cielo australe. Si individua facilmente circa 4° a sud della stella θ Antliae; può essere individuata anche con un binocolo 20x80 o un piccolo telescopio, dove appare come una macchia chiara leggermente ellittica e molto ben evidente, con una zona centrale più luminosa. Strumenti da 200-250mm di diametro consentono di poter apprezzare anche la struttura dei due bracci, estesi ben oltre i limiti del suo bulge luminoso. Il suo nucleo appare circondato da una catena di nubi calde giganti formate da idrogeno molecolare; i suoi bracci sono molto poco ben avvolti e la struttura del disco domina su quella del nucleo. Non vi è presenza di barra centrale, pertanto NGC 2997 è un esempio di galassia spirale pura, che si presenta con un’inclinazione di circa 45°. La sua distanza è stata oggetto di dibattito, con valori assegnati compresi fra i 25 milioni, i 26 milioni e finanche i 55 milioni di anni luce; tuttavia sembra maggiormente accettata una distanza grande, sui 55-60 milioni di anni luce, che la renderebbe di fatto una delle galassie a spirale più grandi entro questa distanza, più grande anche della Via Lattea. NGC 2997 è la principale di un gruppo di una dozzina di galassie situate tutte a distanze comprese fra i 55 e i 70 milioni di anni luce, che prende il nome di Gruppo di NGC 2997; la gran parte di queste galassie possiede una morfologia irregolare, mentre la loro bassa luminosità le rende di difficile osservazione. La seconda galassia più appariscente di questo gruppo è NGC 3056, situata 4 gradi a NNE della precedente e circa 2,5 gradi a ESE della stella θ Antliae; essendo piuttosto debole, è individuabile con strumenti da 130-150mm, dove appare come un oggetto di aspetto stellare e quasi puntiforme, senza un alone ben definito. Si tratta di una galassia lenticolare nana, probabilmente barrata, le cui dimensioni reali non superano i 20.000 anni luce di diametro; la sua distanza è stimata sui 37 milioni di anni luce.

Il Gruppo di NGC 3175 è situato nella parte settentrionale della Macchina Pneumatica, al confine con l’Idra; è formato da cinque galassie riconosciute come membri certi, tutte situate a una distanza compresa fra 45 e 50 milioni di anni luce. NGC 3175 è la galassia più appariscente del gruppo. Può essere individuata con uno strumento da 120mm,
con difficoltà a causa della sua bassa luminosità superficiale, partendo dalla stella α Antliae e seguendo una concatenazione di altre due stelle in direzione nord-vest; appare come un fuso spento e sfuocato orientato in senso nordest-sudovest e lungo 3-4 minuti d’arco. Si tratta di una spirale barrata vista con un’alta angolazione e attraversata da spessi banchi di polvere sul suo disco; le sue dimensioni reali sono pari a 70.000 anni luce almeno, mentre la sua distanza è stimata sui 50 milioni di anni luce.

Circa un grado e mezzo a WSW si trova NGC 3137, leggermente meno appariscente della precedente e anche con una minore luminosità superficiale; può essere notata con uno strumento da 150mm come un alone chiaro allungato in senso nord-sud, esteso per 3-4 minuti d’arco e leggermente più luminoso al centro. È anche questa una galassia spirale barrata, ma date le sue dimensioni di oltre 85.000 anni luce, risulta effettivamente la galassia più estesa dell’interno gruppo; è vista quasi di taglio e i tratti più esterni dei suoi bracci di spirale presentano alcuni addensamenti più brillanti. La sua distanza è stimata sui 50 milioni di anni luce.

Le altre componenti del gruppo sono ancora meno appariscenti e sono solo alla portata di telescopi da 200-250mm di diametro.

SUL SUPERAMMASSO IDRA-CENTAURO

Il Superammasso Idra-Centauro è il superammasso di galassie più vicino al nostro (il Superammasso della Vergine); la sua distanza media è compresa fra i 120 e i 180 milioni di anni luce e si estende per oltre sessanta gradi dall’Idra e la Macchina Pneumatica fino al Centauro, per terminare nella costellazione della Norma in direzione del piano galattico, dal quale è oscurato. Il superammasso è diviso in due grandi regioni e la più occidentale ricade per intero nel settore di cielo qua descritto; questa regione comprende uno degli addensamenti maggiori del sistema, l’Ammasso dell’Idra (Abell 1060), mentre il più piccolo Ammasso della Macchina Pneumatica (Abell S636) costituisce uno dei vari addensamenti minori.

Oltre a questi due ammassi, vi si trova un discreto numero di gruppi di galassie, alcuni dei quali ben riconoscibili e posti fra i 110 e i 140 milioni di anni luce.

L’Ammasso dell’Idra (Abell 1060) contiene 157 galassie, delle quali solo 5-6 sono alla portata di strumenti dal diametro più comune; si estende nello spazio per circa dieci milioni di anni luce e sembra caratterizzato da un contenuto insolitamente elevato di materia oscura. Le galassie più grandi di questo ammasso sono le ellittiche giganti NGC 3309 e NGC 3311, assieme alla galassia a spirale NGC 3312; tutte e tre hanno un diametro superiore ai 100.000 anni luce. Sfortunatamente sia l’osservazione che la fotografia possono risultare disturbate dalla presenza della stella HD 92036 proprio in direzione del centro dell’ammasso, vicino alle galassie più luminose; si tratta naturalmente di una stella in primo piano appartenente alla Via Lattea, una gigante rossa di magnitudine 4,87.

NGC 3311 è la galassia più massiccia dell’ammasso; può essere osservata con telescopi da 150mm o anche inferiori se l’oggetto è molto alto, e appare come una macchia chiara di forma quasi circolare e nebbiosa molto piccola. Si tratta di una tipica galassia ellittica gigante di ammasso e molte delle sue caratteristiche le rendono simile a M87, sebbene una struttura analoga al grande getto di M87 qua non sia presente; nel suo nucleo si trova un buco nero supermassiccio con una massa stimata sui 126 milioni di masse solari. La regione centrale è oscurata da una grande nube di polveri di forma irregolare, probabilmente derivante dalla fusione con un’altra galassia avvenuta negli ultimi 10 milioni di an-
ni, anche se non è evidente alcuna distorsione nella sua forma; il diametro totale della galassia è stimato sui 110.000 anni luce, mentre nel suo esteso alone si trova una popolazione di almeno 16.000 ammassi globulari, anche più di M87: questo si potrebbe spiegare col fatto che in passato questa galassia possa aver strappato via una consistente parte degli ammassi globulari originariamente appartenenti alla vicina galassia NGC 3309. Alcune decine di galassie nane ultracompatte accompagnano infine NGC 3311.

NGC 3309 è la seconda ellittica gigante dell’ammasso: forma una coppia con la precedente, dalla quale dista solo 72.000 anni luce. Qualsiasi strumento in grado di mostrare NGC 3311 permette anche di individuare questa galassia, dalla quale è separata da pochi minuti d’arco e appare pertanto nello stesso campo visivo; anche il suo aspetto è visivamente molto simile. A differenza della precedente, questa possiede un getto radio simile a quello di M87, che da solo costituisce la gran parte delle emissioni radio totali dell’intero ammasso. Di contro, la sua popolazione di ammassi globulari è molto esigua ed è stimata in soli 300-400, per il fenomeno descritto in precedenza. Entrambe le galassie si trovano a circa 190 milioni di anni luce.

Nello stesso campo visivo, pochi minuti d’arco a sud-est, si trova anche la galassia spirale NGC 3312, anch’essa una delle più grandi dell’ammasso; con un telescopio da 150mm appare come una tenue ellisse allungata in senso nord-sud, piuttosto ben distaccata anche se debole; la struttura del disco resta però invisibile e si estende per oltre 3 minuti d’arco. Con un diametro di quasi 150.000 anni luce, è una galassia di notevoli dimensioni, superiori anche a quelle della Via Lattea; il suo nucleo è classificato come a linee di emissione a bassa ionizzazione (LINER) ed è dunque attivo. La sua morfologia appare distorta, probabilmente non a causa dell’interazione con le due galassie ellittiche dominanti, dalle quali sarebbe troppo distante fisicamente, ma a causa del mezzo intra-ammasso, che avrebbe generato le strutture filamentose che circondano la galassia. La sua distanza è stimata sui 194 milioni di anni luce.
L’Ammasso della Macchina Pneumatica (Abell S636) si trova circa 4 gradi a SSE della stella α Antliae ed è il terzo ammasso più vicino al nostro Gruppo Locale dopo l’Ammasso della Vergine e l’Ammasso della Fornace; dista dalla Terra 135 milioni di anni luce. Sull’ammasso dominano due galassie ellittiche massive, NGC 3268 e NGC 3258, e sono presenti altre galassie per un totale di circa 234 componenti. Posto a confronto con altri ammassi, come quello della Vergine e della Fornace, si presenta estremamente denso, tanto da contenere galassie primordiali e una grande quantità di galassie nane ellittiche. L’Ammasso della Macchina Pneumatica è suddiviso in due gruppi di galassie: il sottogruppo settentrionale, che grava intorno a NGC 3268, e il sottogruppo meridionale, centrato su NGC 3258.

NGC 3268 è rintracciabile anche con strumenti da 120mm, seppure con qualche difficoltà specie se l’oggetto non è molto alto; appare come una piccola macchia tondeggiante simile a una debole stella sfuocata. Si tratta di una galassia ellittica gigante, il cui diametro reale è stimato sui oltre 100.000 anni luce; possiede un numero di ammassi globulari relativamente alto, ma non così elevato se confrontato con altre galassie analoghe: le stime, con varie incertezze, tendono ad attribuirle circa 2500 ammassi. Quasi a contatto apparenne si trova la galassia lenticolare NGC 3267, la quale è però molto più debole e visibile solo con strumenti da 250-300mm di diametro.

NGC 3258 è visibile circa 20 minuti d’arco a sudovest ed è anch’essa facile con telescopi da 150mm e anche alla portata di telescopi più piccoli; appare visualmente come una stellina sfuocata con gli strumenti citati, molto simile dunque all’altra galassia dominante. Anche questa è infatti una ellittica gigante di morfologia quasi sferica (E1), sebbene sia leggermente più piccola della precedente; tuttavia, possiede una popolazione di ammassi globulari più estesa, fino a 3400 oggetti. In fotografia è possibile evidenziare decine di galassie molto ravvicinate e addensate attorno alle due galassie dominanti, tutte comprese entro un diametro di appena un grado.
Molti dei gruppi di galassie legati al Superammasso Idra-Centauro si osservano a ovest e a nordovest dell’ammasso Abell S636, lungo tutta la costellazione della Macchina Pneumatica; a questi si sovrappongono, sulla linea di vista, i gruppi di galassie più vicini e già citati.

Uno dei più prossimi all’ammasso è il Gruppo di NGC 3223, formato da una quindicina di galassie situate alla distanza media di 130 milioni di anni luce; è composta in gran parte da galassie spirali barrate di dimensioni medie, dominate da tre galassie di notevoli dimensioni.

NGC 3223 è considerata la galassia dominante del gruppo; può essere individuata con strumenti da 120mm poco meno di 4 gradi a SSW di α Antliae e appare come un alone dai bordi sfumati di circa 2'. Si tratta di una spirale barrata di dimensioni notevoli, con un diametro stimato sui 150.000 anni luce; possiede un nucleo relativamente piccolo circondato da un esteso sistema di bracci ramificati e ben delineabili.

Un po’ meno appariscente è la vicina NGC 3224, visibile meno di mezzo grado a sud; essendo una galassia ellittica, il suo aspetto attraverso telescopi da 120mm e superiori è quello di una stellina sfuocata o di un disco di piccole dimensioni. Galassia di tipo E2, possiede un diametro di 70.000 anni luce.

Altre galassie del gruppo sono meno appariscenti. Un membro molto periferico è NGC 3087, la cui morfologia non è stata ben definita; è una delle galassie più luminose della costellazione e è osservabile da occhi esperti anche con strumenti da 100mm, dove appare come una macchieta di aspetto stellare. Strumenti da 150mm permettono di riconoscere più facilmente la sua natura di oggetto non stellare, con un aspetto simile a un piccolo ammasso globulare non risolto. Sebbene il suo aspetto sia quello di una galassia ellittica, potrebbe anche appartenere alla classe delle lenticolari; si ritiene che il suo diametro sia pari a 65.000 anni luce.

Altre galassie del gruppo sono molto meno luminose.

Il Gruppo di NGC 3095 è piccolo ma molto compatto; è formato da tre galassie comprese entro uno spazio del diametro di un grado, cui se ne aggiunge una quarta talvolta considerata non appartenente, ma sempre inclusa nel medesimo diametro. La sua distanza è stimata sui 125 milioni di anni luce e si trova circa 5 gradi a ovest della stella α Antliae.

NGC 3095 è la galassia principale, che però non è particolarmente luminosa; può essere vista con strumenti da 130-150mm di diametro, con cui appare come una chiazza chiaramente allungata in senso nordovest-sudest e leggermente irregolare specie sul lato meridionale. È una galassia spirale barrata vista con un’elevata angolazione; presenta dei bracci fortemente deformati, in particolare sul lato sudovest, dove si osserva un lungo braccio proteso verso sudest, probabilmente alterato dall’im-
terazione con altre galassie del gruppo. Il suo diametro è stimato sui 125.000 anni luce ed è pertanto una galassia di grandi dimensioni.

Pochi minuti d’arco a sudovest, nella direzione indicata dal braccio deformato di NGC 3095, si trova NGC 3108, una galassia lenticolare più debole della precedente e visibile con strumenti da 150mm come una sorta di stella leggermente sfocata. Questa galassia presenta una banda di polveri orientata in senso est-ovest che ne oscura parzialmente il disco sul lato meridionale e che potrebbe essere il risultato dell’interazione con la galassia appena descritta. Il suo diametro è stimato sugli 85.000 anni luce circa.

Decisamente più appariscente è NGC 3103, che però, come visto, potrebbe non appartenere fisicamente al gruppo, sebbene vi siano stime sulla distanza che la collocano a 120 milioni di anni luce e dunque nella medesima regione. Attraverso uno strumento da 120mm è visibile come una macchia ellittica di aspetto un po’ irregolare, apparendo talvolta allungata e talvolta quasi circolare a seconda delle condizioni osservative. Si tratta di una galassia lenticolare di 110.000 anni luce di diametro, pertanto di dimensioni notevoli, secondo alcuni studi, sarebbe questa la galassia interagente con la già descritta NGC 3095, considerandola dunque membro effettivo del gruppo.

Il Gruppo di NGC 3054 è invece visibile sul confine fra la Macchina Pneumatica e l’Idra; consta di una decina di galassie situate a una distanza media compresa fra 115 e 120 milioni di anni luce, gran parte delle quali sono alla portata solo di strumenti da 200-250mm di diametro a salire. È anche uno dei gruppi più estremi del superammasso di cui fanno parte.

NGC 3054 è la galassia più settentrionale del gruppo e ricade entro i confini dell’Idra; è alla portata di telescopi da 120mm, anche se si mostra con difficoltà; con telescopi da 150mm appare come una semplice macchia vagamente allungata in senso nordovest-sudest e leggermente sfocata ai lati. Si tratta di una galassia spi-

La galassia NGC 3054 è la dominante dell’omonimo gruppo di galassie, al confine fra la Macchina Pneumatica e l’Idra.

NGC 3078 ripresa dal Telescopio Spaziale Hubble.

rale intermedia di dimensioni paragonabili a quelle della Via Lattea; presenta un nucleo brillante con dei bracci ben definiti e ben avvolti, che presentano alcune ramificazioni secondarie.

NGC 3078 si trova apparentemente vicino al centro del gruppo ed è anche la galassia più appariscente; può essere notata anche con strumenti da 120mm come una macchia ben definita di aspetto quasi stellare o leggermente allungato in senso nord-sud. Si tratta di una galassia ellittica molto estesa e massiccia, al cui centro è ospitato un buco nero supermassiccio la cui massa è stimata a seconda degli studi fra 20 e oltre 200 milioni di masse solari.

Altre galassie alla portata di strumenti da 150mm sono NGC 3051, una galassia lenticolare del diametro pari alla metà di quello della Via Lattea, e, con più difficoltà, NGC 3084, una galassia spirale barrata leggermente deformata.

Fra le altre galassie spicca la coppia formata da NGC 3347 e NGC 3358, entrambe individuabili con strumenti da 150mm circa 3 gradi a WNW della stella ι Antliae, sul lato sudorientale della costellazione; si tratta di due galassie vicine fra loro anche fisicamente ed entrambe si trovano a 124-125 milioni di anni luce. La prima è una galassia spirale barrata di notevoli dimensioni reali, probabilmente superiori anche a quelle della Via Lattea, mentre la seconda è una galassia lenticolare leggermente più piccola ma comunque di grandi dimensioni.
La regione del Centauro
La metà settentrionale del Centauro giace lontano dalla scia della Via Lattea e consente l’osservazione di un gran numero di galassie; molte di queste appartengono al Superammasso Idra-Centauro, distante da 120 a 180 milioni di anni luce, e si dispongono lungo una vaga concatenazione orientata in senso est-ovest.

Il tratto di Via Lattea compreso fra le zampe anteriori del Centauro e la costellazione della Norma abbonda di ammassi stellari, molti dei quali di facile osservazione; sebbene la gran parte si trovino a grande distanza e sui bracci di spirale più interni, in molti casi uno strumento di diametro medio-piccolo è sufficiente per iniziare a risolverli in stelle.
La costellazione del Centauro è famosa soprattutto per le sue stelle luminose e per i suoi ammassi stellari, oltre che per la galassia Centaurus A. Tuttavia, sono diverse anche le galassie alla portata degli strumenti amatoriali.

Il Centauro è una costellazione australe, ma la sua parte settentrionale, ricca di galassie, può essere individuata anche dalle latitudini medie boreali, nelle sere primaverili.

CARATTERISTICHE

La metà settentrionale del Centauro giace lontano dalla scia della Via Lattea e consente l’osservazione di un gran numero di galassie; molte di queste appartengono al Superammasso Idra-Centauro, distante da 120 a 180 milioni di anni luce, e si dispongono lungo una vaga concatenazione orientata in senso est-ovest.

Due grandi galassie dominano quest’area di cielo e sono entrambe alla portata anche di binocoli 10x50: la più famosa è soprannominata Centaurus A, dalla sigla assegnata alla sua fonte di raggi X.

L’altra galassia è M83, che però ricade entro i confini dell’Idra, a ridosso del confine col Centauro; entrambe non fanno tuttavia parte del superammasso citato, ma si trovano in primo piano.

Queste due galassie e tutti i restanti oggetti della regione si presentano tuttavia molto bassi dalle latitudini boreali medie e restano quindi virtualmente quasi inosservabili, mentre iniziano ad essere moderatamente alti verso sud avvicinandosi alla fascia tropicale.

La maggior parte delle galassie remote fanno parte di un unico ammasso di galassie, noto come Ammasso del Centauro o Abell 3526, e si concentrano nella parte centrosettentrionale del Centauro.

Altre galassie sono invece visibili presso il confine con l’Idra e appartengono anch’esse quasi tutte al superammasso.

Con strumenti da 200mm di diametro è possibile individuare quasi tutte le galassie indicate nella carta di dettaglio; alcune sono tuttavia anche alla portata di strumenti più piccoli, come quelli da 120mm.

Le fotografie astronomiche a grande campo e alta sensibilità consentono di mettere in risalto gli addensamenti di galassie principali; tuttavia spesso questi ammassi di

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>θ Cen</td>
<td>Menkent</td>
<td>14h 06m 41s</td>
<td>-36° 22’ 07”</td>
<td>2,06</td>
<td>61</td>
<td>giallo</td>
</tr>
<tr>
<td>ξ Cen</td>
<td>Alnair Al Baten</td>
<td>13h 55m 32s</td>
<td>-47° 17’ 18”</td>
<td>2,55</td>
<td>384</td>
<td>azzurro</td>
</tr>
<tr>
<td>ι Cen</td>
<td>Alhakim</td>
<td>13h 20m 36s</td>
<td>-36° 42’ 43”</td>
<td>2,75</td>
<td>59</td>
<td>bianco</td>
</tr>
<tr>
<td>ν Cen</td>
<td>Alphard</td>
<td>13h 49m 30s</td>
<td>-41° 41’ 15”</td>
<td>3,41</td>
<td>475</td>
<td>azzurro</td>
</tr>
<tr>
<td>μ Cen</td>
<td>Alphard</td>
<td>13h 49m 37s</td>
<td>-42° 28’ 25”</td>
<td>3,47</td>
<td>527</td>
<td>azzurro</td>
</tr>
<tr>
<td>φ Cen</td>
<td>Alphard</td>
<td>13h 58m 16s</td>
<td>-42° 06’ 02”</td>
<td>3,83</td>
<td>465</td>
<td>azzurro</td>
</tr>
<tr>
<td>υ Cen</td>
<td>Alphard</td>
<td>13h 58m 41s</td>
<td>-44° 48’ 13”</td>
<td>3,87</td>
<td>417</td>
<td>azzurro</td>
</tr>
<tr>
<td>d Cen</td>
<td>Alphard</td>
<td>13h 31m 03s</td>
<td>-39° 24’ 26”</td>
<td>3,90</td>
<td>1254</td>
<td>giallo</td>
</tr>
</tbody>
</table>
La parte settentrionale del Cenàstro è ricca di ammassi di galassie, molte delle quali appartenenti al medesimo superammasso.
PRINCIPALI OGGETTI NON STELLARI

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ESO 321-25</td>
<td>12h 21m 43s</td>
<td>-39° 46' 10"</td>
<td>Gal</td>
<td>11,9</td>
<td>1,2</td>
<td></td>
</tr>
<tr>
<td>IC 3290</td>
<td>12h 25m 09s</td>
<td>-39° 46' 32"</td>
<td>Gal</td>
<td>12,0</td>
<td>1,2</td>
<td></td>
</tr>
<tr>
<td>NGC 4373</td>
<td>12h 25m 18s</td>
<td>-39° 45' 35"</td>
<td>Gal</td>
<td>10,9</td>
<td>3,6</td>
<td></td>
</tr>
<tr>
<td>NGC 4373A</td>
<td>12h 25m 38s</td>
<td>-39° 19' 11"</td>
<td>Gal</td>
<td>11,9</td>
<td>2,6</td>
<td></td>
</tr>
<tr>
<td>IC 3370</td>
<td>12h 27m 36s</td>
<td>-39° 30' 00"</td>
<td>Gal</td>
<td>11,1</td>
<td>2,8</td>
<td></td>
</tr>
<tr>
<td>NGC 4507</td>
<td>12h 35m 37s</td>
<td>-39° 54' 33"</td>
<td>Gal</td>
<td>12,0</td>
<td>1,6</td>
<td></td>
</tr>
<tr>
<td>NGC 4553</td>
<td>12h 36m 08s</td>
<td>-39° 26' 19"</td>
<td>Gal</td>
<td>12,3</td>
<td>2,1</td>
<td></td>
</tr>
<tr>
<td>NGC 4603</td>
<td>12h 40m 55s</td>
<td>-40° 58' 35"</td>
<td>Gal</td>
<td>12,4</td>
<td>3,4</td>
<td></td>
</tr>
<tr>
<td>NGC 4645A</td>
<td>12h 43m 06s</td>
<td>-41° 21' 34"</td>
<td>Gal</td>
<td>11,6</td>
<td>2,8</td>
<td></td>
</tr>
<tr>
<td>NGC 4645</td>
<td>12h 44m 10s</td>
<td>-41° 45' 00"</td>
<td>Gal</td>
<td>11,8</td>
<td>2,2</td>
<td></td>
</tr>
<tr>
<td>NGC 4650</td>
<td>12h 44m 19s</td>
<td>-40° 43' 55"</td>
<td>Gal</td>
<td>11,8</td>
<td>3,2</td>
<td></td>
</tr>
<tr>
<td>NGC 4696</td>
<td>12h 48m 49s</td>
<td>-41° 18' 39"</td>
<td>Gal</td>
<td>10,2</td>
<td>4,7</td>
<td></td>
</tr>
<tr>
<td>NGC 4709</td>
<td>12h 50m 04s</td>
<td>-42° 22' 55"</td>
<td>Gal</td>
<td>11,1</td>
<td>2,3</td>
<td></td>
</tr>
<tr>
<td>NGC 4729</td>
<td>12h 51m 46s</td>
<td>-41° 07' 56"</td>
<td>Gal</td>
<td>12,4</td>
<td>1,6</td>
<td></td>
</tr>
<tr>
<td>NGC 4744</td>
<td>12h 52m 20s</td>
<td>-41° 03' 37"</td>
<td>Gal</td>
<td>12,7</td>
<td>2,1</td>
<td></td>
</tr>
<tr>
<td>ESO 323-34</td>
<td>12h 53m 26s</td>
<td>-41° 12' 10"</td>
<td>Gal</td>
<td>12,2</td>
<td>1,4</td>
<td></td>
</tr>
<tr>
<td>NGC 4767</td>
<td>12h 53m 53s</td>
<td>-39° 42' 52"</td>
<td>Gal</td>
<td>11,5</td>
<td>2,6</td>
<td></td>
</tr>
<tr>
<td>NGC 4832</td>
<td>12h 57m 48s</td>
<td>-39° 45' 42"</td>
<td>Gal</td>
<td>11,6</td>
<td>1,8</td>
<td></td>
</tr>
<tr>
<td>NGC 4835</td>
<td>12h 58m 08s</td>
<td>-45° 15' 51"</td>
<td>Gal</td>
<td>11,6</td>
<td>4,0</td>
<td></td>
</tr>
<tr>
<td>ESO 443-24</td>
<td>13h 01m 01s</td>
<td>-32° 26' 29"</td>
<td>Gal</td>
<td>12,5</td>
<td>1,4</td>
<td></td>
</tr>
<tr>
<td>NGC 4930</td>
<td>13h 04m 05s</td>
<td>-41° 24' 41"</td>
<td>Gal</td>
<td>11,2</td>
<td>4,5</td>
<td></td>
</tr>
<tr>
<td>NGC 4936</td>
<td>13h 04m 17s</td>
<td>-30° 31' 35"</td>
<td>Gal</td>
<td>10,7</td>
<td>2,7</td>
<td></td>
</tr>
<tr>
<td>NGC 4946</td>
<td>13h 05m 29s</td>
<td>-43° 35' 28"</td>
<td>Gal</td>
<td>12,4</td>
<td>1,6</td>
<td></td>
</tr>
<tr>
<td>NGC 4947</td>
<td>13h 05m 20s</td>
<td>-35° 20' 15"</td>
<td>Gal</td>
<td>11,9</td>
<td>2,4</td>
<td>[IC 3974]</td>
</tr>
<tr>
<td>ESO 269-57</td>
<td>13h 10m 04s</td>
<td>-46° 26' 14"</td>
<td>Gal</td>
<td>11,6</td>
<td>1,0</td>
<td></td>
</tr>
<tr>
<td>ESO 269-58</td>
<td>13h 10m 33s</td>
<td>-46° 59' 27"</td>
<td>Gal</td>
<td>12,0</td>
<td>3,1</td>
<td></td>
</tr>
<tr>
<td>NGC 5011</td>
<td>13h 12m 52s</td>
<td>-43° 05' 46"</td>
<td>Gal</td>
<td>11,3</td>
<td>2,5</td>
<td></td>
</tr>
<tr>
<td>ESO 443-83</td>
<td>13h 12m 55s</td>
<td>-32° 41' 23"</td>
<td>Gal</td>
<td>12,4</td>
<td>1,7</td>
<td></td>
</tr>
<tr>
<td>NGC 5026</td>
<td>13h 14m 14s</td>
<td>-42° 57' 41"</td>
<td>Gal</td>
<td>11,6</td>
<td>3,3</td>
<td></td>
</tr>
<tr>
<td>ESO 269-74</td>
<td>13h 14m 20s</td>
<td>-46° 07' 30"</td>
<td>Gal</td>
<td>12,6</td>
<td>0,9</td>
<td></td>
</tr>
<tr>
<td>ESO 323-99</td>
<td>13h 14m 40s</td>
<td>-42° 40' 34"</td>
<td>Gal</td>
<td>12,5</td>
<td>0,9</td>
<td></td>
</tr>
<tr>
<td>IC 4214</td>
<td>13h 17m 43s</td>
<td>-32° 06' 06"</td>
<td>Gal</td>
<td>11,6</td>
<td>1,7</td>
<td></td>
</tr>
<tr>
<td>NGC 5062</td>
<td>13h 18m 24s</td>
<td>-35° 27' 31"</td>
<td>Gal</td>
<td>11,6</td>
<td>2,3</td>
<td></td>
</tr>
<tr>
<td>NGC 5063</td>
<td>13h 18m 26s</td>
<td>-35° 21' 09"</td>
<td>Gal</td>
<td>12,4</td>
<td>2,3</td>
<td></td>
</tr>
<tr>
<td>NGC 5064</td>
<td>13h 19m 00s</td>
<td>-47° 54' 31"</td>
<td>Gal</td>
<td>12,1</td>
<td>1,9</td>
<td></td>
</tr>
<tr>
<td>ESO 269-85</td>
<td>13h 19m 59s</td>
<td>-47° 16' 54"</td>
<td>Gal</td>
<td>11,8</td>
<td>1,9</td>
<td></td>
</tr>
<tr>
<td>NGC 5090</td>
<td>13h 21m 13s</td>
<td>-43° 42' 16"</td>
<td>Gal</td>
<td>11,5</td>
<td>2,7</td>
<td></td>
</tr>
<tr>
<td>NGC 5102</td>
<td>13h 21m 58s</td>
<td>-36° 37' 49"</td>
<td>Gal</td>
<td>9,1</td>
<td>8,7</td>
<td></td>
</tr>
<tr>
<td>NGC 5121</td>
<td>13h 24m 46s</td>
<td>-37° 40' 56"</td>
<td>Gal</td>
<td>10,7</td>
<td>1,9</td>
<td></td>
</tr>
<tr>
<td>NGC 5124</td>
<td>13h 24m 50s</td>
<td>-30° 18' 27"</td>
<td>Gal</td>
<td>12,1</td>
<td>2,2</td>
<td>[IC 4233] Centaurus A</td>
</tr>
<tr>
<td>NGC 5128</td>
<td>13h 25m 29s</td>
<td>-43° 01' 00"</td>
<td>Gal</td>
<td>6,8</td>
<td>25,7</td>
<td></td>
</tr>
<tr>
<td>NGC 5140</td>
<td>13h 26m 22s</td>
<td>-33° 52' 06"</td>
<td>Gal</td>
<td>11,8</td>
<td>2,1</td>
<td></td>
</tr>
<tr>
<td>ESO 324-23</td>
<td>13h 27m 28s</td>
<td>-38° 10' 35"</td>
<td>Gal</td>
<td>12,4</td>
<td>1,0</td>
<td></td>
</tr>
<tr>
<td>ESO 324-24</td>
<td>13h 27m 39s</td>
<td>-41° 28' 47"</td>
<td>Gal</td>
<td>12,0</td>
<td>3,2</td>
<td></td>
</tr>
<tr>
<td>NGC 5161</td>
<td>13h 29m 14s</td>
<td>-33° 10' 26"</td>
<td>Gal</td>
<td>11,4</td>
<td>5,6</td>
<td></td>
</tr>
</tbody>
</table>
La galassia M83 è una delle più brillanti dell'intera volta celeste.

nell’Orsa Maggiore, per via dei suoi bracci molto ben marcati. M83 si trova nella costellazione dell’Idra ed è una fra le galassie più luminose del cielo; la si può individuare circa 18° a sud della brillante stella Spica, poco a nord delle stelle che rappresentano la testa del Centauro ed è visibile anche con un binocolo di dimensioni medio-basse sotto cieli discreti. Un telescopio da 150mm di apertura la mostra come una macchia nebulosa senza una forma ben definita, in cui il nucleo occupa una posizione di rilievo e domina con la sua luminosità l'alune; con strumenti più grandi, come un 250mm, quest'ultimo appare tormentato e attraversato da una banda scura a sud. M83 appare vista quasi perfettamente di faccia, pertanto è ben studiata e le sue strutture dei bracci sono ben conosciute; la sua distanza è stimata sui 15 milioni di anni luce appena, diventando così una delle galassie più vicine a noi e rendendo ancora più semplice il suo studio. Il suo moto nello spazio tuttavia fa allontanare da noi alla velocità di 337 km/s. Gran parte delle stelle di M83 sono giovani e sono disposte sulle spirali, rendendole così molto luminose e dal caratteristico colore azzurro; le stelle centrali sono invece più vecchie e appaiono di colore giallo o rossastro. M83 è ben nota anche per il gran numero di supernovae osservate, ben sei: la SN 1923A, la SN 1945B, la SN 1957D, la SN 1957D. Nel giugno 2008 il progetto Galaxy Evolution Explorer della NASA scopre un gran numero di stelle neonate fra le spirali di M83; la stranezza risiede nel fatto che sono state scoperte in una regione dove si credeva che non vi fosse materiale a sufficienza per avviare i fenomeni di formazione stellare. M83 si trova, come visto, al centro di uno dei due sottogruppi in cui è suddiviso il Gruppo Centaurus A/M83. Questi due gruppi sono talvolta identificati come un sistema unico e altre volte come due gruppi distinti; tuttavia, le galassie attorno a Centaurus A e quelle attorno a M83 sono fisicamente molto vicine fra di loro.

Fra M83 e la stella 1 Centauri si trova NGC 5253, situata a una distanza di 11 milioni di anni luce e dunque legata al sottogruppo di M83. Si individua circa 2 gradi a nordovest della stella i Centauri e può essere notata anche con strumenti da 120-150mm di diametro. Ha una morfologia irregolare e un aspetto allungato, di dimensioni reali molto contenute, essendo una galassia nana, ma che sta sperimentando un fenomeno di starburst; si tratta in effetti di una galassia blu compatta, ossia una galassia nana dominata da stelle molto giovani e calde. Al suo interno è presente una nube compatta di polveri denominata Nube D, che ospita fino a un milione di giovani stelle, fra le quali non meno di 7000 stelle di classe O e un numero elevatissimo di stelle di Wolf-Rayet, fatto inconsueto a causa della vita breve di questo tipo di stelle.

Meno di un grado a est di M83 si trova NGC 5264, una galassia nana irregolare di tipo magellano; si presenta molto sfuggente all’osservazione, specialmente con telescopi di diametro inferiore ai 250mm; appare come una macchia molto debole e vagamente sferoidale, ma con irregolarità. Distanze 15 milioni di anni luce, ha un diametro di circa 11.000 anni luce e si ritiene che possa contenere non più di un miliardo di stelle; anche questa presenta un gran numero di stelle giovani, sebbene sia ben lontana dal tasso di formazione stellare sperimentato dalla galassia descritta in precedenza. Probabilmente è tuttora in interazione con altre galassie del gruppo, da cui proviene il gas in cui si stanno generando i fenomeni di formazione stellare.

Sono conosciute anche diverse altre piccole galassie nane che fanno parte del sottogruppo, ma sono molto poco appariscenti, similmente a quelle conosciute come facenti parte del nostro Gruppo Locale.

Il secondo sottogruppo è, come visto, anche il più popoloso, con 4 galassie maggiori e almeno 25 galassie mi-
La grande galassia lenticolare NGC 5128, una delle più luminose del cielo nonché una delle più famose e fotografate a causa del suo aspetto peculiare, che ospita al suo interno la forte radiosorgente Centaurus A.

nori e nane. La galassia in assoluto dominante qui è la famosa Galassia Centaurus A, nota anche come NGC 5128 o con la sigla C77; si tratta di una galassia peculiere che con la sua distanza pari a circa 15 milioni di anni luce è anche relativamente vicina alla Via Lattea. Anche un binocolo 7x30 è in grado di mostrare questa galassia, sebbene essa appaia come una macchia chiara senza particolari attrattive. Con un piccolo telescopio appare come una normale galassia ellittica, ma con aperture da 120mm o superiori o con esposizioni fotografiche a lunga posa mostra una fascia equatoriale di polveri oscure, attribuibili alla fagocitazione di una piccola galassia satellite. Il suo centro ospita una potente sorgente di onde radio, catalogata come Centaurus A; si pensa che qui sia situato un buco nero supermassicvio con una massa pari a diversi milioni di masse solari. Centaurus A possiede una morfologia piuttosto insolita: vista dalla Terra essa appare come una galassia lenticolare o ellittica con una banda di polveri sovrapposta; la sua particolarità è stata scoperta nel 1847 da John Herschel e successivamente fu inclusa nell’Atlas of Peculiar Galaxies (pubblicato nel 1966). La strana morfologia della galassia è generalmente riconosciuta essere il risultato di una fusione tra due più piccole galassie. NGC 5128 è composta principalmente da stelle in avanzato stato evolutivo, mentre nel disco si trova la regione dove la formazione stellare è più intensa; qui infatti sono state identificate circa 100 regioni di formazione stellare. Dai due poli di Centaurus A partono due emissioni di onde radio a getto della lunghezza di diversi milioni di anni luce.

Circa due gradi e mezzo a est si trova la galassia irregolare NGC 5237, che essendo poco appariscente e di piccole dimensioni è stata portata solo da strumenti di almeno 200mm di diametro o superiori. La sua distanza è stimata sui 9 milioni di anni luce e appare relativamente compatta ed ellittica.

Una galassia luminosa è NGC 5102, di morfologia lenticolare; si trova appena 15 primi d’arco ad est della brillante stella ι Centauri, tanto vicina che la sua luminosità non disturba l’osservazione. Con un telescopio da 100mm si può notare come una macchia ben evidente, allungata in senso nordest-sudovest, con un nucleo molto brillante e definito; con strumenti di 200mm le sue dimensioni arrivano a oltre 7 minuti d’arco. La sua distanza è stimata sui 12 milioni di anni luce e sebbene sia decisamente luminosa, è spesso trascurata proprio per via della sua apparente vicinanza a una stella molto brillante, che ne ostacola lo studio e l’osservazione.

Le altre galassie maggiori del sottogruppo si trovano nella parte centro-meridionale del Centauro e non sono incluse in questa sezione: fra queste vi è la grande NGC 4945, alla portata anche di un binocolo o di un piccolo telescopio. Le altre sono tutte galassie nane, come ESO 269-58 (PGC 45717), visibile circa tre gradi a WNW dell’ammasso ω Centauri.

Una galassia peculiare è ESO 270-17, visibile circa tre gradi a nord-est di ω Centauri; è visibile con strumenti da 150mm come un esile e sottile filamento chiaro, allungato per almeno 7-8 minuti d’arco. Situata alla distanza di circa 14 milioni di anni luce, potrebbe anch’essa far parte del gruppo, sebbene permangano delle incertezze; si tratterebbe di una galassia spirale barrata vista di taglio e con alcune irregolarità e deformazioni, nonché di dimensioni intermedie, probabilmente attorno ai 60.000 anni luce di diametro. Altri studi la indicano come una galassia irregolare, o persino una sorta di “filamento galattico”, ossia un resto di una galassia oggi non più esistente; secondo questi studi, la galassia che originariamente andò a fondersi con Centaurus A venne disgregata circa un miliardo di anni fa: una parte si fuse con Centaurus A, un’altra parte costituì il nucleo nome alla già citata galassia nana NGC 5237, e un ulteriore...
frammento andò alla deriva nello spazio formando appunto l’attuale oggetto denominato ESO 270-17.

Fra le altre galassie in primo piano, l’unica alla portata della gran parte dei telescopi amatoriali è NGC 5121, visibile poco meno di due gradi a sudest della stella ι Centauri. Con strumenti da 100mm è visibile con difficoltà come una piccola macchia tondeggiante o simile a una stella debole e sfuocata, ma comunque ben definita; strumenti da 150mm permettono di individuare anche un alone attorno al nucleo, molto debole. Si tratta di una galassia spirale vista di faccia, con un nucleo dominante e molto luminoso e un disco attraversato da bracci esili e ben avvolti; la sua distanza è stimata sui 59-60 milioni di anni luce e si trova dunque circa a metà strada fra la Via Lattea e i gruppi di galassie facenti parte del Superammasso Idra-Centauro.

IL SUPERAMMASSO IDRA-CEN TA URO

Il Superammasso Idra-Centauro è il superammasso di galassie più vicino al nostro (il Superammasso della Vergine); la sua distanza media è compresa fra i 120 e i 180 milioni di anni luce e si estende per oltre sessanta gradi dall’Idra fino al Centauro, lambendo l’altra Macchina Pneumatica, per terminare nella costellazione della Norma in direzione del piano galattico, dal quale è oscurato. Il superammasso è diviso in due grandi regioni e la più orientale ricade per intero nel settore di cielo qua descritto; questa regione comprende uno degli adensamenti maggiori del sistema, l’Ammasso del Centauro (Abell 3526), più numerosi ammassi minori, in gran parte posti a distanze fra 140 e 160 milioni di anni luce.

Fra le galassie più importanti del superammasso sul settore centrale del Centauro vi è NGC 4373, una galassia ellittica visibile anche con uno strumento da 120mm, dove appare come un piccolo alone circondante una sorta di stellina (il nucleo). Si tratta della galassia dominante di un gruppo di galassie dalla quale prende il nome (Gruppo di NGC 4373), la cui distanza media è stimata fra i 130 e i 140 milioni di anni luce; le sue dimensioni reali sono notevoli, con un diametro che potrebbe essere pari a 160.000 anni luce, mentre la sua distanza è di 140 milioni di anni luce. Strumenti da 200mm a salire permettono di scorgere, vicinissima a questa galassia, anche la più debole IC 3290, una spirale barrata vista perfettamente di faccia e con una barra molto ben sviluppata, dalle cui estremità partono due bracci di spirale ben definiti. Sempre con strumenti di grande diametro si può notare, circa 20° più a nord, una galassia attiva lenticolare vista con una forte angolazione e dunque con un aspetto molto allungato: si tratta di NGC 4373A, la cui distanza è probabilmente maggiore delle altre visibili nei dintorni e sarebbe pertanto un oggetto di fondo. Mezzo grado a nordest di NGC 4373, poco a sud della stella ι Centauri, si trova IC 3370, una galassia tradizionalmente catalogata come ellittica alla portata di strumenti da 120mm, sebbene con qualche difficoltà, con cui appare come una piccola stellina sfuocata. Immagini ad alta risoluzione rivelano che questa galassia possiede un nucleo dominato da una struttura a X luminosa, caratteristica delle galassie barrate o talvolta lenticolari; un altro elemento che fa ricadere la galassia fra le lenticolari cilindriche (o barrate) è la presenza di un debole disco stellare. Altri elementi, come il nucleo particolarmente luminoso (magnitudine assoluta –22) sono invece caratteristici delle galassie ellittiche. La sua distanza è stimata sui 130 milioni di anni luce.

