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Kea show three signatures of domain-general
statistical inference

Amalia P.M. Bastos® "™ & Alex H. Taylor® '

One key aspect of domain-general thought is the ability to integrate information across
different cognitive domains. Here, we tested whether kea (Nestor notabilis) can use relative
quantities when predicting sampling outcomes, and then integrate both physical information
about the presence of a barrier, and social information about the biased sampling of an
experimenter, into their predictions. Our results show that kea exhibit three signatures of
statistical inference, and therefore can integrate knowledge across different cognitive
domains to flexibly adjust their predictions of sampling events. This result provides evidence
that true statistical inference is found outside of the great apes, and that aspects of domain-
general thinking can convergently evolve in brains with a highly different structure from
primates. This has important implications not only for our understanding of how intelligence
evolves, but also for research focused on how to create artificial domain-general thought

processes.
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here is currently great debate on the extent to which both

human and nonhuman intelligence is domain specific!-3

or domain general*~7: that is, whether subunits of the mind
have evolved to solve specific adaptive problems, or whether
intelligence evolves more generally, with the same cognitive
mechanisms applied flexibly to multiple problems3. In humans,
one source of evidence for domain-general intelligence, rather
than domain-specific intelligence, are correlations between
performance at different tasks (‘g’)*°. Further evidence for
domain generality in humans comes from our ability to transfer
and combine information across different domains”10-12, In
animals, while there is some evidence for ‘g’13-16, this remains
controversial7>17-20, and there is currently little evidence for
cross-modular integration of information”>1%18:21. This has led
to claims that such integration is unique to humans!21-24 and
dependent on language!0-11.

Reasoning under uncertainty is a central part of human
decision-making?>26. Making inferences about uncertainty
involves generating logical predictions about future events based
on limited information?”. This ability emerges much earlier in
human development than expected for such an advanced form of
cognition?829, and this type of reasoning has a number of key
characteristics. First, when observing sampling events with a large
number of objects, infants show true statistical inference, using
the relative frequency of objects in a population to infer the most
likely sampling outcome, rather than using quantity heuristics
based on the absolute number of objects?8. Second, infants can
integrate information about physical constraints into their sta-
tistical inferences0-32. For example, infants override predictions
based purely on relative probabilities when some objects in a
population cannot be sampled because they are held back by a
physical barrier30. Third, infants integrate social information
about the preferences of a sampler into their statistical inferences,
using their knowledge of an individual’s bias to again override
predictions based purely on relative probabilities. When an agent
shows a preference by consistently selecting a minority item from
a population, infants integrate this knowledge into their sampling
predictions and expect biased sampling in the future33-37. These
results suggest that infant statistical inference has three sig-
natures: it uses relative frequencies (Signature 1) and is domain
general, as infants can make predictions that integrate relative
frequency judgements with information from both the physical
domain (Signature 2) and the social domain (Signature 3).

Great apes are the only nonhuman species that have demon-
strated true statistical inference, as they use the relative numbers
of items within and between populations when predicting sam-
pling events®33%, rather than using quantity heuristics based on
the absolute number of positive or negative objects. In contrast,
capuchins use quantity heuristics based on the absolute frequency
of negative items?’, and it is not yet clear whether rhesus mon-
keys, long-tailed macaques, pigeons and African grey parrots use
relative frequency or the absolute number of either positive
or negative items (or events) when predicting sampling out-
comes#1-44 At present, there is no evidence that any nonhuman
animal can take physical constraints into account during sam-
pling, but chimpanzees are capable of integrating social infor-
mation about the preferences of a sampler into statistical
inference. When given the choice of two experimenters who had
previously both sampled preferred food items from a popula-
tion, chimpanzees preferred to take a hidden sample from the
experimenter who had shown a preference for picking the
preferred food item from an unfavourable population®?.

