
datepacturn wioketoancaras
 asouswa

$\mathbb{S} \mathbb{U} \mathbb{P} \mathbb{P} \mathbb{I} M \mathbb{N} \mathbb{I}$

TO THE THIRD EDITION OF THE

ENCYCLOPAEDIA BRITANNICA,

 or,$$
\begin{gathered}
\text { D I C T I O N A R Y } \\
A R T S, S C I E N G E S,
\end{gathered}
$$

MISCELLANEOUS LITERATURE.

IN TWO VOLUMES.
[Illustrated with Fifty Copperplates.

> BY GEURGE GLEIG, LL. D. I R., DIv

$$
\begin{aligned}
\text { NON IGNORO, QUE BONA SINT, FIERI MELIORA POSSE DOCTRINA, ET QUFE NON OPTIMA, } \\
\text { ALIQUO MODO ACUI TAMEN, ET CORRIGIPOSSE.-CICERO. }
\end{aligned}
$$

VOL. II.

EDinburgh:

RRINTED FOR THOMSON BONAR, PARLIAMENT-SQUARE:
GY YOUN BRONN, ANCHOR CLOSE, EDINBURGH.
1801.

$$
\begin{aligned}
& \text { वस) } \times \text { n }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ", 310010v bitt } 85
\end{aligned}
$$

Encyclopedia Britannica,

1 N D

Increment, Inde:ermi-

INCREMENT, is the fmall increafe of a variable quantity. Newton, in his Treatife on Fluxions, calls thefe by the name Moments; and obferves, that they are proportional to the velocity or rate of increafe of the flowing or variable quantities in an indefinitely fmall time. He denotes them by fubjoining a cypher o to the flowing quantity whofe moment or increment it is ; this, $x 0$ the moment of x. In the dodtrine of In crements, by Dr Brooke Taylor and Mr Emerfon, they are denoted by points below the variable quantities; as x. Soine have alfo denoted them by accents underneath the letter, as x; but it is now more ufual
to exprefs them by accents over the fame letter; as x.
Method of INCREMENTS, a branch of Analyties, in which a calculus is founded on the properties of the fucceffive values of variable quantitice, and their differences or increments.

The inventor of the method of increments was the learned Dr Taylor, who, in the year 1715 , publifhed a treatife upon it; and afterwards gave fome farther account and explication of it in the Philof. Tranf, as applied to the finding of the fums of feries. And another ingenious and eafy treatife on the fame, was publithed by Mr Emerfon, in the year 1763. The method is nearly allied to Newton's Doctrine of Fluxions, and arifes out of it . Alfo the Differential method of Mr Stirling, which he applies to the fummation and interpolation of feries, is of the fame nature as the method of increments, but not fo gencral and extenfive.
indeterminate Problem. See Algebra, Part I Chap. VI. Encycl.

Diophrantus was the firlt writer on indeterminate problems, which, after the publication of his work in 1621 by Bachet, employed much of the time of the moft celebrated mathematicians in Europe. Af. terwards fuch problems were neglected as ufelefs, till the public attention was again drawn to them by Euler and la Grange. The example of fuch men was followed by Mr John Leflie, a very eminent and felftaught mathematician ; who, in the fecond vol. of the Tranfactions of the Royal Society of Edinburgh, has publifhed an ingenious paper on indeterminate problems, refolving them by a new and general principle. "The doctrine of indeterminate equations (faye Mr Leflie) has been feldom treated in a form equally fytematic

Suppl. Vol. II. Part I.

I N D
with the other parts of algebra. The folutions common- Indeternily given are devoid of uniformity, and often require a variety of affumptions. The object of this paper is to refolve the complicated exprefions which we obtain in the folution of indeteriminate problems, into fimple equations, and to do fo, without framing a number of affumptions, by help of a fingle principle, which, though extremely fimple, admits of a very extentive application.
"Let $\mathrm{A} \times \mathrm{B}$ be any compound quantity equal to another, $\mathrm{C} \times \mathrm{D}$, ard let m be any rational number affumed at pleafure ; it is manifett that, taking equimultiples, $\mathrm{A} \times m \mathrm{~B}=\mathrm{C} \times m \mathrm{D}$. If, therefure, we luppofe that $\mathrm{A}=m \mathrm{D}$, it mult follow that $m \mathrm{~B}=\mathrm{C}$, or $B=\frac{C}{m}$. Thus two equations of a lower dimenfion are obtained. If thefe be capable of farther decompofition. we may afurae the multiples n and p, and furm four equations ftill more fimple. By the repeated application of this principle, an higher equation, adin tting of divifors, will be refolved into thofe of the firlt order, the number of which will be one greater than that of the multiples affiumed."

For example, refuming the problem at firft given, viz. to find two rational numbers, the difference of the fquares of which fhall be a given number. Let the given number be the product of a and b; then by hypothefis, $x^{2}-y^{2}=a b$; but thefe compound quantities admit of an eafy refolution, for $\overline{x+y} \times \overline{x-y}=$ $a \times b$. If, therefore, we fuppofe $x+y=n a$, we fhall obtain $x-y=\frac{b}{m}$; where m is arbitrary, and if rational, x and y muft alfo be rational. Hence the refolution of thefe two equations gives the values of x and y, the numbers fought, in terms of m; viz.
$x=\frac{m^{2} a+b}{2 m}$, and $y=\frac{m^{2} a-b}{2 m}$.
INDUCTION, in logie, is that procefs of the underfanding by which, from a number of particuler truths perceived by fimple apprehenfion, and diligently compared together, we infer another truth which is always general and fometimes univerfal. It is perhaps needlefs to obferve, that in the procefs of induction the truths to be compared mutt be of the fane kind, or relate to objects having a fimilar nature ; for the mereft tyro in
nate,
induction.

1 N D $\quad[2]$

Induction. fcience knows that phyfical truths cannot be compared with moral tiuths, nor the truths of pure mathematics with either.

That the method of induction is a juft logic, has been fufficiently evinced elfewhere (fee Logic, Part III. chap. V. and Philosophy, n ${ }^{\circ} 73-78$. Encycl.), and is now indeed generally admitted. It is even admitted by Britifh philofophers to be the only method of reafoning by which any progrefs can be made in the phylical fciences; for the laws of Nature can be difcovered only by accurate experiments, and by carefully noting the agreements and the differences, however minute, which are thus found among the phenomena apparently fimilar. It is not, however, commonly faid that induction is the method of reafoning employed by the mathematicions; and the writer of this article long thought, with others, that in pure geometry the reafoning is ftrifly fyllogifical. Mature reflection, however, has

* Appenixled him to doubt, with Duetor Reid *, the truth of the to Vol. III generally received opinion, to donbt even whether by of Sket bes categorical fyllogifms any thing whatever can be proved.
ry of Maz. 'Io the idolaters of friftotle we are perfectly aware that this will appear an extravagant paradox ; but to the votaries of truth, we do not defpair of making it very evident, that for fuch doubts there is fome fonndation.

We are led into this difquilition to counteract, in fome degree, what we think the pernicious tendency of the philofophy of Kant, which attempts have been lately made to introduce into this country. Of this phitofophy we fhall endeavour to give fomething like a diftinct view in the proper place. It is fufficient to obferve here, that it refts upon the hypothefs, that "we are in poffeffion of certain notions à priori, which are abfoIutely independent of all experience, although the objects of experience correfpond with them; and which are dittin. guifhed by neceflity and frict univerfulity." Thefe innate and univerfal notions, Kant confiders as a fit of categories, from which is to be deduced all fuch knowledge as deferves the name of feience; and he talks, of courle, or at leaft his Englifh tranflators reprefent him talking, with great contempt, of inductive reafoning, and fubftituting fyllogiltic demonitration in its ftead.

As his categorits are not familiar to our readers, we fhall, in this place, examine fyllogifms connected with the categories of Arifotle, which are at leaft more intelligible than thofe of Kant, and which, being likewife general notions, muft, in argument, he managed in the fame way. Now the fundamental axiom upon which every categorical fyllogifm refts, is the well known propofition, which affirms, that "whatever may be predicated of a whole genus, may be predicated of every fpecies and of every individual comprehended under that genus." 'Гhis is indeed an undoubted truth; but it cannot conftitute a foundation for reafoning from the genns to the fpecies or the individual; becaufe we cannot polfibly know what can be predicated of the genus till we know what can be predicated of all the individuals ranged under it. Indeed it is only by afcertaining, through the medium of induction, what can be predicated, and what not, of a number of individuals, that we come to form fuch notions as thofe of genera and Species; and therefore, in a fyllogifm frietly categorical, the propofitions, which conttitute the premifes, and are taken for granted, are thofe alone which are capable of proof; whilt the conclufion, which the logician pre-
tends to demonflrate, mult be evident to intuition or Induetionz experience, otherwife the premifes could not be known to be true. The analyfis of a few fyllogifms will make this apparent to every reader.

1) Wallis, who, to an intimate acquaintance with the Ariftotelian logic, added much mathematical and phyfical knowledge, gives the following fyllogifm as a perfect example of this mode of reafoning in the firlt figure, to which it is known that all the other figures may be rednced:-

Omne animal eft fenfu praditum. Socrates ef animal. Ergo Socrates eft fenfu praditus.

Here the propofition to be demonftrated is, that Socrates is endowed with fenfe; and the propofitionis affumed as felf-evident truths, unon which the demonftration is to be built, are, that "every animal is endowed with fenfe;" and that "Socrates is an animal." But how comes the demonftrator to know that "every animal is endowed with fenfe?" To this queftion we are not aware of any anfwer which can be given, except this, that mankind have agreed to call every being, which they perceive to be endowed with lenfe, an animal. Let this, then, be fupoofed the true anfwer: the next queftion to be put to the demonftrator is, How he comes to know that Socrates is an animal? If we have anfwered the furmer queftion properly, or, in other words, if it be effential to this genus of beings to be endowed with fenfe, it is obvions that he can know that Socrates is an animal only by perceiving him to be endowed with finfe; and therefore, in this dyllogifm, the propofition to be proved is the very firt of the three of which the truth is perceived; and it is perceived intuitively, and noc inferred from others by a procefs of reafoning.
'Ihough there are ten categories and five predicables, there are but two kinds of categurical propolitions, viz Thofe in which the property or accident is predicated of the fubflance to which it belongs, and thofe in which the gemus is predicated of the fpecies or individual. Of the former kind is the propotition ple. tended to be proved by the fyllogrifm which we have confidered; of the latter, is that which is proved by the following :

$$
\begin{aligned}
& \text { Quicquid fenfu præditum, eft animal. } \\
& \text { Socrates eft fenfu præditus. Ergo } \\
& \text { Socrates eft animal. }
\end{aligned}
$$

That this is a categorical fyllogifm, legitimate in mode and figure, will be denied by no man who is not an abfolute ttranger to the very firlt principles of the Ariftotelian logic; but it requircs little attention indeed to perceive that it proves nothing. The impofition of names is a thing fo perfectly arbitrary, that the being, or clafs of beings, which in Latin and Englifh is called animal, is with equal propriety in Greek called 弓oov, and in Hebrew שב. 'To a native of Greece, therefore, and to an ancient Hebrew, the major propofition of this fyllogifn would have been wholly unintelligible; but had either of thofe perfons been told by a man of known veracity, and acquainted with the Latin tongue, that every thing endowed with fenfe was, by the Romans, called animal, he would then have underftood the propofition, admitted its truth without hefitation, and have henceforth

I N D

luduation, henceforth known that Socrates and Mofes, and every

$\xrightarrow{\sim}$

 thing elfe which he perceived to be endowed with fenfe, would at Rome be called animal. This knowledge, however, would not have refted upon demonftrative reafoning of any kind, but upon the credibility of his informer, and the intuitive evidence of his own fenfes.It will perhaps be faid, that the two fyllogifms which we have examined are improper examples, becaufe the truth to be proved by the former is feif evident, whilt that which is meant to be eftablithed by the latter is merely verbal, and therefore arbitrary. But the following is liable to neither of thefe objections:

All animals are mortal.
 Man is an animal; therefore Man is mortal.

Here it would be proper to afk the demonftrator, upon what grounds he fo confidently proneunces all animals to be mortal? The propofition is fo far from expreffing a felf evident truth, that, previous to the entance of fin and death into the world, the firft man had furely no conception of mortality. He acquired the notion, however, by experience, when he faw the animals die in fucceffion around him; and when he obferved that no animal with which he was acquainted, not even his own fon, efcaped death, he would conclude that all animals, without exception, are mortal. This conchution, however, could not be built upon fyllogittic reafoning, nor yet upon intuition, but partly upon experience and partly on analogy. As far as his experience went, the proof, by induction, of the mortality of all animals was complete; but there are many animals in the ocean, and perhaps on the earth, which he never faw, and of whofe mortality therefore he could affirm nothing but from analogy, i. e. from concluding, as the conftitution of the human mind compels us to conclude, that Nature is uniform throughout the univerfe, and that fimilar caufes, whether known or unknown, will, in fimilar circumflances, produce, at all times, funilar effeets. It is to be obferved of this fyllogifm, as of the firf which we have confidered, that the propofition, which it pretends to demonftrate, is one of thofe truths known by experience, from which, by the procefs of induction, we infer the major of the premifes to be true; and that therefore the realoning, if reafoning it can be called, runs in a circle.

Yet by a concatenation of fyllogifms have logicians pretended that a long feries of important truths may be difcovered and demonftrated; and even Wallis himfelf feems to think, that this is the inftrument by which the nathematicians have deduced, from a few poftulates, accurate definitions, and undeniable axioms, all the truths of their demonftrative fcience. Let us try the truth of this opinion by analyfing fome of Euclid's demonfrations.

In the fhort article Principle (Encycl.), it has been fhewn, that all our firft truths are particular, and that it is by applying to them the rules of induction that we form general truths or axioms-even the axioms of pure geometry. As this fcience treats not of real external things, but merely of ideas or concoptions, the creatures of our minds, it is obvious, that its definitions may be perfectly accurate, the induction by which its axioms are formed complete, and therefore the axioms themfelves univerfal propofitions. The ufe of thefe axioms

3 I N D

is merely to fhorten the different proceffes of geometri- In fu qione cal reafoning, and not, as has fometimes been abfurdly fuppofed, to be made the parents or caufes of particular truths. No truth, whether general or particular, can, in any lenfe of the word, be the caufe of another: truth. If it were not true that all individual figures, of whatever form, comprehending a portion of ipace equal to a portion comprehended by any other individual figure, whecther of the fame form with fome of them, or of a form different from them all, are equal to. oue another, it would not be true that "things in general, which are equal to the fame thing, or that magnitudes which coincide, or exactly fill the fame fpace," are refpectively equal to one another; and therefore thefirt and eight of Euclid's axioms would be falfe. So far are thefe axioms, or general truths, from being the parents of particular truths, that, as conceived by us, they may, with greater propriety, be termed their offspring. They are indeed nothing more than general expreffions, comprehending all particular truths of the fame kind. When a mathematical propofition cherefore is enounced, if the terms, of which it is compofed, or the figures of, which a certain relation is predicated, can be brought together and immediately compared, no demonftration is neceflary to point out its truth or fallehood. It is indeed intuitively perceived to be either compreherded under, or contrary to fome known axiom of the fcience; but it has the evidence of truth or falfehood in itfelf, and not in confequence of that axiom. When the figures or fymbols cannot be inmediately compared together, it is then, and only then, that recourfe is had to demonftration ; which proceeds, not in a feries of fyllogifms, but by a procefs of ideal menfuration or induction. A figure or fymbol is conceived, which may be compared with each of the principal figures or fymbols, or, if that cannot be, with one of them, and then another, which may be compared with it, till through a feries of well known intermediate relations, a comparifon is made between the terms of the original propofition, of which the truth or falfehood is then perceived.

Thus in the 47 th propofition of the firft book of Euclid's Elements, the author propofes to demontrate the equality between the fquare of the hypothenufe of a right angled triangle, and the fum of the fquares defcribed on the other two fides; but he does not proceed in the way of categorical fyllogifms, by raifing his demonftration on fome univerfal truth relating to the genus of fquares. On the contrary, he proceeds to meafure the three fquares of which he has affirmed a certain relation ; but as they cannot be immediately compared together, he directs the largeft of them to be divided into two parallelograms, according to a rule which he had formerly afcertained to be jutt ; and as thefe parallelograms can, as little as the fquare of which they are the conltituent parts, be compared with the fquares of the other two fides of the triangle, he thinks of fome inter. mediate figure which may be applied as a common meafure to the fquares and the parallelograms. Accordingly , having before found that a parallelogram, or fquare, is exactly double of a triangle flanding on the fame bafe and between the fame parallels with it, he conftructs triangles upon the fame bafe, and between the fame parallels with his parallelograms, and the fquares of the fides containirg the right angle of the original triangle; and finding, by a procefs formerly hewn to be juft,

I N D

Induatior. that the triangles on the bafes of the parallelograms are precifely equal to the tiangles on the bafics of the fquares, he perceives at once that the two parallelo. grams, of which the largeft fquare is compofed, mult be equal to the fum of the two leffer fquares; and the truth of the propofition is demionftrated.

In the courfe of this demonftration, there is not fo much as one truth inferred from another by fyllogijin, but all are perceived in fucceffion by a feries of fimple apprehenfions. Euclid, indeed, after finding the triangle conftructed on the bafe of one of the parallelograms to be equal to the triangle conftructed on the bafe of one of the fquares, introduces an axiom, and fays, "but the doubles of equals are equal to one another ; therefore the parallelogram is equal to the fquare." But if from this mode of expreffion any man conceive the axion or univerfal cruth to be the caufe of the truth more particular, or fuppofe that the latter could not be appiehended without a previous knowledge of the former, he is a ftranger to the nature of evidence, and to the procefs of generalization, by which axioms are formed.

If we examine the problems of this ancient geometrician, we fhall find that the trath of them is proved by the very fame means which he makes ufe of to point out the truth of his theorems. Thus, the firft problem of his immortal work is, "to defcribe an equilateral triangle on a given finite ftraight line;" and not only is this to be done, but the method by which it is done mult be fuch as can be thewn to be incontrovertibly juft. The fides of a triangle, linwever, cannot be applied to each other fo as to be immediately compared ; for they are conceived to be immoveable among themfelves. A common meafure, therefore, or fomething equivalent to a common meafure, mult be found, by which the triangle may he conftructed, and the equality of its three fides afterwards evinced ; and this equivalent Euclid finds in the circle.
liy conterplating the properties of the circle, it was eafy to perceive that all its radii mu? be equal to one another. He therefore directs two circles to be defrribed $f, 0 m$ the oppofite extremities of the given finite ftraight line, fo as that it may be the radius of each of them ; and from the point in which the circles interfect one another, he orders lines to be drawil to the extreme points of the given line, :ffirming that thefe three lines conftitute an equilateral triangle. To convince his reader of the truth of this affimation, he lias orly to put him in mind, that from the properties of the circle, the lines which he has drawn nuft be fach equal to the given line, and of courfe all the three equal to one another ; and this mutual equality is perceived by fimple apprehenfion, and not inferred by fyllogiftic reafoning. Euclid, indeed, by introducing into the demonftration his firf axiom, gives to it the form of a fyllogifin: but that fyllogifin proves nothing; for if the equality of the three fides of the triangle were not intuitively perceived in their pofition and the properties of the circle, the firt axiom would itfelf be a falchood. So true it is that categorical fyllogifms have nu place in grometrical reafoning; which is as frictly experimental and inductive as the reafoning employed in the various branches of phyfics.

But if this be fo, how cone the truths of pure geometry to be neceffary, fo that the contrary of any one
plyyfical truths are all contingent, fo that there is not one of them of which the direct contrary may not eafily be conceived?

That there is not one phyfical truth, of which the contrary may not be conceived, is not perhaps fo certain as has gencrally been imagined; but admitting the fact to be as.it has commonly been ftated, the apparent difference between this clafs of truths and thofe of pure geomet:y, may be eafily accounted for, without fuppoling that the former refts upon a kind of evidence totally different from that which fupports the fabric of the latter.

The objects of pure geometry, as we have already obferved, are the creatures of our own minds, which contain in them nothing concealed from our view. As the mathematician treats them merely as meafurable quantities, he knows, with the utmoft precifion, upon what particular properties the relation affirmed to fubfirt between any two or more of them mult abfolutely depend ; and he cannot poffibly entertain a doubt but it will be found to have place among all quantities having the fame properties, becaufe it depcids upon them, and upon them alone. His procefs of induction, therefore, by a feries of ideal meafurements, is always complete, and exhaufts the fubject ; but in phy fical enquiries the cafe is widely different. The futjeets which employ the phyfical enquirer are not his own ideas, and their various relations, but the properties, powers, and relations of the bodies which compofe the univerfe; and of thofe bodies he knows neither the fubftance, in. ternal Atructure, nor all the qualities: fo that he can very feldom difcover with certainty upon what particular property or praperties the phenomena of the carporeal world, or the relations which fublift among different bodies, depend. He expects, indeed, with confidence, not inferior to that with which he admits a mathematical demonftration, that any corporeal phenomenon, which he has obferved in certain circumftances, will be always obferved in circumftances exactly fimilar ; but the misfortune is, that he can very feldom be afcertained of this fimilarity. He does not know any one piece of matter as it is in itfelf; he cannot leparate its various. properties; and of coulfe cannot attribnite to any one property the effects or apparent effects which pruceed exclufively from it. Indeed, the properties of bodies. are fo clofely interwoven, that by haman means they cannot be completely feparated; and hence the moft cautious inveltigator is apt to attribnte to fome one or two properties, an event which in reality refults perhaps from many. (See Philosophy and Physics, Encycl.) This the geometrician never does. He knows perfectly that the relation of equality which fubfifts between the three angles of a plain triangleand two right angles, depends not upon the fize of the triangles, the matter of which they are conceived to be made, the particular place which they occupy in the univerfe, or upon any one circumftance whatever befides their triangularity, and the angles of their corrolets being exactly right angles; and it is upon this power of difcrimination which we have in the conceptions of pure geometry, and have not in the objects of pliyfics, that the truths of the one fcience are perceived to be neceffary, while thofe of the other appear to be contingent ; though the mode of demonftration is the
fame

$1 \mathrm{NF} \quad[5]$

Inertia, fame in both, or at leaft equally removed from cate. Inflamma- gorical fyllogifms.

* See Me
moircs de
l'Academie
de Paris,

1760.

+ Fournal de Fbyifque, 1784 .

INER'TlA. See Drnamics and Impulsion in this Sufplement.

INFLAMMATI'?N has been fufficiently explained in the Eincyelopadia, and in the article Chemistry in this Sufplement ; but it cannot be improper, in this place, to give an account of fome remarkable

Spontonious Inflammaticns, which, as different fubffances, are liable to them, have been, and may again be, the canfe of many and great misfortunes

The fpontaneous inflammation of effential oils, and that of fome fat oils, when mixed with nitrous acid, are well known to philofophers; fo alfo is that of powdered charcoal with the fame acid (lately difcovered by M. Proutt), ant thofe of phofphorus, of pyrophorus, and of fuminating gold. Thefe fubftances are generally to be found only in the laboratories of chemilts, who are perfectiy well acquainted with the precautions which it is neceffary to take to prevent the unhappy accidents which may be occalioned by them.

The burning of a ftore houfe of fails, which happened at Brett in the year 17.7, was caufed hy the fpontaneous inflammation of fome oiled cloths, which, after having been painted on one fide, and dried in the fun, were fowed away while yet warm; as was fhewn by fubfequent experiments *.

Vegetables boiled in oil or fat, and left to themfelves, after having been preffed, inflame in the open air. This inflammation always takes place when the vegetabl_ 8 retain a certain degree of humidity ; if they are firft thooughly dried, they are reduced to afhes, without the appearance of flame. We owe the obfervation of thefe facts to MM. Saladin and Carette \dagger.

The heaps of linen rags which are thrown together in paper manufactories, the preparation of which is haitened by means of fermentation, often take fire, if not carefully attended to.

The fpontaneous inflammation of hay has been known for many centuries; by its means houfes, barns, \&x. have been often reduced to ames. When the hay is laid up damp, the inflammation often happens ; for the fermentation is then very great. This accident very feldom occurs to the firlt hay (according to the obfervation of M . de Bomare), but is much more common to the fecond ; and if, through inattention, a plece of iron fhould be left in a ftalk of hay in fermentation, the inflammation of that ftalk is almoft a certain confequence. Corn heaped up has alfo fometimes produced inflammations of thas nature. Vanieri, in Lis Pradium Rujfic:am, fays,

Que vero (gramina) nondum fatis infolata recondens Imfr udens, fubitis puriunt incendiu fammis.
Dung alfo, under certain circumfances, inflames fpontaneoully.

In a paper, pablifhed in the Repcrtory of Arts and Manufadures, by the Rev. Witlian 'Tooke, F. R. S. \&c. we have the following remarkable inftances of fpontaneous infammation. " A perfon of the name of Ruide, an apothecary at Bautzen, hed prepared a pyrophorus from rye-bran and aluin. Not long after he had made the dilcovery, there broke out, in the next village of Naunlitz, a great fire, which did much mifchief, and was faid to have been occalioned by the treat-
ing of a fick cow in the cow-houle. Mr Riide knew, Inflamma that the countrymen were ufed to lay an application of parched rye-bran to their cattle for cating the thick neek ; he knew alfo, that alum and rye bran, by a proper procefs, yielded a pyrophorus ; and now he withed to try whether parched rye bran alone would lave the fame effeit. Accordingly, he roalled a quantity of ryebran by the fire, till it had acquired the colour of roafted coffee. This roafted bran he wrapped up in a linen cloth; in the fpace of a few minutes there arofe a ftong fmoke through the cloth, accompanicd by a fmell of burning. Not long afterwards the rag grew as black as tinder, and the bran, now hecome hot, fell through it on the ground in little balls. Mr liüje repeated the experment at various times, and always with the fame refult. Who now will any longer doubt, that the frequency of fires in cow looufes, which in thofe parts are moftly wooden buldings, may not be occafioned by this common practice, of binding roafted bran about the necks of the cattle? The fire, after confuming the cattle and the fhed, communicates itfelf to the adjoining buildings; great damage enfues; and the ignorant look for the caufe in wilful and malicious firing, confequently in a capital crime."

The fame author informs us, that in the fpring of the year 1780 , a fire was difcovered on board a Ruffian frigate lying in the road of Cronftadt ; which, if it had not been timely extinguifhed, would have endangered the whole fleet. After the feveref fcrutiny, no caufs of the fire was to be found; and the matter was forced to remain without explanation, but with ftrong furmifes of fome wicked incendiary being at the bottom of it. In the month of Augut, in the fame year, a fire broke out at the hemp-magazine at St Pcterfourgh, by which feveral hundred thoufand poods \ddagger of hemp and flax were \ddagger A pood confumed. The walls of the magazine are of trick, cantifts of the floors of flone, and the rafters and covering of ron; ;u poundo. it ftands alore on an ifland in the Neva, on which, as Rup, ir 36 well as on board the fhips lying in the Neva, no fire is permitted. In St Peterfburgh, in the fame year, a fire was difcovered in the yaulted thop of a furrier. In thefe fhops, which ate all vaults, neither fire nor candle is allowed, and the doors of them are all of inon. At lengtl the probable caufe was found to be, that the furrier, the evening before the fire, had got a roll of new cere-cloth (much in ufe here for covering tables, counters, \&c. being eafily wiped and kept clean), and had left it in his vault, where it was found almolt confumed.

In the night Letween the 20 th and 2 It of April 17 $\times 1$, a fire was feen on board the frigate Maria, which lay at anchor, with feveral other flips, in the road off the illand of Crontadt ; the fire was, however, foon extinguifhed; and, by the fevereft examination, ti,tle or nuthing could be exturted concerning the manner in which it had ar fen. The gari ifon was threatened with a tcrutiny that fhould colt them dear ; and while they were in this cruet tate of fulpence, all order came from the fovereign, which quieted their minds, and gave rife to fome vely fatisfactory experiments.

It having been found, upon juridical examination, as woll as private inquiry, that in the fip's cabin, when the fmoke appeared, there lay a bundle of matting, containing kuffian lamp. black prepared from firfoot, nooitened with hemp ou varnith, which was perceived

I N F [6] I N F

Inflamma- to have fparks of fire in it at the time of the extinction, tioll. the Ruffian admiralty gave orders to make various ex-
periments, in order to fee whether a inixture of hempoil varnih and the forementioned Ruflian black, folded up in a mat and bound together, wonld kindle of itfelf.

They thook 40 pounds of fir-wood foot into a tub, and poured about 35 ponnds of hemp oil varnifh upon it ; this they let fland for an hour, after which they poured off the oil. The remaining mixture they now wrapped up in a mat, an.. the bundle was laid clofe to the cabin, where the midhipmen had their birth. 'To avoid all fufpicion of treachery, two officers fealed both the inat and the door with their own feals, and ftationed a watch of four fea officers, to take notice of all that paffed the whole night through; and as foon as any fimoke flould appear, immediately to give information to the commandant of the port.

The experiment was made the 26 th of λ pril, about 11 o'clock A. M. in prefence of all the officers named in the commiffion. Early on the following say, ahout fix o'clock A. M. a fmoke appeared, of which the chief commandant was immediately informed by an offeer: he came with all poffible fpeed, and throngh a fmall hole in the door faw the mat fmoking. Without opening the door, he difuatclied a meffenger to the meinbers of the commifion ; but as the fmoke became ftronger, and fire began to appear, the chief commandant found it neceffary, without waiting for the members of the commiffion to break the feals and open the door. No fooner was the air thus admitted, than the mat bigan to burn with gleater force, and prefently it burft into a flame.

The Ruffian adıniralty, being now fully convinced of the felf-enkindling property of this compolition, tranfmitted their experiment to the Imperial Academy of Sciences ; who appointed Mr Georgi, a very learned and able adjunct of the academy, to make farther experiments on the fubject. Previous to the relation of thefe experiments, it is neceffary to obferve, that the Ruffian fir-black is three or four times more heavy, thick, and unctuous, than that kind of painters black which the Germans call kien-rabm. The former is gathered at Ochta, near St Peterfourgh, at Mofco, at Archangel, and other places, in little wooden huts, from refinous fir-wond, and the unctuous bark of birch, by means of an apparatus uncommonly funple, confifting of pots without bottoms fet one upon the other; and is fold very cheap. The famous fine German kien-ralm is called in Ruffia Holland's black. In what follows, when raw oil is fuoken of, it is to be underftood of linfeed. wil or hemp oil ; but moft commonly the latter. The varnith is made of five pounds of hemp oil boiled with two ounces and a half of minium. For wrapping up the compofition, Mir Ceorgi made ufe of coarle liemplinen, and always fingle, never double. The impregnations and commixtures were made in a large wooden bowl, in which they flood open till they were wrapped up in linen.

Three pounds of Ruffian fir-black were nowly impregnated with five pounds of hemp-oil varnifh; and when the mixture had tlood open five hours, it was bound up in linen. By this procefs it became clotted; but fome of the black remained dry. When the bunclle had lain fixtcen hours in a cheft, it was obferved to emit a very naufeous, and rather putrid, fmell, not quite
unlike that of boiling oil. Some part of it became Inflamme warm, and fteamed much; this Iteam was watery, and by no means inflammable. Eighteen hours after the mixture was wrapied up, one place became brown, emitted funoke, and directly afterwards glowing fire appeared. The fame thing happened in a fecond and a thied place, though other places were fcarctly warm. The fire creot flowly around, and gave a thick, grey, ftinking fmoke. Mr Georgi took the bunale out of the chelt, and laid it on a fone pavement; when, on being expoled to the free air, there arofe a flow burning flame, a fpan high, with a ftrong body of fmoke. Not long afterwards there appeared, here and there, feveral claps or clefts, as from a little volcano, the vapour iffining from which buit into flame. On his breaking the lump, it burlt into a very violent fiame, full thece feet liggh, which foon grew lefs, and then went out. 'I he fmoking and glowing fire lafted for the face of fix hours; and aftel wards the remainder continned to glow without fincke for two hours longer. 'The giey earthy a:hes, when cold, weighed five ounces and a half.

In another experiment, perfectly fimilar to the fore* going, as far as relates to the compolition and quantities, the enkindling did not enfue till 41 hours after the impregnation : the heat kept increafing for three hours, and then the accenfion followed. It is worthy of remark, that thefe experiments fucceeded better on bright days than on fuch as were rainy ; and the accention came on more rapidly.

In another experiment, three pounds of Ruffian firblack were nowly ins pregnated with three pounds of raw hemp-oil; and the accenfion enfued after nige hours.

Three quarters of a pound of German rabm were fowly impregnated with a pound and a half of hemp. oil varnifh. The mixture remained 70 hours before it became hot and reeking: it then gradually became hotter, and emitted a ftong exhalation; the effluvia were moift, and not inflammable. The reaction lafted 36 hours, during which the heat was one while ftronger, and then weaker, and ac lengtl quite ceafed.

Stove or chimney foot, mottly formed from birchwood fmoke, was iningled with the abuve-mentioned fubitances and tied up ; the compound remained cold and quiet.

Ruffian fir-black, mixed with equal parts of oil of turpentine, and bound up, exhibited not the leaft reaction or warmth.

Birch oil, mixed with equal parts of Ruffian firblack, and bound up, began to grow warm and to emit 2 volatile fmell; but the warnith foon went off again.

From the experiments of the admiralty and of Mr Georgi, we learn, not only the decilive certainty of the felf-accenfion of foot and oil, when the two fubftances are mixed under certain circumftances, but alfo the following particulars :

Of the various kinds of foot, or lamp-black, the experiments fucceeded more frequently and furely with the coarfer, more metuous, and heavier, like Ruffian painters black, than with fine light German rabm, or with coarfe chimney-foot. In regard to oils, only thofe experiments fucceeded which weremade with drying ouls, either raw or boiled. 'The proportions of the foots to the oils were, in the fuccefsful experiments, very various; the mixture kindled with a tenth, a fifth, a third.

Inflamma. with an equal, and likewife with a ciouble, proportion tion. of oil. In general, however, nuch more cepends on the mode of mixture, and the manipulation, and, as Mr Georgi often obferved, on the weather; for in moift weather the bundles, after becoming warm, would frequently grow cold again.

The inftances of fpontaneous inflammation hitherto mentioned have been only of vegetable fubftances; but we have examples of the fame thing in the animal kingdom. Pieces of woollen cloth, which had not been fcoured, took fire in a warehoufe. The fame thing happened to fome heaps of woollen yarn; and fome pieces of cloth tonk fire in the road, as they were going to the fuller. Thefe inflammations always take place where the matters heaped up preferve a certain degree of humidity, which is neceffary to excite a fermentation ; the heat refulting from which, by drying the oil, teads them infenfibly to a flate of ignition; and the quality of the oil, being more or lefs deficcative, very much contributes thereto.

The woollen ituff prepared at Sevennes, which bears the namie of Emperor's ftuff, has kindled of itfelf, and burnt to a coal. It is :ot unufual for this to happen to woollen ftuffs, when in hot fummers they are laid in a heap in a room but little aired.

In June 1781, the fame thing happened at a woolcornber's in a manufacturing town in Germany, where a heap of wool combings, pled up in a clofe warehoufe feldom aired, took fire of itfelf. This wool had been by little and little brought into the warehoufe; and, for want of rooin, piled up very high, and trodden down, that more might be added to it. That this combed wool, to which, as is well known, rape-oik mixed with butter is ufed in the combing, burnt of itfelf, was fworn by feveral witneffes. One of them af. firmed that, ten years before, a fimilar fire happened among the flocks of wool at a clothier's, who had put them into a cafk, where they were rammed hard, for their eafier conveyance. This wool burnt from within outwards, and became quite a coal; it was very certain that neither fire nor light had been ufed at the packing, confequently the above fires arofe from fimilar caufes. In like mamer, very credible cloth-workers have certified, that, after they have bought wool that was become wet, and packed it clofe in their warehoufe, this wool has burnt of itfelf; and very ferious confequences might have followed, if it had not been difcovered in time.

Nay, there are inflances, though they be but rare, of human bodics being confumed by fonitaneous inflammation. In the Philofophical Tranfactions, and in the Memoirs of the Acadenies of Paris and Copenhawren, it is related that an Italian lady (the Counters Cornelia Bandi) was entirely reduced to athes, except her legs; that an Englifh woman, called Grace Pitt, was almoft entirely confumed by a fpontaneous inflammation of her vifcera : and, laftly, that a prieft of Bergamo was confumed in the fame manner. Thefe fpontaneous inflammations have been attributed to the abufe of fpirituous liquors; but though the victims of intemperance are indeed very numitious, thefe certainly do not belorg to that number.

The mineral kingdom alfo often affords inflances of fpontaneous inflammation. Pyrites heaped up, if wetted and expofed to the air, take fire. Pitcoat alfo, laid in heaps, under certain circumftances, inflames fponta-

7] I N K

neoufly. M. Duhamel has defcribed two inflammations Inflamma. of this nature, which happened in the magazines of Breft, in the years 1741^{1} and 1757 . Cuttirgs of iron, which liad been lff in water, and were afterwards Inik. expoled to the opell air, gave fparks, and fet fire to the neighbouring bodies. For this obfervation we are obliged to M. de Charpentier.

The caufes of thefe phenomena the chemift will affign; but they are here recorded as a warning to tradefmen and others. It is evident, from the facts which have been related; that foontancous inflammations being very frequent, and their caufes very varions, too much attention and vigilance cannot be ufed to prevent their dreadful effects. And confequently it is impoffible to be too careful in watching over public magazines and ftorehoufes, particularly thofe belonging to the ordnance, or thofe in which are kept hemp, cordage, lampblack, pitch, tar, oiled cloth3, \&c. which Inbflances ought never to be left heaped up, particularly if they have any moifture in them. In order to prevent any accident from them, it would be proper to examine them often, to take notice if any heat is to be obferved in them, and, in that cafe, to apply a remedy inmediately. Thefe examinations fhould be made by day, it not being advifable to carry a light into the magazines; for when the fermentation is fufficiently advanced, the vapours which are difengaged by it are in an inflammable llate, and the apporoach of a light might, by their means, fet fire to the fubflances whence they proceed. Ignorance of the fore-mentioned circum?ances, and a culpable negligence of thofe precautions which ought to be taken, have often caufed more misfortunes and lofs than the moft contriving malice: it is therefore of great importance that thefe facts flould be univerfally known, that public utility may reap from them every poffible advantage.
informed Stars, or Informes Stelle, are fuch fars as have not been reduced into any conftellation; otherwife called Sporades.-There was a great number of this kind left by the ancient aftronomers ; but Hevelius, and fome others of the moderns, have provided for the greater part of them, by making newo coriftellations.

Sympathettic INK is an old invention. Among the methods by which Ovid teaches young women te deceive their guardians, when they write to their lovers, he mentions that of writing with new milk, and of making the writing legible by coalduft or foot.

> Tuta quaque ef, fullitque oculos, e lade recenti Litura: carbonis pulvere tunge, leges.

It is obvious, that any other colourlefs and glutinous juice, which will hold falt the black powder ftrewed over it, will anfwer the purpofe as well as milk; and therefore Pliny recommends the milky juice of certain plants to be ufed.
There are feveral metallic folutions perfectly colourlefs, or, at leaft, without any ftrong tint, which being wrote with, the letters will not appear until the paper be wafhed over with another colourlefs folution, or expofed to the vapour of it; but among all thefe there is none which excites more aftoniflment, or from which naturalifts can draw more conclufions, than that which confifts of a folution of lead in vegetable acid, and whicle by the vapour of arfenical liver of fulphur becomes black, even at a confiderable difance. This ink, whicts

1 N S

. Inle. may be ufed by conjurors, proves the fubtlety of vapour, and the porofity of bodies; as the change or colouring takes place even when the writing is placed on the other fide of a thin wall.
We knew before, that a folution of lead, treated in this manner, would anfwer the purpofe of a fympathetic ink (fee that article Encycl.) ; but we did not know, nor do we yet believe, that the fulphoric vapours will act upon the writing through a wall. Snch, however, is the affirmation of Profeffor Beckmann, who gives an account of a ftill more wonderful ink from Peter Borel. This author, in a book called Hiforiarum et obfervationum mecrico phyjsc. centurio quatuor, printed at Paris, firt in 1653, and afterwards in 1057, gives a receipt for making this ink, which he calls magnetic waters wobick nat at a dillance. The receipt is as follows:
"Let quick lime be quenched in commen water, and while quenching, let fome orpiment be added to it (this, howe ser, ought to be done by placing warm afhes under it for a whole day), and let the liquor be filtered, and preferved in a glafs bottle well corked. Then boil litharge of gold, well pounded, for half an hour with vinegar, in a brafs veffel, and filter the whole through paper, and preferve it alfo in a bottle clofely corked. If gon write any thing with this laft water, with a clean pen, the writing will be invifible when dry: but if it be wathed over with the firft water it will become inftantly black. In this, however, there is nothing afonifhing; but this is worderful, that thongh fheets of paper without number, and even a board, be placed between the invifible writing and the fecond liquid, it will have the fame effect, and turn the writing black, penetrating the wood and paper without leaving any traces of its action, which is certainly furprifing; but a fetid fmell, occafioned by the mutual action of the liquids, deters many from making the experiment. I am, how. ever of opinion, that I could improve this fecret by a more refined chemical preparation, fo as that it fhould perform its effeet through a wall. This fecret (fays Borel) I received, in exchange for others, from J. Broffon, a learned and ingenious apothecary of Montpelier."

For making a fympathetic ink of the fifth clafs mentioned in the Encyclopadia, the following procefs by M. Meyer may be worthy of the reader's notice. It was entered upon in confequence of a receipt for rofecoloured fympathetic ink fhewn to him by a traveller. In that receipt cobalt. was the principal ingredient, and therefore the firlt abject was to procure cobalt ; but M. Meyer, being un willing to facrifice pure pieces of cobalt of any confiderable fize, made choice of one, which was vifilly mixed with bifmuth, iron, and quartz. He endeavoured to feparate the bifmuth as much as poffible, and alfo the arferic, if it fhould contain any, by bringing it flowly to a red heat; and he fucceeded pretty well, as the bifmuth flowed from it in abundance; and the arfenic, the quantity of which was fmall, was volatilifed: many globules of 1 ,ifnuth fill adhered to it. By bringing it repeatedly to a red heat, and then quenching it in water, it was reduced to fuch a flate as to be eafily pulverifed. Having poured nitrous acid upon the powder, he obtained by digeflion a beautiful rofe red folu. fion; the filiceous earth was feparated in the form of a white flime, and by diluting it with water there was itpolited a white powdr, which was oxyd of hifmuth. The folution being filtered, he added to it a folution of
potaff, and obtained a precipitate inclining more to a linordinate, yellow than to a red coloirr. He again poured over it a little of the nitrous acid, by which a part of the oxyd was re-diffolved of a red colour: the remairing part, which had a dark brown colour, was oxyd of iron. From the folution, by the addition of potafh, a precipitate was formed, which was now reddifh. Having by this procefs obtained it pure, that he might now prepare from it the wifhed-for red ink, he diffolved the wafhen pure oxyd of cobalt in different acids. That diffolved in the nitrous acid with a mixture of nitre, gave a green ink like the common: that diffolved in the fulphurous acid, without the addition of falts, gave a reddifh ink, which remained after it was expofed to heat, and would not again difappear, even when a folution of nitre was applied; and that diffolved in the nusriatic acid, gave a green ink, darker and more beautiful than the common. By diffolving it, however, in the acetous acid, and adding a little nitre, he obtained what he had in view ; for it gave, on the application of heat, an ink of a red colour, like that of the rofa centifolia, which again difappeared when the paper became cold.

INORDINATE Proportion, is where the order of the terms compared is diftmbed or irregular. As, for example, in two ranks of numbers, three in each rank, viz. in one rank, - - 2, 3, 9, and in the other rank, - - 8, 24, 3, , which are proportional, the former to the latter, but in 2 different order, viz. - $2: 3:: 24: 3^{6}$, and $\quad-3: 9: 8: 24$. then, cafting out the mean terms in each rank, it is concluded that -
$2: 9:: 8: 36$,
that is, the firft is to the 3 d in the firft rank, as the firft is to the ad in the 2d rank.
INSECT'S (See Encycl.). a number of non defeript little animals was diffovered by La Martiniere the naturalit when accompanying Peroufe on his celebrated voyage of difcovery. Thefe animals he called infects. and to many of them he gave particular names. Of thefe wa hall give his defcription in this place, leaving our readers, as he has left his, to arrange them properly according oo the Linnean claffification.
" The infect, which is figured N° I. inlabits a fmall Plate prifmatic triangular cell, pointed at the two extremities, XXX . of the confiftence and colour of clear brittle ice; the body of the infect is of a green colour, fpotted with fmall bluif points, among which are fome of a golden tinge ; it is fixed by a ligament to the lower part of its finall habitation: its neck is terminated by a finall blackinh head compofed of three converging fcales, in the form of a hat, and enclofed between three fins, two of them large and channelled in the upper part (A) and one fmall, femicircular (B). When it is ditturbed, it inmediately withdraws its fins and its head into its cell, and gradually finks into the water by its own fpecific gravity. Fig. 2. reprefents $t l$: under fide of the prifm, fhewing in what manner it is cuannelled, in order to allow free pafage to the animal when it wifhes to fhut itfelf up in it. Fig. 3 . reprefents the profile of the fame. The movement carried on by the two larger fins, which are of a foftin cartilaginous fubltance, may be conpared to that which would be produced by the two hands joined together in the thate of pronation, and forming, alternately, two inclined planes and one horizontal plane: it is by meane of this motion that it fupports itelf on the top of the water, where it proba-

I N S
Infedus bly feeds on fat and oily fubltances on the furface of
thniturce, the fea." Our author found it near Nootka, on the $\underbrace{-}$ north-weft coa?t of America, during a calm.

Fig. 4. reprefents a collection of infects, as our author calls them, confifting only of oval bodics, fimilar to a foap bubble, arranged in parties of three, five, fix, and nine: among them are alfo fome folitary cnes. Thefe collections of globules, being put into a glafs filled with fea water, deferibed a rapid circle round the glafs by a common movement, to which each individual contributed by fimple compreffion of the fides of its body, probably the effeet of the re-action of the air with which they were filled. It is not, however, eafy to conceive how thefe diftinct animals (for they may be readily feparated without deranging their econony) are capable of concurring in a common motion. "Thefe confiderations (fays our author), together with the form of the animal, recalled to my mind, with much fatisfaction, the ingenious fyltem of M. de Buffon ; and I endeavoured to perfuade myfelf, that I was about to be witnefs to one of the moft wonderful plenomena of Na ture, fuppoing that thefe molecules, which were now employed in increafing or diminifhing their number, or performing their revolutions in the ghafs; would foon anfume the form of a new animal of which they were the living materials. My impatience led me to detach two from the moft numerous group, imagining that this number might perhaps be more favourable to the expected metainorphofis. I was, however, miftaken. Thefe I examined with more attention than the reft; and the following account is of their proceedings alone. Like :wo ftrong and active wreflers, they immediately rufhed ingether, and attacked each other on every fide: formetimes ore would dive, leaving its adverfary at the furface of the water; one would defcribe a circular movement, while the other remained at relt in the centre ; their motions at length became fo rapid as no longer to allow me to ditinguifh one from the other. Having quitted them for a fhort time, on my return I found them reunited as before, and amicably moving, round the edge of the glafs by their common exertions."

Fig. 5. reprelents a fingular animal, which has a confiderable refemblance to a little liza:d; its body is of a firm, gelatinous confiftence; its head is furnifhed on each fide with two fmall gelatinous horns, of which the two hindermof are fituate the furtheft inward: its body is provided with four open fan-like paws, and fone appendages near the infertion of the tail, and terminates like that of a lizard: the ridge of the back is divided the whole way down by a band of a deep blue; the reft of the body, as well as the infide of its paws, is of a bright filvery white. It appears to be very fluggifh in its motions; and when difturbed by the finger, merely turned itfelf belly upwards, foon afterwards refuming its former pofition. Fig. 6. reprefents it reverfed. Martiniere caught it during a calm at the landing place on the Bafhee Iflands.

INSTITUTE is a name which has lately been fubflituted for fchool or acadeny. Formerly inflitution, in the propriety of the Englifh language, was fometimes uled as a word of the fance import with infruction; and now infitute is employed, efpecially by the admirers of French innovations, to derote what had hitherto been called an academy. When royalty was abolifed in Suppl. Vol. II. Pait I.

9]
I N S
France, it would have been abfurd to continue the titiles infitute. Royal Academy of Sciences, Royal Academy of Inferiptions, \&ce ; but inttead of merely abolifhing the word royal, and fubftituting national in its Atead, it occurred to the fertile brain of Condorcet, to abolifh the feven academies themfelves, or rather to melt them all down into one great academy; to which was given the appellation of the

National Institute, or Nezo Academy of Arts and Sciences. This academy, founded on a decree of the new conflitution, was opened on the 9 th of December 1795, when 13enezech, the then minifter for the home department, attended, and the decree of foundation was read; which was to the following purport:
"The Academy of Arts and Sciences belongs to the whole republic, and Paris is its place of relidence. Its employment is to aim at bringing all arts and fciences to the utmof perfection of which they are capable. It is to notice every new attempt, and all new difcoveries, and to keep up a correfpondence with all foreign literary focicties. And by the particular orders of the Fxecutive Directory, its firft ftudies are to be directed to thofe fubjects which more immediately tend to the reputation and advantage of the French republic."

The acadeny is to confift of 288 members, half of whom are to refide in Paris, the other half in the departments ; and to them is to be added a certain number of foreignels, as honorary members, confined at prefent to twenty-four.

The academy is divided into three cleffes, cach clafs into fections, each fection to contain twelve members.
if chifs. Mathematics and natural philofophy. This clafs is divided into ten fections. 1. Mathematics. 2. Mechanical arts. 3. Altronomy. 4. Experimental philofopliy. 5. Chemittry. 6. Natural hiftory. 7. Botany. 8. Anatomy and animal hiftory. 9. Nedicine and furgery. 12. Animal œconomy, and the veteritiary fcience.
$2 d$ clafs. Morality and politics. This clafs conffifs of fix fections. 1. Aralyfis of fenfations and ideas. 2. Morals. 3. L.eginature. 4. Political cconomy. 5. Hiftory. 6. Geography.

3 d clafs. Literature and the fine arts. This claf3 confitts of eight fections. 1. Univerfal grammar. 2. Ancient languages. 3. Poctry. 4. Antiquities. 5. Painting. 6. Sculpture. 7. Archítecture. 8. Mufic.

For cach clafs a particular room in the Louvere is appropriated. No one can be a member of two claffes at the fame time, but a member of one clafs may be prefent at the meetings of any other. Each clafs is to print, yearly, an account of its tranfactions.

Four times a-year there are to be public meetings. On thefe occafions, the three claffes meet together. At the end of each year, they are to give a circumftantial account to the legiflative body of the progrefs inade in that year in the arts and fciences. The prizes given yearly by cach clafs are to be publicly notified at certain times. The fums requifite for the fupport of the inftitution are to be decreed ycarly by the legiflative bocis, upon a requifition made by the Executive Directory.

The firit forty.e.ght members were chofen by the Executive Directory, to whom the choice of the remaining members was corifided. To the members, refilentiary in l'aris, is referved the choice both of the depart-

Infitute. ment and the forcign members. On a vacancy in any clafs, three candidates are named by the clafs for the choice of the body at lange.

Each clafs is to have, at ite place of meeting, a collection of the products, both of nature and art, and a library, according to its particular wants.

The regulations of the inflitution, with refpect to the times of meeting, and its cmployments, are to be drawn up by the body at large, and laid before the legifative affembly.

The hall in which the body at large holds its meetings, forms part of the welt wing of the Old Louvre, at prefent called the Mufeum. It formerly went by the appellation of the Hall of Antiques (Salle des Antiques); and as long as the kings inhabited this part of the palace, was occupied by their guards, from which circum. ftance it obtained the name of the Hall des lient Suiffes. It was likewife appropriated to banquets and entertainments, given by the court on gala days; and it was to this place that Henry IV. was conveyed, on his affaffnation by Ravaillac, in the Rue de la Ferronnerie.

It was built at the fame time with the reft of this part of the Louvre, about the year 1528 , after the defigns of Picrre Lefcot, abbot of Clagny. It is 144 feet in length, and +0 in breadth, and holds from 1000 to 1200 perfons. In order to adapt it to its new deffination, the floor has been funk, which gives a greater air of lightnefs to the roof. In the centre flands a double table, in the form of a horfe-fhoe, fupported by fphinxes, at which the members of the inflitute take their feats. This table is furrounded by two tiers of benches, which are raifed for the accommodation of fpectators, who have likewife feats provided for them in the valt embrafures of the windows, and at each extremity of the hall.

Whether fcience will bc advanced by the feven royal academies having been melted into one, time muft determine; but candour compels us to acknowledge, that the proceedings of the national inflitute have hitherto been abundantly interefling. Intimately connected with the national inftitute is the French fylten of

National Instruction, which is likewife novel, and therefore fufficiently curious to deferve notice in a Work of this kind. When the Chriftian religion was abolifhed in France, it was inpoffible to continue the univerities and other feminaries which were founded by Chrifians, and obliged by their conftitution to teach, whether pure or not, the doctrines of Chriftianity. 'They were accordingly all fwept away, and a new fy.f. tem of education planned, which was to be carried on in what they call

The Primary Schools.
The Central Schools.
The School of Health.
The Sichool of Oriental Language3.
The Polytechnic School.
The National Inflitute.
The Jury of Public Inftruction.
The Commiffion of Public Inftruction.

The Legiffative Committec of Inftruction. And va. Infitiada rious other national eftablifhments for the improvement of particular fciences.

The firft degrec of public inftruction is to be met with in the Ecoles Primarées, eftablifhed by a decree of the convention of the fecond Pluviofe, in the fecond ycar of the repuolic (A). Every diftrict is furnilhed with one of thefe fchools; the profeffors or malters in which are paid from the national treafury; and to which every head of a family, without exception, is compelled by law to fend its clildren for initruction. The fubjects taught in thefe primary or clementary fchools ate divided into nine claffes:
$\mathrm{I} /$, Infructions connected with the phyfical and moral fituation of children, prior to their entering into thefe fchools. 2d. Similar inftructions as a guide to teachers in the national fchools. 3^{d}, 'The atts of reading and writing. 4th, The elements of French grammar. 5th, Elements of arithmctic and geometry, with the theory of the new menfuration. $6 t b$, The elements of geography. $T^{t h}$, Explanations of the principal phenomena and productions of nature. $\delta t h$, Elements of agriculture. 9 th, Elewencs of republican morals.

Next to the primary fchools in rank and confequence are the Ecoles Centrales, which were ctablithed by a decree of the Convention of the feventh Ventofe in the third year. They arc fituated in the capital of every department, bearing the proportion of one cential fehool to 300,000 inhabitants. In thefe fehools the republican youths are taught the fciences, and their application in real life. In each of them are proteflors for the following branches:

1. For mathematics. 2. Experimental philofophy and chemiftry. 3. Natural hiftory. 4. Agriculture and comunerce. 5. Logic and metaphyfics. 6. Political cconomy and legination. 7 . The philofophical hiltory of mations. 8. The art of healing. 9. Arts and manufa'tures. 10. Univerfal grammar. 11. The belles lettres. i2. The ancient languages. 13. The modenn larguages. 14. The tire arts.

Liach central fchool is furniflaed with an extenfive public library-a botanic garden-a cabinet of natural hiltory-an apparatus for experinental philofophy:and a colleetion of machines and models connected with the arts and manufactures.
The profeffors of each fchool hold, every month, a public fitting, in which conferences are held relative to fubjects cominected with the improvement of letters, the fciences, and the arts, which are the molt beneticial tofociety.

The object in the eftablifhment of the primary and central fchools was, the general inflruction of all claffes of the citizens; and it being incompatible with the perfeet completion of that important purpoic, to expect from thein the propagation of particular branches of fcience, it becane neceflary to eitablith other literary and fcientific academics.
Accordingly, the 1 rench government have founded, $1 f$, Schools of health (les ecoles die fante), in Paris, Strafburgh, and
(A) We wrould tranfate this chronological jargon into the language of Chriftian Europe, were we not perfuaded that the French calendar, the French conititution, and the French inflitutes, will have the fame duration: we truft in God not a long duration, For Pluviofe, and the other fantaftical names of months introduced inte this article, fee Revolution, Encycl. no 184.

Pnature, and Montpelier, where medicine and furgery are fludied; which fchools are affirmed, by thofe who find nothing wrong in France, to be the molt perfect of their kind, as well as new and unparalteled models for fuch inftitutions.
2.d, Two fchools for Oriental languages, in the national librarv, and in the college of France.

3d, The Polytechnic felool in Paris, or central feliool for the direction of public works. This eflablifhment is very generally admired and confidered as a model for imitation. It contains more than 400 young perfons, previoully educated in the mathematics, and the majority of them intended for encineers in various lines; and they labour under the immediate direction of their tutors nine hours every day. It occupies the priucipal part of the Palais de Bourbon in Paris, and is furnifhed with a large collection of inftruments and models. The jour. nal of the Polytechnic fchoot, which is publifteed by the bunkfellers Regent and 13ertrand at Paris, is a perfectly original work, and adiniratly calculated to convey ufeful information.

Of the uational inflitute a fufficient account has been given in the preceding article. We proceed therefore to the jury of pullic inftruction (Le 'fury Central d' Infirution), of which the princinal butinefs is to fuperintend the primary and central fchools. It appoints the profeffors in thefe fchools, and examines into their conduct. T.ike the legiflative body it is renewed by a third every half year. When they have chofen a profeffor for a central fchool, they fubmit their choice to the department; and, in cale of difapprobation, they make another appointment. To this jury of public inttruction the profeflors in the central fchools are amenable for all mifconduct connected with their offices; it may expel them, but all its decifions muft be fubmitted for confirmation to the tribunal of the department.
'there is alfo efiablifhed at Paris a fupreme council, called The Commiffion of Public Inftruction, to which is entrulted the whole executive department. 'The preServation of the national monuments, of public hibraries, mufeums, cabinets, and valuable collections; the fuperintendance of all the fchools and the modes of inttruction; all new inventions and fcientific difcoveries; the regulation of weights and meafures; national flatiftics and political economy, are all placed under the authority of this fupreme commiffion. For the commodious and regular execution of fo many complicated branches of butinefs, there is a large office, called Le Secretariat, which is divided into three departments.

1. For the regulation of the different kinds of inftruction; of the modes of education in the fchools; and for the choice of elementary books. 2. For weights and meafures ; inventions and difcoveries; libraries and bibliography ; mufeums, works of art, and literary rewards and encouragements. 3. For theatres, national fealts, republican inflitutions, and the erection of monuments.

As all public eftablifhments require the fuperintend. ance and occafional correetion of the legiflature, in addition to that of their own immediate executive authority, it has been deemed neceffary to appoint a permanent committee of influction in the legiflative body ${ }^{f}$, to provide fuch fums as may be neceffary for the prefervation and improvement of this fyftem of inftruction. This leginative committee are invefted with due authority for thefe purpofes. Their objects are precifely the fame as thofe of the commiffion of public inftruction
above deferibed, only with this difference, that the latter fuperintends the execution of exifting laws, whilft the former receives and improves them, or propofes new ones. This committee is divided into three departments, as is the commiffinn, with exactly the fame arrangeinent of their refpective labours. '1'he committee being charged with the enaction of all new laws, its mem. bers, with a view to obtain accurately all the requifite information relative to the numtrous branches of the arts, have procured from the legiflative body the appointment of a commiffon temporaire des arts to be annexed to them, and to meet in the fame houle with them; which temporary commiffion is divided into fixteen claffes: viz. 1. For Zoology ; 2. Botany; 3. Mineralogy ; 4. Phyfics; 5. Chemiftry; 6. Anatomy ; 7. Machinery; 8. Geography ; 9. Artillery and Furtification ; 10. Medals and Antiquities; 11. Bibliography ; 12. Painting ; 13. Architecture; 14. Sculpture ; 15. Bridges and Canfeways; and, 16. Mufical Inftruments.

The improvements of the national literary and fcienti* fic eftablifhments are numerous and important.
$1 / \ell$, By a decree of the convention of the 1 ith Prairial, in the fecond year, it was enacted, that means fhould be adopted by which every poffible advantage might be derived from the botanic grardens of the republic, in Turkey and other foreign countries. This politic decree clearly tended to render France, in the langnage of the reporter, I'abregé de tous les climuts, et l'entrepót de l'Europe. "The evitome of every climate, and the magazine of Europe." Thofe plants which thrive between the ropics may be cultivated in the fouth of France; and thofe which are the produce of northern climates, may be cultivated in the notthern departments; by which means, France will be in polfeffion of all foreign plants and drugs, without the exportation of foecie.
$2 d$, The National Bibliography was decreed in the fitting of 22 d Germinal, in the fecond year. It confilts of a complete catalogue of books of all defcriprions, the property of the nation; it was then afcertained, that the republic poffeffed more than ten millions of books. The titles of them were to be adjufted by actual com* parifons; the manufcripts to be regiftered feparately : anonymous productions were to be arranged according to their fubjects; and thofe of known authors in the alphabetical order of the names. The feveral editions to be claffed according to their dates: and what may be deemed mure impurtant, this French National Bibliography will contain a dictionary of anonymous bonks, as well as thofe publifhed under fictitious names, a delideratum in the republic of letters.

3d, 'The annihilation of all patois, or cialects, decreed in the fitting of the 16 th Prairial, in the fecond year. Notwithitanding the univerfality of the French language, and that it was exclufively fpoken in the majority of the inland departments, yet there exifted thirty various dialects in France. It is more aftonifhing that Rozier had remarked, that between one neighbouring village and another, there was fo confiderable a difference in the dialect, that the inhabitants could not underfland each other; and the vineltock had thirty different names. 'Tlie naturalift, Villars, has itated, that in the nomenclature of vegetables, in the departments, he had only met with an hundred which had a common appellation.
et Métiers, was decreed in the fitting of the 8th of Fendemiaire, in the third year. This couffts of a fpacious hall, in the form of an amphitheatre, and contains the inftuments and the models of machinery conneeted with the arts, and a defeription of their ufes, with every book relating to them. Annexed to this eftablifhment are three expofitors and a draught fman, who explain to the fudents the ufe of each inftrument, and who regifter every new difcovery, which is prefented to the Bureau de Confultation, to the lyceum of arts, the cidevant academy of fciences, or to the board of commerce.

5 th , The eftablifhment of the board of longitnde was decreed in the fitting of thie 7 th of Meffidor, third year. It was certainly a difgrace under the monarchy, that an aftronomical and nautical eftablifhment, which had already proved fo beneficial to Great Britain, flonld not have been adopted in France. In confequence of this decree, the French board is now as complete as the Englifi. It confifts of ten members, and has under its jurifdiction the national obfervatory at Paris, and all the aftronomical inftruments belonging to the republic. It correfponds with foreign aftronomers; delivers public lectures on aftronomy and navigation; and its proceedings are annually recited in a public fitting.
$6 t h$, The general fchool of the Oriental languages was eftablifhed by a decree of the Icth of Germinal, in the fourth year. This fchool adjoins to the national library, and all the books and manufcripts relative to Oriental literature are depofited in it.

7 th, The national mufum of antiquities was decreed in the fitting of 20th of Prairial, fourth year. A fchool of this defcription was fuccefifutly eftablifhed at Vienna, by Eckel; at Gottingen, by Heyne; at Leipfick, by Eruell ; and even at Strafburgh, by the celebrated Obeilin: Paris was, however, without one. This national archeology, or fcience of artiquity, is divided into nine different claffes: inferiptions, characters, flatues, bas reliefs, feulptures, paintings, motaics, medals, civil, religious, and military inftruments. 'This extenfive eftablifiment is under the direction of two principal profeffors; le Confervateur Profeffeur, et le Confer. vateur Bibliobsecaire. The province of the former is $1: 2$ deliver public lectures on the feveral branches of antiquities, to teach the theory of medals and engravings, the hiftory of the arts among the ancients, \&c. The duties of the latter are merely of a bibliographical nature.

8 th , The new modelling of the Grand National Library, was decreed in the litting of 25 th Vendeniaire, in the fourth year. By virtue of this decree, the place of librarian in chief was fuppieffed, and the whole efta. blifbment placed under a confervatoire of eight mennbers; of whom two were appointed for the fuperin. tendance of printed books; two for manufcripts; two for antiquities; and two for engravings. From thefe a temporaly director is annually chofen, who fuperin. tends the whole aets occafionally as prefident of this affembly, and maintains a regular correfpondence with the conftituted authonities relative to the concents of the litrary.

9th, The augmentation of the Mufeum of Natural Hiftory, formerly called Le Fardin Royal des Plantes. This eltablifhment was decreed the 1gth Brumaire,
third year, upon a report of Thibadean, in the name
addition of large rooms, and various other buildings, there are new collections of natural curiofities and productions; and the library is much increafed. It is open to the public three times a weck. At flated periods all the naturalitts in Paris deliver coufes of lectures in the various brancles of natural hiftory. The inufeum is faid to have received greater improvements from this augmentation than from all the labours of Buffon, or from its foundation, fince the time of Tournefort.

10th, 'The Ecole des Mines was eftablifhed in the Hotel cles Monnaies, and has for its direction the naturalift Le Sage. 'This inflitution is unrivalled in Europe; and the collection of mineralogical curiofities furpalfes whatever can be conceived.

I ith, The focicty of natural hittory in l'aris, defervedly claffes among thofe which have rendered the greateff fervices to the caufe of fcience fince the revolntion. A lecture of public inftruction is held every ten days, which is generally given by one of the members, and which is open to all the lovers of natural hiftory. Premiums are propoled for differtations; one of which, by the late C. Herman, jun. (whofe early deceafe was a great lofs to the republic of letters) on the apterous clafs of infects, may be faid to conftitute an epocha in the annals of natural hifory. The fociety has publifhed a volume of memoirs, in folio, entitled, "Tranface tions of the Society of Natural Hijlory." It has likewife erected a ftatue to the great Linnæus, in the national garden of plants; and, at the period when every public inttruction was fufpended, gave lectures on the different branches of fcience belonging to its department. Several intelligent and nkilful navigators, among others thofe fent in fearch of the unformate La Péloufe, as well as thofe which accompanicd Buonaparte on his romantic expedition to Egypt, were nembers of this fociety.

This ftatement of facts relative to the prefent flate of public inftruction, the fciences, the arts, and the progrefs of national literature in France, has been taken from a mifceltany, of which the principal writers are well acquainted with what is doing in that diftracted country. They call it a fublime fy ftem; and feem to confider the increafe of the national library, the improvement of the botanic gardens, and the difcoveries that have been made by the different fchools or infti. tutes, as furnifhing a demonitration that the republican government is more favourable to the advancement of fcience, than the monarchical, whether abfolute or limited. But it thould not be forgotten, that this fyftem is yet in its infancy; and that in profecuting new fchemes, all men, and more efpecially Frenchmen, are actuated by an enthufiafin which graduarlly cools as their purfuits become familiar. We thall therefore venture to prediet, that the different fchools will not difplay fuch ardour feven years hence as they do at prefent; and that if the republican government continue a dozen of years in France, the progrefs of fcience in that country will not be more rapid than it was urder the monatchy. We mult remeniber, too, that the French libraries, mufeums, and pictne gatleries, have been improved by means which the morals of other governments do not employ-by rapine and robbery.
'That fomething may be learned from this fyftem to

Infi ute, improve the modes of education in other countries, we $\underbrace{\text { Infural ce. }}$ admit ; and it is for that reaion that we lave inderted an account of it. But if it cortains forsething worthy of imitation, it contains likewife much to be Thunned. We do not think it confflent with the rights of man 10 comp:/ parents to fend their children to be educated in forticuher fichols: efpecially in fchools where not only religious it ftruetion is omitted, but where, there is reafon to believe, that the trofeffors are at pains to raze all religious impreffons from the youthful mind. In a nation denying the truth of Cliriftianity, it is not to be fuppofed that the Chrittian religion will be puhliely saught ; but in a nation of philofophers, as the French call themfelves, it might have been expected that the laws of religious toleration would have been fo far regarded, that Chriftian parents would not have been comfelled to fend their children to anticloriftian fchools! But it is not Chriflianity alone that is neglected in this fublime fyitem of education. Though the legiflative body has fome time ago decreed that there is a God, there is not in any one of thofe fchools the fmalleft care taken 10 inftrne? the republican youth in the principles even of natural religion! We might indeed have looked for it under the title Mratrapliyfics, had not the cunftitution of the National Inltitute taught ens, that French metaphylics attend to nothing but the analy fis of fenfations and ideas. Yet the legiflators might have liftened on this fubject to a republican as found as themfelves, and who was likewife no friend to fuperftition. "Nam et Majorum intitu!a tueri facris, ceremoniifque retinendis fapientis eft. Non folum ad religionem pertinet, fed etiam ad cizitatis ftatum, ut fine iis, qui facris publice profunt, religioni privatæ fatisfacere non poffint." Cicero de Nat. Deorum.

INSURANCE, in law and commerce, thongh an excellent inftitution, is not of high antiquity. The oldeft laws and regulations concerning infurance, with which the indefatigable Beckmann is acquainted, are the following :

On the 28th of Jarinary 1523 , five perfons appinted for that purpofe drew up at Florence fomic articles which are fitl employed on the exchange at Leghorn. Clefe important regulations, together with the preferibed form of policies, which may be confidered as the oldent, have been inferted, in Italian and German, by Magens, in his Treatife on Infurance, average, and bottoniry, publifhed at Hamburgh in 17.53 .

There is fill preferved a fort regulation of the 25 th May 1537 , by the Emperor Charles V. refecting bills of exchange and infurance, in which the ftrictly fulfilling only of an agreement of infurance is commanded.

In the year 155 万, Philip II. king of Spain, gave to the Spanifh merchants certain regulations refpecting infurance, which are inferted by Magens, with a Cerinan tranfation, in his work before mentioned. They eontain fome forms of policies on Mhips going to the Indies.

In the year 1598, the Kamer von alliurantie, cham. ber of inturance, was eitabliffed at Amfterdam. An account of the firf regulations of this infurance offce may be feen in Pontanus's Hiftory of the city of Ams. tlerdam, and in other works.

In the year 1600 , regulations refpecting infurance were formed by the city of Middelburg in 'Zealand.

It appears that the firft regulations refpecting infu-
rances in England, which may be feen in finderjor's I: furance. Hijfory of Commerce, were made in the year $16=1$. We find by them, that infurers had before that period condukte3 themfelves in fuch a manner, that the utmoft confedence was repufed in their honety, and that on this aecount few or: :o difutes had arifen.

Of the various policics for infurance in England, a pretty accurate account will be funad in the İncyclopedia; but there is one of them, of which our account mutt be acknowledged to be now defective. This is,

Insurance on lives; which is a policy that has greatly increafed, in confequence of its utility being more generally underfiood. Of the zwo offices for life af. furances, noticed in that article, the former, entitled the Amicable Society, has extended the number of its Ahares 104000 ; bint, as we have already obferved, the nature of the inftitution is too limited to become of general importance. The latter, entitled, the Society for Equitable AJJurances on Lives and Survivorßip, is undoubtedly one of the moft important inftitutions of the kind, as will appear by the following account, with which we have been favoured by an olliging correfpondent, and noon the accuracy of which our readers may depend:
'The members of the equitable fociety, finding, in June 1777 , that their affairs were in a flourifhing ituation, refolved to reduce their annual premiums one terith; and in 1782 , adopted new tables agreeable to the probabilities of life at Northampton, in lieu of thofe they had hitherio ufed, formed from the London bills of inortality. But though it was evident, that the new tables were much better adapied for affuring promifcuoufly perfons refiding in the country, or in large towns, it was thought proper, for greater fecurity, to make an addition of i 5 per cent. to the real value of the af'urances, as computed from the table of mortality at Northampton; and with the view of making an adequate compenfation to the affured for their former payments, which had been fo much higher than wouk be required by the new rates, an addition was made to their claims of L. 1: ics. per cent. fur every premiun they had paid. The confequence of thefe mea. fures proved highly favourable to the fociety; for its bufinefs increafed fo fait, that in 1785 it was nearly doubled; the fums affured amounting to upwards of 1. 722,000 . At this period, the favourable refuit of a minute and very laborious inveftigation of the ftate of the fociety, induced them to take off the 15 per cent. charged upon the premuins in $1 ; 82$, and make a further addition to the claims of L. I per cent. for every payment made prior to the ift January 1786 . A ftill greater increafe of fuecefsful butinefs determined them, in 179.1 , to make another addition of L .1 per cent. 10 the clains; and in the following year, a further addition of L. 2 per cent. ; by which the claims unon afinrances of the year 1770 were more than doubled; and thofe of an earlier date inereafed in a thill higher proportion. By thefe advantages to its nembers, and the loncmablc and tuly equitable manner in which the concerns of the fociety are tranfacted, the angmentation of their bufinefo has been fo great, that on the 31f lecember 1792, the fumo affured (without including the additions made to them) amounted to tpwards of L. $3,000,00$; and on the 3 If D December 1795, to about L. 4, 00r,000.

I N S

Infurance.
The rates of affurance, as reduced to their real values in 1786, and according to which the fociety now tranfact bufinefs, are as follows :

Sum A/ured £. : 100.

The other offices in London for the affurance of lives are, the Royal Exchanise Affurance, the Wifiminfler Society, and the Pelican Life Office.

The corporation of the Royal Exclbange Afiurance was empowered to affure lives by its fecond charter, dated 29th April 1721 ; but the original object of the company being fea affurances, and the true principlcs of affiuring on lives being at that time little underltnod, this branch of their bufinefs was at firf comparatively fmall : they gencrally required a premium o! five or fix guineas per cent. witho:t any regard to the age; and the affurance, which was ufually for a fmall fum, was feldom for a greater term than one year In this man ner they continued to affure upon lives till the end of the year 1783 , when the increafing importance of this part of their bufinefs, which they had fome years felt, induced them to adopt a regular table of rates of affurance, according to the Northampto regitters of mortality, but with a greater addition to the real values than had been made by the "Socitty for Equitable Affurances on Lives and Survivorfhip." This was thought proper, from the confideration that the affurers with the Royal Exchange company are not in any cafe liable to a call upon them beyond the preminm they engage to pay, and have the fecurity of the capital and funds of the company arifing from the other branches of their bufinefs; however, the company, finding themfelves fuccefsful in their life aflurances, determined, in 1790 , to reduce their prexiums; and in 1797 made a fill greater reduction, by which they are brought very rear to thofe above ftated. This company have agents in all the principal towns of Great Britain, and are impowered to affure lives in all parts of the world.

The W efmingler Society was efablifhed in ${ }^{1792}$, for affuring lives, and granting annuities. Their terms are nearly the fame as thofe of the Royal Exchange Affurance; but not being a corporate body, every perfon affuring figns a declaration, that he accepts the joint flock of the fociety as his fecurity.

The P'elican Life Office was inflituted in 1797, by fome of the principal proprietors of the Phoenix Fire Office. The rates which they have publifhed vary confiderably from thofe of the other offices; but whether they are founded on more juft principles, time and expericnce muft determine. This fociety alfo makes a new fpecies of affurance, by way of endowment for
attain the age of twenty-one years.
INTEGRAL Calculus, in the new analyfis, is the reverfe of the differential calculus, and is the finding of the integral from a given differential ; being fimilar to the inverfe method of fluxions, or the finding the fluent to a given fluxion. See Fluxions, Encycl.

IN I'ERES' 1 ', is the allowance given for the ufe of money by the borrower to the lender, and is either fimple or compound. The method of coniputing both interefts is explained in the article Algebra, (Encycl.) page $427, \& \mathrm{c}$.; and the fubject of fimple intereft is again refumed in Arithmetic, (Encycl.) n ${ }^{\circ}$ 20. The application of the canons for the computation of compound intereft, to the value of annuities, the only cafe in which that interelt is allowed by the laws of this country, may be feen in the articles Ansuity and Survivorsinp, (Encycl.) ; whele various tables are given to facilitate the different computations. Some of our readers, however, have 'expreffed a wifh to have the rule for computing compound intereft fo fated, as to be underttood by thofe who are unacquainted with algebraic fymbols. Their wif. may be eafily gratified.

The general formula $S=p R^{t}$ anfwers for the amount of any fum, whether the intere!t be payable yearly, half yearly, quartelly, or daily. Let R derote the amount of one pound for the firft payment, and t the sumber of payments, the unit being from the commencement till the firft payment is due; alfo, let l denote the logarithm of any quantity before which it is wrote; the1, from the known property of logarithms, the theorem may be expreffed thus, $1 . \mathrm{S}=1 . \mathrm{p}+1 . \mathrm{R} \times t$.

Required the amount of L. 250 at $;$ per cent. compound intereft, for 12 years, reckoning the intercft payable yearly, half.yearly, quarterly, and daily?
Yearly. $p=250, \mathrm{R}=1.05, t=12$.
$0.0211893=1 . \mathrm{R}$
12

$\begin{aligned} \cdot 2542716 & =l . \mathrm{R} \times t . \\ 2 \cdot 3979400 & =l . p . \end{aligned}$	
$\begin{array}{r} \text { l. } \mathrm{S}=2 \cdot 6522116-\mathrm{L} .448: 19: 3 \frac{1}{4}=\text { Amount. } \\ 250 \end{array}$	
198:19: $3^{\frac{1}{4}}=$ Comp. interefl.	
$\begin{aligned} & \text { Half yearly, } p=250, \mathrm{R}=1 \cdot 025, t=24 . \\ & 0.0107239=1 . \mathrm{R} . \\ & 24 \end{aligned}$	
$\begin{aligned} & 428956 \\ & 21447^{8} \end{aligned}$	
$\begin{aligned} .2573736 & =l . \mathrm{R} \times t . \\ 2.3979400 & =l . p . \end{aligned}$	
l. $\mathrm{S}=2.6553^{13} 3^{6}-\mathrm{L} \cdot 452: 3: 7_{250}^{3}=$ Amount.	
	$202: 3: 7 \frac{3}{4}=\text { Intereft. }$ $2^{\text {nartarly }}$

15] I N V
courfe to finding the fucceffive differences. Tranf, vol. 69. part 1. art. 7.

Philof.
IN CERSCENDENT, in algebra, is applied to quantities, when the exponents of their powers are ra-

Interfcendent dil Involution. dical quantities. Thus $x^{\sqrt{2}}, x^{\sqrt{ } a}$, \&c. are interfcen. dent quantities.

INTERSTELLAR, a word ufed by fome authors to exprefs thofe parts of the univerfe that are without and beyond the limits of our folar fyttem.

INTRADOS, the interior and lower fide, or curve, of the arch of a bridge, \&c. In contraditinction from the extrados, or exterior curve, or line on the upper fide of the arch. See A_{RCH} in this Suppl.

INVOLUTION and Evolution, are terms introduced into geometry by the celebrated Mr Huyghens, to exprefs a particular manner of deferibing curvilineal fpaces which occurred to him when occupied in the improvement of his noble invention of pendulum clocks. Although he was even aftonifhed at the accuracy of their motion, and they foon fuperfeded all balance clocks, he knew that the wide vibrations were fome. what flower than the narrow ones, and that a circle was not fufficiently incurvated at the fides to render all the vibrations ifochronous. The proper curve for this purpofe became an interefting objeet. By a moft accurate inveftigation of the motions of heavy bodies in curved paths, he difcovered that the cycloid was the line required. Lord Brouncker had difcovered the fame thing, as alfo Dr Wallis, But we do not imagine that Huyghens knew of this; at any rate, he has the full claim to the difcovery of the way of making a pendulum of cillate in a cycloidal arch. It eafily occurred to him, that if the thread by which the pendulum hangs be fufpended between two curved cheeks, it would alternately lap on each of them in its vibrations, and would thus be raifed out of the circle which it defcribes when fufpended from a point. But the difficulty was to find the proper form of thofe cheeks. Mr Huyghens was a moft excellent geometer, and was poffeffed of methods unknown to others, by which he got over almoft every difficulty. In the prefent cafe there was fortunately no difficulty, the means of folution offering themfelves almoft without thought. He almoft immediately difcovered that the curve in queftion was the fame cycloid. 'i'hat is, he found, that while a thread unwinds from an arch of a cycloid, beginning at the vertex, its extremity defcribes the complementary arch of an equal cycloid.

Thus he added to this curve, already to remarkable for its geometrical properties, another no lefs curious, and infinitely exceeding all the others in importance.

The fleps by which this property was difcovered are fuch direet emanations from general principles, that they immediately excited the mind of Mr Huyghens, which delighted in geometry, to profecute this method of defcribing or transforming curve lines by evolution. It is furprifing that it had not ere this time occurred to the ancient geometers of the laft century, and particularly to Dr Barrow, who feems to have racked his fancy for almolt every kind of motion by which curve lines can be generated. Evolution of a thread from a curve is a much more obvious and conceivable genefis than that of the cycloid invented by Merfennus, or that of the conchoid by Nicomedes, or thofe of the conic fections by Vieta. But except fome vague expreffions by Ptolemy and Gaifendus, about defcribing fpirals

I N V

Involution. by a thecad unlapped from a cylinder, we do not recollect any thing of the kind among the writings of the mathematicians ; and it is to Huyghens alone that we are indebted for this very beautiful and important branch of geometry. It well deferves both of thefe epithets. The theorems which contitute the doetrines of evolution are remalkable for their perfpicuity and neatnefs. Nothing has fo much contributed to give us clear notions of a very delicate fubject of mathematical difcuffion, namely curvature, and the meafure and variations of curvature. It had become the fubject of very keen debate; and the notions entertained of it were by no means diftinct. But nothing can give fuch a precife conception of the difference of curvature, in the different parts of a cycloid or other curve, as the beholding its defcription by a radius continually varying in length. This doctrine is peculiarly valuable to the fpeculator in the higher mechanics. The intenfity of a deflecting force is eftimated by the curvature which it induces on any rectilineal motion; and the variations of this intenfity, which is the characteriftic of the force, or what we call its nature, is inferred from the variations of this curvature. The evolution and involution of curve lines have therefore great claim to our attention. But a Work like ours can only propofe to exhibit an outline of the fubject; and we mult refer our readers to thofe eminent authors who have treated it in detail. Varignon, in the Memoirs of the French Academy for 1706, has been at immenfe pains to prefent it in every form; James Bernoulli has alfo treated the fubject in a very general and fyftematic manner. Some account is given of it in every treatife of fluxions. We recommend the original work of Mr Huyghens in particular; and do not hefitate to fay, that it is the fineft fpecimen (of its extent) of plyffico-mathematical difcuffion that ever has appeared. Huyghens was the moft elegant of all modern geometers; and both in the gen. metrical and phylical part of this work, De Horologio of. - cillatorio, he has preferved the utmoft rigour of demonitration, without taking one ftep in which Euclid or: A pollonius would not have followed him.

——— juvat integros accedere fonles

Aique baurire.

Such authors form the tafte of the young mathemarician, and help to preferve him from the almoft mechanical procedure of the expert fymbolical analy f , who arrives at his conclufion without knowing how he gets thither, or having any notions at all of the magnitudes of which he is treating:

There are two principal problems in this doetrine.
I. To afcertain the nature of the figure generated by the evolution of a given curve.

IT. To determine the nature of the cnrve by whofe evolution a given curve may be generated. - We thall confider each of thefe in order, and then take the opportunity which this fubject gives of explaining a little the abftrufe nature of curvature, and its meafures and variations, and take notice of the opinions of mathematicians about the precife nature of the angle of contact.

The curve line ABCDEF (fig. 1.) may be contidered as the edge of a crooked ruler or mould; a thread may he fuppofed attached to it at F, and then lapped along it from F ro A. If the hread be now led avay from A, keeping it always tight, it is plain that the ex-
tremity A muft defcribe a curve line $A b c d e f$, and lnvoiution. that the detached parts of the thread will always he tangents to the curve ADCDEF. In like manner will the curve line $F d^{\prime \prime} c^{\prime} b^{\prime} A^{\prime}$ be deferibed by keeping the thread faft at A, and unlapping it from the other end of the mould

This procefs was called by Mr IJughens the EvoLution of the curve ADF. ADF is called the Evo. lute. A $l f$ was named by him the Curre by Evolution. It has been fince more briffy termed the Erolutrix, or unlapper. It has alfo been called the Involute; becaufe, by performing the procefs in the oppofite direction $f d \mathrm{~A}$, the thread is lapped up on the mould, and the whole fpace $\mathrm{ADF} f d \mathrm{~A}$ is folded up like a fan. The detached parts $\mathrm{C} c, \mathrm{D} d$, or $\mathrm{C} c^{\prime}$, 1) d^{\prime}, exc. of the thread, are called Radil of the EvoLUTE; perhaps with fome impropriety, becaufe they rather refemble the momentary radii of the evolutrix. We may name them the evolved radil. The beginning A of evolution may be confidered as the vertex of the curves, and the ends F and f may be called the tErms.

There is another way in which this defcription of curve lines may be conceived. Initead of a thread Ff gradually lapped up on the mould, we may conceive F f to be a ftraight edged ruler applied to the mould, and gracually rulted along it without fliding, fo as to touch it in fucceffion in all its points. It is evident, that by this procefs the point f ivill defcribe the curve $\int d \mathrm{~A}$, while the point $\mathrm{F} d e f c r i b e s$ the other curve $\mathrm{F} d a$. This way of conceiving it gives a great extenfion to the doctrine, and homologates it with that genefis of curve lines by which cycluids of all kinds are defcribed, and which we may dittinguifh by the name of Provolu. TION. For it is plain, that the relative motions of the points A and b are the fame, whether the rulcr $b B b^{\prime}$ roll on the mould $\triangle \mathrm{BF}$, or the mould roll on the ruler: but there will be a great difference in the form of the line traced by the defcribing point, if we fuppofe the plane on which it is traced to be attached to the rolling figure. Thus, when a circle rolls on a ftraight line, a point in its circumference traces a cycloid on the plane attached to the ftraight line, while the point of the ftraight line which quitted the circle defcribes on the plane attached to the circle another line; namely, the involute of the circle. This mode of defeription allows us to employ a curved ruter in place of the ftraight one $b \mathrm{~B} b^{\prime}$; and thus gives a valt extention to the the. ory. But at prefent we fhall confine ourfetves to the employment of the ftraight line $l \mathrm{~B} U$, only keeping in mind, that there is an intimate connection between the lines of evolution and of provolution.

I3y the defcription now given of this procefs of evoJution and involution, it is plain,

1. That the evolution is always made from the convex fide of the evolute.
2. That the evolved radii $\mathrm{B} \ell, \mathrm{C} c, \mathrm{D} d, \& i c$. are refpectively equal to the arches $\mathrm{BA}, \mathrm{CA}, \mathrm{DA}, \& \mathrm{c}$. of the evolute which they have quitted; and that $b \mathrm{~B} b^{\prime}, c \mathrm{C} c^{\prime}$, $d \mathrm{D} d$, Sic. are always equal to the whole arch ADE .
3. That any point B of the lapped up thread deferibes during its evolition a curve line $\mathrm{B} \quad \gamma^{\delta}$ if pa rullel to $b c d$ ef; becaufe thefe curves are always equiditant from each other.
4. 'That if the thread extend beyond the mould as a tangent to it, the extremity a will dufcribe a paralle! or
equiditant

Tnvolution equidiflant curve $a \beta y \delta \in f$, lying without $A b \in d \subset f$. \pm From this it appears that $\mathrm{B} \gamma \delta$ i Φ is the complete evolutrix of FEDCB, while $b d$ ce f is the evolutrix of that arch, and the added tangent $\mathrm{B} b$. In like manner, the lapped up thread ADF, with the added part $F q^{\prime}$, defrribes the evolutrix $p^{\prime} d^{\prime} \delta^{\prime} \gamma^{\prime} s^{\prime} A^{\prime}$.
5. If from any point C of the evolute there be drawn lines $\mathrm{C} b, \mathrm{C} c, \mathrm{C} d, \mathrm{C} e, \& \mathrm{c}$. to the evolutrix, thofe which are more remote from the vertex are greater than thofe which are nearer. Draw $\mathrm{B} b, c \mathrm{C}, d \mathrm{D}, \mathrm{e} \mathrm{E}$, touching the evolute. $\mathrm{C} b$ is lefs than $\mathrm{CB}+\mathrm{B} b$; that is (2), than $\mathrm{C} c$. Agrain, $\mathrm{DC}+\mathrm{C} c$ is equal to 1) d, which is lefs than $\mathrm{DC}+\mathrm{C} d$. Therefore $\mathrm{C} c$ is lefs than $\mathrm{C} d$. Now let $\mathrm{C} e$ cut D$) d$ in r. Then er $+r \mathrm{DE}$ is greater than $e \mathrm{E}$. But $e \mathrm{E}$ is equal to $d r$. $+r D E$. Therefore er is greater than $d r$; ande $r+$ $r \mathrm{C}$ is mreater than $d r+r \mathrm{C}$, which is greater than $c \mathrm{C}$. Therefore $c \mathrm{C}$ is greater than $c \mathrm{C}$.
6. Hence it follows, that a circle defribed round any point of the evolute, with a ratius reaching to any point of the evolutrix, will cut the evolutrix in that point, and be wholly within it on the fide remote from the vertex, and without it on the fide next the vertex.
7. The evolved radius cuts every arch of the evolutrix perpendicularly, or a right line drawn through the interfection at right angles touches the evolutrix in that point. Threegh any point d draw the line $m d t$ at right angles to d). The part of it $m d$ next to the vertex is wholiy without the curve, becaufe it is vithout the circle defcribed round the centre D) ; and this circle is without the evolutrix on that fide of d which is next the vertex (6). Any point t on the other fede of d is alfo without the curve. For let $t e \mathrm{E}$ be another evolved radius, cutting 1) d in n : then $n d$ is lefs than $n t$, becaufe $n d t$ is a right angle by conftruction; and therefore $n t d$ is acute. But becaufe $\mathrm{E} n+n \mathrm{D}$ are greater than ED, E $n+n d$ are greater than ED + $1 d$, that is, than $\mathrm{E} e$, and $n d$ is greater than ne. Therefore, fruce it is lefs than $n t$, it follows that $n e$ is much lefs than $n t$, and t lies without the curve. Therefore the whole line $n d t$ is without the curve, except in the point d. It therefore touches the curve in d, and the radius 1$) d$ cuts it at right angles in that point. By the tame reafoning, it is demonftrated, that all the curves $A b d f, \alpha \beta \delta 1, A^{\prime} b^{\prime} d^{\prime} f^{\prime}, a^{\prime} \beta^{\prime} \delta^{\prime} \phi^{\prime}$, are cut perpendicularly by the tangents to the evolute. Alfo all thefe curves interfect the evolute at right angles in their vertexes

It follows from this propofition, that from every point, fuch as s, or i, or $c, \& i c$. in the fpace AOF comprehended by the evolute and its extreme tangents $\uparrow O$, FO, two perpendiculars may be drawn to the evolutrix A $d f$; and that from any point in the fpace with. in the angle A of only one perpendicular can be drawn; and that no perpendicular can be drawn from any point on the other fide of ADP. Apollonius had obferved thefe circumftances in the conic fections, but had not thought of marking the boundary formed by the evolute ADF. Had he noticed this, he would certainly have difcovered the whole theory of evolution, and its importance in fpeculative geometry.

It alfo follows from this propofition, that if a curve A $b c d e f$ is cut by the tangents of ABCDEF at right angles in every point, it will be defcribed by the evolution of that curve: For if the evolutrix, whofe vertex is A, be really defcribed, it will coincide with Suppl. Vol. II. Part I.

A $b c d$ in A, and have the fame tangent; it therefore Involution. does not deviate from it, otherwife their tangents would feparate, and would not both be at right angles with the lines touching the evolute. 'They mult therefore coincide throughout.
8. The arches $b c d$ and $\beta \gamma$ d, intercepted by the fame radii $\mathrm{B} b$ and $\mathrm{D} d$, inay be called concentric ; and the angles contained between the tangents drawn thro' their extremities are equal. Thus the angle $\lambda \pi 0$ is $\mathrm{e}-$ qual to / po: but ahlhough equidittant, paallel, and containing the fane angle between their tangents and between their radii, they are not fimilar. 'Ilms, the arch $\alpha \beta$ has a curvature at α that is the fame with that of any circle whofe radius is equal to $A \alpha$; but the curvature at A is incomparable with it, and unnieafurable. The fame may be faid of the curvatures at β and at 13 .
9. If a circle $u d z$ be deferibed round the centre I) with the radius $\mathrm{D} d$, it both touches and cuts the evo. lutix in the point d, and no circle can be defribed touching the curve in that point, and paffing between it and the circle $u d z$: For fince it touches the curve in d, its centre muft be foncwhere in the line $d \mathrm{D}$ perpendicular to $m \mathrm{~d} /$. It cannot be in any point n more remote from d than 1) is; for it would pafs without the arch $d u$, and be more remote than $d u$ from the arch $d c$ of the evolutrix. On the other fide, it would indeed pafs without the arch $d z$, which lies within the arch ce of the evolutrix: Lut it would alfo pals without the curve. Fior it has been already de monlt rated (7) that $n d$ is greater than $n c$; and the curve would lie between it and the circle $d \approx$.
Thus it appears, that a circle deferibed with the evolved radius approaches nearer to the curve, or touches it more clofely, than any other circle ; all other circles either interfect it in meafurable angles, or are within or without the curve on both fictes of the point of contact. This circle $u d z$ has therefore the fame curvature with the curve in the point of contact and coalefcence. It is the EqUicuryecircle, the circle of equal curvature, the osculatixg circle (a name given it by Leibnitz). The evolved radus of the cvolute is the radius of curvature of the evolutrix, and the point of the evolute is the Centre of curvature at the point of contact with the evolutrix. 'i'he evolute is the geometrical locus of all the centres of curvature of the evolutrix.

This is the moft important circumftance of the whole doctrine of the involution and evolution of curve lines. It is affumed as a felf evident truth by the precipitant writers of elements. It is indeed very like truth: lior the extremity of the thread is a momentary radius during the procels of evolution; and any minute arch of the evo. lute nearer the vertex mult be conceived as more incurvated than the arch at the point of contact, becaufe defcribed with fhorter radii : for the fame reafon, all beyond the contact mult be lefs incurvated, by reafon of the greater radii. The cuivature at the contact mult be neither greater nor lefs than that of the circle. But we thought it better to follow the example of Huyghens, and to eftablifh this leadirg propolition on the itricteft geometrical reafoning, acknowlecging the fingular obligation which mathematicians are under to him for giving them fo palpable a method of fixing their notions on this fubject. When the evolute of a curve is given, we have not only a clear view of the genefis of C
thre
fome very intricate quaftions and erroneous notions. Involution:

Involution, the curve, with a neat and accurate mechanical method of defcribing it, but alfo a diftinct comprehenfion of the whole curvature, and a connccted view of its gradual variations.

We fpeak of curvature that is greater and leffer; and every Derfon has a general knowledge or conception of the difference, and will fay, that an ellipfis is more curve at the extremities of the tranfverfe axis than any where elfe. But before we can inflitute a comparifon between them with a precifion that leads to avy thing, we muft agree about a meafure of curvature, and fay what it is we mean by a donble or a triple curvature. Now there are two ways in which we may confider curvature, or a want of rectitude: We may call that a double curvature which, in a given fpace, carries us twice as far from the ftraight line; or we may call that a double curvature by which we deviate twice as much from the fame direction. Both of thefe meafures have been adopted; and if we would rigisly adhere to them, there would be no room for complaint : but mathematicians have not been fteady in this refpect, and by mixing and confounding thefe meafures, have frequently puzzled their readers. All agree, however, in their firlt and fimple meafures of curvature, and fay, that the curvature of an arch of a circle is as the arch directly, and is the radius inverfely. This is plainly meafuring curvature by the deflection from the firft direction. In an arch of an inch long, there is twice as much deflection from the firft direction when the radius of the circle is of half the length. If the radius is about $57 \frac{1}{2}$ th inches, an arch of one inch in length produces a final direction one degree different from the firf. If the radins is $1: 4^{\frac{1}{2}}$ inches, the deviation is but half of a degree. The linear deflection from the ftraight path is alio one half. In the cafe of circles, therefore, both meafures agree: but in by far the greateft number of cafes they may differ exceedingly, and the change of direction may be greatet when the lincar deviation is leaf. Flexure, or change of direction, is, in general, the moft fenlible and the moft important claracter of curvature, and is underftood to be its criterion in all cafes. But our proceffes for difonering its quantity are generally by firf difcovering the lifiear deviation; and, in niany cafes, particularly in our philofophical inquiries, this linear deviation is our principal object. Hence it has happened, that the mathematician lias frequently fopped fhort at this refult, and has adapted his theorems chiefly to this determination. Thefe differences of object have caufed great confufion in the methods of confidering curvature, and led to many difputes about its nature, and about the angle of contact ; to which difputes there will be no end, till mathematicians have agreed in their manner of exprefling the meafures of curvature. At prefent we abide by the meafure already given, and we mean to exprefs by curvature or flexure the change of direction.

This being premifed, we obferve, that the curvature of all thefe curves of evolution where they feparate from their evolutes, is incomparable with the curvature in any other place. In this point the radius has no magnitude ; and therefore the curvature is faid to be infinitely great. On the other land, if the evolved curve has an affymptote, the curvature of the evolutrix of the adjacent branch is faid to be infinitely finall. Thefe expreffions becoming familiar, have occafioned

There can be little doubt of their impropriety: For when we fay, that the curvature at A is infinitely greater than at α, we do not recollect that the flexure of the whole arch $A b$ is equal to that of the whole arch αB, and the flextre at A mult either make a part of the whole flexure, or it mult be fomething difparate.

The evolutrix Abcdf(lig. 2.) of the common equilateral hyperbola exhibits every poffible magnitude of cu:vature in a very fmall fpace. At the vertex A of the hyperbola it is perpendicular to the curve; and there. fore has the tranfverfe axis $A \neq A$ "for its tangent. 'The curvature of the evolutrix at A is called infinitely great. As the thread unlaps from the branch $A B C$, its extremity defcribes A $b c$. It is plain, that the evolutrix muft cut the affymptote $\hat{F} \mathrm{H}$ at right angles in fome point G, where the curvature will be what is called infinitely fmall ; becanfe the centre of curvature has removed to an infinite diftance along the branch AF of the hyperbola. This cvolutrix may be continued to the vertex of the hyperbola on the other fide of the affymptote, by caufing the thread to lap upon it, in the fame way that Mr Hugghens completed his cycloidal ofcillation. Or we may form another evolutrix $\alpha \beta \gamma \delta \beta$ $v^{\prime} \delta^{\prime} \beta^{\prime} A^{\prime \prime}$, by lengthening the thread from G to f, the centre of the hyperbola, and fuppoling that, as foon as the curve A $\delta>$ is completed, by unlapping the thread from the branch $A B C$, another thread laps upon the hyperbola $A^{\prime \prime} F^{\prime \prime}$. This laft iò confidered as a more geometrical evolution than the other: For the mathema. ticians, extending the doctrine of evolution beyond Mr Huyghens's refriction to curves which hal their convexity turned one way; have agreed to conlider as one contirned cvolution whatever will complete the curve expreffed ty one equation. Now the fame equation expreffes both the cirves $A F$ and $\Lambda^{\prime \prime} F^{\prime \prime}$, which occupy the fame axis $A A^{\prime}$. 'The cycloid employed by Huyghens is, in like manner, but one continuous curve, deferibed by the continued provclution of the circle along the ftraight line, although it appears as two branches of a repeated curve. We fall meet with many infances of this feemingly compounded evolution whea treating of the fecond queftion.

Since the arch AbdG contains every marnitude of curvature, it appears that every kind of curvature may be produced by evolution. We call have no conception of a flexure that is greater than what we fee at A, or lefs than what we fee at G; yet there are cafes which feem to fhew the contrary, and are familiarly faid, by the greatef mathematicians, to exhibit curvatures infonitely fmaller till. Thus, let ABC (fig. 3.) be a conical parabola, whofe parameter is AP. Let AEF be a cubical parabola, whofe parameter is AQ. If we make $A Q$ to $A D$ as the cube of $A P$ to the cube of $A Q$, the two parabolas will interfict each other in the ordinate D13. For, making $\mathrm{AP}=p$, and $\mathrm{AQ}=q_{9}$ and calling the ordinate of the conic parabola y, that of the cubic parabola \approx, and the indeterminate abfciffa AD x, we have

$$
p^{3}: q^{3}=q: x,=q^{3}: z^{3}, \text { and } p: q=q: z ;
$$

but $q: p=q: p$; therefore, by compofition,
$p^{2}: q^{2}=q^{2}: p x=q^{2}: y^{2}$, and $p: q=q: y ;$ therefore $z=y$, and the parabolas interfect in B.

Now, becaufe in all parabolas the ordinates drawn at the extremity of the paramicters are equal to the para.

I N V

Lncolution. meters, the interfections q and p will be in a line $A q p$, $\underbrace{2}_{\text {- which makes lalf a right angle with the axis AP. }}$ Therefure, when $A Q$ is greater than $A B$, the point q is without the conical parabola, and the whole arch of the cubical parabola cut of by the ordinate DB is alfo without it: but when $A Q$ is lefs than AP, q is within the conical parabola, as is alfo the arch q B. Therefore the remaining arch BEA is without it, and is therefore lefs incuivated at A. An endkefs number of conical parabolas of fmaller currature may be drawn by enlarging Al^{\prime}; yet there will fill be an arch AEB of the cubical parabola which is without it, and therefore lefs incurvated. Therefore the curvature of a cubical parabola is lefs than that of any conical parabola: It is faid to be infinitely lefs, becaufe an infinity of cubical parabolas of \int maller curvature than AEB may be drawn by enlarging AQ .

It may be demonfrated in the fame manner, that a paraboloid, whofe ordinates are in the fubbiquadrate ratio of the abfciffe, has an infinitely fmaller curvature at the vertex than the cubical parabola. And the curvature of the parabotoid of the next degree is infinitely lefs than thes; and fo on continually. Nay, Sir Ifaac Newton, who firf took notice of this remarkable circumfance, demonfrates the fame thing of an endlefs fucceffion of paraboloids interpofed between any two degrees of this feries. Neque novit (fays he) natura linit$t \mathrm{~m}$.

If this be the cafe, all curves caunot be defcrihed by evolution; for we have no conception of a radius of curvature that is greater than a line without limit. The theory of curvilineal motions delivered in the article Dynamics muft be inperfect, or there muft be curve lines which bodies cannot defcribe by any powers of nature. The theory there delivered profeffes to teach how a body can be made to defctibe the cubicat parabola, and many other curves which have thefe intinitefimal curvatures; and yet its demoniftrations emphoy the radius of curvature, and cannot proceed without it. We prnfefs ourfelves cbliged to an attentive reader (who has not favoured us with his name) for making this obfervation. It merits attention.

There mut be fome paralogifm or mifconception in all this language of the mathematicians. It does not neceflarily fullow from the arch AEB tying without the arch AIB, that it is lefs incurvated at A ; it may be more incurvated between A and B. Accordingly we fee, that the tangent BT of the conical parabola is tefs incliried to the common tangent AV than the tangent $\mathrm{B} t$ of the cubical parabola is; and therefore the flexure of the whole arch $A E B$ is greater than that of the whole arch A1B; and we flall fee afterwards, that there is a part of AFB that is more incurvated than any part of AIB. There is nothing correfponding to this unmeaning and inconceivable fucceffion of feriefes of magnitudes of one kind, each of which contains an endlefs variety of individuats, and the greateft of one feries infinitely lefs than the fmalleft of the next, \&.c.; ; there is nothing like this demonftrated by all our arguments. In none of thefe do we ever treat of the curvature at A, but of a curvature which is not at A. At A we have none of the lines which are indifpenfably neceflary for the demonftration. Befides, in the very fame manner that we can deferibe a cubical parabola, and prove that it has an arch tying without the conical parabola,

$19] \quad \mathrm{I} \mathrm{N}$ V

we can deferibe a circle, and demonftrate that it has al- Involutions fo an arch lying without the parabola. Thefe infinitefimal curvatures, therefore, are not warranted by our arguments, nor does it yet appear that there are curves which cannot be defcribed by evolution. We are always puzzled when we fpcak of infinites and infinitefimals as of fomething precife and determinate; whereas the very denomination precludes all determination. We take the diftinguifhing circumftance of thofe different orders for a thing clearly underitood; for we build much on the diftinction. We conceive the curvature of the cubical parabola as verging on that of the common parabola, and the one feries of curvatures as beginning where the other ends. But Newton has fhewn, that between thefe two feriefes an endlefs number of fimilar feriefes may be interpofed. The very names given to the curvature at the extremities of the hyperbolic evolutrix have no conceptions annexed to them. At the vertex of the hyperbola there is no line, and at the interfection with the aflymptote there is no curvature. Thefe unguarded expreffions, therefore, fhould not make us doubt whether all curves may be defribed by evolution. If a line be incurvated, it is not ftraight. If fo, two perpendiculars to it mult diverge on one fide, and muft converge and mett on the other in fome point. This point will lie between two other points, in which the two perpendiculars touch that curve by the evolution, of which the given arch of the curve may be deferibed. Finally (which fhould decide the queftion), we fhall fee by and bye, that the cubic, and all higher orders of paraboloids, may be fo deferibed by evolution from curves liaving aflymptotic brancles of determinable forms.

Such are the general effections of lines generated by evolution. They are not, properly fpeaking, peculiar properties; for the evolutixes may be any curve lines whatever. They only ferve to mark the mutual relations of the evolutes with their evolutrixes, and enable us to conltrutt the one, and to difcuver its properties by means of our knowledge of the other. We procced to hacw how the propertics of the evolutrix may be determined by our knowledge of the evolute.