L’Ammasso del Centauro (Abell 3526) è un ammasso di centinaia di galassie, localizzato all’incirca a 160-170 milioni di anni luce nella costellazione del Centauro. Il membro più luminoso è la galassia ellittica NGC 4696 e
la sua individuazione è facilitata dalla presenza poco a nord della stella n Centauri, di magnitudine 4,25. È costituito da due sottogruppi di galassie che si muovono con velocità differenti. Il gruppo principale è denominato Centaurus 30 e contiene NGC 4696; il gruppo secondario è denominato Centaurus 45, è centrato sulla galassia NGC 4709 e si muove alla velocità di 1500 km/s rispetto a Centaurus 30. Si ritiene che il sottogruppo minore sia in fase di fusione con il sottogruppo maggiore. La maggior parte delle galassie dell’ammasso sono al di là della portata di telescopi da 200-250mm e solo pochissime sono osservabili con strumenti da 120mm; tuttavia, tramite le riprese ad alta sensibilità e grande campo è possibile individuare centinaia di galassie.

La galassia dominante, come visto, è NGC 4696; è visibile anche con strumenti da 100mm e persino inferiori e appare come una macchia di aspetto stellare sfuocato, mentre con telescopi da 150mm è possibile intuire una morfologia leggermente ellissoidale. Si tratta di una galassia ellittica gigante di tipo E1, il cui diametro si aggira sui 180.000 anni luce; dal nucleo si estende un complesso sistema di filamenti oscuri che lo collegano al mezzo intraammasso, similmente a quanto si osserva in altre galassie giganti di centro ammasso come NGC 1275 in Perseo. Attorno alla galassia si addensano numerose galassie nane ellittiche.

NGC 4709 è visibile circa 20’ a ESE della precedente ed è anch’essa una galassia ellittica; è alla portata di strumenti da 100-120mm, dove appare come un oggetto di natura stellare leggermente sfuocato e molto simile alla galassia precedente, ma leggermente meno luminosa. Le sue dimensioni reali si aggirano sui 140.000 anni luce di diametro ed è di tipo E1; le stime della distanza variano a seconda degli studi, con valori che oscillano fra i 150 milioni di anni luce, dunque conformi con quella media dell’ammasso, e 200 milioni di anni luce, dunque decisamente superiori.

Fra le altre galassie più o meno legate al centro dell’ammasso...
La famosa galassia ad anello polare NGC 4650A.

masso si trova NGC 4650, una galassia spirale barrata alla portata di strumenti da 150mm, con cui appare come una macchia allungata in senso est-ovest circondata da un debole alone indistinto; è una grande galassia di dimensioni paragonabili a quella della Via Lattea, con due bracci di spirale magnifici che si originano dalle due estremità della barra.

Negli immediati dintorni si trovano numerose galassie più deboli, distanti mediamente dai 120 ai 130 milioni di anni luce e tendenzialmente allineate su una direttrice principale orientata in senso est-ovest ed estesa per alcuni gradi. Poco a ovest è visibile nella foto una coppia di galassie interagenti denominate NGC 4622A e NGC 4622B; verso est invece, oltre la piccola e vicinissima galassia PGC 42911, si trova la famosa NGC 4650A, una famosissima galassia ad anello polare che è possibile evidenziare nelle foto grazie alla sua inconciliabile morfologia: è infatti evidente il suo nucleo a forma di sigaro, e una barra luminosa più sottile perpendicolare ad esso, leggermente sinuosa. In visuale può essere intravista solo con telescopi di diametro molto grande, oltre i 400mm.

Circa 20° a nord della stella n Centauri si trova NGC 4767; con strumenti da 120mm è visibile come una debole chiazza chiara leggermente allungata in senso nordovest-sudest. Si tratta di una galassia ellittica situata a 126 milioni di anni luce, di morfologia allungata (tipo E5) e con un diametro reale che potrebbe arrivare a 100.000 anni luce. Appare circondata da alcune galassie minori molto più deboli.

NGC 4930 si trova circa 3 gradi a sud-est di n Centauri, nei pressi di una stella rossa di magnitudine 6,3; è individuabile con telescopi da 120mm, dove appare come una chiazza allungata in senso nordest-sudovest e più luminosa nel punto centrale. Un leggero alone chiaro piú esteso è visibile se osservato con strumenti da 200mm a salire. Si tratta di una galassia spirale barrata vista quasi di faccia, con un nucleo molto luminoso attraversato da una lunga barra ben definita; attorno ad essa la struttura interna dei bracci di spirale delineano un anello, all’esterno dei quali si estendono i bracci maggiori, che si presentano molto deformati in particolare verso nord. La sua distanza è stimata sui 108 milioni di anni luce.

Un gruppo separato di galassie si trova a sud-est dell’Ammasso del Centauro, ma pur sempre facente parte del superammasso, trovandosi a una distanza media di 130 milioni di anni luce. Fra queste galassie, la più notevole è NGC 5011, una galassia ellittica visibile anche con strumenti da 120mm come un alone quasi circolare simile a una stella sfocciata; il suo diametro reale sarebbe di circa 93.000 anni luce.

Attorno a questa galassia se ne osservano diverse minori, che riportano tutte il medesimo numero del catalogo NGC, ma con una lettera in aggiunta. Fra queste, a sud spicca la coppia apparente formata da NGC 5011B e NGC 5011C: la prima è una galassia lenticolare vista di taglio e probabilmente facente parte del medesimo gruppo di galassie, mentre la seconda è una nana sferoidale molto probabilmente legata al gruppo di Centaurus A e dunque posta molto in primo piano.

NGC 5026 è visibile a breve distanza dalla già citata NGC 5011, a nordest; si tratta di una galassia spirale barrata o forse lenticolare barrata ed è anch’essa alla portata di strumenti da 120mm, sebbene con qualche difficoltà in più: appare come una macchia chiara più luminosa verso il centro e di forma quasi circolare. Si tratta di una galassia di grandi dimensioni, confrontabili con quella della Via Lattea, situata a una distanza di 130 milioni di anni luce.

NGC 4835 è visibile in posizione distaccata verso sud, a oltre 5 gradi dal centro dell’Ammasso del Centauro; è comunque alla portata di strumenti da 120mm e si mostra come un fuso chiaro piuttosto stretto e allungato in senso nordovest-sudest. È una galassia spirale barrata vista quasi di taglio, con una barra relativamente piccola e un sistema di bracci ben sviluppato e avvolto attorno a un nucleo poco appariscente. Le sue dimensioni reali sono stimate sugli 85.000 anni luce di diametro e la sua distanza si aggira sui 150 milioni di anni luce.

La galassia fa coppia con NGC 4835A, visibile poco a sudovest; è un’altra spirale vista di taglio, ma molto meno appariscente, il cui fuso chiaro appare orientato in senso nord-sud.

GALASSIE E GRUPPI MINORI

Il Superammasso Idrà-Centauri consta anche di numerosi ammassi minori, gruppi di galassie più o meno estesi e anche numerose galassie singole o disposte in coppia.

Fra queste vi è la galassia NGC 5090, una galassia ellittica visibile con un telescopio da 120mm come una sor-
La coppia di galassie NGC 5090 e NGC 5091.

ta di stella sfuocata. È una galassia di grandi dimensioni, con un diametro simile a quello della Via Lattea e distante circa 145 milioni di anni luce. A breve distanza angolare si trova anche la galassia spirale NGC 5091, vista quasi di taglio ma non alla portata dei più comuni telescopi amatoriali.

NGC 5062 e NGC 5063 formano una coppia di galassie alla portata di strumenti da 150mm; si trovano circa un grado e mezzo a NNW della stella ι Centauri e sono rispettivamente di morfologia lenticolare e spirale. Costituiscono la coppia più appariscente di un gruppetto di galassie posto alla distanza di circa 140 milioni di anni luce; le loro dimensioni reali sono relativamente simili fra loro e sono stimate sui 100.000 anni luce.

Nella parte settentrionale del Centauro si osservano numerosi ammassi di galassie, in gran parte legati al medesimo superammasso; gran parte delle galassie che li compongono restano tuttavia al di là della portata di telescopi sotto i 300mm di diametro. Costituiscono comunque un buon bersaglio per gli amanti delle foto di campi ricchi di galassie di fondo.

NGC 4936 è una galassia relativamente brillante visibile nel nord della costellazione, presso il confine con l’Idra; con strumenti da 100mm o anche inferiori appare come una macchia più o meno circolare di aspetto nebbioso e più luminosa verso il centro. Si tratta di una galassia ellittica di grandi dimensioni distante 132 milioni di anni luce, con un diametro di almeno 110.000 anni luce e una morfologia di tipo E1, dunque quasi sferica; possiede un nucleo attivo, con al suo centro un buco nero supermassiccio. Le altre galassie dell’ammasso si concentrano a sudovest.

IC 4329 è infine un’altra galassia ellittica, individuabile partendo dalla stella 4 Centauri e seguendo una facile concatenazione di stelle verso nordovest; domina l’ammasso Abell 3574 e giace a una distanza di oltre 200 milioni di anni luce. È anch’essa di grandi dimensioni ed è visibile come una piccola macchia leggermente schiacciata con strumenti da 120mm. Le altre galassie dell’ammasso si concentrano a sudovest.

La galassia spirale NGC 5161.

Fra le stelle ι Centauri e 1 Centauri si trova l’ammasso di galassie Abell 3565, che appare dominato dalla galassia ellittica gigante IC 4296; si tratta di una galassia molto luminosa, tanto da essere alla portata di strumenti da 100mm, nonostante la sua distanza di 176 milioni di anni luce: è in effetti uno degli oggetti più distanti osservabili con telescopi da 100mm. Possiede un nucleo attivo e, come quasi tutte le galassie di questo tipo, ospita nel suo nucleo un buco nero supermassiccio. Le altre galassie più brillanti dell’ammasso si osservano soprattutto a sudovest di questa.

IC 4329 è infine un’altra galassia ellittica, individuabile partendo dalla stella 4 Centauri e seguendo una facile concatenazione di stelle verso nordovest; domina l’ammasso Abell 3574 e giace a una distanza di oltre 200 milioni di anni luce. È anch’essa di grandi dimensioni ed è visibile come una piccola macchia leggermente schiacciata con strumenti da 120mm. Le altre galassie dell’ammasso si concentrano a sudovest.
Fra le zampe del Centauro

Le due stelle che formano le zampe anteriori del Centauro costituiscono un riferimento irrinunciabile quando si osserva dall'emisfero australe: si tratta di due delle stelle più brillanti del cielo e la loro funzione di puntatori permette di individuare senza confusioni la costellazione della Croce del Sud, a sua volta utilizzabile per trovare il polo sud celeste.

Queste due stelle tuttavia possono essere usate come riferimento per individuare e osservare un numero notevole di ammassi stellari, grazie alla loro posizione in direzione del piano della Via Lattea.

CARATTERISTICHE

Il tratto di Via Lattea compreso fra le zampe anteriori del Centauro e la costellazione della Norma abbonda di ammassi stellari, molti dei quali di facile osservazione; sebbene la gran parte si trovino a grande distanza e sui bracci di spirale più interni, in molti casi uno strumento di diametro medio-piccolo è sufficiente per iniziare a risolverli in stelle.

La maggiore concentrazione di ammassi è visibile proprio nei pressi della coppia di stelle α e β Centauri, dove la Via Lattea appare meno oscurata; un altro notevole addensamento si osserva inoltre nella parte meridionale della Norma, scavalcando il Compasso, che appare invece più oscurato.

Quasi tutti questi ammassi si trovano a distanze superiori ai 3000 anni luce e sono pertanto compresi nei bracci interni della Via Lattea; ciò nonostante, la scarsa presenza di addensamenti nebulosi fa sì che questi siano comunque osservabili con facilità, nonostante le loro dimensioni ridotte a causa della distanza.

In questo appare chiara la differenza col tratto di Via Lattea visibile in posizione simmetrica rispetto al centro galattico, ossia il tratto dell'Aquila, dove la presenza di densi banchi di nubi oscuri situati nel nostro braccio di spirale impedisce l'osservazione degli ammassi e delle nebulose situate al di là.

Sebbene per risolvere molti ammassi fra Centauro e Norma siano sufficienti telescopi da 120mm, per alcuni si richiede l’utilizzo di strumenti da 200mm e oltre.

Con un po’ di pazienza oppure con l’ausilio di un Go-To, è possibile in quest’area di cielo dedicare una breve osservazione alla stella Proxima Centauri, che sebbene

STELLE PRINCIPALI DELLA REGIONE

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>α Cen</td>
<td>Rigil Kent.</td>
<td>14h 39m 40s</td>
<td>-60° 50’ 10’’</td>
<td>-0,27</td>
<td>4,34</td>
<td>giallo</td>
</tr>
<tr>
<td>β Cen</td>
<td>Hadar</td>
<td>14h 03m 50s</td>
<td>-60° 22’ 23’’</td>
<td>0,61</td>
<td>525</td>
<td>azzurro</td>
</tr>
<tr>
<td>α TrA</td>
<td>Atria</td>
<td>16h 48m 40s</td>
<td>-69° 01’ 39’’</td>
<td>1,91</td>
<td>415</td>
<td>arancio</td>
</tr>
<tr>
<td>ε Cen</td>
<td>Birdun</td>
<td>13h 39m 53s</td>
<td>-53° 27’ 59’’</td>
<td>2,29</td>
<td>376</td>
<td>azzurro</td>
</tr>
<tr>
<td>β TrA</td>
<td>Betria</td>
<td>15h 55m 09s</td>
<td>-63° 25’ 47’’</td>
<td>2,83</td>
<td>40</td>
<td>giallo</td>
</tr>
<tr>
<td>γ TrA</td>
<td>Betria</td>
<td>15h 18m 55s</td>
<td>-68° 40’ 46’’</td>
<td>2,87</td>
<td>183</td>
<td>bianco</td>
</tr>
<tr>
<td>α Cir</td>
<td>14h 42m 31s</td>
<td>-64° 58’ 28’’</td>
<td>3,18</td>
<td>53</td>
<td>giallo</td>
<td></td>
</tr>
<tr>
<td>ζ Lup</td>
<td>15h 12m 17s</td>
<td>-52° 05’ 57’’</td>
<td>3,41</td>
<td>116</td>
<td>giallo</td>
<td></td>
</tr>
</tbody>
</table>

DETTAGLI

- **Costellazioni**: Centauro
- **Ascensione Retta (media)**: 15h 00’
- **Declinazione (media)**: -60°
- **Tipo**: Campi stellari galattici
- **Oggetti**: Ammassi aperti e nebulose

337
Fra le due stelle luminose che rappresentano le zampe anteriori del Centauro si possono osservare diversi ammassi stellari, lungo la brillante Via Lattea del sud.
AMMASSI FRA ALFA E BETA CENTAURI

La maggior parte degli ammassi aperti visibili fra le zampe del Centauro e la vicina Croce del Sud fanno parte del Braccio del Sagittario; molti sono anche legati in vario modo all’associazione Centaurus OB1. In quest’associazione, distante mediamente sugli 8000 anni luce, sono note 24 stelle delle prime classi spettrali, fra cui spiccano diverse supergiganti blu di classe B, una gigante blu di classe O, una ipergigante bianca, due supergiganti bianche e due stelle di Wolf-Rayet. La nube più prominente visibile in direzione di Centaurus OB1 è RCW 75; ad essa è associato il giovane ammasso Stock 16, che fa parte dell’associazione e che contribuisce alla ionizzazione dei gas della nube.

Fra gli ammassi aperti visibili fra le stelle α e β Centauri spicca NGC 5617. La sua individuazione è molto facile: si trova infatti 1 grado a ovest della brillantissima e famosa stella α Centauri; giace in corrispondenza di un campo stellare molto ricco. Attraverso un binocolo 10x50 è ben visibile come una macchia chiara, seppure oscurata dalla presenza di α Centauri; le sue componenti, a partire dalla magnitudine 10, sono disposte su due assi perpendicolari fra loro, cosicché in telescopi di 150mm di apertura si evidenzia bene una forma a “T”.

La sua individuazione è molto facile: si trova infatti 1 grado a ovest della brillantissima e famosa stella α Centauri; giace in corrispondenza di un campo stellare molto ricco. Attraverso un binocolo 10x50 è ben visibile come una macchia chiara, seppure oscurata dalla presenza di α Centauri; le sue componenti, a partire dalla magnitudine 10, sono disposte su due assi perpendicolari fra loro, cosicché in telescopi di 150mm di apertura si evidenzia bene una forma a “T”. A nord brillano due stelle rosse di nona magnitudine e a sud una catena di stelline azzurre della stessa grandezza. NGC 5617 è un ammasso piuttosto ricco e di media...
Concentrazione, ben contrastato rispetto ai campi stellari circostanti; la sua distanza è stimata attorno ai 5000 anni luce ed è quindi situato sul bordo esterno del Braccio del Sagittario, in primo piano rispetto a Centaurus OB1. Con un'età di circa 82 milioni di anni NGC 5617 viene considerato un ammasso di età intermedia, in cui sono presenti alcune giganti rosse e stelle peculiari, come le blue stragglers, derivanti probabilmente dalla fusione fra due stelle; nella sua direzione è presente una sorta di finestra nel mezzo interstellare in cui la vista risulta scarsamente oscurata, facilitando così lo studio di quest'ammasso. Fra le stelle variabili scoperte al suo interno vi è una variabile δ Scuti, una probabile variabile γ Doradus e alcune variabili a eclisse.

Meno di mezzo grado a SSE si trova Tr 22, che appare come una piccola e blanda concentrazione di stelle dominata da un semicerchio a forma di C formato da stelle di magnitudine da 10 a 12; con forti ingrandimenti può essere risolto in stelle anche con strumenti da 100mm. Telescopi da 200mm permettono di evidenzia re per intero l’addensamento stellare circostante a bassi ingrandimenti. Si tratta di un oggetto poco studiato; i pochi studi che l’hanno analizzato tendono a metterlo in correlazione con l’ammasso precedente, poiché sia la distanza (5000 anni luce), che l’età (80 milioni di anni) sono le medesime. È dunque possibile che i due oggetti abbiano un’origine comune.

Un grado a NNW di NGC 5617, quindi lungo la stessa direttrice di Tr 22 ma nella direzione opposta, si trova il piccolo e difficile NGC 5606; è teoricamente persino alla portata di un binocolo 10x50, dato che le sue tre stelle principali sono di magnitudine 8 e 9, ma è difficile riconoscerlo come ammasso poiché appare come una coppia di stelle estremamente compatte, al punto che può essere scambiato per una stella doppia. Con telescopi da 100mm e forti ingrandimenti è possibile notare cinque stelle fino alla magnitudine 10 molto vicine fra loro, con qualche stella nei pressi ma che non sembra formare un vero addensamento. Si tratta di un ammasso molto giovane, come è testimoniato dalla presenza di stelle fino alla classe B0, che denotano un’età compresa fra 6 e 7 milioni di anni; è formato da una ventina di stelle membri accertate e la sua distanza è stata stimata sui 7800 anni luce.

NGC 5662 giace invece 4 gradi a nord di α Centauri, su un campo stellare in parte oscurato dalle polveri interstellar; un binocolo 10x50 già è sufficiente per notare la sua caratteristica principale, una stella rossa di quinta magnitudine, il cui colore contrasta fortemente con il resto dell’ammasso, composto da stelle azzurre; molto probabilmente si tratta di una stella non appartenente all’ammasso che si trova lungo la linea di visuale. L’ammasso appare diviso in due parti, la principale delle quali a nordost; la sezione a sudovest è meno appariscente e appare dominata a sua volta da una stellina rossa, anch’essa non appartenente di certo all’oggetto. La sua distanza si aggira sui 2170 anni luce e ricade pertanto in una zona estremamente periferica del Braccio di Orione o in una regione inter-braccio. Le sue stelle dominanti sono di classe spettrale A e degli ultimi gruppi della classe B e la morfologia globale include due sezioni ben distinte, una settentrionale più ricca e una meridionale più povera. Studi fotometrici hanno permesso di individuare 86 membri accertati dell’ammasso, cui si aggiungono 19 stelle ritenute probabili membri; fra queste vi è anche la variabile Cefèide V Centauri, una stella isolata situata a sudest dell’ammasso avente una magnitudine media attorno a 6,71 e un periodo di 5,5 giorni. L’età di quest’ammasso è stata stimata attorno ai 90 milioni di anni. Altri ammassi sono visibili lungo la Via Lattea attorno alla coppia di Αfà e Beta Centauri e sono evidenti anche con un binocolo.

Circa 3 gradi e mezzo a nord di α Centauri si trova l’ammasso NGC 5715, situato entro i confini del Compresso. È fuori dalla portata di un binocolo 10x50, mentre con un 20x80 può rendersi visibile come una leggera macchia estesa e irrisolvibile. Con telescopi da 100mm e forti ingrandimenti si possono scindere alcune stelline molto deboli su un fondo che resta nebbioso, mentre per una completa risoluzione occorrono strumenti di diametro da 150mm a salire. Si tratta di un ammasso relativamente ricco, sebbene poco appariscente e spesso trascu-
rato dagli appassionati; poiché ricade in un campo stellare molto ricco, anche lo studio delle sue caratteristiche è stato reso difficoltoso e infatti pochi lavori se ne sono occupati. È un ammasso piuttosto ricco, apparentemente formato da oltre un centinaio di stelle, ma il forte oscuramento legato alla presenza di polveri non permette di determinare con certezza l'appartenenza; la sua età è stata stimata sugli 800 milioni di anni ed è pertanto un ammasso relativamente vecchio. La sua distanza è invece stimata sui 4900 anni luce.

Poco meno di un grado a NNW di Hadar (β Centauri) si osserva NGC 5381, un ammasso molto difficile perché poco concentrato e confondibile con grande facilità col campo stellare in cui si trova immerso. Le sue componenti principali sono di magnitudine 12 e inoltre non formano un addensamento molto evidente, per cui non è alla portata né di binoccoli come 10x50, né di telescopi di piccolo diametro. Con strumenti da 200mm è evidente un leggero addensamento di stelle di magnitudine 13 su uno sfondo che permane blandamente nebbioso. Nonostante ciò, è un oggetto abbastanza ben studiato, nonostante l'oscuramento delle sue componenti; questo si riflette sui risultati dei diversi studi: le stime sulla sua età infatti variano da 50 fino a quasi 200 milioni di anni, mentre la sua distanza è stimata fra 3700 e 4600 o anche oltre. Queste incertezze sono date anche dalla difficoltà nell'individuare un numero preciso di componenti sicuramente parte dell'ammasso. Ancora meno ovvio è l'ammasso aperto NGC 5284, che appare di fatto non identificabile con la gran parte degli strumenti più comuni in possesso degli appassionati. NGC 5316 è visibile poco meno di due gradi a sudovest di Hadar (β Centauri), in direzione di un campo stellare molto ricco; si evidenzia anche con un binocolo 10x50, in cui appare come una macchia nebulosa su cui brillano 4-5 deboli stelline di ottava e nona magnitudine. Un telescopio da 80mm di apertura permette di risolvere completamente l'ammasso in una ventina di stelle in prevalenza di colore rosso-arancio; strumenti da 200mm di diametro rivelano anche le componenti meno luminose. Dista circa 3900 anni luce ed è un ammasso piuttosto piccolo e di media concentrazione, ben contrastato rispetto ai campi stellari circostanti. La sua età è stimata sui 160 milioni di anni ed è pertanto un ammasso di età intermedia; contiene alcune stelle gigante rosse piuttosto luminose, la cui magnitudine assoluta è stata stimata come pari a -1,85. La componente più brillante è visibile sul lato nordoccidentale dell'ammasso e ha una magnitudine apparente di 9,31.

NGC 5281 è un altro ammasso aperto, molto piccolo ma brillante, che con un binocolo 10x50 si può individuare senza difficoltà, anche se spesso sembra presentarsi come una singola stella sfocata o al più un piccolissimo gruppo di stelline. Un telescopio da 150mm di apertura riesce in parte a risolverlo, ma la concentrazione delle stelle è così elevata che occorrono strumenti maggiori per scinderlo del tutto; a sudovest appare dominato da una stella rossa di ottava magnitudine. La sua distanza è invece stimata sui 3600 anni luce. Si tratta di un oggetto molto giovane, avendo un'età di circa 14 milioni di anni appena, anche se esistono stime che riportano un'età fino a circa 40 milioni di anni. Contiene diverse stelle calde e massicce di classe spettrale B e A e alcune stelle dalle caratteristiche esotiche, fra le quali spicca la stella Be HD 119682; ad essa è associata la forte sorgente di raggi X 1WGA J1346.5-6255, facente parte della categoria degli analoghi γ Cassiopeiae. Si ritiene che si tratti di una blue straggler, data la sua grande massa e la sua posizione insolita nel diagramma colore-magnitudine rispetto alle altre stelle dell'ammasso di pari massa, già evolute in giganti rosse.

Il tratto della Via Lattea compreso fra Hadar e la Croce del Sud è dominato, oltre che dalla oscura nube Sacco di Carbone, anche da un'altra nebulosa piuttosto estesa, NGC 5715, nella costellazione del Compasso.

Il debole ma ricco ammasso aperto NGC 5715, nella costellazione del Compasso.
catalogata come Ced 122; sebbene sia riportata su molti atlanti, resta un oggetto poco noto e osservato ma che può essere individuato parzialmente anche attraverso un grande binocolo, se la notte è perfettamente buia. Giace sul Braccio del Sagittario e la sua stella principale sembra apparentemente la gigante gialla m Centauri (da cui il nome improprio di “Nebulosa di m Centauri”); tuttavia, questa stella si trova ad appena 257 anni luce dal sistema solare ed è pertanto completamente slegata dalla nebulosa, la cui posizione, secondo le misurazioni, sarebbe come visto all’interno del Braccio del Sagittario a una distanza di almeno 5700 anni luce. La stella responsabile della ionizzazione dei gas della nube sarebbe, secondo alcuni studi, la stella blu HD 116796, assieme ad altre due stelle di classe spettrale B situate nelle vicinanze. La regione galattica in cui viene a trovarsi Ced 122 è la medesima della nube RCW 75 e della brillante ed estesa associazione Centaurus OB1, entrambe poste alla distanza media di 6500 anni luce dal sistema solare. A questa regione celeste sono associate due “nubi stellari” riportate anche nel catalogo NGC, del diametro di un grado ciascuna: si tratta di NGC 5045, occupante la parte nordoccidentale della nebulosa, e NGC 5155, che si sovrappone invece alla parte nordorientale; con telescopi di grande diametro (oltre i 150mm) e oculari a grande campo e bassi ingrandimenti appaiono come due aere nebbiose, che in effetti potrebbero essere confondibili con la nebulosa stessa. In fotografie con campi di alcuni gradi appaiono ben risolte in decine di migliaia di stelle fino alla magnitudine 17, su uno sfondo che permane nebuloso sia per la presenza della nebulosa in sé, sia perché molte altre stelle restano non risolvibili.

Altri ammassi e associazioni meno note si osservano in questa direzione, come Cr 271 e Tr 21 a nord, e Cr 277 a sud. Fra questi il più facile è Tr 21, che appare dominato da due stelle azzurre di magnitudine 8; è un oggetto molto piccolo e raccolto, più simile a un asterismo che a un vero e proprio ammasso stellare. In totale conterebbe una ventina di componenti o poco più, la cui età è stimata sui 25-30 milioni di anni. La sua distanza è invece pari a 4500 anni luce.

NGC 5168 è un altro piccolo ammasso aperto, individuabile un grado ad est della stella J Centauri, di magnitudine 4,5; con un binocolo 10x50 è appena visibile come una debole macchia chiara che si sovrappone al chiarore della Via Lattea, mentre con strumenti da 80mm è già possibile iniziare la risoluzione: le sue stelle principali sono di magnitudine 10 e 11, tutte raccolte entro un diametro di 3 minuti d’arco. Grandi telescopi e ingrandimenti medi lo risolvono completamente e mostrano la sua natura di ammasso poco concentrato. Vi sono pochi studi su quest’oggetto: è nota la sua distanza, che si stima sui 4400 anni luce, similmente a quella degli ammassi vicini, e l’assenza di giganti rosse, che farebbe pensare ad un ammasso di età avanzata, sui 500 milioni di anni.

Circa 20 minuti d’arco più a sud si trova Cr 272, che è tuttavia estremamente difficile da notare nonostante le sue dimensioni maggiori del precedente, perché molto disperso e completamente confondibile coi ricchi campi stellari di fondo; a differenza del precedente, la sua età sarebbe di appena 13 milioni di anni ed è dunque formato da stelle molto giovani. La sua distanza di 7400 anni luce lo colloca ben al di là della gran parte degli oggetti vicini.

Poco a sud di Ced 122 si osserva la nebulosa planetaria NGC 5189, che sebbene sia anche alla portata di telescopi da 200mm o anche inferiori, mostra la sua caratteristica forma a S con strumenti maggiorni e possibilmente con l’uso di un filtro OIII, forma che le è valso il nome di Nebulosa Spirale. La sua distanza è stimata sui 3000 anni luce, anche se alcuni studi la indicano come posta a circa 1800 anni luce.
Un cenno a parte merita la stella Proxima Centauri, la nana rossa compagna del sistema di α Centauri che in questo tratto della sua orbita attorno alle due componenti principali risulta essere di fatto la stella più vicina al Sistema Solare. Si trova 2°11' a SSW della coppia principale e la sua magnitudine pari a 11,1 la rende invisibile al binocolo, ma individuabile con la quasi totalità dei telescopi anche di piccolo diametro. Per chi non possedesse un sistema di puntamento automatico, la carta presentata sopra può essere d'aiuto, partendo dal sistema principale di α Centauri e seguendo il metodo dello star hopping; va tuttavia notato che occorre una certa perizia ed esperienza nella pratica degli allineamenti, a causa proprio della bassa luminosità di questa stella. Grazie alla sua vicinanza, il suo diametro angolare può essere misurato direttamente; le misurazioni indicano che il suo raggio equivale a circa un settimo di quello solare. La massa equivale a circa un ottavo di quella solare, mentre la densità è quaranta volte superiore a quella del Sole. Sebbene Proxima possieda una luminosità molto bassa, è soggetta a improvvisi e casuali brillamenti, causati dalla sua attività magnetica; il suo campo magnetico è alimentato dai moti convettivi che avvengono nel suo interno e il brillamento che ne risulta periodicamente genera un' emissione a raggi X simile a quella prodotta dal Sole. La composizione di Proxima, il suo basso tasso di produzione di energia e le sue dinamiche indicano che resterà nella sequenza principale per almeno altri 4000 miliardi di anni, ossia per circa 300 volte l'età attuale dell'Universo. Nel 2016 è stato individuato un pianeta potenzialmente dotato di acqua liquida superficiale nella fascia orbitale abitabile. Data la sua natura di nana rossa e di stella a brillamento, la possibilità che sul pianeta possa svilupparsi la vita è ancora da accertare.

VERSÖ LA NORMA

Ad est di α Centauri si estende una lunga banda di polveri oscure molto simile alla famosa Fenditura del Cigno, sebbene molto più corta; questa fascia attraversa le costellazioni del Compasso e della Norma, lambendo il Lupo e aprendosi verso le alte latitudini galattiche fra Lupo e Scorpione. La area della Via Lattea non oscure sono ricche di campi stellari e ammassi aperti. La nebulosa oscura Sa 172 in particolare è molto evidente ed è, assieme alla piccola nebulosa a riflesso vdBH 65a, parte della Nube del Compasso, una densa nube molecolare gigante che domina l'omonima costellazione. Dista 2300 anni luce ed è fra le nubi "vicine" una delle meno studiate; è composta da due addensamenti principalì, noti come Circinus-E e Circinus-W, e ospita degli intensi fenomeni di formazione stellare, generanti esclusivamente stelle di piccola e media massa. La formazione stellare potrebbe essere stata provocata dall'esplosione di una supernova nelle sue vicinanze. Sempre nel Compasso si trova Pismis 20, situato nella costellazione del Compasso. Si individua ad appena 12' a SW della stella β Circini, sul bordo della "fenditura" sulla Via Lattea causata dalla presenza di nebulose oscure che si estende dal Lupo fino ai pressi di Alfa Centauri; è composto da una decina di stelle di dodicesima magnitudine, disposte a formare una "V", al cui vertice si trova un astro giallastro di magnitudine 8,2, il più luminoso dell'ammasso. Quasi del tutto invisibile anche con un binocolo, con un piccolo telescopio e forti ingrandimenti si risolve perfettamente in una manciata di stelline bianco-azzurre. Con strumenti più grandi e ingrandimenti ancora più spinti non sono visibili ulteriori componenti. Pismis 20 è un ammasso situato a circa 10'700 anni luce di distanza, in una zona molto interna della Via Lattea, sul Braccio Scudo-Croce; a causa di ciò la sua luce appare fortemente oscurata dalle polveri interstellari, appartenenti in massima parte al Braccio del Sagittario, situato esternamente ad esso e sulla linea di vista. La sua età risulta essere di appena 5 milioni di anni e si ritiene faccia parte di una remota associazione

Un altro ammasso facilmente osservabile è NGC 5823 (noto anche come C88). È visibile all'estremità settentrionale del Compasso, sulla linea che congiunge le stelle α Centauri e ζ Lupi, più spostato verso quest'ultima, nei pressi del ben più esteso ammasso aperto NGC 5822 (nel Lupo); invisibile ad occhio nudo, con un binocolo come un comune 10x50 diventa visibile come una piccola macchia chiara, solo in parte risolvibile. Già con un telescopio da 100mm l'ammasso viene risolto senza difficoltà, essendo poco concentrato; le sue componenti più brillanti sono di magnitudine 10 e si dispongono in allineamenti posti sui bordi dell'ammasso, mentre al centro sono presenti per lo più stelle meno luminose. La sua distanza di circa 3900 anni luce corrisponde a una regione situata al bordo del Braccio del Sagittario. La sua età sarebbe pari a quasi 800 milioni di anni ed è pertanto piuttosto evoluto; mancano infatti stelle particolarmente massicce, da tempo già esplose come supernovae.

NGC 6025, noto anche con la sigla del Catalogo Caldwell C95, è situato al confine fra la Norma e il Triangolo Austral, ed è un ammasso piuttosto brillante, al limite della visibilità ad occhio nudo: può essere individuato infatti senza strumenti in una notte particolarmente nitida, dove si mostra di aspetto simile a una minuscola stella sfuocata; la sua posizione si individua con facilità, circa 10° ad est della brillante stella α Centauri, a nord delle stelle del Triangolo Austral. Un binocolo 10x50 è già sufficiente per risolverlo in diverse stelle nelle notti più buie; è composto da due stelle di magnitudine 7 e da una quindicesima di stelle di nona, disposte lungo un asse NW-SE, che gli conferisce un aspetto particolarmente allungato. Attraverso un piccolo telescopio è pienamente risolto anche a bassi ingrandimenti. L'ammasso non sembra contenere alcuna condensazione centrale, mentre la sua forma appare notevolmente allungata in senso nord-sud; le stelle membri sarebbero circa 140, comprese tutte in un diametro di circa 15', che alla distanza di 2460 anni luce equivalgono a 11 anni luce circa. Le componenti più brillanti sono di magnitudine 7 e sono, come visto, ben visibili anche con un binocolo. L'età dell'ammasso è stimata sui 90 milioni di anni, ossia un'età non troppo diversa da quella delle Pleiadi.

Nella parte centro-meridionale della Norma si trova la nube stellare più brillante di questo tratto galattico, considerabile come la controparte più meridionale della famosa Nube stellare dello Scudo, nella costellazione omonima; qui è possibile individuare un notevole numero di ammassi aperti. Alcuni di questi sono luminosi e facilmente osservabili anche con piccoli strumenti, mentre altri sono più ostici.

Cr 292 appare spesso riportato sugli atlanti celesti, ma è un ammasso molto difficile da staccare: è formato da diverse decine di stelle sparse di magnitudine dalla 12 alla 15 almeno e si sovrappongono a un ricchissimo campo di stelle di fondo, pertanto anche con telescopi di grande diametro e bassi ingrandimenti appare solo come un vago addensamento appena più ricco dei campi circostanti. La sua lontananza da stelle luminose non facilita per di più la sua individuazione tramite gli allineamenti. Si tratta inoltre di un oggetto poco studiato, la cui distanza è stimata attorno ai 5000 anni luce; una stima sulla sua età indica un valore di 500 milioni di anni.

Un po' più facili, anche se di piccole dimensioni apparenti, i due ammassi NGC 5999 e NGC 6005. NGC 5999 può essere notato con qualche difficoltà anche con dei semplici binocoli sotto ottimi cieli, ma resta irrisolvibile e di aspetto simile a una piccola macchia chiara; con telescopi da 100mm se ne può tentare la risoluzione, sebbene questa resti incompleta: si possono distinguere alcune stelle di magnitudine 12, dominate da una stella biancastra di magnitudine 9,3 poste vicino al centro dell'ammasso. Telescopi da 200mm permettono una quasi totale risoluzione. Si tratta di un ammasso moderatamente ricco e di età intermedia, stimata attorno ai 400 milioni di anni; appare anche piuttosto oscurato dalle polveri interstellari. La sua distanza è stimata sui 7200 anni luce.
Circa un grado a sudest si trova NGC 6005, anch’esso piuttosto debole, ma un po’ meglio definito; si presenta come un evidente addensamento di alcune decine di stelle di magnitudine compresa fra la 10 e la 14, in un diametro di 3’. Con un binocolo è individuabile prestando molta attenzione e appare come una piccolissima macchia abbastanza ben staccabile, ma che potrebbe dare l’illusione di osservare una stella doppia o un piccolo asterismo; la sua natura di ammasso diventa molto chiara con telescopi da 100mm a salire, mentre con strumenti da 200-250mm è completamente risolvibile. Sebbene alcuni studi avessero portato a dubitare della reale natura di ammasso di NGC 6005, studi fotometrici e spettroscopici più recenti hanno chiarito che si tratta di un ammasso reale, la cui età è stata stimata essere di almeno 1,2 miliardi di anni; la sua distanza sarebbe invece pari a 8800 anni luce.

Tre gradi più ad est si trova invece il brillante e facile ammasso NGC 6087; la sua posizione è rintracciabile anche a occhio nudo. La sua caratteristica più notevole è la presenza di alcune stelle di magnitudine 6 e 7, la più luminosa delle quali, la S Normae, è una variabile del tipo Delta Cephei, che domina l'ammasso; NGC 6087 non è particolarmente ricco ed è composto da circa 35 stelle risolvibili con facilità anche con un binocolo 20x80. In un telescopio di piccole dimensioni è già completamente risolto anche a ingrandimenti piuttosto bassi, nonostante le sue dimensioni relativamente poco estese. Nel 1989 fra le sue stelle è stata scoperta una piccola nebulosa planetaria, in seguito catalogata come KoRe 1, in base alle iniziali dei cognomi degli scopritori; tuttavia la sua debole luminosità e le sue ridotte dimensioni suggeriscono che questa non sia legata fisicamente all'ammasso ma si trovi molto più lontana, apparendo fra le sue stelle per un effetto prospettico. La distanza dell’ammasso è stimata sui 2900 anni luce.

Più a nord, NGC 6067 è uno degli ammassi più brillanti della Norma e giace proprio in direzione della sua Nube stellare. Si trova al centro della costellazione, circa 4 gradi a sud della coppia di stelle γ1-γ2 Normae; l’osservazione a occhio nudo non è facile, poiché si confonde con la luminosità della nube, e bisogna ricorrere all’uso di un binocolo per individuarlo e per iniziare la risoluzione. Con l’ausilio di un piccolo telescopio la risoluzione è completa, con evidenti diverse decine di stelle anche a ingrandimenti piuttosto bassi. Le componenti più luminose sono di magnitudine 9, cui si aggiungono diverse decine di stelle fino alla magnitudine 12. NGC 6067 è un ammasso piuttosto ricco e concentrato, situato alla distanza di circa 4600 anni luce dal Sole, nel mezzo del Braccio del Sagittario; alcune stime tendono ad aumentare leggermente la distanza, fino a 5700 anni luce. La sua età è stimata sui 120 milioni di anni e infatti non contiene alcuna stella particolarmente massiccia e delle prime classi spettrali, da tempo già esplose come supernovae. Nella sua direzione sono state individuate numerose variabili cefeidi, così come nel già citato NGC 6087; diversi studi si sono così concentrati nel determinare se queste stelle siano o meno dei membri effettivi dell'ammasso o se si trovino nella sua direzione solo per un effetto prospettico. Gli studi più recenti indicano che le stelle QZ Normae e V340 Normae fanno effettivamente parte dell'ammasso, mentre GU Normae sarebbe una stella situata in primo piano e slegata da esso.

Poco più di un grado a sudest si trova invece Cr 299, un ammasso molto poco concentrato e relativamente esteso, fatto che complica la sua osservazione, benché sia formato da stelle di magnitudine 7 e 8. La sua età è stimata sui 3000 anni luce e appare come un leggero addensamento di stelle che potrebbe apparire più come un gruppo casuale che una vera associazione stellare. Meno di un grado a ovest di NGC 6067 si trova il debole ed evanescente ammasso NGC 6031, formato da una decina di stelle di magnitudine 11 e 12 e dunque molto difficile da individuare; è un ammasso di età media, stimata sui 200 milioni di anni, situato a circa 6800 anni luce, seppur con un ampio margine di incertezza dovuto al fatto che si presenta fortemente oscurato.

NGC 6087 è un brillante ammasso aperto visibile anche ad occhio nudo come una debole macchia chiara.

