

NAVAL POSTGRADUATE SCHOOL Monterey, Caliifornia

THESIS

ITS CERENKOV RADIATION
by
Richard J. Phillips
December 1989

Approved for public release; distribution is unlimited

$$
1247319
$$

fultien

REPORT DOCL.MENTATION PAGE

Report Security Classification Unclassified		16 Restrictive Markings	
Security Classification Authority		3 Distribution A vailabilty of Report Approved for public release; distribution is unlimited.	
Declassification Downgrading Schedule			
erforming Organization Report ...umber(s)		5. Monitoring Organization Report Number(s)	
Vame of Performing Organization val Postgraduate School	6b Office Symbol (if applicable) 33	7a Name of Monitoring Organization Naval Postgraduate School	
Address (ciry, state, and ZIP code) onterey, CA 93943-5000		76 Address (city, state, and ZIP code) Monterey, CA 93943-5000	
Fame of Funding Sponsoring Organization	8b Office Symbol (if applicable)	9 Procurement Instrument Identification Number	
Address (city, state, and ZIP code)		10 Source of Funding Numbers	
			\% Work Unit Accession.
Itte (include security classification) MO.\TE CARLO GENERATION OF CERENKOV RADIATIO.			
Personal Author(s) Richard J. Phillips			
Type of Report ister's Thesis 13 b Time From	overed	$\begin{aligned} & 14 \text { Date of Report (year, month, day) } \\ & \text { December } 1989 \end{aligned}$	15 Page Count 122

supplementary Notation The views expressed in this thesis are those of the author and do not reflect the official policy or po on of the Department of Defense or the L.S. Government.
Cosati Codes 18 Subject Terms (coniinue on reverse if necessary and identify by block number)

osati Codes		Group
		Subgroup

Abstract (continue on reverse if necessary and identify by block number)
The Integrated Tiger Series (ITS) code family, produced at Sandia National Laboratories, Albuquerque, N.M, model th nsport of electrons photons. These codes are used in many applications such as radiation shielding and radiation dos diction. A method of adding Cerenkov radiation to the output capabilities of the code was devised by Joseph Mack o s Alamos National Laboratory and Thomas Jordan of Experimental and Mathematical Consultants. This method ha en extended to include the effects of wavelength dependent indicies of refraction. The capability to handle air and carbo xide gas at different pressures and temperatures has been added to the program. The modifications to the code patc vide the user with wavelength information on the Cerenkov spectrum which shows 44 percent more production in th 30 to 2000 angstrom wavelength bin than calculated by the Mack-Jordan patch. These additions to ITS provide a poter ly valuable tool for design and implementation of Cerenkov detectors.

| Distribution Availability of Abstract
 unclassified unlımited $\quad \square$ same as report$\quad \square$ DTIC users |
| :--- | :--- | :--- | :--- |\quad| 21 Abstract Security Classification |
| :--- |
| Unclassified |

Approved for public release; distribution is unlimited.

Monte Carlo Generation of Cerenkov Radiation
by

Richard J. Phillips
Captain, United States Army
B.S., United States Military Academy, 1979

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN PHYSICS
from the

NAVAL POSTGRADUATE SCHOOL
December 1989

Abstract

The Integrated Tiger Series (ITS) code family, produced at Sandia National Laboratories, Albuquerque, N M , model the transport of electrons/photons. These codes are used in many applications such as radiation shielding and radiation dose prediction. A method of adding Cerenkov radiation to the output capabilities of the code was devised by Joseph Mack of Los Alamos National Laboratory and Thomas Jordan of Experimental and Mathematical Consultants. This method has been extended to include the effects of wavelength dependent indicies of refraction. The capability to handle air and carbon dioxide gas at different pressures and temperatures has been added to the program. The modifications to the code patch provide the user with wavelength information on the Cerenkov spectrum which shows 44 percent more production in the 1800 to 2000 angstrom wavelength bin than calculated by the Mack-Jordan patch. These additions to ITS provide a potentially valuable tool for design and implementation of Cerenkov detectors.

ACKNOWLEDGEMENTS

I would like to give special thanks to Joseph Mack of Los Alamos National Laboratory for contributing his time and expertise to this project. This work is produced as an offshoot of his ideas.

TABLE OF CONTENTS

I. INTRODUCTION 1
II. THEORY 3
A. HISTORY 3
B. THE CLASSICAL THEORY OF FRANK AND TAMM 6
III. THE CONSTANT INDEX OF REFRACTION CERENKOV PATCH 9
A. THE CI PATCH 9
B. CERENKOV RAY TRACE 10
IV. MODIFICATIONS USING VARIABLE INDICES OF REFRACTION 12
A. MLLTIPLE TRACE METHOD 12
B. DISTRIBLTION SAMPLING METHOD 14
V. RESLLTS 21
A. VALIDATION 22
B. COMPARISON OF CODE PATCHES 22
C. DEPE.〇DENCE ON INDEX OF REFRACTION 34
D. SE৯SITIVITY AㄱALYSIS 40
E. FIGLRE OF MERIT 42
VI. CO.NCLLSIO.NS 43
APPEనDIX A. ITS (ACCEPT) 45
APPENDIX B. MLLTIPLE TRACE SUBROLTINE LISTING 46
APPENDIX C. SAMPLING SLBROLTINE LISTING 67
APPENDIX D. SA.MPLE CROSS SECTION INPLT FILE 89
APPENDIX E. SAMPLE CERENKOV INPUT FILE WITH GEOMETRY AND ZONE DESCRIPTIONS 90
A. PROBLE.M GEO.METRY 92
APPENDIX F. PARTICLE WEIGHT 102
APPENDIX G. MT FLOW DIAGRA.M 104
APPENDIX H. DS FLOW DIAGRA.M 107
LIST OF REFEREXCES 110
INITIAL DISTRIBUTION LIST 112

LIST OF FIGURES

Figure 1. Local Polarization of Transparent Medium 4
Figure 2. Arrangement of Atoms after Electron Passes 5
Figure 3. Cerenkov Angle 6
Figure 4. Refractivity by Wavelength 13
Figure 5. MT Diagram 15
Figure 6. Cerenkov CDF 17
Figure 7. DS Diagram 19
Figure 8. Cerenkov Detector Geometry. 21
Figure 9. MT vs. CI Cerenkov Weights 23
Figure 10. MT vs. CI Cerenkov Weights 24
Figure 11. MT vs. CI Production Ratios 25
Figure 12. DS vs CI Cerenkov Production 27
Figure 13. Cerenkov Production Ratio, DS to CI 28
Figure 14. Cerenkov Prodcution Ratio, DS vs. MT 29
Figure 15. Cerenkov Weights at Detector 30
Figure 16. Ratio at Detector, MT to CI 31
Figure 17. Ratio at Detector, DS to CI 32
Figure 18. Ratio Reaching Detector, MT Method 33
Figure 19. Ratio Reaching Detector, DS Method 35
Figure 20. Total Cerenkov Weights Entering Each Zone 36
Figure 21. Normalized Cerenkov Production 38
Figure 22. Variations in Pressure and Energy 41

I. INTRODUCTION

Charged particle and photon transport are topics of much interest to the scientific community and have been for much of this century. Since Rutherford's work with scattering from thin foils, many new theories have been developed to predict the radiation and charged particle deposition caused by energetic beams of charged particles or photons diffusing through various materials. These theories describe the angular deflections of particles and the energy losses associated with the beam's passage.

Since the advent of the high speed computer, several computer codes have been developed to simulate the cascades caused by energetic electron beams impinging on different materials. A series of Monte Carlo codes that simulate the transport have been developed by Martin Berger and Stephen Seltzer at the National Bureau of Standards ((BS) over the past 25 years. These codes, such as ETRAN, form the basis for other codes written at laboratories across the United States. The ETRAN algorithm has been used by Sandia National Laboratory (S.NLA), to develop the Integrated Tiger Series (ITS). The scheme of the random walk used in the ITS calculations has its roots in ETRA.․: [Ref. 1]

ITS includes 8 different variants of a basic code. These codes reflect various combinations of geometries and some allow the superposition of electromagnetic fields. One of these, ACCEPT, allows the user to specify a combinatorial, fully general, three dimensional geometry. A beam of electrons or photons striking and diffusing through the target is simulated, including the cascade of secondary electrons and photons. The program tracks primary electrons or photons and all possible secondary radiations, including knock-on electrons, bremsstrahlung, Compton electrons, photoelectrons, electron-positron pairs, annihilation radiation, as well as K -shell characteristic x-rays and Auger electrons. Electrons and photons with energies between 1 keV and 1 GeV can be tracked. [Ref. 1]

Cerenkov radiation was not included in the ITS cascade since there was no need for its inclusion at the time the ITS codes were developed. However, for certain applications such as the design of Cerenkov detectors, its inclusion is required. This problem was addressed by Mack and Jordan. They produced a code patch to allow the ACCEPT code to simulate and track Cerenkov production. This addition to the code samples the Cerenkov production along a substep and then ray traces (there is no real transport for
these low energy photons) the Cerenkov light through the geometry, tallying that which arrives at the detector, and the Cerenkov photons produced and absorbed in each zone. The patch due to Mack and Jordan assumes a constant index of refraction for each material and no wavelength dependence. The present work compares the results of this method of Cerenkov sampling with the results produced by including the variable index of refraction for the materials in which the Cerenkov production and ray trace take place. The results of this comparison show 44 percent more production in the 1800 to 2000 angstrom wavelength bin than calculated with the constant index of refraction used for runs with the Mack-Jordan patch.

II. THEORY

A. HISTORY

While the exact date of the discovery of Cerenkov radiation is not known, we do know that Mme. Curie was among those to notice the uncanny, pale blue light given off from bottles of concentrated radium solutions. This observation was documented in 1910. In 1934, Frank and Tamm provided the correct explanation for this radiation. The long delay between the time when the radiation was first noted and the theoretical explanation of it was most likely due to the abundance of new discoveries in physics during the early years of this century, especially in the area of florescence and phosphorescence. Cerenkov radiation was so weak as to cause its effects to be masked by the presence of these other phenomena.

Mallet made the first deliberate attempt to study the phenomenon in the years 1926 through 1929. However, he failed to pursue the subject to completion. Then, in 1934, Cerenkov began a series of experiments which continued into 1938. His experiments were simple, yet they showed remarkable agreement with the theory developed by Frank and Tamm.

In 1940, Ginsburg produced a quantum theory of the phenomenon which was thereafter known as Cerenkov radiation. The radiation is called Cerenkov-Vavilov in the Soviet literature. In 1947, Getting proposed using a photomultiplier and an optical system for detecting single particles from the Cerenkov radiation. In 1951, Jelley was the first to detect, with high efficiency, single, fast charged particles. His work was followed closely by the published accounts of Mather and Marshall's work using Cerenkov detectors for the measurement of velocities of particles from high energy accelerators.

Since that time, a wide variety of uses have been found for Cerenkov detectors, including the discovery of the anti-proton, investigations of anisotropic media and ferromagnetics, as well as the measurement of energies released in nuclear explosions.

The Cerenkov effect is described as follows: [Ref. 2: pp. 5-6]

1. A free electron injected into a transparent medium produces a local polarization of the medium.
2. At small velocities this polarization is roughly spherically symmetric. This local polarization of the atoms causes them to behave like small dipoles, which revert to their original arrangement after the passage of the electron (or other charged particle). See Figure 1 on page 4. However, due to the spherical symmetry of the polarization field, there is no resultant field at large distances.

Figure 1. Local Polarization of Transparent Medium: [Ref. 2: pp. 5-6]
3. At greater velocities of the electron, the spherical symmetry of the polarization field is destroyed along the axis and radiation is emitted. In general, this radiation interferes with itself destructively so that there is no resultant field at large distances.
4. However, if the velocity of the electron is greater than the phase velocity of light within the medium, then there is an angle at which all of the wavelets from all portions of the electron track are in phase with one another so that there is a resultan field at a distant point. See Figure 2 on page 5 and Figure 3 on page 6.

The angle at which Cerenkov radiation is produced is defined by the Cerenkov relation,

$$
\begin{equation*}
\cos (\theta)=\frac{1}{n \beta} . \tag{2.1}
\end{equation*}
$$

Cerenkov radiation is only produced above the velocity threshold defined by

$$
\begin{equation*}
\beta_{\min }=\frac{1}{n}, \tag{2.2}
\end{equation*}
$$

where n is the index of refraction of the medium and β is the ratio of the electron velocity to the speed of light. The condition for Cerenkov radiation to occur is

Figure 2. Arrangement of Atoms after Electron Passes: [Ref. 2: pp. 5-6]

$$
\begin{equation*}
n \beta>1 . \tag{2.3}
\end{equation*}
$$

The angle of emission is defined by

$$
\begin{equation*}
\theta=\cos ^{-1}\left(\frac{1}{\beta n}\right) . \tag{2.4}
\end{equation*}
$$

Cerenkov radiation occurs primarily in the visible and near ultraviolet regions of the spectrum, for which $n>1$. Emission in the x-ray region of the spectrum is usually not possible since the index of refraction is then less than unity and the Cerenkov condition cannot be satisfied. (An exception is at absorption edges, where it is possible to obtain $n>1$.)

Cerenkov radiation may be thought of as similar to the V shaped bow wave from a boat. The radiation comes off at a particular angle, defined by the index of refraction of the medium. the dominating wavelengths of the radiation, and the velocity of the charged particle. See Figure 3 on page 6. The wavelength of the radiation plays a part

Figure 3. Cerenkov Angle: This figure shows the Cerenkov angle θ through the Huygens construction. [Ref. 2: pp. 5-6]
since the index of refraction for the medium is dependant upon wavelength. [Ref. 2: pp. 1-14]

B. THE CLASSICAL THEORY OF FRANK AND TAMM

In 1937, Frank and Tamm provided the first theoretical explanation for Cerenkov radiation. Their theory made the following assumptions: [Ref. 2: p. 15]

1. The medium is considered as a continuum, so that the microscopic structure is ignored: the dielectric constant is then the only parameter used to describe the behavior of the medium.
2. Dispersion is ignored, at least in the first approximation.
3. Radiation reaction is neglected.
4. The medium is assumed to be a perfect isotropic dielectric, so that the conductivity is zero, the magnetic permeability equal 1 , and there is no absorption of radiation.
5. The electron is assumed to move at constant velocity; ie. the slowing down due to ionization, and the multiple Coulomb scattering are ignored.
6. The medium is unbounded and the track length infinite.

Using these assumptions, Frank and Tamm derived the equation for the output of radiation (cgs units).

$$
\begin{equation*}
\frac{d W}{d l}=\frac{e^{2}}{c^{2}} \int_{\beta n>1}\left(1-\frac{1}{\beta^{2} n^{2}}\right) \omega d \omega \tag{2.5}
\end{equation*}
$$

Without a cutoff frequency for the above integral, the output energy is infinite. However, since a real medium is always dispersive, the radiation is restricted to bands such that

$$
\begin{equation*}
n(\omega)>\frac{1}{\beta} . \tag{2.6}
\end{equation*}
$$

Also, the absorption bands for higher frequencies limit the radiation to the near ultraviolet and lower frequencies. The refractive index is less than unity for frequencies in the x -ray region making Cerenkov radiation forbidden.

For constant βn we can express the radiation intensity in terms of the number of photons of wavelengths between λ_{1} and λ_{2} which are emitted by an electron.

$$
\begin{equation*}
N=2 \pi \alpha l\left(\frac{1}{\lambda_{2}}-\frac{1}{\lambda_{1}}\right)\left(1-\frac{1}{\beta^{2} n^{2}}\right) \tag{2.7}
\end{equation*}
$$

where α is the fine structure constant and l is the path length.
There are a variety of ways to express the spectral distribution of Cerenkov radiation. The intensity of light of frequency v may be written as

$$
\begin{equation*}
W=N h v, \tag{2.8}
\end{equation*}
$$

where N is the number of photons of that frequency, h is Plank's constant and v is the frequency. We can write the spectral distribution of Cerenkov radiation in the following four ways: [Ref. 2: pp. 15-22]

- Energy per unit path per unit frequency interval.

$$
\begin{equation*}
\left(\frac{d^{2} W}{d l d \omega}\right) \propto \omega \tag{2.9}
\end{equation*}
$$

- Energy per unit path per unit wavelength interval.

$$
\begin{equation*}
\left(\frac{d^{2} W}{d l d \lambda}\right) \propto \frac{1}{\lambda^{3}} \tag{2.10}
\end{equation*}
$$

- Number of photons per unit path per unit frequency interval.

$$
\begin{equation*}
\left(\frac{d^{2} V}{d l d \omega}\right) \propto \text { Constant } \tag{2.11}
\end{equation*}
$$

- Number of photons per unit path per unit wavelength interval.

$$
\begin{equation*}
\left(\frac{d^{2} N}{d l d \lambda}\right) \propto \frac{1}{\lambda^{2}} \tag{2.12}
\end{equation*}
$$

The quantum theory of Cerenkov radiation provides more detail, but in accordance with the correspondence principal, yields the classical results for macroscopic phenomena. Since we are concerned only with macroscopic phenomena in this work, we use the classical results. The constant index of refraction subroutine uses these relationships to calculate the amount of Cerenkov radiation produced. Chapter III describes this approach.

III. THE CONSTANT INDEX OF REFRACTION CERENKOV PATCH

Joseph Mack and Thomas Jordan developed a set of sub-routines for the ACCEPT [Ref. 3] computer code which give the code the ability to simulate Cerenkov production. Their modification calculates the number of Cerenkov photons N per unit path length l using the approximation,

$$
\begin{equation*}
\frac{d N}{d l}=2 \pi \alpha\left[1-\frac{1}{\beta^{2} n^{2}}\right] \int_{\lambda_{1}}^{\lambda_{2}} \frac{d \lambda}{\lambda^{2}},\left(\lambda_{2}>\lambda_{1}\right), \tag{3.1}
\end{equation*}
$$

for

$$
\begin{equation*}
\frac{d X}{d l}=2 \pi \alpha \int_{\lambda_{1}}^{\lambda_{2}}\left[1-\frac{1}{\beta^{2} n^{2}(\lambda)}\right] \frac{d \lambda}{\lambda^{2}},\left(\lambda_{2}>\lambda_{1}\right), \tag{3.1a}
\end{equation*}
$$

where α is the fine structure constant. Production is not allowed for $n<\frac{1}{\beta}$.

A. THE CI PATCH

The ACCEPT code transports electrons using multiple-interaction pathlengths. This means that the code simulates the electron path through a material in a series of substeps. At each substep the electron is deflected at an angle which is sampled according to the multiple scattering theory of Gouldsmit and Saunderson. [Ref. 4] Energy losses are determined from the Landau distribution [Ref. 5], knock on electrons are generated, bremsstrahlung photons are produced, etc.

The constant index (CI) subroutine links Cerenkov production to this process. It does this by selecting a uniformly random point along the pathlength at which to generate a Cerenkov photon whose weight represents the expected number of Cerenkov photons produced over the entire pathlength. (See Appendix F for a complete discussion of weight.) The emission polar angle is chosen using the Cerenkov relation, equation (2-1). The azimuthal angle is selected using a uniform random distribution. The mean photon energy of the wavelength band is calculated and assigned to the sampled photon.

Since cross sections are not available for energies as low as those associated with the Cerenkov photons, these photons are not transported as a part of the cascade. Instead, each Cerenkov photon is ray traced through the geometry using geometrical optics and a ray tracing algorithm incorporated into the subroutine. These ray traces depend on the geometry and on a variety of bulk optical properties which are a part of the input file supplied by the user. [Ref. 6] These inputs are:

1. Index of refraction for each zone. This number is the wavelength average index of refraction for each material in the problem.
2. The absorption coefficient $\left(\mathrm{cm}^{-1}\right)$ is used to calculate absorption losses in each zone.
3. The specular reflection fraction is the fraction of light that undergoes specular reflection at each zone boundary.
4. The diffuse reflection fraction is the fraction of light that undergoes diffuse reflection at each zone boundary.
5. The fractional light transmittance is the fraction of light transmitted through the zone.

B. CERENKOV RAY TRACE

The Cl patch works as follows. The user defines the geometry to be used for the problem and enters this as a list of zones in his input file. (See Appendix E) ACCEPT determines the length of a substep for a source electron as it enters the first zone. This is a pathlength value used by ACCEPT to calculate interactions with the material.

If the Cerenkov condition is satisfied, equation (3.1) is used to determine the total Cerenkov weight (Appendix F) produced for this substep. If not, the routine returns control to ACCEPT for the next electron substep. A random position along the electron substep is sampled and used as the starting point for the Cerenkov ray. The Cerenkov angle determined from equation (2.1) and a randomly selected azimuthal angle determine the initial path of the ray.

This ray is traced to the boundary of the next zone. The boundary conditions (the bulk optical properties listed above) are then used to determine whether the ray is diffuse or specularly reflected, completely or partially absorbed, or transmitted into the next zone. The laws of geometrical optics and Snell's law are used to determine the angles of reflection or refraction for the next part of the ray trace.

This process is repeated through each zone until a termination condition is reached. The ray can only terminate in three ways:

1. It gets absorbed.
2. It escapes into the outside universe (the last zone).
3. It is killed because it gets reflected too many times. This parameter (KALTOT) is set by the user in his input file. For the problem under consideration, KALTOT was set to 15 . This kill mechanism is included to eliminate the possibility of the ray being reflected a semi-infinite number of times between surfaces (geometric instability).

Tallies are made at each zone to record the Cerenkov weight produced, the energy, the weight absorbed, the weight exiting, and the weight entering the zone. The code also tallies the number of times that production occurs. These tallies are saved for output and of course one of the zones is the detector zone of interest.

This model is quite powerful as a diagnostic tool for analysis of Cerenkov radiation. However, it assumes that the indices of refraction for all materials are constant. In the case of Cerenkov production in a gas such as CO_{2} the index of refraction is very nearly constant over the entire range of wavelengths. For example, the index of refraction in CO_{2} at 2 atmospheres is 1.00110 at 1800 angstroms [Ref. 7: pp.432-434] while the constant index used in the CI routine is 1.000894 . Despite this small difference, calculations using a table of index of refraction by wavelength yield 44 percent more Cerenkov production in the 1800 angstrom bin than predicted by CI. The patches that produce these results are discussed in Chapter IV. A detailed comparison of the results of these patches and the reasons for the differences are discussed in Chapter V.

IV. MODIFICATIONS USING VARIABLE INDICES OF REFRACTION

To produce a code patch that uses the variable indices of refraction for the material producing the Cerenkov radiation and for all the optics through which these photons pass, two different approaches are taken. They are the multiple trace (MT) method and the distribution sampling (DS) method.

A. MULTIPLE TRACE METHOD

The MT method involves splitting the spectrum of Cerenkov photon production into small wavelength bins across which the index of refraction (n) is very nearly constant. The wavelength range is limited to $1800-10000$ angstroms. This range is subdivided into 200 -angstrom bins from 1800 to 5000 angstroms, where the indices of refraction change rapidly, and in 500 -angstrom bins from 5000 to 10000 angstroms, where the indices change slowly. A plot of refractivity $(n-1)$ is shown in Figure 4 on page 13. This shows the index of refraction rising rapidly in the ultraviolet region. However, as the absorption bands are encountered, the index of refraction falls off sharply until the Cerenkov condition is no longer satisfied. The rapid increase in values of refractivity for the wavelengths shorter than 5000 angstroms requires the use of smaller wavelength bins in this region. Wider bins are used for wavelengths above 5000 angstroms to optimize code efficiency.

The number of Cerenkov photons produced in each wavelength bin per pathlength $d l$ is calculated according to equation (3.1). Over a small enough range of wavelengths, the index of refraction is approximately constant and integration of (3.1) over wavelength yields

$$
\begin{equation*}
\frac{d N}{d l}=2 \pi \alpha\left(1-\frac{1}{\beta^{2} n^{2}}\right)\left[\frac{1}{\lambda_{1}}-\frac{1}{\lambda_{2}}\right],\left(\lambda_{2}>\lambda_{1}\right) . \tag{4.1}
\end{equation*}
$$

Equation 3.1 must also be integrated over pathlength. For short enough substeps in a homogeneous material this becomes

$$
\begin{equation*}
N=2 \pi \alpha, l\left(1-\frac{1}{\beta^{2} n^{2}}\right)\left[\frac{1}{\lambda_{1}}-\frac{1}{\lambda_{2}}\right],\left(\lambda_{2}>\lambda_{1}\right) \tag{4.1a}
\end{equation*}
$$

where 1 is the length of that particular substep. (In all further equations where $\frac{d N}{d l}$ appears, subsequent integration over pathlength occurs.)