This problem will nor long occupy actention, beirg much limited by the conditions. One of the frit is, that the length of the thread evolved muft be known in every pofition: Therefure the length of the evolved arch mu?, in like manner, be known ; and this, not only in foto, but every portion of it. Now this is nut univerfally, or everi generally the cafe." The length of a circular, parabolic, liy perbolic, arch has not yet been determined by any finite equation, or geonettical collftruction. Therefore their evolutrixes cannot be determined otherwife than by approximation, or by comparifon with other magnitudes equally undetermined. Yet it fometimes happers, that a curve is difcovered to evolve into another of known properties, although we have not previoufy difcovered the length of the evolved arch. Such a difcovery evidently bings along with it the rectitication of the evolute. Of this we have an inflance in the very evolution which gave occation to the whole of this doctrine; namcly, that of the cycloid; which we fhall therefore take as our firl example.
Let $A B C$ (fig. 5.) be a cycloid, of which $A D$ is the axis, and $A \rightarrow 1)$ the generating circle, and $A G$ a tangent to the cycloid at A, and equal to DC. Let

Inoo'ution. BKE touch the cycloid in B, and cut AG in K. It is required to find the fituation of that point of the line BE which had unfolded from A ?
Draw BH parallel to the bare DC of the cycloid, cutting the generating circle in H , and join HA. Deferibe a circle KEM equal to the gencrating circle $\mathrm{A} H \mathrm{D}$, tonching AG in K , and cutting BK in fome point E. It is known, by the properties of the cycloid, that BK is equal and parallel to HA , and that BH is equal to the arch AbH. Becaufe the circles AHD and KEM are equal, and the angles HAK and AKE are equal, the chords AH and KE cut off equal arches, and are themfelves equal Becaufe BHAK is a paralkelogram, $A K$ is equal to HB ; that is, to the arch A $b \mathrm{H}$, that is, to the arch $\mathrm{K} m \mathrm{E}$. But if the circle KEM had been placed on A, and had rolled from Λ to K , the arch difengaged would have been equal to AK, and the point which was in contag with A would now be in E, i:: the circumference of a cycloid AEF, equal to CBA , having the line AG , equal and parallel to DC, for its bafe, and GF, equal and parallel to DA, for its axis. And if the diameter KM be drawn, and EM be joined, EM touches the cycloid AEF.

Cor. The arch BA of the cycloid is equal to twice the parallel chord HA of the generating circle: For this arch is equal to the crolved line BKE: and it has been Shewn, that $E K$ is equal to $K B$, and $B E$ is therefore equal to twice BK, or to twice HA. This property had indeed been denonftrated before by Sir Chriflopher Wren, quite, independent of the doctrine of evolution; but it is given here as a legitimate refult of this doetrine, and an example of the ufe which may be made of it. Whenever a curve can be evolved into another which is fufceptible of accurate determination, the arch of the evolved curve is determined in length; for it always makes a part of the thread whofe extremity defcribes the evolutrix, and its length is found, by taking from the whole length of the thread that part which only touches the curve at its vertex.
This genefis of the cycloid AEF, by evolution of the cycloid $A B C$, alfo gives the moft palpable and fatisfactory determination of the area of the cycloid. For fince BE is always parallel to AHI, AH will fweep over the whole furface of the femicircle AHD, while BE, fweeps over the whole fpace CBAEF; and fince FiE is always double of the fimultaneous AH , the fpace CBAEF is quadruple of the femicircle AIHD. But the fpace defcribed in any moment by $B K$ is alfo one fourth part of that defcribed by BE. Therefore the area CAEF is three times the femicircle AHD; and the fpace DHABC is double of it; and the fpace CBAG is equal to it.

Sir Ifaac Newton has extended this remarkable property of evolving into another curve of the fame kind to the whole clafs of epicycloids, that is, cycloids formed by a point in the circumference of a circle, while the circle rolls on the circumference of another circle, either on the convex or corcave fide; and he has demonitrated, that they alfo may all be rectified, and a fpace affigned which is equal to their area (See Principia. B. I. prop. 48. sc.). He demonftrates, that the whole arch is to four times the diameter of the generating circle as the radius of the bafe is to the fum or difference of thofe of the bafe and the generating circle. We recommend thefe propofitions to the attention of
the young reader who wifhes to form a good tafte in Involutions. mathematical refearches; he will there fee the geome. trical principles of evolution elegantly exemplified.

We may juft ohferve, before cuitting this clafs of curves, that many writers, even of fome eminence, in their compilations of elements, give a very faulty proof of the polition of the tangent of a curve deferibed by rolling. They fay, for example, that the tangent of the cycloid at E is perpendicular to KE ; becaufe the line KE is, at the moment of defeription, turning round K as a momentary centre. 'lhis, to be fure, greatly Gortens inveftigation ; and the inference is a truth, not only when the rolling figure is a circle rolling on a ftraight line, but even when any one figure rolls on another. Every point of the rolling figure really begins to move perpendicularly to the line joining it with the point of contact. But this grenefis of the arch Ee, by the evolution of the arch Bl, fhews that K is by no means the centre of motion, nor HK the radius of curvature. Nor is it, in the cafe of epicycloids, trochoids, and many curves of this kind, a very eafy matter to find the momentary centre. The circle KEN is both advancing and tuming round its centre; and thefe two motions are equal, becaufe the circle does not flide but roll, the detached arch being always equal to the portion of the bafe which it quits. 'Therffore, drawing the tangents $\mathrm{E} g, \mathbf{M g}$, and completing the parallelogram Ef M_{g}, Ef will reprefent the progref. five motion of the centre, and E_{g} the motion of rotation. F.M, the motion compranded of the fe, mult be perpendicular to the chord EK.

The inveftigation that we have given of the evolutrix of the cycloid has been fomewhat peculiar, being that which cffered itfelf to Mr Huygliens at the time when he and many other eninent mathematicians were much occupied with the fingular properties of this curve. It does not ferve, however, fo well for exemplifying the general procefs. For this purpofe, it is proper to avail ourfelves of all that we know of the cycloid, and particularly the equality of its arch 13. I to the double of the parallel chord HA. This being known, nothing can be more fimple than the decermination of the evolutrix, either by availing ourfelves of every property of the cy. cloid, or by adhering to the general procefs of referring. every point to an abfeifla by means of perpendicular erdinates. In the firt method, knowing that $B E$ is donble of BK , and therefore KE equal to HA , and $\mathrm{KA}=\mathrm{BH},=\mathrm{H} b \mathrm{~A},=\mathrm{K} m \mathrm{E}$, we find E to be the deferibing point of the circle, which has rollee from A to K . In the other method, we molt draw EN perpendicular to AG; then, becaufe the point E moves, during evolution, at right angles to BE, EK is the normal to the curve defcribed, and NK the fubnormal, and is equal to the correfponding ordinate $\mathrm{H}^{\prime} \mathrm{I}$ of the generating circle of the cycloid ABC. 'This being a characteriltic property of a cycloid, E is a point in the circumference of a cycloid equal to the cycloid ABC.

Or, laftly, in accommodation to cafes where we are fuppofed to know few of the properties of the evolute, or, at leaft, not to atterd to them, we may make ufe of the fluxionary equation of the evolute to obtain the fluxionary equation of the evolutrix. For this purpofe, take a point e very near to E, and draw the evolving radius b e, cutting $E f$ (drawn parallel to the bafe $D C$) in 0 ; draw en parallel to the axis of the evolute, cut.

Involution. ting Eo in v; alfo draw b b i parallel to the bape, and $B d$ perpendicular to it. If both eurves be now referred to the fame axis CGF, it is plain that $\mathrm{B} b, \mathrm{~B} d$, and $d b$ are ultimately as the fluxions of the arch, abfcifs, and ordinate of the evolute, and that Ee, eq, and v E, are ultimately as the fluxions of the arch, abfciffa, and ordinate of the evolutrix. Alfo the two fluxionary triangles are fimilar, the fides of the one being perpendicular, refpectively, to thofe of the other. If both are referred to one'axis, or to parallel axes, the fluxion of the abfciffa of the evolute is to that of its ordinate, as she fluxion of the ordinate of the evolutrix is to that of its abfciffa. Thus, from the fluxionary equation of the one, that of the other may be obtained. In the prefent cafe, they may be referred to AD and FG, making CG equal to the cycloidal arch CBA. Call this a; $\mathrm{AI}, x ; \mathrm{IB}, y$; and AB , or EB, z. In like manner, let $F t$ be $=u, t \mathrm{E}=v$, and $\mathrm{IE}=z w$; then, becaufe $\mathrm{DH}^{2}=\mathrm{DA}^{2}-\mathrm{AH}^{2}$, and DA and AH are the halves of CF and BE , we have $\mathrm{DH}^{2}=\frac{a^{2}-z^{2}}{4}, \mathrm{Al}$ fo $\mathrm{DI}=\frac{\mathrm{DH}}{\mathrm{DA}}=\frac{a^{2}-z^{2}}{4 \times \frac{1}{2} a},=\frac{a^{2}-z^{2}}{2 a}$. But $\mathrm{DI}=$ Ft. Therefore $\mathrm{F} t$, or $u,=\frac{a^{2}-z^{2}}{2 a}$. Alfo $\dot{v}=$ $\frac{u \approx}{\dot{y}}$, by what was £aid above, that is, $\dot{v}=\frac{a u}{\sqrt{a^{2}-z^{2}}}$ $=\frac{a u}{\sqrt{2 a u}} \cdot$ Therefore we have $\dot{q u}: \dot{u}(=a: \sqrt{2 a u})$ $=\sqrt{\frac{1}{2} a}: \sqrt{ } \quad=\sqrt{\mathrm{GF}}: \sqrt{\mathrm{F} t}$, which is the analogy competent to a cycloid whofe axis is $\mathrm{GF}=\mathrm{DA}$.

It is not neceffary to infift longer on this in this place; becaufe all thefe things will come more naturally before us when we are employed in deducing the evolute from its evolutrix.

When the ordinates of a curve converge to a centre, in which cafe it is called a radiated curve, it is moft convenient to conffider its evolutrix in the fame way, conceiving the ordinates of both as infifting on the circumference of a circle defcribed ronnd the fame centre. Spirals evolve into other fpirals, and exhibit feveral properties which afford agreeable occupation to the curions geometer. The equiangular, logarithmic, or loxodromic fpiral, is a very remarkable example. Like the cy. cloid, it evolves into another equal and fimitar equiangular fpiral, and is itfelf the evolutrix, of a third. 'This is evident on the flighteft infpection. Let $\mathrm{C} r q p$ (fig. 6.) be an equiangular firal, of which S is the centre; if a radius SC be drawn to any point C , and another radius SP be drawn at right angles to it, the intercepted tangent CP is known to be equal to the whole length of the interior revolutions of the fpiral, though infivite in number. If the thread CP be now unlapped from the arch $C r q$, it is plain that the firft mo. tion of the point P is in a direction PT, which is perpendicular to PC , and therefore cuts the radius 'S in an angle SPT, equal to the angle SCP ; and, fince this is the cafe in every pofition of the point, it is manifeft that its path muft be a \{piral PQR, cutting the radii in the fame angle as the fpiral $\mathrm{C} r q p$. James Bernoulli firf difcovered this remarkable property. He alfo remarked, that if a line PH be drawn from every point of the fpiral, making an angle with
the tangent equal to that made by the radius (like an Involution. angle of reflection correfponding with the incident ray SP), thofe reflected rays would all be tangents to another finilar and equal fpiral IvH; fo that $\mathrm{PH}=\mathrm{PS} . \quad \mathrm{S}$ and H are conjugate foci of an infinitely nender pencil; and therefore the fpiral I $v \mathrm{H}$ is the cauftic by reflection of RQP for rays flowing from S. If another equal and fimilar firal x v y roll on I vH, its centre z will defcribe the fame fpiral in another pofition $u v z$. All thele things flow from the principles of evolution alone: and Mr bernoulli traces, with great ingenuity, the connection and dependence of caultics, buth by reflection and refraction, of cycloidal, and all curves of provolution, and their origin in evolution or involution. A variety of fuch repetitions of this curve (and many other fingular properties), made him call it the spira mira. Bilis. He defired that it fhould be engraved on his tombflone, with the infeription eadem mutata resurgo, as expreffive of the refurrection of the dead. See his two excellent differtations in Acz. Erudit. 1602, March and May.

Another remarkable property of this fpiral is, that if, inftead of the thread evolving from the fpiral, the foiral evolve from the ftraight line PC, the centre S will defcribe the ftraight line PS. Of this we have an example in the apparatus exhibited in courfes of experimental philofophy, in which a double cone defcends, by rolling along two rulers inclined in an angle to each other (fee Gravefande's Nat. Phil. I. \& 210). It is pretty remarkable, that a rolling motion, feemingly round C , as a momentary centre, fhould produce a mo. tion in the ftraight line SP; and it thews the inconclu. fivenefs of the reafoning, by which many compilers of elements of geometry profefs to demonftrate, that the motion of the defcribing point S is perpendicular to the momentary radius. For here, although this feeming momentary radius may be fhorter than any line that can: be named, the real radius of curvature is longer than any line that can be named.

But it is not merely an objeet of fpeculative geometric curiolity to mark the intimate relation between the genefis of curves by evolution and provolution ; it may: be applied to important purpofes both in fcience and inart. $\mathrm{Mr} \mathrm{M}^{\circ}$ Laurin has given a very inviting example of this in his account of the Newtoniarı philofophy; where he exhibits the moon's path in abfolute face, and from this propofes to inveltigate the deflecting forces, and vice verfa. We have examples of it in the arts, in the formation of the pallets of pendulums, the teeth of wheels, and a remarkable one in Meffrs Watt and Beulton's ingenious contrivance for producing the rectilineal motion of a pifton rod by the combiation of circular motions. M. de la Hire, of the Academy of Sciences at Paris, has been at great pains to fhew how all motions of evolution may be converted into motions of provolution, in a memoir in 1706 . But he would have cone a real fervice, if, inftead of this ingenious whim, he had mewn how all motions of provolution may be traced up to the evolution which is equivalent to them. For there is no organic genefis of a curvilineal motion fo fimple as the evolution of a thread from a curve. It is the primitive genefis of a circle; and it is in evolution alone that any curvilineal motion is comparable with circular motion. A given curve line is an individual, and therefore its primitive organical genefis mult alfo be individual. This is ftrietly true of evolution. A parabola.

I N V

favelur ion bola has but one evolute. But there are infinite motions of provolution which will deferibe a parabola, or any curve line whatever ; therefore thefe are not primitive organical modes of defcription. That this, however, is the cafe, may be very eafily fhewn. Thus let $A B C D$ (fig. 7.) be a parabola, or any curve; and let. $a b c d$ be any other curve whatever. A figure E $n l k b i$ raay be found fuch, that while it rolls along the curve abcd, a point in it fhall defcribe the parabola. The procefs is as follows: Let $\mathrm{B} b, \mathrm{C} c, \mathrm{D} d, \& \mathrm{c}$. be a number of perperdiculars to the parabola, cutting the curve $a b c d$ in fo inany points. The perpendiculars may be fo difpofed that the points $a, b, c, \& c$. Thall be equidiftant. Now we can conftruct a triangle E eb fo, that the three fides $\mathrm{E} c, e h$, and $b \mathrm{E}$, fhall be refpectively equa! to the three lines Ee, ef, Ff. In like manner may the whole figure be conffructed, having the little bafes of the triangles refpectively equal to the fucceffive portions of the bafe $\mathrm{A} b c d$, and the radii equal to the perpendiculars $\mathrm{B} b, \mathrm{C} c, \mathrm{D} d$, \&c. Let this figure roll on this bafe c. While the little fide $e k$ moves from its prefent pofition, and applies itfelf to ef, the point. E defcribes an arch E \& of a circle round the centre e, and, falling within the paratola, is fomewhere between E and I . Then continuing the provolution, while the next fide $b i$ turns round f till i applies to g, the point E de-- fcribes another arch \& Fo round f, firtt rifing up and reaching the parabola in F , when the line $\hbar \mathrm{E}$ coincides with $f \mathrm{~F}$, and then falling within the parabola till the point b begin to rife again from f by the turning of the rolling figure round the point g. Reverfing the motion, the fides $i h, b e, e k, \& c$. apply themfelves in fucceffion 10 the portions $g f, f e, e \cdot d, \& c$. of the bafe, and the point E defcribes an undulating line, confifting of arches of circles round the fucceffive centrcs $g, f, e, \& c$. Thefe circular arches all touch the parabola in the points G, I, F, \& . . and feparate fiom it a little internally. By diminifhing the portions of the bafe, and increating the number of the triangular elements of the rolling figure without end, it is evident that the figure becomes ultimately curvilineal iuftead of polygonal, and the point E continues in the parabola, and accurately defcribes it. It is now a curvilineal figure, having its elementary arches equal to the portions of the bafe to which they apply in fucceffion, and the radii converging to E equal to the perpendiculars intercepted between the curve ABCD ard the bafe. It may therefore be accurately conftructed.

It is clear, that practical mechanics may derive great advantage from a careful ftudy of this fubject. We now fee motions executed by machinery which imitate almoft every animal motion. But thefe liave been the refult of many random trials of ruipers, frail. pieces, \&c. of various kinds, repeatedly corrected, till the defired motion is at laft accomplifhed. But it is, as we fee, a fcientific problem, to confruct a figure which fiall certainly produce the propofed motion ; nor is the procefs by any means difficult. But how fimple, in comparifon, is the production of this motion by evolution. We have only to find the curve line. which is toucled by all the perpendiculars $\mathrm{B} b, \mathrm{C} c, \mathrm{D} d, \& \mathrm{c}$. This natutally leads us to the fecond problem in this doctrine, nanely, to determine the evolute by our knowledge of the involute: a problem of greater difficulty and of freater impontance, as it implies, and indeed teaches,
the curvature of lines, its meafure, and the law of its Involution. yariation in all particular cafes. The evolute of a curve is the geometrical expreffion, and extibition to the eye, of both thefe affcctions of curve lines.
Since the evolved thread is always at right angles to the evolutrix and its tangent, and is icfeif always a tangent of the evolute, it follows, that all lines drawn perpendicular to the arch of any curve, touch the curve line which will generate the given curve by evolution. Were this evolved curve previoufly known to us, we could tell the precift point where every perpendicular would touch it ; but this being unknown, we mult determine the points of contact by fome cther method, and by this determination we afcertain fo many points of the evolute. The method purfued is this: When two perpendiculars to the propofed curve are not parallel (which we know from the known pofition of the tangents of our curve), they muft interfect each other fomewhere on that fide of the tangents where they contain an angle lefs than 180°. But when they thus interfect, one of them has already touched the evolute, and the other has not yet reached it. Thus let $b s$, es (fig. I.) be the two perpendiculars : being tangents to the evolute, the point s of their interfection mult be on its convex fide, and the unknown poiuts of contact 13 and E mutt be on different fides of s. 'Thefe are elementary truths.

Let e E approach toward $b \mathrm{~B}$, and now cut it in x. The contact has fhifted from E to D , and x is ftill between the contacts. When the flifting perpendicular comes to the pofition c C , the interfection is at i, between the contacts B and C . And thus we fee, that as the perpendiculars to the involute gradually approach, their contacts with the evolute alfo approach, and their interfection is always between them. Hence it legitimately follows, that the ultimate pofition of the interfection (which alone is fuiceptible of determination by the properties of the involute) is the polition of the point of contact, and therefore :determilues a point of the evolute. The problem is therefore reduced to the invertigation of this ultimate interfection of two perpendiculars to the propofed curve, when they coalefce after gradually approaching. This will be beft illuftrated by an example: Therefore let ABC (fig. 8.) be a parabula, of which A is the vertex, $A H$ the axis, and $A V$ onehalf of the parameter ; let BE and CK be two perpendiculars to the curve, cutting the axis in E and K , and interfecting each other in r; draw the ordinates BD, CV , and the tangent BT , and draw BF parallel to the axis, cutting CK in F , and CN in O .

Becaufe the perpendiculars interfect in r, we have $r \mathrm{E}: \mathrm{EB}=\mathrm{EK}: \mathrm{BF}$. If therffure we can difoover the ratio of EK to BF, we determine the interfection r. But the ratio of EK to BF is compounded of the ratio of EK to $13 O$, and the ratio of $B O$ to $B F$. The firft of thefe is the ratio of equality ; for DE and VK are, each of them, equal to $A V$, or half the parameter. Take away the cominon part VE, and the remainders EK and DV are equal, and 1 V is equal to BO ; therefore $E K: B F=B O: B F$; thercfore $r E: r B=$ $13 O: B F$, and (by divition) $1 \mathrm{BE}: \mathrm{Er}=\mathrm{FO}: \mathrm{OB}$. Now let the point C continually approach io B , and at lait unite with it. 'The interfection r witl unite with a point of contact N on the evolute. The nhtimate ratio of $F O$ to $O B$, or of $f 0: \circ B$, is evidently that of $E D$

Invilution to DT, or FD to 2DA ; therefore BE: EN = ED $: 21) \mathrm{A}$, or as half the parameter to twice the abfciffa. Thus have we decermined a point of the evolute ; and we may, in like inauncr, determiue as many as we pieafe.

But we wifh to give a general character of this evolute, by referring it to an axis by perpendicular ordinates. It is plain that V is one point of it, becaufe the point E is always diftant from its ordinate DB by a line equal to AV ; and therefore, when B is in A, E will be in V, and r will coinc.de with it. Now draw VP and NO perpendicular to AH , and NM perpendicular to VP ; let EB cut PV in t : then, becaufe AV and DE are equal, AD is cqual to VE , and VE is equal to one half of DT. Moreover, becaufe BD and $\mathrm{N}\left(\mathrm{Q}\right.$ are parallel, $\mathrm{DE}: \mathrm{EQ}=\mathrm{BE}: \mathrm{EN}=\mathrm{DE}: \mathrm{D}^{\prime} \mathrm{T}$; therefore $\mathrm{DT}=\mathrm{EQ}$, and $\mathrm{VE}=\frac{1}{2} \mathrm{EQ}$, and therefore $=\frac{1}{3} \mathrm{VQ}$; therefore $\overline{\mathrm{V}} t$ is $\frac{1}{3}$ of $\mathrm{M} t$, and $\frac{1}{2} \mathrm{MV}$. This is a characteriftic property of the evolute. The fubtangent is $\frac{3}{2}$ of the abfciffa; in like manner, as in the common parabola, it is double of the abfciffa. We know therefore that the evolute is a paraboloid, whofe equation is $a x^{2}=y^{3}$; that is, the cube of any ordinate MN is equal to the parallelopiped whofe bafe is the fquare of the abfciffa VM, and altituce a certain line VP, called the parameter. To find VP, let CR be the perpendicular to the parabola in the point where it is cut by the ordinate at V ; draw the ordinate RS of the paraboloid, and RG perpendicular to AH . Then it is evident, from what has been already demonftrated, that VK is $\frac{1}{2}$ of KG , and $\frac{2}{7}$ of VG ; therefore $\mathrm{KG}^{2}=$ $4 \mathrm{VK}^{2}$, and (in the parabola) $\mathrm{VC}^{2}=2 \mathrm{VK}^{2}$. Alfo, becaufe $K V: V C=K G: G R$, we have $G R^{2}=2 K G^{2}$ $=8 \mathrm{VK}^{2}$; therefore $\mathrm{VP} \times \mathrm{RG}^{2}=8 \mathrm{VP} \times \mathrm{VK}^{2}$. But $\mathrm{VG}^{3}={ }_{2}{ }^{7} \mathrm{VK}^{3},=27 \mathrm{VK} \times \mathrm{VK}^{2}$; therefore, becaufe in the paraboloid $V P \times V S^{2},=S R^{3}$, or $V P \times R\left(G^{2}\right.$ $=\mathrm{VG}^{3}$, we have $8 \mathrm{VP} \times \mathrm{VK}^{2}=27 \mathrm{VK} \times \mathrm{VK}^{2}$, and $8 \mathrm{VP}=27 \mathrm{VK}$; or VK:VP; that is, $\mathrm{AV}: \mathrm{VP}=$ $8: 27$; or $V P=\frac{27}{8} \mathrm{AV}$, or $\frac{27}{15}$ of the parameter of the parabola $A B C$. The evolute of the conical parabola is the curve called the femicubical parabola, and its parameter is $\frac{27}{\frac{1}{6}}$ of the conical parabola.

This inveftigation is nearly the fame with that given by Huyghens, which we prefer at piefent to the metho! generally enployed, becaufe it keeps the priuciple of inference more clofely in view.

Mr Huyghens has deduced a beautiful corollary from it. Since the parabola $A B C$ is defcribed by the evolution of the paraboloid VNR, the line RC is equal to the whole evolved arch RNV, together with the redundant tangent line $A V$. If therefore we toke from $C R$ a part $C \times$ equal to the redundant $A V$, the remainder $\times R$ is equal to the arch RNV of the paraboloid. We may do this for every pofition of the evolved radius, and thus obtain a feries of points $\mathrm{V}, \mathcal{R}, 2, \delta, t$, of the evolutrix of the paraboloid. We have even an taficr method for obtairing the lerigth of any part of the arch of the paraboloid, without the previous defcription of the parabola $A B C$. Suppofe $P y$ the arch of the para. boloid, and $y z$ the tangent; make $\mathrm{P} z=\frac{8}{2}$ y of the parameter, and defcribe the arch $\mathrm{P} u u$ of a circle; then draw from every tangent $y z$ a parallel line $x v$, cutting the circle in u. The length of the arch $y \mathrm{P}$ is equal to $y z+u v$. The celebrated author congratulates himfelf, with grcat juftice, on this neat exhibition of a right - line equal to the arch of a curve, without the employ-
ment of any line higher than the circle. - It is the f e- Involuri) =o cond curve that has been fo rectified, the cycloid alone laving been rectified by plain geometry a very few years before by Sir Chritopher Wren. It is very true, and he candidly adnuts it, that this very chrve had been rectified before by Mr Williann Neill, a young gentleman of Oxford, and favourite pupil of Dr Wallis ; as alfo by Mr Van Heuract, a Derch gentleman of rank, and an eminent mathematician. But both of thefe gentlemen had done it by means of the quadrature of a cuive, conitructed from the paraboloid after the manner of Dr Barrow, Lect. Geom. XI. Nor was this a folitary difcovery in the hands of Mr Huyghens, as the rectification of the cycloid had been in thofe of Sir Chriflopher Wren; for the merhod of inveftigation furnifhed Mr Huyghens with a general rule, by which he could evolve every £pecies of paraboloid and hyperboloid, two claffes of curves which come in the way in al. moft every difcuffion in the higher geometry. He obServes, that the ratio of $B f$ to $E e$, being always compounded of the ratios of $\mathrm{B} f$ to Bo , and of $\mathrm{B} o$, or $\mathrm{D}\left(d_{0}\right.$ to E_{e}; and the ultimate ratio of $\mathrm{B} f$ to $\mathrm{B} o$ being that of T'E to TD, which is given by the nature of the paraboloid, we can always find the ratio of BE to BN , if we know that of $\mathrm{D} d$ to Ee. In all curves, the ratio of $\mathrm{D} d$ to $\mathrm{E} e$ (taken indefinitely near), is that of the fubtangent to the fum of the fubtangent and ordinate of a curve conftrueted on the fame abfciffa, having its ordinates equal to the fubnormals DE, de, VK, \&c. In the conic fections the ratio is conflant, becaufe the line fo conttrueted is a ftraight line ; and, in the parabola, it is parallel to the axis. Sue farther properties of it in Barrow's Leeg. Geom. XI.
Fion this inveltigation, Mr Huyghens luas deduced the following beantiful theorem:
L.et a be the parameter of the parabcluid, x its abfcifla, and y its ordinate; and let the equation be $a^{m} x^{n}=y^{m}+n$; let the radius of the evolute meet the tangent through the vertex A in Z . We flall always have $\mathrm{BN}=\frac{n}{m} \mathrm{BE}+\frac{m+n}{m} \mathrm{BZ}$. Thus,

This is an extremely fimple and perfpicuous methot of determining the radius of the evolute, or radius of curvature; and it, at the fame time, gives u s the rectification of many curves. It is plain that every geometrical curve may be thus examined, becaufe the fubnormals DE, VK are determined; and therefore their differences are determined. Thefe differences are the fame with the differences of $\mathrm{D} d$ and $\mathrm{E} e$; and therefore the ratio of $\mathrm{D} d$ to $\mathrm{L} e$ is determined ; that is, the fabfediary curve now ment ioned can always be coultructed.

There is a tingular refult from this rule, which wo:lld lardly have been noticed, if the common method for determining BNJ had alone been eniployed. The equations of the paraboloid is fo fimple, that the increafe of the ordinates and diminution of curvature feeta to keep. pace togecher ; yet we have feen that, in the vertex of the cubical parabola, the curvature is lees than any circular curvature that can be named. In the legs, the curvature certanly diminifhes as they extend farther;

I $\mathrm{N} V$

Involution, there muft therefore be fome intermediate point where the curvature is the greatelt poffible. 'This is diftinctly pointed out by Mr Huyghens's theorem. 'The evolute of this paraboloid (having $a^{2} \cdot x=y^{3}$) is a curve ONRNQ (fig. 9.) conlifting of t wo branches RO , and RQ , which have a common tangent in R; the branch $R Q$ has the axis $A E$ for its affymptote. The thread unfolding from OR, its extremity, defcribes the arch BC, and then, unfolding from RQ, it defribes the fmall arch CB'A. When 13^{\prime} is extremely near A, the theead has a polition $B^{\prime} N^{\prime} E$, in which $B^{\prime} N$ is very nearly $\frac{1}{2} B E$. At C, if CE be bifected in G, GR is $\frac{3}{2}$ of $C Z$. Here CR the radius of curvature is the Thortef poffible. The evolutes of all paraboloids confift of two fuch branches, if $m+n$ exceeds 2 .

Such is the theory of evolution and involution as delivered by Mr Huyghens about the year 1672. It was cultivated by the geometers with fuccefs. Nerrton prized it highly, and gave a beautiful fpecimen of its application to the defcription, rectification, and quadrature of epicycloids, trochoids, and epicy cles of all kinds. But it was eclipfed by the fluxionary geometry of Newton, which included this whole theory in one propolition, virtually the fame with Mr Huyghens's, but more comprehenfive in its expreffion, and much more fimple in its application. Adopting the unqueftionable principle of Mr Huyghens, that the evolved thread is the radius of a circle which has thie fame flexures with the curve, the point of the ewolute will be obtained by findiing the length of the radius of the equicurve circle. The formula for this purpofe is given in the article Fluxions of the Encyclopaclia Britunnica; but is incorrectly flated $=\frac{\overline{a+4}}{2 \sqrt{\frac{3}{a}}} \frac{-1}{2}$, inftead of $\frac{\overline{a+4 \times\left.\right|^{\frac{3}{3}}}}{2 \sqrt{\frac{1}{a}}}$. The theorem alio from which it is deduced $\left(r=\frac{\dot{z}^{2}}{-\dot{x} \ddot{y}}\right)$ is incorrectly printed, and is given without any demonftration, thereby becoming of very little fervice to the reader. For which reafon, it is neceflary to fupply the defect in this place.

Therefore let $\mathrm{A} b c d \mathrm{E} f$ (fig. 10.) be a circle, of which C is the centre, and ACE a diameter; let the points b, c, d, of the circuinference be referred to this diameter by the equidiftant perpendicular ordinates $b i$, $c g, d k$; draw the chords $b c, c d$, prod..cing $d c$ till it meet the ordinate $b i$ in a, produce $c g$ to the circle in f, and join $b f, d f$; draw $b b, c \mathrm{~m}$, perpendicular to the ordinates ; then $b b, c m, b c, m d, b c, c d$, are ultimately proportional to the firft fluxions of the abfcifla AE, the ordinate $c g$, and the arch $\mathrm{A} c$; alfo $a b$, the difference between $d m$ and $c b$ is ultimately as the fecond fluxion of the ordinate. The triangle $a b c$ is fimilar to $b d f$; for the angle $a b c$ is equal to the alternate angle $b c f$, which is equal to $b d f$, flanding on the fame fegment. The angle $a c b$ is equal to $b f d$, ttanding on the legment $b c d$; therefore the remaining angles $\delta a c$ and $d b f$ are equal; therefore $a b: b c=b d: d f=\frac{1}{2} b d: \frac{7}{2}$ $d f$. Now let the oidinates $b i$ and $d k$ continually approach the ordinate $c g$, and at latt unite with it; we fhall then have $b c$ ultimately equal to $\frac{1}{2} b d$, and $c g$ ultimately equal to $\frac{1}{2} d f$. Therefore, ultimately, $a b: b c$ $=b c: c g$, and $c s=\frac{b c^{2}}{a b}$.

Let u, v, w, reprefent the variable abfciffa, ordinate, Involution, and arch. We have, for the fluxionary expreffion of the ordinate of the equicurve circle, $v=\frac{\dot{v}^{2}}{-\ddot{v}}$ (\ddot{v} muft lave the negative fign, becaufe, as the arch increafes, \dot{v} diminihes). In the next place, it is evident that, ultimately, $b b: b c=c g: c \mathrm{C}$, and $c \mathrm{C}=\frac{c g \times b c}{b b}$. If r be the radius of the equicurve circle, we have $\dot{u}: \dot{w}$ $=v: r$, and $r=\frac{v \dot{w}}{i}$. But we had $v=\frac{\dot{w}^{2}}{-\ddot{v}}$. Subflitute this in the prefent equation, and we obtain r $=\frac{u^{3}}{-u \ddot{v}}$. Lafly, obferve that $\dot{v^{2}}=\dot{u}^{2}+\dot{v}$, and $\dot{w}=\sqrt{u^{2}+v^{2}}=\left.\overline{u^{2}+\dot{v}}\right|_{\dot{2}} ^{1}$. Therefore $\dot{w^{3}}=\overline{\left.u^{2}+v^{2}\right\}^{3}}$ and we have $r=\frac{\overline{u^{2}+\dot{v}^{2}}-\frac{3}{2}}{-\dot{u} \ddot{v}}$, as the moll general fluxionary expreffion of the radius of a circle, in terms of the fine, cofine, and arch.

When a curve and a circle have the fame curvature, it is not enougle that the firll fluxions of their abfeifix, ordinates, and arches, are the fame. This would only indicate the pofition of their common tangent. They mult have the fame deflection from that tangent. This is always equal to half of the fecond fluxion of the ordinate. Therefore the circle and curve mult have the fame fecond fluxion of their urdinates. Therefore let 1) $b c d F$ be any curve cninciding with, or ofculated by, the circle $\mathrm{A} b c d$. Let its axis be DG, parallel to the diameter AE ; and let $c n$ be its ordinate. Let $\mathrm{D} n$ be $=x, c n=y$, and $b c=z$. We have $\dot{x}, \dot{y}, \dot{z}$, refpectively equal to $\dot{u}, \dot{v}, \dot{z}$. Therefore the radius of the ofculating circle is $r=\frac{\dot{z}^{3}}{-\dot{x} \ddot{y}}$ or $\dot{r}=\frac{\overline{\dot{x}^{2}+\dot{y}^{2} 2^{\frac{3}{2}}}}{-\dot{x} \ddot{y}}$, for all curves whatever. (We recommend the careful perufal of the celebrated 2 d corollary of the 10 th propofition of the 2 d book of Newton's Principia, where the firlt p:inciples of this doctrine are laid down with great acutenefs.)

Inftead of fuppofing the ordinates equidiftant, and confequently \dot{x} invariable, we might have fuppofed the ordinates to increafe by equal iteps. In this cafe y would have had no fecond fluxion. The radius would then be $=\frac{\dot{z}^{3}}{\dot{y} \dot{x}}$. Or, lafly, we might fuppofe (and this is very ufual) the arch z to increafe uniformly. In this cafe $r=\frac{z y}{\ddot{x}}:$ For becaufe $\dot{x}^{2}+\dot{j}^{2}=\dot{z}^{2}$, by taking the fluxion of it, $2 \dot{x} \ddot{x}+2 \dot{y} \ddot{y}=0$, and $\ddot{y}=$ $\frac{\ddot{x} \ddot{x}}{y}$; and therefore $r=\frac{z^{3}}{y \ddot{x}-x \ddot{y}},=\frac{z^{3}}{y x+\frac{x^{2} x}{y}}$ $=\frac{\dot{y} z^{3}}{y^{2}+\dot{x}^{2} \times \ddot{x}}, \frac{\dot{y} \dot{z}}{\ddot{x}}$.

Having thus obtained the radius of curvature, and confequently a point of the evolute, we determine its form
noroution. Form by reference to an abfcifs, without much farther trouble: It only requires the drawing $C p$ perpendicular to the axis of the propofed curve, and giving the values of $C p$ and $D p$. If we fuppofe \dot{x} conftant, then, $c \mathrm{C}$ being $=\frac{\dot{z}^{3}}{-\dot{x} y}$, we have $\mathrm{D} p(=\mathrm{D} n+g c,=$ $\left.\mathrm{D} n+\frac{\dot{y}}{\dot{x}} \times c \mathrm{C}\right)=x+\frac{y z^{2}}{0} ;$ and $p \mathrm{C}(=c \pi$ $-c n,=\frac{\dot{x}}{\dot{z}} \times(C-c n)=\frac{-x y}{-\ddot{z}}-y . \quad$ But if we fuppofe \dot{y} conftant; then, $c \mathrm{C}$ being $=\frac{\dot{z}^{3}}{\dot{y} \ddot{x}}$, we have $\mathrm{D} p=x+\frac{\dot{z^{2}}}{\ddot{x}}$, and $p \mathrm{C}=\frac{\dot{x} \dot{z^{2}}}{\dot{y} \dot{x}}-y$. And if \dot{z} be
 $=x+\frac{\dot{y}^{2}}{\ddot{x}}$, and $p \mathrm{C}=\frac{\dot{x} \dot{y}}{\ddot{x}}-y$.

Thefe formulx are fo many general expreffions for determining both the curvature of the propofed curve and the form of its evolute. They alfo give us the rectification of the evolute; becaufe $c \mathrm{C}$ is equal to the evolved arch, or to that arch, together with a conftant part, which was a tangent to the evolute at its vertex, in thole cafes where the involute has a finite curvature at its vertex ; as in the common parabola.

Let us take the example of the common parabola, that we may compare the two methods. The equation of this is $a x=y^{2}$, or $a^{\frac{1}{2}} x^{\frac{1}{2}}=y$. This gives y $=\frac{\frac{1}{2}}{2} a^{\frac{\pi}{2}} \dot{x} x^{-\frac{x}{2}},=\frac{a^{\frac{1}{2}} \dot{x}}{2 x^{\frac{1}{2}}}$, and (making \dot{x} conftant) $\ddot{y}=-\frac{1}{2} \times \frac{1}{2} a^{\frac{1}{2}} \dot{x}^{2} x^{-\frac{3}{2}}=\frac{-a^{\frac{x}{2}} \dot{x}^{2}}{4 x^{\frac{3}{2}}}$. Wherefore $z\left(=\sqrt{x^{2}+y^{2}}\right)=\frac{\dot{x}}{2} \sqrt{\frac{4 x+a}{x}}$, and the radius of curvature $\left(=\frac{\dot{z}^{3}}{-\dot{x} \ddot{y}}\right)=\frac{\overline{a+4 x^{2}}}{\left.2 \sqrt{ }\right|^{\frac{3}{2}}}$. At the vertex, where $x=0$, the formula becomes $=\frac{1}{2} a$. Again, $\mathrm{D}_{p}\left(=x+\frac{\dot{y} z^{2}}{-\dot{x}}\right)$ becomes $\frac{x}{2} a+3 x$; and therefore $V_{p}=3 x$, $=$ the abfciffa of our evoIute. Likewife $c p$, its ordinate, $\left(=\frac{\dot{z}^{2}}{-\ddot{y}}-y\right)$ $=\frac{4 x^{\frac{3}{2}}}{\sqrt{ } a} ;$ and $C p^{2}=\frac{16 x^{3}}{a} ;$ and $C p^{2} \times a={ }_{1} 6 x^{3}$. But $V p=3 x$, and $V p^{3}=27 x^{3}$. Therefore $\mathrm{C} p^{2} \times$ $\frac{1}{1}$ th $a=x^{3},=\frac{1}{2} \frac{1}{6}$ th V p^{3}, and $\frac{2}{1} \frac{7}{6}$ ths $a \times \mathrm{C} p^{2}=\mathrm{V} p^{3}$. Therefore thie evolute VC is a femicubical parabola, whofe paraneter is $\frac{27}{8} a$, as was fhewn by Mr Huy. gliens. The arch VC is $=\frac{\overline{a+4 x}}{2 \sqrt{a}}-\frac{8}{2} a$.

We thall give one other example, which compreSuppl. Voz. II. Part I.
hends the whole clafs of paraboloids. Their general Involutiont equation is $y=a x^{n}$. This gives us $\dot{y}=n a x^{n-1} \dot{x}$, and $\ddot{y}=n \times n-1 \times a \times^{n-2} \dot{x}^{2}$; therefore $\approx 1=$ $\left.\sqrt{\overline{x^{2}+\dot{y}^{2}}}\right)=\dot{x} \sqrt{1+n^{2} a^{2} x^{2 n-2}} ; C c\left(=\frac{\dot{x}^{3}}{-\dot{x} \ddot{y}}\right)$
 $=x-\frac{x+n^{2} a^{2} x^{2} n-1}{n-1} ; C_{p}\left(=\frac{\dot{z}^{2}}{\ddot{y}}-y\right)=$ $\frac{1+\overline{2 n-1} \times n a^{2} x^{2 n-2}}{-\overline{n-1} \times n a \times n-2} ;$ and $\mathrm{DV}=-\frac{n^{2} a^{2} o^{2 n-1}}{n-1}$

This laft formula expreffes the radius of curvature at the vextex D, or the redundant part of the thread, by which it exceeds the arch VC of the evolute. If $n=\frac{1}{2}$, the formula becomes $\frac{a^{2}}{2}$: but if n be greater than this, VC will be $=0$; and if it be lefs, VC will be infinite. Hence it appears, that the radius of curvature at the vertex of a curve is a finite quantity orly in the cafes where the firft or nafcent ordinates are in the fubduplicate ratio of their abfciffo. In all other cafes, the curvature is incomparable with that of any circle, being either what is called infinite (when n is $\mathrm{g}^{\text {rezezer than } \frac{x}{2} \text {) }}$ or nothing (when it is lefs).

We fcruple not to fay, that the method of Mr IHuyghens is more luminous, more pleafing to the imagination of a geometer, than this; and in all the cafes which occurred to us in our employment of it, it fuggefted more ready conftructions, with the additional fatisfaction of exhibiting, in a continuous train, what the fymbolicul method, proceeding by the fluxionary calcu. hus, only indicates by points. We mult alfo obferve, that the fubfidiary curve employed by Ifinyghens, having its ordinates cqual to the fubnormals of the involute under examination, is the geometrical expreffion of that function of the involute which gives the fecond fluxion:s \ddot{y} and \ddot{x} of the ordinate and abfiffa. The young mathematician will find no difficulty in conftrueting this curve in every cafe; whereas we imagine that he will not find it a light matter to confruct the linal equations of the fymbolic method almofl in any cafe. At the fame time, the all comprehending extent of the latter method, and the numberlefs general theorems which it fuggefts to the expert analyft, give it a moft deferved preference, and make it almoft an indifpenfable inftrument for all who would extend our phyfico-mathematical fciences.

In the employment of the geometry of curve lines, efpecially in the doctrine of centripetal forces, it is ufual to confider the ordinates, not as infifting on a rectilineal abfciffa, but as diverging from a centre. This is atfo the ufual way of conceiving all fpirals and cvolutrixes of curves which incluce fpace; in flort, all RA dial curves. :The procefs for finding their evolute, or their radius of curvature, is fomewhat cifferent from that hitherto exhibited; but it is more fimple. Thus, let GPM (Fr. Io.) be the elliptical path of a flanet, of which S is the focus. We requirc $I^{\prime} C$, the radius of curvature in the point P. Let $P^{\prime} p$ be a very fmall arch. Draw the radii $\mathrm{SP}, \mathrm{S} p$, the tangents $\mathrm{PI}, p l$;

Snvolution and draw ST perpendicular to PT , cutting $p t$ in t; \sim and $P o$ perpendicular to $S p$. Let the arch GP be $=z$, the radius $\mathrm{SP}=y$, and the perpendicular ST^{T} $=p$. Then, it is plain, that $\mathrm{P} p, o p, T t$, are ultimate1y proportional to $\dot{z}, \dot{y}, \dot{p}$. The triangles PC p, and T p t or TP t are alfo ultimately fimilar; as aifo the thiangles PST and $p \circ \mathrm{P}$. Therefore, ultinately,
Tliro $\quad \mathrm{T} t: \mathrm{P} p=\mathrm{PT}: \mathrm{PC}$
alfo $\quad{ }^{1} p: p o=P S: P T$
therefore $\mathrm{T} t: p_{0}=\mathrm{PS}: \mathrm{PC}$, or, $p: y=y: r$, and $r=\frac{y y}{\dot{p}}$; an expreflion of the radius of curvature, exp
tremely fimple, and of eafy application.
The logarithinic or equian gular Tpiral P(1R (fig. 6.) affords an eafy example of the ufe of this formula. The angle SPT, which the ordinate makes with the curve, is everywhere the fame. 'Therefore let a be our tabular radius, and b the fine of the angle $S \mathrm{SF}^{\prime}$. We have ST $=\frac{b y}{a}$; and therefore $\operatorname{PC}\left(=\frac{y \dot{y}}{\dot{p}}\right)=\frac{a y \dot{y}}{b \dot{y}}=\frac{a y}{b}$. This is to SP or y in the conflant ratio of a to b, or of SP to ST^{\prime} : that is, $\mathrm{ST}: \mathrm{SP}=\mathrm{Si}^{\prime}: \mathrm{PC}$, the triangles SPT and PCS are fimilar, the angles at P and C equal, and C is a point of an equiangular fpiral $p y r$ round the centre S.

It is not meant that the confruction pointed out by this theory of involution, expreffed in its molt general and fimple form, is always the beft for finding the eentre of the equicurve cicle. Our knowledge of, or attention to, many other properties of the curve under confideration, befides thofe which fimply mark its relation to an abfiffs and ordinate, muff frequently give us better conitructions. But evolution is the natural genefis of a line of varying curvature. Moreover, in the moft imporrant employment of inathematical knowledқc, namely, meclanical philofonhy, it is wel! known, that the moft certain and compriplienfive methol of folving all intricate problems is by reference of all forces and motions to three co-ordinates perpendicular to each o. ther. Thus, without any intentional fearch, we have already in our hands the very fluxionary quantities en. ployed in this doatrine ; and the expreflion which it gives of the radius of curvature requires only a change of terms to make it a mechanical theorem.

THus lave we confidered the two chief queftions of evolution and involution. We have done it with as clofe attention to geometry as poffible, that the reader's mind may become familiar with the ipfa corpora while acquiring the elementary knowledge, which is to be. employed more expeditioufy afterwarcis by the help of the fymbolical analyfis. Without fuch ideas in the mind, the occupation is oftentines as much divefted of thought as that of an expert accountant engaged in complex calculations; the attention is wholly turned to the rules of his art.

It now remains to confider a little the nature of this curvature of which fo mucl has been faid, and about which fo many obfcure opinions have been entertained. We mentioned, in an early part of this article, the unwarranted ufe of the terms of infinite and infinitelimal magnitude as applicable to curvature, and fhewed its im. propriety by the inconfiffences into which it leads ma-
thematicians. Nothing threw fo much light on this Involution, fubject as Mr Huyghens's Geometry of Evolution; and we fhould have expected that all difputes would have been ended by it. But this has not been the cafe; and even the moft eminent geometers and metaphyficians, fuch as the Bernoullis and Leibuitz, have given explanations of orders of curvature that can have no exiltence, and explanations of that coalefcence which obtains bet ween a curve line and its equicurve circle, which arc not warranted by juft erimciples.

Thefe errors (for fuch we prefume to think them) arofe from the method emplpyed by the geoneters of laft certury for obtaining a knowledge of the magnitude and variation of curvaiture. The fcrupulous geometers of antiquity defpaire! of ever being able to compare a curve with a richt line. The moderns, although taught by Des Cartes to define the nature of a curve by its cquation, allowed that this only enabled them to exhibit a feries of poinas through which it paffed, and to draw the polygon which comeets thefe points, but gave no information concerning the continuous incurva. ted arches, of which the fides of the polygon are the chords. They could not generally draw a tangent to any point, or from any point ; but they could draw a chord through any two points. Des Cartes was the firlt who could draw a tangent. He contrived it fo, that the equation which expreffes the interfections of the curve with a circle defcribed round a given centre fhould have two equal roots. This indicates the coalefcence of two interfections of the common chord of the circle and the curre. Therefore a perpendicular to the radius fo determined mult touch the curve in the point of their union. 'I'his was undoubtedly a great difcovery, and worthy of his genius. It naturally led the way to a much greater difcovery. A circle may cut a curve in more points than two: It indy cut a conic fection in four points; all expieffed by one equation, having four roots or tolutions. What if three of thefe roots thould be equal? 'This not only indicates a clofer union than a mere contact, but alfo gives indication of the flexure of the intervening arch. For, before the union, the interfections were in the arch both of the curve and of the circle; and therefore the diftinction between the union of two and of three interfections mult be of the fane kind with that between a Araight line and an arcly of this circle. The fexare of a circle being the fame in every part, it becomes a proper index; and therefore the circle, which is determined by the coalefcence of three interfections, was taken as the meafure of the curvature in that point of the curve, and was called the circle of curvaturf, the equicurve circle. There is a certain progrefs to this coalefeence which muft be noticed. Let ABD (fig. 4.) be a common parabola, EBF a line touching it in B, and BO a line perpendicular to E13F. 'iaking fome point O in the other fide of the axis for a centre, a circle may be defcribed which cuts the curve in four points $a, b, c, a n 1 d$. By enlarging the radius, it is plain that the points a and b muft feparate, as alfo the points c and d. Thus, the points b and c approach each other, and at laft coalefce in a point of contact B, with the parabola, and with its tangent. In the mean time, a and d have retired to A and D . If we now bring the centre O nearer to B , the new circle will fall wholly within the laft circle ABD ; and therefore both

Ervolution. A and D will again approach to each other, and to B, which ftill continues a point of contact. It is plain that A will approach fafter to B than D will do. At length, the centre being in 0 , the foint A coalefees with B , and we obtain a circle $: B \Omega$, touching the curve in B, and cutting it in \& : Confequently the arch $13: \delta$ is wholly within, and $\mathrm{B}+\delta$ is wholly without the parabola; and the circle both touches and cuts the parabola in D. Here is certainly a clofer union, at leaft on the fide of a. But perhaps a farther diminution of the circle may bring it clofer on the fide of D. Join $B 8$. Let a fmaller circle be deferibed, touching the parabola in B , and cutting it in p. Draw ϕc parallel to $\& 13$. It mas be denonftrated that the new circle cuts the parabola in c. Now the arch between c and p being without the parabola, the arch 13 C mult be within it; and therefore this circle is within the parabola on both fides of B , and is more incurvated than the parabola. We have feen, that a circle greater than : $\mathrm{B} \delta$ is without the parabola on both fides of 13 ; and therefore is lefs mourvated than the parabola. Therefore the individual circle $\cdot \mathrm{B} \delta$ is neither more nor lefs curve than the parahola in the point B. Therefore the circle indicated by the coalefecence of three interfections is properly named the equicurve circle ; and, fince we meafure all curvatures by that of a circle, it is properly the circle of curvature, and its radius is the radius of curvature.

Had 13 been the vertex of the axis, every interfection on one file of B would have been fimiler to an interfection on the othe:, and there would alwaya have been two pairs of roots that are equal ; and therefore when three interfections coalefce, a fourth alfo coalefces, and the conta? is faid to be ftill clofer.

What has now been fliew with refpeet to a conic fection is true of every curve. When two interfections coalefce, there is a common tangent ; when three coalefce, there is an equal curvatnre, and no other circle can pafs between this circle and the curve. There cannot be a coalefcence of four interfections, except when the diameter is perpendicular to the ordinates, and thofe are bifeeted by the diameter.

Mr Leibnitz, who valued himfelf for metaphyfical sefinement, and never fails to claim fuperiority in this particular, notices the important diftinetion between a fimple contact and this clofer union, in a very well written differtation, publifhed in the AGa Eruditorum, July 1686. He calls the contact of equal curvatures and osCULATION, and the circle of equal curvature the osculating circle, and delivers feveral very judicious remarks with the tone of a mafter and inftructor. He alfo fpeaks of different degrees or orders of ofculation, each of which is infinitely clofer than the other, as a thing not remarked by greometers. But Sir Ifaac Newton had done all this before. The firlt twelve propofitions of the Principia had been read to the Royal Society feveral years before, an : were in the Regifters. The Principia had! received the imprimatur of the Society in July 1686 ; but was almoft printed before that time. In the Scholium to the ith Lemma, is contained the whole doctrine of contact and ofeulation; and in the lemmia and its corollaries, is crowded a body of doctrine, which has afforded themes for volumes. The author glances with an eagle's eye over the whole profpeet, and points out the prominent parts with the moft compreffed brevity ; but with fufficient precifion
for marking out the more important objects, and par- invointion. ticularly the different orders of curvature. This lemina and its corollaries are concinually employed in the twelve propofitions alseady mentioned. In 1671 he had written the firft draught of his method of fluxions, where this doctrine is fyltematically treated; and Mr Collins had a copy of it ever fince 1676 . It is well knowri that Leibnitz, when in London, had the free pernfal of the Society's records, and information at all times by his correfpondence with the fecretary Oldenburgh and Mr Collins. His conduet refpecting the theorems concerning the elliptical motion of the planets, and the refiftance of fuids, leave little roons to doubt of his having availed himfelf in like manner of his opportunity of information on this fubject. IFe gives a much better account of the Newtonia:l doctrine on this fuhject than in thofe other inltances, it being more fuited to his refining and paradoxical difpulition.

In this and another differtation, he confiders more particnlarly the nature of evolution, and of that ofculation which obtains between the evolutrix and the circle defcribed by the evolved radius. He fays, that it is equivalent to two fimple contacts, each of which is equivalent to two interfections. An ofculation produced in the evolution of a curve is therefore equivalent to four interfections. And he actviles, with an air of authority , the mathematicians to attend to thefe remarks, as leading them into the receffes of feience. He is miftaken, however; and the liftening to him would prevent us from forming a jult notion of ofculation, and from conceiving with diftinctnefs the fingular fact of a circle both touching and cutting a curve in the fame point. James Bernoulli lo? his friendfhip, becaufe he pieflumed to fay that the prefence of four interfections in an ofculation is not warranted by the equation exprefling thofe interfections.
Mr Leibnita was mifled by the way in which he had contidered the ofculation in the evolution of curves. It merits attention. From any point within the fpace ADFOA (ig. 1.), two perpendiculars may be drawn to the evolutrix $A b d f$: and therefore two eircles may be deferibed round that point, each touching the curve. Each contact is the union of two interfections 'There. fure, as the centre approaches the evolute, the contacts approach each other, and they unite when the contre reaches the evolute. Wherefore the ofculation of evolution is equivalent to four interfections.

But when two luch circles are deferibed round a point s, fo as that both may touch the evolutrix $\mathrm{A} a f$, the point s is in the interfection of one evolved radius with the prolongation of another. The contact at the extremity b of the prolonged radius $b \mathrm{~B}$ is an exterior contact, and the arch of the circle croffes the evolutrix, from without inwards, in fome point more remote frons A. The contact at the extremity e of the radins $\varepsilon \mathrm{E}$: is an interior contact; and if es be greater than the Itraight line EA, the arch of this circle croffes the curve, from within outwards, in fome point nearer to A. Ihus each contact is accompanied by an interfection on the fide next the other contact, fometimes beyond it, and fometimes between the contacts. As the contacts approach, the interfections alfo approach, itill retaining their characters as interfections, as the contacts ftill continue contacts. Alfo the circle next to A croffics from without inwards, and that next to f croffes from

1 N V [28] N V

Invol ti.n. within outwards. They retain this character to the laft; and when the contacts coalefce, the two circles coalefce over their whole circumference, ftill, however, croffing the curve in the fame diredtion as before; that is, without the curve on the fide of A, and within it on the fide of f. The contacts unite as contacts, and the interfections as interfections. Thus it is that the ofculating circle both touches and interfects the curve in the fame point.

At f the ofculation is indeed clofer than anywhere clfe. The variation of curvature is lefs there than anywhere elfe, becaufe the radius changes more flowly. It is this circumflance that determines the clofenefs of contact. If a circle efculates a curve, it has the fame curvature. If this curvature does not change in the vicinity of the contact, the curve and circle muft coincide; and the deviation of the circle (the curvature of which is everywhere the fame) from the curve muft proceed entirely from the variation of its curvature. This, therefore, is the important circumftance, and is indeed the characterittic of the figure as a curve line; and its other properties, by which the pofition of its different parts are determined, may be afcertained by means of the variation of its curvature, as well as by its relation to co-ordinates. Of this we have a remarkable inflance at this very time. The orbit of the newly difcovered planet lias been afcertained with tolerable precifion by means of obfervations made on its motions for three years. In this time it had not defcribed the 20th part of its orbit ; yct the figure of this orbit, the pofition of its tranfverfe axis, the place and time of its perihelion, were all determined within roodth part of the truth by the olferved variation of its curvature. It therefore merits our attention in the clofe of this article. We know of no author who has treated the fuiject in fo inftructive a manner es Mr M © Laurin has done, by exhibiting the theorem which conftitutes Newfon's fith lemma in a form which points this ont even to the cye (fee M'Laurin's Fluxions, Chap. xi. § 363 , \&c.). We earnefly recommend this work to the young geometer, as containing a fund of iuttruction and agreeable exercife to the mathematical genius, and as greatly fuperior in perfpicuity and in ideas which can be treafured up and recollected, when required, to the greateft part of the tlaborate performances of the eminent analyfts of later times. By expreffing every thing geometrically, the author furnilles us with a fort of picture, which the imagination readily reviews, and which exhibits in a train what mere fymbols only give us a momentary glimple of.
"As, of all right lines which can be drawn through a given point in the arch of a curve, that alone is the tangent which touches the arch fo clofely that no riglit line can pafs between them; fo, of all circles which touch a curve in a given point, that circle alone has the fane curvature which touches it fo clofely that no circle can pafs between them. It cannot coincide with the arch of the curve ; and therefore the above condition is fufficient for making it equicurve. As the curve fepa. rates from the tangent by its flexure or curvature, it feparates from the equicurve circle by its clange of curvature; and as its curvature is greater or lefs according as it feparates nore or lefs from its tangent, fo the variation of its curvature is greater or lefs according as it feparates more or lefs from its equicurve citcle. There
can be but one equicurve circle at one point of a curve, Involution: otherwife any other circle defcribed between them through that point will pafo between the curve and the equicurve circle.
"When two curves touch each other in fuch a manner that no circle can pafs between them, they mult have the fame curvature; becaufe the arch which touches one of them fo clofely that no circle can pafs between them, mult touch the other in like manner. But circles may touch the curve in this manner, and yet there may be indefinite degrees of more or lefs intimate contact between the curve and its equicurve circle." This is fhewn by the ingenious author in a feries of propofitions, of which a very fhort abridg ginent inuft fuffice in this place.
Let any curve EMH (fig. 11.), and a circle ERB, touch a right line ET on the fame fide at E. Let any right line TK, parallel to the chord EB 3 of the circle, meer the tangent in ' 1 ', the curve in M , and a curve BKl: (which paffes through B) in K. Then, if M° \times TK be everywhere equal to TE^{2}, the curvature of EMH in the point E is the fame as that of the circle ERB ; and the contact of EM and ER is fo much the elofer the fmaller the angle is which is contained at 13 between the curve 13 KF and the equicurve circle BQE .
Let TK meet the circle in R and Q. Then, becaufe $\mathrm{RT} \times \mathrm{TQ}=\mathrm{TE}^{2}$, it muft be $\mathrm{RT} \times \mathrm{TQ}=$ $\mathrm{M}^{\mathrm{T}} \times \mathrm{TK}$; and $\mathrm{RT}: \mathrm{MT}=\mathrm{TK}: \mathrm{TQ}$. The line BKF may have any form. It may crofs the circle $B Q R$ in B, as in the figure. It may touch it, or toucla $E B$, \&c. Let us firft confider what fituations of the point M correspond with the pofition of K, in that part of the curve BKF which lies without the circle BRE. Let T'K move toward EB, always keeping parallel to it, till it coincide with it, or even pafs it. 'Then, while the point \mathbb{K} defrribes KB, it is evident that fince TK is greater than TQ, TMI mu't be lefs than 'TR, and the point M muft always be found between T and R. The arch ME of the curve mult be nearer to the tangent than the arch RE of the circle. If any circle be now defcribed touching TE in E , and cutting off from EB a fnaller chord than EB, it is clear that the whole of this fegment muft be within the fegment BRE; therefore this fmaller circle does not pafs between ERB and the curve EMH. But fince we fee that the curve lies without the circle, in the vicinity of \mathbb{E}, perhaps a greater circle than ERB may pafo between it and the curve. A greater circle, touching at E , muft cut off a chord greater than E B. Let EEr b be fuch a circle, cutting EB in b, and TQ in q. ' $\boldsymbol{I} q$ is neceflarily greater than 'T'Q. For fince b is beyond B, and the arch BKF lies in the angle QB b, the circle $\mathrm{E} r q$ muft crofs the curve FKB in fome point; fuppole F. Then while K is found in the arch FB, the point q inuft be beyond K , or T' 4 muft be greater than TK. Now $\mathrm{T} r \times \mathrm{T} q=\mathrm{TE}^{2},=\mathrm{TM} \times \mathrm{TO}$. Therefore TM:Tr $=\mathrm{T} q$: TQ. Therefore $\mathrm{T} q$ being greater than TQ , $\mathrm{T} r$ mutt be lefs than TM, and the point r muft lie without the curve, and the arch Er does not pafs between EMH and the circle ERB. In like manner, on the other fide of EB, it will appear, that when the curve $\mathrm{BK}^{\prime} \mathrm{F}^{\prime}$ falls within the circle which touches EMH in E, and cuts off the chord EB, the arch of the curve correfponding to the arch $13 \mathrm{~K} \mathrm{~F}^{\prime}$, lying within the circle, alfo lies within the circle. For ' $\mathrm{K}^{\prime} \mathrm{K}^{\prime}$ being lefs than 'I'Q', TM' is greater than TR', and the curve is

Involution within the circle. And, by fimilar reaboning, it is evident that a circle cutting off a greater chord falls without both the circle ER'B and the curve, and that a circle lefs than ER B inutt neceffarily leave fome part of the curve Bis F^{\prime} without it ; and therefore TK' will be greater than ' T ' q ', and the correfponding point r ' muft be withont the curve. All circles therefore touching TE in E fall without both ER and EM, or within them buth, according as they cut off from EB a chord greater or lefs than EB, and no circle can pafs between them wher the rectangle $M{ }^{\prime} \times T K$ is always equal to ET^{2}, and the focus of the point K pafles through B ; that is, ERB is the equicurve circle at E.

This corroborates the feveral remarks that we have made on the circurnftance of a circle toucling and cutting a curve in the fame point. No other circle can be made to pals between it and the curve, and it thertfore has the fame curvature. This may therefore be tzken as a fufficieat indication of the equicurve circle; the character peculiarly affured to it by the nature of evolution. It muft be noted, however, that the curve is fuppofed to have its concarity in the vicinity of the contaet turned all the fame way. For if the contaf be in a point of contrary fluxure, even a ftraight line will both touch and cut it in that point.
The reader cannot but remark, that MK is always the chord of a circle touching TE in E, and paffing through M.

Let $\mathrm{E} m$ be another curve, touching TE in E, fuch, that the conjugate curve $k B$, which always gives Γm $\times \mathrm{T} k=\mathrm{TE}^{2}$, alfo paffes through B . Then, by what has now been demonftrated, the two curves EM aud E m have the fame equicurve circle ERB, and conlequently the fame curvature in E. Then, becanfe the rectangles $\mathrm{RT}^{\prime} \times \mathrm{TO}, \mathrm{MT} \times \mathrm{TK}$, and $m \mathrm{~T} \times \mathrm{T} k$, are equal, we have $\mathrm{T} m: \mathrm{TM}=\mathrm{TK}: \mathrm{T} k$. Therefore if the arch $13 k$ pafs between BK and BQ , the curve $\mathrm{E} m$ muft paf bet ween the curve EM and the circle ER. E m mult therefore have a clofer contact with ER than EM has with it ; and the fmaller the angle QBK is which is contained between the curve and its equicurve circle, the clofer is the contact of the curve EM and its equicurve circle ER. Thus the length of the chord EB determines the magnitude or degree of curvature at E, when compared with another ; and the angle contained between the equicurve circle ard the conjugate curve BKF determines the clofenefs of the contact of the curve with its equicurve circle (the angle TEB being fuppofed the farne in both).

It appears, from the procefs of demonatration, that the curve EMH falis without or within the equicurve circle according as its conjugate curve BKF does. Alfo, when BKF cuts $B Q R$, HME alfo cuts it. But if $F Q B$ is on the fame lide of $Q B$ on both fides of the interfection B , the curve HME is alfo on the fame fide of it on both fides of the contact E. It is alfo very clear, that the contact or approach to coalefcerice between the curve and its circle of curvature, is fo much the clofer as the conjugate curve BKF comes nearer to the adjoining areli of this circle. It muft be the clofeft of all when $K B$ tonches $Q B$, and it mult be the leaft fo when $K B$ touches $E[B$, or has $E B$ for an affymptote. The fpace QBK is a fort of magnified picture of the fpace MER ; and we have a fenf:ble proportion of TQ to TK as the reprefentation of the proportion
of TM to TR, quartities which are frequently eva. favolution. nefcent and infentible. When QBK is a finite angle, that is, when the tangents of $B Q$ and BK do not coincide, the angle QBK can be meatured. But no rectiliseal angle can be contained as an unit in the curvilineal angle MER. They are incommenfurable, or incomparable. Let the curve $K B$ touch the circle $\angle 2 B$ without cutting it. This angle is equally incomparable with the former Qisli ; yet it lias a counterpart in MER. This mult be incomparable wits the former in the fame manner; for there is the fime propurtion between the individuals of both pairs. Thus it appears plainly, that there are curvilineal angles incomparable with each other. Yet are they magnitudes of one kind; becaufe the fmallefl rectilincal argle mult certainly contain them both; and one of them contains the other. But, further, there may be indefinite degrees of this coalefcence or clofenefs of contact between a curve and a circle. The firf degree is when the fame right line touches lioth. 'This is a fimple contat, and may obtain betweeu any curve and any circle. The next is when EMH and ERB have the fame curvature, and when the conjugate curve FKB interfeets the circle QB in ary afflygnable augle. This is an of culation. The thind degree of contact, and fecond of ofculation, is when the curve $K B$ touches the circle $Q B$, but not fo as to ofculate. The fourth degiee of contact, and third of of culation, is when KB and QB have the fame curvatme or of culate in the firlt degree of ofculation. This gradation of more and more intimate coutact, or (more properly fpeaking) of appioxination to coalefecuce, may be continued without end, "neque novit natura limitem," the contaet of EM and ER being always two degrees clofer than that of $B \mathrm{~K}$ and BQ . Moreover, in each of thofe claffes of contact there may be indefinite degrecs. Thus, when EM and ER lave the fame curvature, the angle $Q B K$ admits of indefinite varieties, each of which afcertains a different clofenefs of contact at E. Alfo, though the angle QBK fiould be the fame, the contact at \mathbb{E} will be fo much the clofer the greater the chord EB is.

$$
\text { For } \mathrm{TR}: \mathrm{TM}=\mathrm{TK}: T Q
$$

Therefore $\mathrm{RM}: T \mathrm{~T}=\mathrm{KQ}: \mathrm{KT}^{-}$
Or RM: KQ = TR:TK; =TR $\times T Q: T K$ $\times T Q,=\mathrm{TE}^{2}: T K \times T O$.

Therefore, when 'CE is given, RM (which is then the meafure of the angle of contact) is propotional to KQ directly, and to the rectangle $\mathrm{TK} \times \mathrm{TQ}$ inverfely; and when KQ is given, RM is lefs in proportion as $\mathrm{KT} \times \mathrm{TQ}$ is greater. In the very neighbourhood of E and B, it is plain that $k^{\prime} T^{\prime} \times{ }^{\prime} Q$ is very nearly equal to $E B^{2}$, and therefore ultimately $\mathrm{RM}: \mathrm{KQ}=\mathrm{E}^{\prime} \mathrm{T}^{1}$: $E B^{2}$ 。
It will greatly affift our conception of this cilicate fubject, if we view the origin of thefe degrees of contact as they are generated by the evolution of linces. A thread evolving from a polygon EDCBA (fig. 13.) defcribes with its extremity a a line edbca, confifting of fucceffive arches of circles united in fimple contacts. If it evolve from any continuous curve CBA^{2}, after ha ving evolved from thie lines ED, BC, the arch $c b$ will be united with the circular arch $d c$ by ofculation of the firt degree. If any other curve I'C touch this evolute in a fimple contact, and if the two curves FC1BA and DCBA are both evolved, they will touch each other in

Involution a fimple ofculation in that point where they have the fane radius. If FC touches DC in a fimple ofculation, the evolved curves will tonch i:1 an ofculation of the fecond degree; and, in general, the ofeulation of the two generated curves is a degree clofer than that of their evolutes ; and in each fate of one of the ofculations, there is an indefinite variety of the other, according to the length of its radius of curvature. All this is very clear; and flewe, that thefe degrees of contact do not indicate degrets of curvature, one of which infinitcly exceeds another ; for they are all finite.
The reader will do weil to remark, that the magnitude, which is the fubject of the above propurtions, which is really of the fame kind in thein all, ard confidered as fufceptible of various degrees and orders of infinitefimals, is not curvature, but lineal extenfion. It is RM, the fubtenfe of the angle of contact MER. It is the linear feparation from the tangent, or from the equicurve circle. It is, however, ufally conficered as the meafure of curvature, or the proportions of this line are given as the proportions of the curvature. This is ingecurate ; for enrvature is unqueftionably a change of direction only. As this line has generally been the interefting object in the refined Atudy of curve lines, efpecially in the employment of it in the difcuffions of mechanical philofophy, it has attracted the whole attention, and the language is now appropriated to this confideration. What is called, by the molt eminent matherraticians, variation of curvature, is, in fact, variation of the fubtenfe of the angle of contact But it is neceffary always to diftingnifh them carefully.

Variation of curvature is the remaining object of our attention.

Curvature is uniform in the circle alone. When the cnivature of the arch EMH (tig. It.) decreafes as we recede from E, the arch, being lefs deffeted from its primitive direction ET then the arch ER, mult feparate lefs from the line ET, or muft fall withont the arch ER. The more ranidly its curvature decreafes, the defcribing point muft be left more without the circle. It muft be the contrary, if its curvature had increafed from E toward M. It may change its curve equably or unequably. If equably, there muft be a certain uniform rate, which would have produced the fame final change of direction in a line of the fame length, bending it into the uniformly incurvated arch of a circle. It is not fo obvious how to eftimate a rate of variation of curvature; and authors of eminence have differed in this eftimation. Sir Ifaac Newton, who was much interefted in this difcuffion, in his ftudies on univerfal gravitation, feems to have adopted a ineafure which beft fuited his own views; and las been followed by the greater number. He gives a very clear conception of what he means, by flating what he thinks a cafe of an invariable rate of variation. This is the equiangular $f_{\text {pital }}$ all the arches of which, comprehended in equal angles from the centre, are yerfectly fimilar, although continually varying in curvature. He calls this a curve equably variable, and makes its rate of variation (eftinated in that fenfe in which it is uniform) the mealine of the rate of variation in all other collves. Let us fee in what relpect its variation of curvature is conftant. It may be deferibed by the evolution of the fame fitial in another pofition (fee fig. 6.), and the rato between the radius of the evolute and that of the
evolutrix is alvays the fame; or (which amounts to the Invilution. fane thing) the arch of the evolutrix bears to the evolved arch of the evolute a conitant ratio. The curvature of the fpiral changes more rapidly in the fame proportion as the ratio of the evolved arch to the arch of the evolutrix generated by it is greater, or as it cuts the radii in a more acute angle. Thefe arches may be infinitefimal; thetefore the fraction $\frac{\text { fluxion of evolute }}{\text { fluxion of evolutrix }}$ expreffes the rate of the variation of curvature in this fipiral. Now let abcd (fig. 13.) be any other curve, and ABCD its evolute; let p be the centre of curvature at the point B of the evolute, and $B o$ the evolved arch ; draw the radii $p \mathrm{~B}, p o, \mathrm{~B} m, o n$; join $p m$, and draw $\mathrm{B} q$ perpendicular: to $p m$. It is evident that $m n$ and $\mathrm{B} o$ have the fame ratio with $\mathrm{B} m$ ard $\mathrm{B} p$; and that thefe two fmall arches may be conceived as being portions of the fame equiangular fpiral (perhaps in another pofition', of which q is the centre; and that p is in the curve of another of the fame. For $q p: q \mathrm{~B}=q \mathrm{~B}: q \mathrm{M},=p \mathrm{~B}: \mathrm{B} m$; therefore the ratio of thefe infinitel:mal arches $m n$ and B o will exprefs the rate of variation in any curve. This is evidently equivalent to faying, that the variation of curvature is proportional to the fuxion of the radius of curvature directly, and the fluxion of the curve inverfeIy. For $m n$ asd $\mathrm{B} o$ are ultinately as thofe fluxions, and $\frac{B o}{m n}$ is equivalent to $\frac{-\dot{r}}{\dot{z}}$, where z is the arch of the fpiral, and r the evolved radins of the other. Accordingly, this is the enunciation of the index of variarion given by Newton (See Newton's Fluxions, Proh. VI. §3). 'I'herefore, what Newton calls a uniform variation of curvature, is not an increafe or diminution by equal anithmetical differences, but by equal proportions of the curvature in every point. 'The variation of curvature in fimilar points of fimilar arches is fuppofed to be the fame.

It is evident that this ratio is the fame with that of radius to the tangent of the angle $p m B$, or of 1 to its tabular tangent. The tangent therefore of this angle correfponding to any point of a curve is the meafire of the variation of curvature in that point. Now it may be fhewn (and it will appear by and bye), that the fluxion of TK in fig. 11 . or the ultimate value of KQ. is always ${ }^{2} \mathrm{ds}$ of the fluxion of the raclius of curvature. Therefore the tangent of the angle CBK is ahways $\frac{2}{7} \mathrm{ds}$ of that of $p \mathrm{~m}$; and therefore the angle $Q 13 \mathrm{~K}$, which we have feen to be an index of the clofenefs of contact, is alfo the index of the variation of curvature (See M° Leturin, \& 386.).

Sir Jfaac Newton has given fpecimens of the ufe of this meafure in a variety of geometrical curves, by means of a general expreflion of $\frac{r}{\%}$. This, in the curve $A B C$ (fig. 8.), let AB be $=z, \mathrm{AD}=x, \mathrm{DB}=y, 13 \mathrm{~N}$ $=r$, and $\mathrm{BE}=p$; we have $\frac{\mathrm{N} n}{\mathrm{~B} b}=\frac{\dot{r}}{\dot{z}}$. Now DB : $\mathrm{BE}=y: p,=\mathrm{D}) d: \mathrm{B} b,=\dot{x}: \dot{z}$. Thertfore $\dot{z}=$ $\frac{\dot{i} x}{y}$, and $\frac{r}{\dot{z}}=\frac{y r}{p \dot{x}}$. Now, in cerery curve which we call exprefs by an equation, we can obtain all the fe quantities p, y, \dot{r}, and \dot{z}, and can therefore obtain the meafute
with finding the centre and radius of curvature of the evolute, by which the curve under coufideration is generated; or with finding the centre q (fig. 13.) of an equiangular fpiral, which will touch our curve in m, its evolute in B, and the evolute of the evolute in p, if put into different pofitions when neceffary. 'This leads to very curious fpeculations, for which, however, we have no room It has been faid, for inftance, that the curyature at the interfection of a cycloid with its bafe is iufinitely greater than that of any circle. If the evolution of the cycloid begin from this point, the curvature of its evolutrix will be infinitely greater ftill upon the fame principles; and we fhall have oue infinitely greater than this by evolving it. Yet all thefe infinites, multiplied to infiuity, are contained in the central point of every equiangular fpiral! In like manner, there are evolutrixes which coincide with a fraight line, and others of infinitely greater rectitude, and fill they are eurves. Can this have any meaning? And can it be recouciled wich the legitimate reafoning from the fame principles, that all thefe curvatures and angles of contact are producible ly evolution; and that they may be, and certainly are every day defcribed, by bodies moving in free fpace, and acted on by accelerating forces directed to different bodies?

The parabola (conical) is the moft fimple of all the lines of unequably varying curvature, and becomes a very good itandard of comparifon. In the parabold $A B C$ (fig. 8.) let the parameter be $2 a$. The equation is then $2 a x=y^{2} ; \mathrm{DE}=a ; p$, or $\mathrm{BE}=\sqrt{\frac{u^{2}}{u^{2}}+y^{2}}$ $\mathrm{DQ}=a+2 x$ (by what was formerly demonftrated). Moreover, $\mathrm{DB}: \mathrm{BE}=\mathrm{DQ}: \mathrm{BN}$; and $\mathrm{BN}=\frac{p a+2 p x}{a}$ $=r$. Thefe equations give $2 a \dot{x}=2 y \dot{y},=2 p \dot{p}$; and $\frac{a \dot{p}+2}{} \frac{x \dot{p}+2 \dot{p} x}{a}=\dot{r}$. Now making $\dot{x}=1$, and reducing the equations, we obtain $\dot{y}=\frac{a}{y} ; p=\frac{j \dot{y}}{p}=$ $\frac{a}{p}$; and $\dot{r}=\frac{a \dot{p}+2 x \dot{p}+2 p}{a}$.

With thefe values of $\dot{y}, \dot{p}, \dot{r}$, we obtain a numerical value of $\frac{y r}{p}$ moft readily. Thus, in order to obtain the index of variation of curvature in the point where the ordinate at the focus cuts the parabola, make $a=1$. Then $2 x=y^{2} ; x=\frac{1}{2}, y(=\sqrt{ } 2 x)=1 ; y\left(=\frac{a}{y}\right)$ $=1 ; p\left(=\sqrt{a^{2}+y^{2}}\right)=\sqrt{ } 2 ; \dot{p}\left(=\frac{a}{p}\right)=\sqrt{\frac{x}{2}}$, and $\dot{r}\left(=\frac{a \dot{p}+2 x \dot{p}+2 p}{a}\right)=\sqrt{ } \times 3$. Therefore $\frac{y r}{p}=3,=$ the index of variation in the point B when D is the focus of the parabola; that is to fay, the fluxion of the radius of curvature is three times the fuxion of the curve.

The index of variation, where the ordinate is equal
$y=2 ; \dot{y}=\frac{x}{2} ; p=\sqrt{ } ; \dot{p}=\sqrt{\frac{1}{5}}$, and $\dot{r}=3 \sqrt{ } \mathrm{~s}$. Wherefore $\frac{y r}{p}=6$, which is the index of variation. Moreover, fince p and r are in a conflant ratio, it appears that the index of valiation of curvature in the pasabola is proportional to the ordinate y. It is always $=6 \frac{\text { ordinate }}{\text { parameter }}$; and thus, with very little trouble, we can defcribe the evolute of its evolute, i e. of the femicubical parabola.

In like manner, it may be fhewn, that in all the conie fections $\frac{\dot{r}}{\dot{z}}$ is always proportional to the rectangle of the ordinate $D B$ and the fubnormal $D E$, or to $D B \times$ DE. In the parabola, whofe equation is $2 a x=y^{2}$, we have $\frac{\dot{r}}{\dot{z}}=\frac{3 y}{a}$. In an ellipfe, whofe equation is $2 a x-b x^{2}=y^{2}$, we have $\frac{\dot{r}}{\dot{z}}=\frac{3-3 b}{a} \times \mathrm{DB} \times$ DE, and in the hyperbula, whofe equation is $2 a x+$ $b x^{2}, \frac{\dot{x}}{\dot{x}}$ is $=\frac{2+3 b}{a} \times D B \times D E$. This ratio, in all the three fections, is always as the tangent of the angle contained between the diameter and the normal at the point of contag. By this we may compare them with a parabola. In the cycloid at the point E

$$
(\mathrm{fig} .5) \frac{r}{\dot{z}} \text { is }=\tan . \angle \mathrm{EKM}, \& \mathrm{cc} . \& \mathrm{cc}
$$

All thefe things may be traced in the obfervations made on fig. 11. and 12 . When the angle BET is a right angle, the angle $K B Q$ indicates it directly, its tangent being always $=\frac{2 r}{3}$. It is cafy alio to fee, 3 2
that when the curve EMH is a parabola, the line BKF is a flraight line paralle' to ET. It is alfo plain, that by the fame fteps that we proved that no circle can pars between this parabola and its equicurve circle ERB, fo no other parabola can pafi between them. Indeed the fame reafoning will prove that no curve of the fame kind can pafs between any curve and its of culating circle. In many cafes, it is more cafy to reafon from the curvature of a cuive, by comparing it with an equicurve parabola than with an equicurve circle ; particularly in treating of the curvilineal motions of bodies in free fpace, actuated by deflecting forces.

If EMH be an cllipfe or hyperbola, BKF is another cllipfe or Lyperbola (M-Laurin, \& 373.)

We have thus endeavoured to introduce our readers into this curious branch of fpeculative geometry. An introduction is all that can be expected from a work of this kind. We have enlarged on particular points, in proportion as we thought that the notions entertained on the fubject were inadequate, or even vague and indiftinct ; and we hope that fome may be incited to ac. quire clearer conceptions by going to the fountain head. We conclade, by recommending to the young geometer the perufal of the Fluxions of Sir Iface Newton, after
$\underbrace{\text { Jren. }}$ afier he has read M $\dot{\mathrm{C}}$, aurrin's Chapter with carc. He will probably be furprifed an:d delighted with feeing the whole compreffed by a maler's hand into fuch narrow compafs with fuch beautiful perfpicuity.
JOAN d' Arc, the maid of Orleans, has been varioufly characterifed ; but all now agree, that the was worthy of a better fate than the horrid death the was doomed to die. (See Joan d'Arc, Ěncycl.). But did the actually die that death? An ingenious writer in the Monthly Mayazine has proved, we think, that fhe did not.

The bithop of Beauvais (fays he) is accufed by all parties of treachery and trick in the conduct of the trial : it was his known propenfity to gain lis ends by ftratagem, craft, manccuvre, fraud, dexterity. He feeks vat, and brings forward, fuch teftimony only as relates to ecelefriatical offerices, and then hands over the decifion to the fecular judges, whofe clemency lie invokes.

* Villaret Hijtuire de France, tom. xv. P. 72 .

\ddagger Pafquier

 Hifoire d'Orleuns,Liv. vi. Joan fays to him publicly, "You * promijed to re\{ore me to the church, and you deliver me to my enemies." The intention of the bifhop, then, muft have been, that the fecular judges, for want of evidence, fhould fee no offence againit the ftate; as the clerical judges, notwithftanding the evidence, had declined to fee any againft the church. A fatal fentence was, however, pronounced; and the fulfilment of it entrufted to the ecclefiaftical authorities. Immediately after the auto da fé, one of the executioners ran to two friars, and faid, " that he had never been fo thocked at any execution, and that the Englifh had built upt a fcaffolding of plafter (un echafoud de platre) follofty, that he could not approach the culprit, which muft have caufed her fufferings to be long and horrid." She was, therefore, by fome unufual contrivance, kept out of the reach and obfervation even of the executioners.

Some time after, when public commiferation had fucceeded to a vindictive bigotry, a woman appeared $-\ddagger$ Hijfoire de at Metz \ddagger, who declared herfelf to be Joan of Arc. her behaviour in adverfity, and iserty countenanced by was firm without infolence, and during her trial, which tation.
JONES (Sir William), who was fyled by Johnfon the moft enlightened of men, was the fon of William Jones, Efq; one of the laft of thofe genuine mathematicians, admirers, and contemporaries of Newton, who cultivated and improved the fciences in the prefent century. Our author was born on the 28 th of September 1746, and received his education at Harrow fchool, under the care of Dr Robert Sumner, whom he has celebrated in an eulogium which will out-lalt brafs or marble. We are told that he was a clafs fellow with Dr Parr, and at a very early age difplayed telents which gave lis tutor the moft promifing expectations, and which have fince been amply juftified. From Harrow he was fent to Univerfity college, Oxford, where the rapidity and elegance of his literary acquiftions excited general admiration : while a temper, ardently generous, and morals pcrfectly irreproachable, procured him teftimonies of the moft valuable eiteem. The grateful affection which he always cherifhed for that vencrable feat of learning, did as much honour to liis fenfibility, as Oxford herfelf has received by enrolling him among the number of her fons.

In the twenty-third year of his age he travelled through I'rance, and refided fome time at Nice, where he employed himfelf very differently from moit other young men who make what is called the tour of Europe. Man, and the influence of various forms of goverument, were the principal objects of his inveftigation; and in applying the refult of his inquiries to the flate of his own conntry, he mingled the folicitudes of the Patriot with the lioneft partialities of an Englifhman.

Mr Jones's lifit literary work was a trathlation into French of a D'erliati manufeript, entitled "Hifoire de Nadir Shat, cinnu fous le nume de Thabmas Kuli Kban, İmpcreur de Perfe." in two rols. 4to; the hiftory of which performance we תhall give in his own words: "A great fionthern monarch, who vifited this country a few years ago, under the name of the Prince of 7 'racendal, brought with him an eaftern manufeript, containing the life of Nadir Shah, the late fovereiggl of Perfia, which he was defirous of having tranfated in England. The fecretary of flate, with whom the Danifh minilter had converfed upon the fubject, fent the volume to me, requefting me to give a literal tranflation of it in the French language; but I wholly declined the tafk, allecging for my excufe the length of the hook, the drynels of the fubject, the difficulty of the ftyle, and chiefly my want both of leifure and ability to enter upon an undertaking fo frnitIffs and fo lahorions. I mentioned, however, a gentleman, with whom I had not then the pleafure of being acquainted, but who had dittinguifhed himfelf by a tranfation of a Pertian hiffory, and was far abler than myful to fatis? y the king of Denmark's expeciations. The learned writer, who had uther works upon his tiands, excufed himfelf on the acconnt of his many engagements; and the application to me was renewed. It was lintec, that my compliance would be of no fmall adrantage to the at niy entrance into life; that it would procure me fome mark of diftinction which might be pleafing to me ; and, above all, that it would be a reflec-
don as a witch ; bus that he was a real heroine, fil perior to vulgar prejudice, and no lefs remarkable by force of mind than for a courage and itrength untufat ed to cry up as a prophetefs, and the other to c'y

She was everywhere welcomed with zeal. At Orleans, efpecially, where Joan was well known, fhe was received with the honours due to the liberatrefs of the Jean . She was acknowledged by both her brothers, mand Pierre d'Arc. On their teflimony the was 1436 . Ay a gentleman of the houre of Amboife, in in 1456. The Parifians, indeed, long remained incredulous: they muft elfe have punifhed thofe ecclefiaftics, whofe hunanity, perhaps, confpired with the bifop of Beaurais to withdraw her from real exccution down a cential chimney of brick and mortar; or, as the executioner called it, a fcaffolding of plafter. The king, for the woman feems to have fhunned no confrontation, is ftated to have received her with thefe words : "P'ucelle, m'amir, Joyez la tres bien revenue, au nom de Dieu." She is then faid to have communicated to him, kneeling, the artifice practifed. Can this woman be an impoftor? Our autior thinks not, and appeals to Voltaire, who, in his profe works, feems willing to allow that the was rot, as is too commonly imarine t, one of thofe half infane enthufints, employed as tools to work upon the vufgar; whom the one party endeavour-
$\mathrm{J} O \mathrm{~N} \quad[33$ tion upon this country, if the king fhould be obliged to carry the manufcript into France. Incited by thefe motives, and principally by the laft of them, unwilling to be thought churlifh or morofe, and eager for the bubble reputation, I undertook the work, and fent a Specimen of it to his Danifh Majefty; who returned his approbation of the fyle and method, but defired that the whole tranflation might be perfectly literal, and the oriental images accurately preferved. The tafk would have teen far eafier to me, had I been directed to finifh it in Latin; for the acquifition of a French ftyle was infnitely more tedious; and it was neceffary to have every chapter corrected by a native of France, before it conld be offered to the difcerning eye of the public, fnce in every language there are certain peculiarities of idiom, and nice thades of meaning, which a foreigner can never learn to perfection. But the work, how ardnous and unplealing foever, was completed in a year, not without repeated hints from the fecretary's office that it was expected with great impatience by the Court of Denmark." The tranflation of the Hitory of Nadir Shah was publifhed in the fummer of the year 1770, at the expence of the tranflator; and forty co. pics upon large paper were fent to Copenhagen ; one of them bound with uncommon elegance for the king *Preface tuhimfelf, and the others as prefents to his courtiers *.
tbe Hijfory What marks of diftinction our author received, or of Nauir د6al, 1773. what fruits he reaped for his labour, he haz not thought proper to difclofe; but if any dependence is to be placed on common fame, the reward beftuwed upon him for this laborious tafk confifted only in the thanks of his Danifh Majefty, and the honour of being enrolled in the Royal Society of Cupenhagen. That diftinction was indeed accompanied with a letter, recommending the learned tranflator to the patronage of his own fovereign; but, in the interim, his friend Lord Dartmonth, who was to have delivered it, had veligned his office of fecretary of ftate, and the letter, we are told, was never prefented.

There is reafon to think, that this early and fevere Suppl. Vol. II. Part I.

33] J O N
difappointment made a deep impreffion on his mind, and induced him to renonnce the mufes for a time, and to apply himfelf with affiduity to the Itudy of jurifprondence. This we think apparent, fiom the ityle in which he writes of his return from the continent, and of the death of his iseloved preceptor Dr Sumner.
" When I left Nice, (fays he) where I had refided near feven months, and after traverfing almolt all France, returned to England, I molt ardently delired to pafs feveral years more in the Itudy of polite literature; as then, I thought, I might enter into public life, to which my ambition had always prompted me, more mature and prepared : but with this fiuit of my leifure, either fortune, or rather Providence, the difpofer of all human events, would not indulge my foth; for on a fudden, I was obliged to quit that very literature to which, from my childhood, I had applicd myfelf; and he who had been the encourager and affiftant of my ftudies, who had inftucted, talight, formed me fuch as I was, or if I am any thing at all, Roblrt Sumner, within a year after my return, was finatched away by an untimely death (A)."

In 1771 Mr Jones publified Difertation fur la Literature Orinntale, 8vo, and this was followed by Lettre à Monfieur. A** Du P P**, diuns laquülle eft compris P Examen de fia Traduction des Livires attritues à Zoroaflee, 8 vo. The differtation offered a favourable fpecimen of the author's abilities as a linguilt and as a critic; and the letter contained a fpivited vincication of the univerfity of Oxford, from the very fcurrilous reproaches, in which its incompetency in Oriental literature was afferted by the illiberal tranflator of the fuppofed works of the Perfian philofopher.
In the fame year he gave to the public, "A Grammar of the Perfian language," 4to, and at the fame time propufed to republiih Meniulki's Dictionary, with improvenients from De Labrofee's Guxophylacium L,inno gue Perfarum, and to add in their proper place an Appendix fubjoined to Gehaliaguire's Perlic Dictionary. The Gramniar has been found extremely ufeful, and E

Jores. has been reprinted feveral times; but the defign of the Dictionary, though an object of even national importance, for wait of due encouragement was obliged to be laid afide.

In 1772 he publifhed "Poems; conf:ting chiefly of Tranflations from the Afiatic Languages. To which are added two Effays; 1. On the Poetry of the Eaftern Nations. 2. On the Arts commonly called Imitative," 8 vo , which in 1777 he republifhed with the addition of fome Latin Poems, every way worthy of their author. On the 18 th Jume 1773 , he took the degree of Mafter of Arre, and the fame year publifhed "The Hiftory of the Life of Nadir shath, King of Perfia. Extracted from an Eattern Manufeript, which was tranीated into French by order of his Majefty the King of Denmark. With an Introduction, containing, I. A Defcription of Afia according to the Oriental Geographers. 2. A fhort Hittory of Perfia from the earlieft Times to the prefent Century: And an Appendix, confifting of an Effay on Afiatic Poetry, and the Hiftory of the Perfian L.anguage. To which are added Pieces relative to the French Tranflation," 8vo. Our author having at this period determined to ftudy the law as a profeffion, and to relinquifh every other purfuit, our readers will not be difpleafed with the following extract, relating to this refolution, which concludes the preface to the hiftory now under confideration :
"To conclude ; if any effential miftakes be detectad in this whole performance, the reader will excufe them, when he reflects upon the great variety of dark and intricate points which are difcuffed in it; and if the obifurity of the fubject be not a fufficient plea for. the errors which may be difcovered in the work, let it be confidered, to ufe the words of Pope in the preface to his juvenile poems, that there are very few things in this collection which were not written under the age of five and-twenty: moit of them indeed were compofed in the intervals of my leifure in the South of France, before I had applied myfelf to a Aludy of a very differ. ent nature, which it is now my refolution to make the fole object of my life. Whatever then be the fate of this production, I fhall never be tempted to vindicate any part of it which may be thought exceptionable; but thall gladly relign my own opinions, for the fake of embracing others, which may feem more probable; being perfuaded, that nothing is more laudable than the love of truth, nothing more odious than the obltinacy of perfifting in error. Nor thall I cafily be induced, when I have difburdened myfelf of two nther pieces which are now in the prefs, to begin any other work of the literary kind; but fhall confine my felf wholly to that branch of knowledge in which it is my chief ambition to excel. It is a painful conlideration, that the profeffion of literature, by far the moft laborious of any, leads to no real benefit or true glory whatfoever. Poetry, fcience, letters, when they are not made the fole bufinefs of life, may become its ornaments in profperity, and its moft pleafing confolation in a change of fortune; but if a man addie:s himfelf entirely to learning, and hopes by that, either to raife a family, or to acquire, what fo many wifh for, and fo few ever attain, an honourable retirement in his declining age, he will find, when it is too lare, that he has miltaken liis path; that other labours, other fudies, are neceflary; and that unleis be can affert his own inde-
pendence in active life, it will avail hin little to be favoured by the learned, efteemed by the eminent, or recommended even by kings. It is true, on the other hand, that no external advantages can make amends for the lofs of virtue and integrity, which alone give a perfect comfort to him who poffie? them. Let a man, therefore, who wifhes to enjoy, what no fortune or honour can beftow, the bleffing of felf-approbation, afpire to the glory given to Pericles by a celebrated hiltorian, of being acquainted with all ufeful knowledge, of expreffing what he knows with copioufnefs and freedom, of loving his friends and country, and of difdaining the rnean purfuits of lucre and intereft : this is the only career on which an honelt man ought to enter, or from which he call hope to gain any folid happinefs."

The next year he publifhed Poefeos Afiatice Commentariorum Libri Sex, cum Appendice: Suljicitur Liman, feu Mifcellaneorum Liber, 8vo ; and purfuing his purpofe of applying to the fludy of the law, we hear no more of him from the prefs (except the new edition of his Poems), until the year 1779. In this interval he was called to the bar, and attended Weftminfter hall and the Oxford circuit, where he obtained but little bufinefs. He was however appointed a commiffioner of bankrupts by Lord Bathurit, who is fuppofed to have intended to exert his intere? to procure his nomination to the bench in the Eaft Indies.

He publifhed in this year, "The fpeeches of Ifeus, in caufes concerning the law of fucceffion to property at Athens; with a preparatory difcourfe, notes critical and hiftorical, and a Commentary, 4 to." In this valu. able work, the talents of the fcholar, the critic, and the lawyer, combine to clucidate a very important part of juriiprindence; for, "though deep refearches into the legal antiquities of Grece and Rome (as he obferves in his Commentary) are of greater ufe to fcholars and contemplative perfons, than to lawyers and men of bulinefs; though Bracton and Lyttleton, Coke and Rolle, are the proper objects of our itudy; yet the ableft advocates, and wifeft judges, have frequently em. bellifhed their arguments with learned allufions to antient cales ; and fuch allufions, it muft be allowed, are often ufeful, always ornamerital; and, when they are introduced without pedantry, never fail to pleafe." The work was dedicated in a tyle of refpectful gratitude to his patron Loid Bathurlt.

In the year 1780, we find our author a candidate to reprefent in parliament the univerfity of Oxford. He had for fome time refided but little in the univerfity, and therefore laboured under fome difadvantages; but he did not meanly court the fupport of any man. In a paper, which was circulated on that occafion, his friends, who were numerous, declare, that they have "neither openly folicited, nor intend openly to folicit, votes for Mr Jones within the Univerlity itfelf, becaufe he will never become the inftrument of difturbing the calm feat of the Mufes, by confenting to any fuch folicitation for himfelf or for any man whatever. His own applications have been, are, and will be, confined to thofe only who have profeffed a regard for him, and who have no votes themfelves: the Malters of Arts in a great univerfity, whofe prerogative is cool reafon and inpartial judgment, mult never be placed on a level with the voters of a borough, or the freeholders of a
county.
county. Even in procecding thus far, he does not fet the example, but follows it; and his friends would never liave printed any paper, if they had not thought themfelves juftified by the conduct of others.
"For the firlt and the laft time, they beg leave to fuggeft, that no exertions muft be fpared by thofe who, either perfonally or by reputation, approve the character of Mr Jones ; into which, both literary and political, as well as moral, his friends defire and demand the ftricteft ferutiny. For his univerfity he began early to provoke, and poffibly to incur, the difpleafure of great and powerful men : For his univerity he entered the lifts with a foul-mouthed and arrogant Frenchman, who had attacked Oxford in three large volumes of mifreprefontation and fcurrility: For his univerfity he refigned, for a whole year, his favourite fludies and purfuits, to fave Oxford the difcredit of not having one of her fons ready to tranflate a tedious Perfian manufcript. To Oxford, in fhort, he is known to be attached by the ftrongeft poffible ties; and only regrets the neceffity of abfenting himfelf from the place in which of atl others he moft delights, until the event of the prefent competition flall either convince him that he has toiked in vain as a man of letters, or fhall confer on him the greateft reward to which he can alpire. The unavoidable difadvantage of being fo late propofed, and the refpectable fupport with which he is now honoured, will fecure him in all events from the leaft difgrace." The application was unfucceffful, clichty becaufe his own college had fixed upon another candidate, from a perfuafion that the immediate appointment of Mr Jones to a feat, then vacant on the bench of judges in India, was morally certain.

The riots of that year gave occafion to another publication of our author, entitlec, "An Inquiry in. to the legal Mode of fuppreffing Riots; with a conftitutional Plan of future Defence," 8 vo ; and in 178 s he publifhed "An Effay on the Law of Bailments," 8 vo, a very mafterly treatife, which did great honour to his legal abilities. In this latt work he inculcates the neceflity of deeply exploring the grounds of the common law; and fpeaking of Blackfone, (he fays) "his commentaries are the moft correct and beautiful outline that ever was exlibited of any human fcience; but they alone will no more form a lawyer, than a general map of the world, how accurately and elegantly foever it may be delineated, will make a geographer."

In this year he likewife recalled his mufe in an Ode on the nuptials of Lord Vifcount Althorpe, who had been his pupil, to Mifs Lavinia Bingham. This beautiful little poem is preferved in the European Magazine for January 1785 , and we think in other periodical publications.

From many circumftances which might be collected together, it would appear that our author at this juncture did not coincide in opinion with thofe who had the direction of government, nor did he approve the meafures at that period adopted.-With thefe fentiments he feems to lave been felected as a proper perfon to be dintroduced as a member of the Conftitutional Society. Could he have forefeen the degeneracy of fuch affociations, there is reafon to believe that he would have declined what he condefcended to accept as an honour ; for though an ardent friend to liberty, he was an ene-
my to theoretical innovation, and declares, in a letter to the fecretary, that by the term conflitution, he underftands "the great fyftem of public, in contradiction to private and criminal law, which comprifes alt thofe articles which Blackfone arranges, in his firft volume, under the rights of perfons, and of which he gives a perfpicuous analyfis, Whatever then relates to the rights of perfons, either abfolute rights, as the enjoyment of liberty, fecurity, and property, or relative, that is, in the public relations of magittrates and people, makes a part of that majeftic whole, which we proper. ly call the conftitution. This conltitutional or public law is partly unwritten, and grounded upen immernorial ufage, and partly written or enacted by the legiflative power ; but the unwritten, or common law, contains the true fpirit of our conflitution: the written has often mof unjuftifably altered the form of it; the common law is the collected wildom of many centuries, having been ufed and approved by fucceflive generations; but the flatutes frequently contain the whims of a few leading nien, and fometimes of the mere individuals employed to draw them."

In 1782 he publifhed "The Mahomedan Law of Succeffion to the Property of Inteftates, in Arabic, with a verbal 'Tranflation and explanatory Notes." 4to.

At length the poot of one of the judges in the Eatt Indies, which had been kept vacant five years, was determined upon being filled up; and our author, on the 4th March 1783, was appointed to that fation, and on the 2cth received the honour of knighthood. On the 8 th of April he married Mifs Shipley, eldeft daughter of the Bifhop of St A fapli, and alnoft immediately embarked for the Indies. He had previouny publified "The Moallakat ; or, Seven Arabian Poems, which were fulpended on the Temple at Mecca, with a "I'ranflation and Arguments." 4to. To this it was inkended to add a preliminary difcourfe and notes. - The former to comprife obfervations on the antiquity of the Arabian language and letters; on the dialects and characters of Himyar and Koraifh, with accounts of fome Himyanick poets ; on the manners of the Arabs in the age iminediately preceding that of Malomed; on the temple at Mecca, and the Moallakat, or pieces of poctry fufpended on its walls or gate; lafly, on the lives of the Seven Poets, with a critical liiftory of their works, and the various copies or editions of them preferved in Europe, Afia, and Africa. The latter to contain authorities and reafons for the tranfation of controverted paffages ; to elucidate all the oblcure couplets, and exhibit or propofe amendments of the text ; to dirett the reader's attention to particular beauties, or point out remarkable defects ; and to throw light on the images, figures, and allufions of the Aran bian poets, by citations either from writers of their own country, or from fuch of our European travellers as befl illuftrate the ideas and cuftoms of Eaftern nations. This difcourfe and the notes have not yet apppeared. At his departure for the eaftern world, he left, in manufcript, with his brother-in-law the Dean of St Afaph, a little tract, entitled "The I'rinciples of Governinent, in a Dialogue betwech a Scholar and a Peafant." 'I'his celcbratcd dialogue being afterwards publifhed by the Dean, and wicely circulated by the fociety for conftitutional information, the Dean was

J O N [. $\left.3^{6}\right] \quad \mathrm{JON}$

yones. profecuted for publifhing a libel, and, if our memory deceives us not, was found griilty.

Sir William Jones now dropt for ever all concern in party politics, and applied himfelf to purfuits more worthy of his talents. During his voyage to India, he conceived the idea of the Afiatic Socicty, of which an account has been given under the title Societies (Eincycl.), and of whofe refearches five volumes, replete with much curious information, are now before the public. Buc ardently 28 his mind was attached to general literature and fcience, he was by no means inattentive to the proff ffional duties of his high flation. He had indeed, to ufe his own expreffion, an "undiffembled fondnefs for the Atudy of
the Afatics, although a conficerable time afterwards other monument of his labours exifted would, if no , exited, would at once diale proofs of his confummate fikill in the Oriental dialeets, of his proficiency in thofe of Rome and Greece, of talte and erudition far beyond his years, and of ta. lents and application without example.
"But the judgment of Sir William Jones was too dif. cerning to confider language in any other light than as the key of fcience, and he would have defpifed the reputation of a mere linguift. Knowleçge and truth were the objects of all his Iludies, and his ambition was to be ufeful to mankind; with thefe views he extended his refearches to all languages, nations, and times.
"Such were the motives that induced him to propofe to the government of India, what he juitly denoninated a work of national utility and inportance, the compilation of a copious Digcft of Hindu and Mahomedan Law, from Sauferit and Arabic originals, with an offer of his fervices to fupesintend the compilation, and with a promife to trat hate it. He had furefeell, previous to his departure from Europe, that without the aid of fuch a work, the wife and benevolent intentions of the legiflature of Great Britain, in leaving to a certain extent the natives of thefe provinces in poffeffion of their own laws, could not be completely fuifililed; and his experience, after a hort ref:dence in India, confirmed what his fagacity had anticipated, that without principles to refer to, in a language famihar to the judges of the courts, adj"dicarions amonglt the natives muit too ofeen be fubject to an micertain and erroneous expofition, or wilful mifnter pretation of their laws.
"TIs the fuperintendance of this work, which was immediately undertaken at his fugigeftion, he affidnouly devoted thofe honrs which he could fpare from his profeffiomal duties. After tracing the plan of the Digeft, he preferbed its arrangement and mode of extcution, and felected from the muit learned Hindus and Matiomedans fit perfons for the tafk of co:npiling it : Hattered by his attention, and encouraged by his applaufe, the Pandits profecuted their labours with chearful zeal to a fatistactory conclulion. The Molavees have alfo nearly finifled their poition of the work; but we muft ever regret, that the promifed tranflation, as well as the meditated preliminary differtation, have been fiuitrated by that decree, which io often intercepts the performance of human purpofes.
"During the courfe of this compilation, and as auxiliary to it, he was led to ftudy the works of Menu, reputed by the Ilindns to be the oldeft and holie!t of legiflators; and finding them to compife a fyitem of religious and civil duties, and of law in all its branches, fo comprehenfive and minutely exact, that it might be confidered as the Inftitutes of Hindu Law, he prefented a tranflation of them to the government of Bengal. During the fame period, deeming no labour exceffive or fuperfluous that tended in any refpect to promote the welfare or happinefs of mankind, he gave the public an Englifh vertion of the Arabic Text of the Sirajiyah or Mahomedan Law of Inheritance, with a Commentary. He had already (as has been obferved) pnblifhed in England a tranflation of a tract on the fanme fubject by another Mahomedan lawyer, containing, as his own words exprefs, 'a lively and elegant Epitome of the Law of Inheritance of Zaid.'

Jones. "To thefe learned and important works, fo far out of the road of amufement, nothing could have engaged his applieation but that defire which the ever profeffed, of rendering his knowledge ufeful to his nation, and beneficial to the inhabitants of thefe provinces.
"I fhould farcely (continues Lord I'eignmouth) think it of importance to mention, that he did mot difdain the office of editor of a Sanfcrit and Perfian work, if it did not afford me an opportunity of adding, that the latter was publifhed at his own expence, and was fold for the benefit of infolvent debtors. A fimilar application was made of the produce of Sirajiyah."