L’ammasso aperto NGC 6067.
Un altro grado più a est, sul bordo dei campi oscurati, si trova il ricco ma debole ammasso Tr 23; nonostante la sua scarsa brillantezza, risulta essere stato oggetto di diversi studi a causa della sua posizione nelle regioni interne della Via Lattea e per la sua posizione ad appena 70 anni luce dal piano galattico. Data la debolezza delle sue componenti, quest’oggetto è al di là della portata di binocoli o piccoli telescopi e occorrono almeno strumenti da 120mm per individuarlo come una macchia debole e leggermente allungata. Con telescopi da 150mm è possibile iniziare a risolvere alcune decine di stelle, in gran parte di magnitudine 12, che appaiono dominate da una stella di magnitudine 10,7 sul bordo sudorientale dell’ammasso; strumenti da 250mm permettono una piena risoluzione ed evidenzia le due concentrazioni principali che lo compongono. Nell’ammasso si contano diverse centinaia di componenti ed è infatti molto ricco; tuttavia il suo studio è reso difficoltoso da vari fattori, come il forte oscuramento da parte delle polveri interstellari, la grande distanza, e la ricchezza di campi stellari sovrapposti alla sua linea di vista. Si ritiene che la sua età sia di circa 600 o 900 milioni di anni, a seconda degli studi considerati, mentre la distanza è stimata fra 6200 e 7200 anni luce. È stato anche ipotizzato che il suo aspetto allungato, con i due addensamenti maggiori citati, sia dovuto alle forze di marea esercitate dalle interazioni galattiche presenti nelle regioni interne della Via Lattea.

L’AMMASSO DI GALASSIE DELLA NORMA

Sebbene questa parte di cielo sia nota soprattutto per gli oggetti interni alla Via Lattea, è da segnalare la presenza di un ammasso di galassie molto ricco e importante situato al confine fra la Norma e il Triangolo Australe; nonostante la gran parte delle galassie più appariscenti si trovino entro i confini di quest’ultima costellazione, l’ammasso è noto col nome di Ammasso della Norma, o con la sigla Abell 3627. La sua distanza è stimata sui 220 milioni di anni luce ed è pertanto uno degli ammassi di galassie massicci più vicini a noi; tuttavia, la sua osservazione presenta notevoli difficoltà a causa della cosiddetta zona di evitamento, ossia quella fascia lungo il piano della Via Lattea dove le polveri interstellari oscurano e nascondono la luce delle galassie poste al di là nella medesima direzione.

Quest’ammasso potrebbe rappresentare il termine estremo del Superammasso Idra-Centaur, col quale potrebbe essere in connessione senza soluzione di continuità; ciò che più conta tuttavia è che quest’ammasso rappresenterebbe l’addensamento dominante del cosiddetto...
Grande Attrattore, ossia un’apparente anomalia gravitazionale dello spazio intergalattico situato al centro del superammasso denominato Laniakea, una mega-struttura dell’Universo osservabile di cui fa parte anche il Superammasso della Vergine. L’Ammasso della Norma è formato in prevalenza da galassie grandi e vecchie, molte delle quali sono in collisione con le loro vicine e spesso emettono grandi quantità di onde radio.

Fra queste galassie vi è ESO 137-1, una spirale barrata peculiare visibile con strumenti da almeno 200mm di diametro. La galassia è stata studiata tramite il Telescopio spaziale Hubble nella banda dell’ultravioletto e dal telescopio spaziale Chandra nei raggi X ottenendo immagini che esaltano la presenza di una colossale scia che si disperde nello spazio intergalattico per una lunghezza di circa 260.000 anni luce, e che nell’insieme genera una suggestiva immagine che ricorda la morfologia di una medusa. La scia è costituita da un insieme di giovani stelle avvolte da gas, che raggiunge elevate temperature, strappate via dalla galassia tramite un fenomeno chiamato ram pressure stripping. Tale fenomeno è il risultato dello scontro tra i gas di una galassia e quelli presenti nello spazio intergalattico di un ammasso. In questo caso il campo gravitazionale di Abell 3627 allontana stelle, gas e polveri soprattutto dalle regioni periferiche di ESO 137-1 risparmiando, ma solo in parte, la materia situata nel nucleo galattico. Col tempo, la maggior parte delle polveri e del gas saranno allontanate e ESO 137-1 risulterà alla fine del tutto spogliata del materiale necessario alla formazione di nuove stelle.

Fra le galassie più appariscenti in questa direzione vi è ESO 137-18, di morfologia probabilmente lenticolare; il centro dell’ammasso invece è dominato da una breve sequenza di galassie dominata dalle due ellittiche giganti ESO 137-6 e ESO 137-10, entrambe visibili solo con strumenti da almeno 200mm di diametro, con cui appaiono come due macchiette circolari simili a due stelle sfuocate. Poco più a nord spicca la galassia ESO 137-7, di morfologia ellittica o lenticolare ed evidenziabile nelle fotografie. Una ripresa fotografica di dettaglio della zona rivela in verità un campo estremamente ricco di galassie di fondo, fra le quali compaiono le galassie dell’ammasso.

Una menzione finale merita la galassia ESO 97-13, nota come Galassia del Compasso; anch’essa fortemente oscurata, è una delle galassie più vicine a noi, essendo posta a una distanza di 13 anni luce. Si tratta di una galassia spirale, nonché una galassia attiva di tipo Seyfert 2, ed è anche alla portata di strumenti da 120mm; ciò nonostante, non venne individuata prima del 1977, proprio per via della sua posizione.
La costellazione della Norma è famosa per i suoi ammassi aperti. Oltre a quelli già descritti, se ne trovano numerosi altri presso il confine con l’Altare, a nord della nube stellare.
Fra questi uno dei più notevoli è NGC 6152, che si individua sul bordo orientale della costellazione, sul confine con l’Altare, le cui stelle possono essere utili per la sua individuazione; si può partire dalla stella ε Arae e spostandosi di circa 4 gradi in direzione ovest. Appare al binocolo come un debole oggetto esteso e irresolubile cui si sovrappongono al massimo un paio di stelline; con un piccolo telescopio è possibile risolvere diverse decine di stelle sparse fino alla magnitudine 12, mantenendo però bassi gli ingrandimenti per non perdere la visione d’insieme ed evitare di confonderlo con le numerose stelle di fondo. NGC 6152 è un ammasso di evoluzione intermedia piuttosto ricco ed esteso, situato alla distanza di 3400 anni luce dal Sole in corrispondenza del bordo esterno del Braccio del Sagittario, a breve distanza dal sistema di NGC 6193. Si tratta di un oggetto relativamente poco studiato; la sua età è stimata sui 446 milioni di anni ed è pertanto abbastanza evoluto; non contiene stelle delle prime classi spettrali e la maggior parte delle sue componenti appaiono bianco-gialle. Al suo interno è stata scoperta una variabile a eclisse, catalogata come VV Normae, con un periodo di 1,1 giorni.
Ancora più ad est, nell’Altare, è visibile NGC 6208, che appare immerso in un ricchissimo campo stellare della Via Lattea, in questo tratto piuttosto luminoso e relativamente poco oscurata; si trova circa 2,6 gradi a nordovest della stella ζ Arae e si confonde facilmente con le stelle di fondo. Attraverso un binocolo è difficilmente individuabile a causa della sua luminosità poco elevata, mentre con un telescopio da 120mm è possibile notare un debole addensamento di stelle di magnitudine 11 e 12; con strumenti di diametro maggiore si osservano alcune decine di stelle fino alla magnitudine 14, sempre difficili da contrastare rispetto alle numerose stelle di fondo. La sua distanza è stimata sui 3060 anni luce e viene dunque a trovarsi molto vicino al bordo più esterno del Braccio del Sagittario, in primo piano rispetto alla quasi totalità degli ammassi aperti visibili nella costellazione dell’Altare. La sua età è molto avanzata ed è stimata attorno a 1,17 miliardi di anni; ciò lo rende uno degli ammassi aperti più vecchi che si conoscano. Gli studi rivolti a determinare l’appartenenza delle stelle all’ammasso sono resi difficili dal numero elevatissimo di stelle visibili nella sua direzione; al suo interno non sono state individuate stelle con caratteristiche peculiari da un punto di vista chimico-fisico. Le stelle visibili nel campo di NGC 6208 sono state oggetto di studi fotometrici allo scopo di individuare eventuali pianeti extrasolari tramite il metodo del transito; su un campione di 60.000 stelle, delle quali 5000 misurate con estrema accuratezza, è stata individuata una sola stella, di classe spettrale G, che ha mostrato segnali di un possibile transito, non necessariamente però imputabile a un pianeta.

Fra gli altri ammassi della zona, escludendo il vasto sistema di NGC 6193 nell’Altare, ne sono due alla portata di telescopi da 200mm: Uno è NGC 6167, visibile due gradi e mezzo a ENE della stella γ Normae; è facilmente staccabile in quanto si prescinde da un evidente addensamento che si staglia sul bordo di un campo oscurato. Sebbene sia visibile anche con strumenti da 120mm come una macchia appena risolvibile, è con telescopi da 200mm a salire che si rivela pienamente: la quasi totalità delle sue stelle, di magnitudine dalla 11 alla 13, si dispone lungo una sorta di spessa barra orientata in senso est-ovest, terminante a ovest con una stella biancastra di magnitudine 7,3, che appartiene fisicamente all’ammasso ed è il suo membro più luminoso; una stella azzurra di magnitudine 8,4 delimita invece l’ammasso a sud. Come il vicino ammasso NGC 6193, anche questo appartiene alla regione dell’associazione Ara OB1a, con una distanza stimata sui 3900 anni luce e un’età leggermente superiore del suo ammasso compagno, stimata sui 10-20 milioni di anni; ciò indicherrebbe che la formazione stellare in questa regione si è protratta per alcune decine di milioni di anni.

NGC 6134 infine è anch’esso facile da staccare, grazie alla sua alta concentrazione; sebbene appaia piuttosto piccolo, è formato da una ventina di stelle di magnitudine 11 e 12, più numerose altre più deboli, ed è dominato a sud da una stella di magnitudine 9,3. La sua posizione è rintracciabile un grado e mezzo a nordest di γ Normae e già un quarto strumento da 80mm è in grado di rivelarne la presenza, sebbene resti difficilmente risolvibile; appare invece del tutto risolto con telescopi da 200mm. L’età dell’ammasso è stimata sugli 800 o 900 milioni di anni e contiene infatti diverse giganti rosse; fra le sue componenti sono state individuate sei variabili di tipo δ Scuti, utili per stimarne la distanza, ma l’oscuramento subito dalla luce di queste stelle rende lo studio più difficoltoso. Tendenzialmente si assume un valore di distanza sui 4100 anni luce, anche se sono stati proposti altri valori, come appena 2500 anni luce.

Altri ammassi visibili nella regione sono spesso molto piccoli oppure si confondono con grande facilità in mezzo ai ricchissimi campi stellari che compongono la nube stellare della Norma.
La Nave Argo
E dintorni
La Poppa settentrionale

Fra l’Unicorno, il Cane Maggiore e la Poppa si possono osservare numerosi ammassi stellari, molti dei quali anche alla portata di piccoli strumenti o persino di binocoli; i più brillanti sono infatti conosciuti già da alcuni secoli e compensano la totale assenza di stelle appa-riscenti in questa direzione, escludendo le due brillantissime stelle Sirio e Procione.

L’Arco della Carena

L’Arco della Carena prende il nome dalla forma arcuata che presenta il tratto di Via Lattea compreso nella costellazione della Carena, oscurato sul lato meridionale da dense nubi; ciò che però traspare nelle zone non oscurate è una concentrazione di ammassi e nebulose brillanti che non ha pari in tutta la volta celeste; oltre a ciò, l’intera regione è particolarmente ricca di stelle brillanti visibili anche dalla città.
L’area di cielo ad est di Sirio si presenta estremamente povera di stelle visibili ad occhio nudo: la costellazione dell’Unicorno è molto debole e la parte settentrionale della Poppa non contiene stelle apparscenti.
Ciò nonostante, questa regione è attraversata dal piano della Via lattea, rendendola così ricca in particolare di ammassi aperti, alcuni dei quali anche molto famosi, e di nebulose.

CARATTERISTICHE

Fra l’Unicorno, il Cane Maggiore e la Poppa si possono osservare numerosi ammassi stellari, molti dei quali anche alla portata di piccoli strumenti o persino di binocoli; i più brillanti sono infatti conosciuti già da alcuni secoli e compensano la totale assenza di stelle apparscenti in questa direzione, escludendo le due brillantissime stelle Sirio e Procione.
La maggior parte di questi ammassi si distribuiscono su due concentrazioni principali; la brillante stella Sirio è d’aiuto per identificarne la posizione.
La prima grande concentrazione si trova a nordest di Sirio, fra Unicorno e Cane Maggiore, e coincide con la regione della Nebulosa Gabbiano, osservabile visualmente solo con strumenti di diametro molto grande; a questa nebulosa sono associati diversi ammassi, in prevalenza di piccole dimensioni ma alla portata di telescopi da 120mm di diametro a salire.
La seconda concentrazione si trova ad est di Sirio, entro i confini della Poppa, ed è centrata sui due brillanti ammassi M46 e M47, che sono visibili e parzialmente risolvibili anche con un binocolo 10x50.
Numerosi altri ammassi sono sparsi sia nell’area di cielo che separa le due concentrazioni, sia a sud, lungo il confine fra la Poppa e il Cane Maggiore, fino ad arrivare al ricco gruppo di stelle brillanti dominato da Adhara e dagli astri della coda del Cane Maggiore.
Gran parte degli oggetti qui osservabili appartengono al nostro braccio di spirale minore, il Braccio di Oriione, oppure alle regioni interne del Braccio di Perseo.
Secondo alcuni studi, in direzione della Poppa il Braccio di Oriione presenta una ramificazione: uno sperone si dirige verso l’esterno, allargandosi rispetto alla curvatura del disco galattico e intersecando il Braccio di Per-
La parte settentriona-
le della Poppa, ad est
di Sirio, presenta un
notevole addensa-
mento di ammassi
aperti, alcuni dei quali
alla portata anche di
un binocolo.
se; l’altro sperone invece prosegue lungo la curvatura terminando in direzione della costellazione delle Vele.
L’utilizzo di apparecchiatura astrofotografica permette di ottenere delle immagini molto dettagliate non solo degli ammassi, ma soprattutto del grande sistema nebuloso che forma la Nebulosa Gabbiano, ricco di dettagli e circondato da numerosi gruppi stellari. Ad alta risoluzione inoltre è interessante riprendere le altre nebulose minori, come la famosa Elmo di Thor e le nebulose planetarie.

ATTORNO ALLA NEBULOSA GABBIANO

Il sistema della Nebulosa Gabbiano si trova al confine fra Unicorno e Canis Maggiore e comprende diversi ammassi stellari: la parte più centrale della nebulosa porta la sigla IC 2177. Sebbene molti degli ammassi qui presenti siano visibili anche con piccoli telescopi, la nebulosa in sé è osservabile parzialmente solo con strumenti di diametro superiore ai 150mm e filtri nebulosi. La Nebulosa Gabbiano presenta una forma arcuata con la caviglia aperta verso est; si tratta di una regione di idrogeno ionizzato molto allungata in senso nord-sud e costituisce la parte più brillante di un complesso nebuloso molecolare non illuminato che comprende le regioni oscure LDN 1657 e LDN 1658, poste rispettivamente ad ovest e ad est della nube luminosa. Associate a questa nube vi sono un gran numero di nebulose a riflessione, legate fisicamente al complesso e illuminate dalle stelle calde e blu della giovane associazione Canis Major OB1; queste nebulose a riflessione presentano delle forti emissioni del lontano infrarosso, in particolare nei pressi di alcune delle stelle più massicce dell’associazione, come HD 35637, Z Canis Majoris e HD 53623. Alcune delle stelle avvolte nelle nebulose a riflessione presentano dei dischi protoplanetari. Si crede che la gran parte dei fenomeni di formazione stellare nella regione siano stati indotti dall’esplosione di una supernova; fra gli indizi di ciò vi è la forma a semicerchio ben evidente osservando la Nebulosa Gabbiano e la sua vicina LBN 1036, che

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>M50</td>
<td>07h 02m 42s</td>
<td>-08° 23' 26"</td>
<td>A Ap</td>
<td>5,9</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Gum 1</td>
<td>07h 04m 25s</td>
<td>-10° 27' 18"</td>
<td>A Ap</td>
<td>7,8</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Ced 90</td>
<td>07h 05m 13s</td>
<td>-12° 19' 00"</td>
<td>Neb</td>
<td>-</td>
<td>12</td>
<td>N. Gabbiano</td>
</tr>
<tr>
<td>IC 2177</td>
<td>07h 05m 06s</td>
<td>-10° 42' 00"</td>
<td>Neb</td>
<td>-</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>NGC 2335</td>
<td>07h 06m 49s</td>
<td>-10° 01' 43"</td>
<td>A Ap</td>
<td>6,7</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Cr 465</td>
<td>07h 06m 50s</td>
<td>-10° 31' 12"</td>
<td>A Ap</td>
<td>7,7</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Cr 466</td>
<td>07h 06m 56s</td>
<td>-10° 42' 54"</td>
<td>A Ap</td>
<td>11,1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>NGC 2343</td>
<td>07h 08m 07s</td>
<td>-10° 37' 01"</td>
<td>A Ap</td>
<td>4,4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>NGC 2345</td>
<td>07h 08m 19s</td>
<td>-13° 11' 38"</td>
<td>A Ap</td>
<td>7,7</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Sh2-301</td>
<td>07h 09m 54s</td>
<td>-18° 30' 21"</td>
<td>Neb</td>
<td>-</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>NGC 2353</td>
<td>07h 14m 30s</td>
<td>-10° 15' 57"</td>
<td>A Ap</td>
<td>8,0</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>LBN 1036</td>
<td>07h 15m : 10° 40':</td>
<td>Neb</td>
<td>-</td>
<td>10</td>
<td>Elmo di Thor</td>
<td></td>
</tr>
<tr>
<td>NGC 2359</td>
<td>07h 18m 31s</td>
<td>-13° 13' 38"</td>
<td>Neb</td>
<td>-</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>NGC 2360</td>
<td>07h 17m 43s</td>
<td>-15° 38' 29"</td>
<td>A Ap</td>
<td>7,2</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>NGC 2367</td>
<td>07h 20m 05s</td>
<td>-21° 53' 03"</td>
<td>A Ap</td>
<td>7,9</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>NGC 2368</td>
<td>07h 21m 06s</td>
<td>-10° 22' 18"</td>
<td>A Ap</td>
<td>11,8</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>NGC 2374</td>
<td>07h 23m 56s</td>
<td>-13° 15' 48"</td>
<td>A Ap</td>
<td>8,0</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>NGC 2383</td>
<td>07h 24m 40s</td>
<td>-20° 56' 51"</td>
<td>A Ap</td>
<td>8,4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>NGC 2384</td>
<td>07h 25m 12s</td>
<td>-21° 01' 24"</td>
<td>A Ap</td>
<td>7,4</td>
<td>2,5</td>
<td></td>
</tr>
<tr>
<td>NGC 2396</td>
<td>07h 28m 03s</td>
<td>-11° 43' 11"</td>
<td>A Ap</td>
<td>7,4</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Sh2-305</td>
<td>07h 30m 04s</td>
<td>-18° 32' 13"</td>
<td>Neb</td>
<td>-</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>NGC 2409</td>
<td>07h 31m 37s</td>
<td>-17° 11' 26"</td>
<td>A Ap</td>
<td>7,3</td>
<td>2,3</td>
<td></td>
</tr>
<tr>
<td>NGC 2414</td>
<td>07h 33m 13s</td>
<td>-15° 27' 14"</td>
<td>A Ap</td>
<td>7,9</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Sh2-307</td>
<td>07h 35m 34s</td>
<td>-18° 35' 45"</td>
<td>Neb</td>
<td>-</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>M47</td>
<td>07h 36m 05s</td>
<td>-14° 28' 57"</td>
<td>A Ap</td>
<td>4,4</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>NGC 2421</td>
<td>07h 36m 12s</td>
<td>-20° 36' 44"</td>
<td>A Ap</td>
<td>8,3</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>NGC 2423</td>
<td>07h 37m 07s</td>
<td>-13° 52' 17"</td>
<td>A Ap</td>
<td>6,7</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Mel 71</td>
<td>07h 37m 34s</td>
<td>-12° 03' 18"</td>
<td>A Ap</td>
<td>7,1</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Mel 72</td>
<td>07h 38m 29s</td>
<td>-10° 42' 00"</td>
<td>A Ap</td>
<td>10,1</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Cr 467</td>
<td>07h 39m 18s</td>
<td>-10° 33' 00"</td>
<td>A Ap</td>
<td>11,8</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>NGC 2432</td>
<td>07h 40m 54s</td>
<td>-19° 04' 09"</td>
<td>A Ap</td>
<td>10,2</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>M46</td>
<td>07h 41m 47s</td>
<td>-14° 48' 36"</td>
<td>A Ap</td>
<td>6,1</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>NGC 2438</td>
<td>07h 41m 50s</td>
<td>-14° 44' 09"</td>
<td>N Pl</td>
<td>10,8</td>
<td>1,2</td>
<td></td>
</tr>
<tr>
<td>NGC 2440</td>
<td>07h 41m 55s</td>
<td>-18° 12' 32"</td>
<td>N Pl</td>
<td>9,4</td>
<td>1,2</td>
<td></td>
</tr>
<tr>
<td>M93</td>
<td>07h 44m 30s</td>
<td>-23° 51' 24"</td>
<td>A Ap</td>
<td>6,0</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>NGC 2455</td>
<td>07h 48m 59s</td>
<td>-21° 17' 53"</td>
<td>A Ap</td>
<td>10,2</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>NGC 2479</td>
<td>07h 55m 06s</td>
<td>-17° 42' 28"</td>
<td>A Ap</td>
<td>9,6</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>NGC 2506</td>
<td>08h 00m 02s</td>
<td>-10° 46' 11"</td>
<td>A Ap</td>
<td>7,6</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>NGC 2509</td>
<td>08h 00m 48s</td>
<td>-19° 03' 02"</td>
<td>A Ap</td>
<td>9,3</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>NGC 2539</td>
<td>08h 10m 38s</td>
<td>-12° 49' 09"</td>
<td>A Ap</td>
<td>6,5</td>
<td>21</td>
<td></td>
</tr>
</tbody>
</table>

La Nebulosa Gabbiano, talvolta indicata con la sigla IC 2177; in realtà questa sigla si riferisce solo alla parte centrale della nebulosa.
formano due lati di una cavità aperta sul lato meridionale del diametro di circa 3°. La sua distanza è stimata sui 3300 anni luce.

L’estremità meridionale della nebulosa è nota come Ced 90 ed è anche uno degli addensamenti più luminosi del complesso. Il gas della nube è in parte ionizzato e in parte illuminato per riflessione a causa della radiazione proveniente dalla stella HD 53623, una gigante blu di classe spettrale B1III e di magnitudine 7,99, facente parte dell’associazione OB Canis Major R1, compresa a sua volta nella già citata e più estesa associazione Canis Major OB1; la caratteristica principale di questa sotto-associazione è il legame con delle estese nebulose a riflessione.

La nube che rappresenta la testa del gabbiano è nota come Gum 1 (o anche Sh2-292), e comprende anche una parte di gas illuminata per riflessione, a sua volta indicata come vdB 93. Appare come una nube dalla forma rotondeggiante, con una densa linea scura che la attraversa da nord e una fascia luminosa arcuata che si protende in direzione sud; la sua luminosità le consente di essere fotografata con semplicità anche con degli strumenti amatoriali di media potenza e osservata tramite appositi filtri. La massa della nube è di circa 16.000 masse solari ed è posta ad ovest della lunga scia luminosa del corpo della Nebulosa Gabbiano; il gas che contiene è in parte ionizzato e in parte illuminato per riflessione a causa della radiazione proveniente in particolare da HD 53367, una gigante blu con forti emissioni estremamente giovane e massiccia; questa stella è la componente primaria di un sistema binario che comprende questa e una stella più piccola, circondata da un disco protoplanetario, la quale compie attorno alla prima un’orbita molto eccentrica. Anche queste stelle appartengono al sottogruppo Canis Major R1, così come le stelle che illuminano le vicine nebulose a riflessione vdB 91 e vdB 92, e più a sud vdB 88 e vdB 90.

Fra i numerosi ammassi aperti che circondano la nebulosa, vi è NGC 2335, che appare molto disperso; si individua nella parte settentrionale del complesso, e sebbene non sia alla portata di un binocolo, appare già evidente con uno strumento da 80mm come un ricco ed esteso raggruppamento di stelle di magnitudine 11 e 12, disperso su un diametro di 10 minuti d’arco. Dalla stella più luminosa, rossa e di magnitudine 9,45, sembrano originarsi due concatenazioni sinuose e parallele di stelle fino alla magnitudine 13, molto ben evidenti con telescopi da 150mm a salire, che dirigono verso NNW. Complessivamente, l’ammasso appare formato da un centinaio di componenti.

Poco più a sud si trova NGC 2343, che appare formato da una quindicina di stelle a partire dalla nona e decima magnitudine; si individua con un piccolo telescopio o con un grande binocolo, in cui si presenta come una piccola ma evidente concentrazione di astri. Le sue componenti sono destinate a formare una sorta di triangolo, che ad alti ingrandimenti ricorda perfettamente una miniatura delle stelle; con la stella più brillante, di ottava grandezza e di colore marcatamente rossastro, posta proprio nel vertice sudorientale; questa stella, a differenza di Aldebaran nel caso de stelle, appartiene realmente all’ammasso e non vi si trova davanti per un effetto prospettico. NGC 2343 è un ammasso molto giovane e moderatamente ricco, ben contrastato dai campi stellari di fondo e situato alla distanza di 3440 anni luce; la sua posizione ricade così nello stesso ambiente in cui si trova la Nebulosa Gabbiano, di cui fa fisicamente parte come membro dell’associazione Canis Major OB1. Si ritiene che l’ammasso faccia parte di una generazione precedente alle stelle più giovani di recente formazione attorno alla nebulosa. Le sue stelle più calde sono di classe spettrale B e sono nella fase di sequenza principale; la componente più luminosa invece è la gigante rossa HD 54387. Le sue dimensioni reali sono pari a circa 12 anni luce, entro cui sono contenute almeno 32 stelle fino alla classe spettrale F, fra le quali è presente una sola…

NGC 2343 ricorda la forma dell’ammasso delle stelle nel Toro. Immagine tratta dal DSS2.
La stella variabile.

I ricchissimi campi stellari visibili a ovest di quest’ammasso sono formati principalmente da stelle dalla magnitudine 12 fino alla 15 almeno, pertanto si rivelano con chiarezza solo con telescopi di diametro dai 150mm a salire. In mezzo a queste centinaia di deboli stelle è possibile intuire due deboli addensamenti anche relativamente estesi: il più grande è Cr 465, meno di 20’ a ovest del precedente ammasso; il secondo, più piccolo e posto a sudovest, è Cr 466. Entrambi gli ammassi sono tuttavia difficili da inquadrare e nella realtà non corrispondono appieno agli addensamenti osservabili direttamente sopra citati.

Lo spezzone nebuloso situato ad ovest della Nebulosa Gabbiano è indicato con la sigla LBN 1036; si estende per circa un grado dal vertice sudest dell’ammasso aperto NGC 2353 e nelle immagini CCD si mostra di un colore rossastro, tipico delle nebulose ad emissione e delle regioni HII. Apparentemente nella parte centrale della nebulosa si trova una stella di colore arancione di magnitudine 5,95, HD 56207, probabilmente però troppo lontana dalla nube per illuminarla direttamente.

Attraverso un binocolo è comunque osservabile, anche se appare solo come una debole macchia chiara. Con un telescopio da 150mm è perfettamente risolto in una trentina di stelle. Come i precedenti, anche NGC 2353 è un ammasso piuttosto giovane e ricco, ben contrastato dai campi stellari di fondo e situato alla distanza di 3650 anni luce e appare, sia apparentemente che realmente, sul bordo dell’associazione Canis Major OB1; tuttavia i due oggetti sarebbero ben distinti e non legati fisicamente. Infatti, mentre l’associazione OB si è formata meno di 3 milioni di anni fa a seguito di perturbazioni causate dall’esplosione di una supernova, NGC 3253, con un’età di 76 milioni di anni, appare decisamente molto più vecchio perché possa essere in relazione con l’associazione, pertanto si ritiene che sia stato formato a seguito di un importante evento di formazione stellare precedente.

A sud del complesso della Nebulosa Gabbiano, e in particolare due gradi e mezzo a sud di NGC 2343, si trova l’ammasso aperto NGC 2345. Con telescopi da 80mm appare come una sorta di piccola V, capovolta se osservata col nord in alto, formata da 6-7 stelle di magnitudine 10 e 11, dominata da una stella biancastra di magnitudine 9,45 a sud; il lato occidentale, formato in gran parte da stelle arancioni, appare indistinto o risolvibile con difficoltà. Una piena risoluzione è possibile con telescopi da 150mm, che permette di osservare una cinquantina di stelle fino alla magnitudine 13. Si tratta di un ammasso molto giovane, che ospita 7 stelle giganti e un gran numero di stelle Be, in massima parte con una bassa metallicità; contiene un totale di quasi 150 stelle di classe spettrale B sparse entro un diametro di oltre mezzo grado, ormai perse attorno al nucleo dell’ammasso. La sua età è stimata sui 56 milioni di anni luce e la sua distanza è di circa 8150 anni luce, dunque sul Braccio di Perseo e ben più distante del sistema della Nebulosa Gabbiano, con cui non è evidentemente legato.

A breve distanza verso ovest si trova la celebre nebulosa NGC 2359, meglio nota come Elmo di Thor a causa delle sue protuberanze gassose che si diramano dalla parte centrale, di aspetto emisferico. Per reperire la sua esatta posizione in cielo si può seguire l'allineamento tra le stelle ι e γ Canis Majoris e poi, proseguendo di circa due volte la loro distanza, deviare la direzione di circa 10° verso est. Al di fuori della portata di qualunque binocolo, è invece visibile attraverso telescopi di aperture di almeno 120mm, nei quali si presenta come una macchia irregolare. Per poter apprezzare maggiori dettagli è necessario uno strumento di almeno 250mm di diametro. In fotografia si rivela essere un oggetto notevole. Al
centro di questa nebulosa si trova una caldissima stella di Wolf-Rayet, che la illumina eccitandone l'idrogeno e ionizzandolo; questa stella, distante circa 12.000 anni luce, è catalogata come WR 7, o HD 56925, possiede una magnitudine pari a 10,40 e sarebbe la principale responsabile della formazione della nebulosa, composta dal gas espulso dalla stella stessa. Altre ipotesi per spiegare i getti a forma di arco osservati nella nube comprendono quella secondo cui la stella centrale circa 7 milioni di anni fa sia stata una supergigante rossa, il cui moto proprio in direzione est ha causato un'onda d'urto allo scontro fra il forte vento stellare e il mezzo interstellare circostante, molto denso a causa della presenza di una nube molecolare, causando la struttura visibile; altre ipotesi ancora menzionano altre stelle come responsabili della struttura arcuata della nebulosa.

Poco più di un grado ad est di questa nebulosa si trova l’ammasso aperto NGC 2374, che può apparire un po’ difficile da staccare dai campi di fondo ma comunque distinguibile. Con strumenti da 80mm appare come un leggero addensamento di una dozzina di stelle di magnitudine 12, comprese entro un diametro di 3 minuti d’arco; sono distinguibili due sottogruppi, dove quello di nordest risulta il più popoloso. Con telescopi da 150mm la risoluzione è completa, sebbene strumenti ancora più grandi possano rivelare anche componenti di magnitudine 14. Si tratta di un ammasso relativamente giovane, attorno ai 75 milioni di anni, ed è formato da almeno una quarantina di stelle, le più massicce e calde delle quali sono di classe B9; altri studi indicano per quest’ammasso un’età maggiore, fino a 280 milioni di anni. La sua distanza è invece stimata sui 4300 anni luce.

Esattamente tre gradi e mezzo ad est della stella γ Canis Majoris, lungo la scia luminosa della Via Lattea, si trova l’ammasso NGC 2360 (noto anche con la sigla C58), soprannominato Ammasso di Caroline in quanto venne scoperto da Caroline Herschel, sorella del celebre astronomo; è un oggetto di piccole dimensioni, le cui stelle principali sono di decima magnitudine. Attraverso un binocolo 10x50 è visibile come una piccola macchia chiara e ben distinta, ma la sua risoluzione in stelle è impossibile; appare invece in un telescopio da 80mm come un fitto gruppo di deboli stelline, di forma allungata in senso est-ovest e con una stella bianca di magnitudine 8,9 nell'estrema propaggine orientale. Un telescopio da 200mm di apertura e ingrandimenti sui 100x lo risolve completely in decine di stelle. NGC 2360 è un ammasso molto ricco e concentrato, sebbene non risulti particolarmente esteso o luminoso; si trova alla distanza di 6152 anni luce ed è quindi situato sul Braccio di Perseo, in un punto in cui questo inizia a presentare segni di disgregazione a causa della sua terminazione. Si tratta di un ammasso di età intermedia, simile alle ladi e al Presepe, formatosi probabilmente circa 560 milioni di anni fa, anche se non mancano stime di un’età maggiore, fino a 2,2 miliardi di anni; contiene una quindicina di giganti rosse evolute, fra le quali una risulta essere variabile. La sua stella più luminosa possiede una magnitudine pari a 10,4, mentre le componenti più deboli, in massima parte stelle di classe spettrale G e K, arrivano alla magnitudine 17.

AMMASSI NELLA POPPA

La maggiore concentrazione di ammassi della zona ricade per intero nella costellazione della Poppa, il cui settore settentrionale è, come visto, povero di stelle apparenti ma attraversato in pieno dal piano della Via Lattea.

Fra questi spicca M46, che si individua nel nord della costellazione; non vi sono tuttavia stelle particolarmente rilevanti nelle sue vicinanze. L’unico di una certa importanza è la stella 2 Argus Navis (oggi 2 Puppis), di sesta magnitudine. L’oggetto vicino più importante rimane comunque l’ammasso M47, che si trova circa un grado ad ovest di M46. M46 è ben visible con un binocolo, che ne permette la parziale risoluzione in stelle; un telescopio da 150mm di apertura e ingrandimenti sui 100x lo risolve completamente in decine di stelle. NGC 2360 è un ammasso molto ricco e concentrato, sebbene non risulti particolarmente esteso o luminoso; si trova alla distanza di 6152 anni luce ed è quindi situato sul Braccio di Perseo, in un punto in cui questo inizia a presentare segni di disgregazione a causa della sua terminazione. Si tratta di un ammasso di età intermedia, simile alle ladi e al Presepe, formatosi probabilmente circa 560 milioni di anni fa, anche se non mancano stime di un’età maggiore, fino a 2,2 miliardi di anni; contiene una quindicina di giganti rosse evolute, fra le quali una risulta essere variabile. La sua stella più luminosa possiede una magnitudine pari a 10,4, mentre le componenti più deboli, in massima parte stelle di classe spettrale G e K, arrivano alla magnitudine 17.

La coppia di ammassi aperti M46 e M47 è osservabile con facilità anche alle latitudini molto settentrionali.
L'ammasso aperto M46 è famoso per la presenza nella sua direzione di una brillante nebulosa planetaria, ben visibile anche con piccoli strumenti.

Scopio da 150-200 mm lo risolve completamente ed è in grado di mostrare pure la sua caratteristica più celebre, ossia la nebulosa planetaria, nota come NGC 2438, che si trova apparentemente nella sua direzione. M46 si trova a una distanza di circa 5400 anni luce dalla Terra e ha un'età stimata a 300 milioni di anni. L'ammasso contiene circa 500 stelle, di cui 150 di magnitudine tra 10 e 13; il suo diametro angolare è di circa 27', mentre il suo diametro reale è di 30 anni luce. Studiando il suo spostamento verso il rosso si deduce che l'ammasso si allontana da noi alla velocità di 41,4 km/s. Caratteristica interessante di quest'ammasso, come detto prima, è la presenza di una nebulosa planetaria, catalogata come NGC 2438, che sembra trovarsi apparentemente al suo interno. In realtà essa è più vicina di M46: la sua distanza è stata stimata di 2900 anni luce e si trova sovrapposta all'ammasso per effetto prospettico. La stella centrale della nebulosa ha magnitudine 17,7.

Il vicino M47 è più facile da osservare, essendo visibile anche ad occhio nudo; la sua estensione angolare è all'incirca pari a quella della Luna piena. Con un buon binocolo i due ammassi sono ben visibili, dando vita ad un magnifico spettacolo; un binocolo è anche sufficiente per risolverlo completamente in stelle. Poco più a nord si osserva anche un altro ammasso, meno luminoso, NGC 2423. M47 si trova a una distanza di 1600 anni luce dalla Terra ed ha un'età stimata intorno ai 78 milioni di anni; è quindi un ammasso abbastanza giovane e la sua popolazione stellare è simile a quella delle Pleiadi. Circa 50 stelle si trovano all'interno di quest'ammasso, la più brillante delle quali è una gigante di tipo B2 di magnitudine 5,7. Nel gruppo si conoscono due stelle arancioni, di magnitudine 7,83 e 7,93 che, se sono membri effettivi dell'ammasso, devono essere 200 volte più luminose del Sole. La densità media di M47 è di 0,62 stelle per parsec cubo, ma nelle regioni centrali questa sale fino a 16. M47 si allontana da noi alla velocità di circa 9,7 km/s.

Mezzo grado a nord di M47 si trova NGC 2423; è un ammasso circondato da un ricco campo stellare e forma un bel trio con due precedenti oggetti. È visibile anche con un binocolo 10x50, in cui si mostra come un alone chiaro e nebuloso con qualche debole stellina al suo interno; un telescopio da 80mm consente di risolverlo quasi completamente in stelle, mentre una visione molto ben definita e ricca è possibile con strumenti da 200mm, in cui sono evidenti decine di stelle. NGC 2423, benché luminoso e di facile risoluzione, si presenta decisamente meno ricco e concentrato dei due ammassi vicini e le sue stelle principali sono di nona magnitudine; se la stella di una sua distanza, pari a 2500 anni luce, è corretta, risulta essere più vicino di M46, ma più lontano di M47, il quale ha anche le componenti più brillanti fra i tre ammassi. Da un punto di vista della distribuzione dunque questi tre oggetti non sono legati fisicamente e si presentano vicini solo per un puro effetto prospettico. Con un'età di oltre 700 milioni di anni, NGC 2423 appartiene alla classe degli ammassi di età intermedia, più avanzata di quella delle Íadi e del Presepe; la stella più calda in esso presente possiede la classe spettrale B8, mentre abbandonano le stelle di classe A e diverse stelle evolute che hanno abbandonato la sequenza principale. Fra queste è presente la stella NGC 2423-3, una gigante rossa attorno alla quale si è scoperto che orbita un pianeta di tipo gioviano, con 10,6 volte la massa del pianeta Giove.

Circa tre gradi a nord di M47, a metà via fra l'ammasso e la stella α Monocerotis, si trova il piccolo ammasso Mel 71; sebbene sia ben staccabile dai campi di fondo, le sue componenti sono piuttosto deboli, così con telescopi da 100-120mm appare come un alone risolvibile parzialmente, con tre stelle di magnitudine 9 che dominano il lato meridionale. Con strumenti da 200mm la sua risoluzione è quasi completa e sono visibili fino a una cinquantina di stelle fino quasi alla magnitudine 14. Si tratta di un ammasso moderatamente ricco, con un'età stimata di 900 milioni di anni; il campo stellare circostante mostra un'elevata densità di giganti rosse, molte delle quali legate fisicamente all'ammasso. La sua distanza è stimata sui 6800 anni luce; data anche la sua distanza angolare dall'equatore galattico, è possibile stimare una distanza di 530 anni luce dal piano della...
Via Lattea.

Più debole ancora è l’ammasso Mel 72, visibile a metà strada fra il precedente e la stella α Monocerotis; come riferimento si può utilizzare una stella arancione di magnitudine 7 (HD 61277) visibile nelle immediate vicinanze dell’ammasso. Le sue componenti sono molto deboli, pertanto con piccoli strumenti appare solo come un debole bagliore nebuloso appena 4 minuti d’arco a sudest di questa stellina; con telescopi da 150mm si può iniziare la risoluzione, che resta però parziale, mentre con telescopi da 250mm è sostanzialmente completa. L’ammasso è formato da stelle di magnitudine 13 e 14 e si presenta piuttosto allungato a nord del suo nucleo. Quest’ammasso è formato da almeno un centinaio di stelle fino alla magnitudine 15 e mostra un’età un po’ maggiore del precedente, stimata a seconda degli studi fra 1 miliardo e 1,6 miliardi di anni; la sua distanza è invece stimata sui 10.400 anni luce, che lo colloca in una regione periferica esterna del Braccio di Perseo.

Poco più di un grado a sudovest di M47 si trova invece NGC 2414, un ammasso poco concentrato e dominato, se non addirittura oscurato, da una stella ipergigante azzurra di magnitudine 8,2 (HD 60308) visibile in direzione del suo centro. Con un telescopio da 80mm è già risolvibile e appare come un ammasso modesto, formato da una decina di stelle di magnitudine 11 e 12 raccolte attorno alla già citata stella dominante; strumenti anche di diametro molto più grande non permettono di andare oltre la semplice risoluzione di queste stelle, poiché non vi sono altre componenti da risolvere oltre la magnitudine 13. L’ammasso è formato da stelle molto giovani e con un’età non superiore a 9,5 milioni di anni, testimoniato anche dal fatto che molte di queste presenterebbero dei dischi di accrescimento; sono presenti anche stelle di tipo Be, ma allo stesso tempo la sua natura di ammasso fisicamente reale viene anche messa in dubbio. Altri studi ancora lo indicano come una vera e propria associazione OB, legata al complesso di nubi molecolari della superbolla in espansione GS234-02, cui sono associate numerose nebulose come Sh2-299, Sh2-300, Sh2-305, Sh2-306 e Sh2-307; secondo questi studi, a quest’ammasso sono legate 29 stelle molto giovani di classe O e B originatesi durante un primo ciclo di formazione stellare. Il secondo ciclo di formazione invece è quello che sta avendo luogo nella parte meridionale e più calda della superbolla, in cui si trova la gran parte delle nebulose. L’intero complesso dista 13.700 anni luce.