Figure 4. Refractivity by Wavelength: This figure shows the index of refraction values -1 for CO_{2} in the MT and DS methods.

The number of Cerenkov photons per wavelength bin is converted into a weight representative of all photons produced along the entire substep. If the Cerenkov condition is satisfied, a random location along the electron substep is selected. For each wavelength bin, the Cerenkov angle is calculated and all rays of appropriate weight are ray traced through the geometry using the index of refraction for that wavelength and Snell's law in each of the optics. Tallies are made of the Cerenkov weight produced in each zone, the wavelength of the light, and the energy produced. The Cerenkov weight that enters and exits each zone is also recorded, along with the weight that is absorbed. This approach is illustrated in Figure 5 on page 15. This shows two electron substeps. Along each substep, MT samples a position to generate all of the Cerenkov weight for the entire substep. It then calculates the weight in each wavelength bin for the entire substep, determines the Cerenkov angle for each wavelength bin, and ray traces each weight through the geometry. (See the flow diagram for the MT method - Appendix G.) In CO_{2} the range of Cerenkov angles when $\beta \approx 1$ is

$$
\begin{equation*}
2.4^{\circ}<\theta<2.7^{\circ} \tag{4.2}
\end{equation*}
$$

The Cerenkov weight produced from a substep is the sum of the weights in each wavelength bin. The total Cerenkov weight produced is then the sum of the weights produced integrating over each substep. If the total of the weights tallied in each wavelength bin were different than the sum of the weights produced on each substep then weight balance would be violated. Clearly, the weight balance for the MT method is correct.

The output from the code patch is listed by wavelength and allows the user to analyze the spectrum of Cerenkov radiation reaching each zone. The update file which implements this method is included as Appendix B.

B. DISTRIBUTION SAMPLING METHOD

While the MT method provides the most detailed approach to examining the Cerenkov radiation produced, its multiple loops cause a large increase in computer time over the CI method. It is obviously a brute force method that forces detailed wavelength coverage. With this in mind, a method which samples the distribution of Cerenkov production was developed. The distribution sampling (DS) method is intended to reduce the amount of computer time required to obtain a similar quality result to that provided by the MT method.

28 Coronkov Rays
from samplod positlon
along olociron substop
(Total wolght producod for
this substop is distributod
among the 28 blnsin
accordance with
-quatlon 4.1)

Figure 5. MT Diagram: This figure shows Cerenkov production along 2 electron substeps as calculated by the MT method.

Two additional subroutines are added to the code patch. The first, CKVCDF, creates a discrete cumulative distribution which specifies the probability for Cerenkov production in each wavelength bin. This routine assumes that all Cerenkor production happens in the interval 1800 to 10000 angstroms. The main program calls CKVCDF once, at which time the discrete cumulative distributions for all the materials are calcu-
lated. The program then calculates the expected number of Cerenkov photons produced over the entire range of wavelengths for a given pathlength. The CDF is then sampled through a call to the routine CKVWVL, resulting in one wavelength bin being selected. The total expected weight is assigned to that sampled wavelength. This Cerenkov weight is then ray traced through the geometry making similar tallies as in the MT method.

The number of Cerenkov photons produced in each wavelength bin is unevenly distributed as can be seen from equation (3.1). This is shown in Figure 6 on page 17. Each step on the CDF plot represents the cumulative probability that the sampled photon is in one of the bins from 1800 angstroms up to and including the bin represented by the step. The probability that the photon wavelength is sampled in any particular bin is just the CDF value for that bin less the CDF value for the previous bin. This does not mean that the cutoff for Cerenkov radiation production is 1800 angstroms. This was merely the cutoff wavelength selected based upon available index of refraction data.

More photon production occurs at shorter wavelengths. This calls into question the validity of assigning all of the Cerenkov weight to the sampled wavelength bin. However, this disparity in production is accounted for in the discrete cumulative distribution. While the code may sample a wavelength bin in the longer wavelength region and assign too much weight to it, the probability of sampling this bin is smaller. This will cause a larger sampling frequency at shorter wavelengths. Providing that the distribution is sampled enough times to provide valid statistics, this approach will produce results statistically identical to those of the multiple trace method, while utilizing less computer time.

The subroutine CKVCDF produces the cumulative distribution for each material as follows. The total number of Cerenkov photons produced in each wavelength interval (i_{1}, i_{2}),

$$
\begin{equation*}
\frac{d N_{i}}{d l} \propto 2 \pi \alpha\left[\frac{1}{\lambda_{i}}-\frac{1}{i_{i+1}}\right], \tag{4.3}
\end{equation*}
$$

is calculated for each wavelength bin. These individual values are then summed to yield a normalizing factor (PTOT) such that

$$
\begin{equation*}
\text { PTOT }=\sum_{i=1}^{26} \frac{d N_{i}}{d l}, \tag{4.4}
\end{equation*}
$$

Figure 6. Cerenkov CDF: This figure shows the discrete Cerenkov distribution sampled by the DS method.
where 26 is the number of wavelength bins used.

The discrete probability distribution is then generated by letting

$$
\begin{equation*}
P_{i}=\frac{\left(\frac{d N_{i}}{d l}\right)}{P T O T} \tag{4.5}
\end{equation*}
$$

This creates a normalized, discrete probability distribution (the PDF) with P_{1} representing the probability of generating a Cerenkov photon in wavelength bin (i).

To form the discrete cumulative distribution (CDF), we let

$$
\begin{equation*}
C D F(m t r l, i)=\sum_{i=1}^{26} P_{i} \tag{4.6}
\end{equation*}
$$

where mtrl is the material number and i is the index for the wavelength bin. This is put into a loop that creates the CDF for each material and stores these into the two dimensional array CDF (mtri,i).

This CDF array is randomly sampled (from 0 to 1) to determine which wavelength of Cerenkov light will represent all wavelengths on that specific electron substep. Figure 7 on page 19 shows this process for two electron substeps. A random position is chosen along the substep, all of the Cerenkov weight generated over the substep length for the entire range of wavelengths is assigned to a photon, and the wavelength of the photon is sample from the discrete cumulative distribution (CDF). The Cerenkov angle is calculated for this wavelength and the photon is ray traced through the geometry. The next electron substep is taken and a new wavelength is sampled. This process is repeated for each substep. (See the flow diagram for the DS method - Appendix H.)

The most important step in justifying the use of distribution sampling is to form a weight balance equation. We must show that the sum of the Cerenkov weights tallied in each wavelength bin equals the sum of the Cerenkov weights produced in each step. In other words we must show that the Cerenkov weight tallied in bin (i) is

$$
\begin{equation*}
w_{i}=f_{i} W, \tag{4.7}
\end{equation*}
$$

where w_{i} is the weight produced in wavelength bin i and f_{i} is the fraction of the total weight tallied in bin (i). W represents all the Cerenkov weight produced in the problem and is defined by

Figure 7. DS Diagram: This figure shows Cerenkov production along 2 electron substeps as calculated by the DS method.

$$
\begin{equation*}
W^{\prime} \equiv \sum_{j=1}^{N} \psi_{j}, \tag{4.5}
\end{equation*}
$$

where N is the total number of electrons substeps on which Cerenkov production occurs and ψ_{j} is the weight produced on substep j. In the DS method, for a large number of substeps (N), the weight produced in bin i is

$$
\begin{equation*}
w_{i} \approx P_{i} \sum_{j=1}^{N} \psi_{j} \tag{4.9}
\end{equation*}
$$

where P_{i} is the discrete probability of sampling a wavelength in bin i and is defined by equation (4.5). As the number of substeps on which sampling occurs (N) goes to infinity, we find

$$
\begin{equation*}
P_{i} \sum_{j=1}^{N} \psi_{j} \approx \approx_{i} \sum_{j=1}^{N} \psi_{j}, \tag{4.10}
\end{equation*}
$$

and

$$
\begin{equation*}
w_{i} \approx f_{i} \sum_{j=1}^{N} \psi_{j} . \tag{4.11}
\end{equation*}
$$

Providing that N is sufficiently large to provide the required degree of confidence, we are justified in using the approximation represented by equation (4.11). Substituting equation (4.8) into (4.11) yields equation (4.7). This shows that sampling the distribution provides the required weight balance in each wavelength bin provided that the number of samplings, λ, is large enough. 1

The update file required to implement this routine is included as Appendix C.

[^0]
V. RESULTS

Runs were made using the CI, MT, and DS methods to model a gas Cerenkov detector. The geometry for this detector is shown in Figure 8.

Figure 3. Cerenkor Detector Geometry.: This figure shows the geometry for a gas Cerenkov detector that was used to compare the CI, MT, and DS methods.

All of the code patches calculate the total Cerenkov radiation produced in each zone, the amount entering or leaving the zone, and the amount absorbed by the zone. However, the two modified patches also yield data on the wavelengths of radiation in each zone. For a discussion of zones and geometry, see Appendix E.

A. VALIDATION

The first step in comparing the methods was to insure that the code with the new patches produced similar results using the same indicies of refraction. To check this, the variable indicies of refraction in the MT method were replaced with the CI constant indicies. The Cerenkov spectrum, as calculated by the CI and the MT methods, is shown in Figure 9 on page 23. The output of the CI and MT methods are identical. These results verify that the Cerenkov production using the MT method reverts to the constant index (CI) method when the same indicies of refraction are used.

B. COMPARISON OF CODE PATCHES

The first area of interest in comparing the different methods is the amount of Cerenkov radiation produced in zone 5, the CO_{2} gas. (See Appendix E for zone descriptions). Figure 10 on page 24 shows a comparison of the production calculated by the constant index and multiple trace routines when the index of refraction is allowed to vary for the MT method. The MT method produces 44 percent more Cerenkov weight in the 1800 -angstrom bin than the CI method. (For this problem the index of refraction used for CI in each of the materials was the index for light of 5000 angstroms.) The MT method also shows about 5 percent less production for the long wavelengths than calculated by CI. Figure 11 on page 25 shows the same comparison as a ratio of the amounts calculated by each method. The uncertainties in the the ratio plot are calculated using [Ref. 9: pp. 56-89]

$$
\begin{equation*}
\frac{\sigma_{r}^{2}}{r^{2}} \approx \frac{\sigma_{x}^{2}}{x^{2}}+\frac{\sigma_{y}^{2}}{y^{2}}, \tag{5.0}
\end{equation*}
$$

where $r=\frac{x}{y}$ and σ^{2} is the variance. The ratio plot emphasizes the differences in the behaviors of the two models. Where the production by the two methods is the same on the graph is where the MT variable index for CO_{2} equals the constant index used in CI . This figure illustrates the fact that when the Cerenkov detector photo-multiplier tube

Figure 9. MT vs. CI Cerenkov Weights: This figure shows the Cerenkov weight produced in the CO_{2} as calculated by the MT and CI methods when the same indicies of refraction are used.

Figure 10. MT vs. CI Cerenkov Weights: This figure shows the Cerenkov weights produced in the CO_{2} as calculated by the MT and CI methods.

Figure 11. MT vs. CI Production Ratios: This figure shows the ratio of Cerenkov weights produced in CO_{2} as calculated by MT to that of CI.
has a non-constant wavelength sensitivity, the inclusion of the proper wavelength dependent index of refraction is important.

Figure 12 on page 27 shows the Cerenkov production calculated by the DS and CI methods. Figure 13 on page 28 shows the ratio comparison of these two methods. The same qualitative result is obtained for the DS and MT methods. This shows the larger production at the short wavelengths and smaller production at the long wavelengths, although there are large statistical variations in the sampling at the wavelengths longer than 5000 angstroms. The degree of the variation depends on the number of batches used in the run or on any biasing techniques applied. Biasing has not been used to improve the statistical accuracy for this problem.

A comparison of the ratio of the distribution sampling (DS) to the multiple trace (MT) calculation, Figure 14 on page 29, shows further evidence of this statistical fluctuation. Figure 14 on page 29 also shows that the results of DS and MT are nearly identical. This is not surprising as the DS method is designed using the same physics, but incorporating a Monte Carlo sampling technique in order to trace fewer Cerenkov rays, thereby improving efficiency.

The next important zone in which to compare the methods is zone 18. This zone represents the photo-multiplier or detector. An analysis of the Cerenkov spectrum here allows the user to see what Cerenkov radiation will arrive at the detector. Figure 15 on page 30 shows a plot of the Cerenkov weights reaching the detector, as calculated by each of the methods. Note that the CI method only calculates a total weight. The fraction, $F_{\text {}}$, of the tota! weight in each wavelength bin is then calculated using

$$
\begin{equation*}
F_{i}=\left[\frac{\left(\frac{1}{i_{i}}-\frac{1}{\lambda_{i+1}}\right)}{\left(\frac{1}{1800}-\frac{1}{10000}\right)}\right] \tag{5.1}
\end{equation*}
$$

Figure 16 on page 31 plots the ratio of the Cerenkov distribution as calculated by the MT method to that calculated by CI. A plot of the ratio of DS to CI weights is shown in Figure 17 on page 32. Again the statistical errors in the DS results are larger than 10 percent for the wavelengths longer than 5000 angstroms, although DS closely matches the MT results.

In order to determine whether the spectrum arriving at the detector is different than that which is produced, it is necessary to examine the ratio of weight that arrives at the detector to weight produced in the CO_{2}. Figure 18 on page 33 shows this ratio for the

Figure 12. DS vs CI Cerenkov Production: This figure shows the Cerenkov weight produced in CO_{2} as calculated by DS and CI .

Figure 13. Cerenkov Production Ratio, DS to Cl : This figure shows the ratio of the Cerenkov weight produced as calculated by the DS method to that of CI .

Figure 14. Cerenkov Prodcution Ratio, DS vs. MT: This figure shows the Ratio of the Cerenkov weight produced in the CO_{2} as calculated by DS to that calculate by .MT.

Figure 15. Cerenkov Weights at Detector: This figure shows the Cerenkov weight reaching the detector (zone 18) in each wavelength bin as calculated by the MT, DS, and CI methods.

Figure 16. Ratio at Detector, MT to CI: This figure shows a comparison of the Cerenkov spectrum reaching the detector (zone 18) as calculated by MT and CI.

Figure 17. Ratio at Detector, DS to CI: This figure shows the ratio of weights reaching the detector (zone 18) as calculated by DS and CI.

Figure 18. Ratio Reaching Detector, MT Method: This figure shows the ratio of the Cerenkov Weight arriving at the detector to that produced in the CO_{2} as calculated by the MT method.

MT method. This plot shows that for this particular Cerenkov detector geometry, the Cerenkov wavelength distribution at the detector is roughly the same as that which is produced, although only about 37 percent of the photons produced make it to the detector. This is because some of the radiation is absorbed in the walls, some is killed from too many reflections, and some escapes.

The ratio of the amount produced to the amount that reaches the detector for the DS method is shown in Figure 19 on page 35. Again only 37 percent of the photons produced arrive at the detector.

The CI method assumes that the distribution arriving at the detector is the same as the original distribution and it shows statistically the same percentage of the original radiation reaching the detector, 35 percent.

Finally, Figure 20 on page 36 provides a zone by zone comparison of the total Cerenkov radiation entering the zone, as calculated by each of the methods. While the geometry of the detector is a complicated set of 19 zones (described in Appendix E), the most important information in this figure is the Cerenkov weight arriving at the detector, Zone 18. Some of the zones show more Cerenkov radiation entering than was produced. This is because reflections may cause Cerenkov rays to enter a zone more than once. The total Cerenkov weight is conserved if the Cerenkov weight produced equals the sum of the weight absorbed, the weight killed due to too many reflections (more than the user specified number of allowed reflections), and the weight that escapes into the outside universe (the last zone, 19). The DS and MT patches both include routines to verify that the weight conservation fraction is unity. Figure 20 on page 36 provides another illustration that the physics used in each of the codes is the same, although the methods of calculation are different.

C. DEPENDENCE ON INDEX OF REFRACTION

The fact that there is 44 percent more Cerenkov radiation produced in the carbon dioxide gas as calculated by MT than that calculated by CI is somewhat surprising. The index of refraction for carbon dioxide gas at 2 atmospheres is 1.00110 for the 1800 angstrom bin. The constant index of refraction used by CI is 1.000894 . The maximum difference between indicies of refraction used by the CI routine and the variable index routines amounts to only 0.000206 , or 2 parts in 10000 .

To understand how such a small change in the index of refraction can produce more than a forty percent increase in the amount of Cerenkov radiation calculated for the shortest wavelengths, it is necessary to analyze the Cerenkov production formula. For

Figure 19. Ratio Reaching Detector, DS Method: This figure shows the ratio of the weight arriving at the detector to that produced as calculated by the DS method.

Figure 20. Total Cerenkov Weights Entering Each Zone: This figure shows the total weights calculate by each method.
a small enough wavelength bin and constant n, the number of photons produced per path length is

$$
\begin{equation*}
\frac{d . V}{d l}=2 \pi \alpha\left(1-\frac{1}{\beta^{2} n^{2}}\right)\left[\frac{1}{\lambda_{1}}-\frac{1}{\lambda_{2}}\right],\left(\lambda_{2}>\lambda_{1}\right) \tag{5.2}
\end{equation*}
$$

For the extremely relativistic case , $\beta \approx 1$, the number of photons per path length produced in this bin is

$$
\begin{equation*}
\frac{d N}{d l} \propto\left(1-\frac{1}{n^{2}}\right) . \tag{5.3}
\end{equation*}
$$

If we define $n \equiv 1+\chi$, then this becomes

$$
\begin{equation*}
\frac{d N}{d l} \propto\left(1-\frac{1}{(1+\chi)^{2}}\right) \tag{5.4}
\end{equation*}
$$

In the case of carbon dioxide gas, $\chi \ll 1$. Therefore, taking the first order Taylor expansion is justified and the above proportionality becomes

$$
\begin{equation*}
\frac{d N}{d l} \propto[1-(1-2 \chi)] \tag{5.5}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{d N}{d l} \approx 2 \pi \alpha(2 \gamma)\left[\frac{1}{\dot{\lambda}_{1}}-\frac{1}{\lambda_{2}}\right] . \tag{5.6}
\end{equation*}
$$

Thus a change from $\chi=0.000894$ to $\chi=0.00110$ amounts to a 23 percent increase and it produces a corresponding 23 percent increase in the amount of Cerenkov radiation calculated for the 1800 -angstrom bin. Both the MT and DS methods calculated a 44 percent increase in the amount of Cerenkov radiation for this bin. This difference in production is accounted for by the fact that the constant index of refraction used in the CI routine for this problem is below the average index of refraction. The effect of the constant index being below the average index can be removed by normalizing the weights produced in both methods. This is done by dividing the weight in each bin by the total weight calculated for that zone. Figure 21 on page 38 shows that once this normalization is taken into account, the ratio of the Cerenkov weights produced is about 1.23 at 1800 angstroms.

Figure 21. Normalized Cerenkov Production: This figure shows the ratio of the normalized Cerenkov weights produced by MT to that of CI .

Another important characteristic of the parameter χ for gasses is the pressure dependence. χ is proportional to the number density of the molecules in the gas. This can be seen from the dispersion equation,

$$
\begin{equation*}
n^{2}(\omega)=1+\frac{N q_{e}^{2}}{\varepsilon_{0} m_{e}} \sum_{j=1}\left(\frac{f_{j}}{\omega_{o j}^{2}-\omega^{2}}\right) \tag{5.7}
\end{equation*}
$$

where n is the index of refraction, ω is the frequency of the light, N is the number of molecules per unit volume in the gas, q_{e} is the electron charge, m_{e} is the electron mass, f, is the number of oscillators in the jth molecule, and $\omega_{o j}$ is the resonance frequency of the jth molecule. [Ref. 10: p. 60] Defining the refractivity,

$$
\begin{equation*}
y \equiv n-1 \tag{5.8}
\end{equation*}
$$

the first order Taylor expansion of the left hand side of (5.7) is

$$
\begin{equation*}
n^{2} \approx 1+2 \gamma . \tag{5.9}
\end{equation*}
$$

This approximation is valid for CO_{2} since $\chi \ll 1$. Substituting (5.9) into (5.7) yields

$$
\begin{equation*}
\gamma \propto N \tag{5.10}
\end{equation*}
$$

the number density of molecules in the gas. For an ideal gas, the relationship between number density and the quantities, pressure and temperature, is specified by

$$
\begin{equation*}
N=\frac{P}{R T} \tag{5.11}
\end{equation*}
$$

where N is the number density, R is the ideal gas constant, and T is the temperature of the gas. [Ref. 11: p. 470] Thus the number density

$$
N \propto \frac{P}{T} .
$$

This leads to

$$
\begin{equation*}
\chi \propto \frac{P}{T} . \tag{5.12}
\end{equation*}
$$

Both of the modified codes utilize this relationship to calculate χ for the gasses. A table of values for indicies of refraction at standard atmospheric pressure and at 293° kelvin are used as a basis for computation. Values for pressure and temperature are read in from the users input file and used to scale χ. This eliminates the need for the user to enter a new table for index of refraction for the gasses every time he desires to investigate the behavior at a different pressure or temperature.

D. SENSITIVITY ANALYSIS

To test the sensitivity of the codes to variation in some of the key parameters, runs were made using different indicies of refraction and different beam energies. A run was made using carbon dioxide at standard atmospheric pressure as opposed to 2 atmospheres, as in the previous runs. At 1 atmosphere of CO_{2}, the indicies of refraction for CO_{2} are below the cutoff for Cerenkov production with the electron beam energy at 16.7 MeV . (The Cerenkov threshold at 1800 angstroms and 1 atmosphere is 14.9 MeV .) This means that ideally there is no production of Cerenkov radiation in the carbon dioxide (zone 5). (Other sources such as transition radiation have not been addressed in this work.) An increase in beam energy again causes $n \beta>1$ and produces Cerenkov radiation in the CO_{2} (zone 5). Note that in Figure 22 on page 41 , there is no Cerenkov production in zone 5 for the 16.7 MeV beam while there is for the 17 Mev beam. Both the 16.7 MeV and 17 MeV beams produced about the same amount of Cerenkov radiation as they passed through the glass mirror (zone 6).

Since the indicies of refraction of gasses are dependent upon the pressure of the gas, the modified codes were designed to allow the user to enter the pressures of any air or carbon dioxide in the geometry. The codes then calculate the indicies of refraction for these gasses. The pressure and temperature of the CO_{2} and of the air are a part of the regular input file. (Appendix E).

These results show that the output is very sensitive to the indicies of refraction used in the code patch and to the energy of the source particle beam. This is important since it allows the user to vary parameters in the problem and test the results. For example, a user could experiment with different Cerenkov detector designs using different materials and thicknesses for the converter foil, different pressures of CO_{2}, or try glass or quartz to produce the Cerenkov radiation. He may also be able to select certain regions of the spectrum to emphasize based upon how the Cerenkov light is refracted through his optics.

Figure 22. Variations in Pressure and Energy: This figure shows the Cerenkov production in CO_{2} at 1 atmosphere by a 16.7 MeV electron beam and by a 17 MeV electron beam.

E. FIGURE OF MERIT

The figure of merit of a Monte Carlo computer model is defined as

$$
\begin{equation*}
M=\frac{1}{\sigma t} \tag{5.13}
\end{equation*}
$$

where σ represents the $l \sigma$ relative error and t is the computer run time to achieve the same error. The utility of the figure of merit is that it allows the user to compare the relative efficiencies of different methods used on a computer (the larger the better). The figure of merit was calculated on the IB.M 3033 computer. In the detector zone the figure of merit for the MT method was 2.71×10^{-3}. This was uniform across the entire range of wavelengths. The figure of merit for the DS method was 3.37×10^{-3} for wavelengths shorter than 5000 angstroms and was 2.14×10^{-3} for wavelengths of 5000 angstroms and longer. Thus, for wavelengths shorter than 5000 angstroms, the DS figure of merit was 24 percent higher than the MT figure of merit. However, for wavelengths longer than 5000 angstroms, the MT figure of merit was 27 percent higher than the DS figure of merit. This problem with the DS method can be removed by forcing DS to sample the longer wavelengths more often provided that the results of this biasing are removed by a corresponding weight adjustment (the weight assigned to the longer wavelengths would have to be reduced and the weight assigned to shorter wavelengths increased to insure proper weight balance).

While these figures of merit tend to support the idea that the best code for the computer time available is the distribution sampling method, the user should be cautioned that this is only true for wavelengths sherter than 5000 angstroms. The sampling error for the longer wavelengths causes this method to lose value to anyone interested in the entire Cerenkov spectrum from 1800 to 10000 angstroms. However, since this code performs well in the region where the most Cerenkov production takes place, it is a good choice for anyone interested in holding run time down to a minimum while still getting wavelength dependent information.