Birds are an ideal group to test for domain-general statistical
inference. This group has shown evidence not only of complex
cognition#®47, but also of behaviour suggestive of domain-general
intelligence*84%. Here, we examined whether the kea, a parrot

species endemic to New Zealand, show three signatures of human
statistical inference, using comparable tasks to those administered
to infants?8-30-31,33 and primates38:40:45,50,

Results

Experiment 1. In Experiment 1, we presented six kea with three
tasks where they watched sampling events from two populations
of mixed objects (rewarding and unrewarding tokens) at different
proportions (illustrations of populations used are provided in
Fig. 1). Over the course of three conditions, we tested whether kea
could make sampling predictions using relative rather than
absolute quantities. In Condition 1, subjects were presented with
two populations, one with 100 rewarding tokens and 20 unre-
warding tokens, the other with these frequencies reversed. Kea
observed an experimenter sampling from each of these popula-
tions and were then presented with two closed hands. Three of six
kea spontaneously showed a preference for the hand that had
sampled the population with 100 rewarding tokens within their
first 20 trials (Bayesian binomial test, relative preference 0.5, BF >
3, Table 1). We then gave all kea experience with this task until
they chose the hand sampling the population with 100 rewarding
tokens in 17/20 trials, which took kea 120 trials (s = 61.97 trials)
on average (see individual learning data summaries in Supple-
mentary Table 2).

Condition 2 tested if kea were using an absolute quantity-based
heuristic by selecting the jar with the most rewarding tokens.
Here, kea had to choose between 2 hands that both sampled from
a population containing 20 rewarding tokens. However, one
population had 100 unrewarding tokens, and the other had 4
unrewarding tokens. Four kea chose the jar with fewer
unrewarding tokens within their first 20 trials (Bayesian binomial
test, relative preference 0.5, BF >3). Again, we gave subjects
experience with this task until they reached a 17/20 criterion,
which took 66.67 trials (s =41.31 trials) on average.

Condition 3 controlled for a second absolute quantity-based
heuristic, the avoidance of the jar with the most unrewarding
tokens, a control which capuchins fail#). Kea observed sampling
from one jar which contained 63 unrewarding tokens and 57
rewarding tokens and a second that again contained 63
unrewarding tokens but only 3 rewarding tokens. All 6 kea chose
the jar with 57 rewarding tokens above chance within their first
20 trials (Bayesian binomial test, relative preference 0.5, BF > 3),
and took 46.67 trials (s = 27.33 trials) on average to reach the 17/
20 criterion.

The results of Experiment 1 (Table 1) provide conclusive
evidence that kea show true statistical inference using the relative
frequency of items, rather than using quantity heuristics based on
the absolute number of items. Four of our six subjects performed
above chance within their first 20 trials of both Conditions 2 and
3, indicating they had not learnt during their past experience to
use a heuristic based on choosing the population with either the
most rewarding, or most unrewarding items. Kea therefore did
not behave as capuchins do, in using the absolute number of
positive or negative tokens within the jars to make decisions*0->0.
Instead, kea mirrored the performance of infants2?® and
chimpanzees®® in using the relative frequency of objects across
this experiment.

Experiment 2. Experiment 2 tested whether kea could integrate
information about a physical constraint into their prediction of a
sampling event, as infants do30. After giving kea experience of a
barrier (training protocols provided in Supplementary Methods),
we presented them with two tasks where two jars, each with a
barrier placed half-way down the jar, were sampled from. Each jar
contained identical overall populations of tokens (80 tokens total:
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Fig. 1 Token populations used across all experimental conditions. Proportional representation of token populations for Experiments 1-3. In the
illustrations, orange rectangles represent the unrewarding tokens, and black rectangles represent the rewarding tokens. a-¢ The token frequencies for
Condition 1, Condition 2 and Condition 3. d, e The token frequencies for Experiment 2, with the blue lines representing a physical barrier. f The token

frequencies at test for Experiment 3.

Table 1 Individual performance in experiments 1-3.