Circa due gradi e mezzo a sudovest di M47, in direzione di un campo stellare molto ricco, si osserva NGC 2409; è formato da meno di una decina di stelle molto ravvicinate. Le componenti più luminose sono di magnitudine 9 e sono quindi al limite di un binocolo 10x50; tuttavia attraverso questo strumento appare più simile a una stellina sfuocata che a un gruppetto di stelle deboli. L’ammasso può essere risolto facilmente con un telescopio da 120mm e ingrandimenti elevati, dove si notano 6-8 stelline molto vicine fra loro. Nella parte settentrionale si trova una stella di colore rosso, che contrasta fortemente con l’azzurro delle altre componenti dell’ammasso. L’aspetto e le pochissime stelle componenti farebbe quasi pensare che si tratti di un asterismo, ossia di un gruppo di stelle vicine solo per un effetto prospettico, piuttosto che ad un gruppo di stelle fisicamente legato. Tuttavia quest’oggetto è compreso nel catalogo degli ammassi aperti fisicamente reali ed è noto per esso un valore di distanza di circa 7500 anni luce; ciò lo colloca probabilmente sul Braccio di Perseo, nel suo tratto terminale. La sua età è stimata sui 10 milioni di anni ed è pertanto molto giovane, data anche la presenza di diverse stelle azzurre.

Fra i numerosi ammassi meno appariscenti in questo tratto di cielo vi è NGC 2432, situato quasi 5 gradi a sud di M46; è un oggetto sfuggente, sebbene sia rintracciabile anche con telescopi da 100mm, dove appare come un gruppetto di stelle formato da due brevi concatenazioni parallele di 3-4 astri di magnitudine 12, poco a sudovest di una stella azzurra di magnitudine 8,2. Con strumenti da 200mm e ingrandimenti molto spinti l’ammasso è completamente risolto nelle due serie sopra citate, alle cui componenti di magnitudine 12 se ne aggiungono poche altre fino alla magnitudine 14. L’am-
masso è formato da una ventina di stelle racchiuse in un diametro di appena 2 minuti d’arco, e contiene principalmente stelle di classe A e F, per un’età stimata sui 630 milioni di anni; la sua distanza è invece indicata come di circa 6500 anni luce e giace pertanto sul Braccio di Perseo.

Meno di un grado a NNE si trova la nebulosa planetaria NGC 2440, rintracciabile anche circa 4 gradi a sud di M47. Si può notare anche con strumenti da 120mm di diametro, pur senza poter osservare particolari di rilievo. La sua stella centrale è probabilmente la nana bianca con la più alta temperatura superficiale conosciuta, attorno ai 200.000 K e una magnitudine di 17,5; la sua distanza è stimata sui 4000 anni luce.

NGC 2421 è invece visibile più a sud; per rintracciarlo si può fare riferimento a una stella bianca di magnitudine 4,4 e non inclusa nella nomenclatura di Bayer (HD 60532). È anche alla portata di un binocolo 10x50, con cui appare come una debolissima macchia chiara irregolare. Con un telescopio da 200mm l’ammasso appare molto ricco, con una maggiore concentrazione sul lato nordoccidentale. Le sue dimensioni reali, a una distanza di 9500 anni luce, sono pari a 14 anni luce, ma permangono molte incertezze anche sulla sua reale distanza, dato che in certi studi si sono stati analizzati in lavori ad ampio raggio su gruppi di ammassi aperti; ciò nonostante, è stato indicato un valore di distanza pari a 6600 anni luce, che lo posizionerebbe nel Braccio di Perseo assieme a tanti altri ammassi visibili nei dintorni.

NGC 2479 è un altro ammasso di difficile osservazione a causa della sua scarsa concentrazione; si individua partendo dalla stella 16 Puppis e spostandosi a nord-vest fino alla stella bianca HD 65810, di magnitudine 4,6, proseguendo ancora per poco più di un grado nella medesima direzione. È formato da un gruppetto di poche decine di stelle di magnitudine 11 e 12 sparse su un diametro di 10 minuti d’arco e, come il precedente, si mostra più facilmente con telescopi di diametro medio-grande (da 150mm a salire) e bassi ingrandimenti. Gran parte delle sue componenti sono bianco-gialle e ciò ha permesso di indicarne un’età che si aggira su 1 miliardo di anni; la sua distanza è invece stimata sui 3900 anni luce, dunque più vicino rispetto a molti altri ammassi visibili nei dintorni e situato presso il bordo esterno del Braccio di Oriione.

Sempre utilizzando la stella HD 65810 come riferimento e spostandosi meno di un grado a sud, si trova l’ammasso NGC 2509; decisamente più facile da staccare del precedente, è al limite della visibilità con un binocolo 10x50, con cui appare come una debolissima macchia chiara irregolare. Con un telescopio da 80mm sono risolvibili le sue stelle principali, di magnitudine 11 e 12, che si mostrano su un fondo che permane nebuloso; telescopi da 120mm permettono una quasi totale risoluzione a forti ingrandimenti, mentre con strumenti da 200mm l’ammasso appare molto ricco, con una maggiore concentrazione sul lato nordoccidentale. Le sue dimensioni reali, a una distanza di 9500 anni luce, sono pari a 14 anni luce, ma permangono molte incertezze anche sulla sua reale distanza, dato che in certi studi si
propone una distanza di soli 3000 anni luce; stesso problema persiste per la stima dell’età, con studi che ne hanno indicato un valore di appena 8 milioni di anni, mentre studi più recenti hanno riportato un’età di 900 milioni di anni. Altri studi ancora hanno inoltre evidenziato delle particolarità nel turn-off di sequenza principale esteso di quest’ammasso (ossia il punto del diagramma in cui le componenti dell’ammasso “deviano” verso lo stadio di gigante) che non si rileva in ammassi della medesima età, dando per valida la stima di 900 milioni di anni; questo fatto è stato interpretato come l’effetto della rotazione stellare delle componenti e presenta pertanto un unicum fra gli ammassi della medesima età all’interno della Via Lattea.

Nell’estremo nord della Poppa si trova NGC 2539, visibile in un’area completamente priva di stelle apparenti (la stella 16 Puppis, visibile poco a sudest, è infatti di magnitudine 4,7); la presenza, 7 gradi a SSW, del ben noto gruppo di M46 e M47 contribuisce a rendere questa zona ancora meno conosciuta ed oscura. In realtà, quest’ammasso è ben visibile anche con un piccolo binocolo, nel quale si presenta come una macchia chiara priva di stelle, dominata però a sudest da una stella giallognola di magnitudine 4,76, che parzialmente le oscura; un telescopio da 100mm è comunque sufficiente per risolverlo completamente in stelle. NGC 2539 è un ammasso moderatamente ricco e compatto, anche se è formato da stelle piuttosto deboli; la sua distanza è stimata attorno ai 4440 anni luce. L’ammasso possiede una sessantina di stelle, tutte comprese fra le magnitudini undicesima e tredicesima, racchiuse in un diametro apparente di 15'; se si considerano le stelle fino alla quindicesima grandezza, il numero di componenti triplica, raggiungendo le 160 unità in un diametro di 21', corrispondenti a 24 anni luce. NGC 2539 si trova a 760 anni luce dal piano galattico, così risulta poco oscurato dalla polvere interstellare; la sua età è stimata sui 650 milioni di anni, rendendosi così molto simile ad altri ammassi ben noti, come le Ladi, il Prespe e NGC 6633. La percentuale di carbonio e azoto determinata nelle sue giganti rosse è risultata essere praticamente simile a quella delle giganti delle Ladi; mancano inoltre stelle dalle caratteristiche esotiche, come le blue stragglers.

Poco più di 3 gradi a nordovest, oltre il confine con l’Unicorno, si trova l’ammasso NGC 2506 (noto anche come C54). Contiene solo stelle piuttosto deboli, così anche la sua osservazione con piccoli strumenti risulta deludente, benché sia comunque rintracciabile anche con un binocolo 10x50. Per recuperarlo si può partire da M48 e poi dirigersi in direzione sudovest per circa 6,5°. Un telescopio da 100mm di apertura e un buon ingrandimento consentono di rilevare alcune delle sue componenti, le più luminose delle quali sono di decima e undicesima magnitudine; lo sfondo dell’ammasso si presenta per più di aspetto nebuloso, anche a ingrandimenti maggiori, con due concentrazioni a est e a ovest. La sua distanza è stimata attorno ai 11.300 anni luce ed è quindi situato in una zona esterna della Via Lattea, probabilmente in corrispondenza del Braccio di Perseo, in un tratto che presenta segni di disgregazione a causa della sua terminazione. Si tratta di uno degli ammassi aperti più vecchi conosciuti: la sua età è stata stimata attorno a 1,1 miliardi di anni, alla pari di altri ammassi antichi, come NGC 752 e NGC 2420, sebbene comunque più giovani di altri oggetti ancora più particolari, come M67. Le sue stelle sono estremamente povere in metalli, fattore dovuto alla sua distanza dal centro galattico, dato che più un ammasso è distante da esso e più le sue stelle hanno una bassa metallicità; inoltre si trova circa 1600 anni luce a nord del piano galattico, il che lo rende molto simile ad altri ammassi aperti sul bordo del disco galattico, come NGC 2420 nei Gemelli. Il numero delle componenti dell’ammasso si aggira sulle 800 circa, la...
maggior parte delle quali hanno una magnitudine apparente meno luminosa della tredicesima; le sue stelle di sequenza principale sono in massima parte stelle doppie. La sua orbita attorno al centro galattico è relativamente poco eccentrica, suggerendo che non si è allontanato molto dal sito di sua formazione.

Più a sud, nella parte centro-settentrionale della costellazione della Poppa e un grado a nordovest della stella ξ Puppis, si trova M93, il terzo degli ammassi di Messier; è uno dei più piccoli, ma allo stesso tempo uno dei più brillanti della Poppa. È al limite estremo della visibilità ad occhio nudo: si può provare ad individuarlo se si osserva in una notte particolarmente nitida e buia, a patto di conoscerne esattamente la posizione; con un binocolo 10x50 appare di forma leggermente allungata e già si risolvono alcune delle componenti, che diventano una trentina con un 20x80. Un piccolo telescopio amatoriale come un 140mm consente di risolverlo completamente in decine di minute stelline, mentre un telescopio di grande diametro come un 300mm rivela circa un centinaio di componenti fino alla tredicesima magnitudine. M93 è a una distanza di circa 3600 anni luce dalla Terra, dunque sul bordo esterno del nostro braccio di spirale, il Braccio di Orione; stime sull’età indicano che si tratta di un ammasso di età intermedia, sui 400 o 450 milioni di anni. Studi sulla sequenza principale delle stelle dell’ammasso hanno evidenziato che questa si presenta relativamente “spessa”, in modo simile, sebbene non così evidente, a quella degli ammassi globulari; una possibile spiegazione presentata è quella secondo cui alcune stelle si sarebbero formate su un periodo di tempo prolungato, sebbene ciò venga considerato tendenzialmente irrealistico per la quasi totalità degli ammassi aperti.

Interessante infine la coppia di piccoli ammassi NGC 2383 e NGC 2384. Il primo è anche il più ricco e attraverso un binocolo appare come una debole macchia chiara sotto un cielo molto buio, su cui dominano alcune stelle di magnitudine 9; la sua risoluzione è appena accennata in un telescopio da 100mm di apertura, mentre una buona risoluzione è possibile con strumenti di almeno 200mm di diametro e ingrandimenti medio-alti. La gran parte delle componenti ha una magnitudine meno luminosa della 12. NGC 2384 è visibile anche con un binocolo, ma la sua risoluzione è impossibile; lo strumento ideale per la sua osservazione è un telescopio con almeno 100mm di apertura. Si presenta diviso in due parti distinte, formato da due archi di stelle speculari fra loro, con la stella più luminosa disposta in entrambi i casi nella parte occidentale. Ricorda a colpo d’occhio la forma di una farfalla ad ali spiegate. Entrambe le componenti principali, di magnitudine 9, sono doppie. NGC 2383 dista sui 5400 anni luce e ha un’età di 200 milioni di anni, mentre NGC 2384 si trova a 6900 anni luce ed è un ammasso molto giovane, di appena 8 milioni di anni; la componente principale di quest’ultimo è HD 58509, una gigante blu di classe B2 III e una magnitudine pari a 8,58; segue HD 58465, una supergigante blu di classe B7 I con magnitudine 8,91.
VERSICO IL CENTRO DELLA POPPA

Altri ammassi aperti si concentrano a sud della coppia di stelle ρ e ξ Puppis e ad est di η Canis Majoris (Adhara); sebbene la gran parte non siano particolarmente appariscenti, ve ne sono alcuni di facile osservazione.

Circa un grado e mezzo a sudest di ξ Puppis, non molto lontano dal già citato ammasso M93, si può osservare la nebulosa NGC 2467, una delle più appariscenti della costellazione; è visibile discretamente anche con un telescopio da 120-150mm di apertura, mentre l'ammasso aperto associato, per altro poco concentrato, contiene alcune stelle di nona magnitudine ed è identificato con la sigla Cr 164. Le sue stelle sono tutte azzurre e sono responsabili della ionizzazione dei gas della nube circontante; possono essere notate anche con strumenti da 80 o 100mm e appaiono dominate dalla stella V402 Puppis, una variabile di tipo α Cygni di magnitudine attorno a 9,2. Si ritiene in realtà che in questa direzione siano presenti due gruppi di stelle distinti e sovrapposti lungo la medesima linea di vista; la loro disposizione è interessante in quanto mostra un tratto della struttura a spirale della nostra Galassia: quelle facenti parte della generazione più vecchia sono disperse (Puppis OB2) lungo il Braccio Esterno ad una distanza di 13,700 anni luce da noi, mentre ad una distanza di 8150 anni luce si trova un altro gruppo di stelle più giovani, denominato

PRINCIPALI OGGETTI NON STELLARI

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tr 6</td>
<td>07h 26m 26s</td>
<td>-24° 11' 24"</td>
<td>A Ap</td>
<td>10,0</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Tr 7</td>
<td>07h 27m 22s</td>
<td>-23° 57' 00"</td>
<td>A Ap</td>
<td>7,9</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Cr 140</td>
<td>07h 23m 54s</td>
<td>-32° 12' 00"</td>
<td>A Ap</td>
<td>3,5</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>NGC 2439</td>
<td>07h 40m 45s</td>
<td>-31° 41' 33"</td>
<td>A Ap</td>
<td>6,9</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>NGC 2453</td>
<td>07h 47m 34s</td>
<td>-27° 11' 41"</td>
<td>A Ap</td>
<td>8,3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>NGC 2467</td>
<td>07h 52m 30s</td>
<td>-26° 25' 48"</td>
<td>Neb</td>
<td>7,1</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>NGC 2482</td>
<td>07h 55m 10s</td>
<td>-24° 15' 17"</td>
<td>A Ap</td>
<td>7,3</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>NGC 2483</td>
<td>07h 55m 39s</td>
<td>-27° 53' 13"</td>
<td>A Ap</td>
<td>7,6</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>NGC 2489</td>
<td>07h 56m 15s</td>
<td>-30° 03' 39"</td>
<td>A Ap</td>
<td>7,9</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>NGC 2520</td>
<td>08h 04m 58s</td>
<td>-28° 08' 48"</td>
<td>A Ap</td>
<td>6,5</td>
<td>22</td>
<td>(NGC 2527)</td>
</tr>
<tr>
<td>NGC 2533</td>
<td>08h 07m 04s</td>
<td>-29° 53' 02"</td>
<td>A Ap</td>
<td>7,6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>NGC 2567</td>
<td>08h 18m 29s</td>
<td>-30° 38' 44"</td>
<td>A Ap</td>
<td>7,4</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>NGC 2571</td>
<td>08h 18m 56s</td>
<td>-29° 44' 57"</td>
<td>A Ap</td>
<td>7,0</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>NGC 2580</td>
<td>08h 21m 28s</td>
<td>-30° 17' 36"</td>
<td>A Ap</td>
<td>9,7</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>NGC 2587</td>
<td>08h 23m 24s</td>
<td>-29° 30' 31"</td>
<td>A Ap</td>
<td>9,2</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>NGC 2588</td>
<td>08h 23m 10s</td>
<td>-32° 58' 31"</td>
<td>A Ap</td>
<td>11,8</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Cr 187</td>
<td>08h 24m 12s</td>
<td>-29° 10' 12"</td>
<td>A Ap</td>
<td>9,6</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>NGC 2627</td>
<td>08h 37m 14s</td>
<td>-29° 57' 01"</td>
<td>A Ap</td>
<td>8,4</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>NGC 2658</td>
<td>08h 43m 27s</td>
<td>-32° 39' 22"</td>
<td>A Ap</td>
<td>9,2</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Cr 196</td>
<td>08h 45m 02s</td>
<td>-31° 37' 30"</td>
<td>A Ap</td>
<td>10,5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Cr 198</td>
<td>08h 45m 18s</td>
<td>-31° 46' 00"</td>
<td>A Ap</td>
<td>11,2</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>
Puppis OB1, che appartiene al Braccio di Perseo, più prossimo a noi. La distanza della nebulosa è invece a sua volta stimata sui 13.700 anni luce, pertanto apparterrebbe al braccio di spirale più remoto dei due ed è legata all’associazione Puppis OB2.

Meno di un grado a nordest si può notare un piccolo raggruppamento di stelle di magnitudine 10 e 11, che formano l’ammasso Tr 9; ben poco è noto su questo gruppo e non sembra essere mai stato oggetto di studio approfondito.

Poco più di un grado a sudovest della nebulosa si trova l’ammasso NGC 2453; con un binocolo 10x50 si mostra come una piccola macchia irrisolvibile e nebulosa, mentre un telescopio da 80mm è già in grado di mostrare le prime componenti risolte. L’ammasso appare pienamente risolvibile con telescopi da 150mm e ingrandimenti medio-alti. Quest’oggetto è stato a lungo oggetto di studio in quanto uno dei pochi in cui si può osservare una nebulosa planetaria nelle sue immediate vicinanze: questa nebulosa è nota come NGC 2452 e si trova sul bordo meridionale dell’ammasso; uno studio in cui si è analizzata la velocità radiale della nebulosa e dell’ammasso ha permesso di scoprire che i due oggetti non sono legati fra loro: la nebulosa infatti è posta in primo piano e sarebbe posta a una distanza di circa 11.400 anni luce, in corrispondenza di un addensamento stellare discretemente massiccio che si osserva proprio in direzione dell’ammasso. NGC 2453 invece si troverebbe a ben 15.300 anni luce, in una regione più periferica della Via Lattea; la sua età è inoltre stimata sui 40-50 milioni di anni.

NGC 2483 è invece un oggetto più sfuggente e difficile a causa della sua scarsa concentrazione e consistenza; con telescopi da 150mm appare come un gruppo di stelle deboli e poco contrastato rispetto ai campi di fondo, orientate a formare una sorta di “Y”. Si tratta di un ammasso poco studiato, distante sui 5400 anni luce e piuttosto giovane, con un’età di 12 milioni di anni.

NGC 2520 è anche indicato in diversi atlanti, specie in quelli un po’ più datati, con la sigla NGC 2527: si tratta però del medesimo oggetto e si individua circa 4 gradi a SSW della stella p Puppis, in direzione di un campo stellare molto ricco di stelle di fondo; si evidenzia discretamente anche con un binocolo 10x50, dove appare come una macchia debole e sfuggente dominata da due stelline di magnitudine 8 e 9. Ingrandimenti appena superiori, possibili con un telescopio da 80mm di apertura, consentono di risolvere completamente gran parte delle sue componenti stellari; strumenti più grandi e maggiori ingrandimenti non aggiungono ulteriori componenti oltre la magnitudine 12, al di là del naturale aumento delle stelle di fondo. NGC 2520 è un ammasso relativamente esteso, anche se poco concentrato e povero di componenti; la sua distanza è stimata attorno ai 1960 anni luce ed è quindi situato sul Braccio di Orion, a breve distanza dai bordi della Nebulosa di Gum. Le sue stelle principali sono di nona magnitudine, mentre fino alla dodicesima grandezza si possono contare una trentina di stelle, sparse entro un diametro apparente di circa 20’. La disposizione delle componenti ricorda vagamente un trapezio, dominato nell’angolo nord-orientale da una stella di magnitudine 8,5. Si tratta di un ammasso di età simile a quella del Presepe, stimata attorno ai 445 milioni di anni; tuttavia in passato sono stati indicati valori attorno a 1 miliardo di anni, collocandolo così fra gli ammassi aperti di età intermedia o avanzata. Le sue stelle più calde sono di classe spettrale A2-A8 e sono presenti alcune giganti rosse, segno che il turnoff nel suo diagramma colore-magnitudine è al di sotto delle classi spettrali O e B, ossia non sono presenti stelle blu e azzurre.
NGC 2489 si individua tramite un ponte stellare che parte da Adhara (η Canis Majoris), giunge alla stella 3 Puppis, di magnitudine 3,9 e prosegue a sudest verso la stella HD 65456, di magnitudine 4,7. Con telescopi da 80mm appare come un piccolo gruppo compatto di una decina di stelle racchiuse entro un diametro di 5', mentre una apparente piena risoluzione è possibile con telescopi da 150mm, che consentono di individuare una quarantina di stelle fino alla magnitudine 13. Si tratta di un ammasso che mostra una grande concentrazione nelle sue regioni centrali, dove sono presenti centinaia di stelle in gran parte molto deboli; la sua distanza è stimata sui 5900 anni luce, sebbene con alcune incertezze, dato che non sono mancate stime che lo collocano a distanze anche molto maggiori, fino a quasi 13.000 anni luce. La sua età è invece stimata sui 500 milioni di anni.

Più appariscente è l'ammasso NGC 2439; si individua circa 4 gradi a sudest della brillante stella η Canis Majoris, in direzione di un campo stellare piuttosto ricco; appare dominato verso nord da una stellina giallastra di sesta magnitudine. Un binocolo 10x50 può permettere di risolvere in parte le sue componenti più luminose, anche se l'oggetto permane di aspetto nebuloso; attraverso un telescopio da 100mm è risolto in ventina di stelle fino alla magnitudine 12, mentre con uno strumento da 200mm e ingrandimenti sui 100x il campo visivo si satura di stelle. NGC 2439 è un ammasso assai ricco e luminoso, consistente di una nutrita popolazione di stelle giovani; la sua distanza è stimata attorno ai 12.600 anni luce ed è quindi situato in una zona esterna della Via Lattea, probabilmente in corrispondenza del Braccio di Perseo, in un tratto che presenta segni di disgregazione a causa della sua terminazione. Secondo alcuni studi, in direzione di quest'oggetto non vi sarebbe un gruppo compatto di stelle, ma piuttosto ciò che si osserva sarebbe il risultato di una sovrapposizione di diversi gruppi stellari lungo la stessa linea di vista; alcune di queste stelle appartengono a diverse piccole associazioni OB, la più vicina delle quali si troverebbe ad appena 3260 anni luce. A una distanza inferiore vi sarebbe invece una regione ricca di polvere interstellare, cui sono associati alcuni gruppi stellari. In direzione dell'ammasso è visibile la stella variabile R Puppis, che oscilla fra le magnitudini 6,5 e 6,7 con un periodo non definibile in quanto non regolare; questa stella starebbe al di là dell'ammasso e lo scurisce notevolmente. Gran parte delle componenti sono di decima e undicesima grandezza e si concentrano poco a sud di questa stella, come a formare una sorta di "grappolo".

L'ammasso NGC 2533 si osserva invece poco meno di due gradi a sud dell'ammasso NGC 2520. Con strumenti da 80mm è visibile come una piccola macchia chiara indistinta dominata da una stella di magnitudine 9,6 sul lato sudoccidentale; a forti ingrandimenti l'ammasso si risolve in 5-6 deboli stelle. Telescopi da 120mm permettono invece una facile risoluzione in una ventina di stelle, che diventano ancora di più con strumenti da 200mm. È un ammasso poco studiato, la cui età è stata stimata sui 750 milioni di anni; la sua distanza è invece indicata sugli 11.000 anni luce.

Circa 6-7 gradi a sudest della stella P Puppis è presente un'alta concentrazione di ammassi aperti, gran parte dei quali però si presentano piuttosto deboli e poco concentrati e risultano evidenti soprattutto nelle fotografie ad alta risoluzione con campi ripresi ampi circa 3-4 gradi. Fra questi ammassi, il più cospicuo è NGC 2571; giace in un campo stellare molto ricco ai margini della Via Lattea ed è rintracciabile anche con un binocolo 10x50, il quale permette di scorgere anche alcune delle sue componenti più luminose, di colore azzurro. Per risolvere molte delle sue componenti meno brillanti occorre però un telescopio da almeno 80mm di apertura. Con strumenti da 150mm e medi ingrandimenti l'ammasso è risolto facilmente in alcune decine di stelle fino alla magnitudine 13. NGC 2571 è un ammasso non particolar...
mente ricco, formato da alcune decine di stelle sparse su un diametro di circa 13'; la sua distanza è stimata attorno ai 4400 anni luce ed è quindi situato sul bordo esterno del Braccio di Orione. L'ammasso giace a circa 248 anni luce dal piano galattico e conta appena una ventina di stelle, molte delle quali sono deboli e concentrate in direzione della coppia dominante, che le oscura ulteriormente; tutte le stelle dell'ammasso hanno una colorazione azzurra, il che denota un'età non troppo avanzata. Nella sua direzione è comunque visibile una gigante rossa, indicata con la sigla CD-29°5941; nonostante la sua posizione possa far ritenere che si tratti di un membro effettivo dell'ammasso, l'analisi dell'arrossamento del suo spettro causato dalla polvere interstellare suggerisce che si tratti di una stella molto più lontana e visibile sovrapposta all'ammasso solo per un effetto prospettico.

Fra gli altri ammassi visibili in zona vi è il piccolo NGC 2567, che può essere osservato anche con un binocolo 10x50, che però non consente di risolvere alcuna componente stellare, cosa possibile invece con un telescopio da almeno 80-100mm di apertura. Attraverso strumenti da 200mm appare come un grande oggetto completamente risolto in diverse decine di stelle deboli. NGC 2567 è un ammasso moderatamente ricco formato da alcune decine di stelle sparse su un diametro di circa 10'; la sua distanza è stimata attorno ai 5470 anni luce ed è quindi situato sul bordo esterno del Braccio di Orione, alla stessa distanza del vasto sistema nebuloso di Sh2-310, visibile nel vicino Cane Maggiore. L'ammasso contiene circa una trentina di stelle, che appaiono poco concentrate e di un colore generalmente tendente al giallognolo; le sue componenti più luminose, di decima magnitudine, si dispongono a formare una sorta di scia; la presenza nel suo campo di alcune giganti rosse lo rende un interessante oggetto per gli studi fotometrici. Per la sua età sono state fornite stime attorno ai 370 milioni di anni, così come molto più grandi, fino a 1,4 miliardi di anni; dal suo diagramma colore-magnitudine è evidente che un gran numero di componenti abbia lasciato la fase di sequenza principale per evolvere verso lo stadio di gigante.

Altri ammassi ancora si trovano oltre il confine con la costellazione della Bussola, come NGC 2627. La sua posizione si può trovare abbastanza facilmente mezzo grado a sudovest della stella doppia ζ Pyxidis, in un campo molto ricco di stelle deboli; è un oggetto minuto e piuttosto debole, individuabile sotto un cielo scuro e limpido anche con un binocolo 10x50, seppur con qualche difficoltà. Un telescopio da 120mm è più indicato per la sua osservazione, in quanto con esso è possibile scorgere alcune decine di stelle fino alla magnitudine 13. Per una risoluzione completa occorrono però strumenti con aperture a partire dai 200mm in su. Si tratta di un ammasso piuttosto ricco e denso, ma formato per lo più da deboli stelle; la sua distanza è stimata attorno ai 6630 anni luce ed è quindi situato in prossimità del Braccio di Perseo, in un tratto dove sono presenti segni di disgregazione a causa della sua stessa terminazione. È formato da una quarantina di stelle più luminose della magnitudine 13, disposte in senso est-ovest a formare una sorta di scia; la presenza nel suo campo di alcune giganti rosse lo rende un interessante oggetto per gli studi fotometrici. Per la sua età sono state fornite stime attorno ai 370 milioni di anni, così come molto più grandi, fino a 1,4 miliardi di anni; dal suo diagramma colore-magnitudine è evidente che un gran numero di componenti abbia lasciato la fase di sequenza principale per evolvere verso lo stadio di gigante.

Altri oggetti qui presenti si osservano con difficoltà, essendo poco concentrati e contrastabili rispetto ai campi di fondo; fra questi vi è NGC 2580, NGC 2587 e i più ostici ancora Cr 187 e Ru 58.

Gli altri oggetti qui presenti si osservano con difficoltà, essendo poco concentrati e contrastabili rispetto ai campi di fondo; fra questi vi è NGC 2580, NGC 2587 e i più ostici ancora Cr 187 e Ru 58.

Altri ammassi ancora si trovano oltre il confine con la costellazione della Bussola, come NGC 2627. La sua posizione si può trovare abbastanza facilmente mezzo grado a sudovest della stella doppia ζ Pyxidis, in un campo molto ricco di stelle deboli; è un oggetto minuto e piuttosto debole, individuabile sotto un cielo scuro e limpido anche con un binocolo 10x50, seppur con qualche difficoltà. Un telescopio da 120mm è più indicato per la sua osservazione, in quanto con esso è possibile scorgere alcune decine di stelle fino alla magnitudine 13. Per una risoluzione completa occorrono però strumenti con aperture a partire dai 200mm in su. Si tratta di un ammasso piuttosto ricco e denso, ma formato per lo più da deboli stelle; la sua distanza è stimata attorno ai 6630 anni luce ed è quindi situato in prossimità del Braccio di Perseo, in un tratto dove sono presenti segni di disgregazione a causa della sua stessa terminazione. È formato da una quarantina di stelle più luminose della magnitudine 13, disposte in senso est-ovest a formare una sorta di scia; la presenza nel suo campo di alcune giganti rosse lo rende un interessante oggetto per gli studi fotometrici. Per la sua età sono state fornite stime attorno ai 370 milioni di anni, così come molto più grandi, fino a 1,4 miliardi di anni; dal suo diagramma colore-magnitudine è evidente che un gran numero di componenti abbia lasciato la fase di sequenza principale per evolvere verso lo stadio di gigante.

Fotografie ad alta sensibilità e risoluzione permettono infine di mostrare anche alcune galassie, confuse fra le numerose stelle dei campi stellari della Via Lattea; alcuni di questi oggetti fanno parte del grande *Ammasso di galassie della Poppa*, scoperto solo nel 1992. Si trova a 130 milioni di anni luce ed è il secondo più massiccio dopo l’Ammasso della Vergine entro un raggio di 150 milioni di anni luce dalla Via Lattea; si ritiene che funga da collegamento fra gli ammassi di Antlia e Fornace.
Fra la Carena e la Croce del Sud, nel profondo emisfero australe, si trova uno dei tratti della Via Lattea più ricchi e appariscenti, dove si può osservare una delle più alte concentrazioni di oggetti galattici dell’intera volta celeste; molti di questi sono anche alla portata di un semplice binocolo 10x50, anche dai cieli urbani e suburbanì.

Totalmente esclusa dalla visibilità in tutta la fascia temperata boreale, si presenta molto bassa nella fascia tropicale a nord dell’equatore, mentre diventa circumpolare appena lasciato il Tropico del Capricorno andando verso sud.

CARATTERISTICHE

L’Arco della Carena prende il nome dalla forma arcuata che presenta il tratto di Via Lattea compreso nella costellazione della Carena, oscurato sul lato meridionale da dense nubi; ciò che però traspare nelle zone non oscurate è una concentrazione di ammassi e nebulose brillanti che non ha pari in tutta la volta celeste; oltre a ciò, l’intera regione è particolarmente ricca di stelle brillanti visibili anche dalla città.

L’oggetto di gran lunga più prominente è la grande Nebulosa della Carena, tanto luminosa da essere visibile anche a occhio nudo sotto un cielo discreto; anche un binocolo 10x50 rivela sia la sua caratteristica banda scura che la taglia in senso est-ovest, sia i ricchi addensamenti stellari che la circondano.

Altri oggetti notevoli sono l’ammasso soprannominato Pozzo dei Desideri, uno dei più ricchi osservabili con piccoli strumenti, e le brillanti Pleiadi del Sud, molte delle cui componenti sono visibili anche a occhio nudo e si concentrano attorno alla stella θ Carinae.

Con un binocolo 20x80 è possibile godere di una visio-

D’insieme molto appagante: possono essere distinte alcune decine di ammassi più o meno densi o estesi, tutti racchiusi in un’area di cielo di appena 6 o 7 gradi, mentre sullo sfondo la Via Lattea si scinde parzialmente in stelle.

Strumenti da 150-200mm offrono a bassi ingrandimenti un campo letteralmente saturo di stelle, mentre la Nebulosa della Carena mostra diversi dettagli e gli ammassi aperti più compatti si risolvono quasi completamente in decine di stelle.

Il flusso di stelle e ammassi prosegue verso est, fra il Centauro e la Croce del Sud; qua i campi stellari visibili a occhio nudo si fanno più ricchi di stelle di magnitudine 4 e 5, ma allo stesso tempo meno densi se osservati al telescopio; la presenza di ammassi stellari si riduce infatti notevolmente e quelli visibili si mostrano dispersi su un’area di cielo più ampia, mentre la Nebulosa Sacco di Carbone oscura la Via Lattea ancora più a est.
L’Arco della Carena è senza dubbio il tratto più ricco di oggetti brillanti dell’intera Via Lattea, questa è ben evidente anche osservando con un semplice binocolo.
LA NEBULOSA DELLA CARENA E I DINTORNI

La Nebulosa della Carena (NGC 3372) è la nebulosa diffusa più brillante dell’intera volta celeste, più luminosa pure della ben più famosa Nebulosa di Orione e visibile molto chiaramente anche ad occhio nudo. Osservando con un binocolo, la nebulosa è subito evidente come una macchia chiara allungata più in senso nord-sud, con una netta striscia scura che, addensandosi nelle sue regioni centrali, la taglia da est a ovest, dividendola in due parti; i dintorni dell’ammasso sono invece ric-
chissimi di stelle: il tratto di Via Lattea in cui la nebulosa si trova, infatti, è uno dei più brillanti e intensi della volta celeste, essendo visibile anche in un cielo moderatamente inquinato, al pari di altre aree come la regione del centro galattico e il tratto nella costellazione del Cigno. Con un telescopio di 120mm di diametro la nebulosa appare piuttosto estesa; con forti ingrandimenti si nota, poco a nord della parte centrale, una forma curiosa, creata dalla sovrapposizione di una banda scura allungata da nord a sud, soprannominata a causa della sua forma *Nebulosa Buco della Serratura*.

La Nebulosa della Carena fa parte del Braccio del Sagittario, il braccio di spirale immediatamente più interno rispetto al nostro; dopo essere passato, dalla nostra prospettiva, davanti al centro galattico, oscurandolo, questo braccio prosegue in direzione del Centauro e della Carena, dove poi gira per passare dall'altra parte della Galassia rispetto a noi. Uno studio del 2008 tuttavia afferma che questo braccio sarebbe solo una grande condensazione di gas e polveri da cui sono nate diverse stelle giovani. Il contesto galattico in cui la nebulosa si trova è pervaso da un gran numero di ammassi aperti e associazioni, molti dei quali si sono formati nella stessa nebulosa. Le sue dimensioni, sia apparenti che reali, sono superiori a quelle della ben nota Nebulosa di Orione ed anche la sua magnitudine è superiore: la Nebulosa di Orione si estende infatti su circa un grado quadrato di volta celeste, con un diametro reale di 24 anni luce; la Nebulosa della Carena occupa invece oltre quattro gradi quadrati e possiede un diametro di ben 260 anni luce. A una distanza di circa 7500 anni luce, ossia quasi 8 volte superiore a quella della Nebulosa di Orione, le sue dimensioni apparenti sono molto superiori rispetto a quest'ultima. La nebulosa è formata per gran parte da idrogeno, mentre l'elio costituisce un quarto della sua massa totale; altri elementi più pesanti sono presenti solo in piccole percentuali. Al suo interno, la quasi totale assenza di globuli di Bok indica che il fenomeno della formazione stellare, a differenza di altre nebulose, sarebbe fermo o poco attivo; questo fenomeno è stato però in passato assai vigoroso, come confermato dalla presenza di un gran numero di stelle giovani di grande massa, come le cosiddette giganti blu. Queste stelle sono anche responsabili dell'intensa radiazione ultravioletta che pervade l'intera nebulosa, che ionizzandone gli atomi diventa essa stessa luminosa.

Molte di queste stelle giovani sono riunite in ammassi aperti: in direzione della nebulosa ve ne sarebbero almeno otto, di cui quattro appaiono vicini alle regioni centrali. Fra questi sistemi di stelle massicce vi sono Tr 14, Tr 15 e Tr 16, Cr 228 e Cr 232, più Bochum 10 e Bochum 11; tutti insieme, contengono almeno 64 stelle di classe spettrale O e due stelle di Wolf-Rayet, ossia ciò che resta di un violento fenomeno di formazione stellare avvenuto circa 3 milioni di anni fa. Fra le stelle presenti in quest'area vi sono alcuni esempi di rari astri di classe spettrale O3 di sequenza principale. La regione della nebulosa più studiata è quella centrale, incentrata su un'area di cielo di 0,5 gradi quadrati di cielo contenente le due associazioni Tr 14 e Tr 16, la *Nebulosa Buco della Serratura* e l'intensa linea scura a forma di "V" che taglia in due parti il complesso nebuloso, linea formata da polveri non illuminate. Studi ottenuti nel lontano infrarosso suggeriscono che la Nebulosa della Carena sia una regione H II molto evoluta, con perdita di polveri e gas neutri dal suo nucleo; inoltre, nella nebulosa non sono presenti gli addensamenti compatti e ad alta densità di stelle circondate da nubi che si osservano in altre regioni H II massicce. Solo alcune aree della nebulosa sono soggette ad un intenso fenomeno di formazione stellare. Osservazioni condotte invece su larga scala mostrano che questa nebulosa possiede una struttura bipolare compressa nella zona centrale ai due lati da polveri e gas freddi; l'asse maggiore è grosso modo perpendicolare al piano galattico. Dai dati di alcuni studi emerge che la nascita di nuove stelle non si sia completamente arrestata con la formazione degli ammassi di stelle giovani e massicce osservati. La parte settentrionale sembra inoltre possedere più siti di formazione stellare rispetto alle aree centrali; infine, i membri

Dettaglio della nebulosa attorno alla stella Eta Carinae, che mostra la regione scura soprannominata “Buco della Serratura”.

La Nebulosa della Carena è visibile anche ad occhio nudo ed è la nebulosa più brillante dell'intera volta celeste.
dell’associazione di stelle nota come Tr 14 creano un ambiente estremamente instabile per la nube molecolare, che tenderebbe a subire l’influsso del forte vento stellare di queste stelle. Circa mezzo grado a sud della stella η Carinae si trova una regione della nebulosa contenente alcune strutture allungate formate da polveri, la più grande delle quali è lunga 82 anni luce e sembra puntare in direzione della stessa η Carinae. Le strutture, dette "Pilastri" a causa della loro forma, hanno la parte più brillante rivolta verso la stella η Carinae e lunghe code dirette nella direzione opposta; la direzione dell’illuminazione e delle strutture in sé suggerisce che la fonte del vento stellare che modella queste nubi e della ionizzazione sia proprio la stessa η Carinae, assieme ad altre stelle supergiganti azzurre membri dell’ammasso Tr 16, la cui radiazione ultravioletta opera una fotolisi sui gas di questa regione. Si ipotizza che queste formazioni possano rappresentare la fase iniziale di una futura ondata di intensa formazione stellare all’interno di questa nebulosa. Sia nel settore settentrionale che in quello meridionale della nebulosa sono state individuate altre prove che mostrano come la formazione stellare sia realmente in atto, prima fra tutte la presenza di alcuni giovanissimi oggetti HH.

Fra gli altri oggetti caratteristici situati all’interno della nube vi è la Nebulosa Omuncolo, una struttura formata dalle varie espulsioni di materia della stella η Carinae; si pensa che la struttura maggiore oggi osservabile si sia originata a seguito dell’ultima grande esplosione della stella, avvenuta nel 1841, quando raggiunse e superò la luminosità di Canopo diventando la seconda stella più brillante del cielo. L’esplosione ha prodotto due lobi polari ed un vasto ma debole disco equatoriale, il tutto in allontanamento dalla stella alla velocità di 2,4 milioni di km/h. Non si esclude la possibilità di un rivelancarsi in futuro di tali esplosioni.

Molte delle deboli stelle visibili nell’area di cielo dominata dalla Nebulosa della Carena fanno parte dell’associazione Carina OB1. Questa è composta dall’insieme delle stelle giovani e di grande massa che si sono originate in questa grande regione di gas ionizzato, le quali sono distribuite su più ammassi aperti, fra cui spiccano, nelle regioni più interne della nebulosa, le stelle di cui si è detto. Tra le molte deboli stelle visibili nell’area di cielo dominata dalla Nebulosa della Carena, la più brillante del cielo, si trova vicino al centro della caratteristica banda oscura a V della nebulosa ed è individuabile anche con
un binocolo 10x50 come un gruppo di stelle di magnitudine dalla 7 alla 9, dominato dalla stella η Carinae, che appare di magnitudine 4 o 5 a seconda del suo ciclo di variabilità; telescopi da 80mm risolvono l’ammasso in una trentina di componenti fino alla magnitudine 12, in gran parte situate lungo una sequenza orientata in senso nord-sud visibile sul lato orientale. Lo sfondo si presenta nebuloso per via dei gas ionizzati, mentre a sudest si trova la banda oscura che taglia la nebulosa. I membri più luminosi dell’ammasso sono η Carinae e WR 25, entrambi con luminosità diverse milioni di volte quella del Sole, cui si aggiungono altre tre stelle estreme con classi spettrali O3; sia η Carinae che WR 25 sono sistemi binari, con le stelle primarie che contribuiscono alla maggior parte della luminosità, ma con compagne che sono esse stesse più massicce e luminose della maggior parte delle stelle. Complessivamente, in tutte le lunghezze d’onda, WR 25 è stimata essere la più luminosa delle due: tuttavia η Carinae ci appare di gran lunga l’oggetto più luminoso, sia perché gran parte della sua radiazione è emessa nelle lunghezze d’onda ottiche, sia perché è incorporata nella nebulosa che ne amplia la luminosità. WR 25 è molto calda ed emette la maggior parte della sua radiazione a lunghezze ultraviolette.