The CI code patch is the fastest of all the methods but predicts too little Cerenkov production at the shorter wavelengths and too much at the longer wavelengths. It is still valid for the user who is not interested in detailed wavelength dependent information about the Cerenkov spectrum. The MT routine produces the most accurate and detailed results of the three code patches; however, it requires substantial computer time.

VI. CONCLUSIONS

The constant index (CI) Cerenkov routine provides a valuable tool in the design of Cerenkov detectors and for the study of Cerenkov radiation. However, the use of a constant index of refraction in the calculation causes the routine to under-estimate the Cerenkov production at short wavelengths and to over-estimate production at longer wavelengths. For carbon dioxide gas, this produces an error in the CI production weights of -44 percent at 1800 angstroms and +5 percent at 10000 angstroms. These figures are based on trial runs using $n=1.000894$ as the constant index of refraction in the CI method. Even if a user selects a constant index of refraction so that the total Cerenkov weight produced is the same for CI as for the DS and MT patches, the CI method will under-estimate the Cerenkov production in the 1800 -angstrom bin by about 23 percent while over-estimating the production in the 10000 -angstrom bin by about 8 percent. This discrepancy is caused by the sensitivity of Cerenkov production to the refractivity $(n-1)$ of the material in which production occurs.

The CI approach has been modified in the multiple trace (MT) method. MT uses a brute force approach to include wavelength dependence and provides the most detailed treatment of the three code patches. It allows the user to study spectral details not a a ailable in the CI method but at a significant cost in computer time.

A compromise, the distribution sampling (DS) method, has also been provided. This approach has a figure of merit that is 25 percent higher than the MT method for wavelengths shorter than 5000 angstroms. However, the figure of merit drops below that of MT for wavelengths longer than 5000 angstroms due to the small number of times these wavelengths are sampled. Since 80 percent of the Cerenkov production occurs below 5000 angstroms, this patch can be used effectively by anyone that does not need information on the entire spectrum. The problem with DS at the longer wavelengths can be removed by biasing the sampling so that all wavelengths are sampled uniformly. However, care must be taken to adjust the weights so that the weight assigned to the longer wavelength bins is reduced while the weight assigned to the shorter wavelength bins is increased in order to maintain proper weight balance.

The MT and DS code patches yield additional detail on the Cerenkov spectrum generated by energetic electrons. Together with the CI routine, the MT and DS modifications to ITS provide the user with an excellent set of tools for use in the study of

Cerenkov radiation and in the design of related diagnostic equipment. There remains the requirement to have a thorough verification against experimental results.

APPENDIX A. ITS (ACCEPT)

ACCEPT is the ITS code for general, combinatorial geometries. This addition of Cerenkov radiation to the ITS code works only with the ACCEPT code.

To run ITS (ACCEPT) the user is required to do the following:

1. Create a compiled version of the code including the subroutine changes to the basic code. This is done by running the LPEML program provided with the ITS package. The input files to this UPE.ML run are provided as Appendix B and Appendix C.
2. Create a cross section tape by running the program XGEN which is a part of the ITS package. An example input file is provided in Appendix D.
3. Execute the modified ACCEPT program. An example problent input file is also provided in Appendix E along with a description of the combinatorial geometry scheme.

APPENDIX B. MULTIPLE TRACE SUBROUTINE LISTING

```
*IDENT DEFINE
*DEFINE IBM
*DEFINE DOUBLE
*DEFINE ACCEPT
*IDENT, PHILLIPS
*IDENT, PERMT
*D, PARAMS. }1
    PARAMETER ( KPTMAX=10000, INSTAT=100,
*I,HIST. }9
    COM = CZERO
*I,HIST. }22
                                IF((IB . EQ. 1). AND. (IHIST . LE. 50)) THEN
                IF(IHIST .EQ. 1) WRITE(6,801)
C SEND ADITIONAL OUTPUT TO OUTPUT UNIT }
801 FORMAT(1X,1HI ,2X,2HLB , 7X, 1HX, 14X, 1HY,14X,1HZ,
    1 13X,1HU,13X,1HV,12X,1HW,12X,3HCOM,10X, 7HENERGY /)
                WRITE(6,802) IHIST,LB,XB,WT, COM,T
                        FORMAT(2I3,8(2X, 1PE12.5))
    802
C
                ENDIF
C
*IDENT, CKVTR
*I , CALC. }7
    6 ,AIRP,CO2,TMPKEL
*I,OUT. }3
C CERENKOV ADDITIONS TO COMMON BLOCK
            COMMON /OUT/
            1 CHER(5,100), CHRNUM(100, 100),
            2 CHRWAT(100,100), CHRENG(100,100), CHRABS (100,100),
            3 CHROUT(100, 100), CHRENT(100, 100),TRNUM(100,100),
            4 TRWAT(100, 100),TRENG(100,100),TRABS(100, 100),
            5 TROUT( 100, 100),TRENT(100,100),NRVIR,NCVIR,NAVIR,
            6 CVIRB(11),AVIRB(11),RVIRB(11),VARIND(100, 100),WVLNTH(100),
            7 SCOVOL( 10, 10, 10),HVIR, ITRAD,NRBOTH, ICKV, IVIRS, KALTOT,
            & LBTRAD,NBOTRD,JSRTRD,NCALL, NMBINS,WKILL
*I, INPUT. }5
    DIMENSION WVLNT(100),VARIN(100,100)
```



```
C**r***THIS SECTION ASSIGNS VALUES TO THE TABLE OF INDEX OF ****%*
```



```
C%%%%%STRUCTURED TO COVER WAVELENGTHS IN 200 ANGSTROM BINS *
```



```
C******BINS FROM 5500 THROUGH 10000 ANGSTROMS.
```



```
C*****EACH MATERIAL.
                                    *******
```



```
C*N*****
C%N%%%*
C%%%ric%
C***%%WVLNTH(J) -- WAVELENGTH VALUE FOR BIN J %
```

C
C WAVELENGTHS
DATA (WVLNT(I), $\mathrm{I}=1,27$)/ 1800,2000,
$12200,2400,2600,2800,3000$,
$23200,3400,3600,3800,4000$,
3 4200, 4400, 4600, 4800,5000,
$4 \quad 5500,6000,6500,7000,7500$,
5 8000,8500,9000,9500,10000/
C VACUUM
$\operatorname{DATA}(\operatorname{VARIN}(1, I), I=1,27) / 27 * 1$. DO/
C AIR
DATA (VARIN(2,I),I=1,27)/
1 1.00034DO,1.00031D0,1.00030D0,1.00030D0,1.00029D0,
$21.00029 \mathrm{DO}, 1.00029 \mathrm{DO}, 1.00029 \mathrm{D} 0,1.00028 \mathrm{DO}, 1.00028 \mathrm{DO}$,
$31.00028 \mathrm{DO}, 1.00028 \mathrm{DO}, 1.00028 \mathrm{DO}, 1.00028 \mathrm{DO}, 1.00028 \mathrm{DO}$,
4 1.00028DO,1.00028DO,1.00028D0,1.00028DO,1.00028DO,
5 1.00028D0,1.00027D0,1.00027D0,1.00027DO,1.00027DO,
6 1.00027D0,1.00027D0 /
C CARBON DIOXIDE (STANDARD ATMOSPHERE)
DATA (VARIN(3,I), $I=1,27) /$
1 1.00055D0,1.00052D0,1.00051D0,1.00050D0,1.00049D0,
$21.00048 \mathrm{DO}, 1.00048 \mathrm{D} 0,1.00047 \mathrm{D} 0,1.00047 \mathrm{DO}, 1.00046 \mathrm{DO}$,
$31.00046 \mathrm{DO}, 1.00046 \mathrm{DO}, 1.00046 \mathrm{D} 0,1.00046 \mathrm{DO}, 1.00045 \mathrm{DO}$,
4 1.00045DO,1.00045DO,1.00045DO,1.00045D0,1.00045DO,
$5^{-} 1.00045 \mathrm{DO}, 1.00045 \mathrm{DO}, 1.00045 \mathrm{DO}, 1.00044 \mathrm{DO}, 1.00044 \mathrm{DO}$,
6 1.00044DO,1.00044D0 /
C GLASS TYPE 458/678(MIL-G-174) (FUSED SILICA DENSITY 2.202 G/CM**3)
DATA (VARIN(4,I), $I=1,27) /$
1 1.58529DO,1.55051D0,1.52845DO,1.51333DO,1.50352DO,
$21.49565 \mathrm{DO}, 1.48779 \mathrm{DO}, 1.48274 \mathrm{DO}, 1.47884 \mathrm{DO}, 1.47554 \mathrm{DO}$,
$31.47283 D 0,1.47012 \mathrm{DO}, 1.46830 \mathrm{DO}, 1.46648 \mathrm{DO}, 1.46492 \mathrm{DO}$,
41.40 दु 3 D0, 1.46233D0,1.45991D0,1.45804D0,1.45664D0,

5 1.45529DO,1.45424DO,1.45332D0,1.45250D0,1.45175DO,
6 1.45107DO,1.45042D0 /
C CRYSTAL QUARTZ
DATA (VARIN(5,I), I=1,27)/
1 1.66006DO,1.65087D0,1.62626DO,1.61011D0,1.60158D0,
$21.59306 \mathrm{D} 0,1.58453 \mathrm{D} 0,1.57600 \mathrm{D} 0,1.56747 \mathrm{D} 0,1.56413 \mathrm{D} 0$,
3 1.56080D0,1.55779DO,1.55554DO,1.55349D0,1.55194DO,
4 1.55039D0,1.54884DO,1.54616D0,1.54393DO,1.54247DO,
5 1.54101D0,1.53955D0,1.53839D0,1.53744D0,1.53663D0,
6 1.53581D0,1.53502D0 /
C
*I , INPUT. 436
C CERENKOV ADDITIONS TO DEFAULT INPUT PARAMETERS NMBINS $=27$
NCALL=0
ICKV=0
IVIRS $=0$
ITRAD=0
C END OF CERENKOV ADDITIONS
*I , INPUT. 575

ELSE IF (KOP('CERENKOV') .GE. 0) THEN IMATCH $=1$ ICKV = 1
C SET PRESSURE FOR AIR IN STANDARD ATMOSPHERES AIRP $=$ PARM (1)
C SET PRESSURE FOR CO2 IN STANDARD ATMOSPHERES CO2P $=$ PARM (2)
C SET THE TEMPERATURE IN KELVIN TMPKEL $=$ PARM (3)
C SCALE TEMPERATURE TO 293 DEGREES KELVIN TMPKEL $=$ TMPKEL $/$ 293. D0 DO 93774 I1=1,NMBINS $\operatorname{VARIND}(1, I 1)=\operatorname{VARIN}(1, I 1)$
C INDICES OF REFRACTION - 1 CHANGE PROPORTIONAL TO PRESSURE CHANGE $\operatorname{VARIND}(2, I 1)=(\operatorname{VARIN}(2, I 1)-1 . \operatorname{DO}) * \operatorname{AIRP} / T M P K E L+1 . D 0$ $\operatorname{VARIND}(3, I 1)=(\operatorname{VARIN}(3, I 1)-1 . D 0) * C O 2 P / T M P K E L+1 . D 0$
93774 CONTINUE DO $93884 \mathrm{~J} 1=4,20$ DO 93874 I1=1,NMBINS $\operatorname{VARIND}(\mathrm{J} 1, \mathrm{I} 1)=\operatorname{VARIN}(\mathrm{J} 1, \mathrm{I} 1)$ CONTINUE
CONTINUE DO 93894 I1=1,NMBINS WVLNTH (I1) =WVLNT (I1)
93894 CONTINUE KALTOT $=$ PARM(4) DO 3034 JJJ=1,NZON CALL OPREAD (1,INUNIT,IECHO,IVAL,EOFLAG)

C
C CHECK INPUT FILE FOR COMPLETE OPTICAL DATA
C
IF (EOFLAG) THEN
WRITE $(\%, *)$ 'PREMATURE END OF OPTICAL DATA' STOP
ENDIF
IF (KOP(${ }^{\prime}+$ ') . GE. 0) THEN
C
C ASSIGN VALUES TO CERENKOV INPUT MATERIAL NUMBER FOR ZONE JJJ $\operatorname{CHER}(1, \mathrm{JJJ})=\operatorname{PARM}(1)$
C EXTINCTION COEFFICIENT (1/CM) -- ATTENUATION COEFFICIENT $\operatorname{CHER}(2, \mathrm{JJJ})=\operatorname{PARM}(2)$
C FRACTION OF LIGHT TO BE MIRROR REFLECTED FROM ZONE WALLS $\operatorname{CHER}(3, \mathrm{JJJ})=\operatorname{PARM}(3)$
C FRACTION OF LIGHT TO BE DIFFUSE REFLECTED FROM ZONE WALLS $\operatorname{CHER}(4, \mathrm{JJJ})=\operatorname{PARM}(4)$
C FRACTION OF LIGHT TO BE ACCEPTED FOR ENTRANCE INTO ZONE $\operatorname{CHER}(5, \mathrm{JJJ})=\operatorname{PARM}(5)$
C
ELSE WRITE(*, 8903)
FORMAT(1X,'ILLEGAL CKV OR VIRS ZONE DATA')
GO TO 9999
ENDIF
CONTINUE

C VIRTUAL-SOURCE

ELSE IF (KOP('VIRTUAL-SOURCE') .GE. 0) THEN
IMATCH $=1$
IVIRS $=1$
HVIR $=$ PARM (1)
NRVIR $=$ PARM(2)
NCVIR $=$ PARM(3)
NAVIR $=$ PARM(4)
READ(INUNIT,*, END=9051,ERR=9052)
1
(RVIRB (IR), $\mathrm{IR}=1, \mathrm{NRVIR})$, RVIRB (NRVIR + 1)
READ (INUNIT, r, END=9051, ERR=9052)
1 (CVIRB (IC) $1 \mathrm{IC}=1, \operatorname{NCVIR}), \operatorname{CVIRB}(\operatorname{NCVIR}+1)$
READ (INUNIT, *, END=9051, ERR=9052)(AVIRB(IA), IA=1,NAVIR) , AVIRB(NAVIR + 1)
1

C TRANSITION RADIATION

ELSE IF(KOP('TRANSITION-RADIATION') .GE. 0) THEN
IMATCH $=1$
ITRAD $=1$
LBTRAD $=$ PARM (1)
NBOTRD $=$ PARM(2)
JSRTRD $=$ PARM(3)
\%I, INPUT. 1178
IF (ICKV . EQ. 1) THEN
C CERENKOV OPTICAL AND VIRTUAL SOURCE DATA....... $\operatorname{WRITE}(6,9005)$
9005 FORMAT(6 H ZONE, 6X, 6H MTRL ,6X,6HABSORB ,6X,6HMIRROR, $5 \mathrm{X}, 7 \mathrm{HDIFFUSE}$ 1 ,6X,6HACCEPT, 4X, 8HTRANSMIT)
DO 90051 I=1,LZMAX
C FRACTION OF LIGHT TO BE TRANSMITTED OUT THROUGH ZONE BOUNDARY $\operatorname{FST}=1-\operatorname{CHER}(3, \mathrm{I})-\operatorname{CHER}(4, \mathrm{I})$ $\operatorname{WRITE}(6,90050) \mathrm{I},(\operatorname{CHER}(\mathrm{J}, \mathrm{I}), \mathrm{J}=1,5)$, FST
90050 FORMAT(I6,1P6E12.4)
90051 CONTINUE
C
ENDIF
C
IF (ITRAD .EQ. 1) THEN WRITE (6, 90311) LBTRAD, NBOTRD, JSRTRD
90311 FORMAT(/' TRANSITION RADIATION LOCATION, ZONE BODY SURFACE' 1 ,3I6)
C
ENDIF
C
IF (IVIRS . EQ. 1) THEN WRITE (6, 90300) HVIR,NRVIR,NCVIR, NAVIR
90300 FORMAT(/17H VIRTUAL SOURCE Z, E12.4
1 /' VIRTUAL SOURCE TALLY BINS, RADIAL, POLAR, AZIMUTH,' 2 , 3I6) WRITE (6,9050)(RVIRB(IR), IR=1,NRVIR), RVIRB(NRVIR + 1) $\operatorname{WRITE}(6,9055)(\operatorname{CVIRB}(\operatorname{IC}), \operatorname{IC}=1, \operatorname{NCVIR}), \operatorname{CVIRB}(\operatorname{NCVIR~+~1)}$ $\operatorname{WRITE}(6,9060)(\operatorname{AVIRB}(I A), I A=1, N A V I R), \operatorname{AVIRB}(N A V I R+1)$
9050 FORMAT(8 H RADIAL , 10E12.4)

```
9055 FORMAT(8H POLAR ,10E12.4)
9060 FORMAT( 8H AZIMUTH ,10E12.4)
C
    ENDIF
C
% I, PREP. }65
    IF(ICKV . EQ. 1) THEN
        WKILL = CZERO
        DO 241 LLL=1,100
            DO 2401 JJJ=1,100
                CHRNUM(LLL,JJJ) = CZERO
                CHRWAT(LLL,JJJ) = CZERO
                CHRENG(LLL,JJJ) = CZERO
                CHRABS(LLL,JJJ) = CZERO
                CHROUT(LLL,JJJ) = CZERO
                CHRENT(LLL,JJJ) = CZERO
                CONTINUE
    CONTINUE
2401
241
    ENDIF
C
        IF(IVIRS .EQ. 1) THEN
        DO 244 IR=1,NRVIR
                DO 243 IC=1,NCVIR
                DO }242\mathrm{ IA=1,NAVIR
                        SCOVOL(IA,IC,IR) = CZERO
                CONTINUE
                CONTINUE
244 CONTINUE
C
    ENDIF
C
*I,OUTPUT. }4
    DIMENSION
    1 CHRN(100), CHRW(100), CHRE(100), CHRA(100),CHRO(100),CHRI(100)
        INTEGER ISIGA(100),ISIGB(100),ISIGC(100),ISIGD(100),ISIGE(100),
        1 ISIGF(100),IWVL(100),ISIG1(100),ISIG2(100),ISIG3(100),
        2 ISIG4(100),ISIG5(100) ,ISIG6(100)
*I,OUTPUT. }56
    IF(ICKV . EQ. 1) THEN
        WTENT = CZERO
        WTABS = CZERO
        WTOT = CZERO
        WTCON = CZERO
        DO 66 I=1,LZMAX
        DO 56110 J=1,NMBINS-1
        CHRNUM(I , J)=(CHRNUM(I, J)/(CIMAX))
                        CHRWAT(I,J)=CHRWAT (I ,J)/CIMAX
                        CHRENG (I,J)=CHRENG(I,J)/CIMAX
                    CHRABS(I,J)=CHRABS(I,J)/CIMAX
                        CHROUT(I,J)=CHROUT (I,J)/CIMAX
                        CHRENT(I,J)=CHRENT(I I,J)/CIMAX
    56110
        CONTINUE
    6
        CONTINUE
        DO 10225 I=1,100
                        CHRN(I)=CZERO
```

```
        CHRW(I)=CZERO
        CHRE(I)=CZERO
        CHRA(I)=CZERO
        CHRO(I)=CZERO
        CHRI(I)=CZERO
    10225 CONTINUE
C COMPUTE THE TOTALS FOR EACH ZONE
    DO 11230 I=1,LZMAX
        DO 11225 J=1,NMBINS-1
                CHRN(I)=CHRN(I)+CHRNUM(I,J)
                CHRW(I)=CHRW(I)+CHRWAT(I,J)
                CHRE(I)=CHRE(I)+CHRENG(I,J)
                CHRA(I)=CHRA(I)+CHRABS(I,J)
                CHRO(I)=CHRO(I)+CHROUT(I,J)
                CHRI(I)=CHRI (I)+CHRENT(I J J)
            CONTINUE
    11230 CONTINUE
C
C WEIGHT CONSERVATION FRACTION = (TOTAL WEIGHT ABSORBED + TOTAL
C WEIGHT KILLED + WEIGHT THAT ESCAPES) / WEIGHT PRODUCED.
    WKILL = WKILL/CIMAX
    WTENT = CHRI(LZMAX)
    DO 13623 I=1,LZMAX
            WTABS = WTABS + CHRA(I)
            WTOT = WTOT + CHRW(I)
13623 CONTINUE
    WTCON = (WKILL + WTABS + WTENT)/WTOT
        ENDIF
C
    IF (IVIRS .EQ. 1) THEN
    DO }96\mathrm{ IR=1,NRVIR
            DO }86\mathrm{ IC=1,NCVIR
                DO }76\mathrm{ IA=1,NAVIR
                    SCOVOL(IA, IC , IR )=SCOVOL(IA,IC,IR)/CIMAX
                CONTINUE
                CONTINUE
            CONTINUE
C
    ENDIF
C
%I, OUTPUT. }137
    IF(ICKV .EQ. 1) THEN
```



```
    NPUT=NMBINS-1
    TEMP(1)=WTCON
C CALCULATE AVERAGES AND STATISTICS FOR TOTALS
    CALL STATS(TEMP,ISIG,1,KPUT)
    WTCON=TEMP(1)
    CALL STATS(CHRN,ISIG1,LZMAX,KPUT)
    CALL STATS(CHRW,ISIG2,LZMAX,KPUT)
    CALL STATS(CHRE,ISIG3,LZMAX,KPUT)
    CALL STATS(CHRA,ISIG4,LZMAX,KPUT)
    CALL STATS(CHRO,ISIG5,LZMAX,KPUT)
    CALL STATS(CHRI,ISIG6,LZMAX,KPUT)
    DO 11220 I=1,LZMAX
```

```
            WRITE(NPRT,9000) I
9000
    FORMAT(/''ZONE =',I3,/,
    'WVLNTH',T14,'NUMBER',T22,'STAT',T33,'WEIGHT', T41,'STAT',
    T52,'ENERGY',T60,'STAT',T71,'ABSORB',T79,'STAT',T90,
        LEAVE',T97,'STAT',T108,' ENTER',T115,'STAT',/,
    '------',T14,'------i,T22,'----',T33,'-..---',T41,'-..-',
        T52,'------',T60,'----',T71,'------',T79,'----',T90,
        1-----', T97,'----',T108,'-----' ,T115,'----',/)
C COMPUTE THE AVERAGES AND THE PERCENT ERROR
    DO 11110 J=1,NMBINS-1
        TEMP(J)=CHRNUM(I ,J)
    CONTINUE
    CALL STATS(TEMP,ISIGA,NPUT,KPUT)
    DO 11115 J=1,NMBINS-1
        CHRNUM(I,J)=TEMP(J)
    CONTINUE
    DO 11120 J=1,NMBINS-1
        TEMP(J)=CHRWAT(I , J)
    CONTINUE
    CALL STATS(TEMP,ISIGB,NPUT,KPUT)
    DO 11125 J=1,NMBINS-1
        CHRWAT(I,J)=TEMP(J)
    CONTINUE
    DO 11130 J=1,NMBINS-1
        TEMP(J)=CHRENG(I , J)
    CONTINUE
    CALL STATS(TEMP,ISIGC,NPUT,KPUT)
    DO 11135 J=1,NMBINS-1
        CHRENG(I,J)=TEMP(J)
    CONTINUE
    DO 11140 J=1,NMBINS-1
        TEMP(J)=CHRABS(I,J)
    CONTINUE
    CALL STATS(TEMP,ISIGD,NPUT,KPUT)
    DO 11145 J=1,NMBINS-1
        CHRABS(I,J)=TEMP(J)
    CONTINUE
    DO 11150 J=1,NMBINS-1
        TEMP(J)=CHROUT(I ,J)
    CONTINUE
    CALL STATS(TEMP,ISIGE,NPUT,KPUT)
    DO 11155 J=1,NMBINS-1
        CHROUT(I,J)=TEMP(J)
    CONTINUE
    DO 11160 J=1,NMBINS-1
        TEMP(J)=CHRENT(I,J)
    CONTINUE
    CALL STATS(TEMP,ISIGF,NPUT,KPUT)
    DO 11165 J=1,NMBINS-1
        CHRENT(I,J)=TEMP(J)
    CONTINUE
    DO 11170 J=1,17
        IWVL(J)=1600 + J*200
CONTINUE
DO 11180 J=18,27
```

```
            IWVL(J)=5000 + (J-17)*500
1 1 1 8 0
    CONTINUE
    DO 11190 J=1,NMBINS-1
            WRITE(NPRT,11181) IWVL(J),CHRNUM(I,J),ISIGA(J),
                CHRWAT(I,J),
                ISIGB(J),CHRENG(I ,J),ISIGC(J),CHRABS(I ,J),ISIGD(J),
                CHROUT(I,J),ISIGE(J),CHRENT(I,J),ISIGF(J)
            FORMAT(I5,T8,1PE12.4,T22,I3,T27,1PE12.4,T41,I3,T46,
                1PE12.4,
                T60,I3,T65,1PE12.4,T79,I3,T84,1PE12.4,T97,I3,T102,
                1PE12.4,T115,I3)
                CONTINUE
            CONTINUE
    WRITE(NPRT,90055)
11190
11220
90055
```