Experiment 1 Experiment 1 Experiment 1

Experiment 2 Experiment 2 Experiment 3

Condition 1 Condition 2 Condition 3 Condition 1 Condition 2 Condition 1
Blofeld 10/20 (BF=0.27) 14/20 (BF=1.29) 15/20 (BF = 3.22) 18/20 (BF = 15/20 (BF = 3.22) 12/20 (BF = 0.40)
262.80)
Bruce 12/20 (BF=0.40) 16/20 (BF=10.31) 16/20 (BF=10.31) 17/20 (BF =43.80) 15/20 (BF =3.22) 17/20 (BF = 43.80)
Loki 15/20 (BF =3.22) 16/20 (BF=10.31) 19/20 (BF = 18/20 (BF = 19/20 (BF = 11/20 (BF =0.30)
2496.61) 262.80) 2496.61)
Neo 14/20 (BF=1.29) 14/20 (BF=1.29) 15/20 (BF = 3.22) 15/20 (BF = 3.22) 14/20 (BF =1.29) 15/20 (BF =3.22)
Plankton 15/20 (BF =3.22) 15/20 (BF=3.22) 16/20 (BF=10.31) 17/20 (BF =43.80) 17/20 (BF =43.80) 10/20 (BF=0.27)
Taz 15/20 (BF =3.22) 16/20 (BF=10.31) 17/20 (BF =43.80) 17/20 (BF =43.80) 16/20 (BF =10.31) 17/20 (BF = 43.80)

Number of correct trials performed by each subject (n = 6) within the first block of 20 trials for each condition of the three Experiments. In Experiment 3, correct trials constituted trials in which the
subject chose the biased sampler, E1. Which of the two experimenters was the biased sampler (E1) was counterbalanced across subjects split into two groups: Neo, Bruce, Blofeld; and Loki, Plankton, Taz.
Performance was tested using two-tailed Bayesian binomial tests (test value of 0.5, default Beta prior parameters at 1.0). Values with a Bayes Factor greater than 3 are shown in bold.

40 rewarding and 40 unrewarding) but the proportions differed
above and below the barriers. In Condition 1, one jar contained
20 rewarding and 20 unrewarding tokens above the barrier, and
the same below it. The other contained 20 rewarding and 4
unrewarding tokens above the barrier and the remaining 56
tokens below the barrier (20 rewarding, 36 unrewarding). Con-
dition 2 was identical but with the frequencies reversed. In one
jar, one population contained 20 rewarding tokens and 20
unrewarding tokens above and below the barrier. The other
contained 4 rewarding, and 20 unrewarding tokens above the
barrier, and the remaining tokens below it (36 rewarding, 20
unrewarding). If kea could integrate knowledge of the barrier into
their relative frequency judgements, we predicted they would
choose the jar with 20 rewarding tokens and 4 unrewarding
tokens above the barrier in Condition 1 and the jar with equal
numbers of rewarding and non-rewarding tokens above the
barrier in Condition 2.

As in Experiment 1, kea were given further training until they
reached a criterion of 17/20 trials, which took them, on average,

26.67 trials (s = 16.33 trials) for Condition 1 and 48 trials (s =
30.33 trials) for Condition 2. Summaries of individual training
data are provided in Supplementary Table 3. Five of the six
subjects tested performed above chance in the first 20 trials of
both conditions of Experiment 2 (Bayesian binomial test, relative
preference 0.5, BF > 3, Table 1).

These results not only confirm the results of Experiment 1, in
showing kea use the relative frequency of objects to make
statistical inference, but also show that kea can flexibly integrate
physical knowledge into these inferences. When a barrier was
placed in the jar, kea used only the relative frequency above the
barrier when deciding which hand was more likely to contain a
rewarding token.

Experiment 3. Experiment 3 investigated whether kea could
integrate social information about sampler biases into their pre-
dictions. We closely matched the procedure used in chimpan-
zees®, providing kea with experience of a biased and an unbiased
sampler. We first tested whether kea could distinguish between
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two human experimenters. Kea observed one experimenter
closing their hand over a token and another experimenter who
held nothing in their closed fist. The experimenters then either
switched position or stayed in the same place and the kea was
given the choice of one of the two experimenters’ hands (training
procedures detailed in Supplementary Methods). All kea passed
this task above chance within 1 session of 20 trials. We then
tested kea for pre-existing preferences for one of the two
experimenters in a token-exchange task, where both experi-
menters requested a rewarding token for exchange simulta-
neously and kea could select which of the two experimenters to
obtain a reward from. We continued with this training until kea
selected one of the experiments at between 9/20 and 11/20, which
they all did within three sessions.

Kea then observed demonstrations of biased and unbiased
sampling from the two experimenters. While the biased sampler
selected rewarding tokens from a population of 110 tokens
containing 10 rewarding and 100 unrewarding tokens, the
unbiased sampler selected rewarding tokens from a population
of 10 unrewarding and 100 rewarding tokens. Therefore, during
demonstrations, both samplers were equally associated with a
rewarding sampling outcome: both experimenters always sampled
a rewarding token, but whilst the biased sampler did so by
looking into a population with a minority of rewarding tokens,
the unbiased sampler did so by blindly sampling from a
population with a majority of rewarding tokens.