La sequenza di stelle delineata da Tr 16 prosegue a sud della banda a V della nebulosa, presentandosi a sua volta come un ricco ammasso denominato Cr 228. Con un binocolo 10x50 sono visibili una ventina di stelle disposte in vaghe concatenazioni orientate in senso nord-sud, che lo rendono l’ammasso più ricco della nebulosa attraverso un binocolo; strumenti da 80mm rivelano fino a una quarantina di stelle fino alla magnitudine 12, che diventano di più con grandi diametri. Si ritiene che gli ammassi Tr 16 e Cr 228 appaiano separati solo a causa dell’oscuramento dato dalla banda oscura, ma che sarebbero in realtà due parti del medesimo ammasso.

Poco a nord di Tr 16 appare il piccolo e compatto ammasso Cr 232, anch’esso parte dell’associazione Carina OB1; al binocolo appare come un piccolo gruppo di stelle di magnitudine 8 e 9, dominato da un astro di magnitudine 7,3 situato sul lato centro-meridionale. Telescopi da 120mm lo risolvono pienamente in una ventina di stelle fino alla magnitudine 13. La stella dominante è una gigante blu di classe O4 ed è effettivamente il membro più luminoso dell’ammasso, nonché una delle stelle più brillanti dell’intera associazione.

Pochi minuti d’arco a ovest appare Tr 14, uno dei gruppi più densi dell’associazione; irrisolvibile con binocoli 10x50, può essere sciolto solo con telescopi da 100mm a salire con ingrandimenti spinti, a causa della sua compattezza. Si tratta di uno degli ammassi più giovani conosciuti, con un’età compresa fra 300 e 500 mila anni. Il membro più luminoso è HD 93129, un sistema triplo costituito da tre stelle di classe O individuali; un’altra componente molto brillante è anche HD 93128, una stella di sequenza principale O3.5 estremamente calda e giovane.

Circa 10’ più a nord si trova il piccolo ma brillante Tr 15, appena distinguibile con un binocolo 10x50 come una breve sequenza di stelle di magnitudine 8 e 9, orientata in senso nord-sud. Telescopi da 80mm lo risolvono a forti ingrandimenti in 7-8 stelle fino alla magnitudine 12, dominate a sud dalla stella rossa RT Carinae, di magnitudine 8.5.

Altri ammassi della regione includono Bochum 10, formato da un piccolo anello di stelle azzurre di magnitudine 9 e 10, al limite per binocoli 10x50 ma ben distinguibile con telescopi da 80mm a salire, e, sul lato opposto della nebulosa, Bochum 11, formato da un piccolo adensamento di stelle di magnitudine 9 e 10 con altre stelle sparse attorno.

Fra gli oggetti visibili nei dintorni e non strettamente legati al centro di Carina OB1 vi sono diversi ammassi
facilmente osservabili anche con piccoli strumenti.
Fra questi vi è, sul lato nordorientale della nebulosa, il poco conosciuto Tr 17; situato a metà strada fra η Carinae e il brillante ammasso NGC 3532, può essere notato anche con telescopi da 80mm, dove appare come una macchia chiara allungata in senso nord-sud su cui brillano una decina di stelle dalla magnitudine 10 alla 12. Strumenti da 150mm permettono una totale risoluzione, con una trentina di stelle fino alla magnitudine 13. Stretto fra oggetti molto più appariscenti, Tr 17 è un ammasso poco conosciuto e studiato: spesso è trascurato dagli appassionati, mentre in letteratura si trova poco, se non che si trova alla medesima distanza dell’associazione Carina OB1 (7100 anni luce) e un’età di 50 milioni di anni.

Presso il bordo nordoccidentale della Nebulosa della Carena si individua l’ammasso aperto NGC 3324, è visibile anche con un binocolo 10x50, sebbene appaia più simile a una stella doppia con un leggero chiarore sul lato ovest, indice della presenza di stelle deboli non risolvibili. Con telescopi da 80mm è risolt in una decina di stelle fino alla magnitudine 11 comprese in un diametro di 3 minuti d’arco, mentre 5 minuti d’arco più a sud si trova la stella V370 Carinae, una variabile pulsante di tipo α Cygni con magnitudine media 5,4 e considerata da alcuni anch’essa parte dell’ammasso. Foto ad alta sensibilità mostrano che l’intero ammasso è circondato da una nube che sul lato ovest descrive un semicerchio brillante, denominata Gum 31. Le stelle più brillanti dell’ammasso sono una coppia fisica di stelle entrambe di classe O, cui si aggiunge la già citata V370 Carinae, una supergigante di classe A0. Studi sulla popolazione stellare dell’ammasso hanno fornito un’età sui 2-3 milioni di anni appena; ciò sarebbe anche testimoniato dalla presenza di diverse centinaia di sorgenti infrarosse coincidenti con oggetti stellari giovani, ancora immersi nella nebulosità. La distanza del complesso è stimata sui 7500 anni luce, dunque la medesima della Nebulosa della Carena; a ciò corrisponde un diametro reale della nebulosa Gum 31 di circa 36 anni luce.

Circa 25° a nordovest di questo complesso si trova il ricco ammasso NGC 3293; già un binocolo 10x50 rivelava con chiarezza le stelle principali, che appaiono molto concentrate. Con un telescopio da 80-100mm di diametro l'oggetto appare completamente risolto in decine di stelle, ma è solo nelle foto a lunga posa che risulta visibile la tenue nebulosa presente a nord dell'ammasso. Quest’ammasso è formato da una novantina di stelle dalla magnitudine molto simile fra loro e particolarmen- te compatte; le più brillanti sono di ottava e nona grandezza, mentre diverse decine sono di decima e undicesima magnitudine. La sua distanza è stimata sui 7600 anni luce dal Sole, all'interno del Braccio del Sagittario e in posizione dunque non lontana dal grande complesso di nubi formanti la Nebulosa della Carena; infatti parte delle nubi di questo complesso lambiscono l'ammasso, che le illumina e le eccita diventando così nebulose a emission. Inoltre l'ammasso stesso sarebbe legato fisicamente agli altri oggetti visibili nell'area, tutti correlati con la grande associazione OB Carina OB1. Ulteriore indizio della sua appartenenza al complesso nebuloso è la sua età, stimata sui 10 milioni di anni appena; NGC 3293 contiene infatti un gran numero di supergiganti blu, più una supergigante rossa. Secondo alcuni studi sembrerebbe che la formazione stellare nella regione della Nebulosa della Carena sia iniziata proprio nel suo settore nordoccidentale, pertanto quest'ammasso potrebbe essere l'esito dei primi fenomeni di formazione che hanno interessato la regione nebulosa; in seguito alla formazione di questo e del vicino ammasso IC 2581, gli episodi di formazione stellare si sarebbero spostati progressivamente verso sudest, fino a raggiungere l'attuale posizione, a sudest della Nebulosa della Carena. Second-
do un altro studio datato 2003, la formazione stellare sarebbe comunque ancora attiva nella regione circonstante l'ammasso, come testimoniato dalla presenza di alcune stelle di pre-sequenza principale qui scoperte.

Oltre un grado a nordovest si osserva il già citato ma meno conosciuto ammasso IC 2581, che appare poco concentrato e fortemente oscurato dalla stella V399 Carinae, una stella di tipo α Cygni di magnitudine 4,6. Con un binocolo 10x50 si possono intravvedere 2-3 stelle al limite della visibilità molto vicine alla già citata V399 Carinae, più altre tre più distanziate a ovest; telescopi da 80mm lo risolvono a forti ingrandimenti in una ventina di stelle poco concentrate sparse su un diametro di 6', fino alla magnitudine 12. Strumenti più grandi non permettono di individuare ulteriori concentrazioni stellari. Come già accennato, l'ammasso si trova nella medesima regione del precedente, a 7500 anni luce circa, con cui condivide l'origine; fra le stelle membri spicca anche la variabile V348 Carinae, anche questa di tipo α Cygni.

A breve distanza angolare giace il grande sistema nebuloso di Gum 29, noto anche come RCW 49; sebbene la nebulosa sia osservabile solo con strumenti di grande diametro, i suoi campi stellari sono alla portata di telescopi da 120-150mm. Si tratta di un'importante regione HII di notevole estensione, oggetto di studio in quanto contiene al suo interno alcuni ammassi stellari come NGC 3247 e Cr 220, oltre al giovane e brillantissimo ammasso aperto Westerlund 2, composto da alcune stelle particolarmente calde e luminose, come la stella blu MSP 183, e contenente due brillanti stelle di Wolf-Rayet, WR 20a e WR 20b. Questa grande regione nebulosa si trova sul bordo esterno del Braccio del Sagittario a una distanza di almeno 13.700-15.300 anni luce, sebbene alcune stime la indichino come ancora più distante. Tramite le osservazioni condotte ai raggi X, all'interno di Gum 29 sono state individuate 468 sorgenti, 379 delle quali mostrano delle contraparti a più lunghezze d'onda, come nel vicino e medio infrarosso e in alcuni casi anche nella luce visibile; alla grande popolazione di stelle massicce di classe spettrale O e B, aggregate nel ricco e compatto ammasso Westerlund 2, si aggiungono numerose stelle giovani di piccola e media massa, che comprendono una grande popolazione di stelle T Tauri con massa fino a 2,7 masse solari e altri oggetti associati a episodi di formazione stellare ancora in atto. Nell'ammasso Westerlund 2, WR20a è il sistema binario più massivo conosciuto finora, motivo per cui la massa delle componenti è stata oggetto di studio; ciascuna delle due componenti ha una massa equivalente a 82-83 volte quella del Sole. Il sistema si trova, stranamente, all'esterno del centro dell'ammasso; si ipotizza che ne sia stato espulso dalle interazioni dinamiche dopo la sua formazione. Il periodo di rivoluzione del sistema è di 3,6 giorni; la loro orbita è molto stretta, ma le due componenti sono ben staccate. Si prevede che in un milione di anni le loro dimensioni cresceranno a tal punto che i loro corpi entreranno fisicamente in contatto. Si è inoltre scoperto che le due stelle possiedono una gran quantità di azoto, circa 6 volte l'abbondanza di azoto riscontrata nel Sole; questo elemento potrebbe essersi formato negli strati più profondi della stella. WR20b sembrerebbe invece una stella singola, leggermente più debole della componente meno luminosa di WR20a.

Ancora più a ovest si trova la nebulosa NGC 3199, caratterizzata dalla sua forma ad anello, che circonda la stella di Wolf-Rayet WR 18; questa è una stella molto massiccia, il cui vento stellare ha generato l'involucro gassoso osservabile; il gas della nebulosa non presenta una distribuzione uniforme, e infatti la maggiore densità si rinviene sul suo lato occidentale, che è anche il più luminoso. Verso questo lato la nebulosa sembra mostrare segni di espansione maggiori. La sua distanza è stimata attorno ai 7200 anni luce; altre stime più datate la collocano invece a una distanza maggiore, attorno ai 10.400 anni luce. In aggiunta a ciò essa viene indicata come facente parte della regione di formazione stellare di RCW 50.
A ovest di Cr 228 e a circa un grado e mezzo dalle regioni più brillanti della Nebulosa della Carena, si trova il piccolo ammasso Cr 223, formato da un gruppetto di una decina di stelle di magnitudine 9 e 10 ed è dunque persino alla portata di un binocolo 20x80, sebbene il suo modesto aspetto e la vicinanza di oggetti ben più luminosi fanno sì che venga trascurato. L’ammasso è interamente risolto anche con strumenti da 80mm, mentre telescopi di diametro più grande rivelano soltanto le deboli stelle di campo, senza ulteriori concentrazioni da risolvere. Si tratta di un ammasso relativamente giovane, di età inferiore a 100 milioni di anni e stimata in alcuni studi in 36 milioni di anni; la sua distanza è di circa 9200 anni luce ed è dunque nel Braccio del Sagittario, un po’ più distante rispetto alla Nebulosa della Carena.

Ancora più difficile è staccare i due ammassi NGC 2355 e Tr 13, visibili nelle vicinanze ma confondibili coi ricchi campi stellari di fondo.

DALLA CARENA AL CENTAURE

La Via Lattea ad est della Nebulosa della Carena si presenta ricchissima di ammassi aperti, addensati in un campo stellare tanto ricco che è difficile in certi casi riuscire a definirli; chi osserva con un Dobson manuale può essere tentato infatti di abbandonare la loro ricerca sistematica e osservare liberamente l’intera regione. La quasi totalità di questi ammassi si trovano sul Braccio del Sagittario e dunque sono posti a distanza di diverse migliaia di anni luce; tuttavia, ve n’è uno molto ricco posto in primo piano ed è il famoso NGC 3532 (avente anche sigla C91), noto anche come Pozzo dei Desideri per via del brulicare di centinaia di stelline che lo fanno somigliare a un pozzo pieno di monete. Si tratta di un ammasso estremamente denso, visibile ad occhio nudo come una macchia luminosa allungata in senso est-ovest poco a nordest della brillante Nebulosa della Carena, anche se la notte non è particolarmente buia, come nelle periferie delle città; già un binocolo 10x50 è in grado di risolverlo in una miriade di piccole stelline, distribuite attorno a due punti ben distinti: quello ad ovest, meno ricco e dominato da due stelle di ottava magnitudine, e quello ad est, dominato da una stella doppia di settima. A sudest è ben visibile la stella di quarta grandezza x Carinae. Attraverso un telescopio da 80mm sono osservabili centinaia di stelle fino alla dodicesima magnitudine e l’ammasso appare talmente esteso che in oculari di focale molto corta non si riesce a contenere tutto; gli strumenti più adatti pertanto sono binocoli di media potenza o al più un piccolo telescopio. L’ammasso è composto da oltre 670 stelle, la gran parte delle quali sono bianche, di classe spettrale A, ma non mancano stelle di classe F, ossia di colore giallo. La metallicità delle componenti è simile a quella del Sole. NGC 3532 sarebbe distante dal Sole non più di 1600 anni luce, dunque risulterebbe essere lontano dagli altri oggetti di fondo, molto più remoti e giacenti nel Braccio del Sagittario; la sua magnitudine complessiva è pari a 3,0. Le stime sulla sua età attestano un valore sui 300 milioni di anni, il che lo pone a metà via fra le età di M37, di 200 milioni di anni, e dell’ammasso del Presepe, di 400 milioni di anni; la sua massa complessiva è pari a circa 2000 masse solari ed è particolarmente ricco di stelle di classe spettrale A, ossia di stelle bianche. Sono presenti pure un gran numero di stelle doppie, come era stato indicato anche da John Herschel. Lungo la sua linea di vista non sono presenti dense aree di polvere interstellare, cosicché la sua osservazione e il suo studio risultino piuttosto facili. Studi volti a riconoscere e a determinare la presenza di nane bianche in alcuni ammassi aperti hanno permesso di individuare quattro possibili stelle di questa classe come membri di quest’ammasso.

Molti degli ammassi e dei gruppi stellari visibili in questa regione appartengono invece a Carina OB2, una grande e popolosa associazione che si estende sul lato orientale della Nebulosa della Carena, in direzione dei grandi archi nebulosi di RCW 54, a sud del brillante ammasso aperto NGC 3532. A questa grande associazione potrebbero appartenere fino a 470 stelle di classe
O, B e A, centrate attorno all’ammasso NGC 3572; secondo alcuni studi, anche i vicini ammassi NGC 3590, Hogg 11 e Tr 18, situati sul bordo meridionale della regione alla stessa distanza del precedente, sarebbero fisicamente legati a quest’associazione, mentre probabilmente il vicino Cr 240 costituirrebbe un’associazione OB a parte. La distanza media di Carina OB2 è stata indicata in molti studi come pari a 10.100 anni luce, anche se gli studi più recenti tendono a ridurla portandola a 9500 anni luce. Oltre una ventina delle componenti più massicce mostrano segni di una possibile variabilità. Le componenti di grande massa realmente accertate sono 91, cui se ne aggiungono 66 la cui probabilità di appartenenza è molto elevata; fra queste vi sono due supergiganti blu di classe B, HD 96248 e HD 96261, tre stelle di classe O e 15 delle prime sottoclassi della classe B, quasi tutte giganti o subgiganti. L’associazione è circondata da un’enorme cavità del mezzo interstellare, ben evidente nella banda dell’idrogeno neutro (HI); probabilmente la sua origine è da ricercarsi nell’azione combinata del vento stellare delle componenti più massicce dell’associazione, che ha ripulito il mezzo interstellare circostante da ogni traccia di gas, accumulandolo sul bordo della bolla, che risulta in espansione.

Tr 19 è l’ammasso più settentrionale della zona, un grado e mezzo a nordest del precedente; tuttavia, sebbene sia spesso riportato nelle carte celesti, è un oggetto estremamente sfuggente a causa della sua bassa concentrazione e perché giace su un campo stellare molto ricco. Le sue stelle principali sono di magnitudine 12 e 13, ma la maggiore concentrazione si registra per le stelle di magnitudine 14 e 15 dunque risulta solo alla portata di telescopi da almeno 250mm di diametro o superiori. Pochi studi si sono occupati di quest’ammasso, che sebbene sia piuttosto ricco, resta poco conosciuto; si concorda comunque che si tratti di un oggetto piuttosto vecchio, con un’età stimata sui 4 miliardi di anni. L’ammasso si trova a circa 3200 anni luce.

NGC 3572 è più facile, sebbene non appaia particolarmente ricco. Con strumenti da 80mm è visibile come un piccolo addensamento di stelle azzurre di magnitudine 9 e 10, appena 16’ a WNW della stella V533 Carinae, di tipo α Cygni e magnitudine 4,5; anche con piccoli telescopi l’ammasso appare ben risolto in una quindicina di stelle. Trovandosi alla distanza di 9000 anni luce circa, ricade nella medesima regione dell’associazione Carina OB2, di cui potrebbe fare parte assieme agli ammassi circostanti; le sue stelle più brillanti sono infatti di clasi-
se O e B e ionizzano i gas di un vicino sistema nebuloso visibile poco a nord nelle fotografie ad alta sensibilità. Questa nebulosa presenta strutture a "proboscide" tipiche delle regioni di formazione stellare con stelle di grande massa; un bozzolo di gas isolato forma una piccola struttura ad anello visibile nei pressi di una stella di classe O9/B0: la sua natura è dibattuta e potrebbe trattarsi di un residuo di un globulo molecolare in evapora
czione, ossia la naturale evoluzione dei famosi globuli di Bok. In passato era stato anche ipotizzato che si potesse trattare di una nebulosa planetaria, ma la sua distanza compatibile con l’ammasso esclude quest’ipotesi, dato che NGC 3572 ha un’età stimata di circa 10 milioni di anni.

Le stelle azzurre di magnitudine 8 e 9 visibili nel cam
po stellare poco a est di NGC 3572 vanno a formare la grande associazione Cr 240, che di fatto potrebbe costituire l’associazione OB a parte. Cr 240 è piuttosto sparso e sebbene sia risolvibile con qualsiasi telescopio, appare con uno strumento da 200mm e bassi ingrandimenti come un denso campo di stelle prevalentemente azzurre, dispense su un’area di quasi mezzo grado e in parte sovrapposto all’ammasso precedente. Un leggero addensamento è visibile circa 7' a sudovest della stella V533 Carinae ed è probabilmente la caratteristica più evidente dell’oggetto. La sua distanza secondo alcune fonti è anch’essa confrontabile con quella di NGC 3572, mentre secondo altri studi è situato in primo piano, a 5200 anni luce e dunque anche più vicino della Nebulosa della Carena, sebbene pur sempre sul Braccio del Sagittario.

Circa mezzo grado a sud della già citata V533 Carinae si osserva il piccolo ma compatto ammasso NGC 3590; è visibile anche con un binocolo 10x50, sebbene sia al limite e soprattutto non sia risolvibile, ma appaia solo come una piccola macchia chiara che potrebbe sembrare una stella doppia o tripla non ben risolta. Con telescopi da 80-100mm di diametro si risolve invece appieno, sebbene con altrì ingrandimenti, in una ventina di stelle azzurre di magnitudine compresa fra la 9 e la 12; con telescopi da 200mm non si evidenziano molte componenti di magnitudine 13, ma la risoluzione diviene molto più chiara. Si tratta di un ammasso molto giovane, con un’età stimata sui 30 milioni di anni, costituito dal centro di una ricca associazione OB che tuttavia potrebbe non essere Carina OB2, dato che la sua distanza è stata indicata in studi recenti come pari a 6500 anni luce, contro i 9000 e oltre di Carina OB2; se si considera valida questa misura, NGC 3590 sarebbe più in prossimità della Nebulosa della Carena e dell’associazione Carina OB1. Il nucleo centrale dell’ammasso contiene una ventina di stelle azzurre, tutte concentrate entro un diametro di appena 6 anni luce; da questo nucleo compatto si estende verso nordovest una sequenza disomogenea di stelle giovani e calde, seguita anche con piccoli telescopi poiché molte di queste hanno magnitudine più luminosa della 12. Molte delle sue componenti tendono a raggrupparsi formando piccoli insiemi apparentemente quasi distinti; al più notevole di questi è stata assegnata la sigla Tr 18 ed è stata identificata come un’associazione fisicamente reale. Un gruppo più piccolo, formato da un arcoette di stelle di magnitudine 10 e 11, viene invece identificato con la sigla Hogg 12 ed è considerato con NGC 3590 un sistema binario di ammassi aperti; i due oggetti sono separati da 5 minuti d’arco, che alla distanza di 6500 anni luce corrispondono a circa 12 anni luce.

Più a sud, le foto ad alta sensibilità e grande campo (almeno un grado) permettono di rivelare un esteso complesso nebuloso su cui dominano due formazioni distinte. Quella occidentale è anche la più appariscente ed è nota come NGC 3576, che appare come un insieme di nebulose molto piccole e brillanti raggruppate su uno sfondo a sua volta molto nebuloso; i vari addensamenti nebulosi hanno anche dei numeri di catalogo indipendenti: NGC 3579, NGC 3581, NGC 3582, NGC 3584 e NGC 3586. Questo sistema si trova a 8800 anni luce di distanza e presenta una struttura insolita, con un nucleo formato da un gran numero di addensamenti e un vasto sistema di archi e filamenti che si estende nella parte settentrionale, che induce a pensare alla presenza di intense dinamiche interne. La ionizzazione dei suoi gas è data da un gran numero di stelle sparse al suo interno o
localizzate nelle regioni periferiche, e nessuna di esse risulta essere particolarmente luminosa da poter essere considerata come la "principale" sorgente della radiazione ionizzante. Secondo alcuni studi, al suo interno sarebbe presente un giovanissimo ammasso stellare profondamente immerso nei gas, cui si aggiungono diverse sorgenti di radiazione infrarossa. Altri indizi della presenza di attività di formazione stellare sono dati dalle numerose sorgenti identificate nelle onde radio e soprattutto nelle microonde. Secondo alcuni studi, i processi di formazione stellare hanno avuto inizio in una regione esterna a questa nube e solo successivamente vi si sarebbero propagati.

La seconda formazione, la più orientale delle due, è NGC 3603 ed è visibile solo con telescopi di diametro molto grande. A quest’oggetto si associa una sorgente ad alta temperatura di onde radio; quando fu noto il fenomeno degli starburst, si assimilò questo processo alla nebulosa: in effetti si tratta di una regione dove la formazione stellare è vigorosa. Al suo interno sono presenti alcune nebulose oscure, nonché molte stelle di classe O e B, fra le quali la stella Sher 25, che è una super gigante blu di magnitudine 12 e si ritiene che sia prossima al punto in cui esploderà come supernova. NGC 3603 ospita come visto importanti fenomeni di formazione stellare, testimoniati dalla presenza di otto maser conosciuti e numerose sorgenti di radiazione infrarossa, alcune delle quali piuttosto luminose. L’ammasso aperto associato alla nebulosa è visibile anche con un binocolo 10x50, sebbene appaia come una stella singola tanto è compatto; può essere tuttavia risolto parzialmente con telescopi da 150mm e ingrandimenti molto elevati; quest’ammasso contiene diverse stelle di grande massa, fra le quali spiccano 14 componenti estremamente calde di classe O3 e tre massicce stelle di Wolf-Rayet. La sua stella centrale è nota come HD 97950, una stella estremamente massiccia; l’ammasso stesso costituisce una delle più alte concentrazioni di stelle di grande massa note all’interno della Via Lattea ed è infatti un’importante fonte di radiazione ultravioletta, che ha progressivamente disgregato e allontanato il gas circostante formando una grande bolla di vento stellare.

Più a sud, sul bordo della regione oscurata della Via Lattea, si trova l’ammasso IC 2714; è relativamente facile da osservare, poiché appare bene contrastato nonostante non contenga stelle particolarmente brillanti, proprio grazie all’assenza di ricchi campi stellari visibili nella sua direzione. Con un telescopio da 80mm appare come un debole addensamento di stelle di magnitudine 11 e 12, con una stella di magnitudine 10,5 che domina sulle altre; per apprezzarlo appieno occorrono telescopi da 150 o 200mm, che consentono di catturare la luce delle stelle di magnitudine 13, molto numerose in questo oggetto. L’ammasso è formato da almeno 200 stelle fino alla magnitudine 14, disperse su un diametro di 13 minuti d’arco circa; la sua distanza è stimata sui 4300 anni luce e ricade pertanto sul bordo esterno del Braccio del Sagittario. Non contiene stelle delle prime classi spettrali e ciò denota un’età abbastanza grande da aver portato alla fine del ciclo vitale le sue componenti più massicce; le stime indicano infatti un’età di circa 320 milioni di anni.

Meno di un grado più a sud si trova il più piccolo e compatto ammasso Mel 105; per poterlo apprezzare occorrono strumenti da almeno 120mm, dato che gran parte delle sue stelle sono di magnitudine 13 e 14. L’ammasso appare dominato al centro da due stelle di magnitudine 11, una delle quali ha classe spettrale B; tutt’attorno si osservano due quarantina di stelle fino alla magnitudine 13 compresa. La totale assenza di ricchi campi stellari facilita notevolmente la definizione dei bordi dell’ammasso. Studi recenti hanno identificato oltre 200 componenti nell’area dell’ammasso, stimando la distanza attorno ai 7600 anni luce; ciò lo colloca sul Braccio del Sagittario, in una regione fisicamente molto vicina a quella della Nebulosa della Carena. La sua età è stata invece stimata sui 240 milioni di anni.
Circa un grado a ovest di questi due ammassi, oltre il confine con la costellazione del Centauro, si trova un trio di nebulose spesso riportate negli atlanti ma che in realtà sono ben poco studiate. Due di queste si trovano molto vicine fra loro e sono allineate in senso nord-sud, presentando ciascuna una forma a campana; possono essere interessanti soggetti da riprendere nelle foto. La più settentrionale, che è anche la più estesa, è Gum 39 (nota anche come RCW 60a), estesa per circa mezzo grado. Inizialmente è stato ipotizzato che la responsabile della sua ionizzazione fosse la stella HD 99897, di magnitudine 9,2, cui era stata assegnata la classe B5; in seguito ci si rese conto che con una simile classe spettrale la sua radiazione sarebbe stata troppo limitata per ionizzare l’intera nebulosa, così successivi studi spettroscopici ne hanno rideterminato la classe in O6, che la rende ben più calda e capace di ionizzare i gas nella nube. Sempre gli stessi studi hanno ipotizzato una distanza del sistema pari a 8100 anni luce.

Poco più a sud si trova IC 2872, che è anche nota come Gum 40 o RCW 60b; possiede una forma simile alla precedente ma più piccola, mentre sul lato sud presenta alcuni addensamenti più appariscenti che la rendono complessivamente la più luminosa del trio. Responsabile della sua ionizzazione sarebbe la stella HD 99898 (una variabile a eclisse nota anche come V1087 Centauri), di magnitudine media 9,6, cui venne inizialmente assegnata la classe B2.5; anche in questo caso, ciò non avrebbe resa in grado di ionizzare i gas, ma al massimo di farli brillare per riflessione, così successivi studi hanno rideterminato la classe spettrale di questa stella assegnandola al gruppo O9. Le stime sulla distanza la indicano come situata a 7200 anni luce, ma è possibile che le due nebulose siano in realtà parte dello stesso complesso e dunque devono possedere una distanza compatibile, così come potrebbero anche essere legate al sistema di IC 2944.

La terza nube è molto più a sud delle precedenti ed è nota come Gum 41 (o RCW 61); si trova a sudovest del grande complesso nebuloso di IC 2944 e riceverebbe la radiazione ionizzante della gigante blu HD 100099, di magnitudine 8,1 e classe spettrale O9. La nebulosa presenta una forma sferica con un diametro di 20 minuti d’arco e questa stella si può osservare esattamente al suo centro. La sua distanza sarebbe sugli 8200 anni luce e non è chiaro se si trovi fisicamente associata al sistema di IC 2944; alcuni studiosi lo ritengono probabile. Si arriva infine alla grande nebulosa IC 2944, talvolta soprannominata Nebulosa di Lambda Centauri perché visibile in direzione di un gruppo di stelle apparentemente dominato dalla stella λ Centauri, dove nelle foto a lunga posa si evidenzia la grande nebulosa di fondo; in realtà questa nebulosa si trova molto più distante da λ Centauri e non è quindi fisicamente legata ad essa. Un altro nome spesso utilizzato è Running Chicken, “pollo che corre”. La nebulosa in senso stretto comprende i due oggetti catalogati come IC 2944 e IC 2948; la prima sigla si dovrebbe propiamente riferire all’arco nebuloso posto ad ovest rispetto al corpo centrale, che invece coinciderebbe con IC 2948. Tuttavia, nelle carte e in letteratura, spesso si tende a identificare con la sigla IC...
2944 l'intero sistema nebuloso. Con un binocolo è ben visibile soprattutto l'ammasso interno, formato da stelle a partire dalla settima magnitudine, con all'interno la variabile LW Centauri. La nube è famosa perché contiene al suo interno dei densi globuli di Bok, in cui è attiva la formazione di nuove stelle; i globuli di Bok visibili in questa nube vengono chiamati col nome di globuli di Thackeray. Si tratta di densi bozzoli di gas e polveri non illuminate che si stagliano sul fondo chiaro costituito dall'idrogeno ionizzato, sul bordo nordoccidentale della nebulosa; i globuli sono raggruppati in uno spazio dal diametro di circa 14 anni luce e furono individuati nel 1950. L'origine di questi globuli probabilmente è connessa alla presenza di un'antica nube molecolare molto densa, che col tempo è stata erosa dalla radiazione ultravioletta delle stelle più brillanti e calde della regione, simile a come avviene nei globulì cometari attorno alla Nebulosa di Gum; attualmente i globuli di Thackeray sono soggetti a forze dinamiche violente che li modellano e li disgregano continuamente. La loro vita media si pensa che sia molto breve. Il complesso nebuloso di cui IC 2944 fa parte si estende per circa un grado di volta celeste, comprendendo probabilmente anche le vicine e già citate nebulose Gum 39 e Gum 41, situate forse alla medesima distanza, e una grande nube molecolare situata poco più ad ovest, con una massa pari a circa 710.000 masse solari. La regione galattica in cui giace IC 2944 è particolarmente ricca e complessa: comprende infatti quattro grandi associazioni OB, la più occidentale delle quali è Caringa OB1, nota per essere l'associazione fisicamente legata alla grande Nebulosa della Carena, mentre centrata su IC 2944 vi è l'associazione Crux OB1.

Crux OB1 è l'associazione OB connessa alla nebulosa IC 2944; poiché ricade in realtà nella costellazione del Centauro, la sua denominazione risulta piuttosto insolita, tanto che in alcuni studi viene indicata col nome Centaurus OB2. Quest'associazione conta una trentina di componenti stellari di grande massa, fra le quali spiccano quindici stelle di classe O, in prevalenza sulla sequenza principale, cui ne aggiungono una decina di classe B, in prevalenza giganti e supergiganti. Crux OB1 contiene anche stelle massicce di classi diverse, come una supergigante gialla (classe G0Ia), una bianca (classe A2Ia) e alcune supergiganti rosse di classe M. La distanza media dell'associazione è di circa 8150 anni luce, compatibile con quella della nebulosa IC 2944. La stella più massiccia di Crux OB1 è HD 101205, una stella talmente luminosa che la sua magnitudine apparente dalla Terra raggiunge il valore di 6,5, ossia di poco inferiore al limite della visibilità ad occhio nudo, nonostante la sua grande distanza. Si tratta di una variabile a eclisse con un periodo di 2,08 giorni e è stata assegnata anche la sigla di stella variabile V871 Centauri. Un'altra delle componenti maggiori è HD 101131, una binaria spettroscopica che raggiunge la magnitudine 8,5; molte altre componenti dell'associazione sono delle binarie a eclisse, come BH Centauri, le cui componenti potrebbero essere fisicamente a contatto fra di loro. La caratteristica più interessante di quest'associazione è la sua componente di velocità residua azimuthale, che mostra che la gran parte delle sue stelle si muovono in direzione opposta al senso di rotazione galattico, una caratteristica tipica di molte altre associazioni stellari associate al Braccio del Sagittario, come Serpens OB1, Sagittarius OB1 e Centaurus OB1; ciò è una prova importante che tenderebbe a confermare che i bracci di spirale in generale, e questo in particolare, si formino a seguito dell'azione di onde di densità spiraliformi.

Un grado e mezzo a nord di λ Centauri si trova infine l'ammasso aperto NGC 3766, noto anche con la sigla del Catalogo Caldwell C97, immerso in un campo molto ricco di stelle di fondo; può essere individuato anche
ad occhio nudo, a condizione che la notte sia buia e nitida, ma appare solo come una stellina sfuocata e leggermente estesa, mentre un binocolo 10x50 già è in grado di risolverlo in stelle e, se la notte è buia, si possono individuare i colori delle componenti, che appaiono alcune azzurre, altre rosse, contrastando fortemente le une con le altre. In un telescopio di apertura oltre i 150mm l'ammasso è ben risolto. Le stelle più luminose sono di magnitudine 7, la sua distanza è di 5700 anni luce. In luminosità e forma ricorda vagamente M37, nella costellazione dell'Auriga: entrambi si estendono infatti per 15' di diametro e mostrano una forma allungata, ma confrontando le distanze si scopre che M37 è in realtà più piccolo del 20%; il diametro reale di NGC 3766 è pari a circa 25 anni luce, mentre l'assorbimento a causa delle polveri oscure ne riduce la luminosità di mezza magnitudine. Inoltre NGC 3766, a differenza di M37, è estremamente giovane, con un'età di 14 milioni di anni e una popolazione di circa 140 stelle; M37 invece ha 200 milioni di anni e le sue stelle sono quasi 2000. L'ammasso NGC 3766 è composto in maggioranza da stelle biancastre di classe spettrale A, ma sono presenti anche alcune stelle giganti rosse e delle stelle massicce di colore giallo; contiene al suo interno la stella doppia BF Centauri, una variabile a eclisse la cui luminosità oscilla fra 8,5 e 9,4, passando il 20% del periodo, di 3,7 giorni, in eclisse.

VERSOS LA CROCE DEL SUD

Ancora più a ovest, in direzione della Croce del Sud, i ricchi campi di stelle giovani lasciano il posto a un trattamento congestionato della Via Lattea, dove dominano le nebulose oscure e soprattutto ammassi aperti che sebbene siano abbastanza appariscenti, si presentano piuttosto remoti. In primo piano si possono invece osservare le numerose stelle dell’Associazione Scorpius-Centaurus, responsabili della ricca popolazione stellare visibile a occhio nudo e con un binocolo 10x50; gran parte di queste stelle si trovano a una distanza di 400-500 anni luce.

L’ammasso più occidentale nell’intera Croce del Sud è NGC 4052, che sebbene sia facile da individuare come posizione, non è fra i più famosi e appariscenti; si individua infatti ad appena 8 minuti d’arco a nordovest della stella 0 Cr. una stella bianca di magnitudine 4,3. Con un binocolo 20x80 è visibile come una piccola macchia chiara su cui brillano 2-3 stelline deboli; un telescopio di pari apertura è però in grado di risolverlo parzialmente a forti ingrandimenti. Con strumenti da 120mm la risoluzione è sostanzialmente completa, con una cinquantina di stelle fino alla magnitudine 12 racchiuse in un diametro di 6 minuti d’arco. L’ammasso è formato principalmente da stelle bianche e azzurre, una ventina delle quali di magnitudine più luminosa della 12; la sua età è stata stimata sui 400 milioni di anni ed è dunque di età intermedia. La sua distanza è invece pari a circa 7200 anni luce.

NGC 4103, visibile più a nord, si trova 1,5 gradi a sudovest della stella 6 Cr. ed è ben più appariscente del precedente. È composto da diverse stelle di colore bianco-azzurro, tra le quali la più luminosa è di magnitudine apparente 9,15, molto ben evidenti anche in un telescopio di 80mm di apertura, sufficiente per risolverlo ap-pieno; attraverso un binocolo 10x50 si scorge invece come una macchia chiara molto bene evidente. Uno strumento da 150mm permette di avere una visione molto dettagliata, grazie a una risoluzione quasi completa. Si tratta di un ammasso piuttosto piccolo e molto concentrato, moderatamente ricco di stelle, gran parte delle quali azzurre; la sua distanza è stimata attorno ai 5300 anni luce, simile cioè a quella degli altri ammassi della costellazione e ricade pertanto all’interno del Braccio del Sagittario. Contiene una trentina di stelle fino alla magnitudine 12, in massima parte delle prime classi spettrali; la sua età è stimata sui 24 milioni di anni.
ed è pertanto molto giovane.

Circa un grado a nord della brillante stella Acrux si trova il debole ma ricchissimo NGC 4349, appena in risalto su un campo stellare molto fitto. Le sue stelle più brillanti sono di decima magnitudine e sono invisibili attraverso un binocolo 10x50, attraverso il quale l'ammasso si mostra come una debole macchia chiara; con un telescopio da 100mm è possibile notare una quindicina di stelle fino alla magnitudine 12, molte delle quali allineate in senso nord-sud. Strumenti da 200mm di diametro permettono una completa risoluzione dell'oggetto. La sua distanza è stimata sui 7100 anni luce, mentre la sua età si aggira sui 210 milioni di anni; non presenta quindi stelle delle classi spettrali O e B, le quali hanno già avuto modo di evolvere e probabilmente terminare il loro ciclo vitale; le sue stelle più massive sono infatti giganti rosse, con una massa pari a circa 3,9 masse solari.

Circa un grado più a nord, lungo la direttrice che collega le due stelle Acrux e Gacrux, si trova l'ammasso Harvard 5, meno noto e spesso trascurato; è formato da una ventina di stelle di magnitudine 10 e 11, visibili anche con un telescopio da 80-100mm e disposte a formare una figura simile a una T maiuscola. Strumenti di diametro maggiore non permettono di risolvere altre componenti al di là delle stelle del fondo cielo. È un ammasso relativamente povero, situato alla distanza di circa 4300 anni luce, mentre la sua età sarebbe di 140 milioni di anni circa.

Appena 40 minuti d'arco più a nord, sempre nella medesima direttrice, si trova NGC 4439; è visibile con un binocolo 10x50 solo sotto ottime condizioni osservative, dove si mostra come una semplice macchia chiara. In un telescopio da 100mm di apertura è visibile come un arco di stelline disposto verso oriente, la cui forma ricorda vagamente il simbolo dell'Euro. Strumenti di 200mm di apertura offrono una bella visuale, con molte delle stelle fino alla magnitudine 13,7 sovraposte a uno sfondo molto ricco di stelle. NGC 4439 è un ammasso di media concentrazione, ben contrastato sui campi stellari di fondo; la sua distanza è stimata attorno ai 5800 anni luce ed è quindi situato all'interno del Braccio del Sagittario, in una regione piuttosto ricca di stelle giovani e regioni H II associate a nubi molecolari giganti. Si tratta di un oggetto poco conosciuto e studiato, per il quale sono noti soltanto i parametri fondamentali; la sua età è stimata sugli 80 milioni di anni, pertanto risulta essere un ammasso piuttosto giovane. La sua stella più luminosa è CD-59°4262, avente classe spettrale B3 e magnitudine 10,43; fino alla magnitudine 11 vi sono quattro componenti, che diven- tano quindici se si arriva alla magnitudine 13.

A metà strada fra le stelle Gacrux e δ Crucis si individua NGC 4337; con un telescopio da 120mm è visibile come un raggruppamento relativamente compatto di stelle di magnitudine 12, dominate sul lato orientale da una vicina stella bianca di magnitudine 7,7. Con strumenti da 200mm appare formato da una trentina di stelle, con un gruppetto separato visibile sul lato sudoccidentale e dominato da una stella di magnitudine 11. Trovandosi a una distanza di 7000 anni luce, viene a trovarsi sul Braccio del Sagittario e questo lo rende un oggetto molto interessante, dal momento che si trova di uno dei pochissimi ammassi situati nel disco interno della Via Lattea ad avere un'età di un miliardo e mezzo di anni: le intense forze marceali presenti nelle regioni più interne infatti tendono a disgregare più facilmente gli ammassi aperti e a disperderne le componenti stellari che passano del tempo, pertanto è raro trovare ammassi con un'età superiore a un miliardo di anni.