 FORMAT(/,'TOTALS FOR EACH ZONE',/,
 'ZONE',T14, 'NUMBER', T22, 'STAT', T33, 'WEIGHT'',T41,'STAT',
 T52,'ENERGY',T60,'STAT',T71, 'ABSORB',T79,'STAT',T90,
 LEAVE',T97,'STAT',T108,' ENTER',T115,'STAT', /,
 '------',T14,'------',T22,'----',T33,'-.----',T41,'-..-'',
 T52,'------',T60,'.-.-',T71,'----.-',T79,'-..-',T90,
 '....--', ,T97,'--.-' ,T108,'------',T115,'...-', ,/)
 DO 17190 J=1,LZMAX
 WRITE(NPRT,17181) J,CHRN(J),ISIG1(J),
 CHRW(J),ISIG2(J) ,
 CHRE(J),ISIG3(J) ,CHRA(J),ISIG4(J),
 CHRO(J),ISIG5(J), CHRI(J),ISIG6(J)
 FORMAT(I5,T8,1PE12.4,T22,I3,T27,1PE12.4,T41,I3,T46,
 1PE12.4,
 T60,I3,T65,1PE12.4,T79,I3,T84,1PE12.4,T97,I3,T102,
 1PE12.4,T115,I3)
 CONTINUE
WRITE(NPRT,11246) WTCON
11246 FORMAT(/,' WEIGHT CONSERVATION FRACTION IS ',E12.4) ENDIF
C
90100 FORMAT(I3,3X,6(E12.4,I3))
IF(IVIRS .EQ. 1) THEN
WRITE(NPRT,90200)
90200 FORMAT(/'CERENKOV VIRTUAL SOURCE, PHOTONS/SQCM/STR')
DO 6030 IVR=1,NRVIR
WRITE(NPRT,90300) RVIRB(IVR),RVIRB(IVR+1)
90300 FORMAT(' R-MIN',E12.4/' R-MAX',E12.4,24X,
1
' UPPER AND LOWER POLAR COSINES ')
DO 6020 LVC=1,NCVIR,5
MVC=MINO(LVC+4,NCVIR)
WRITE(NPRT,9040)(CVIRB(IVC),IVC=LVC,MVC)
WRITE(NPRT,9050)(CVIRB(IVC+1),IVC=LVC,MVC)
9050 FORMAT(23X,'AZIMUTH',5X,'AZIMUTH',6E15.4)
DO }6010\mathrm{ IVA=1,NAVIR
L=0
DO 6000 IVC=LVC,MVC
L=L+1
TEMP(L)=SCOVOL(IVA,IVC,IVR)
CONTINUE
CALL STATS(TEMP,ISIG,L,KPUT)

```

1
9060

C
*I, OUTPUT. 1383
    IF (ICKV .EQ. 1) THEN
        WKILL = CZERO
        DO \(112 \mathrm{~J}=1\), LZMAX
                DO \(111 \mathrm{IJ}=1,100\)
                CHRNUM \((J, I J)=\) CZERO
                CHRWAT \((J, I J)=\) CZERO
                CHRENG \((J, I J)=\) CZERO
                CHRABS ( \(J, I J\) ) = CZERO
                CHROUT \((J, I J)=\) CZERO
                CHRENT \((J, I J)=\) CZERO
                CONTINUE
            CONTINUE
            ENDIF
C
    IF (IVIRS . EQ. 1) THEN
        DO 115 IR=1,NRVIR
            DO 114 IC=1,NCVIR
                DO 113 IA=1,NAVIR
                    SCOVOL(IA ,IC,IR)=CZERO
                CONTINUE
                CONTINUE
            CONTINUE
        ENDIF
C
*I, INPUT. 1853
9051 WRITE ( \(\%\),9070)
9070 FORMAT
    1 ('OPREMATURE EOF WHILE READING CKV OR VIRS DATA')
    GO TO 9999
9052 WRITE (*,9071)
9071 FORMAT
    1 ('OILLEGAL DATA IN FIELD WHILE READING CKV OR VIRS DATA')
            GO TO 9999
C
*I, EHIST. 522
    IF (ICKV .EQ. 1) THEN
C *** SAVE ZONE INDEX FOR POSSIBLE CALL TO TRANSRAD
        IRSAV = IR
        IRPSAV \(=\) IRPRIM
        DISADD=DIST0
        IF (MARK . NE. 1) DISADD=DIST + 1. D-07
        \(\mathrm{XCHR}=\mathrm{X}+\mathrm{DISADD} * \mathrm{STH}(1) * \mathrm{CPH}(1)\)
        \(\mathrm{YCHR}=\mathrm{Y}+\mathrm{DISADD} * \operatorname{STH}(1) * \operatorname{SPH}(1)\)
        ZCHR=2 + DISADD*CTH (1)
        CALL CKVRAD
```

 1 (XCHR,YCHR,ZCHR,CTH,STH,CPH,SPH,W,T)
 C *** REINSTATE ZONE INDEX FOR POSSIBLE CALL TO TRANSRAD
IR = IRSAV
IRPRIM = IRPSAV
IF(IRPRIM . LT. 0) RETURN
C
END IF
\#I,DISTA. }13
NBOSAV = MA(LSAVE)
*D,PAREM. }
\$ KLOOP, LOOP, ITYPE, NBOSAV
%I,KNOCK. }36

```

```

C *CERENKOV PRODUCTION SELECTED RANDOMLY ALONG A SUBSTEP*

```

```

 SUBROUTINE CKVRAD
 1 (XS,YS,ZS, CPOL, SPOL, CAZI,SAZI, WBETA , EBETA)
 C
C VARIABLE DESCRIPTIONS
C
C ACCEPT FRACTION OF CERENKOV RADIATION ACCEPTED INTO
C
C ALPHA 1./137.0 (FINE STRUCTURE CONSTANT)
C ANGTCM 1.E-8 (AN ANGSTROM IN CENTIMETERS)
C C(1) X PRESENT DIRECTION COSINE
C C(2) Y PRESENT DIRECTION COSINE
C C(3) Z PRESENT DIRECTION COSINE
C CAFT
C CAZI
COSINE OF AZIMUTHAL SCATTERING ANGLE
C*%****%%%%%CERENKOV INPUTS**%%%%%%
C CHER(1,J)
MATERIAL NUMBER FOR ZONE J
1 = VACUUM
2 = AIR
3 = CO2
4 = GLASS
5 = QUARTZ
CHER(2,J) EXTINCTION COEFFICIENT (1/CM)
CHER(3,J) FRACTION OF LIGHT TO BE MIRROR REFLECTED
FROM ZONE WALLS
CHER(4,J) FRACTION OF LIGHT TO BE DIFFUSE REFLECTED
FROM ZONE WALLS
C
C CHER(5,J) FRACTION OF LIGHT TO BE ACCEPTED FOR
C ENTRANCE INTO ZONE
C*%****CERENKOV OUTPUTS****:**
C
C
C
C
C
C
C
C
C
C
C
C CHRABS(J,K)
NUMBER OF CERENKOV PHOTONS PRODUCED IN ZONE J

```
\begin{tabular}{|c|c|c|}
\hline C & \multirow{7}{*}{CHROUT ( J, K)} & FROM WAVELENGTH BIN K PER \\
\hline C & & INCIDENT SOURCE PARTICLE \\
\hline C & & \(=\) CHRABS \((J)+\) WNEW OR WABS \\
\hline C & & CERENKOV WEIGHT THAT EXITS ZONE J \\
\hline C & & FROM WAVELENGTH BIN K PER \\
\hline C & & INCIDENT SOURCE PARTICLE \\
\hline C & & \(=\) CHROUT ( \(J\) ) +WP \\
\hline C & \multirow[t]{4}{*}{CHRENT ( \(J, K\) )} & CERENKOV WEIGHT THAT ENTERS 2ONE ( \(\mathrm{J}+1\) ) \\
\hline C & & FROM WAVELENGTH BIN K PER \\
\hline C & & INCIDENT SOURCE PARTICLE \\
\hline C & & \(=\operatorname{CHRENT}(\mathrm{J}+1)+\mathrm{WP}\) \\
\hline \multicolumn{3}{|l|}{} \\
\hline C & CN(J) & NORMAL FROM THIS REGION TOWARDS NEXT REGION \\
\hline C & CP(J) & DIRECTION COSINES IN MOVING FRAME \\
\hline C & CP2 & COSINE SQUARED \\
\hline C & POL & COSINE OF POLAR SCATTERING ANGLE \\
\hline C & CPRE & SUM OF SQUARES OF CURRENT DIRECTION COSINES \\
\hline C & CPRO & PRODUCTION COSINE IN THE MOVING FRAME \\
\hline C & CRAT & RATIO OF COSINES \\
\hline C & CSQ & SQUARE ROOT OF SUM OF SQUARES OF X AND Y DIRECTION \\
\hline C & & COSINES \\
\hline C & CX & X DIRECTION COSINE \\
\hline C & CZ & Z DIRECTION COSINE \\
\hline C & DIFFU & PROBABILITY FOR DIFFUSE REFLECTION \\
\hline C & EBETA & ELECTRON ENERGY \\
\hline C & EE & GAMMA SQUARED \\
\hline C & EP & ENERGY OF CERENKOV PHOTON \\
\hline C & \multirow[t]{3}{*}{FST} & FRACTION OF LIGHT TO BE TRANSMITTED OUT \\
\hline C & & THROUGH ZONE BOUNDARY \\
\hline C & & \(=1.0-\operatorname{CHER}(3, \mathrm{~J})-\operatorname{CHER}(4, J)\) \\
\hline C & IBFIND & FUNCTION TO FIND NEXT ZONE \\
\hline C & J & COUNTER \\
\hline C & KALTOT & MAXIMUM NUMBER OF ALLOWED REFLECTIONS \\
\hline C & KLIDE & COUNTER FOR NUMBER OF REFLECTIONS \\
\hline C & NR & PRESENT USER REGION \\
\hline C & NRC & PRESENT CODE REGION \\
\hline C & NRPC & NEXT CODE REGION \\
\hline C & NRMAX & MAX ZONE NUMBER \\
\hline C & NZON & ZONE NUMBER \\
\hline C & PI & 3. 14159 \\
\hline C & PLANKC & 1. \(2405 \mathrm{E}-10\) \\
\hline C & RA & RANDOM NUMBER \\
\hline C & \multirow[t]{2}{*}{RANF (ARG)} & RANDOM NUMBER PRODUCING FUNCTION \\
\hline C & & ARG \(=0 \quad\) PRODUCES UNIFORM RANDOM NUMBER \\
\hline C & RVIR & VIRTUAL SOURCE RADIUS \\
\hline C & SAFT & \\
\hline C & SAZI & SINE OF AZIMUTHAL SCATTERING ANGLE \\
\hline C & SCOVOL( J, J, J) & DATA FOR VIRTUAL SOURCE \\
\hline C & & RADIUS AND TWO ANGLES \\
\hline C & SHD & LENGTH OF ELECTRON SUBSTEP IN CENTIMETERS \\
\hline C & SIG & PRODUCTION OF CERENKOV PHOTONS PER CM PER MEV \\
\hline c & SPECU & PROBABILITY FOR SPECULAR REFLECTION \\
\hline & SPOL & SINE OF POLAR SCATTERING ANGLE \\
\hline C & ST & DISTANCE TO BOUNDARY \\
\hline C & STP & SAMPLED FRACTION OF ELECTRON SUBSTEP IN CM \\
\hline C & V & RATIO OF ELECTON VELOCITY TO SPEED OF LIGHT (BETA) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & V2 & BETA SQUARED \\
\hline C & V2N2 & BETA SQUARED TIMES INDEX OF REFRACTION SQUARED \\
\hline C & VARIND ( \(\mathrm{I}, \mathrm{J}\) ) & INDEX OF REFRACTION FOR MATERIAL I AND WAVELENGTH \\
\hline C & & BIN J \\
\hline C & VOLVIR & VOLUME FOR VIRTUAL SOURCE \\
\hline C & WABS & CERENKOV WEIGHT ABSORBED IN ZONE \\
\hline C & WVLNTH( I ) & WAVELENGTH BIN I \\
\hline C & & THESE BINS RUN FROM 1800 TO 5000 ANGSTROMS \\
\hline C & & IN 200 ANGSTROM WIDE BINS AND THEN FROM \\
\hline C & & 5500 TO 10000 ANGSTROMS IN 500 ANGSTROM BINS \\
\hline C & WBETA & ELECTRON WEIGHT \\
\hline C & WNEW & REDUCED WEIGHT OF CERENKOV PHOTON \\
\hline C & WP & WEIGHT OF CERENKOV PHOTON \\
\hline C & WT( J ) & TEMPORARY POSITION ARRAY \\
\hline C & WZERO & INITIAL WEIGHT OF CERENKOV PHOTON \\
\hline C & XB ( J ) & TEMPORARY POSITION ARRAY \\
\hline C & XCHR (J) & PRESENT POSITION \\
\hline C & XPI(J) & POSITION AT BOUNDARY JUST INSIDE THIS REGION \\
\hline C & XPO( J ) & POSITION AT BOUNDARY JUST INSIDE NEXT REGION \\
\hline C & XREF & INDEX OF REFRACTION \\
\hline C & XS & CURRENT X POSITION (INPUT IN PARAMETER LIST) \\
\hline C & XVIR & VIRTUAL SOURCE X POSITION \\
\hline C & YREF & INDEX OF REFRACTION FOR NEXT ZONE \\
\hline C & YS & CURRENT Y POSITION (INPUT IN PARAMETER LIST) \\
\hline C & YVIR & VIRTUAL SOURCE Y POSITION \\
\hline C & ZE & CHARGE ON SOURCE PARTICLE IN ELECTRON VOLTS \\
\hline C & 2S & CURRENT Z POSITION (INPUT \\
\hline C & & IN PARAMETER LIST) \\
\hline \multicolumn{3}{|l|}{} \\
\hline \multicolumn{3}{|l|}{C} \\
\hline \multicolumn{3}{|l|}{\(\because C A ~ C N S T N T ~\)} \\
\hline \multicolumn{3}{|l|}{*CA PARAMS} \\
\hline \multicolumn{3}{|l|}{\({ }^{2} \mathrm{CA}\) OUT} \\
\hline \multicolumn{3}{|l|}{\%CA CALC} \\
\hline \multicolumn{3}{|l|}{\%CA PAREM} \\
\hline \multicolumn{3}{|l|}{*CA STTS} \\
\hline \multicolumn{3}{|l|}{\(\therefore\) CA GOMLOC} \\
\hline \multicolumn{3}{|l|}{\(\because C A\) DBG} \\
\hline \multicolumn{3}{|l|}{\(\therefore\) CA ORGI} \\
\hline \multicolumn{3}{|l|}{*CA COG} \\
\hline \multicolumn{3}{|l|}{\(\therefore \mathrm{CA}\) SECZN} \\
\hline & DOUBLE PR & DSEED, IRAN \\
\hline & COMMON /V & IRAN \\
\hline \multirow[t]{4}{*}{*} & DIMENSION & N( 3), \(\mathrm{CP}(3), \mathrm{XCHR}(3), \mathrm{XPI}(3), \mathrm{XPO}(3)\) \\
\hline & DIMENSION & 3) , XB1 (3) , WT1(3) \\
\hline & DIMENSION & \\
\hline & DATA PLAN & CM/1. 2405D-10,1. D-8/ \\
\hline \multirow[t]{7}{*}{C} & RANDOM NUM & TEMENT FUNCTION FOR IBM \\
\hline & RANF (DSEE & BFS(DSEED) \\
\hline & NCALL \(=\) N & \\
\hline & ALPHA \(=\) & D0 \\
\hline & \(\mathrm{PI}=\mathrm{DACOS}\) & \\
\hline & TIME=1. D0 & \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{C M=1}} \\
\hline & & \\
\hline & \(C(1)=\) SP & \\
\hline
\end{tabular}
```

 C(2) = SPOL*SAZI
 C(3) = CPOL
 C SAMPLE RANDOM LOCATION FOR CERENKOV PRODUCTION ALONG A SUBSTEP
STP = SHD`RANF(IRAN) C SET ELECTON LOCATION XCHR(1) = XS XCHR(2) = YS XCHR(3) = ZS C PRESENT ZONE OF ELECTRON NRC = LBCZ NR = IROR(NRC) NRMAX = NZON C UPDATE RANDOMLY SAMPLED PRODUCTION POSITION DO 100 J=1,3 WT(J)=C(J) XB(J) = XCHR(J) + C(J)r(STP - SHD) XCHR(J) = XB(J) C SAVE VALUES TO INITIALIZE MAIN LOOP WT1(J) = WT(J) XB1(J) = XB(J) XCHR1(J) = XCHR(J) 100 CONTINUE C FIND ZONE OF PRODUCTION POSITION AND COMPUTE UNCOLLIDED C ESCAPE DISTANCE. CALL ZONEA C NEXT ZONE TO BE ENTERED. IRPRIM AND IR SET BY SUBROUTINE ZONEA NRC=IRPRIM C PRESENT ZONE OF PRODUCTION NR=IR C SAVE ZONE TO INITIALIZE MAIN LOOP NRC1 = NRC NR1 = NR C INITIALIZE XREF TO MINIMUM VALUE MTRL=IDINT(CHER(1,NR)) XREF=VARIND(MTRL,27) NTYPE=1 C *:%% CALCULATE VELOCITY OF SOURCE PARTICLE **% C ELECTRON ENERGY NORMALIZED TO REST MASS ENERGY C TOTAL ENERGY = KINETIC ENERGY + REST MASS ENERGY EE = 1.DO + EBETA/.511D0 C NORMALIZED VELOCITY (V2 = BETA SQUARED) V2 = 1. D0 - 1. D0/(EE`EE)
C (V = BETA)
V = DSQRT(V2)
C (BETA SQUARED * INDEX OF REFRACTION SQUARED)
V2N2 = V2`XREFrXREF
C ***: DOES PARTICLE MEET CERENKOV THRESHOLD ***
IF(XREF . LE. 1. DO) GO TO 1600
IF(V2N2 . LE. 1. DO) GO TO }160
C THE CERENKOV PHOTON WEIGHT TO BE USED IS THE
C WEIGHT OVER THE RANGE OF WAVELENGTHS FOR THAT BIN AND FOR THE
C ENTIRE LENGTH OF THE SUBSTEP.
DO 150 I=2,NMBINS
WP(I-1)=2.DO*PI*ALPHA*SHD*WBETA*DABS((1. DO/(ANGTCM*WVLNTH(I-1))
1 - 1.DO/(ANGTCM*WVLNTH(I)))*

```
```

 2 (1.D0-1.D0/V/V/VARIND(MTRL,I-1)/VARIND(MTRL,I-1)))
 150 CONTINUE
 C roker MAIN LOOP
C SET INITIAL POSITION AND ZONE OF PRODUCTION
DO 1560 K=1,NMBINS-1
DO 160 I=1,3
XCHR(I) = XCHR1(I)
WT(I) = WT1(I)
XB(I) = XB1(I)
CONTINUE
NR = NR1
NRC = NRC1
IR = NR
IRPRIM = NRC
C rok+* GET INDEX OF REFRACTION rerkr
200 XREF = VARIND(MTRL,K)
C %rrt IS INDEX OF REFRACTION ABOVE CUTOFF FOR CERENKOV? ***
IF(XREF . LE. 1. DO) GO TO 1550
C CALCULATE PHOTON ENERGY IN MEV
EP = PLANKC/(ANGTCM*WVLNTH(K))
C *rere CALCULATE COSINE FOR CERENKOV PHOTON IN MOVING FRAME
C **** = 1 / (BETA * INDEX OF REFRACTION)
C %rmb = RATIO OF SPEED OF LIGHT IN MEDIUM TO ELECTRON VELOCITY
CPRO = 1. DO/(V*XREF)
C %rre TALLY PHOTON NUMBER COUNT, WEIGHT, AND ENERGY PRODUCED HERE
CHRNUM(NR,K) = CHRNUM(NR,K) + 1.DO
CHRWAT(NR,K) = CHRWAT(NR,K) + WP(K)
CHRENG(NR,K) = CHRENG(NR,K) + EP*WP(K)
C *irrt BRING POLAR ANGLE BACK INTO LAB FRAME rerest
CALL FOLD(CPOL,SPOL,CAZI,SAZI,CPRO,CZ,SZ,CX,SX)
C rorore USE SAME INITIAL PHOTON WEIGHT
WZERO = WP(K)
C *rert SET DIRECTION COSINES AND PREPARE FOR RAY TRACE ****
C(1) = SZ*CX
C(2) = SZ*SX
C(3) = CZ
C %rrer CONDUCT RAY TRACE OF CERENKOV PHOTON THROUGH GEOMETRY rerer
NUMCT = NUMCT + 1
C SET INITIAL COLLISTION COUNTER
KLIDE = 0
700 CALL PATH(NR,NRC,XCHR,C,ST,NRPC,NSC,XPI,XPO,CN)
C %%* CHECK FORMATTING HERE %%%
C rork IF NO ZONE IS FOUND THEN PHOTON ESCAPES
IF(IRPRIM . LT. 0) THEN
M = 5
GO TO 1550
ENDIF
M = 3
C \&** COMPUTE THE PHOTON WEIGHT ATTENUATION AND DETERMINE THE WEIGHT
C **** LEFT FOR FURTHER RAY TRACE.
WNEW = WP(K)*DEXP(-ST*CHER(2,NR))
C %%% UPDATE THE WEIGHT (CALCULATE THE WEIGHT ABSORBED IN ZONE)
WABS = WP(K) - WNEW
WP(K) = WNEW
C *** TALLY THE ABSORBED WEIGHT FOR THAT ZONE

```
```

 CHRABS(NR,K) = CHRABS(NR,K) + WABS
 C THIS SECTION CREATES TALLIES FOR VIRTUAL SOURCE
IF(IVIRS .EQ. 1) THEN
ICVIR = IBFIND(C(3),NCVIR,CVIRB)
IF(ICVIR . LE. 0) GO TO 1000
SVIR = (HVIR - XCHR(3))/C(3)
XVIR = XCHR(1) + SVIR*C(1)
YVIR = XCHR(2) + SVIR*C(2)
RVIR = DSQRT(XVIR*XVIR + YVIR*YVIR)
IRVIR = IBFIND(RVIR,NRVIR,RVIRB)
IF(IRVIR . LE. 0) GO TO 1000
CTVIR = 1. D0
STVIR = 0.DO
IF(RVIR .GT. O.DO) THEN
CTVIR = XVIR/RVIR
STVIR = YVIR/RVIR
ENDIF
AVIR = 0. D0
CSQ = DSQRT(C(1)*C(1) + C(2)*C(2))
IF(CSQ . LE. O.DO) GO TO 900
AVIR = (CTVIR*C(1) + STVIR*C(2))/CSQ
IF(DABS(AVIR) .GT. 1.D0) AVIR = AVIR/DABS(AVIR)
AVIR = DACOS(AVIR)
900 IAVIR = IBFIND(AVIR,NAVIR,AVIRB)
IF(IAVIR . LE. 0) GO TO 1000
VOLVIR = 2. DO*PI*(RVIRB(IRVIR + 1)**2-RVIRB(IRVIR)**2)
*(CVIRB(ICVIR + 1) - CVIRB(ICVIR))
*(AVIRB(IAVIR + 1) - AVIRB(IAVIR))
SCOVOL(IAVIR,ICVIR,IRVIR)=
SCOVOL(IAVIR,ICVIR,IRVIR)+WP(K)/VOLVIR
ENDIF
C%%%%%%%%%%%%%%% END OF VIRTUAL SOURCE SECTION %%******************
C **** INCREMENT THE NUMBER OF REFLECTIONS (COLLISIONS OF PHOTON)
1000 KLIDE = KLIDE + 1
C %
C % (IE. DON'T GET IN AN INFINITE LOOP BETWEEN WALLS)
IF((KLIDE .GT. KALTOT).OR. (WP(K).LT.WZERO*1.D-3)) THEN
WKILL = WKILL + WP(K)
GO TO 1550
ENDIF
C %r*r INITIALIZE SPECULAR AND DIFFUSE REFLECTION COEFFICIENTS
SPECU = 0.DO
DIFFU = 0.DO
C *** SET NEXT REGION INDEX
NRP = NRPC
C **** CHECK TO SEE IF WE HAVE A NEXT REGION
C r\&*r IF SO THEN GET THE TRUE SPECULAR AND DIFFUSE COEFFICIENTS
IF(NRPC .GT. 0) NRP=IROR(NRPC)
IF(NRP . GT. 0) THEN
SPECU = CHER(3,NRP)
DIFFU = CHER(4,NRP)
ENDIF
C %rre CHECK TO SEE IF PHOTON UNDERGOES SPECULAR OR DIFFUSE REFLECTION
RA = RANF(IRAN)-SPECU
IF(RA . LE. O.DO) THEN
C %%% SPECULAR REFLECTION %%%

```
```