At test, kea observed as the same two samplers picked from
populations with an equal number of rewarding and unrewarding
tokens (55 rewarding and 55 unrewarding tokens). If kea
continued to use the relative frequencies of the tokens in each
jar, we expected them to choose at chance. In contrast, if the kea
understood that the biased sampler was indeed biased to choose a
rewarding token, while the unbiased sampler had only been
choosing rewarding tokens at the same frequency as the biased
sampler due to the populations they were sampling from, kea
should choose the biased sampler at test. This was because while
the unbiased sampler would now be likely to choose a rewarding
token half the time, the biased sampler should continue to choose
the rewarding token in every trial. In order to succeed at this task,
kea would need to integrate the social knowledge acquired during
the demonstration phase into their probabilistic sampling
predictions. Three of the six kea chose the biased sampler above
chance at test (Table 1). None of these three kea had previously
shown a preference for either experimenter in the token-exchange
task or during the demonstration phase (see Supplementary
Table 4). These results therefore mirror those from infants33 and
chimpanzees® in showing that kea can integrate social informa-
tion on sampler biases into their statistical inferences.

First-trial performances. In order to ensure that kea’s perfor-
mance was not merely a consequence of associative learning
within the first 20 trials of each condition, we analysed first-trial
performance across the three experiments. Across all conditions
and all experiments, subjects’ first trials were correct in 72.22% of
trials. Taking into account only the subjects that succeeded within
the first 20 trials of each condition, first-trial performances were
correct in 81.48% of cases. We fitted an intercept-only Bayesian
model to our first-trial data for all subjects. When compared
against a 0.5 baseline probability of success, our model revealed
that the median posterior probability of a randomly selected kea
succeeding within their first trial, regardless of condition, was
0.70 (pMCMC = 0.005).

Learning effect analyses. We ran Bayesian correlation tests of
average performance across the first 20 trials of each condition to

examine whether performance increased over the course of the
first 20 trials. We found no evidence for learning effects (BF < 3;
results for each condition’s analysis are reported in Supple-
mentary Table 5). Similarly, we examined if performance
increased across conditions, but found no correlation between
condition number and average performance within the first
20 trials of each condition (BF = 0.508). These results show that
subjects’ performance did not improve over time within or
between test conditions, and therefore kea were not relying
on low-level associative strategies to make their sampling
predictions.

Discussion

Our study shows that kea display three signatures of human sta-
tistical inference. Experiment 1 shows that, like infants2830,31,33
and chimpanzees®$%>, kea showed evidence of true statistical
inference. Kea predicted likely sampling outcomes based on the
ratio of objects in the populations being sampled from, rather than
using quantity heuristics, such as selecting the population with the
greatest number of positive tokens, or avoiding the population with
the most negative tokens. Experiment 2 shows that kea, like
infants39-32, can integrate knowledge about a physical barrier into
their predictions of a sampling outcome, even though the overall
population distributions were identical. Finally, Experiment
3 shows that, like infants33 and chimpanzees*°, kea are capable of
integrating social information about biased and unbiased samplers
into their predictions. As in past work on chimpanzees*?, kea took
observed information about the biases of experimenters and
integrated it into their predictions of what would occur when
these experimenters sampled from equally distributed popula-
tions of objects. Therefore, just like infants and the great apes,
kea made statistical inferences using relative rather than abso-
lute quantities, and then integrated social and physical infor-
mation into their predictions, using their knowledge of physical
barriers and the bias of a sampler, to override predictions based
purely on relative probabilities®!.