But nothing exlibits the large grafp of Sir William Jones's mind in fo ftriking a point of view as a paper in his own hand writing, which came into Lord Teignmonth's poffeffion after his death. It was intitled 1) E sidfrata, and propofed for inveftigation the following fubjects relating to the ealtern world.

India.-1. The ancient geography of India, \&c. from the I'uranas. 2. A botanical defeription of Indian plants, from the Cofhas, Ec. 3. A grammar of the Sanfcrit language, from Panini, \&c. 4. A dietionary of the Sanfcrit language, from the 32 original vucabularies and Niructi. 5. On the ancient mulic of the Indians. 6. On the medical fubftances of India, and the Indian art of medicine. 7. On the philofophy of the ancient Indians. 8. A tranflation of the Veda. 9. On ancient Indian geometry, eftronomy, and algebra. 10 . A tranflation of the Puranas. II. A tranflation of the Malabbara and Ramayan. 12. On the Indian theatre, \&c. \&c. 13. On the Indian conftellations, with their mythology, from the Puranas. I4. 'i'he hiftory of India before the Madomedan conqueft, from the Sanferit Cafhmir Hittories.

Arabia.-15. The hiftory of Arabia before Mahomed. 16. A tranflation of the Hamafa. 17. A tranf. lation of Hariri. I8. A trannation of the Facahatul Khulafa. Of the Cafiah.

Perfira.-19. The hittory of Perfia, from authorities in Sanferit, Arabic, Greek, Turkifh, Perfian ancient and modern, Firdaufi's Khrofrau nama. 20. The five poems of Nizami, tranीated in profe. 21. A dictionary of pure Perfian Je changire.

China.-22. A tranfation of Shi-cing. 23. The text of Can-fu-tfu, verbally tranllated.

Tartary.-24. A hiffory of the Tartar nations, chiefly of the Moguls and Othmans, from the 'i'urkifh and P'erfian.
"We are not authorifed (fays his Lordfinip) to conclude, that he had himfelf formed a determination to complete the works which his genius and knowledge had thus fketched: the tafk feems to require a period beyond the probable duration of any luman life; but we, who had the happinefs to know Sir William Jones; who were witneffes of his indefatigable perfeverance in the purfuit of knowledge, and of his ardour to accom. plifh whatever he deemed important ; who faw the extent of his intellectual powers, his wouderful attainments in literature and fcience, and the facility with which all his compofitions were made-cannot doubt, if it had pleafed Providence to protract the date of his exiftence, that he would lave ably executed much of what he had fo extenfively planned."

We have already enumerated attainments and works which, from their diverfity and extent, feem far beyond
the capacity of the moft enlarged minds ; but the catalogue may yet be augmented. To a proficiency in the languages of Greece, Rome, and Afia, he added the knowledge of the philofophy of thole countries, and of every thing curious and valuable that had been taught in them. 'The doctrines of the Academy, the Lyceum, or the Portico, were not more familiar to lim than the tenets of the Vedas, the mytticifm of the Sufis, or the religion of the ancient P'erfians; and whillt, with a kindred genius, he perufed with rapture the heroic, lyric, or moral compofitions of the moft renowned poets of Greece, Rome, and Afia, he could turn with equal delight and knowledge to the fublime fpecula. tions or mathematical calculations of Barrow and New. ton. With them alfo he profeffed his conviction of the truth of the Chriftian religion ; and he juftly ceemed it no inconfiderable advantage, that his refearches had corroborated the multiplied evidence of Revelation, by confirming the Mofaic account of the primitive world.

In his eighth anniverfary difcourfe to the A fiatic Society, l:e thus expreffes himfelf: " "heological inquiries are no part of iny prefent fubject ; but I cannot refrain from adding, that the collection of thacts which we call, from their excellence, the Scriptures, contain, independently of a divine origin, more true fublimity, more exquifite beauty, purer morality, more important hiftory, and fireer ftrains both of poctry and eloquence, than could be collected within the fame compafs from all other books that were ever compofed in any age, or any idiom. The two parts, of which the Scriptures confilt, are connected by a chain of compofitions, which bear no refemblance in form or ftyle to any that can be produced from the floles of Grecian, Indian, Perfian, or even Arabian learning; the antiquity of the fe compofitions no man doubts, and the uultrained application of them to events long fubfequent to their publication, is a folid ground of belief that they were genuine predictions; and coufequently infpired."
'There were, in truth, few fciences in which he hat not acquired confiderable froficiency ; in moft, his knowledge was profound. The theory of mufic was familiar to him; nor had he neglected to make himfelf acquainted with the interefting difooveries lately made in chemitry; "and I have heard lum (fays I ord l'cign. mouth) affert, that his admiation of the flructure of the human frame had induced him to attend for a feafon to a courfe of anatomical lectures, delivered by his friend the celebrated Hunter."

His lalt and favourite purfuit was the fudy of bo. tany, which he originally began under the confinement of a fevere and lingering diforder, whieh with mott minds would have proved a difqualifeation from any application. It conftituted the pri:cipal amufement of his leifure lionrs. In the arrangements of Limmens, lie difcovered fytem, truth, and fcience, which never fail. ed to captivate and engage his attention; and from the proofs which he has exhibited of his progrefo in botany, we may conclude that he would have extended the dif. coveries in that fcience.

It cannot be deemed ufelefs or fuperfluous to inquire by what arts or method he was enabled to attain to a degree of knowledge almoft univerfal, and apparently beyond the powers of man, during a life little exceeding 47 years.

The faculties of his mind, by nature vigorous, were

$\mathrm{J} O \mathrm{~N} \quad\left[\begin{array}{lll}38\end{array}\right]$

Jon improved by conftant exercife; and his memory, by -jonefia habitual practice, had acquired a capacity of retaining
whatever had once been impreffed upon it. To an unextinguifhed ardour for univerfal knowledge, he joined a perfeverance in the purfuit of it which fubdued all obfacles; his fudies began with the dawn, and, during the intermifions of profeffional dities, were continued throughout the day; reflection and meditation ftrength. cued and confirmed what induftry and inveftigation had accumulated. It was a fixed principle with him, from which he rever voluntarily deviated, not to be deterred by any difficulties that were furmomitable from profecuting to a fuccefsful termination what he had once deliberately undertaken.

But what appeared more particularly to have enabled him to employ his talents fo much to his own and the public advantage, was the regular allotment of his time, and a fcrupulous adherence to the diftribution which he had fixed ; hence all his ftudies were purfued without interruption or confufion. He collected information, 100 , from every quarter; juftly concluding, that fomething might be learned from the illiterate, to whom he liftened with the utmoft candour and complacency.

Lord I'eignmouth, addreffing himfelf to the Afiatic Society, fays, "Of the private and focial virtues of our lamerted Prefident, our hearts are the beft records. To you who knew him, it cannot be neceffary for me to expatiate on the independence of his integrity, his humanity, probity, or benevolence, which every living creature participated; on the affability of his converfation and manners, or his modeft, unaffuming deportment: nor need I remark, that he was totally free from pedantry, as well as from arrogance and felf-fuffciency, which fometimes accompany and difgrace the greateft abilities. His prefence was the delight of every fociety, which his converfation exhilarated and improved; and the public have not only to lament the lofs of his talents and abilities, but that of his example.
"'Io him, as the founder of our inftitution, and whilf he lived irs firmeft fupport, our reverence is more particularly due. Inftrueted, animated, and encouraged by him, genius was called forth into exertion, and modeft merit was excited to diftinguifh itfelf. Anxious for the reputation of the Society, he was indefatigable in lis own endeavours to promote it, whilft he cheerfully affifted thofe of others. In lofing him, we have not only been deprived of our brighteft ornament, but of the guide and patron, on whofe inflructions, judgement, and candour, we could implicitly rely." "Though thefe are the fentiments, not only of Lord Teignmonth, but, we believe, of every man of letters, we truft there is ftill left in Bengal a fufficient love of letters and of fcience to carry on the plan which was formed by the genius of Sir William Jones.

JONESIA, is a very handfome middling. fized ramous tree, found in gardens about Calcutta. In the San. forit it is called $A s^{\prime}$ occ, and in the Bengalefe Rufuck; but the name Jonefia was given to it by the Afratic Society, who confecrated it to the menory of their firft prefident Sir William Jones. It is thus deferibed by Dr Roxburgh, a meniber of that fociety :
"Calyx, two leaved, co:ol, one petaled, piftil-bearing; bafe of the tube impervious; ftamens long, afcending, inferted into the margin of a glandulous nectarial ring, which crowns the month of the tube, the uppermolt swo of which more diftant; fyle declining. Legume
turgid. Trunk erect, though not very ftraight. Burk Jonefia, dark brown, pretty fmooth. Branches numerous, fpreading in every direction, fo as to form a moft elegant fhady head. Leaves alternate, abruptly feathered, feffile, generally more than a foot long; when young pendulous and coloured. L.euflets oppofite, from four to fix pair, the lowermoft broad lanced, the upper lanced; fmooth, fhining, firm, a little waved, from four to eight inches long. Petiole common, round, and fmooth. Stipule axillary, folitary; in fact a procefs from the bafe of the common petiole, as in many of the graffes and monandrits, \&c. Umbels terminal and axillary; between the ftipule and branchlet, globular, crowded, fubfeffile, erect. Brats, a fmall hearted one under each divifion of the umbel. Peduncle and pedicles fmooth, coloured. Florwers very numerous, pretty large; when they firf expand they are of a beautiful orange colour, gradually changing to red, forming a variety of lovely Thades; fragrant during the night. Calyx perianth, below two-leaved, leaflets finall, nearly oppolite, coloured, hearted, bracte.like, marking the termination of the pedicel, or beginning of the tube of the corol. Corol one-petalled, funnel-form; tube nightly incurved, firm, and flefhy, tapering towards the bafe (club funnelThaped) and there impervious; border four parted ; divifion \{preading, fuborbicular; margins moft fightly woolly: one third the length of the tube. Nectary, a ftimeniferous and piftiliferous ring crowns the mouth of the tube. Stameris, filaments generally feven; and fe. ven mult, 1 think, be the natural number; viz. three on each fide, and one below, above a vacancy, as if the place of an eighth filament, and is occupied on its infide by the piftil; they are equal, diftinct, afcending, from three to four times longer than the border of the corol. Anthers uniform, fmall, incumbent. Pifil, germ oblong, pediceled ; pedicel inferted into the infide of the nectary, immediately, below the vacant face already mentioned; ftyle nearly as long as the ftamens, declining; ftigma fimple. Pericarp, legume fcimeter-formed, turgid, outfide reticulated, otherwife pretty fmooth; from fix to ten inches long, and about two broad. Sceds generally from four to eight, fmooth; grey, fize of a large chefnut."

The Jonefia flowers at the beginnirg of the hot feafon, and its feeds ripen during the rains. The plants and feeds were originally brought to Calcutta from the interior parts of the country, where it is indigenous. N. B. Many of the flowers have only the rudiment of a piftil. In Plate XXX. A is a branchlet of the natural fize. B, A fingle flower a little magnified; a a the calyx. C, A fection of the fame, exhibiting four of the famens, 11 I the piltil 2, and how far the tube is perforated. D, A fimilar fection of one of the abortive Howers ; 3 is the abortive fittil. E, The ripe legume opening near the bafe, natural fize. Note, The fpace between the b and c marks the original tube of the coral. Fi, One of the feeds, natural fixe. G, The bafe of the common petiole, with its ftipule; $a a_{\text {, }}$ the petioles of the lower pair of leaflets.

JOOTSI-Sima, a fmall flat inland, which is reparated from Cape Nota in Japan by a chamel about five leagues wide. Its circumference does not exceed two leagues; it is well wooded, of an agreeable afpect, and well inhabited. Peroufe, who failed round it, remarked from the quarter.deck of his thip forne confiderable edifices between the houfes of the inhabitants; and

Jourra's, hard by a fort of cafte, at the fouth weit point of the foyft, inand, he diftinguifhed fome gibbets. He does not, however, afirm that thofe gibbets were for the execution of criminals; for, as he obferves, it would be fingular enough if the Japanefe, whofe cultoms are fo different from ours, were in this point to refembles us fo nearly. He reprefents the ifland as furrounded with dreadful breakers; at the diftance of a league and a half from which, he had confantly co fathoms, with rocky bottom. He places the inland (differently, according to the editor of his voyage, from all other geographers) in latitude $37^{\circ} 51^{\prime}$ north, and in Long. $135^{\circ} 20$ ealt from Paris.

JOURNAIS, the title of periodical publications. See Encyclopredia. The principal Britifh Journals are: The Hiftory of the Works of the Learned, begun at London in 1699. Cenfura Temporum, in 1708 . A bout the fame time there appeared two new onez; the one under the title of Memoirs of Literature, containing little more than an Englifh trannation of fome articles in the foreign Journals, by M. de la Roche; the other, a collection of loofe tracts, intitled, Bibliotheca Curiofa, or a Mifcellany. Thefe, however, with fome others, are now no more, but are fucceeded by the Annual Regifler, which began in 1758 ; the Nerv Ainnual Rergifer, Eegun in 1780; the Monthly Review, which began in the year 1749 , and gives a character of all Englifh literary publications, with the molt confiderable of the foreign ones: the Critical Reviezv, which began in 1756, and is nearly on the fame plan: as alfo the Lon. don Review, by Dr Kenrick, fiom 1775 to 1780 ; Maty's Revicev, from Feb. 1782 to Aug. 1786 ; the Englif.3 Revierw, begun in Jan. 1783 ; and the Analy. tical Keviere, begun in May 1788, dropt in 1798, and revived in 1790, under the title of the Neru Analytical Revierw ; but again dropt after two or three months trial : the Britifb Critic, begun in 1792, and Atill carried on with much fpirit and ability: the Anti. Facobin Revieru and Magazine, commenced in 1798, for the meritorious purpofe of counteracting the pernicious tendency of French piliciples in politics and religion: the New London Review, January 1799: A Fournal of Natural Philofophy, Chrmijtry, and the Arts, which was begun in 1797 by Mr Nicholfon, and has been conducted in fuch a manner, that it is one of the molt valuable works of the kind to be found in any language: the Philofoplical Magazine, beyun in 179^{5} by Mr Tilloch, and carried on upon much the fame plan, and with much the fame fpirit, as Nicholfon's Journal.

Befides thefe, we have feveral monthly pamphlets, called Magazincs, which, together with a chronological feries of occurrences, contain letters from correfpondents, communicatirg extraordinary difcoveries in nature and art, with controverfial pieces on all fubjects. Of thefe, the principal are thofe called the Gentleminn's Magazine, which began with the year 1731 ; the London Magazine, which began a few months after, and has lately been difcontinued; the Univerfal Magazine, which is nearly of as old a date; the Scotch Magazine, which began in 1739, and is ftill continued; the European Mlagazine; und the Montbly Magazine, a mifcellany of much information, but not of good principles.

JOYS' or JEyst, the fecond month of the Bengal year.

IRRA'IIONAI, Numbers or Quantities, are the Irrational fame as furds, for which fee Algebra, Encycl.

IRR DDUCIBLE CASE, in algebra, is ufed for that cafe of cubic equations where the ront, according to Cardan's rule, appears under an impuffible or imaginary form, and yet is real.

It is remarkable that this cafe always happens, caiz. one rout, by Cardan's rule, in an impollitile form, whenever the equation hats three real roots, and no impofible ones, but at no time elfe.

If we were poffelfed of a general rule for aecurately extracting the cube root of a binomial radical quantity, it is evident we might refolve the irreducible cafe generally, which confitts of two of Such cubic binomial roots. But the labours of the algebraits, from Cardan down to the prefent time, have not been able io remove this dificulty. Dr Wallis thought that he had difcovered fuch a rule ; but, like molt others, it ismerely tentative, and can only fucceed in certain particular circumftances.

IRON, is by much the moft ufeful of all the metals, as has been fufficiently proved under the article Iron, Encycl. and under Chemistry in this Supplement. 'The word is agrain introduced here, becaufe it affords us an opportunity of laying before our readers fome valuable obfervations by Chaptal on the ufe of the oxyds of iroa in dyeing cotton.
"The oxyd of iron has fuch an affinity for cotton thread, that if the latter be plunged in a faturated folution of iron in any acid whatever, it immediately affumes a chamoy yellow colour, more or lefs dark, according to the flrength of the liquors. It is both a curious and ealy experiment, that when cotton is made to pals through a folution of the fulphat of iron, rendered turbid by the oxyd which remains fulpended in the liquor, it will be fufficient to dip the cotton in the bath to eatch the laft particle of the oxyd, and to reftore to the liquor the tranfparency it has loff. The folution, then, which before had a yellowifh appearance, becomes more or lefs green, according as it is more or lefs charged.
"The colour given to cotton by the oxyd of iron becomes darker, merely by expofure to the air ; and this colour, foft and agreeable when taken from the bath, becomes harfh and ochry by the progreffive oxydation of the metal. The colour of the oxyd of iron is very fatt: it refilts not only the air and water, but allo alkaline leys, and foap gives it filendour without fenfibly diminifhing its intenlity. It is on account of thefe properties that the oxyd of iron has been int:oduced into the art of dyeing, and been made a colouring principle of the utmoft value.
"In order that the oxyd of iron may be conveniently applied to the cotton thread, it is neceffary to begin by effecting its folution; and, in this cafe, acids are em: ployed as the moit ufeful folvents. Dyers alınoft everywhere make a myftery of the acid which they employ; but it is always the acetoue, the fulphuric, the nitric, or the muriatic. Some of them afcribe great differences to the folution of iron by the one or the other acid; but, in general, they give the preference to the acetous. This predilection appears to be founded much lefs on the difference of the colours that may be communicated by the one or the other falt, than on tho different degrees of corrolive power which each exercifes on the fuff. That of the fulphat and muriat is fogrent,
that
that if the fluff he not wathed when it comes from the bath, it will certainly be burnt; whereas folutions by the acetous, or any other vegetable acid, are not attended with the like inconvenience.
"Iron appears to be at the farne degree of oxydation in the different acids, fince it produces the fame fhade of colour when precipitated ; and any acid folvent may be employed indiferiminately, provided the nature of the falt, and the degree of the faturation of the acid, be fufficiently known; for the fubfequent operations snay be then directed according to this knowledge, and the inconveniences which attend the ufe of fome of thefe falts may be prevented. This, without doubt, is a great advantage which the man of fcience enjoys over the mere workman, who is incapable of varying his procefs according to the nature and fate of the falts which he enploys.
" 1 . If the fulplat of iron, or any other martial falt, be diffolved in water, and cotton be dipped in the lii^{1} ind, the cotton will aflume a chamoy colour, more or lefs dark according as the folution is more or leis chargred. The affinity of the cotton to the iron is fo great, that it attracts the metal, and takes it in a great meafure from the acid by which it was diffolved.
" 2 . If the iron of a pretty frong folution be precipitated by an alkaline liquor that fhews five or fix degrees (by the aroometer of Baumć), the refult will be a greenifh blue magma. The cotton maccrated in this precipitate affumes at firft an unequal tint of dirty green ; but inere expofure to the air makes it in a little time turn yellow, and the Thade is very dark.
"It is by fuch, or almoft fimilar proceffes, that dyers communicate what is called among workmen an oclre or ruff colour. But thefe colours are attended with feveral inconveniences to the artif: 1. Strong fhades burn or injure the cloth: 2. This colour is halft, difagreeable to the eye, and cannot be eafily united with the mild coloure furnifhed by vegetables."

To avoid thefe inconveniences, our author made feversl attempts, which led him to the following practice: He treads the cotton cold in a folution of the fulphat of iron, marking three degrees; he wrings it carefully, and immediately plunges it in a ley of potafh at two de. grees, upon which he has previoufly poured to faturation a folution of the fulphat of alumine: the colour is then brightened, and becomes infinitely more delicate, foft, and agreeable. The fulphat no longer attacks the tiffue of the ftuff; and after the cotton has been left in the bath for four or five hours, it is taken out to be wrung, wafhen, and dried. In this manner we may obtain every fhade that can be wifhed, by graduating the frength of the folutions. This fimple procefs, the theory of which prefents itfelf to the mind of every chemilt, has the advantage of furnining a colour very agrecable, exceedingly fixed, and, above all, extremely economical. He employs it with great advan. tage in dyeing nankeens, as it has the property of relifti..g leys. It becomes brown, however, by the action of aftringents.
M. Chaptal made feveral attempts to combine this yellow with the blue of indigo, in order to obtain a durable green; but as they were all unfuccefsful, he infers that there is not a fufficient affinity between the blue of indigo and the oxyds of iron. He found that thefe oxyds, on the other band, combine very eafily with the
red of madder, and produce a bright violet or plunn colour, the ufe of which is as extenfive as beneficial in the cotton manufactory. But if we fhould confine ourfelves to apply thefe two colours to cotton, without having empluyed a mordant cap?ble of fixing the latter, the colour would not only remain dull and difagieeable by the impoffibility of brightening it, but it would ftill be attended with the great inconvenience of not refilting leys. We muft begin, then, by preparing the cottor as if to difpoie it for receiving the Λ drianople red; and when it has been brought to the operation of galling, it is to be paffed through a folution of iron, more or lefs clarged, according to the nature of the violet required: it is then to be carefully wafhed, twice maddered, and brightened in a bath of foap.

When a real velvety rich violet is required, it is not to be paffed through the folution of iron till it has been previoufly galled; the iron is then precipitated in a bluifh oxyd, which, combined with the red of madder, gives a molt brilliant purple, more or lefs dark according to the ftrength of the galling and of the ferruginous folution. It is very difficult to obtain an equal colour by this procefs; and in manufactories, an equal violet is confidered as a mafter-piece of art. It is generally believed, that it is only by well-directed manipulations that it is poffible to refolve this problem, of fo much importance in dyeing. But I am convinced (fays our author), that the great caufe of the inequality in this dye is, that the iron depofited on the cotton receives an oxydation merely by expofure to the air, which varies in different parts of it. The threads which are on the outide of the hank are ftrongly oxydated, white thofe in the infide, removed from the action of the air, experience no change. It thence follows, that the infide of the hank prefents a weak Made, while the exterior part exhibits a violet almoft black. The means to remedy this inconvenience is, to wafh the cotton when it is taken from the folution of iron, and to expofe it to the madder moif. 'The colour will become more єqual and velvety. The folvents of iron are almoft the fame for this colour as for the yellow colour already mentioned.

The following obfervation may ferve to guide the artift in brightening the violet on his cotton. The red of madder and the oxyd of iron depofited on the fuff determine the violet colour. This colour becomes red or blue, according as either of the principles predominates. The dyer knows by experience how difficult it is to obtain a combination which produces the tone of colour defied, efpecially when it is requiecd to be very full, lively, and durable. This object, however, may be obtained, not only by varying the proportions of the two colouring principles, but alfo by varying the procefs of brightening. The only point is to be acquainted with the two following facts ; that the foda deftroys the iron, while the foap, by ftrong ebullicion, feizes in preference the red of the madder. Hence it is, that the colour may be inclined to red or blue, according as you brighten with one or the other of thefe mordants. Thus, cotton taken from the madder dye, when wafhed and boiled in the brightening liquor with ${ }^{3}$ the of foap, will give a fuperb violet ; whereas you will obtain only a plum colour in treating it with foda.

The oxyd of iron precipitated on any ftuff unites alfo very advantageouny with the fawn colour furnifhed

J U. A

Iron, by afringents; and by varying the flrength of mordants, an infinity of flades may be produced. In this cafe, it is lefs a combination or folution of principles than the fimple mixture or juxta-pofition of the colouring bodies on the ttuff. By means of a boiling heat, we may combine, in a more intimate manner, the oxyd of iron with the aftringent principle; and then it is brought to the flate of black oxyd, as lias been ohferved by Berthollet. It is poffible alfos to embrown thefe colours, and to give them a variety of tints, from the bright grey to the deep black, by merely paffing the cottons impregnated with the aftringent principle thro' a folution of iron. The oxyd is then precipitated itfelf by the principle which is fixed on the ftuff.

An obfervation, which may become of the utmoft value for the art of dyeing, is, that the moft ufual aftringent vegetables all furnifh a yellow colour, which has not much brilliancy, but which has fufficient fixity to be employed with advantage. This yellow colour is brightened in the feries of vegetables, in proportion as the affringent principle is diminifhed, and the vivacity of the colour is augmented in the fame proportion. It is difficult, then, to obtain yellow colours which are at the fame time durable and brilliant. Thefe two valuable qualities are to each other in an inverfe ratio; but it is poffible to unite the colouring principles in fuch a manner as to combine fplendour with fixity. Green oak bark unites perfectly with yellow weed, and fumach with green citron. It is by this mixture that we may be able to coinbine with the oxyd of iron vegetable colours, the fplendour of which is equal to their durability.

Our author concludes his obfervations with cautioning the dyer againft fubftituting fumach and the bark of the al ler tree or oak for gall when dyeing cotton red. "I can fafely affert (fays he), that it is impoffible to employ thefe as fubltitutes, in whatever dofes they may be ufed. The colour is always much paler, puorer, and lefs fixed. I know that the cafe is not the fame in regard to dyeing wool and filk, in which it may be employed with fuccefs; and in giving an account of this difference, 1 think the caufe of it may be found in the nature of the gall-nuts. I. The acid which they exclufively contain, as Berthollet has proved, facilitates the decompofition of the foap with which the cottons have been impregnated, and the oil then remains fixed in their tiffue, and in a greater quantity, as well as in a more intimate combination. 2. The gall-nuts, which owe their development to animal bodies, retain a character of animalifation, which they tranfmit to the vegretable ftuff, and by thefe means augment its affinities with the colouring principle of the madder; for it is well known of what utility animal fubftances are to facilitate this combination. This animalifation becomes ufelefs in operating upon woollen or filk."

JUAN DE FUCA, a celebrated frait on the northweft coaft of America, was furveyed by Captain Vancouver in the Difcovery noop of war, with a view to afcertain whether it leads to any communication between the North Pacific and the North Atlantic O. ceans. As they advanced within the opening of the ftrait, their progrefs was greatly retarded by the num. ber of inlets into which the entrance branched in every direction; and moft of thefe were examined by the boats, which were frequently abfent from the fhips on

Suppl. Voz. II. Part I.
this fervice for feveral days together. In the midft of their labours, they were furprifed by the fight of two Spanifh veffels of war, employed, like themfelves, in furveying this inlet, the examination of which had been begun hy them in the preceding year. Meafures of mutual afiftance were concerted between the captains of the two nations for the profecution of the furvey, in which each agreed to communicate to the other their dif. coveries. Not one of the many arms of the inlet, nor of the clannels which they explored in this broken part of the coatt, was found to extend more than 100 miles to the eaftward of the entrance into the ftrait. After having furveyed the fouthern coaft, on which fide a termination was difcovered to every opening, by following the continued line of the fhore, they were led to the northward, and afterward towards the north-wef, till they came into the open fea through a different channel from the ftrait of Juan de Fuca, by which they lad commenced this inland navigation.

Thus it appeared, that the land forming the north' fide of that frait is part of an in?nd, or of an archipelago, extending nearly 100 leagrues in length from S. E. to N. W. ; and on the lide of this land molt ditant from the continent is litusted Nontka Sound. 'The molt peculiar circumftance of this navigation is the extreme depth of water, when contralted with the nar-ownefs of the channels. The veffels were fom umes hitited about by the currents during the mhole of a night, clofe to the rocks, without knowing how to help themfelves, on account of tire darknefs, and the depth being much too great to afford them anchorage.

In the courfe of this furvey, the voyagers had frequent communications with the natives, whom they met fometimes in canoes and fometimes at their village In their tranfections with Europeans, they are defuribed as "well verfed in the principles of trade, which they carried on in a very fair and honourable manner." In other refpects they were lefs hone?t. At one village 200 fea otter flins were purchafed of them by the cetw3 of the veffels in the courfe of a day; and they had many more to fell in the fame place, as alfo fkins of bears, deer, and other animals. Oise party of Indinns whom they met had the fkin of a young lionefs; and thefe fpoke a language different from that ufed in Nootka Sound. Venifon was foretimes brought for fale ; and a piece of copper, not more than a foot fcuare, purchafed one whole deer and part of another. Among other articles of traffic, two children, fix or feven years of age, were offered for fale. The comnodities molt prized by the natives were fire-arms, copper, and g!eat coats. Beads and trinkets they would unly receive as prefents, and not as articles of exchange. Many of them were poffeffed of fire-arms. In one part it is related, that after a chief had received fome prefents, "he, with moft of his companions, returned to the fhore; and, on landing, fired feveral mufkets, to thew, in all probability, with what dexterity they could ufe thefe weapons, to which they feemed as familiarized as if they had been accuftomed to fire-arins from their earlieft infancy."

The dreffes of thefe people, befides fkins, are a kind of woollen garments; the materials compoling which are explained in the following extract:
" The dogs belonging to this tribe of Indians were numerous, and much refembled thofe of Pomerania, fhorn as clofe to the fkin as fheep are in England; and fo compaet were their fleeces, that large portions could be lifted up by a corner without caufing any feparation. They were compofed of a nixture of a coarfe kind of wool, with very fine long hair, capable of being fpun into yarn. This gave Captain Vancouver reafon to believe, tiat their woollen clothing night in part be compofed of this material mixed with a finer kind of wool from fome other animal, as their garments wele all too fine to be manufactured from the coarle coating of the dog alone."

Of other animals alive, deer only were feen in any abundance by our people.

The number of inhabitants computed to be in the largen of the villages or towns that were difcovered, did not exceed 600. Captain Vancouver conjectured the fmall-pox to be a difeafe common and very fatal among them. Many were much marked; and moft of thefe had loft their right eye. Their method of dif. pofing of their dead is very fingular.
"Bankets were found fufpended on ligh trees, each containing the Ikeleton of a young child; in fome of which were alfo finall fquare boxes filled with a kind of white pafte, refembling (fays our author) fuch as I had feen the natives eat, fuppofed to be made of the faranne root; fome of thefe boxes were quite full, others were nearly empty, eaten probably by the micc, fquirrels, or birds. On the next low point fouth of our encampment, where the gunners were airing the powder, they met with feveral hules in which human bodies were interred, night. ly covered over, and in different fates of decay, fome appearing to have been very recently depofited. About half a mile to the northward of onr tents, where the land is nearly level with high water mark, a few paces within the fkirting of the wood, a canoe was found fufpended between two trees, in which were three human fkeletons.
" On each point of the harbour, which, in honour of a particular friend, I called Peinn's Cove, was a defert. ed village; in one of which were found feveral fepulchres, formed exactiy like a centry box. Some of them were open, and contained the fkcletons of many young children ticd up in bafkets: the fmaller bones of adults were likewife noticed, but not one of the limb bones could here be found; which gave rife to an opinion, that thefe, by the living inhabitants of the neighbourhood, were appropriated to ufeful purpofes; fuch as pointing their arrows, fpears, or other weapons."

However honourably thefe people have been reprefented in their conduct as traders, it appeared on feveral occafions that it was unfafe to depend on their goodwill alone: and fome inftances occurred, of their making every preparation for an attack, from which they defifted only on being doubtful of the event ; yet immediately on relinquifhing their purpofe, they would come with the greatett confidence to trade, appearing perfectly regardlefs of what laad before been in agitation. The boats, as already noticed, were frequently at a great diftance from the fhips; and on fuch occa. fions, when large parties of Indians have firt feel: them, they generally held long conferences among themfelves before they approached the boats; probably for the purpofe of datermining the mode of conduct which hey judged it molt prudent to obferve. Captain Van-
conver places the entrance of the ftrait of Juan de Fir- Jugglers. ca in $48^{\circ} 20^{\prime} \mathrm{N}$. Lat. and $124^{\circ} \mathrm{W}$. Long.

JUGGLERS are a kind of people whofe profeffion has not been often deemed cither refpectable or nefeful. Profeffor Beckmann, however, has undertaken their defence; and in a long and learned chapter in the third volume of his Hiflory of Inventions, pleads the caufe of the practifers of legerdemain; rope-dancers; perfons whu place their bodies in pofitions apparently danger. ous; and of thofe who exhibit feats of uncommon Atrength. All thefe men he claffes under the general denomination of Jugglers; and taking it for grauted (furely upon no grood grounds) that every ufeful employment is full, he contends, that there would not be room on the cartl for all its prefent inhabitants did not fome of them practife the arts of $\mathcal{F} u g g^{\prime}$ ling.
"Thefe arts (fays he) are indeed not unprofitable, for they afford a comfortable fubfiftence to thofe whor practife them; but their gain is acquired by too little labour to be hoarded up; and, in general, thefe roving people fpend on the fpot the fruits of their ingenuity ; which is an additional reafon why their ftay in a place fhould be encouraged. But farther, it often happenz, that what ignorant perfons firft employ, merely as a fhow, for amufement or deception, is afterwards ennobled by being applied to a more important purpofe. The machime with which a Savoyard, by ineans of fadows, amufed children and the populace, was by Liberkülıs converted into a folar microfcope; and, to give one example more, the art of making ice in fummer, or in a heated oven, enables guelts, much to the credit of their hoftefs, to cool the moft expenfive difhes. The Indian difcovers precious ftones, and the European, by polifhing, gives them a lutre.
"But, if the arts of juggling ferved no other end than to amufe the man ignorant of our citizens, it is proper that they fhould be encouraged for the fake of thofe who cannot enjov the more expenfive deceptions of an opera. They anfwer other purpofes, however, than that of merely amufing : they convey influction in the moit acceptable manner, and ferve as an agrceable antidnte to fupertition, and to that popular belief in miracles, exorcifm, conjeration, forcery, and witcheraft, from which our ancefturs fuffered fo feverely."

Surely this reafoning, as well as the caire in which it is brought forward, is unworthy of the learning of Beckmann. It is indeed true, that jugglers fpend their money freely, and that their arts afferd them the means of fubfiftence; but it is very feldom, as our author mult know, that they fubleft either comfortably or innocently. I_{3} it innocent to entice the ignorant and latouring poor, by ufcless deceptions, to part with their hard-earned pittance to idle vagabonds? or is the life of thofe vagabonds comfortable, when it is paffed amid feenes of the moft grovelling diffipation? Jugglers fpend indeed their money, for the moft part, on the fpot where it is gained ; but they fpend it in drunkennefs, and other feducing vices, which corrupt their own morals and the morals of all with whom they affociate: and therefore their ftay in a place fhould certainly not be encouraged. Could it be proved that the fular microfcope would never have been invented, had not a Savoyard juggler contrived a: fimilar machine to amufe clildren and the rabble, fume ftrefs might be laid on lide forvice which fuch wretches have

$43]$

J U G

Juggle ra. have rendered to faience: but where is the man that
will fuppofe the philofophy of Bacon and Newton to will fuppofe the philofophy of Bacon and Newton to
sell upon the arts of juggling? or who confiders the refinements of faience as of equal value with the morals of the people? There is, at the moment in which this article is drawing up, a fellow exhibiting, before the windows of the writer's chamber, the mot indecent scenes by means of puppets, and keeping the mob in a confant roar. Is he innocently employed? or will any gond man fay that there is not room for him in the armiss which on the Continent are fighting in the caufe of God and humanity ?
Our author endeavours to ftrengthen his reafoning by proving, which he does very completely, the antiquit of juggling. "The deception (fa ya he) of breathing out flames, which at prefent excites, in a particular inanner, the aifonifhment of the ignorant, is very ancient. When the faves in Sicily, about a century and a half before our mra, made a formidable infurrecion, and avenged themfelves in a cruel manner for the feverities which they had fuffered, there was among lt them a Syrian named Eunus, a man of great craft and courage, who, having faffed through many fines of life, had become acquainted with a variety of arts. He pretended to have immediate communication with the goods; was the oracle and leader of his fellow flares; and, as is usual on fuch occafions, confirmed his divine miffion by miracles. When, heated by enthufiafm, he was defirous of inspiring his followers with courage, he breathed flames or fparks among them from his mouth while he was addreffing them. We are told by hilts. xians, that for this purpose he pierced a nut-fhell at both ends, and, having filled it with forme burning fubftance, put it into lis mouth and breathed through it.
"This deception, at prefent, is performed much better. The juggler rolls together forme flax or hemp, fo as to form a ball about the fire of a walnut ; fets it on fire; and fuffers it to burn till it is nearly confumed; he then rolls round it, while burning, fome more flax; and by there means the fire may be retained in it for a log g time. When he withes to exhibit, he flips the ball unperceived into his mouth and breathes through it; which again revives the fire, fo that a number of weak Sparks proceed frons it; and the performer fuftains no hurt. provided he inspire the air not through the mouth but the nofrils.
"For deceptions with fire the ancients employed alfo naphtha, a liquid mineral oil, which kindles when it only approaches a flame. (See Naphtha, Encycl.) Galen informs us, that a perfon excited great aftonifhmont by extinguifhing a candle and again lighting it, without any other process than holding it immediately againft a wall or a tone. The whole fecret of this confitted in having previously rubbed over the wall or flone with fulphur. But as the author, a few lines before, freaks of a mixture of fulphur and naphtha, we have reafon to think that he alludes to the famine here. Plustach relates how Alexander the Great was aftonifhed and delighted with the ferret effects of naplitha, which were exhibited to him at Ecbatana. The fame author, as well as Pliny, Galen, and others, has alvady remarked, that the fubflance with which Medea defroyed

[^0]Creufa, the daughter of Creon, was nothing elfe than this fine oil. She font to the unfortunate princess a drefs befmeared with it, which burt into flames as foo as the approached the fire of the altar. The blood of Nefus, in which the drefo of Hercules, which took fire likewife, had been dipped, was undoubtedly naphtha aldo ; and this oil mut have been always employed whens offerings caught fire in an imperceptible manner.
" In modern times, perfons who could walk over burning coals or red-hot iron, or who could hold red. hot iron in their hands, have often excited wonder. But laying afide the deception fometimes practifed on the fpectators, the whole of this fecret confifts in remdering the fin of the folds of the feet and hands fo callous and infenfible, that the nerves under them are fecured from all hurt, in the fane manner as by foes and gloves. Such callosity will be produced if the fin is continually compreffed, fringed, pricked, or injured in any other manner. Thus do the fingers of the industrious fempltrefs become horny by being frequently pricked; and the cafe is the fame with the hands of fireworkers, and the feet of thofe who wail bare footed over fcorching fans.
" 11 the month of September 1755 , when I vifited (fays our author) the copper-works at A weftad, one of the workinen, for a little drink money, took forme of the melted copper in his hand, and after fhewing it tn us, threw it again? a wall. He then fqueezed the fingers of his horny hand clofe to each other; put it a few minutes under his armpit, to make it feat, as he fail; and, taking it again out, drew it over a ladle filled with melted copper, lome of which he fikinned off, and mowed his hand backwards and forwards. very quickly, by way of oftentation. While I was viewing this performmane, I remarked a finell like that of tinged horn or leather, though his hand was not burnt. It is highly probale, that people who hold in their lands red hot iron, or who walk upon it, as I faw done at A mitcrdam, but at a diflance, make their fin callous before, in the like manner. This may be accomplifined by frequently moiftening it with Spirit of vitriol; according to time the juice of certain plants will produce the fame effect; and we are affured by others, that the fin nut be very frequently rubbed, for a long time, with oil, by which means, indeed, leather alfo will become horny *." \quad.Holler,
Our author then proves, in a very learned manner, Elements

Our author then proves, in a very learned manner, Elements that all there tricks were of high antiquity; that the Pbyyowlog. Hirpi, who lived near Rome, jumped through burning coals; that women were accuftomed to walk over burning coals at Callahala in Cappadocia, near the temple dedicatted to Diana; that the exhibition of balls and cups (fee Legerdemain, Encycl.) is often mentioned in the works of the ancients; that in the third century, one Firmus or Firmius, who endeavoured to make himself emperor in Egypt, fuffered a faith to forge iron on an anvil placed on his breatt ; that ropedancers with balancing poles are mentioned by Petronius and others; and that the various fats of horfenan!hip exhibited in our circufes puffed, in the thirteenth century, from Egypt to the Byzantine court, aid thence over all Europe.
JUNGLE, in Bengal, waft land, or land covered with wood and brambles.

$$
\mathrm{F}=\mathrm{KAAR}[\mathrm{X},
$$

 -
\qquad

[^1]
\qquad

\qquad

[^2]

KAARTA, a kingdom in Africa, through which Mr Park paffed in his route from the Gambia to the Niger. He defribes the country as confifting either of fandy plains or rocky hills; but, from his account, the level part feems to be the moft extenfive. The natives are negroes, of whom many, though converted to the Mahomedan faith, or rather to the ceremonial part of the Mahomedan religion, retain all their ancient fuperftitions, and even drink ftrong liquors. 'They are called Johers or Jowers, and in Kaarta form a very numerous and powerful tribe. One of thefe men undeltook to conduct our author to Kemmoo, the capital of the kingcom, and alarmed him not a little by his fuperfitious ceremonies.
"We had no fooner (fays Mr Park) got into a dark and lonely part of the firtt wood, than he made a fign for us to ftop, and taking hold of a hollow piece of hamboo, that hung as an amulet round his neck, whifled very loud, three times. I confefs I was fomewhat ftartled, thinking it was a fignal for fome of his companions to come and attack us; but he affured me that it was done merely with a view to afcertain what fuccefs we were likely to meet with on our prefent journey. He then difmounted, laid his fpear acrofs the road, and having faid a number of fhort prayers, concluced with three loud whifles; after which he liftened for fome time, as if in expectation of an anfwer, and receiving none, told us we might proceed without fear, for there was no danger."

White men were ftrangers in the kingdom of Kaarta; and the appearance of our author had on fome of the natives the effect which ignorant people, in this country, attribute to ghofs. "I had wandered (fays he) a little from my people, and being uncertain whether they were before or behind me, I haftened to a rifing ground to look about me. As I was proceeding towards this eminence, two negro horfemen, armed with mufkets, came galloping from among the bufhes: on feeing them 1 made a full ftop; the horfemen did the fame, and all three of us feemed equally furprifed and confounded at this interview. As I approached them their fears increafed, and one of them, after cafting upon me a look of horror, rode off at full fpeed; the other, in a panic of fear, put his hand over his eyes, and continued muttering prayers until his horfe, feemingly without the rider's knowledge, conveyed him flowly after his companion. About a mile to the weftward, they fell in with my attendants, to whom they related a frightful fory : it feems their fears had dreffed $m e$ in the fowing robes of a tremendous fpirit; and one of them affirmed, that when I made my appearance, a cold blaft of wind came pouring down upon him from the fly like fo much cold water."

At Kemmoo our traveller was gracioufly received by the king; who honeflly told him, however, that he could not protect him, being then engaged in war with the king of Bambarra (fee Segn in this Supplement); but he gave him a guard to Jarra, the frontier towa of the neighbouring kingdom of Ludamar. The origin and iflue of this war between Kaarta and Banbarra, of
which Mr Park gives a full account, fhews the folly of attempting to liberate the negroes from flavery till civilization and Cluriftianity be introduced into Africa. Major Rennel places Kemmoo, the capital of Kaarta, in $14^{\circ} 15^{\prime} \mathrm{N}$. Lat. and $7^{\circ} 20^{\prime}$ W. Lon.

KABOBIQUAS, a nation in fouth Africa, who had never feen a white man till 1785 , that they were vifited by M. Vaillant. Intimation had been given of his approach by fome of the tribes through whofe country he had previoufly paffed; and every thing that had been faid of his colour, his fufees, and his equipage, bore the character of the moft enthufiaftic exaggeration. The curiofity of the people was wound up to the higheft pitch ; and as foon as they faw his company at a diftance, the whole horde quitted the kraal, and ran wih eagernefs to meet him. Not being able to believe their eyes in regard to what they faw, they endeavoured to obtain more fatisfaction by touching him. They felt his hair, hands, and almoft every part of his body. His beard, above all, aftonifhed them to an inconceivable degree. More than thirty perfons came in fucceffion, and half unbuttoned his clothes. They all imagined him to be a hairy animal ; and fuppofed, without coubt, that his body was covered with hair as long as that on his chin; but finding this not to be the cafe, they were aftonifhed, and confeffed, with the opennefs of favages, that, they had never feen the like in any man of their country. The little children, terrified at his appearance, hid themfelves behind their mothers. When he attempted to lay hold of any of them, in order to carefs them, they fent forth loud cries, as a clild would do in -Europe who thould fee a negro for the firft time.

The grown up people, however, were foon recanciled to his appearance, and even the cliidren were bribed by fmall bits of fugar caudy. The chief of the horde thowed him every mark of attacliment. He was a man advanced in life, and of a majefic figurc. He wore a long inantle, which hung from his fhoulders to the ground, and withich, formed of four jack al Akins joined together, was bordered at the fides with that of a hyæna. His left hand wanted two joints of the little finger, which, he faid, were amputated in his infancy to cure him of a livere illnefs.

This cuftom of favages, who, to relieve a man from pain, add new fufferings to his evils, affords a vaft field for reflection. Mr Pateffon, another African traveller, tells us, that he obferved inftances of the fame practice among a horde at the mouth of Orange-river; which is not improbable. However abfurd a cuftom may be, favage tribes, when they are neighbours, may borrow it from each other; but that it fhould be common among the iflanders of the South Sea, who, fince their country was firt inhabited, had never feen ftrangers before Cook and Bougainville, is truly aftonißing. Our author was very defirous of interrogating minutely the people of the horde on this fubject. He wifhed allo to propofe fome quettions to thein refpecting other cuftoms, which appeared fingular; but difficulties increafed the more he advanced into the country. The Kabobiquas fpoke a particular language; and this dialect, though accompanied

K A B

Sahohi- aceompanied with the clapping noife of the Hiottentots, quas was underfood only by the Kuraquas, who, on account of their vicinity, kept up fome intercourfe with them. The cafe was the fame with the language of the Koraquas, in regard to their neighbours the Nimiquas; and nothing reached our author's ear till it had paffed through four different mouths. The confequence was, that when he afked any thing, the anfwer had frequently no relation to the queftion; and for this inconveniency no remedy could be found.

The fame defire for trinkets to ornament their drefs prevziled among the Kabobiquas as among the other hordes which Vaillant had vifited; and in one day he purchafed twenty oxen for things of that kind of no value. The chief, however, had fet his affections on a razor; and juft when our author and he were treating about it, a flot was fired wear them, which was inftantly followed by the moft frightful cries. "Rufhing inftantly from my tent (fays M. Vaillant) to enquire what was the caufe of this noife, I faw a Kabobiqua flying as faft as he could from one of my hunters, while, at the diftance of a hundred paces farther, three men were making the moft lamentable clamour, and near them was a young girl lying on the ground. I made a figual to my hunter to approach me; but the report of the fhot, and the howling of the three men, had already fpread alarm throughont the horde. Some cried out treachery; orhers ran to their arms; and I now imagined that I was about to be maffacred, with ny whole company, and that I fhould be obliged to arm them in iny defence. My fituation was the more critical, as neither I, nor any perfon in the kraal, knew what was the caufe of this confu:fion; and if I had known, how could I have explained it?
"Under this embarraffment, I took the chief by the hand, and advanced with him towards the horde. Fear was painted in his countenance; tears began to drop from his cyes; and he fpoke to me with great vivacity. He imagined, no doubt, that he was betrayed. He complained to me, and accufed my people of perfidy; yet he readily followed me.
"As I was without arms, and prefented myfelf with the chief, I was received with confidence, and my appearance feemed, in fome meafure, to calm their perturbation. My people, who had fcen me direct my courfe towards the krall, haftened thither after me, to protect me; and their number overawed the multitude. At length the whole nigftery was cleared up, and we learned what had occafioned the tumult.
"A Kabobiqua having inet one of my hunters, who was returning with his fufee, wifhed to examinc it, and begged him to fhew it to him. In handling it, how. ever, he accidentally touched the trigger; it inflantly went off; and the favage, frightened by the unexpected explofion, threw down the fufee, and ran away as falt as he could.
"At that time, three men of the horde and a young girl happened unluckily to be ftanding, at the diftance of a tundred paces, in the direction of the picce. The latter received a fingle grain of fhot in the cheek; and the others a few grains in the legs and thighs, The author of the misfortune confirmed this explanation ; tranquillity was foon reftored; the favages depofited their arms; and I was furrounded only by friends as before.

45 K A B
" Nothing remained but to enquire into the flate of the wounded, and to give them every affilance in my power. Without lofs of time, therefore, I repaired, ftill accompanied by the chief, to the place where they were. By the way we niet the young girl, who was returning from the kraal, bathed in tears. The caufe of her uneafinefs was a grain of lead, which had, however, penetrated fo little, that I forced it out by only prefling the part with my fingers. With regard to the three men, they lay rolling on the ground, howling in a moft frightful manner, and exhibiting every fymptom of defpair.
"I was aftonifhed at their confternation, and could not conceive how men inured to fufferings fhould be fo much affected by a few fmall punctures, the pain of which could have fcarcely drawn tears from an infant. They at length tuld me the caufe of their wailings. Thefe favages, accuftunted to poifon their arrows, imagined that I had in like manner poifoned the lead with which they were wounded. They had, therefore, given themfelves up as loft, and expected in a few moments to expire."

It was with great difficulty that our author could. convince thein that they lad nothing to fear. He fhewed them in the flef of his own leg a dozen of thots of lead ; but they were not fatisfied till one of the moft in. telligent of his Hottentots, taking from his fhot bag a few grains of lead, and fhewing thein to the three men, immediately fwallowed them. This conclutive argument produced the defired effect. The cries of the wounded men inflantly ceafed; ferenity again appeared in their faces; and their wounds were no more mentioned.

The Kabobiquas have neither the flat nofe nor plump cheeks of the Hottentots. Their fkin alfo has not that baftard colour, which, being neither black nor white, renders them odious to both races ; nor do they befmear their bodies with thofe difgufting fat fubftances, on account of which one cannot approach them without being bedaubed with their filth, or acquiring an offenfive fmell. In flature they are as tall as the Caffres, and their colour is equally black. Their hair, which is exceedingly fort, and much curled, is ornamented withs fmall copper buttons, arranged with great art and fymmetry. Inflead of that apron made of a jackal's fkin, employed by the Hottentot to cover what modefty bidg hin conceal, the Kabobiquas ufe a round piece of leather, the edge of which is ornamented with a fnall indented circle of copper, and which is divided into different compaitinents by rows of glafs beads of various colours, all procecding from the centre, and divelging towards the circumference, like the rays in our innages of the fun.

This kind of veil is made falt to the groin by means of a girdle ; but as it is only four inches in diameter, as it is deranged by the fmalleft movement, and as they: give themfelves little uneafinefs refpecting fuch accidente, it is very ill fuited to the purpofe for which it is applied. During the great heats, this fmall and almoft ufelefs apron is the only covering on their bodies. Its being fo readily difplaced, enabled our author to afcertain that they do not practice circumcifion; but it feened to thow alfo, that, in regard to modelty, their ideas are very different froin ours.

Though they go thus almof entirely naked, their manners, inftead of being licentious, are remarkably

Kabobi- chaite. No females can be more prudent or more requas. ferved than their women; and whether from refinement
of coquetry, or the effect of pracince, they do not tattoo their faces like their hurbands and fathers. They do not even follow their example in ornamenting their hair with copper buttons; and they always go barelegged, thongh moft of them wear fandals.

Their drefs co:fifts of an apron that reaches only half down the thigh; a krofs which, paffing under the arm-pits, is tied on the breatt; and a long mantle like that of the men. The mantle is made of fikins not deprived of the hair; and the krofs of tanned leather, prepared like that ufed for gloves in Europe.

With regard to glafs beads, they wear them as bracelets. They form them alfo into necklaces, which defcend in different rows to the pit of the fomach; and they fufpend from their girdles feveral ftrings of them, which fall down their thighs below the apron.

Thefe ornaments being very durable, the habit of feeing them renders the women almoft indifferent to the pleafure of poffefing them. Thofe they procured from our author afforded at firit great fatisfaction, on account of their novelty. But when he thewed them fciffars and necdles, they gave the preference to thefe articles; and this choice does honour to the good fenfe of the Kabobiqua ladies. Like their chitf, they fet a higher value on utility than ornament.

Before our author's arrival among them, the Kabobiquas were acquainted with the ufe of tobacco through the means of fome of the tribes more contiguous to the Cape. It was, however, a luxury which they could feldom enjoy; and fo indifferent were they about it, that if it were not brought to them, they would not go a fep to procure it. This indifference, about an article which is eagerly fought for by all the tribes of Hottentots, feemed to thew that there are traits in the characier of the Kabobiquas which diftinguifh them from their fouthern neighbours. The cale was the fame as to ftrong liquors, on which they fet no great value; and though there were among them fome few individuals difpofed to relifh them, the greater number abfolutely rcfufed them.
"If the contents of my flafks (fays Vaillant) gave them little fatisfaction, they were, however, much captivated with the flafks themfelves. Thefe tranfparent bottles excited their admiration in the highett degree. They called them folid water; for, notwithiftanding the beat of the climate, thefe favages had feen ice on the fummits of the mountains by which they are furrounded; and they entertained no doubt that the glafs of my flafks was water, which I had rendered folid by magic, and which I prsvented their fires from melting. As it was impoffible for ine to explain this matter, I did not attempt to undeceive them : and befides, with what ad. vantage would it have been attended? I fuffered them, therefore, to continue in their error, and contented myfelf with conferring on them an obligation, by giving them all the empty bottles for which 1 had no ufe.
"On their part, they vied with each uther in thewing their generofty towards me; and I mult indeed allow, that I never faw a nation fo dilinterctted. Every right they brought to my camp a coi fiderable ouantity of milk; and they never came to fpend the evening with my people, withont bringing fome fheep to regale them. I have feen many of them give away gratui-
toufly, and without receiving any thing in return, part Konobiof their herds and their flocks; and, when I departed, there were many perfons ia miy caravan who poffeffed both theep and oxen, which they had received as a pure gift."

With this benevolent difpofition, the Kabobiquas have alfo a martial character. Their weapons are poifoned arrows, and a lance with a long iron point, but. different from the aflagay of the Hottentots. In battle, their defenfive armour conlifts of two bucklers; the one of a fize fufficient to cover the whole body of the combatant; the other much fmaller. They are both made of frins exceedingly thick, and proof againft arrows.

The courage which the Kabobiquas difplay in combat is particularly exercifed in their hunting excurfions, and, above all, againft carnivorous animals. Intrepid, however, as it may be to attack the elephant and the rhinoccros, thefe fpecies of animals are not objeets of their vengeance ; becaufe, living upon grafs and herls, they have nothing to appreliend from them, either for themfelves or their cattle. But the tiger, lion, ligrna, and panther, being enemies of a different kind, they declare againft them implacable war, and purfue them without remifion.

Of the fpoils of thefe deltructive animals they form their bucklers, gircles, fandals, kroffes, mantles, \&c. They conlider it as a mark of horour to wear them : and they fet a much higher value upon them than upori the flin of the rhinoceros or of the elephant. If they fonetimes hunt the latter, it is only as objects of food; and they employ to catch them thofe concealed pits, which are the ufual fnares of the Hottentots: but this method, which requires both patience and labour, is very little fuited to a people fo brave and enterprifing as the Kabobiquas.

As they poffefs fo bold and refolute a character, one might be induced to believe that they are fero. cious and intractable. Among all the African nations, however, which our author vifited, he never knew one that fo much practifed obedience and fubordination.

The chief here is not, as in other tribes, a principa! among his equals; he is a fovereign in the midft of his fubjects, a malter furrounded by his flaves. A word, a gelture, or a look, is fufficient to procure him obedience. Whatever be his orders, they are never contradicied; and the cafe is the fame in every particular fanily. What the chief is to the horde, the father is to his children. His commands are abfolute; and he exercifes regal power at home, while he obeys elfewhere.

Though the tribe was very numerons, the wifdom with which it was ruied, and the good order that prevailed, amno:!nced, in the nan by whom it was governed, an intelligence fuperior to that of all the favages our author had before feen; for he had not then vilited the Honzouanas. The liabitation of this chief was frited to his fupreme dignity. It was, indeed, a hat only, like thofe of his fubjeets, and, like them, covered with the fkins of animals; bnt it was much larger, as well as more elevated; and around it were fix others, occupied by his family, and deftined for them alone.

The natural drynefs of the country inhatited by the Kabobiquas obliges them to dig well, for their own ule as wall as for their cattie; but as the fanme caufe cfien

Kahobi- often dries up thefe wells, they are then forced to requas, Kajaaya.

嘘

 move, and io feek elfowhere a foil more abundant in fprings: for Fith-River, though confiderable in the rainy feafon, is often, dusing the great heats, entirely cettitute of water.The long journeys which thefe ton frequent emigrations compel them to undertake, and the intercourfe which they thence have with other nations, mut neceffarily infnire them with ideas unknown to the fettled tribes; and it would not be unnatural to fuppofe, that to this extenfion of ideas are they indebted for that fuperiority of intelligence which elevates them above their neighbours.

Of the religion of the Kabobiquas, nur author talks very inconfittently, and like a true philofopher of the French fchool. "Of all the Atrican nations (fays he), they are the only people anong whom I found any idea, however confufed a one, of the exiftence of a Deity. I do not know whether it be from their own reflection, or the communications of other tribes, that they have acquired this fublime knowledge, which would alone bring them near to a level with polifhed nations; but they believe, as far as I have been able to learn from my people, that beyond the ftars there exilts a Supreme Being, who made and who governs alt things. I muft however obferve, that on this fubject their ideas are vague, barren, and unprodnctive. They have no conception of the future exiftence of the foul, or of rewards and punifhments in another life; in fhort, they have neither worfhip, facrifices, ceremonies, nor priefts, and are total ftrangers to what we call religion."

This is impoffible. A people believing in a Snpreme Being, who made and who governs all things, may in. deed be without facrifices, ceremonies, and prieft; but fuch a people cannot avoid wifbing, that the Being who govern 3 all thirgs may protect them. Such a wiff is a prayer; and furely he who prays is no ftranger to religrion. M. Vaillant places the country of the Kabobiquas hetween 23° and $25^{\circ} \mathrm{S}$. Lat, and $16^{\circ} 25^{\prime}$ and $19^{\circ} 25^{\prime}$ Lon. eaft from Paris.

KAJAAGA, an African kingdom, calied by the French Gallam, is bounded on the fouth-eaft and fouth by Bambouk; on the wett, by Bondou and Fonta Torra; and on the north, by the river Senegal. The air and climate (fays Mr Park) are more pure and falubrious than at any of the fettlements towards the coalt; the face of the countiy is every where interfiperfed with a pleafireg variety of hills and valleys; and the windings of the Senegal river, which defcends from the rocky hiils of the interior, make the feenery on its banks very picturefque and beautiful.

The inhabitants are called Serawoollies, or (as the Trench write it) Seracolets. Their complexion is a jet black : they are not to be diftinguifhed in this refpect from the Jaloffs.

The government is monarchical; and the regal antthority, from what I experienced of it, feems to be fuf. ficiently formidable. The people themfelves, however, complain of no oppreffion; an 1 feemed all very anxious to fupport the king in a conteft he was going to enter into with the fovereign of Kaffon. The serawoollies are habitually a trading people; they formerly carried on a great commerce with the French in gold and naves, and ftill maintai:1 fome trafic in flaves with the Britifh factories on the Gambia. They are reckoned tolerably
fair and jut in their dealings, but are indefatigable in Kajaga, their exertions to acquire wealth, and lhey derive con- Kainfi. fiderable profits by the fale of falt and cotton cloth in difant countries. When a Serawoolli merchant returns home from a trading expedition, the neighbours immediately affemble to congratulate him noon his arival. On thefe occafions the traveller difplays his wealth and liberality, by making a few prefents to his friends: but if he has been unfucceinful, his levee is foon over; and every one looks upon him as a man of no mbertanding, who could perform a long juurney, and (as they exprefs it) bring back nothing but the haio upon bis beat.

Their language abounds much in gutturds, and is not fo harmonious as that fooken by the Fonlahs : it is, however, well worth acquiring by thofe who travel throngh this part of the African continent; it being very generally underftond irs the kingdoms of Kaflon, Kaarta, Ludamar, and the northern parta of Bambara. In all thefe countries the Serawoollies are the clief traders.

Joag, the frontier town of this kingdom as you enter it from Pifania, may be fuppofed, on a grofs computation, to contain two thoufand inhabitants. It is furrounded by a high wall, in which are a number of port holes, for mufquetry to fire through in cafe of an attack. Every man's poffeffion is likewife furrourded by a wall; che, whole forming fo many diftinet citadels; and amongtt a people unacquainted with the ufe of artillery, thefe walls anfwer all the purpofes of ftronger furtifications. To the weflward of the town in a finall river, on the banks of which the natives raife great plenty of tobacco and onions. Mr Park was in this town plundered of half his effects by order of the king, becaufe forfooth he had neglected to pay the accuatomed duties before he entered the kingdom; and it required a good deal of addrefs to prevent himfelf and liis attendants from being made flaves; a flate to which the law, it was faid, condemned them for the commikion of this unintended crime. He was at laft refcued from Joag by a nephew of the king of Kallon. Joag is placed by Major Rennel in $14^{\circ} 25^{\prime} \mathrm{N}$. Lat. and $9^{\circ} 46^{\prime} \mathrm{W}$. L.on.

KAINSI is the name given by the Hottentots to a particular fpecies of antelope, of which, according to Taillant, no author has yet given a perfect defcription. It is called by the Dutch klip-Springer, on account of the eafe with which it leaps from rock to rock; and indeed of all the antelopes there is no one equal to it in agility. It is about the lize of a kid of a year old, and of a yellowith grey colour; but its hair has this peculiarity. that, initead of being round, pliable, and firm, like that of mott other quadrupeds, it is flat, harfh, and fo little adherent to the $\kappa \mathrm{in}$, that the flighteft fristion makes it fall off. Nuthing is more ealy, therefore, than to deprive this animal of its hair: dead or alive it is the fame: to rub, or even in touch the animal, is fufficient. Another peculiarity of this fingular hair is its being extrencly fragile; fo that if you take a tuft of it between your fingers, and twift it with the other hand, it will break like the barbs of a feather. This propetty, however, belongs not exclufively to the hair of the kainli; for our author fays he has obferved it in the liair of other quadruneds, which in the fane manner live among the rucks.
. his antelope differs from the nther fpecies alio in the flape of the foot, which, inflead of being rointed

K A M

Kairfi, like theirs, is rounded at the end; and as it is always

Tcharka feharka.
accuftomed, both in leaping and walking, to tread with the point of the hoof, without refling at all on the heel, it leaves a print diftinguifhable from that of any other antelope in Africa. Its fleth is exquifitely flavoured, and mach fought after, particularly by the hunters.

The chace of the kainfi is very amufing. It is true, it is fearcely poffible to hunt it down with dogs, as it foon efcapes them by means of its inconceivable agility, and gets out of their reach on the point of fome detached rock, where it will remain whole hours fafe from all purfuit, and fufpended, as it were, above the abyfs. But in this fituation it is excellently placed for the arrow or the ball of the hunt fman; who is commonly cer. tain of fhooting it at pleafure, though he is not always able to come at it when killed. We fhall give our author's account of a chace of the kainfi in his own words.
"I was hurting (fays he) one of thefe animals, when, from the nature of the place, it found itfelf fo prefled by my dogs, as to be on the point of being run down and taken. There were apparently no means of efcape; fince before it was a valt perpendicular rock, by which its courfe was neceffarily flopped. In this wall, however, which appeared to me peifectly fmooth, was a little ridge, projecting at molt not above two incbes, which the kainf! quickly perceived, and, leaping upon it, to ny great anomifhment kent itfelf firm (A). I imagined, that at any race it mult foon temble down; and my dogs, too, fo fully expected it, that they ran to the bottom'of the rock, to be realy to catch it when it fell. To haften its fall, I endeavosred to harafs it, and make it lofe its equilibrium ; and for this purpofe I pelted it with ftones. All at once, as if guefling my def:gn, it collected its whole flrength, bounded over my head, and, falling a few paces from me, darted away with the utmof fpeed. Notwithttanding the rapidity of its flight, it would have been ealy for me to have fhot it; but its leap had fo furprifed and amufed me, that I gave it its life." This was generous, if the fory be true.

KAMTSCHATKA is inhabited by a people, who are reprefented in the Encyclopredia as poffeffing alnoof every quality that can difgrace human naturc. We think it incumbent upon us to acknowledge, in this place, that a much more favourahle picture of them is drawn by La Peroule who vifited Kamtfchatka in Sep. tember 1787 . The Ruffian governor made the commodore and his officers remark the promifing appearance of feveral fmall fields of potatoes, of which the feed had been brought from Irkoutk a few years before; and purpofed to adopt mild, though infallible neans, of making farmers of the Ruflians, Coffacks, and Kamtichadales. The fmall.pox in 1769 fwept away three-fourths of the individuals of the latter nation, which is now reduced to lefs than four thoufand perfons, fcattered over the whole of the peninfula; and which will 〔peedily difappear altogether, by means of the continual mixture of the Ruffians and Kamtichadales, who freque:tly intermarry. A mougrel race, more laborious than the Ruffians, who are only fit for foldiers, and much ftronger, and of a form lefs difgraceful to the hand of nature, than the Kamtichadales, will
fpring from theie marriages, and fucceed the ancient inhabitants. The natives have already abandoned the yourts, in which they ufed to burrow like badgers during the whole of the winter, and where they breathed an air fo foul as to occafion a number of diforders. The molt opulent amorig them now build ifas, or wooden houfes, in the manner of the Ruffians. They are precifely of the fame form as the cottages of our peafants; are divided into three little rooms; and are warmed by a brick flove, that keeps up a degree of heat (B) infupportable to perfons unaccultomed to it. The reft pafs the winter, as well as the fummer, in balayans, which are a kind of woonden pigeon-houfes, covered with thatch, and placed upon the top of poits twelve or thirteen feet high, to which the women as well as the men climb by means of ladders that afford a footing very infecure. But thefe latter buildings will foon difappear; for the Kantifchadales are of an imitative genius, and adopt almoft all the cuftoms of their conquerors. Already the women wear their hair, and are almoft entirely dreffed, in the manner of the Ruffians, whofe language prevails in all the offrogs ; a fortunate circumftance, fince each Kamtfchadalian village fpoke a different jargon, the inlabitants of one hamlet not underitanding that of the next. It may be faid in praife of the Ruffians, that though they have eftablifled a defpotic government in this rude climate, it is tempered by a mildnefs and equity that render its inconveniences unfelt. They have no reproaches of atrocity to make themfelves, like the Spaniards in Mexico and Pern. The taxes they levy on the Kamtifchadales are fo light, that they can only be confidered as a mark of gratitude towards the fovereign, the produce of half a day's hunting acquitting the impofts of a year. It is furprifing to fee in cottages, to all appearance more miferable than thofe of the moft wretched hamlets in our mountainons provinces, a quantity of fpecies in circulation, which appears the more confiderable, becaufe it exitts among fo fmall a number of inlabitants. They confume fo few commodities of Ruffia and China, that the balance of trade is entirely in their favour, and that it is abfolutely ceffary to pay them the difference in rubles. Furs at Kamtfchatka are at a much higher price than at Canton ; which proves, that as yet the market of Kiatcha lias not felt the advantageous effect of the new channel opened in China.

Our author compares Kamtfchatka, with refpect to climate and foil, to the coaft of Labrador in the vicinity of the Straits of Belle-Inle; but the men, like the animals, are there very different. The Kamtfchadales appeared to him the fame people as thofe of the bay of Caftries, upon the coaft of Tartary. Their mildnefs and their probity are the fame, and their perfons are very little different. They ought then no more to be compared to the Efquimaux Indians, than the fables of Kamtichatka to the martins of Canada.

The Greek religion has been eftablifhed among the Kamtfchadales withont perfecution or violence, and with extraordinary facility. The vicar of Paratounka is the fon of a Kamtichadale and of a Ruffian woman. He delivers his prayers and catechifm with a tone of feeling

Rame. rihatea,

Kamp- very much to the tafte of the aborigines, who reward fcha:ka his cares with offcrings and alms, but pay no tythes.

The canons of the Greek church permitting prietts to marry, we may conclude that the morals of the country cle:gymen are fo much the better. "I believe them, however (fays Peroufe), to be very ignorant; and do rot fuppofe, that for a long time to come they will itand in need of greater knowledge. The daughter, the wife, and the lifer of the vicar, were the beft dancers of all the women, and appeared to enjoy the beft Hate of health. The worthy prieft knew that we were good Catholics, which procured us an ample afperition of holy water; and he alfo marde u9 kifs the crnfs that was carried by his clerk: thefe ceremonies were perforneed in the midft of the village. His parfonage-houfe was a tent, and his altar in the open air; but his ufual abode is Paratounka, and he only came to St Peter and St Paul's to pay us a vifit."
The perople of Kamtichatka have inured themfelves to the extremes of heat and cold. It is well known, that their cutom in Europe, as well as in Affid, is to go into vapour baths, come out covered with perfpiratio, and immediately roll theniflives in the finow. The offrog of St Peter had two of thefe public baths, into which our author went before the fires were lighted. They consilt of a very low rnom, in the middle of which is an oven conftructed of fones, without cement, and heated like thofe intended to bake bread. Its arched roof is furrounded by feats one above another, like an amphitheatre, for thofe who wifh to bathe, fo that the heat is grenter or lefs according as the perfon is placed upon a higher or lower bench. Water thrown upon the ton of the roof, when heated red hot by the fire underneath, is converted infantly into vapour, and pxeites the moft profufe perfpiration. The Kamefchaciales have borrowed this cuttom, as well as inany others, from their conquerors; and ere long the primitive character that diftinguithed then fo ftrongly from the Ruffians will be entirely effaced.

Our author defcribes the bay of Avatfcha as the fineft, the moit convenient, and the fafeft, that is to be met with in any part of the world. The entrance is narrow, and fhips would be forced to pafs inder the guns of the forts that might be eafily erected. The bottom is nud, and excellent holding ground. Two valt harbours, one on the ealtern fide, the other on the wettern, are capable of containing all the fhips of the French and Englifi navy. The rivers of Avatfcha and Paratounka fall into this bay, rut they are choaked up with fand-banks, and can only be entered at the time of high water. The village of St Peter and St Paul is fituated upon a tongue of land, which, like a jetty made by human art, forms behind the village a little port, thut in like an amphitheatre, in which three or four veffels might lie up for the winter. The entrance of this fort of bafon is more than twenty-five toifes wide; and nature can afford nothing more fafe or commodions. On its fhore the governor propofed to lay down the plan of a city, which fome time or other will be the capital of Kamtfchatika, and perhaps the centre of an ex. tenfive trade with China, Japan, the Phillippines, and America. A vaft pond of frefh water is fituated northward of the fite of this projected city; and at only three hundred toifes dittance run a number of ftreamlets, the eafy union of which would give the ground all - Suppl. Vol. II. Part I.
the advantages receeflary to a great eftablifinnent. Of thefe advantages Mr Katloff underftood the value; " but firlt (faid he a thoufand times over) wc mult have bread and hands, and our ttock of both of them is very fanall." He had, however, given orders, which annomced a fpeedy union of the other ofrogs to that of St 1'eter and St Paul, where it was his intention inmediately to build a church. By obfervation, St Peter and St Paul was fourd to be in $53^{\circ} 1^{\prime}$ N. Lat. and $15^{\circ} 30^{\prime}$ E. L. Lorg. from Paris.
KANEM, is the name given by Edrili to the kingdoun of Borno:s in Africa, of which the reader will find fome account in the Encyclopadia Britannica. In fome particularf, however, that account is incorrect. The kingdom of Bornou or Kanem mult extend farther eatt and farther north than it is there faid to do; for according to the latelt and beft accounts, its cipital ftands in Lat. $24^{\circ} 32^{\prime}$ long. $22^{\circ} 57^{\prime}$. The empire is faid to be vely extenfive; and if it be true, as we leara from the proctedings of the African Affociation, that its fovereign is morc powelful than the Emperor of Moroceo, the people cannot be fuch abfolute hitutes, as we have reprefented them in the article refured to; for the fovereign of brutes would have no power. The truth, how: cver is, that very little is yet known in Europe of Bornou or its inhabitants.

KANI' (Immanuel), Royal Profeffor of Morals and Metaplyfics in the Univerfity of Königforg, is confidered by his admirers as the greatett philofopher that Germany ever produced. Were we to form an ellimate of his merits from the different views that have been given in Euglifh of his celebrated Fyitem, we certainly fhould not confider him as entitled to that chatraster; for thole views are obfcured by new and uricouth terms, and are altogether wrapt up in a ityle which approaches nearer to jargon than to the lumino:ns compofition of a man who thinks with clearnefs and precifion. We readily admit, that it is very difficult to tranlate a novel fyftem of metaphyfics from one language into another; for the tranfator, to perform his tant properly, muft be not ouly a complete matter of both languages, but alfo a profound metapliylician ; and not one of the tranflators or abridgers of the wo:k3 of Kant into our language appears to us pofiefled of both thefe qualities. Defpiring, from our feauty knowledge of the German language, of performing ourfetves what fo many others have failed to perform, we have afplied for affiltance to an illuttrious Frenchman, who has refided many y cars in Germany, who is malter of both languarges, who is a profound metaphylician, and whofe naune, were we at liberty to publifh it, would reflect luftre upon our Work. From him we havc reation to expect a clear and comprehenfive view of the Crifical PhiLosophr, as Kant terms his fyttem; but fhould we be difappointed of our expectation, we fhall, under that title, lay before our readers a Jpecimen of the fylaon from the different views of it which have been pubiifhed in our own tongre.

KANTUFFA, a fpecies of thorn peculiar to Abyffinia, is thus deferibed by Mr 13ruce: The hrancles Atand two and two upon the ftalk; the leaves are difpofed two and two likewife, without any fingle one at the point, whereas the branches bearing the leaves part from the ftalk: at the immediate joining of then are two thick thorns placed perperidicular and parallel alternate-

K A S [50] K A S

Kantuffa, Iy ; but there are alfo fingle ones diftributed in all the Kaflon. interfices throughout the branch.

The male plant lias a one-leaved perianthium, divided into five fegments, and this falls off with the flower. The flower is compofed of five petals, in the middle of which rife ten flamina or filaments, the outer row fhorter than thofe of the middle, with long figmata, having yellow farina upon them. The flowers grow in a branch, generally between three and four inches long, in a conical difpofition, that is, broader at the bafe than the point. The infide of the leaves are a vivid green, in the outfide much lighter. It grows in form of a buff, with a multitude of fmall branches rifing immediately from the ground, and is generally feven or eight feet high. Our author faw it when in flower only, never when bearing fruit. It has a very ftrong fmell, refembling that of the fmall fcented flower called mignionet, fown in vafes and boxes in windows, or rooms, where fowers are kept.

Our author reprefents the kantuffa as fo very troublefome, that it renders travelling through fome places of Abyffinia almoft impoffible. The toldier fereens himfelf from it by a goat's, a leopard's, or a lion's fkin thrown over his fhoulder, of which it has no hold. As his head is bare, he always cuts lis hair fhort before he goes to battle, left his enemy fhould take advantage of it; but the women, wearing their hair long, and the great men, whether in the army or travelling in peace, being always clothed, it never fails to incommode them, whatever fpecies of raiment they wear. If their cloak is fine mullin, the leaft motion againft it puts it all in rags; but if it is a thick, foft cloth, as thofe are with which men of rank generally travel, it buries its thorns, great and fmall, fo deep in it, that the wearer mult cither difmount and appear naked, which to principal people is a great difgrace, or elfe much time will be Spent before lie can difengage himfelf from its thorns. In the time whell one is thus employed, it rarely fails to lay loold of you by the hair, and that again brings on another operation, full as laborious, but much more painful, than the other. A proclamation is therefore iffued, every year immediately before the king com. mences any march, in thefe words; "Cut down the kantuffa in the four quarters of the world; for I do not know where I am going." 'The wild animals, both birds and beafts, efoecially the Guinea fowl, know how well it is qualified to protect them. In this fhelter, the hunter in vain could endeavour to moleft them, were it not for a hard-haired dog, or terrier of the fmallett fize, who being defended from the thorns by the roughnefs of his coat, goes into the cover, and brings them and the partridges alive one by one to his matter.

KASSON, a populous kingdom in Nerth Africa, of which the capital Kooniakary is placed by Major Renriel in $14^{\circ} 33^{\prime}$ N. Lat and $8^{\circ} 43^{\prime} \mathrm{W}$. Lon. The king who reigned when Mr lark was in the country was extremely kind to our traveller, though his fon plundered him unmercifully, like other rapacious chiefs of that favage comatry. From the top of a high hill, at fome diffance from the capital, "I had (iays Mr Park) a moft enchanting profpect of the country. The number of towns and villages, and the extenfive cultivation around them, furpaffed every thing I had yet feen in Africa. A grofs calculation may be formed of the number of inhabitants in this delightful plain, by confi-
dering, that the kirg of Kaffon can raife four thoufand fighting men by the found of his war drum."

At T'eefee, a large unwalled town, where our author refided for fome days, he had an opportunity of obferving the cuftoms of the inhabitants, who confifted partly of Pagans and partly of Buftreetrs, i. e. of negroes converted to Mahomedanifm. Thongh theic people poffefs both cattle and corn in abundance, rats, moles, fquirrels, fnakes, locufts, \&cc. are eaten without fcruple by the higheft and lowelt. Another cuftom, Atill more extraordinary, is, that no woman is allowed to eat an egg. This prolibition, whether arifing from ancient fuperitition, or from the craftinefs of fome old Buthreen who loved eggs himfelf, is rigidly adhered to ; and nothing will more affront a woman of Teefee than to offer her an egg. The cuftom is the more fingulat, as the men eat eggs without feruple in the prefence of their wives, and $M r$ Park never obferved the fame prohibition in any other of the Mandingo countries.

Our author was prefent at a palaver held by the governor of Teefee on a very extraordinary occafion; of which we thall give his account at full length, becaufe it fhows how free men are reduced to flavery in North Africa. "The cafe was this. A young man, a Kafir, of confiderable affluence, who had recently married a young and handfome wife, applied to a very devout Bufhreen, or Muffulman prieft, of his acquaintance, to procure him faphies for his protection during the approaching war. The Bufhreen complied with the requeft; and in order, as he pretended, to render the faphics more efficacious, enjoined the young man to avoid any nuptial intercourfe with his bride for the fpace of fix weeks. Severe as the iujunction was, the Kafir Itrietly obeyed; and without telling his wife the real caufe, abfented himfelf from her company. In the mean time it began to be whifpered at Teefee, that the Bufhreen, who always performed his evening devotions at the door of the Kafir's hut, was more intimate with the young wife than he ought to be. At firft, the good hufband was unwilling to fufpeet the honour of his fanctified friend. and one whole month elapfed before any jealonfy rofe in his mind; but hearing the charge repeated, he at laft interrogated his wife on the fubject, who frankly confeffed that the Bufhreen had feduced her. Hereupon the Kafir put her into confinement, and called a palaver upon the Buflhreen's conduct. The fact was clearly proved againt him; and he was fentenced to be fold into favery, or to. find two naves for his redemption, according to the pleafure of the complainant. The injured hufband, however, was unwilling to proceed againft his friend to fuch extremity, and defired rather to have him publicly flogged before the governor's gate. This was agreed to, and the fentence was immediately executed. The culprit was tied by the hands to a ftrong ftake; and a long black rod being brought forth, the executioner, after flourifhing it round his head for fone time, apolied it with fuch force and dexterity to the Bufhreen's back, as to make him ruar until the woods refounded with his fereams. 'The furrounding multitude, by their hooting and laughing, manifefted how much they enjoyed the punifhment of this old gallant; and it is worthy of remark, that the number of Atripee was precifely the fane as are enjoined by the Mofaic law, forty, fave one."

The method of converting the negro nations to the religion

K A S

Каाтก.
relishom of the Arabjan Impoitor in a very fingular one; and Mr Park faw the whole people of Treefee converted in an infane. During his refidence in that rown an embaf!y of ten people belonging to Almami Abdulkader, king of Foota Torra, a country to the weft of Bondou, arrived at Teefee ; and defiring Tiggity Sego the governor to call an affembly of the inhabitants, announced publicly their king's determination, to this effect: "That nnlefs all the people of Kaflon would embrace the Mahomedan religion, and evince their converfion by faying eleven public prayers, he (the king of Foota Torra) could not polfibly fand neuter in the prefent conteft, but would certainly join his arms to thofe of Kajaga." A meffage of this nature, from fo powerful a prince, could not fail to create great alarm; and the inhabitants of Teefee, after a long confultation, agreed to conform to his good pleafure, humiliating as it was to them. Accordingly, one and all publicly offered up eleven prayers, which were confidered a fufficient teftimony of their having renounced Paganifin, and embraced the doctrines of the Prophet.

Our author relates a ftory, which we cannot refufe ourfelves the pleafure of inferting, becaufe it exhibits a *ery pleafing picture of the affection and gratitude of the Fagan negroes. In his train was a blackimith, who had lived fome years on the Gambia, and who now returned to his own country Kafon. "Soon after we came in fight of Jumbo, his native town (fays Mr Park), his brother, who had by fome means been apprifed of his coming, came out to meet him, accompanied by a f:ugiug man : he brought a horfe for the blackfmith, that he might enter his native town in a dignified manner; and he defired each of us to put a good charge of powder into our guns. The firging man now led the way, followed by the two brothers ; and we were prefently joined by a number of peopie from the town, all of whom demonftrated great joy at feeing their old acquaiutance the blackfmith, by the molt extravagant jumping and finging. On entering the town, the fing. ing man began an extempore fong in praife of the blackfmith, extolling his courage in having overcome fo many difficulties; and concluding with a ftrict injunction to his friends to drefs him plenty of vietuals.
" When we arrived at the blackfmith's place of refidence, we difmounted and fired our mufkets. The mecting between him and his relations was very tender; for thefe rude children of nature, free from reftraint, difplay their emotions in the Atrongeft and moft expreffive manner. Amidft thefe tranfports, the blackfmith's aged mother was led forth, leaning upon a taff. Every one made way for her; and fhe ftretched out her hand to bid her fon welcome. Being totally blind, the froked his hands, arms, and face, with great care, and feemed highly delighted that her latter days were bleffed by his return, and that her ears once more heard the mulic of his voice. From this interview I was fully convinced, that whatever difference there is between the Negro and European in the conformation of the nofe and the colour of the fkin, there is none in the genuine fympathies and characterific feelings of our common mature.
"During the tumult of thefe congratulations, I had feated myfelf apart, by the fide of one of the huts, being unwillirg to interrupt the flow of filial and parental tenderuef 3 ; and the attention of the company was fo
entirely taken up with the blackfmith, that I believe none of his friends had obferved me. When all the peo. ple prefent had feated themfelves, the blackfmith was defired by his father to give them fome account of his adventures; and filence being commanded, he began ; and after repeatedly thanking God for the fuccefs that had attended him, related every material occurrence that had happened to him from his leaving Kaffon to his arrival at the Gambia; his employment and fuccefs in thofe parts; and the dangers he had efcaped in return. ing to his native country. In the latter part of his narration, he had frequently occafion to mention me; and after many ftrong expreffions concerning my kindnefs to him, he pointed to the place where I fat, and exchaimed, affille ibi firing, "fee him fitting there." In a moment all eyes were turned upon me; I appeared like a being dropped from the clouds; every one was furprifed that they had not obferved me before ; and a few women and chitdiren expreffed great uneafinefs at being fo near a man of fuch an uncoinmon appearance. By degrees, lowever, their apprehenfions fubfided; and when the blackfmith affured them that I was perfectly inoffenfive, and would hurt nobody, fome of them ventured fo far as to examine the texture of my clothes; but many of them were ftill very fufpicious; and when by accident I happened to move myfelf, or look at the young children, their mothers would feamper off with them with the greatef precipitation. In a few hours, however, they all became reconciled to me." With thefe worthy people our author fpent the greater part of two days in feafting and merriment; the blackfmith accompanied him to the capital; and declared, that he would not leave him while he refided there.

KEATE (George, Efq; F. R. S.) , defeended of an ancieut and honourable family, was born about the year 1729 or 1730, and received his education at KingHon School, under the Rev. Mr Woodefon. From thence he went to Geneva, where he refided fome years; and during his flay there, became acquainted with Voltaire, with whorn he continued to correfpond many years after he recurned to England. After fiuifhing the tour of Europe, he fettled as a fludent in the Inner Temple, was called to the bar, and fometimes attended Weftminfter Hall ; though he did not meet with encouragement enough to induce his perfeverance in his profeffion, nor indeed does it feem probable that he had fufficient application for it. His firfl literary perfurmance was "Aucient and Modern Rome," a poem, written at Rome in the year 1755 , printed in the year 1760, and received with confiderable applaufe. The next year he publifhed "A Short Account of the Ancient Hiftory, Prefent Goverunent, and Laws, of the Republic of Geneva, 8 vo." This work was compiled during the author's refidence at Ceneva; is a very ufeful one ; and is dedicated to Monfieur de Voltaire; to whom he fays, "When I reflect, that it was in this Republic, whole goverument I have attempted to defcrive, that I was firl introduced to your acquaintance; when memory renews the hours of focial mirth and refined entertainment which your hofpitality and converfation afforded me - I cannot but rejoice in this occafion of expreffing my gratitude; proud that, as your friendłhip diltinguifhed the author of thefe pages in a foreigin country, your name may at home adorn his labour."

Keate. It was at one time the intention of Voltaire to tranfate this account into Firench, though he afterwards relinquifhed the defign.

The next year, 1762 , he produced an "Epifle from Lady Jane Gray to Lord Guildford Dudley:" and in 176_{3}, "The Alps," a poem; the fubject of which comprehends all that chain of mountains known under the general riame of the Alps, extending from Italy to Germany, and from France to 'lyrol, by whatever denomination they are particularly dillinguithed. Of all the poetical works of Mr Keate, this is intitled to the liigheft praie for truth of defeription, elegance of verfification, and vigour of fancy.
Continuing to employ the prefs, in 1764 he publifhed "Nctley Abbey," which he afterwands, in i 760 , inlarged and reprinted: and, in 576%, produced "The Temple Student, an Epifle to a Friend;" humouroufly rallying his own want of application to the fludy of the law, his preference of the belles lettres, and his courfequent want of fuccefs in his profeffion. The death of Mrs Cibber in 1766 , of whofe merits as an ac. trefs he entertained the higheft opinion, gave occafion for a poem to her memory, which celebrates her excellerit performances on the ftage, and laments the lofs the theatre would fuftain by her death.
In February 1769, he married Mifs Hudfon; and about the fame time publifhed "Ferney; an Epifle to M. de Voltaire " In this poem, after prailing with energy the various beauties of his friend's poetical vorks, he introduces the following panegyric on Shakefreare:

Yes! jealous wits may fill for empire frive, Still keep the flames of critic rage alive :
Our shakefpeare yet fhall all his rights maintain,
And crown the triumphs of Eliza's reign. Above contronl, above each claffic rule, Itis tut'refs Nature, and the world his fehool, Onfoaring pinions borne, to him was given
'Th' xrial range of Fancy's brightett heav'n ;
To bid wrapt thought o'er nobleft heightई afpire, And wake each paffion with a mufe of fire. Revere his genius. To the dead be juft, And fpare the laurels that o'erfiade the duft. Low fleeps the bard, in cold obfrusion luid, Nor afks the chaplet from a rival's head. O'er the drear vault, Ambition's utmolt bound, Unheard fhall Fame her airy trumpet found: Unleard alike; nior grief nor tranfiport raife The blat of cenfure, or the note of praile! As Raphael's own creation grac'd his hearfe, And ham'd the pomp of oftentatious verfe, Shall Shakefpeare's hoourrs by limfelf be paid, And Nature perifh ere his pictures fade.
This eulogium on Shakerpeare, in an an epifte to Voltaire, who lad laboured fo long and fo frenuoufly to detract from the merit of our iminortal bard, fhews that Mr Keate had not given up his judgment to the fage of Ferney. How the old and envious fuphifter would relifh his friend's conduct, may be eafily conctived. His feelings were certainly very different from thofe of the mayor and burgeffes of Stratford, when, in confequence of this panegyric on their townfman, they complimented Mr Keate with a flandifh, mounted with filver, made out of the famous Mulberry tree planted by Shakefpeare.

In 1773 , he priblifhed "The Monument in Arcadia," a dramatic poem, built on the picture of Pouffin, mentioned by A bibé du Bos in his "Critical Reflections on Poctry and Painting."

In ${ }^{1779 \text {, Mr Keate produced one of his moft fuc- }}$ cefsful works, intitled "Sketches from Nature; taken and coloured in a Journey to Margate," ${ }^{2}$ vols, 12 mo . This performance, allowing it to be, as it really is, an imitation of Sterne'3 "Sentimental Journey;" yet contains fo many pleating delineations of life, fo many ftrokes of humour, and fo much elegance of compofstion, that few will hefitate to give it the preference ta any other of Sterne's imitators.

In 1781, he collected his poetical works in two vols, 12 mo, and added feveral new pitces not before printed. The principal of thefe was "The Helvetial," a frag. ment, written ar Geneva in the year 1756 . In the preface to this perfornance he gives the following account of it: "During a long !lay 1 many years lince made at Geneva, I vifited molt of the principal places in Switzerland. The many fublime feenes with which nature hath enriched this romantic country ; the tranquillity and content with which every indizdual enjoys lis property; and, above all, that independence of mind. which is ever the refult of liberty-animated me with fuch veneration for the firft authors of that freedom, whofe figures ape recorded to pofterity either by fculp. ture or painting in the public parts of the towns thro? thofe little ftates, that my enthufiafin betrayed me into a delign of writing a poem on this fingular revolution; the argument of which I had divided into ten cantos, beginning the work with the uppreffions of the Houfe of Auftria, and clolime it with the battle of Mongarten ; by which thofe injured peuple finally $1 e-$ nounced its ufurpation, and formed among themfelves thofe varions contederacies that ended in the great union and alliance of the prefent thirteen cantons. When I had fetted the whole plin of this work, I occafionally, as I. found a difpofition in inglelf, took up any part of the poem which at the moment noft invited iny thoughts: and enjoying at this time fuch an intercourfe with M. de Voltaire as afforded me a conftant accefs to him, I acquainted him with my intention, fhewing him the argument: I had drawn out for the conduct of the whole defign. He kept it a few days; and, in returning it, told me, that he thonght the great object of the piece, the epifodes connected with the hittory, together with the feenery of the country, prefented fubject matter whereon to form a tine poem; "but the time (added he): which fuch an un dertaking will require, I would rathor counfel you to employ on fubjects that might more engage the public attention ; for thould you devote sourIelf to the completion of your preient defign, the Sivirs would be much obliged to yon, withon being able to read you, and the relt of the world care little about the matter." Feeling the force and juftnefs of the remark, Mr Keate laid alide his plan, and probably never iefumed it. In the fame year, 1781, he publifhed "An Epifte to Angelica Kauffman."

A few years after, he became engaged in a long and vexatious law-fuit, in confequence of the negleet (to fay the leat of it) of an architcet who profeffed himfelf to be his friend; the particulars of which it is of no inportance to detail. At the conclufion of the bufinefs, he flewed that his good humour bad not forfaken him :

Keate. And in $1 ; 87$ he gave to the public the principal circumftances of his cafe' in a perfornance, intitled, "The Diftreffed Poet, a ferio-comic Poem, in three Cantor," 4 to, with fome pleafantry, and vithout any acrimony.
His laft work did infinite honsur to his head and his heart, as well as to the literality of the bookfeller for whom on the title page it was faid to be publifined. In the year $17^{8} 2$, the Antelope packet was \AA ipwrecked on the Pelew inands, where the commander, Captain Wilfon, and his crew lived fone time before they could get off On his return to England, the Captain was, for fome reafon or other, refufed the command of ano. ther fhip; and, as we liave been informed, he was reduced to a flate much the reverfe of affluence. Thefe circumftances being communicated to Mr . Keate, who was ftruck with admiration of the manners of the inlabitants of the Pelew iflands (See Pelew Islands, Encycl.), he offered to draw up, for the benelit of Captain Wilfon, a narrative of the occurrences which took place during that officer's relidence among fo fingular a people. This he executed in "An Account of the Ptew Ifands, lituated in the Wef.ern Part of the Pdcific. Ocean : compofed from the Journals and Communications of Captain Henry Wilfon and fome of his Officers, who in Auguft 1783 were there fhipwrecked, in the Antelope, a Paeket belonging to the Honourahle the Eaft Irdia Company," 4 to ; a work written with great clegance, compiled with much care, and which, if embell fhed (as it has been infinuated) with facts better calculated to have found a place in a novel than a genuine narrative, muft be afcribed to the mifinformation of thofe who were actors in the fcene, and muft firt have deceived before they obtained credit. We mention this report as it has come to us, without any attempt cither to eftablifh or refute it. We fhall only add, that if the charge is well founded, Mr Keate (who undertook the tafk on the moft difintereft. ed principle, and derived no advantage whatever from the work) was too fturdy a moralift to have had any hand in the impoition. - The manufcript was offered to Mr Dodfley for 300 guineas; but lie hetitated to give for it fo large a price, when another bookfeller undertook to publifh the work for the benefit of Mr Wilfon; and, we have reafon to believe, paid to that gentieman, within the compais of a year, triple the fum for which the manufcript had teen offesed to Ducificy. Such conduct reflects honour on thic London trade.
Befides the pieces already inentioned, Mr Keate was the atathor of many Prologues and Epilogues, \{poken at Mr Newcomb's fchool at Hackncy. He adapted his friend Voltaire's "Semiramis" to the fage ; but this was fuperfeded in 1777 at Drnry Lanle, by a worthlefs tranflation of as worthlefs an author, one Captain Ayfcough; but neither this nor the author are deferving of any further notice.

We fhall conctude by obferving, that Mr Keate's life paffed without any vicifitudes of fortune; he int.crited an ample eftate, which he did not attempt to increafe otherwife chan by thofe attentions which prudence dictated in the management of it. He was hofpitable and beneficent, and poffeffed the good-will of mankind in a very eminent degree. For the laft year or two, his health vifibly declined; but on the day he died, it appeared to be fomewhat mended. His death was fudden, on the 27 th of June 1797. He left one duughter, married in 1796 to John Henderfon, Efq;
of the Adclphi: At the time of his death, Nir Keate Kemnicott was a Bencher of the Temple, and a very uld member of the Royal and Antiquary societies, of both of which he had been frequently clected one of the council.

KENNICO ["1' (Dr Bcinjamia) was a man of fuch emininence in the learned world, that every thing rcinting to him muft be generally interelting. In the bio. graphical fketch of lim pubbifhed in the E:ncyclopadia, we have acknowledged ourfelves unacquainted with the rank and character of tis parents; but this information has been fince fupphied by a very candid and well. informed writer in the. Monthly Magazir.e; and as it is accompanied with circumfances peculiarly honourable to the Ductor, and ought therefore to be preferved, we fhall infert it in this place.
" The parento of Dr Kennicott (fays this writer) were honett characters: I-Iis father was the parifh clerk of Totnefs, and once mafter of a charity fehool in that towni, At an early age young Keunicott fuccteded to the fame employ in the fehool, being recommended to it by his renarkable fobriety and premature knowledge. It was in that fituation he w:ote the verfes to the honourable Mrs Courtney; which recommended him to her notice, aud that of many neighbouring gentlemen. They, with a laudable generofity, opened a fubfcription to fend him to Oxford.
"He froan there dillinguihed himfelf, as is well known. As a teftimony of the tuath of the above fatement, the following is a copy of an infcription written by Dr Kemicott, and engraved on the tomb of his father and mother. 'The writer of this article has tranfcribed it from the original in the church-yad of Toinefs. The tomb is more elegant than perfons in their fituation are acculomed to have erected, and was thought, perhaps, by the envious to be fomewhat oilentations. A perfonal knowledge of the Doctor induces the writer of this article to think, that it was 1ather the tribute of a good and grateful mind, and of the pious reverence and luve which he entertained for the zuthoro of his being.

As Virtue fhould be of good report, facred be this humble Monument to the Memory of
Benjamin Kexnicott, Parificlerk of 'Totncfe, aild Elizabeth this Wife:

The latter
an Example of every (hrillian 1)nty;
The former, animated with the warmelt Zcal, regulated by the beft good fenfe, and both conitantl: exerted for the Salvation of hinifelf and others. Reader!
Soon fhatt thou die alfo; and as a Candidate for Immortality ftrike thy brealt and fay, Let me live the life of the Rightcon:, that my laft end may be like lis. 'Trifling are the dates of Time where the fubject is Eternity.

Erected

by their Son, B. Kennicott, D. D. Canon of Chrit-Church, Oxford.

"It is faid, that when Dr Kennicote had taken orders, he came to officiate in his clerical capacity in his

K ER

Fermes native town. When his father as clerk proceeded to place the furplice on lis fooulders, a ftuggle enfued between the modefty of the fon and the honeft pride of the parent, who infifted on paying that refpect to his fon which he had been accutomed to fhew to other elergymen: to this filial obedience was obliged to fubmit. A circumftance is added, that his mother had often declared fhe fhould never be able to fupport the joy of hearing her fon preach; and that on her attendance at the church for the firt time, the was fo overcome as to be taken out in a ftate of temporary infenf:bility."

KERMES (fee Coccus Ilicis, Encycl.) has been proved by Profeffor Beckmann to have been ufed as a dye from very remote antiquity. "All the ancient Greek and Latin writers, he fays, agree, that kermes, called by the latter coccum, perhaps alfo coccus, and often granum, were found upon a low fhrubby tree, with prickly leaves, which produced acorns, and beloriged to the genus of the oak; and there is no reafon to doubt that they mean coccum ilicis, and that low ever green oak, with the prickly leaves of the holly (aquifolium), which is called at prefent in botany quercus ilex. This affertion appears more intitled to credit, as the ancients af. fign for the native country of this tree places where it it is Atll indigenous, and produces kermes.
" I am inclined (continues our author) to believe, that the art of employing kermes to dye a beautiful red colour was difcovered in the Eaft at a very early period ; that it was foon fo much improved as to excel even the Tyrian purple; and that it contributed to caufe the proper purple to be at length abandoned. From the coftly red dyes extolled fo much by the He brew writers, and which, according to the opinion of learned commentators, were made from kermes, I fhall not venture to adduce any proofs, as I am not acquainted with the Oriental languages to examine their accounts with accuracy; but I have found a paffage in Vopifcus, which feems to render my conjecture very probable. That author informs us, that the king of Perfia fent to the Emperor Aurelian, befides other articles of great value, fome woollen cloth, which was of a much collier and brighter purple colour than any that had been ever feen in the Roman empire, and, in comparifon of which, all the other purple cloth worn by the Emperor and the ladies of the court appeared dull and faded. In my opinion, this cluth, which was of a beautiful purple red colour, was not dyed with the liquor of the murex, but with kermes. This idea was indeed not likely to occur to the Romans, who were acquainted only with the purple of the murex, and who had lefs experience in the arts in general than in that of robbing and plundering, or who, at any rate, in that refpect were inferior to the Orientals. The Roman emperors caufed this fuppofed purple to be fought for in India by the moft experienced dyers; who, not being able to find it, returned with a vague report that the admired Perfian purple was produced by the plant fandix. I am well aware, that fome cemmentators have fuppofed that the fandix was our madder. Ifefychius, however, fays, very contidently, that the fan. dix is not a plant, but a kind of flrubby tree, which yields a dye like the coccus. The Roman dyers, perhapes prejudiced ia favour of the marex, made that orily the object of their fearch; and their labour proving fruitlefs, they might have heard fomething of kermes,
or the kermes-ask, which they did not fully undextand. Our dyers, even at prefent, belicve many flfe accounts refpecting the dye-fuifo which they ufe dally."

The ule of kermes in dyeipg feems to have been continued through every century. In the middle ages, as they are called, we meet with kermes under the name of vermiculus or vermiculum; and on that account cloth dyed with them was called vermiculata. Hence the French word vermeil, and its derivative vermilion, as is well known, had their extraction; the lattet of which originally fignified the red dye of kermes, but it is now ufed for any red paint, and alfo for fine pounded cinnabar.

KHAS, in Bengal, landz taken into the hands of government, oppofed to the management of Zemindars or farmers. See Zemindar in this Supplement.

KHALSA, in Bengal, fometimes with the addition of Shereffah, the department of land and revenues; the exchequer.

KHERAJE, in Bengal, fignifies Atrictly the tribute paid by a conquered country: it is allo ufed for revenue in general.

KHIDMUT, office, attendance, employment, fervice.

KHIDMUTGAR, a waiting man.
KHISMUT, portion or divifion.
KHOMAR, or COMAR, a Zemindar's demefne land.
KING-Yost, or King-Piece, is a piece of timber fet upright in the middle, between two principal rafters, and having ftruts or braces going from it to the middle of each rafter. See Roof, Encycl.; and Carpentry, Sappl.

KIPPIS (Andrew, D.D. F. R and A.S.), was born at Nottingham, March 28 (O.S.) 1725 . His father, a refpectable tradefman of that town, was defcended from the Rev. Benjamin King of Oakham, Rutlandhire, an ejected minitter; and his mother, Ann Ryther, was the grand daughter of the Rev. John Ryther, who was ejected from the church of Fernby, in the county of York. In the year 1730 , he loft his father, and went to refide with his grandfather, Andrew Kippis of Seaford in Lincolnfhire. He received his claffical education at the grammar fchool in that town; but what contributed moft to his future eminence, was the friendthip of the Rev. Mr Merrival, who was equalled by few of his contemporaries in various branches of learning, particularly in his acquaint. ance with the claffics, his knowledge of ancient and modern hiftory, and his refined tafte in the belles lettres. 1) Kippis frequen:tly faid, that it was impoffible for him to exprets his obligations to this friend of his youth. In 1741 he removed to Northampton, and commenced his academical ttudies under Dr Doddridge. After a refidence of five years at the academy, he was invited by feveral corgregations to become their minifter. Though he was prefled to fettle at Dorchefter, and liad been chofen their miniter, he gave the prefe. rence to an invitation from Boflon in Lincolnfhire, where he went to relide in September 1746 . Here lie continued four years; and in November 1750, accepted the paftoral charge of a congregation at Dorking in Surry. The congregation meeting in Princes-dtreet Weftminfler, having been without a minifter about two years, he was cholen, in June 1753, to fucceed the Rev. Dr Obajiah Ifughes.' On the 21 at of Septem- Buthowing, he married, at Boiton, Miss Elizabeth Bolt, one of the daughters of Mr liaac Bott, a mer chant of that place; and in the month of October fixed his relidence in Weftminfer. In June 1767, he received the cegree of $\mathrm{D} . \mathrm{D}$. from the univerfity of E_{4} cinburgh, on the unfolicited recommendation of the lite learned Profeffor Robertfon. He was elected a member of the Sociery of Antiquaries on the 19 th of March 1778; and on the 17th of June 1779, he was chofen a Ficllow of the Royal Society. In botli Societies he had the honour of being in the council two yants.

Dr Kippis was eminently diftinguthed for the virtues and accomplifhunents which form the chief ornaments of private life. With a fuavity of manners and urbanity of behaviour peculiarly attractive; he united that knowledge of men and books which rendered his converfation uncommonly entertaining and inftructive to the circle of his acquintance and friends. As a minifter, he was not lefa eminent for his profound acquaintance with every branch of theology than for the happy manner in which he applied it to the inprovement of thofe who attended his miniltry. His fermons were remarkable for perfpicuity, elegance, and energy ; and his elocntion was unaffected and very impreffive, particularly at the clofe of his difcourfes. But the fuperior powers and vigour of mind which he derived from nature, and which he had cultivated with unremitting diligence and peculiar fuccefs, were not to he confined to the narrow limits of private life and the duties of the paftoral charge, however important ; they were defigned for more extenfive and important fervices to his country and to mankind. The interefts of literature, fcience, and religion, have received from the exertion of his talents as a writer the moft effentia! advantages. His firf efiorts in literature were made in the Gentleman's Magazine, a periodical publication called the Library, and the Morithly Review ; to cach of which he contributed many important articles, efpecially in the hiftorical and philological departments of the laft. He was the author of three important tracts, viz "A Vindication of the Proteftant Diffenting Minifters, Exc." "Obfervations on the late Conte?s in the Royal Society ;" and "Confiderations on the T'reaty with America, \&c." His imploved edtition of Dr Dodiridge's leetures is a work of great value; and "The Hilory of Knowledge, Learning, and Tafte, in Great Britain," prefixed to the New Annual Regitter, merits, and has rectived, the approbation of the public. He publifhed at different t!imes feveral fingle fermons; among which, that on the death of his friend the Rev. Mr Laugher, is intitled to very high praife. 'The greater part of thefe he republifhed, with other practical difcourfes, in the year 1794: but the work which, next to the fudies immediately connected with his office 2.9 a Chriftian minifter, engaged his principal attention, and by which he has long been diftinguifhed, is, the improved edition of the "Biographia Britannica." In this great national publication, the comprehenfivenefs and powers of his mind, the correctnefs of his judgment, the valt extent of his information, his indefatigable refearches ant unremitting affiduity, his peculiar talent of appreciating the merits, and analyzing the labours of the molt eminent writers, and his unfhaken integrity, umbisfed fidelity, and impartial decifion on the characters
of the philofoplce, fatefnan, poet, fcholar, and divine, are ftrongly difplayed, and univerfally acknowledged. ILis fyyle, formed on the models of Sir Wil. liam Temple and the claffical Additon, is remarkable for its perfpicuity, elegance, and purity; and gives a peculiar luftre to the riels tores of knowledge treafured in the volumes now publifhed. This work has given him a high rank among, the literati of his country, and will carry down his name with diftinguithed reputation to pofterity. He died on the 8th Octuber 1795°

KOL.Quall, the Abyffinian name of a tree, which fome butanifs have fuppofed to be the Euphorbia Officinarum of Linnæus. Mr Bruce, who gives the prly defcription of the Kol quall that we have feen, is of a different opinion: for which he affigns two reafons; the firlt is, that the flower, which he fays is rofaceous, is compofed of feveral petals, and is not companiform; and the ficond, that it produces no fort of grom, either fpontaneoully or upon incifion. We mu!t acknow. ledge, that we entertain fome doubts whether our author was at due pains to afcertain this fact ; and thefe doubts are fuggefted by his own hiftory of the tree. His defcription is not very perfpicuous, and therefore, left we thould mifreprefut his meaning, we thall give it in his own words:
" The firit thing that prefented itfelf was the firft Thoot of this extraordinary tree. It was a fingle.flalk, about fix inches meafured acrofs, in eight divifions, regularly and beantifully foolloped and rounded at the top, joining in the centre at three feet and a half high. Upon the outfide of thefe fcollops were a fort of eyes or fmall knots, out of every one of which came five horns, four on the fides and one in the centre, fcarce half an inch long, fragil, and of no refiftance, but exceedingly harp and pointed. Its next procefs is to put out a branch from the firf or fecond fcollop near the top, others fucceed from all directions; and this falk, which is foft and fucculent, of the confittence of the aloe, turns by degrees hard and ligncons, and after a few years, by multiplying its branches, affiumes the form of a tree, the lower part of which is wood, the upper part, which is fuc. culent, has no leaves ; thefe are fupplied by the fluted. fcolloped, ferrated, thorny lides of its branclics. Upor the upper extremity of thefe branches grow its howers, which are of a golden colour, rofaceons, and formed of five round or almoft oval petala; this is fucceeded by a triangular fruit, firft of a light grreen with a night caft of $r \in d$, then turning to a deep crimfon, with ftreaks of white both at top and bottom. In the infide it is divided into three cells, with a feed in each of them; the cells are of a greenilly white, the feed round, and with no degree of humidity or moiture about it ; jet the green leaves contain a quantity of bluih watery milk almoft incredible.
"Upon cutting two of the fineft branches of a tree in its full vigour, a quantity of this iffued out, which I cannot compute to be lefs than four Englifh gallons: and this was fo exceedingly caultic, that though I wahed the fabre that cut it immediately, the ftain has not yet left it.
"When the tree grows old, the branches wither, and, in place of milk, the infide appears to be full of powder, which is fo pungent, that the finall duft which I drew upon flriking a withered branch, feemed to
threateo

K O R

Koons, threaten to make me finceze to death, and the touching $\underbrace{\text { Kuraquas }}$ of the milk with ny fingers excoriated them as if fealded with boiling water; yet 1 everywhere obferved the wood pecker piercing the rotten branches with its beak, and eating the infects, without any imprefion upon its olfactory netves."