 CPRE = C(1)*CN(1) + C(2)*CN(2) + C(3)*CN(3)
 1100
PSI = 2.DO*CPRE
C *iror NEW DIRECTION = OLD DIRECTION - 2%(NORMAL COMPONENT)
C *** VECTR2 = VECTR1 - 2*(NMLVECT DOT VECTR1)*NMLVECT
C(1) = C(1) - PSI%CN(1)
C(2) = C(2) - PSI*CN(2)
C(3) = C(3) - PSI*CN(3)
C rort SET NEW POSITION
DO 1200 J=1,3
XCHR(J) = XPI(J)
CONTINUE
GO TO }70
ENDIF
C ネ*i* CHECK FOR DIFFUSE REFLECTION 邡%
RA = RA - DIFFU
IF(RA . LE. O.DO) THEN
C roror SAMPLE RANDOM POLAR COSINE RELATIVE TO SURFACE NORMAL
CP(3) = -RANF(IRAN)
C ror* SINE OF POLAR SCATTERING ANGLE
SINE = DSQRT(1.DO - CP(3)*CP(3))
C ***AZIMUTHAL SCATTERING ANGLE RANDOM BETWEEN + OR - PI
THE = PI*(2. DO*RANF(IRAN) - 1.DO)
CP(1) = SINE*DCOS(THE)
CP(2) = SINE*DSIN(THE)
C xror ROTATE DIRECTION COSINES BACK INTO LAB FRAME
CALL ROTCPC(CN,CP, C)
C *** UPDATE CURRENT POSITON
DO 1300 J=1,3
XCHR(J) = XPI(J)
CONTINUE
GO TO 700
ENDIF
C %*** TRANSMIT THE CERENKOV PHOTON ***
C **** SET COETMT OF INCOMING RAY RELATIVE TO SURFACE NORMAL
CPRE = C(1)*CN(1) + C(2)*CN(2) +C(3)*CN(3)
YREF = 1.D0
C *** SET ZONE NUMBER
NRP = NRPC
IF(NRPC .GT. 0) NRP=IROR(NRPC)
ACCEPT = 1.DO
C *** IF THERE IS A NEXT ZONE SET INDEX OF REFRACTION AND FRACTION
C %方旃 ACCEPTED
IF(NRP .GT. 0) THEN
MTRL1 = IDINT(CHER(1,NRP))
YREF = VARIND(MTRL1,K)
ACCEPT = CHER(5,NRP)
ENDIF
C **** TEST TO SEE IF THE PHOTON IS REFLECTED OR TRANSMITTED
IF(RANF(IRAN) .GT. ACCEPT) GO TO 1100
C **r* DOES SNELLS LAW ALLOW TRANSMITION? (SNELL'S LAW IN TERMS OF
C *** COSINE OF ANGLE SQUARED)
CP2 = 1.D0 - XREF*XREF*(1.D0 - CPRE*CPRE)/(YREF*YREF)
C %r** IF COSINE OF ANGLE SQUARED LESS THAN OR EQUAL ZERO THEN
C r** SPECULAR REFLECTION OCCURS (OUTSIDE CRITICAL ANGLE)
IF(CP2 . LE. O.DO) GO TO 1100

```
```

 SPRE = DSQRT(1.DO - CPRErCPRE)
 CAFT = DSQRT(CP2)
 SAFT = DSQRT(1.D0 - CP2)
 SRAT = SAFT/SPRE
 CRAT = CAFT - SRAT TrCPRE
 C*%* DIRECTION COSINES AFTER ENTERING NEW ZONE IN LAB FRAME
 DO 1400 J=1,3
 C}(J)=SRAT*C(J) + CRAT*CN(J
 1400 CONTINUE
 C *
 CHROUT(NR,K) = CHROUT(NR,K) + WP(K)
 C *** IS THERE A NEXT ZONE?
 IF(NRP . GE. 0) THEN
 C %%%INCREMENT CERENKOV WEIGHT ENTERING NEXT ZONE
 CHRENT(NRP,K) = CHRENT(NRP,K) + WP(K)
 C %%% UPDATE ZONE AND INDEX OF REFRACTION
 NR = NRP
 NRC = NRPC
 XREF = YREF
 C *** UPDATE POSITION
 DO 1500 J=1,3
 XCHR(J) = XPO(J)
 CONTINUE
 C %%%% REPEAT UNTIL ALL ZONES COMPLETED
 IF(NRP . LT. NRMAX) GO TO }70
 ENDIF
 1550 CONTINUE
 1560 CONTINUE
 1600 RETURN
 END
 C גr** SUBROUTINE TO ROTATE COORDINATES BACK INTO LAB FRAME
 SUBROUTINE ROTCPC(CP,D,C)
 IMPLICIT REAL*8 (A-H,O-Z)
 DIMENSION CP(3),D(3),C(3),E3(3),E2(3),E1(3)
 DO 100 J=1,3
 E3(J) = CP(J)
 100 CONTINUE
 E22 = E3(1)*E3(1) + E3(2)*E3(2)
 IF(E22 . LE. O.DO) THEN
 E2(1) = 1. D0
 E2(2) = 0.D0
 ELSE
 E22 = DSQRT(E22)
 E2(1) = -E3(2)/E22
 E2(2) = E3(1)/E22
 ENDIF
 E2(3) = 0.D0
 E1(1) = E2(2)*E3(3) - E2(3)*E3(2)
 E1(2) = E2(3)*E3(1) - E2(1)*E3(3)
 E1(3) = E2(1)*E3(2) - E2(2)*E3(1)
 DO 200 J=1,3
 C(J)=D(1)*E1(J)+D(2)*E2(J) + D(3)*E3(J)
 CONTINUE
 RETURN
 END
    ```

\(\because C A\) CNSTNT
＊CA PARAMS
＊CA PAREM
\(\because C A ~ S T T S ~\)
＊CA GOMLOC
\(\because C A\) DBG
\(\therefore\) CA ORGI
\(\because C A\) SECZN
\(\therefore \mathrm{CA}\) COG
COMMON／NRML／UN（3）
DIMENSION X（3），C（3），XPO（3），XPI（3），CN（3）
C ががか ACCEPT VERSION
DIST＝CZERO
DISTO＝PINF
IRPRIM＝NRG
\(I R=N R\)
KLOOP \(=\) KLOOP +1
DO \(100 \mathrm{I}=1,3\)
\(X B(I)=X(I)\)
\(W T(I)=C(I)\)
100 CONTINUE
ICALL \(=0\)
\(\mathrm{IZE}=0\)
CALL DISTA（S）
IF（IRPRIM ．GE．0）THEN
ST \(=\) DIST
DO \(200 \mathrm{I}=1,3\)
\(\mathrm{XPI}(\mathrm{I})=\mathrm{X}(\mathrm{I})+(S T * 0.99999 \mathrm{D} 0) * \mathrm{C}(\mathrm{I})\) \(X P O(I)=X(I)+(S T * 1.00001 D 0) \div C(I)\)
CONTINUE
NRGP＝IRPRIM
NSCP＝LSURF
CALL NORML（NRG，LSAVE）
C 大irir SET NORMAL TO DIRECTION UNTIL NORMAL IS AVAILABLE
DO \(300 \mathrm{I}=1,3\)
\(\mathrm{CN}(\mathrm{I})=-\mathrm{UN}(\mathrm{I})\) CONTINUE
ENDIF
RETURN
END
SUBROUTINE NORML（IRR，NASC）
C \(* * *\) USER BEWARE：MUCH OF THIS ROUTINE IS UNTESTED．IT IS ASSUMED
C ねャッ THAT XB＋WT＊DIST IS ON SURFACE LSURF OF BODY NASC．THUS A NORMAL
C＊＊＊CALL MUST BE PROCEEDED BY A CALL TO G1 OR LOOKZ．
\(\therefore\) CA CNSTNT
＊CA PARAMS
\(\therefore\) CA PAREM
＊CA GOMLOC
\(\because C A\) DBG
＊CA ORGI
＊CA SECZN
\(\therefore\) CA COG
COMMON／NRML／UN（3）
DIMENSION XP（3），WP（3），X（3），H（3），IBOX1（3），IBOX2（3）
```

 DATA IBOX1/10,7,4/
 DATA IBOX2/4,10,7/
 LSUR = IABS(LSURF)
 DO 100 I=1,3
 XP(I) = XB(I) + DIST*WT(I)
 CONTINUE
 N = LOCREG(IRR)
 NUM = NUMBOD(IRR)*4 + N - 4
 DO 200 I=N,NUM,4
 IF(NASC .EQ. I) GO TO 400
 CONTINUE
 WRITE(6,300) IRR,NASC,(MA(I),I=N,NUM,4)
 300 FORMAT(1X,'INVALID REGION OR BODY IN NORMAL. IR =',I7,'NASC=',
 1 I7,/,(10I7))
 CALL PR(1)
 STOP
 400 L = MA(I+1)
ITYPE = MA(L+1)
K = MA(L+4)
C ARB SPH RCC REC TRC ELL BOX WED RPP
GO TO (500,1200,1400,1500,1400,1600,1700,1500,1900), ITYPE
C %** ARB
500 I=K + 1 + 4*(LSUR - 1)
DO 1110 J=1,3
UN(J) = FPD(I+J)
1110 CONTINUE
GO TO 2000
C %%% SPH
1200 DO 1210 I=1,3
UN(I) = (XP(I) - FPD(K+I+1))/FPD(K+5)
1210 CONTINUE
GO TO 2000
C *ro% TRC AND RCC
1400 H2=0. D0
DO 1410 I=1,3
H(I)=FPD(K+4+I)
H2=H2 + H(I)*H(I)
1410 CONTINUE
GO TO (1415,1415,1435), LSUR
1415 H2 = DSQRT(H2)
DO 1420 I=1,3
UN(I) = H(I)/H2
1420 CONTINUE
GO TO 2000
1435 DO 1440 I=1,3
X(I) = XP(I) - FPD(K+1+I)
1440 CONTINUE
XMU = 0.DO
A2 = 0. D0
DO 1445 I=1,3
J = MOD (I,3) + 1
A2 = A2 + (H(I)*X(J) - H(J)*X(I))**2
XMU = XMU + FPD(K+4+I)*X(I)
1445 CONTINUE
R = FPD(K+8) - FPD(K+9)
IF(ITYPE .EQ. 3) R = 0.DO

```
```

 B1 = R/DSQRT(H2r(H2 + R*R))
 B2 = 1.D0/DSQRT(A2*(H2 + R*R))
 DO 1450 I=1,3
 UN(I) = B2*(X(I)*H2 - H(I)*XMU) + B1*H(I)
 1450 CONTINUE
GO TO 2000
1500 WRITE (6,1501) ITYPE
1501 FORMAT(1X,'NOT IMPLEMENTED IN NORMAL. ITYPE =',I5)
STOP
C **** ELL
1600 DX = 0.D0
AN = 0.DO
C2 = FPD(K+8)**2/4.D0
DO 1620 I=1,3
IA = I + K + 1
X(I) = XP(I) - . 5D0*(FPD(IA) + FPD(IA+3))
H(I) = . 5DO*(FPD(IA+3) - FPD(IA))
DX = DX + X(I)*H(I)
1620 CONTINUE
DO 1630 I=1,3
UN(I) = C 2%X(I) - DX*H(I)
AN = AN + UN(I)*UN(I)
1630 CONTINUE
IF(AN . GE. 1.D-12) THEN
AN = DSQRT(AN)
DO 1635 I=1,3
UN(I) = UN(I)/AN
1635 CONTINUE
GO TO 2000
ENDIF
1650 WRITE(6,1651) NBO,LSURF,(XP(I),I=1,3)
1651 FORMAT(1X,'ROUND-OFF ERROR IN NORMAL. NBO=',I5,'LSURF=',I5,
1 'XP=',3E12.5)
STOP
C *:%* BOX
1700 L = 1 + (LSUR - 1)/2
I1 = IBOX1(L)
I2 = IBOX2(L)
DO 1720 I=1,3
X(I) = FPD (K+I1+I)
H(I) = FPD(K+I2+I)
1720 CONTINUE
AN = O.DO
DO 1730 I=1,3
J = MOD (I, 3) + 1
JJ = MOD (I+1,3) + 1
UN(I) = X(J)*H(JJ) - X(JJ)*H(J)
AN = AN + UN(I)*UN(I)
1730 CONTINUE
IF(AN . LT. 1. OD-12) GO TO 1650
AN = DSQRT(AN)
DO 1735 I=1,3
UN(I) = UN(I)/AN
1735 CONTINUE

```
```

 GO TO 2000
 C *rror RPP
1900 DO $1905 \mathrm{I}=1,3$
$\operatorname{UN}(\mathrm{I})=0 . \mathrm{DO}$
1905 CONTINUE
GO TO (1910,1910,1920,1920,1930, 1930), LSUR
1910 UN(2) $=1$. D0
GO TO 2000
1920 UN(1) $=1$. DO
GO TO 2000
1930 UN(3) $=1$. D0
$2000 \mathrm{XMU}=0 . \mathrm{DO}$
DO $2005 \mathrm{I}=1,3$
XMU $=\mathrm{XMU}+\mathrm{WT}(\mathrm{I}) * U N(I)$
2005 CONTINUE
$\mathrm{XMU}=-1 . \mathrm{D} 0 * \mathrm{XMU}$
C \quad AN $=\operatorname{SIGN}(1$. DO, XMU)
IF (XMU . LT. O. DO) THEN
AN $=-1$. D0
ELSE
$\mathrm{AN}=1 . \mathrm{DO}$
ENDIF
$\mathrm{XMU}=-1 . \mathrm{D} 0 \% \mathrm{XMU}$
DO 2010 I=1,3
$\mathrm{UN}(\mathrm{I})=\mathrm{AN} \% \mathrm{UN}(\mathrm{I})$
2010 CONTINUE
RETURN
END
FUNCTION IBFIND(X,MX,XB)
C $\%$ 动
IMPLICIT REAL*8 ($\mathrm{A}-\mathrm{H}, \mathrm{O}-\mathrm{Z}$)
DIMENSION XB(100)
IBFIND=0
IF (X . LT. XB(1)) GO TO 7777
DO 1000 I=1,MX
IF (X . LE. XB(I+1)) GO TO 1010
1000 CONTINUE
GO TO 7777
1010 IBFIND=I
7777 RETURN
END

```

\section*{APPENDIX C. SAMPLING SUBROUTINE LISTING}
```

*IDENT DEFINE
*DEFINE IBM
*DEFINE DOUBLE
\#DEFINE ACCEPT
*IDENT,PHILLIPS
*IDENT, PERMT
*D, PARAMS. }1
PARAMETER (KPTMAX=10000, INSTAT=100,
*I,HIST. }9
COM = CZERO
*I ,HIST. }22
IF((IB . EQ. 1) . AND. (IHIST . LE. 50)) THEN
IF(IHIST . EQ. 1) WRITE(6,801)
C SEND ADITIONAL OUTPUT TO OUTPUT UNIT }
801 FORMAT(1X,1HI , 2X , 2HLB , 7X , 1HX , 14X , 1HY , 14X , 1HZ,
1 13X,1HU},13\textrm{X},1\textrm{HV},12\textrm{X},1\textrm{HW},12\textrm{X},3\textrm{HCOM},10\textrm{X},7,7HENERGY /)
WRITE(6,802) IHIST,LB,XB,WT,COM,T
802 FORMAT(2I3,8(2X,1PE12.5))
C
ENDIF
C
*IDENT,CKVTR
*I , CALC. }7
6 ,AIRP,CO2P,TMPKEL
*I, OUT. }3
C CERENKOV ADDITIONS TO COMMON BLOCK
COMMON /OUT/
1 CHER(5, 100), CHRNUM(100, 100),
CHRWAT(100,100), CHRENG(100,100), CHRABS}(100,100)
3 CHROUT(100,100), CHRENT(100,100),TRNUM(100,100),
4TRWAT(100,100),TRENG(100,100),TRABS(100,100),
5 TROUT(100,100),TRENT(100,100),NRVIR,NCVIR,NAVIR,
6VIRB(11), AVIRB(11),RVIRB(11),VARIND(100,100),WVLNTH(100),
7 SCOVOL(10, 10, 10) ,HVIR, ITRAD, NRBOTH, ICKV, IVIRS, KALTOT ,
\& LBTRAD,NBOTRD,JSRTRD,NCALL,NMBINS, WKILL
*I, INPUT. }5
DIMENSION WVLNT(100),VARIN(100,100)

```

```

C*%%**THIS SECTION ASSIGNS VALUES TO THE TABLE OF INDEX OF ***%%%

```

```

C***%%STRUCTURED TO COVER WAVELENGTHS IN }200\mathrm{ ANGSTROM BINS *
C%*2%%FROM 1800 THROUGH 5000 ANGSTROMS, AND IN 500 ANGSTROM m
C*****BINS FROM 5500 THROUGH 10000 ANGSTROMS.

```

```

C***%**EACH MATERIAL. *******
C%%%%%%%

```


```

C*******

```

```

 MATERIAL I ASSOCIATED WITH rexuexze
 WAVELENGTH BIN J **:*:%:%
 C*****WVLNTH(J) -- WAVELENGTH VALUE FOR BIN J *

```

C WAVELENGTHS
DATA（WVLNT（I）， \(\mathrm{I}=1,27\) ）／1800，2000，
\(12200,2400,2600,2800,3000\) ，
\(23200,3400,3600,3800,4000\) ，
\(34200,4400,4600,4800,5000\) ，
\(45500,6000,6500,7000,7500\) ， \(58000,8500,9000,9500,10000 /\)
C VACUUM
DATA（VARIN（1，I），I＝1，27）／27＊1．D0／
C AIR
DATA（VARIN（2，I），I＝1，27）／
\(11.00034 \mathrm{DO}, 1.00031 \mathrm{D} 0,1.00030 \mathrm{DO}, 1.00030 \mathrm{D} 0,1.00029 \mathrm{D} 0\) ，
\(21.00029 \mathrm{D} 0,1.00029 \mathrm{DO}, 1.00029 \mathrm{D}, 1.00028 \mathrm{D} 0,1.00028 \mathrm{D} 0\) ，
\(31.00028 \mathrm{D} 0,1.00028 \mathrm{D} 0,1.00028 \mathrm{D} 0,1.00028 \mathrm{D} 0,1.00028 \mathrm{D} 0\) ，
\(41.00028 \mathrm{DO}, 1.00028 \mathrm{D} 0,1.00028 \mathrm{D} 0,1.00028 \mathrm{D} 0,1.00028 \mathrm{D} 0\) ，
\(51.00028 \mathrm{DO}, 1.00027 \mathrm{DO}, 1.00027 \mathrm{DO}, 1.00027 \mathrm{DO}, 1.00027 \mathrm{DO}\) ，
6 1．00027D0，1．00027D0／
C CARBON DIOXIDE（STANDARD ATMOSPHERE）
DATA（VARIN（ \(3, I\) ）\(, \mathrm{I}=1,27\) ）／
1 1．00055D0，1．00052D0，1．00051D0，1．00050D0，1．00049D0，
\(21.00048 \mathrm{DO}, 1.00048 \mathrm{D} 0,1.00047 \mathrm{D} 0,1.00047 \mathrm{D} 0,1.00046 \mathrm{D} 0\) ，
\(31.00046 \mathrm{D} 0,1.00046 \mathrm{D} 0,1.00046 \mathrm{D} 0,1.00046 \mathrm{D} 0,1.00045 \mathrm{D} 0\) ，
\(41.00045 \mathrm{DO}, 1.00045 \mathrm{DO}, 1.00045 \mathrm{D} 0,1.00045 \mathrm{D} 0,1.00045 \mathrm{DO}\) ，
\(51.00045 \mathrm{DO}, 1.00045 \mathrm{DO}, 1.00045 \mathrm{DO}, 1.00044 \mathrm{DO}, 1.00044 \mathrm{DO}\) ，
6 1．00044D0，1．00044D0／
C GLASS TYPE 458／678（MIL－G－174）（FUSED SILICA DENSITY 2． 202 G／CM＊＊3）
DATA（VARIN（ \(4, \mathrm{I}), \mathrm{I}=1,27) /\)
1 1．58529D0，1．55051D0，1．52845D0，1．51333D0，1．50352D0，
\(21.49565 \mathrm{DO}, 1.48779 \mathrm{DO}, 1.48274 \mathrm{DO}, 1.47884 \mathrm{DO}, 1.47554 \mathrm{DO}\) ，
\(31.47283 \mathrm{DO}, 1.47012 \mathrm{DO}, 1.46830 \mathrm{D} 0,1.46648 \mathrm{DO}, 1.46492 \mathrm{DO}\) ，
4 1．483．アD0，1．46233D0，1．45991D0，1．45804D0，1．45664D0，

6 1．45107D0，1．45042D0／
C CRYSTAL QUARTZ
DATA（VARIN（5，I）， \(\mathrm{I}=1,27) /\)
1 1．66006D0，1．65087D0，1．62626D0，1．61011D0，1．60158DO，
2 1．59306D0，1．58453D0，1．57600DO，1．56747D0，1．56413D0，
\(31.56080 \mathrm{DO}, 1.55779 \mathrm{DO}, 1.55554 \mathrm{DO}, 1.55349 \mathrm{DO}, 1.55194 \mathrm{DO}\) ，
4 1．55039D0，1．54884D0，1．54616D0，1．54393D0，1．54247D0，
5 1．54101D0，1．53955D0，1．53839D0，1．53744D0，1．53663D0，
6 1．53581D0，1．53502D0／
C
＊I ，INPUT． 436
C CERENKOV ADDITIONS TO DEFAULT INPUT PARAMETERS NMBINS \(=27\)
NCALL＝0
ICKV＝0
IVIRS \(=0\)
ITRAD＝0
C END OF CERENKOV ADDITIONS
＊I，INPUT． 575


C CERENKOV


> ELSE IF (KOP('CERENKOV') . GE. 0) THEN IMATCH \(=1\) ICKV = 1
C SET PRESSURE FOR AIR IN STANDARD ATMOSPHERES AIRP \(=\) PARM (1)
C SET PRESSURE FOR CO2 IN STANDARD ATMOSPHERES CO2P \(=\) PARM(2)
C SET TEMPERATURE IN KELVIN, THEN SCALE TO 293 KELVIN TMPKEL \(=\) PARM(3) TMPKEL \(=\) TMPKEL/293. D0 DO 93774 I1=1,NMBINS \(\operatorname{VARIND}(1, I 1)=\operatorname{VARIN}(1, I 1)\)
C INDICES OF REFRACTION - 1 CHANGE PROPORTIONAL TO PRESSURE CHANGE \(\operatorname{VARIND}(2, I 1)=(\operatorname{VARIN}(2, I 1)-1 . D 0) * A I R P / T M P K E L+1 . D 0\) \(\operatorname{VARIND}(3, I 1)=(\operatorname{VARIN}(3, I 1)-1 . D 0) * \operatorname{CO2P} / T M P K E L+1 . D 0\)
93774 CONTINUE DO 93884 J1=4, 20 DO 93874 I1=1,NMBINS \(\operatorname{VARIND}(\mathrm{J} 1, \mathrm{I} 1)=\operatorname{VARIN}(\mathrm{J} 1, \mathrm{I} 1)\)
93874 CONTINUE

93884 CONTINUE DO 93894 Il=1,NMBINS WVLNTH (I1) =WVLNT (I1)
93894 CONTINUE KALTOT \(=\) PARM(4) DO 3034 JJJ=1,NZON CALL OPREAD (1,INUNIT,IECHO,IVAL,EOFLAG)
C
C CHECK INPUT FILE FOR COMPLETE OPTICAL DATA
C
```

IF (EOFLAG) THEN
WRITE (*,*) 'PREMATURE END OF OPTICAL DATA' STOP