To observe these three signatures of domain-general statistical
inference in kea is surprising, even given recent developments in
avian cognition. Much work in this field over the past 15 years
has focused on corvids, which, as a group, have produced their
most impressive problem-solving performances predominantly
on domain-specific, ecologically relevant tasks, such as those
involving caching or tool use®'-%0. Parrots have only recently
become the focus of a sustained, global research effort®!. Beha-
viour suggestive of more domain-general processes have emerged
in both groups from studies examining the ability of non-tool
users to solve tool problems*34%:62-66_ Our results both support
these claims and greatly extend them, in showing that the inte-
gration of very different types of information—concerning phy-
sical barriers and sampling biases—into statistical inferences is
possible in at least the mind of one parrot species. Furthermore,
both the token transfer behaviours, and the observation of sam-
pling events from a population of objects, had very little ecolo-
gical relevance to the kea, a species that feeds by extractive
foraging in alpine and sub-alpine environments®’. Despite this,
kea not only learned to solve these problems, but did so by
using domain-general statistical inference, rather than quantity
heuristics.

It is important to note, however, that the level of information
integration across our experiments was different. Experiment 2
tested if kea could simultaneously integrate information about
relative frequency with the presence of a barrier in order to
make a judgement, because relying solely on one source of
information—either the presence of a barrier, or the overall fre-
quency of the population—would have led to the incorrect choice.
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In Experiment 3, however, kea needed to override their prior
reliance on relative frequency information in favour of informa-
tion about the sampling bias of an experimenter. Our results
therefore suggest that kea can fully integrate physical information
with relative frequency by using both sources of information
simultaneously, and can integrate social information by over-
riding relative frequency information with social information.
However, more work is needed to show if kea can also simulta-
neously consider social and relative frequency information, or can
make judgements that simultaneously combine social, physical
and relative frequency information together.

Unlike previous studies in primates38-40:444550, kea were
presented with additional training trials before progressing to the
next condition. This procedure is commonly used during cogni-
tive experiments on birds®®-70 to ensure subjects are consistent at
a specific condition before being given a novel one. It seems
unlikely this additional training would have affected the strategy
kea were using to make their sampling predictions across our
experiments, as this additional experience would have only con-
solidated whatever strategy kea were using at the time, be it the
use of relative frequencies or quantity heuristics. That is, the
learning of the kea was unstructured: both quantity heuristics and
domain-general statistical inference would have worked to solve
several of the early problems presented to kea, yet kea clearly
mirrored the type of statistical inferences made by humans and
the great apes when solving these problems.

It is currently unclear how infants, apes and the kea in this
study extract statistical information. In particular, as Denison and
Xu?® note, it is not yet clear if subjects make inferences using
discrete or continuous quantity representations, but this does not
detract from the results here; either way, subjects were extracting
information about the relative frequencies of objects, using it to
make predictions about the relative probability of reward
(Experiment 1), and then integrating these judgements with both
physical (Experiment 2) and social (Experiment 3) information.
One key area for future work will be determining exactly how
statistical information is extracted and represented by humans,
apes and kea.

Birds last shared a common ancestor with humans at least 312
million years ago’!. This evolutionary distance suggests that
domain-general statistical inference may have arisen twice on our
planet via convergent evolution. However, further work is
required over a wider range of avian and primate species to
provide a more accurate evolutionary account of when statistical
inference has emerged in different taxa, and so test this hypoth-
esis further.

The statistical inference abilities observed in our study are
particularly interesting given that birds have brains with a much
smaller absolute size than humans, a very different structure®’,
and much higher neuronal densities’2. Our results therefore
suggest that (i) aspects of domain general thought can evolve
multiple times, rather than being a one off or a product of a
highly unlikely sequence of evolutionary events and (ii) that a
particular brain architecture, specifically a layered cortex, is not
necessary for this type of higher-order intelligence to evolve. This
has important implications not only for our understanding of
how intelligence evolves, but also for research focused on creating
artificial, domain general thought processes (artificial general
intelligence), specifically on the degree to which such processes
should mirror mammalian cortical processes and structures’3-7°,

Methods

Subjects and apparatus. Our subjects were six male kea at Willowbank Wildlife
Reserve (see Supplementary Table 1). Kea were housed in a large outdoor aviary,
where food and water were available ad libitum. Participation in the study was
voluntary and subjects were free to leave mid-session at any point. This research

was conducted under ethics approval from The University of Auckland Ethics
Committee (reference number 001816).