If what is milk in a young tree be a dry powder in one that is old, is it not probable that the milk inight by evaporation be reduced to the confiftence of gum. and that the kol quall may be at moft but a variety of the cufthorbin officinarum? From our authon's oblervation, the kol quall appeared to thrive bett on poor, fandy, flony earth, at no grcat diftance from the tea. The Abyffinians employ the milky juice in tanning to take off the hair from the kins, and they make no other ufe whatever of the tree.

KOONA, a feecies of Echites (for which fee Eitcycl.), very conmon in the woods of Nouth Africa. ft is a hrub, of which the leaves, when boited with a finall quantity of water, sield a thick black juice, into which the negroes dip a cotton thread. This thread they faften round the iron of their arrows, in fuch a manner that it is almoft inpoffible to extract the arrow when it has funk beyond the barbs, without leaving the iron and the poifoned thead in the wound. The poifon of the koona is faid to be very deadly.-Park's Travels.

KORAQUAS, a tribe of Hottentots inhabiting a dillriet of South A fricz, which M. Vaillant places on the confines of the Nimiqua comentry (See Nimizuas, Suppl.). When our zuthor vifited them; the whole tribe was affiembled for the election of a chicf: and not agreeing among themfelves, fome blood had been fhed, and much more would have been fhed, had they not unanimounty made choice of him. When he firft joined thein, the whole horde paid attention to nothing but their quarrel. To fee their warmth, one might have fuppofed that their clection was a matter of importance to the whole world, and that the fate of mankird was about to depend on their chiff. All fpoke at the fame time ; each endeavoured to drown his neighbour's raice by his own; their eyes fparkled with fury; and amidlt this corffufion, while they threatened each other in turns, the noife they made became truly dreadful.

Unarmed, and without any precaution, thongh furrounded by this enraged multitude, our auther walked calmly along in the midft of them; and when he reached the kraal, he ordered his tent to be immediately formed, as if he had been furrounded by friends and relations. This appearance, raifed fuddenly, and as if by magic, before the eyes of the horde, with his fufets, horfes, and tent, objeets, which were all new to them, filled them with admiation. Men, women, and chil. diel, motionlefs, and with their moths wide open, all flood looking at them with profound filence. Anger, hatred, and every violent paffion, feemed ty their countenances to be extinguifhed, and to have given place to more tranquil emotions, to ignorant furprife, and ftupid aftonifhment. Infancy is naturally curious ; it is fruck with every thing it fees; and the favage, in this refpeet, is only a grown-up chitd. As thele favages feemed to wifh that he would pernit them to examine more clofely whatever excited their admiration, he readily condefiended to gratify their defire. They approached, furveycd, and handlded every thing. Eut the
pincipal object of general curiofity was his perion. Koraqual, They feemed as if they would never be fatisfied witl: looking at his drefs. They pulted off his hat, that they might the better examine his hair and his beard, which were long. They even half unbuttoned his clothes: and furprifed to fee his fkin white, each felt it, as if delirous to afcertain that what they faw was real.

This comedy continued till the evening; and at length, when the moment of feparation arrived, M. Vaillant caufed to be hinted to the whole company, that if, two hours after fun rife next morning, they fhould not be agreed refpecting the choice of a chief, he would immediately leare them. He added, however, that if, on the other hand, they came and prefented to him a chief, elected by geueral confent, he would then load them all with prefents, and befow on him a dittinctioif which would raife him above all his equals, and render the horde one of the moft celebrated in the whole count try. "But what was iny liurprife (fays he) whell I learned the fame evening, that on my head the burden of the crown was depofed!" He acquiefced, however; affuring them, that if they would promife to be obedient, he would give them the only chief worthy of ruling them, and of making them happy.

By his interpreters he had learned, that the choice of the majority leaned towards one Hiaripa, a man about 40 years of age; tall, well made, exceedirgly Arong, and confequently formed by nature for rulting the feeble multitude. He therefore named Haripa chief; and the people appearing to approve of his choice, he commanded filence, and caufing the new monarch to ap: proach, placed on his head, with great folemnity, a Dutch grenadier cap, of which the copperplate on the front was ornamented with the arms of Holland, This fymbol, viz. a lion rampant, having in one of his fore-paws feven arrows, and in the other a naked fabre, conld not fail to pleafe the favages, as it exhibited a reprefentation of the weapons peculiar to them, and of the molt formidable animal of their country. They tellified their admiration in the moft exprefive manner; and imagined that, fuperior to kings, the white man during, the night had by magic made this crown, merely to adorn their chief, and to afford them pleafure. Vaillant then affixed to the 隹而, which formed Haripa's drefs, feveral rows of glafs beads; gave him a girdle made of a ftring of very large ones ; orumented his arms with tin bracelets, and lufpended from his neck a finall padluck, fhaped like a butterfly, the key of which had beea lof. Such padlocks, made in the furm of animals of every kind, are very common at the Cape. They come from China; and are brought to Africa by the captains of the Company's fhips which trade in the Indian feas.

During the ceremony of inftallation, the whole horde, durib and motiontefs through admiration, feemed loft in ecPacy. Haripa himfett, though hishly gratified, did not dare to make the leaft movement, and obferred a gravity altogether rifible. When the inauguration was finifhed, and he was completely dreffed, our author prefented him with a mirror, that he might enjoy the fatisfaction of furveying his own figure. He then fhewed him to the people, who expreffed their joy by fhouts and applaufes withont end.
"Ye honeft hearts (fays M. Vaillant), who perufe this account, behold what it colt me to reftore-peace

K O R

Koraquas. among a whole tribe, and to prevent them from deftroying each other!" From this moment concord was reeftablithed; univerfal joy prevailed through the horde ; and they inftantly began their dancings, which continued for three days and three nights without intermiftion. They killed for this feftival feveral fat fheep, and even 'two oxen; an extraordinary and truly aftonifhing magnificence among a people who, when they barter one of their daugliters for a cow, think they have made an excellent bargain.

Our author, wifhing to purchafe fome oxen for his waggons, bought them at the price of a nail the ox ; and thofe who had the good fortnne to make fuch an exchange were highly fatisfied with their bargain. Nails and fmall bits of iron were indeed of real value to them, to point the arrows and affageys with which they fhot the antelopes that abound in their country, and confli. tute much of their food. Like other favarges, the Ko. raquas were ready to pilfer, and appropriate to their own ufe whatever they found pleafing, or fuited to their purpofes. They attempted to carry away fome of our author's effeets, even before his face; and to prevent their rapacity, he was obliged either to watch over, or to depofit them in fome place of fafety.

The Koraquas are much taller than the Hottentots of the colonies, though they appeared evidently to be defeended from the fame race, liaving the fame language and cuftoms with their neighbours the Nimiruas (fee that article), who are certainly of Hottentot extiaction.

As the exceflive drynefs of the country renders fprings very rare, the Koraquas would be unable to inhabit it, had they not found the means of remedying this fcarcity of water. For this purpofe they dig in the earth a kind of cifterns or rather wells, to which they defcend gradually by fteps; and thefe people are the only African nation among whom our author ever found the farne mark of induftry.

As their wells always contain little water, and as none is to be loft, they take care to fecure it cven from the birds, by clofing up the mouth of the hole with ftones and the branclies of trees; fo that, unlefs one knows the fpot, it is impoffible to find it. They go down into it every day, to fetch up as much water as may be neceflary for the confumption of their people and cattle. They draw it in a kind of veffels made of hollowed wood, and pour it into the fkins of buffaloes or girafes, placed in a concave form on the ground to hold it; but they diftribute it with the utmoft parfimony, and never draw more than they abfolutely have occafion for.

Notwithftanding this frict economy, the wells often become dry; and in that cafe the horde is obliged to remove to fome other place. Among all the weftern tribes, therefore, there are none who lead fo wandering a life as the Koraquas: the confequence of which is, that, as they often change their abode, and acquire new neighbours, they muft, in fome meafure, adopt the cuftoms of the nations near which they Ex their refidence. Some tribes of them greafe themfelves like the Iottentots ; while others tattoo their face, breaft, and arms, after the manner of the Caffres. It is, however, to be remarked, that the fame colour is not employed by all the Koraquas; each has his own, according as caprice may direct him in his choice, and it generally varies every day ; which renders, as one may fay, the inhabi-
tants of the fame horde ftrangers to each other, and Krifuna. gives them a motley appearance, as if they were drefled for a mifquerade.

KRISHNA or CRISNA, is an eaftern river of confiderable magnitude, which is very little known in Europe. We have the following account of it, and its tributary waters, and the countries tlorough which it flows, in Mr Pernant's View of Hinduftan :
"From Gangapatam, on the northern mouth of the Pennar, the land runs due north as far as Mottapilli, when it forms a ftrong curve toward the ealt; the point of which is one fide of the great river Crifna, in about lat. $15^{\circ} 43^{\prime}$. Its Delta, which winds round as far as Mafulipatam, is not confiderable. 'This river anuually overflows a vaft tract of country, like the Indus on the weftern fide of this empire, and like all the other great rivers on this extenfive coa!. The Crifna rifes from the foot of the weftern Ghaute, and not more than 45 miles from Severndrug, on the weftern coaf. There is another branch to the eaft, that rifes fill more northerly. On that fide is Sattara, a ftrong fortrefs, the capital of the Mahratta ftate in the time of the rajahs of Sivaji's race. It was taken by him in 1673 , and found to be the depolitory of immenfe treafure; at that time it belonged to the king of Vijapur : it was afterwards ufed by the Mahrattas as the lodgment of their riches, and alfo as a retreat for the more defencelefs inhabitant; of Puna, and other open towns, in time of potent inva. fions.
"The river continues defcending to the eaft. In latitude 17° is Meritch, a ftrong fortrefs, with a Jag. hirdar territory, conque:ed from its owner by Hyder. In lat. $16^{\circ} 45^{\prime}$, a finall river difcharges itfelf into the Crifna from the north. It would not be worth men. tioning, but that Pannela, a fortrefs of valt ftrength, was made by Sumbuji, the profligate \{on of Sivaji, his refidence juft before his furprifal in 1689 , betrayed by Cablis Khan, the vile inftrument of his pleafures, cor. rupted by Aurengzebe. His extravagant love of wo. men brought on him ruin. Informed by Cablis tlat a Hindu of rank and great beanty was on the road to be delivered by her parents to her huband, according to the cuftom of the Hindus, he in?tantly put himfelf at the head of a fmall body of horfe to carry off the prize, and ordered Cablis to follow at a diftance for his protection, in cafe of accidents in that hoftile time. The traitor had given notice to Aurengzebe of this expedition, who, fending a body of cavalry, furprifed Sumbuji jult as he had difperfed the nuptial proceffim.
"Into the north fide of the Crifna, in lat. $16^{\circ} 20^{\prime}$, falls the great river Bima, siter a courfe of 350 miles. It rifes at the head of the weftern Ghauts, parallel to Chaul in the Concan, and not above 50 miles from the fea. It defcends rapidly towards the fouth-eat. In lat. $17^{\circ} 40^{\prime}$ it receives a fmall river from the weft, on the fouthern banks of which fands Vijapur, the capital of the famous kingdom of the fame naine, now poffeffed by the Mahrattas, but once governed by its own monarchs, till conquered by Aurengzebe in 1686 . It was of great extent, and reached to the weftern fea, where it poffeffed the ports of Dabul, Vingorla, and Carapatan.
"The capital Vijapur is fome leagues in circuit, feated in a finc but naked country, well watered. It makes a fingular appearance from an adjacent eminence, filled with numbers of fmall domes, and one of a majeftic

K U A $\left[5^{8}\right] \quad \mathrm{K} \in \mathrm{U}$

Frifhna, fize. It was once a city of great fplendour, and filled Kuara with palaces, mofques, maufoleums, and nublic and private buildings of great magnificence; many of them are fallen to ruin, and give melancholy proofs of its furmer fplendour. I fhall not attempt to detail them. The palaces of the kings, and accommodations for their attendants, were within a vaft fort, furrounded with a ditch 100 yards wide ; the depth appeared to be great, but is now filled with rubbifh: within the fort is the citadel. Tavernier fays, that the great ditch was filled with crocodiles, by way of garriton, to prevent all accefs by water. Lieutenant Moor has his doubts about this, imagining that there never was any water in this fofs. 1 hat fuch garrifons have exifed 1 doubt not. I have read in Purchas, that in Pegu the foffes of forified places were focked with thofe t:emendous animals, not only to keep ont enemies, but to prevent defertion. This practice las certainly been of great antiquity in fome parts of India: Pliny mentions it as ufed in a fair city of the Horatæ, a people I can not trace.
"The Crifna, above and below its conflux with the 13ima, is fordable; and a few miles below its channel is 600 yards wide, made horrid with the number and rudenefs of the varionny formed rocks, which are never covered but in the rainy feafon.
"The Tungbuddra is another valt branch of the Crifna. It falls into it in lat. $16^{\circ} 25^{\prime}$, and originates extremely fouth, from a doubtful fountain. F'owards its lower part it divides into three or four fmall branches, which rife remote from each other; the moft fouthern is the Curga Nair's country; the moft north. ern from the head of the Glauts oppofite to Onor, and fcarcely 20 miles from the fen. What muft give this river great celebrity, is its having had on its banks, in lat. $15^{\circ} 22^{\prime}$, the fplendied city of Vijanagar. Ferifhta frys, that it was founded in 1344 by Belaldeo king of the Carnatic, which in thofe days included the whole peniniula. It was vifited by Cæfar Frederick a Venetian traveller, in 1565 , and found deferted and ruinons, having been facked by four confederated Mahomedan princes two years before, on which its monarch had retired to Penuconda. Frederich. fays that its circumference was 24 miles. Mr Rernel has given us a view of its prefent flate from Lieutenant Emitt, who vifited it in 15 cos.
"The ruins of Vijanagar are in the little Sircar of Anagundi, which does not extend above 20 miles around this vaft city. It is very fingular, that that little Sircar is now poffeffed by a lineal defcendant of Rama Rajah, the laft great monarch of Vijanagar, and its at tendant nations Canarine anal Malabar, united 700 years before under the rule of Crifna Deva. Tippu wifhed to referve this little tract to himfelf, for the fatisfaction of generoully reftoring, to the defcendant the fmall relique of the great empire of his ancefors. He is denied the title of Rajah, inftead of which he has the diminutive Rail beftowed on him. This is fuitable to his revenues, which do not exceed two lacs of rupees, or 25:0:0 per annum, with the empty regality of a mint "tt Anagundi." In the remainder of its courfe the Crifna offers nothing remarkable.

IUUARA, is a beautiful tree, which grows in the fouth and fouth weft parts of Abyffinia. With the ebony it is alinoft the only wood of the province of Kuara, of which it bears the name; but Mr Lruce af.
fures us, that it is very frequent in all the countries where there is gold. "It is (fays he) what naturalifts call a Corallodendron, probably from the culour of its flowers or of its fruit, both equal in colour to coral. Its fruit is a red bean, with a black fpot in the middle of it, which is inclofed in a round capfula or covering, of a woody nature, very tough and hard. This bean leems to have been in the earlieft arges ufed for a weight of gold among the Shangalla, and, where that metal is found, all over Africa; and by repeated experiments, I have found that, from the time of its being gathered, it varies very little in weight, and may perhaps have been the very beft choice that therefore could have been made between the collectors and buycrs of gold.
" I have faid this tree is called kuara, which fignifies the fun. The bean is called carat, from which is derived the manner of efteeming gold as fo many carats finc. From the gold country in A frica it paffed to India, and there cane to be the weight of precious fones, efpecially diamonds; fo that to this day in India we hear it commonly foken of gold or diamonds, that they are of fo many carats fine or weight. I havefeen thefe beans likewife from the Weft.Indian iflands. They are juft the fame fize, but, as far as I know, are not yet applied to any ufe there."

This is a very different account of the origin of the term Carat from what we have given in the Eincyclopadia; but the reader will judge for himfelf between the two.

KUMT, the name of an ifland between Japan and China, of which Pergufe writes in the following terms: " On the 5 th of May, at one o'clock in the morning, we made an ifland, which bore north-north eaft of us; we paffed the reft of the night, ftanding off and on, under an caly fail, and at day.break I fhaped my courfe fo as to run along the weft coaft of this ifland, at the difance of halt a league. We founded feveral times without finding bottom. We were foon fatisfied that this ifland was inhabited, for we faw fires in fiveral places, and herds of oxen grazing on the fea-fhore. When! we had doubled its weit point, which is the moft beautiful and beft inhabited fide, feveral canoes put off from the fhore in order to oblerve us. 'lhey feemed to be extromely in fear of us; their curiofity canfed then to advance within mukset fhot, and their diftruft rade them immediately fiee away with fpech. Our fhouts, greftures, figns of peace, and the fight of fome ttuffs, at length determined two of the canoes to come alonggicie of us. I made each of them a prefent of a piece of rankeen and fome medals. It was evident that thefe inanders had not left the coalt with any intention of trafficking with us, for they had nothing to offer in exchange for our prefents; they only faftened to a rope a bucket of frefh water, making figns to us, that they ftill thought themfelves in our debt, but that they were goirg afhore to fetch provifion, which they exprefed by putting their hand into their mouth. Before coming alongfide the frigate, they placed their hands utoon their brealt, and raifed their arms towards the 1 ky : threfe geftures were repeated by us, and then they refolved to come on board; but it was with a want of confidence, which was ftrongly expreffed in their countenance during the whole time. They neverthele!s invited us to approach the land, giving us to underftans, that we flould there want for nothing. 'I'befe inlanders

$K \quad \mathrm{R}$

Kumi, are neither Japanefe nor Chinefe, but, fituate between Kuriles. thele two empires, they feem to partake of both people. Their covering was a fhirt and a pair of cotton drawers. Their hair, tucked up on the crown of the head, was rolled round a needle, which feemed to us to be gold : each of them had a dagger, the handle of which was gold alfo. Their canoes were made out of hollowed trees, and they managed them very indifferently. I could have wifhed to land upon this ifland, but as we had brought the fhip to, in order to wait for thefe canoes, and as the current fet to the northward with extreme rapidity, we had drifted a great way to leeward, end our efforts to reach it would perlaps have been in vain : befides, we had not a moment to lofe, and it was of the higheft importance to us to get out of the Japan feas before the month of June; a period of florms and hurricanes, which render thefe feas the moft dangerous in the whole world.
"It is clear, that veffels which might be in want would readily provide themfelves with provifion, wood, and water, in this ifland, and perhaps even carry on a little trade ; but as it is not more than three or four leagues in circumference, there is no great probability that its population exceeds four or five hundred perfons; and a few gold needles are not of themfelves a proof of wealth." Our author, by obfervation, found the latitude of Kumi to be $24^{\circ} 33^{\prime}$ north; its longitude 120° ${ }^{5} 6$ caft from Paris.

KURILES, are a clufter of inlands, of which fome account has been given under the word KUR1L, in the

59] K U R

Encyclopadia, In addition to that article, the follow- Kurikes, ing particulars are worthy of notice: Of the 21 iflands belonging to Ruffia, which are diftinguifhed from each other, not by names, but by numbers, four only are inhabited, viz. thofe which are called the firt, the fecond, the thirteenth, and the fourteenth. The laft two may indeed be counted only as one, becaufe the inhabi. tants all pafs the winter upon \mathbb{N}° 14, and return to $\mathrm{N}^{\circ} 13$ to pafs the fummer months. The others are cntirely uninhabited, the iflanders only landing there occafionally from their canoes for the fake of hunting foxes and otters. Several of thefe laft mentioned ifands are no better than large rocks, and there is not a tree on any one of them. The currents are very violent between the iflands, particularly at the entrance of the chanriels, feveral of which are blocked up by rocks on a level with the fea. The population of the four inha. bited iflands amounts at mott to 1400 fouls. The inhabitants are very hairy, wear long beards, and live entively upon feals, fifh, and the produce of the chace. When vifted by M. Peroufe, they had juft been exemp. ted for ten years from the tribute ufnally paid to Ruffia, becaufe the number of otters on their inands is very much diminifhed. Thefe poor people are good, hofpitable, and docile, and have all embraced the Chriftian religion. The more fouthern and independant iflanders fometimes pafs in canoes the channels that feparate them from the Ruffian Kuriles, in order to give fome of the commodities of Japan in exchange for peltries.

Labdaffetz, ABDASSEBA, a tribe of favage Arabs who in-Labora- Luabit the defart of Salara in Africa. They are $\underbrace{\text { tory. }}$ the moft powerful of all thofe tribes except the Ouradelims; and they refemble thefe fo much in every thing, that we fhall give an account of the manners of both ander the title OUADELims, and of their country under that of Sahara.

LABORATORY, is an apparatus fo neceffary to the chemift, that every contrivance to render it more convenient, or to leffen the expence of it, mult contribute greatly to the advancement of fcience. The abilities of Morvean alias Guyton, and the fuccefs with which he has profecuted the ftudy of chemiftry, are well known ; and therefore his different methods of faving time and expence in making chemical experiments mult be worthy of the notice of younger chemilts.
In the fecond volume of the Memoirs of the Ancient Academy of $D_{\text {ijon, we have a defeription by him of a }}$ box containing a kind of portable laboratory, compofed of a lamp with three wicks, difpofed in the figure of an equilateral triangle, to form an internal current of air, with fupports for the different veffiels of digeflion, ditil. tation, evaporation, \&c. He made a folution of filver with common aqua fortis and the metal in an alloyed ftate, which anfwered very well as a re-agent, without having occafion for any other utenfils but this box and apothecary's phials, which are every where to be found.

This apparatus, however, was confined in its application, and he foon thought of improving it. He conftructed a lamp, on the principles of Argand, with three concentric circular wicks, each having an interior and exterior current of air. The effect furpaffied his expectations with regard to the intenfity of the heat; but it was difficult to prevent the deftruction of the hard folder round the wicks; and the glafs retorts were frequently melted at the bottom, and disfigured. It was attended with other inconveniences, and the quantity of oil confumed was great.

A fhort time afterwards, it occurred him to fubititute, inftead of the glafs chimney of Argand's lamp, a cylinder of copper with an indented part or ledge a few millimetres (fee Revolution, Encyd. no 183.) above the flame, to perform the office of the indented chimney of glafs, and by that means to render it practicable to raife the wick to a cettain height without fmoaking. Tlis cylinder has three branches like a chaffing-difh. By this apparatus two or three decilitres of water (about half an Englifh wine pint) may be brought to boil in a copper or glafs veffel in about fix or feven minutcs. It has ferved for a number of operations; but it was not till after he had obferved the degree of heat obtained from the lamp in its ordinary Itate, and particularly fince he had fubftituted inftead of the metallic tube a chimney of glafs cut off at the length of three
1.aboratory.

Lahora- centimetres (rather more than one Englifh inch) above tory. the contraction, that he perceived all the advantages it was capable of affording; and that by means of a move- able fupport for the reception of the different veffels, which may be fixed at pleafure by a thumb-forew, this lamp furnace, at the fame time that it gives light, and confequently without any additional expence, may with facility te ufed for almoft every one of the operations of chemiftry ; fuch as digeftions, folutions, cryftallizations, concentrations; the rectification of acids; diftillations on the fand-bath, or by the naked fire; incinerations of the moft refractory refidues; analyfes with the pneumatic apparatus, or of minerals by the faline fufion, \&c. "I have not (fays he) hitherto met with any exception but for complete vitrifications and cupellations; for even the diftillations to drynefs may be performed with fome precautions, fuch as that of transferring the matter into a fmall retort blown by the enameller's lamp, and placing its bottom on a little fand-bath in a thin metallic dif." "The fupport here mentioned is fimply a copper ring eight centimetres (3,15 inch.) in diameter, which is raifed or lowered by fliding on a ftem of the fame metal. Nothing more was required but to adapt it to the fquare iron ftem which paffes through the refervoir of the lamp. The connection is made by a piece of wood, in order that lefs of the heat might be difperied. As the lamp itfelf is capable of being moved on its ftem, it is eafy to bring it nearer or remove it at pleafure from the veffels, which remain fixed; a circumHance which, independent of the elevation or depreffion of the wick, affords the means of heating the retorts by degrecs, of moderating or fuppreffing the fire inittantly, or of maintaining it for feveral hours at a conftant or determinate intenfity, from the almoft infurible evaporation of cryftallizable folutions to the cbullition of acids; propertics never poffeffed by the athanor, of which chemifts have boafted fo much. The advantage of thefe will be properly valued by thofe operators who know that the moft experienced and the molt attentive chemits mect with frequent accidents, by which both their veffels and the products of their operations are loft for want of power in the management of the fire."

For the analytis of fones, fuch as the ciyitals of tin, the fortened chimney of ghafs is to be ufed; and the procefs is to be begun by placing the mixture in a capfile of platina or filver $2 \frac{3}{4}$ inches in diameter. This apofule is to be placed on the fupport, and the heat regulated in fuch a manner, that ebullition frall take place without throwing any portion of the matter out of the veffel. Is foon as its contents are perfectly dry, they are to be transferred into a very thin crucible of platina, of which the weight is about $252 \frac{3}{2}$ grains E-glifh, and its diameter one inch and three-fouths. This crucible lets on a fmall fupport of iron-wire, which ferves to contract the ring; and the wick being at its greateft elevation, with the ring lowered to the diftance of $9 \frac{3}{4}$ inches from the upper rim of the chimney, Guyton produced, in lefs than twenty minutes, the faline fufion to fuch a degree, that from the commencement of the operation the decompofition proceeded as far as to 0.70 of the mineral. The fame apparatus, that is to fay, witl the fhortened chimney, ferves for oxidations, in cinerations, torrefactions, and diftillations to drynefs.

In fuch operations as require a lefs heat, he leaves the lamp with its large chimney abfolutely in the fame

Itate as when it is ufed for illumination ; and by raifing and lowering either the ring which fupports the veffel, or the body of the lamp if the velfels be fixed in communication with others, he graduates the heat at pleafure. Vinegar diftils without interruption at $2 \frac{2}{3}$ inches Englifh from the upper termination of the chimney, that is to fay, $7 \frac{1}{2}$ inches Englifh from the flame. Water is made to boil in eight minutes, at the fame height, in a glafs veffel containing one wine pint Englifh, and is uniformly maintained at the diftance of $8 \frac{2}{3}$ inches from the flame.
"I mult not in this place (fays our author) omit to mention a llight obfervation which this procefs has afforded, becaufe it may lead to ufeful applications, and tends to point out one great advantage of this method of operating; namely, that an infinity of circumftances may be perceived, which might not even be fufpected when the whole procefs is canied on within a furnace. I have remarked, as did likewife feveral of iny colleagues who were then prefent, that a column of bubbles conftantly rofe from a fixed point of the retort on one fide of the bottom. We were of opinion, that fome particle of matter was in that place incorporated with the glafs, which had a different capacity for heat from that of the reft of the glafs. In order to verify this conjec. ture, I endeavoured the following day to diftil the fame quantity of the fame water in the fame retort, after having introduced a button of cupelled filver, weighing nine decigrammes ($20 \frac{\pi}{2}$ grains). At the commencement of the operation there was a fmall ttream of bubbles from the fame point as before; but a fort time afterwards, and during the whole remaining time of operating, the largeft and moft inceffant Atreain of bubbles rofe from the circumference of the button, which was often difplaced by the motion; and in proportion to the time the product of the diftillation was fentibly greater. Whence we may conclude, that metallic wires or rods, dittributed through a mafs of water required to be kept in a ftate of coullition, and placed a little below its furface, would produce, without any greater expence of fuel, nearly the fame effect as thofe cylinders filled with ignited matter which are made to pafs through the boilers."

We have related this fact. in Guyton's own words, or at lealt in a faithful tranflation of them; and we are far from calling it in queftion, for it is a fact which has been often obferved; but we think his inference from it too haftily drawn. It is not conceivable that heat can be more rapidly conveyed through a mafs of liquid by the conducting power of metal, than by a free circuLation ; but we agree with what feems to be Mr Nicholfon's opinion *, that the thin Aratumt of water beneath * Fournots the button becomes more fuddenly and violently elaftic Auguft than elfewhere, and therefore rifes regularly to the fur- $17 y^{8} 8$, face. The whole of this phenomenon the reader will note, page find explained in our article Steam (Encyclo), $n^{\circ} 100^{2120}$ But this is a digreffion.

We return therefore to Guyton's laboratory, of which the reader will form a diftinet notion from plate XXXIII, where fig. 1. reprefents the whole apparatus ready mounted for diftillation, with the tube of fafety and a pneumatic receiver. A is the body or refervoir of the ufual lamp of Argand, with its thade and glafs chimney. 'I'he lamp may be raifed or lowered at pleafure by means of the thumb forew B , and the wick rifes

L A C

3.abora- and falls by the motion of the fmall toothed wheel placed over the wafte cup. This conftruction is moft conve. nient, becaufe it affords the facility of altering the pofstion of the flame with regard to the veffels, which remain fixed; and the iroublefome management of bended wires above the flame for the fupport of the veffels is avoided, at the fame time that the flame iffelf can be brought nearer to the matter on which it is intended to act. D, a fupport confilting of a round fiem of brafs, formed of two pieces which forew together at about two thirds of its height. Upon this the circular ring E, the arm F, and the nut Giflide, and are fixable each by its refpective thumb ferew. The arm alfo carries a moveable piece H, which ferves to fufpend the veffels in a convenient fituation, or to fe. cure their polition. The whole fupport is attached to the fquare iron ftem of the lamp by a piece of hard wood I, which may be fixed at any requiled fituation by its ferew. K reprefents a ftand for the receivers. Its moveable tablet L, is fixed at any required eievation by the wooden forew M . The piece which forms the foot of this ftand is fixed on the board N; but its rela. tive pofition with regard to the lamp may be changed by fiding the foot of the latter between the pieces OO. F , another ftand for the pnenmatic trough. It is raifed or lowered, and fixed to its place, by a ftrong wonden ferew, $Q . R$ is a tube of fafety, or reverfed fyphon, which ferves, in a great meafure, to prevent the bad effee?s of having the veffels either peifectly clofed, or perfectly open. Suppofe the upper bell-fhaped veracl to be nearly of the fane magnitude as the bulb at the lower end of the tube, and that a quantity of water, or other fuitable fluid, fomewhat lefs than the contents of that veffel, be poured into the apparatus: In this fituation, if the elafticity of the contents of the vef. fels be lefs than that of the external air, the fluid will defcend into the bulb, and atımfipheric air will follow and pafs through the fluid into the veffels: but, on the contrary, if the elafticity of the contents be greater, the nuid will be either fuftained in the tube, or driven into the bell-fhaped veffel; and if the force be ftrong enough, the gufeous matter will pafs through the fluid, and in part efcape.

Fig: 2. Shews the lamp furnace difpofed to prodnce the fatine fution ; the chumney of glafs fhortened; the fupport I) turned down; the capfule of platina or filver S placed on the ring very near the flame.

Mig. 3. The rane part of the apparatus, in which, infead of the capfule, a very thin and firall crucible of vlatina T is fubftituted, and refts upon a triangle of iron ivire placed on the ring.

Fin 4. Exhilits the plan of this latt difpnfition.
LACERHA, in aftronomy. Sce Astronomy, u^{n} 4c6. Encycl.

LACMUS, a dye fuff prepared by the Dutch from the Lichen rocella, which fee in this Supplement.
L. A CSHA, the Indian name of the lac infect, which has been deferibed in the Encyclopactia under the title Coccus, Species 5. Since that article was publifhed, a defcription of that infect, which is more to be depended upon, has been given to the world in the fecond volume of the Afiatic Refearches. It is by Mr Roxburgh, furgeon on the Madras eftablifhment, and was comminicated to the Society by Dr James Anderfon phyfician at Fort St George, who obferves, that Mr Roxburgh's difcovery will bring the lacha as a genus into the class Hemiptera of Linnæus.

L A C

"bome pieces of very frefh-looking lac (fays Mr Lacfha. Roxburgh) adhering to fmall branches of mimofa ci. nerea, were brought me from the mountains on the $20 t h$ of November 178 g . I kept them carefully, and to. day, the 4 th of December, fourteen days from the time they came from the h:lls, inyriads of exceedingly minute animals were obferved cretping about the lac and branches it adhered to, and more fill ifluing from fmall holes over the furface of the cells: other fmall and perforated excrefcences were obferved with a glafs amongft the perferations, from which the minute infects if fined, regularly two to each hole, and crowned with fome very fine white hairs. When the hairs were rubled off, two white fpots appeared. 'The animals, when fingle, ran abont pretty brilkly, but in genctak they were fo numerous as to be crowded over one another. The body is oblorg, tapering moft towards the tail, below plain, above convex, with a double, or flat margin: laterally on the back part of the thorax are two fmall tue bercles, which may be the eyes: the body bihind the thorax is crofied with twelie lings: Kess fix; feelers (artennx) half the length of the borly, jointed, hairy, each enting in two lairs as long as the antenma: rump, a white point between two terminal hairs, which are as long as the body of the animal. 'I'he mouth I could not fee. On cpening the cells, the fubftance that they were formed of cannot be better deferibed, with refpect to appearance, than by laying it is like the tranfoarent amber that beads are made of: the external covering of the cells may be about half a line thick, is remarkably Itrong, and able to refit injuries: the partitions are much thinner: the cells are in general irregular fquares, pentagons and hexagons, about an eighth of an inch in ciameter, and one quarter deen: they have no comminnication with each other. All thofe I opened during the time the animals were iffuing, contained in one halt, a fmall bag filled with a thick red jelly-like liquor, replete with what I take to be eggs: thefe baga, or utriculi; adhere to the bottom of the cells, and have each two necks, which pafs throughs perforations in the ex. ternal coat of the cells, forming the fore-mentioned ex. crefeences, and ending in fome very fine laairs. 7 he other lialf of the cells have a dititinct opening, and contain a white fubttance, like fome few filaments of cotion rolled togrether, and numbers of the infects theinfelves ready to inake their exit. Several of the fame infects I obferved to have drawn up their legs, and to lie flat : they did not anove on being touched, nor did they fhew any figns of life with the greatell irritation.
is Decemier 5: The fame minute hexapedes continue iffuing from their cells in numbers: they are more lively , of a deevented red colour, and fewer of the motionl fs fort. To-day 1 faw the mouth: it is a flattened point about the middle of the breatt, which the little animal projects on being coinpreffed.
"December 6. The wale infects I have found to-day: a few of them are conflantly running among the females moft actively: as yet they are fcarce more, 1 imagine, than one to 5000 females, but twice their fize. The head is obtufe; eyes black, very large; antennæ clavated, feathered, about $\frac{2}{3} \mathrm{ds}$ the length of the body: below the middle an articulation, fuch as thofe in the legs: colour between the eyes a beautiful fhining green: neck very fhort: body oval, brown: abdomen oblong, the length of body and head: legs fix: wings membranaceous, four, longer than the body, fixed to the fides of

I. A M
 L A M

1.ache, the thorax, narrow at their infertions, forming broader L. maren. for $\frac{2}{3} d s$ of their length, then rounded; the anterior vair is twise the fize of the poteriur: a flrong fibre runs along their anterior margins: they lie flat, like the wings of a common fly when it walks or reits : no hairs from the rump: it frrings molt actively to a conlider. able diffance on being tonched: month in the under part of the head: maxiltse tranfverie. 'To day the female infects continue ifling in great numbers, and move about as on the $4^{\text {th }}$.
"December ; The fmall red infeets fitll mone wit merous, and move about as before: winged infects, fill very few, continue active. There have been fiefh leaves and bits of the branches of both Mimofa Cinerea and Corinda put into the wide mouthed bottle with them : they walk over them indifferently, without fhewing any preference, or inclination to work or copulate. I opened a cell whence I thought the winged flies had come, and found feveral, eight or ten, more in it, ftrugrging to Thake off their incumbrances: they were in one of thofe utriculi mentioned on the 4 th, which ends in two mouths, fhut up with fine white hairs, but one of them was open for the exit of the flies; the other would no doubt have opened in due time: this ntriculus I found now perfectly dry, and divided into cells by exceeding thin partitions. I imagine, before any of the flies made their efeape, it might have contained about twenty. In thefe minute cells with the living flies, or whence they had made their efcape, were fmall dry dark coloured compreffed grains, which may be the died excrements of the fies."

LAMANON (Robert Panl), of the academy at Murin, correfpondent of the Academy of Sciences at Paris, and member of the Mufeum in the fame city, was born at Salon in Provence, in 1752 , of an old and refpectable family. Being a younger fon, he was deftined for the church, and fent to Paris to complete his theological ftudies; but getting acquainted with the philofophers (as they called themfelves), he foon loft all relifh for the fludy of cheology, and devoted limelf to the phyfical feiences, efpecially thofe of chemilry and mi neralogy. Into the church, however, he got, and rofe to the dignity of canon ; but by the death of his father and elder brother, having acquired the right of directing his own fucure exertions, he haftened to quit a profeffion, towards which he felt no partiality.

A prelate, then in liigh favour at court, licaring of Lamanon's intention of quitting his office of canon, offered him a confiderable fum, to induce him to refign in favour of oue of his dependents. The chanter of Λ rles, replied our young ecclefrattic, did not full me my benefice, I fhall therefore reftore it in the fime mamer that I received it. This conduct was certainly meritorious; and his eulogitt Ponce mentions another trait of his characeer, which fets him in a very anvible point of view ; he rufufed to accept of his paternal inheritance, otherwife than as an equal thater with his brothers and filters.

Thus liberated from the tranmels of his fomer profeffion, Lamanon applied liirffelf with uncommon ardour to fludy. Eager to raife the awful veil that conccals from our eyts the fecrets of nature; perinaded, that even the greatelt genius only amufes itleif with. falfe fyltens in the filence of a cabinct ; convinced of the neceffty of much and vaious obfervation, and of furprifing Nature, as it were, in the very fact, in order to pesetrate into the foblimity of her operations ; - our young
philofopher travelled through l'rovence and Danphine, Lamanon, and fcaled the Ains and Pyrenees. At the fight of thefe valt natural laboratories the bent of his mind burf forth inftantaneounly: he climbed to the fummit of rocks, and explored the abyis of caverns, weighed the air, analy fed fpecimens, and, in his ardent fancy, having attained the fecrets of creation, he formed a new fy fem of the world. On his return home, he applied with additional intereft to the ftudy of meteorology, mineralo. gy, natural philofophy, and the other branches of the hittoly of nature.

Whilft he was meditating a vifit to Paris for the purpofe, as his culogift expreffes himfelf, of converling with the luminaries of fcience, the inhabitants of the commune of Salon, having loft a caufe againft their lord, unanimounly elected Lamanon, with whofe integrity and abilities they were well acquainted, to go and folicit of the council the repeal of an unjuft decree that had been obtained by partiality. The reply of the young philofopher on this occafion is an additional proof of his uncommon cifintereflednefs. "As I intend (faid he) to go to Paris on bufinefs of my own, I cannot think of accepting your ofier of 24 livres daily pay: a twelfth of this fum will cover the extraordinary expences of the journeys that I thall be obliged to make to Verfailles on your account." He had the fatisfaction of complete fucce?s in the bufinefs thus undertaken.

Having fatisfied his curiofity in Paris, he went over to England. Durirg the paffage, though much incommoded by fea ficknels, and in imminent hazard of being overwhelined by the tumbling waves of a very ftormy fea, he caufed himfelf to be tied to the main-matt, in order to contemplate at leifure fo grand and fearful a fpectacle. The burfs of thunder, the bowling of the wind, the billiancy of the lightning, the glancing of the fpray which covered him every moment, thefe objects, fo terrible to an ordinary man, theew him into a kind of mental intoxication, and he has often declared, that this day was the molt exquifite of his whole life.

Convirced that the friendfhip of an eminent man elevates the foul, excites generous emulation, and becomes an additional !timulus to one whofe delight is fludy, and whofe molt prefling want is an object on which to place his affection, Lamanon anxioufly endeavoured to inerit the regard of Condorcier, fo well known by his talents, his inpleties, his rebellion, and his misfortunes. This academician, juflly confidering that an apoltate prieft would be ready to join the confuiracy of the philofophits argainft the altar and the throne, received Lamanon with diflinction, and at length admitted him to his moit intimate friendfhip.

1) aring the three fuecefive years that Lananon fpent at Paris, he followed with care the track of thofe learned focieties, of which he had been elected a member. He became at this period, together with Count de Gebelin, and fome uther phifufophers and artilts, one of the founders of the. Mufeum, the greater part of the nembers of which are now reunited in the open fociety of feiences, letters, and arts, at Paris. Among the dif. ferent papers of his that were read at various meetings of thele focittics, Ponce mentions with particular approbation what he calls a notice of Adam de Crapone, an eminent hydraulic engineer; a menoir on the $\mathrm{Cre}-$ tins; a memoir on the theory of the winds; a treatife on the alteration in the courfe of rivers, particularly the Rhone; and another on an enormous bone belonging
to fome cetaceots fifh, that was dug un at J'aris in laying the foundations of a houfe in the rue I).rufbine. We have not feen thefe memoirs ; but as their author was the friend of Condorcet, and fancied that he had attained the fecrets of creation, we can eafily conceive their tendency.

Having refolved again to revifit Switzerland and Italy, Lamanon firf went to Turin, where he allied himfelf to the learned of that country. During his flay there, the brilliant novelty difcovered by Montgolfier was occupying the attention of all the philofophers of Europe. Lamanon, defirous of making tome experiments of this kind himfelf, afcended in a balloon from the city of Turin ; but not perceiving in this difcovery, which had at fift highly interefted him, an object of public utility; not forefereing, that onc day, on the plains of Fleurus, it would be the caufe of rallying and eftabliffing vifory imder the ftandards of France, he returned to his favourite occupations. Purfuing his route from Piedmont, he vilited Italy, and returned by Switzetland, where he explored the Alps and afcended the fummit of Nont Blanc: thence returning, loaden with the fpoils of the countries which he had traverfed, to Provence, he employed hinfelf in the arrangement of the interefting fruits of his journey.

Of the forupulous exactnefs of his obfervations, his eulogit gives the following inftance: "Being convinced that the plain of Cran, divided by the channel of the Durance, had formerly been a lake, he wifhed to be abfolntely affured of it. For this purpofe he collected a fpecimen of each of the tlones that are to be found in this vaft plain; the number of thele he found to amount to nineteen; then tracing the courfe of the river towards its head, near the fromtiers of Savoy, he obferved, that above each junction of the tributary ftreams with the Durance, the varicty of pebbles diminithee. Afterwards afcending the current of each of thefe fmaller ttreams, he difcovered on their banks the original rock of every pebble that overfpreads the plain of Craul thms inconteftably proving, that this plain was anciently a lake formed by the waters of the Durance, an? the Areams that fall into it. If all philofophers (fays our anthor) would condnet the examinations with equal precition, certaia hrpothefes, more brilliant than folid, would not find fo many adr irers; the charm of inagination, and the graces of ftyle, would not fo often encroach uoon the impreferiptible rights of nature and truth."

To citizen lonce this appears a demonflation of Lamanon's theory ; but we cannot fey that it does fo to us. It may be a kind of proof, though not a demon. ftration, that in fome convulfion of nature, fones had been rolled from the rock, and the plain of Crau, for a time, overfowed by the Durance; but it furely furnifhes no evidence of that plain's having ever been a permaneat lake. It may have been fo; but fuch inveftigations as this will not guard philofophers againft the delufions of favourite hypothefes.

It was at the time when Lamanon was preparing for the prefs his great work on the Theory of the Larth, that the French government conceived the valt project of completing the difcoveries of Captain Cook: the acadeny of feiences was entruited with the care of felecting men capible of rectifying our notions of the fouthern hemifphere, of improving hydrography, and advancing the progrefs of natural hiftory. Condorcet, not know-
ing any one better qualified for this laft department than Iamanon, wrote to him an invitation to fhare the danger and glory of this great enterprize. He acceptϵ with eager tranfpott a propofal that fulfilled his higheft expectations, haftened to laris, refufed in a conference with the minifter the falary that was offered, took a liafty leave of his friends, and departed for Breft.

On the if of Augult i585, the ammanent fet fail under the orders of La Peroufe, an experienced commander, whofe patriotifm and fcientific zcal were equal to his courage and good Cenfe, and who liad already merited the public confidence. The philofophers of all Europe were in expectation of thofe ufeful difcoveries, the probable fruit of the zeal and talents employed in the expedition. The beginning of the voyage was profperous. After various delays, and a multitude of obfervations, the two veffels arrived at the inand of Maouna, one of the fouthenin Acchipelago. 'T'he impatient Iamanon, eager to affire himftif of the truth of the publifhed accounts of that country, debarked with Langle, the fecond in command. At the moment of their return, the natives, in hopes of booty, which had been excited by the mumber of prefents that they had received, feized upon the boats, and attacked the party. The Wrench were obliged to have recourfe to arms for felf defence, and a defperate combat enfued. Lananon, Langle, and ten of the two boats crews, fell a facrifice to the fury of thefe barbarians.

Thus perifhed Lamanon, a young man ardent in the purfuits of feience, to a high degree dilinterefted, ard a sealot in what he thought the caufe of liberty. He refufed the falary which was allotted to him when he was appointed to this unfortunate expedition ; for "if I do not feel fatisfied (faid he) on board the vefel ; if my inelination or curiofity lead me to quit the fhip, - I fhould be unhappy if any power in the world had acquired the right of preventing me."

According to M. Ponce, Lamanon feemed born to bring about a revolution in fcience: the depth of his ideas, the energy of his charater, the fagacity of his mind, united to that lively curiofity that can draw inftruction out of any thing, and leaves nothiner umexplored, would have led him to the wrolt valuable difeo. veries. In perfon he was tall ; and in great vivacity ane? expreffion of feature added prodigious trength and ac. tivity; in a wo:d, Nature formed him with luch cave, as if fhe had intended him for one of thofe few who are deltined to great exploits. His tojle was neervous, eften poctical, without lofing fight of promiety, and the lar.o guage of fentiment might frequently be difcovered in the midft of ftrong and triking exprefions; and if he wanted the exquititcly dazaling polith of diction, he was eminently gifted with the precifion of logical reafoning, which commands attention and enforws perfalion.

LAMP (fee lineyci) is an inftrument comprifay three articles whech demand our attention, viz. the oil, the wick, and the fupply of air. It is required that the oil fhould be readi! y inflammable, without containing any fetid fubstance which may prove cffentive, or nucilage, or other matter, to oberuct the channcls of the wick. Mr Nicholfon fays *, that he knows of nion procefs * Trianaz, by which oils can be meliorated for this furpole, except vil. i. that of wafhing with water containing acid or alkali. ${ }^{1{ }^{\circ}}{ }^{2}$ Either of thefe is faid to render the mucilage of animal oils more foluble in water ; but acid is to be preferred,
becaus.

Lamano ${ }_{3}$ Lamp.

Samp. becaufe it is lefs difpofed to conbine with the oil itfelf. Perhaps oil might be deprived of all fetid imell in burning, by being made to pafs through Collier's filtering apparatus, defcribed under the word Filter in this Suppl.

The office of the wick appears to be chiefly, if not folely, to convey the oil by capillary attraction to the place of combuftion. As the oil is confumed and flies off, other oil fucceeds, and in this way a continued current of oil and maintenance of the flame are effected. Dut as the wicks of lamps are commonly formed of combuftible matter, it appears to be of fome confequence what the nature and ftrmeture of this material may be. It is certain that the flame afforded by a wick of rufh differs very confiderably from that afforded by cotton; though perhaps this difference may, in a great meafure, depend on the relative dimenfions of each. And if we may judge from the different odour in blowing out a candle of each fort, there is fome resfon to fufpect that the decompolition of the oil is not effected precifely in the fame manner in each. We have alfo fome obfcure accounts of prepared wicks for lampa, which are ftated to poffefs the property of facilitating the combution of very impure oils, fo that they thall burn for many hours without fmoke or fmell.

The economical wicks of M. Leger, concerning which a report was prefented to the Academy at Pai is in 17^{-2} by Condorcet, I avoilier, and De Milly, were compofed of cotton of different fizes and forms, namely, round and flat, according to the ufe they were intended to ferve. They were covered with a fat fubftance, of a fincll not difagreeable, but feebly aromatic. From the trials of thefe commiffaries it was afcertained: I. 'Ihat they afforded a clearer flame, with lefs undulation. 2. That they confumed fomewhat lefs oil; and, 3. That they poffeffed the remarkable property of affording neither fmell nor fmoke, however common the oil made we of. When ufing a lamp with a flat wick, we have ourfclues found a piece of clean cotton tacking anfwer the nurpofe better than the cotton wicks which are fold in the fhops.

The accefs of air is of the laft importance in every procels of combultion. When a lamp is fitted up with a very flender wick, the flame is finall, and of a brilliant white colour: if the wick be larger, the combution is lefs perfect, and the flame is brown: a fill larger wick not only exlibits a brown fame, but the lower internal part appears dark, and is occupied by a portion of volatililed matter, which does not become ignited until it has afcended towards the point. When the wick is either very large or very long, part of this matter efcapes combultion, and thews itfelf in the form of coal or fmoke. 'the different intenfity of the irgnition of flame, according to the greater or lefs fupply of air, is remarkably feen by placing a lamp with a fmall wick beneath a thade of glafs not perfectly clofed below, and more or lefs covered above. While the current of air through the glafs fhade is perfectly free, the flame is white ; but in proportion as the aperture above is diminified, the flame becomes brown, long, wavering, and finoky ; it inftantly recovers its original whitenefs when the opening is again enlarged. The inconvenience of a thick wick has been long fince obferved, and attempts made
to remove it ; in fome inflances, by fubflituting a number of fmall wicks inftead of a larger; and in others, by making the wick flat inftead of cylindrical. The molt feientific inprovement of this kind, though perhaps lefs fimple than the ordinary purpofes of life demand, is the well known lamp of Argand, defcribed in the Encyclopadia.

Much has been faid of this lamp, and great praife lavihed on the inventor. It cannot indeed be denied that it was a very pretty invention, nor have we the nighteft wifh to detract from the merit of M. Argand ; but truth compels us to fay, that the fame thought had occurred to others as carly as to him, and that lamps had been conftructed on his principles long before lie had publifhed an account of his lamp to the world (A).

Many ingenious men have endeavoured to determine the mof economical method of lighting up large halls and workhoufes by means of different lamps and candles; and when the expence of tallow and oil is confidered, it will be adinitted that they could not employ their time in a manner more beneficial to the poor and the induftrious. Among others, Count Runford and M. Haffenfratz have turned their attention to this fibject; and the refults of their inveftigations are worthy of notice. To the Count, a method occurred for mealuring the relative quantities of light emitted by lamps of different conftructions, which is at once fimple and accurate. It is as follows:

Let the two burning lamps, or other lights to be compared, be called A and B ; and let them be placed at equal heights upon two light tables, or moveable fands, in a darkened room; let a fheet of clean white paper be equally fpread out, and faltened upon the wainfcot, or fide of the room, at the fame height from the floor as the lights; and let the lights be placed overagainft this fheet of paper, at the diftance of fix or eight feet from it, and fix or eight feet from each other, in fuch a manner, that a line drawn from the centre of the paper, perpendicular to its furface, fhall bifect the angle formed by lines drawn from the lights to that centre ; in which cafe, confidering the theet of paper as a plane fpeculum, the one light will be precifely in the line of reflection of the other.
This may be eafily performed, by actually laying a piece of a looking-glafs, fix or eight inches fquare, flat upon the paper, in the middle of it ; and obferving, by means of it, the real lines of reflection of the lights from that plane, removing it afterwards, as foon as the lights are properly arranged. When this is done, a imall cylinder of wood, abont ith of an inch in diameter, and lix inches long, muft be leld in a vertical polition, about two or three inches before the centre of the theet of paper, and in fuch a manner, that the two Thadows of the cylinder, correfponding to the two lights, may be ditinctly feen upon the paper.

If thefe fhadows thould be found to be of unequal denfities, which will almolt always be the cafe, then that light whofe correfponding thadow is the denfeft mult be removed farther off, or the other muft be brought nearer to the paper, till the denfities of the fhadows appear to be exactly equal ; or, in other words, till the denfities of the rays from the two lights are equal at the furface of the paper; when, the ditances of the lights from
(A) One of thefe was employed in the college of Glafgow, by the lecturer on chemitry, fo long ago as 1766 .
from the centre of the paper being mealured, the \{quares of thofe diftances will be to each other as the real intenfities of the lights in queftion at their fources.

If, for example, the weaker light being placed at the diftance of four feet from the centre of the paper, it flould be found neceffary, in order that the fhadows may be of the fame denfity, to remove the ftronger light to the diftance of eight feet from that centre, in that cafe, the real intenfity of the ftronger light will be to that of the weaker as 8^{2} to 4^{2}; or as 64 to 16 ; or 4 to $\mathbf{1}^{\mathbf{1}}$; and fo for any other diftances.

It is well known, that when any quality proceeds from a centre in ftraight lines in all directions, like the light emitted hy a luminous body, its intentity at any given difance from that centre will be as the fquare of that diftance inverfely; and hence it is clear, that the intenfities of the lights in queflion, at their fourccis, muft be to each other as the fquares of their dittances from that given point awhere their rays uniting are found to be of equal derfity. For, putting $x=$ the intenfity of D , if P reprefents the point where the rays from \dot{A} and from B meeting are found to be of equat denlity or Atrength, and if the drlance of A from P be $=m$, and the ditance of B from the fame point $P=n$; then, as the intenfity of the light of A at P is $=\frac{x}{m^{2}}$, and the ilitenfity of the light of B at the fame place $=\frac{y}{n^{2}}$, and as it is $\frac{x}{m^{2}}=\frac{y}{n^{2}}$ by the fuppolition; it will be $x: y:$: $m^{2}: n^{2}$.

That the fhadows being of equal denfity at any given point, the intenfities of the illuminating rays mult of seceffity be equal at that point alfo, is hence evident, that the total abfence of light being perfect blacknefs, and the గadow correfponding to one of the lights in queltion being deeper or fainter, according as it is more or lefs enlightened by the other, when the thadows are equal, the intenfities of the illuminating rays muft be equal likewife.

In removing the lights, in order to bring the fhadows to be of the fame denfity, care muft be taken to recede from, or advance towards, the centre of the paper in a itraight line, fo that the one light may always be found exactly in the line of reflection of the other; otherwife the rays from the different lights falling upon the paper, and confequently upon the hadows, at different angles, will render the experiment fallacious.

When the iutenfity of one ftrong light is compared with the intenfities of feveral fmaller lights taken together, the fmaller lights fhould be placed in a line perpendicular to a line drawn to the eentre of the paper, and as rear to each other as pofible ; and it is likewife neceffary to place them at a greater diftance from the paper than when ouly fingle lights are compared.

In all cafes, it is abfolutely neceffary to take the greateft care that the lights compared be properly trim. med, and that they burn clear and equally, otherwife the refults of the experiments will be extremely irregular and inconclufive. It is aftonißing what a difference there is in the quantities of light emitted by the fame candle, when it burns with its greatef brilliancy, and when it has grown dim for want of fnuffing. But as this diminution of light is progreffive, and as the eye

Suppl. Vol. II. Part I.
infenfibly conforms to the quantity of light actually prefent, it is not ahways taken notice of by the fpectators ; it is neverthelefs very confiderable, in fact, as will be apparent to any one who will take the trouble to make the experiment; and fo great is the fluctuation in the çuantity of light emitted by burning bodies, lamps, or candles, in all cafes, even under the moft favourable circumfances, that this is the fource of the greateft diffculties which our author met with in determining the relative intenfitics of lights by the method here propofed.

To afcertain by this method the comparative denf.ties, or intenfities, of the light of the moon and of that of a candle, the montu's direct rays mult be received upon a plane white furface, at an angle of iacidence of about 60°, and the candle placed in the hne of the refection of the moor's rays from this furface; when the thadows of the cylinder, correfponding to the moon's light and to that of the candle, heing brought to be of equal denfity, by removing the candle farther off, or bringing it nearer to the centre of the white plane, as the occafion may require, the intenlity of the monn's light wilt be equal to that of the candle at the siveni diflunce of the candle fiom the plant.
'To afcertain the intenfity of the light of the heavens, by day or by night, this light mut be let into a darken. ed room through a long tube blackened on the infide, when its intenlity may be compared witl that of a candle or lamp by the method above defcribed.

The Count, however, has contrived an apparatus for afcertaining the intenfity of the fun's light, compared with the light emitted by any artilicial illuminator, with much greater accuracy than it can be done by this fim. ple inethod. That apparatns we flall defcribe nader the tithe Рнотоmeter in this Supplement; and in the mean time we proceed to lay before our readers the refults of his experiments as they relate to economy in the prodıction of artificial light.

The brithiancy of Argand's lamp is not only unrival- of the reled, but the invention is in the highen degree ingenious, af the reand the inftrument ufeful for many purpotes ; but fill, tites of oil to judge of its real merits as an ifluminator, it was re-confumed, ceffary to know whether it gives more light than another an! of light lamp in proportion to the oil confumed. This point he de- anit Ar. termined in the following manner:

Having placed an Argand's lamp, well trimmed, and burning with its greateft brilliancy, before his plootometer, and over againft it a very excellent common lamp, with a riband wick conwh with a clear, bright flame, withont the leaft appearance with a riof finoke, he found the intenfities of the light enitted band by the two lamps to be to each other as 17956 to wick. 9063 ; the denfities of the fhadows being equat when, the Argand's being placed at the diffance of 134 inches, the common lamp was placed at the diftance of 95,2 inches, from the field of the photometer.

Both lamps having been very exactly weighed when they were lighted, they were now (without heing removed from their places before the photometer) caufed to butn with the lame brilliancy jutt 30 minutes ; they were then extinguifhed and weighed again, and wore found to have confumed of oil, the Argand's lamp $\frac{2}{8} \frac{5}{8} \frac{3}{8} 2$, and the common lamp $\frac{16}{8} \frac{6}{9} \frac{2}{2}$, of a Bavarian pound.

Now, as the quantity of light produced by the Ar-

L A M

gand's lamp, in this experiment, is to the quantity produced by the common lamp as 17056 to 9063 , or a3 187 to 100 , while the quantity of oil confumed by the former is to that confumed by the latter only in the ratio of 253 to 163 , or as 155 to 100 , it is evident that the quantity of light produced by the combution of a given quantity of oil in an Argand's lamp is greater than that produced by burning the fame quantity in a common lamp, in the ratio of 187 to 155 , or as 100 to 85 .

The faving, therefore, of oil which arifes from making ufe of an Argand's lamp inftead of a common lamp, in the production of light, is evident : and it ap. pears, from this experiment, that that faving cannot amount to lefs than fifteen per cent. How far the adivantage of this faving may, under certain circumflarices, be counterbalanced by inconveniences that may attend the making ufe of this improved lamp, our author does not pretend to determine.
()f the re
lative quan tilies of llght emit red by an Argand's famp and iy a comminn wax candle.

The Count made a confiderable number of experi ments to determine the relative quantities of light emitted by an Argand's lamp and a common wax candle ; and the general refult of them is, that a common Argand's lamp, burning with its ufual brightncfs, gives about as much light as nine good wax candles ; but the fizes and qualities of candles are fo various, and the light produced by the fame candle fo fluctuating, that it is very difficult to afcertain, with any kind of precifion, what a common wax-candle is, or how much light it ought to give. He once found that his Argand's lamp, when it was burning with its greateft brilliancy, gave twelve times as much light as a good wax candle $\frac{3}{4}$ ths of an inch in diameter, but never more.

Of the re
lative quan titics of bees-wax, tallow, olive ooil, sape-oil, and in -feed-oil, confumed in the production of light.

Argand's lamp, which was burning with a very fteady flame; and meafuring the intenfity of the light emitted by the candle from time to time, dinring an hour, the candle being occafionally fnuffed when it apneared to ftand in need of it, its light was found to vary from 100 to about 60 . The light of a wax candle of an inferior quality was @till more unequal; but even this was but trifling, compared to the inequalities of the light of a tallow-candle.

An ordinary tallow-candle, of rather an inferior quality, having been juft fuuffed, and burning with its greateft brilliancy, its light was as 100 ; in eleven minutes it was but 39 ; after eight minutes more had clapfed, its light was reduced to 23 ; and in ten minutes more, or twenty nine minutes after it had been laft fnuffed, its light was reduced to 16 . Upon being again Inuffed, it recovered its original brilliancy, 100.

In order to afcertain the relative quantities of bees wax and of olive oil confumed, in the production of light, the Count proceeded in the following manner: Having provided an end of a wax-candle of the beft quality, , 68 of an inch in diameter, and about four inches in length, and a lamp with five fmall wicks, which he had found upon trial to give the fame quantity of light as the candle, he weighed very exactly the candle and the lamp filled with oil, and then, placing them at equal diftances (forty inches) before the field of the photometer, he lighted them both at the fame time; and,
after having caufed them to burn with precifely the fame degree of brightnels juft one complete bour, he extinguifhed them both. and, weighing them a fecond time, he found that 100 parts of wax and 129 parts of oil had been confumed.

Hence it appears, that the confumption of bees wax is to the confumption of olive-oil, in the production of the fame given quantity of light, as 100 is to 129 .

In this experiment no circumitance was negle? that could tend to render the refult of it conclufive; care was taken to fnuff the candle very often with a pair of fharp fciffars, in order to make it burn couftantly with the fame degree of brilliancy; and the light of the lamp was, during the whole time, kept in the moft exact equilibrium with the light of the cancle, which was eafily done by occafionally drawing out, a little more or lefs, one or more of its five equal wicks. Thefe wicks, which were placed in a right line, perpendicular to a line drawn from the middle wick to the middle of the field of the photometer, were about $\frac{x}{10}$ th of an inch in diameter each, and $\frac{1}{4}$ th of an inch from each other; and, when they were lighted, their flames united into one broad, thin, and very clear, white flame, without the leaft appearance of fmoke.

In order to afcertain the relative confumption of oliveoil and rape-oil, in the production of light, two lamps, like that juft defcribed, were made ufe of; and, the ex. periment being made with all poffible care, the confumption of olive-oil appeared to be to that of rape-oil, in the production of the fame quantity of light, as 129° is to 125 .

The experiment being afterwards repeated with olive. oil and very pure linfeed.oil, the coufumption of oliveoil appeared to be to that of linfeed-oil as 129 to 120.

The experiment being twice made with olive oil and with a tallow candle; once when the candle, by being often fnuffed, was made to burn conltantly with the greateft poflible brilliancy, and once when it was fuffered to burn the whole time with a very dim light, owing to the want of funffing; the refults of thefe experiments were very remarkable.

When the candle burnt with a clear, bright flame, the confumption of the olive oil was to the confumption of the tallow as 129 is to 101 : but when the candle burnt with a dim light, the confumption of the olive-oil was to the confumption of the tallow as 129 is to 220 . So that it appeared, from this laft experiment, that the tallow, inftead of being nearly as productive of light in its combultion as bees wax, as it aopeared to be when the candle was kept conftantly well fnuffed, was nov's when the candle was fuffered to burn witl a dim light, by far lefs fo than oil.

But this is not all; what is fill more extraordinary is, that the very fame candle, burning with a long wick, and a dim light, actually confumed more tallow than when, being properly fnuffed, it burnt with a clear bright flaine, and gave near three times as much light.

To be enabled to judge of the relative quantities of light actually produced by the candle in the two experiments, it will fuffice to know, that in order to counterbalance this light at the field of the photometer, it required, in the former experiment, the confumption of 141 parts, but in the latter only the confumption of 64 parts, of olive-oil. But in the former experinent 110 ,

L A M

[and in the latter in 4 , parts of tallow were act ually found to be confumed. Thefe parts were 8192 the of a Bavarian pound.

From the refults of all the foregoing experiments, it appears that the relative expence of the undermentioned inflammable fubftances, in the production of light, is as follows:

Equal Parts
in Weight. in Weight.
Btes wax. A good wax-candle, kept well fnuffed, and burning with a clear, bright flame,

ICO
Tallow. A good tallow candle, kept well fnuffed, and burning with a bright flame, - - - -
The fame tallow-candle, burning
$\begin{array}{r}\text { very dim for want of fnuffing, } \\ \begin{array}{l}\text { Olive-oil. Burnt in an Argand's lamp, } \\ \text { The fame burnt in a common lamp, } \\ \text { with a clear, bright flame, }\end{array} \\ \begin{array}{ll}\text { without fmoke, - }\end{array} \\ \hline\end{array}$
IOI

Rape-oil. Burnt in the fame manner, - . 125
Linfeed-oil. Likewife burnt in the fame manner, - - - - - 120
With the foregoing table, and the prices current of the therein mentioned articles, the relative prices of light produced by thofe different materials may very readily be computed.

In the year $1795, \mathrm{Mr}$ J. H. Haffenfratz was em. ployed by the French government to make a feries of experiments to determine the mof economical method of procuring light from the different combuftible fubttances ufually employed for that purpofe. The materials of his experiments were, wax, fpermaceti, and tallow candles, finhoil, oil of colefeed, and of poppy feeds. In ufing thefe oils, both the Argand and common lamps were employed. The wicks of the latter were rourd, containing thirty-fix cotton threads. The tallow and fpermaceti candles were mould, fix to the pound. The wax candles five to the pound. $\mathrm{Mr} \mathrm{H}_{\text {affenfratz }}$ ufed the fame method with Count Rumford for deterinining the comparative intenfity of the lights.

Count Rumford, as we have feen, ufed the A rgand lamp as a ftandard for comparifon; but as the intenfity of its light varies according to the height of the wick, Mr Haffenfratz preferred a wax-candle, making ufe of it foon after it was lighted. When two luminous bodies, of different intenfities, are put in comparifon with each other, the fhadows are of two colours. That from the weakeft light is blue, and from the ftrongeft, red. When the lights of two different combuftible bodies are compared, they are either red or blue in a compound ratio of the colour and intenfity. Thus in comparing the fhadows from different luminous bodies, they will be red or blue refpectively, in the following order:

> Light of the fun. of the moon. of Argand lamps. of tallow-candles. of wax ditto.

That is to fay, when a body is illuminated by the fun atd by any other luminous fubftance, the fhadow

67] LA M
of the former is red, and of the latter, blue. In like tamp. manner, the fhadow from an Argand lamp is red, when placed ly that of a tallow candle, which is blue.

The following table will fhew, according to Mr Haf. fenfratz, the proportional ditance that different luminous bodies fhould be placed at to produce an equally intenfe fladow from the fame object. The fecond column gives the provortional intenfity of each light, which is known to be in proportion to the fquares of the diltances of luminous bodies giving the fame depth of fhadow. The third column fhews the quantity of combulible natter confumed in the hour by each mode of givirg light, which Mr Haffenfratz calculates from the average of many repeated experiments.

	Di. ftance.	Inenfi:y.	$\begin{gathered} \text { Luan } \\ \text { tity } \\ \text { sunfu } \\ \text { med } \\ \text { per } \\ \text { hour } \end{gathered}$	Cina eity requ:- ed for equal elifn- fities.
Argand $\}$ Oil of poppy fee		10.000	3	23
lamps $\}$ - of fifhes	10	10.000	23.77	23.77
with - of cole.feed	9.246	8.549	14.18	10.59
Common Oilof cole-feed	6774	4.588	8.81	19.2
lamps $\}$ - of fifhes	6.524	4.550	9.14	20.06
with J-of poppy-feed	5.917	3.501	7.0:	20.14
Spermaceti candle	5.917	3501	9.23	26.37
Old tallow candle	5773	2.995	7.54	25.17
New ditto	$5 \cdot 473$	2945	8.23	27.18
Wax candle	4.275	$18: 7$		

The relative quantity of combi:ftible matter required to produce equal lights at equal dillances, may be obtained by a fimple rule of proportion from the above data. Thus, if a given intenfity of light, exprelled by 3.501, has been produced by a confumption of 9.23 of fpermaceti in the hour, the fame luminous body will produce a light of $10.000, b_{Y}$ confuming in the fame time a quantity of fpermaceti $=\frac{10.030 \times 9.23}{3.501}=26.37 .-$ Therefore we may add to the table a fourth colunn, exprefling the quantity of combuflible which each body mult confume to produce a light of 10.000 .

From what has been laid down, it will alfo appear that the number of lights required to produce a given light, will be as follows: To produce a light equal to sco Argand lamps, burning poppy-feed oil, it will require

> 100 Argand lamps with fifh-oil.
> 117 Ditto do. with cole feed oil
> 218 Common lamps with cole-feed oil
> 219 Ditto do. with fifh oil
> 285 Ditto do. with poppy feed oil
> 285 Spermaceti candles
> 333 Tallow ditto
> 546 Wax ditto.

Mr Haffenfratz next takes notice of the comparative price of thefe articles; by which lie finds, that in Paris the moft expenfive light is that produced from waxcancles; and the molt economical, that from oil of colefeed, burned in Argand lamps.

The chief difference between the Λ rgand and com-
I 2

L A N

Lancafhire mon lamp is, that in the latter much of the oil is volatilized without combuttion, and bence the unpleafant fmell which it produces; whereas in the former, the heat is fo great at the top of the wick, that all the oil is decompofed in paffing through, the difpofition of the wick allowing the free accefs of air to affilt combultion. It fhould therefore follow, that the Argand lamp confumes lefs fuel to produce a given light than the common lamp, and this, as we have feen, is the opinion of Count Rumford. Yet (Mr Hafienfratz obferves) there are two circuinftences that prevent the full effect of the complete combuftion in the Argarid lamp. The one is, that the glafs cylinder abforbs a part of the rays of light as they pals through; the other, that the column of light procceding from the iuner furface of the wick, is, in part, loft, by being obliged to pafs chrough that from the outer furface. Count Rumford allows the firlk caufe of diminution of light, and eflimates it at .1854 , but not the latter. The author of this memoir, in re. peating Counr Rumford's experiments, afferts, that when two candles are placed fo that the light of the one is obliged to pafs through that of the other, the fum of the light fo produced is not fo ftrong as when they are placed fide by fide; for in the firft cafe, a part of the hindmo!t light is abforbed by the foremoft.

LANCASHIRE. In the account which we have given of that county in the Encyclopredia, an obliging correfpondent has pointed out to us fome miftakes. He affures us, that the fea coant, where we underfood the atmofphere to be loaded with fuch exhalations as produce inalignant and internitting fevers, is remarkatly healthy; and he fpeaks from experience, having lived on that coaft for forty years. He affures us likewife, that the Duke of Bridgewater's inland navigation was begun foon after, if not before, the year 1730 , and that he (the writer), fo early as 1764 , was one of a party who failed up the fongh or edit a confiderable way to fee how the coals were worked. The fame correfpondent has pointed out a few miftakes in our account of

LANCASTER, the capital of the county. "That town (he fays) carries on no trade whatever with North America, but a very confiderable one with Jamaica and the other Weft India iflands, in veffels of from 100 to 500 tons burthen. It exports to thefe iflands all fuch 13 ritifh manufactures as they have occafion for, Irifh linens, and falted provifions of all kinds, fuch as Irifh becf, pork, butter, \&c. It trades alfo to the Baltic, Portugal, Hamburgh, \&c. to a large amount ; and fome of its thips with their cargoes have of late been worth from L. 60 to L. 80,000 tterling. It has, however, no communication by water with the rivers Merfey, Dee, \&c. a3 we have faid; the canal reaching as yet no farther than to near Pretton in Lanca/hire." The communication with thefe rivers is indeed intended to be completed; but whether the fcheme be practicable is, according to our correfpondent, very uncertain.

LANTERN (See Encycl.). Sir George Staunton informs us, that of the Chinefe lanterns, fome were fuch as we have defcribed, viz. compofed of thin filk gauze, painted or wrought in needle-work with figures of birds, infects, flowers, or fruit, and ftretched on neat frames of wood. Others, however, were very different, being entirely made of hoon. Thefe were fo thin and tranfparent, that they were taken at firft for glafs; a material to which, for this purpofe, the horn is prefer.
red by the Chinefe, as cheaper, lighter, lefaliable to ac. Lanteren, cident, and, in cafe of accident, more ealily repaired; many of them were about two feet in the diameter, and in the form of a cylinder, with the ends rounded off, and the edges meeting in the point to which the fufpending cords were tied. Each lantern confifted of an uniform piece of horn, the joints, or feams, being rendered invifible by an art found out by the Chinefe; among whom, the vaft number of fuch lanterns ufed in their dwelling houfes and temples, as well as on the occafions of their feftivals and proceffions, have led to many trials for improving their conftruction. The horns generally employed are thofe of fheep and goats. The ufual method of managing them, according to the information obtained upon the fpot, is to bend then by immerfion in boiling water, after which they are cut open and flattened; they then eafily fcale, or are feparated into two or three thin laminx or plates. In order that thefc plates fhould be made to join, they are expofed to the penetrating effect of iteam, by which they are rendered almolt perfectly foft. In this ftate the edges of the pieces ro be joined are carefully fcraped and flanted off, fo as that the pieces overlapping each other fhall not together exceed the thickncfs of the plate in any other part. By applying the edges, thus prepared, immediately to each other, and preffing them with pincers, they intimately adhere, and incorporating, form one fubifance, fimilar in every refpeét to the other parts; and thus uniform pieces of horn may be prepared to almolt any extent. It is a contrivance litcle known elfewhere, however fimple the procefs appears to be; and perhaps fome minute precautions are omitted in the general defcription, which may be effer. tial to its complete fuccefs.

Such lanterns as thefe would be very proper for military ftore houfes; and Rochon of the National Infitute was employed, firce the commencement of the prefent. war, to nake them, if he could, for the marine florehoufes of France. While he was thus engaged, however, it occurred to him, that he might fupply the preffing wants of the navy without horn, merely by filling. up the intertices of wire-cloth with fine tranfparent glue. In cariying this thought into execution, he at firft tinned the iron wires of the fieve cloth he made ufe of; but afterwards found it more convenient, in every refpent, to give it a flight coating of oil paint to preferve it from rutt. The glue he made ufe of was afforded by boiling the clippings of parchment with the air bladders and membranes of fea fifh; materials which he ufed, not from any notion that they were preferable to ifinglafs, but becaule they were the cheapeft he could procure. He added the juice of garlic and cyder to his compofition, in fuch proportions as he found to communicate great tenacity, and fomewhat more of tranfparence than it would have poffeffed without them. Into this tranfparent and very pure glue or fize he plunged his wire cloth, which came out. with its interitices filled with the compound. It is requifite that the fize fhould poffefs a determinate heat and confiftence, concerning which experience alone muft guide the operator.

When this prepared wire cloth is fixed in the lantern, it mult be defended from moitture by a coating of pure drying linfeed oil; but even in this itate it is not fit to be expofed to the weather. The eafe with which thefe lanterns are repaired in cafe of accident, by a

L A R [69] L A V

Lavis, night coating of glue, is pointed out as a great advan-Lardiza- tage by the inventor; who likewife informs us, that they were ufed in the expedition to Ireland as fignal lanterns, though contrary to his wifhes.

LAPIS FUngifer, a foecies of earth found near Rome, Naples, and Florence, of which the following account is taken from the New Tranfugions of the Royal Academy of Sciences at Stockbolm for the year 1797: Near Naples the lapis fungifer is fonud in the chalkhills like a white ttalactites, intermixed with a great nany fine roots of flarubs; and near Florence there is a fpecies of it, confifting of hardened turf, which is dug up near volcanoes. The anthor made experiments with a piece procured from Italy, and fonnd that 100 parts contain from 45 to 46 filiceous earth, 23 argillaceons earth, 7 calcareous eartl, and 20 calx of iron, with fome white magnefia and vegetable alkali. It is well known, that when this friable fpecies of flone is preferved in cellars and moifened with water, it produces abundance of eatable mufhrooms, which in Italy are highly eiteemed and brought to the firft tables. Hence the origin of its name.

LARDIZABALA, a new genus of plants belong. ing to the diacia bexandria of Limnæns. It is a native of Chili, and is thus defcribed in Peronfe's Voyage, from drawings fent to France by La Martiniere. The leaves are alternate, on footlalks inflated at their befe. Each leaf is bi-ternate, that is to fay, it is divided into three leaflets, each of which is again fubdivited into three oval Sharp pointed folioles, which, when young, are entire, but afterwards become obfcurely lobed. The flowers, difpofed in fimple and pendent clufters, grow towards the top of the ftem and of the branches in the axillæ of the leaves. The plant is diecius. At the bafe of each clufter of bloffoms are two fmall, rounded, oval, floral leaves.

Male Flower.- Calyx formed of fix expandiug leaves, oblong oval, and obtufe, of which the three ontermoft are the largeft. Corollia compofed of fix fharp lanceolated petals, oppofite to, and fhorter than, the leaves of the calyx. A cylinder rifes from the centre of the flower of the length of the petals, terminated by fix oblong bilocular anthers, which open from below.

Female Flower.-Calyx, fimilar to that of the male flower, but larger. Corolla inferted beneath the pitil compofed of fix petals, rarely entire, but generally bifid or trifid at theirsummit : forter than the leaves of the calyx. Stamina lix, having the fame infertion as the corolla ; filaments diftinct, broad, very fhort, furrounding the piltil; antbers, fix, upright, oblorg, acuminated, barren. Seel bud, cells, from three to fix, oblong, gribbous on the outfide, of nearly the length of the corolla; ftyles none; ftigmata, fitting, oblong, permanent. Berries, equal in number to the cells, oblong, acuminated (divided into fix cells, containing feveral angular feeds. Flora Peruviana).

The general character of the lardizabala eviciently places this new genus among the family of the menifper$m a$, to which it is related by its climbing falk, its Bunches of diccious flowers, by its fix petals, famina, and leaves of its calyx, by its piftil, compofed of from three to fix cells, which contain as many feeds. It differs from the known genera of this order only in its fruit, which, inftead of being monofpermous, contains feveral feeds. This character, which requires the in-
troduction of a new fection into the meniperma, Larmies ftrengthens the relation of this family to the next order of the anonc. In fact, the greater part of the genera of the anonx, as they have in the fame flower feveral fruits, with numerons feeds, differ in this particular from all the genera of the menifpermx; and by placing between them the lardizabala, we eftablifh a natural tranfition. In order to confirm thefe refemblances, it only remains to examine the infide of the fruit, and particularly the ftructure of the feeds. Thofe of the menifpermæ are reniform, at leaft on the intide, inclofed in a hinged pericarpium, and containing in their upper part a very fmall dicotyledonns ensbryo. The characters that we lave given of the lardizabala render probable a finnilar ftructure in is feeds.

LARMIER, in architectrre, a flat fquare member of the cornice below the cimatium, and jets out fartheft; being fo called from its ufe, which is to difperfe the water, and caufe it to fall at a diftance from the wall, drop by drop, or, as it were, by tears; larme in French tignifying a tear.

LA'TUS PKimarium, a right line draven through the vertex of the fection of a cone, within the fame, and parallel to the bafe.

Latus Rechum. Ste Conic Seaion, Encycl.
Latus Tranfurrfun of the hyperbola, is the right line between the vatices of the two oppofite fections. or that part of their common axis lying between the two oppulite cones.
I. AVA. In addition to the obfervations of Sir William Hamilton, Bergmann, Formes, and Dalmieu, on the compulition of different lavas, which have been given in the Encyclopedia, we cannot refufe ourfelves the pleafure of noticing, in this place, thofe of Sir James Hall. From a number of well-devifed experiments, Sir James thinks himfelf warranted to conclude, that lava and whinttone are intrinfically the fame fubftance; and that their apparent differences arife wholly from the circumfances under which they have pafled from a liquid to a folid \{ate. The lavas, it is well known, have been cooled rapidly in the open air, and the whins (according to Dr ifutton's theory, which Sir James feems willing to adopt) flowly in the bowels of che earth.

Though we are far from adopting that theory in all its parts, to which we think infuptiable objections may be made (fee Liarth, Encycl. no 120), we admit, that the experiments of Sir James IIall goo far to eftablifh the identity of lava and whinfone. Thefe experiments were made upon feven different fpecies of whinftone and hix lavas, of which four were broken from the currents of Etna and Vefuvius by Sir James himielf. Lach of the original whinftones was reduced, by fulion and fubfequent rapid cooling, to a ttate of perfect glafs. This glafs, being again placed in the funace, was fubjected to a fecond fufion. The heat, being then reduced to a temperature generally about 28° of Wedgewood, was maintained ftationary for fome hours; when the crucible was either immediately removed, or allow. ed to cool with the furnace. The confequence was, that in every cafe the fubitance had loft the character of glafs, and by cryftallization liad affumed in all refpects that of an original whinftone. It muft be owned, that in moft cafes the new production did not exactly refemble the particular original from which it was form.

L A V

Sava, 1.at ilier.
(d), but fome other original of the fame clafs; owing to accidental varieties in the mode of refrigeration, and to chemical changes which unavoidably took place during the procefs. In the cafe, however, of the rock of Edinburgh cafle, and of that of the bafaltic columns of Staffa, the artificial fubftances bear a complete refemblance to their originais, both in colour and lexture.
The lavas were now treated in the fame way, and were each, by fui ion and rapid cooling, reduced, as the whinftones had teen, to glafs. This glafs, when fufed again and cooled flowly, yielded the fame kind of cryftallized, fony, or eartliy maffes, completely refembling an original whin or lava.

Although the internal ftructure of lava was thus accounted for, yet Sir James was embarraffed with the thate of its external furface; which, though cooled in contact with the open air, is feldom or never vitreous, holding an intermediate ftation between glafs and flone; but this difficulty was removed by a circumftance which touk place in the courfe of thefe experiments. It was found, that a fmall piece of glafs of any of the lavas, or of feveral of the whins, being introduced into a muffic, the temperature of which was at any point between the 20th and the 22 d degree of Wedgewood's fcale, the glafs became quite foft in the fpace of one minute; but, being allowed to remain till the end of a fecond minute, it was found to have become hard throughout in confequence of a rapid cryftallization, to have loft its character of glafs, and to have become by 12 or 14 degrees more infufible, being unaffected by any heat under 30 , though the glafs had been fufible at 18° or at 16°. This accounted for the fcoria on the furface of lavas; for the fub. ftance even at the furface, being in contact with the flowing flream, and furrounded with heated air, could not cool with exceffive rapidity: and the experiment fhews, that flould any part of the mafs, in defcending heat, employ more than one or two minutes in cooling from 22 to 20 , it would infallibly lofe its vitreous cha. racter.

Independently of any allufion. to fytem or to general theory, Sir James Hall flatters himfelf that thefe expetiments may be of fome importance, by fimplifying the liftory of volcanoes; and, above all, by fuperfeding iome very extraordinary, and, he conceives, unphilofo. phical opinions advanced with regard to volcanic heat, which has been fated as poffeffing very little intenfity, aud as acting ty fome occult and inconceivable influence, or with the help of fome invifible agent, fo as to proAnce liquidity without fufion. Thefe fuppofitions, which have bell maintained ferioufly by fome of the snolt celebrated naturalits in Europe, have originated from the difficulty of accounting for the ftony characier of lavas when compared with that of glafs, which they aflume in confequence of fufion in our furnaces. But now he hopes we may be relieved frum the neceffity of fuch violent efforts of inagination, fince the phenomena have been fully accounted for by the fimple, though unnoticed, principle of refrigeration, and lave been repeatcl again and again with cafe and ccrtainty in a finall chamber furnace.

LAYOISIER (Antoine Laurent), was born in Pafis on the 2fth of Auguft 174.3. His father, whon directed his education, was opulent, and fpared no coft for his improvement. The youth hewed a decided .tafte for the phyfical ficiences. In 1764 , government
having propofed an extraordinary premium for the beft lavoifier. and cheapeft mode of lighting the fresets of a large city, Lavoifier obtained the gold medal; and his memoir, full of nice invcltigation, was printed by the Academy. Into that body he was received on the 13th May 1768, in fpite of a formidable oppofition:; and to its fervice he ever after devoted his labours, and became one of its moft ufeful affociates and coadjutors.

His attention was fucceffively occupied with every branch of phyfical and mathematical fcience. The pretended converfion of water into earth, the analyfis of gypfum in the neighbourhood of Paris, the cryftallization of falts, the effects produced by the grande de loupe of the garden of the Infanta, the project of bringing water from l'Y vette to Paris, the congelation of water, and the phenomena of thunder and the aurora borealisall occupied his attention.

Journeys, undertaken in concert with Guettard into every ditrict of France, enabled him to procure numberlefs materials towards a defcription of the lithological and mineralogical empire ; thefe he arranged into a kind of chart, which wanted little of being completed. They ferved alfo as a foundation for a more laborious work of his on the revolutions of the globe, and the formation of Couches de la Terre; a work of which two beautiful fketches are to be feen in the Memoirs of the French Academy for 1177^{2} and 1787 . All the fortune and all the time of Lavoifier wcre devoted to the culture of the fciences; nor did he feem to have a preponderating inclination for any one in particular, un. til an event, fuch as feldom occurs in the arnals of the luman mind, decided his choice, and attached him thencefurth exclufively to chemiftry-a purfuit which has fince rendered his name immortal.

The inportant difcovery of gafes was juft announced to the philofophical world. Black, Prieftey, Scheele, Cavendifh, and Macbride, had opened to phyfiologiths a fort of new creation; they had commenced a new era in the annals of genius, which was to become equally memorable with thofe of the compafs, printing, electricity, \&c.

It was about the year 1770 that Lavoifier, Atruck with the importance and grandeur of this difcovery, turned his attention to this inexhauftible fountain of truths, and inflantly perceived, by a kind of inftinct, the glorious career which lay before him, and the influence which this new fcience would neceffarily have over the whole train of phyfical refearches. Of thofe who had preceded him, the moft indefatigable experimenter was Prieftley : but facts the moft brilliant remained frequently unproductive in his hands; on every occation he was ready to frame fome crude lypothefis, which as haftily he abandoned. Lavoifier was imbued with the true fpirit of inductive philofophy; his obfervations, eminently precife and luminous, always pointed to general views. In 1774, he publifhed his chemical opufcules, which contained a very neat hiftory of all that had been done with refpect to gafes, and concluded with the anthor's capit?l experiments, by which it was proved, that metals, in calcination, derive their augmentation of weight from the abforption of air. Soon afterward, he fhewed, in oppofition to Priefley, that nitrous acid is compofed of air; a remark, of which the importance appeared in the fequel. His ingenuity as a chemit was now fo well known, that in 1776 Turgot enploy-

L A V

introduced fome valuable improvements, and, fuppreffing the odious vilits in queft of the materials of falt. petre, he yet quintupled its produce. The gun powder would now carry 120 toifes, when formerly it would not reach 90 . This fuperiority was indeed acknowledged in the laft war.

It had been alleged, that by frequent diffillation water is converted into earth. This queftion Lavoifier refolved in 1778 , having fhewn that the earthy fediment was owing to the continual erofion of the internal furface of the retort. In that fame year he made a more interefting difcovery ; namely, that the refpirable portion of the atmofohere is a conftituent principle of all acids, and which he therefore denominated oxygen; a moft important fact, and the firft great tlep towards the new chemiftry; which the compofition of water, afcertained in 1783 , triumphantly completed.

Lavoifier poffeffed decifive advantages over his contemporaries; he ftudied a geometrical accuracy of in. veftigation ; and his wealth enabled lim to make experiments on a large fcale, and to ufe inftruments of the moft perfect conttruction. He was able to hold in his houfe, twice every week, affemblies, to which he invited every literary character that was molt celebrated in geometrical, phyfical, and chemical, ftudies; in thefe inftrucive converfationes, difcuffions, not unlike fuch as preceded the firlt eltabliihment of academics, regularly took place. Here the opinions of the molt eminent literati in Europe were canvaffed; paffages the moft ftriking and novel, out of foreign writers, were rccited and animadverted on; and theories were compared with experiments. Here learned men of all nations found eafy admiffion ; Prieftley, Fontana, Blagden, Ingenhoufz, Landriani, Jacquin, Watt, Bolton, and other illullrious phyfiologitts and chemifts of England, Germany, and Italy, fonnd themfelves mised in the fame company with La Place, La Grange, Borda, Coulin, Meunicr, Vandermonde, Monge, Morvean, and Berthollet. Happy hours paffed in thefe learned interviews, wherein rio fubject was left uninveftigated that could poffibly contribute to the progrefs of the fciences, and the amelioyation and happinẹs of man. One of the greatefl benefits refulting from thefe affemblages, and the influence of which was foon afterwards felt i: the academy it felf, and confequently in all the phyfical and chemical works that have been publified for the laft twenty years in France, was the agreement eftablifhed in the methods of reafoning between the natural philofophers and the geometricians. The precifion, the feverity of ftyle, the philofophical method of the latter, was infenfibly tranffufed into the minds of the former; the philofophers became difeiplined in the tactics of the geometricians, and were gradually moulded into their refemblance.

It was in the affemblage of thefe talents that Lavoifier embellimed and improved his own. When any new refult fiom fome important experiment prefented itfelf, a refult which threatened to influence the whole theory of the fcence, or which contradicted theories till then adopted, he repeated it before this felect fociety. Many times fucceffively he invited the fevereft objections of his critical friends; and it was not till after he had furmounted their objections, to the conviction and entire perfuafion of the fociety; it was not till after he had

71 L A V

removed from it all my?ery and obfcurity, that he vea. Lavoifier. tured to announce to the world any difcovery of his own.

At lenglh be combined his philofophical views into a confiftent body, which he publifed in 1789, under the title of Elements of Chberiflery; a book which is a molt beautiful model of fcientific compofition, clear, lugical, and elegant. It would be foreign to our purpofe to attempt all expofition of the principles, or to expatiate on the merits, of this celebrated fyttem; which, within the fpace of a very few years, has been almoft univerfally adopted, and which, if not the genuine interpretation of nature, approaches as near to it as the prefent fate of knowledge will permit. Sec Cuems. try in this Sufplement.
'The laft, but not the leaft ufeful, of Lavoifier's philofophical r feferches, on the Perfpiration of Animals, was read to the Academy on the 4 th May 1791 , and of which part was publifhed in the volume for 1790 . He found, by fome delicate experiments, made in conjunction with Seguir, that a man in 24 hours perfpires 45 ounces; that he confumes 3.3 ounces of vital air ; that he difcharges from the lungs 8 cubic fect of car. bonic acid gas, of which one-third is carbon and twothirds are oxygen; that the weight of water difchar. ged from the lungs amounts to 23 ounces, of which 3 are hydrogen and 20 oxygen, exclufive of 6 ounces of water already formed, loft in pulmonary perfniration. Thefe difcoveries were directed to the improvement of medicine.

We have mentioned the affiftance which Lavoifier received while he was digetting his new fytem of che. miftry ; but we mutt add, that to him pertains exclu. fively the honour of a founder. His own genius was his fole conduetor, and the talents of his affociates were chiefly ufeful in illultrating difcoveries he himfelf had made ; he firft traced the plan of the revolution he had been a long time conceiving; and his colleagues had only to purfue and execute his ideas.

In the twenty volumes of the Academy of Sciences from 1772 to 1793 , arc 40 memoirs of Lavoifier, replete with all the grand phenomena of the fuience; the doctrine of combuition, genemal and particular; the nature and analyfis of atmofpherical air ; the formation and fixation of elaftic fluids; the properties of the mat. ter of heat ; the compolition of acids; the auginenta. tion of the ponderofity of burnt bodies; the decompo. fition and recompolition of water; the diffolution of metals; vegetation, fermentation, and animalization. For more than 15 years confecutive, Lavcifier purfued, with unfhaken conftancy, the route he had marked out for himfelf, without making a tingle falfe ftep, or fuffering his ardour to be damped by the numerous and increafing obftacles which conitantly befet him.

Many were the fervices rendered by Lavoifier, in a public and private capacity, to manufactures, to the friences, and to artills. He was treafurer to the Aca. demy after Buffon and Tillet, and introduced economy and order into the accounts. Ile was alfo a member of the Board of Confultation, and took an active thare in whatever was going forwards. When the neew fyftem of meafures was agitated, and it was propufed to determine a degree of the meridian, he made accurate experiments on the expanfion of metals, and conltucted a metalline thermometer. By the National Conven-

L E D

tuvoificr, tion he was confulted on the means of improving the Lead. ties of forgirg them.
Like a good citizen, Lavoifier turned his thonghts to political economy. Between the years 1778 and 1785 , he allotted 240 arpents in the Vendômois to experimental agriculture, and increafed the ufual prolace by onc-half. In 1791, he was invited by the Comfituent Affembly to digett a plan for fimplifying the collection of the taxes. This gave occafion to an excellent report, afterwards printed with the title of Tervitorial Riches of France. At this time, alfo, he was appointed commiffioner of the national treafury, in which he effected fome beneficial reforms.
During the horrors of the Rohefpierrean dictatorThip, Lavoifier told La Lande that he forefaw he fhould be ftripped of his property, tut that he would work for his bread. The profeffion of apothecary would have fuited him the beft. But his cionm was already fixed. On the 8th of May 1594, confoundece with 28 farmers general, he fuffered on the fcaffold, merely becaule he was rich !

Lavoifier was tall, and of a graceful, fprightly appearance. He was mild, fociable, obliging, and extremely active; and in his manners he was unaffectedly plain and fimple. Many young men, not bleffed with the iffs of fortune, but incited by their genius to woo the fciences, have confefied their obligations to him for pecuninry aid; many, alfo, were the unfortunate whom he relieved in filence, and without the offertation of virtue. In the cominunes of the department of the Loir and Char, where he pofeffed contiderable eftates, he would frequently vifit the cottages of indigence and dittrefs; and long will his memory be cherifhed there. But his reputation, influence, virthes, and wealth, gave him a great preporderance, which unfortunately provoked the jealoufy of a crew of homicides, who made a foort of facrificing the lives of the beft of men to a fanguinary idol.

This great and good man married, in 177 r , MarieAnni Picrette Paulze, daughter of a farmer general ; a womian whofe wit and accomolifhments conflituted the charm of his life; who affifted him in his labours, and even engraved the figures of his laft work.

IEAD. See that article (Encycl.), and Chemi-stry-Index in this supplement. It is well known, that lead generally contains a portion of filver, and fometimes of gold ; and that there are occafions, particular. ly in affaying, when it is of importance to have it freed from thefe metals. For accomplifhing thefe purpofes difficent procefles have been propofed : but the follow. ing by Pet. Jac. Hjelm, as it is the leaft expenfive, promifes to be the molt uffful:

Litharge (fee Encycl.) was the fubatance on which this chemift made his experiments, and his principal object was to free it from all mixture of filver. This was accomolithed in the following menner: He placed a crucible, in which half a pound of litharge found good room, and which was fitted with a clofe cover, in a wind-furnace filled with dead coals. He then put into the crucible a mixture of four ounces of potafh and the fame quantity of powder of flint. When the whole was well melted by ftrengthening the dranght, and making the coals glow, he took off the cover, and laid hold of the crucible with a pair of tongs, in order to
take it ont, and to fuffer this very fufible glafs to cover the infice of the crucible, to fecure it froin the glafs of the lead which he meant to melt in it. The fuperflunus glafs was poured out; the crucible again placed on its foot, and half a pound of litbarge thrown into it with a fhovel. The cover was placed upon it while the litharge was melting; and when it was thoroughly glowing and fluid, charcoal duft was fifted into the uncovered crucible through a fieve, fo that the furface of the litharge was completely covered with it. This immediately produced an effervefcence, and the rifing of bubble, by means of the feparation of the air occafioned by the reduction of the lead. During this procefs, the cover was put on, and a few coals thrown into the furnace: when thefe were burnt, every thing in the crucible was quict, and the melted mafs was poured into a warm conical mould. The crucible was then again filled with half a pound of the fame kind of litharge, and put into the furnace, and charcoal duf was feveral times fifted over the melted furface, till it was well covered before the mals was thrown out, a fufficient fpace being every time left for the effervefcence. The firf mals had, in the mean time, become cool, and, on examination, contained four ounces of lead at the bottom, and litharge at the top. When this litharge was reduced with potafhes and wine flone, the lead thence obtained, which weighed 23 ounces, was found to contain lefs than one half grain of filver in the pound. In the fecond mefs there was found fomewhat more than fixounces of lead, which contained all the filver that had been before mixed with the litharge, becaufe in the lead which had been reduced from the litharge in the above manner, there were no perceptible traces of filver. 'This lead was then melted over a flow fire, and caft into bars, which were rolled fmooth, and formed into mafles of a known weight, to be ufed for affaying gold and filver, and for other purpofes of the fame kind. All thefe meltings were made in one crucible, which, according to every appearance, remained unhurt. If the fame experiments wele made with red lead, the like refult would infallibly follow.

With the fame view of obtaining lead free from filver, he melted, in the like manner, half a pound of white lead, which produced half an nunce of lead When the litharge flanding over it was revived, the lead obtained was flill found to contain too much filver. He therefore precipitated another half pound of white lead by charcoal powder, after the lead that fell from it had been feparated: and then it prod:sced, by reviving, a mafs of lead without any mixture of filver.

IEDYARD (- -), the celebrated, though unfortunate, traveller, was a native of North America, but of what province we liave not learned. We are egully ignorant of the year of his birth, and the rank of his parents; but have no reafon to chink that they were opulert. From his early youth he difplayed a ftrong propenfity to vifit unknown and favage countries; and to gratify that propenfity, he lived for feveral years with the American Indians, whofe manners and habits he feemed in fome degree to have acquired. Afterwards he failed round the world with Captain Cook in the humble fation of a corporal of marines; and on his return, he deternined to traverfe the vaft continent of America, from the Pacific to the Atlantic Ocean.

This defign being fruftrated by his not obtaining a
paflage
$\underbrace{\text { Ledyard }}$ paflage to Nootka Sound, he determined to travel over land to Kamfchatka. With this view he went over to
Oftend, with only ten guineas in his pocket, and proORtend, with only ten guineas in his pocket, and pro-
ceeded by the way of Denmark and the Sound to the capital of Sweden, and endeavoured to crofs the Gulph of Bothnia on the ice; but finding, when he came to the middle, that the water was not frozen, he walked round the gulph to Peterburgh. Here he found himfelf without flockings or floes; but procured relief from the Portuguefe ambaffador, and obtained leave to proceed with a detachment of fores to Yakutz. He made this journey of fix thoufand miles, and there met Mr Billengs, an Englifhman, whom he had known on board Captain Cook's Ship. Fiom thence he went to Oczakow, on the coaft of the Kamfchatka Sea; but being ton late to embark that year, returned to Yakutz to winter. Here he was, on fome fufpicion, feized, conveyed on a fiedge though Northern Tartary, and left on the frontiers of the Polifh cominions. In the midft of poverty, rags, and difeafe, he however reached Koningtburg, where he found friends that enabled him to reach England.

On his arrival in London, he waited on Sir Jofeph Banks, on whofe credit he had, in his diftrefs, received at different times 25 guincas. Sir Jofeph communicated to him the views of the African Affociation, and pointed out the route in which they wifhed Affica to be explored. On his engaging at once in the enterprife, Sir Jofeph afked him when he would be able to fet out. "To-morrow morning," replied Ledyard, without hefitation. At this interview the prefident of the Royal Society declares, that he was ftruck with the figure of the man, the breadth of his cheft, the opennefs of his countenance, and the rolling of his eye. Though fcarcely exceeding the middle fize, his figure indicated great Atrength and activity. Defpifing the accidental diftinctions of fociety, he feemed to regard no mall as his fuperior; but his manners, though coarfe, were not difagreeable. His uncultivated genius was original and comprehentive. From the native energy of his mind, he was adventurous, curious, and unappalled by dangers; while the ftrength of his judgment united caution with energy. The track pointed out to him was from Cairo to Senaar, and thence weftward in the latitude and fuppofed direction of the Niger.
He was not ignorant, that the tafk affigned him was arduous and big with danger ; but inftead of fhrinking from it, he faid, on the day of his departure, "I am accuftomed to hardfhips; I have known both hunger and nakeduefs to the utmoft extremity of human fuffering; I have known what it is to have food given me as charity to a madman; and I have at times been obliged to fhelter myfelf under the miferies of that character to avoid a heavier calamity. My diltreffes have been greater than I ever owned, or ever will own to any man. Such cvils are terrible to bear, but they never yet had power to tuan me from my purpofe. If I live, I will faithfully perforn, in its utmoft extent, my engagement to the Society : and if I perifh in the attempt, my honour will befafe; for death cancels all bonds."

After receiving his inftructions and letters of recom. mendation, this intrepid traveller failed from London on the 3 oth of June 1788 ; and in 36 days arrived at A. lexandria. Proceeding to Cairo, where he arrived Augult the 17 th, he vifited the flave markets, and converfed with the travelling merchants of the caravans. Thefe Suppl. Vol. II. Part I.
fources of information, generally neglected by travel. Ledyard. lers, enabled him to obtain, at a very fnall expence, more correct information concerning the African nations and their trade, the pofition of places, the nature of the country, the manner of travelling, \&c. than could have been eafily obtained by any other method. He thus learned, that the Arabs of the defert have an invincible attachment to liberty, though it is fingular that they have no word to exprefs liberty in their language. The Mahomedans of Aflica are a trading, fuperlitious, and warlike fet of vagabonds. He faw near 200 black, naves expofed to fale, who had been brought from the interior parts of Africa; their appearance favage, but not like prifoners of war ; they har! head ornaments, and their hair plaited in detached plaits of great length. A nother parcel, which had come from Darfoor, were moflly women; and the beads, and fome other ornaments which they wore, were Venetian. They were well formed, quite black, had the true Guinea face, and curled hair. Mr Ledyard was informed, that the king of Senaar was a merchant, and concerned in the caravans; that 20,0 no negro flaves are imported into E gypt annually. Amolig fome Senaar flaves, he faw three of a bright olive colour, but their heads uncommouly formed, the forchead the narroweft, longeft, and molt protuberant he ever faw.

The Senaar caravan is the moft nich; that of Darfoor is not equally fo, though it trades with almoft the fame commodities. Befides ीlaves, thefe are gum, elepliants teeth, camels, and oltrich feathers ; for which are received in exchange trinkets, foap, antimony, red linen, razors, fciffars, mirrors, and beads. Wangara, to which the caravans alfo trade, was reprefented to Mr Ledyard as a kingdom producing much gold; but the king feems to intermeddle with commerce as well as the potentate of Senaar ; for in order to deceive ftrangers, and prevent them from gueffing at the extent of his riches, he was reported to vary continually the gold ufed in barter, which it is tis province to regulate, and of which he iffues at one time a great cuantity, and at others little or none. A caravan goes from Cairo to Fezzan, which they call a journey of fifty days; and as the caravans travel about 20 miles a day, the dittance muft.be about 1000 miles; from Fezzan to Tombuctoo is 1800 miles; from Cairo to Senaar about 600 miles.

Such was the information which Mr Ledyard derived from the merchants of the caravans in Egypt ; but when he was about to verify it by his own obfer vations, and liad announced to the Affociation that his next dilpatch would be dated from Senaar, he was feized with a bilious complaint, which fiuftrated the ff ill of the rnoft eminent phyficians, and put a period to his travels and lis life at Cairo. It is needlefs to fay how much his death was regretted, or how well he was qualified for the arduous enterprife in which he lad engaged. The perfon who, with fuch fcanty funds, could penetrate the frozen regions of Tartary, fubfift among their churlifh inhabitants, and ingratiate himfelf with the ferocious Moors of Egypt, could hardly have failed to obtain a kind reception frorn the gentle and hofpitable Negro, had no untoward circumiltance intervened. At Senaar, indeed, his rifk would have been great ; and Mr Bruce was decidedly of opinion, that a man fo poorly attended as Mr Ledyard, could never have made his efcape from that treacherous and ferocious people.
1.edyard The obfervations of this accurate obferver on the female character, though they have been repeatedly quot-Lening- ed in other works, are well intitled to a place here; ton. and with them we Ghall conclude this fketch of his life: "I liave always (fays he) remarked, that women in all countries are civil and obliging, tender and humane; that they are ever inclined to be gay and cheerful, timorous and modeft ; and that they do not hefitate, like man, to perform a generous aetion. Not haughty, not arrogant, not fupercilious; they are full of courtefy, and foud of fociety; more liable, in general, to err than man ; but in general alfo more virtuous, and performind more good actions than lie. To a woman, whether civilized or favage, I never addreffed myfelf, in the language of decency and friendhip, without receiving a decent and friendly anfwer. With man it has often been otherwife. In wandering over the barren plains of inhofpitable Denmark, through honef Sweden, and frozen Lapland, rude and churlifh Finland, unprincipled Ruffia, and the wide foread regions of the wandering Tartar; if hungry, dry, cold, wet, orfick, the women have ever been friendly to me, and uniformly fo. And to add to this virtue (fo worthy the appellation of benevolence), thefe actions have been performed in fo free and kind a manner, that if I was dry, I drank the fweeteft draught; and if hungry, I eat the coarfelt morfel with a double relifh." For a fuller account of Leclyard, fee The Tranjacions of the African Afociation, or A Vierw of the Late Difooveries in Africa.