```

ENDIF
IF (KOP( \({ }^{\prime}+\) ') . GE. 0) THEN
C
C ASSIGN VALUES TO CERENKOV INPUT MATERIAL NUMBER FOR ZONE JJJ \(\operatorname{CHER}(1, \mathrm{JJJ})=\operatorname{PARM}(1)\)
C EXTINCTION COEFFICIENT ( \(1 / \mathrm{CM}\) ) -- ATTENUATION COEFFICIENT \(\operatorname{CHER}(2, \mathrm{JJJ})=\operatorname{PARM}(2)\)
C FRACTION OF LIGHT TO BE MIRROR REFLECTED FROM ZONE WALLS \(\operatorname{CHER}(3, \operatorname{JJJ})=\operatorname{PARM}(3)\)
C FRACTION OF LIGHT TO BE DIFFUSE REFLECTED FROM ZONE WALLS \(\operatorname{CHER}(4, \mathrm{JJJ})=\operatorname{PARM}(4)\)
C FRACTION OF LIGHT TO BE ACCEPTED FOR ENTRANCE INTO ZONE \(\operatorname{CHER}(5, \mathrm{JJJ})=\operatorname{PARM}(5)\)
C
ELSE WRITE (*, 8903)
8903

3034 CONTINUE

```

C VIRTUAL-SOURCE

```

```

 ELSE IF (KOP('VIRTUAL-SOURCE') .GE. 0) THEN
 IMATCH = 1
 IVIRS = 1
 HVIR = PARM(1)
 NRVIR = PARM(2)
 NCVIR = PARM(3)
 NAVIR = PARM(4)
 READ(INUNIT,**,END=9051,ERR=9052)
 (RVIRB(IR),IR=1,NRVIR) ,RVIRB(NRVIR + 1)
 READ(INUNIT,*,END=9051,ERR=9052)
 (CVIRB(IC),IC=1,NCVIR),CVIRB(NCVIR + 1)
 READ(INUNIT,2, END=9051,ERR=9052)(AVIRB(IA),
 IA=1,NAVIR) ,AVIRB(NAVIR + 1)
    ```

```

C TRANSITION RADIATION

```

```

 ELSE IF(KOP('TRANSITION-RADIATION') .GE. 0) THEN
 IMATCH = 1
 ITRAD = 1
 LBTRAD = PARM(1)
 NBOTRD = PARM(2)
 JSRTRD = PARM(3)
 *I,INPUT. 1178
IF(ICKV . EQ. 1) THEN
C CERENKOV OPTICAL AND VIRTUAL SOURCE DATA.......
WRITE (6,9005)
9005 FORMAT(6H ZONE,6X,6H MTRL ,6X,6HABSORB,6X,6HMIRROR,5X,7HDIFFUSE
1 ,6X,6HACCEPT,4X,8HTRANSMIT)
DO 90051 I=1,LZMAX
C FRACTION OF LIGHT TO BE TRANSMITTED OUT THROUGH ZONE BOUNDARY
FST = 1 - CHER(3,I) - CHER(4,I)
WRITE(6,90050)I,(CHER(J,I) ,J=1,5),FST
90050 FORMAT(I6,1P6E12.4)
90051 CONTINUE
C
ENDIF
C
IF(ITRAD . EQ. 1) THEN
WRITE(6,90311) LBTRAD,NBOTRD,JSRTRD
90311 FORMAT(/' TRANSITION RADIATION LOCATION, ZONE BODY SURFACE'
1 ,3I6)
C
ENDIF
C
IF (IVIRS .EQ. 1) THEN
WRITE(6,90300) HVIR,NRVIR,NCVIR,NAVIR
90300 FORMAT(/17H VIRTUAL SOURCE Z, E12.4
1 /' VIRTUAL SOURCE TALLY BINS, RADIAL, POLAR, AZIMUTH,'
2 , 3I6)
WRITE(6,9050)(RVIRB(IR),IR=1,NRVIR),RVIRB(NRVIR + 1)
WRITE(6,9055)(CVIRB(IC),IC=1,NCVIR),CVIRB(NCVIR + 1)
WRITE(6,9060)(AVIRB(IA),IA=1,NAVIR),AVIRB(NAVIR + 1)
9050 FORMAT(8H RADIAL ,10E12.4)
9055 FORMAT(8H POLAR ,10E12.4)

```
```

9060
FORMAT(8H AZIMUTH ,10E12.4)
C
ENDIF
C
*I,PREP. }65
IF(ICKV .EQ. 1) THEN
WKILL = CZERO
DO 241 LLL=1,100
DO 2401 JJJ=1,100
CHRNUM(LLL,JJJ) = CZERO
CHRWAT(LILL,JJJ) = CZERO
CHRENG(LLL,JJJ) = CZERO
CHRABS(LLL,JJJ) = CZERO
CHROUT(LLL,JJJ) = CZERO
CHRENT(LLL,JJJ) = CZERO
2401
CONTINUE
CONTINUE
241
C
ENDIF
C
IF(IVIRS .EQ. 1) THEN
DO 244 IR=1,NRVIR
DO 243 IC=1,NCVIR
DO 242 IA=1,NAVIR
SCOVOL(IA,IC,IR) = CZERO
CONTINUE
CONTINUE
244 CONTINUE
C
ENDIF
C
*I,OUTPUT. 47
DIMENSION
1 CHRN(100),CHRW(100), CHRE(100), CHRA(100),CHRO(100),CHRI(100)
INTEGER ISIGA(100),ISIGB(100),ISIGC(100),ISIGD(100),ISIGE(100),
1 ISIGF(100),IWVL(100),ISIG1(100),ISIG2(100),ISIG3(100),
2 ISIG4(100),ISIG5(100),ISIG6(100)
*I, OUTPUT. }56
IF(ICKV . EQ. 1) THEN
WTESC = CZERO
WTABS = CZERO
WTOT = CZERO
C SCALE RESULTS TO RESULTS PER HISTORY
WKILL = WKILL/CIMAX
DO 66 I=1,LZMAX
DO 56110 J=1,NMBINS-1
CHRNUM(I,J)=(CHRNUM(I,J)/(CIMAX))
CHRWAT(I,J)=CHRWAT(I ,J)/CIMAX
CHRENG(I,J)=CHRENG(I ,J)/CIMAX
CHRABS(I,J)=CHRABS(I ,J)/CIMAX
CHROUT(I,J)=CHROUT(I , J)/CIMAX
CHRENT(I I,J)=CHRENT(I,J)/CIMAX
56110
CONTINUE
6 6
CONTINUE
DO 10225 I=1,100
CHRN(I)=CZERO

```
```

 CHRW(I)=CZERO
 CHRE(I)=CZERO
 CHRA(I)=CZERO
 CHRO(I)=CZERO
 CHRI(I)=CZERO
 10225
CONTINUE
C COMPUTE THE TOTALS FOR EACH ZONE
DO 11230 I=1,LZMAX
DO 11225 J=1,NMBINS-1
CHRN(I)=CHRN(I)+CHRNUM(I,J)
CHRW(I)=CHRW(I)+CHRWAT(I,J)
CHRE(I)=CHRE(I)+CHRENG(I,J)
CHRA(I)=CHRA(I)+CHRABS (I,J)
CHRO(I)=CHRO(I)+CHROUT(I,J)
CHRI(I)=CHRI(I)+CHRENT(I,J)
CONTINUE
11225
CONTINUE
DO 14344 I=1,LZMAX
WTOT = WTOT + CHRW(I)
WTABS = WTABS + CHRA(I)
14344 CONTINUE
WTESC = CHRI(LZMAX)
WTCON = (WTABS + WTESC + WKILL)/WTOT
TEMP(1) = WTCON
CALL STATS(TEMP,ISIG,1,KPUT)
WTCON = TEMP(1)
C CALCULATE THE AVERAGE VALUES OF THE TOTALS AND THEIR ERRORS
CALL STATS(CHRN,ISIG1,LZMAX,KPUT)
CALL STATS(CHRW,ISIG2,LZMAX,KPUT)
CALL STATS(CHRE,ISIG3,LZMAX,KPUT)
CALL STATS(CHRA,ISIG4,LZMAX,KPUT)
CALL STATS(CHRO,ISIG5,LZMAX,KPUT)
CALL STATS(CHRI,ISIG6,LZMAX,KPUT)
ENDIF
C
IF (IVIRS .EQ. 1) THEN
DO 96 IR=1,NRVIR
DO }86\mathrm{ IC=1,NCVIR
DO }76\mathrm{ IA=1,NAVIR
SCOVOL(IA,IC,IR)=SCOVOL(IA,IC,IR)/CIMAX
CONTINUE
CONTINUE
CONTINUE
C
ENDIF
C
*I,OUTPUT. }137
IF(ICKV .EQ, 1) THEN

```

```

 NPUT=NMBINS-1
 DO 11220 I=1,LZMAX
 WRITE(NPRT, 9000) I
 9000
FORMAT(/ ,'ZONE =',I3,/,
1 'WVLNTH',T14,'NUMBER',T22,'STAT',T33,'WEIGHT',T41, 'STAT',
2 T52, 'ENERGY',T60, 'STAT',T71, 'ABSORB',T79,'STAT',T90,
3
LEAVE',T97,'STAT',T108,' ENTER',T115,'STAT',/,

```
    '------', T14,'------', T22,'----', T33,'------', T41,'--.-'
    T52,'-----', T60,'---1,'T71,'---.-.', T79,'----', T90,

    DO \(11110 \mathrm{~J}=1\), NMBINS-1
        \(\operatorname{TEMP}(\mathrm{J})=\operatorname{CHRNUM}(\mathrm{I}, \mathrm{J})\)
    CONTINUE
    CALL STATS(TEMP,ISIGA,NPUT,KPUT)
    DO \(11115 \mathrm{~J}=1\), NMBINS-1
        CHRNUM ( \(\mathrm{I}, \mathrm{J}\) )=TEMP ( J )
    CONTINUE
    DO \(11120 \mathrm{~J}=1\),NMBINS -1
        \(\operatorname{TEMP}(\mathrm{J})=\operatorname{CHRWAT}(\mathrm{I}, \mathrm{J})\)
    CONTINUE
    CALL STATS(TEMP,ISIGB,NPUT,KPUT)
    DO \(11125 \mathrm{~J}=1\), NMBINS-1
        CHRWAT (I, J) \(=\) TEMP \((\mathrm{J})\)
    CONTINUE
    DO \(11130 \mathrm{~J}=1\),NMBINS-1
        \(\operatorname{TEMP}(\mathrm{J})=\) CHRENG \((\mathrm{I}, \mathrm{J})\)
    CONTINUE
    CALL STATS(TEMP,ISIGC,NPUT,KPUT)
    DO \(11135 \mathrm{~J}=1\),NMBINS-1
        CHRENG \((\mathrm{I}, \mathrm{J})=\) TEMP \((\mathrm{J})\)
    CONTINUE
    DO \(11140 \mathrm{~J}=1\),NMBINS-1
        \(\operatorname{TEMP}(\mathrm{J})=\operatorname{CHRABS}(\mathrm{I}, \mathrm{J})\)
    CONTINUE
    CALL STATS(TEMP,ISIGD,NPUT,KPUT)
    DO \(11145 \mathrm{~J}=1\),NMBINS-1
        CHRABS ( \(\mathrm{I}, \mathrm{J}\) ) \(=\) TEMP \((\mathrm{J})\)
    CONTINUE
    DO 11150 J=1,NMBINS-1
        \(\operatorname{TEMP}(\mathrm{J})=\operatorname{CHROUT}(\mathrm{I}, \mathrm{J})\)
    CONTINUE
    CALL STATS(TEMP,ISIGE,NPUT,KPUT)
    DO \(11155 \mathrm{~J}=1\), NMBINS-1
    \(\operatorname{CHROUT}(\mathrm{I}, \mathrm{J})=\operatorname{TEMP}(\mathrm{J})\)
    CONTINUE
    DO \(11160 \mathrm{~J}=1\),NMBINS-1
        TEMP \((\mathrm{J})=\) CHRENT \((\mathrm{I}, \mathrm{J})\)
    CONTINUE
    CALL STATS(TEMP,ISIGF,NPUT,KPUT)
    DO \(11165 \mathrm{~J}=1\),NMBINS-1
        CHRENT ( \(\mathrm{I}, \mathrm{J}\) ) \(=\) TEMP \((\mathrm{J})\)
    CONTINUE
    DO \(11170 \mathrm{~J}=1,17\)
        \(\operatorname{IWVL}(J)=1600+J * 200\)
    CONTINUE
    DO \(11180 \mathrm{~J}=18,27\)
        IWVL \((\mathrm{J})=5000+(\mathrm{J}-17) * 500\)
    CONTINUE
    DO 11190 J=1,NMBINS-1
        WRITE(NPRT, 11181) IWVL(J),CHRNUM(I,J),ISIGA(J),
        CHRWAT(I, J),
        ISIGB( J ), CHRENG(I, J), ISIGC( J ), CHRABS (I, J), ISIGD( J\()\),
11190
        WRITE(NPRT,90300) RVIRB(IVR),RVIRB(IVR+1)
        FORMAT(' R-MIN',E12.4/' R-MAX',E12.4,24X,
            UPPER AND LOWER POLAR COSINES ')
        DO 6020 LVC=1,NCVIR,5
        MVC=MINO(LVC+4,NCVIR)
        WRITE(NPRT, 9040)(CVIRB(IVC),IVC=LVC,MVC)
        WRITE(NPRT, 9050)(CVIRB(IVC+1),IVC=LVC,MVC)
        FORMAT(23X,'MINIMUM', 5X,'MAXIMUM',6E15.4)
9040
9050
        FORMAT(23X,'AZIMUTH' ,5X,'AZIMUTH' ,6E15.4)
        DO }6010\mathrm{ IVA=1,NAVIR
            L=0
            DO 6000 IVC=LVC,MVC
                    L}=\textrm{L}+
                    TEMP(L)=SCOVOL(IVA,IVC,IVR)
            CONTINUE
                CALL STATS(TEMP,ISIG,L,KPUT)
                    WRITE(NPRT,9060)AVIRB(IVA),AVIRB(IVA+1),
                    (TEMP(IVC),ISIG(IVC),IVC=1,L)
            FORMAT(18X,2E12.4,6(E12.2,I3))
        CONTINUE
        CONTINUE
```

C
ENDIF
C
＊I ，OUTPUT． 1383
IF（ICKV ．EQ．1）THEN
WKILL＝CZERO
DO $112 \mathrm{~J}=1$ ，LZMAX DO 111 IJ＝1， 100 CHRNUM $(J, I J)=$ CZERO CHRWAT（ $J, I J$ ）＝CZERO CHRENG $(J, I J)=$ CZERO CHRABS $(J, I J)=$ CZERO CHROUT $(J, I J)=C Z E R O$ CHRENT $(J, I J)=C Z E R O$ CONTINUE
112 CONTINUE ENDIF
C IF（IVIRS ．EQ．1）THEN

DO 115 IR＝1，NRVIR DO 114 IC＝1，NCVIR DO 113 IA＝1，NAVIR SCOVOL（ IA ，IC ，IR ）＝CZERO
113 CONTINUE
114 CONTINUE CONTINUE
115
ENDIF
C
\therefore I，INPUT． 1853
9051 WRITE（ $\%, 9070)$
9070 FORMAT
1 （＇OPRFMATURE EOF WHILE READING CKV OR VIRS DATA＇）
GO TO 99゙，y
9052 WRITE（＊，9071）
9071 FORMAT
1 （＇OILLEGAL DATA IN FIELD WHILE READING CKV OR VIRS DATA＇） GO TO 9999
C
＊ I ，EHIST． 522
IF（ICKV ．EQ．1）THEN
C ネゥ子放 SAVE ZONE INDEX FOR POSSIBLE CALL TO TRANSRAD
IRSAV＝IR
IRPSAV＝IRPRIM
DISADD＝DISTO
IF（MARK ．NE．1）DISADD＝DIST＋1．D－07
$\mathrm{XCHR}=\mathrm{X}+\mathrm{DISADD} * \mathrm{STH}(1) * \mathrm{CPH}(1)$
$Y C H R=Y+D I S A D D * S T H(1) * S P H(1)$
ZCHR $=2+$ DISADD＊CTH（1）
CALL CKVRAD
1 （XCHR ，YCHR ，ZCHR ，CTH ，STH ，CPH ，SPH ，W，T）
C＊＊\％：REINSTATE ZONE INDEX FOR POSSIBLE CALL TO TRANSRAD
IR＝IRSAV
IRPRIM＝IRPSAV

```
IF(IRPRIM .LT. 0) RETURN
```

C
END IF
rI, DISTA. 133
NBOSAV $=$ MA(LSAVE)
*D, PAREM. 6
\$ KLOOP, LOOP, ITYPE, NBOSAV
*I, KNOCK. 367

C $\%$ CERENKOV PRODUCTION SELECTED RANDOMLY ALONG A SUBSTEP*
 SUBROUTINE CKVRAD
1 (XS,YS, ZS , CPOL, SPOL , CAZI , SAZI, WBETA, EBETA)
C
C VARIABLE DESCRIPTIONS
C
C ACCEPT FRACTION OF CERENKOV RADIATION ACCEPTED INTO
C

1. $/ 137.0$ (FINE STRUCTURE CONSTANT)

C ANGTCM

1. E-8 (AN ANGSTROM IN CENTIMETERS)

C(1)
X PRESENT DIRECTION COSINE
C C(2) Y PRESENT DIRECTION COSINE
C C(3) Z PRESENT DIRECTION COSINE
C CAFT COSINE AFTER REFLECTION
C CAZI COSINE OF AZIMUTHAL SCATTERING ANGLE

C $\operatorname{CHER}(1, \mathrm{~J})$
MATERIAL NUMBER FOR ZONE J
1 = VACUUM
$2=A I R$
$3=\mathrm{CO} 2$
$4=$ GLASS
$5=$ QUARTZ
CHER $(2, J)$
EXTINCTION COEFFICIENT (1/CM)
CHER $(3, J)$ FRACTION OF LIGHT TO BE MIRROR REFLECTED FROM ZONE WALLS
CHER ($4, \mathrm{~J}$)
FRACTION OF LIGHT TO BE DIFFUSE REFLECTED FROM ZONE WALLS
C $\operatorname{CHER}(5, \mathrm{~J}) \quad$ FRACTION OF LIGHT TO BE ACCEPTED FOR C ENTRANCE INTO ZONE
C $\% \cdots \cdots \cdots$ CERENKOV OUTPUTS $\% \cdots \cdots \cdots \%$
C

```
CHRNUM(J,K)
```

CHRWAT(J,K)

CHRENG(J,K)

CHRABS (J, K)
C
C Chrout (J,K)

NUMBER OF CERENKOV PHOTONS PRODUCED IN ZONE J FROM WAVELENGTH BIN K PER INCIDENT SOURCE PARTICLE
CERENKOV WEIGHT PRODUCED IN ZONE J FROM WAVELENGTH BIN K PER INCIDENT SOURCE PARTICE WEIGHT OF 1.0
CERENKOV ENERGY PRODUCED IN ZONE J FROM WAVELENGTH BIN K PER INCIDENT SOURCE PARTICLE $=$ CHRENG (I) + EP $* W P$
CERENKOV WEIGHT ABSORBED (KILLED) IN ZONE J FROM WAVELENGTH BIN K PER INCIDENT SOURCE PARTICLE $=\operatorname{CHRABS}(J)+$ WNEW OR WABS
CERENKOV WEIGHT THAT EXITS ZONE J

C	FROM WAVELENGTH BIN K PER	
C		INCIDENT SOURCE PARTICLE
C	$=$ CHROUT (J) + WP	
C	CHRENT (J, K)	CERENKOV WEIGHT THAT ENTERS ZONE ($\mathrm{J}+1$)
C	FROM WAVELENGTH BIN K PER	
C	INCIDENT SOURCE PARTICLE	
C $=$ CHRENT ($\mathrm{J}+1$) +WP		
C	CN(J)	NORMAL FROM THIS REGION TOWARDS NEXT REGION
	CP(J)	DIRECTION COSINES IN MOVING FRAME
C	CP2	COSINE SQUARED
C	POL	COSINE OF POLAR SCATTERING ANGLE
C	CPRE	SUM OF SQUARES OF CURRENT DIRECTION COSINES
C	CPRO	PRODUCTION COSINE IN THE MOVING FRAME
C	CSQ	SQUARE ROOT OF SUM OF SQUARES OF X AND Y DIRECTION COSINES
C		
C	CX	X DIRECTION COSINE
C	CZ	X DIRECTION COSINE
C	DIFFU	PROBABILITY FOR DIFFUSE REFLECTION
C	EBETA	ELECTRON ENERGY
C	EE	GAMMA SQUARED
C	EP	ENERGY OF CERENKOV PHOTON
C	FST	FRACTION OF LIGHT TO BE TRANSMITTED OUTTHROUGH ZONE BOUNDARY
C		
C		$=1.0-\operatorname{CHER}(3, \mathrm{~J})-\operatorname{CHER}(4, \mathrm{~J})$
C	J	COUNTER
C	KALTOT	MAXIMUM NUMBER OF ALLOWED REFLECTIONS
C	KLIDE	COUNTER FOR NUMBER OF REFLECTIONS
C	NR	PRESENT USER REGION
C	NRC	PRESENT CODE REGION
C	NRPC	NEXT CODE REGION
C	NRMAX	MAX ZONE NUMBER
C	NSC	SURFACE CROSSED BY RAY
C	NZON	ZONE NUMBER
C	PI	3. 14159
C	PLANKC	1. $2405 \mathrm{E}-10$
C	RA	RANDOM NUMBER
C	RANF (ARG)	RANDOM NUMBER PRODUCING FUNCTION
C		
C	RVIR	VIRTUAL SOURCE RADIUS
C	SAFT	
C	SAZI	SINE OF AZIMUTHAL SCATTERING ANGLE
C	SCOVOL (J, J, J)	DATA FOR VIRTUAL SOURCE
C	SHD	LENGTH OF ELECTRON SUBSTEP IN CM
C	SIG	PRODUCTION OF CERENKOV PHOTONS PER CM PER MEV
C	SPECU	PROBABILITY FOR SPECULAR REFLECTION
C	SPOL	SINE OF POLAR SCATTERING ANGLE
C	ST	DISTANCE TO BOUNDARY
C	STP	SAMPLED LENGTH ALONG ELECTRON SUBSTEP (CM)
C	TIME	
C	V	RATIO OF ELECTON VELOCITY TO SPEED OF LIGHT (BETA)
C	V2	BETA SQUARED
C	V2N2	BETA SQUARED TIMES INDEX OF REFRACTION SQUARED
C	VARIND(I, J)	INDEX OF REFRACTION FOR MATERIAL I AND WAVELENGTH BIN J
C		
C	VOLVIR	VOLUME FOR VIRTUAL SOURCE

```
    C WABS
    C WVLNTH(I)
    C
    C
WBETA
WNEW
C WP
C WT(J)
C WZERO
C XB(J)
C XCHR(J)
C XPI(J)
C XPO(J)
C XREF
C XS
C XVIR
C YREF
YS
C YVIR
C 2E
C 2S
C
```



```
C
*CA CNSTNT
*CA PARAMS
*CA OUT
*CA CALC
*CA PAREM
*CA STTS
*CA GOMLOC
%CA DBG
*CA ORGI
*CA COG
*CA SECZN
        DOUBLE PRECISION DSEED, IRAN
        COMMON /VAXRAN/ IRAN
        DIMENSION C(3),CN(3),CP(3),XCHR(3),XPI(3),XPO(3)
        DIMENSION CDF(20,100),PDF(100)
        DATA PLANKC,ANGTCM/1. 2405D-10,1.D-8/
C RANDOM NUMBER STATEMENT FUNCTION FOR IBM
                RANF(DSEED)= GGUBFS(DSEED)
C C, SET CURRENT NUMBER OF MATERIALS WITH DATA FOR INDEX
C OF REFRACTION IN TABLE ABOVE.
                NMTRLS = 5
C COUNT THE NUMBER OF TIMES THIS ROUTINE IS CALLED
        NCALL = NCALL + 1
C SET SOME CONSTANTS
        ALPHA = 1.D0/137. D0
        PI=DACOS(-1. DO)
        TIME=1. D0
        M=1
C CALCULATE DIRECTION COSINES FOR SOURCE PARTICLE
        C(1) = SPOL*CAZI
        C(2) = SPOL*SAZI
```