Each subject was allocated an individual training platform (42 cm x 42 cm)
within the aviary on which they were tested. Performance in trials was rewarded
with soaked Science Hill Diet pellets. A small wooden shelf (60 cm x 20 cm) with a
plexiglass screen (43 cm x 29 cm) was used to separate subjects from the apparatus
and the experimenter during testing. Transparent jars (210.5 cm, 16 cm tall) were
used during training and testing which contained populations of either rewarding
(black) or unrewarding (orange) wooden tokens (7 cm x 1 cm x 1 cm). Each jar
held a maximum of 120 tokens. When the jars were too large for a population of
tokens, tokens sat on a cardboard platform that was placed inside the jar, to ensure
subjects could not see the experimenter’s hands during sampling. Semicircular
cardboard lids (211.5 cm, 5.5 cm tall) were attached to the top of each jar to ensure
subjects could not see which tokens were being sampled. Where barriers were used,
a blue foam disk (210.5 cm, 1 cm thick) was added into the jar.

Training and procedures. Throughout training and testing, subjects were required
to select which of two closed hands contained an out-of-sight rewarding token,
while ignoring the hand containing the unrewarding token. The rewarding token
would then be exchanged with the experimenter for a food reward. Where subjects
attempted to exchange an unrewarding token, this was taken by the experimenter
but not rewarded.

Subjects were trained to attend to and track hand trajectories for a previous
study. Subjects were trained specifically for this study on hand tracking so that they
could follow the motion of sampling, and making inferences about sampling from
token populations in two jars, by selecting a hand that picked a rewarding token
from a population of 100% rewarding tokens, over a hand that sampled from a
population of 100% unrewarding tokens (see Supplementary Methods). In order to
allow for a full counterbalancing of trial presentations at test and minimise side
biasing, subjects were also taught to simultaneously attend to the side on which jars
were placed and whether hands were presented in parallel or crossed over. This was
trained over four separate training steps (outlined in detail in the Supplementary
Methods).

Before each experimental session, subjects were given motivation trials, where
they had to select and exchange a rewarding (black) token and ignore a nearby
unrewarding (orange) token with the experimenter three times in a row, prior to
the start of the session. This ensured subjects were eager to work and remembered
which of the two tokens they should search for at test. Testing was carried out by
three experimenters who were blind to experimental design and hypotheses,
wearing mirrored sunglasses. Subjects only proceeded to the next testing condition
or experiment upon reaching a criterion of 17/20 correct choices within the same
block, or completing 240 trials (12 blocks) without reaching criterion. This ensured
that subjects were confident in the current task before proceeding to a more
demanding one. Throughout testing, hand presentation (parallel or crossed), and
location of the rewarding hand at time of choice were all pseudorandomised and
counterbalanced within blocks of 20 trials. Throughout training and testing, kea
could only see the experimenter’s hand disappear behind the cardboard occluder
on the top of the jar. Therefore, subjects were unable to see how far down the
populations the experimenter’s hand reached, or which token it sampled from the
population. In test conditions with very disparate ratios of rewarding-to-
unrewarding tokens, we ensured that at least two tokens from the minority
population were fully visible to the subjects in every trial.

Experiment 1. This experiment investigated whether kea are able to make statis-
tical inferences about two populations of objects using relative frequencies. Over
three conditions, we tested whether (1) kea would prefer a sample from a popu-
lation containing a majority of rewarding tokens, as opposed to a population where
they were in the minority, and whether kea rely on relative frequencies, (2) the
absolute number of rewarding tokens or (3) the absolute number of unrewarding
tokens, when choosing between samples from two populations. Illustrations for the
three conditions are provided in Fig. 1.

The first condition aimed to test whether kea would prefer a sampled token
from a population where there was a higher probability of randomly sampling a
rewarding token, as opposed to a population where there was a higher probability
of sampling an unrewarding token. Two jars were presented: one contained a 1:5
ratio of rewarding-to-unrewarding (rewarding-to-unrewarding tokens), and the
other contained a 5:1 rewarding-to-unrewarding ratio. Both jars contained 120
tokens in total.

The second condition tested whether kea were making their choices based on
absolute frequencies or relative frequencies. In order to make this distinction,
subjects were presented with two jars containing the same number of rewarding
(black) tokens, in differing proportions. One jar had a 1:5 rewarding-to-
unrewarding population of 120 tokens, whilst the other had a 5:1 rewarding-to-
unrewarding population of 24 tokens. If kea were using the absolute number of
rewarding tokens to guide their choices, we predicted they would choose at chance.
If, in contrast, they were taking into account the relative proportion of rewarding-
to-unrewarding tokens, we predicted they would choose the jar with only four
unrewarding tokens.