Un altro ammasso interessante per la medesima ragione è Tr 20, visibile quasi un grado e mezzo a sudovest della brillante stella Mimosas; si presenta come un oggetto esteso ma relativamente sfuggente, a causa della debolezza delle sue componenti, tanto da poter essere individuato con chiarezza solo con strumenti di diametro superiore ai 200mm. La sua età è stimata di 1,6 miliardi di anni, mentre la sua distanza è indicata sugli 11.000 anni luce almeno; molte delle stelle di quest'ammasso sono

NGC 4349 è un ammasso formato da numerose stelle deboli; sebbene occorrano grandi strumenti per la sua completa risoluzione, il gran numero di componenti offre una bella visuale.
giganti rosse, alcune delle quali presentano un eccesso di litio rispetto allo standard, probabilmente per caratteristiche interne delle stelle medesime.

L’ammasso più notevole e famoso della Croce del Sud è senz’altro NGC 4755, conosciuto anche come Scrigno di Gioie o Ammasso di Kappa Crucis, oppure con la sigla C94; fu scoperto da Nicolas Louis de Lacaille nel 1751 ed è l’oggetto non stellare più luminoso della costellazione. Con l’aiuto di un binocolo 8x40 o 10x50 già si nota la sua caratteristica più evidente, e cioè il forte contrasto tra il colore rosso di una delle sue stelle principali (che per altro sarebbe estranea all’ammasso e vi apparirebbe sovrapposta solo per un effetto ottico), e quello dominante dell’ammasso, che è invece composto da stelle bianche e azzurre; proprio questo contrasto di colori, che fa pensare a un insieme di gioielli multicolore, è all’origine del nome proprio di NGC 4755, Scrigno di Gioie. Un piccolo telescopio rifrattore è già sufficiente per risolverlo completamente in stelle. L’ammasso contiene circa 280 stelle concentrate entro un diametro di appena 10’, che alla distanza comunemente accettata di 6440 anni luce dal Sole equivalgono a circa 14 anni luce; la sua distanza è rivelatrice della sua posizione in un braccio di spirale galattico diverso dal nostro, ossia quello del Sagittario, più interno. La sua età è stimata sui 10 milioni di anni, ossia coetanea di altri ammassi ben conosciuti, come l’Ammasso Doppio di Persseo e NGC 2362, l’ammasso di τ Canis Majoris; inoltre appare oscurato dalle polveri oscure interstellari, pure in maniera irregolare: la media dell’assorbimento della luce dell’ammasso sulla nostra linea di vista è di 0,4 magnitудini, ossia il 30% della sua luce viene oscurata. Al suo interno sono note nove variabili Beta Cephei.

Un altro ammasso aperto facilmente rintracciabile è NGC 4609 (C98), visibile ad est di Acrux, sul bordo occidentale del Sacco di Carbone e per questo notevolmente oscurato dai suoi gas; è composto da alcune stelle gialle di nona e decima magnitудine, così da risultare visibile, seppure con difficoltà, anche con un binocolo 10x50. Con un telescopio di 80mm sono visibili una decina di stelle disposte in concatenazioni quasi parallele; un 150mm lo risolve completamente; con strumenti da 200mm l’ammasso è risolto ampiamente in alcune decine di stelle fino alla magnitudine 13,7. Si tratta di un ammasso piuttosto ricco e concentrato, anche se le sue componenti sono in prevalenza deboli; la sua distanza è stimata attorno ai 3990 anni luce ed è quindi situato sul bordo esterno del Braccio del Sagittario, in direzione di una regione galattica piuttosto ricca di stelle giovani e regioni H II associate a nubi molari giganti. A breve distanza angolare in direzione sudest si trova il piccolo ammasso aperto Hogg 15, la cui distanza è stata stimata sui circa 10.430 anni luce, dunque molto più lontano di NGC 4609, e al cui interno è presente, fra le sue componenti, anche una stella di Wolf-Rayet.

Un grado e mezzo a SSE della brillante stella Acrux si osserva infine il piccolo ammasso NGC 4463, che ricade entro i confini della Mosca e nei pressi del bordo sudoccidentale della Nebulosa Sacco di Carbone. Appare anche fortemente oscurato dalla presenza di due stelle supergiganti di magnitudine 8 proprio in direzione del suo centro, che farebbero parte dell’ammasso anche fisicamente; le altre componenti sono di magnitudine meno luminosa della 10 e per essere notate occorrono strumenti di 100-120mm di diametro. Va tuttavia notato che l’ammasso presenta una concentrazione piuttosto debole. Si tratta di un oggetto relativamente poco studiato, con stime dell’età che variano da 32 a 93 milioni di anni; anche la sua distanza non è stata definita con precisione, ma si ritiene compresa fra 3400 e 4000 anni luce, a seconda degli studi: in entrambi i casi giacerebbe comunque nel Braccio del Sagittario. Ciò che è stato oggetto di studi più approfonditi è invece la piccola e giovane nebuloasa planetaria He2-86, che si ritiene faccia fisicamente parte dell’ammasso stesso.
Le Pleiadi del Sud (IC 2602) è uno degli ammassi aperti più brillanti del cielo ed è già risolvibile a occhio nudo.

AMMASSI SPARSI A SUD DELLA VIA LATTEA

Il margine meridionale della Via Lattea in direzione della Carena è popolato di ammassi aperti anche piuttosto brillanti e famosi, alcuni dei quali visibili con chiarezza persino a occhio nudo.

Tra questi il più importante è quello noto come **Pleiadi del Sud**, che porta anche la sigla IC 2602 (o C102); il nome proprio è dovuto al suo aspetto e alla sua grande luminosità, che lo rende simile al ben noto ammasso boreale delle Pleiadi. È infatti uno degli ammassi aperti più brillanti della volta celeste; nell'emisfero celeste australe è l'ammasso più luminoso ed è visibile perfettamente ad occhio nudo durante tutto l'anno dalle aree temperate australi, dove si presenta circumpolare, in una zona già di per sé molto ricca di gruppi stellari e nebulose. Si individua con estrema facilità pochi gradi a sud della brillantissima Via Lattea australe, in un punto ricco di stelle di quinta e sesta magnitudine; ad occhio nudo sono distinguibili alcune stelline minute ad est della stella azzurra θ Carinae (nota anche come Vathorz Posterior), che conferiscono all'ammasso un aspetto sfocato e nebuloso. Ha una forma che ricorda vagamente i segni lasciati dal colpo di zampa di un felino, dove le tre stelle ad est richiamano le quattro dita centrali e la stellina a nord di θ Carinae il primo dito; il palmo è invece rappresentato dalla stessa θ Carinae. Quest'ultima stella costituisce inoltre uno dei vertici, il più settentrionale, di un asterismo noto nell'emisfero sud col nome di Croce di Diamante, che appare orientato allo stesso modo della vicina costellazione della Croce del Sud, sebbene l'asterismo sia meno luminoso e più allungato rispetto alla costellazione. Lo strumento migliore per l'osservazione è un binocolo 10x50, o al più un piccolo telescopio, poiché ad ingrandimenti maggiori si perde la vista d'insieme. La disposizione delle sue stelle principali, raccolte su un lato attorno alla stella più brillante, è simile a quella delle Pleiadi, nella costellazione del Toro, anche se in forma un po' ridotta. Con strumenti superiori, come un telescopio da 80-100mm, si individua fra le sue componenti principali un buon numero di stelle minori, gran parte delle quali di colore tendente al giallognolo. L'ammasso delle Pleiadi del Sud è formato da circa 150 stelle giovani, tutte disposte sulla sequenza principale, di cui sette sono perfettamente visibili ad occhio nudo nelle notti più oscure e nitide; la caratteristica principale è la divisione netta che intercorre fra l'arco di stelle visibile ad est, formato da tre stelle di quinta magnitudine più altre meno luminose, e il gruppo ad ovest, meno ricco ma comprendente la stella principale, la gigante azzurra θ Carinae, di magnitudine visuale 2,74. Fra le sue componenti si osserva pure una variabile Gamma Cassiopeiae, la stella HD 92938 (fra le componenti più brillanti è quella più vicina a θ Carinae), classificata anche con la sigla di stella variabile V518 Carinae; le sette stelle più luminose della magnitudine 5,8 sono tutte di classe spettrale B. La magnitudine complessiva dell'ammasso è invece pari a 1,9; considerando la magnitudine apparente delle Pleiadi, che è pari a 1,6, le Pleiadi del Sud risultano essere del 39% meno luminose rispetto alle Pleiadi del Toro. L'età dell'ammasso si aggirerebbe sui 30 milioni di anni. Nel corso dei decenni si sono indicati per quest'oggetto vari valori di distanza, spesso molto diversi fra loro e comunque sovrastimati; il satellite Hipparcos ha più di recente fornito un valore di 479 anni luce dal Sistema Solare e questo dato viene ormai dato come certo dalla comunità scientifica.

Poco a sud del brillante ammasso delle Pleiadi del Sud si individua l'ammasso Mel 101, nei pressi di una stella azzurra di quinta magnitudine, che contribuisce a oscurarlo. Si può osservare con un binocolo come un 15x70 o, meglio, con un telescopio di 80-100mm; le sue stelle principali sono di magnitudine 10 e 11 e la stella che lo domina è una nana arancione, che però non fa parte dell'ammasso, trovandosi in primo piano. La distanza dell'ammasso è stimata sui 7500 anni luce, pertanto ben più lontano del precedente e situato sul Braccio del Sagittario; per altro appare anche oscurato dalla polvere interstellare, così come l'intero tratto di Via Lattea a sud della Nebulosa della Carena. Le sue stelle sono tutte di colore bianco-azzurro e appaiono fortemente oscurate da una banda di nebulose oscure che si frappone fra noi
e l'ammasso stesso. La sua età è invece stimata sui 160 milioni di anni ed è pertanto di età intermedia; sono infatti assenti stelle di grande massa. La sua posizione ricade a circa 750 anni luce di distanza dal piano galattico, un altro fenomeno tipico di ammassi aperti di età moderatamente avanzata.

Ai margini dell’Arco della Carena si trova l’ammasso NGC 3114, anch’esso piuttosto brillante. È individuabile due gradi a nordovest della stella q Carinae, di terza magnitudine, e appare visibile ad occhio nudo solo nelle notti più limpide, presentandosi come una vaghissima macchietta chiara di forma irregolare. Piccoli strumenti già lo risolvono in stelle: con un binocolo 10x50 sono visibili una trentina di stelle, le quali raddoppiano con un 20x80. Nella parte sudorientale sono presenti le stelle più luminose, di sesta e settima magnitudine, mentre la gran parte degli astri si concentra a nordovest. Fortissimo il contrasto con una stellina rossa di settima magnitudine, posta a sudovest. Un telescopio da 150mm è in grado di mostrare alcune centinaia di stelle e la vista diventa molto appagante. NGC 3114 è un ammasso piuttosto ricco ed esteso, con circa 200 stelle più luminose della magnitudine 12; la sua distanza è stimata attorno ai 2970 anni luce ed è quindi situata attorno ai 124 milioni di anni luce.

Si segnala infine la nebulosa planetaria NGC 3211, visibile anche con un telescopio da 150mm o pure inferiori; si individua 1°20’ a sud della stella q Carinae ed è esaltata in strumenti da 200mm o superiori con l’ausilio di un filtro a banda stretta come un OIII. La sua distanza è stimata sui 9200 anni luce e la sua stella centrale è di magnitudine 20.

Nelle foto ad alta sensibilità è inoltre individuabile, circa due gradi e mezzo a sudovest delle Pleiadi del Sud, un involucro di gas ionizzato di circa 10 minuti d’arco che circonda la stella di Wolf-Rayet HD 96548 (o WR 40), di magnitudine 7,7 e situata alla distanza di 8800 anni luce.
IL POLO
SUD CELESTE
Fra le costellazioni del Pavone e del Telescopio si estende un superammasso di galassie non particolarmente vicino, ma piuttosto ricco; la sua posizione a declinazioni molto meridionali fa però sì che questo sia osservabile con chiarezza solo da latitudini australi o nei pressi dell’equatore.

Le Nubi di Magellano sono due oggetti fra i più caratteristici dei cieli del sud: sebbene restino invisibili dalle aree urbane, appena fuori città iniziano ad apparire assieme alla scia della Via Lattea come se ne fossero due frammenti staccati; sebbene sembrino simili sotto un cielo rurale o nella luce del crepuscolo, osservandole da un cielo molto buio emergono le loro differenze, con la Grande Nube che occupa quasi tre volte la superficie della Piccola Nube.
Gruppi di galassie nel Pavone

Su bordo della Via Lattea australe, a sud del Sagittario, si trova la stella Peacock, moderatamente brillante, ma la cui luminosità è esaltata dall’assenza di altre stelle luminose nei dintorni. Questa stella può essere utilizzata per esplorare una regione ricca di galassie non particolarmente appariscenti, ma comunque alla portata di strumenti di diametro medio-grande.

Caratteristiche

Fra le costellazioni del Pavone e del Telescopio si estende un superammasso di galassie non particolarmente vicino, ma piuttosto ricco; la sua posizione a declinazioni molto meridionali fa però sì che questo sia osservabile con chiarezza solo da latitudini australi o nei pressi dell’equatore.

A parte la già citata stella Peacock, ossia la α Pavonis, nella regione mancano stelle appariscenti che possano aiutare nell’individuazione delle galassie tramite il metodo degli allineamenti; molte di queste tuttavia si trovano a breve distanza angolare del gruppo di astri di quarta e quinta magnitudine della parte occidentale del Pavone.

A parte alcune galassie poste in primo piano e appartenenti al Superammasso della Vergine, la gran parte di questi oggetti restano fuori dalla portata di piccoli strumenti e sebbene possano essere intuite con telescopi da 120mm da chi ha l’occhio molto ben allenato, una visione soddisfacente e chiara si riesce ad avere solo con telescopi da 200mm a salire.

STELLE PRINCIPALI DELLA REGIONE

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>α Pav</td>
<td>Peacock</td>
<td>20h 25m 39s</td>
<td>−56° 44’ 06”</td>
<td>1,94</td>
<td>183</td>
<td>azzurro</td>
</tr>
<tr>
<td>β Pav</td>
<td></td>
<td>20h 44m 58s</td>
<td>−66° 12’ 12”</td>
<td>3,42</td>
<td>187</td>
<td>bianco</td>
</tr>
<tr>
<td>δ Pav</td>
<td></td>
<td>20h 08m 42s</td>
<td>−66° 10’ 46”</td>
<td>3,55</td>
<td>20</td>
<td>giallo</td>
</tr>
<tr>
<td>η Pav</td>
<td></td>
<td>17h 45m 44s</td>
<td>−64° 43’ 25”</td>
<td>3,60</td>
<td>352</td>
<td>arancio</td>
</tr>
<tr>
<td>δ Ara</td>
<td>Tseen Yin</td>
<td>17h 31m 06s</td>
<td>−60° 41’ 01”</td>
<td>3,60</td>
<td>187</td>
<td>blu</td>
</tr>
<tr>
<td>θ Ara</td>
<td>Tao Shou</td>
<td>18h 06m 38s</td>
<td>−50° 05’ 29”</td>
<td>3,65</td>
<td>1012</td>
<td>azzurro</td>
</tr>
<tr>
<td>ε Pav</td>
<td></td>
<td>20h 00m 35s</td>
<td>−72° 54’ 37”</td>
<td>3,95</td>
<td>1’5</td>
<td>bianco</td>
</tr>
<tr>
<td>ζ Tel</td>
<td></td>
<td>18h 28m 50s</td>
<td>−49° 04’ 12”</td>
<td>4,10</td>
<td>127</td>
<td>giallo</td>
</tr>
</tbody>
</table>

I gruppi più appariscenti si trovano a breve distanza angolare dal famoso ammasso globulare del Pavone, il brillante NGC 6752; in questo punto si osservano anche numerose galassie interagenti, che sono ben evidenziabili nelle fotografie ad alta risoluzione.

Altri gruppi interessanti si osservano verso il confine con la costellazione del Telescopio e anche al suo interno; la disposizione spaziale di tutti questi gruppi di galassie sembra seguire una doppia concatenazione orientata in senso nordest-sudovest, dal confine con l’Altare fino alla stella Peacock.

A sudest di questo superammasso, di contro, si estende una delle zone apparentemente più vuote di galassie dell’intera volta celeste; le galassie qui osservabili infat-
La costellazione del Pavone è nota per i suoi gruppi di galassie, che si estendono fino al bordo meridionale della costellazione del Telescopio.
ti giacciono a distanze talmente grandi che possono essere individuate solo con l’uso di apparecchiatura astrofotografica.

GALASSIE IN PRIMO PIANO

Alcune delle galassie osservabili in questa regione sono, come si è accennato, poste in primo piano e appartengono infatti al Superammasso della Vergine, a distanze inferiori a 50 milioni di anni luce.

La galassia più vicina a noi in questo settore di cielo è IC 4662, che sebbene sia poco nota è piuttosto interessante; si trova vicissimamente alla stella η Pavonis, di magnitudine 3,6, al punto che in effetti può anche disturbarne l’osservazione. Ha una bassa luminosità superficiale, pertanto per la sua osservazione occorrono telescopi da almeno 150mm e occhi molto esperti, oppure diametri più grandi; il suo aspetto è quello di una macchia di forma irregolare o vagamente ellissoidale, più luminosa su un lato. Si tratta di una galassia di morfologia irregolare, le cui dimensioni reali non superano i 7000 anni luce di diametro; la sua distanza è invece stima sugli 8 milioni di anni luce, dunque in prossimità dei margini esterni del Gruppo Locale. La sua caratteristica principale è l’abbondanza di grandi complessi nebulosi, che hanno reso possibile lo starburst osservabile in questa galassia, un fenomeno inusuale ma non impossibile nelle galassie nane irregolari; le indagini condotte hanno permesso di scoprire le dinamiche di questi processi: studiando galassie nane e vicine come questa si è infatti scoperto che gli starburst non sono fenomeni isolati, ma possono perdurare fino a 400 milioni di anni, diffondendosi progressivamente in tutta la galassia.
La galassia più nota nel Pavone è tuttavia **NGC 6744** (C101). Si individua circa 3° a sudest della stella λ Pavonis, poco a sud della linea che congiunge questa stella alla δ Pavonis; è già visibile anche con un binocolo 10x50, dove appare come una macchia molto debole e sfumata sotto cieli bui e limpidi, anche a causa della sua bassa luminosità superficiale che la rende comunque un oggetto sfuggente rispetto ad altre galassie di pari magnitudine integrata. Con un telescopio da 100mm mantiene un aspetto sfrangiato ma inizia a definirsi vagamente la struttura della barra; la struttura dei bracci inizia ad essere evidente con telescopi da 250mm di diametro. Questa galassia possiede delle dimensioni ragguardevoli, estendendosi per circa 193.000 anni luce, con una luminosità pari a 56 miliardi di Soli; appartiene al gruppo di galassie del Pavone-Altare, alla distanza di circa 31 milioni di anni luce dalla Via Lattea. NGC 6744 possiede un disco molto grande su cui si estendono dei bracci di aspetto sfilacciato, con numerosi nodi molto ricchi di stelle giovani e calde e diverse grandi regioni H II; due bracci in particolare mostrano evidenti segni di processi di formazione stellare particolarmente intensi. Osservazioni condotte sulla banda dell’idrogeno neutro mostrano un enorme anello di idrogeno che arriva oltre il termine esterno dei bracci di spirale; due di questi bracci per altro arrivano a estendersi ben oltre ciò che appare nella banda della luce visibile. Diventano inoltre visibili le interazioni marziali fra questa galassia e le due galassie compagne minori, NGC 6744A e ESO 104-G44. I bracci sono connessi internamente a una grande barra di forma lenticolare centralizzata su un anello interno incompleto, virtualmente privo di gas interstellaire e quindi di attività di formazione stellare. Nel 2005 venne osservata fra i suoi bracci di spirale una supernova di tipo 1c, denominata poi SN2005at; raggiunse la magnitudine di 16,8.

Circa 3 gradi a ovest della stella κ Pavonis si trova **IC 4710**, un’altra galassia dalla bassa luminosità superficiale, ma alla portata di telescopi da 200mm e anche inferiori, per coloro che hanno grande esperienza osservativa. Si tratta di una galassia nana irregolare di tipo magellanico, il cui diametro reale è pari a 36.000 anni luce; presenta una struttura centrale a barra, da cui partono abbozzi di bracci molto corti e irregolari, uno dei quali è più sviluppato dell’altro, e si ritiene che il suo aspetto sia dovuto all’interazione con altre galassie o con una nube intergalattica. Presenta un elevato tasso di formazione stellare in particolare nelle sue regioni periferiche, dove si osservano diversi piccoli addensamenti di stelle luminose; la sua distanza è stimata sui 34 milioni di anni luce e dunque in prossimità della galassia NGC 6744.

Un’altra galassia in primo piano è **NGC 6684**, situata meno di mezzo grado a sudest della stella θ Pavonis. È una delle più brillanti della costellazione e può essere notata anche con un telescopio da 80-100mm di diametro, molto vicina a una stella di sesta magnitudine che quasi le si sovrappone, contribuendo ad oscurarla. Questa galassia presenta una morfologia lenticolare e allo stesso tempo barrata, con un nucleo molto piccolo attraversato da una piccola barra, attorno alla quale si estende un anello di stelle dall’aspetto simile a due bracci richiusi su sé stessi. La sua distanza è stimata sui 40 milioni di anni luce.

IL SUPERAMMASSO PAVONE-INDIANO

Il Superammasso Pavone-Indianò è un superammasso...
di galassie prossimo al nostro Superammasso della Vergine; il suo centro gravitazionale è in direzione della costellazione dell’Aquario. In letteratura sono pochi gli studi che riguardano questo superammasso; una pubblicazione del 1988 avvalora l’ipotesi che questo sia in connessione, tramite l’ammasso di galassie Abell 3627, con il Superammasso dell’Idra-Centauro. Con la scoperta nel 2014 del Superammasso Laniakea, si è compreso che il Superammasso Pavone-Indiano costituisce un lobo di questa grande struttura. Il Superammasso Pavone-Indiano contiene quattro ammassi principali, denominati Abell 3627, Abell 3656, Abell 3698, Abell 3742, cui si aggiungono alcuni gruppi di galassie; tutti questi sistemi appaiono in sequenza e conferiscono al superammasso l’aspetto filamentoso, che si estende per circa 200 milioni di anni luce, a una distanza di 120-200 milioni di anni luce. Oltre il suo termine, in direzione dell’Aquario, si estende un esile filamento di galassie che lo collegherebbe al Superammasso Perseo-Pesci. Il gruppo di galassie più meridionale di questo superammasso è quello di NGC 6876, che si trova all’esterno della regione qua analizzata.

Un gruppo di galassie particolarmente compatto compreso in questo complesso è quello di IC 4765, che è anche noto con la sigla AS805 o Pavo II; IC 4765 è la galassia dominante e può essere rintracciata con facilità un grado e mezzo a SSW della stella λ Pavonis. Attraverso un telescopio da 120mm appare come una piccola macchia pallida di aspetto simile a una stella sfuocata, leggermente allungata; questo allungamento è maggiormente percepibile con strumenti da 200mm, ma non si notano ulteriori dettagli. Si tratta di una galassia ellittica gigante, una delle più massicce dell’intero superammasso; il suo diametro sarebbe pari a oltre 200.000 anni luce ed è circondata da un gran numero di galassie minori, alcune delle quali, come ESO 104-7, sono visibili anche con telescopi da 200-250mm. La sua distanza è stimata sui 197 milioni di anni luce, così come quella dell’intero ammasso; nelle fotografie ad alta risoluzione è possibile riprendere diverse decine di galassie minori. Circa 3 gradi a est di λ Pavonis si trova un’altra galassia relativamente appariscente, IC 4831; può essere notata con difficoltà con strumenti da 120mm, dove appare come una macchia pallida leggermente allungata in senso est-ovest. Con telescopi da 200mm si può notare un debolissimo alone che prolunga la sagoma della galassia fino a 3 minuti d’arco. Si tratta di una galassia spirale vista quasi di taglio, con un nucleo voluminoso e molto brillante, circondato da un disco formato da bracci spessi ma di difficile osservazione a causa della sua angolazione; le sue dimensioni sono notevoli, con un diametro stimato di 200.000 anni luce. La sua distanza è invece pari a 190 milioni di anni luce ed è il membro più massiccio di un gruppo di galassie noto appunto come Gruppo di IC 4831.

Circa un grado a sudest dell’ammasso globulare NGC 6752 si osserva uno dei gruppi di galassie più famosi di questa parte di cielo, il Gruppo di IC 4845; si trova a circa 170 milioni di anni luce di distanza ed è formato da cinque galassie, tre delle quali appaiono molto ravvicinate fra loro e due di queste sono in forte interazione. IC 4845 è una galassia spirale vista quasi di faccia e il suo nucleo brillante è anche alla portata di strumenti da 150mm, con cui appare come una macchia circolare simile a una stella sfuocata; il suo disco è però esile ed è difficile da osservare anche con telescopi di grande diametro. Le sue dimensioni sono di circa 80.000 anni luce.

IC 4842 è più debole e può essere notata con difficoltà con telescopi da 150mm, sebbene la sua luminosità superficiale sia elevata; appare di aspetto stellare con bordi debolmente sfumati e strumenti di grande diametro permettono di notare la sua forma allungata in senso nord-sud. Si tratta di una galassia ellittica di tipo E5, dunque fortemente allungata; il suo diametro è di circa 80.000 anni luce, ma data la sua morfologia dovrebbe essere più massiccia della precedente. Pochi minuti d’arco a nordovest si trova NGC 6771, la meno appariscente del gruppo; può essere notata con telescopi da 200mm, dove appare come un piccolo fuso chiaro leggermente più luminoso al centro. È una galas-
La galassia spirale NGC 6753 è famosa presso gli scienziati grazie alla sua corona di gas molto caldo che la circonda.
La galassia ellittica NGC 7014, nella costellazione dell’Indianò.

tata in senso nordovest-sudest. Le altre galassie del gruppo si presentano allineate verso nord e includono la lenticolare IC 4796, la spirale massiccia NGC 6707 e la spirale intermedia NGC 6708; tutte queste possono essere osservate solo con strumenti superiori ai 150mm di diametro, mentre si evidenziano con facilità nelle fotografie. La loro distanza è stimata sui 120 milioni di anni luce e costituiscono un gruppo periferico del Superammasso Pavone-Indianò.

Al gruppo sembrerebbe appartenere anche la galassia NGC 6725, visibile meno di un grado ad est della sequenza principale; è visibile anche con un telescopio da 150mm, sebbene con qualche difficoltà, e appare come un piccolo fuso chiaro orientato in senso nord-sudovest. Si tratta di una galassia lenticolare vista da un’angolazione intermedia, la cui distanza è stimata sui 130 milioni di anni luce.

Circa 3 gradi ad est di η Telescopii si trova la galassia IC 4891, relativamente brillante e talvolta indicata anche come IC 4889; con un telescopio da 120mm è già evidente come una macchia chiara di aspetto stellare e leggermente sfumata ai bordi, mentre con strumenti da 150mm è possibile notare la sua morfologia leggermente allungata in senso nord-sud. Si tratta di una galassia ellittica di tipo E5, dunque di aspetto schiacciato; possiede un diametro di 75.000 anni luce e appare in coppia con la più debole galassia IC 4888, visibile 8 minuti d’arco a SSW e di morfologia lenticolare, con cui forma un gruppo legato dalla reciproca gravità. La loro distanza è stimata sui 113 milioni di anni luce.

Nel medesimo campo visivo è presente anche la variabile RR Telescopii, una nova simbiotica che solitamente oscilla fra le magnitudini 9 e 16, ma che occasionalmente ha raggiunto la magnitudine 6.

Il Superammasso Pavone-Indianò, come lascia anche intendere il nome, prosegue ulteriormente verso nordest fino a entrare nella vicina costellazione dell’Indianò, dove sono però presenti galassie meno appariscenti e in numero minore. Gran parte di quelle appartenenti al superammasso sono comprese nella parte settentrionale della costellazione e si concentrano attorno all’ammasso Abell 3742; la sua distanza è stimata sui 209 milioni di anni luce ed è pertanto uno dei tratti più remoti. NGC 7014, di cui fa parte, può essere individuata con un telescopio da 150mm, sebbene con qualche difficoltà, e appare come una debole macchia di aspetto stellare, un aspetto tipico delle galassie ellittiche; le sue dimensioni reali sono di circa 110.000 anni luce ed è associata anche ad altre galassie visibili nei dintorni, come NGC 7038.

Poco più a nord, entro i confini della costellazione del Microscopio, si osserva l’ammasso compatto Abell 3747, formato da alcune galassie ellittiche giganti su cui spiccano la lenticolare ESO 286-60 e l’ellittica gigante ESO 286-59.
Le Nubi di Magellano

Le Nubi di Magellano sono le più massicce fra tutte le galassie satelliti della Via Lattea e sono anche le uniche galassie esterne i cui campi stellari sono parzialmente risolvibili anche con telescopi amatoriali.

Trovandosi molto vicine al polo sud celeste, queste due galassie sono osservabili solo dall'emisfero sud, o al massimo poco a nord dell'equatore; ciò le rende oggetti decisamente esotici per coloro che sono abituati a osservare il cielo dall'emisfero nord, e tali apparvero in effetti anche a chi per primo fra gli esploratori europei le osservò.

CARATTERISTICHE

Le Nubi di Magellano sono due oggetti fra i più caratteristici dei cieli del sud: sebbene restino invisibili dalle aree urbane, appena fuori città iniziano ad apparire assieme alla scia della Via Lattea come se ne fossero due frammenti staccati; sebbene sembrino simili sotto un cielo rurale o nella luce del crepuscolo, osservandole da un cielo molto buio emergono le loro differenze, con la Grande Nube che occupa quasi tre volte la superficie della Piccola Nube.

La Grande Nube è anche la più vicina al piano della Via Lattea ed è visibile a sud della brillante stella Cánopo; i suoi campi stellari sono parzialmente risolvibili anche con un telescopio di diametro medio-grande, mentre i suoi oggetti più luminosi sono visibili anche con un binocolo 10x50 o persino ad occhio nudo, come la famosa Nebulosa Tarantola, che di fatto è la regione di formazione stellare più massiccia dell’intero Gruppo Locale.

La Piccola Nube è più distante e più piccola e si osserva a sud di Achernar; i suoi oggetti sono più piccoli e dunque anche meno appariscenti, ma restano comunque alla portata di molti telescopi di uso comune. Nei suoi dintorni si osservano due brillanti ammassi globulari, uno dei quali è il famoso 47 Tucanae; nessuno di questi è tuttavia legato a questa galassia, essendo orbitanti attorno alla Via Lattea.

In fotografia la Grande Nube si rivelà un oggetto straordinario: nelle riprese a grande campo è già possibile distinguere alcune decine di ammassi e persino di nebulose, mentre le riprese ad alta risoluzione permettono di risolvere appieno numerosi ammassi, tanto che l’intera galassia appare sciolta in milioni di deboli stelle.

Le fotografie alla Piccola Nube al confronto possono risultare meno entusiasmanti a causa della minore ricchezza di questa galassia, ma resta pur sempre un oggetto d’eccezione proprio perché anche in questo caso è possibile la sua risoluzione in stelle, ammassi e piccole nebulose.

DETTAGLI

<table>
<thead>
<tr>
<th>Costellazioni</th>
<th>Dorado, Mensa; Tucano</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascensione Retta (media)</td>
<td>05h 20’, 01h 00’</td>
</tr>
<tr>
<td>Declinazione (media)</td>
<td>-68°; -73°</td>
</tr>
<tr>
<td>Tipo</td>
<td>Campi stellari extragalattici</td>
</tr>
<tr>
<td>Oggetti</td>
<td>Ammassi aperti e nebulose</td>
</tr>
</tbody>
</table>

OSTRANERIA (*)

STELLE PRINCIPALI DELLA REGIONE

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>β Hyi</td>
<td></td>
<td>00h 25m 39s</td>
<td>-77° 15’ 18”</td>
<td>2.82</td>
<td>24</td>
<td>giallo</td>
</tr>
<tr>
<td>α Hyi</td>
<td></td>
<td>01h 58m 46s</td>
<td>-61° 34’ 12”</td>
<td>2.86</td>
<td>71</td>
<td>arancio</td>
</tr>
<tr>
<td>α Pic</td>
<td></td>
<td>06h 48m 12s</td>
<td>-61° 56’ 31”</td>
<td>3.24</td>
<td>99</td>
<td>bianco</td>
</tr>
<tr>
<td>γ Hyi</td>
<td>Foo Pih</td>
<td>03h 47m 14s</td>
<td>-74° 14’ 21”</td>
<td>3.26</td>
<td>214</td>
<td>rosso</td>
</tr>
<tr>
<td>α Ret</td>
<td></td>
<td>04h 14m 25s</td>
<td>-62° 28’ 26”</td>
<td>3.33</td>
<td>163</td>
<td>giallo</td>
</tr>
<tr>
<td>β Dor</td>
<td></td>
<td>05h 33m 38s</td>
<td>-62° 29’ 23”</td>
<td>3.76</td>
<td>1038</td>
<td>giallo</td>
</tr>
<tr>
<td>γ Vol</td>
<td></td>
<td>07h 08m 4s</td>
<td>-70° 29’ 57”</td>
<td>3.78</td>
<td>142</td>
<td>giallo</td>
</tr>
<tr>
<td>β Ret</td>
<td></td>
<td>03h 44m 12s</td>
<td>-64° 48’ 25”</td>
<td>3.84</td>
<td>100</td>
<td>arancio</td>
</tr>
</tbody>
</table>
La Grande Nube di Magellano è di gran lunga la galassia più brillante della volta celeste e una delle poche in cui ammassi stellari e nebulose possano essere osservate anche con piccoli strumenti.
La Grande Nube di Magellano si estende per circa 11 gradi di volta celeste fra le costellazioni del Dorado e della Mensa; la sua distanza è pari a 163.000 anni luce e il suo diametro è di circa 14.000 anni luce. Nelle carte viene indicata spesso con la sigla LMC (dall’inglese Large Magellanic Cloud) e le è stata anche assegnata la sigla PGC 17223.

La nomenclatura degli oggetti in essa contenuti è stata inizialmente un po’ confusionaria, soprattutto nella distinzione fra ammassi aperti molto compatti e piccoli ammassi globulari; diverse nebulose riportano inoltre più numeri del catalogo NGC in base ai loro addensamenti principali, finché non si è proceduto a unificarle in una nomenclatura standard utilizzata ad hoc per questa galassia, tramite la lettera N del Catalogo di Henize più un numero progressivo.

L’oggetto di gran lunga più notevole della galassia è la famosa Nebulosa Tarantola (NGC 2070 o C103), la più grande regione di formazione stellare di tutto il Gruppo Locale. Talvolta è indicata anche come 30 Doradus, che, come per “47 Tucanae”, deriva dalla designazione assegnatale dal catalogo di Bode nel 1801. Questa nebulosa, di ottava magnitudine apparente, si osserva nella zona nordorientale della Nube.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NGC 1727</td>
<td>04h 52m 13s</td>
<td>-69° 20' 20''</td>
<td>Neb</td>
<td>-</td>
<td>3</td>
<td>(N79)</td>
</tr>
<tr>
<td>NGC 1731</td>
<td>04h 53m 15s</td>
<td>-66° 55' 36''</td>
<td>A Ap</td>
<td>9,9</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>NGC 1747</td>
<td>04h 55m 11s</td>
<td>-67° 10' 42''</td>
<td>A Ap</td>
<td>9,4</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>N11</td>
<td>04h 56m 51s</td>
<td>-66° 24' 24''</td>
<td>Neb</td>
<td>(9,4)</td>
<td>18 (+ NGC 1760)</td>
<td></td>
</tr>
<tr>
<td>NGC 1820</td>
<td>05h 04m 06s</td>
<td>-67° 16' 42''</td>
<td>A Ap</td>
<td>11,5</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>NGC 1837</td>
<td>05h 04m 57s</td>
<td>-70° 42' 56''</td>
<td>A Ap</td>
<td>9</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>NGC 1850</td>
<td>05h 08m 50s</td>
<td>-68° 45' 36''</td>
<td>A+ N</td>
<td>8,9</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>NGC 1869</td>
<td>05h 13m 53s</td>
<td>-67° 22' 48''</td>
<td>A Ap</td>
<td>9</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>NGC 1910</td>
<td>05h 18m 43s</td>
<td>-69° 14' 122'</td>
<td>A Ap</td>
<td>9,6</td>
<td>2</td>
<td>A. di S Doradus</td>
</tr>
<tr>
<td>N44</td>
<td>05h 22m 07s</td>
<td>-67° 56' 46''</td>
<td>Neb</td>
<td>-</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>N51</td>
<td>05h 26m 47s</td>
<td>-67° 31' 06''</td>
<td>Neb</td>
<td>-</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>NGC 2001</td>
<td>05h 29m 10s</td>
<td>-68° 44' 48''</td>
<td>A Ap</td>
<td>10</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>NGC 2002</td>
<td>05h 30m 21s</td>
<td>-66° 53' 06''</td>
<td>A Ap</td>
<td>10,8</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>NGC 2018</td>
<td>05h 31m 24s</td>
<td>-71° 04' 24''</td>
<td>A Ap</td>
<td>10,9</td>
<td>2</td>
<td>(N206)</td>
</tr>
<tr>
<td>NGC 2027</td>
<td>05h 35m 00s</td>
<td>-66° 55' 06''</td>
<td>A Ap</td>
<td>11,0</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>NGC 2042</td>
<td>05h 36m 10s</td>
<td>-68° 54' 54''</td>
<td>A Ap</td>
<td>9,6</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>NGC 2070</td>
<td>05h 38m 38s</td>
<td>-69° 05' 40''</td>
<td>Neb</td>
<td>8,0</td>
<td>40</td>
<td>N. Tarantola</td>
</tr>
<tr>
<td>NGC 2100</td>
<td>05h 42m 07s</td>
<td>-69° 12' 27''</td>
<td>A Ap</td>
<td>8,7</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>NGC 2122</td>
<td>05h 48m 55s</td>
<td>-70° 04' 06''</td>
<td>A Ap</td>
<td>10,4</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

Mappa di dettaglio della Grande Nube di Magellano, con evidenziati gli oggetti più cospicui.
mente impossibile da osservare ad occhio nudo, è individuabile senza difficoltà tramite un semplice binocolo, presentandosi come una macchia tondeggiante dai bordi molto sfumati; le sue ramificazioni luminose appaiono invece con un telescopio da 100mm, che consente di rilevare anche alcuni addensamenti di stelle e ammassi aperti. La Nebulosa Tarantola ha una magnitudine apparente pari a 8; considerando la sua distanza di 160.000 anni luce, si tratta di un oggetto estremamente luminoso. Infatti, si tratta della regione di formazione stellare più attiva del Gruppo Locale di galassie; al suo centro, un ammasso estremamente compatto di stelle calde e giovani produce la maggior parte dell'energia che rende visibile la nebulosa. La reale dimensione della Nebulosa Tarantola è di circa 1000 anni luce; se fosse posta alla stessa distanza della Nebulosa di Orione (un'altra regione di formazione stellare, visibile ad occhio nudo) sarebbe 60 volte più grande della luna piena. Nelle aree centrali della nebulosa si trova un ricchissimo e compatto ammasso di stelle, noto come R136, il quale è il principale responsabile dell'illuminazione e dell'eccitamento dei gas della nebulosa. Un altro ammasso notevole è Hodge 301.

La Nebulosa Tarantola è stata inoltre la sede di una recente esplosione di supernova, la cui luce è giunta a noi nel 1987: si tratta della famosa SN 1987a, che fu anche una delle più studiate data la sua relativa vicinanza e divenne visibile anche ad occhio nudo, con una magnitudine apparente pari a 3.0. La stella progenitrice era nota con la sigla Sk -69° 202a, una variabile S Doradus di magnitudine 12.

L'ammasso Hodge 301 è invece di età leggermente più avanzata; sin dalla sua formazione, alcune delle stelle più massive sono esplose come supernovae, compriendo il gas contenuto nella nube. Ciò contrasta con la situazione osservabile in R136a, che è sufficientemente giovane da non aver ancora subito esplosioni in supernovae delle sue componenti.

Fra i numerosi ammassi aperti visibili nei dintorni, uno dei più appariscenti è NGC 2100, individuabile circa 20’ a sud-est del centro più luminoso della Nebulosa Tarantola; può essere intravvisto persino con un binocolo 15x70, o anche con un più piccolo 10x50 se si sa esattamente dove osservare: con questi strumenti tuttavia non è assolutamente risolvibile in stelle, ma appare come una piccola macchia nebbiosa. Telescopi da 100mm iniziano ad essere sufficienti per risolvere le prime poche stelle di magnitudine 11, che appaiono molto vicine fra loro e immerse in un chiarore indistinto; una piena risoluzione è possibile solo con telescopi di diametro molto grande e forti ingrandimenti. Si tratta di uno degli ammassi più brillanti dell’intera galassia ed è formato da alcune decine di stelle di grande massa; la sua età è stimata sui 20 milioni di anni e pertanto le sue stelle più massicce sono già esplose come supernovae.

A breve distanza si trovano i due ammassi minori NGC 2092 e NGC 2108, che però restano solo alla portata di telescopi di diametro molto grande.

Circa 20’ a SSW della Nebulosa Tarantola si estende un ricco campo stellare del diametro di 15’, le cui stelle più luminose sono di magnitudine 12 e 13 e risultano alla portata di telescopi da 150-200mm; le stelle invisibili con questi strumenti formano un esteso chiarore che
resta comunque visibile. Le due parti più dense e brillanti del campo stellare coincidono con gli ammassi NGC 2050 e NGC 2055, entrambi dominati da stelle di magnitudine 11 e 12 e visibili anche con telescopi da 120mm come piccole macchie chiare.

Proseguendo per altri 20’ nella medesima direzione si arriva a un campo stellare meno brillante ma anch’esso formato da stelle di magnitudine 12 e 13; la parte più brillante coincide con l’ammasso NGC 2037.