Hyperbolic L.EGS, are the ends of a curve line that partakes of the nature of the hyperbola, or having afymptots.
LEMINGION I'riors, is a village two miles eaft of the town of Warwick, famous for its mineral waters. One falt fpring, which riles near the church yard, has been long known, as weil as another which rifes in the bec of the river; but the moft remarkable fpring sas difcovered in the y tar $179=$. The waters of both fprings tave been analyzed with great accuracy by w:lliam Lambe, M. A. late Fellow of St John's colledge, Cambridge, who has given us the following fynoptical table of the fubitances coutzined in them:
Gafcous Fluidd contained in a Wine gallon in Cubic Inches.

	water of the	water of the
	Ew spring.	SPRING.
Hepatic gas	Too finall to be meafured.	Too fmall to be meafured.
Azolic	3.5	3
Carbonic acid gas	. 5	

Solid contents of a Wine.gallon in Grains.

	water of the new spring.	water of the OLD SPRING
Carbonat of iron		
Oxyds of iron and manganefe		Too fmall to be eveighect.
Oxygenated murial	Unknown, but very	Unknozun, but very
of iron and man.	finall.	fmall.
ganefe - -		
Sulphur - -	Unknown, but very frall.	
Muriat of magnefia	11.5	58
Muriat of foda	432	330
Sulphat of Soda	152	62
Sulphat of lime	112	146

Lemnifo cate Lenfes. coincidence, very unexpected, between the htpatifed folution of iron and the oxygenated muriat of iron. "I had almoft concluded (fays he), from the refemblance between the properties of this falt and the phenomena of the water, that the water contairs this very falt. Now, I conclude, that they contain a matter, be it what it may, produced by the action of hepatic gas on iron. But they are the very fame facts which form the bafis, upon which each feparate inference is built. Does it not follow, then, as a neceflary coufequence, that the hepatifed folution itfelf contains a muriat of iron highly oxygenated, and that therefore in this procefs muriatic acid is generated? This conclufion feemed, authorifed by reafon, and experiment has confir med it."

LEMNISC. A TE, the name of a curve in the formof the figure of 8 .

LEiviON juice, is an article of fuch harnlefs luxury, and in fome cafes of fuch real utility, that many of our readers will be pleafed to know a fimple method by which they may obtain it in great purity. In the article Chemistry (Suppl.), no 476 , we have fhewn from Scheele and Dizé, how to obtain the citric acid perfectly pure, and in the form of cryftals; but here we mean nothing more than to thew how it may be completely feparated from that fimy fubflance with which it is always mixed in the lemon, without allowing it time to fpoil or to acquire any difagreeable tafte during the feparation. This we are enabled to do by M. Brugnatelli, who, in the ad volume of the Avnali di Chinit, informs us, that he exprefled in the common manner the juice of perfectly ripe lemons, and ftrained it through a piece of linen. In half an hour he ftrained it again, to free it from a little fling matter which had feiticed at the botiom of the veffel. He then added to the juice a certain quantity of the ftrongell fpinit of wine, and preferved the mixture for fome days in a well-co:ked bottle. During that time there was a confiderable depofit, which to all appearance was of a flimy nature, and which he feparated by filtering paper. If the fluid was too thick to pais through the filter, he diluted it again with firit of wine. After this opera. tion, the depofit remained on the paper, which was entirely covered with it; and he obtained, in the veffel placed below, the pure:t acid of lemons combined with fpirit of wine.

If it be required to obtain the acid perfectly pure, nothing is neceffary but to feparate from it the firit of wine, which can be beft effected by evaporation. The acid of the lemons affumes, after it has been freed from the fpirit of wine and the moit ure combined with it, a yellowin colour, and becomes fo ftrong, that by its tatte it might be confidered as a mineral acid.

It is not neceffary to evaporate the fpirit of wine in a clofe vcffel, if the experiment is made only on a fmall fcale; nor is there any danger that in open veffels any of the acid will be loft, as it is too fixed tu be volatili-. fed by the fane degree of heat at which fpirit of wine evaporates. This acid has peculiar properties, which deferve farther examination.

LENSES (fee Lens and Dioptrics, Encycl.), are either blown or ground.

Blown LENSES are ufed only in the fingle microfcope;

I. E O

J.enief, Leo. it: A is a globe covered with cement, in which are fixed the pieces of glafs to he gromin. 'This globe is faftened to the axis, and turns with the wheel B. C is the brafs cup which polifhes the glafs: this is faften. ed to the axis, and turns with the whect D. The motion of the cup C, therefore, is at right angles with the tion of the cup C, therefore, is at right angles with the
motion of the globe A ; whence it follows demonftra113 , that the pieces of glafs ground by this double motion mult be formed into the fegments of fpheres.

LEO X. is a pontiff to whom lean ning, and aat, and fcience, are fo decply indebted, that not to give a fietch of his life and chatacter, in a Work of this kind, would
and the ufual method of making them has been to draw out a fine thread of the fuft white glafs called cry/al, and to convert the extiemity of this into a fpherule by meling it at the flame of a candle. But this glafs contains lead, which is difpofed to become opake by partial reduaion, unlefs the management be very carefully attended to. We are informed, however, by Mr Nichoifon, that the hard glafs ufed for windows fcklom fails to afford excellent fpherules. This glafs is of a clear bright green colour when feen edgewife. A thin piece was cut from the edge of a pane of glafs lefs than one.tenth of an inch broad. This was held perpendicularly by the upper end, and the flame of a candle was directed upon it by the blow-pipe at the diftance of about an inch from the lower end. The g!afs became foft, and the lower piece defcended by its own weight to the diftance of abent two feet, whiere it remained fuf. pended by a thin thread of glafs about one five hundrecth of an inch in diameter. A part of this thread was applied endwife to the lower blue part of the flame of the candle without the ufe of the blow pipe. The ex ticmity immediately became white-hot, and formed a globule. The glafs was then gradually and regularly thruft towards the flame, but never into it, until the .globule was fufficieritly large. A number of thefe were made; and being afterwards examined, by viewing their focal images with a deep magnifier, proved very bright, perfect, and round. This, as the ingenious author obSelves, may prove an acceptable piece of information to thofe eminent men (and there are many fuch), whofe sarrow circumftances, or remote fituations, are obliged to have recourfe to their own fkill and ingenuity for experimental implements.

Gromnd LFN'se, are fuch as are grount or mubed into the defired Chape, and then polifhed. Differtut ihapes have been propofed for lenfes; but in the article Optics, n 251 (Encycl.), it has been fhewn that, after all, the fpherical is the moft practically ufful. By many of the methods of grinding, however, the artificer, with his utmoft care, can only produce an approximation to a truly fpherical figure ; and, indeed, gentleme: have, for the molt part, nothing to depend on for the fphericity of the lenfes of their telefcopes, but the care and integrity of the workmen. In the 41 ft voLume of the Tranfactions of the Royal Socitty of London, a machine is deferibed by Mr Samuel Jenkins, which, as it is contrived to turn a fphere at one and the fame time on two axes, cutting each other at right angles, will produce the fegment of a true fhere nierely uy turning round the whicels, and that without any care or fkill in the workmen. The following defcrip. tion of this machine will enable our readers fully to comprehend its conftruction, and the mode of ufing

75] L E O

be an unparionable omiffion. A character of him is indeed given in the Encyclopredia; but it is fo far from the luth, that it is difficult to conceive the prejudices under which he mult have laboured by whom fuch a libel was drawn up.

Leo, whofe name, before his elevation to the pontificate, was Giovanni de Medici, was the fecond fort of Lorenzo de Medici, juftly fty!tc the Magnificent. In the life of that great man publithed in this Suftilement, the reader will fee by what means, and for what purpufe, he got Giovanni raifed to the dignity of cardinal at fo early a period of life; and is the elegant work of Rofcoe, to which we there refer, he will find fuch inltructions of Lorenizo to the cardinal as mutt lieve made a deep imorefion on his youthful mind.

Speaking of his promotion, I.orenzo fays, "The firlt thing that I would fuggeft to you, is, that you ought to be grateful to God, and continually to recollect that it is not through your menits, your prudence, or your fulicitude, that this event has taken place, but through his favour, which you can repay only by a pious, chafle, and exemplary life; and that your obligations to the performance of thefe duties ate fo much the greater, as in your early years you have given fome rajomable e.vpecation that your riper age may produce fuch frnits. It would indeed be liighly difgraceful, and as contrary to your duty as to my bopes, if at a time when others difplay a greater fhare of reafon, and adepit a better mode of life, you fhould furget the piecrits of your youth, and forfake the path in which you have bibluerio trodden." - "I weU krow (contintess Lorcrzo), that as you are now to refide at Rome, that fi:!k of all inicjuity, the difficulty of conducting yourfall by thefe abmonitions will be increafed. The influence of example is itlelf prevalent ; but you will probably moct with thofe, who will particularly endeavour to corrupt and incite you to vice; becaufe, as you yourfelf iray perceive, your early attainment of fo great a dignity is not oblerved without envy, and thofe who could not prevent your receiving that honour, will fecretly endeavour to diminifh it, by inducing you to forfeit the good eftination of the public."-" You are not unacquainted with the great importance of the character which you have to fultain ; for you well know, that all the Ciriltian world would profper if the cardinals were what they ought to be; becaufe in fuch a cafe there would always be a good pope, upon which the tranqu llity of Chriftendom fo materially depends."

As this was a confidential letter from Lorenzo) to his fort, the firit of thefe extracts furnifhes very fufficient evidence, that Criovanni had been at leaft a well behaved boy, diligent in his nuclies, and regular in his conduct; and withont fuppofing him remarkably religious, the admonitions of fuch a father, aided by his own ambition and luve of letters, would furely guad him againft fuch grofs licentioufnefs as that of which he is accufed in the Encyclupordia. How much he revered his father, is apparent from the letter which lie wrote to his brother immediately after Lorenzos death. "What a father (fays he) have we loft! How indulgent to his chillien! Wondel not, then, that I grieve, that I lament, that I find no reft. Yet, my brother, I have fome contolation in retlecting that I have thee, whom 1 fall always re. ga:d in the place of a fatlier." Surely this is not the language of a grofs fenfualift, or of one who could foon K_{2} fo:get

L E O

Leeo. forget the falutary admonitions of fuch a parent as Lorenzo de Medici. But it is needlefs to infer the decency of his character by fuch reafonings as thefe. The fory publifhed in the Encyclopedia, of the manner in which the Cardinal de Medici obtained the tiara, cannot poffibly be true. The reader, who fhall turn to the article POPE in that Work, will find that the conclave, when fitted up for an election, is fo large a place, that we may fafely affirm, that had the cardinal's ulcer difcharged matter fo fetid as to poifon all the cells, the affertion of the phyficians would have been verified, and that in the then flate of the healing art, the new pope could not have furvived a month. Let it be remembered, too, that Leo, at his acceffion, was not 30, but 37 years of age, and that he had long ruled in Florence with fovereign fway by the fame means which had upheld the authority of his father. The follies of youth, therefore, had he ever been remarkable for fuch follies, muft have been over with him; and in fuch a flate as Florerice he could not have maintained the authority of Lorenzo, without exhibiting not only Lorenzo's liberality, but likewife his decency of manners.

The next charge brought againft Leo in the Ency. clopadia is, that he publifhed general indulgences throughout Europe; and this is fo exprefled as to lead the ill.informed reader to fuppofe, either that no fuch indulgences had ever been publifhed by any of his predecefors, or that there was fomething peculiarly fcandalous in Leo's mode of publifhing them. Both fup. pofitions, however, are erroneous. The hiftorian of the council of Trent, who certainly was not partial to the court of Rome, or to the difpenfing power of the pope, has fhewn, that the practice of raifing money by the publication of indulgences, had prevailed ever fince the year 1100; that many former popes had raifed money in this manner for purpofes much lefs laudable than thofe which Leo had in his eye; and that the real caufe of Luther's attack upon Len's indulgences was, that they were preached through Saxony by the Dominican friars; whereas the preaching of former indulgences had been committed to the herinits of St Auguftine, the order to which Luther himfelf belonged!

Leo is likewife accufed in the Eincyclopadia of being a profeffed infidel, and of having called Chriftianity " a fable very profitable for him and lis predeceffors." But of the truth of this accufation there feems not to be the Shadow of evidence. Leo had too much fenfe to utter expreffions of this kind, even had he been an unbeliever in his heart; for he could not poffbly expect that his indulgences and pardons would be purchafed, had he declared in fuch frong terms that they were of no valine. Father Paul indeed fays, that he was not a deep divine, or fo pious as fome of his predeceffors; but he affirms, that he adorned the papacy with many admirable qualities; that he was learned, affable, liberal, good; that he delighted in healing differences, and that his equal had not, for many years, filled the chair of St Peter. Surely this is not the character of a profane infidel!

Leo has been charged with raifing his own family to grandeur at the expence of juftice; and of dealing treacherouny, in order to effect this purpofe, both with the emperor and with the French king. But the charge is either falfe or greatly exaggerated. He loft no opportunity indeed of aggrandizirg his relations, well knowing, that in order to fecure to them any lafting be-
nefit, it was neceffary that they fhould be powerful enough to defend themfelves, after his death, from the rapacious aims of fucceeding pontiffs; but, in profecuting this plan, he was fo far from acting tyrannically or injurioufly to others, that during his pontificate, the papal dominions enjoyed a degree of tranquillity fuperior to any other Italian ftate. During the contefts that took place between the emperor and the French king, fo far from acting treacherouny, he diftinguifhed himfelf by his moderation, his vigilance, and his political addrefs; on which account he is juftly celebrated by an eminent hiftorian of our own *, as "the ouly prince of the age * Dr Rem who obferved the motions of the two contending mo. bertfon. narchs with a prudent attention, or who difcovered a proper folicitude for the public fafety."

We truft that no zealous Proteflant will think we have employed our time ill, in vindicating the charater of this fplendid pontiff; for good learning, and, of courfe, true religion, are more indebted to Leo X. than to any other individual of the age in which he lived, his father Lorenzo alone excepted.

Leo Minor, the Little Lion, a conftellation of the northern hemifphere, and one of the new ones that were formed out of what were left by the ancients, under the name of Stelle Informes, or uuformed Itars. See Asm tronomy, no 406, Encycl.

LESLIE (Charles), was a man fo eminent for his learning, his talents, and his piety, that a fuller account of him than that which is given in the Encycloperiaa muft be acceptable to our Cliriftian readers. He was the fecond fon of Dr John Leflie bifhop of Clogher in Ireland, who was defcended from an ancient family in the north of Scotland, and being an admirable fcholar, rofe to the dignity of bihop of Orkncy-in his own country, whence he was tranflated, in 1633 , to Raphoe in Ireland, and afterwards, in 1661 , to the fee of Clogher.

Our author was born in Ireland, but in what year we have not learned. A ludicrous ftory goes indeed of his having been begotten in prifon, and of his father having faid that he hoped he would in confequence become the greateff fcourge of the covenanters that Great Britain or Ireland had ever feen. This fory, with all its circumflances as told to us, can hardly be true; but we think it could not have been fabricated, had not Charles Leflie been born within a year of Cromwell's conqueft of Ireland, when the good bifhop, having fuftained a fiege in his cafle of Raphoe againtt that arcll rebel, was fome time kept in clofe confinement.

We are equally ignorant of the fchool where he was educated as of the year of his birth ; but we know that he had his academical education in Thinity College, Dublin, where he took the degree of mafter of arts. In the year 1571 , he loft his father, when he came over to England, and, entering himfelf in the temple, ftudied law for fome years, but afterwards relinquifhed it for the ftudy of divinity. In 1680, he was admitted into holy orders; and, in 1687, was made chancellor of Connor.

About this period he rendered himfelf particularly obnoxious to the Popifh party in Ireland, by his zealous oppofition to them, which was thus called forth. Roger Boyle, bifhop of Clogher, dying in 1687, Patrick Biograpbicad Tyrrel was made titular Popifh bifhop, and had the re- Diciionary. venues of the fee affigned him by king James. He fet

Lefice, up a convent of friars in Monaghan: and, fixing lis hahitation there, held a public vifitation of his clergy with great folemnity ; when, fome fubtle logicians attending him, he was fo infolent as to challenge the Proteftant clergy to a public difputation. Lenfic undertook the tafk, and performed it to the fatisfaction of the Proteftants; though it happened, as it generally does at fuch contefts, that both fides claimed the victory. He afterwards held another public difputation with two celebrated Popiß divines, in the church of Tynan, in the diocefe of Armagh, before a very numerous affembly of perfons of both religions; the iffue of which was, that Mr John Stewart, a Popifh gentleman, folemuly renounced the errors of the church of Rome.

As the Papifts had got poffeflion of an Epifcopal fee, they engroffed other offices too; and a Popifh highfheriff was appointed for the county of Monayllan. T'his proceeding alarmed the gentlemen in that county; who, depending much on Leflie's knowledge as a juftice of peace, repaired to him, then confined, by the gour, to his houfe. He told them, that it would be as illegal in them to permit the fheriff to act as it would be in him to attempt it. But they iufifting that he fhould appear himfelf on the bench at the next cuarter-feffions, and all promifing to fland by hin, he was carried thither with much difficulty and in great pain. When the fheriff appeared, and was taking his place, he was afked whether he was legally qualified; to which he anfuvered pertly, "That he was of the king's own religion, and it was hiis m.jefty's will that he fhould he fheriff." Leflie replied, "That they were not inquiring into his majefty's religion, but whether he (the pretended fieriff) had qualified himfelf according to law, for acting as a proper officer ; that the law was the king's will, and nothing elfe to be deemed fuch; that his fubjeets had no ther way of knowing his will, but as it is revealed to them in his laws: and it mult always be thought to continue fo, till the contrary is rotifed to them in the fame authentic manner." Upon this, the bench unanimoully agreed to commit the pretended fheriff, for his intrufion ard arrogant contempt of the court. Lef. lie alfo committed fome officers of that tumuluous army which the Lord Tyrcounct raifed for robbing the country.

In this fipited conduct Leflie acted like a found divine and an upright magiftrate; but though he thonght himfelf authorifed to retift the illeg.! mandates of his fovercign. like many other geat and good men, he diflinguifled between active and panive obetience, and fott not himfelf at literty to transfer his allegiance from that fovereign 10 another. Refufing therefore to take the oaths to king Williarn and queen Mary, he was deprived of all his preferments ; and in 1689 he removed with his family to Eugland, where he publifled the folLowing works, befides thofe already noticed in the Encyclopedia: I. Ar.fwer to Arclibithop King's State of the Proteflants in Ireland. 2. Caffandra, concerning the new Affociations, \&c. 1703,4 to. 3. Rehearfals; at firft a weekly paper, publifhed afterwards twice aweek in a half-heet, by way of dialogue on the affairs of the times; begun in 1704, and continued for fix or feven years. 4. The Wolf ftripped of his Shepherd's Clothing, in Anfwer to Moderation a Virtue, 1704, 4to. The pamphlet it anfwers was written by James Owen. 5. The Bihop of Sarum's [Burnet'B] proper

Defence, from a Speech faid to be fpoken by him Lente. againft occafional conformity, 1704, 4to. 6. The new Affociation of thofe called Moderate Churchmen, \&c. occafioned by a pamphlet, intitled, The Danger of Prieftcraft, 1705,4 to. 7 . The new Affociation, part $2 \mathrm{~d}, 1705,4+0.8$. The Principles of Diffenters concerning Toleration and occafional Conformity, 1705, 4to. 9. A Warning for the Church of England, 1706, 4to. Some have doubted whether thefe two pieces were his. 10 . The good old Caufe, or Lying in Truth ; being a fecor:d Defence of the Bifhop of Sarum from a fecond Speech, \&c. 1710. For this a warrant was iffued out againft Lenie. 11. A Letter to the Bifhop of Sarum, in Anfiver to liis Sermon afte: the Queen's Death, in Defence of the Revolution, 1715. 12. Salt for the Leecli. 13. The Anatomy of a Jacobite. 14. Gailienus redivivus. 15. Delenda Carthago. 16 A Letter to Mr Willian Molyneux, on his Cafe of Ireland's being bound by the E.nglifh Acts of Parliament. 1\%. A Letter to Julian Johnfon. 18. Several Tracis againf Dr. Ifigden and Mr Hoadly. 19 A Difcourfe, Mewing who they are that are now qualified to adminitter 13aptifin. 20. The Hittory of Sin and Herefy, \&c. $169^{8}, 8 v o$. 21 . The 'Truth of Chrittianity demonfliated, in a Dialogue hetween a Chritian and a Deift, $1711,8 \mathrm{vo}$. - Agrinft the Papitts: 22. Of private Judgment and Authority in Matters of Faith. 23. The Cafe ftated between the Church of Romie and the Church of England, Sec. 1713. 24. The true motion of the Catholic Church, in Anfiver to the Bifhop of Meaux's Letter to Mr Nelfon, \&ce.

Befides thefe, he publithed the four following tracts: 25. A Serinon preached in Chetter, againf Marriages in different Conimunions, $1702,8 \times 0$. This fermon occafioned Mr Dodwell's tifcourfe upon the fame fubject. 26. A Difertation concerning the Ufe and Authority of Ecclefiaftical Hiftory. 27 . The Cafe of the Regal and the Pontificate. 28. A Supplement, in Anfwer to a Book, intitled, The regal Supremacy in Ecclefiaftical A ffairs afferted, \&c. Thefe two laft pieces were occafioned by the difpute about the rights of convocation, between Wake, \&ic. on one fide, and Atterbury and his fieuds, among whom was Leflie, on the other.
It is faid by the authors of the Biographical Dictionary, that, in confequence of a publication of his, intitlec, "The hereditary right of the crown of Eng. land afferted," he was under the neceffity of leaving the kingdom; and that he repaired to the Pretender at Bur le cluc, where he was allowed to officiate, in a pri-
vate chapel, afcer the rites of the church of vate chapel, affer the rites of the church of England ; and where he endeavoured, though in vain, to convert the Pretender to the Proteflant religion.

That he repaired to Bar le duc, and endeavoured to convert to the church of England him whom he confidered as the rightulu Covereign of England, is indeed true; but we have reafon to believe that this was not in confequence of his being obliged to leave the kingdom. There is, in the firlt place, fome grounds to believe, that "The hereditary right of the crown of England afferted" was not written by him ; and there is ftill in exiftence undoubted evidence, that, in confequence of his great fame as a polemic, he was fent to Bar le duc for the exprefs purpote of endeavouring to convert the fon of James II. by fome gentlemen of fortune in England, who wifhed to fee that prince on the throne
of his ancelors. The writer of this articie had the honounr, 16 or 17 years ago, to be known to the grandclaughter of one of thofe gentlemen - a lady of the fticteft veracity; and from her he received many anecdotes of Lenlie and his affociates, which, as he did not then forefee that he fhould have the prefent occafon for them, he has fuffered to Alip from his memory. That lady is fill alive, and we have reafon to believe is in poffeffion of many letters by Leflie, written in confidence to her grandfather, both from Bar le duc and from St Germains; and by the account which the gave of thefe letters, Lellie afpears to have confidered his prince as a weak and incorrigible bigot, though, in every thing but religion, an amiable and accomplif.ed man. This may have been his genume character; for we all know that it was the character of his father ; but it is not of him that we are writing.

Mr Leflie having remained abroad from the year 3709 till 1721 , returned that year to England, refolving, whatever the confequences might be, to die in his own country. Some of his friends acquainting lord Sunderland with his purpofes, implored his-protection for the good old man, which his lordfhip readily and generoufly promifed. Mr Leflie had no fooner arrived in London, than a member of the houfe of commons officionfly waited on lord Sunderland with the news, but met with fuch a reception from his lordfhip as the malice of his errand deferved. Our author then went over to Ireland, where he died April 13. 1722 . at his own houfe at Glafongh in the county of Monaghan.

His character may be fummed up in a few words. Confummate learning, attended by the loweft humility, the ftricteft piety without the leaft tincture of morofenefs, a converfation to the laft degree lively and fpirited, yet to the laft degree innocent, made him the delight of mankind, and leaves what Dr Hickes fays of him unqueftionable, that he made more converts to a found faith and holy life than any other man of our times.

A charge, however, has been lately brought againft him of fuch a nature, as, if well founded, muft detract not only from his literary fame, but alfo from his inte. grity. "The fhort and eafy Method with the Deifts" is mqueftionably his moft valuable, and apparently his moft original work; yet this tract is publified in French among the works of the Abbé St Real, who died in 1692 ; and therefore it has been faid, that unlefs it was publifhed in Englifh prior to that period, Charles Leflie mult be confidered as a fhamelefs plagiàry.
'I'he Englifh work was certainly not publifhed prior so the death of Abbe St Real; for the firft edition bears date July 17 th 1697 ; and yet many reafons confpire to convince us, that our countryman was no plagiary. There is indeed a friking fmilarity between the Englifh and the French works; but this is no complete proof that the one was copied from the other. The article Philology in the Encyclypadia Britannica, of which Dr Doig is the author, was publifhed the very fame week with Dr Vincent's differtation on the Greek verb. It was therefore impoffible that either of thefe learned men, who were till then frangers to each others names, could have flolen aught from the other; and yet Dr Vincent's desivation of the Greek verb bears as ftriking is refemblance to Dr Doig's as the Abbé St Real's work does to Chanles Leflie's. In the article Mirache
(Jncycl.), the credibility of the gefpel miracles is eftablimed by an argument, which the anthor certainly borrowed from no man, and which the late principal Campbell confidered as original ; yet within half a year of the publication of that article, the credibility of the gofpel-miracles was treated in the very fame manner by F. Sayers, M. D. though there is in his differtation complete internal evidence that he had not feen the article in the Encyclopadia. Not many months ago, the author of this fketch revicwed, in one of the journals, the work of a friend, which was at the fame time reviewed in another journal, that at this moment he has never feen. Yet he has been told by a friend, who is much verfant in that kind of reading, and knows nothing of his concern with either review, that the book in queftion muft, in both journals, have been reviewed by the fame hand; becaufe in both the fame character io given of it in almoft the very fame words!

After thefe inftances of apparent plagianifm, which we know to be only apparent, has any man a right to fay that Charles Lefie and the Abbé St Real might not have have treated their fubject in the way that they have done, without either borrowing from the other? The coincidence of arrangement and reafoning in the two works is indeed very furprifing ; but it is by no means fo furprifing as the coincidence of etymological deductions which appears in the works of the Doctors Doig and Vincent. The divines reafon from the acknowledged laws of human thought; the reafonings of the grammarians, with all due deference to their fuperior learning, we cannot help confidering as fometimes fanciful.

But this is not all that we have to urge on the fubject. If there be plagiarifin in the cafe, and the identity of titles looks very like it, it is infinitely more probable that the editor of St Real's works ftole from Leflie, than that Leflie ftole from St Real, unlefs it can be proved that the works of the Abbé, and this work in particular, were publifhed before the year 1697. At that period, the Englifh language was very littic read or underftood on the continent; whillt in Britain the French language was, by fcbolars, as generally under. ftood as at prefent. Hence it is, that fo many Frenchmen, and indeed foreigners of different nations, thougbt themfelves fafe in pilfering fcience from the Britifh philofophers *; whilft there is not, that we know, one well * Ses Quano a athenticated inftance of a Britifh philofopher appro- tity (Eripriating to himfelf the difcoveries of a foreigner. If, ${ }_{\text {fronomy }}$, theit, fuch men as Leibnitz, John Bernoulli, and Dynamics, Des Cartes, trufting to the improbability of detec- Impulfion, tion, condefcended to pilfer the difcoveries of Hooxe, and Har- rot, in this Newton, and Harriot, is it improbable that the suppl. editor of the works of St Real would clain to his friend a celebrated tract, of which he knew the real author to be obnosious to the government of his own country, and therefore not likely to have powerful friends to maistain his right?

But farther, Burnet, bifhop of Sarnm, was an excellent fcholar, and well read, as every one knows, in the works of forcign divines. Is it conceivable, that this prelate, when fmarting under the lafh of Leflie, would have let תlip fo good an opportunity of covering with difgrace his moft formidable antagonift, had he known that antagonilt to be gnilty of plagiarifm from the writings of the Abbé St Real? Let it Le granted,

L I C

I.enie however, that Burnet was a Aranger to thefe writings and to this plagiarifin; it can hardly be fuppofel that Le Clarc was a franger to them likewife. Yet this author, when, for reafons beft known to himfelf, he chofe (1706) to depreciate the argument of the foort method, and to traduce its author as ignorant of ancient hiftory, and as having brought forward his four marks for no other purpofe than to put the deceitful traditions of Popery on the fame footing with the moft authentic doctrines of the gofpel, does not fo much as infinuate that he borrowed thefe marks from a Popiłh abbé, though fuch a charge, could he have eftablined it, would have ferved his purpofe inore than all his rude railings and invective. But there was no room for fuch a charge. In the fecond volume of the works of St Real, publifhed in 1757, there is indetd a tract entitled Metbode Courte et Ai, ée pour combuttre les Deijfes; and there can be little doubt but that the publifher wifice it to be confi'dered as the work of his countryman. Unfortunately, however. for his defign, a catalogue of the $A b$ bé's works is given in the firlt volume; and in that catalogue the Alethode Courte et Aifée is not mentioned.

We have dwelt thus long en The Stort and Fafy Me. thod with the Deijls, becaufe it is one of the ableft works that ever was written in nroof of the Divine origin of the Jewifh and Chiitian Scriptures; a work of which the merit is acknowledged by Lord Bolingbroke, and which, as has been obferved elfewhere (fee Theology, no 16. Encycl.) Dr Conycre Middliton coufeffes to be unanfwerable. If by men of fcience we be thought to have fpent our tine well in vindicating the rights of our illuftrious philofophers Hooke and Newion, to difcoveries which have been unjufly claimed by the philofophers of Cermany and France; we will not furely by the friends of Chritianity be thought to lave employed our tine ill in vindicating Lenie's claim to this decifise arganent in fupport of our holy religion.

IEVER, the firt of the mechianical powers, for the properties of which fee Micrianics; and for a demonflration of its fundamental ploperty, fee Stell yarl), both in the Encecclopartia.

LICLENSER of Books (fee Laberty of the Prefs, Encyel), has been an officer in almot every civilized nation, till the end of the laft century that the office was abolifhed in Great Britain. Profeffor Beckmann,
was eitablifhed not only in the Roman Empire, but even in the republic, and in the free fates of ancient Greece. At Athens, the werks of Protago:as were prohibited; and all the copies of them which could be co:lected were burnt by the public crier. At Rome, the writings of Numa, whicl had been found in his grave, were, by order of the fenate, condemned to the fire, becaufc they were contrary to the religion which he had introduced. As the populace at Rome were, in tinnes of public calamity, more addicted to fuperftition than feemed proper to the government, an order was iffued, that all fuperftitious and aftrological books fhould be delivered into the hands of the pretor. This order was often repeated; and the emperor Augufins caufed more than twenty thoufand of thefe books to be burnt at one time. Under the fame emperor the fatirical works of Labienus were condemned to the fire,

$79]$ L. 1

which was the fiff inftance of this neture ; and it is re. Nicenfer, lated as fomething fingular, that, a few years after, the Lichen. writings of the perfon wito had been the caufe of the order for that purpofe thared the like fate, and were alfo publicly burnt. When Cremutins Cordus, in his hiftory, called C. Cufriis the laft of che Romans, the fenate, in order to flatter 'Tiberius, caufed the book to be burnt; but a number of copies were faved by being concealed. Antiochus Epiphanes caufed the books of the Jewa to be burnt ; and in the firlt centuries of our æra the books of the Chriltians were treated with equal feverity, of which A rnobius bitterly complains. We are told by Eufebius, that Dioclefian camfed the facred Scriptures to be burnt. After the fpreading of the Chrittian religion the clergy exercifed, arainft books that were cither unfuvourable or difagreeable to them, the fame feverity which they had cenfured in the heathens as foolifh and prejudicial to their own canfe.

Soon after the invention of printing, laws began to be made for fubjecting books to examination; a regulation propofed even by Plato; and which has been withed for hy many fince. Our author gives a great deal of curions information oat this inportant fubjeet, whicli our limits do not permit us to repeat ; but it is apparent from his work, that the liberty of the prefs is but a moderu privilege; and that it lias not been enjoyed completely in any country but this happy ifland.

LICHEN (fee Encycl.), is a genus of plants, of which the moft valuable fpecies feems to be the Lichen Rocflla, or Argol. As that fpecies has not been noticed in the article referred to, the following account of it from Profeffor Beckmann will be acceptable to manyof our readers :

It is found in abundance in fome of the iflunds near the African coatt, particularly in the Canaries, and in feveral of the illands in the A rchipelago. It grows upright, partiy in firgle, partly in double ftems, which are about two inches in height. When it is old, thefe flems are crowned with a button fometimes round, and fometimes of a flat form, which T'ournefort, very pro. perly, compares to the excrefcences on the arms of the frpia. Its colour is fometimea a light, and fometimes a dark grey. Of this mofs, with lime, uriue, and alkaline falte, is fonmed a dark red patte, which in commerce has the fame name, and which is much ufed in dycing. That well-known fubftance called lacmus is alfo made of it.

Theopplraftus, Diofeorides, and their tranfeiberPliny, give the name of Plycoss thalaflon, or pontion, to this plant, which, notwithltanding its name, is not a fea weed but a mofs; as it grew on the rocks of different inands, and particularly on thofe of Cretc or Candia. It had, in their time, been long ufed for dyeing wool, and the colour it gave when fiefl was fo beanitul, that it excelled the ancient purple, which was not red, as many fuppofe, but violet. Hiny tells ws, that with this mofs dyers gave the ground or firft tint to thofe clotho which they intended to dye wilh the colly purple. When it was firft employed as a dye by the mode:ns, is rot fo certain, though the Profeflor has proved, we think completely, that it muft have been at leaft as early as the beginning of the $14^{\text {th }}$ century.
"Among the oldeft and principal Florentine fanilies (fays he), is that known under the name of the

I. I C [80] LI G

Lichen. Oricellarii or Rucellarii, Rufeellai or Rucellai, feveral of whom have diftinguifhed themfelves as ftatefmen and men of letters. This family are defcended from a German nobleman, named Ferro or Frederigo, who lived in the beginning of the twelfth century. One of his defcendants, in the year 1300, carried on a great trade in the Levant, by which he acquired confiderable riches, and returning at length to Florence, with his fortune, firt made known in Europe the art of dyeing with argol. It is faid, that a little before his return from the Levant, happening to make water on a rock covered with this mofs, he obferved, that the plant, which was there called re $/ p$ po, or re $\int p o$, and in Spain orciglia, acquired by the urine a purple, or, as others fay, a red colour. He therefore tried feveral experiments; and when he had brought to perfection the art of dyeing wool with this plant, he made it known at Florence, where he alone practifed it for a confiderable time, to the great benefit of the flate. From this ufeful invention, the family received the name of Oricellarii, from which, at laft, was formed Rucellai." The Profeffor, however, does not believe that this Florentine difcovered the dye by means of the above-mentioned accident, but that he learned the art in the Levant, and on his returu taught it to his countrymen.
"Our dyers do not purchafe raw argol, but a pafte made of it, which the French call orfeille en päte. The preparation of it was for a long time kept a fecret by the Florentines. The perfon who, as far as I know, made it finft known was Rofetti; who, as he himfelf tells us, carried on the trade of dyer at Florence. Some information was afterwarts publifhed concerning it by Inperati * and Micheli the botanift \dagger. In later times this art has been much praftifed in France, England, and Holland. Many druggitts, inttead of keeping this pafte in a moilt flate with urine, as they ought, fuffer it to dry, in order to fave a little dirty work. It then has the appearance of a dark violet-coloured earth, with here and there fome white fpots in it.
"'The Dutch (continues our author), who have found out better methods than other nations of manufacturing many commodities, fo as to render them cheaper, and thereby to hurt the trade of their neighbours, are the inventors alfo of lacmus, a preparation of argol, called orfeille en pierre, which has greatly leffened the ufe of that on pate, as it is more eafily tranfported and preferved, and fitter for ufe; and as it is befides, if not cheaper, at lealt not dearer. This art confift, undoubtedly, in mixing with that commodity fome lefs valuahle fubftance, which either improves or does not much impair its quality, and which, at the fame time, increafes its weight (a). Thus do they pound cimabar and fmalt finer than other nations, and yet fell both thefe articles cheaper. Thus do they fift cochineal, and fell it cheaper than what is unfiffed.
" It was for a long time believed, that the Dutch prepared their lacmus from thofe linen rags which in the fouth of France are dipped in the juice of the croton tinitorium; but at prefent, it is almoft certainly known, that orfeille en pute is the principal ingredient in orfeille en pierre that is in lacmus; and for this curious infor-
mation we are indebted to Ferber. But whence arifes the fmell of the lacmus, which appears fo like that of the Florentine iris ?" Some of the latter may, perhaps, be mixed with it; for our author thinks, that he has obferved in it fmall indiffoluble particles, which may have been bits of the roots. The addition of this fubitance can be of no ufe to improve the dye; but it may in. creafe the weight, and give the lack more body; and perhaps it may be employed to render imperceptible fome unpleafant fimell, for which purpofe the roots of that plant are ufed on many other occafions.

LIGHT, it has been obferved in the article Chem1sTry, $\mathrm{n}^{0} 319$. (Suppl.), confifts of rays differently flexible. This was eftablifhed by fome well devifed experiments made by Henry Brougham, Efq; of which it may be proper to give an account here.

In the firft experiment, he darkened his chamber in the ufual way, and let a beam of the fun's light into it through the hole of a metal plate fixed in the thutter of the window, ITO 2 th of an inch in diameter. At the hole within the room he placed a prifm of glafs, of which the refracting angle was 45 degrees, and which was everywhere covered with black paper, except a fmall part on each fide; and through this part the light was refracted fo as to form a diffinct fpectrum on a chart at fix feet diftance from the window. In the rays, at two feet from the prifm, he placed a black unpolifhed pin, of which the diameter was rioth of an inch, parallel to the chart, and in a vertical pofition. The fhadow of the pin was found in the fpectrum; and this fhadow had a confiderable penumbra, which was broadett and moft diftinct in the violet part, narroweft and moft confufed in the red, and of an intermediate thicknefs and difinctnefs in the intermediate colours. The penumbra was bounded by curvilinear fides, convex towards the axis to which they approached as to an afymptote, fo as to be neareft to it in the place of the leaft refrangible rays. By moving the prifm on its axis, and caufing the colours to alcend and defcend on any bodies that were ufed in?ead of the pin, the red, wherever they fell, made the leaft, and the violet the greatelt, fhadow.

In the next experiment, a fereen was fubltituted in the place of the pin; and this fcreen had a large hole, on which was a brafs plate, pierced with a fmall hole $a^{\prime} \frac{d}{2}$ d of an inch in diameter. While an affiftant moved the prifm flowly on its axis, the anthor obferved the round image inade by the different rays pafing through the hole to the chart ; that made by the red was greateft, that of the violet leart, and that of each interniediate rays was of an intermediate lize. When the fharp blade of a knife was held at the back of the hole, "fo as to produce the fringes mentioned by Crimaldo and Newron, thefe fringes in the red were broadelt and molt moved inwards to the fhadow, and moft dilated when the knife was moved over the hole; and the hole itfelf on the chart was more dilated during the motion when illuminated by the red than when illuminated by any other of the rays, and lealt of all when illuminated by the violet."

From thefe two experiments, the author infers " that the rays of the fun's light differ in degree of flexibility, and
(A) As dry lacmus is much cheaper than moif, it may be readily fuppofed that it is adulterated with fand and other fubftances. Valentini Hiforia fimplicium. Fıancf. ad Mocn. 1716 fol. p. 152.

$\begin{array}{lll}L & O & T\end{array}$

Sinbers and that thofe which are leaft refrangibic are moff inflexi-
II ble." From other experiments, he concludes, that the
ble. From other experiments, he concludes, that the of his paper, he afcertains the proportion which the angle of infercion bears to that of defecion at equal incidences, and the proportion which the different flexililities of the different rays bear to one another. We fhall give an account of fome other experiments made ky him, and of the inferences drawn from them, under the word Reflexity, to which a reference has already been made.

LIMBERS, in artillery, a fort of advanced train, joined to the carriage of a cannon on a march. It is compofed of two fhafts, wide enough to receive a horfe between them, called the fillet horfe: thefe fhafts are joined by two bars of wood, and a bolt of iron at one end, and mounted on a pair of rather fmall wheels. Upon the axle-tree rifes a flrong iron fpike, which is put into a hole in the hinder part of the train of the guncarriage, to draw it by. But when a gun is in action, the limbers are taken off, and run out behind it.

Limit of a Planet, has been fometimes ufed for its greateft heliocentric latitude.
Limitfo Problem, denotes a problem that has but one folution, or forme dcterminate number of folutions: as to defcribe a circle through three given points that do not lie in a right line, which is limited to one folution only; to divide a parallelogram into two equal parts by a line parallel to one fide, which admits of two folutions, according as the line is parallel to the length or breadth of the parallelogram; or to divide a triangle in any ratio by a line parallel to one fide, which is limited to three folutions, as the line may be parallel to any of the three fides.
I.OCAL Problem, is one that is capable of an infuite number of different folutions; becaufe the point, which is to folve the problem, may be indifferently taken within a certain extent; as fuppofe any where in fuch a line, within fuch a plane figure, \&c. which is called a geometrical Locus.

A local problem is $\int \mathrm{mple}$, when the point fought is in a right line; plane, when the point fought is in the circumference of a circle; folid, when it is in the circum. ference of a conic fection ; or furfolid, when the point is in the perimeter of a line of a higher kind.
I.OCI, the plural of
I.OCUS, a line by which a local or indcterminate problem is folved; or a line of which any point may equally folve an indeterminate problem. See Algebra, lincycl.
LOGISTIC Curve, the fame with Logarithmic Curve, for which fee Encycl.
LOGISTICS, or Logistical. Aritbmetic, a name fometimes employed for the arithmetic of fexagefirmal fractions, ufed in aftronomical computations.
The fame term has been ufed for the 1 ules of compuIntions in alrrebra, and in other fpecies of arithmetic: witnefs the logiftics of Vieta and other writers.
Shakerly, in his Tabule Britannicre, has a table of lo. garithms adapted to fexagefimal fractions, and which he calls Logittical Logarithms; and the expeditious arithmetic, obtained by means of them, he calls Logiftical Arithnetic.

Libyan L.OTUS has been defcribed (Enrycl.) unSurpl. Vol. II. Part I.

81 〕 L O W

der the title Rhamsus; but the following additional Iotas, particulars from Mr Park will be acceptable to our botanical readers:

The lotus is very common in all the countries which our author vifited, and he had an opportunity to make a drawing of a branch in flower, of which an engraving is publifhed in his travels, that with his permiffion we have copied (fee Plate XXX.). The lotus profluces fruit which the negroes call tomberongs. Thefe are fmall farinaceous berries, of a yellow colour and delicious tafte. They are much eftermed by the natives, who convert them into a fort of bread, by expofing them for fome days to the fun, and afterwards pounding then gently in a wooden mortar, until the farinacenus part of the berry is feparated from the tlone. This meal is then mixed with a little water, and furmed into cakes; which, when dried in the fun, refemble in colour and flavour the fweeteft gingerbread. The ftones are afterwards put into a veffel of water, and fhaken about fo as to feparate the meal which may fill adhere to them : this communicates a fweet and agreeable tafte to the water, and with the addition of a little pounded millet, forms a pleafant griel called fondi, which is the common breakfaft in many parts of L.11damar, during the months of February and March. the fruit is collected by fpreading a clotly upon the ground, and beating the branches with a flick. Our author thinks there can be little doubt of thus heing the lotus mentioned by Pliny, as the food of the $I_{1 y}$ bian Lotophagi. An army may very well have been fed with the bread made of the incal ot the fruit, as is fait by Pliny to have been done in L.y bia; and as the tafte of the bread is fweet and agreeable, it is not likely that the foldiers would complain of it.

LOWANG, a Chinefe ifland of fome extent in the neighbourhond of the Chusan-Ifles, which fee in this Supplement. Some of the gentlumen belonging to the Britith embaffy went afhore on Lowang, which they defcribed as naked both of trees and of cartle. They examined particular! y a finall level plain recovered form the fea, which was kept out by an embankment of earth, at leaft thirty feet thick. 'The quantity of ground gained by it feemed fcarcely to be worth the labour that it mufl have colt. The plain was indeed cultivated with the utmoft care, and laid out chiefly in uiceplats, fupplicd with water collected front the adjacent hiils into little channcls, throught which it was conveyed to every part of thofe plantations. It was manured, inflead of the dung of animals, with matters mo:e of fenfive to the human fenfes, and which are not very generally applied to the purpofes of agriculture in Eng. land. Earthen veffls were funk into the ground for the reception of fuch manue ; and for containing liq ids of an analogous nature, in which the grain was flecped presioufly to its being fown; an operation which is fuppored to haften the growth of the future plant, as well as to prevent any injury from infects in its tender llate.

The party fell in with a peafant who, though Atruck with their appearance, was not fo feared by it as to thun them. He was dreffed in loofe gaments of blec cotton, a fraw hat upon his head faltencd by a tling under his chin, and half boots upon his lege. He feemed to enter into the fpirit of curiofity, natorally animating travellers, and readily led them towards ant adjoining

1. village.
\qquad
\qquad -

 -
\qquad
\qquad
\qquad
 . ro

L U C

Loxodro village. Paffing by a fmall farm houfe, they were invited into it by the tenant, who, together with his fon, obferved them with aftonifhed cyes. The houfe was built of wood, the uprights of the natural form of the timber. No ceiling concealed the infide of the roof, which was put together ftrongly, and covered with the Araw of rice. The floor was of earth beaten hard, and the partitions between the rooms confifted of mats hanging from the beams. Two fpinning wheels for cotton were feen in the outer roum; but the feats for the fpinners were empty. They had probably been filled by females, who retired on the approach of ftrangers ; while they remained, none of that fex appeared. Round the houfe were planted clutters of bamboo, and of that feecies of palm, of which each leaf refembles the form of a fan; and, ufed as fuch, becomes an article of merchandize.

LOXODROMIC CURVE, or Spiral, is the fame as the rlumb line, or path of a fhip failing always on the famc courfe in an oblique direction, or making always the fame angle with every meridian. It is a fpecies of logarithmic fpiral, defcribed on the furface of the fphere, having the meridians for its radii.
LOXODROMICS, the art or method of oblique failing, by the loxodromic or rhumb line.
LUCIOLE, a name given in the Annales de Chi. mie to the Lamprris Italica (Sce Lampyris, Encycl.). According to Dr Carradori, the light of the luciole does not depend on the influence of any external caufe, but merely on the will of thofe infeets. While they fly about at freedom, their fhining is very regular ; but when they are once in our power, they fline very irregularly, or do not fhine at all. When they are molefted, they emit a frequent light, which appears to be a mark of their refentment. When placed on their backs, they fhine almoft without interruption, making continual efforts to turn themfelves from that poftion. In the daytime it is neceifary to torment them in order to make them fhine; and thence it follows, that the day to them is the feafon of repofe. The luciole emit light at pleafure from every point of their bellies, which proves that they can move all the parts of their vifcera independently of each other. They can alfo render their plofpliorefeence more or lefs vivid, and continue it as long as they pleafe.

A light compreffion deprives the luciole of their power of ceating to thine. The author is inclined to believe, that the movement by which they conceal their light is executed by drawing back their phofphoric fubflance into a particular membrane or tunic. He fup. pofes alfo, that the fparkling confilts in a trembling or ofcillation of the phofphoric mafs. He is of opinion, that there is no emanation of a phofphoric fubltance, and that the whole phenomenon takes place in the interior part of the luminous vifcera. Wheli the fhining is at its greatelt degree of height, it is fo ftrong that a perfon may by it eafly diftinguilh the hours on the fmalleft watch, and the letters of any type whatever.

The phofphoric part of the luciole does not extend farther than to the extreme rings of the beily. It is there inclofed in a covering compofed of two portions of membranes, one of which forms the upper, and the other the lower, part of the belly, and which are joined together. Bethind this receptacle is placed the phor. phorus, which relembles a palte, having the fmell of
garlic, and very little tafte. The phofphoric matter iffues from a fort of bag on the nighteft preflure; when Luciste, Thues from a lort of bag on the ig plour in fer fqueezed out, this matter lofes its fplendour in a few hours, and is converted into a whitc dry fubftence. A portion of the phofphoric belly put into oil, fhone only with a feeble light, and was foon extinguifhed. In water, a like portion fhone with the fame vivacity as in the air, and for a much longer time. The author thence concludes, that the phofphorefeence of the luciole is not the effect of flow inflammation, nor of the fixation of azotic gas, as the oil in which they fhine does not contain a fingle air.bubble : befides, the phofphorus of thefe infects thines in a barometrical vacium. The obfervation made by Fofter, that the haciole diffufed a more vivid light in oxygen gas than in atmofpheric air, does not, according to Carradori, depend upon a combuftion more animated by the infpiration of this gas, but on the animals feeling themeives, while in that gas, in a better condition. "Whence, then, arifes (fays the author) the phofphoric light of the luciole? I am of opinion (adds he), that the light is peculiar and innate in thefe infects, as feveral other productions are peculiar to other auimals. As fome animals have the faculty of accumulating the electric fluid, and of kecping it condenfed in particular olgans, to diffufe it afterwards at pleafure, there may be other animals endowed with the faculty of keeping in a condenfed flate the fluid which conftitutes light. It is poffible, that by a peculiar organization they may liave the power of extracting the light which enters into the compofition of their food, and of tranfmitting it to the refes soir deflined for that purpofe, which they have in their abdomen. It is not even impofible that they may have the power to extract from the atmolipheric air the luminous fluid, as other animals have the power of extracting from the fame air, by a chemical procefs, the fluid of heat."

Carradori difcovered, that the phofphorefcence of the luciole is a property independent of the life of thefe animals, and that it is chiefly owing to the fuft flate of the phofohoric fubflance. Its light is fufpended by drying, and it is again revived by f ftening it in water; hut only after a certain time of deficcation. Reaunur, Beccalia, and Spallanzani, oblerved the fame thing in regard to the pholades and the medufa.

By plungirg the luciole alternately into lukewarm and cold water, they thine with vivacity in the former, but their light becomes extinet in the latter ; which, according to the audior, depends on the alternate agreeable and difagreeable fenfation which they experience. In warm water their light difappears gradually. Dr Carradorit tried on the luciole and their phofphorus the action of different faline and fpirituous liquors, in which they exhibited the fame appearances as uther phofphoric animals. Thefe la!t experiments prove that the plofphoric matter of the luciole is only foluble in wa. ter.

LUDAMAR, a Moorifh kingdom in the interior of Africa, of which the capital Benorm is placed by Major Rennel in $15^{\circ} \mathrm{N}$. Lat. and $6^{\circ} 50^{\prime} \mathrm{W}$. Long. It has for its northern boundary the great defert (fee SAhars iut this Supplement), and is deicribed by Mr Park as little better than a defert itfelf. Our traveller was taken captive on the confines of this kingdom, and carried to the camp of the king, where he was fubjected

L U D
udannar, to the crueleft indignities that the malice of bigotted \sim Moors could invent. He was not fuffered to travel beyond the camp ; though he moved as it moved, and of courfe faw a confiderable part of the country, and had an opportunity of obferving the manners of the people. "The Moors of Ludamar fubffit chiefly on the flefh of their cattle; and are always in the extreme of either gluttony or abftinence. In confequence of the frequent and fevere fafts which their religion enjoins, and the toilfome journeys which they fometimes undertake acrofs the defert, they are enabled to bear both hunger and thirf with furprifing fortitude; but whenever opportunities occur of fatisfying their appetite, they gencially devour more at one meal than would ferve an European for three. They pay but little attention to agriculture ; purchafing their corti, cotton cloth, and other neceflaries, from the Negroes, in exclange for falt, which thicy dig from the pits in the Great Defert.
"The natural barrennefs of the country is fuch, that it furnifhes but few materials for manufacture. The Moors, however, contrive to weave a ftrong cloth, with which they cover their tents; the thread is fpun by their women from the hair of goats : and they prepare the hides of their cattle fo as to furnifh faddles, bridles, pouches, and other articles of leather. They are likewife fufficiently fkilful to convert the native iron, which they procure from the Negroes, into foears and knives, and alfo into pots for boiling their food ; but their fabres and other weapons, as well as their fire-arms and armmuition, they purchafe from the Europeans, in exchange for the Negro nlaves which they obtain in their predatory excurfions. Their chief commerce of this kind is with the French traders on the Senegal river."

The Moors of this country have fingular ideas of feminine perfection. The gracefulnefs of figure and motion, and a countenance enlivened by expreffion, are by no means effential points in their flandard; with them corpulence and beauty appear to be terms nearly fynonymous. A woman, of even moderate pretenfions, muft be ose who cannot walk without a flave under eacli arm to fupport her ; and a perfect beauty is a load for a camel. In confequence of this prevalent tafte for unwieldinefs of bulk, the Moorifh ladies take great pains to acquire it early in life; and for this purpofe many of the young girls are compelled by their mothers to devour an immenfe quantity of food, and drink a latge bowl of camel's milk every morning. It is of no importance whether the girl has an appetite or not, the meat and the drink muft be fwallowed; and obedience is frequently enforced by blows. This fingular practice, intead of producing indigeftion and difeafe, foon covers the young lady with that degree of plumpnefs, which, in the eye of a Moor, is perfection itfelf.
"Although the wealth of the Moors confifts chiefly in their numerous herds of cattle; yet, as the paftoral life
does not afford full employment, the majority of the Ludamar people are perfectly idle, and fpend the day in trifling converfation about their horfes, or in laying fchemes of depredation on the Negro villages.
"The ufual place of rendezvous for the indolent is the king's tent, where great liberty of fpecch feems to be exercifed by the company towards each other. While in fpeaking of their chief, they exprefo but one opinion. In praife of their fovereign, they are unanimous. Songs are compofed in his honour, which the company frequently fing in concent ; bint they are fo luaded with grofs adulation, that no man but a Moorifh defpot could hear them without blufhing. The king is dittinguifhed by the finencfs of his drefs, which is compoled of blue cotton cloth brought from Tombuctoo, or white linen or muflin from Morocco. He has likewife a larger tent than any other perfon, with a white cloth over it ; but in his ufual intercourfe with his fubjects, all diftinctions of rank are frequently forgotten. He fometimes eats out of the fanie bowl with his camel driver, and repofes himfelf, during the heat of the day, upon the fame bed.
"The military ftrength of Ludamar confifts in cavalry. They are well mounted, and appear to be very expert in fkirmifhing and attacking by furprife. Every foldier furnifhes his own horfe, and finds his accoutrenients, confifting of a large fabre, a double barrelle: gun, a fmall red leather bag for holding his balls, and a powder horn fluug over the fhoulder. He has no pay, nor any remuneration but what arifes frons plunder. This body is not very numerous; for when Ali the king made war upon Bambara, our author was informed that his whole force did not exceed 2000 cavalry. They conllitute, however, by what he could learn, but a very fmall proportion of his Moorifh fubjects. The horfes are very beautiful, and fo highly efteemed, that the Negro princes will fometimes give from twelve to fourteen flaves for one horfe."
Cut off from all intercourfe with civilized nations, and boafting an advantage over the Negroes, by poffeffing, though in a very limited degree, the knowlelgo of letters, the Moors of Ludamar are at once the vaineft and proudeft, and perhaps the moft bigotted, ferocious, and intolerant of all the nations on the carth; combining in their character the blind fuperftition of the Negro with the favage cruelty and treachery of the Arab. It was with the utmoft difficulty that our author made his efcape from this inhofpitable people.

LUPUS, the Wolf, a fouthern conftellation, joined to the Centaur, containing together 19 ftars in Ptolomy's catalogue, but 24 in the Britannic catalogue.

LYNX, a conftellation of the northern hemifphere, compofed by Hevelius out of the unformed flars. In his catalogue it confifts of 19 ftars, but in the Britannic 44.

M ACHINERY.

THE denomination Machine is now vulgarly given to a great variety of fubjeets, which have very little analogy by which they can be claffed with propriety under any one name. We fay a travelling machine, a bathing machine, a copying machine, a threfhing machine, an electrical machine, \&cc. \&c. The only circumftance in which all thefe agree feem to be, that their conftruction is more complex and artificial than the utenfils, tools, or inftruments which offer themfelves to the firft thoughts of uncultivated peoplc. They are more artificial than the common cart, the bathing tub, or the flail. In the language of ancient Athens and Rome, the term was applied to every tool by which hard labour of any kind was performed; but in the language of modern Europe, it feems reftricted either to fuch tools or inftruments as are employed for executing fome philofophical purpofe, or of which the confruction employs the fimple mechanical powers in a confpicuous manner, in which their operation and energy engage the attention. An electrical machine, a centrifugal machine, are of the firt clafs; a tbrefhing machine, a fire machine, are of the other clafs. It is nearly fynonymous, in our language, with ENGINE; a term altogether modern, and in fome meafure honourable, being beftowed only, or chiefly, on contrivances for executing work in which ingenuity and mechanical fkill are manifett. Perhaps, indeed, the term engine is limited, by careful writers, to machines of confiderable magnitude, or at leaft of confiderable art and contrivance. We fay, with propriety, feam engine, fire-engine, plating-engine, boring-engine; and a dividing machine, a copying machine, \&c. Either of thele terms, macbine or engine, are applied with impropricty to contivances in which fome piece of work is not executed on materials which are then faid to be manufactured. A travelling or bathing machine is furely a vulgarifin. A machine or engine is therefore a toou; but of complicated conftruction, peculiarly fitted for expediting labour, or for performing it according to certain invariable principles: And we fhould add, that the dependence of its efficacy on mechanical principles mult be apparent, and even confpicuous. The contrivance and erection of fuch works confitute the profef. fion of the engineer; a profeffion which ought by no means to be confounded with that of the mechanic, the artifan, or manufacturer. It is one of the artes liberales; as deferving of the title as medicine, furgery, architecture, painting, or fculpture. Nay, whether we corfider the importance of it to this flourifhing nation, or the fcience that is neceffary for giving eminence to the profeffor, it is very doubtful whether it fhould not take place of the three laft named, and go pari paffis with furgery and medicine. The inconfiderate reader, who perufes Cicero de Oratore with fatisfaction, is apt to fmile at Vitruvius, who requires in his architect nearly the fame accomplifhments which Ciccro requires
in his orator. He has not recollected, or perhaps did not know, that the profeffion of an architect in the Auguftan age was the moft refpectable of all thofe which were not effentially connected with the management of flate affairs. It appears that the architects were all Greeks, or the pupils of Greeks, altogether different from the members of the Collegium Murariorum, the corporation of builders and mafons. The architecture of temples, Itadiums, circufes, amphitheatre, feems to have been monopolifed, by ftate authority, by a fociery which liad long fubfifted in Afia, connected by certain myfterious konds, both civil and religious. We find it in Syria; and we learn that it was brought thither from Perfia in very ancient times. From thence it fpread into Ionia, where it became a very eminent and powerful affociation, under the particular protection of Bacchus, to whom the members had erected a magnificent temple at Teos, with a vaft eftablifhment of priefts and priefteffes, confifting of perfons of the firf rank inthe flate. They were the fole builders of temples and Itadiums throughout all Greece and the Leffer Afia ; and the contractors for the machinery that was employed in the theatres, and in the great temples, for the celebration of the high mylteries of paganifm. By the imperfect accounts which 1 emain of the Eleufinian and other myfteries, it appears, that this machinery muft have been imirenfe and wouderful, and muft have required a great deal of mechanical fkill. This indeed appears, in the moft convincing manner, to any perfon who reflects on the magnificent ftructures which they erected, which excite to this day the wonder of the world, not only on account of their magnificence and incomparable elegance, but alfo on account of the mechanical knowledge that feems indifpenfably neceffary for their erection. This will ever remain a myltery. There are no traces of fuch knowledge to be found in the writings of antiquity. Even Vitruvius, writing exprefly on the fubject, has given us nothing but what is in the loweft degree of elementary knowledge.

This affociation of the Dyonifiacs undoubtedly kept their mechanical fcience a profound fecret from the uninitiated, the profane. They were the engineers of antiquity, and Vitruvins was perliaps not one of the initiated. He fpeaks of Myro and other Greek architeels in terms of refpect which border on veneration. Perhaps the modern affociation of free mafons is a remain of this antient fraternity, continued to our times by the company of builders, who ereeted the cathedrals and great conventual churches. No one who confiders their works with fcientific attention, can doubt of their being deeply verfed in the principles of mechanics, and even its more refined branches. 'They appear to have carried the art of vault-roofing almoft to its acmé of perfection; far outfripping their Grecian infructors in their knowledge of this moft delicate branch of their art.

It were greatly to be wifhed that fome fuch inflitution did yet exift, where men might be induced by the mon powerful motives to accomplifh thenifelves in the knowledge neceflary for attaining emincuce in their profeflicu.

We have been informed (and we thought our authority good), that our gracious Sovereign has fignified his intention of patronifing an inllitution of this kind. We heard, that it was propofed to inflitute degrees fimilar to our univerfity degrees, a.d proceeding on fimilar conditions of a regular education or Aanding, which would enfure the opporlunities of information, and alfo on an examination of the proficiency of the candidate. This examination, being conducted by perfons eminent in the profefliow, pei haps fill exercifing it, would probably be ferious, becaufe the fuccefsful candidate would inmediately become a rival practitioner. Such an inftitution would undoubtedly prevent many grofs impofitions by unlettered mill-wrights and pump-makers, who now feldom appear under any name but that of engineer, althougli they are frequently ignorant cven of the elements of mecharical fcience, and are totally unacquainted with the higher mathematics; without which it is abfolutely impoffible for them to contrive a machine well fuited to the intended purpofe, or to fay with any tolerable precifon what will be the perform--ance of the engine they have erected. Yet thefe are queftions fufceptible of accurate folution, becaufe they dieprid on the unalterable laws of matter and motion.
All who have a juft view of the unfpeakable advan. tages which this highlly favoured land poffefes in the fupcriority and activity of its manufactures, and who know how much of this fuperiority mould be aferibed to the great improvements which have bien made in practical mechanics within thefe lait thirty years, will join us in wilhing fuccefs to fome fuch inflitution as that now mentioned.

We were naturally led to thefe reflections when we turned our thoughts to machisery in general, and ubfeived what is done in this country by the native thiergy of its inhabitants, unaffifted by fuch fcientific inflructions as they might have expected from the pupils of a Newton, their countryman, under the patronage of the beft of Sovcreigns, eminently knowing in thefe things, and ever ready to encourage thofe Iciences a:d arts which have fo liighly contributed to the national profperity. What might not be reafonably expected from Britihn activity, if thofe anong ourfelves who have knowlectre and leifure had been at the fame fains with the nembers of the furcign academies to cultivate the Newtonian philofophy, and particulaily the more refined branches of mechanics, and to deduce from their fpeculations maxims of conflruction fitted to our fituation as a great manufaceuring nation? But fuch knowledge is not attainable by thofe who are acquainted only with the inperfect elements contained in the publications read by the bulk of our practitioners. Much to this purpofe lias been done on the continent by the moft emincut mathematicians; but from want of incividual entegy, or pcrlaps of general fecurity and protection, the patriotic labours of thofe gentlemen have not done the fervice to their country which might have teen reafonably expected. Indeed, their diliertations have generally been fo compofed, that ouly the learned could fee their value. They feem aderefled only, or
chiefly, to fuch; but it is to thofe athors that cur countrymen generally lave recouife for information concerning every thing in their profiffion that rifes above mere clementary kilowledge. The books in our language which profffs to be fytems of mechanics rarely go beyond this: they contain only the principles of equilibrium. 'I hefe are abfolutely neceffary for the knowledge of machines; but they are very far indeed from giving what may be called a practical knowledge of woorking maclinery. 'This is never in a ftate of equilibrium. The machine mult inove in order to work. There muft be a fuperiority of inpelling power, beyond what is merely fufficient for balancing the refiftance or contrary ataion of the work to be performed. The reader may turn to the article Statics in the Encyclo. padia Britannica, and he will there fee fome farther ubfervations on this head. And in the article Mechamics he will find a pretty ample detail of all the ufual doctrines, and a defcrintion of a confiderable valiety of machines or engines, accumpanied by fuch obfervations as are neceflary for tracing the propagation or tranfmiffion of preflure from that part of the machine to which the natural power is applied to the working part of the machine. Along with thefe two articles, it will be proper to read with peculiar attention the article Rotation.

By far the greatelt number of our mof ferviceable engines confift chiefly of parts which bave a motion of rotation round fixed axes, and derive all their energy from levers virtually contained in them. And thete acting parts are alifo material, requiring force to move them. over and above what is neceflary for producing the acting force at the working part of the machine. I he modifications which this circumftance frequently makes of the whole motions of the machine, are indica. ted in the article Rotatioy in an elementary way ; and the propofitions there inveltigated will be found almof continually involved in the complete theory of the operation of a machine. Lafly, it will be proper to confider attentively the propoftions contained in the article STRENGTH of Matericils, that we may combine them with thofe which relate wholly to the working of the machine ; becaufe it is frem this combination only that we difcover the Itrains which are excited at the various points of fupport, and of communication, and in every member of the machine. We fuppofe all thefe things already underttood.

Our object at prefent is to point out the principles The ehir-f which enable us to afcertain what will be the precife quention in motion of a machine of given conftruction, whien actua- ni.cchanics. ted by a natural power of known intenfity, applied to a given point of the nachine, while it is employed to overcome a known refiffance acting at aniother point: To abbreviate langurge, we fhall call that the impelled poist of the machine to which the puffure of the moving power is immediately applied; and we nay call that the ::ORKing point, where the ieffance arifing frum the work to be performed immediately acte.

Tu confider this important fubject, evell in its chicif varieties, requires much mure room than can be allowed in an undertaking like ours, and therefore we muit content ourfelves with a very limited view; but at the fane time, fuch a view as fhall give fufticient ind cation of the principles which f.oul dineet the practical rader in every important cafe. We fhall confider thife machinies
whick
which perform their motions round fixed axes; thefe being by far the moit numerous and important, becaule they involve in their conftruction and operations all the leading principles.

The proper meafine of mechanical power exerted.

That we may proceed fecurely, it is neceffary to have a precife and adequate notion of moving force, as applied to machinery, and of its meafures. We think this peculiarly neceffary. Different notions have been cutertained on this fubjee: by Mr Leibnitz, Des Cartes, and other eminent meclanicians of the laft century; and their fuccefiors have not y ct come to an agreement. INay, fone of the moft eminent practitioners of the prefent times (for we muft include Mr Streaton in the number) have given meafures of mechanical power in machinery which we think inaccurate, and tending to erroneous conclufions and maxims.

We take for the meafure (as it is the effect) of exerted mechanical power the quantity of motion which it produces by its uniform exertion during fome given time. We fay uniform exertion, not becaufe this uniformity is necefary, but only becaufe, if any variation of the exertion lias taken place, it mult be known, in order to judge of the power. This would needlefsly complicate the calculations; but in whatever way the exertion may have varied, the whole accumulated exertion is ftill accurately meafured by the quantity of motion exilting at the end of the exertion. The reader muft perceive that this is the fame thing that is expreffed in the article Dynamics of this Supplement, $\mathrm{n}^{\circ} 90$. by the area of the figure whofe abfeiffa or axis reprefents the time of exertian; and the ordinates are as the preffures in the different inftants of that time, the whole being multiplied by the number of particles (that is, by the quantity of matter), becaufe that figure reprefents the quantity of motion generated in one particle of matter only. All this is abundantly clear to perfons converfant in thefe difquifitions; but we wifh to carry along with us the diltinct conceptions of that ufeful clals of readers whofe profeffion engages them in the confteuction and employment of machines, and to whom fuch difeufions are not to familiar. We muft endeavour therefore to juftify our choice of this meafure by appealing to familiar facts.

If a man, by preffing uniformly on a mafs of matter for five feconds, grenerates in it the velocity of eight feet per fecond, we obtain an exact notion of the proportion of this exertion to the mechanical exertion of gravity, when we fay that the man's exerted force has becn precifely one.twentieth part of the action of gravity on it ; for we know that the weight of that body (or, more properly, its heavinefs) would, in five feconds, have given it the velocity of 160 feet per fecond, by acting on it during its fall. But let us attend more clofely to what we mean by faying that the exerted force is one-twentieth of the exertion of gravity. The only rotion we have of the exertion of gravity is what we call the weight of the body-the preffure which we feel it make on our hand. To fay that this is 20 pounds weight, does not explain it ; becaure this is only the action of gravity on another piece of matter. Both preffures are the fame. But if the body weighs 20 pounds, it will draw out the rod of a ftelyard to the mark 20. The rod is fo divided, that the 20th part of this pref. fure will draw it out to I . Now the fact is, that if the man preffes on the mafs of 20 pounds weight with
a fpring fleelyard dering five feconda, and if during that time the rod of the fteelyard was always at the mark I, the hody will have acquired the velocity of cight feet per fecond. This is an acknow ledged fact. Thelefore we were right in faying, that the man's exertion is one-twentieth of the exertion of gravity. And fince we believe the weight of bodies to be proportional to their quantity of matter, all matter being equally heavy, we may fay, that the man's exertion was equal to the action of gravity on a. quantity of matter whofe weiglit is one pound We exprefs it much more faniliarly, by faying, that the man cxerted on it the pref. fure of one pound of matter, or the force of one pound.

In this manner, the inotion communicated to a mals of matter, by acting on it during fome time, informs ne with accuracy of the real mechanical force or preffure which has been exertec. This is judged to be doutle when twice the velucity has been generated in the fame mafs, or where the fame velocity has been generated in twice the mals; becaufe we know, that a double preffure would have done either the one or the other.

But farther: We know that this preffure is the exertion; we have no other notion of our own force; and our notion of gravity, of elaflicity, or any other natural force, is the fame. We alfo know that the continuance of this exertion fatigues and exhaufts our Itrength as completely as the mott violent motion. A dead pull, as it is called, of a horfe, at a poft fixed in the ground, is a ufual trial of his ftrength . No man can hold out his arm horizontally for inuch more than a quarter of an hour; and the exertion of the latt minutes gives the moft diftreffing fatigue, and difables the fhoulder from action for a confiderable time after. 'I his is therefore an expenditure of mechanical power, in the ftrict primitive fenfe of the word. Of this expenditure we have an exact and adequate effect and meafure in the quantity of motion produced; that is, in the product of the quantity of matter by the velocity generated in it by this exertion. And it mult be particularly noticed, that this meafure is applicable even to cafes where no motion is produced by the exertion; that is, if we know that the exertion which is jult unable to flart a block of flone lying on a fmooth flone pavement, but would flart it, if increafed by the fmalleft addition; and if we know that this would generate in a fecond 32 feet of velocity in 100 pounds of matter - we are certain that it was a prefure equal to the weight of this 100 pounds. It is a good meafure, though not immediate, and may be ufed without danger of mittake when we have no other.

The celebrated engineer Mr Smeaton, in his excel- Mr Śnealent differtation on the power of water and wind to ton's nicadrive machinery, and alfo in two other differtations, all fure publifhed in the Philofophical Tranfactions, and afterwards in a little volume, has employed another meafure, both of the expenditure of mechanical power, and of the mechanical effect produced. He fays, that the weight of a body, multiplied by the height thro' which it defcends, while driving a machine, is the only proper meafure of the power expended; and that the weight, multiplied by the height through which it is uniformly raifed, is the only proper meafure of the effect produced. And he produces a large train of accurate experiments
riments to prove that a certain weight, defcending through a certain fpace, always produces the fame effect, whether it has defcended fiviftly or flowly, em. ploying little or much time.

Had this eminent engineer propofed this as a popular meafure, of eafy coinprehenfion and remembrance, and as well acconmodated to the ufes of thofe engaged in the conftruction of machines, when reftrifted to a ccrtain clafs of cales, it misht have anfwered very good purpofes ; but the author is at pains to recommend it to the philofophers as a neceffary correction of their theories, which he fays tend to miflead the artifts. His own reafonings terminate in the fame conclufion with Mr Leibnitz's, namely, that the power of producing a mechanical effect, and the effect produced, are proportional to the fquare of the velocity. The eleference junty due to Mr Smeaton's authority, and the influence of his name among thofe who are likely to make the moft ufe of his inftructions, render it neceflary for us to examine this matter with fome attention.

Mr Smeaton was led to the adoption of this meafure by his profeffional halits. Raifing a weight to a height - is, in one fhape or another, the general tafk of the machines he was employed to erect; and we may add, the opportunities of expendi:g the mechanical powers of nature which are in our command, are grenerally in this proportion. A certain daily fupply of water, coming from a certain heioht, is our beft opportnnity, and may very properly be faid to be expended.
This being the gerieral cafe, the meafure was obvious, and natural, and good. The power and effect were of the fame kind, and muft be meafures of each other; at leaf, in thofe circumitances in which they were fet in oppoition Yet even here Mr Simeaton was obliged to make a reftriftion of his meafures: "The height thro" which a body Joowly and equably defcended, or to which it was ra:fed." And why was this limitation neceflery? " Becaufe in rapid or accelerated motions, the inertis of bodies occafioned fome variation *." But this is too vague language for philofophical d:fouifition. Befides, what is meant by this variation? What is the fandard from which the unreftricted! meafure varies? This ftandard, whatever it is, is the true meafure, and it was needlefs to adopt any other. Now, the flandard from which Mr smeaton eflimates the deviation, is the very meafure which we winh to employ, namely, the quantity of motion produced. Strielly fpeaking, even this is not the immediate meafure. ithe immediate meafure is that faculty which we call preflure. This is the internedium perceivable in all productions of motion; and it is alfo the intermedinn of mechanical effect, cvern when motion is not produced; as when the weight of a body bends a fpring, or the elafficity of a body fupports another preflure. How it operates in all or any of thefe cafes, we know not; but we know that all there meafures of preffure agree with each other. A double quantity of motion will bend a fpring doubly ftrong, will raife a double weight, will withttand any double preffurc, \&c. \&c. In fhort, preflure is the immediate agent in every mechanical phenomenon. It penetrates bodies, overcoming their tenacity; it overcomes fric. tion; it balances preflure; it produces motion. Mr Smeaton's meafare is only nearly true, in any cafe, and in all cafes it is far from being exaet in the firt inftants of the motion, during its acceleration or retardation.

We have alrcady noticed the complete expenditure of animal power by continued preffure, even when motion is not produced : the only difficulty is to connect this in a meafurable way with the power which the fame exertion has of generating motion in a body.

When a man fupports a weight for a fingle inftant, he certainly balances the preffure or action of gravity on that body; and he continues this action as long as he continues to fupport it: and we know that if this body were at the end of a horizontal arm turning round a vertical ax's, the fame effort which the man exerted in merely carrying the weight, if now exerted on the body, by puffing it horizontally round theaxis, will generate in it the fame velocity which gravity would generate by its falling frecly. On this authority therefore we fay, that the whole accumulated action of a man, when he has jult carried a body whofe weight is 30 pounds for onc minute, is equal to the whole exertion of gravity on it curing that misute; and if emoloye!, not to counteract gravity, but to gerierate inotion, rould generate, during that minute, the fame inotion that gravity would, that is, 50×32 feet velocity per fecond, in a mafs of 30 pounds. There would be 30 pounds of matter moving with the velocity of 1920 fees per fecond. We wonld exprefs this production or effeet by 30×1920, or by 57600 , as the meafure of the man's exertion during the minute.

But, according to Mr Sincaton, there is no expellditure of power, nor any produstion of mechanical effect, in thus carrying 30 pomds for a minute; there is no product of a weight by a height through which it is equably raifed; jet fuch exertion will completely exhault a man's ftrength if the body be heavy enlough. Herc then is a cafe to which Mr Smeaton's meafure Coes not readily anply ; and this cafe is important, inclucing all the actions of animals at a dead pull.

But let us confider more narrowly what a man really does when he peiforms what Mr Smeaton allows to be the produstion of a meafurable mechanical effect. Suppofe this weight of 30 pounds hanging by a cord which paffes over a pulley, and that a man, taking this cord over his fhoulder, turns his back to the pulley, and walks away from it. We know, that a man of ordinary force will walk along, raifing this weight, at the rate of about 60 yards in a milute, or a yard every fecond, and that he can continue to do this for eight or ten hours from day to day; and that this is all that he can do without fatigue. Here are 35 pounds raifed unifurmly 180 feet in a minute; and Mr Smeaton would exprefs this by 30×180, or 5400 , and woutd call this the meafinre of the mechanical effect, and alfo of the expenditure of power. This is very different from our ineafure 57630 .

But this is not an accurate and complete account of And found the man's altion on the weight, and of the whole offect to be inacproduced. T'o be convinced of this, fuppofe that a curate. man A has been thus employed, while another B, wallking along fide of him at the fame rate, fuddenly takes the rope out of his hand, frees him of the talk, and con. tinues to raife the weight without the fmallett clange on its velocity of afcent. What is the action of B, and whether is it the fame with that of A or not? It is acknowledged by all, that the exertion of B againft the load is precifely equal to 30 pounds. If he holds the rope by a fpring fteelyard, it will ftand conftantly at the mark 30. B exerts the fame action on the load as
when he fimply fupports it fro n falling back into the pit. It was noving with the velocity of three feet per fecond when lie took hold of the rope, and it would continue to move with that velocity if any thing could annihilate or counteract its gravity. If thercfore there was no action when a perfon merely carried it, there is none at prefent when it is rifing 180 feet in a minute. The man does indeed work more than on that occafion, but not againlt the load: his additional work is walking, the motion of his own body, as a thing previoufy neceflary that he may continue to fupport the load, that he may continue his mechanical effort as it follows him. It appears to yield to him : but it is not to his efforts that it yields; its weight completely balances thofe efforts, and is balanced by them. It was to a sreater effort of the man A that it yielded. It was then lying on the ground. He pulled at the cord, gradually perhaps increafing his pull till it was juft equal to its weight. When this obtains, the load no longer prefes on the ground, but is completely carried by the rope. But it does not move by this effort of 30 pounds; but let him exert a force of 31 pounds, and continue this for three feconds. He will put it in motion; will accelerate that motion; and at the end of three feconds the load is rifing with the velocity of three feet per fecond. 'The man feels that this is as much fpeed as he can continue in his walk; he therefore fackens his pull, reducing his action to 30 pounds, and with this action he walks on. All this would be diftinctly perceived by means of a "fteclyard. The rod would be pulled out beyond 30 , till the load acquired the uniform velocity intended, and after this it would be nbferved to flrink back to 30 .
More is done therefore than appears by Mr Smeaton's meafure. Indeed, all that appears in it is the exertion neceflary for continuing a mution already produced, but which would be immediately extinguified by a contrary power, which muft therefore be counteracted. This meafure will not apply to numberlefs cafes of the employment of machines, where there is no fuch oppofing power, and where, notwithftanding, mechanical power muft be expended, even according to Mr Smeaion's meafurement. Such are corn mills, boring mills, and many others.
How then comes it that Mr Smeaton's valuable experiments concur fo exactly in fhewing that the fame quantity of water defcending from the fame height, always produces the fame effect (as he meafured it), what. ever be the velocity? In the firt place, all his experiments are cafes where the power expended and the work performed are of the fame kind: A heavy body defcends, and by its prenonderancy raifes another heavy body. Dut even this would not enfure the precife agreement obferved in his experiments, if Mr Smeaton were not careful to exclude from his calculations all that motion where there is any acceleration, and all the expenditure of water during the acceleration, and to admit only thofe motions that are fer:fibly uniform. Ii moderate velocities, the additional preffure required for the firft acceleration is but an infignificant part of the whinle; and th take thice accelerated motions into the account, would have embarrafled the calculations, and perhaps confufed many of the readers. We fee, in the infance now. given, that the adition of ore potend con-
tinued for three fecondz only, was all that was neceffary.

Mr Smeaton's meafurement is therefore abundantly exact for pratice; ant being accommodated to the circuinflances moft likely to engage the attention, is very proper for the inftruction of the numerous practitioners in all manufacturing countries who are employed for ordinary ercetions : but it is improperly propofed as an article effential to a juft theory of mechanics, and therefore it was proper to notice it in this place. Befides, there frequently occur moft important cafes, in which the motion of a mechine is, of neceffity, defultory, alternately accelerated, and retarded. We fhould not derive all the advantages in our power from the firf mover, if we did not attend particularly, and chiefly, to the accelerating forces. And in every cafe, the improvement, or the proper employment of the machine, is not attained, if we are not able to difcriminate between the two parts of the mechanical exertion; one of them, by which the motion is produced and accelerated to a certain degree; and the other, by which that motion is continued. We muft be able to appreciate what part of the effect belongs to each. - But it is now time to proceed to the important queftion,

What will be the precife motion of a machine of given confrucion, aquated by a pozver of knozun intenfity and manner of alting, and oppofed by a known reffance?

In the folution of this queftion, much depends on Thingsto the nature of both power and refiftance. In the fati. be confidero cal confideration_of machines, no attention is paid to ecchine at ma any differences. The intenfity of the preflures is all work. that it is neceffary to regard, in order to flate the proportion of preflure which will be exerted in the various parts of the machine. 'The preflures at the impelled and working points, combined with the proportions of the machine, neceffarily determine all the reft. Preffure being the fole caufe of all mechanical action among bodies, any preffure may be fubftituted for another that is equal to it ; and the preflure which is moft familiar, or of eafieft conEderation, may be ufed as the reprefentative of all others. This has occafioned the mechanical writers to make ufe of the preflure of gravity as the ftandard of compariton, and to reprefent all powers and refiltances by weights. However proper this may be in their hands, it has hurt the progrefs of the fcience. It has rendered the ufual elementary treatifes of mechanics very imperfect, by limiting the experiments and ilIultrations to fuch as can be fo reprefented with facility. This has limited them to the flate of equilibrium (in which condition a working machine is never found), becaufe illufrations by experinent out of this flate are neitlier obvious nor eafy. It has alfo prevented the, Atudents of mechanics from accomplifhing themfelves with the mathennatical knowledge required for a fuccefsful profecution of the fudy. The moft clementary geometry is fifficient for a lerough undertanding of equilibrium, or the duetrines of ftatics; but true mechanics, the knowledge of machines as in?truments by which work is performed, requires more refined mathematics, and is inncceffible without it.

Had not Newton or others improved mathematics by the invention of the infinitefimal analyfis and calculus, we mult have refted contented with the difcoveries (really great) of Galileo and Huyghens. But New-

Techanical. This new view of things was the fource of all our quilibriund dilinet notions of mechanical forces, and gave us our only unexceptionable marks and ineafures of them. The 3gth propolition of the firlt book of Newton's Principles of Naturel Philofopliy, and its co:ollaries, contain almot the whole doctrine of active mechanical nature, and are peculiarly applicable to our prefent purpofe, becauie they enable us to comprehend in this mechanical equilibrium (fo diffe: ent from the fatical) every circumftance in which thofe prefferes which are exeited by ratural powers differ from each other, and vary in their action on the impelled and wo:king points of a machine. Indecd, when we recollect that the operations of our machines are the fame on board a flip as on fhore, and that all our machines are moving with the ground on which they fland, we muft acknowledge, that ceen ordinary tlatics is onty an imperfect view of an equilibrium among things which are in motion; and this fhould have tar:ght us that, even in thofe cafes where nothing like equilibrium appears, an equilibrium may fill be ufefully traced.
Inininctions ho ade in the preflure is all that we need attend t. But in the ature of he powers pplied to orkine 1achines. mechanicel difcuffion of their operations, we muft attend to their diftinetions in kind: and it will by no means be fufficient to renrefent them all by weights; for their diffinction in kind is accompanied by great differences in their manacr of acing on the machine. Some natural powers, in order to continue their action on the impelled point of the machine, muft at the fame time put into motion a quantity of matter external to the machine, in which thefe powers refide; and this muft be made to follow the impelled point in its motion, and not only follow, bet continue to prefs it forward ; or, this matter, thus contipually put into motion, muft be fucceffively applied to different points of the machine, which become impelled points in their turn. This is the cafe with a weight, with the action of a fpring, the action of animals, the action of a ftream of water or wind, and many other powers. A part of the natural mechanical powers mult therefore be employed in producing this external motion. This is fometimes a very confiderable part of the whole natural power. In fome cafes it is the whole of it. 'This obtains in the action of a defcending weight, lying on the end of a lever and preffing it down, or hanging by a chord attached to the machine.

Suppl. Vol. II. Part I.

There is alfo an important diffinetion in the manner in which this external motion is kept up. In a weight employed as the moving power, the actuating preffure feems to reficle in the matter itfelf; and all that is neceflary for continuing this preffure is inerely to continue the connection of it with the machine. But in the ac. tion of animals it may be very different : A man puhing at a cap!lan bar, muit firt of all walk as faft as the bar moves round, and this requires the expenditure of his mufcular force. But this alone will not render his action an effective power: He muft alfo prefs forward the capitan bar with as much force as he has remaining over and above what he expends in walking at that rate. The proportion of thefe two expenditures may be very different in different circumftances; and in the judicious felection of fuch circuinfances as make the firlt of thefe as inconfiderable as poffible, lies much of the fkill and fagacity of the engineer. In the common oueration of thralling corn, much moie than half of the man's power is expended in giving the neceflary motion to his own body, and only the remainder is employed in urging forward the fiviple with a mon entum fufficient for thaking off the ripe grains foom the falk. We li?d fufficient proof of this, by taking off the fwiple of the flail, and putting the fame weight of lead on the end of the !laff, and then cauling the hind to perform the ufual motions of thrafhing with all the rapidity that he could conti:nye during the ordinary hours of work. We never could find a man who could make three motions in the fame time that he could make two in the ufual mauner, fo as to continute this for half an hour. Hence we mult conclude, that half (fome will fay two-thirds) of a thrafher's power is expended in merely moving his own body. Such modes of animal action will therefore be avoided by a jucicious engineer; but to be avoided, their inconvenience muft be underfood. More of this will occur hereafter. - In other cafes, we are almoft (never wholly) free from this unprofitable expenditure of power. Thus, in the fleam engrine, the operation requires that the external air follow the pi?on down the cylinder, in order to continue its preflire. But the force neceflary for fending in this rare fluid into the cylinder with the neceflary velocity, is fuch an infignificant part of the whole force which is at our command, that it would be ridiculous affectation in any engineer to take it into account ; and this is one great ground of preference to this natual power. The fanse thing may be faid of the action of a ftrong and light fpring, which is therefore another very eligible firlt mover for machinery. The ancient artillerifts had difoovered this, and employed it in their warlike engines.
We muit alfo attend to the nature of the refiffance which the work to be performed oppofes to the motion of our macline. Sometimes the work oppofes, not a fimple obftruction, but a real refiflance or reaction, which, if applied alone to the machine, would caufe it to move the contrary way. This always ubtains in cafes where a heavy borly is to be raifed, where a fpring is to be comprefit d, and in fome other cafes. Very often, however, there is no fuch contrary action. A flour mill, a faw mill, a boring mill, and many fuch engines, exhibit no reaction of this kind. But although fuch machines, when at reft or not impelled by the firft mover, fultain no preffure in the oppofite direction, yet
they will not acquire any motion whatever, unlefs they be impelled by a power of a certain detcrminate inten. fity. Thus in a faw mill, a certain force mult be im preffed on the teeth of the faw, that the cohefion of the fibres of the timber may be overcome. This requires that a certain force, determined by the proportions of the machine, be impreffed on the impelled point. If this, and no more, be applied there, a force will be excited at the teeth of the faw, which will balance the cohefion of the wood, but will not overcome it. The machine will continue at reft, and no work will be performed. Any addition of force at the impelled point, will occafion an addition to the force excited in the teeth of the faw. The cohefion will be overcome, the machine will nove, and work will be performed. It is only this addition to the impelling power that gives motion to the machine; the reft being expended merely in balancing the cohefion of the woody fibres. While therefore the machine is in motion, performing work, we muit confider it as actuated by a force impreffed on the impelled point by the natural power, and by another acting at the working point, furnihed by or de. rived from the reliftance of the work.

Again: It not unfrequently happens, that there is not even any fuch refiftance or obftruction excited at the working point of the machine; the whole refiltance (if we can with propriety give it that name) arifes from the neceffity of giving motion to a quantity of inert and inative matter. This happens in urging round a heavy fly, as in the coining prefs, in the punching engine, in drawing a body along a horizontal plane without friction, and a few fimilar cafes. Here the fmalle force whatever, applied at the impelled point, will begin motion in the machine ; and the rubole force fo applied is confumed in this fervice. Such cafes are rare, as the ultimate performance of a machine; but occafionally, and for a farther purpofe, they frequently occur; and it is neceffary to confider them, becaufe there are many of the moft important applications of machinery where a very confiderable part of the force is expended in this part of the general tafk.
Such are the chief circumftances of diftinction among the mechanical powers of nature which muft be attended to, in order to know the motion and performance of a machine. Thefe never occur in the flatical confideration of the machine, but here they are of chief im-
? - Portance.
The inerlia But farther: The action of the moving power is of the ma- transferred to the working point through the parts of chive iffelf a machine, which are material, inert, and heavy. Or, muift alfi, be colifideecd,
to defcribe it more accurately, before the neceffary force can be excited at the working point of the machine, the various connecting forces mult be exerted in the different parts of the machine; and in order that the work. ing point may follow out the impreffion already made, all the connecting parts or limbs of the machine muft be moved, in different directions, and with different velocities. Force is neceffary for thus changing the fate of all this matter, and frequently a very confiderable force. Time mutt alfo elaple before all this can be accomplificd. 'I his often confumes, and really waftes, a great part of the impelling power. Thus, in a crane worked by men walking in a wheel, it arquires motion by flow degrees; becaufe, in order to give fufficient room for the action of the number of men or cattle that
are neceffary, a very capacious wheel muft be employed, containing a great quantity of inert matter. All of this muft be put in motion by a very moderate preponderance of the men. It accelerates fluwly, and the load is raifed. When it has attained the required height, all this matter, now in confilerable motion, muft be flopped. This cannot be done in an inftant with a joit, which would be very inconvenient, and even hurtful; it is therefore brought to reft gradually. This alfo confumes time; nay, the wheel mult get a motion in the contrary diretion, that the load may be lowered into the cart or lighter. This can only be accomplifhed by degrees. Then the tackle muft be lowered down again for another load, which alfo mult be cone gradually. All this waftes a great deal both of time and of force, and renders a walking wheel a very improper form for the firt mover of a crane, or any machine whofe ufe requires fuch frequent changes of motion. The fame thing obtains, although in a lower degree, in the feam engine, where the great beam and pump rods, fometimes weighing very many tons, muft be made to acquire a very brifk motion in oppolite directions twice in every working ftroke. It cذtains, in a greater or a lefs degree, in all engines which have a reciprocating motion in any of their parts. Pump niils are of necelfity fubjected to this inconvenience. In the famousengine at Marly, about $\frac{19}{2}$? of the whole moving power of fome of the water wheels is employed in giving a reciprocating motion to a fet of rods and chains, which extend from the wheels to a ciftern about three-fourths of a mile diftant, where they work a fet of pumps. This engine is, by fuch injudicious conftruction, a monument of magnificence, and the ftruggle of ignorance with the unchangeable laws of Nature. In machincs, all the parts of which continue the dircetion of their motions unchanged, the inertia of a great mars of matter does no harm; but, on the contrary, contributes to the fteadinefs of the motion, in fpite of fmall inequalities of power or refiftance, or unavoidable irregularitics of force in the interior parts. I3ut in all reciprocations, it is highly prejudicial to the performance ; and therefore conftructions which admit fuch reciprocation with. out neceffity, are avoided by all intelligent engineers. The mere copying artilt, indeed, who derives all his knowledge from the common treatifes of meclanics, will never fufpect fuch imperfections, becaufe they do not occur in the fatical confideration of machines.
Laltly, no machine can move without a mutual rub- And its bing of its parts, at all points of communication; fuch frictions as the tecth of wheelwork, the wipers and lifts, and the gudgeons of its different axes. In many machines, the ultimate taft performed by the working point, is either friction, or very much refembles it. This is the cafe in polifing mills, grinding mills, nay in boring mills, faw mills, and others. A knowledge of friction, in all its varieties, feems therefore abfolutely neceffary, even for a moderate acquaintance with the principles of machinery. This is a very abftrufe fubject; and although a good deal of attention has been paid to it by fome ingenious men, we do not think that a great deal has been added to our knowledge of it ; nor do the experiments which have been made feem to us well calculated to lead us to a dittinct knowledge of its nature and mo. difications. It has been confidered chiefly with a view to diminifh it as much as poffible in the communicating
parts of machinery, and to obtain fome general rules For afcertaining the qnantity of what unavoidably remains. Mr Amontons, of the Royal Academy of Sciences at Paris, gave us, aboutt the beginning of this century, the clief information that we have on the fubject. He difcovered, that the obftruction which it gave to motion was very nearly proportional to the force by which the rubbing firfaces are preffed together. Thus he found, that a fmooth oaken board, laid on another fmooth board of the fame wood, requires a force nearly equat to one thind of what preffes the furfaces together. Different fubftances required different proportions.

He alfo found, that neither the extent of the rub. bing furfaces, nor the velocity of the motion, madc any confiderable variation on the obftruction to motion. Thefe were curious and unexpceted refults. Subfequent obfervations have made feveral corrections neceffary in all thefe propofitions. This fubject will be more particularly confidered in another place; but fince the deviations from Mr Amontons's rule are not very confiderable, at lealt in the cafes which occur in this general confderation of maclines, we fhall make ufe of it in the mean time. It gives us a very eafy method of eftimating the effer of friction on machines. It is a certain proportion of the mutual preffure of the rubbing furfaces, and therefore muit vary in the faine proportion with this preffure. Now, we learn from the principles of ftatics, that whatever preflures are exerted on the impelled and working point of the machine, all the preffures on its different parts have the fame conflant proportion to thefe, and vary as thefe vary : Therefure the whole friction of the machine varies in the fame proportion. But farther, fince it is found that the friction does not fenfibly change with the velocity, the force which is juft fufficient to overcome the friction, and put the loaded machine in motion, muft be very nearly the fame with the force expended in overcoming the friction while the machine is moving with any velocity whatever, and performing work. Therefore if we deduct from the force which juft puts the loaded machine in motion that part of it which balances the 1 e action of the impelled point oceafioned by the reffitance of the work, or which balances the refiftance of the work, the remainder is the part of the impelling power which is employed in overcoming the friction. If indeed the actuzl 1 efifting preflure of the work varies with the velocity of the working point, all the preffures, and all the frictions in the different communicating parts of the machine, vary in the fame proportion. But the law of this variation of working reliftance being known, the friction is again afcertained.
We can now flate the dynamical equilibrium of forces in the working machine in two ways. We may either confider the efficient impelling power as diminifhed by all that portion which is expended in overcoming the friction, and which only prepares the ma. chine for performing work, or we may confider the impelling power as entire, and the work as increafed by the friction of the machine; that is, we may fuppofe the machine without friction, and that it is loaded with a quantity of additional refifance acting at the working point. Either of thefe methods will give the fame rufult, and each lias its advantages. We took the laft method in the flight view which we took of this fubject
in the Incycl. art. Rotation, $n 1^{\circ} 6_{4}$. and flail there fore ufe it here.

Suppofing now this previous knowledge of all thefe variable circumfances which affer the motion of machines of the rotative kind, fo that, for any momentary pofition of it while perforning work, we know what are the precife preffures acting at the impelled and working points, and the conftustion of the machine, on which depend the friztion, and the momentum of its inertia (expreffed in the a:ticle Rotarion by (p r^{2}); we are now in a condition to cetermine its mo. tion, or at leaf its momentary acceleration, competent to that pofition. 'Therefore,

Let there be a rotative machine, fo conftrnected, that Com; ${ }^{12}$ ofiwhile it is performing work, the velocity of its impelled fion of the point is to that of its working point as m to n. It is ormula eafy to demonftrate, from the common principles of the prefing flatics, that if a fimple whecl and axle be fubtituted fortnance for it, liaving the radius of the wheel to that of the of a maaxle in the fame proportion of m to n, and having the chine. fame momentum of friction and inertia, and actuated by the fame preflures at the impelled and working points, then the velocities of thefe points will be precifely the fame as in the given machii:e.
Let p reprefent the intenfity (which may be meafured by pounds weight) of the preffure exerted in the mo. ment at the inpelled point ; and r exprefs the preffure exerted at the working point by the refiftance nppofed by the work that is then performing. This may arife from the weight of a body to be raifed, from the cohefion of timber to be fawed, \&c. Any of thefe relith. ances may alfo be meafured by pounds weight; becaufe we know, that a certain number of pounds hung on the faw of a faw mill, will juft overcome this cohelion, or overcome it with any degree of fuperiority. Therefore the impelling power p, and the reffitance r, however differing in kind, may be compared as mere prefures.
Let x reprefent the quantity of inert matter which mult be urged by the impelling power p, with the fame velocity as the impelled point, in order that this pres. fure p may really continue to be exerted on that point. Thus, if the impelling power is a quantity of water in the bucket of an over?hot wheel, acting by its weight, this weight cannot impel the wheel except by impelling the water. In this way, x may be conlidered as reprefenting the inertia of the impelling power, while p reprefents its preffure on the machiure. In like manner, let y reprefent the quantity of external inert matter which is really moved with the velocity of the working point in the execution of the tafk performed by the machine.

Whatever be the momentum of the inertia of the machine, we can always afcertain what quantity of natter, attached to the impelled point, or the working point of the wheel and axle, will require the fame force to give the wheel the fane angula: motion ; that is, which fhall have the fame momenturn of inettia. Let the quantity a, attached to the working point, give this momentunn of inertia $a n^{2}$.

I attly, fuppoling that the wheel and axle have no friction, let f be fuch a refittance, that if applied to the working point, it fhall give the fame ubitruction as the friction of the machine, or require the fune furce at the impelled point to overcome it.

- Angular motion of the machine.

Thefe things being thus eftablifhed, the angular velocity of the wheel and axle, that is, the number of turns, or the portion of a turn, which it will make in a given time, will be proportional to the fraction $\frac{p m-\overline{r+f} n}{\alpha m^{2}+a+y n^{2}}$.
(I.) -See Rotation, $n^{\circ} 64$, \&c.

Encycl.
Since the whole turns together, the velocities of the different points are as their dittances from the axis, and may be expreffed by multiplying the common angular velocity by thefe diftances. Therefore the above formul:, multiplied by m or n, will give the velocity of the impelled or of the working point. Therefore,

> Velocity of Velocity of impelled point $=\frac{p m^{2}-\overline{r+f} m n}{x m^{2}+\overline{a+y} n^{2}}$ the inpelled point.

Velocity of
the works..
ing puint.
In order to obtain a clear conception of thefe velocities, we muft compare them with mutions with which we are well acquainted. The propofition being univerfally trine, we may take a cafe where gravity is the fole power and refititance ; where, for exanple, p and r are the weights of the water in the bucktt of a wheel, and in the tub that is raifed by it. In this cafe, $p=x$, and $r=y$. We may alfo, for greater fimplicity, fuppofe the machine without inertia and friction. 'The velocity of p is now $\frac{p m^{2}-r m n}{p m^{2}+r n^{2}}$.
16
Abfolute meafure of then.

Let g be the velocity which gravity generates in a fecond. Then it will generate the velocity $g t$ in the moment i. Let v be the velocity generated during this moment in p, connected as it is with the wheel and axle, and with r. This connection produces a change of condition $=g \dot{t}-v$. For, had it fallen freely, it would have acquired the velocity $g t$, whereas it only acquires the velocity \dot{v}. In like manner, had r fallen freely, it would lave acquired the velocity $g \dot{t}$. But, inftead of this, it is raifed with the velocity $\frac{n}{m} \dot{v}$. The change on it is therefore $=g \dot{t}+\frac{n}{m} \dot{v}$. Thefe changes of mechanical condition arife from their connection with the corporcal machine Their preffures on it bring into action its connecting forces, and each of the two external forces is in immediate equilibrium with the force exerted by the other. 'I'he force excited at the impelled point, by r acting at the working point, may be called the momentum or energy of r. Thefe energies are precifely competent to the production of the changes which they really produce, and muft therefore be conceived as having the fame proportions. They are therefore equal and oppofite, by the general laws obferved in all actions of tangible matter; that is, they arc fuch as balance each other. Thus, and only thus, the remaining motions are what we obferve them to be.

$$
\begin{aligned}
& \text { That is, } p \times \bar{g} \bar{i}-\dot{v} \times m=r \times \overline{g t+\frac{n}{m} \dot{v} \times n} \\
& \text { Or } p m g \dot{t}-p m \dot{v}=r n g \dot{t}+r \frac{n^{2}}{m} \dot{v} \\
& \text { Or } p m^{2} g \dot{i}-p m^{2} \dot{v}=r m n g \dot{i}+r n^{2} \dot{v}
\end{aligned}
$$

$$
\operatorname{Or} \overline{p m^{2}-r m n} \times g i=\overline{p m^{2}+r n^{2}} \times i
$$

That is, $p m^{2}+r n^{2}: p m^{2}-r m n=g i: \dot{v}$ That is, the denominator of the fraction, expreffing the veo locity of the impelled point, is to the numerator as the velocily subich a heavy bod'ly would acquire in the moment i, by falling freely, is to the velocity wobich the impelled point acquires in that moment. The fame thing is true of the velocity of the working point.

This reafoning fuffers no change from the more complicated nature of the general propofition. Here the impelling power is ftill p, bnt the matter to be accelerated by it at the werking point is $a+y$, whilc its reaction, diminifhing the impelling power, is only r. We have only to confider, in this cafe, the velocity with which $a+y$ would fall fretly when impelled, not by $a+y$, but only by r. The refult would be the fame; $g \dot{i}$ would fill be to \dot{v} as the denominator of the fame fraction to its numerator.

Thus have we difcovered the momentary acceleration of our machine. It is evident, that if the preffines p and r, and the friction and inertia of the machine, and the external matter, contiulue the fame, the acceleration will continue the dame; the motion of rotation will be uniformly accelerated, and $p m^{2}+\overline{a+y} n^{2}$ will be to $p m^{2}-\bar{r}+f m n$ as the fpace s, through which a heavy body would falt in any given time t, is to the face thoough which the itapelled point will really have moved in the fame time. In like manner, the face tlarough which the working point moves in the fame time is $=\frac{p m n-\overline{r+f} n^{2}}{p m^{2}+\overline{a+y n^{2}}}$.
Thus are the motions of the working machine determined. We may illuftrate it by a very fimple example. Suppofe a weiglit p of tive pounds, defcending from a pulley, and dragging up another weight r of three pounds on the other fide. m and n are equal, and each may be called 1. The formula becomes $p-r$, p, or $\frac{5-3}{5+3} s$, or $\frac{2}{8},=\frac{1}{4} s$. Therefore, in a fecond, the weight p will defcend ; th of 16 feet, or 4 feet ; and will acquire the velocity of 8 feet per fecond.
Having obtained a knowledge of the velocity of eve-performry point of the machine, we can caflly afcertain its per-ance of the fornatice. This depends on a combination of the quan. machine tity of refiftance that is overcome at the working point, and the velocity with which it is overcome. Thus, in raifing water, it depends on the quantity (proportional to the weight) of water in the bucket or punnp, and the velocity with which it is lifted up. This will be had by multiplying the third formula by r, or by $r g i$, or by $r s$. Therefore we obtain this expreffion,

$$
\begin{equation*}
\text { Work done }=\frac{p m r n-r+f}{p m^{2}+a+y n^{2}} g i . \tag{IV}
\end{equation*}
$$

Such is the general expreffion of the momentary performance of the machine, including every circumflance which can affect it. But a variation of thofe circumftances produces great changes in the refults. Thefe mult be diftinctly noticed.

Cor. I. If $p m r n$ be equal to $\overline{r+f} r n^{2}$, there will be no work done, becaufe the numerator of the fraction is annihilated. There is then no unbalanced force, and
the natural power is only able to balance the preffure propagated from the working point to the impelled point.
2. In like manner, if $n=0$, no work is done altho' the machine turns round. The working point has no motion. For the fame reafon, if m be infinitely great, although there is a great prevalence of impelling momentum, there will not be any fenfible performance during a finite time. For the velocity which p can imprefs is a finite quantity, and the impelled point cannot move fafter than x would be moved by it if detached from the machine. Now when the infinitely remote impelled point is moved through any finite fpace, the motion of the working point muft be infinitely lefs, or nothing, and no work will be done.
Remark. We fee that there are two values of n, viz. v, and $m \times \frac{p}{r}$, which give no performance. But in all other proportions of m and n fome work is cone. Therefore, as we gradually vary the proportion of m to n, we obtain a feries of values expreffing the performance, which mult gradually increafe from nothing, and then decreafe to nothing. There muft therefore be fome proportion of m to n, depending on the proportion of p to $\overline{r+f}$, and of x to $\overline{a+y}$, which will give the greateft poffible value of the performance. And, on the other hand, if the proportion of m to n be already determined by the conftruction of the machine already erected, there mult be fome proportion of p to $\overline{+} \bar{f}$, and of x to $\overline{a+y}$, by which the greateft performance of the machine may be enfured. It is evident, that the determination of thefe two proportions is of the utmoft. importance to the improvement of machines. The well informed reader will pardon us for endeavouring to make this appear more forcibly to thofe who are lefs inftructed, by means of fome very fimple examples of the firft principle.

Suppofe that we have a ftrem of water affording three tons per minute, and that we want to drain a pit which receives one ton per minute, and that this is to be dene by a wheel and axle? We wifh to know the beft proportion of their diamcters m and n. Let m be taken $=6$; and fuppofe,

1. That $n=5$.

Then $\frac{p m r n-r^{2} n^{2}}{p m^{2}+r n^{2}}=\frac{3 \cdot 6 \cdot 1 \cdot 5}{3 \cdot 36+1 \cdot 25}=\frac{65}{133}=0,488$?
2. Let n be $=6$. The formula is $=0,5$.
3. Let $n=7$. The formula is $=0,49045$. Hence ve find, that the performance is greater when n is 6 , than when it is either 5 or 7 .
As an example of the fecond principle, fuppofe the machine a timple pulley, and let p be 10 .