$\mathrm{C}(3)=\mathrm{CPOL}$
C SAMPLE RANDOM LOCATION FOR CERENKOV PRODUCTION ALONG A SUBSTEP STP $=$ SHD $*$ RANF (IRAN $)$
C SET ELECTON LOCATION
$\mathrm{XCHR}(1)=\mathrm{XS}$
$\mathrm{XCHR}(2)=\mathrm{YS}$ XCHR (3) $=2 \mathrm{Z}$
C PRESENT ZONE OF ELECTRON NRC $=$ LBCZ $\mathrm{NR}=\operatorname{IROR}(\mathrm{NRC})$ NRMAX $=$ NZON
C STEP BACK PART WAY ALONG SUBSTEP TO SAMPLE CERENKOV PRODUCTION DO $100 \mathrm{~J}=1,3$ WT(J) $=\mathrm{C}(\mathrm{J})$ $\mathrm{XB}(\mathrm{J})=\mathrm{XCHR}(\mathrm{J})+\mathrm{C}(\mathrm{J}) *(\mathrm{STP}-\mathrm{SHD})$ $\mathrm{XCHR}(\mathrm{J})=\mathrm{XB}(\mathrm{J})$
100 CONTINUE
C FIND ZONE OF CERENKOV PRODUCTION AND COMPUTE UNCOLLIDED
C ESCAPE DISTANCE. CALL ZONEA
C
C NEXT ZONE TO BE ENCOUNTERED BY CERENKOV RAY. NRC=IRPRIM
C PRESENT ZONE OF CERENKOV PRODUCTION $\mathrm{NR}=\mathrm{IR}$
C WHAT MATERIAL IS ELECTRON IN FOR CERENKOV PRODUCTION? MTRL=IDINT(CHER (1,NR))
C GET THE INDEX OF REFRACTION FOR THAT MATERIAL XREF=VARIND (MTRL, 27)
C \% CALCULATE VELOCITY OF SOURCE PARTICLE ***
C ELECTRON ENERGY NORMALIZED TO REST MASS ENERGY
C TOTAL ENERGY = KINETIC ENERGY + REST MASS ENERGY (EE = GAMA) $\mathrm{EE}=1 . \mathrm{DO}+\mathrm{EBETA} / .511 \mathrm{DO}$
C NORMALIZED VELOCITY (V2 = BETA SQUARED) $\mathrm{V} 2=1 . \mathrm{D} 0-1 . \mathrm{D} 0 /(\mathrm{EE} \stackrel{\mathrm{EE}}{\mathrm{E}})$
C $(V=B E T A)$ $\mathrm{V}=\mathrm{DSQRT}(\mathrm{V} 2)$
C (BETA SQUARED * INDEX OF REFRACTION SQUARED) V2N2 = V2 2 XREF $*$ XREF
C CALCULATE THE CDF FOR ALL THE MATERIALS AVAILABLE IF (NCALL . EQ. 1) THEN

CALL CKVCDF (V,NMTRLS, VARIND, WVLNTH, CDF) ENDIF
C $* * *$ DOES PARTICLE MEET CERENKOV THRESHOLD $\% *$ IF (XREF . LE. 1. DO) GO TO 1600 IF (V2N2 . LE. 1. DO) GO TO 1600
C THE CERENKOV PHOTON WEIGHT TO BE USED IS THE TOTAL INTEGRATED
C WEIGHT OVER THE ENTIRE RANGE OF WAVELENGTHS AND FOR THE
C ENTIRE LENGTH OF THE SUBSTEP $\mathrm{WP}=0 . \mathrm{DO}$
DO $150 \mathrm{I}=2$, NMBINS
WP $=2$. D $0 * P I * A L P H A * S H D * W B E T A * D A B S((1 . D O /(A N G T C M * W V L N T H(I-1))$
1 - 1. DO/(ANGTCM*WVLNTH (I)))*
2 (1. D0-1. D0/V/V/VARIND(MTRL,I-1)/VARIND(MTRL,I-1)))
$3+W P$

```
    150 CONTINUE
    C SAMPLE TO GET CORRECT CERENKOV BIN
        CALL CKVWVL(CDF,MTRL,NCBIN)
    C **** GET INDEX OF REFRACTION **%%
        XREF = VARIND(MTRL,NCBIN)
    C %** IS INDEX OF REFRACTION ABOVE CUTOFF FOR CERENKOV? ****
        IF(XREF . LE. 1.DO) GO TO 1600
    C CALCULATE PHOTON ENERGY
        EP = PLANKC/(ANGTCM*WVLNTH(NCBIN))
    C *%:* CALCULATE COSINE FOR CERENKOV PHOTON IN MOVING FRAME
    C *)
C **% = RATIO OF SPEED OF LIGHT IN MEDIUM TO ELECTRON VELOCITY
        CPRO = 1.DO/(VrXREF)
C *r** TALLY PHOTON NUMBER COUNT, WEIGHT, AND ENERGY PRODUCED HERE
    CHRNUM(NR,NCBIN) = CHRNUM(NR,NCBIN) + 1.DO
    CHRWAT(NR,NCBIN) = CHRWAT(NR,NCBIN) + WP
    CHRENG(NR,NCBIN) = CHRENG(NR,NCBIN})+\mathrm{ EPr*WP
C *** BRING POLAR ANGLE BACK INTO LAB FRAME *ri**
    CALL FOLD(CPOL,SPOL,CAZI,SAZI,CPRO,CZ,SZ,CX,SX)
C **** USE SAME INITIAL PHOTON WEIGHT
    WZERO = WP
C *%% SET DIRECTION COSINES AND PREPARE FOR RAY TRACE ***%
    C(1) = SZ*CX
    C(2) = SZrSX
    C(3) = CZ
C *** CONDUCT RAY TRACE OF CERENKOV PHOTON THROUGH GEOMETRY ***%
    NUMCT = NUMCT + 1
C SET INITIAL COLLISTION COUNTER
    KLIDE = 0
C *r*:* NR, PRESENT (USER) REGION
C %%:% NRC, PRESENT (CODE) REGION
C *:** NRPC, NEXT (CODE) REGION
C *%% X, PRESENT POSITION OF CERENKOV RAY
C *** C, PRESENT DIRECTION OF CERENKOV RAY
C **:% ST, DISTANCE TO BOUNDARY
C *** NRP, NEXT (USER) REGION
C *ir* NSC, SURFACE ENCOUNTERED BY RAY
C **** XPI, POSITION OF RAY AT BOUNDARY JUST INSIDE THIS REGION
C rork XPI, POSITION OF RAY AT BOUNDARY JUST INSIDE THE NEXT REGION
C %:*: CN, NORMAL DIRECTION FROM THIS REGION TOWARD NEXT REGION
700 CALL PATH(NR,NRC,XCHR,C,ST,NRPC,NSC,XPI,XPO,CN)
C %%% CHECK FORMATTING HERE ***
C *r\mp@code{r IF NO ZONE IS FOUND THEN PHOTON ESCAPES}
    IF(IRPRIM . LT. 0) THEN
        M = 5
        GO TO 1600
    ENDIF
    M = 3
C **r* COMPUTE THE PHOTON WEIGHT ATTENUATION AND DETERMINE THE WEIGHT
C %%* LEFT FOR FURTHER RAY TRACE.
    WNEW = WP*DEXP(-ST*CHER(2,NR))
C *eri% UPDATE THE WEIGHT (CALCULATE THE WEIGHT ABSORBED IN ZONE)
    WABS = WP - WNEW
    WP = WNEW
C *\therefore% TALLY THE ABSORBED WEIGHT FOR THAT ZONE
```

```
    CHRABS(NR,NCBIN) = CHRABS(NR,NCBIN) + WABS
C *%* THIS SECTION CREATES TALLIES FOR VIRTUAL SOURCE
    IF(IVIRS . EQ. 1) THEN
        ICVIR = IBFIND(C(3),NCVIR,CVIRB)
        IF(ICVIR . LE. 0) GO TO 1000
        SVIR = (HVIR - XCHR(3))/C(3)
        XVIR = XCHR(1) + SVIR*C(1)
        YVIR = XCHR(2) + SVIR*C(2)
        RVIR = DSQRT(XVIR*XVIR + YVIR*YVIR)
        IRVIR = IBFIND(RVIR,NRVIR,RVIRB)
        IF(IRVIR . LE. 0) GO TO 1000
        CTVIR = 1.D0
        STVIR = O.DO
        IF(RVIR . GT. O.DO) THEN
            CTVIR = XVIR/RVIR
            STVIR = YVIR/RVIR
            ENDIF
            AVIR = 0.DO
            CSQ = DSQRT(C(1)*C(1) + C(2)*C(2))
            IF(CSQ . LE. O.DO) GO TO 900
            AVIR = (CTVIR*CC(1) + STVIR*C(2))/CSQ
            IF(DABS(AVIR) .GT. 1.D0) AVIR = AVIR/DABS(AVIR)
            AVIR = DACOS(AVIR)
            IAVIR = IBFIND(AVIR,NAVIR,AVIRB)
            IF(IAVIR .LE. 0) GO TO 1000
            VOLVIR = 2.DO*PI*(RVIRB(IRVIR + 1)**2-RVIRB(IRVIR)**2)
            *(CVIRB(ICVIR + 1) - CVIRB(ICVIR))
            *(AVIRB(IAVIR + 1) - AVIRB(IAVIR))
            SCOVOL(IAVIR,ICVIR,IRVIR)=SCOVOL(IAVIR,ICVIR,IRVIR)+WP/VOLVIR
        ENDIF
```



```
C %%% INCREMENT THE NUMBER OF REFLECTIONS (COLLISIONS OF PHOTON)
1000 KLIDE = KLIDE + 1
C *** PUT AN UPPER LIMIT ON THE NUMBER OF REFLECTIONS ALLOWED
C *ri* (IE. DON'T GET IN AN INFINITE LOOP BETWEEN WALLS)
    IF((KLIDE . GT. KALTOT) . OR. (WP . LT. WZERO*1.D-3)) THEN
        WKILL = WKILL + WP
        GO TO 1600
    ENDIF
C %** INITIALIZE SPECULAR AND DIFFUSE REFLECTION COEFFICIENTS
    SPECU = 0.DO
    DIFFU = 0. DO
C *r&or SET NEXT REGION THAT RAY WILL PASS INTO
    NRP = NRPC
C **** CHECK TO SEE IF WE HAVE A NEXT REGION
C **** IF SO THEN GET THE TRUE SPECULAR AND DIFFUSE COEFFICIENTS
    IF(NRPC .GT. 0) NRP=IROR(NRPC)
    IF(NRP . GT. 0) THEN
            SPECU = CHER(3,NRP)
            DIFFU = CHER(4,NRP)
        ENDIF
C *%* CHECK TO SEE IF PHOTON UNDERGOES SPECULAR OR DIFFUSE REFLECTION
    RA = RANF(IRAN)-SPECU
    IF(RA . LE. O.DO) THEN
C **% SPECULAR REFLECTION ****
```

```
    CPRE = C(1)*CN(1) + C(2)*CN(2) + C(3)*CN(3)
1100 PSI = 2. D0*CPRE
C rirer NEW DIRECTION = OLD DIRECTION - 2*(NORMAL COMPONENT)
C r官 VECTR2 = VECTR1 - 2*(NMLVECT DOT VECTR1)*NMLVECT
    C(1) = C(1) - PSI*CN(1)
    C(2) = C(2) - PSI*CN(2)
    C(3) = C(3) - PSI*CN(3)
C rimit SET NEW POSITION OF THE RAY
        DO 1200 J=1,3
                                XCHR(J) = XPI(J)
1200 CONTINUE
C rorr GO BACK TO PATH AND FOLLOW THE RAY THROUGH THIS NEXT ZONE
    GO TO }70
    ENDIF
C %ね% CHECK FOR DIFFUSE REFLECTION *r**
    RA = RA - DIFFU
    IF(RA . LE. O.DO) THEN
C %%rs SAMPLE RANDOM POLAR COSINE RELATIVE TO SURFACE NORMAL
    CP(3) = -RANF (IRAN)
C ror* SINE OF POLAR SCATTERING ANGLE
        SINE = DSQRT(1.DO - CP(3)*CP(3))
C *&%* AZIMUTHAL SCATTERING ANGLE RANDOM BETWEEN + OR - PI
        THE = PI* (2. DO*RANF(IRAN) - 1.DO)
        CP(1) = SINE*DCOS(THE)
        CP(2) = SINE*DSIN(THE)
C rirx ROTATE DIRECTION COSINES BACK INTO LAB FRAME
        CALL ROTCPC(CN,CP,C)
C %%% UPDATE CURRENT POSITION OF THE RAY
        DO 1300 J=1,3
        XCHR(J) = XPI(J)
1300 CONTINUE
C **% GO BACK TO PATH AND RAY TRACE THROUGH THE NEXT ZONE
                        GO TO }70
    ENDIF
C 访r IF THERT, IS NO REFLECTION, TRANSMIT THE CERENKOV PHOTON roror
C *** SET COSINE OF INCOMING RAY RELATIVE TO SURFACE NORMAL
    CPRE = C(1)*CN(1) + C(2)*CN(2) +C(3)*CN(3)
    YREF = 1.DO
C rorer SET ZONE NUMBER TO THAT OF THE ZONE THE RAY IS ENTERING
    NRP = NRPC
    IF(NRPC . GT. 0) NRP=IROR(NRPC)
    ACCEPT = 1. D0
C %rror IF THERE IS A NEXT ZONE SET INDEX OF REFRACTION AND FRACTION
C %** ACCEPTED
    IF(NRP . GT. 0) THEN
        MTRL1 = IDINT(CHER(1,NRP))
        YREF = VARIND(MTRL1,NCBIN)
        ACCEPT = CHER(5,NRP)
        ENDIF
C %** TEST TO SEE IF THE PHOTON IS REFLECTED OR TRANSMITTED
        IF(RANF(IRAN) .GT. ACCEPT) GO TO 1100
C r.r: DOES SNELLS LAW ALLOW TRANSMITION? (SNELL'S LAW IN TERMS OF
C *r穊 COSINE OF ANGLE SQUARED)
        CP2 = 1.D0 - XREF*XREF*(1.D0 - CPRE*CPRE)/(YREF*YREF)
C rorere IF COSINE OF ANGLE SQUARED LESS THAN OR EQUAL ZERO THEN
C %%* SPECULAR REFLECTION OCCURS (OUTSIDE CRITICAL ANGLE)
```

```
    IF(CP2 . LE. 0.D0) GO TO 1100
    SPRE = DSQRT(1.DO - CPRE*CPRE)
    CAFT = DSQRT(CP2)
    SAFT = DSQRT(1.D0 - CP2)
    SRAT = SAFT/SPRE
    CRAT = CAFT - SRAT*CPRE
C *** DIRECTION COSINES OF RAY AFTER ENTERING NEW ZONE IN LAB FRAME
    DO 1400 J=1,3
        C(J) = SRATrCC}(J)+CRAT*CN(J
1400 CONTINUE
C *%% INCREMENT CERENKOV WEIGHT EXITING PREVIOUS ZONE
    CHROUT(NR,NCBIN) = CHROUT(NR,NCBIN) + WP
C ネ** IS THERE A NEXT ZONE?
    IF(NRP . GE. 0) THEN
C *r%% INCREMENT CERENKOV WEIGHT ENTERING NEXT ZONE
    CHRENT(NRP,NCBIN) = CHRENT(NRP,NCBIN) + WP
C %r% UPDATE ZONE AND INDEX OF REFRACTION
        NR = NRP
        NRC = NRPC
        XREF = YREF
C rimir SET RAY POSITION JUST INSIDE NEXT ZONE BOUNDARY
        DO 1500 J=1,3
        XCHR(J) = XPO(J)
1500 CONTINUE
C %r%% GO BACK TO PATH AND FOLLOW THE RAY THROUGH THIS NEXT ZONE
    IF(NRP . LT. NRMAX) GO TO }70
    ENDIF
    1600 RETURN
        END
C *** SUBROUTINE TO ROTATE COORDINATES BACK INTO LAB FRAME
    SUBROUTINE ROTCPC(CP,D,C)
    IMPLICIT REAL*8 (A-H,O-Z)
    DIMENSION CP(3),D(3),C(3),E3(3),E2(3),E1(3)
    DO 100 J=1,3
        E3(J) = CP(J)
100 CONTINUE
    E22 = E3(1)%E3(1) + E3(2)*E3(2)
    IF(E22 . LE. O.DO) THEN
        E2(1) = 1.D0
        E2(2) = 0.D0
        ELSE
        E22 = DSQRT(E22)
        E2(1) = -E3(2)/E22
        E2(2) = E3(1)/E22
    ENDIF
    E2(3) = 0.D0
    E1(1) = E2(2)*E3(3)-E2(3)*E3(2)
    E1(2) = E2(3)*E3(1) - E2(1)*E3(3)
    E1(3) = E2(1)*E3(2) - E2(2)*E3(1)
    DO 200 J=1,3
        C(J)= D(1)rE1(J) + D(2)rE2(J) + D(3)*E3(J)
    CONTINUE
    RETURN
    END
    SUBROUTINE PATH(NR,NRG,X,C,ST,NRGP,NSCP,XPI,XPO,CN)
C *** RAY TRACING SUBROUTINE ****
```

```
*CA CNSTNT
*CA PARAMS
#CA PAREM
*CA STTS
*CA GOMLOC
*CA DBG
*CA ORGI
*CA SECZN
*CA COG
    COMMON/NRML/UN(3)
    DIMENSION X(3),C(3),XPO(3),XPI(3),CN(3)
C *** ACCEPT VERSION
    DIST = CZERO
    DIST0 = PINF
    IRPRIM = NRG
    IR = NR
    KLOOP = KLOOP + 1
    DO 100 I=1,3
        XB(I)=X(I)
        WT(I)=C(I)
100 CONTINUE
    ICALL = 0
    IZE = 0
    CALL DISTA(S)
    IF(IRPRIM.GE. 0) THEN
        ST = DIST
        DO 200 I=1,3
            XPI(I) = X(I) +(ST*0.99999D0)*C(I)
            XPO(I) = X(I) +(ST%1.00001D0)*C(I)
        CONTINUE
        NRGP = IRPRIM
        NSCP = LSURF
        CALL NORML(NRG,LSAVE)
C %%* SET NORMAL TO DIRECTION UNTIL NORMAL IS AVAILABLE
            DO 300 I=1,3
                CN(I) = -UN(I)
            CONTINUE
            ENDIF
            RETURN
            END
            SUBROUTINE NORML(IRR,NASC)
C %r** USER BEWARE: MUCH OF THIS ROUTINE IS UNTESTED. IT IS ASSUMED
C rarir THAT XB+WTrDIST IS ON SURFACE LSURF OF BODY NASC. THUS A NORMAL
C %** CALL MUST BE PROCEEDED BY A CALL TO G1 OR LOOKZ.
%CA CNSTNT
*CA PARAMS
*CA PAREM
*CA GOMLOC
*CA DBG
*CA ORGI
CA SECZN
*CA COG
            COMMON /NRML/UN(3)
            DIMENSION XP(3),WP(3),X(3),H(3),IBOX1(3),IBOX2(3)
            DATA IBOX1/10,7,4/
            DATA IBOX2/4,10,7/
```

```
    LSUR = IABS(LSURF)
    DO 100 I=1,3
        XP(I) = XB(I) + DIST*WT(I)
CONTINUE
    N = LOCREG(IRR)
    NUM = NUMBOD(IRR)*4 + N - 4
    DO 200 I=N,NUM,4
        IF(NASC . EQ. I) GO TO 400
    CONTINUE
    WRITE(6,300) IRR,NASC,(MA(I),I=N,NUM, 4)
    300 FORMAT( 1X,'INVALID REGION OR BODY IN NORMAL. IR =',I7,'NASC=',
    1 I7,/,(10I7))
    CALL PR(1)
    STOP
    400 L = MA(I+1)
    ITYPE = MA(L+1)
    K = MA(L+4)
    GO TO (500, 1200, 1400, 1500,1400, 1600, 1700, 1500, 1900), ITYPE
    C iritir ARB
    500 I=K + 1 + 4*(ISUR - 1)
    DO 1110 J=1,3
        UN(J)=FPD(I+J)
    1110 CONTINUE
    GO TO 2000
    C reror SPH
    1200 DO 1210 I=1,3
        UN(I) = (XP(I) - EPD(K+I+1))/FPD(K+5)
    1210 CONTINUE
    GO TO 2000
    C *rik% TRC AND RCC
    1400 H2=0. DO
    DO 1410 I=1,3
        H(I)=FPD(K+4+I)
        H2=H2 + H(I)*H(I)
    1410 CONTINUE
    GO TO (1415,1415,1435), LSUR
1415 H2 = DSQRT(H2)
    DO 1420 I=1,3
        UN(I) = H(I)/H2
    1420 CONTINUE
    GO TO 2000
    1435 DO 1440 I=1,3
        X(I) = XP(I) - FPD(K+1+I)
    1440 CONTINUE
        XMU = 0. DO
        A2 = 0. D0
        DO 1445 I=1,3
            J = MOD(I,3) + 1
            A2 = A2 + (H(I)*X(J)-H(J)*X(I))**2
            XMU = XMU + FPD(K+4+I)*X(I)
1445 CONTINUE
            R = FPD (K+8) - FPD (K+9)
    IF(ITYPE . EQ. 3) R = 0.D0
    B1 = R/DSQRT(H2*(H2 + R*R))
    B2 = 1.D0/DSQRT(A2*(H2 + R*R))
```

```
    DO \(1450 \mathrm{I}=1,3\)
    \(\mathrm{UN}(\mathrm{I})=\mathrm{B} 2 *(\mathrm{X}(\mathrm{I}) * \mathrm{H} 2-\mathrm{H}(\mathrm{I}) * \mathrm{XMU})+\mathrm{B} 1 * \mathrm{H}(\mathrm{I})\)
1450 CONTINUE
    GO TO 2000
\(1500 \operatorname{WRITE}(6,1501)\) ITYPE
1501 FORMAT( 1X,'NOT IMPLEMENTED IN NORMAL. ITYPE =',I5)
    STOP
C \% \% ELL
1600 DX \(=0 . \mathrm{DO}\)
        \(\mathrm{AN}=0 . \mathrm{DO}\)
        \(\mathrm{C} 2=\mathrm{FPD}(\mathrm{K}+8) * * 2 / 4 . \mathrm{D} 0\)
        DO \(1620 \mathrm{I}=1,3\)
        IA \(=I+K+1\)
        \(X(I)=X P(I)-.5 D 0 *(F P D(I A)+F P D(I A+3))\)
        \(H(I)=.5 D 0 \therefore(F P D(I A+3)-F P D(I A))\)
        \(D X=D X+X(I) * H(I)\)
    1620 CONTINUE
        DO \(1630 \mathrm{I}=1,3\)
        \(\mathrm{UN}(\mathrm{I})=\mathrm{C} 2 * \mathrm{X}(\mathrm{I})-\mathrm{DX} * \mathrm{H}(\mathrm{I})\)
        AN \(=A N+U N(I) * U N(I)\)
1630 CONTINUE
        IF (AN . GE. 1. D-12) THEN
        AN \(=\operatorname{DSQRT}(\mathrm{AN})\)
        DO \(1635 \mathrm{I}=1,3\)
                \(\mathrm{UN}(\mathrm{I})=\mathrm{UN}(\mathrm{I}) / \mathrm{AN}\)
1635 CONTINUE
        GO TO 2000
        ENDIF
1650 WRITE (6,1651) NBO,LSURF, (XP(I), I=1,3)
1651 FORMAT( 1 X, 'ROUND-OFF ERROR IN NORMAL. NBO=',I5,'LSURF=',I5,
    \(1 \mathrm{I}^{\prime} \mathrm{XP}=\) ', 3E12.5)
        STOP
C rark BOX
\(1700 \mathrm{~L}=1+(\) LSUR - 1)/2
    I1 \(=\) IBOX1 \((\mathrm{L})\)
    I2 \(=\) IBOX2 \((\mathrm{L})\)
    DO \(1720 \mathrm{I}=1,3\)
        \(X(I)=F P D(K+I 1+I)\)
        \(\mathrm{H}(\mathrm{I})=\mathrm{FPD}(\mathrm{K}+\mathrm{I} 2+\mathrm{I})\)
1720 CONTINUE
    \(\mathrm{AN}=0 . \mathrm{DO}\)
    DO 1730 I=1,3
        \(\mathrm{J}=\mathrm{MOD}(\mathrm{I}, 3)+1\)
        \(\mathrm{JJ}=\mathrm{MOD}(\mathrm{I}+1,3)+1\)
        \(\mathrm{UN}(\mathrm{I})=\mathrm{X}(\mathrm{J}) * \mathrm{H}(\mathrm{JJ})-\mathrm{X}(\mathrm{JJ}) * H(J)\)
        AN \(=A N+U N(I) * U N(I)\)
1730 CONTINUE
    IF (AN . LT. 1. OD-12) GO TO 1650
    \(\mathrm{AN}=\mathrm{DSQRT}(\mathrm{AN})\)
    DO \(1735 \mathrm{I}=1,3\)
        \(\mathrm{UN}(\mathrm{I})=\mathrm{UN}(\mathrm{I}) / \mathrm{AN}\)
1735 CONTINUE
    GO TO 2000
C \% \%\% RPP
1900 DO 1905 I=1,3
```

```
        UN(I) = 0.D0
    1905 CONTINUE
    GO TO (1910,1910,1920,1920,1930,1930), LSUR
1910 UN(2) = 1.DO
    GO TO 2000
1920 UN(1) = 1. DO
    GO TO 2000
1930 UN(3) = 1. DO
2000 XMU = 0. DO
    DO 2005 I=1,3
    XMU = XMU + WT(I)*UN(I)
2005 CONTINUE
    XMU = -1. DO*XMU
C AN = SIGN(1.DO, XMU)
    IF(XMU . LT. O.DO) THEN
    AN = -1. D0
    ELSE
        AN = 1. D0
    ENDIF
    XMU = -1. DO*XMU
    DO 2010 I=1,3
    UN(I) = AN*UN(I)
2 0 1 0 ~ C O N T I N U E
    RETURN
    END
    FUNCTION IBFIND(X,MX,XB)
C *rirk IBFIND FINDS CORRECT TALLY BINS ;rime
    IMPLICIT REAL*8 (A-H,O-Z)
    DIMENSION XB(100)
    IBFIND=0
    IF(X . LT. XB(1)) GO TO }777
    DO 1000 I=1,MX
        IF(X . LE. XB(I+1)) GO TO 1010
1000 CONTINUE
    GO TO }777
1010 IBFIND=I
7777 RETURN
    END
    SUBROUTINE CKVCDF(BETA,NMTRLS,VARIND,WVLNTH,CDF)
C
C THIS SUBROUTINE CREATES A TABLE OF INDEX OF REFRACTION VS
C FREQUENCY VALUES AND BUILDS THE CDF FOR CERENKOV PRODUCTION
C BY WAVELENGTH.
C
    IMPLICIT REAL*8 (A-H,0-Z)
    INTEGER I,N,MTRL,NMTRLS
    DIMENSION WVLNTH(100),CDF(20,100),VARIND(100,100), PDF(100)
C ASSIGN VALUES TO CONSTANTS
    N = 27
    PI = DACOS(-1.D0)
    ALPHA = 1.D0/137.D0
C CALCULATE THE NUMBER OF CERENKOV PHOTONS PER PATH LENGTH PRODUCED
C FOR EACH WAVELENGTH INTERVAL. ALSO CALCULATE THE TOTAL NUMBER
C OF PHOTONS PRODUCED PER PATH LENGTH
    DO 450 MTRL=1,NMTRLS
        PTOT = 0.DO
```

```
    DO 200 I=2,N
        PDF(I-1) = 2. DO*PI*ALPHA*DABS((1.D0/WVLNTH(I - 1)
            - 1.DO/WVLNTH(I))%
                            (1.D0-1.D0/BETA/BETA/VARIND(MTRL,I-1)/VARIND(MTRL,I - 1)))
                PTOT = PTOT + PDF(I-1)
200 CONTINUE
C NORMALIZE PDF
    DO 300 I=1,N-1
        PDF(I) = PDF(I)/PTOT
300 CONTINUE
C CREATE CDF TABIE
                                CDF(MTRL, 1) = PDF(1)
            DO 350 I=2,N-1
                CDF(MTRL,I) = CDF (MTRL,I-1) + PDF(I)
350
    CONTINUE
4 5 0 ~ C O N T I N U E ~
RETURN
END
SUBROUTINE CKVWVL(CDF,MTRL,NCBIN)
C
C THIS SUBROUTINE SAMPLES THE WAVELENGTH OF THE EMITTED CERENKOV
C PHOTON AND RETURNS THE BIN NUMBER IN NCBIN. IT REQUIRES INPUT
C OF THE ARRAYS WVLNTH AND CDF WHICH MUST BE OBTAINED
C BY A PREVIOUS CALL TO CKVCDF.
C
    IMPLICIT REAL**8(A-H,O-Z)
    INTEGER I,NCBIN,NBINS,MTRL
    DIMENSION CDF(20,100)
    DOUBLE PRECISION DSEED, IRAN
    COMMON /VAXRAN/ IRAN
C GET RANDOM VARIABLE
    RANF(DSEED) = GGUBFS(DSEED)
    RND1 = RANF(IRAN)
C RANDOMLY SAMPLE THE CDF FOR CERENKOV RADIATION AND DETERMINE
C THE BIN NUMBER OF THE SAMPLED CERENKOV PHOTON
    NBINS = 27-1
    DO 100 I=1,NBINS
        IF(RND1 . LE. CDF(MTRL,I)) THEN
            NCBIN = I
            GO TO 200
        ENDIF
100 CONTINUE
200 RETURN
    END
```