In the third condition, we presented subjects with two jars containing the same
number of unrewarding tokens: one jar had a 57:63 rewarding-to-unrewarding
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population (120 tokens total), whilst the other had a 3:63 rewarding-to-
unrewarding population (66 tokens total). If kea were simply selecting the jar
containing the fewest unrewarding tokens rather than comparing between the
frequencies of token populations between jars, they should perform at chance in
this condition.

Experiment 2. This experiment investigated whether kea are able to integrate
physical constraints into their sampling inferences. We first gave kea both ego-
centric and allocentric experience of a foam barrier. Kea were first allowed to
sample from two small jars (26 cm, 7.5 cm tall) where a population of 20 rewarding
tokens was either physically accessible or impeded by a barrier, then observed as an
experimenter attempted to sample from two populations with a similar config-
uration (details of training are provided in the Supplementary Methods). Over two
conditions, we presented kea with two populations of tokens which were split in
the middle by physical barriers, and tested whether kea understood that only the
population above the barrier could be sampled from. Both conditions are illustrated
in Supplementary Table 1.

In the first condition, both jars each contained 40 rewarding and 40 unrewarding
tokens. One jar had a 1:1 rewarding-to-unrewarding population (40 tokens) both
above and below the barrier, and the other had a 5:1 rewarding-to-unrewarding
population (24 tokens) above the barrier and 5:9 rewarding-to-unrewarding
population (56 tokens) below it. This was used to test whether kea were simply
attending to which jar had the largest number of rewarding tokens near the top,
which should lead to performance at chance, as opposed to comparing between the
relative frequencies of tokens for the two accessible populations. Subjects were also
expected to perform at chance in this condition if they were comparing between the
token frequencies of the two jars without taking the barrier into account, as both jars
contained the same absolute number and relative frequencies of rewarding and
unrewarding tokens, 1:1 (40 rewarding, 40 unrewarding).

The second condition was identical, but with reversed proportions: one jar had
a 1:1 rewarding-to-unrewarding population of 40 tokens above and below the
barrier, whilst the other had a 1:5 rewarding-to-unrewarding population (24)
tokens above the barrier and the remaining 9:5 rewarding-to-unrewarding
population below it. This condition tested whether kea were selecting the jar with
the fewest unrewarding tokens near the top, in which case they should perform at
chance, or comparing between the relative frequencies of the two accessible
populations in the two jars. Again, both jars contained the same absolute number
and relative frequencies of rewarding and unrewarding tokens.

Experiment 3. Experiment 3 tested whether kea could take a biased sampler’s
biases into account during a sampling event. Two experimenters were randomly
assigned and counterbalanced between birds as either unbiased (hereafter ‘E2’) or
biased (hereafter ‘E1’). The procedure was based on the study by Eckert and
colleagues?? with chimpanzees, and required four experience phases.

In the first phase, we ensured that kea could tell the difference between the two
experimenters: E1 and E2 stood next to each other and either picked up a food
pellet or nothing into their right hand, then closed their fist. E1 and E2 either
switched sides or stood on the same side for 5 s, before calling the subject’s name in
turn and presenting their hands simultaneously for the subject to make a choice.
The experimenter’s sides, the order of their actions, whether or not they switched
sides (and whether the experimenter that switched sides did so by walking behind
or in front of the other), and the order in which the subject’s name was called, were
all pseudorandomised and counterbalanced within sessions of ten trials. Subjects
received this training until they achieved a 17/20 criterion.

Following this, subjects were given a preference test. E1 and E2 offered an
empty hand to the subject as it held a rewarding token. The subject then had a
choice of whom to deliver the token to, in exchange for a reward. Which
experimenter placed the token on the platform and the side on which each
experimenter stood were pseudorandomised and counterbalanced within blocks of
20 trials. In order to proceed to the next stage, subjects were required to show no
preference for either experimenter, that is, select E1 at between 9/20 and 11/20.