1. I.et r be $=3$. The formula is $\frac{10 \times 3-9}{10+3},=\frac{21}{13}$, $=1,6154$.
2. Let r be $=4$. The formula is $=\frac{10 \times 4-16}{10+4}$, $=\frac{24}{14},=1,7143$.
3. Let r be $=5$. The formula is $=\frac{10 \times 5-25}{10+5}$, $=\frac{25}{15},=1,6666$. Here it appears, that more work is done when r is 4 than when it is 5 or 3 .

It muft therefore be allowed to be one of the moft important problems in practical mechanics to determine that conffruction by which a given power fhall overcome a given refiltance with the greateft advantage, and the proportion of work which fhould be given to a machine already conftrueted fo as to gain a fimilar end.
I. The general determination of the firf queftion has Proportion but little difficulty. We muft confider n as the vari- of the maable magnitude in the formula $\frac{p m r n}{p m^{2}}+\overline{r+f}+y n^{2}$, chine which which expreffes the work done; and find its value when worko the formula is a maximum. Taking this method, we Thall find that the formula IV. is a maximum when n is $=m \frac{\sqrt{x^{2}(r+f)^{2}}+\overline{p^{2} x(a+y)}-x(r+f)}{p(a+y)}$.

This expreffion of the performance, in its beft fate, appears pretty complex; but it becomes much more fimple in all the particular applications of it, as the circumftances of the cafe occur in practice.
We have obtained a value of n expreffed in parts of m If we fubftitute this for n in the third formula, we obtain the greateft velocity with which the refiftance r, conneeted with the inertia y, can be overcome ly the power p, connected with the inertia x, by the intervention of a machine, whofe momentum of inertia and frietion are $a n^{2}$ and $f n$. This is $=\frac{r \pm f}{2 a+y}$ $\times\left(\sqrt{\frac{p^{2} a+y}{r+f^{2} x}+1}-1\right) g i$. This exprefles the velocity of the working point in feet per fecond, and therefure the actual performance of the machine.

13 ut the proper proportion of m to n, afcertained by this procefs, varies exceedingly, according to the nature both of the impelling power, and of che work to be performed by the machine.

1. It frequently happens that the werk exerts no contrary ftain on the machine, and confifts merely in impelling a body which refits only by its inertia. This is the cafe in urging round a millitone or a heavy fly; in urging a body along a horizontal plane, \&c. In this cafe r does not enter into the formula, which now becomes $m \times \frac{\left.\sqrt{x^{2} f^{2}}+\frac{p^{2} x(a}{}+y\right)}{p(a+y)}-x f$. If the fiiction be infignificant we may take $n=m \sqrt{\overline{p^{2} x(a+y)}} \overline{p^{2}(a+y)^{3}}$ $=m \sqrt{\frac{x}{a+y}}$, The velocity of the working point is nearly $=\frac{p}{2 \sqrt{x a+y}}$. In this cafe, it will be found that the velocity acquired at the end of a given time will be nearly in the proportion of the power applied to the machine.
2. On the other hand, and more frequently, the inertia of the external matter which muft be moved in performing the work need not be regarded. Thus, in the grinding of grain, fawing of timber, boring of cylin. ders, \&c. the quantity of motion communicated to the flour, to the faw duft, \&c. is too infignificant to be taken into the account. In this cafe, y vanifhes from the formula, which becomes extremely fimple when the friction and inertia of the machine are inconfiderable. We ftall
fhall not be far from the truth if we make m to n as $2 r$ to p, or $n=m \times \frac{p}{2 r+f}$. In this cafe, the velocity of the working point is $\frac{p^{2}}{4 \times(r+f)+\frac{a}{4(r+f)}}$.
But it is rare that machines of this kind have a fmall inertia. They are generally very ponderous and powerful; and the force which is neceffary for generating cven a very moderate motion in the unloaded machine (that is, unloaded with any wo:k), bears a great proportion to the force neceffary for overcoming the refiftance oppofed by the work. The formula mutt therefore be ufed in all the terms, becaufe a is joined with y. It would have been fimpler in this particular, had a been joined with x in the expreflion of the angular velocity.
3. In fome cales we need not attend to the inertia of the power, as in the fteam engine. In this cafe, if taken ftrictly, n appears to have no value, becaufe x is a factor of every term of the numerator. But the for. mula gives this general indication, that the more infig. nificant the inertia of the moving power is fuppofed, the larger fhould m be in proportion to n; provided always, that the impelling power is not, by its nature, greatly diminifed, by giving fo great a velocity to the inpelled point. This circumftance will be particularly confidered efterwards.
4. If the inertia of the power and the refiftance be proportional to their preffures, as when the impelling power is water lying in the buckets of an overfhot wheel, and the work is the raifing of water, minerals, or other heavy body, acting only by its weight; then p and r may be fubftitnted for x and y, and the formula expreffing the value of n, when the performance is a maximum, becomes

$$
n=m \frac{\sqrt{p^{2} \times r+f^{2}}+p^{3} \times a+r}{p \times a+r}-p \times \overline{r+f} .
$$

If, in this care, the inertia and friction of the machine may be difregarded, as may often be done in pulleys, we have

$$
n=m \sqrt{\frac{p}{r}+1}-\mathrm{r}
$$

If we make m the unit of the radii, and r the unit of force, we have

$$
\begin{gathered}
. n=\sqrt{p+1}-1, \text { in parts of } m=1 \\
\text { Or, making } p=\mathrm{I}, \text { we have } n=\sqrt{\frac{1}{r}+1}-1 .
\end{gathered}
$$

Thefe very fimple expreffions are of confiderable ufc, even in cafes where the inertia of the machine is very couffiderable, providet that it have no reciprocating motions. A fimple wheel and axle, or a train of good wheelwork, have very moderate friction. 'The general refults, therefore, which even very unlettered readers can deduce from thefe fimple formulx, will give notions that are uffeful in the cafes which they cannot fo thoroughly comprehend. Some fervice of this kind may be derived from the following little table of the bet proportions of m to n, corrcfponding to the proportions of the power furnifhed to the eiginecr, and the refintance which mult be overcome by it. The quantity r in always $=10$, and $n=1$.

p	n	p	n
1	0,2488	10	0,4142
2	0,0054	20	0,7321
3	0,1402	30	1,
4	0,1832	40	1,2362
	0,2246	50	1,4495
6	0,2649	63	1,64i7
7	0,303 ${ }^{8}$	70	1,828+
8	0,3416	80	2,
9	0,3784	90	2,1623
10	0,41.42	100	2,3166

This muft fuffice for a very general view of the firft problem.
II. The next queftion is not lefs momentons, namely, Beet prow to determine for a machine of a given conftruction that portion of proportion of the refiftance at the working point to the the powes impelling power which will enfure the greateft perform- and work ance of the macline; that is, the proportion of m to n being given, to find the beft proportion of p to r.

This is a much more complicated problem than the other; for here we have to-attend to the variations both of the preffures p and r, end alfo of the external matters x and y, which are generally connected with them. It will not be fufficient therefore to treat the queftion by the ufual fluxionary procefs for determining the maximum, in which r is confidered as the only varying quantity. We mult, in this curfory difcuffion, reff fatisfied with a comprehenfion of the circumftances which moft generally prevail in practice.

- It muft either liappen, that when r changes, there is no change (that is, of moment) in the mals of external matter which mult be moved in performing the work, or that there is alifo a clange in this circumftance. If no change happens, the cenominator of the fourth furmula, expreffing the performance, remains the fame; and then the formula attains a maximum when the numerator $p r m n-r \overline{f f} r n^{2}$ is a maximum. Alfo, we may include f without complicating the procefs, by the conlideration, that f is always in nearly the fame ratio to r; and therefore $r+f$ may be conlidered as a certain multiple of r, fuch as $b r$. We may therefore omit f in the fluxionary equations for obtaining the maximum, and then, in computing the perforinance, divide the whole by b. Thus if the whole friction be ${ }_{2}^{2}{ }^{2}$ th of the refiting preffure r, we have $r+f=\frac{21}{20}$ of r, and $b=\frac{21}{20^{\circ}}$. Having afcertained the beft value for r, we put this in its place in the fourth formula, and take $\frac{20}{21}$ of this for the performance. This will never differ much from the truth.
'ihhis procefs gives us $p m n=2 n^{2} r$, and $r=\frac{p m n}{2 n^{2}}$, $=\frac{p^{m}}{2 n}$; and if we fartlier fimplify the procefs, by making $p=1$, and $m=1$, we have $r=\frac{1}{2 n}$; a moft fimple expreffion, diresting us to meke the refiftance one half of what would balance the impelling power by the intervention of the machine.
This will eviluently "pply to many"very inportant cafes,
cales, namely, to all thofe in which the matter put in motion by the working point is but trifing.

But it alfo happens in many important cafes, that the clangr is at lealt equally confiderable in the inertia of the work. In this cafe it is very difficult to obtain a general folution. But we can hardly imagine fuch a change, without fuppofing that the inertia of the work varies in the fame proportion as the preffure excited by it at the working point of the machine; for fince r continues the fame in kind, it can rarely change but by a propoitional change of the matter with which it is connected. Yet fome very important cafes occur where this does not happen. Such is a machine which forces water along a long main pipe. The refiftance to motion and the quantity of water do not follow nearly the fame ratio. But in the cafes in which this ratio is obferved, we may reprefent y by any multiple $b r$ of r, which the cafe in hand gives us; b being a number, integer, or fractional. In the farther treatment of this cafe, we think it mure convenient to free r from all other com. binations; and inflead of fuppofing the force f (which we made equivalent with the friction of the machine) to be applied at the workirg point, we may apply it at the impelled point, making the effective power $q=p-f$. For the fame reafons, inftead of making the momentum of the machine's inertia $=a n^{2}$, we may make it $a m^{2}$, and make $a+x=z$. Now, fuppofing q, or $p-f$, $=\mathrm{I}$, and alfo $m=1$, our formula expreffing the per. formance becomes $\frac{r n-\frac{r^{2} n^{2}}{\approx+6 r n^{2}} \text {. This is a maximum when }}{}$ $r=\frac{\sqrt{z^{2}+\frac{z b n}{}} \frac{b n^{2}}{} .}{}$

Cor. I. If the inertia of the work is always equal to its preffure, as when the work conlifts wholly in raifing a weight, fuch as drawing water, \&e. then $b=1$, and the formula for the maximum performance becomes
$r=\frac{\sqrt{z n+z^{2}}-z}{n^{2}}$.
2. If the inertia of the impeling power is alfo the fame with its preflure, and if we may neglect the incrtia and friction of the machinic, the formula becomes $r=\frac{\sqrt{n+\mathrm{I}}-1}{n^{2}}$

Example. I.et the machine be a common pulley, io that the radii m and n are equal, and therefore $n=\mathrm{I}$. Then, $r=\frac{\sqrt{1+1}-1}{1}=\sqrt{\prime}-1,=0,4 \mathrm{I} 42$, \&c. more than $\frac{2}{3}$ ths of what would balance it.
Here followe a feries of the beft values of r, correfponding to different values of $n, \quad m$ and p arc each $=1$. The numbers in the laft column have the fame proportion to I which r has to the refiftence which will balance p.
$n=\frac{1}{4} \quad r=1,8885 \quad 0,4724$ to 1

From what has now been eftablifhed, we fee with fuf. ficient evidence the importance of the higher mathematics to the fcience of merhanics. If the velocities of the impelled and working points of an engire are not
properly adjufted to the prefures, the inertia, and the friction of the machine, we do not derive all the advantages which we might from our fituation. Hence alfo we learn the falfity of the maxim which lins been received as well founded, that the augmentation of intenfity of any force, by applying it to the long arm of Generat a lever, is always fully compenfated by a lofs of time ; but erroor, as it is ufually expreffed, "what we gain by a ma- neous machine in force we lofe in time." If the proportion of m to n is well chofen, we fhall find that the work done, when it refifts by its inertia only, incteafes nearly in the proportion of the power employed; whereas when the inertia of the work is but a fmall part of the refillance, it increafes nearly in the duplicate ratio of the power employed.

It was remarked, in the fet^{\prime} ing out in the prefent problem, that the formulx do not immediately exprefs the velocity of any point of the machine, but its momentary accelerationt. But this is enough for our purpofe; becaufe, when the momentary acceleration is a maximum, the velocity acquired, and the fpace deferibed, in any given time, is alfo a maximum. We alfo Thewed how the real velocities, and the fpacts defcribed, may be afcertained in known meafures. We may fay in general, that if g reprefent the preflure of gravity on any mafs of matter w, , then $\frac{g}{\tilde{v}}$ is to $\frac{p m n}{a m^{2}+\overline{a+y} \frac{-\bar{f} n}{} n}$ as
16 feet to the fpace defcribed in a fecond by the working point in a fecond, or as 32 feet per fecond is to the velocity acquired in that time.

A remark now remains to be made, which is of the Caufes why greateft couffequence, and gives an unexpected turn to machines the whole of the preceding doEtrines. It appears, from do not ennall that has been faid, that the motion of a machine tinually ac mult be uniformly acceleratec, and that any point will defcribe fpaces proportional to the fquares of the times; for while the preffures, friction, and momentum of inertia remain the fame, the momentary accelcration mult alfo be invariable. But this feems contrary to all experience. Such machines as are properly conifructed, and work without jolts, are obferved to quicken their pace for a few feconds after ftarting; but all of then, in a very moderate time, acquire a motion that is fenfibly uniform. Is our theory erroneons, or what are the circumflances which remain to be confidered, in order to make it agree with obfervation? The fcience of machines is imperfect, till we have explained the caufes of this ceviation from the theory of uniform acceleration.

Thefe caufes are variot:s.

1. In fome cafes, every increafe of velecity of the r . Trcceanf machine produces an increafe of friction in all its com. of fictutica municating parts. liy thefe means, the accelerating force, which is $p m-\overline{r+f} n$, or $\overline{p-f} m \ldots n$, is di. - mininhed, and confequently the asceleration is ciminifhed. But it feldom happens that friction takes away or employs the whole acceleating force. We are not yet well inftructed in the nature of friction. Moft of the kinds of friction which obrain in the communic:ting parts of machines, are fuch as do not fenfbly increafe by an increafe of velocity; forne of them really diminifh. Yet event the moft accurately conftructed inachines, unloaded with work, attain a metion that is fenfibly uniform. If we take off the pallecs from a pe=. dulum

MACHINERY.

tulum clock, and allow it to run down amain, it accele. rates for a while, but in a very moderate time it acquires an uniform motion. So does a common kitchen jack. Thefe two machines feem to bid the faireft of any for an uniformly accelerated motion ; for their im. pelling power acts with the utmoft uniformity. There is fomething yet unexplained in the nature of friction, which takes away fome of this acceleration.

But the chief caufe of its ceffation in thefe two in-
2. Refift
ance of wir. flances, and others of very rapid motion, is the refiftance of the air. This anifes from the motion which is com municated to the air difplaced by the fwift moving parts of the maclinse. At firft it is very fmall; but it increafes nearly in the duplicate ratio of the velocity (fee R f. sistance of Pluide, Encycl.) Thus r increafes continually ; and, in a certain ftate of motion, $\overline{r+f} n$ be. comes equal to $p m$. Whenever this happens, the accelerating power is at an end. The acceleration allo ceafes; and the machine is in a ftate of dynamical equilibrium ; not at reft, but moving uniform! y, and performing work.
3. Increafe Still, however, this is not one of the general caufes of refiftance of the uniform motion attained by working engines. very 172 . perfect'y known. Rarely is the motion of their parts fo 1apid, as to occafion any great refifance from the air. But in the
mot frequent employments of machines, every increafe of velocity is accompanied by an increafe of refiftance from the work performed. 'This occurs at once to the imagination; and few perfons thirk of inquiring farther for a reafon. But there is perhaps no part of mecha. niics that is more imperfectly underftood, even in our prefent improved ftate of mechanical fcience. In many kinds of work, it is very difficult to tate what incieafe of labour is required in order to perform the work with twice or thrice the fpeed. In grinding corn, for inftance, we are almoft entirely ignorant of this matter. It is very certain, that twice the force is not neceffary for making the mill grind twice as faft, nor even for making it grind twice as much grain equally well. It is not eafy to bring this operation under mathematical treatment; but we have confidered it with fome atten. tion, and we imagine that a very great improvement may till be made in the conftruction of grift mills, founded on the law of variation of the reffance to the operation of grinding, and a fcientific adjuftment of m to n, in confequence of our knoviledge of this law. We may make a fimilar obfervation on many other kinds of work performed by machines. In none of thofe works u here the inertia of the work is inconfiderable, are we well acquainted with the real mechanical procefs in per forming it. This is the cafe in fawing mills, boring mills, rolling mills, nitting mills, and many others, where the work confilts in overcoming the ftrong cohetion of a fmall quantity of matter. In fawing timber (which is the moit eafily underflood of all thefe operations), if the faw move with a double velocity, it is very difficult to fay how much the actual refifting preffure on the teeth of the faw is increafed. Twice the number of fibres are neceffarily torn afunder during the fame time, becaufe the fame number are torn by one defeent of the faw, and it makes that ftroke in half the time. But it is very uncertain whether the refiftance is double on this account ; becaufe if each fibre be fuppofed to have the fame tenacity in both cafes, it refilis with this tena-
city only for half the time. The parts of bodies refite a fimilar change of condition in different manners ; and there is another difference in their refiftance of different clanges - the refiftance of red hot iron under the roller may vary at a very different rate from that of its refiftance to the cutting tool. The refiftance of the fpindlez of a cotton mill, arifing partly from friction, partly from the inertia of the heaped bobins, and partly from the refiftance of the air, is fill more complicated, and it may be difficult to learn its law. The only cafe in which we can juc!ge with fome precifion is, when the inertia of matter, or a conflant preflure like that of gravity, conllitutes the chief refiftance. 'Lhus in a mill employed to raife water by a chain of huckets, the refiftance proceeds from the inertia only of the water. The buckets are moving with a certain velocity, and the loweft of them takes hold of a quantity of water lying at reft in the pit, and drags it into motion with its acquired velocity. The force required for generating this motion on the quicicent water muf be double nr criple, when the velocity that mult be given to it is fo. 'Ihis abforbs the overplus of the impelling power, by which that power exceeds what is neceffary for balancing the weight of the water contained in all the afcencing buckets. This is a certain determinate quantity which does not change; for in the fame inflant that a new bucket of water is forced into motion below, and its weight added to that of the afcending buckets, an equal bucket is emptied of its water at top. The afcending buckets require only to be balanced, and they then continue to afcend, with any velocity already acquired. While the machine moves now, the motion impreffed on the new bucket of water is not fufficient to abforb all the overplus of impelling power. The quantity not abforbed accelerates the machine, and the next bucket mult produce more motion in the water which it takes up. 'This confumes more of the overphis. This goes on till no overplus of power is left, and the machine accelerates 110 more. 'The complete performance of the macline now is, that " a certain quartity of water, formerly at reft, is now moving with a cettain velocity." Our engineers confider it differentIy; "as a certain queight of water lifted up." But while the machine is thus moving uniformly, it is really not doing fo much as before ; that is, it is not exerting fuch great preffures as before the motion was rendered uniform: for at that time there was a preffure at the working point equal to the weight of all the water in the alcending buckets; and alfo an overplus of preffure. by which the whole was accelerated. In the ftate of uniform motion, the preffure is no more than juit balances the weight of the afcending chain. We fhall learn by and bye how the preffures have been diminifning, although the mill has been accelerating ; a thing that feems a paradox.

In this in!tance, then, we fee clearly, why a machine muft attain a uniform motion. A pumping machine gives us the fame opportunity, but in a manner fo different as to require explanation. The pilton may be fuppofed at the very furface of the pit water, and the impelling power may be lefs than will fupport a column in the pipe as high as can be raifed by the preffure of the atmofphere. Suppofe the impelling power to be the water lying in the buckets of an overfhot whecl.

Let
I.et this water be laid into the buekets by a very fmall ftream. It will fill the buckets very flowly; and as this gives then a preponferance, the mill lofes its balance, the wheel begins to move, and the pitton to rife, and the water to follow it. The water may be delivered on the wheel drop by drop; the pifton will rife by infenfible degrees, always ftanding fill again as foon as the atmofpheric preflure on it juft balances the water on the wheel. The water in the rifing pipe is always a balance to the preflure of the atmofphere on the ciftern; therefore the preflure of the atmofphere on the pifton (which is the r in our formula) is equal to the weight of this water. Our pump-makers therefore (calling themfelves engineers) fay, that the weight of water in the pipe balances the water on the wheel. It does not balance it, nor is it raifed by the wheel, but by the atmofphere; but it ferves us at prefent for a meafure of the power of the wheel. At laft, all the buckets of the wheel are full, and the water is (for example) 25 feet ligh in the pipe. Now let the fream of water run its full quantity. It will only run over from bucket to bucket, and run off at the bottom of the wheel ; but the mill will not move, and no work will be performed. (N.B. We are here excluding all impulfe or ftroke on the buckets, and fuppofing the water to act only by its weight.) But now let all be emptied again, and let the water be delivered on the wheel in its full quantity at the firft. The wheel will immediately acquire a preponderancy, which will greatly exceed the firft fmall preflure of the atmofphere on the pilton. It will therefore accelerate the pifton, overcoming the preflure of the air with great velocity. The pifton rifes falt ; the water follows it, by the preffure of the atmofphere; and when it attains the former utmof height, it attains it with a confiderable velocity. If allowed to run off there, it will continue to run off with that velocity; becaufe there is the fame quantity of water preffing round the wheel as before, and therefore enough to balance the preffure of the atmofphere on the pifton. The preflure of the fame atmofphere on the water in the ciftern, raifed the water in the pipe with this velocity ; therefore it will continue to do fo, and the mill will deliver water by the pump with this velocity, although there is no more preffure acting on it than before, when the water ran to wafte, doing no work whatever.
This mode of action is extremely different from the former example. The mill is not acting again? the inertia y of the water to be moved, but againtt the preffure r of the atmofphere on the pifton. The prefure of the fame atmofphere on the ciftern is employed againft the inertia of the water in the pipe; and the ufe of the mill is to give occufion, by raifing the pifton, to the exertion of this atmofpherical preffure, which is the real raifer of the water. The maxim of conftruction, and the proper adjuftment of m to n in this cafe, are different from the former; and we fhould run the rifk of making an imperfect engine were we to confound them.

We muft mention another cafe of a pumping mill, feemingly the fame with this, but effentially different. Suppofe the pipe of this pump to reach 30 feet below the furface of the pit water, and that the pifton is at the very bottom of it. Suppofe alfo, that the wheel buckets, when filled with water, only enable it to fupSuppl. VoL. II. Part I.
port 25 feet of water in the riing pipe. Let the wa. ter be delivered into the wheel drop by drop. The wheel will gradually preponderate ; the pitton will gra. dually rife, lifting the water above it, fultaining a preffure of water which gradually increafes. At laft, the water in the pump is 25 feet lighler than that in the ciftern; the wheel is full and running to wafte; but no work is perforined. L.et all be emptied, and now let the water come to the wheel in its full fream, but withour impulfe. The pilton will lift the water brifkly , bring it to 25 feet high with a confiderable velocity, and the mill will now raife it with this velocity. In this example, the nill is the immediate agent in raifing the water; but, in this cafe alfo, its ultimate office is not overcoming inertia, but overcoming preffure. It was the overplus of power only that was employed in overcoming inertia, while accelerating the water in the rifing pipe, in order to give it the neceffary velocity for a continued difcharge.

Thefe and fimilar examples thew the great difference between the ftatical and dynamical equilibrium of machines, and the neceffity of a fcientific attention by all who wifh to improve practical mechanics. Without this, and even a pretty refined attention, we cannot fee the connection between a copious fupply of water to the bucket wheel and a plentiful difclarge by the pump. We believe, that the greateit part of thofe employed in erecting machines conceive it as owing to the greater weight of water impelling the whicel wich greater furce; but we fee that there is no difference in the preffures on the mill at refl, and the mill doing its work fteadily and uniformly, with any velocity, however great. Without keeping the notions of that part of the impelling power which fupports diftinct from that of the part which accelerates, we thall never have a clear conception of the operation of machines, or of mechanical power in general. We cannot derive all the advantages of our natural powers, without knowing how our machine employs the preffure excited by it at the working print ; that is, without perceiving in what cafes it is oppofed to inertia, and in what to the mechanical properties of tangible matter. This only can inform us at what rate the retiflance varies by a change of velocity; and when it happens that this augmentation, neceffarily accompanied by an augmentation of all the frictions, and the reliftance of the air, is in equilibrio with the whole of the impelling power, and all acceleration is at an end.
Laftly, another chief caufe of the finally uniform mo-The chief tion of machines is, that, in rnoft cafes, an increafe of caufe is a velocity produces a real diminution of impelling power, real dimiWe hardly know any exception to this befides the em. nution of ployment of one defcending weight as a power or firt ${ }^{\text {power. }}$ mover. Moft of the powers which we employ refide in bodies external to the machine; and thefe bodies mult be put in motion, and continued in that motion, in order to continue their preffure on the impelled point. Frequently a great part of the power is eniployed in giviug this necelfary motion to the external matter, and the remainder ouly is employed in preffing forward the machine. We mentioned a remarkable inftance of this in the operation of thrafhing. Now, the power thus employed muft increafe in proportion to the motion required; that is, in proportion to the velocity of the im-
pelled
pelled point ; what remains, urging forward the machine, is therefore diminifhed. The acceleration is therefore diminifhed, and may ceafe. At laft the actual preffure is fo much diminifhed, that it is no more than what is neceffary for overcoming the increafed refiftance of the work, the increafed friction. The machine therefore accelerates no more, but moves uniformly.

This caure very gene. ral.

This caufe of the diminution of power by an increafe of velocity, obtains in all cafes where the Arength of animals, of fprings, the force of fired gunpowder, \&c. is exeried. In fome cafes, the vifible effect is not very confiderable; as in the employment of a ftrong fpring, the force of gunpowder, and a few others. In the action of animats, this defalcation of power is very great when the velocity is confiderable. Nay, even in the action of gravity, although it acts as frongly on a body in rapid motion as on one at reff, yet when gravity is not the iminediate agent, but acts by the intervention of a body in which it refides, the neceffity of previounty moving this body frequently diminifhes the acceleration which it would otherwife produce. Thus, in an overflot wheel, if the water be delivcred into the bucket with a velocity (eftimated in the direction of the part of the wheel into which it is delivered) lefs than that of the rim of the wheel, it muft retard the motion ; for it muft be immediately dragged into that motion; that is, part of the accelerating overplus, already acting on the wheel, muft be employed in accelerating this new bucket of water, and this muft leffen the general acceleration of the machine. Hence we learn, that the water mult be delivered on the wheel with a velocity that is at leaft not lefs than that of the wheel's motion.
le obeains
in all ma. chines actuated ly impulion,

The cafe in which we fee this diminution of power on machines moft diftinctly is, when water or wind, acting by impulfe alone, is our moving power. Since the mutual impulfes of bodies depend entirely on their relative motions (fee Impulsion, Suppl.), it follows, that when the velocity of the impelled poist is augmenter, the impulion, or effective preffure, munt be diminifhed. Nay, this velocity may be fo increafed, that there fhall be no relative motion, and therefore no impulfion. If the floats of an underfhot wheel be moving with the velocity of the ftream, they remain conjoined in their progrefs, but without any mutual action. Therefore, when an underfhot wheel is fet into a rurning water, the firft impulfions are ftrong, and accelerate the wheel. This diminifhes the next impulfion and acceleration : but the wheel is ftill impelled and accelerated; lefs and lefs in every fucceeding moment, as it moves fafter; by and bye, the acceleration becomes infenfible, and the wheel appears to attain a mo. tion which is perfectly uriform. Ithis requires a very long time, or rather it is never attained, and we only cannot difcern the very fmall additions which are ftill made to the velocity. All this happens gencrally after a very moderate time, by reafon of various other obftrusions.

A nimal action is fubject to the fame variation. We

Or by the free ol ani mals. know, that there is a certain rate at which a horfe can run, exhaufting or employing his whole ftrength. If he be made to drag any the fmalleft load after him, he muft emp!oy part of his force on it, and his fpeed will be checked. The more he is loaded with a draught, the flower he will sun, Aill employing all his frength.

The draught nay be increafed till he is reduced to a trot, to a walk, nay, till he is unable to draw it. Now, jutt inverting this procefs, we fee, that there is a certain Atrain which will fufficiently tire the horfe without ftirring from the fput, but which he could continue torexert for hours. This is greater than the load that he can juft crawl along with, employing his Atrength as much as would be prident to continue from day to day. And, in like manner, every leffer dranght has a correfponding rate, at which the hoofe, employ ing his whole working ftrength, can continue to draw at during the working hours of a day. At fetting out, he pulls harder, and accelerates it." Following lis pull, he walks fafter, and thesefore pulls lefs (becaufe we are ftill fuppofing liim to employ his whole working ftreugth). At laft he attaius that fpeed which occupies his whole frength in merely continuing the pull. Other animals act in a fimilar manner; and it becomes a general rule, that the preffure actually exerted on the impelled point of a machine diminiffes as ito velocity increafes.

From the corcurrence of fo many facts, we perceive we muft that we muft be careful to diftinguifh between the quan-diftinguifh tity of power expended, and the quantity that is ufe between fully employed, which mutt be meafured folely by the the power preffure exerted on the machine. When a weight of exty the five pounds is cmployed to drag up a weight of threepower emo pounds by means of a thread over a pulley, it defcends, ployed. with a motion uniformly accelerated, four ftet in the firlt fecond. Mr Smeaton would call this an expenditure of a mechanical power 20. The weight three pounds is raifed four feet. Mr Smeaton would call this a mechanical effect i2. Therefore the effect produced is not adequate to the power expendid. But the fact is, that the preffure, ftrain, or mechanical power really exerted in this experiment, is neither five nor three pounds; the five pound weight would have fallen 16 feet, but it falls only 4. A force has therefore afeed on it fufficient to tmake it deferibe 12 feet in a fecond, with a uniformly accelerated motion ; for it ha. counteracted fo much of its weight. The thread was Atrained with a force equal to $3 \frac{3}{4}$ pounds, or $\frac{3}{4}$ ths of 5 pounds. In like manner, the three pound weight would have fallen 16 feet; but it was raifed 4 feet. Here was a change precifely equal to the other. A force of $2^{\frac{3}{7}}$ pounds, acting on a mafs whofe matter is only 3 , will, in a fecond, caufe it to defcribe 20 feet with a uniformly accelerated motion. Now, 5×12, and 3×20, give the fame product 60 . And thus we fee, that the quantity of motion extinguifhed or produced, and not the product of the weight and height, is the true unequivocal meafure of mechanical power reaily expended, or the mechanical effect really produced; and that thefe two are always equal and oppofite. At the fame time, Mr Smeaton's theorem merits the attention of engineers ; becaufe it generally meafures the opportunities that we have for procuring the exertion of power. In fome fenfe Mr Smeaton may fay, that the quantity of water multiplied by the height from which it defcends in working our machines, is the meafure of the power: expended; becaufe we mult raife this quantity to the dem again; in order to have the fame ufe of it. It is expended, but not employed; for the water, at leaving the wheel, is Atill able to do fomething.

It requires but little confideration to be fenfible, that
the preceding account of the ceflation of accelerated motion in our principal machines, muft introduce different maxims of conftrection from thofe which were exprefsly adapted to this acceleration; or rather, which proceeded on the erroneous fuppotition of the conftancy of the impelling power and the refiftance. 'The examination of this point has brought into view the fundamental principle of working machines, namely, the perfect equilibriu:n which takes place between the impelling power and the fimultaneous refiftance. It may be expreffed thus:

The force required for preferving a macbine in uniform motion, with any velocity rulatever, is that wubich is neceffary for balancing the refiflance then aflually exerted on the zoor-king point of the machine. We faw this diftinct. ly in the inftance of the two weights acting againft each other by the intervention of a thread over a fixed pulley. It is equally true of every cale of acting machine. ry: for if the force at the impelled point be greater than what balances the refiftance acting at the fame point, it muft accelerate that point, and therefore accelerate the whole machine; and if the impelling force be lefs than this, the machine mutt immediately retard in its motion. When the machine has once acquired this degree of motion, every part of it will contirue in ite prefent fate of motion, if only the two external forces are in equilibrio, but not otherwife. But when the preffure of the external power on the impelled point balances the refiftance oppofed by that point, it is, in fact, maintaining the equilibrium with the external power acting at the working point; for this is the only way that external forces can be fet in oppofition to each other by the intervention of a body. 'The external forces are not in imnediate equilibrin with each other, but each is in equilibrio with the force exerted by the point on which it acts This force excited by the point is a modification of the connecting forces of the body, all of which are brought into action by means of the actions of the external forces, and each is accompanied by a force precifely equal and oppofite to it. Now, the principles of flatics teach us the proportions of the external preffures which are thus fet in equilibrium by the intervention of a body; and therefore teach us what proportion of power and refiftance will keep a machine of a given conftruction in a flate of uniform motion

This propofition appears paradoxical, and contrary to common obfervation ; for we find, that, in order to make a mill go falter, we muft either diminifh the re.
fiftance, or we muft employ more men, or more water, or water moving with greater velocity, \&cc. But this arifes from fome of the caufes already mentioned. Either the refittance of the woik is greater v hen the machine is made to move fafter, or the impulfion of the power is diminithed, or both thefe changes obtain. Friction and refiftance of air alfo come in for their hare, \&ic. The actual proffure of a given quantity of the external power is diminifhed, and therefore more of it muft be employed. When a weight is uniformly raifed by a machine, the preffure exerted on it by the working point is precifely equal to its weight, whatever be the velocity with which it rifes. But, even in this limpleft cafe, more natural power muft be expend. ed in order to raife it fafter; becaufe either more natu. ral power muft be employed to accelerate the external matter which is to prefs forward the impelled point, or the relative motion of the preffing matter will be diminifhed.

It is well known, that, in the employment of the mechanic powers, whether in their flate of greateft fim. plicity, or any how combined in a complicated machine, if the machine be put in motion, the velocities of the extreme points (which we have called the impelled and auorking points) are inverfely proportional to the forces which are in equilibrio when applied to thefe points in the direction of their motion. This is an inductive propofition, and has been ufed as the foundation of fyftems of mechanics. It is unneceflary to take up time in proving what is fo familiarly known ; confequently, the prodncts of the preffures at thefe poirits by the velocities of the inotions are equal ; that is, the prochuct of the preflure actually exerted at the impelled point of a machine working uniformly, multiplied by the velocity of that point, is equal to the product of the refiftance actually exerted at the working point, multiplied by the velocity of that point, that is, by the velocity with which the refftance is overcome,

$p m=r n$.

Now, the produt of the refiftance, by the velocity with which it is overcome, is evidently the meafure of the performance of the machine, or the work done. 'Ihe product of the actual preffure on the impelled point, by the velocity of that point, may be called the MOMENIUM OF IMPULSE.

> Heince we deduce this propofition : Second

In all zoorking machines zubichb bave acquired a uni- principle. form motion, the performance of the machine is equal to the tum of im nomentum of impulfe (A).

pu'fe and

(A) The truth of this propofition has been lorg perceived in every particular inftance that happened to engageequal. the attention; but we do not recolleet any mechanician before Mr Euler confidering it as a genetal truth, expref. fing in a few words a mechanical law. This celehrated mathematician undertook, about the year 173 ; or 1736 , a general and fyltematic view of machines, in order to found a complete theory immediately conducive to the improvement of practical mechanics. In 1743 he publifhed the firft propofitions of this uf ful theory in the 10 th volume of the Comment. Petropolitani, containing the excellent dynamical theorems of which we liave given the fubfance. In the 3 d volume of the Comment. Frovi Petropol. he profecuted the fuljeet a litte farther ; and in the 8th volume, he entered on what we are now engaged in, and formally annonnces this furdamental propolition, calling thefe two products the momentum of impulfe, and the momentum of effer. It is much to be regretred, that this confummate mathematician did not continue thefe uleful labours; his ardent mind being carried away by more abifrufe fpeculations in all the moft refined departments of mathematics and phifufophy. No man in

1. Europe could have profecuted the fubject with more jndgment and fuccefs. - See allo Mem. Aical. Berlin, 1747 and i75z.

This is a propofition of the utmof importance in the fcience of machines, and leads to the fundamental maxim of their conftruction. Since the performance of a machine is equal to the momentum of impulfe, it increafes and diminifhes along with it, and is a maximum when the momentum of impufe is a maximum ; therefore, the fundamental maxim in the conflruction of a machine is to fafhion it in fuch a manner, that the momentum of impulfe fhall be a maximum, or that the product of the preffure actually exerted on the impelled point of the machine by the velocity with which it moves may be as great as poffible. Then are we certain that the product of the refiftance, by the velocity of the working point, is as great as poffible, plovided that we take care that none of the impulfe be needlesty wafted by the way by injudicious communications of motion, by frietion, by unbalanced loads, and by reciprocal motions, which irrecoverably wafte the impelling power. This maxim holds good, whether the refiftance remains conflantly the fame, or varies by any law whatever.

But much remains to be done for the improvement of mechanical fcience before we can avail ourfelves of this maxim, and apply it with fuccefs. The chief thing, and to this we fhould give the moft unremitting attention, is, to learn the changes which obtain in the actual preffure exerted by thofe natural powers which we can command; the changes of actual preflure produced by a change of the velocity of the impelled point of the machine. Thefe depend on the fpecific natures of thofe powers, and are different in almoft every different cafe. Nothing will more contribute to the improvement of practical mechanics than a feries of experiments, well contrived, and accurately made, for difcovering thofe laws of variation, in the cafes of thofe powers which are moft frequently employed. Such experiments, however, would be cofly, beyond the abilities of an individual ; theefore, it were greatly to be wihhed that public aid were given to fome perfons of fkill in the fcience to inflitute a regular train of experiments of this kind. An experimental machine might be confructed, to be wrought either by men or by cattle. This fhould be loaded with fome kind of work which can be very accurately meafired, and the load varied at pleafure. When loaded to a certain degree, the men or cattle fhould be made to work at the rate which they can continue from day to day. The number of turns made in an hour, multiplied by the load, will give the performance correfponding to the velocities; and thus will be difcovered the moft advantageous rate of motion. 'The fame machine fhould allo be fitted for grinding, for fawing, boring, \&c. and fimilar experiments will difcover the relation between the velocities with which thefe operations are performed, and the refiftances which they exert. The laws of frition niay be inveltigated by the fame machine. It fhould alfo be fitted with a walking wheel, and the trial fhould be made of the flope and the velocity of walking which gives the greateft momentum of impulfe. It is not unreafonable to expect great advantages from fuch a train of experiments.

Till this be done, we muft content ourfelves with

There is a certain velocity of the impelled point of * machine which puts an end to the action of the moving power. Thus, if the floats of an underfiot wheel be moving with the velocity of the flream, no impulfe is made on them. If the arm of a gin or capftan be moving with that velocity with which a horfe or a man can juft move, fo as to comtinue at that fueed from day to day, employing all his working ftrength, but not fatiguing himfelf; in this ftate of motion, the animal can exert no preflure on the macline. This may be called the extinguishing velocity, and we may exprefs it by the fymbol e. Let f be that degree of force or preffure which the animal can exert at a dead pull or thruft, as it is called. We do not mean the ntmoft ftrain of which the animal is capable, but that which it can continue unremittingly during the working hours of a day, fully employirg, but not fatiguing itfelf. A nd let p be the preffure which it adtually exerts on the impelled point of a machine, moving with the velocity m. Let $e-m$ be called the relative velocity, and let it be expreffed by v. And let it be fuppofed, that it has been difcovered, by any means whatever, that the actual preflure varies in the proportion of v^{4}, or $\overline{e-m}{ }^{q}$. This fuppolition gives us $e^{q}: v^{l}=f: p$, and $p=f \times \frac{v^{7}}{e^{7}}$. For the machine mult be at reft, in order that the agent may be able to exert the force f on its impelled point. But when the machine is at reit, what we liave named the relative velocity is e, the whole of the extinguifhing velocity.

The momentum of impulfe is $p m$, that is $\frac{v^{q}}{e^{q}} f m$, or $f \times \frac{v^{q}}{e^{q}} \times \overline{e-v}$ (becaufe $m=e-v$). Therefore $f \times \frac{v^{q}}{e^{7}} \times \overline{e-v}$ muft be made a maximum. But f and $e^{?}$ are two quantities which fuffer no change. Therefore the momentum of impulfe will be a maximum when $v^{\eta} \times \overline{e-v}$ is a naximum. Now $v^{\eta} \overline{x e-v}=v^{\prime} \varepsilon$ $-v^{l} v,=v^{l} e-v^{q+1}$. The fluxion of this is $q e v^{q-2} \dot{v}-q+1 v^{q} \dot{v}$. This being fuppofed $=c$, we have the equation

$$
\begin{aligned}
& q e v^{q-1}=\overline{q+1} v^{q} \\
& \text { And } q e=\overline{q+1}
\end{aligned}
$$

Therefore $v=\frac{q e}{q+1}$
And m, which is $=e-v$, becomes $\frac{e}{q+1}$. Therefore we mult order matters fo, that the velocity of the impelled point of the machine may be $=\frac{e}{q+i}$. Now p is $=f \frac{v^{q}}{e^{q}}$, and therefore $=f \times \frac{q^{q}}{q+1^{q}}$. And $p m$, $=f \frac{q^{q}}{q+1^{q}} m,=f \frac{q^{q}}{q+1} \times \frac{e}{q+1},=f \times \frac{q^{q} e}{q+1^{q}+1}=$ the momentum of impulfe, and therefore $=$ the momentum of effect, or the performance of the machine, when in its beft flate.

Thus may the maxim of conflruction be faid to be Example brought to a ftate of great fimplicity, and of moft eafy underho recollection. A particular cafe of this naxim has been mill by P_{2} long known, having been pointed out by Mr Parent. ${ }_{\text {. } 2 \text { n }}$ (Since the action of bodies depends on their relative ve- -
locity,
locity, the impulfe of fuids mut be as the fquare of the relative velocity. From which Mr Parent deduced, that the moft advantageous velocity of the floats of an underfhot wheel is one-third of that of the fream. This maxim is evidently included in our general propofition; for in this cafe, the index q of that function of the relative velocity v, which is proportional to the impulfe, is $=2$. Therefore we have the maximum when $v=\frac{2 e}{2+1},=\frac{2}{5} e$, and $m=\frac{1}{3} e$. e, the extinguifhing velocity, is evidently the velocity of the ftream. Our propofition alfo gives us the precife value of the performance. The impulfe of the fream on the float at reft being fuppofed $=f$, its impulfe on the float moving with the velocity $\frac{2}{3} e$ muft be $=\frac{4}{9} f$. This is the meafure of the actual preffure p. This being multiplied by m, or by $\frac{1}{5} e$, gives $\frac{4}{27} f$. Now f is confidered as equal to the weight of a column of water, having the furface of the floatboard for its bafe, and the depth of the fuice under the furface of the refervoir (or, more accurately, the fall required for generating the velocity of the fream) for its height. Hence it has been concluded, that the utmoft performance of an underfhot wheel is to raife $\frac{4}{27}$ of the water which impels it, to the height from which it falls. But this is not found very agreeable to obfervation. Friction, and many imperfections of execution in the delivery of the water, the direction of its impulfe, \&cc, may be expected to make a defalcation from this theoretical performance. But the actual performance, even of mills of acknowledged imperfection, confiderably exceeds this, and fometimes is found nearly double of this quantity. The truth is, that the particular fact from which Mr Parent firft deduced this maxim (namely, the performance of what is called Parent's or Dr Barker's mill), is, perhaps of all that could have been felected, the leait calculated for being the foundation of a general rule, being of a nature io abftrufe, that the firt mathematicians of Europe are to this day doubtful whether they have a juft conception of its principles. Mr Smeaton's experiments fhew very difinctly, that the maximum of performance of an underfhot wheel correfponds to a velocity confiderably greater than one.third of the fteam, and approaches nearly to one half; and he affigns fome reafous for this which feem well founded. 1 lut, independent of this, the performance of Mr Smeaton's model was much greater thart what correfponds with the velocity by the above mentioned effimation of f. The theory of the impulfion of fluids is extremely imperfect; and Daniel Bernoulli fhews, from very unqueftionable principles, that the impulfe of a narrow vein of fuid on an extended furface is double of what was generally fuppofed; and his conclufions are abundantly confirmed by the experiments adduced by him.
It is by no means pretended, that the maxim of con-
of confiderable ufe: for we can affirm, on the authority of our own obfervations, that the action both of men and of draught horfes does not deviate very far from the proportions of v^{2}. The obfervations were made on men and horfes tracking a lighter along a canal, and working feveral days together, without having any knowledge of the purpofe of the obfervations. The force exerted was firtt meafured by the curvature and weight of the track rope, and afterwards by a fpring fteelyard. This was multiplied by the number of yards per hour, and the product confidered as the momen. tum. We found the action of men to be very nearly as $e-m^{2}$. The action of horfes, loaded fo as not to be able to trot, was nearly as $\overline{e-m}^{t, 7}$.
The practitioner can eafily avail himfelf of the maxim, although the function q fhould never be reduced to any algebraic form. He has only to inftitute a train of experiments on the natural agent, and felect that velocity which gives the higheft product when multiglied by its correfponding preflure.
When this felection has been made, we have two 30 ways of giving our working machinies the maximum of thots of aeffee, having once afcertained the preflure f which our vailing oure natural power exerts on the impelled point of the ma rclves of chine when it is not allowed to move.
r. When the refiftance arifing from the work, and from frietion, is a given quantity; as when water is to be raifed to a certain height by a pifton of given dimenfions.

Since the frition in all the communicating parts of the machine vary in the fame proportion with the preffure, and fince thefe vary in the fame proportion with the refiftance, the fum of the refiftance and friction may be reprefented by $b r, b$ being an abftract number. Let n be the undetermined velocity of the working point ; or let $n: n$ be the proportion of velocities at the imnpelled and working points. Then, becaufe the preffures at thefe points balance each other, in the cafe of uniform motion, they are inverfely as the velocities at thofe points. 'Therefore we muft make $b r: p=m: n$, and $n=\frac{p m}{b r},=\frac{\frac{q^{q}}{q+1}}{q^{\prime}} \mathrm{br}$
$=\overline{q+1},=m \frac{q^{q} f}{q+1} \overline{q+1} b r: q^{q} f$.
2. On the other hand, when $m: n$ is already given, by the conftruction of the machine, but $b r$ is fufceptible of variation, we muft load the machine with more and more work, till we have recuced the velocity of its inpelled point to $\frac{e}{q+1}$.

In either cafe, the performance is expreffed by what expreffes $p m$, that is, by $f e \times \frac{q^{q}}{q+1+3}$. But the ufeful performance, which is really the work done, will be had by dividing the value now obtained by the number b, which expreffes the fum of the refiftance overcome by the working point and the friction of the machine.

What has been now delivered contains, we ima-Recapitula. gine, the chief principles of the theory of machines, tion. and points out the way in which we muft proceed in applying them to every cafe. The reader, we hope, fees clearly the imperfection of a confidera-
tion of machines which procecds no farther than the ftatement of the proportions of the fimultaneous preffurcs which are excited in all the parts of the machine by the application of the external forces, which we are accuftomed to call the power and the qucight. Unlefs we take alfo into confideration, the immediate effect of mechanical force applied to body, and combine this with all the prcflures which ftatical principles have enabled us to afcertain, and by this combination be able to fay what portion of unbalanced force ihere is acting at one and all of the preffing points of the machine, and what will be the motion of every part of it in confequence of this overplus, we have acquired no knowledge that can be of fervice to us. We lave been corrremplating, not a working machine, but a fort of balance. But, by reafonirg about thefe unbalanced forces in the fame fimple manncr as about the fall of heavy bodies, we were able to difcover the momentary accelerations of every part, and the fenfible motion which it would acquire in any affgned time, if all the circumftances remain the lame. We found that the refults, although deduced from unqueftionable principles, were cuite unlike the obferved motions of moft working machines. Proceeding ftill on the fame principles, we confidered this deviation as the indication, and the precife meafure, of fomething which we had not yet at tended to, but which the deviation brought into view, and enabled us to afcertain with accuracy. 'Thefe are the changes which happen in the exertions of our actuating powers by the velocity with which we find it convenient to make them act. Thus we learn more of the nature of thofe powers ; and we found it neceffary to diftinguifh carefully between the apparent magniqude of our actuating power and its real exertion in doing our work. This confideration led us to a funda. mental propofition concerning all working machines when they have attained an uniform motion; namely, that the power and refiftance then really exerted on the machine precifely balance each other, and that the machine is precifely in the condition of a fteelyard loaded with its balarced weights, and moved round its axis by fome external force diftinct from the power and the weight. We found that this force is the previous overples of impelling power, before the machine had acquired the uniform motion; and on this occafion we leain. ed to cttimate the effect produced, hy the momentum (depending on the form of the machine) of the quantity of motion produced in the whole affemblage of
power, refiftance, and machine.

The theory of machines feenicd to he now brought back to that fimplicity of equilibrium which we had faid was fo imperfect a foundation for a theory; but in the avaining ourfeles of the maxim founded on this ge, neral propotition, we faw that the equilibrium is of a necy cifferent. limed from a quiefcer:t equitbrium. It anceffarily involves in it the knowlecge of the momen. accerations and their nimmenta; without which we vantaceot perceive that one late of motion is more ad proportion of forces in equilibric.

Lut this is not the only wife of the previons knowledge of the momentary accelerations of machines; there are many cafes where the machine works in this very fate. Many maciines accelerate throtghout while pulforming their work; and their effeacy depends en-
tirely on the final acceleration. Of this kind is the coising prefs, the great forge or tilt mill, and fome other capital engines. The fleam engine, and the common pump, are :cceffarily of this ctafs, although their efficacy is not eftimated by their final acceleration. A great number of cugines have reciprocating motions in different fubor inate parts. The theory of all fuch ellgines tequiles for its perfection an accurate knowledge of the momentary accelerations; and we mutt ufe the formulx contained in the firft part of this article.
Still, however, the application of this knowledge has Working many difficulties, which make a good theory of fuch ma- an'd return chines a much more intricate and complicated matter ${ }^{\text {i: }}$ g ftrokes. than we have yet led the reader to fippofe. In moft of thefe engines, the whole motion may be divided in to tiwo parts. One may be called the working stroke, and the other in which the working points are brought back to a fituation which fits them for acting again, may be called the returning stiroke. This return muft be effected either by means of fome immediate application of the actuating power, or by fome other force, which is counteracied during the working ftroke, and muft be confidered as making part of the refftance. In the feam engine, it is gencrally done by a counterpoife on the outer end of the great working beam. This muft be accounted a part of the refiftance, for it muft be raifed again ; and the proportions of the machine for attaining the maximum muft be computed accordingly. The quantity of this counterpoife muft be adjused by other confiderations. It mult be fuch, that the defcent of the pump rods in the pit may juft employ the wulole time that is neceffary for filling the cylindcr with fteam. If they defcend more brifkly (which an unkilful engineer likes to fee), this muit be done by means of a greater counterpoife, and this employs more power to raife it-again. Defaguliers defcuibes a very excellent machinc for rafing water in a bucket by a mau's ftep. ping into an oppofite bucket, and defcending by his preponderancy. When he comes to the bottom, he fteps out, goes up a ttair, and finds the bucket returned and ready to receive him again. This machine is extremely fimple, and perthaps the beft that can be contrived; and yet it is one of the moft likely to be a very bad one. T'he bucket into which the man Iteps mult be brought $n p$ to its place again by a preponderancy in the machine when unloaded. It may be returned fooner or later. It fhould arrive preciftly at the fame time with the man. If fooner, it is of no ufe, and waftes power in raifing a commterpuife which is needlefsly heavy ; if later, tine is loft: Therefore, the perfection of this very firmple machine requires the judicious combination of two maximunas, each of which varies in a ratio compounded of two other ratios. Suppofe the man to einploy a minute to go up tairs 50 feet, which is very nearly what he can do from day to day as his only work, and fuppofe him to weigh 150 pounds, and that he acts by means of a fimple pulley - the maximum for a lever of equal arms would require him to raife about 60 pounds of water. But when all the other circumitauces are calculated, it will be found that he muft raife 13^{8} pounds (neglecting the inertia of the machine). Hc thould raile 542 pounds 10 feet in a minute ; and this is nearly the moft exact valuation of a man's work.

There is the farce neceffity of attending to a variety
of circumftances in all machines which reciprocate in the whole or any confiderable part of their motion. The furce employed for bringing the machine into another working pofition, muft be regulated by the time neceffary for obtaining a new fupply of power ; and then the proportion of m to n muft be fo adjufted, that the work performed, divided by the zubole time of the working and returning Atrokes, may give the greateft quotient. It is fill a difficult thing, therefore, to confruct a machine in the moft perfect manner, or even to fay what will be the performance of a machine already coniltucted; yet we fee that every circumftance is fufceptible of accurate computation.
With refpect to maclines which acquire a fort of uniform motion in general, although fubject to partial reciprocations, as in a pumping, Itanping, forging engine, it is alfo difficult to affign the rate even of this general uniform motion. We may, however, fay, that it will not be greater than if it were uniform throughout. Were it entirely free from friction, it would be exactly the fame as if uniform; becaufe the accelera. tions during the advantageons fituations of the impelling power would compenfate the retardations. But frietion diminifles the accelarations, without diminifh. ing the retardations.

We may conclude this article with fome obfervations tending to the general improvement of machines. chine ong contrinutes more to the perfection of a ma. chine, efpecially fuch as is maffive and porderous, than great uniformity of motion. Every irregularity of motion waftes fome of the impelling power; and it is on. ly the greateft of the varying velocities which is equal to that which the machine would acquire if moving uniformly throughout; for while the motion accelerates, the impelling force is greater than what balances the refiffance ther actually oppofed to it, and the velocity is f ffs than what the machine would acquire if moving uniformly: and when the machine attains its greatelt velocity, it attains it becaufe the power is then not acting againft the whole refiftance. In hoth of thefe fituations, therefore, the performance of the machine is If f_{s} than if the power and refirance were exactly balanced ; in which cafe it would move uniformly.

Every attention hould therefore be given to this, and we thould endeavour to remove all caufe of irregularity. The communications of motion thould be fo contrived, that if the impelled point be moving uniformly, by the uniform preffure of the power, the working point thall alfo be moving uniformly. Then we may generally be certain, that the mafly parts of the machine will be moving uniformly. When this is not done through the whole machine, there are continual returns of l! rains and jolts; the inertia of the different parts acting in oppofite directions. Although the whole momenta may always balance each other, yet the general motion is hobbling, and the points of fupport are frained. A great ergine fo conltructed, commonly caufes the building to tremble; but when uniform mo. tion pervades the whole machine, the inertia of each part tends to preferve this uuiformity, and all goes finoothly. It is alfo deferving of remark, that when the communications are fo contrived that the uniform motion of orre part produces unform motion on the next, the preffures at the communicating points remain
conttant or invariable. Nov the accomplifing of this is always within the reach of mechanics.
One of the moft ufual communications in machinery Ben 35 is by means of toothed wheels acting on each ocher. It for the is of importance to have the teeth fo formed, that the teeth of preffure by which one of them A urges the other $B \begin{gathered}\text { wheels. } \\ \text { Plate }\end{gathered}$ round its axis fhall be conflantly the fame. It can ea- Xx Platers. fily be demontrated, that when this is the cafe, the figo to uniform angular motion of the one will produce a uniform angular motion of the other; or, if the motions are thus uniform, the preffures are invariable. This is accomplifhed on this princiole, that the mutual actions of folid bodies on each other in the way of preffure are perpendicular to the touching furfaces. Therefore let the tooth a prefs on the tooth b in the point C; and draw the line FCDE perpendicular to the touching furfaces in the point C. Draw AF, BE perpendicular to FE , and let FE cut the line $A B$ in D. It is plain, from the common principles of mechanics, that if the hine FE, drawn in the manner now defcribed, always pafs through the fane point D, whatever may be the fituation of the acting teeth, the mutual action of the wheels will always be the fame. It will be the fame as if the arm AD acted on the arm BD. In the trea. tifes on the conftruction of mills, and other works of this kind, are many inftructions for the formation of the teeth of wheels; and ahnoft every noted millwright has his own noftrums. Moft of them are egregioully faulty in refpect of mechanical principle. Indeed they are little elfe than inftructions how to make the teeth clear each other without flicking. Mr de la Hire firft pointed out the above mentioned principle, and jurtly con. demned the common practice of making the fmall wheel or pinion in the form of a lantern (whence it alfo took its name), conlifling of two round difks, having a num. ber of cylindrical fpc: ess (fig. 2.) The flighteft infpection of this conftruction fhews, that, in the different fituations of the working teeth, the line FCE continually changes it interfection with A 3. If the wheel 13 be very fmall in comparifon of the other, and if the teeth of A take deep hold of the cylindrical pius of B, the line of action EF is fometimes fo difadvantageoully placed, that the preflure of the one wheel has fcarcely any tendency at all to turn the other. Mr de la Hire, or Dr Hooker Epricycloids was, we think, the firt who invelligated the form of recomtooth which procured this coniltant action between the mended hy wheels; and in a very ingenious differtation, publifhed De la Hire. among the Mernoirs of the Acaderny of Sciences at Paris 1608 , the former of thefe gentlemen fhews, that this will be enfured by forming the teeth into epicycloids. Mr Camus of the fame Academy has publithed an ela. borate differtation on the fame fubject, in which he profecutes the principle of Mr de la Hire, and applies it to all the variety of cafes which can occur in practice. 'ithere is no doubt as to the goodnefs of the principle; and it has another excellent property, "that the mu. tual action of the teth is ablolutely without any fric. tion." The one tooth only applies itfelf to the other, and rolls on it, but does not fide or rub in the fmalle lt degree. Thiis makes thein laft long, or rather does mot allow them to wear in the leait. But the couftructions is fubject to a limitation which mult not be negkertat. The tecth mult be fo uade, that the curved part of the tonth b is acted on t y a flat part of the tooth a till is comes to the live AL_{L} in the courfe of its action; aftes which

MACHINERY.

which the curved part of a nets on a fat part of b; or the whole action of a on b is either completed, or only begins at the line $A B$, joining the centres of the wheels.

A nother form of the teeth fecures the perfect uniformity of action without this limitation, which requires very nice execution. Let the teeth of each wheel be formed by evolving its circumference; that is, let the acting face GCH of the tooth a have the form of the curve traced by the extremity of the thread FC, unlapped from the circumference. In like manner, let the acting face of the tooth b be formed by unlapping a thread from its circumference. It is evident, that the line FCE, which is drawn perpendicularly to the touch. ing furfaces in the point C, is jult the direction or pofition of the evolving threads by which the two acting faces are formed. 'I'his line muft therefore be the common tangent to the two circles or circumferences of the wheels, and will therefore always cut the line $A B$ in the fame point 1). This form allows the teeth to act on each other through the whole extent of the line FCE, and therefore will admit of feveral teeth to be acting at the fame time (twice the number that can be admitted in Mr de la Hire's method). 'This, by dividing the preflure among feveral teeth, diminifhes its quantity on any one of them, and therefore diminifhes the dents or impreffions which they unavoidably make on each other. It is not altogether free from niding and friction, but the whole of it can hardly be faid to be fenfible. The whole flide of a tooth three inches long, belonging to a wheel of ten feet diameter, acting on a tooth of a wheel of two feet diameter, does not amount to $\frac{1}{6}$ th of an inch, a quantity altogether infig. nificant.

In the formation of the teeth of wheels, a fmall deviation from thefe perfect forms is not perhaps of very great importance, except in cafes where a very large wheel drives a very fmall one (a thing which a grod engineer will always avoid). As the conftruction, however, is exccedingly eafy, it would he unpardonable to omit it. Well formed teeth, and a great number of them acting at once, make the communication of notion extremely fmooth and uniform. The machine works without noife, and the teeth laft a very long time without fenfibly changing their fhape. But there are cales, fuch as the pallets of clocks and watches, where the utmolt accuracy of form is of the greateft
importance for the perfection of the work.
When heavy Itampers are to be raifed, in order to
drop on the inatters to be pounded, the wipers by they are lifted fhould be made of fuch a fors by which ftamper may be raifed by a uniform preffure, that the motion almon perfectly uniform. If this is not attended to, and the wiper is only a pinfticking out from the axis, the tlamper is forced into motion at once. This occafions violent jolts to the machine, and great ftrains on its moving parts and their points of fupport; whereas when they are gradually lifted, the inequality of defultory motion is never felt at the impelled point of the machine. We have feen pittons moved by means of a double rack on the pilton rod. A half wheel takes hold of one rack, and raifes it to the required height. The znoment the half wheel has quitted that fide of the rack, it lays hold of the other fide, and forces the pifton down again. This is propoled as a great improvement ; cor-
recting the unequable motion of the pitton moved in the common way by a crank. But it is far inferior to the crank motion. It occafions fuch abrupt changes of motion, that the machine is thaken by jolts. Indeed if the movement were accurately executed, the machine would be fhaken to pieces, if the parts did not give way by bending and yielding. Accordingly, we have always obferved that this motion foon failed, and was changed for one that was more fmooth. A judicious engineer will avoid all fuch fudden changes of motion, efpecially in any ponderous part of a machine.

When feveral ftampers, piftons, or other reciprocal movers, are to be raifed and depreffed, common fenfe teaches us to diltribute their times of action in a uniform manner, fo that the machine may always be equally loaded with work. When this is done, and the obfervations in the preceding paragraph attended to, the machine may be made to move almoft as fmoothly as if there were no reciprocations in it. Nothing fhews the ingenuity of the author more than the artful yet fimple and effectual contrivances for obviating thofe difficulties that unavoidably arife from the very nature of the work that mutt be performed by the machine, and of the power employed. The inventive genius and found judgment of Watt and Boulton are as perceptible to a ikilled obferver in thefe fubordinate parts of fome of their great engines, as in the original difcovery on which their patent is founded. In fome of thofe engines the mals of dead matter which mult be put into motion, and this motion deftroyed and again reftored in every Itroke, is enormous, amounting to above an hundred tons. The ingenious authors have even contrived to draw fome advantages from it, by allowing a great want of equilibrium in certain pofitions ; and this has been condemned as a blunder by engineers who did not fee the ufe made of it.

There is alfo great room for ingenuity and good The unachoice in the management of the movirg power, when voidable in it is fuch as cannot immediately produce the kind of equalities motion required for effecting the purpofe. IVe men. of moving tioned the converfion of the contiuved rotation of an be comper axis into the reciprocating motion of a pifton, and the fated by improvement which was thought to liave been made on the con. the common and obvions contrivance of a crank, by itruction. fubftituting a double rack on the pifton-rod, and the inconvenience arifing from the jolts occafioned by this change. We have feen a great forge, where the engineer, in order to avoid the fame inconvenience ariling from the abrupt motion given to the great nedge hammer of feven hundred weight, refiting with a five-fold momentum, formed the wipers into fpirals, which communicated motion to the hammer almof without any jolt whatever; but the refult was, that the hanmer rofe no ligher than it had been raifed in contact with the wiper, and then fell on the iron bloom with very little effect. 'The caufe of its inefficiency was not gueffed at ; but it was removed, and wipers of the common form were put in place of the fpirals. In this operation, the rapid motion of the hammer is abfolutely neceffary. It is not enough to lift it up; it mult be tof. fed up, fo as to fly higher than the wiper lifts it, and to frike with great force the ftrong oaken fpring which is placed in its way. It compreffes this fpring, and is reflected by it with a confiderable velocity, $f 0$ as to hit the iron as if it had fallen from a great height. Had
it been allowed to fly to that height, it would have fallen upon the iron with fomewhat mere force (becaufe no oaken fpring is perfectly elaftic) ; but this would have required more than twice the time.

In employing a nower which of neceffity reciprocates, to drive inachinery which requires a continuous motion (as in applying the fteam engine to a cotton or a grift mill), there alfo occur great difficulties. The neceffity of reciprocation in the firit mover wafles much power; becaufe the inftrument which communicates fuch an enormous force mult be extremely ftrong, and be well fupported. The impelling power is watted in imparting, and afterwards deftroying, a valt quantity of motion in the working beam. The fkilfnl engineer will attend to this, and do his utmoft to procure the necef. fary frength of this firt mover, without making it a walt load of inert matter. He will alfo remark, that all the ftrains on it, and on its fupports, are changing their directions in every froke. This requires particuliv attention to the manner of fupporting it. If we obferve the theam engines which have been long ereeted, we fee that they lave unifurnly fhaken the building to pieces. This has been owing to the ignorance or inattention of the engineer in this particular. They are much more judicioufly erected now, experience having taught the moft ignorant that no building can withftand their defultory and oppofite jolts, and that the great movements mult be fupported by a framewo: k independent of the building of mafonry which contains it (B).
The engineer will alfo remark, that when a fingle ftroke fteain engine is made to turn a mill, all the communications of motion change the direction of their preffure twice every ftroke. During the working Atroke of the beam, one fide of the teeth of the intervening wheels is preffing the machinery forward; but during the returning ftroke, the machinery, already in motion, is dragging the beam, and the wheels are auting with the other lide of the teeth. This occafions a rattling at every change, and makes it proper to fathion both fides of the teeth with the fame care.

It will frequently conduce to the good performance of an engine, to make the action of the relifling work unequable, accommodated to the inequalities of the impelling power. This will procuce a more uniforn motion in machines in which the momentum of inertia is inconfiderable. There are fome beautiful fpecimens of this kind of adjultment, in the mechanifn of animal bodies.

It is very cuftomary to add what is called a FLy to machines. This is a heavy difk or hoop, or other mafs of matter, balanced on its axis, and fo conneqted with the machinery as to turn brifkly round with it. This may be done with the view of rendering the motion of the whole more regnlar, notwithftanding unavoidable inequalities of the accelerating forces, or of the refint. ances occafioned by the work. It becomes a Regu.
Suppl. Vol. II. Part I.
lator. Snppofe the refiftance extremely unequal, and the impelling power perfectly conftant; as when a bucket wheel is employed to work one pump. When the pifton has ended its working froke, and while it is going down the barrel, the power of the wheel being fcarcely oppofed, it accelerates the whole machine, and the pilton arrives at the bottom of the barrel with a confiderable velocity. But in the rifing again, the wheel is oppofed by the column of water now preffing on the pifton. This immediatcly retards the wheel; and whew the pitton has reached the top of the barrel, all the acceleration is undone, and is to begin again. The motion of fuch a machine is very hobbling: but the fuperplus of accelerating force at the beginning of a returning ftroke will not make fuch a change in the motion of the maclune if we connect the fly with it. For the accelerating momentum is a determinate quantity. Therefore, if the tadius of the fly be great, this momentum will be attained by communicating a fmall angular mo. tion to the machine. The momentum of the fly is as the fquare of its radius; therefore it refilts acceleration in this froportion; and although the overplus of power generates the fanie momentum of rotation in the whole machine as before, it makes but a fmall addition to its velocity. If the diameter of the fly be doubled, the augmentation of rotation will be reduced to one fourth. Thus, by giving a rapid motion to a fmall quantity of matter, the great acceleration during the returning flroke of the pifon is prevented. This acceleration continues, however, during the whole of te returning Itroke, and at the end of it the machine has acquired its greateft velocity. Now the working ftroke begins, and the overplus of power is at an end. The machine accelerates no more ; but if the power is juft in equilibrio with the reliftance, it keeps the velocity which it has acquired, and is Itill more accelerated during the next returning Aroke. But now, at the beginning of the fubfequent working Itroke, there is an overplus of refiftance, and a retardation begins, and continues during the whole rife of the pifton; but it is inconfiderable in comparifori of what it would have been without the fly; for the fly, retaining its acquired momentum, drags forward the rett of the irachine, aiding the impelling power of the whecl. It does this by all the communications taking into each other in the oppofite direction. The teetli of the intervening wheels are heard to drop from their former contact on one fide, to a contact on the other. By contidering this procefs with attention, we eafily perceive that, in a few ftrokes, the overplus of power duing the returning ftroke comes to be fo adjufted to the deficiency during the working ftroke, that the accelerations and retardations exactly deftroy cach other, and every fucceeding flroke is made with the fame velocity, and an equal number of ftrokes is made in every fucceeding minute. Thus the machine acquires a general uniformity with periodical inequalities. It is plain, that by fufficiently enlarging either the diameter or the 0 weight
(в) The gudgeons of a water-wheel fhould never reft on the wall of the building. It fhakes it; and if fet up foon after the building has been erected, it prevents the mortar from taking firm bond; perhaps by fhattering the calcareous cryltals as they form. When the engineer is obliged to reft the gudgeons in this way, they fhould be fupported by a block of oak laid a little hollow. This foftens all tremors, like the fprings of a wheel carriage. This practice would be very ferviceable in many other parts of the conftruction.

MACHINERY.

weight of the fly, the irregularity of the motion may be re:ndered as friall as we pleale. It is much better to enlerge the diameter. This preferves the friction more moderate, and the pivot wears lefs. For thefe reafous, a fly is in general a confiderable improvement in machinery, by equalifing many exertions that are na. turally very irregular. Thuo, a man working at a common windlafs. exerts a very irregular preflire on the winch In one of his poftions in each turn he can ex. ert a force of near 70 pounds without fatigue, but in another he cannot exert above 25 ; nor muft he be loaded with much above this in general. But if a large fly be connected properly with the windlafs, he will att with equal eafe and fpeed againft 30 pounds.

It is a

powerful
segulator
This regulating power of the fly is without bounds, and may be ufed to render uniform a motion produced by the moft defultory and irregular power. It is thus that the moft regular motion is given to mills that are or even th:ee leconds there is no force preffing round the mill. The communication is made through a maffive fly of very great diameter, whirling with great rapidity. As foon as the impulfe ceafes, the fly, continuing its motion, urges round the whole machinery with almoft unabated fpeed. At this inftant all the teeth, and all the joints, between the fly and the firl mover, are heard to catcl in the oppofite direation.

If any permanent change thould happen in the im. pelling power, or in the refiftance, the fly makes 110 obftacle to its producing is full effeet on the machine; and it will be obferved to accelenate or retard uniformly, till a new general fpeed is acquircd exactly correfponding with this new power and refiftance.
Many machines include in their coultrnction movements which are equivalent with this intentional regulator. A flour mill, for example, cannot be better regulated than by its milltone; but in the Albion mills, a heavy fly was added with great propiety; for if the mills had been regulated by iheir militones only, then at every change of flroke in the fleam engine, the whole train of communications between the beain, which is the firft mover, and the regulating milfone, which is the very laft mover, would take in the oppofite direction. Although each drop in the teeth and joints be but a rrifle, the whole, added together, would make a conliderable jolt. This is avoided by a regulator immediately ad. joining to the beam. This continually preffes the working machinery in one direction. So judicioufly were the movements of that noble machine contrived, and fo nicely were they execnted, that not the leaft noife was heard, nor the fighteft tremor felt in the building.
Mr Valoné's beautiful pile engine employed at Weftminfter Britge is another remarkable inftance of the

- See Prep-regulating power of a fy ${ }^{*}$. When the ram is drop-

Engine, En- pec', and its follower difengaged inmediately after it,
cycl. the hoffes would infanty tumble down, becaufe the load, againt which they had been ftraining hard, is at once taken off; but the gin is connected with a very large fiy, which checks any remarkable acceleration, allowing the horfes to lean on it during the defcent of the load; after which their draught recommences immediately. 'The fpindles, cards, and bobbins, of a cotton mill, are alfo a fort of flits. Indeed all bulky machines of the rotative kind tend to preferve their motion with fome degree of fteadinefs, and their great mo.
mentum of irertia is as ufeful in this refpeet as it is prejudicial to the acceleration or any reciprocation when wanted.

41
There is another kind of regulating fly, confifting of A bad con. wings whirled brikly round till the refiftance of the air itruction of prevents any great acceleration. This is a very bad ${ }^{\text {ally. }}$ one for a working machine, for it produces its effect by really zuafing a part of the moving power. Fsequently it employs a very great and unknown part of it, and robs the proprictor of much work. It flould never be introduced into any machine employed in manufactures.
Some rare cafes occur where a very different regula. A conical 4^{2} tor is required ; where a certain determined velocity is pendulum found neceffiary. In this cafe the machine is furnifthed, is the mort at its extreme mover, with a conical pendalum, confifl- perfect reing of two heavy balls hanging by rods, which move in very nice and fteady joints at the top of a vertical axis. It is well known, that when this axis turns round, with an angular velocity fuited to the length of thofe pendulums, the time of a revolution is determined. Thus, if the length of each pendulum be $39 \frac{1}{5}$ inches, the axis will inake a revolution in two feconds very nearly. If we attempt to force it mose fwiftly round, the balls will recede a little from the axis, but it employs as long time for a revolution as before; and we cannot make it turn fwifter, unlefs the impelling power be increafed beyond all probability; in which cafe the pendulum will Ay out from the centre till the rods are horizontal, after which every increafe of power will accelerate the machine very fenfibly. Watt and Boulton have applied this contrivance with great ingenuity to their fteam engines, when they are employed for driving machinery for manufactures which have a very changeable refittance, and where a certain fpeed cannot be much departed from without great inconvenience. They have connected this recels of the balls from thie axis (which gives immediate indication of an increafe of power or a diminution of refiftance) with the cock which admits the feam to the working cylinder. The balls nying out, caufe the cock to clofe a little, and diminin the fupply of itean. The impelling power diminifies the next moment, and the balls again approach the axis, and the rotation goes on as before, although there may have occurred a very great excefs or deficiency of power. The fame contrivance may be employed to raife or lower the feeding fluice of a water mill employed to drive machinery.

A fly is fometimes employed for a very different pur- A fy fon pofe from that of a regulator of motion - it is employ-times col. ed as a collcitor of power. Suppofe all refiltance remo- leatspuw ved from the working point of a machine furnined with a very large or heavy fly immediately connected with the working point. When a fmall force is applied to the impelled point of this machine, motion will begin in the inachinie, and the fly begin to turn. Continue to prefs uniformly, and the machine will accelerate. This may be continued till the fly has acquined a very rapid motion. If at this moment a refifting body be applied to the working point, it will be acted on with very great force; for the fly has, now accumulated in its circumference a very great momentum. If a body were expofed immediately to the action of this circumferencc, it would be violently ftruck. Much more will it be fo, if the body be expofed to the action of the
working
working point, which perhaps maker one tirn while the fly makes a hundred. It will exert a hundred finies more force there (very nearly) than at its own circumference All the motion which has been accumulated on the fly during the whole progrefs of its acceleration is exerted in an inflatt at the working point, multiplied by the nomentum depending on the preportion of the parts of the machine. It is thus that the coining pecfs performs its office; nay, it is thus that the black finith forges a bar of iron. Swinging the great fledge ham. mor ronnd his head, and urging it with force the whole way. this accurnulated motion is at once extinguifed by impact on the ioll. It is thus we drive a nail; and it is thus that by accumulating a very moderate force exerted during four or five turns of a fly, the whole of it is exerted on a punch fet on a thick plate of iron, fuch as is employed for the boilers of fleam engines. The plate is pierced as if it were a bit of cheefe. This accumulating power of a fly has occafioned many who think themfelves engineers to imagine, that a fly really adds power or mechanical force to an engine; and, not underitanding on what its efficacy depends, they often place the fly in a fituation where it only added a ufelefs burden to the machine. It fhould always be made to move with rapidity. If intended for a mere regulator, it fhould be near the firft mover. If it is intended to accumulate force in the working point, it fhould not be far feparated from it. In a certain ferife, a fly may be faid to add power to a machine, becaufe by accurnulating into the exertion of one moment the exertions of many, we can fometimes overcome an obtlacle that we never could have balanced by the fane machine unaided by the fly.

It is this accumulation of force which gives fuch an appearance of power to fome of our firft movers. When a man is unfortunately catched by the teeth of a paltry country mill, he is crufhed alnoft to mummy. The power of the ftream is conceived to be prodigious; and yet we are certain, upon examination, that it amounts to the preffure of no more than fifty or fixty pounds. But it has been acting for fome time; and there is a militone of a ton weight whirling twice round in a fecond. This is the force that crufhed the unfortunate man; and it required it all to do it, for the mill fop. ped. We fatw a mill in the neighbourhood of Elbing. roda in Hanover, where there was a contrivance which difengaged the milltone when any thing got entangled in the teeth of the wheels. It was tried in our light with a head of cabbage. It crumed it indeed, but not violently, and would by no means have broken a man's arm.
implicity It is hardly neceffary to recommend fimplicity in the f confruc-conftruetion of machines. This feems now fufficiently rended.
tiontood. Multiplicity of motions and communications increafes frictions; increafes the unavoidable loffes by bending and yielding in every part ; expofes to all the imperfections of workmanfhip; and has a great chance of being indiftinctly conceived, and therefore conftruted without fcience. We think the following conttruction of a capitan or crab a very good example of the advantages of fimplicity. It is the invention of an untaught but very ingenious country tradefman.
EAB is the barrel of the capttan, ftanding vertically in a proper frame, as ufual, and urged rould by bars
fuch as EF. The upper part A of the barrel is ${ }^{17}{ }^{4} 45$ inches in diameter, and the lower B is 16. C is a Fxanple \#trong pulley 16 inches in diameter, having a hook D, of a very which takes hold of a lawfer attached to the load. p, pwerful The rope $A C B$ is wound round the bancl A, palfes alfana 2. over the pulley C , and is thell wound round the barrel B in the oppofite direeion. No farther cefeription is neceffary, we think, to fhew that, by heaving by the bar F. fo as to wind more of the rope upon A, and unwind it frons B , the pulley C mult be brought nearer to the capftan by about three inches for each turn of the capftan; and that this fimple capftan is equivalent to an ordinary capftan of the fame length of bar EF, and diameter of barrel B, combined with a 16 fold tackle of pulleys; or, in fhort, that it is 16 times more powerful than the common captlan; free from the great lofs by friction and bending of ropes, which would abforb a third of the power of a 16 fold tackle ; and that whereas all othcr engines become weaker as they multiply the power to a greater degree (unlefs they are proportionally more bulky), this engine becomes really ftronger in itfelf. Suppofe we wanted to have it twice as powerful as at prefent; nothing is neceffary but to cover the part B of the barrel with laths a quarter of an inch thick. In fhort, the nearer the two barrels are to equality, the more powelful does it become. We give it to the public as an excerlent cap. Itan, and as fuggefting thoughts which an intelligent engineer may employ with great effect. By this contrivance, and ufing an iron wire inftead of a catgut, we converted a common eight day cluck into one which goes for two months.
W_{E} intended to conclude this article with fome obfervations on the chicf claffes of powers which are employed to drive machinery; fuch as water, wind, atmofpheric preflure, gunpowder, and the force of men and uther animals, giving forne notion of their abfolute magnitudes, and the cffect which may be expeefed from them. We fhould then have mentioned what has been difcovered as to their variation by a variation of velocity. And we intenced to conclude with an account of what knowledge has been acquired concerning friction, and the lofs of power in machinery ariting from this caufe, and from the fliffoc f_{3} of ropes, and fome other caufes: But we have not yet been able to bring thefe matters into a connected form, which would fug. geft the methods and means of farther information thereon. We muft endeavour to find another opportunity of communicating to the public what we may yet learn on thofe fubjects.

We have now eftablifhed the principles on which machines mult be conttrucied, in order that they may produce the greateft effect; but it would be impruper to difmifs the fubject wichout fating to our readers Mr Bramah's new method of producing and applying a more conliderable degree of power to all kinds of maclinery requiring motion and force, than by any niean at prefent practifed for that purpofe. This method, for which on the 31 it of March 1796 he obtained a patent, confifts in the application of water or other denfe fluids to various engines, fo as, in fume inftances,
to caufe them to act with immenfe force; in others, to communicate the motion and powers of one part of a machine to fome other part of the fame machine ; and, laftly, to conmmnicate the motion and force of one machine to another, where their local fituations preclude the application of all other methods of connection.

The firt and moft material part of this invention will be clearly underflood by an infpeetion of fig. 4 . where " A is a cylinder of iron, or other materials, fufficiently flrong, and bored perfectly fmooth and cylindrical; into which is fitted the pifton B, which muft be made perfecily water-tight, by leather or other materials, as ufed in pump making. The bottom of the cylinder muft alfo be made fufficiently Arong with the other part of the furface, to be capable of refifting the greateft force or ftrain that may at any time be required. In the bottom of the cylinder is inferted the end of the tube C ; the aperture of which cominunicates with the infide of the cylinder, under the piflon B, where it is fhut with the finall valve D , the fame as the fuction-pipe of a common pump. The other end of the tube C communicates with the fmall forcing pump or injeefor E, by means of which water or other denfe fluids can be forced or injected into the cylinder A, under the pifton B. Now, fuppofe the diameter of the cylinder A to be 12 inclies, and the diameter of the pitton of the fmall pump or injector E only one quarter of an inch, the proportion between the two furfaces or ends of the faid piftons will be as 1 to 2304; and fuppofing the intermediate face between them to be filled with water or other denfe fluid capable of fufficient refiftance, the force of one pilton will a Et on the other juft in the above proportion, viz. as 1 is to 2304 . Suppofe the fmall pifton in the injector to be forced down when in the act of pumping or injecting water into the cylinder A , with the power of 20 cwt . which could eafily be done by the lever H; the pifton B would then be moved up with a force equal to 20 cwt . multiplied by 2304 . Thus is confructed a hydro-mechanical engine, whereby a weight amounting to 2304 tons can be raifed by a fimple lever, through equal fpace, in much lefs time than could be done by any apparatus conftructed on the known principles of meclianics; and it may be proper to obferve, that the effect of all other sechanical combinations is counteracted by an accumulated complication of parts, which renders them in. capable of being ufefully extended beyond a certain degree; but in machines acted upon or conltructed on this principle, every difficulty of this kind is obviated, and their power fubject to no finite reftraint. To prove this, it will be only neceflary to remark, that the force of any machine acting upon this principle can be increafed ad infinilum, either by extending the proportion bet ween the diameter of the injector and the cy linder A, or by applying greater power to the lever H .
"Fig 5. reprefents the fection of an engine, by which very worderful effects may be produced in?antaneoufly by means of compreffed air. AA is a cylinder, with the pifton B fitting air. tight, in the fame manner as deferibed in fig. $4{ }^{\circ} \mathrm{C}$ is a globular veffel made of copper, iron, or other ftrong materials, capable of refifting iminenfe force, finillar to thofe of air guns. D is a Arong tube of fmall bore, in which is the flop-cock E. One of the ends of this tube communicates with the
cylinder under the pitton B, and the other with the globe C. Now, fuppofe the cylinder A to be the fame diameter as that in fig. 4 . and the tube D equal to one quarter of an inch diameter, which is the fame as the injector fig. 4.: then, fuppofe that air is injected into the globe C (by the common method), till it preffes againft the cock E with a force equal to 20 cwt . which can eafily be done; the confequence will be, that when the cock E is opened, the pifton B will be moved in the cylinder AA with a power or force equal to 2.304 tons ; and it is obvious, as in the cafe fig. 4. that any other unlimited degree of force may be acquired by machines or engines thus conftructed.
"Fig. 6. is a fection, merely to fhew how the power and motion of one machine may, by means of fluids, be transferred or communicated to another, let their diftance and local fituation be what they may. A and Bare two fmall cylinders, fmooth and cylindrical; in the infle of each of which is a pifton, made water and air tight, as in figs 4° and 5° CC is a tube conveyed un-* der ground, or otherwife, from the bottom of one cylinder to the other, to form a communication between them, notwithftanding their diffance be ever fo great ; this tube being filled with water or other fluid, until it touch the bottom of each pifton; then, by depreffing the pifton A, the pifton B will be raifed. The fame effect will be produced vice verfa: thus bells may be rung, wheels turned, or other machinery put invitibly in motion, by a power being applied to cither.
"Fig. 7. is a fection, fhewing another inftance of communicating the action and force of one machine to another; and low water may be raifed out of wells of any depth, and at any ditance from the place where the operating power is applied. A is a cylinder of any recuired dimenfions, in which is the workiing pifton B , as in the foregoing examples: into the buttom of this cylinder is inferted the tube C, which may be of lefs bore than the cylinder A. This tube is continned, in any required direction, down to the pump cylinder D, fuppofed to be fixed in the duep well EE, and forms a junction therewith above the piton F ; which pifton has a rod G, working through the fuffing box, as is ufual in a common pump. To this rod G is conneeted, over a pulley or otherwife, a weight H , fu:fficient to overbalance the weight of the water in the tube C , and to raife the piton F when the pifton 13 is lifted : thus, fuppofe the pifton $B \mathcal{B}$ is drawn up by its rod, there will be a vacuum niade in the pump cylinder 1), below the piton F; this vacnum will te filled with water through the fuction pipe, by the preflure of the atmol phere, as in all pumps fixed in air. The return of the pifton B, by being preffed downwards in the cylinder A, will make a ftroke of the pifton in the pump cylinder D , which may be repeated in the ufual way by the ir otion of the pifton B, and the action of the water in the tube C. 'l'he rod G of the pilton F, and the weight H, are not neceffary in wells of a depth where the atmofphere will overbalance the water in the fuction of the pump cylinder D , and that in the tube C. The fmali tube and cock in the ciftern I, are for the purpofe of charging the tube C."

That thefe contrivances are ingenious, and may occafionally prove ufeful, we are not inclined to controvert; but we muft confefs, that the advantages of them
appear not to us fo great as to their author. Why they do not, we need not explain to any man who, with a fufficient degiee of mechanical and mathematical knowledge, has perufed this article with attention. Mr Yobn Luccock, however, of Marley, near Leeds, thinks fo very differently from us on this fubject, that, on Mr Bramah's principle, he propofes to apply water or other denfe fluids, fo as to make them fupply the place of Ateam in what is commonly called the fleam engine. He calls his engine the paradoxical machine; and
he got a patent for it on the 28th of February 17990 though it differs in nothing from Mr Bramah's ma. chine, reprefented by fig. 4. excopt that the tube \mathcal{C} in the para Ioxical machine is fupplied with water, not by means of a forcing pursp, but from a ciftern elevated to fuch a height as, that the water defcending through the tube may produce its effect merely by its weight. Whetlice this variation, for it is no improvement, of Mr Bramah's machine intitled its author to a patent, it is not our bufinefs to inquire.

M A C

Macpher- MACPHERSON (James, Efq;), was born in the fon. pariih of Kingufie, and county of Invernefs, in the year 173^{8}. His father was a farmer of no great affluence; and young Macpherfon received the earlier part of his education in one of the parifh fchools in the diftrict called Badenoch. By an anonymous writer in the Edinburgh Magazine, he is faid to have been educated in the gramnar fchool of Invernefs; and he may, for ought that we know to the contrary, liave fpent a year in that feminary; but we rather think that he went directly from a country fehool to the univerfity of Aberdeen. At this our readers need not be furprifed; for at the period to which we refer, fome of the parochial fchoolmaters in Scotland, and more efpecially in the Highlands, were men eminent for tafte and claffical literature.

It was in the end of OEtober or the If of November 1752, that James Macpherfon entered the King's College; where he difpiay ed more genius than learning, entertaining the fociety of which le was a member, and even diverting the younger part of it from their f.udies, by his humorous and doggerel rhimes. Abont two years after his admiffion into the univerfity, the King's College added two months to the length of its annual Selfion or term ; which induced Macpherion, with many wher young men, to remove to the Marifchal College, where the feffion continued fhort; and it is this circumftance which leads us to fuppofe that his father was not opulent.
Scon after he left college, and perhaps before he left it, he was fchoolmaller of Ruthveh, or Riven, of Badenoch; and we believe he afterwards delighted as little as his great antagonit Johnfon in the recollection of that perind when he was compelled, by the narrownefs of his fortune, to teach boys in all obfcure fchool. It was during this period, we think in 175^{8}, that he publifhed The Higllander, an hervic poent in fix cantos, 12mo. Of this work, as we have never feen it, we can fay nothing. By the anonymous writer already quoted, it is mentioned as a " tiflue of fuftian and abfurdity;" whilft others, and they too men of learning and character, have affured us, that it indicated confiderable genius in fo young an author.
Soon after this publication, Mr Macpherfon quitted his fchool, and was received by Mr Graham of Balgowain into his family as tutor to his fons; an employ. ment of which he was not fond, and to which he was not long condemned. In the year 1760 he furprifed the world by the publication of Fragments of Ancient Poetry, collected in the Highlands of Scotland, and Tranf.

Inted from the Gaelic or Erfe Language, Svo. Thefe Macpherfragments, which wete declared to be genuine remains for. of ancient Scottifh poetry, at their firll appearance delighted every reader; and fome very good judges, and amongft the reft Mr Gray, were extremely warm in their praifes. Macpheifon had intended to bury them in a S'cotch magazine, but was prevented from fo injudicious a !!ep by the advice of a friend. He publifhed them therefore in a pamphlet by themfelves, a:d thus laid the foundation of his finture fort une.

As other fpecinens were faid to be recoverable, a fublcription was fet on foot by the Faculty of Advocates at Edinburgh, to enable our auchor to quit the family of Balgowan, perambulate the Ilighlaids, and fecure, if the could, the precions treafure. He engaged in the undertaking, and was fuccefeful; for all who poffe? fed any of the long famed works, vied with cach other in giving or fending them to a man who had. fhewn himfelf fo capable of doing them juftice.
With his collection of poems, and fragments of poems, he went to London; and tagging them together in the form which he thought bett, he publilied, in 1:62, Finysul, an incient Epic Poam, in fix looks, together with feveral other pooms, compofed by Offian the fon of Fingal, tranflated from the (Gathe language, 4to. The fubject of this epic poen is ant invalion of Ireland by Swaran king of Lochlin. Cuchullin, general of the Irifh tribes during the mimority of Cornac king of Ireland, npou intell gence of the invafion affembled his forces near Tura. a caftle on the coatt of Uhter. The poem opens with the landing of swaran ; councils are held, battles fought, and Cuchullin is at latt toially defeatech. In the inean time, Fingal, king of the Highlands of Scotlanil, whofe aid had been follicited before the enemy landed, arrived, and expelled them from the country. This war, which continued but fix days and as many nights, is, including the epifodes, the itory of the Poem. The feene, the heath of Lena, near a mountain called Ciomleach in Uliter. Ihis poem alfo was received with equal applaufe as the preceding Fragments.

The next year he produced Temora, an ancient epic poem, in eight books; together with feveral other poems compofed by Oflian ion of Fingal, 4 to, which, thongh well received, found the public fomewhat lefs difporied to be!nw the fame meafure of applaufe. Tho' thefe poems had been examined by Dr Blair and others, and their autheriticity affrted, there were not wanting fome of equal reputation for critical abilities, who either doubted or declared their difoclief of the genuinenefs of

[110] M A C

Nacy here them. Into this queftion it would be fuperfluons to foli. enter here perticularly, as we lave faid enough on it elfewhere. See Ossian, Einych.

That any man hould fuppofe Macpherfon, after his tranflation of Homer, the author of the poems which he afcribes to Offian, appears to us very extraordinary ; and it is little lefs extraordinary, that any one thould, for a moment, believe in the exiftence of manuficipts of thefe pooms of very high antiquity. Part of them he undoubtedly received in manufcript from Macdonald of Clanronald : but we can affirm, on the beft antlority, that the faid manufcript was written at different times by the Macvurichs, hereditary bards to that family. He may likewife have received fort manufcripts elfewhere ; but every Highland gentleman of learning and of candour (and none elfe have a right to decide on this queftion), declares, that by much the greater part of the poems had been preferved in fragments and popular fongs from a very remote age by oral tradition. To theie fragments Macpherfon and his affociates (A) gave form; and it was by uniting together fragments of different ages, that he inadvertently furnifhed Gibbon and others with the opportunity of objecting, that the poems are fometimes inconfiftent with the truth of hi. ffory. This, however, is no folid objection to their authenticity; for every Weft Highlander fixty years of age remembers to have heard, in his youth, great part of thofe poems repeated by old men; and is confident that, many centuries ago, the names of Fiume Mackuil (Fingal), and of Oflian's other heroes and heroines, were as familiar to a Highland ear, as the naines of Agamemnon, Hector, Helen, \&c. were to a Grecian ear at the time when the poems of Homer were reduced into their prefent form. For the inbftance of the poems, this is fuch evidence as none will reject who does not prefer his own cobweb theories to the united tetimony of a whole people.

With refpect to authenticity, the poems if Offian have indeed been compared with the poems of Rowley; but the comparifon is abfurd. The poems of the Celtic bard were not found in an old cheft, and prefented to a people who had never before heard either of them or of their author; they were the popular fongs and traditions of ages collected together, and reduced into form, with additions occafionally made by the tranflator. It is ridiculous to afk how thefe fongs and flories could be fo long preferved among a rude and illiterate perple; for it is only among fuch a people, whofe ob. jects of purfuit are too few to occupy all their attertion, that the exploits of their anceftors can be handed down by tradition; and the moll ferious objection which we have ever met with to the tranllator's account of the origin of the poems, arifes from his having pretended that lie received the greater part of them in old ma. nufcripts.

After the publication of Offian's poems, by which we have reafon to believe that he gained twelve hundred pounds, Mr Macpherfon was called to an employment which withdrew him, for fome time, buth from
the mufes and frona his country. Captain Johnffone wes Maenhero appointed governor of Penfacola, and Mr Marpherfon accompanied him as his fecretary, being al the fane time made firveyor-general of the Floridas. If our memory does not deceive us, fome difference arofe between the principal and his dependant, and they parted before their return to England. Having contributed his aid to the fettlement of the civil government of that colony, he vifited feveral of the Weft India iflands, and fome of the provinces of North America, alid returned to England in the year 1766, where he retained for life his falary as furveyor, which we believe was L. 200 a-year.
He foon returned to his fudies, and in 1751 produced An Introducion to the Hijlory of Great Britain and Ireland, 4to ; a work which l.e fays, " without any of the ordinary incitements to literary labour, he was induced to proceed in by the fole motive of private a. mufement." The fubject of this performance, it might reafonably be fuppofed, would not excitc any violent controverfial acrimony; yet neither it nor its author could efcape from feveral moft grofs and Eitter invectives, for fume of which he perhaps gave too great occafion.

His next performance produced him neither reputation nor profit. In 1773 he publifhed, The lliad of Homer, tranfated in two volumes 4to; a work fraught with vanity and felf-confequence, and which met with the moft morifying reception from the public. It was condemned by the critics, ridiculed by the wits, and neglected by the world. Some of his friends, and particularly Sir John Elliott, endeavoured to refcue it from contempt, and force it into notice. Their fuccefs was not equal to their efforts

About this time feems to be the period of Mr Mac . pherfon's literary mortifications. In 1773 Dr Johnfon and Mr Bofwell made the tour to the Elebrides; and in the courfe of it, the former took fome pains to examine into the proofs of the authenticity of Oflian. The refult of his inquiries he gave to the public in 1775, in his narrative of the tour ; and his opinion was unfao vourable. "I believe they (i. e. the porms, fays he), never exited in any other form than that which we have feen. The editor or author never could fhew the original ; nor can it be fhewn by any other. To revenge reafondoble incredulity by refufing evidence, is a degree of infolence with which the world is not jet acquainted; and tubborn audacity is the latt refuge of guilt. It would be eafy to fhew it if he had it. But whence could it be had? It is too long to be remembered, and the language had furmerly nothing written. He has doubtlets inferted names that circulate in popular fories, and may have tranfated fome wandering ballads, if any can be found; and the names and fone of the images being recoll.ceted, make an inaccurate auditor imagine that he has formetly theard the whole."

Again, he fays, "I have yet fuppofed no impolture but in the publiner; jet 1 am far from certainty, that fome tranflations have not been lately made, that
(A) We have been affured that he had affociates: and that for the defcription of Cuchullin's chariot in particular he was indebted to Mr Macpherfon of Siramazbie; a man of native genius, and though not poffefled of very extentive erudition, well acquainted with Gaelic poetry.

Maepher may now he obtruded as parts of the original
fon. work. work.
" Credulity on the one part is a ftrong temptation so deceit on the other, efpecially to deceit of which no perfonal injury is the coufequence, and which flatters the author with his own ingenuity. The Scots have fomething to plead for their eafy reception of an im. probible fistion: they are feduced by their fondiefs for their fuppofed anceftors. Neither ought the Englifh to be much influenced by Scotch authority; for of the paft and prefent fate of the whole Erfe nation, the Lowlanders are at leaft as ignorant as ourfelves. To be ignorant is painful; but it is dargerous to quict our uneafinefs by the celufive opiate of hafty perfuafion."

Thefe reafonings, if reafonings they can be called, might have been caffly anfve:ed, had net Macpherfon pretended to the poffeffion of at leaft one manufoript which certainly never exifted. He did not, however, attenpt to anfwer them ; but adopted a mode of pro. ceeding which tended only to convince the world that Johnfon's opinion had fome foundation, and that the editor of Offion had more imagination than found judge. ment. Prompted by his evil genius, he fent a menacing letter to his illuftrious antagonift, which produced the following brief but fpirited reply:

"Mr James Marpherfon, No date.

"I received your foolifh and impudent letter. Any violence that hall be offered to me, I will do my belt to repel; and what I cannot do for inyfelf, the law fhall do for me; for I will not be hindered from expofing what I think a cheat, by the menaces of a ruffiau. What! Would you have me retract: I thought your work an impofitio:a: I think fo ftill; and, for iny opinion, I have given reafo:as, which 1 dare yout to refute. Your abilities, fince your lionme, are unt fo formidable; and what I hear of your morality, inclines ine to believe rather what you thall prove than what you thall
fay."

Whether this letter thewed to Macpherfou the im. prudence of his conciuct, or that he had been inade fenlible of his folly by the interpofition of friends, we know not; but certain it is, we hear no nore afterwards of this ridiculous affair, except that our author is fuppofed to lave affifted Mr Macnicol in an anfwer to Dr Johufon's 'rour, priuted in 1779 . This fuppotition we are inclined to contider as well-founded, becaule we have been told by a gentleman of veracity, that Mr Macnicol affirns, that the furrility of his book, which contitutes a great part of it, was inferted, unknown to him, after the manufcript was fent for publication to
London.

In 1775 Mr Macpherfon publifhed The Hijtory of Great britain from the Reforation to the Acceftion of the Houfe of Hanover, in two volumes 4 to ; a work in our opinion of great inerit, though by one party it has been induttriouny, and, we are torry to add, too fuccelsfilly, decried. As an hittorian, our author could not indeed boait the attic elegance of a Robertfon, the folendour of a Cribbon, or the philofop hical profundity of a I lume; but his fiyle, thourh it has fometimes heen the avowed, was not the real, caufe of the coldnefs with which his hittory was received. The writer of this fietch once faw a gentleman of rank, and of the Whig interelt, turn over one of Macpherfon's volumes, and heard him
fay, upon Enatiris the book, " I cannot bear that Macpher. work." He was akked if he thonght the narrative fun. falfe? and he replied, "No! It is too true; but I cannot bear it, becaufe it gives me a bad opinion of thofe great men to whom I have been accuttomed to look back with reverence as to the faviours of my country."

That it has been alblorred by others on the fame account, we have not a doubt; and yet language has no name too contemptuons for thofe who will not follow truth whitherfoever the may lead them; or who, on the abfurd pretence of having already made up their minds, will not ftudy the evidence on both fides of a difputed queltion in our nacional hiftory. A man ueeds not furely difapprove of the Revolution, or of the fub. fequent fettlements, though he fhould find complete proofs that Danby and Sunderland were crooked politicians, that Marlborough was ungrateful, or even that King William himfelf was not that upright and difinterefted character which from their infancy they have been taught to believe. It is no uncommon thing for Divine Provideuce to accomplith good ends by wicked inftrunents. Iivery Proteltant furely confiders the Re. formation as one of the moft bleffed events that have ta. ken place in the woild fince the firft preaching of the gofpel of Chrift ; yet he would be a hardy champion who fhould undertake to vindicate the motives which influenced the conduct of the firft reformers-of Henry VIII. for initance, or even of Luther himfelf. And why may not the Revolution be confiderel as in the higheft degree beneficial to the country, though the conduct of fome of thofe who brought it about fhould be found to be fuch as Macpherfon reprefents it?
'That author certainly acted with great fairnefs ; as together with the liftory he publimed the proofs upon which his facts were founded, in two quarto volumes, intitled, Original Papers, containing the fecret Ilifory of Great Britain, froms the Refioration to the Accefficu of the Honfe of Hanover; to which are prefixed, lixtraits from the Life of Fames II. as suritten by himjelf. I'hefe papers were cliefly collecied by Mr Carte, but are not all of equal authority. They, however, clear up many ob. feurities, and fet the characters of many perfuns in paft times in a different light from that in which they lave been ufually viewed. On this accomit we have no hefitation to lay, that he who is capable of facrificing prejudice to truth, and wifhes to underitand the pulitics of the reigns of James, and William, and Anne, fould fudy with care the volumes of Macpherfon.

Soon after this period, the tide of fortune fowed vely rapidly in Mr Macpherfon's favour, and his talents and induffry were amply fufficient to avail himfelf of evesy favourable circumftance which arofe. The refittance of the Culonics called for the aid of a ready writer to combat the arguments of the Americans, and to give force to the reafons which influenced the collduct of government, and he was feleeted for the purpofe. Among other things (of which we fhould be glad to receive a more particular account), he wiote a pampho let , which was citculated with monch induftry, intitled, The Rigbts of Great Britain afferted asainl the Ciaims of the Colonies; being an Anfuer to the Declaration of the General Congrefs, 8vo, 1776 , and of which many editions were publithed. Ile alfo was the auther of A Joort Bijfory of Oxpofition during the lift Scipon if

Macpherv Parliament, 8vo, 1779; a pamphlet which, on account fons. of its merit, was by many afcribed to Mr Gibbon

But a more lucrative employment was conferred on him about this time. He was appointed agent to the nabob of Arcot, and in that capacity exerted his talents in feveral appeats to the public in behalf of his client. A nong others, he publihed, Letters from Mabommed Ali Cban, Nabob of Arcot, to the Court of Dirediurs; to whbich is annexed, a State of Fads relative to Tanjore, with an Aipendix of Original Papers, 4to, 1777 ; and he was fuppofed to be the author of The Hiffory and Manarement of the Eaft India Company from its Origin in 1600 to the prefent Times, vol. i. containing the af. fairs of the Carnatic, in which the rights of the nabob are explained, and the injuftice of the Company proved, 4to, 1779.

In his capacity of agent to the nabub, it was probably thought requifite that he fhould have a feat in the 13 ritioh Parliament. He was accordingly in 17^{80} chofen inember for Camelford; but we do not recollect that he ever attempted to fpeak in the Houfe. He was alfo rechofen in 1784 and 1790 .

He had purchafed, we think before the year 1790, an cilate in the parifh in which he was born; and changing its name from Retz to Belville, built on it a large
and elegant manfion, commanding a very romantic and picturefque view; and thither he retired, when his health began to fail, in expectation of receiving benefit from the change of air. He continued, however, to decline; and after lingering fome time, died at his feat at Belville, in Invernefs, on the 17 th of February at Be
1796

He appears to have died in very opulent circumftan. ces; and by his will, dated June 1793 , gave various annuitics and legacies to feveral perfons to a great amount. He alfo bequeathed L.. 1000 to John Mackenzie of Figtree Court, in the Temple, London, to defray the expence of printing and publifhing Offian in the original. He dirccted $\mathrm{L} \cdot 3=0$ to be laid out in evecting a monument to his memory in fome confpicuous fituation at Belville, and ordered that his body Thould be carried from Scotland, and interred in the Abbey Church of Weftminlter, the city in which he had paffed the beft part of his life. His remairs were accordingly taken from the place where he died, and buried in the Poets Corner of Weftminfter church.
MAGMI is properly the refufe of any fubflance which lias been fubjected to preflure; but, in chemiltry, the term is fometimes ufed to dencte a mixturc of two or more bodies, reduced to the confiftence of dough or pafte.

Reafons wiiy the ancients wate isnovat ne natiral 1 hilofor hy

M A G N E TISM,

IN natural philofophy.-Our intention in the prefent article was princinally to give a more diftinct account of the theory of Mr AEpinus than is contained in the article Magnetism of the Encyclopedia ioritannica, referring for proof and illuftration to the many facts contained in that article : but, on more mature confideration, we concluded, that this method would fret and confufe the reader by continual references, and leave but a fieble impreffion at laft. We have therefore pieferted the putting the whole into the form of a fhort treatife on magnetifm, fimilar to our fupplcinentary artiche of Electricity. This, we hope, will be more pur picuous and fatisfactory; flill leaving to the reader the full ufe of all the information contained in the article Magnetism of the Dictionary.