Circa 15’ a nordovest della Nebulosa Tarantola si trova l’addensamento stellare che circonda l’ammasso NGC 2042, visibile anche con telescopi da 150mm ed esteso per una decina di minuti d’arco; le sue stelle più luminose sono di magnitudine 13 e 14, pertanto la sua risoluzione parziale è possibile solo con telescopi da 250-300mm a salire. Tutti questi gruppi stellari presentano un’età piuttosto giovane, stimata di poche decine di milioni di anni al massimo, come è anche testimoniato dalla grande prevalenza di stelle di classe B e A.

Distanziandosi di mezzo grado verso sud, i grandi sistemi nebulosi di NGC 2074, NGC 2077 e NGC 2078 sono ben evidenti nelle fotografie e anche, in parte, con telescopi da 200mm a salire; appaiono come dei lembi staccati e deboli della Nebulosa Tarantola e sono ricchi di stelle di magnitudine 11 e 12, che si dispongono a formare una sequenza di blandi ammassi chiaramente identificabili come NGC 2081 e NGC 2085.

La barra è la regione della galassia dove si concentra la maggior parte delle stelle vecchie e di piccola massa; tuttavia, la formazione stellare si è diffusa anche qui, a causa delle intense forze mareali legate all’interazione con la Via Lattea. La testimonianza più importante è data dal brillante ammasso aperto NGC 1910, che è formato da un gran numero di stelle giovani e di grande massa costituenti l’associazione OB LH-41; osservando con attenzione è possibile notarlo anche con un binocolo 10x50 sotto cieli perfettamente bui, con cui appare come una piccola macchia nebbiosa più chiara su cui si possono intravvedere 1-2 deboli stelle. Telescopi da 80mm sono sufficienti per identificare con chiarezza le componenti più appariscenti, fra le quali spicca la famosa stella S Doradus, prototipo delle variabili blu luminose, ossia supergiganti in procinto di esplodere come supernovae. Telescopi da 200mm permettono di intuire la natura di ammasso stellare dell’oggetto, ma una risoluzione completa dell’ammasso è possibile solo con telescopi da 300mm almeno. Entro pochi minuti d’arco a sud si possono osservare altri ammassi più deboli, come NGC 1903 e NGC 1916.

Esplorando la barra con un telescopio da 200mm se ne può iniziare una prima blanda risoluzione in stelle; sparsi su tutta la sua lunghezza si individuano diversi piccoli addensamenti simili a macchie nebbiose, coincidenti con altrettanti ammassi aperti di piccole dimensioni e
Il brillante e compatto ammasso NGC 1850, considerato un raro esempio di superammasso stellare.

Presso l’estremità occidentale della barra si può notare il brillante e compatissimo ammasso NGC 1850, uno dei più appariscenti della galassia; è visibile anche con un binocolo 10x50 come una piccola macchia di aspetto simile a una stella leggermente sfuocata. L’aspetto rimane il medesimo anche con telescopi da 120mm, mentre alcune stelle periferiche sul lato meridionale possono essere risolate con uno strumento da 150mm o meglio ancora da 200mm; questi strumenti permettono anche di notare un secondo addensamento molto più piccolo e compatto sul lato sudoccidentale dell’ammasso. Si tratta di un superammasso stellare, ossia un oggetto talmente ricco e compatto da ricordare per la sua morfologia un ammasso globulare; tuttavia, la sua età di appena 50 milioni di anni non lascia dubbi sulla sua appartenenza alla categoria degli ammassi aperti. Al suo interno sono contenute numerose stelle calde e di grande massa, assieme a una nutrita popolazione di stelle T Tauri, che ne costituiscono la grande maggioranza; l’addensamento compatto minore invece si ritiene che sia ancora più giovane, con un’età stimata di appena 4 milioni di anni. Oggetti di questo genere sono estremamente rari, tanto che nella Via Lattea si conosce solo l’esempio di Westerlund 1, nella costellazione dell’Altare. Le stelle più massicce dell’ammasso sono esplose milioni di anni fa come supernovae, generando una potente onda d’urto che ha dato origine a una superbolla, la quale ha progressivamente spazzato via i gas che lo circondavano; questi gas ora costituiscono i tenui archi nebulosi ben visibili attorno all’ammasso, che costituiscono la nube N103.

All’estremità occidentale della barra, fra i numerosi deboli oggetti, spicca il sistema di ammassi e nebulose associato alla nube N91, esteso per 10’ e formato da diversi addensamenti con numeri di catalogo indipendenti: il più orientale è noto come NGC 1770, mentre il più brillante, a sudovest, è indicato come IC 2117. Con un telescopio da 120mm si riconosce come un addensamento chiaro e nebuloso su cui brillano alcune stelle di magnitudine 11; in realtà il chiarore indistinto visibile non è dovuto alla nebulosa in sé, che resta invisibile, ma alle numerose stelle di fondo non risolte, che si raggruppano in diversi piccoli ammassi stellari. Con telescopi da 200mm si possono riconoscere circa una ventina di stelle, in prevalenza azzurre, su uno sfondo che permane nebuloso. Si ritiene che il vasto sistema nebuloso abbia dato luogo alla formazione stellare circa 6 milioni di anni fa.

Appena 16’ a WNW si può rintracciare uno degli ultimi sistemi stellari prima del bordo della galassia, noto come NGC 1755; è individuabile con strumenti da 120mm e si presenta di dimensioni molto più contenute del precedente. La sua risoluzione in stelle non è possibile con la gran parte degli strumenti in possesso degli appassionati.

Dall’estremità occidentale della barra parte un’esile struttura formata da stelle e addensamenti più o meno isolati, che farebbe pensare a un abbozzo di braccio di spirale; questo prosegue dapprima verso nordovest, per poi curvare verso nord e invertire la sua direzione passando 2-3 gradi a nord della barra, in direzione est. Dopo aver raggiunto un punto molto ricco a nord della Nebulosa Tarantola, sembra sfaldarsi del tutto, con un ramo che sembra disperdersi verso est in diversi piccoli ammassi isolati, e un altro più debole che vira verso sud e ricongiungendosi apparentemente con la barra. Seguendo il braccio, il primo sistema di rilievo che si incontra è formato dai gruppi stellari attorno all’ammasso NGC 1747, che può essere individuato con telescopi da 120mm come una macchia nebulosa non risolvibile; si osservano in questa direzione alcune stelle di magnitudine 11 e 12, mentre lo sfondo lascia intendere la presenza di diversi bozzoli probabilmente di natura stellare non risolti. Con un 200mm si possono individuare con chiarezza i due addensamenti più importanti: a sudest il già citato NGC 1747, mentre a nordovest appare più definito l’ammasso NGC 1731, sebbene nessuno dei

Le stelle della parte settentrionale della Grande Nube di Magellano delineano chiaramente una struttura interpretabile come un braccio di spirale.
due sia risolto in stelle. Poco più a nord si osserva una gigante rossa di magnitudine 6,4, che però fa parte della Via Lattea. Entrambi gli ammassi mostrano un’età giovane, come è evidenziato dalla presenza di alcune stelle di classe spettrale O e numerosi oggetti stellari giovani, che si disperdono nell’intera area di cielo fra i due oggetti e anche oltre.

Poco meno di un grado a nord, si trova il complesso nebuloso N11, che costituisce il secondo sistema di nubi più brillante ed esteso dell’intera galassia dopo quello della Nebulosa Tarantola, nonché una delle regioni di formazione stellare più importanti. Presenta una struttura ad anello formata da più addensamenti nebulosi maggiori, visibili otticamente solo con telescopi di grande diametro, al cui interno si apre una cavità del diametro di 550 anni luce; questa bolla è stata generata dalle stelle giovani e calde poste al suo interno, che formano una brillante associazione OB nota come LH9 o con la sigla NGC 1760. Quest’ultimo oggetto è ben visibile anche con strumenti da 100mm come una macchia chiara su cui brillano alcune stelle di magnitudine 10 e 11; l’addensamento più importante, visibile sul lato nord del sistema, è invece risolto parzialmente in stelle da un telescopio da 150mm ed è talvolta distinto con una designazione a parte, NGC 1763. Il centro geometrico dell’associazione invece è formato in prevalenza da stelle di magnitudine 13 e 14 e pertanto per la loro risoluzione occorrono telescopi da 250mm a salirle. La popolazione stellare di quest’insieme di associazioni è formata da almeno 43 stelle di classe O, delle quali 17 sono di classe inferiore a O7, denotando dunque un’età molto giovane, più 30 dei primi numeri della classe B, oltre ad alcune stelle di Wolf-Rayet. Secondo alcuni studi, questa regione ha subito negli ultimi 5 milioni di anni un processo di formazione stellare a catena che ha portato alla nascita dei diversi addensamenti che si osservano oggi: il primo episodio avrebbe avuto luogo nella parte meridionale e avrebbe formato l’ammasso NGC 1761, che si trova nella zona più povera di gas al centro della bolla; in seguito, 2-3 milioni di anni fa, si sarebbe espanso verso nord per formare le stelle di NGC 1763, quindi 2 milioni di anni fa verso est, per generare infine le stelle del gruppo più giovane, denominato NGC 1769 e ancora immerso nella nebulosità. L’intera sequenza evolutiva sembrerebbe ricordare in scala minore ciò che è avvenuto anche nel sistema della Nebulosa Tarantola, sul lato opposto della galassia.

Mezzo grado a nord si trova NGC 1783, che non fa fisicamente parte del braccio di spirale in quanto è un ammasso globulare, uno dei più brillanti della galassia. Con un telescopio da 80mm appare come una semplice stella sfuocata e rintracciarlo può essere difficile, mentre con strumenti da 150mm appare già più chiaro e definito, sebbene non sia naturalmente risolvibile in stelle; il suo aspetto permane molto simile a quello di una lontana galassia ellittica o lenticolare, più luminosa al centro, estesa per circa 3 minuti d’arco. Secondo alcuni studi la sua età sarebbe di 1,8 miliardi di anni, dunque decisamente giovane per essere un ammasso globulare; studi più recenti hanno portato la sua età a 6 miliardi di anni, ma ciò nonostante resta un ammasso piuttosto giovane per la sua categoria.
Un altro giovane ammasso globulare si osserva 45° a nordovest del sistema nebuloso di N11 ed è NGC 1818; come il precedente, è alla portata di strumenti da 80mm, dove appare come una sorta di stella sfuocata e simile a una galassia ellittica. La sua risoluzione, anche solo parziale, resta impossibile anche con telescopi da 200mm. Si tratta anche in questo caso di un ammasso globulare giovane, la cui età non sarebbe superiore ai 40 milioni di anni, di fatto rendendolo uno dei più giovani conosciuti.

Fra i due ammassi appena citati si estende un debole ma grande campo stellare non apprezzabile facilmente con la gran parte dei telescopi amatoriali, in quanto le sue poche stelle brillanti sono di magnitudine 12 e 13, sparse su un’area del diametro di oltre mezzo grado, ma ben evidente in fotografia; le aree più densamente popolate di stelle possiedono una designazione NGC; è il caso di NGC 1787, occupante l’area centro-settentrionale, e i tre piccoli ammassi NGC 1805, NGC 1822 e NGC 1826.

Oltre questo punto, il braccio di spirale diviene molto più discontinuo, con un’intera fascia estesa per quasi due gradi dove mancano ammassi e addensamenti stellari di rilievo; anche le stelle di fondo risolvibili in fotografia si presentano sparse e con bassa densità.

In questo tratto, poco più di un grado a nordovest di NGC 1787 e sul bordo estremo della galassia, si trova un altro denso ammasso catalogato spesso come globulare, anch’esso relativamente appariscente; si tratta di NGC 1866, che è osservabile anche con telescopi da 80mm, dove appare come una macchia circolare di aspetto nebuloso, anche in questo caso simile a una remota galassia. Le sue componenti più luminose possono essere risolte anche con strumenti da 200mm, sebbene occorrano forti ingrandimenti; l’ammasso resta però in massima parte irrisolto anche con strumenti di diametro più grande. Si tratta di uno degli ammassi più popolosi della galassia, la cui età è stimata sui 200-300 milioni di anni; è anche uno degli ammassi più periferici.

Due gradi a NNW della Nebulosa Tarantola, l’abbozzo di braccio di spirale fin qui descritto presenta un importante addensamento, che appare ricchissimo di stelle e nebulose; si tratta di una vera e propria nube stellare delle dimensioni di circa un grado, che sotto cieli molto bui e cristallini è perfettamente visibile anche ad occhio nudo. Con un binocolo 10x50 se ne apprezza l’estensione, ma non è visibile alcuna stella, tranne alcune piccole macchie chiare corrispondenti ad altrettanti ammassi non risolti; telescopi da 80mm iniziano a mostrare alcune stelle di magnitudine 11 e 12, alcune delle quali sono comunque in primo piano essendo parte della Via Lattea. Gli ammassi più brillanti, come NGC 2002, NGC 2006 e, più a sud, NGC 2004, vengono parzialmente risolti con un telescopio da 200mm, come pure, più ad est, NGC 2027 e NGC 2041. In fotografia ad alta risoluzione e campo di 1-2 gradi si nota che l’intera nube è completamente risolvibile in decine di migliaia di stelle in prevalenza bianche e azzurre, indice della forte presenza di stelle giovani e calde in tutta la regione.

Sul bordo meridionale della nube si trovano numerose dense regioni HII associate a giovani stelle di recente formazione; fra queste il sistema più esteso è quello di N51, legato a diverse giovani associazioni stellari come NGC 1968. In direzione di quest’ultimo sistema, anche un telescopio da 80-100mm è in grado di mostrare alcune decine di stelle di magnitudine 11 e 12 allineate lungo una larga sequenza orientata in senso nordest-sudovest ed estesa per circa 20°; con telescopi da 200mm si nota in modo chiaro che molte delle sue stelle appaiono raggruppate in tre punti, corrispondenti ad altrettante associazioni stellari giovani. In fotografia invece si evidenzia il sistema nebuloso, formante una grande cavità sul lato sudoccidentale. N51 è uno dei sistemi della galassia in cui la formazione stellare è più intensa; questa ha luogo soprattutto lungo i margini che separano alcune superbolle in espansione. La più grande di queste ultime è indicata come N51D e circonda le associazioni OB LH51 e LH54 (NGC 1955); probabilmente la loro...
espansione è stata determinata dall’azione combinata del vento stellare delle componenti più massicce e dall’esplosione di una o più supernovae.

Una seconda nube stellare più piccola e meno apparscente è visibile ancora più ad est, fino ad arrivare alla stella ε Doradus, di magnitudine 5,1 e facente parte della Via Lattea; appena percepibile ad occhio nudo, diventa molto più chiara con telescopi da 120mm a bassissimi ingrandimenti, mentre in fotografia appare ben risolta in migliaia di stelle. Pochi sono tuttavia gli oggetti di rilievo in questa regione.

Nell’ampia insenatura delineata dal braccio fin qui descritto, quindi a nord della barra centrale della galassia, si trova un’importante e isolata regione di formazione stellare, denominata N44; con un binocolo 10x50 è visibile come un debole addensamento di aspetto nebuloso ma irrisolto, mentre con telescopi da 120mm è possibile iniziare a risolverne le stelle più appariscenti, di magnitudine 13. Si tratta dell’ammasso NGC 1935, situato all’interno della nebulosa, che con strumenti da 200mm si risolve parzialmente in una ventina di stelle comprese entro un diametro di 6’. Il complesso nebuloso è invece molto ben evidente in fotografia, essendo uno dei più appariscenti della galassia. L’intero complesso nebuloso si estende per circa 1000 anni luce ed è dominato da una grande superbolla in espansione generata dall’azione combinata del vento stellare dell’ammasso NGC 1935, formato da una quarantina di stelle massicce, assieme all’esplosione di alcune supernovae in passato; una seconda superbolla più piccola, denominata N44F, è stata generata dal vento stellare di una singola stella molto massiccia caratterizzata da un tasso di perdita di massa fino a 100 milioni di volte superiore a quello del Sole. Emissioni di raggi X provenienti da questo complesso nebuloso sono una prova dell’avve-nuta esplosione di supernovae nel recente passato.

Un altro complesso nebuloso più piccolo è visibile a nord-ovest ed è facile da rintracciare la posizione, poiché si trova pochi minuti d’arco a sud della stella θ Doradus, una gigante arancione di magnitudine 4,8 facente parte della Via Lattea. Con un telescopio da 200mm si può notare una serie disomogenea di stelle di magnitudine 12 e 13 estesa per una decina di minuti d’arco, che si addensano negli ammassi aperti NGC 1873, NGC 1869 e NGC 1871; quest’ultimo oggetto comprende anche una piccola nebulosa denominata DEM L 106, formata da una nube settentrionale più luminosa catalogata come N30B, e una parte più estesa ma meno luminosa a sud. L’involucro di gas più luminoso riceve la radiazione delle giovani stelle calde del già citato ammasso NGC 1871. La stella più notevole di quest’ammasso è nota come Henize S22, si trova a circa 25 anni luce dalla nebulosa e appare circondata da un disco di gas, probabilmente espulso dalla stella stessa; si tratta della maggior responsabile della luminosità di N30B.

Circa un grado a WNW della Nebulosa Tarantola, parallelamente alla barra centrale della galassia, si estende un’altra grande nube stellare, particolarmente ricca di ammassi e ben risolubile nelle fotografie; i suoi ricchi campi stellari sono parzialmente osservabili con un telescopio da 200mm di diametro, sebbene alcune delle stelle visibili siano in primo piano essendo parte della Via Lattea. Alcuni dei suoi ammassi stellari sono tuttavia riconoscibili, in particolare NGC 2001, che appare come una macchia chiara allungata per 6 minuti d’arco in senso nord-est-sud-ovest e in cui si possono riconoscere alcune stelle di magnitudine 13 disposte in sequenza nella medesima direzione.

Un altro addensamento brillante è quello che forma l’associazione legata al complesso della nebulosa N144, visibile sul lato occidentale della nube stellare. La bril-
lante associazione OB che è contenuta al suo interno, nota come LH 58, è ben visibile anche con strumenti da 80mm di diametro, dove appare come una piccola macchia chiara ben visibile appena 10' a sud della stella HD 36584, di magnitudine 6,1 e appartenente alla Via Lattea; alcune delle sue componenti più luminose sono già osservabili, essendo di magnitudine 9 e 10. Con telescopi da 200mm se ne può tentare una discreta risoluzione in stelle, con componenti di magnitudine dalla 9 alla 13 appena visibili e racchiuse in uno spazio di 3'. Quest'associazione è molto massiccia e comprende 22 stelle di classe spettrale O, più tre stelle di Wolf-Rayet; la più appariscente delle quali è HDE 269546, di magnitudine apparente pari a 9,86; altre due stelle di Wolf-Rayet sono HDE 269551, di magnitudine 11,5, e HD 36521, di magnitudine 12,3. La presenza nell’associazione di alcune stelle evolute fresche è testimoniata dai diversi oggetti stellari giovani. Il forte vento stellare delle stelle di LH 58 ha generato la grande superbolla visibile anche nelle fotografie, plasmendo la forma della nebulosa N144.

Il braccio di spirale meridionale della Grande Nube di Magellano è sostanzialmente inesistente o appena abbozzato: a sud della barra centrale mancano infatti quasi del tutto le ricche regioni di formazione stellare con le estese nubi stellari associate; sono al contrario presenti soltanto alcune nubi minori e pochi addensamenti significativi. Parte di questa zona ricade entro i confini della costellazione della Mensa.

Gli oggetti più appariscenti a sud della barra centrale si trovano sul bordo sudoccidentale della galassia e in particolare attorno al complesso della nube N79, che comprende a sua volta le nebulose NGC 1722 e NGC 1727, più un gruppo separato formato da NGC 1748. Con un telescopio da 80mm è visibile qualche compo-
La Piccola Nube di Magellano è una delle galassie satelliti della Via Lattea, nonché una delle poche galassie in cui ammassi stellari e nebulose possano essere osservate anche con piccoli strumenti.
La presenza dei due brillanti ammassi globulari 47 Tucanae e NGC 362 contribuiscono ad arricchire indirettamente la regione in cui si trova, sebbene questi due oggetti non ne facciano parte, essendo legati alla Via Lattea.

Gli oggetti più notevoli appartenenti alla Piccola Nube di Magellano si trovano in particolare sul suo lato settentrionale; fra questi, il più esteso è la grande nebulosa NGC 346, una grande regione HII in cui sono stati attivi recentissimi processi di formazione stellare che hanno condotto alla nascita di stelle di grande massa. Queste stelle sono raggruppate in un ammasso aperto (sempre indicato dalla stessa sigla) e grazie alla loro intensa radiazione ionizzano i gas della nebulosa rendendola luminosa. L’ammasso aperto è facilmente osservabile con un piccolo strumento ed è risolvibile in stelle a forti ingrandimenti: le sue componenti diventano decine se osservate con un telescopio da 250mm di diametro. Le sue stelle più luminose sono di magnitudine 11 e 12 e sono tutte di classe O e B. La più brillante di queste è anche la più luminosa conosciuta all’interno della Piccola Nube di Magellano ed è nota come H 5980; si tratta di una stella doppia formata da una stella di Wolf-Rayet e da una di classe B, a sua volta binaria. La primaria di questo complesso sistema ha magnitudine assoluta pari a -11,5, mentre la sua distanza, e quindi dell’intero oggetto in cui è contenuta, è stimata sui 210.000 anni luce.

LA PICCOLA NUBE DI MAGELLANO

La Piccola Nube di Magellano si estende per circa 5 gradi di volta celeste ed è quasi totalmente compresa nella costellazione del Tucano; la sua distanza è pari a 197.000 anni luce e il suo diametro è di circa 7.000 anni luce, la metà della Grande Nube. Nelle carte viene indicata spesso con la sigla SMC (dall’inglese Small Magellanic Cloud) e le è stata anche assegnata la sigla NGC 292.

Decisamente più povera di nebulose e di regioni di formazione stellare rispetto alla Grande Nube, questa galassia contiene anche molti meno oggetti di facile osservazione; la loro catalogazione è completata in gran parte dal New General Catalogue, ma alcune piccole nebulose e gli ammassi globulari più esterni seguono una denominazione specifica. La presenza dei due brillanti ammassi globulari 47 Tucanae e NGC 362 contribuiscono ad arricchire indirettamente la regione in cui si trova, sebbene questi due oggetti non ne facciano parte, essendo legati alla Via Lattea.

Gli oggetti più notevoli appartenenti alla Piccola Nube di Magellano si trovano in particolare sul suo lato settentrionale; fra questi, il più esteso è la grande nebulosa NGC 346, una grande regione HII in cui sono stati attivi recentissimi processi di formazione stellare che hanno condotto alla nascita di stelle di grande massa. Queste stelle sono raggruppate in un ammasso aperto (sempre indicato dalla stessa sigla) e grazie alla loro intensa radiazione ionizzano i gas della nebulosa rendendola luminosa. L’ammasso aperto è facilmente osservabile con un piccolo strumento ed è risolvibile in stelle a forti ingrandimenti: le sue componenti diventano decine se osservate con un telescopio da 250mm di diametro. Le sue stelle più luminose sono di magnitudine 11 e 12 e sono tutte di classe O e B. La più brillante di queste è anche la più luminosa conosciuta all’interno della Piccola Nube di Magellano ed è nota come H 5980; si tratta di una stella doppia formata da una stella di Wolf-Rayet e da una di classe O, cui forse se ne aggiunge un’altra di classe B, a sua volta binaria. La primaria di questo complesso sistema ha magnitudine assoluta pari a -11,5, mentre la sua distanza, e quindi dell’intero oggetto in cui è contenuta, è stimata sui 210.000 anni luce.

PRINCIPALI OGGETTI NON STELLARI

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NGC 104</td>
<td>00h 24m 06s</td>
<td>-72° 05'</td>
<td>Glob</td>
<td>4,9</td>
<td>60</td>
<td>47 Tucanae</td>
</tr>
<tr>
<td>NGC 256</td>
<td>00h 45m 54s</td>
<td>-73° 30' 24"</td>
<td>A Ap</td>
<td>12,5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>NGC 330</td>
<td>00h 56m 21s</td>
<td>-72° 27' 12"</td>
<td>A Ap</td>
<td>9,5</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>NGC 346</td>
<td>00h 59m 05s</td>
<td>-72° 10' 33"</td>
<td>A+N</td>
<td>10 :</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>NGC 361</td>
<td>01h 02m 13s</td>
<td>-71° 36' 16"</td>
<td>A Ap</td>
<td>11,8</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>NGC 362</td>
<td>01h 03m 12s</td>
<td>-70° 51' :</td>
<td>Glob</td>
<td>6,8</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>NGC 456</td>
<td>01h 13m 44s</td>
<td>-73° 17' 26"</td>
<td>A+N</td>
<td>11 :</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Mappa di dettaglio della Piccola Nube di Magellano, con evidenziati gli oggetti più cospicui.

412
NGC 346 è la nube più occidentale e la più luminosa di una sequenza di piccole nebulose che comprende NGC 371 e NGC 395.

NGC 371 è la meno appariscente, sebbene sia più grande di NGC 395, e si trova circa 20' a ENE della precedente; del tutto invisibile all’osservazione visuale, si evidenzia solo nelle fotografie come una nube di forma tondeggiante e pallida, al cui centro si trova un blando addensamento stellare. Le componenti stellari più luminose sono di magnitudine 12 e 13 e possono essere osservate anche con telescopi da 150mm; nelle vicinanze si osserva anche una stella di magnitudine 9,6. L’ammasso associato alla nebulosa è formato da astri molto giovani, la cui età è stimata di appena 5 milioni di anni; al suo interno sono state identificate 118 possibili stelle di tipo Be, nonché alcune variabili a eclisse e una trentina di probabili variabili pulsanti. Circa 10’ lungo la medesima direzione si trova la più piccola nube NGC 395, legata a una piccola e giovane associazione stellare; le sue componenti più brillanti sono di magnitudine 13 e possono essere notate con telescopi da almeno 200mm di diametro, sebbene l’oggetto in sé resti anonimo e poco percepibile. In fotografia ad alta risoluzione è invece possibile esaltare il sistema nebuloso che lo circonda.

Circa 20’ a sudovest di NGC 346 si trova invece NGC 330, uno degli ammassi aperti più brillanti della galassia; è visibile anche con un binocolo 10x50, con cui appare come una piccola chiazza chiara più luminosa rispetto al chiarore diffuso della galassia. Con telescopi da 120mm è possibile iniziare a risolverne le compo-
Sul margine meridionale della galassia si osserva la più alta concentrazione di ammassi aperti; tuttavia la gran parte di questi sono molto poco appariscenti e piuttosto compatti, così da essere fuori dalla portata dell’osservazione visuale e anche, in molti casi, persino delle fotografie, escluse quelle ad altissima risoluzione.

Fra questi, uno dei più appariscenti è NGC 265, situato laddove termina in modo brusco il chiarore della Piccola Nube verso sud; con un telescopio da 200mm appare a chi ha un occhio molto attento come una debole macchietta irrisolvibile, molto simile a una piccola galassia remota. Si tratta di un ammasso estremamente compatto, con circa 700 stelle concentrate in appena 18 secondi d’arco; la sua età è stimata sui 320 milioni di anni ed è pertanto un ammasso di età intermedia. Lo studio di questo e di altri ammassi hanno permesso di definire la storia dei processi di formazione stellare dell’intera galassia; è stato così ipotizzato che per un periodo compreso fra 8,4 e 3 miliardi di anni fa il tasso di formazione stellare è stato molto contenuto, tanto che la metà delle stelle oggi presenti nella galassia risale ad oltre 8,4 miliardi di anni fa. Circa 3 miliardi di anni fa si verificò invece un forte impulso alla formazione di nuove stelle, che coincide con la prima interazione stretta fra la Piccola Nube e la Via Lattea; un secondo forte impulso ebbe luogo circa 400 milioni di anni fa, a seguito di una successiva forte interazione con la Via Lattea. L’ultimo impulso invece risalirebbe a circa 60 milioni di anni fa. Secondo altri studi invece gli impulsi maggiori si verificarono principalmente fra 8 e 5 miliardi di anni fa, con un tasso di formazione che però si mantenne costante, anche se basso, per tutto il periodo.

Un altro ammasso di aspetto molto simile visibile nelle vicinanze è NGC 269, la cui posizione è appena 5° a sudest del precedente. Tuttavia è un oggetto poco noto e studiato, sebbene anch’esso appaia compatto e molto difficile da risolvere con strumenti amatoriali.

Il lato sudorientale della Piccola Nube presenta una vasta e debole protuberanza che sembra puntare in direzione della Grande Nube; probabilmente questa struttura si è originata a seguito dell’interazione fra le due galassie e ha strappato via stelle e materia interstellare dalla galassia, che poi ha dato origine ad alcuni fenomeni di formazione stellare. In questa regione si trova anche NGC 456, la seconda più estesa nebulosa dell’intera galassia e facente parte del complesso nebuloso denominato N83/N84, che sebbene non sia osservabile visualmente è ben visibile nelle fotografie; ciò che di questa zona può essere osservato è un leggero addensamento di stelle in particolare di magnitudine 11 e 12. L’associazione stellare situata all’interno di questa regione è formata da stelle di classe O e B e possiede un’età compresa fra 4 e 10 milioni di anni; appare circondata da una superbolla in espansione estesa per centinaia di anni luce, probabilmente originatasi dall’esplosione di una o più supernovae circa 2-3 milioni di anni fa.

Numerosi piccoli ammassi globulari sono visibili nella regione di cieco circostante la galassia e in particolare sul lato orientale; uno dei più cospicui si trova però a poco più di mezzo grado a nordest di 47 Tucanae ed è NGC 121; può essere individuato anche con telescopi da 120mm e si presenta molto compatto e dalla forma leggermente schiacciata. La sua distanza è stimata sui 199.000 anni luce.

Un altro ammasso molto appariscente è NGC 419, situato sul lato est della galassia e di aspetto così denso da essere considerato a volte un ammasso aperto e altre volte un ammasso globulare; tuttavia, la sua popolazione stellare farebbe pensare alla prima ipotesi. Appena visibile anche con strumenti di 100mm di diametro, dista circa 190.000 anni luce.

Un altro ammasso molto appariscente è NGC 456 e, a sinistra, la piccolissima NGC 602, due nubi periferiche della Piccola Nube di Magellano.
CURIOSITÀ GALATTICHE
<table>
<thead>
<tr>
<th>Titolo</th>
<th>Pagina</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sagittarius A</td>
<td>417</td>
</tr>
<tr>
<td>L’associazione Cygnus OB2</td>
<td>419</td>
</tr>
<tr>
<td>Ìadi e Presepe a confronto</td>
<td>421</td>
</tr>
<tr>
<td>L’associazione Collinder 121</td>
<td>423</td>
</tr>
<tr>
<td>L’ammasso Westerlund 1</td>
<td>425</td>
</tr>
<tr>
<td>Gruppi cinematici nei dintorni del Sole</td>
<td>427</td>
</tr>
<tr>
<td>Perché l’emisfero australe è più ricco di quello boreale?</td>
<td>429</td>
</tr>
</tbody>
</table>
Sagittarius A

Sagittarius A (abbreviazione standard Sgr A) è una radiosorgente luminosa e molto complessa, posta al centro della Via Lattea, nella costellazione del Sagittario; appare fortemente oscurata dalle nebulose oscure presenti nei bracci di spirale antistanti, e non è dunque visibile direttamente tramite telescopi ottici. È formata da tre componenti: il resto di supernova Sagittarius A Est, la struttura spiraliforme Sagittarius A Ovest e una sorgente di onde radio molto brillante e compatta al centro della spirale della struttura ovest, chiamata Sagittarius A* (l’asterisco sulla A lo differenzia dalle altre componenti).

AL CENTRO DELLA VIA LATTEA

Il Centro della Via Lattea, noto anche come Centro Galattico, è il centro rotazionale della Via Lattea; si trova a circa 26.700 ± 1300 anni luce dalla Terra, in direzione della costellazione del Sagittario, nel punto in cui la Via Lattea appare più luminosa. Questa parte della galassia è rimasta misteriosa per molto tempo e solo recenti osservazioni, rese possibili dai grandi telescopi europei dell'emisfero australe, hanno permesso di saperne di più. In sintesi, dopo una quindicina d'anni d'osservazione, si è arrivati alla conclusione che in ogni galassia, come nella nostra, vi sia un buco nero supermassiccio. A causa delle polveri interstellari sulla linea di vista, il Centro Galattico non può essere studiato alle lunghezze d'onda del visibile, né dell'ultravioletto, né dei raggi X a debole frequenza; tutte le informazioni di cui disponiamo ci sono fornite dall'osservazione a raggi gamma, raggi X a forte frequenza, infrarossi e onde radio. Le coordinate del Centro Galattico furono calcolate e presentate per la prima volta dall'astronomo Harlow Shapley nel suo studio sulla distribuzione degli ammassi globulari del 1918. Nel sistema delle coordinate equatoriali, queste coordinate sono: A.R. 17h45m40,04s; Dec. −29°00'28,1" (epoca J2000).

SAGITTARIUS A EST

Sagittarius A Est è una struttura le cui dimensioni si aggirano sui 25 anni-luce; ha l'aspetto di un resto di supernova, un'esplosione avvenuta tra i 10.000 ed i 100.000 anni fa. Per creare una simile struttura, l'esplosione deve essere stata dalle 50 alle 100 volte più potente di una normale esplosione di supernova; si suppone che Sagittarius A Est sia ciò che resta di una stella entrata nel campo gravitazionale del buco nero centrale, dal quale la sua massa sarebbe stata fortemente compressa e deformata.

SAGITTARIUS A OVEST

Sagittarius A Ovest ha l'aspetto di una spirale a tre bracci, e per questa ragione è conosciuta col nome di “Minispirale”. Tuttavia, sia l'aspetto che il soprannome possono trarre in inganno: infatti, la vera struttura tridimensionale dell'oggetto non ha l'aspetto di una spirale; Sagittarius A Ovest è formato da polveri e nubi interstellari, attirate dall'orbita di Sagittarius A*, nel quale precipitano ad una velocità di circa 1000 km/s. I gas di
Sagittarius A Ovest sono ionizzati, grazie alla presenza di una popolazione OB di oltre un centinaio di stelle posto nelle vicinanze.

Sagittarius A Ovest è inoltre circondato da una massa di gas molecolare più fredda, il “Disco Circumnucleare” (CND). La natura e la cinematica del braccio settentrionale di Sagittarius A Ovest suggeriscono che in precedenza fosse parte del CND, e che in seguito “cadde” a seguito di perturbazioni, come quella che avrebbe potuto generare l'esplosione dell'oggetto che creò Sagittarius A Est. Il braccio nord appare come una cresta di emissione estesa in senso nord-sud, molto luminosa.

L’arco occidentale è invece interpretato come una nube ionizzata nella parte interna del CND. Il braccio esterno e la barra sembrano essere due grandi nubi simili a quelle del braccio settentrionale, sebbene non abbiano in comune la stessa orbita planare. La loro massa è stata stimata pari a circa 20 masse solari ciascuno.

Oltre a queste grandi strutture principali, possono essere osservate piccole fessure e “buchi” fra le nubi, la più notevole delle quali è chiamata “Minicavità”; la sua origine potrebbe essere dovuta al vento solare di una stella massiccia non chiaramente identificata.

SAGITTARIUS A

Sagittarius A* (abbreviato in Sgr A*) è una sorgente di onde radio molto compatta e luminosa, situata nel centro della Via Lattea, parte della grande struttura nota come Sagittarius A. Sgr A* è il punto in cui si trova un buco nero supermassiccio, componente caratteristico dei centri di molte galassie ellittiche e spirali.

Diversi gruppi di ricerca hanno ottenuto delle immagini di Sgr A* nella lunghezza d'onda delle onde radio utilizzando la tecnica detta *Very Long Baseline Interferometry* (VLBI); le immagini ottenute hanno rilevato un disco di accrescimento e un getto relativistico che farebbe pensare ad un buco nero supermassiccio. Le misure hanno una risoluzione di un diametro angolare pari a 37 microsecondi d'arco, che a 26.700 anni luce di distanza equivale a un diametro di 44 milioni di km. Come termine di paragone, la Terra si trova a 150 milioni di km dal Sole, mentre il pianeta Mercurio è a 46 milioni di km dal Sole nel punto più vicino dell'orbita.

Sgr A* ha una massa stimata in circa 4,1 milioni di masse solari; dato che questa massa è confinata in una sfera del diametro di 44 milioni di km, possiede una densità dieci volte più alta di quanto stimato in precedenza. Questa densità esclude l'ipotesi che si tratti di qualcosa di diverso da un buco nero, poiché con altre concentrazioni l'oggetto sarebbe collizzato o evaporato su una scala di tempo inferiore a quella dell'età della Via Lattea. Conoscendo questi dati, solo elevate deviazioni del comportamento della stessa gravità rispetto a quanto previsto dalla relatività generale potrebbero invalidare l'ipotesi che si tratti di un buco nero.

Tuttavia ciò che si osserva non è un buco nero in senso stretto: l'energia radio e infrarossa osservata è infatti emanata dal gas e dalle polveri riscaldate a milioni di kelvin mentre cadono nel buco nero. Si pensa che lo stesso buco nero emetta solo radiazione di Hawking a temperature trascurabili, dell'ordine di 1×10^{-14} K.

AMBIENTE CIRCOSTANTE

Il parsec centrale attorno a Sagittarius A* contiene centinaia di stelle. Sebbene la gran parte di queste siano vecchie stelle rosse sulla Sequenza principale, sono presenti anche diverse stelle di grande massa: sono state identificate più di cento stelle di popolazione OB e di Wolf-Rayet, le quali sarebbero nate a seguito di un unico evento di formazione stellare che ebbe luogo pochi milioni di anni fa. L'esistenza di queste stelle relativamente giovani fu una sorpresa per gli esperti, che ipotizzavano che la forza mareale del buco nero avrebbe contrastato la loro formazione. Questo cosiddetto “paradosso della giovinezza” è ancora più notevole in stelle che hanno un’orbita molto stretta attorno a Sagittarius A*, come le stelle denominate S2 e S0-102. Le ipotesi prevalenti affermano che quest’ammasso di stelle supermassicce si sarebbe formato al di là del Centro Galattico, e che poi sarebbe migrato in direzione di Sagittarius A attratto dalla corrente gravitazionale, o che si sarebbe formato in loco, grazie alla stessa forza gravitazionale che avrebbe contratto la grande nube del disco di accrescimento del buco nero.

È interessante notare che molte di queste stelle giovani e massicce sembrano essere concentrate in uno o due dischi, piuttosto che distribuite in modo casuale all'interno del parsec centrale.
Cygnus OB2 è uno degli oggetti più notevoli dell’intera Via Lattea; si tratta di una grande associazione OB in cui si trovano alcune fra le stelle più massicce conosciute, nonché una delle stelle più grandi mai osservate. L’associazione è compresa nell’immensa regione stellare di Cygnus X, che è a sua volta uno degli oggetti più luminosi del cielo alla lunghezza d’onda dei raggi X. La sua distanza è stimata sui 4600 anni luce.

Una Fornace Nascosta

Il settore di Cygnus X, come si è già visto nelle sezione dedicata alla regione del Cigno, è una delle più importanti regioni di formazione stellare dell’intera Via Lattea; resta tuttavia nascosta in massima parte alla nostra visione diretta a causa della presenza di spessi banchi di nebulose e gas non illuminato posti in primo piano, che formano la Fenditura del Cigno. L’unico modo dunque per poter studiare questa grande fornace nascosta è quello di osservarla attraverso lunghezze d’onda diverse da quella della luce visibile, come gli infrarossi e i raggi X.

Cygnus OB2 è osservabile anche con strumenti da 150mm a salire, dove però appare solo come una sorta di debole ammasso formato da stelle di magnitudine dalla 11 alla 13, senza rivelare la sua vera natura. È fatta da un gran numero di stelle supergiganti di classe spettrale O, alcune delle quali sono anche fra le più luminose conosciute in termini assoluti; le sue componenti sono molto giovani, con un’età anche inferiore a un milione di anni, e mostrano una velocità di rotazione moderatamente ridotta. Le stelle di classe spettrale O e B sarebbero in tutto circa 2600, con uno scarto di 400, fra le quali 90-100 di classe O; la massa totale delle stelle dell’ammasso è compresa fra 40.000 e 100.000 masse solari ed è concentrata entro un raggio di appena 10 anni luce, che alla distanza di 4600 anni luce corrisponde a un diametro apparente di circa un grado. Alcune delle componenti più massicce sono stelle binarie; fra queste sono note quattro binarie a eclisse e un sistema a tre stelle, quello della stella Cygnus OB2-5, in cui una delle componenti sarebbe una stella di Wolf-Rayet.

Lo spettro delle stelle di Cygnus OB2 e la loro temperatura sono stati analizzati in diversi studi, nei quali è emerso che molte delle componenti sono soggette ad una forte perdita di massa causata dal loro forte vento stellare. La presenza in percentuale di idrogeno ed elio è simile in tutte le stelle eccetto una, Cygnus OB2-7, dove l’elio sarebbe presente in quantità maggiore rispetto alle altre.