APPENDIX D. SAMPLE CROSS SECTION INPUT FILE

```
ENERGY 17.
MATERIAL AL
MATERIAL FE
MATERIAL C . 2729 0.7271
    GAS
    DENSITY .003986
MATERIAL SI . 4675 0.5325 DENSITY 2.5
MATERIAL PB
TITLE
.....ITS(KEY,ACCEPT) TEST CERENKOV 89.....
```


APPENDIX E. SAMPLE CERENKOV INPUT FILE WITH GEOMETRY AND ZONE DESCRIPTIONS

ECHO 1 TITLE

TEST CERENKOV 89
ELECTRONS
ENERGY 16.7
POSITION 0.00 .00 .0
DIRECTION 0.00 .0
HISTORIES 10000
CUTOFFS . 06819.06819
ELECTRON-ESCAPE
NBINE 10
NBINT 10
PHOTON-ESCAPE
NBINE 10
NBINT 10
ELECTRON-FLUX 918 NBINE 20
PHOTON-FLUX 918 NBINE 20 GEOMETRY

RCC	0.0	0.0	-1.0	0.0	0.0	1.0
	6. 35					
RCC	0.0	0.0	0.0	0.0	0.0	0.0508
	3.81					
RCC	0.0	0.0	0.0508	0.0	0.0	0.635
	3.81					
RCC	0.0	0.0	0.6858	0.0	0.0	0.00762
	3.81					
RCC	0.0	0.0	0.0	0.0	0.0	51.11
	6.35					
RCC	0.0	0.0	0.0	0.0	0.0	51.11
	6. 1134					
RCC	0.0	0.0	38.01842	-0.00113	0.0	0.001130
	6.0					
RCC	0.0	0.0	51.11	0.0	0.0	3.0
	6.35					
RCC	0.0	0.0	38.01842	36.744	0.0	0.0
	6. 1134					
RCC	0.0	0.0	38.01842	36. 744	0.0	0.0
	6.35					
RCC	26.584	0.0	38. 01842	0.0	0.0	13. 785
	6. 1134					
RCC	26.584	0.0	38.01842	0.0	0.0	13. 785
	6.35					
SPH	28.716	0.0	38.01842	9.49		
RCC	18.504	0.0	38.01842	3.0	0.0	0.0
	4.95					
RCC	26. 584	0.0	38.01842	0.00113	0.0	-0.00113
	6.0					
RCC	26.584	0.0	51.80342	0.0	0.0	0.318
	3. 81					

```
    END
        Z1 +1
        22 +2
        23+3
        24 +4
        25 +6 -2 -3 -4 -4 -7
        26 +7
        27 +8
        28 +5 -6 -9
        29 +9 +5 -6
    210 +10 -5 -9 -11
    211 +9 -5 -14 -15
    212 +12 -10 -1 
    213 +11 -10
    214 +13 +14
    215 +14 -13
    216 +10 +11 -9
    217 +15
    218+16
    219 -1 - -5 lllllll
    END
* MAT ECUT PTCZ
O
0.1
0
2
3
4
0
    2 12.0
0
2 12.0
O
    2 12.0
O
4
0
0
4
4
0
* The two values immediately following the key word, CERENKOV, allow
is the user to set the pressure of air or carbon dioxide gas
* within the geometry, and the temperature in kelvin.
* (Other gasses are not included in the current version.)
* The pressure in units of standard atmospheres.
* Once set, the pressure applies to all of that type of gas
* throughout the geometry. The temperature applies to all gasses.
; The code uses these values to scale the indices of refraction
* for air and carbon dioxide.
* (The user is still required to generate the appropriate
* cross section tape for the gasses at these new densities.)
* AIRP CO2P temp kaltot
*
CERENKOV 1.00 2.00 293.0 15
* The material number below is not the same as the material number
```


* AL 20MIL 29.3P 16. 7MEV 400K HIST T11X20 KLIDE 15

A. PROBLEM GEOMETRY

To describe the geometry of an object in ACCEPT the user must execute four distinct tasks: [Ref. 11: p. 73]

1. Define the location and orientation of each solid geometrical body required for specifying the input zones.
2. Specify the input zones as combinations of these bodies.
3. Specify the volumes of the input zones, if necessary.
4. Specify the material in each input zone.

The use of combinatorial geometry is based upon a library of geometrical body types from which the user chooses a specific combination to describe the body he is modelling. These figures are shown on the following pages. [Ref. 11: pp. 74-82]

EIgure E－1：Receangular parallelepiper（RPP）
b）Sphere（Spu）－－Specify the components of the radius yector \underline{y} to the center of the sonere and the radius n of the schere．

FIgure E－2：Sphere（SPH）
c）Right Circular Cilinder（RCこ）－－Specify the somponents of a radius vector ∇ to the center of one base，the components of a vecior H frcm thé centar of that base tc the center of the other base，añ the radius R of the cyllnder．

Figure ミ－ミ：Rishe Circular Cyllncer（コCこ）
d) Riant Elliptical Cylinder (aEC) -- Specif the components of a radius vector \mathbb{Y} to the center of one of the elliptical bases, the components of a vector H from the center of that base to the certes of the other base, and the components of two vectors R_{1} and R_{2} defining the major and minor axes, respectively, of the bases. ins body has not yet been implemented.

Figure E-4: Riant EllIptical Cylinder (REC)
e) Truncated Right Angie Cone (TiC) -- Specify the components of a radius vector 7 to the center of one base, the components of a vector H from the center of that base to the center of the other base, and the radio R_{i} and R_{2} of the first and second bases, respectively.

figure E-5: Truncated alight Angular Cone (TRC)
6) Ellipsoid (ELL) -- Specify the components of the rats vectors V_{1} and γ_{2} to the :oc: of the prolate ellipsoid and the tens th c: the major axis R.

Floure ミ-j: E111psoid (ELL)

8) Wedge (NED) -- Spectify the components of a radius vecter \underline{y} io one of the corners and the components of thres mutualiy perpencieular vectors a_{1}, a_{2} and a_{3} starting at that corner and defini:s the redge such that a_{1} and a_{2} are the ino legs of the right trianjle of the wedse.

Elgure E-7: Right Angle Wedge (inED)
h) Box (30X) -- Specify the components of a radius veceor \bar{q} to one of the corners and the components of three rutualiy perpendicular vectors a_{1}, a_{2} and a_{3} starting at that corner and delfinins a rectansular parailelepiped of arbltrary orientation.

i) Arbituary polyhedron (ARS) -- Specify the components of x (k - 5, 7 or 8) radius vectors, V_{1} through $Y_{k \prime}$ to the corners of an arbitrary nonreertrant polyhecron of up to $\overline{s i x}$ sides, and specify tre lndices of the corners of each lace oy means of a sertes of four-itsi: floating soint numbers between "1230." and "8765." (enter zero :cr Ere boursh index of a three-cornered face). These indises aust appear in elther cicckwise or counterclockwise order.

E!gure E-9: גrbitrary Polyhedron (ARS)
E.1.2 Soecification of Inout Zones -- :̈aving de?inec the :.ecessary geometrical bodies, the user musi then resolve the entrre probiom gecaetry lnto input znnes satislying the following criteria:
a) An tnput zone may consist only of either a singi= homosoneous material or a void.
b) Every point of the probiem gecmetry must lie within ore ant oniy one input zone.
c) The innal input zone must be a non-reentrant vcic zene sumrounctig the rest of the proolem geometry; any paritcie entar:ng i...s zane is talijed as an escape par"icle.

Input zenes are speci:ied as appropriate combinations of the proviolisiy defined codies. Such combinations may be as simple as tust a sinjie vocif, or they may consist of ccmplex intersections, unions and ci:Eerenses o? vartous bodies. He illustrate the princtples of input zene speni:icazion With the :ollowing examples where, for simclicify, we omit the esea=e ==ne. Each examole Involves only two zones, A and 3, de:ned by the crass-naicinins 12. : : 5. ミ-10.

SY INPUT ZONE 8

I. E1g. E-10a, zone A consists of a sphere, body 11 , that is tangent to zone 3 which consists of a right circular cylinder, body th. Input zone speci:Ication is simply

```
    A = +1
and }B=+2
```

That 1s, Inout zone A consists of all soatial points that lie within vody Fi, and similariy for zone 3 .

In E1g. E-10b, the sphere is inserted into a hole that has teen cut in the cylinder so that

```
            A = +1
                    and }3=-2-1
```

Thus, indut zone 3 consists of all soatial soints that lie within body nt AND not within body il. Input zone 3 is speci:led as ine di:Eeronce bevineen. Ewo oocies.

In Fig. E-10c, bodies $\$ 1$ and $\{2$ consist of the same homogeneous matertai (or void), but hey are lmbedded dithin a gesend ristic circuiar cylinder, bocty ${ }^{3} 3$, of another matarial. The speci:teation is

$$
\begin{aligned}
A & =-1 \text { OR }-2 \\
\text { and } & =-3-1-2 .
\end{aligned}
$$

Thus, lnout zone A consists of all soatial toints that lie within EITHER body $\ddagger 1$ OR oody $\ddagger 2$. This is an example of input zone specificasion as a undon oi Dodies.
I.: E18. E-iOd, the intersection of body fl and body if2 consists of a single homogeneous material; the rest of the space within body \#? is :illed witt another material. The specification is

$$
\begin{aligned}
A & =+1 \quad-2 \\
\text { and } B & =-3-1 \quad \text { OR }-3-2 .
\end{aligned}
$$

Thus, inout zone a consists of ali soatial points that lie within boc\% \#i AND wi $=: \rightarrow$ n bocy \ddagger.

Note that:
a) The OR operator refers to all following body numeers untit the nex: OR operator is reacined or a new input zone is initiated.
b) The AND operator is imolied before every body number inat is :.ct preceded by an exolicit OR operator, except that the itrst OR operator of a union is an imolied EITHER.
E.1.3 Yolume Specification -- A general scheme :cr the precige calcilation c! che volumes or trout zones de!tned. ej tre combinazar:à method is not possible. The user may select one of three ootions ria

will cause the code to set all volumes to $1.0 \mathrm{~cm}^{3}$ a value of 1 allows the wer to read in the volumes as described below. E!nally, if the geometry 13 such that a sat!sfactory method exists for calculating the volumes internally, the user zay set [parameter(1)] equal to 2 and use a correction min to l.ssert the necessary loglc at the proper place near the end of Subroutine JOGEN. The proper iocaition is commented in the codins.
E.1.4 Material Speciflcation -- a mater!al Index is assigned to eac: 1.mput zone. A zero index ceilines a void zone; otherwise, the material indices are def!ned by the order in which the materials are specified in executing the cross section generating code as described in Sec. 2.2.2. The gethod of inputting the material indices is described under the kejword Gentray.

E. 2 Input Data

The geometry Input for the ACCEPT codes is Inserted according to the following sequence. The data is inserted in free format form with spaces or commas as delimiters. Simple examples can be found in Secs. 3.3, 3.6 ard B. 8 of Appendix 3.
E.2.1 Body Data -- The body data begin lmmediately arter the Ine containing the GEOMETRY keyword. The method of describirs eacn of the body Eipes is discussed in Sec. E.i. 1 and lilustrated in Table E-i. ire descr:ption of each new body must begin a new line of lrput, and the firs: parameter on that line wust be the appropriate three character code for the body type. Table E-1 lists the additional lrput parameters required (no defaults) for each body type in their proper sequence. The wer is eree to distibute these parameters over as many lines as he pleases. A line beginning with the parameter end signals that the description of ail of ties proolem bodies ts complete.
E.2.2 Inout Zone Data -- Geometrical specification of the theut zones besins fmediately after the line containing the END parameter for the bocy data. The method of descr:01rg the input zones in terms of the incut boctes is discussec in Sec. E.1.2. Body numbers are deternined by the order in which the codies are read in. The degcription of each new incut =ene mus: begin on a new line of inpu=, and the lirst parameter on that line mus: ve a character string teginning with the leteer 2. This parameter ls :eliowed bj a string of parameters that speci:les the input zone following the form of tie rigit hand sides of the equations of Sec. E.1.2. For exampie, input


```
l'nes describing the two input zones in E1g. E-10d are
2001 - 1 -2
2002 - 3 -1 OR + 3-2 .
```

The user is free to distribute the parameters necessary for describing an input zone over as many lines as he pleases. A line beginning with the parameter END signais that the description of all of the problem input zones is camplete.
E.2.3 Yolume Data - I: [parameter(1)] associated with the Gccmenav keyword is equal to i, the array contalning the volume data is inserted immediately after the line containing the END parameter for the data specifiling the seometry of the input zones. The input zones are numbered according to the order in which they are read in. The array must contain an entry for each input zone (no defaults). If [parameter(i)] is not equal so 1 , these input data are omitted.
E.2.4 Material Data -- For Input of material data, returi to the discussion uncer the Géomeany keyword.

APPENDIX F. PARTICLE WEIGHT

ITS uses a Monte Carlo approach that often does not exactly simulate physical transport. For instance, each ITS particle might represent a number W of particles emitted from a source. Here, W is the initial weight of the ITS particle. In an exact simulation, the W physical particles would each have a different random walk, but the ITS particle representing these W physical particles will only have one random walk. Many particles of weight W are initiated and followed producing statistically identical results. Although this is not an exact simulation, weight is preserved in ITS in the sense of statistical averages and therefore in the limit of large particle numbers (including particle production or losses that may occur). Each ITS particle weight is tallied so that the final results (tallies) reflect the results expected from W physical particles. (Weights do not have to be integers!) This allows users to normalize the output to the desired source strength. ITS results are normalized to the number of incident source particles. [Ref. 8: pp. 53-54]

As an example, the Cerenkov routines in this work calculate the total number of Cerenkov photons produced for each electron substep (small pathlength). Rather than tracking each of these photons individually, a random position along the substep is selected as a representative production site and a Cerenkov photon of appropriate weight is generated. This photon weight represents all Cerenkov photons generated over this pathlength. This weight is then multiplied by the parent electron weight (corresponding to the number of electrons represented by the ITS electron taking the substep), and the final weight is assigned to the Cerenkov photon. The photon is then ray traced through the problem geometry. Then the next electron substep is taken and the process is repeated.

The utility of particle weight does not rest solely upon normalizing the source. Weight is a critical tool used in biasing problems to improve computational efficiency. For example, a user may be interested in studying the results of an interaction that has a small probability to occur. Normally, this interaction is seldom sampled and necessitates large numbers of histories to get a statistically significant result. A better approach would be to increase the sampling frequency for longer wavelengths with a corresponding weight adjustment in the interaction. This can be done efficiently, providing a higher
figure of merit, if care is taken to alter the results so that the biasing is removed before scoring.

Summarizing, weight represents the ITS particle's relative contribution to the final tallies. Its magnitude ensures that the expected physical results are preserved in the sense of statistical averages and therefore in the limit of large numbers of ITS particles. Weight enables the user to control the number of particles, sampling the critical part of a problem to improve the accuracy of selected results. Biasing used with weight control can often yield significantly improved figures of merit. [Ref. 8: p. 54]

APPENDIX G. MT FLOW DIAGRAM

Tally wolght absorbed In zone and adust curront welght
Create virtual source lallies - - thls routine is merely inciuded for posslble future expansion and can be ignored by most
—users. It does not affect the Ceronkov talles.

Jncrement the KLIDE (the boundary crosing lally)
Ns the number of zone crossings less than the number allowod

APPENDIX H. DS FLOW DIAGRAM

Tally welght absorbed in $20 n e$ and adjust current weight
Create virtual source talles - - this routine is merely included for possible future expansion and can be ignored by most पusers. It does not affect the Cerenkov talles.
increment the KLIDE (the boundary croszing tally)
\rightarrow s the number of zone crossings less than the number allowed or is the welght remalning above the cutoff?

\square
Increment welght klllod WKILL \longrightarrow RETURN
\rightarrow Does ray undergo specular roflectlon?

no Calculate the reflected angles and save the position of the ray.

Does the ray undergo diffuse refiection?


```
no
Determine the reflected angle and save the posillon of the ray
Defermine the materlal, Index of refracllon and absorplion coefflcient of the next zone.
```


LIST OF REFERENCES

1. Seltzer, S.M., "An Overview of ETRAN Monte Carlo Methods", Monte Carlo Transport of Electrons and Photons, Ettore Majorana International Science Series, Volume 38, p. 153,1988.
2. Jelley, J. V., Cerenkov Radiation, Pergamon Press, 1958.
3. Halbleib, J. A., Sr., ACCEPT: A Three-Dimensional Electron/Photon Monte Carlo Transport Code Using Combinatorial Geometry, Sandia National Laboratories, Albuquerque, New Mexico, May 1979.
4. Goudsmit,S., and Saunderson, J.L., "Multiple-Scattering of Electrons", Physical Review, Volume 57, November 8, 1939.
5. Landau, L., "On the Energy Loss of Fast Particles by Ionization", Journal of Physics, Volume 8, USSR, November 8, 1941.
6. Mack, J. M., Jain, M., and Jordan, T. M., Monte Carlo Simulation of Gas Cerenkov Detectors, Los Alamos National Laboratory, 1985.
7. Bideau-Mehu, A., Guern, Y., Abjean, R., Johannin-Gilles, A., "Interferometric Determination of the Refractive Index of Carbon Dioxide in the Ultraviolet Region", Optics Communications, Volume 9, Number 4, December 1973.
8. Breismeister, J.F., MCNP-A General Monte Carlo Code for Neutron and Photon Transport Los Alamos National Laboratory, Los Alamos, NM, September 1986.
9. Bevington, P. R., Data Reduction and Error Analysis for the Physical Sciences, McGraw-Hill, 1969.
10. Hecht, A., Optics, Addison-Wesley Publishing Company, Menlo Park, CA, 1987.
11. Ohanian, H.C., Physics, W. W. Norton \& Company, NY, 1985.
12. RSIC Computer Code Collection, ITS 2.1, Radiation Shielding Information Center (RSIC), Oak Ridge National Laboratory, 1988.

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station Alexandria, VA 22304-6145
2. Library, Code 0142 2
Naval Postgraduate School
Monterey, CA 93943-5002
3. Dr.Joseph Mack 5
Code P-4 Mail Stop E554
Los Alamos . Cational Laboratory Los Alamos, N.M 87545
4. Thomas Jordan 1
P.O. Box 3191
Gaithersbur, MD 20899
5. Dr. Martin Berger, Rm. C311, Bldg. 245 1
Center for Radiation Research National Bureau of Standards Gaithersburg, MD 20899
6. Dr. Steven Seltzer, Rm. C311, Bldg. 245 1
Center for Radiation Research
National Bureau of Standards Gaithersburg, MD 20899
7. Prof. K.E. Woehler, Code 61 Wh 1
Physics Department Chairman
Naval Postgraduate School
Monterey, CA 93943-5000
8. Prof. Xavier K. Maruyama, Code 61 Mx 5
Department of Physics
Naval Postgraduate School
Monterey, CA 93943-5000
9. Dr. John Halbleib, Division 1231 1
Sandia National Laboratories
P.O. Box 5800
Albuquerque, N. 87185
10. Robert G. Schrandt 1
Group X-6
Los Alamos \ational Laboratory Los Alamos, N.M 87545
11. CPT Richard J. Phillips 6

4460 Deerfield Dr.
Antioch, CA 94509

$$
412-587
$$

```
Thesis
P4845 Phillips
c.1 Monte Carlo generation of Cerenkov radiation.
```

Thesis
P4845 Phillips
c. 1 Monte Carlo generation of Cerenkov radiation.

32768000895486 DUDLEY KNOX LIBRARY

[^0]: 1 An excellent discussion of the estimation of Monte Carlo accuracy is given in the MCNP manual. [Ref. 8: pp. 102-114]