The knowledge which the antient naturalifts poffef. fed of this fubject Fas extremely imperfect, and affords, we think, the Arongelt proof of their ignorance of the true method of philofophifing ; for there can lardly be nained any object of plyyfical refearch that is more cnrious in itfelf, or more likely to engage attention, than
the apd ganif aparent hife and activity of a piece of rude unorly timater. This had attiacted notice in very earnomenon, the attraction of a piece of iron, to the agency of a mind or foul refiding in the magnet. Philofophers, as they were called, leem to have been contented with this lazy notice of a flight fuggeltion, unbecoming an inquirer, and rather fuch as might be expected from the moft incurious peafant. Even Ariftotle, the moit zealous and the moft fytterratic ftudent of Nature of whole labours we have any accuunt, has collected no information that is of any importance. We know that the general imperfection of ancient phyfics has been afcribed to the lithe importance that was attached to
the knowledge of the material world by the philofo. phers of Greece and Rome, who thought human nature, the active purfuits of men, and the fcience of public affairs, the only objects deferving their attention. Moft of the great philofophers of antiquity were alfo great ators on the thage of human life, and defpifed acquifitions which did not tend to accomplifh them for this dignified employment : but they have not given this reafon themlelves, though none was more likely to be uppermoft in their mind. Socrates diffirades from the Atudy of material nature, not becaufe it was unworthy of the attention of his pupils, but becaufe it was too difficult, and that certainty was not attainable in it. Nothing can more diftinctly prove their ignorance of what is really attainable in fcience, namely, the know. ledge of the lawes of nature, and their ignorance of the only method of acquiring this knowledge, viz. obfervation and experiment. 'They had entertained the hopes of difeoveritig the coufes of things, and had formed their philofophical language, and their mode of refearch, in conformity with this hopelefs project. Making little advances in the difcovery of the caufs of the phenomena of matenial nature, they deferted this fludy for the ftudy of the conduct of man ; not becaufe the difo covery of caufes was more eafy and frequent here, but becaufe the ftudy itfelf was mure immediately interefting, and becaule any thing like fuperior knowledge in it puts the poffeffor in the defirable fituation of an adviffr, a man of fuperior wifdom; and as this ftudy was clofily connected with morals, becaufe the fear of God is truly the beginning of wildom, the character of the philofopher acquired an eminence and dignity which was liighly flattering to human vanity. Their procedure in the moral and intellectual Iciences is ftrongly marked with the fame ignorance of the true method of

philofophifing; for we parely find them forming general propofitions on copious inductions of facts in the conduct of men. 'They always proceed in the fynthetic method, as if they were fully converfant in the firft principles of luman nature, and had nothing to do but to make the application, according to the eftablifhed forms of logic. While we admire, therefore, the fagacity, the penetration, the candid obfervation, and the lapny illuftration, to be found in the works of the ancient moralifs and writers on jurifprudence and politics, we camnot but lament that fuch great men, frequently engaged in public affairs, and therefore having the finctl opportunities for deducing general laws, have done fo little in this way ; and that their writings, however engaging and precious, caratot be confidered as any thing more refined than the obfer vations of jndicions and worthy men, with all the dif. fufenefs and repetition of ordinary converfation. All this has arifen from the want of a juft notion of what is attainable in this department of fcience, namely, the laws of intellectual and moral nature; and of the ouly poffible method of attaining this knowledgre, viz. obfervation and experiment, and the formation of general laws by the induction of particular facts.

We have been led into thefe reflections by the inattention of the ancients to the curious plenomena of xperimen- magnetifm ; which muft have occuured in confiderable al enquirrt and entertaining variety to eny perfon who had tabut mag- ken to the experimental method. And we have lia-
ctifm. zarded thcfe free remarks, expetting the acquiefcence of our readers, becaufe the fuperior knowledge which we, in thefe later days, liave acquired of the magnetical phenomena, werc the firtt fruits of the true method of philofophifing. This was pointed out to the learned world in 1590 by our celebrated countryman Clancellor Bacon, in his two great works, the Novum Orronum Scientiarum, and De Argumentis Scientiartum. Dr Gilbert of Culchefter, a philofopher of eminence in many refpects, but cliifly becaufe he had the fame jult views of philofophy with his noble countryman, pub. lifhed about the fame time hio Pbyfiglogiad Nova, feut Tradatus de Masncte et Corporibus magneticis. In the introduction, he recounts all the knowledge of the antients on the fubject, and their fupine inattention to what was fo entirely in their hands; and the imponfibility of ever adding to the flock of uffenl knowledgre, fo long as men imagined themfelves to be philofoplifing while they were only repeating a few cant words, and the urmeaning phrafes of the Ariftotelian fchool. It is curious to remark the almoft perfect famenefs of Dr Gilbert's fentiments and language with thofe of Lord H3acon. They both clarge, in a peremptory manner, all thofe who pretend to inform others, to give over their dialectic labours, which are nothing but inging changes on a few trite truths, and many unfounded conjectures, and immediately to betake themfelves to experiment. He has purfued this method on the fubject of maguetifm with wonderful ardour, and with equal genius and fuccefs; for Dr Gilbert was poffefifd both of great ingenuity, and a mind fitted for general viewz of things. The work contains a prodigious num. ber and variety of obfervations and experiments, collected with fagacity from the writings of others, and inflituted by himfelf with confiderable expence and labour. It would indeed be a miracle, if all Dr Gilbert's
general inferences were juft, or all his experinents accurate. It was untrodden ground. But, on the whole, this performance contains more real information than any writing of the age in which he lived, and is fcarcely excected by any that has appeared fruce. We may hold it with juflice as the firtt fruits of the Baconian or experimental philofophy.

This work of Dr Gilbert's relates chiefly to the loadfone, and what we call hagnets, that is, pieces of tteel which have acquired properties fimilar to thofe of the loadfone. But he extends the term nagnetifm, and the epithet magnetic, to all bodies which are affected by loadfones and magniets in a manner fimilar to that in which they affict each other. In the courfe of his inveftigation, indeed, he finds that thefe bodies are only fuch as contain iren in fome flate or other: and in proving this limitation he mentions a great variety of plenomena which have a confiderable refemblance to thofe which he allows to be magnetical, name!y, thofe which he called clearical, becaule they were produced in the fame way that amber is made to attract and repel light bodies. He marks with care the clitinetions between thefe and the characteriflic pheriomena of magnets. He feems to lave known, that all hodies may te rendered clectrical, while furrugineous fubflances alone can be made magnetical.

It is no: faying too much of this work of Dr Gil. 1 hert's to affirm, that it contains almoft every thing that we know about maguetifm. His unwearied diligence many difin fearching every writing on the fubject, and in getting information from navigators, and his inceflart occupation in experiments, lave left very few facts unknown to him. We meet with many things in the writings of pofterior inguirers, fome of them of liigh reputation, and of the prefent day, which are publified and received as notable difcoveries, but are contained in the rich collection of 1)r Gilbert. We by no means afcribe all this to inean plagiarifm, although we know traders in experimental knowledge who are not frce from this charge. We afcribe it to the general indolence of mankind, who do not like the trouble of con. fulting originals, where things are mixed with others which they do not want, or treated in a way, and with a painful minutenefs, which are no longer in faftion. Dr Gillhert's book, although one of thole which docs the higheft honour to our country, is lefs known in 13ritain than on the continent. Indeed we know but of two l3ritifh editions of it, which are both in Latin; and we have feen five editions publifhed in Gerniany and Holland before 1628 . We earnefly recommend it to the perufal of the curious reader. He will (befides the found philofoplyy) find more facts in it than in the two large folios of Scarclla.

After this moft deferved culogy on the parent of magnetical philofoply, it is time to enter on the fubject.

In mechanical phiilofophy, a phenomenon is not to be we can one confidered as explained, unlefs' we can fhew that it is ly clafs the the certain refult of the laws of motion applied to mat-1 henometer. It is in this way that the general propofitions in ${ }^{\text {ta. }}$ phyfical aftronomy, in the theory of machines, in liy. draulics, \&c. are demonftrated. Rut the phenomena called magnetical have not as yet obtained fuch an ex. planation. We do not fee their immediate caufe, nor can we fay with confidence that they are the effeets of
any particular kind of matter, asting on the bodies cither by impullion or preflire.

All that can be done here is to clafs the phenomena in the mof diftinct manner, according to their generality. In this we obtain a two-fold advantage. We may take it for granted that the moff general phenomenon is the neareft allied to the general caufe. But, farther, we obtain by this method a true theory of all the fubordinate phenomena. For a juft theory is only the pointing out the general fact of which the phenomenon under confideration is a particular inftance. Reginning thercfore with the phenomenon which comprehends all the particular cafce, we explain thofe cafes in Anewing in what manner they are included in the general phenomenon, and thus we fhall be able to prediet what will be the refult of putting the body under confideration into any particular fituation. Aifd perhaps we may and, in them all, coincidences which will enable us to thew that they are all modifications of a fact ftill more general. If we gain this point, we fiall have eflablifthed a complete theory of them, having difcovered the general fact in which they are all comprehended. Should we for ever remain ignorant of the caufe of this general faet, we liave neverthelcfs rendered this a compiete braucl of mechanical theory. Nay, we may perhaps difcover fuch circumflances of refemblance bet ween this g neral fact and others, with which we are better acquainted, that we mall, with great probability at leaft, be able to affign the caufe of the general fact itfelf, by fhewing the law of which it is a particular inftance.

We fhall attempt this method on the prefent occafion.

Firt leading fact. Iron arranges itfelf in a particular pofition.

Plate

XXXIV.

The leading facts in magnetifm are the two follow. ing:

1. If any oblong piece of iron, fuch as a bar, rod, or wire, be fo fitted, that it can affume any direction, it will arrange itfolf in a certain determina'e direction with refpect to the axis of the carth. Thus, if, in any part of Britain, an iron or Aeel wire be thruft through a piece of cork, as reprefented in fig. I. fo as that the whole may fwin level in water, and if it be laid in the water nearly north-weft and fouth-caft, it will 鸟owly change its pofition, and finally fettle in a direction, making an angle of about 25 degrees with the meridian.

This experiment, which we owe to Dr Gilbert (fee B. I. ch.11.), is delicate, and requires attention to many circumfances. The force with which the iron tends toward this final pofition is extremely weak, and will be balanced by very minnte and otherwife infenfible refiftances; tut we have never found it fail when executed as liere clirected. An iron wire of the fize of an ordinary quill, and about eight or ten inches lung, is very fit for the purpofe. It ffould be thruft through the cork at right angles to its axis; and fo adjutted, by repeated trials, as to fwim level or parallel to the hori-zon.- The experiment mult alfo be made at a great diftance from all iron; therefore in a bason of fome other metal or earthen ware. It may fometines require a very long while before the motion begin ; and if the wire has been placed at right angles to the direction which we have mentioned as final, it will never change its polition: theref re we liave directed it to be laid in a direction mot too remote, yet very fenlibly different from the final diection.

But this is not the true pofition affected by the iton rod. If it be thrult through a piece of wood or cork perfectly fpherical, in fuch a manne: that it paffes thro' its centre, and if the centre of gravity coincide with this centre, and the whole be of luch weight as to remain in any part of the water, without either afound. ing or defcending, then it will finally fettle in a plane inclined to the meridian about 25 , and the north end will be deprefled about 73 below the horizon.

All this is equivalent with faying, that if any oblong piece of iron or fleel be very nicely poifed on its centre of gravity, and at porfect liberty to turn round that centre in every direction, it will finally take the polition now mentioned.

We have farther to obferve with regard to this cxperiment, that it is indifferent which end of the rod be placed toward the north in the begiming of the expe. riment. That end will finally fettle toward the north; and if the experiment be reptated with the fame rod, but with the other end north, it will finally fettle in this new attitude. It is, lowever, not always that we find pieces of iron thus perfectly indifferent. Very freguently one end affects the northerly pofition, and we cannot make the other end aflume it place: the caufes of this difference will be clearly feen by and bye.

The pofition thus afficeled by a ind of iron is called Magnetio by Dr Gilbert the magnetical position or direc-cal posio tion. It is not the fame, nor parallel, in all parts of rion. the earth, as will be more particularly noticed afterwards.
2. The other leading fact is this: When a piece of Secondfact. iron, lying in the magnetical polition, or nearly lo, and lswatat perfect liherty to move in every direction, is ap tracts and proaclied by another oblong picce of iron, held nearly rejels ioro in the fame pofition, it is attracted by it ; that is, the moveable piece of iron will gradually approach to the one that is prefented to it, and will at laft come into contact with it, and may then be flowly drawn along by it.

This phenomenen, although not fo delicate as the former, is ftill very nice, becaufe the attraction is fo weak that it is balanced by almoft infentible obftructions. But the experiment will fearcely fail if conducted as follows: Let a ftrong ion wire be made to Hoat on water by means of a piece of cork, in the manner already defcribed, having one end under water. See fig. 1. B.
When it is nearly in the maģnetical pofition, bring the end of a pretty big iron iod, fuch as the point of a new poker, within a quarter of a.n inch of its fouthern end (holding the poker in a pofition not very different from the magnetical pofition), and hold it there for fome tince, not exadly fouthward from it, but a little to one fide 'The floating iron will be oblerved so tuen towards it with an accelerated motion; will touch it, and. may then be drawn by it through the water in any direction. We fall have the fame refult by approaching the nothern extremity of the floating iron with the upper end of the poker.

The fame phenomenon may be obferved by fufpending the firf piece of iron by its middle by a long and fender hair or thread. The fufpenfion muft be long, otherwife the ftiffnefs of the hair or thread may be fufficient for balancing the very finall force with which the pieces of iron tend toward each other. "The phenome-
non may alfo be obferved in a piece of iron which turns frecty on a fine point, like the needle of the mariner's compafs.

In this, as in the former experiment, the ends of the pieces of iron are obferved, in gencral, to be indifferent; that is, either end of the one will attract either end of the other. It often happens, however, that the ends are not thus indifferent, and that the end of the moveable piece of iron, infead of approaching the other, will be otferved to recede from ir, and appear to aroid it. We fhall foon learn the caufe of this difference in the ftates of iron.
This ation It is fcarcely neceffary to remark, that we muft innutual. fer from thefe experiments, that the action is mutual between the two pieces of iron. Either of them may be the moveable piece which approaches the other, manifefting the attraction of that other. This reciprocity of action will be aburdautly verified and explained in its proper place.

Thefe two fects were long thought to be peculiar to loadftones and artificial magnets, that is, pieces of iron which have accuired this property by certain treatment with loadfones; but they were difcovered by 1)r Gilbert to be inherent in all iron in its metallic tate; and were thought by him to be neceflary confequences of a general principle in the conftitution of this globe. Thefe phenomena are indeed much more confpicuous in loadfones and magnets; and it is therefore with fuch that experiments are beft made for learning their various modifications.

But there is another circumftance, befices the degree of vivacity, i:: which the magnetifm of common iron and ftcel remarkably differs from that of a loadftone or magnet. When a loadftone or magnet is fo fupported as to be at liberty to take any polition, it arranges it. felf in the magnetical direction, and one difermined ind of it fettles in the northern quarter; and if it be placed fo that the other end is in that fituation, it does not remain there, but gradually turns round, and, after a few ofcillations, the fame end ultimately fettles in the north. This is ditinetly feen in the needle of the mariner's compafs, which is juft a fmall magnet prepared in che fame way with all other magnets. The feveral ends of loaditones or magnets are thus permanently the north or the fouth ends; whereas we faid that either end of a picce of common iron being turned to the northern quarter, it finally fettles there

It is this circnmflance which has rendered magnetifm fo precious a dife'sery to mankind, by furnithing us with the compafs, an inftrument by which we learn the different quarters of the horizon, and which thus tells the direction of a fhip's courfe through the patlilefs ocean (fee Compass and Variation, Encycl.); and alfo thews us the directions of the veins and workings in the deepeft mines. It was natural therefore to call thofe the north and fouth ends of the inariner's needle, or of a loaditone or magnet. Ir Gilbert called them the roles of the loaditone or magnet. He hal found it convenient for the propofed train of his experiments to form his loaditones into fpheres, which he called tereRELLE, from their refemblance to this globe; 13 which cafe the north and fouth en!s of his loadltones were the poles of the terrellie. He therefore gave the name pole to that part of any loadftone or magnet which thus turned to the north or fouth. The denomination was
adopted by all fubfequent writers, and now makes a term in the language of marnetifm.

Alfo, when we approach either end of a piece of iron A to either end of another B, thefe ends mutually attract ; or if either end of a magnet A be brought near either end of a piece of common iron, they mutually attract each other. But if we bring that end of a niagnet A which turns to the north near to the fimislar end of another magnet B, thefe ends will not attract each other, but, on the contrary, will reptl. If the two magnets are made to float on pieces of wood, and have their north poles fronting each other, the magnets will retire from each other: and in doing fo, they ge: serally turn round their axes, thll the north pole of one front the fouth pole of the other, and then they run together. This is a very notable diftinction between the magnetifm of magnets and that of common tron ; and whenever we fee a piece of iton thew this permanent diftin tion of its ends, we muft couffer it as a magnet, and conclude that it has met with fome peculiar treatment.

- It is not, however, frielly true, that the poles of loadftones or magnets are fo tixed in particular parts of their fibbtance, nor that the poles of the farse name fo conftantly repel each other; for if a finall or weak mag. net A have its pole bronght near the fimilar pole of a large or ftrong inagnet B, they are often forund to attract when almoft toraching, although at more confider. able difances they repel each other. But this is not an exception to the gencral proponetion; for when the nortli pole of A is thits attracted by the north pole of B, it will be found, by cther trials, to have all the qualities of a fouth pole, while thus in the neigtivourhood of the north pole of B .

The marrnetic properties and phenomena are conveniently dittinguithed into thole of FORCE and of POLA. rity. Thole of the firft clafs only were known to the polarity. ancients, and even of them their knowledge was extremely feanty and imperfect. 'They may all be chaffed under the following general propolitions.

1. The timilar poles of two mag..ets repel each other Similar with a force decrealing as the ditances increafe. poles re-
2. The diffimilar poles of two magnets attract each lel and other with a furce decreafing as the diftances increafe.
3. Magnets arrange themfelves in a certain determinate pofition with refpect to cach other.

The firt object of refearch in our farther examination of thefe propertits is the relation which is obfer ved to obtain between the diftances of the acting poles and their force of action. 'This has accordingly oceu pied much attention of the philofophers, and numberlefs experiments have been made in order to afcertain the law of variation, both of the attraction an the repulfion. A great number of thefe have been narrated in the article Magnetism of the Encycl. from which it appears that it has been a matter of great difficulty, and had not been afcertained with certainty or precition when that article was publified. It is obvious, fiom the nature of the thing, that the determination is vely difieult, and the invelligation very complicated. We can ouly obferve the fimultaneous motion of the whole magnet; yet we know that there are four fepay: te actions cosxilting and contributing in diflerent directions, and with different forces, to the feufible effect. The force which we meafure, in any way whatever, is comm-
pounded of four different forces, which we cannot feparate and meafure apart; for the rorth pole of A repels the north pole of 13 , and attracts its fonth pole, while the fouth pole of A exerts the oppolite forces on the fame poles of 13 . The attraction which we obferve is the excefs of two unequal attractions above two unequal repulfions. The fame might be faid of an obferved repulfion. Nay, the matter is incumparably more complicated than this; becanfe, for any thing that we know, every particle of A acts on every particle of B, and is acted on by it; and the intenfity of thofe actions may be different at the fame diftances, and is certainly different when the diftances are fo. Thus there is a combination of an unknown number of actions, each of which is unknown individually, both in direction and intenfity. The precife determiration is therefore, in all probability, impofible. By precife deterinination, we mean the law of mutual action between two nagnetic particles, or that precife function of the difiance which defines the intenfity of the force; fo that meafuring the ditance of the acting particles on the axis of a curve, the ordinates of the curve may lave the proportions of the attractions and repulfions.

It is almoft needlefs to attempt any deduction of the law of variation from the numerons experiments which have been publifhed by different philofophers. An ample collection of them may be feen in Scarella's treatife. Mr Mufchenbroek has made a prodigious number ; but all are fo anomalous, and exhibit fuch diffe. rent laws of diminution by an increafe of diftance, that we may be certain that the experiments have been in. judicious. Attention has not been paid to the proper objets. Magnets of moft improper flapes have been employed, and of moft diffufe polarity. No notice has been taken of a circumftance which, one fhould think, ought to have occupied the chief attention; namely, the joint action of four poles, of which the experiment exhibits only the complex refult. A very fight rellection might have made the enquirer perceive, that the attractions or repulfions are not the moft proper phenomeria for declaring the precife law of variation ; becaufe what we obferve is only the excefs of a fmall difference of attractions and repulfions above another fmall difference. Mr Hawk fbee and Dr Brook Thaylor employed a much better metho \ddagger, by obferving the deviations from the merician which a magnet occafioned in a compafs necdle at different dittances. This is occafioned by the difference of the two fums of the fame forces; and this difference may be made a hundred times greater than the other. But they employed magnets of moft improper thapes.

We muft except from this criticifm the experiments of Mr Lambert, recorded in the Mimoirs of the Academy of Berlin for 1756 , publifthed in 1758 . This moft fagacious philofupler (for he highly merits that name) placed a mariner's needle at various diffances from a magnet, in the direction of its axis, and obferved the declination from the magnelic meridian produced by the magnet, and the obliquity of the magnet to the axis of the needle. Thus, was the action of the magnet fet in oppolition and equilibrium with the natural polarity of the needle. But the difficulty was to, difcover in what proportion each of thofe forces was. changed by their obliquity of action on this little lever.

No man excelled Mr Lambert in addrefs in devifing methods of mathematical invefligation. He obferved, that when the obliquity of the magnet to the axis of the needle was 30°, it caufed it to decline 15°. When the obliquity was 75°, the difance being the fane, it declined 30°. Call the obliqnity 0 , and the declination d, and let f be that function of the angle which is proportionable to the action. Alfo let p be the natural polarity of the needle, and m the force of the magnet. It is evident that

$$
p \times f,{ }_{15}=m \times f, 30
$$

And $p: m=f, 30: f, 15$; for the fame reafon

$$
p: m=f, 75: f, 3^{\circ}
$$

Therefore $f, 15: f 30=f, 30: f, 75^{\circ}$.
But it is well known that
Sine $15:$ Sine $30=$ Sine $30:$ Sire 75.
Hence Mr Lambert was led to conjecture, that the fine was that function of the angle which was proportional to the action of magnetifm on a lever. But one experiment was infufficient for determining this point. He mace a fimilar comparifon of feveral other ubliquities and declinations with the fame diftances of the maguet, and alfo with other diffances; and he put it patt all difpute, that his conjecture was juft.
Had Mr Lambett's experiments terminated here, it mula be granted that he has made a notable dilcovery in the theory of the intimate nature of nagnetifm. It completely refutes all the theories which pretend to explain the acion of a magnet by the impulion of a Aream of flaid, or by preffure arifing from the motion of fuch a Aream; for in this cafe the preflure on the needle mult have diminifhed in the duplicate ratio of the fule. The directive power with the angle 90 mult be 4 times greater than with the angle 30°; whereas it was obferved to be only twice as great. Magnetifin does not aft therefore by the impulfion or preflure of a flean of fluid, but in the mauner of a fimple incitement, as we conceive attraction or repullion to act.

Having afcertained the effect of obliquity, Mr Lambert proceeded to examine the effect of diftance; and, by a moft ingenious analylis of his obfer vations, he difcovered, that if we reprefent the force of the magnet by f, and the dittance of the neareft pole of the miguet fiom the centre of the needle by δ, and if a be a conitant quantity, nearly equal to two-thirds of the length of the neecle, we have f proportional to $\overline{\delta-a}^{2}$.

Mr Lambert found this hold with very great exactnefs with magnets ten tines larger, and needles twice as thort. But he acknowledges, that it gives a very fingular refult, as if the action of a magnet were exerted from a centre beyond itfelf. He attributes this to its true caufe, the fill great complication of the refult, arifing fiom the action of the remote pole of the magnet. He therefore takes another method of examination, which we fhall underfland by and bye, hen we conlider the diredive power of a magnet. We have mentioned this imperfect attempt chicfly on account of the unqueftionable manner in which he has afcertained the effect of obliquity, and the importance of this determination.

We have attempted this invertigation in a very fimple manner. We got fome magnets made, confilting of two balls connected by a flender rod. By a very particular mode of impregnation, we gave them a pretty good: magne.
magnetifm ; and the force of each pole feemed to refide almoft in the centre of the ball. This was our obieed in giving them this fhape. It recuced the examination both of the attractive and of the directive power to a very eafy computation. The refult was, that the force of each pole varied in the inverfe duplicate ratio of the ditance. The error of this hypothefis in no cafe amounted to. $\frac{r^{2}}{5}$ th of the whole. In computing for the phenomena of the directive power, the irregularities and deviations from this ratio were much fmaller.

The previous knowledge of this function wonld greatIy expedite and facilitate our farther inveltigation: but we muft content ourfelve's with a very intiperfect approximation, and with arriving at the defired deternination by degrees, and by a very circuitous route.

It is a matter of experience, that when two inagnets are taker, each of which is as nearly equal as poffible in the flergth of both poles, then, if they are placed with their axes in one fraight line, and the north pole of one fronting the fouth pole of the other, they attract each other with a force which diminifhes as the difance increafes; and this variation of force is regular, that is, withont any fudden changes of intenfity, till it becomes infenfible. No inflance has occurred of its breaking fudderily off when of any fenfible force, but it appears to diminifh continually like gravity. No inflance occurs in which attraction is changed into repulfion.

But it is, moreover, to be particularly remarked, that, having made this obfervation with the north pole of A fronting the fouth pole of B, if the experiment be repeated with the fouth pole of A fronting the porth pole of B, the refults will be precifely the fame. And, lafly, it is a matter of unexcepted experience, that the fenfible action of A on B, meafured by the force which is neceffary for preventing the farther approach of B, is preciffly equal to the action of B on A. This is the cafe, however unequal the force of the two magnets may be; that is, although A may fupport ten pounds of iron, and 13 only ten ounces.

Now, the fimpleft view we can take of this experiment is, by fuppoting the whole action of one end or pole of a magnet to be exerted at one point of it. This will give us four aetions of A on B, accompanied by as many equal and oppofite actions of B on A. It is plain that we may content ourfelves with the inveltigation of one only of thefe fets of actions.

What we obferve is the excefs of the attractions of the poles of A for the diffinilar poles of B above the repulfions of the fame poles of A for the fimilar poles of B. At all diftances there is fuch an excefs. The fum of the attractions exceeds the fum of the repulfions competent to every difance.

Now this will really happen, if we fuppofe that the poles of a magnet are of equal ftrength, and that, however thefe different magnets differ in Atrength, they have the fame law of diminution by an increafe of diftance. The lirft circumftance is a very poffible thing, and the laft is demonftrated by the obferved equality of action and reaction. Every thing will now appear very plain, by reprefenting (as we did in Electricity, Suppl. $\mathrm{n}^{\circ} 44, \& \mathrm{c}$.) the intenfities of attraction and repulfion by the ordinates of a curve, of which the abfciffe reprefent the diftances of the acting poles.

Therefore let A and B (fig. 2.) reprefent the two magnets, placed with their four poles $\mathrm{S}, \mathrm{N}, s, n_{2}$, in a

Araight line. In the Araight line $O q$ take $O m, O p$, $\mathrm{O} n, \mathrm{O} q$, refpectively equal to $\mathrm{N} s, \mathrm{~N} n, \mathrm{~S} s, \mathrm{~S} n$; and let MPNQ be a curve line, having O_{q} for its axis and aflymptote; and let the curve, in every part, be convex towards its axis. Then draw the ordinates $m \mathrm{M}$, $p \mathrm{P}, n \mathrm{~N}, q \mathrm{Q}$, to the curve. 'Infe ordinates will reprefent the intenlities of the forces exerted between the poles of the magnets, in fuch a manner as to fulfil all the conditions that are really oblerved: For $m \mathrm{M}$ reprefents the attraction of the not th pole N of the magnet, A for the fouth poles of the mignet $13 ; p P$ reprefents the repulfion of N for n; n N reprefents the repullion of s for s; and $q Q$ reprefents the attracion of S for n. The diftance between m and n, or between p and q, is equal to the lergth of the magnet A , and $m p$, or $n q$, is equal to that of B . $\mathrm{M} m, \mathrm{Y} p$, and $\mathrm{N} n$, Qq, are pairs of equiditant orcinates. It furely requires only the infpection of thee figure to fee that, in whatever fituation aiong the axis we place thofe pairs of equidiflant ordinates, the fum of $\mathrm{M} m$ and $Q q$ will always exceed the fum of $\mathrm{P} p$ and $\mathrm{N} n$; that is, the fum of the attractions will always exceed that of the repulfions. 'this will not be the cafe if the curve, whofe ordinates are proportional to the forces, lave a point Z of contrary flexure, as is reprefented by the dotted curve P 'ZQ'. For this curve, having $\mathrm{O} q$ for its affymptote (in order to correipond with forces which diminifh continually by an increafe of diltance, but do not abruptly ceafe) mult liave its convexity turned toward this affyinprote in the remote parts. But there will be an arch MPZ between Z and O , which is concave toward the affymptote. In which cafe, it is polfible that $\mathbf{M} m+\mathrm{Q} q$ fhall be lefs than $\mathrm{P} p+\mathrm{N} n$; and then. the repulfions will exceed the attractions; which is contrary to the whole train of obfervation.

It may be thought, that if the repulion exerted between two particles be always lefs than the attraction at the fame ditance, the phenomena will be accounted for, although the law of action be not reprefented by fuch a curve as has been affurned. Undoubteclly they will, whinte the diffmilar poles front each other. But the refults of fuch a fuppofition will not agree with the phenomena while the fimilar poles front each other: For it is an uncontradicted fast, that when two fine hard inagnets, whofe poles are nearly or exactly of e. qual vigour, have their fimilar poles fronting each other, the repullions fall very little thort of the attractions at the fame difances when their pofition is clanged: When the diftances are confiderable, fcarcely any difference can be obferved in the beginning of the experiment. The differences, alfo, which are oblervec at fimaller diftances, are obferved to angment by continuing the magnets in their places without changing their diftances; and therefore feem to arife from fome change produced by each on the magnetifm of the other. And, accordingly, if we invert one of the magnets, we fhall find that the attractions have been diminifhed as much as the repulfions. Now, the confequences of magnetic repulfion, being always weaker than attraction, would be the reverfe of this. The differences would appear moft remarkable in the greater diftances, and magnets might be found which repel at fmall dittances, and attract at greater diftances; which is contrary to all obfervation.

From all this it follows, with fufficient evidence for
our prefent purpofe, that the function of the diftance which expreffes the law of magnietic action'muft be reprefented by the ordinates of a curve of the hyperbolic kind, referred to its affy mptote as an axis; and therefore always convex toward this axis. We think it alfo fuf. ficiently clear, that the confequences which we have deduced from the fimple fuppofition of four acting points, inflead of the combined action of every particle, may be adopted with fafety. For they would be juft, if there were only thofe four particles; they would be juft with refpect to another four particles-therefore they would be juft when thefe are joined; and fo on of any number. Therefore the curve, whofe ordinates exprefs the mean action of each pole, as if exerted by its centre of effort, will have the fame general form: It will be convex toward its aflymptotic axis.

It will greatly aid our conceptions of the combined actions of the four magnetic poles, if we notice fome of the primary properties of a curve of this kind, limited by no other condition.

Draw the chords MQ, PN, MP, NQ. Bifect them in $\mathrm{B}, \mathrm{D}, \mathrm{E}, \mathrm{F}$, and join EF. Draw the ordinates Ee $\mathrm{F} f$, and $\mathrm{BD} b$ (cutting EF in C). Draw $\mathrm{P} u$ parallel to the axis, cutting E_{e} in \%. Drawallo $Q i$ parallel to the axis, cutting $\mathrm{F} f$ in φ. Alfo draw FHL parallel to the axis, and Pot parallel to QN ; and draw PL l, and P_{e}, cutting $\mathrm{M} m$ in l and x.

Let each ordinate be reprefented by the letter at ito interfection with the axis. Thus, the ordinates Minz and $Q q$ may be reprefented by m and q, \&c.

Becaufe MP is bifected in $\mathrm{E}, \mathrm{M} t$ is double of E ; $\mathrm{M} l$ is double of EL ; $\mathrm{M} x$ is double of $\mathrm{E} e$. Alfo, becaufe $\mathrm{P} t$ is parallel to QN , and $\mathrm{P} u$ to $\mathrm{Q} i$, we have $t u=\mathrm{N} i$. From thefe premifes, it is eafy to perceive, that,

$$
\begin{aligned}
& \text { that, } \\
& \text { 1. } \mathrm{B} b=\frac{m+q}{2} \text {. } \\
& \text { 2. } \mathrm{D} b=\frac{\frac{p+n}{2}}{\text { 3. }} \mathrm{BD}=\frac{\overline{m+q}-\overline{p+n}}{2} . \\
& \text { 4. } \mathrm{M} u=m-p \text {. } \\
& \text { 5. } u t=n-q \text {. } \\
& \text { 6. } \mathrm{M} t=\overline{m-p}-\overline{n-q} \text {. } \\
& \text { 7. } \mathrm{E} e=\frac{m+p}{2} \text {. } \\
& \text { 8. } \mathrm{F} f=\frac{n+q}{2} \text {. } \\
& \text { 9. } \mathrm{Ml}=\overline{m+p}-\underline{n+q} \text {. } \\
& \text { 10. } \mathrm{EL}=\frac{m+p-n+q}{2} \text {. } \\
& \text { 11. } \mathrm{CD}=\frac{\overline{m+q}-\overline{p+n}}{4} \\
& \text { - } 12 . \mathrm{CH}=\frac{\overline{m+p}-\overline{n+q}}{4} .
\end{aligned}
$$

Thefe combinations will fuggeft to the attentive reader the explanation of many modifications of the combined action of the four poles of two magnets. They are all comprehended in one propofition, which it will be convenient to render familiar to the thought: namely, if two pairs of equidifant ordinates be takem, the fum of the two extremes exceeds that of the interme-
diate ones. $m+q$ is greater than $p+n$. Alfo, the difference between the pair neareft to O exceeds the dif. ference between the remote pair.

Now, conceiving thefe ordinates to reprefent the mutual actions of the magnetic poles, we fee that their tendency to or from each other, or their fenfible attractions or repulfions, are expreffed by $\bar{m}+q-\overline{n+p}$; that is; by the excefs of the fum of the actions of the neareft and moft remote poles above the fum of the actions of the intermediate diftant poles. It will alfo be fiequently convenient to confider this tendency as reprefented by $\overline{m-p}-\overline{n-q}$; that is, by the excefs of the difference of the actions of the neareft pole of A on the two poles of B, above the difference of the actions of its remote pole on the fame poles of B.

Let 11 now conlider fome of the chief modifications of thefe actions.
I. Let the diffimilar poles front each other. It is Explana. plain that $m+q$ reprefent attractions, and that $p+n$ tion of he reprefent repulfions. Alfo $m+q$ is greater than $p+n$. obfe. ed dion of Therefore the magnets will attract each other. This magnets, attraction is alfo reprefented by $\overline{m-p}-\overline{n-q}$.
Now $\overline{m+q}-p \overline{+}$ is evidently equal to $\mathrm{M} t$, or to twice E 0 , or to twice BD , or to four times CD .
This action will be increafed,

1. By increaling the ftrength of either of the magnets. The action of the magnets is the combined action of each acting particle of the one on each acting particle of the other; and it is mutual. Therefore all the ordinates will increafe in the ratio of the ftrength of each magnet, and their fums and differences will increafe in the fame ratio.
2. By diminifhing the ditance between the magnets. For this brings all the ordinates nearer to 0 , while their diftances $m p, p n, n q$, remain as before. In this cafe. it is plain, that $\mathrm{M} u$, the difference of $\mathrm{M} m$ and $\mathrm{P} p$, will increafe fafter than $t u$ or $N i$, the difference between $\mathrm{N} n$ and $\mathrm{Q} q$. Therefore $\mathrm{M} t$ will increafe; that is, the attraction will increafe.
3. By increafing the length of A, while the diftance between them remains the fame. For $\mathrm{O} m$ remaining the fame, as alfo $m p$ and $n q$, while $n q$ is only removed farther from $m p$, it is plain $\mathrm{M} u$ remains the fame, and that $\mathrm{N} i$ and $t u$ are diminifhed ; therefore $\mathrm{M} t$ muft increafe, or the attraction muft increafe.
4. By increafing the length of B, the diftance between them remaining the faine. For this increafes $m p$ and $n q$; and confequently increafes $\mathrm{M} u$ and $t u$. But $\mathrm{M} u$ increafes more than $t u$; and therefore $\mathrm{M} t$ is increafed, and the attraction or tendency is increafed.

All thefe confequences of our original fuppofition, that the naguetic action may be reprefented by the ordinates of a curve every where convex to an affymptotic axis, are ftrictly conformable to obfervation.

If we place the magnets with their fimilar poles And of fronting each other, it is evident that the ordinates their rep which expreffed attractions in the former cafe, will now fio. exprefs repulfions ; and that the forces with which the magnets now repel each other, are equal to thofe with which they attracted when at the fame diftances. When the experiments are made with good loaditones, or very fine magnets, tempered extremely hard, and having the energy of their poles fenfibly refiding in a fmall fpace very near the extremities, the refults are alfo very near-

Iy conformable to this mathematical theory; but there is क्षcuerally a weaker action. 'I'he magnets feldom repel as flrongly as they attiact at the fame diftance; at leaft when thefe diftances are fmall. If one or both of the magnets is foft, or if one of them be much more vigorous than the other, there are obferved much greater deviations from this theory. The repulfons are comiderably weaker than the attuactions at the fame diflance, and the law of variation becomes extremely different. When placed at very confderable diflances, they repel. As the magnet B is brought nearer to A, the repulfion increafes, agreeably to the theory, but not fo fatt. Bringing them ttill nearer, the repulfion ceafes to increafe, then gradually diminimes, and frequently vanifhes altogether, before the magnets are in contaet; and when brought ftill nearer, it is changed into attraction.

But more careful obfervation fhews, that this ano maly does not invalidate the theory. It is fund that the vigour of the magnets is permanently changed by this procefs. The magnets act on each other in fuch a way as to weeken cach other's magnetifm. Nay, it frequently happens, that the weaker or the fofter of the two has had its magnetifm changed, and that the pole neareft to the other has changed its nature. While they are lying in contact, or at fuch a diftance that they attrac, although the ir fimilar polcs front cach other, it is found that the pole of one of them is really changed; although it may fometimes recover its former fpecies again, but never fo vigoroufly as when the other magniet is removed. In fhort, it is obferved, that the magnetifm is diminifhed in all experiments in which the magnets repel each other, and that it is inproved in all experiments in which they attract.
We have hithertu fuppofed the magnets placed with their axes in one fltaight tine. If they are differently placed, we cannot afeertain by this fingle circumilance of the law of magnetic action, whether they will attract or repel--we mull know fomewhat more of the variation of force by a change of ditlance.

If the magnet B be noc at libetty to approach toward A, or recede fiom it, but be fo fupported at its centre 13 that it can turn round it, it is very plain that it will retain the pofition in which it is crawn in the fi gure. For is fouth pole s being more attracted by N than it is repelled by S , is, on the whole, attracted by the inagnet A; and, by this attraction, it would vibrate like a pendulum that is fupported at the centre 13. In like manner, its north pole n is more repelled by N than it is attracted by S , and is, on the whole, repelkd. The part $\mathrm{B} n$ would therefore alfo vibrate like a pendulum round B . Thus each haif of it is urged into the very poftion which it now has; and if inis poffition bederanged a little, the attraction of s B toward A, and the repulfion of $n \mathrm{~B}$ from it , would impel it toward the pofitions $\mathrm{B} n$.

This will be very evident, if we put the magnet B in. to the pofition $s 13 n$, at right angles to the line $A B=$ The pole s ' and the pole n ' are urged in oppofite, and therefore conspiring, directions wath equal forcte, very pearly at right ar.gles to $n^{\prime} s$, if the magnit B be fmall. In any oblique polition, the forces will be fomewhat. anequal, and account muft be had of the obliquity of the action, in order to know the precife rutative mo. mentum of the actions.

Dr Gilbert has given to this modification of the action of λ on B, the name of ris disponens; which we may trainate by dirtctive poiver or force. Alfo, that inodifecation of the tendency of 13 to or from A is called by him the verticitas of B. Wive might call it the VERTICITY of B; but we think that the name folarity is fufficiently exprefive of the phenmmon; and as it has come into general ufe, we thall abide by it.

It is not fo eafy to give a gencral, and at the feme time Its meafure, precife, meafure of the directive power of A and polarity of B. The magnct 13 mult be confidered as a tever; and then the force tending to bring it into its ultimate pofition $n s$ depends both on the diftance of its poles from N and S , and alfo on the angle which the axis of B makes with the line $A B$. Whien the axis of B coincides with $A B$, the force acting on its poles, tending to keep them in that fituation, is evidently $\overline{m+p}$ $n+q$, and therefure may be reprefented by $M /$ (in fig. 2.), or by twice EL. or by four times CH. If B has the pofition $n B s^{\prime}$, perpendicular to $A B$, let the ordinates E_{e} and Ff cut the curve on I an 1 K ; and draw KL parallel to the axis (our figure caufes this line almoft to coincỉe vith QL , and in all important cafes it will be nearly the fame). In this cate IL will exprcfs one half of this force. Either of thefe eftimations of this modification of the inutual action of the magnets, will be fufficient for the objects we have in view.

The directive power of A, and the polarity of B, are How inincreafed, creafed and ${ }^{\prime}$ I. B_{y} increafing the ftrength of one or both of the diminified magrets. This is evident,
2. By diminifhing the diftance of the magnets. For this, by increafung the fum of $\mathrm{M} m$ and $\mathrm{P} p$ more thanthe furm of $N n$ and $Q q$, mult increafe EL or M $/$.
3. By increafing the length of A. For this, by removing n and q farther from n and p, mult deprefs the points L and l, and increate EL, or $I L$, or $M /$.
4. By diminining the length of B, whle the diftance $\mathrm{N} s$ between the magnets remaino the fame. For this, by bringing p and q ncarer to m and n, mult increafe Ni $m+r^{\prime} p$ more than $\mathrm{N} n+\mathrm{Q} q$. Or, by bringing E_{e} and $\mathrm{F} f$ nearer to $\mathrm{M} m$ and $\mathrm{N} n$, it muft increale: EL and M1.

If the diftance $\mathrm{N} n$ between the pole of A and the remote pole of 13 remain the fame, the dirctive, force of A, and polarity of 13 , are dininifhed by diminithing the length of B, as is eafily' feen from what has beea juit now faid. It is allo diminifhed, but in a very finall degree, by dimini 3ing the length of i3, whea the diAance between the centres of A and B remain the fame. For, in chis cafe, the ordinates $\mathrm{I} e$ and $\mathrm{K} f{ }^{\circ}$ retain their places; but the points m and p approach to e; and this brings the interfection E of the ordinate and chord nearer to I , and diminithes ELL, becaule the point L is not fo much deprefed by the approach of F to K as E is d d prefled.
But in all cafes, the ratio of the directive power of eircum. A to ins attractive force, or of the polarity of 13 to its frances aftendency to A, is increafed by chiminiflhing the iength of fecting tio B. For it is plein, t wh by cirminifhing $m P$ and $n \not \tau$, while froper then Ic and $\mathrm{K} f$ keep their places, the point o is ralkd, antriactiveand the point L is depreffed; and therefore the ratio of licetive EL to E o, or of $M /$ to M, is increafid. We evenpuicrs. fue that, by diminithing the length of \mathcal{b} coustinually.
and without end, the ratio of $\mathrm{M} /$ to $\mathrm{M} t$ may be made to exceed any ratio that can be affigned.
The polari- Now, fince diminifhing the length of B increafes the ty of a finall ratio of the directive power of A to its attractive power, magnet may be great whil the attraction is inreufible. while increafing the length of A increafes both, and alfo increafes the ratio of $E L$ to $\mathrm{E} O$ (as is very eafily feen), and fince this increafe may be as great as we pleafe, it neceffarily follows, that if the fame very fmall magnet 13 be placed at fuch diftances from a large and frong mag.
net A, and from a fmaller and lefs vigorous one C, as to have equal polarities to both, its tendency to A will be lefs than its tendency to C . It may even be lefs in any ratio we pleafe, by fufficiently diminifhing the length of B .
1)r Gilbert obferved this; and he expreffes his obfervation by faying, that the directive power extends to greater diftances than the attracting power. We mult juft coiclurde, that the laft becomes infenfible at fmaller diftances than the firtt. This will be found a very important obfervation. It may be of ufe to keep in mind, that the directive power of a magnet A on ancther mag. net 13 , is the difference of the fums of the actions of each pole of A on both poles of B; and the attractive power of A for another magnet B, is the difference of the differences of thefe actions.

It may be alfo remarked juft now, that the directive force of A always exceeds its attractive force by the quantity $2(p-q)$. For their difference may be exprefed by $t l$, which is equal to twice $o \mathrm{~L}$. Now re is equal to $\mathrm{P} p$, or to p; and L , is equal to $\mathrm{P} p-\mathrm{F} f$, or to $\mathrm{P} p-\mathrm{Q} q-\mathrm{F} q$, or to $\mathrm{P} p-\mathrm{Q} q-0$ t. Therefore $o \mathrm{~L}=\mathrm{P} p-\mathrm{Q} q$, and $t=2(\mathrm{P} p-\mathrm{Q} q),=$ $2(p-q)$.

By infperting this figure with attention, we obtain indications of many interefling particulars. If the lengths of the magnets A and B are the fane, the point n in the axis of the curve will coincide with p. As the length of A increafes, the part $n q$ is removed farther from the part $m p$. The line $\mathrm{P} t$ becomes lefs inclined to the axis, and is ultimately parallel to it, when n is infinitely remote. At this time L falls on e; fo that the ultimate ratio of the attraction to the polarity is that of E : to $\mathrm{E} \rho$, when the magnet A is infinitcly long. It is then the ratio of the difference of the actions of the neareft pole of A on the two poles of 13 to the fum of thefe actions. Hence it follows, that when A is very great and B very fmall, the polarity of B is vafly greater than its tendency to A. It may have a great polarity when its tendency is infenfible.
The ratio of the polarity to the attraction alfo increafes by increafing the diftauce of the magnets while their dimenfions continue the fame. This will appear, by remarking that the chords MP and NQ muft inter: feet in fome point w; and that when the four points m, p, n, and q, move off from O , keeping the fame diflances from each other, Eo will diminifh fafter than EL, and the ratio of EL to EO will continually increafe.

Therefore when a fmall magnet B is placed at fuch a diflance from a great magnet A, and fiom a fmaller one C , as to have equal polarity to both, its tendency to C will exceed its tendency to A. For the polarities being equal, it muft be farther from the great magnet; in which cafe the ratio of its polarity to its attraction is increafed.

And this will alfo obtain if the magnets differ alfo in Areagth. For, to have equal polarities, B nuft be ftill farther from the great and powerful magnet.

For all thefe reafons, a large and powerful magnet may exert a ftrong directive power, while its attracive power is infenfible.
We have hitherto fuppofed the magnet B to be pla-pecuiari- ${ }^{26 \sigma}$ ced in the direction of the axis of A, and only at li- ties of obberty to turn round its centre B. But let its centre lique pofibe placed on the centre of A, as in fig. 3 . it muft tions of evidently take a pofition which may be called fuboon netso trary to that of A, the north pole of B turuing toward the fouth pole of A, and its fouth pole turning toward the nurth pole of A.

The fame thing muft happen when the centre of 13 is placed in B, any where in the line $A E$ perpendicular to NS. S attracts n with a force $n b$, while N repe!s n wich a force $n o$, fomewhat finaller than $n b$. 'Thefe two compofe the force $n d$. In like manner, the two forces se and $s f$, exerted by N and S on the pole s, coripofe the force sq. Now if the axis of the magnet B be parallel to NS, but the poles in a contrary potition, and if each magnet be equally vigorous in both poles, the magnet B will retain this potition ; becaufe the forces $n b$ and se are equal, as alfo the forces $n c$ and $s f$. Thefe inut compofe two furces $n d$ and $s q$, which are equal, and equally inclined to $n s$; and they will therefore be in equilibrio on this lever.

Let us now place the centre of the fmall magnet in C, neither in the axis of the other, nor in the perpendicular AE. I.et its north pole n point toward the centre of A . It cannot remain in this pofition; for N repels n with a force $n c$, while S attracts it with a force $n b$ (fmaller than $n c$, becaufe the diffance is greater). Thefe two compofe a force nd conliderably different from the direction $c n$ of its axis. In like matner, the fouth pole s of the limall magnet is acted on by two forces $s e$ and $s f$, exerted by the two poles of A, which compofe a force $s q$ niearly equal and parallel to $n c l$, but in a nearly oppofite direction. It is plain that thefe forces mult turn the fmall magnet round its centre C , and that it cannot relt but in a pofition nearly parallel to $n d$ or $s f$. Its pofition is better reprefented by fig. 4. wit! its fouth pole turned toward the north pole of the other magnet, and its north pole in the oppofte direction.

What the precife pofition will be, depends on that function of the diffance which is always proportional to the intenfity of the action; on the force of each of the poles of A, and on the length of the magnet B. Nay, even when we know this function, the problem is ftill very intricate.

There are methods by which we may approximate to the function with fuccels. If the magnet 13 be indefinitely fmall, fo that we may confider the actions on its two poles as equal, the inveltigation is greatly fimpli- fure of fied. For, in this cafe, each pole of the finall magnet ${ }^{\text {law }}$ of B (fig. 5.) may be conceived as coinciding with its centre. Then, drawing NB, SB, and taking $B 6$ toward N , to reprefent the force with which N attracts the fonth pole of B , and taking $\mathrm{B} c$, in SB produced, to reprefent the force with which S repels the fame pole, the compound force acting on this pole is $B d$, the diagonal of a parallelogram $B b, d c$. In like manner, we mult take $\mathrm{B} c$, in $\mathrm{N} b$ produced, and equal to $\mathrm{B} b$,
to reprefent the repulfion of N for the north pole of B , and $\mathrm{B} f$ equal to $\mathrm{B} c$, to reprefent the attraction of \mathbb{S} for this pole. The compound force will be $B g$, equal and oppofite to $\mathrm{B} d$. It follows evidently from this invelligation, that the fmall magnet will not reft in any pofition but $d g$. In this fuppofition, therefore, of extreme minutenefs of the magnct B, one of the parallelograms is fufficient. We may farther remark, that we have this approximation fecure againft any error arifing from the fuppofition that all the action of each pole of B is exerted by one point. Although we fuppofe it diffufed over a confiderable portion of the magnet, fill the extreme minutenefs of the whole makes the action, even on its extreme points, very nearly equal.

Hence may be derived a conftruction for afcertaining the porition of the needle, when the function m of the difance is giver, or for difcovering this function by obfervation of the pofition of the needle.

Let NS (fig. $5 . \mathrm{n}^{\circ}$ 2.) mect the direction of the needle in K . Make $\mathrm{BG}=\mathrm{BN}$, and draw NF, GE, SH , perpendicular to BK . It is evident that $\mathrm{B} b$ is to $\mathrm{B} c$, or $b d$, as the fine of the angle HBS to the fine of KBN . Therefore, becaufe BG and BN are equal, we lave $\mathrm{B} b: \mathrm{B} c=\mathrm{GE}: \mathrm{NF}$.

Bu

If magnetic action be inverfely as the diffance, we have $S K: N K=B S^{2}: B N^{2}$, and B is in the circumference of a circle which paffes through S and N , and has BK for a tangent, as is plain by elementary geometry. If the action be inverfely as the fquare of the ditance, we have SK: NK $=B S^{3}: B N$, and B is in the circumference of a curve of more difficult invetigation. But, as in the circle, the fum of the angles BSN and BNS is a conttant angle; fo, in this curve, the fun of the cofines of thofe angles is a conftant quantity. This fuggetts a very fimple conftruction of the curve. Let it pafs through the point T ' of the line AT, drawn from the centre of the magnee, perpendicular to its axis. Defcribe the fenicircle SPQN , cutting ST and NT in P and Q . Then, in order to find the point where any line $S \dot{L}$ cuts the cuive, let it cut the femicircle in p, and apply the line $\mathrm{N} q=\mathrm{SP}+\mathrm{NQ}-\mathrm{S} p$, and produce it till it meet the line SB in B , which is a point in the curve ; for it is evident that $\mathrm{S} p$ and $\mathrm{N} q$ are the cofines of BSN and BNS. We hope to give, by the help of a learned friend, the complete conftruction of curves for every value of m, in an Appendix to this article. It will form a new and curious clafs, arranged by the functions of the angles at N and S.

But, in the mean time, we have determined the pofition of an indefinitcly fmall needle, in refpect of a magnet of which we may conceive the polar activity concentrated in two points; and we may, on the other hand, make ufe of the obferved pofitions of fuch a needle and magnet for difcovering the value of m. For, fince $\frac{\mathrm{SK}}{\mathrm{NK}}=\frac{\mathrm{SB}^{m+1}}{\mathrm{NB} \mathrm{B}^{m+1}}$, it is plain that $m=\frac{\mathrm{Log} \cdot \mathrm{SK}: \mathrm{NK}}{\mathrm{Log} \cdot \mathrm{SB}: \mathrm{NB}}-1$. Thus, in an obfervation which the writer of this article made on a very fmall needle, and a magnet having globular poles, and $8 \frac{1}{8}$ inches between their centres, he found $S B=5 \frac{7}{3}, N B=\frac{1}{3}, S K=11,49$, and $N K=3,37$. This gives $m=1,97$, which differs from 2 ouly ${ }_{\sigma}{ }^{3}$ th
Suppl. Vol. II. Part I.
part. Finding it fo very near the inverfe duplicate ra. tio of the dittance, a circle VUZ w?s defcribed, the circumference of which is the locus of $\mathrm{SB}: \mathrm{BN}=8$: 5,333 . When the centre of the needle was placed anywhere in the circuinference of this circle, it fcarcely deviated from the point K , except when fo far removed from the magnet that its natural polarity prevailed over the directive power of the magnet, or fo near its middle that the aetion of the cylindrical part became very fenfible.

It is plain that the length of the needle mult occafion fome deviation from the magnetic direction, by deftroying the perfect equality of action on its two poles. He therefore employed three neelles of $\frac{1}{2}, \frac{1}{4}$, and $\frac{1}{4}$ of an incl in length; and by noticing the diffcrences of direction, he inferred what would be the direction, if the forces on each pole were precifely equal. He had the pleafure of fecing that the deviation from the in. verfe duplicate ratio of the dittances was featcely perceptible.

Mr Lambert's experiments on the directive power of the magnet, narrated in his fecond differtation in the 22d volume of the Memoirs of the Academy of Berlin, are the moft valuable of all that are on record ; and the ingenious addrefs with which-they are conducted, and the inferences are drawn, would have cone credit to Newton himiflf. We earnefly recommend the careful perufal of that Effay, as the mof int rutive of any that we have read. The writer of this found himfelt obliged to repeat all his former experiments, mentioned above, in Mr Lambert's manner, and with his precaution of keeping the needle in its natural dofition; a circumflance to which he had not lufficiently attended before. The new refults were fill more conformable to his conjecture as to the law of variation. Mr Lambert clofes his differtation with an hypothefis, "that the force of each tranfverfe clement of a magnet is as its diffance from the centre, and its action on a particle of alother magnet is inverfely as the fquare of the diflance." On this fuppofition, he calculates the pofition of a very finall needle, and draws three of the curves to which it fhould be thie tangent. Thefe are very exactly coincident with fome that he obferved. We tried this with feveral magnetic bars, and found it very conformable to obfervation in fome magnets; but deviating fo_{o} far in the cafe of other magnets, that we are convinced that there is no iule for the force of each tranfverfe clement of a magnet, and that the magnetifm is differently difpofed in different magnets. It was chiefly this which induced us to form the magnets employed in this refearch of two balls united by a flender rod. Lichtenberg, in his notes on Erxleten's Natural Philofophy, fays, that there is a MS. of the celebrated Tobias Mayer in the library of the Academy of Gottingen, in which he affumes the hypothefis above-mentioned, and gives a conftruction of the magnetic curves founded on it, making them a kind of catenaria. The interior curves do indeed refemble the catenaria, but the exterior are totally unlike. But there is no occafon for much argument to convince us, that the firft part of this hypothefis is not only gratuitous, but unwarranted by any general phenomena. We know that a magnetical bar may have its magnetifm very differently difpofed; for it may have more than two poles, and the intermediate poles cannot have this difpofition of the mag-
netifm. Such a difipofition is perhaps poffible; but is by no means gencral, or even frequent. We are difpofed to think, that permanent magnetifm mult have its intenfity diminifhing in the very extremity of the bar. The reader may guefs at our reafons from what is faid in Electricity, Suppl. n ${ }^{\circ} 222$.

The following very curious and inftructive phenome. non was the firft thing which greatly excited the curiofity of the writer of this article, and long puzzled him to explain it. Indeed it was his endeavouts to explain it which gradually opened up to him the theory of the mutual action of nagnets contained in thefe paragraphs, and firt gave him occafion to admire the fagacity of Dr Gilbert, and to fee the connecting principle of the vaft variety of obfervations and experiments which that philofopher liad made It feems owirg to the want of this connceting principle, that a book fo rich in facts frould be fo little read, and that fo many of Dr Gilbe:t's obfervations lave been publifhed by others as new difcoveries.

A mufing himfelf in the fummer 1758 with magnetic experiments, two large and ftrong magnets A and B (fig. 6), were placed with their diffimilar poles fronting each other, and about three inches apart. A fmall needle, fupported on a point, was placed between them at D, and it arranged itfelf in the fame manner as the great magnets. Happening to fet it off to a good diftance on the table, as at F , he was furprifed to fee it immediately turn round on its pivot, and arrange itfelf nearly in the oppofite direction. Bringing it back to. D reftored it to its former pofition. Carrying it gradually out along I) F, perpendicular to NS, he obfcrved it to become ferfibly more feeble, vibrating more flowly; and when in a certain point E, ic lad no polarity whatever towards A and B, but retained any pofition that was gisen it. Carrying it farther out, it again acguired polarity to A and 13 , but in the oppofite dircetion; for it now arranged infelf in a pofition that was parallel to NS, but its north pole was next to N, and its fouth pole to S.

This fingnlar appearance naturally excited his attention. The line on which the magnets A and B were placed had been marked on the table, as alfo the line DF perpendicinlar to the former. The point E was now marked as an important one. The experiments were interrupred by a friend coming in, to whom fuch alings were no entertainment. Next day, wifhing to repeat them to fome friends, the magnets A and B were again laid on the line on which they had been placed the day before, and the necdle was placed at E , expecting it to be neutral. But it was fonne to have a confiderable verticity, turning its north pole toward the magnet B; and it required to be taken farther aut, toward F, before it became neutral. While ftanding there, fomething chanced to joggle the magnets A and P , and they inftantly rufhed together. At the fame in. Hant, the little magnet or needle tuincd itfelf brikiy, and arranged itfelf, as it had done the day before, at \dot{F}, quivering very brikkly, and thus fhewing great verticity. 'this naturally lurprifed the beholders; and we now found that, by gradually withdrawing the magnets i and 1) from each other, the needle became weaker then became neutral - and then turned round on its pivot, and took the contrary pofition. It was very ainufing to obferve how the fimply feparating the magncts A
and D, or bringing them togetliet, made the needle affume fuch a variety of pofitions and degrees of vivacity in eaclı.

The needle was now put in various fitnations, in refpect. to the two great magnets; namely, off at a fide, and not in the perpendicular DF. In thefe fituations, it took an inconceivable variety of pofitions, which could not be reduced to any rule; and in moit of them, it required only a motion of one of the great magnets for an inch or two, to make the needle turn brifliy round on its pivot, and affume a pofition nearly oppofite to what it had before.

But all this was very puzzling, and it was not till af. ter feveral months, that the writer of this alticle, having conceived the notion of the magnetic curves, was ii) a condition to explain the phenomena. With this affiftance, however, they are very clear, and very $11-$ fluctive

Nothing hinders us from fuppofing the magnets A and B perfeesly equal in every refpect. Let NHM, NEL, be two magnetic curves belonging to A; that is, fuch that the needle arranges it felf alung the tangent of the curve. 'Then the magnet 13 has two curves SGK, SEI, perfectly equal, and fimilar to the other two. Let the curves NHM and SGK interfect in C and F. Let the curves NEL and SEI touch each other in i .
The needle being placed at C , would arrange itfelf in the tangent of the curve KGS, by the action of B alone, having its north pole turned toward the fouth pole S of B. But, by the action of A alone, it would be a tangent to the curve NHM, having its north pole turned away from N. Therefore, by the combined action of both magnets, it will take neither of thefe potitions, but an intermediate one, nearly bifesting the angle formed by the two curves, having its north pole turned toward B.

But rumove the needle to F. Then, by the action of the magnet A, it would be a tangent to the curve FM, having its north pole toward M. By the actions of I 3 , it would be a tangent to the curve KFG , having its north pole in the angle MFG, or turned toward A. By their joint action, it takes a polition nearly bifecting the angle GFM, with its north pole toward A.

Let the needle be placed in E. Then, ty the action of the magnet A, it would be a tangent to the curve NEL, with its north pole pointing to F. But, by the action of B, it will be a tangent to SEI, with its north pole pointing to D . Theie actions being fuppofed equal and oppolite, it will have no verticity, or will be neutral, and retain any polition that is given to it.

The cunve SEI interfects the curve NHM in P and Q. The faine reafoning fhews, that when the needle is placed at P , it will arrange itfelf with its north pole on the angle SPH: but, when taken to Q , it will ftand with its north pole in the angle EQM.

From thefe facts and reafonings we muit infer, that, for every diffance of the magnets A and 13 , there will be a feries of curves, to which the indefinitely fhort needle will always be a tangent. 'They will rife from the adjuining poles on both fides, croffing diagonally the lozenges formed by the PRimary or simple curves, as in fig. 6 . Thefe may be called compound. or secosdary magnetic curves. Moreover, thefe fecondary
cendary curves will be of two kinds, according as they pafs through the firft or fecond interfections of the primary curves, and the needle will have oppofite pofitions when placed on them. Thefe two fets of curves will be feparated by a curve GEH, in the circumference of which the ncedle will be nentral. This curve paffes through the points where the primary carves touch each other. We may call this the line of neutrality or inactivity.

We now fce diftinctly the effect of bringing the mag. nets A and B nearer together, or feparating them farther from each other. By bringing them neater to each other, the point E , which is now a point of neutralitr, may be found in the fecond interfection (fuch as F) of two magnetic curves, and the needle will take a fubcontrary pofition. By drawirig them farther from each other, E may be in the firft interfection of two magnetic curres, and the needle will take a pofition fimilar to that of C .
If the magnets A and B are not placed fo as to form a fraight line with their four poles, but have their axes making an angle with each other, the contacts and interfections of their attending curves may be very different from thofe now reprefented; and the pofitions of the needle will differ accordingly. But it is plain, from what has been faid, that if we knew the law of action, and confequently the form of the primary curves, we fhould always be able to fay what will be the pofition of the needle. Indeed, the confideration of the fimple curves, although it was the mean of fuggening to the writer of this article the explanation of thofe more complicated phenomera, is by no means neceffary for this purpofe. Having the law of magnetic action, we muft know each of the eight forces by which the needle is affected, both in refpect of direction and intenfity; and are therefore able to afcertain the fingle force arifing from thcir compofition.

When the fimilar poles of A and B are oppofed to each other, it is eafy to fee, that the pofition of the needle muft be extremely different from what we have been defcribing. When placed anywhere in the line DF, between two magnets, whofe north poles front each other in N and S, its north pole will always point away from the middle point D . There will be no neutral point E. If the needle be placed at P or Q, its north pole will be within the angle F.PH, or FQ1. This polition of the magnets gives another fet of fecondary curves, which alfo crofs the primary curves, paffing diagonally through the lozenges formed by their interfeetion But it is the other diagonal of each lozenge which is a chord to thofe fecondary curves. They will, therefore, have a form totally different from the former fpecies.

The confideration of this compounded magnetifm is Renarks
on this in. important in the fcience, both for explaining complex vefigation. phenomena, and for advancing our knowledge of the great defideratum, the law of magnetic acticn. It ferves this purpofe remarkably. By employing a very fmall needle, the points of neutrality afcertain very nearly where the magnctic curves have a common tangent, and fhews the pofition of this tangent. Py placing the two magnets to as to form various angles with each other, we can, by means of thefe neutral points, know the pofition of the tangent in every point of the curve, and thus can afcertain the form of the curve, and the law of action, with confiderable accuracy. 'The wri-
ter of this article took this method; and the refult confirmed him in the opinion, that it was in the inverfe duplicate ratio of the diftances. The chisef (perhaps the only) ground of error feemed to be the difficulty of procuring large magnets, having the action of each pole very much concentrated. Large magnets muft be emphoyed. He attempted to make fuch, confifting of two (pherical balls, joined by a flendes rod. But he could not give a ftrong magnetifm to magnets of this form, and was forced to make ufe of common bars, the poles of which are confiderably diffufed. This diffuo fion of the pole renders it very difficult to felect with propriety the points from which the diflances are to be eftimated, in the inveftigation of the relation between the forces and diflances.

He tried another method for afcertaining this fo much defined law, which had alfo the fame refult. Having made a rieedle confifting of two balls joined by a flender rod, and having touched it with great care, fo that the whole ftrength of its poles fcenned very litte removed from the centres of the balls, he counted the number of horizontal vibrations which it made in a given time by the force of terrettrial magnetifm. He then placed it on the middle of a very fine and large magnet, placed with its poles in the m.gnetic meridian, the north pole pointing fouth. In this fituation he counted the vibrations made in a given time. He then raifed it up above the centre of the large magnet, till the diftance of its poles from thofe of the great mag. net were clanged in a certain proportion. In this fituation ics vibiations were again counted. It was tried in the fame way in a thiird fituation, confiderablly more remote from the great magnet. 'Then, having made the proper reduction of the forces correfponding to the obliquity of their action, the force of the poles of the great magnct was computed from the number of vibrations. To fate here the circumftances of the experiment, the neceffary reductions, and the whole computations, would occupy feveral pages, and to an intelligent reader would anfwer little purpofe. Mr Lanbert's excellent differtation in the 22 vol. of the Mem. de l'Acad. de Berlin, will fhew the prolixity and irtricacy of this inveftigation. Suffice it to fay, that thefe experiments were the mof confiftent with each other of any made by the writer of this article, with the vicw of afcertaining the law of magnetic action; and it is chucfty from their refult that he thinks himfelf authorifed to Say, with fome confidence, that it is inverfely as the fquare of the diflance. Thefe experiments were firit made in a rough way in 1769 and 1773 . In 1775, obferving that Mr Epinus feemed to think the action inversely as the diftance (fee his Tentam. Theor. Elear. et Magn. § 301 . Se.), they were repeated with very great care; and to thefe were added another fet of experiments, made with the fame magnet and the fame neecle, placed not above the magnet, but at one fide (but always in the line through the certre, perpendicular to the axis, fo that the actions of the two pules might be equal). This difpofition evidently limpilities the procefs exceedingly. 'The refult of the whole was fill more fatisfactory. This conclution is allo confirmed by the experisents of Mir Coulumb, in the Mamoirs of the Academy of Sciencca at Paris for 1786 and 1787. It would feem thercfore to be pretty well eftablified. A nother method, which feems fufceptible of
confiderable accuracy, fill remains to be tried. It will be mentioned in duc time.

Such then are the general laws obferved in the muthal action of magnets. We think it fearcely neceffary to enter into a farther detail of their confequerices, correfponding to the innumerable varieties of pofitions in which they may be placed with refpeet to each other. We are confident, that the fenfblc actions will always bc found agreeable to the légitimate confequences of the general propofitions which we have eftablifhed in the preceding paragrapls. We proceed therefore to conlider fome phylical facts not yet taken notice of, which have great influence on the phenomena, and greatly affift us in our endeavours to underfand fomething of their remote caufe.

Magnctifm, in all its modifications of attraction, re. pullion, and direction, is, in general, of a tempurary or perifhing nature. The beft loadfones and magnets, unlefs kept with care, and with attention to certain
circumitances, are obferved to diminifh in their power. Natural loadfones, and magnets made of tteel, tempered as liard as poffible, retain their virtue with greateft obfinacy, and feldom lofe it altogether, unlefs in fituations which our knowledge of magnetifm teaches us to be unfavourable to ite durability. Magnets of tempered fteel, fuch as is ufed for watch-fprings, are much fooner weakened, part with a grenter proportion of their force by fimple keeping, and finally retain little or none. Scft lleel and iron lofe their magnetifin almoft as foon as its producing caufe is removed, and cantrot be made to retain any fenfible portion of it, untlefo their metallic ftate fuffer fome change.
3. Hurt by pofition. magnet as the keeping it in an improper pofition. If its axis be placed in the magnetic direction, but in a contrary pofition, that is, with the north pole of it where the fouth pole tends to fettle, it will grow waker from day to day; and unlefs it be a natural loadflone, or be of hard tempered fteel, it will, after no very long time, lofe its power altngether.
2. This diffipation of a Atrong magnetic power is
2. By heat ; effect of thunder and electri sity. greatly promoted by heat. Even the heat of boiling water affects it fenfibly; and if it be made red hot, it is entirely deftroyed. This laft fact has long been known. Dr Gilbert tried it with many degrees of violent heat, and found the confequences as now itated; but laving no thermometers in that dawn of fcience, he could not fay any thing precife. He only obfervee, that it is defroyed by a heat not fufficient to make it vifible in a dark room. Mr Canton found even boiling water to weaken it ; but on cooling again the greateft part was recovered.
3. By vio-
lent treatment.
3. What is more remarkable, magnetifin is impaired by any rough ufage. Dr Gilbert found, that a magnet which he had impregnated very ftronorly, was very much impaired by a fingle fall on the floor; and it has been obferved fince his time, that falling on ftones, or receiving any concuffion which caufes the magnet to ring or found, hurts it much more than beating it with any thing loft and yielding. Grinding a natural loadfone with coarfe powders, to bring it into Shape, weakens it much ; and loadtones Mould therefore be reduced into a fhape as little different from their natural form as poffible ; and this flould be cione brinkly, cutting them with the thin difiss of the lapidary's wheel,
cutting off only what is ncceflary for leaving their mof active parts or poles as near their extremities as we, can.

All thefe caufes of the diminution of magnetifm are more operative if the magnet be all the while in an im. proper pofition.
4. Laitly, magnetifm is impaired and deftroyed by 4 . By othes? placing the masnet near another magnet, with their fi-magnets, milar poles fronting each other. We have had occafion to remark this already, when mentioning the expcriments made with magnets in this pofition, for afcertaining the general laws or variations of their repulfion. We there obferved, that magnets fo fituated always weakened each other, and that a powerful magnet often clianged the fpecies of the neareft pole of one lefs powerful. This change is recovered, in part at leaft, when it has taken place in a loadftone or a magnet of hard fteel; but in foring tempered fteel the change is generally permanent, and almolt to the full extent of its condition while the magnets are to sether. It is to be remarked, that this change is gradual ; and is expedited by any of the other caufes, particularly by heat or by knocking.

On the other hand, magnetifm is acquired by the maguetifm fame means, when fome other circumfances are at-may beactended to.
quired,
I. A bar of iron, which has long ftood in the mag- I . Dy mag. netic direction, of nearly fo, will gradually acqure netical magnetifin, and the ends will acquire the polarity cor-ition; refponding to their fituation. In this country, and the north of Europe, the old fpindles of turret vanes, old bars of windows, \&c. acquire a fenfible magnetıfin; thcir lower extremity becoming a north pole, and the other end a fouth pole. Cilbert fays, that this was firft obferved in Mantua, in the vane fpindle of the Au. guitine church-"Vento flexa (jays he) de prompta, et aporbecario cuidam conceffa, attrabebat ferrea ramenta, vi perquam infigni." 'The upper bar of a hand rail to a ftair on the north fide of the higheft yart of the fteeple. of St Giles's church in Edinburgh is very magnetical ; and the upper end of it, where it is lodged in the itone, is a vigorous fouth pole. It is worth notice, that the parts of fuch old bars acquire the ftrongeft magnetifm when their metallic flate is changed by expofure to the air, bcooming foliated and friable. It would be worth while to try, whether the tethiops martialis, produced by fleam in the experiments for decompofing water, will acquire megnetifm during its produttion. The pipe and the wires, which are converted into the fining rethiops, fhould be placed in the magneric direction.
2. If a bar of tteel be long hammered while lying in 2 . By hamio the magnetic dircetion, it acquires a ferlible magnetifm inering; (Sce Dr Gibert's plate, reprefenting a blackfmith hammering a bar of iron in the magnetic direction). The points of drills, efpecially the great ones, which are urged by very great preffure ; and broaches, worked by a long lever, fo as to cut the iron very faft, acquire a ftrong magnetifme and the lower end always becomes the north pole (Pbil. Tiranf. xx. 417.) Even driving a hard fteel punch into a piece of iron, gives it magnetifm by a fingle blow. In fhort, any very violent fqueeze given to a piece of tempered fteel renders it magnetic, and its polarity correfponds with its pofition during the experiment. We can fcarcely take up a cutting or boring tool in a fmith's fhop that is not magnetical. Even
foft fteel and iron acquire permanent magnetifm in this way. Iron alfo acquires it by twitting and breaking. It is therefore difficult to procure pieges of iron or fteel totally void of determinate and permanent magnetifm; and this frequently mars the experiments mentioned in the firlt paragraphs of this article. The way therefore to enfure fuccefs in thefe experiments is to deprive the rods of their accidental magnetifm, by fome of the methods mentioned a little ago. Let them be heated red hot, and allowed to cool while lying in a direction perpendicular to the magnetic direction (nearly E.N.E. and W. S. W. in this country).
3. As heat is obferved to defroy magnetifm, fo it may alfo be employed to induce it on fubftances that are fufceptible of magnetifm. Dr Gilbert makes this obfervation in many parts of his work. He fays, that the ores of iron which are in that particular metallic flate which he confiders as moft fufceptible of magnetifm, will acquire it by long continuance in a red heat, if laid in the magnetic direction, and that their polarity is conformable to their pufition, that end of the mafs which is next the north becoming the north pole. He alfo made many experiments on iron and fteel bars expofed to ftrong heats in the magnetical direction. Such experiments have been made fince Giitbert's time in great number. Dr Hooke, in 1684 , made experiments on rods of iron and fteet one-fifth of an inch in diameter, and feven inches long. He found them to acquire permanent magnetifin by expofure to flrong heat in the magnetic direction, and if allowed to cool in that direction. But the magnetifn thus acquired by feel rods was much ftronger, and more permanent, if they were fuddenly quenched with cold water, fo as to temper them very hard. He found, that the end which was next to the nortl, or the lower end of a vertical bar, was always its permanent north pole. Even quenching the upper end, while the reft was fuffered to cool gradually, became a very fenfible fouth pole. No magnetifm was acquired if this operation was pe:formed on a rod lying at right angles to the magnetical direction.

In thefe trials the polarity was always eltinated by the action on a mariner's needle, and the intenlity of the magnetifm was ellimated by the deviation caufed in this needle fiom its natural pofition. Dr Gilbert made a very remarkable obfervation, which has fince been repeated by Mr Cavallo, and publifhed in the Jhitofophicat Tranfacions as a remarkable difcovery. Dr Gilbert faye, p. 69. "Bacillam ferreum, valide ignuitum appone verforio excito; fat verforium, nec ad tale ferrum convertitur: Sed fatim ut primum de candore aliquantulum romiferil, conffuit illice." In feveral other parts of his treatife he repeats the fame thing with different circurnftances. It appears, thercfore, that while iron is red hot, it is not fufceptible of magnetifm, and that it is during the cooling in the magnetic direction that it acquires it. Gilbert endeavoured to mark the degree of heat moft favourable for this purpofe; but being enprovided with thermometers, he could not determine any thing with precifion. He fays, that the verforium, or mariner's needle, was moft deranged from its natural pofition a little while after the bar of iron ceafed to thine in day-light, but was ftill pretty bright in a dark room. But there are other experiments which we have made, and which will be mentioned by and bye; by which it appears, that although a bright red or a white
heat makes iron unfufceptible of magmetifm while in that ftate, it predifpofes it for becoming magnetical. When a bar of tteel was made to acquire magnetifm by tempering it in the magnetical direction, we found that the acquired magnetifm was much Atronger when the bar was made firit of all very hot, even ahthough allowed to come to its moft magnetical flate before cuenching, than if it had been heated only to that degree : nay, we always found it ftronger when it was quenched when red hot. We offer no explanation at prefent ; our fole bufinefs juit now being to fate facts, and to generalize them, in the hopes of linding fone face which hall contain alh the others.
4. The mo? diftinet acquifitions and changes of mag- 4. By juxnetifm are by juxtapofition to other magnets and to iron. :apofition. As the magnetifm of a loaditone or magruet is weakendd by bringing its pole near the f:milar pole of another magnet, it is improved by bringing it neas the other pole ; and it is always improved by bringing it sear any piece of iron or foft fteel.
But this action, and the mutual relation of magnets and comnion iron, being the moft general, and the moft curious and in? tifm, they merit a very particular confideration.
Of the communication of Mugnetifn,

The whole may be comprebended in one propofition, Communi- ${ }^{53}$. which may be faid to contain a complete theory of inag-cation of netifm.
magnctifm.
Fundamental propofition.
Any piece of iron, when in the meighbourhood of a marnet, is a mugnet, and its polarity is So dijpofed thast the magnet and it mutually attraat cach other.
The phenomena which refult from this fundamental priaciple are infinitely varions, and we mult content ourfelves with defcribing a fimple cafe or two, which will fufficiently enable the reader to explain every other.
Take a large and ftrong magnet NAS (fig. 7.), of ${ }^{34}$ which N is the north, and S the fouch pole. Let it be powerconnproperly fupported in a horizontal pofition, with itsmuricated. poles free, and at a difance from iron or other bodies. Take any fmall piece of conmon iron, not exceeding two or three inches in length, fuch as a finall key. Take alfo another piece of iron, fuch as another fmaller key, or a bit of wire about the thicknefs of an ordinary quill.

1. Hold the key horizontally, near one of the poles, (as fhewn at no 1.), taking care not to touch the pole with it ; and then bring the other piece of iron to the other end of the key (it is indifferent which pole is thus approached with the key, and which end of the key is held near the pole). The wire will hang by the key, and will continue to hang by it, when we gradually withdraw the key horizontally from the magnet, till, at a certain diftance, the wire will drop fioms the key, becaufe the magnetifm imparted fron this diftance is too weak. That this is the fole reafon of its dropping, will appear by taking a fhorter, or rather a flenderer, bit of wire, and touch the remote end of the key with it : it will be fupported, even thongh we remove the key titll farther from the nagnet.
2. Hold the key below one of the poles, as at $\mathrm{n}^{\circ} 2$. or 3. and touch its remote end with the wire. It will be fufpended in like manner, till we remove the key too. far from the magnet.
3. ITold the key abowe the poles, as at $\mathrm{n}^{\circ} 4$. or 5 . and touch its adjacent end with the wire (taking care that the wire do not alfo touch the magnet). The wire will fill he finpported by the key, till both are removed too far from the magnet.

Thus it appears, that in all thefe fituations the key lias fhewn the characteriflic phenomenon of magnetifm, namely, attraction for iror. In the experiment with the key held above the pole, the wire is in the fame fituation in refpect to magnetifm as the key is when held below the pole : but the actions are mutual. As the key attracts the wire, fo the wire attracts the key.

If the magnet be fupported in a vertical pofition, as in fig. 8. the phenomena will be the fame; and when the key is held directly above or directly beiow the pole, it will carry rather a heavier wire than in the horizontal pofition of the magnet and key.

Inflead of approaching the magnet with the key and wire, we may bring the magnet toward them, and the phenomena will be fill more palpable. Thus, if the bit of wire be lying on the table, and we tonch one end of it with the key, they will fhew no connection whatever. While we hold the key very near one end of the wire, bring down the pole of a magnet toward the key, and we fhall then fee the end of the wire rife up and ftick to the key, which will now fupport it. In like manner, if we lay a quantity of iron filings on the table, and touch them with the key, in the abfence of the magnet, we find the key totally inactive. But, on bringing the magnet anyhow near the key, it immediatcly attracts the iron filings, and gathers up a heap of them.

In the next place, this vicinity of a magnet to a piece of iron gives it a directive power. Let NAS (fig. 9.) be a magnet, and IBC (n°. $)$ a key held near the north pole, and in the direction of the axis. Bring a very fmall mariner's necdle, fupported on a fharp point, near the end C of the key which is fartheft from N . We fhall fee this needle imnediately turn its fouth pole towards C, and its north pole away from C. This pofition of the needle is indicated at c, by marking its north pole with a dart, and its fouth with a crofs. Thus it appears that the key has got a directive power like a magnet, and that the end \dot{C} is performing the office of a north pole, attracting the fouth pole of the needle, and repelling its north pole. It may indeed be faid, that the needle at c arranges itfelf in this manner by - the directive power of the magnet ; for it would take the fame pofition although the key were away. But if we place the needle at l, it will arrange itfelf as there reprefented, fhewing that it is infuenced by the key, and not (wholly at leaft) by the magnet. In like manner, if we place the needle at a, we flall fee it turn its north pole toward B, notwithltanding the action of the magnet on it. This action evidently tends to turn its noith pole quite another way; but it is influenced by B, and B is performing the office of a fouth pole.

In like manner, if we place the key as at n° 2. we thall obferve the end B attract the fouth pole of the needle placed at a, and the end C attraq the north pole of a needle placed in b. In this fituation of the key, we fee that B performs the office of a north pole, and C performs the office of a fouth pole.

Thus it appears that the key in both utuatiens has
become a magnet, poffeffed of both an attractive and a directive power. It has acquired two poles.

Laftly, the magnetifm of the key is fo difpofed, that The acmac. the two magnets NAS and 13C mult nutually attract tion of iron each other ; for their diffimilar poles front each other. is owing the difolio Now, it is a matter of uniform and uncontradicted ob. tiwn of its fervation, that when a piece of iron is thus placed near own tema magniet, and the difpofition of its magnetifm is thus porary examined by means of a mariner's needle, the difpof:- ${ }^{\text {maghneiifm }}$ tion is fuch that two permanent magnets with their poles fo difpofed mult attract each other. The piece of iron, therefore, having the fame magnetic relation to the magnet that a fimilar and fimilarly difpofed magnet has, muift be affected in the fame marner. We cannot, by any knowledge yet contained in this article, give any precife intimation in what way the polarity of the piece of iron will be difpofed. This depends on its fhape as much as on its pofition. By defcribing two or three examples, a notion is obviounly enough faggetted, which, although extremely gratuitous, and perhaps erroneous, is of fervice, becaufe it lias a general analogy with the obferved appearances.

If one end of a flender rod or wire be held near the north pole of the magnet, while the rod is held in the direction of the axis (like the key in fig. 7. n ${ }^{\circ}$ 1.), the near end becomes a fouth, and the remote end a north pole. Keeping this fouth pole in its place, and turning the rod in any direction from thence, as from a centre, the remote end is always a north pole. And, in general, the end of any oblong piece of iron which is neareft to the pole of a magnee becomes a pole of the oppofite name, while the remote end becomes a pole of the fame name with that of the magnet.

If the iron rod be held perpendicularly to the axis, with its middle very near the north pole of the magnet, the two extremities of the iron become north poles, and the middle is a fouth pole.

If the north pole of a magnet be held perpendicular to the centre of a round iron plate, and very near it, this plate will have a fouth pule in its centre, and every part of its circumference will have the virtue of a north pole.

If the plate be maped with points like a ftar, each of thefe points will be a very diftinct and vigorous north pole.
Something like this will be obferved in a piece of iron of any irregular flape. The part immediately adjoinirg to the north pole of the magnet will have the virtue of a fouth pole, and all the remote protuberances will be north poles.
The notion naturally fuggefted by thefe appearances is, that the virtue of a north pole feems to refide in fomething that is moveable, and that is protruded by the north pole of the magnet toward the remote parts of the iron ; and is thus conflipated in all the remote edges, points, and protuberances, much in the fame manner as clectricity is obferved to be protruded to the remote parts and protuberances of a couducting body by the prefence of an overcharged borly. This notion w's' greatly affift the imagination; and its confequences very much tefemble what we obferve.

A: a farther mark of the complete communication of every magnetic power by mere vicinity to a magnet, we may here obferve, that the wire 1 , of fig. $7 \cdot \mathrm{n}^{\circ} 2$ and 3. will fupport another wire, and this another ; and fo
on, to a number depending on the flrength of the magnet. The key has therefore become a true magnet in every refuect; for it induces complete magnetifm on the eppinde il wire. 'That this is not the fance operation of the great magnet (at lea? not wholly fo), appears by examining the magrnetifon of D with the needle, which will be feen to be more influenced by D than by A. This fact has been long known. The ancients fpeak of it: They obferve, that a loadfone caufes an iron ring to carry another ring, and that a third; and fo on, till the ftring of rings appears like a chain.

What has now been faid will explain a feeming exception to the univerfality of the propofition. If the key be held in the fituation and pofitioni reprefented by fig. 10. the bit of wire will not be attracted By it ; and we may imagine that it has acquired no magrietifm : But if we bring a mariner's needle, or a bit of wire, near to its remote end B, it will be ftrongly attracted, and fhew B to be a north pole. The needle held near to C will alfo firew C to be a fouth pole. Alfo, if held near to D, it will fhew D) to be a north pole. Now the ends C, both of the key and of the wire, being fouth poles, they cannot attract each other, but, on the contrary, they will repel; and therefore the wire will not adhere to the key: And if the key of $\operatorname{fig} .17 . \mathrm{n}^{\circ}$ 4. with the wire hanging to it, be gradually carried out. ward, beyond the north pole of the magnet, and then brought down till its lower end be level with the pole, the wire will drop off.

There is, however, one exception to the propofition. If the key in fig. 7. with its appending wire D , be gradnally carried from any of the fituations $2,3,4$, or 5 , toward the middle of the magriet, the wire will drop off whenever it arrives very near the middle. If we fuppofe a plane to pafs through the magnetic centre A, perpendicular to the axis (which plane is very properly called the magnetic equatorial plane by Gilbert), a flender piece of iron, held anywhere in this plane, acquires no fenfible magnetifm. It gives no indication of any polarity, and it is not atracted ly the maynet. It is well known, that the activity of a loaditone or magnet refides chiefly in two parts of it, which have been called its poles; and that thofe are the beft magnets or loadtones in which this activity is leaft diffuled; and that a certain circumference of every loadfone or magnet is wholly inactive. When a loadtone or magnet of any fhape is laid among iron fitings, it collects them on two parts only of its furface; and between thefe there is a fpace all round, to which nie) filings attach themfelves.

We prefume that the reader already explains this appearance to himfelf. Many thing thew a contrariety of action of the two poles of a magniet. Wre have already obferved, that the north pole of a ftrong magnet will produce a ftronss northern poldrity in the remote end of a fmall fteel bar; and, if it be then applied near to that end ir the oppofite direction, it will ceflroy this polarity, and produce a fouthern polarity. In what. ever thefe actions may confit, there is fo nething not only difierent but oppofite. 'They do not blend their effens, as the jellow and blue making rays do in producing green. They oppofe each other, like mechanical preflures or impulfions. We have every mark of mechanical action; we liave local motion, though unfeen, except in the gradual progreffion of the magneti. cal faculties along the bar; but we have it diftinctly in
the ultimate effect, the approach or recefa of the marnets: and in thefe phenomena we fee plainly, that the forces, in producing their effests, act in oppolite directions. Whatever the internal invifi?le motions may be, they are compofed of motions whofe equivalents are the fame with the equivalents of the ultimate, external, ferrfible motions ; therefore the internal motions are oppo. fite and equal if the fenlible mutions are fo, and converfely.

Adopting this principle, therefure, that the actions of the two poles are not only different but oppotite, it follows, that if they are alfo equal and act fimilarly, each muift frevent the action of the other; and that there will be a mechanical equilibrium - it may even be called a magnetical equilibrium. Therffore if every part of a nender rod, or of a thin plate of iron, lie in the planc of the magnetic equator, the masnetic flate (in what. ever it may confit) cannot be produced in it. It will eshibit no magnetifin ; have no polar faculties ; and we can fee no reafon why it thould be attiafied by the magnet, or fhould attract iron. We muft not forget to obferve in this place, that iron in a flate of incandefeince acquires no magnetifm by juxtapofition. We have already remarked, that iron in this fate does not affect the magnet. If a bar of red hot iron be fet near a mariner's needle, it does not affećt it in the fmallelt degree till it almoft ceafes to appear red hot in day-light, as has been obferved by Dr Gilbert. All actions that we know are accumpanied by equal and oppofite re-actions; and we thould expect, what really liappens in the prefent cafe, namely, that red hot iron thould not be ren-dered magnetical and attractable.

There is a very remarikable circumftance which ac- Magnetitr. companies the whole of this communication of magne no: impairtifm to a piece of iron. It dues not impair the powerel by cunsof the magnet ; but, on the contrary, improves it. "I'bis municafact was chferved, and particularly attended to, by Dr tion. Gillert. He temarks, that a magnet, in the hands of a judicions philofopher, may be made to impart more marynetifm than it pulfefles to each of ten thoufand bars of fleel, and that it will be more vigorous than when the operations began. A magget (fays he) may be fooile. 1 by injudicious treatment with other magnets, bint never can touch a piece of common iron without being improved by it. He gives a noore direct proof. Let a madrate cary as heavy a lump of iron as poffible by its lower pole. Bring a great lumip of iron clofe to its upper pole, and it will now carry more. Let it be loeded with as much as it can carry while the lump of iron touches its upper pole. Remove this hump, and the loat will infantly drop off. But the following experi. ment thews thi truth in the moft convincing manner:

Let NAS (fg. 11.) be a magnet, not very large, nor of extrene harinels. Let CD be a flrong iron wire, hanging perpendicularly from a loook by a fiort thread or losp. The magnet, by its action on Cl , renders D a north pole and C a fouth pole, and the polarity of D's magnotifin fits it for beito attracited. Let it aflume the pofition $\mathrm{C} c$, and let this be very carefvily marked. Now bring a great bar of iron s B n near to the other end of the in?gnet. We fall inlt?ntly pescrive the wire (:e approach to the fouth pole of the unghet, taking a pofition Cf. Whithaw the bar of iron, and $\mathrm{C} f$ will fall back into the poftion C e. As we bring the iron bar gradually nearer to the magnet,
the wire will deviate farther from the perpendicular, and when the bar B touches the magnet CD , will fart a great way forward. It is alfo farther to be obferved, that the larger the bar of iron is, the more will CD deviate from the perpendicular.

Now this muft be afcribed to the action of the bar on the magnet. For if the magnet be removed, the bar alone will make no fenfible change on the pofition of the wire. We know that the bar of iron becomes magnetical by the vicinity of the magnet. If we doubt this, we need only examine it by means of a piece of iron or a mariner's needle. This will thew us thats has become a fouth, and n a north pole. Here then are two magnets with their diffimilar poles fronting each other. In conformity with the whole train of magnetical phenemena, we mult concluce that they attract

This is a moft important circumftance in the theory of magnetifm. For it fhews us, that, in rendering a piece of iron magnetic, there is no material communica- tion. There is no indication of the transference of any fubflance refiding in the magnet into the piece of iron ; nor is there even any transference of a power or quality. Were this the cafe, or if the fubftance or quality which was in A be now transferred to B, it can no longer be in A ; and therefore the phenomena refulting from its prefence and agency muft be diminifhed. We mufl fay that the magnet has excited powers inherent, but dormant, in the iron; or is, at leaft, the occalion of this excitement, by difturbing, in fome adequate manner, the primitive condition of the iron. We muft alfo fay, that the competency of the magnet and of the iron to produce the phenomena, is owing to the fame circumflances in both; becaufe we fee nothing in the phenomena which authorifes us to make any diftinction between them. Whatever therefore caufes one magnet to attract another, is alfo the reafon why a piece of iron in the neighbourhood of a magnet attracts another piece of iron; and we muit fay that the caufe of polarity, or the origin of the directive power, is the fame in both. Now we underftand perfeelly the directive power of a magnet, as exerted on another magnet. We fee that it arifes from a combination and mechanical compofition of attractions and repulfions. It mult be the fame in this magnetifm now inherent in the iron. The piece of iron directs a mariner's needle, as a magnet would direet it ; therefore, as there is fomething in a piece of iron which now attracts fomething in another piece of iron, fo there is fomething in the firft which repels fomething in the laft.

It may indeed be faid that it is not a piece of iron, by a curious by our iron magnetifed by vicinity to a magnet. This fact.
route. This piece of iron will, in every fittation, affume the very fame pofition or attitude which the real magnetical needle would affume if in the fame place, and it will ofcillate precifely in the fame way.

Here then it is plain, that there is no diftinction of power between the magnetifm of the iron and of the real needle. To complete the proof: Inftead of approaching the magnet with this iron needle, bring it into the vicinity of a piece of iron, which is iffelf magnetical only by vicinity to a magnet, it will arrange itfelf juft as the real needle would do, with the fole difference, that it does not indicate the kind of polarity exifting in the extremities of the iron, becaufe either end of it will be attracted by them. And this circumftance leads us to the conficeration of the only diftinction between the magnetifm of a loadftone or magnet and that of common iron.

The magnetifm of common iron is momentary, and Magnetifm therefore indifferent; whereas that of a magnet is per-of iron is manent and determinate. When iron becomes magne tranfitory tic in the way now mentioned, it remains fo only ${ }_{\text {rent }}$ and but while the magnet remains in its place; and when that is that of removed, the iron exhibits no figns of magnetifm. maguets Therefore when the north pole of a magnet has produ- is durable ced a fouth pole in the nearelt end of an iron wire, and minate. a north pole at its remote end, if we turn the magnet, and prefent its fouth pole, the neareft end of the wire inftantly becomes a north pole, and the other a fouth pole; and this change may be made as often, and as rapidly, as we pleafe. This is the reafon which made us direct the experimenter on the iron needle to begin his operation, by placing the end marked for a fouth pole next to the north pole of the magnet. It becomes a real fouth pole in an inftant, and acts as fuch during its ped regrination round the magnet. But in any one of its fituations, if we turn it half round with the finger, the end which formerly turned away from a pole of the magnet, will now turn as vigoroufly toward it. Therefore, in carrying the iron needle round the magnet, we directed the progrefs to be made in a continuous line, to avoid all chance of miftaking the polarities.

For all the reafons now adduced, we think ourfelves Mac ${ }^{43}$ obliged to fay, that the magnetifim produced on com- Tism or mon iron by mere juxtapofition to a magnet, is gene. Invecrated without any communication of fubftance or faculty. The power of producing magnetical phenomena is not foared between the magnet and the iron. We flall call it induced magnetism; magnetism by induction.

We have faid that induced magnetifm of common iron is quite momentary. This mult be underttood with careful limitations. It is frictly true only in the cafe of the finelt and pureft foft iron, free of all knots and hard veins, and therefore in its moft metallic ftate. Iron is rarely found in a fate fo very pure and metallic; and even this iron will acquire permanent and determinate magnetifm by induction, if it has been twifted or hammered violently, ahthough not in the magnetic direction; alfo the changes produced (we imagine) on the pureft iron by the action of the atmofphere make it fufceptible of fixed magnetifm. But the magnetifm thus inducible on good iron is fcarcely fenfible, and of no duration, unlefs it has lain in the neighbourhood of a magnet for a very long while.

What has now been faid of common iron, is alfo true of it when in the flate of foft Ateel.

But any degree of temper that is given to fteel makes a very important change in this refpect. In the firft place, it acquires magnetifm more nowly by induction than an equal and fimilar piece of common iron, and finally acquires lefs. Thefe differences are eafily examined by the deviations which it caufes in the mariner's need!e from the ragnetic meridian, and by its attraction.

When the inducing magnet is remover, fome magnetifm remains in the fteel bar, which retains the polarity which it had in the neighbourhood of the magnet.

Steel tempered to the degree fit for watch fprings acquires a flong magnetifm, which it exhibits immediately on the removal of the magnet. But it diffipates very falt ; and, in a very few minutes, it is reduced to lefs than one half of its intentity while in contact with the nagnet, and not two thirds of what it was immediately on removal from it. It continnes to diffipate for fome days, though the bar be kept with care ; but the d:ffipation diminifhes faft, and it retains at leaft onethird of its greatelt power for any length of time, unlefs carelefsty kept or injudicionfly treated.

Steel tempered for ftrong cutting tools, fuch as chifels, punches, and drills for metal, acquires magnetifm fill more flowly by induction, and acquires lefs of it while in coutact with the magnet ; but it retains it more firmiy, and finally retains a greater proportion of what it had acquired.

Steel made as hard as poffible, is much longer in acguiring all the magnetifm which fimple juxtapofition can give to it. It acquires lefs than the former; but it retains it with great firmnefz, and finally retains a much greater proportion.

Such ores of iron as are fufceptible of magnetifin, are nearly like hard fteel in thefe refpects; that is, in the time neceffary for their greatefl impregnation, and in the durability of the acquired magnetifm. They ciffer exceedingly in refpect to the dergree of power which they can attain by mere juxtapofition, and the varicties feem to depend on heterogeneous mixture. We mutt obferve, that few ores of iron are fufceptible of magnetifm in their natural tlate. The ordinary ores, confiting of the metal in the fate of an oxyd, and com. bined with fulphur, are not magnetizable while remain. ing in that fate. Moft ores require roafting, and a fort of cementation, in contact with inflammable fubflances. Thi matter is not well underftond ; but it would feem that complete metallization is far from being the moft favourable condition, and that a certain degree of nxyda. tion, and pethaps fome other compofition, yet unknown, make the beft loadfones. But all this is extremely obfcrre. The late Dr fowin Kuight made a compolition which acquired a very ftrong and permanent magnetifro, but the fecret died with him. Dr Gilbert fpeaks of fimilar compofitions, in which ferrugrineous clays were ingredients; but we know nothing of the fate of the metal in them, nor their mode of acquiring magnetifm.

It is of peculiar importance to remark that the acquilition of magnetifm is gradual and progreffive, and that the gradation is the more perceptible in proportion as the fteet is of a harder temper. When a magnet is brought to one end of a bar of common iron, its remote extremity, unlefs exceedingly long, acquires its utmoft magnetifm immediately. But when the north pole of Suppl. Voz. II. Part I.
a magnet is applied to one end of a bar of hard fleel, the part in contaet immediately becomes a fouth pole, and the far end is not yet affected. We ouferve a north pole formed at fome diftance from the contact, and beyond this a faint louth pole. Thele gradually advance along the bar. 'The temote extremity becomes firft a faint fouth pole, and it is not till after a very loner while (if ever) that it become's a fimple, vigorous, north pole. More frequently it remains a diffufed and fechle horth pole: nay, if the bar be very long, it often happens that we have a fucceffion of north and fouth poles, which never make their way to the far end of the bar. This phonomenon was firft obferved (we think) by Dr Brook 'Taylor, who gives an account of his obfervations in the Pbilofopbical Trranfacions, $11^{\circ} 344^{\circ}$
From the acconnt we have given of thefe phenomena iron is atof induced magnetifm, it appears that the femporary tracted ons magnetifn is always fo clifinfed that the fum of the ly becaufe mutual attractions of the diffimilar poles exceeds the nagnetical. fum of the repultions between the finilit poles, and that therefore the two magnets tend to each other. This is evidently equivalent in faying, that a piece of unmagnetic irno is always attracted by a magnet. No exception has ever been oblerved to this fact; for lliny's ftory of a Theamedes, or loaditone, which repels iron, is allowed by all to have been a faible.

We think ourfelves authorifed to fay that this attraction of the luadnone for iron, or this tendency of iron to the loadflone, is a fecondary phenomenon, and is the conferquence of the proper difpofition of the induced magnetifm. The proofs already given of the compound nature of this phenomenon, namely, that it arifes from the excefs of two attractions above two repultions, need (we imagine) no addition. But the following confider. ations place the matter beyond doubt :

1. The magnetifin of the two poles is evidently of an oppofite nature; the one repelling what the other attracts. If the one attracts iron, therefore, the other fould repel it. Buc each pole, by inducing a magnetifin oppolite to its nwn, on the neareft end of the iron, and the fame with its own on the romote end, and its action diminifting with an increafe of diftance, there muft always be an excefs of attraction, and the iron mult be attracted.
2. Each of the magnets A and B, in either of the politions reprefented in fig. I2. would alone attract the piece of common iron C. But when placed together, the fouth pole of A tends to render the upper end of C a north pole; while the north pole of 13 tends to make it a fouth pole. If their actions be nearly equal, the weight of C cannot be fupported by the mignetifm induced by any difference of action that may remain. While C is hanging by B alone, let A be gradually brought near; it gradually dellroys the action of the north pole of B , fo that C gradually lofes its mignetifin and polarity, and its weight prevails.
3. In all thofe cafes where the induction of magnetifm is now, the attraction is weak in proportion. 'This is particularly remarked by Dr Gilbe1t. If we take pieces of common iron, and of feel of different tempers, but all of the fame fize and forrn, we fhall find that the iron is much more ftrongly attracted than any of the reft, and that the attraction for each of them is weaker in proportion as they are harder. This diverfity is fo accurately obferved, that when the piece is thoroughly
fufcep.

MAGNETISM.

fufceptibie of magnetifm, we can tell, with confiderable jrecifion, what degree will be ultimately acquired and how much will be finally retained. Alfo, the attraction of the magnet for any of thofe pieces of fteel increafes exactly in proportion as their acquired magrue. tifm increafes.
4. An ore of iron incapable of acquiring magnetifm is not attracted by a maguet. But we know that, by cementation with charcoal duft, they may be rendered fufceprible of magnetifm. In this ftate they are attracted. It is an univerfal fact, that any fubftance that is attracted by a magnet may be rendered magnetical, and that none elfe can. We have already obferved that red hot iron is not attracted; nor does it acquire any directive power while in that Itate. From all this we muft conclude, that the previous induction of magnetifm is the mean of the obferved attra?ion of magnets for iron, and that this is not a primary fact in magnetifm.
'Thefe oblervations alfo complete the proof that magnetic attraction and repulion are equal at the fame diftance, and follow the fame law. Dr Gilbert feems to think, that the repulfion is always weaker than the attraction; and this is almo? the only miftake in concep. tion into which that excellent philofopher has fallen. But it only requires a fair comparifon of facts to conyince a gooil logician, that fince, in every cafs, and at every diftance, either pole of a magnet attracts either end of a piece of common iton, it is impoffible that one of thefe forces can exceed the other. It might be fo, were it not that induced magnetifm is durable in proper fubftances. And if we take magnets which have been made fuch by induction, and prefent them to each other with their fimilar poles fronting each other, they never fail to repel each other at conliderable diftances, and even at very fmall diffances for a few moments; and this is the cafe whichever poles are next each other. 'This cannot be on any other fupp fition. Cafes would occur of polarity without attraction, or of attration without polarity. Such have never been feen, any more than the Theamedes, always renelling iron.

Let a great number of fmall oblong pieces of iron be lying very near each other on the furface of quickfilver. Iring a ftrong magnet into the midtt of them. It im. mediately renders them all magnetical by induction. The one neareft the north pole of the magnet immediately turns one end toward it, and the other end away from it. The fame effeet is produced on the one that is juft beyond this nearef one. Thus the remote end of the firit becomes a north pole, and the neareft end of the fecond becomes a fouth pole. Thefe, being vary near each other, mult mutually attract. 'The fame thing may be faid of a third, a fourth; and fo on. And thus it appears, that not only is magnetifm inluced on them all, but allo, that the magnetifin of each is fo difpoled, that both ends of it are in a Itate of attrastion for the ends of fome of its neighbours ; and that they will thercfore arrange themfelves by coalefcence in fome particular manner. Should a parcel of them chance to be \{anding with their centies in a magnetic curve, with their heads and points turned in any ways whatever, the moment that the nagnet is bruught among them, and fet in the axis of that magactic carve, the whole pieces of this row will inttanty turn towards each other, and their ends will athere together, if they are near enough; otherwife they will only point toward each
other, forming a fet of tangents to the magnet:c curve, reaching frum one pole of the magnet in the other.

Oi. fuppofe a valt number of fmall bits of iron, each fhapud like a grain of balley, a little obleng. Let them be fcattered over the furface of a table, fo near each other as juft to have room to turn round. I.et a mag. net be placed in the midit of them. 'They will all have magnetilm induced on them in an inftant; and fuch as are not already touching others, will turn round (becaufe they reft on the table by one point only), and each will turn its ends to the ends of its neighbours; and thus they will arrange themfelves in curves, which will not differ greatly fron true magnetic curves (becaufe each grain is very thort), iffuing from one pole of the magnet, and terminating in the other.

Dots not this fuggeft to the rellecting reader an ex. planation of that curious arrangement of iron filings round a magnet, which has fo long entertained and puzzled both the philofophers and the unlearned, and which has given rife to the Cartefian and other theories of magnetifm? The particles of iron filings are little rags of foft iron torn off by the file, and generally a litule oblong. Thefe muft have magnetifm induced on them by a magnet, and, while filling through the air from the hand that ftrews them about the magnet, they are at perfect liborty to arrange themfelves magnetically ; and muft therefore fo arrange themfelves, forming on the table curves, which differ very little indeed from the true magnetic curves. Suppofe them fcattered about the table before the magnet is laid on it. If we pat the table a little, fo as to throw it into tremors, this will allow the particles to dance, and turn round on their points of fupport, till they coalefce by their ends in the manner already deferibet.

All this is the genuine and inevitable confequence of what Dr Gilbert has taught us of induced magnetifin. It muft be fo; and cannot be otherwife. This curious arrangement of iron filings round a magnet is therefore not a primary faft, and a foundation for a theory, but the refult of principles much more general.

Moft of our readers know that this difpofition of 240 maks iron filings has given rife to the chief mechanical theo- on the theries which have been propoled by ingenious men for the orie by imexplanation of all the phenomena of magnetiim. Ant ulion. invifible fluid has been fuppofed to circulate through the pores of a magnet, 1 unning along its axis, iffuing from one pole, ftreaming round the magnet, and enter. ing again by the other pole. 'i'his is thought to be indicated by thofe lines formed by the filings. The Itream, running alfo through them, or around them, arranges them in the direction of its motion, juft as we obferve a ftream of water arrange the flote grafs and weeds. It would require a volume to detail the different manners in which thofe mechanicians attempt to account for the attraction, repulfion, and polarity of magnetic bodies, by the mechanical impulfion of this fluid. Let it fuffice to fay, that almolt every ftep of their theories is in contraliction to the acknowledged laws of impullion. Nay, the whole attempt is againit the firlt rule of all philofophical difcuffion, never to admit for an exolanation of phenomena the agency of any caufe which we do not know to exitt, and to operate in the very phenomenon. We know of no fuch fluid; and we can demonftrate, that the genuine effects of its impulfion would be totally unlike the phenomena
nomens of magnetifm. But the proper refutation of thefe theories :would fill volumes. L.et it fuffice (and to every logician it will abundantly fuffice) to remark, that this phenomeion is but a fecondary fact, depending on, and refulting from, principles much more general, viz the induction of magnetifm, and the attraction of diffimilar, and repulfion of fimilar, polcs.