Alcuni studiosi, considerando la massa, la densità e le dimensioni dell’associazione, hanno ipotizzato che Cygnus OB2 sia in realtà un esempio di ammasso globulare in formazione: oggetti simili sono stati osservati sia nella Grande Nube di Magellano, sia nelle regioni di formazione stellare presenti in altre galassie; si è anche fatto notare che questo sarebbe il primo di questa classe di oggetti noto all’interno della Via Lattea. L’alternativa è invece considerare quest’associazione come precurso re dei superammassi stellari, dei quali Westerlund 1 è un chiaro esempio.
LA GIGANTESCA CYGNUS OB2-12

Poco in disparte rispetto al centro dell’associazione si trova Cygnus OB2-12, una stella ipergigante fra le più brillanti conosciute all’interno della Via Lattea. La sua magnitudine assoluta sarebbe pari a circa -12, e se non fosse per l’estinzione luminosa, la stella avrebbe, vista dalla Terra, una magnitudine apparente pari a 1,5, ossia molto simile a quella apparente di Deneb; tuttavia a causa dell’assorbimento operato dalle polveri la sua magnitudine visuale scende a 11,4, restando dunque invisibile ad occhio nudo. Una simile magnitudine assoluta porta Cygnus OB2-12 vicino al limite superiore ritenuto possibile per una singola stella, stima tratta da uno studio del 2001; ciò rende questa stella oltre 6 milioni di volte più luminosa del Sole, nonché una delle stelle più luminose conosciute all’interno della Via Lattea. In un successivo studio tuttavia la luminosità della stella viene stimata come pari a 1,9 milioni di volte quella del Sole, con una massa pari a 110 masse solari ed un raggio 246 volte quello del Sole; anche così, resta comunque una delle stelle più luminose conosciute. Cygnus OB2-12 è considerata come probabile variabile blu luminosa (ossia una stella di tipo S Doradus): la sua posizione nel diagramma HR, assieme al suo spettro e alla sua luminosità la collocano fra questo tipo di stelle; il dubbio è dovuto al fatto che sebbene presenti delle oscillazioni di luminosità dell’ordine di pochi decimi di magnitudine, non sembra presentare delle oscillazioni di colore associate, che invece sono caratteristiche di questo tipo di variabili. Il suo spettro è in effetti cambiato leggermente da quando questa stella è stata scoperta, ma questi cambiamenti non sono stati così significativi da essere considerati tipici di una variabile blu luminosa.

IL SISTEMA DI CYGNUS OB2-8A

Un’altra componente molto massiccia è conosciuta come Cygnus OB2-8A; appare come una stella di tipo S Doradus: la sua posizione nel diagramma HR, assieme al suo spettro e alla sua luminosità la collocano fra questo tipo di stelle; il dubbio è dovuto al fatto che sebbene presenti delle oscillazioni di luminosità dell’ordine di pochi decimi di magnitudine, non sembra presentare delle oscillazioni di colore associate, che invece sono caratteristiche di questo tipo di variabili. Il suo spettro è in effetti cambiato leggermente da quando questa stella è stata scoperta, ma questi cambiamenti non sono stati così significativi da essere considerati tipici di una variabile blu luminosa.

<table>
<thead>
<tr>
<th>STELLE PRINCIPALI DI CYGNUS OB2</th>
<th>Spettro</th>
<th>Mag. Ass.</th>
<th>Masse sol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>59 Cyg OB2-1</td>
<td>O8.5V</td>
<td>-9.3</td>
<td>44</td>
</tr>
<tr>
<td>83 Cyg OB2-2</td>
<td>B1I</td>
<td>-7.4</td>
<td>18</td>
</tr>
<tr>
<td>217 Cyg OB2-4</td>
<td>O8.5V</td>
<td>-9.6</td>
<td>52</td>
</tr>
<tr>
<td>V729 Cyg OB2-5</td>
<td>O7III(f)</td>
<td>$-10.6/10.5$</td>
<td>31 + 9</td>
</tr>
<tr>
<td>317 Cyg OB2-6</td>
<td>O8V</td>
<td>-9.2</td>
<td>42</td>
</tr>
<tr>
<td>457 Cyg OB2-7</td>
<td>O3III</td>
<td>-10.8</td>
<td>114</td>
</tr>
<tr>
<td>465 Cyg OB2-8A</td>
<td>O6III+f</td>
<td>$-9.8/-9.4$</td>
<td>44 + 37</td>
</tr>
<tr>
<td>462 Cyg OB2-8B</td>
<td>O6III(f)</td>
<td>-10.4</td>
<td>80</td>
</tr>
<tr>
<td>483 Cyg OB2-8C</td>
<td>O5ff</td>
<td>-10.1</td>
<td>71</td>
</tr>
<tr>
<td>473 Cyg OB2-8D</td>
<td>O8.5V+O9V (+A2V?)</td>
<td>-8.4</td>
<td>19+19+?</td>
</tr>
<tr>
<td>431 Cyg OB2-9</td>
<td>O5-5.5I+O3-4III</td>
<td><10<10></td>
<td>$>34<30$</td>
</tr>
<tr>
<td>457 Cyg OB2-10</td>
<td>O9.5I</td>
<td>-10.4</td>
<td>75</td>
</tr>
<tr>
<td>734 Cyg OB2-11</td>
<td>O5ff</td>
<td>-10.0</td>
<td>58</td>
</tr>
<tr>
<td>304 Cyg OB2-12</td>
<td>B3-4Ia</td>
<td>-10.95</td>
<td>110</td>
</tr>
<tr>
<td>556 Cyg OB2-18</td>
<td>B1Ib</td>
<td>-9.0</td>
<td>33</td>
</tr>
<tr>
<td>417 Cyg OB2-22</td>
<td>O3III+O6V(f)</td>
<td><10.4</td>
<td></td>
</tr>
<tr>
<td>516</td>
<td>O5.5V((f))</td>
<td>-11.1</td>
<td>100</td>
</tr>
<tr>
<td>771</td>
<td>O7V</td>
<td>-10.6</td>
<td>90</td>
</tr>
</tbody>
</table>

Cygnus OB2 in luce visibile: appare come un piccolo gruppo di stelle di magnitudine 11, 12 e 13.
ÌADI E PRESEPE A CONFRONTO

Le Ìadi e il Presepe sono due fra gli ammassi aperti in assoluto più noti dell’intera volta celeste: entrambi sono visibili a occhio nudo e le Ìadi in particolare possono anche essere risolti in diverse stelle senza l’ausilio di strumenti; al binocolo sono, assieme alle Pleiadi, gli oggetti celesti che danno maggiore soddisfazione. Le loro similitudini tuttavia non si limitano a questo: vi sono infatti fondati indizi che questi due oggetti condividano un’origine comune.

LE ÌADI

L’ammasso delle Ìadi è il più vicino alla Terra; ciò giustifica la sua grande visibilità e il suo aspetto meno concentrato rispetto agli altri ammassi aperti; il suo centro si trova infatti ad appena 151 anni luce da noi. La stella più luminosa nella direzione dell’ammasso è Aldebaran, che però non ne fa parte, trovandosi a circa metà strada tra noi e l’ammasso; senza contare quindi Aldebaran, ci sono circa 300 stelle che sono membri accertati o probabili dell’ammasso. La maggior parte di queste non sono visibili a occhio nudo, ma si mostrano bene anche in un piccolo binocolo. Le quattro stelle più brillanti delle Ìadi sono tutte giganti rosse che hanno iniziato la loro vita come massicce stelle di classe A e si sono poi evolute, portandosi al di fuori della sequenza principale; si trovano tutte a pochi anni luce l’una dall’altra. I loro nomi secondo la nomenclatura di Bayer sono γ Tauri, δ Tauri, ε Tauri e θ Tauri.

Gran parte delle stelle delle Ìadi presentano un alto tasso di metallicità e un colore tendente al giallo o all’arancione, colori tipici delle stelle di classe spettrale G o K, indice dell’età relativamente avanzata dell’ammasso, la quale è appunto stimata sui 625 milioni di anni. Al gruppo sarebbe associata anche la stella τ Horologii, posta apparentemente a grande distanza dalle Ìadi poiché molto più vicina a noi. Le Ìadi sono oggetto di studio anche per individuare eventuali pianeti extrasolari, a causa della metallicità delle sue stelle.

IL PRESEPE

Visivamente, la stella più luminosa del Presepe è la ε Cancri, una stella bianca di classe A5V e una magnitudine apparente pari a 6,29 situata sul vertice sudoccidentale di un quadrilatero di stelle di sesta grandezza che costituisce il centro dell’ammasso; fino alla magnitudine 7,0 sono presenti 10 componenti, mentre ponendo la magnitudine limite a 8,0 si arriva a 22 componenti. Come molti ammassi stellari di vari tipi, il Presepe mostra evidenti effetti del fenomeno noto come segregazione di massa: le stelle più luminose e massicce infatti tendono a concentrarsi nelle aree centrali dell’ammasso, mentre quelle più piccole e meno luminose si distribuiscono attorno all’alone (chiamato talvolta “corona”).
Le stime di distanza ritenute più accurate, ottenute tramite la combinazione dei dati di Hipparcos e del diagramma HR, forniscono una distanza dell’ammasso di circa 593 anni luce.

A CONFRONTO

Dal punto di vista delle caratteristiche fisiche, il Presepe e le ladi sono spesso messe a confronto: questa relazione è dovuta al fatto che entrambi gli ammassi potrebbero possedere un’origine comune e, di conseguenza, pure un’età paragonabile.

Uno studio condotto ai raggi X sulle stelle del Presepe ha mostrato tuttavia una notevole discrepanza fra le proprietà ai raggi X delle nane rosse dei due ammassi, segno che poteva essere interpretato come una possibile smentita dell’età comune dei due oggetti; il livello di emissioni coronali delle stelle simili al Sole mostrarono inoltre che il Presepe aveva un’età più avanzata rispetto alle ladi, nonostante il diagramma HR dei due ammassi mostrasse che entrambi gli oggetti avessero la stessa età. Una soluzione proposta a questa discrepanza sarebbe quella secondo la quale le stelle del Presepe di piccola massa emetterebbero meno raggi X rispetto a quelle delle ladi, a causa della minore metallicità.

Per cercare di risolvere il problema delle emissioni anomale osservate nel Presepe, fu condotto uno studio successivo basato sulle velocità radiali derivate delle stelle di classe spettrale F, G, K e delle nane rosse di classe M, che escludono in effetti un gran numero di stelle non membri; inoltre, venne misurata l’emissione $H\alpha$ delle nane rosse campione, mostrando che per queste stelle la distribuzione delle emissioni $H\alpha$ cromosferiche non differisce da quella misurata sulle ladi, a differenza di quanto mostrato dalle osservazioni a raggi X.

Nel 2003 è stato condotto uno studio che analizzava le emissioni di duecento stelle, fra cui tutte le stelle di tipo solare e una buona percentuale delle giganti rosse di classe K e M; il risultato di questo studio sembra contraddire l’esito del precedente. Tuttavia se si considera solo il sotto-esempio delle stelle del Presepe, la discrepanza fra le due osservazioni si riduce discretamente. Infatti, le stelle di tipo solare analizzate da entrambi gli studi mostrano una luminosità ai raggi X molto simile; inoltre, la luminosità media derivata analizzata nei due studi è compatibile fra loro. Di fatto, la discrepanza totale fra le emissioni a raggi X delle stelle delle ladi e di quelle del Presepe sembra in gran parte dovuta ai membri più deboli del Presepe posti al di fuori dal campo di vista.

Una differenza ulteriore fra il Presepe e le ladi riguarda la funzione di massa delle nane rosse con massa compresa fra 0,6 e 0,05 masse solari; il picco dell’abbandona di queste stelle nel Presepe si raggiunge attorno alle 0,1 masse solari, contro le 0,35 masse solari registrate per le ladi. Assumendo un’età simile per i due ammassi, questa discrepanza può essere spiegata col fatto che essi avessero una differente funzione di massa iniziale, o al più col fatto che le interazioni con l’ambiente galattico circostante abbiano modificato l’evoluzione di uno dei due ammassi; in effetti i fenomeni di disgregazione magmatici che tendono a interessare gli ammassi di età avanzata sembrerebbero aver influenzato i due ammassi in maniera differente, causando quindi la discrepanza osservata.

Altri indizi che testimoniano alcune differenze fra i due ammassi giungono dall’analisi delle loro variabili rotazionali. Assumendo un’età di 625 milioni di anni per le ladi, la relazione periodo-colore derivata per le componenti dei due ammassi ha mostrato che le stelle del Presepe possiedono un’età leggermente inferiore, stimata attorno ai 578 ± 12 milioni di anni; ciò comporterebbe che la formazione del Presepe sia avvenuta circa 45-50 milioni di anni dopo quella delle ladi. L’età del Presepe risulterebbe così molto più simile a quella dell’ammasso aperto della Chioma (Mel 111), stimata tramite lo stesso sistema attorno ai 584 ± 10 milioni di anni.
L’ASSOCIAZIONE Cr 121

Collinder 121 (Cr 121) è un’estesa ma apparentemente del tutto anonima associazione stellare visibile nella costellazione del Cane Maggiore; secondo diversi studi, si tratta di un gruppo di stelle legato all’associazione Canis Major OB1, a sua volta connessa fisicamente alla Nebulosa Gabbiano. Sebbene si tratti di un’associazione poco nota e poco rilevante da un punto di vista osservativo a livello amatoriale, alcune ipotesi affermano che potrebbe aver avuto un ruolo fondamentale nella distribuzione di alcuni dei complessi nebulosi molecolari osservabili nella sua direzione.

UN OGGETTO ANONIMO

Cr 121 appare come un’associazione stellare molto dispersa, al punto che nelle osservazioni amatoriali non viene preso in considerazione: al binocolo appare come una vaga concentrazione di stelle azzurrognole o biancastre molto deboli disperse su un’area quasi un grado. La sua posizione è facilmente individuabile, trovandosi poco a sud del centro della costellazione del Cane Maggiore: punto di riferimento è l’asse che congiunge la brillante stella Sirio a Wezen, la più settentrionale del triangolo luminoso posto a sud della costellazione; a circa 3/4 dell’asse in direzione di Wezen si trova una stella azzurra di terza magnitudine, nota come ο Cr 121 Canis Majoris, utilizzabile come riferimento per individuare, poco meno di due gradi ad ovest, una stella di simile luminosità, ma dal colore marcatamente rossastro, la ο Canis Majoris. Questa seconda stella sembra dominare la parte settentrionale dell’associazione, che è visibile immediatamente più a sud come un gruppo sparso di stelle poco appariscenti, sebbene in realtà non ne faccia parte, essendo molto in primo piano.

Distanza

La natura di Cr 121 è stata a lungo dibattuta. In origine venne indicato come un ammasso molto sparso costituito da una ventina di stelle di classe spettrale B situato alla distanza di circa 4100 anni luce. Tale distanza è stata poi oggetto di profonde modifiche e vennero proposte alternativamente stime attorno ai 1600-2000 anni luce e attorno ai 3300-3900 anni luce, rendendolo così senza dubbio uno degli oggetti più controversi di questa parte del cielo.

Col lancio del satellite Hipparcos, fu calcolata la parallasse di 103 delle stelle osservabili in direzione dell’associazione; il risultato fu che queste stelle si trovavano alla distanza di 1930±91 anni luce, dunque alla metà della distanza inizialmente stimata. A queste venne aggiunta la stella di Wolf-Rayet WR 6 (EZ Canis Majoris), visibile poco più a nord dell’associazione e posta alla stessa distanza dell’ammasso aperto M41. Tuttavia, a causa del grande campione di stelle analizzate, è possibile che siano state considerate anche una moltitudine di stelle visibili in direzione dell’ammasso ma non ne-
cessariamente associate ad esso, in quanto poste in primo piano; secondo alcuni studi queste stelle visibili in sovrapposizione farebbero parte di un’associazione di stelle giovani (un’associazione OB) connessa al famoso e brillante ammasso aperto M41 e indicata come Canis Major OB2. Cr 121 invece sarebbe un oggetto molto più lontano e più compatto, e le stelle di pre-sequenza principale facenti realmente parte di quest’associazione si troverebbero a circa 3400 anni luce, alla stessa distanza di un’altra associazione OB, nota come Canis Major OB1 e legata fisicamente alla Nebulosa Gabbiano.

PERCHÉ È IMPORTANTE

La grande importanza di quest’associazione riguarda soprattutto il suo possibile impatto nell’ambiente galattico circostante. Uno studio del 1998 ha mostrato l’esistenza di una gigantesca superbolla in espansione che ha prodotto una regione in cui la densità del mezzo interstellare è notevolmente inferiore alla media; questa superbolla, denominata GSH 238+00+09, si trova alla longitudine galattica 238° e si estende per circa 1400 anni luce di diametro alla distanza di circa 2600 anni luce dal Sole.

Si è ipotizzato che una superbolla di queste dimensioni possa essere stata generata dall’esplosione di almeno una trentina di supernovae, il che non sarebbe un evento raro, dato che le stelle supermassicce di un giovane ammasso possono esplodere come supernovae nel giro di pochi milioni di anni dalla loro nascita; l’area indicata come il sito più probabile in cui hanno avuto luogo queste esplosioni sarebbe proprio Cr 121, a causa della sua posizione compatibile. La potente onda d’urto che si è generata avrebbe investito alcune delle regioni circostanti poste entro un raggio di 1600 anni luce, come la Nebulosa di Gum, il Complesso di Monoceros R2 e probabilmente anche il grande Complesso di Orione, favorendo in esse alcuni fenomeni di formazione stellare.

Sh2-308 E EZ CANIS MAJORIS

Nelle foto ad alta sensibilità si può evidenziare a nord dell’associazione un velo nebuloso a forma di involucro o di bolla; si tratta di Sh2-308, la grande bolla che circonda la stella di Wolf-Rayet WR 6, nota anche come EZ Canis Majoris; questa stella ha una magnitudine media pari a 6,91, ma essendo variabile oscilla fra le magnitudini 6,71 e 6,95 con un periodo di 3,766 giorni circa.

 Questa nube si è originata circa 70.000 anni fa a causa delle espulsioni di materia perse dalla stella, che per via del suo forte vento stellare si è disposta tutt’attorno ad essa a formare una struttura a bolla. L’estensione della nube è di circa 19 anni luce e la sua distanza è stimata attorno ai 1900 anni luce; secondo altri studi invece, la distanza della stella e delle nubi ad essa associate sarebbe di ben 5900 anni luce. Secondo gli studi che indicano le stime di distanza più basse, EZ Canis Majoris appartiene ad un’associazione OB molto estesa e poco concentrata, visibile nella stessa direzione dell’ammasso aperto Cr 121 ma probabilmente legata al famoso ammasso aperto M41; quest’associazione è nota come Canis Major OB2 ed è situata a circa 650 anni luce dal Complesso di Orione e a breve distanza dai bordi esterni della Nebulosa di Gum.

A conti fatti pertanto questa stella e la relativa nebulosa si troverebbero decisamente in primo piano rispetto all’associazione Cr 121, la quale sarebbe, come visto, legata più probabilmente al complesso di Canis Major OB1 e alla Nebulosa Gabbiano.
Westerlund 1 è un esempio di giovane superammasso aperto, molto compatto, situato a 10.400 anni luce di distanza; è uno degli ammassi aperti di giovane età più massicci conosciuti nella Via Lattea. Rimase per lungo tempo ignorato dagli studiosi a causa del forte assorbimento presente nella sua direzione, dovuto alla presenza di massicci sistemi di nebulose oscure. La sua importanza è data dal fatto che secondo alcuni studi potrebbe evolversi in futuro in un ammasso globulare.

UNA RACCOLTA DI STELLE MASSICCE

Westerlund 1 contiene un numero molto elevato di stelle di grande massa evolute; stelle di questo genere sono relativamente rare, in quanto hanno una vita breve. Fra queste vi sono 6 ipergiganti gialle, 4 supergiganti rosse fra le quali è inclusa Westerlund 1-26, una delle stelle più grandi conosciute, 24 stelle di Wolf-Rayet, una variabile blu luminosa, diverse stelle di classe O e B e un raro caso di stella derivante probabilmente da una recente fusione fra stelle. Inoltre, osservazioni ai raggi X hanno rivelato la presenza di una pulsar anomala a lenta rotazione, probabilmente originatasi dall’esplosione di una stella di grande massa.

La stella di sequenza principale più brillante dell’ammasso possiede una magnitudine visuale di appena 20,5; da ciò ne consegue che Westerlund 1 sia dominato da stelle post-sequenza principale molto luminose, che infatti hanno magnitudine visuale attorno a 18.

Alle lunghezze d’onda dei raggi X l’ammasso mostra emissioni diffuse dal gas interstellare, ma anche emissioni puntuali, provenienti sia da stelle post-sequenza principale di grande massa, sia da stelle di piccola massa di pre-sequenza principale.

BANCO DI PROVA PER I MODELLI

L’età di Westerlund 1 è stimata sui 4-5 milioni di anni; questo dato è derivato dal confronto della popolazione delle stelle evolute con i modelli dell’evoluzione stellare. La presenza di un numero significativo di stelle di Wolf-Rayet e di supergiganti gialle e rosse rappresenta un forte vincolo sulla determinazione dell’età: le teorie suggeriscono che le supergiganti rosse non si formino prima di almeno 4 milioni di anni, dato che le stelle più massicce non sperimentano la fase di supergigante rossa, mentre allo stesso tempo la popolazione di stelle di Wolf-Rayet declina rapidamente dopo i 5 milioni di anni. Questa fascia di età è ampiamente compatibile con le osservazioni all’infrarosso di Westerlund 1, che hanno rivelato la presenza di stelle di classe O7-O9 di sequenza principale; nonostante ciò, un’età inferiore e pari a 3,5 milioni di anni è stata comunque proposta in base ad osservazioni delle stelle di massa più piccola facenti parte dell’ammasso.

Se in Westerlund 1 le stelle si fossero formate seguendo una tipica funzione di massa iniziale, allora l’ammasso avrebbe inizialmente ospitato un numero significativo di stelle molto massicce, come quelle osservate attualmente nel più giovane Ammasso Arches, il più compatto.
conosciuto nella Via Lattea e situato a soli 100 anni luce dal centro galattico. Le stime attuali dell’età di Westerlund 1 sono maggiori del ciclo vitale di queste stelle e, d’altra parte, i modelli dell’evoluzione stellare suggeriscono che ci sarebbero già dovute essere da 50 a 150 supernovae esplose nell’ammasso, con un tasso di una supernova ogni 10.000 anni circa durante l’ultimo milione di anni; tuttavia, soltanto un solo resto di supernova è stato individuato finora, mentre la mancanza di altri oggetti compatti e binarie ai raggi X di grande massa resta un enigma. Per spiegare questo fatto sono state avanzate diverse ipotesi, incluse lo scioglimento di sistemi binari dovuti alla forte spinta data dall’esplosione di supernovae, oppure formazione di piccoli buchi neri di massa stellare in lento accrescimento (e dunque non rilevabili), oppure ancora l’esistenza di sistemi binari in cui entrambe le componenti sono oggi stelle collassate; questo problema resta tuttavia ancora non risolto.

Dato che le stelle di Westerlund 1 mostrano la stessa età, composizione e distanza, l’ammasso rappresenta un ambiente ideale per comprendere l’evoluzione delle stelle massicce. La contemporanea presenza sia di stelle in ingresso nella sequenza principale che in uscita da essa verso il ramo delle giganti costituisce un solido campo di verifica per i modelli di evoluzione stellare, i quali non sono ancora in grado al momento di predire correttamente la distribuzione dei sottotipi di stelle di Wolf-Rayet osservata proprio in Westerlund 1.

UN AMMASSO DI STELLE DOPPIE

Diverse evidenze portano a ritenere che molte delle stelle massicce dell’ammasso siano binarie; alcune di queste sono state identificate direttamente attraverso osservazioni fotometriche e della velocità radiale, mentre molte altre sono state dedotte attraverso altre caratteristiche tipiche delle stelle di Wolf-Rayet binarie. In totale si stima che ben il 70% delle stelle di Wolf-Rayet e il 40% delle supergiganti di classe O e B siano binarie.

LA GIGANTE WESTERLUND 1-26

Westerlund 1-26 è una stella supergigante luminosa fredda, rossa (classe M2), situata nell’ammasso stellare Westerlund 1; è anche una delle stelle più grandi conosciute, con un raggio stimato in 1530-2544 volte quello del Sole. Se fosse posta al centro del sistema solare, la sua fotosfera ingloberebbe l’orbita di Giove e arriverebbe a sfiorare quella di Saturno. La stella è quasi totalmente oscurata nelle lunghezze d’onda visibili a causa dell’estinzione dovuta alla polvere interstellare, ma è stata ampiamente studiata nelle lunghezze d’onda dell’infrarosso e delle onde radio; possiede un tipo spettrale tipico di una supergigante rossa di elevata luminosità e nelle lunghezze d’onda radio è 310.000 volte più luminosa del Sole, mentre la sua magnitudine assoluta (in luce visibile) è pari a circa -9,2.

La temperatura superficiale è di circa 3000 K, situandosi nell’angolo in alto a destra del diagramma Hertzsprung-Russell; di conseguenza, a quella temperatura, la stella emette gran parte della sua energia nello spettro infrarosso. Mostra anche un’enorme perdita di massa, il che suggerisce che possa evolversi, in futuro, in una stella di Wolf-Rayet. Westerlund 1-26 ha mostrato anche dei cambiamenti della sua classe spettrale in alcuni periodi, sebbene non siano stati osservati anche cambiamenti di luminosità.

Nell’ottobre del 2013, utilizzando il Very Large Telescope, gli astronomi dell’European Southern Observatory (ESO) hanno scoperto che Westerlund 1-26 è circondata da una nube incandescente di idrogeno ionizzato. Si tratta della prima nebulosa di gas ionizzato ad essere stata scoperta attorno a una stella supergigante rossa tramite le sue righe di emissione ottiche; questa nebulosa si estende fino a 4,2 anni luce dalla stella.
Un gruppo cinematico (in inglese moving group) è una blanda associazione stellare caratterizzata da un legame gravitazionale molto debole, meno intenso di quello che mantiene uniti gli ammassi aperti e, in maggior misura, gli ammassi globulari. Le associazioni stellari, in senso più ampio, vennero scoperte dall’astrofisico russo-armeno Viktor Amanzaspovič Ambarcumjan nel 1947.

Spesso le stelle membri di un gruppo cinematico si confondono fra le altre stelle di campo, così che distinguerle diventa molto complesso; per riconoscerle occorre infatti incrociare i dati sul moto proprio con quelli dell’età e della metallicità, al fine di individuare le analogie.

Nei dintorni di Sole si trovano diversi gruppi cinematici.

L’ASSOCIAZIONE AB DORADUS

L’Associazione AB Doradus è stata descritta nel capitolo dedicato alla regione di Cefeo, in quanto è stato ipotizzato che le sue componenti stellari siano entrate in interazione con la regione di Cepheus OB6 circa 38 milioni di anni fa.

Questo gruppo prende il nome da una delle sue stelle più importanti, la variabile a brillamento AB Doradus, distante 50 anni luce e la cui magnitudine oscilla fra 6,93 e 13,0. Si ritiene che l’età del gruppo sia compresa fra 50 e 120 milioni di anni ed è formato quasi esclusivamente da stelle di piccola massa, per un totale di 53 componenti riconosciuti; fra queste vi sono molte variabili, come PW Andromedae, V577 Persei, UY Pictoris, V372 Puppis e LO Pegasi. L’addensamento maggiore si trova nell’emisfero australe nella regione di cielo compresa fra Eridano, il Dorado e il Pittore.

L’ASSOCIAZIONE DELL’ORSA MAGGIORE

L’Associazione dell’Orsa Maggiore, il cui addensamento più importante è noto anche come Cr 285, è la seconda associazione stellare più vicina alla Terra, dopo quella di AB Doradus; il suo centro è situato a circa 80 anni luce da noi e, a differenza del precedente, è ricco di stelle luminose, molte delle quali incluse del famoso asterismo del Grande Carro.

Basandosi sull’età delle stelle componenti, si pensa che l’associazione dell’Orsa Maggiore sia stata in origine un ammasso aperto, formatosi da una nebulosa protostellare all’incirca 400 milioni di anni fa. Da allora, il gruppo si è sparso su una regione di circa 30 x 18 anni luce.

Il centro dell’associazione consiste di 14 stelle, delle quali 13 sono entro i confini dell’Orsa Maggiore e l’altra nella vicina costellazione dei Cani da caccia. C’è anche una sorta di “corrente” di stelle che sono molto probabilmente membri dell’associazione, ampiamente disperse su una vasta porzione di cielo che si estende da Cefeo fino al Triangolo Australe.

La vicina e brillante stella Sirio è stata a lungo considerata come membro del gruppo, ma potrebbe non esserlo, secondo le ricerche condotte nel 2003 da Jeremy King e altri alla Clemson University. Le ricerche sembrano in-

<table>
<thead>
<tr>
<th>ASSOCIAZIONE DELL’ORSA MAGGIORE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stelle centrali</td>
</tr>
<tr>
<td>Stella</td>
</tr>
<tr>
<td>ε UMa</td>
</tr>
<tr>
<td>ζ UMa A</td>
</tr>
<tr>
<td>β UMa</td>
</tr>
<tr>
<td>γ UMa</td>
</tr>
<tr>
<td>δ UMa</td>
</tr>
<tr>
<td>ζ UMa B</td>
</tr>
<tr>
<td>80 UMa</td>
</tr>
<tr>
<td>78 UMa</td>
</tr>
<tr>
<td>37 UMa</td>
</tr>
<tr>
<td>HD 115043</td>
</tr>
<tr>
<td>HD 109011</td>
</tr>
<tr>
<td>HD 110463</td>
</tr>
<tr>
<td>HD 109647</td>
</tr>
</tbody>
</table>
dicare che la stella sia troppo giovane per essere un membro di questa associazione.

L’ASSOCIAZIONE DI BETTA PICTORIS

L’Associazione di Beta Pictoris è la terza in ordine di distanza da Sole; è un oggetto importante per lo studio astronomico in quanto è l’associazione stellare giovane più vicina alla Terra, con un’età di 10 milioni di anni. Prende il nome dalla stella β Pictoris, nota per essere circondata da un disco protoplanetario. Vi sono anche prove che un giovane pianeta gigante gassoso attorno alla stella possiede una massa pari a 6,5 masse gioviane e dista circa 80 anni luce.

All’associazione appartiene anche il piccolo oggetto PSO J318.5-22, considerato un pianeta interstellare; possiede una massa pari a 6,5 masse gioviane e dista circa 80 anni luce.

ALTRI GRUPPI

Più ci si allontana dal Sole, più diventa difficile seguire i gruppi cinematici, perché le loro stelle iniziano a svanirsi con più facilità, mentre la maggiore distanza complica il loro studio, soprattutto per le componenti più deboli.

La maggior parte di questi gruppi si osserva in direzione del secondo e terzo quadrante galattico. Fra questi il più notevole è la Great Austral Young Association (abbreviato GAYA), situata a una distanza media di 150 anni luce e centrata in direzione del terzo quadrante; in seguito si è scoperto che questo gruppo è suddiviso in tre sottogruppi distinti, il più notevole dei quali è l’Associazione della Colomba, con un’età di 40 milioni di anni e dominata dalla stella azzurra HD 32309, di classe spettrale B9V e magnitudine apparente 4,9, visibile in direzione della Lepre. Le sue componenti appaiono sparse in vari punti del cielo, da Orione fino al Leone e Pegaso.

Il secondo sottogruppo della GAYA è l’Associazione Tucano-Orologio, con un’età stimata di 45 milioni di anni e dominata dalla brillante stella azzurra α Pavonis, di magnitudine 1,9; le altre componenti si osservano in direzione del Tucano, dell’Orologio e della parte meridionale di Eridano, fino all’Idra Maschio.

Il terzo sottogruppo è l’Associazione della Carena, formato principalmente da stelle di piccola massa e molto deboli, con un’età di 45 milioni di anni; fra le stelle membri vi sono le variabili AB Pictoris e V479 Carinae, entrambe di classe K1V(e).

Fra 80 e 240 anni luce di distanza si trova l’Associazione di TW Hydrae, famosa per essere stata uno dei primi gruppi cinematici vicini scoperti; possiede un’età di circa 10 milioni di anni ed è formata da 42 stelle organizzate in 23 sistemi stellari, cui si aggiungono alcune decine di stelle probabilmente membri, in gran parte visibili fra Idra, Cratere e Centauro. Fra le sue componenti, tutte di massa medio-piccola, vi è la variabile TW Hydrae, una stella T Tauri famosa per essere la più vicina conosciuta.

Altri gruppi ancora sono formati quasi esclusivamente da stelle di piccola massa e sono dunque sfuggenti: fra questi vi è la vecchia Carina Vicina (Carina vicina), situata a 100 anni luce con un’età di 200 milioni di anni, Ercule-Lira, alla medesima distanza del precedente e con un’età di 260 milioni di anni, e le ben più vecchie correnti stellari legate all’ammasso delle Ḥadi, a circa 150 anni luce, e a quello della Chioma di Berenice, a 280 anni luce.

A 310 anni luce si trova l’Associazione di Eta Camæleonis (o Mamajek 1), estremamente giovane, con un’età di appena 11 milioni di anni e formata da 20 componenti accertate comprese entro meno di un grado. Ancora più distante (420 anni luce) vi è l’estesa Associazione dell’Ottante, con un’età di 35 milioni di anni.
PERCHÉ L’EMISFERO AUSTRALE È PIÙ RICCO DI QUELLO BOREALE?

La domanda non è né scontata, né tantomeno pergrina. Chiunque abbia un po’ di confidenza con le carte celesti si sarà reso conto che nell’emisfero celeste australe vi è una maggiore abbondanza di stelle brillanti e visibili a occhio nudo rispetto all’emisfero celeste boreale, che invece appare molto più povero, specialmente lungo la Via Lattea fra l’Aquila e Cefeo, oppure fra Giraffa e Auriga.

Chi poi ha osservato il cielo a sud dell’equatore anche da dentro un’area urbana, si è reso conto ancor di più della differenza coi cieli boreali, tanto che persino coloro che non hanno alcuna conoscenza specifica della materia astronomica riferiscono la classica frase “a sud il cielo è più basso”.

I numeri danno ragione alle impressioni visive: le prime tre stelle più brillanti del cielo si trovano nell’emisfero sud, e sebbene il conto delle stelle di magnitudine più brillante di 1,0 sia 7 per entrambi gli emisferi, se si aggiungono le stelle fino alla magnitudine 2,0 si arriva a un rapporto di 29 a 20 a favore dell’emisfero australe. Anche per gli oggetti del profondo cielo più appariscenti, si registra una simile disparità, specialmente per quelli interni alla Via Lattea (ammassi e nebulose) o nelle sue immediate vicinanze.

Sebbene alcune delle cause siano effettivamente legate al caso, come la presenza delle Nubi di Magellano nei pressi del polo sud celeste o la presenza di Sirio e Alfa Centauri, che però sono così luminose principalmente perché transitano a breve distanza dal Sole, per altro muovendosi assai rapidamente tanto che Sirio era nell’emisfero nord fino a poche decine di migliaia di anni fa, per altre vi sono delle ragioni più profonde.

LA POSIZIONE DEL SOLE

La posizione del Sole nel disco galattico è una delle ragioni più importanti, ma non è in grado da sola di spiegare la differenza e anzi può ingannare.

Il Sole si trova sul bordo interno dello Sperone di Oriione, ossia, come si è già visto in altri passaggi del libro, un braccio minore che si ramifica dal più interno Braccio del Sagittario e sembra collegarsi esternamente col Braccio di Perseo; ne consegue che osservando in direzione del centro galattico e in particolare nella fascia fra l’Aquila e il Compasso, gli oggetti galattici si trovano a grande distanza, al di là della regione inter-braccio che ci separa dal Braccio del Sagittario. Al contrario, il tratto fra il Cigno e le Vele contiene stelle e oggetti appartenenti al nostro braccio di spirale, che pertanto saranno molto più vicini e meglio osservabili.

Ciò però giocherrebbe paradossalmente contro ciò che si osserva, perché gran parte del Braccio di Orione è effettivamente visibile nell’emisfero boreale, per cui le stelle di grande massa e le regioni di formazione stellare di questo braccio, che sono più vicine rispetto a quelle del Braccio del Sagittario, dovrebbero essere visibili in massima parte nell’emisfero boreale: ciò invece avviene solo in parte e specialmente nel tratto fra Perseo e le Vele, mentre in altre regioni, in particolare nel Cigno e nell’Unicorno, vi sono pochi oggetti davvero brillanti.
Benjamin Gould, vissuto nell’Ottocento, fu uno dei primi astronomi a interrogarsi sulla ricchezza di stelle brillanti nell'emisfero australe, tanto che passò gli ultimi anni della sua vita a studiarne gli ammassi stellari e le disposizioni stellari. Notò che fra Perseo e lo Scorpione, passando per Orione e la Nave Argo, si trova una grande concentrazione di stelle brillanti, in gran parte azzurre e bianco-gialle, che forma una cintura larga circa 20° e inclinata rispetto al piano galattico di circa 30°, che interseca la Via Lattea in direzione delle Vele e che comprende le costellazioni di Perseo, Toro, Orione, Lepre, Cane Maggiore, Poppa, Vele, Carena, Mosca, Croce del Sud, Centauro, Lupo e testa dello Scorpione.

Questa fascia di stelle brillanti è nota oggi come Cintura di Gould in suo onore ed è effettivamente la principale responsabile della grande ricchezza di stelle nell'emisfero australe.

Questa fascia di stelle brillanti è nota oggi come Cintura di Gould in suo onore ed è effettivamente la principale responsabile della grande ricchezza di stelle nell’emisfero australe.

La Cintura di Gould è suddivisibile in alcune macroregioni, in base all’età media delle sue componenti: la sezione fra Scorpione e Croce del Sud è fra le più giovani e costituisce l’Associazione Scorpions-Centaurus, descritta ampiamente nelle sezioni del libro; la parte centrale, fra Cane Maggiore e Carena, è formata da stelle di età stirata fra 40 e 60 milioni di anni; il tratto di Orione comprende una sovrapposizione di regioni di formazione stellare antiche e recenti, dove le popolazioni stellari più vecchie, ormai nella fase di gigante, hanno un’età di 10-20 milioni di anni e si trovano in primo piano (Betelgeuse, Rigel, la Cintura di Orione), mentre in posizione più remota vi è il sistema della Nebulosa di Orione, con stelle molto più giovani; infine fra Toro e Perseo si trovano un’altra sezione più antica, con stelle di età stimata sui 50-60 milioni di anni.

Diversi studiosi concordano sul fatto che la Cintura di Gould sia ciò che resta di un lungo processo di formazione stellare a catena avvenuto in più tappe e propagati in varie direzioni, lungo una fascia di complessi nebulosi molecolari chiamata da alcuni Anello Lindblad, esteso per oltre 2000 anni luce.

La Via Lattea in direzione dell’emisfero boreale è particolarmente ricca di complessi nebulosi e il motivo è che proprio in questa direzione si osserva gran parte del Braccio di Orione; nelle galassie a spirale ricche di gas, molti dei loro bracci sono attraversati parallelamente al loro asse centrale da lunghi e complessi sistemi nebulosi densi e opachi e in ciò la Via Lattea non fa eccezione.

Da molti decenni sono infatti noti i vasti sistemi nebulosi che oscurano buona parte della Via Lattea boreale, ma solo nel 2020 gli studiosi si sono resi conto che questi formano probabilmente un’unica struttura, chiamata Radcliffe Wave (Onda Radcliffe) in onore dell’Istituto Radcliffe, dove gli studi si sono svolti. Questa “onda” si mostra come una struttura arcuata che oscura quasi totalmente la Via Lattea fra Toro, Perseo e parte settentrionale di Cassiopea e soprattutto di Cefeo; in quest’ultima si trovano, al di là di queste nubi, ricchissime regioni di formazione stellare, le cui stelle sarebbero in grado in assenza della Radcliffe Wave di popolare l’intera regione di stelle luminose, similmente a ciò che si osserva in direzione della Poppa e delle Vele. Sempre la Radcliffe Wave è la responsabile dell’apparente interruzione della Via Lattea in direzione di Perseo e Giraffa: in questo tratto i suoi complessi nebulosi si trovano più vicini al Sole (circa 400 anni luce) e sono in grado di oscurare completamente i campi stellari galattici.

Una seconda grande struttura nebulosa è invece la ben nota Fenditura del Cigno, che maschera l’immensa regione di formazione stellare di Cygnus X, la quale, senza la Fenditura a fare da ostacolo, apparirebbe di gran lunga come la regione di formazione stellare più brillante del cielo (più anche della celebre Nebulosa della Carena) con diverse stelle di magnitudine 1 e 2 concentrate in pochi gradi di volta celeste.

Un ulteriore forte oscuramento è dato, più a sud, dalla Fenditura dell’Aquila, un altro denso complesso nebuloso distante circa 500-800 anni luce, responsabile dell’apparente assenza di stelle giovani e ricchi campi stellari in direzione dell’Aquila e soprattutto dell’Ophiuco.
CARTE DI DETTAGLIO

DEI PRINCIPALI AMMASSI
Mel 20 - Ammasso di Alfa Persei	Pagina 433
M45 - Pleiadi	Pagina 434
Mel 25 - Iadi	Pagina 435
M44 - Presepe	Pagina 436
IC 2602 - Pleiadi del Sud	Pagina 437
Mel 111 - Ammasso aperto della Chioma	Pagina 438
Abell 2147, Abell 2151 e Abell 2152 in Ercole	Pagina 439
Abell 2197 e Abell 2199 in Ercole	Pagina 440
Mel 111 - Ammasso aperto della Chioma
BIBLIOGRAFIA

ENCICLOPEDIE ONLINE

Wikipedia in italiano – www.it.wikipedia.org

FOTOGRAFIE E IMMAGINI

Wikimedia Commons – www.commons.wikimedia.org
Opere licenziate sotto il Pubblico Dominio, o Creative Commons libere (CC0, CC-BY, CC-BY-SA)

TESTI SPECIFICI

Sugli oggetti del profondo cielo

Sulle regioni di formazione stellare

Sulle strutture a grande scala dell’Universo

CARTE CELESTI

Osservare il cielo

Guida alle costellazioni
Carte delle stelle doppie e variabili
Regioni celesti scelte
GUIDA ALLE COSTELLAZIONI
REGIONI CELESTI SCELTE

Un supplemento che arricchisce notevolmente la conoscenza del cielo, aggiungendo centinaia di descrizioni di oggetti celesti.

IL COMPLESSO DI ORIONE

28 regioni di cielo scelte in base alla loro ricchezza e interesse per osservatori e astrofotografi.

Carte dettagliate per ciascuna area, con stelle fino alla magnitudine 8, e immagini affiancate che inquadrono la medesima area di cielo delle carte.

Descrizioni, carte di dettaglio e tabelle riassuntive per ciascuna delle 28 regioni di cielo selezionate, mentre la banda colorata a bordo pagina riprende la suddivisione presentata nell’opera principale.

Schede di dettaglio di alcuni oggetti curiosi o importanti e carte dettagliate dei principali ammassi aperti.