Subjects then observed demonstrations by the two experimenters where they
had the opportunity to learn that E2 picked randomly from a population of tokens,
whilst E1 acted as a biased sampler. For the demonstration, E1 and E2 stood next to
each other and neither wore mirrored sunglasses so the kea could see their eyes. E2
always had a 10:1 rewarding-to-unrewarding population of 110 tokens, whilst E1
always had a 1:10 rewarding-to-unrewarding population of 110 tokens. Therefore,
based on sampling probability alone, E2 was far more likely to sample a rewarding
token than E1. During the demonstrations, E1 and E2 took turns sampling, and E2
always tilted their heads back and looked up whilst sampling, whilst E1 lowered
their heads close to the jar and looked into it as they made a choice, keeping their
hands in the jar for 3 s. Both experimenters always sampled a rewarding token, so
that they were equally reinforced. After sampling, either both experimenters stood
on the same side for 5's, or switched sides, before presenting their closed fists to the
subject simultaneously. Which side each experimenter stood on, who sampled first,
whether or not they switched sides (and whether they did so by going behind or in
front of the other experimenter), were all pseudorandomised and counterbalanced
within sessions of ten trials. In order to proceed to the next experience phase,
subjects had to select E1 at 9/20 or above, showing that they had no preference for
E2 and were therefore not simply attending to the token populations within jars

during demonstrations. All subjects passed this criterion within 20 trials except for
Neo, who experienced two blocks (40 trials) of demonstrations.

The final experience phase before test was a memory probe. In this phase, E2
presented each bird with a block of 20 trials where 2 jars of 120 tokens each
contained either 100% rewarding or 100% unrewarding tokens. E2 wore mirrored
sunglasses for this phase, and presented their hands in parallel or crossed over, as
in previous experiments. This was done by E2 because they were the unbiased
experimenter. We predicted that if greater exposure to one or another person
before test could affect test results, then carrying out an extra set of trials with E2
would make the choice of E1 less likely at test. Similarly, an increased number of
positive ‘rewarding token’ experiences with E2 should make the choice of E1 less
likely at test. Jar sides and hand presentation were counterbalanced and
pseudorandomised. This phase ensured that subjects could and would still attend
to the contents of jars following the demonstrations, and had not simply learned to
ignore jar contents during the demonstration phase.

Subjects were then given the experimental task. They observed three trials of
demonstrations identical to before, and then jars were swapped to 1:1 rewarding-
to-unrewarding populations of 110 tokens. Based on token probability alone, E1
and E2 were now equally likely to sample a rewarding token. However, E1 and E2
behaved in identical fashion to demonstration trials, suggesting that they were
biased and unbiased samplers, respectively. At test, E2 sampled truly randomly,
whilst E1 continued to sample only the rewarding token in each trial. We expected
that if kea understood that E1 was a biased sampler, they should choose them
significantly above chance.

Analyses. All trials were filmed and coded in situ. Subject performance was blind
coded for 10% of all video data and compared to in situ coded data. Inter-observer
reliability was high (Cohen’s kappa = 1.0).

Performance in the first 20 trials of each condition were analysed at the individual
level, using two-tailed Bayesian binomial tests with a test value of 0.5. We used
Bayesian correlation tests to investigate average performance across the first 20 trials
of each condition over trial number, and average performance on the first 20 trials of
each condition across the 6 experimental conditions. We used default parameters
(non-directional correlation, prior width = 1) for all correlation tests. These statistical
analyses were carried out in JASP 0.9.277. We followed the convention that a Bayes
factor (BF) < 0.33 shows substantial support for the null hypothesis, whilst a BF >
3 shows substantial support for the competing hypothesis’®.

We also analysed first-trial performance at the group level using a Bayesian
intercept-only model, using a Bernoulli distribution. We fitted our model to all
thirty-six first-trial data points, across all individuals and conditions. Intercepts
were given weakly informative Gaussian priors (M = 0, SD = 1), to reduce
overfitting. Reported pMCMC values reflect the probability of performance
differing from a 0.5 chance baseline. This analysis was conducted in R 3.4.17° using
the “brms” package®’. We used Stan to run Hamiltonian Monte Carlo
estimations®!.

All raw data is available in Supplementary Data 1. Code and MCMC chain
diagnostics are also provided as Supplementary Information.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Our full dataset is available in Supplementary Data 1.

Code availability
Our code, MCMC chain diagnostics, and prior distribution details are available in the
Supplementary Information file.
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