The above explanation of the curions difpofition of iron filings round a magnet, occurred to the writer of this article while fudying natural philofophy, on fecing the Profeffor exhibit Mr' Henfhaw's beautiful experiment in proof of terreftrial magnetifm *. He at that time imagined himfelf the author, and promifed himfelf fome credit for the thought. But having feen the Pbyriologia Novia de Magnete by Di Gilbert, he fomnd that it had not efcaped the notice of that fagacious philofopher ; as will appear palt difpute from the following paffa re, as well as fome others, lefs pointed, in that work: "Magnetica frufta (that is, fubftances fufceptible of magnetifin) bene et convenienter intra vires pofita, mutuo cohærent. Ferramenta, prefente magnete (etiamfi magnetem non attingant), concurrunt, folicité fe mut uo querunt, et amplexantur, et, conjuncta, quafiferruminantur. Scobs fcrrea, vel in pulverem redacta, fiftulis impofita chartaceis - fupra lapidem meridionaliter locata, vel propi:s tantum admota, in unum coaleicet corpus; et futito tam multx partes concrefcunt et combinantur; ferrumque aliud affectat conjuratorum turma et attrahit, ac fi unum tantum et integrum effet ferri bacillum ; dirigiturque fupra lapidem in feptemtriones et meridiem. Sed cum longius a magnete removeantur (tanquam foluta rurfus) feparantur, et diffluunt fingula corpufcula." B. ii. c. 23.

Mr Iepinus allo had taken the fame view of the fub: See $\left\{\right.$ job ject ${ }^{*}$. It is alfo very clearly conceived and exprefled by the celebrated David Gregrory, Savilian Profeflor of aftronomy in the Univerfity of Oxford, in a M.S. volume of notes ant commentaries, written by him in 1693, on Newton's Principia, and ufed by Newton in improving the fecond edition. The M. S. is now in the library of the univerfity of Edinburgh. Gregory's words are as follow : "Mihi feniper dubium vifum eft num magnetica virtus mechanicé, i. e. per impulfum, producatur. Mirum eft, eflluvia, qux ferrum agitare valent, bracteas aureas interpgititas ne vel minininum a loco movere. Lucretii et Cartefii theoriam, de furgato internedio aëre, refutat experimentum infra aquam infitutum Sulci in limatura ferri, magneti in plano cujuf. vis meridiani circumpyfita, non funt ab efflaviis fecundum ihlos canalas motis, fed ex inde, quod ipfa ramenta, magnetice excitata, Sefe fecundum longitudinem et fecundum polos dijponunt. Ex altera vero parte exinde quod vis magnetica, interveniente flamma aut calore, interrumpatur, quod virga ferrea, vel diuturno fitu perpendiculari, vel in eo litu frigefcendo, virtutem magneticam a tellure acquirat, ut nos docet perfpicaciffimus Gilbertus. Quod mallei fuper incudem ictu forti ad alterum extremum, virtutem acquirat magneticam ; quod ictu forti vel faltem fortiori ad alterum extremum poli perinutantur, ut qui prius feptemtriones refpiciebat nunc aultrum refpicit ; quod ictu forti ad medium, virtutem
illam prorfus amittat. HYec inquam, et fimilia, mechanicam (jus qualitates ortum arguunt. Hngenius, proter gravitatem, etiam inagneticam, et electricam virtutem, alialque plures expecimento novit vires naturales, ut mihi ipfi narravit hac eftate anni 1693 . Qualis ut hæe forlitan quod cymba papyracea, prope labra vafis aquam, cui innatet, continentis, pofita, labrum viciriffimum continuo, et cuin impetu petat (A)." Nat. MS. in Prop. 23. ii. Prin.

Not only the mere 48 Not only the mere arrangement of the filings in curve Filings are
lines follows of neceffity from the properties of induced we kly atinagnetifm, but all the fubordinate circumftances of this ${ }^{\text {tradted. }}$ phenomenon are included in the lame explanation. By continuing to tap the table, and throw it into tremors, the filings are obferved to appıoach gradually, but very nowly, to the poles of the magnet. Each particle is a very fmall temporary magnet. The attractive power of the great magnet, $\overline{m-p}-\overline{n-q}$, is therefure extremely fmall in proportion to its directive power, $\overline{m+p}$ $-\overline{n+q}$. And we obferve that the accumulation of the filings round the poles of the magnet is fo much the flower as the filings are finer.

If a paper be laid above the magnet, and the filings Curious be fprinkled on it, we obferve them to conftipate along tat. its edges, while none remain immediately above its fubftance; they are all beyond, or on the outfide of its outline, and they are obferved not to be lying flat on the paper, but to be ftanding obliquely on one posint. They move off from the paper immediately above the nagnet, becaufe they repel each other. They fand obliqucly from the edges, becaufe that is the direction of a magnetic meridian at its parting from the pule. If the magnet be at fome diftance below the paper, then tapping the paper avill caufe the filings to move away from the magnet laterally. This fingular and unexpected appearance is owing to the combination of gravity with the magnetic action. A particle, fuch as n s (ifg. 13.). refts on the paper by the punit n, which is a temporary north pole (S loeing fuppofed the fouth pole of the magnet). The particle takes a polition n s nearer to the horizon than the polition $n o$, which it would take if its centre of gravity b were fupported. The polition is fuch, that its weight, aeting vertically at b, is in equilibrio with the magnetic repultion $s d$, exerted between S and s. When the paper is tapped, it is beaten down, or withdrawn from n, and the particle of iron is left for a moment in the air. It therefore turns quickly round b, in order to affume a pulition parallel to $n o$, and it meets the paper, as that rifes agaia after the ftroke, in a point farther removed from the magnet, and again defeends by its weight (rurning round the newly fupported point n), till it agam takes a pofition parallel to $n \mathrm{~s}$, but farther off, as reprefented by the dotted line. Thus it travels gradually coutwards foom the magnet, appearing to be repelled, althongh it is really attracted by it. If the magract be held above the paper, at a little diftance, the filings, when we repeatcdly pa the paper, gradually collect into a heap under it. Tinio will apptar very plainly to one who conliders the lituation of a particle in the mamer now explained.
(A) Perhaps it may be proper to oblenve, that I)r Gregory expreffes his differing in his opinion from Newton about magnetifm. Newton, in this propofition, thinks, that the law of magnetic action approeches to the inverfe triplicate ratio of the dillance3. Dr Gregory invalidates the argument uled by Newton.

The curve lines formed by very fine filings approach very nearly to the form of the primary curve which in. dicates the law of magnetic action in the way already explained. If the magnet be placed under water, and if filings be fprinkled copicufly on the furface of it from a gauze fearce, held at fome diftance above it, the refiftance to their motion through the water gives them time to arrange themfelves magnetically before they reach the bottom, and the lines become more accurate. Bet they werc fo much deranged by any method that we could take for removing the water, and meafuring them, that we were difappointed in our expectations of ubtaining a very near approximation to the law of action.

We took notice of fome very fingular phenomena of a compars needle in the neighbourhood of tivo magnets, and we obferved that, in this cafe alfo, the needle was always a tangent to a curve of another kind, and which we called fecondary and compound magnetic curves. Thefe are produced in the fame way, by flrewing iron filings round the magnets. Many reprefentations have been given of thefe curves by different authors, particularly hy Mufchenbrock, in his $1:$:fais de Phyfique ; and by Fufs in the Commint. Petropolit. Great ule has been made of thefe arrangements of filings by two magnets in the theorics of magnetifm propofed by thofe who infitt on explaining all motion by impulfe. When the diffimilar poles of two magnets is and B (fig. 14.) face each other, the curves formed by the filings confiderably refemble thofe which furround a fingle magnet, and give the whole fomewhat of the appearance of a magnet with very diffufed poles. The arranging fuid, which flreams from one pole of a magnct, is fuppofed to meet with no obflruction to its entry into the adjoining pole of the other magnet, but, on the contrary, to be impelled into it ; and thereforc (fay the propofers) it circulates round both ato one magnet, and by its vortex brings the magnets together; which phenomenon we call the attraction of the magnets. But when the fimilar poles front each other ; for example, the poles from which the arranging fluid iffues, then the two freams meet, obftruct tach other, accumulate, and, by this accumulation, caufe the magnees to recede from each other; which we call the repulforn of the magnets. This is the only explanation of this kind that can make any preten.fions to probability, or indeed that can be conceived. For how the free circulation in the former cafe can bring the two magnets together, no perfun can form to himfelf any co:sception. We fee nothing like this produced by any voitex that we are acquainted with. All fuch vortices caufe bodies to feparate. But even this explanation of indgnetic :epulfion is ioadmifitible. It will not apply to the repulfion of the receiving poles; and the phenomena of the filings are inconfiftent with the notion of accumulation. The Elings indeed accumulate, and they look not unlike two ftreams which op. pofe each other, and deflect to the fides (See fig. 15.): Bus, unfortunately, Ey tapping the paper gently, the filings do not move off from the magnets, but approach them much fafter than in any other experiment. The phenomenon receives a complete and patpable explanation from the principles we have eftablifhed. Both magnets concur in giving the fame polarity to every particle of the filings. Mhus, if the foonting poles are north poles, each particle has its neareft end made a vigorous fouth pole, and its remote end a north pole; and
it is therefore Atrongly attracted towards both magnets white it is arranged in the tangent to the fecondary curve of that clals, which croffes the others nearly at right angles.

Since it is found, that the magnetifm, even of natu-Maznets ral loadflones and hard fteel, and fill more thofe of fof- munt affeen ter tempered feet, are continually tending to decay; each uther. and fince we find that it may be induced by mere approach to a magnet ; and fince we know that magnets may oppofe each other in producing it-it is reafonable to fuppofe, that when a piece of iron has acquired a night, though permanent magnetifm, by the vicinity of a magnet, a magnet applied in the oppofite direction will deftroy it, and afterwards produce the oppofite magnetifm.

Accordingly, we may change the poles of foft magnets at pleafure.

Farther ; fince we find that loadifones and hard tempcred fteel bars are diftinguifhed frum foft ones only by the degree of obflinacy with which they retain their prefent condition, we thould alfo expcet that hard mag. nets will even affect each other. It inuft therefore happen, that a powerful magnet applied to a weak onc, fo that their Imilar poles are in contact. fhall weaken, deAroy, and even change the magnetifm of the wcaker. Dr Knight's famous magazinc of magnets enabled him to change the poles of the greateit and the ttrongeft matural loadforne, or artificial magnet, that could be given him, in the fpace of one minutc.

We now fee clearly the reafon why magnetic repulfion is weaker than attraction at the fane diftance. When magnets are placed with their fimilar poles fronting each other, in order to make trials of their repul. fion, they really do weaken each other, and are not in the fame magnetical condition as before. For fimilar reafons, we fee how experiments with magnets attracting each other rather improve then, and make their attractive powers appear greater than they are. All thefe effects muft be moft remarkable in foft magnets, efpecially when long.

We alfo fee, that the obferved law of attraction and repultion between two magnets mult be different from ved luw the real law of magnetic action. For, in the experiments made on attraction at different difances, beginning with the greateft diftance, thie magnetilm is continually increalng, and the attraction will appear to increafe in a higher rate than the jult one: the contrary may happen, if we begin with the fmaller ditances. The relalis of experinients on repulfion mult be itill more erroneous ; becaufe it is eafier to dimini $贝$ any accumulation which required an exertion to produce it, than to pufh it till faither.

We have now a complete explanation of the remark. M -gnet able fact, that the induction of magnetifm does not improve weaken the magnet employed; but, on the contrary, by induimproves it. The magnctifm induced on the iron caufes it to act on the magnet employed in the very fame manner that a permanent magnet of the fame fhape, fize, and ftrength, would do. Nay, it will have even a greater effect ; for as it improves the magnet, its own induced magnetifin will improve ; and will therefore fill farther improve the magnet.

Hence it is, that, in whatever manner a magnet touches a piece of iron, it improves by it. It may be hurt by a magnet in an improper pofition; but it always puts common iron into a flate which increares its own magnetifm.
magnetifm. This has been known as long as magne. tifin itfelf; and the ancients conceived the notion, that the magnet fomehow fed upon the iron (B).

We thirk that thefe obfervations authorife us to fay, that in reducing a loacfone into a convenient fhape, as much as peffible of the nperation fhould be performed by grinding them with emery, in cavities made in large blocks of bammered iron. The magnetifm induced on the iron muit be favourable to the confervation of that in the loadtone; which, we are perfuaded, is rapielly diffipated by the tremors into which this very elaftic fubfance is thrown by the grinding with coarfe powders in any mould but iron. We imagine, that the cutting off flices by the lapidarics wheel has the fame bad ef. feet.

Not only will a magnet lift a greater lump of iron ty its north pole, when another lump is applied to its fouch pole, but it will lift a greater piece of iron from an anvil than from a wooden table: for the magnet induces the properly difpofed polarity, not only in the iron which it lifts, but alfo in the anvil, or any piece of iron immediately beyond it. This is fo difpofed as to ill. creafe the magnetifm of the piece of iron between them; and therefore to increafe their attraction. The mag. netifm induced on the anvil is alfo in part, and perhaps chiefly, induced by the intervening iron. Thefe experiments are extremely variable in their refults. Sumetimes a fmall magnet will pull an iron wire from a large and ftrong one. Sometimes this will be done even by a piece of unmagnetic iron; and the refults appear quite capricious. But they are accurately fixed, depend. ing on the induced compound magnetifm. Mr \nVdash pinus has flated fome of the more fimple cafes, in which we can tell which magnet hall prevail. But the unfolding eren of thefe cafes would take a great deal of room, and mult be omitted here. Befides, we are too imperfectly acquainted with the degree of magnetifm induced on the various parts of an iron rod, and the degree of magnetifm inherent in the various parts of the magnets, to be able to fay, with certainty, even in thofe fimple cafes, on which lide the fupericrity of attraction will remain.

We may now proceed to deduce from this theory (for fo it may jultly be called, fince all is reduced to one fact) the procefs for communicating magnetifm to bodies fitted for receiving and retaining it ; that is, the method of making artificial magnets. We thall not employ much time on this, hecaufe the moft approved methods have been delivered at length in the aiticle Magnetism of the Encycloparlia Britannica; and therefore we fhall juft make fuch obfervations on thein as ferve to confirm, or to perfe? them by the theory. We acknowledge, that we do not know the internal procefs by which magnetifm is induced, nor even in what this magnetifm confifts. All that we know is, that the bringing the pole of a magnet near to any magnctifable
matter, produces a maguetifm of the kind oppolite to that of the pole employed. We know that this is the cafe with both poles, and that it obtains at all the difances where ragnctifm is obferved. We know that the action of one pole is contrary to that of the other ; that is, it counteracts the other, prevents it from producing its effect, and deftroys it when already produced: and we know, that the pioduction of thefe effects refembles in its refult the protrufion of fomething fluid through the pores of the body, conllipating it in all remote parts; as if the virtue of a pole iclided in this moveable matter. This is nearly all that we know of it ; and by thefe facts and notions we muft judge of the propriety and effecz of all the proceffes for magnetifing bodies.

The moit fimple method of magnetifing a fecl bar, is :o apply the noth pole of a magnet to that end which we wifh to render a fouth pole. Attention to thie effects of this application is very inftrutive. Have in readinefs a very fmall compafs needle, turning on its pivot. It fhould not exceed laalf an inch in length, and fhould be as hard tempered as poffible, and ftrongly impregnated. Imniediately after the application of the magnet, carry the needle along the fide of the bar. If the bar be long, and very hard, we flall obferve is fouth polarity at the place of contaf: ; a noth polarity at a fmall diftance from it ; beyond this a weak fouth polarity; then a weak and diffuled noth polarity, \&c.: toward the remote end the polarity will be found very uncertair. 'ihe fame thing may be difcovered by laying a ftiff paper on the bar, and fprinkling ison filings over it, and then gently tapping the paper, to make them arrange themfelves in curve liuts; which will point out the various poles, and fhew whether they are diffufed or conftipated. It is very amufing and inftructive to obferve the progrefs of this impregnation. In a few minutes after the firf application of the magnet, we fhall perccive the flate of magnetifm very fenfibly charged. The nortla pole will be farther from the magnet, and will be more diflinct ; the fouthern polanity will alfo be protruded, and may appear for a moment at the remote extremity. 'Ilie change advances; but the progrefs is more flow, and at laft is infenfible. When the bar is not harder than the temper of a cutting tool, the procefs is foon over; and if the bar is but fix or eight inches long, the remote end thews the north polarity in a very few minutes. When the bar is very hard, the progref ${ }_{3}$ of inpregnation is greatly expedited by friking it fo as to make it found. If it be fufpended by a itring in a vertical pofition, and the magnet applied to its lower end, the ftriking it with a key will make it ring ; and in this way make the progrefs of magnetization very quick : but it does not allow it to acquire all the magnetifin that can be given it by a very ftrong magnet.

But this is a bad way of impregnation. It is feldom that uniform magnetifm, with only two poles, and thofe
(B) So Claudian. -." Nam ferro nurunt vitam, fcrrique viģore Vefcitur, hoc dulces epulas, hoc pabula novit Hinc proprias renovat vires, hinc fufa per artus Afpera fecretum fervant alimenta vigorem Hoc abfente perit, trifti morientia torpent Membra fame, venafque fitis confumit apertas."
Pliny fays, "Sola hæc materia (ferrum) vires ab eo lapide, accipit retinetque longo tempore, aliud apprehendens ferrum, ut annulorum catena fpectetur interdum, quod imperitum vulgus ferrum appellat vivum.

- of equal drength, can be given. Even when there are but two, the remote pole is generally diffufed, and therefore feeble. It is much improved by employing two magnets, one at each end. And if the bar is not more than fix or eight inclies long. and good magnets are employed, the magnttifm is abundantly regular. This, accordingly, is practifed for the impreguation of dipping needles, which muft not be touclied, left we diflurb the centre of gravity of the needle. But in all cafes, this method is tedious, and does not give flrong maguetilm.

The method which was ufually practifed before we had obtained a pretty clear knowledge of magnetifm, was to apply the pole of a maguet to ore end of the bar, and pafs it along to the other end, piefling moderately. This was repeated feveral times on ioth fides of the bar, always beginning the flroke at the fame end as at firtt; and, in bringing the magnet back to that end, keeping it at a diftance from the bar. The effect of this operation was to leave the end at which we began the ftroke poffiffed of the polarity of the pole em. ployed.

A general notion of the procefs may be given as follows, obferving, however, that there occur very many great and capricious anomalies. When the north pole N (fig. 16.) of the magnet A is fet on the end C of the bar CBD, a fouth pole is produced at C, and a north pole at D, when the length of the bar is moderate. As the magnet advances fowly along the bar, the fouthern polarity at C frift increafes, then diminifhes, and vanifhes entirely when N has arrived at a certain point a; after which, a northern polarity appears at C, and increafes during the whole progrefs of the magnet. In the mean time, the northern polarity firfi produced at D increafes till the magnet reacheas a certain point e, then diminifies, vanifes when the magnet reaches a certain point f; after which, a fouthern polarity appears at D , which increafes till the magnet reaches 1). Mr Brugmann, who firf attended minutely to thefe particulars (for Gilbert fpeaks of then pointedly), calls a and f points of indifference, and e the culminating point of the pole D , and i the culminating point of the pole C. Hardly can any general rule be given for the fituation of thefe points, nor even for the order in which they ftand; fo great and capricious are the anomalies in an amazing feries of experiments uarrated by Bug-- mann and by Van Swinden. Repeating the operation, and beginning at C , the northern polarity there is weakened (fometimes deflroyed), then reftored, and continually increafed during the reft of the ftroke. The fouthern poiarity at 1 is alfo firlt weakened, and fometimes deftroyed; thien reflored, and finally augmented. 'the points i, a, e, f, change their li:uations, and frequently their order.

Van Swinden has attempted to deduce fone general laws from his inmenfe lift of experinents, avoiding every confideration of a liypothefis, or the leaft conjecture by what means thefe faculties are excite?. But though we lave perufed his inveltigation with care and candor, vie muft acknowledge, that we have not derived any knowledge which ca:n help us to predict the refult of particular nodes of treatmicnt is.th any gicaier precifion than is fuggetted by a fort of common fenle, aided (or perlaps perverted) by a tague notion, that thefe energies refide in fomething, which awoids the pole of the fame nane, carrying along with it this di-
finctive energy or polaity. This conception tallies perfectly with thefe obfervations of Brusnanu and Van Swinden ; and adrrits of all the anomalies in the fituation of Bergmann's indifferent and culminating points, if we only fuppofe that this motion is obftructed by the particles of the body. We malt leave this to the re. flection of the reader, who will gucfs how, when the magnet is between C and i, this fubflance, avoiding the pole N of the magnte, efcapes below it, and groes toward the farther end. As the magnet advances, it drives fome of this back again, \&ce \&c. This is gratuitous; but it aids the fancy, which, without fome conception of this kind, has no object of fleady contemplation. We have no thought when we fpeak of the generating at C , or a, or e, a faculty of fome kind, by the exertion of the fame faculty in N. The conception is too abflracted, and much too complex. We inuft content ourfleses with knowing, that N produces a fouth pole immediatcly under it, and a north pole everywhere elfe, or endeavours to do fo. It is mnneceflary to infift longer on this method: Common ferife fhews it to be a very injudicious one.
This inetl od was greatly improved by beginning the friction at the centre. Apply the north pole at the centre or middle of the bar, and draw it over the end intended for the fouth pole. Having done this feveral times to one end on both fides, turn the magnet, applying its fouth pole to the middle of the bar, and drawing it feveral times over the end intended for the north pole.

It was fill more improved by employ ing two magnets at once, placed as in fig. 17. on the middle B of the bar, and drawing them away from each other, over the ends of it, as fhewn by the directing darts, and repeating this operation. It is plain that, as far as we underltand any thing of this matter, this procefs muft be much preferable to sither of the former two. The maynets A and \mathbb{E} certainly concur in producing a properly difpofed magrietiim on all, that lies between them; and therefore on the whole bar at the end of each Atroke. The end C muft become a north, and D a foutl pole. Still, however, as the flroke goes on to the point of indifference, each magnet tends to weaken the polarity of the parts fituated beyond it.
'This method continued to be practifed tjll about the year 1750. Mr Canton, availing himfelf of the experiments of Mr Mitchell of Cambridge, publifhed his me. thod by the nouble touch as it is called. See Monthly Revierw for 1785 .

We need not repeat what has been detailed in the Encyclopadia, Afagetism, p. 440, \&c. and fhall only make fome obfervations oa the peculiar advantages of this procetio, as prefcribed by Mitchell, Canton, and improved by Mir Antheaume, in his memoir fur les Aimans arijuciels 1760 , which was crowned by the Academy of Sisiences. (See alfo differtations on the fubject by Le Maire and Du Hamed, 1775).

There is an evident propriety in the arrangement invented by Mr Mitchell, reprefented in fig. 18. The magnetiim induced on the two pieces of toft iron AD and $13 C$ is an excellent method for ficuring every acceeffion of magnetifm to either of the bars. A grood deal devends on the proper fize and lergth of thefe pieces; and our ignorance of the interior procefs obliges us to have recurfe to experiment alone for afcertaining this. Whatever circumfances induce the flrongeft maguetifm
on thofe pieces of iron, will caufe them to produce the greateft effect on the ftel bars; and this will be indicated by a greater attraction. Therefore that diffance will be the beit which enables two bars AB and DC to lift the greateft weight hung on the piece AD or BC . When we impregnated bas whofe breadth was about one tenth of their length, and their thicknefs about onehalf of their breadth, we found, that if AD was about one fourth, or nearly one third, of $A B$, they carried more than if it was either much longer or much fhorter. Mr Antheaume's addition of the two great bars of iron E and F makes a fenlible improvement of the beginning of the impregnation, when very weak magnets are employed; but did not feem to us to be of any farther fervice on the table. This is agreeable to any theory which can be eftablifhed by what we have faid litherto.

The method of employing the magnets A and E (fig. I9), preferibed by Mitchell and Carton, is extremely judicious. The meeting of the diffimilar poles at top increafes the magnetifm of each. The two dif. finilar poles F and G, certainly tend to give a regular and proper magnetifin to the part FG of the bar which lies between them; and this is the cafe on whatever part of the bar they are placed. But each pole tends to dellioy the prefent magnetifm of what lics between it and the pole of the bar on that fide. But markthey tend to produce the detired magnetifm on what lies between them with the fum of their furces; while each tends to deflroy the magnetifm of the part without it by the difference only of their forces. Therefore, on the whole, as they are moved to and fro along the bar, and the foremoft one even made to pals over the end of it a little way, they always add to the magnetifm already acçuired. This confideration feems to enjoin fetting F and G extremely near tach other ; for this fiems to increafe the fum, and to diminifh the difference of their action. But it may be a quellion, Whether we gain more by fronsly magnetifing a very finall part during the very thort while that the magnets pafs over it, or by afting on more of the bar at ouce, and continuing a weaker action for a longer while on thio larger portion. Mr Æpinus alds another confideration de. pending on his notion of the internal procefs; but we defer this to another opportunity. The fafeft direction feems to be, to place then at the ditance which enables them to lift the greateft weight. They are then undoubtedly acting with the greateft effict.

Mr Antheaume directs to place the touching magnets as in fig. 20. for a reafon to be mentioned afterwards. $\mathrm{Mr} \mathbb{E x p i n u s}$ alfo recommends it for reafons founded on his own hypothefis. We mult fay, that, in our trials, we have found this method very fenfibly fuperior, cfpecially in the latter parts of the operation, when the refiftance to farther impregnation becomes nearly a talance for the accumulating power of the magnets; and we confiter this as no inconfederable argument for the juftice of Mr たpinus's bypothelis.
The great advantage of this method is the regularity of the magnecifm which it produces. We never find more than two poles; and when the bars are hard, ?nd of uniform texture, the polarity is very little diffufed, and feemingly confined to a very firall fpace at the very extremities of the bar. This is indeed a prodigious advantage in point of Arength. It is no lefo fo
in order to fit the magnets for experiments on the law of magnetic aetion; for the latitude which the diffufed condition of the poles gives in the felection of the points from which the diftances are to be computed, has hitherto hindered us from pronouncing on the law of maguetic action with the precifion of which we think it fully fufceptille. This method alfo is the only one by which we have been able to impregnate two bars joined end to end, confidering them as one bar. We have fometimes (though very larcly) fucceeded in this; f_{0} that when filings were ftrewed over them, the appearance could not be dillinguifhed from a fingle bar.N.B. Yet even in this cafe, in one experiment with two bars of fix inches long, treated as one, when it could not be diftinguifhed, either by the appearance of the filings, or by going yound it very near with a compafs needle, a very fmall compafs needle difcovered a neutral point, and a reverfion of polarity fimilar to fig. 14. at F , fhewing that it was rcally acting as two bars. Perhaps it muit always be fo ; and this queftion is of confiderable importance in the eftablifhment of any theory of the internal procets.

It deferves remark, that, in order to fucceed in thisattemut, a very coufiderable prefure is neceffary. We were obliged to clean the ends of the bars very careful1 y , and to force the frame of bars and foft pieces of iron ftrongly together by wedges, in the manner of a form of types. We thought that wetting the ends of the bars with pure water aided the experiment; and we are very certain that oil not only greatly obftructed it, but even fenlibly impeded the common procefs. We had put a fingle drop of oil on a pair of bars which we were touching in the common Cantonian method, that the magnets might be more cafily drawn along them; but we were furprited at finding that we could not give a ftrong impregnation. The oil undoubredly prevents the clofe contact. We found the finell gold leaf produce the fame tffect in a great degree ; as alfo talc, of which a fquare inch weighed $\frac{2}{2}_{7}^{\frac{1}{7} \text { th }}$ of a grain. We do not infer any thing like obftruction to the paffage of fomething material, but rather afcribe it to wiere diflance; although we are of opinion, that in the impreg. nation of two contiguous bars, fo that the magnetim (whatever it is) is dilpofed preci:\%y as in one bar, there is a material transference. But we thall fpeak of this in its due place.

It is not unworthy of remark, that we found bars to acquire more powerful magnetifn when pretty well polithed than when rough. But we alfo found, that bars confiderably rough acquired the firf degrees of it much more expeditiounly than thofe which are fmouth; although we never could bing them to that high degree of magnetifn that the fanie bars acquired after they had been poliniaed. We think it probable that the tremors, occafioned by the rough and harfh fuiface: of the hard Iteel, are the caufes of this plemomenon.

Some more obfervations on this method of the double touch will be made afterwards, when we confider tie hypothefie of Mr Æppinus: and we conclude the prefent fubject, by attempting to explain fome puzzing appearances which frequently occur in making artificial m. ghats.

A bar touched by a very Atrong magnet has been D ficcuitie faid Ly Mufchenbrock to be impaired by going over it 'spiaiued. with a weaker magnct. If it had been made as trong
as poffible, the weaker magnet, when paffed over it in the way practifed by Mufchenbroek, mult furf denroy part of this magnetifm ; and having done fo, it is unable to raife it anew to the fame degree of vigour.

Yet (fays. Mufchenbroek with furprife) a large bar of common iron has greatly improved the magnet. Λ very large piece of iron muft do this (efpecially if faapeci like a horfefhoe, and applied with both heels), if the bar be not already at its maximum.

It was thought wonderful, that, in the method of d.ouble touch, not only was the magnetifn of the mag. nets employed not impaired, but, beginning with two magnets, whofe power is almont infentible, and repeating the operations in the precife manner deferibed by Nlitchell or Canton, not only the bars intended to be inade magnetical, but alfo the magnets employed, may be brought to their hirhe?t poffible fate of magnetifm. This is in evident conformity to the reneral faits of in. duced magnetifm, and affords the ftrongelt proof that nothing is communicated in this operation, but that powers refiding in the bars ane excited, or bronght into action. The manipulation merely sives occafion to this

Explana. tion of the beginn ng of Savery, Canton, and $A n$. theaume's proce?s.
action, as a fpark of fire kindles a city.
'There ftill remain fome cirenm? ances of this method, as practifed by Savery, Canton, and Antheaume, which are extremely curious and impnitant.

Mr Savery had obferved a fmall bit of feel acquire very fenfible magnetifm by lyinn long in contact with the lower end of a great window bar. Telling this to a friend, he war, for the firt time, informed, that this had been long obferved, and that Dr Gilbert had made fome curions inferences from it. Mr Savery wanted fome niagnets, and was at a diftance from town. Reflecting, like a pliinfopher, on what he had heard and nbferved, he faw here a fource of magnetifm which he conld increafe, in the mamer commonly practifed in making magnets. He placed the bar AB (fig. 21.) in be magnetifed between two great bars of common iron C and D, placing all the three in the magnetical direction. He took another bar EF, and put two little pieces of iron, like the armour of a loadßtone, on its ends ; and with thofe ends he rubbed the bar $A B$, rubbing the upper half of it with the end F, and the lower with the end E. The refult of this was a very brifls magnetifm in a few minutes, which, by varions well devifed alternations, he brought to its higheft degree. His numerous experiments publifhed in the Philofophical Tranfactions in 1746 , contain much curious information, highly deferving the attention of the phitofo. phers. Mr Canton, proceeding on the fame principle, that bars of iron, which have been long in a vertical polition, acquire an efficient magnetifm, begins his operations by placing his fteel bar on the head of a kitchen poker, and rubs it with the lower end of a pair of kitchen tongs. Mr Antheaune a theres more frict. ly to the inferences from the principle of terreftrial magnetifin, and repeats precifely the previous difpofition of things practifed by Mr Savery, placing lis little fteel bar AB (fig. 22.) between two gieat bars C and D of common iron, and arranging the whole in the ragnetic direction. Then, proceeding moft judiciour. ly on the fane principle, he greatly improves the proculs, by employing two bars EF and CIH for the touch, holding them about an inch apart, inclined about 15° to the bar $A B$. It is plain, that the lower end
of each of thefe five bars is a north pole, and the upper end a fouth pole. Therefore the poles F and G concnr in giving the proper magnetifm to the portion FG of the tteel bar which is between them; and by rnbbing it with thefe poles up and down, overpafing each extremity about half an inch, he minft foon give to the bar $A B$ a regular magnetifm; weak, pertiaps, but to be afterwards increafed in the Cantonian method, on a horizontal table. In this manner did Mr Antheaume make magnets of very great farength in $1 ; 65$. Sce his Difertation already quoted.
'Thefe obfervations naturally bring us to the PHYS10-Gilber's logia Nova de Magnete et corporibus Magne. terreetrial Ticis of Dr Cilbert; a difcovery which the fagacious magnetife Kepler claffes among the greateft in the annals of fcience.

It could not be that a phenomenon fo general, and fo interefting and imnortant as the natural polarity of magnetic bodies, would be long known without exciting curiofty about its caufe. Accordingly the philofophers of the i 6 th century \{peculated much about it, end entertained a varicty of opision, if that can be called an opinion which can hardly be faid to exprefs a thonght. We have in Marfigli Ficino a fhort notice of many of thefe opinions. Some maintained that the needle was directed by a certain point in the heavens, as if that were faying more than that it always pointed one way. Others, with more appearance of reafoning, afcribed the direction to vaft marnetic rocks. But all this was without giving themfelves the trouble of trying to afcertain what fituation of fuch rocks would produce the direction that is obferved. Fraca:tcri was, if we miftake not, the firft who thonght this trouble at al! necefraty; and he obferves very fenfibly, that if thofe rocks are fuppofed to be in any place yet vilited by navigators, and if they act as loadtones do (a circnmftance which he fays muft be admitted, if we attempt to explain), the direction of the needle will be very different from what we know it to be. He therefore places them in the inacceffible polar regions, but not in the very pole. Norman, the difcoverer of the dip of the mariner's needle, or of the true magnetic direction, was naturally led by his difcovery to conceive the directing caufe as placed in the earth; becaufe the north point of the needle, in every part of Europe, points very far below the horizon. But although he calls the treatife in which he announces his difcovery the Neru Aftractive, he does not exprefs himfelf as fuppoling the needle to be attracted by any point within the carth, but only that it is always directed to that point.

It is to Dr Gilbert of Colchefter that we owe the opinion now univerfally admitted, that magnetic polarity is a part of the conftitntion of this globe. Norman had, not long before, difcovered, that if a fteel needle be very exactly balanced on a horizontal axis, like the bean of a common balance, fo that it would retsin any pofition given it, and if it be then touched with a magnet, and placed on its axis in the magnetic meridian, it is no loager in equilibrio, but (at London) the north point of it will dip 72 or 73 degrees below the horizon. He did not, however, publifh his difcovery till he had obtaine? information how it ftood in other parts of the world. The differences in the variation in different places naturally fuggefted the neceffity of this to him. Being a maker of mariners compaffes,
pates, and teacher of navigation in London, he had the faireft opportunities that could be defired, by furnifhing dipping needles to fuch of the navigators, his fcholars, as he knew moft able to give him good infornation. And the accounts which he received made his difcovery, when announced to the world, a very complete thing ; for the commanders of Thips engaged in long voyages, and particularly to China, informed him that, in the vicinity of the equator, his dipping needles remained parallel to the horizon, but that in coming toward the north pole, the north end of the needle was deprefled, and that the fouth end dipped in like manner at the Cape of Good Hope, and in the Indian Ocean; that the needle gradually approached the horizontal pofition as the hip approached the equator, but that in coming to the north of it at Batavia, the north point again dipped, and at Canton was feveral degrees below the horizon.
On thefe authorities, Norman boldly faid that, in the equatoreal regions, the needle was horizontal, and that either end dipped regularly as it approached either pole; and that in the poles of the earth, the necdle was perpendicular to the horizon. He therefore announced this as a difcovery, not only fingularly curious, but alfo of immenfe importance; for by means of a dipping needle the latitude of a flip at fea may be found without feeing the fun or ftars.
Dr Gilbert, comparing this pofition of the compafs needle with the pofitions whieh he had obferved fmall needtes aflume in his numerous experiments in relation to a magnet, as we have defribed at great length, was naturally led to the notion of the earth's being a great loadftone, or as containing one, and that this arranged the dipping, or, in general, the mariner's needle, in the fane manner as he obferved a great. magnet arrange a fmall ncedle poifed on its pivot. He therefore compofed his Pbyyjologia Nova de Magnete, et de Tellure magno Magnete; in which he notices fo many points of refemblance to the directive power of a magnet, that the point feems no longer to admit of any doubt. Dr Gilbert's theory may be thus expreffed :

All the phenomena of natural magnetifm are analogous to what we fhould obferve, if the earth were a great magnet, having its poles near the poles of the earth's equator, the north pole not far from Baffin's Bay, and the fouth pole nearly in the oppofite part of the globe. A dipping reedle, under the influence of this great magnet, mult arrange itfelf in a plane which paffes through the poles of the magnet, the pofition of which plane is incicated (at leaft rearly) by the ordinary compars needle; and it will be inclined to the ho. rizon fo much the more as we recede from the equator of the great magnet.

This opinion of Dr Gilbert was not lefs ingenious than important ; and if firmly eftablifhed, it furnifhes a complete theory of all the phenomena of magnetifm. But obfervations were neither fufficiently numerous in the time of Dr Gilbert, nor fufficiently accurate, to enable that great genius to affign the pofition of theis great magnet, nor the laws of its action. The theory was chiefly founded on the phenomena of the dipping needle; phenomena which might have heen unknown for ages, had the firll notice of thein fallen into any other hands than Norman's. 'They are not, like thofe of variation, which might be made by any failor. They. Suppl. Vol. II. Part I.
require for their exhibition a dipping needle, and the attention to circumftances which can occur only to a mathematician. A dipping needle is to this day, notwithfanding all our improvements in the arts, one of the moft delicate and difficult tafks that an inttrument maker can take in hand, and a good one cannot be liad for lefs than twenty guineas. We are confident that fuch as even Norman conld make were far iuferior to what are now made, and quite unfit for ufe at fea while the thip is under fail, although they may be tolerably exact for an oblervation of the dip in any port ; and we prefume that it was fuch obfervations only that Norman confided in. Our readers will readily conceive the difficulty of poifing a needle with fuch a perfect coincidence of its centre of gravity and axis of motion, and perfect roundnefo of this axis, that it fhail remain in any pofition that is given it. Add to this, that a grain of duft, invifible to the niceft cye, getting under one fide of this axis, may be fufficient for making it aflume another polition. It mult alio be a dificult matter to preferve this delicate thing, fo as that no change can happen to it. Befides, all this mult be performed on a piece of tempered fteel which we are certain has no magnetifm. Where can this be got, or what can infure us againft magnetifin? Nor is there lefs difficulty in making the obfervations without great rik of error. If the reedle, moveable only in a vertical plane, be not fet in the plane of a magnetic ineridian, it will always dip too much. At London, where the magnetic direction is inclined 73° to the horizon, if it be in a plane 20° from the magnetic meridian, it will Atand almoft perpendicular ; for it is eafy to fee, by the mechanical refolution of forces, that it will take the pofition which brings it neareft to the true magnetic direction. 'This, we think, is confirmed by feveral of Norman's and other old obfervations of dip. They are much greater than they have been fince found in the fame places.

Mr Daniel Bernoulli has given a very ingenious ${ }^{6,3}$ Berprinciple, by which we can make a dipping needle Daniel Beri which will give a very accurate obfervation on fhore ; ping inecdip. and being fo cafily executed, it deferves to be generally known. Let a dipping ncedle be made in the beft manner that can be done by a workman of the place, and balanced with fome care before impregnation, fo that we may be certain that when touched it will take nearly the true dip. Touch it, and olferve the dip. Deftroy its magnetifm, and then alter its balance in fuch a manner that, without any magnetifm, it will arrange itfelf in the inclination of the oblerved dip. Now touch it again, giving it the fame poles as before. It is plain that it will now approach exceedingly near indeed to the true dip, becaufe its want of perfeof equilibrium deranged it but a few degrees from the proper direction. If this fecond obfervation of the dip fhould differ feveral degrees fiom the firft, by the inaccurate firft forma. tion of the needte, it will be proper to repeat the ope. ration. Very rarely indeed will the third obfervation of the dip vary from the truth half a degree.

Mr Bernoulli makes this fimple contivance anfwer the purpofe of an univerfal inftrument in the following ingenious manner. A very light brafs graduated circle EFG (fig. 23.) is fixed to one fide of the needle, concentric with its axis, and the whole is talanced as nicely as poffible before impregnation. A very light index S

CD

CD is then fitted on the axis, fo as to turn rather ftiffly on it. 'This will deftroy the equilibrium of the needle. If the needle has been made with perfect accuracy, and perfectly balanced, the addition of this index would caufe it always to fettle with the index perpendicular to the horizon, whatever degree of the circle it may chance to point at. But as this is fearcely to be expected, fet the index at various degrees of the circle, and note what inclination the unmagnetic needle takes for each place of the index, and record them all in a table. Sup pofe, for example, that when the index is at 50 , the needle inclines 46° from the horizon. If in any place we obferve that the needle (rendered magnetic by lying between two ftrong magnets), having the index at 50 , inclines 46°, we may be certain that this is the dip at that place; for the needle is not deranged by the mng. netifm from the pofition which gravity alone would give it. As we generally know fomething of the dip that is to be expected in any place, we muft fet the in. dex accordingly. If the needle does not fhew the expected dip, alter the pofition of the index, and again obferve the dip. See whether this fecond pofition of the index and this dip form a pair which is in the table. If they do, we have got the true dip. If not, we muft try another pofition of the index. Noticing whether the agreement of this lalt pair be greater or lefs than that of the former pair, we learn whether to change the pofition of the index in the fame direction as before, or in the oppofite. The writer of this article has a dipping needle of this kind, made by a perfon totally unacquainted with the making of philofophical inftruments. It has been ufed at Leith, at Cronftadt in Ruffic, at Scasborongh, and at New York, and the dip indicated by it did not in any fingle trial differ $: \frac{1}{2}$ degrees from other trials, or from the dip obferved by the fineft infruments. He tried it himfelf in Leith Roads, in a rongh fea; and does not think it inferior, either in certainty or difpatch, to a needle of the mot elaborate conftruction. It is worthy of its moft ingenions author, and of the public notice, becaufe it can be made for a modelate expence, and therefore may be the means of multiplying the obfervations of the dip, which are of immenfe confequence in the theory of magnetilin, and for giving us an accurate knowledge of the magnetical conftitution of this globe.

This knowledge is ftill very imperfect, owing to the want of a very numerous collection of obfervations of the dip. They are of more importance than thofe of the horizontal deviations from the meidian. All that we can fay is, that the earth acts on the mariner's needle as a great loadftone would do. But we do not think that the appearances refemble the effects of what we would call a good loadttone, having the regular magnetifm of two vigorous poles. The dips of the needle in various pats of the earth feem to be fuch as would refult from the action of an extremely irregular loaditone, having its poles exceedingly diffufed. The inereafe of the dip, as we recede from thofe places where the needle is horizontal, is too rapid to agree with the fuppofition of two poles of conftipated magnetifin, whether we fuppofe the magnetic action in the inverfe fimple or duplicate ratio of the diftances, unlef3 the great terreftrial magnet be of much fmaller dimenfions than what fome other appearances oblige us to fuppofe. If there be four poles, as Dr Halley imagined, it will be next to
impoffible to afcertain the pofitions of the dipping needle. It will be a tangent to one of the fecondary magnetic curves, and thefe will be of a very intricate fpecies. We cannot but confider the difcovery of the magnetic conftitution of this globe as a point of very great importance, both to the philofopher and to fuciety. We have confidered it with fome care ; but hitherto we have not been able to form a fyltematic view of the appearances which gises us any fatisfaction. The well informed reader is fenfible, that the attempt by means of the horizontal or variation needle is extremely tedions in its application, and is very unlikely to fucceed; at the fame time it nuf be well underfood. The two differtations by Euler, in the 13 th and 22 d volumes of the Memoirs of the Royal Academy at Berlin, are mott excellent performances, and give a true notion of the difficulty of the fubject. Yet, even in the $\mathfrak{f e}$, a circumfance is overlooked, which, for any thing we know to the contrary, may have a very great effect. If the magnetic axis be far removed from the axis of revolution, as far, for example, as Mr Churchman places it, the magnetic meridians will be (generally) much in Sce VARIA. clined to the horizon; and we fall err very far, if we ToN, Eno fuppofe (as in Euler's calculus) that the dipping needle cyco. will arrange itfelf in the vertical plane, pafing through the direction of the horizontal or valiation needle ; or if we imagine that the poles of the great magnet are in that plane. We even prefume to think that Mr Euler's affumption of the place of his fictitious poles (namely, where the needle is vertical), in order to abtain a ma. nageable calculus, is erroneous The introduction of this circumftance of inclination of the magnetic meridians to the horizon, complicates the calculation to fuch a degree as to make it almoft unmanageable, except in fome felected fituations. Foitunately, they are important ones for afcertaining the places of the poles. But the inveftigation by the politions of the dipping needle is incomparably more fimple, and more likely to give us a knowledge of a multinlicity of poles. The confideration of the magnetic curves (in the fenfe ufed in the prefent article), teaches us that we are not to imagine the poles immediately under thofe parts of the finface where the needle flands perpendicular to the horizon, nor the magnetic equator to be in thofe places. where the needle is horizonial ; a notion commonly and plaufibly entertained. Unfortunately our moft numerous obfervations of the dip are not ia places where they are the moft inftructive. A feries fhould be obtained, extending from New Zealand nothward, acrofs the Pacific Ocean to Cape Fairweather on the weft coaft of North A merica, and continued through that part of the eontinent. Another ferics fhould extend from the Cape of Good Hope, up along the weft coaft of A fica to the tropic of Capricorn; from thence acrofs the interior of Africa (where it would be of great importance to mark the place of its horizontality) through Sicily, Italy, Dalmatia, the eaft of Germany, the Gulph of Bothnia, Lapland, and the welt point of Greenland. This would be nearly a plane paffing through the probable fituations of the poles. Another feries thould be. made at right angles to this, forming a fmall circle, croffing the other near Cape Fairweather. This would pafs near Japan, through Borneo, and the weit end of New Holland; alfo near Mexico, and a few degrees wett of Eafter. Ifand. In this place 2_{2} and at Burneo,
the inclination of the magnetic plane to the horizon would be confiderable, but we cannot find this out. It may, howevor, be difcoveled in other points of this circle, where the dip is confiderable. We have not room in this flourt account to illuftrate the advantages derived from thefe feriefes; but the reflecting reader will be very fenfble of them, if he only fuppofes the great magnet to be accompanied by its maguetic curves, to which the need!e is always a tangent. He will then fie that the firt feries fiom New Zealand to Cape Fairweather, and the fecond from Cape Fairweather round the other fide of the globe, being in one plane, and at very different diflances from the magnetic axis, mult contain very influctive pofitions of the needle. But we ftill confefs, that when we compare the dips already known with the variations, they appear fo irreconcileable with the refults of an uniform regular magnetifin, that we defpair of fuccefs. Every thing feems to indicate a multiplicity of poles, or, what is ftll more adverfe to all calculation, an irregular magnetifm with very diffused polarity.

Much intruction may furely be expected from the obfervations of the Ruffian academicians and their cleves, who are employed in furveying that vaft empire ; yet we do not meet with a fingle obfervation of the dip of the needle in all the bygone publications of that academy, nur indeed are there many of the variation.
For want of fuch information, philofophers are exring the tremely divided in their opinions of the fituation of the uation of magnetic poles of this globe. Profeffor Krufft, in the I_{7} th volume of the Peterßurgh Commentaries, places the no:th pole in lat. $70^{\circ} \mathrm{N}$. and long. $23^{\circ} \mathrm{W}$. from London; and the fouth pole in lat. $50^{\circ} \mathrm{S}$. and long. 92 E .

Wilcke of Stockholm, in his indication chart (Srued. Mrem. tom. $\times x \times \mathrm{p} .218$.), places the north pole in IV. Lat. 75°, near Waffu's Bay, in the longitude of California. The fouth pule is in the Pacific Occan, in lat, $70^{\circ} \mathrm{S}$.

Churchman places the north pole in lat. $59^{\circ} \mathrm{N}$ and long. $135^{\circ} \mathrm{W}$. a little way inland from Cape l'airweather; and the fouth pole in lat. $59^{\circ} \mathrm{S}$. Long. $165^{\circ} \mathrm{E}$. due fouth from New Zealand.

A planifphere by the Academy of Sciences at l’aris for $: 786$, places the magnetic equator fo as to interficet the earth's equator in long. 75°, and 155° from Ferro Canary Inand, with an inclination of 12 degiees nearly, making it a great circle very nearly. But we are not informed on what authority this is done ; and it does not accord with many obfervations of the dip which we have collected from the voyages of feveral Britifh navigators, and from. fome voyages between Stockholm and Canton. Mr Churchnian lias given a feetch of a planifphere with lines, which may be called parallets of the dip. Thofe parts of each parallel that have been afcertained by obfervation are malked by dots, fo that we can judge of his authority for the whole conitruation. It is but a fietch, but gives more fynoptical information than any thing yet publimed. The magnetic equator cuts the earth's equator in long. 15°, and $105^{\circ} \mathrm{E}$. from Greenwich, in an angle of nearly 17 degress. The circles of magnetic inclination are not parallel, being confiderably nearer to each other on the fhort meridian than on its oppofite. This circum. flance, being founded on obfervation, is one of the

Atrongel arguments for the exifence of a mamnct of to. lerable regularity, as the czufe of all the pofitione of the compafs needle; for fuch mu/t be the pofitions of the circles of equal dip, if the axis of this magnet is far removed from the axis of rotation, and does not interfect it.
Now, if the fituation of the poles be any thing near the average or medium of thefe detern:inations, and if we form all our notions by analogy, comparing the pofitions of the compafs needle in relation to the great terreftrial magnet, with the pofitions affumed by a fmall needle in the neighbourhood of a magnet, we muft conclude, that the magnetical conflitution of this globe has little or no reference to its regular external form. The axis of the magnet is very far removed from that of the globe (at leaft 1,500 miles), and is not nearly parallel to it, nor in the fame plane. It requived the fagacity and the fkill of a Euler to fuiject fuch anomalous magnetifin to any rules of computation; and every perfon qualifed to judge of the fubject mutt allow his differtation in the 13 th volume of the Berlin Nemoirs to be a work of wondelful refearch. It is a very agrecable thing to fee fuch a conformity between the lines which exprefs the regular magnetifm of Euler's differtation, and the lines diawn by Dr Halley fiom ob ervation, and which appeared to himfelf fo capricious, that be defpaired (notwith?anding his confunimate fkill in geometry) of their ever being reduced to a inathematical and precife fyftem.
Without detracting from the merit of Dr Giibert, Confirmawe may prefume to f fy that his notion of the earth'stions of D b being a great magnet was nut, in his mind, more than Gilterr's a fagacious conjecture, formed from a very general and plyfiolog. even vague comparifon. Yet the comparifou was fufficiently grood to give him great confidence in his opini, n that the action of this great magnet, in perfect coniformity to what we offerve in our expeciments with magnets, is the fource of all the magnetifm that we obferve. If there was nothing elle in proof of the juftrefs of his theory, it is abundantly proved ly the beantiful experiment of Mr Henfaw, mentioned in the article Variation, Eincycl. p. G21. col. 2. An iron bar leld rearly upright, attracts the fouth end of a compafe needle with its lower end ; and if that end of the bar be kept in its place, and the bar turned round till it becomes the upper end, the fouth point of the needle inmediately turns away from it, and the north end is now attracted. This expetriment may be peifectly imitated with artificial magnetifm.
Having fupported a large magnet S. 1.1 N (fig. 2 ${ }^{\text {t. }}$), fo that its ends are detached from furrounding bodics, place a finall necdle 13 (poifed on its pivot) about three inches below the north pule N of the magnet, and in fuch a fituation that its polarity to the magnet may be very weak. Take now a fmall piece of common iron, and hold it in the pofition reprefented at C . Its lower end becomes a not th pole, atiracting the fouth pole of the needle. Keeping this in its place, tum round the piece of inon into the polition 1); the fouth pole of 13 will now avoid it, and the north pole will be attracted. We directed the needle to be fo piaced, that its polatity, in relation to the magnet, mary be weak. If it be ftrong, it may at on the (nd of C or 1) like a magnet, and counteract the magnetifm induced on C or 1) by vicinity to A .

MAGNETISM.

An anonymous writer in the Philofophical Tranfactions, No 177 . Vol. XV. relates feveral obfervations made during a voyage to the Eaft Indies, which are quite conformable to this. A few leagues northweft from the ifland Afcenfion, the fouth point of the compafs needle hardly mewed any terdency to or from the lower end of an iron bar. It teemed rather to avoid the unper end; it was not in the leaf affected by the middle of the bar ; but when the bar was laid horizontal, in the ragnetic direction, its two ends affected the diffimilar ends of the compafs ncedle very ftrongly; but when horizontal, and lying at right angles to the magnetic direction, its pularity was altogether indifferent.

As the other phenomena of induced artificial magnetifm have the fame refemblance to the phenomena of natural magnetifm, a bar which has remained long in the vicinity of a magnet acquires magnetifm (permanent) in the fame way, and modified by the fame circumftances, as in natural magnetifm. Hammering a bit of common iron in the immediate vicinity of a magnet, gives it very good magnetifm. Expofing a red hot bar to cool in the neiglabourhood of a magnet has the fame effect. Alfo quenching it fuddenly has the fame effect. Quenching a fmall red hot fteel bar between two mag. nets, was found by us to communicate a much ftronger maguetifm than we could give it by any other method. Its form indeed was very unfavourable for the ordinary method of touching; for it confifted of two little fpheres conneted by a fender rod, and could fcarcely be impreguated in any other way than by placing it for a very long while between magnets. In all thefe experiments, the polarity acquired is precifely funilar to that acquired by the fame trearment in relation to this fuppofed great terreftrial magnet. In fhort, in whatever manner we purfue this analogy in our experimente, we find the refemblance moft perfect in the phenomena.

We cannot but think, therefore, that this new phyfiology of the magnet by Dr Gilbert is well eltablifhed; and we think ourfelves authorifed to aflume it as a propofition fully demonftrated, that the earth is a great magnet, or contains a great magnet, the agency of which produces the direction of the inagnetic needle, and all the magnetifm which iron acquires by long continuance in a proper pofition. It is this which made us fay, in the beginning of this article, that attraction and polarity were not confined to magnets, but were properties belonging to all io on in its metallic flate. We now fee the reafon why any piece of iron brought very near to another piece will attract it -both become magnetical , in confequence of the agency of the great magnet; and their magnetifm is fo difpofed, that their mutual attractions exceed their repulfions. Alfo, why an iron rod, placed nearly in the magnetical direction, will finally arrange itfelf in that direction. Alfo, why the terreftrial polarity of common iron is indifferent, and either end of the rod will fettle in the north, if it have nearly that pofition at firlt. The magnetifm induced by mere momentary pofition is fo feeble as to yield to any artificial magnetifm. As a moment was fufficient for imparting it, a moment fuffices for deftroying it; and another moment will impart the oppofite magnetifm. But artificial magnetifm requires more force for its production, and fome of it remains when the producing caufe is removed, and it does not yield at once to the contrary magnetifm. That there is no farther
difference appears from this, that long continued pofition gives determined and permanent magnetifm, and that it is deftroyed by an equally long continuance in the contrary pofition. It feems to be very generally true, that a magnet will carry more by its north than by its fouth pole. It fhould be fo in this part of the world, becaufe the terreffrial magnetifm induced on the iron confpires with the magnetifm induced by the north pole of a magnet, but counteracts the magnetifm induced by the fouth pole.

The propriety of Mr Savery's, Mr Canton's, and Mr Antheaume's proceffes for beginning the impregnation of hard fteel bars is now plain, and the fuperior effect of the two great bars of common iror in the propofed method of Mr Antheaume. We cannot but take this opportunity of paying the proper tribute of praife to the ingenuity of Mr Savery. Every circumitance of his procefs was felected in confequence of an accurate conception of magnetifm, and the combination of this fcience with Dr Gilbert's theory. His procefs is the fame with Antheaume's in every refpest, except the circumflance of the double touch borrowed from Mit. chell and Canton. Thefe obfervations do not detract from the difcernment of Mitchell and Canton, who faw in thofe experiments what had efcaped the attention of hundreds of readers.

But there occurs an objection to this theory of $\mathrm{Dr}_{\text {Seeming }} 68$ Gilbert, whiclı was urged againft it with great force. objection We obferve no tendency in the magnet or compafs deduced needle toward this fuppofed magnet. An iron or theel from the bar is not found to increafe its tendency dowawards, fenfible a that is, is not fenfibly heavier, when its fouth pole is up-traction. permolt in this part of the world. A needle fet afloat on a piece of cork arranges itfelf quickly in the proper direction ; but if continued ever fo long afloat, it has never been obferved to approach the nortl fide of the veffel. This is quite uulike what we obferve in the mutual actions of magnets, or the action of magnets on iron. This objection appears to lave given Dr Gilbert fome concern; and he mentions many experiments which have been tried on purpofe to difcover fome magnetical tendency. He gets rid of it as well as he can, by faying, that the directive power of a magnet extends much farther than its attractive power. He confirms this by feveral experiments. But Dr Gilbert had not ftudied the fimultaneons actions of the four poles, nor explained, by the principles of compound motion, how thefe produced all the poffible pofitions of the needle. Indeed, the compofition of mechanical forces was by no means familiar with philofophers at the end of the 16 th century. We fee it now rery difinelly. 'The polarity of the needle, or the force with which it turns itfelf into the magnetical pofition, depends on the difference between the fums of the actions of each pole of the mag. net on both the poles of the needle ; whereas its tendency towards the magnet depends on the difference of the differences of thofe actions (fee $\mathrm{n}^{22} 25$.) The firf inay thus be very great when the other is almoft infenfible. We fee, that coarfe iron filings heap about the magnet very faft, and that very fine filings approach it very flowly. Now, the largeft magnet that we can employ, when compared with the great magnet in the earth, is but as a particle of the finett filings that can be conceived. This furely diminifhes exceedingly, if it does not entirely annihilate the objection: but as we
have heard it urged by many as an improbable thing, that a long magnet, kept afloat for many months (which has been done) fhall not thew the fmallof ${ }^{2}$ tendency towards the pole of the terreltrial magnet, we think it deferves to be confidered with accuracy, and the queltion decided in a way which will admit of no doubt.

Let the very fmall magnet C (fig. 25.) be placed near a great magnet A, and then near a fmaller magnet B, in fuch a manner that its polarity to both f.all be the fame; and then let us determine the proportion between the attractions of A and B for the fmall mag. net C.

This will evidently depend on the law of magnetic action. For greater fimplicity of inveftigation, we fhall content ourfelves with fuppofing the action to be inverfely as the diftance.

Let $\mathrm{AN},=\mathrm{AS},=a ; \mathrm{BN}=b ; \mathrm{C} n=c, \mathrm{AC}=d$, $\mathrm{BC}=\delta$; and let the abfolute force of A be to that of B at the fame ciftance as m to 1 .

The magnetic action being fuppofed proportional to 1 $\frac{\pi}{d}$, we have,

1. Action of AN on $\mathrm{C} s=\frac{m}{d-} \frac{m}{a-c}$.

2. $\longrightarrow \mathrm{AS}$ on $\mathrm{C} s=-\frac{m}{d+a-c}$.
3. -AS on $\mathrm{C} n=\frac{m}{d+a+c}$.
4. The whole astion $=\frac{8 m a c d}{d^{2}-\left.\overline{a+c}\right|^{2} \times\left.\overline{d^{2}-\overline{a-c}}\right|^{2}}$.
5. If c be very fmall in comparifon with a or b, the whole action of A is very nearly $=\frac{8 m a c d}{d^{2}-a^{2^{2}}}$.
6. And the tendency of C to B is, in like manner, $=\frac{8 b c^{\delta}}{\delta^{2}-b^{2}}$.

The direetive powers of A and B are at their maximum ftate when C is placed with its axis at right angles to the lines AC or BC . In which cafe we have,
8. The directive power of $\mathrm{A}=\frac{4 m a}{d^{2}-a^{2}}$.
9. The directive power of $\mathrm{B}=\frac{4 b}{j^{2}-b^{2}}$.

When thefe directive powers are made equal, by placing C at the proper ditances from A and B, we have,
10. $4 m a: 4 b$, or $m a: b=d^{2}-a^{2}: \delta^{2}-b^{2}$

And $m a \delta^{2}-m a b^{2}=b d^{2}-b a^{2}$
$m a \delta^{2}=b\left(d^{2}-a^{2}\right)+m a b^{2}$.
11. $\delta^{2}=\frac{b}{m a}\left(d^{2}-a^{2}\right)+b^{2}$.
12. $\delta=\sqrt{\frac{b}{m a}\left(d^{2}-a^{2}\right)+b^{2}}$.

Let the attractions of A and B for the very fmall magnet C , when its polarity to both is the fame, be expreffed by the fymbols α and β. We have
$\alpha: \beta=\frac{8 m a c d}{\left(d^{2}-a^{2}\right)^{2}}: \frac{8 b c^{\delta}}{\left(\delta^{2}-b^{2}\right)^{2}}$, which, by n° 10. is
$=\frac{8\left(d^{2}-a^{2}\right) c d}{\left(d^{2}-a^{2}\right)^{2}}: \frac{8\left(\delta^{2}-b^{2}\right) c \delta}{\left(\delta^{2}-b^{2}\right)^{2}}=\frac{d}{d^{2}-a^{2}}: \frac{\delta}{\delta^{2}-b^{2}}$ $=b d: m a s$; that is,
13. tetr^{n} of $\mathrm{A}: \operatorname{attr}^{n}$ of $\mathrm{B}=b d: m a \delta$.

As an example of this comparifon, let us fuppofe the great terreftrial magnet to be a thoufand times larger and ftronger than the magnet whole attraction we are comparing with that of terreftrial magnetifm. Let us alfo fuppofe the difance from the pole of the great magnet to be fmall, fo that its attraction may be confiderable. Let us make $d=1200, a$ being $=1000$, and $b=1$. Thefe are all very reafonable fuppofitions. Subftituting thefe valucs in the formula, we have attr ${ }^{n}$ of $A: \operatorname{attr}^{2}$ of $B=1: 1000$ very nearly ; and therefore when the needle, when placed near a magnet, vibrates by its polarity as faft as it does by natural mag. netifm, its tendency toward that magnet muft be altogether infenfible; for the difproportion is incomparably greater than that of 1 to 1000 , in the largeft magnets with which we can make experiments. Obferve alfo, that we have taken the cafe where the attractions are the ftrongef, viz. when the magnet C is placed in the axis of A or B . In the oblique pofitions, tangents to the magnetic curves, the attractions are fmaller, almoft in any ratio.

We took the inverfe ratio of the difances for the law of action, only becaufe the analyfis was very fimple. It is very evident, that the difproportion will be ftill more remarkable if the action be inverfely as the fquare of the diftance.

The objection therefore to the origin of the polarity of the compais needle, and of all other magnets, namely, the action of a great magnet contained in the earth, appears plainly to be of no force. We rather think that the want of all fenfible attraction, where there is a brifk polarity, is a proof of the juftnefs of the conjecture: for if the compafs needle were arranged by the action of magnetic rocks, or even extenfive ftrata, near the furface of the earth, the attractions would bear a greater proportion to the polarities. We have even oblerved this. A confiderable mafs of magnetic ftratum was found to derange the needle of a furveyor's theodolite at a confiderable diftance all around (about 140 yards). The writer placed the needle on a thin lath, which juft floated it on water in a large woocen difh, and fet it in a place where it was drawn about 15 degrees from the magnetic meridian. It was left in that fituation a whole night, well defended from the wind by a board laid on the difh. Next morning it was found applied to that fide of the difh which was nearef to the difturbing rocks. It had moved about fix inches. This was repeated three times, and each time it moved in the fame direction (nearly), which differed confiderably from the direction of the needle itfelf.

It is now plain that we may, with confidence, affume Dr Gilbert's theory of terreftrial magnetifm as fufficiently eftablifhed. And, fince we muft certainly call that the north pole of the great magnet which is fituated in the northern parts of the earth, and fince thofe poles of magnets which attract each other have oppofite polarities, we muft fay, that what we call the north pole of a mariner's needle, or of any other magnet, has the fouthern polarity.

We may now venture to go farther with Dr Gilbert,
and to fay that all the magnetifm which we obferve, whether in nature or art, is either the immediate or the remote effect of the action of the great magnet. As foft bars foon acquire-a tra:fient in greetifm; as hard bars, after long expofure, acquire a fenfible and permanent magnetifn-we mull infer, that ores of iron, which are in a itate fit for impreguation, inuft acquice a fen. fible and permanent magnetition. by continuing, for a feries of ages, in the bowels of the earth. And thus the magnetifm of loadfones, which, till the difeovery of the ntural magnetifm acquired by polition, were the fources of all our magnetical phenomena, is now proved to be a neceffary confequence of the exiltence and agency of a great magnet containicd in the bowels of the earth.
Ir It fcems to refult from this theory, that, in thefe in the mine northern parts of the world, that part of every natural may have loadtone that is at the extremity of the line drawn their poles in any pofilion. through the ftone in the magnetic direction fhould be its pole ; and that the loadtone, when properly poifed,
-floould of itfelf affime the very pofition which it had in the mine. Dr Giltert complains of the inattention of mincrs (rude bominum genus, lucro potius quitm plyfice confulentes) to this important circumftance. Once, however, he had the good fortune to be advertifed of a great magnetic male lying in its matrix. He repaircd quickly to the mine, examined it, and marked its points which were in the extremitics of the magnetic line. When it was detached from its matrix, he had the pleafare of finding its poles in the very places he expected. The loadfione was of confiderable fize, weighing aboui 20 pounds.-Mr Wilcke gives in the Swedith Commentarics feveral intances of the fame kind.

But fhould this always be the cafe? By no means. There are many circumflances which may give the mag. netifm of a loadtone a very different direction. We have found, that fimple juxtapofition to a maguet will fometimes give a fucceffion of poles to a lorig bar of hard fteel. The fame thing may happen to an extenfive vein of magnetifable matter. The loaditone taken out of this vein may have been placed like that of a foft bar placed in the magnetic line, if lying in one part of the vein; if taken from another part of it, its polarity may be the very reverfe; and in mother part it may have no magnetifm, althougli completely fitted for acquiring it. It may have it 3 poles placed in a direction different from all thife, in curfequecice of the vicinity of a greater loaditone. As loadtoncs poffefted of vigorous magnetifn are alivays found only in fnall picees, and in pieces of various fizes and farce, we nuft expeet every pof:tion of their poles. The only thing that we can expeet by thcory is, that adjoining loadifnnes will have their fricidiy, polcs turned towad each other, and a general prevalence of or terdency to a polarity fymmetrical with that "of the eath. The reacer will find fome moxe obfervations to this purpofe in the article Variation, Encycil. p. 623 as alfo-in Gilhert's treatife, 3). III. c. 2. p. ${ }^{121}$.

Nor fhould ali itrata of maffes of iron ore be magnetical. We know that none are fufeeptible of induced magneetifm, but fuch as are, to a certain degree, in the motallic ftate. Such ores are not abundant. Nay, even all of fuch flata do not neceflarily acquire magnetifn by the action of the great magnet. If their principal dimenfions lie nearly perpendicular to the magne-
tic direction, they will not acquire any fenfibic quantiv ty. A Atratuin in this country, rifing about 17 degrees to the N.N.W. will fcarcely acquire magnetifm. It may alfo happee:, that the influence of the great magnet is counteracted by that of fome extenfive ftratum inacceffible to man, by reafon of its great depth.

Thus we fee, that all the appearances of the original $\frac{P^{2}}{\text { Probable }_{2}}$ magnetifn of leadfones arc perfectly confittent with craufe of the notion that they are effects of one general cofinical cheir prey caufe, the action of the great manget contained in the natural hi: carth, and that there is no occafion to fuppofe this great ${ }^{g}$ magnet to differ, in its conflitution or manner of action, from the fmall maffes of fimilar matter calied loadilone. The only difficulty that prefents itfelf is the great fuperionity of magnet c force obfervable in fome loadfones over other maffes of ores circumjacent, which are not dittinguilhable by us ly any other circumifance. We acknowledge ourfelves unable to folve this difficulty; for the magnetiim of fuch pieces is fomctimes incomparably flonger than what a bar of iron acquires by poittion ; yet this bar is much norere fufceptible than the ores which are fit for becoming loadtones. Perhaps there is fome chemical change which oh ains gradually in certain maffes, which aids the impregnation, in the fame way that we know that heing red hot deftroys all magnetifm, whether in a metal bar or in an ore. This feems to be confirmed by what we fee in fome old iron ftanchions, which acquire the ftrorgeft magnetifm in thofe parts of their fibitance which are combining themfelves with ingredients floating in the atmofphere. That part which is cafed in the tome, and cxfoliates and folits with ruft, being converted into fomething like what is called finery cinder, becomes highly and - permanently magnetic. Such peculiaritics as thefe, operating for ages, may allow a degree of magnetical impregnation (in whatever this may confift) to take place, to which we can fee no refemblance in cu experiments. It would be worth while to place iron wircs in a tube in the magnetic direction, which could be kept of a proper red heat, white it is converted into athiops by lteam. It is not unlikely that it wonld acquire a fenfible and permanent magnetifin in this way. It may be, that the little atoms, as they arrange themfelves in a fort of cryftalline or fymmetrical form, may alfo arrange fo as to favour m?gnetifin. Were this tried in the vicinity of a ftrong magnet, the effect might be more remarkable and precife. Perhaps, too, while iron is precipitated in a metallic form from its folutions by another metal, fomething of the faune kind may happen. WTe know, that proper ores of iron, expofed to cementation in a low red heat, in the magnetic direction, becomes magretic.

Notice has been taken in the Encycl. art. Varia- Natural Tion, of the attempts of ingenious men to explain the caufes 0 , change which is obferved in all parts of the globe, on the drection of the mariner's needle, the gradual change of the variation. The hypothelis of Dr Halliey, that tion. the globe which we inhabit is holiow, and inclofes a magnctic nucleus, moving round another axis, is not inconfitent with any natural law, if he did not fuppofe the interval filled up with fome fluid. The action of the nucleus and fhell on the intervesing fluid would g:adually bring the two to ane common motion of 10 tation, as may be inferred from the reafonings employed by Newton in his remarks on the Cartefian ortices.

Leaving

Leaving out this circumftance, there is only another caute whish can $a^{\text {fif }} \mathrm{ct}$, and muft affees, the rotation of bo:h; namely, the mutual aetion of the mangetic nucleus, and the maffes of magnetic matter in the fhell. If the axis of rotation of this nuclens be different from the line joining its magnetic poles, thefe poles will have a motion relative to the fhell; and this notion may eafily be conceived fuch as will produce the changes of magnetic direction which we obferve. It may even produce a motion of the northera magnetic ple in oue direction, and of the fouthern pole i: the npporfite direction, and this with the appearance of different periods of rotation, as fuppofed by Mr Churchman. We may here obferve, by the way, that the change of magnetic direction in this country is not nearly io great as is commonly inragined. The hoizontal needle has flifted its pofition about 35° at London firce i 585 ; but the point of the dioping needle has not changed 10°. We may alfo obferve, that when the pole of the central magnet changes its place, the magnetifm of an extenfive ftratum, influenced by it, may fo alter its difpotition, as to change the pofition of the compsis needle in the oppofite direction to that of the change which the central magnet alone would induce on it.
But as motions have not yet been affigned to this nucleus, which quadrate with the obferved pofitions of the needle, and as the very exiftence of it is hypothetical, it may not be amifs to examine, whether fuch a changre of variation may not be explained by what we know of the laws of inagnetifm, and of the internal conftitution of this earth?

1. It is pretty certain, that the veins in which loadflones are found are not parts of the great magnet. 'This appears from their having two poles while in the mine, and alfo from the very fmall depth to which man has been able to penetrate. When we compare the pofitions of the dipping needle with thufe of a fmall needle near a magnet, we muft iifer, that the poles are very far below the fu: face.
Yet we know, that there are inagnctifable frata of very great extent occupying a very confiderable portion of the external covering. 'Though their bulk and abfolute power may be fniall, when compared with thofe of the great magnet, yet their greater vicinity to the reedles on which obfervations ale made, may give thern a very fenfible influence. In this way may a great deal of the obferved irregularities of the pofitions of the needle be accoumted for. In the Lagooon ai Teneriffe, Fexill'́e ohferved the variation $13^{6} 30^{\prime}$ weft in 1724 , while at the head of the ifland it was only 5 . The dip at the Lagoon was $63^{\circ}, 3 z^{\prime}$, greatly furpaling what was nbferved in the neighbourhood. Muller found, in the monntains of Bohemiz, great and defultory differences of d'eclination, amounting tometimes to 50°. At Mantima, the variation in $175^{\circ} \times$ was $1 \approx{ }^{\circ}$; while at Bonoria and Brixia it was nearly 18. Great irregularities were ubferved by Coöte in the Gulph of Finland, efpecially near the iffand of Suffari, among fome rocks: on one of thefe, the needle Thewed no polarity. Captain Conk and Caytain Phipps olferved differences of $1 c^{\circ}$, extending to a confiderable diftance, on the wet coalts of North America. In the neighbourhood of the ifland Liba in the Mediterranean, the pofition of the neede is greatly affected by the iron ftrata, in which that ifland to much abounds. In this country, there are alfo obs.
ferved finall deviations, which extend over confiderable tracts of country, indicating a great extent of ftrata that are weakly magnet c. Siuce fuch Arata receive their magnetifn by induction, in a manner limilar to a bar of hard tteel, and fince we know that this receives it gradually, it may very protably happen, that a long feries of years may elapfe before the magnetifm attains its ultimate difpofition.

Here, then, is a nece flary clange of the magnetic direction; and alhough it may be very different in different places, according to the difpofition and the power of thofe ftrata, there muft be a general vergency of it one way.
2. It is well known that all metals, and particularly iron, ate in a progrefs of continual produation and demetallization. The veins of metals, and more particularly thofe of iron, are evidently of pofterior date to that of the rocks in which they are lodged. Chemiftry teachics ns, by the very nature of the fubftances which compofe them, that they are in a flate of continual change. This is another caufe of change in the magnetic direction. Nay, we know that fome of them liave fuddenly changed thcir fituation by earthquakes and voleanoes. Some of the Areams of lava from Vefuvius and Ætua abonad in ioon. This has greatly changed its fituation; and if the frata from which it proceded were magnetical, the needle in its neighbourliood muft be affected. Nay, fubterranean heat alone will cffect a change, iy changing the magnetifm of the ftrata. Mr I. ievorg, loyal aftronomer at Beffe?edt in Iceland, writea, that the great eruption from. Hecla in $17^{8} 3$, changed the direction of the needle nine degrees in the immediate ueighbourhood. This change was produced at a mile's diftance from the frozen lava; and it diminifhed to two degrees at the ditance of $2 \frac{\frac{1}{2}}{\frac{2}{2}}$ miles. He could not approach any niearer, on account of the heat fill rcmaining in the lava, after an interval of If months.
All thefe caufes of change in the direction of the mariser's needle nunt be partial and irregular. But there is another caufe, which is cofmical and univerfal. 1)r Halley's fuppoftion of four pules, or, at leaft, the fuppofition of irregular and diffufted poles, feems the only thing that will agrce wihh the obfervations of declination. We know that all magnetifin of this kind (that is, difpofed in this manner) has a natural tendency to change. The two northern poles may have the fa:ne or orpolite polarities. If they are the fame, their action on each other tends to diminith the general magnetifm, and to caufe the centre of effort to approach the centre of the magnet. If they have oppolite volarities, the contrary effect will be produced. The general magnetifm of tach will increafe, and the pole (or its centre of (ffurt) will approach to the furface. In either of thefe cafes, the compound magnetifin of the whole may change exceedingly, by a chapge by no means confiderable in the niagnetifm of each pair of poles. It is difficult to fulfect this to calculatien; but the reader may have very convincing prouf of it, by taking a flrong and a weaker magnint of the feme length, and one of thein, at leaf, of theel not harder than fpring cen per. Lay them acrofs each other like an acute letter X ; and then place a compals needle, fo that its plane of rotation may be perpen!licular to the plane of the X . Note exactly the polition in which the needle Cetthes, In a few minutes after, it will be found to change conis
fiderably, although no remarkable change has yet happencd to the magnets themfelves.

74
Speculations about the origin of magnetifnı. Hypothetis of Expinus.

We flatter ourfelves, that our readers will grant that the preceding pages contain what may jufly be called a theory of inagnetifm, in as much as we ha e been able to include every phenomenon in one general fact, the indution of magnetifm; and have given fuch a defcription of that fact and its modifications, that we can accurately predict what will be the appearances of magnets and iron put into any defired fituation with refpect to each other. If our notions of philofophical difquifition (delivered in art. Phllosophy, Encycl. Brit.) be juft, we have explained the fubordinate phenomena, or have given a theory of magnetifm.

Put it is not eafy to fatisfy human curinfity. Men have even inveltigated, or fought for caufes of the perfeverance of matter in its prefent condition. We have not been contented with Newton's theory of the celeftial motions, and have fought for the caufe of that mutual tendency which he called gravitation, and of which all the motions are particular inftances.

Philofophers have been no lefs inquifitive after what may be the caufe of that mutual attrection of the diffimilar poles, and the repulfion of the fimilar poles, and that faculty of mutual impregnation, or excitement, which fo remarkably diftinguifh iron, in its various ftates, from all other fub?ances. The action of bocies on each other at a diftance, has appeared to them an abfurdity, and all have had recourfe to fome material intermedium. The phenomenon of the arrangement of iron flings is extremely curious, and naturally engages the attention. It is hardly poffible to look at it without the thought arifing in the mind of a ftream iffuing from one pole of the magnet, moving round it, entering by the other pole, and again iffuing from the former outlet. Accordingly, this notion las been entertained from the earlieft times, and different fpeculatifts have had different ways of concesving how this ftream operated the effects which we obferve.

The fimpleft and moft obvious was juft to make it act tike any other ftream of fuid matter, by impulfion. Impulfioa is the thing aimed at by all the fpeculatifts. They have a notion, that we conceive this way of com. municating motion with intuitive clearnefs, and that a thing is fully explained when it can be fhewn that it is a cafe of impulfion. We have confidered the anthority of thefe explanations in the article Impulsion of this Supplement, and need not repeat our reafons for refufing it any pre-eminence. But even when we have fhewn the phenomena to be cafes of impulfion by fuch a ftreain, the greateft difficulty, the moft curious and the moft embarraffing, is to afcertain the fources of this impulfive motion of the fluid-How, and from what caufe does it begin? What forces bend it in curves round the magnet? Thofe philofophers, whofe priaciple obliges them to explain gravitation alfo by impulfe, mult have another fream to impel this into ite curves. Acting by impulfion, this magnetic ftream muft lofe a quantity of mo tion equal to what it commmicates. What is to refore this? What directs' it in a particular courfe thro' the magnet? And what is it that can totally alter that courfe - in a moment - in all the phenomena of induced magnetifm? How does it impel? Lucretius, either of himfelf, or fpeaking after the Greek philofophers,
makes it impel, not the iron, but the furrounding air, fweeping it out of the way; and thus giving occafion for the furrounding air to rufh arourd the magnet, and to hurry the bits of iron toward it. There is, perhaps, more ingenious refinement in this thought than in any of the impulfive theories adopted fince his day by Des Cartes, Euler, and other great philofophers: But it is fagaciounly remarked by D. Gregory, in his MS. notes on Newton, that this theory of Lucretius falls to the ground ; becaufe the experiments fucceed juft as well under water as in the air. As to the explanations, or defcriptions, of the canals and their dock gates, opening in one direction, and fhutting in the other, conftructions that are changed in an inftaut in a bar of iron, by changing the pofition of the magnet, we only wonder that men, who have a reputation to lofe, fhould ever hazard fuch crude and unmechanical dreams before the public eye. The mind of man cannot conceive the poffibility of their formation; and if they are really formed, the effects Bould be the very oppofite of thofe that are obferved : the ftream fhould move thofe bodies leaft which afford ready channels for its paffage. If a rag of iron filings be arranced by the impultion of fuch a ftream, it fhould be carried along by it ; and if it is impelled torvard one end of the magnet, it fhould be impelled from the other end. Since we now know, that, each particle of filings is a momentary magnet, we muft allow a fimilar ftream whirling round each. Is that an explanation which exceeds all power of conception ?

But has it ever been fhewn, that there is any impul. fion at all in thefe phenomena? Where is the impelling fubltance? The only argument ever offered for its exiltence is, that we are refolved that the phenomena of magnetifm fhall be produced by impulfion, and the arrangement of iron filings looks lomewhat like a ftream. But enough of this. We trult that we have fhewn the way in which this arrangement obtains in the cleareft manner. Every particle becomes magnetic by induction. This is a fact, which fets all reafoning at defiance. The polarity of each rag is fo difpoled, that their adjoining ends turn to each other. I his is another uncontrovertible fact. And thefe two facts explain the whole. The arrangement of iron filings, therefore, is a fecoridary fact, depending on principles more general ; and therefore cannot, confirtently with juft logic, be affumed as the foundation of a theory.

Had magnetifm exhibited no phenomena befides the attraction and repulfion of magnets, it is likely that we flould not have proceeded very far in our thcories, and would have contented ourfelves with reducing thefe phenomena to their nooft general laws. But the cornmunication of magnetifm feems a great myftery. The fimple approach of a magnet communicates thefe powers to a piece of iron; and this without any diminution of its own powers. On the contrary, beginning with magnets which have hardly any fenfible power, we can, by a proper alternation of the manipulations, communicate the ftrongett magnetifin to as many hard Iteel bass as we pleafe; and the original magnets fhall be brought to their higheft degree of magnetifm. We have no notion of powers or faculties, but as qualities of fome fubltances in which they are inherent. Yet here is no appearance of fomething abltracted from one body, and communicated to, or flared with another. The procefs is like kindling a great fire by a fimple fpark; here
is no communication, but only occafion given to the exertion of powers inherent in the combultible matter. It appears probable, that the cafe is the fame in magnctifm; and that all that is perfornied in making a magnet is the excitement of powers already in the fteel, or the giving occalion for their exertion ; as burning the thread which ties together the two ends of a bow, allows it to unbend. This notion did not efeape the fagacity of 1)r Gilbert; and he is at much pains to fhew, that the coitio magnetica is a quality inherent in all magnetical bodies, and only requires the proper circumntance for its exertion. He is not very fortunate in his attempts to explain bow it is developed by the vicinity of a magnet, and how this faculty, or actual exertion of this powcr, becomes permanent in one body, while in another it requires the conflant prefence of the magnet.
Magertial It is to Mr Avpinus, of the Imperial Academy of St Myyiothefis Petenfurgh, that we are indebted for the firt really of Winins. philofophical attempt to explain all thefe myltcries. We mentioned, in the article Electricity, Suppl. the circumfance which fuggeffed the firl hint of this theory to A-pinus, riz. the refemblance between the attractions and repulfions of the tourmaline and of a magnet. A material caufe of the elsetric phenomena had long been thought familiar to the philofoghers. 'They ha! attributed them to a fluid which they called an electric fluid, and which they conceived to be flored among bodies in diffcrent proportions, and to be transferalle from one to annther. Dr Franklin's thicory of the Leyden phial, which led him to think that the faculty of producing the elcefrical phenomena depended on the deficiency as well as the relundancy of this fluid, combined with the phenomena of induced electricity, fuggetted to Alpinus a very pefficuons method of Itating the analoey of the tourmaline and the magnet; which he publified in 1758 in a paper read to the academy.

Reflecting ninre deeply on thefe things, Mr Epinus came by degrees to petceive the perfect fimilarity between a! the phenomena of electricity by pafition and thofe of mag:tetifm; and this led him to account for them in the fame manner. As the phenomena of the Levden phial, explained in Franklin's manner, fhews that a body may appear electrical all over, by having lefs than its natural quantity of the electric fluid, as well as by having more, it feemed to follow, that it may alfo be fo in refpect to different parts of the fame body; and therefore a body may become electrified in oppofite ways at its two extremities, merely by abftracting the fluid from one end, and condenfing it in the other; and thus may be explained the phenoinena of induced electricity, where nothing appears to have been conmunicated from one body to the other. If this be the cafe, the twe ends of a body rendered cleatric by induction fhould exhibit the fame diftinctions of phenomena that are exhibited by bodies wholly redundant and wholly deficient. The redundant ends fhould repel cach other; fo fhould the deficient ends; and a redundant part foruld attract a deficient. All thefe refults of the conjefure tally exactly with obfervacion, and give a high degree of probability to the conjecture. The fimilarity of thefe phenomena to the attractions of the diffimilar poles of a magnet, and the repulfions of the fimilar poles, is fo ftriking, that the fame mode of explanation forces iffelf on the mind, and led Mr Eppinus to think, that the faculty of producing the magnetical phenomena be"Suppl. Vol. II. Part I.

Ionged to a magnetical fuid, refiding in all bodies fufcep. tible of magnetifin; and that the exertion of chis facnl. ty require nothing but the abiftraction of the fluid from one cud of the magnetic bar, and its conflipation in the other. And this conjecture was confirmed by obferving, that in the induction of magnetifm on a piece of iron, the power of the magnet is not diminiffed.

All thefe circumfances led Mr IEpinus to frame the following hypothefis :
I. There exilts a fubftance in all magnetic bodies, which may be catled the magnetic fluid; the particles of which repel each other with a force decreafing as the diftance increafes.
2. The particles of magnetic fluid attract, and are attracted by the particles of iron, with a furce that varies according to the fame law.
3. The particles of iron repel each other according to the fame law.
4. The magnetic fluid moves, withour any çonfiderable obftruction, through the pores of iron and foft fteel ; but is more and niore obflucted in its motion as the feel is tempered harder; and in hard tenipered iteel, and in the ores of iron, it is moved with the greateft difficulty.

In confequence of this fuppofed attraction for iron, the fluid may be contained in it in a certein determinate çuantity. I'his quantity will be fuch, that the accumula. ted attraction of a particle for all the iron loalances, or is equal to, the repulfion of all the fluid which the iron conteins. The quantity of fluid competent to a particle of iron is fuppofed to be firch, that the repullion exerted between it and the fluid competent to another particle of iron is alfo equal to its attraction for that particle of iron: And therefore the attraction between the fluid in an iron bar A for the iron of another bar B , is juft equat to its repulfion for the fluid in 13 ; it is alfo equal to the repulfion of the iron in. A for the iron in B. This quantity of fluid refiding in the iron may be called its NATURAL Quantity.

In confequence of the mobility through the pores of the iron, the magnuctic fluid may be abftracted from one end of a bar, and condenfed in the other, by the agency of a proper external force. But this is a violent flate. The mutual repultion of the particles of condenfed fluid, and the attraction of the iron which it has quitted, tend to produce a more uniform diftribution. If we reflect on the law of action, we fhall clearly perceive, that fomewhat of this tendency muft obtain in every tate of condenfation and rarctaction, and that there can be a perfe.t equilibrium only when the fluid is diffured with perfect mififormity. This, there-a fore, may be called the natural state of the iron.
If the refiftance oppofed by the iron to the motion of the magnetic fluid be like that of perfeet fluids to the motion of folid bodies, arifing entirely from the communication of motion, there is no tendency to uniforndiffufion fo weak as not to overcome fuch refiftance, and fiually to produce this uniform diftribution. But (as is more probable) if the obitriction refembles that of a clammy fluid, or of a foft plaftic body like clay, fome of the accumulation, prodnced by the agency of an external force, may remain when the force is removed; the diffufion will ceafe whenever the equaliling force is jutt in equilibrio with the obitruction.

All the preceding circumftances of the hypothefis
are fo perfeetly analogous to the hypothefis of Mr 压pinus for explaining the electrical phenomena, which is given in detail in the article Electricity of this Supplement, that it would be fuperfluous to enter into a mimute difcuffion of their inmediate refults. We therefore beg the reader to perufe that part of the article Electricity where the clements of 留inus's hypothefis are delivered, and the phenomena of induced electricity explained (viz. from $\mathrm{n}^{\circ} 1 \mathrm{r}$, to 60 . inclufive), and to fuppofe the difcourfe to relate to the magnetical fluid. Let $\mathrm{N}, \mathrm{S}, n, s$, be confidered as the overcharged and undercharged parts of a magnetical body, or the poles of a magnet, and of iron rendered magnetical by induction. We fhall confine our oblervations in this place to thofe circumftances in which the mechanical pheno. mena of magnetifm are limited by the circumflance, that magnets alwavs contain their natural quantity of fluid; fo that their astion on iron, and on each other, depends entircly on its unequable diarribution; as is the cafe with in Juced electricity.

Let the magnet NAS (fig. 26.), having its north pole NA ovecharged, be fet near to the bar $n \mathrm{~B}$ s of common iron, and let their axes form one Atraight line. Then (as in the cafe of electrics) the overcharged pote NA acts on the bar B only by means of the redundant fluid which it contains. For that portion of its fluid, which is juft fufficient for faturating the iron, will repel the fluid in B, jutt as mnch as the iron in NA attracts it; and therefore the fluid in B fuftains no change fiom this portion of the fluid in NA. In like manner, the pote SA aets on I3 only in confequence of the iron in SA , which is not faturated or attended by its equivalent fluid.

If the fluid in B is immoveable, even the redundant fluid in NA, and redundant iron in SA, will produce no fenfille effect on it : For every particle of iron in B is accompanied by as much fluid as will balance, by its repulfions and attractions, the attractions ard repultions of the equiditant particle of iron. But as the magristical fluid in B is fuppoied to be eafily moveable, it will be repelled by the redundant fluid in AN toward the remote extremity n, till the refiltance thar it meets with, joined to its own tendency to uniforn diffufion, juf balanees the repulfion of AN. This tendency to uniform diffufion obtains as foon as any fluid quita its plaee; as has been fufficiently explained in the Supplementary article Electriciry, no 16.17. \&c.

But, at the fame time, the redundant iron in $A S$ attracts the fluid in B , and would abftract it from $\mathrm{B} n$, and condenfe it into Bs. This attraction oppofes the repulfion now mentioned. But, becaufe AS is more renote from every point of B than $A N$ is from the fame point, the repullions of the redundant fluid in AN will prevail; and, on the whote, fluid will be propelled toward n, and will be rarefied on the part $\mathrm{B} s$. But as to what will be the law of diffribution, both in the redundant and deficient parts of B, it is plain that nothing can be faid with precifion. This muft depend on the diffribution of the fluid in the magnet NAS. The more diffufed that we fuppofe the redundant fluid and matter in the magnet, the farther removed will the centres of effort of its poles be from their extremities; the fmaller will be the action of AN and AS, the fmaller will be their difference of action; and therefore the fmaller will be the condenfation in $\mathrm{B} n_{2}$ and the rare-
faction in 13 s . Hence we learn, in the ontet of this attempt to explanation, that the action of a magnet will. be fo much the greater as its poles are more concentrated. This is agreeable to oblervation, and gives fome credit to the hypothefis. We can juft fee, in a very general manner, that the fluid will be rarer than its natural fate in s, and denfer in n; and that the change of denfity is gradurl, and that the denlity may be reprefented by the ordinates of fome line cbd (fig. 27.), while the natural denfity is reprefented by the ordinates to the line C $b \mathrm{D}$, paralleł to $s \mathrm{n}$. There will be fome point 13 of the iron bar, where the fluid will be of its naturak denfity, and the ordinate $\mathrm{B} b$ will meet the lise clod in the point of its interfertion with CD.

All this action is internal and imperceptible. Let us inquire what will be the fenfible external action. There is a fuperiority of attraction towards the magnet: For fince the magnetic action is fuppofed to diminifh continually by an increafe of diftance, the curve, whofe ordinaters reprefent the forces, has its convexity toward the axis. Alfo, the force of the poles AN, AS are equal at equal difances: For, by the hypothef:s, the. attraction and repulfion of an individual particle are equal at equal diftances : and the condenfation in Aiv is equal to the deficiency in AS , by the fame hypothefis ; becaufe NAS flill contains its natural quantity of fluid. Therefore the action of both poles may be expreffed by the ordinates of the fame curve, and they will differ only by reafon of their difances. We may therefore exprefs the actions by the four ordinates $\mathrm{Mm}, \mathrm{P} p$. $\mathrm{N} n, \mathrm{Q} q$, of fig. 2.; of which the property (deduce? from the lingle circumftance of its being convex toward the axis) is, that $\mathrm{M} m+\mathrm{Q} q$ is greater than $\mathrm{P} p$ $+\mathrm{N} n$. There is therefore a furplus of ateraction. It is ouly this furplus that is perceived. The fluid, moveable in 13, but retained by it fo as not to be allowed to efcape, is prefled towards its remote end n by the excefs $\mathrm{P}^{\text {on }}-\mathrm{Q}_{q}$ of the repulfion of the redund?nt fluid in AN, above the attraction of the redundant iron in AS. This excefs on every particle of the fluid is tranfmitted, by the common laws of hydroftatics, to the Atratum iminediately incumbent on the extremity n, and 13 is thus prefed away from A. But every particle of the folid matter in 13 is attracted towards A by the excefs $\mathrm{M} m$ - $\mathrm{N} n$ of the attraction of the redundant fluid in AN above the repulfion of the redundant iron in AS: and this excefs is greater than the other; for $m+q$ is greater than $p+n$.

The piece of common iron $n \mathrm{~B} s$ is the:efore attracted, in confequence of the flnid in it having been propetled towards its remote extremity, and diltributed in a inauner fomewhat refembling its ditribution in NAS. Now, in this hypothefim, magnetifm is held to depend entirely on the diffribution of the fluid. B las therefore become a magnet, has magnetifin induced on it, and, only in confequence of this induction, is attracted by A.

Had we fuppofed the deficient, or fouth pote of A, to have been neareft to B, the redundant matter in $A N$ would have attracted the moveable fluid in B. more than the remoter redundant fluid in AS repcis it ; and, on this account, the magnetic fluid would have been conflipated in $B s$, and rarefied in $\mathrm{B} n$. It would, in this cale alfo, have been dittributed in a manner timilar to
its fituation in the magnet. And B would therefore thave been a momentary magnet, having its redundant pole fronting the deficicut or diffimilar pole of A . It is plain, that there would be the fame furplus of attraction in this as in the former inftance, and 1 B would (on the whole) be attracted in confequence, and only in confecquence, of having had a properly difpofed magnetifm induced on it by juxtapofition. The fenfible attraction, in this cafe, is a conjequence of the diltribution now defcribed; becaufe, fince the fluid conllipated in the end next to A cannot quit B, the tendency of this fluid toward A muft prefs the folid matter of B in this direction (by hydroflatical laws) more than this folid matter is repelled in the oppofite direction.

Thus it appears, that the hypothefis tallies precifely with the induction of magnetifin. We do not call this an explanation of the phenomenon ; for the fact is, that it is the hypothefis that is explained by the phenomenon: That is, if any perfen be told that induced mag. netifm is nroduced by the action of a fuid, in confequence of its fituation being changed, he will find, that in order to agree with the attraction of diffimilar, and the repulfion of fimilar poles, he mult accommodate the fluid to the phenomena, by giving it the properties affgned to it by Æpinns.

But the agreement with this fimplelt poffible cafe of the noof fimple example of induced magnetifin, is not enough to make us adopt the hypothefis as adequate to the explanation of all the magnetic phenomena. We muit confront the hypothefis with a varicty of obfervations, to fee whether the coincidence will be without exception.

When the key C13, in fig. 8 . is brought below the conftipated rorth pole N of the magnet SAN, its own moveable fluid is propelled from C towards B, and is difpofed in $C B$ nearly after the fame manner as in $S A N$. Therefore the redundant fluid in the lower end of the key repels the moveable fluid in the wire $13 D$ more than the redundant matter in the upper end C attracts it ; and thus the fluid is ravefied in the upper end of the wire BD, and condenfed in its lower end D. CB and ED therefore are two temporary magnets, having their diff:milar poles in contait, or nearell to each other. This is all that is required for their attraction. This effect is promoted by the action of N on the wire 13D, alfo propelling the fuid toward D ; and thus increafing the mutual attraction of $C B$ and $B D$. In like manner, when the key CB is held above the magnet, the moveable fluid in it is more attracted by the redund nt matter in SA than it is repelled by the more remote redundant fuid in AN. The fame thing happens to the fluid in the wire BD). Therefore CB an 13D) mult attract each other; and the key will carry the wire, although the magnet is below it, and alfo attracts it. This fingularity proceeds from the alinoft perfect mobility of the fluid in the two pieces of common iron, which renders their poles extremely conftipated; whereas the hardnefs requiied for the fixed magnetifin of the magnet prevents this complete conflipation and rare. faction. This can be frictly demontrated in the cafe of flender rods of iron ; but we can flew, and experience confirms it, that in other cafes, depending on the flape and the temper of the pieces, the wire will not adhere to the key, but to the maguet.

In the varicus fituations and pofitions of the key and
wire reprefented in fig. 7. the actions of fome of the poles on the moveable fluid in the iron are oblique in regard to the length of the pieces; but, fince the moveable matter is fuppofed to be a lluid, it will ftill be propelled along the pieces, notwithRanding their obliquity, in the fame manner as gravity makes water occupy the lower end of a pipe lying obliquely. If indeed the magnetic fluid conld efcape from the iron without any obltruction by the propulfion of the magnet, it could produce no attraction, or fenfible motion, any more than light does in a tranfparent body. What is demonftrated of the elcectic fluid in the Supplemental article Electricity, $\mathrm{n}^{\circ} \mathrm{I} 33$. is equally true here. Why the fluid does not efcape when it is fo perfectly moveable, is a queftion of another kind, and will be coulidered afterwards ; at prefent, the bypothefis is, that it does not efcape.

If the key and wire have the pofition fig. ro. n° I. the fluid is expelled from the parts in contact, and is condenfed in the remote ends. So far fiom attraciing each other, the key and wire mut repel. Thicy are tumporary magnete, having their limilar poles fronting each other. They muft repel each other, if prefented in a fimilar manner to the fouth pole of the inaguet.

If they be prefented as in $\mathrm{n}^{\circ} 2$. fig. 10 . where thie actions of both poles of the magnet are equal, the flate of the fluid in them will not be affecte!. The redundant pole of the magnet repels the moveable fluid in both the key and the wire toward the upper conds ; but the deficient pole acts equaily on it in the sppofite clirection. It therefore remains uniformly ditributed through their fubfance; and therefore they can exhibit no appearance of magnuetifin.

But if the key and wire be prefented to the fame part of the magnet, but in another porition, as fhewn in fig. 8. n° 3. the fluid of the key will be ablracted froin C , and condenfed in 13 , by the joint action of both poles of the magnet. The fame thing will happen in the wire BD. Here, thercfore, we have two inagnets with their diffinilar poles touching. They will at. tract each other ftrongly; and if carried gradually toward the upper or lower end of the magraet, thiey will feparate before the point B arrives abrealt of N or S . For fimilar reafons, the pieces of iron prefented to the middle of the magnet, as in lig. 0 will have one fite a weak north pole, and the other ficie a weak fonth pole; but this will not be confpicuous, unlefs the pieces be broad.
'This experiment fhews, in a very perfpicnons manner, the competency of the hypothefis to the explanation of the phenomena. When the fluid is not moved, magrictifm is not induced, even on the inof fufceptible fubitance.

When a piece of iron A (fig. 10.), nearly as large as the magnet can carry, hangs at cither pole, a large piece of iron 13 , brought near to the pole on the other lide, fhould caufe it immediately to fall If S be the deficient pole, it caufes the fluid in A to afcend to the top, and A is attracted: but, for the fame reafon, it caufes the fiuid in B to accumulate in its lower end. This redundant fluid muft evidently counteract the redundant matter in S , in the incuettion of the magnetic Rate on A. Being more remote from A than δ is, it carsnot wholly prevent the accumulation in the upper end of A; but it renders it fo trilling, that the remaining
'!2 attactiou
attraction thence arifing cannot fupport the weight of A. This is a very inftructive experiment.

But if, on the contrary, we bring a large piece of iron C below the heavy key A , this piece C will have its fluid accumulated in its upper end, both by the action of A on it, and by the action of the magnet. The attraction of the magnet for A fhould therefore be augmented; and a magret fould carry a heavier lump of iron when a great lump is beyond it. And it is clear (we think), for finilar reafons, that the magnetifm of the magnet itfelf in fig. it. Rould be increafed by bringing a great lomp of iron near its oppofite pole: for the magnet differs foom common iron only in the degree of the mobility of its fluid.

When a compafs needle is placed oppofite to the redundant pole N of a magnet AN (fig. 28.), it arranges iffelf magnetically. It a piece of common iron be now prefented laterally to the near point of the needle, the sedundant matter in the adjoining parts of the needle and the iron fhould make them repel; bett if prefented to the remote ead, the recundant matter in the iron fhould attract the redurdant fuid in that end of the necdle, and that end hould turn toward the iron.

A parcel of flender iron wires, earried by the pole of a magnet, as in fig. 29 . mould avoid each other. If N be the redundant pole, the fluid in each wire will be driven to the remote end, where it muft repel the fimilatly fituated fluid of its neighbour. The fame external appearance muft be exhibited by pieces of wire hanging at the deficient pole of the magnet.

The redundant pole of a magnet A (fig. 30.) being held vertically above the centre of tioo pieces of common iron, moveable round a flender pin, renders the middle of each deficient, and their extremities redundant; therefore they fhould repel each other, and fpread out. The fame effect fhould be produced by the un. der charged pole of A.

The redundant pole of a magnet A being applied to one branch of the picce of forked iron NCS (fig. 31.), frould drive the fluid into its remote parts C , and then the branch NC fhould be able to indnee the magnetic ftate on a bit of iron D. But if the deficient pole S of another magnet B be applied to the other braneh, thefe two actions fhould counteract each other at C , and the iron fhould remain indifferent, and fall.-Yet the magnet B alone would equally caufe C to carry the piece of iron.

It is furely unneceffary to demonfrate, that the confequence of this hypothefis mutt be, that when a magnet puta any piece of iron into the magnetic Atate, its own magnetifm is improved. For the induced magruetifm of the iron is always fo difpofed as to give the tluid in the magnet a greater conflipation where already condenfed, and to abfract more fluid from the parts already deficient. If magnetifin be produced by fuch a fluid, a magnet muft always improve by lying any how among pieces of iron.

But the cafe may be very different when magnets are kept in each others neighbourhood. When the overcharged poles of two magnets are placed fronting each other, the redundant fluid in each repels that in the other more than it attracts the remoter redundant iron. The magnets mult therefore repel each other. Moreover, in rendering them magnetical, the repulfion of redundant fluid, or the attraction of redundant matter of fome
other magnet, had been employed; and when the magnet was removed, forme of the conflipated fluid overcame the obfruction to its uniform diffution, and efcaped into the deficient pole; what remains is withheld by the obftuction, and the reftoring fo:ces are juift in equilibrio with this obftruction. If we now add to them the repulfion of redundant fluid, directed toward the deficient pale, fome more of the conltipated fluid muft be driven that way, and the magnet mult be weakened. Nay, it may be deftroyed, and even reverfed, if one of the magnets be very powerful, and have its own magnetifm very fixed; that is, if its Huid be very redundant, and meet with very great obftruction to its motion. Hence it alfo flould follow, that the repulfion obferved between two magnets fhould be weaker at the fame diftance than their attraction, and fhonld follow a different law. For, in the courfe of the experiments, the fituation of the fuid ia the magnets is coritinually changing, and approaching to a fate of uniform ciffufion.

Let us now examine into the fenfible effect of this fluid on a magnet which cannot move from its place, but can turn on its centre like a compafs needle. This fcarcely requires any difcuffion. We thonld ouly be re- of polailis, peating, with regard to the redundant fluid and redundant matter, what we formerly faid in regard of north pole and fouth pole ; the little inagnet muft arrange itfelf nearly in the tangent of a magrietic curve. But it requires a more minute invefigation to determine what the fenfible phenomenon Rould be when the fluid of the little magnct is perfee?ly muveable.

Suppofe therefore a partiele C (fig. 32.) of magnetic fhitid, at perfeer liberty to move in every direction, and acted on by the redundant and deficient poles of a magnet NAS. The redundant iton in S attracis C in the direction and with the force CP, while the recurdant fluid in N repels it in the dincetion and with the farce CD. By their joint adion it muft be urged in the direction and with the force CE, the diagonal of the parallehogram CDEF, which muR be accurately a tangent to a magnetic curve. If this particle of Auid belong to thie piece of iron $n \mathrm{C} s$, which lies in that very: direction, it will unqueftionably be puthed towards the exurenity u. The fame muft happen to other particles. Hence it appears that a piece of common iron in this fituation and vorition mnft become a magnet, and muft retain this pofition; only the mechanical energy of the lever may change the equilibrium of the magnetic forces a littie; becaufe when the picce of iron $n \mathrm{Cs}$ bas any fenfible magnitude, the action on its different points will be a little unequal, and may compofe diagonals which divide a little from the tangent.
Should the inon needle chance not to have the exact pofition, but not deviate very far from it, it is alfo clear that the fluid, not being able to efcape, will prefs. on the fide toward which it is impelled; and thus will caufe the necdle to turn on its pivot, and finally arrange itfelf in magnetical and mechanical equilibrium, deviating fo much the lefs from a tangent to a magnetic. curve as the piece of iron is fmaller. Any piece of common iron, held in the neighbourhood of a magnet, will become more overcharged at one end and undercharged at the other, inf proportion as the pofition of its length comes nearer to the tangent of a magnetic curve. A flender wire held perpendicular to this pofition, that
is, perpendicular to the curve, fhould not acquire any fenfible magnetifm, either attractive or dircetive.

We furely need not now employ many words to fhew that a parcel of iron filings, frewed round a inag. net, foould arrange themfelves in the primary magnetic curves, or that when flrewed round two masnets they flould form the fecondary or compolite curves.

Let us now enquire more particnlarly into the modifications of this accumulation of magrnetic fluid which naty refult from the rature of the pitce of iron, as it is put into the magnetic ftate. 'Ihe provelling force of , A adts againf the mutusl repulfion of the particles of fluid in 13 , and alfo againf the obftruction to its motion through the pores of B. The greater this ob!truction, the fmaller will be the accumulation which fuffices, in conjunction with the obftruction and the attiaction of the deferted iron, to balance the propullive force of the redundant fluid in the overcharged pole of A. This circumftance therefore muft limit the accumulation that can be produced in a given time. 'Therefore the mag. netifm produced on foft feel or iron finculd be greater than that produced in hard fteel at the fome ditance. Hence the great advantage of foft poles, or of armour, or of capping, to a loadttone, or to a bundle of hard bars. The beft form and dimenfons of this armour is certainly determinable by inathematicel principles, if we knew the law of magnetical action, and the difpoli. tion of the magnetifm in our loadtone; but thefe are too imperfectly knows in all cafes for us to pretend to give any exact rules. We mutt decide experimenta!ly by making the caps large at firft, and reducing them till we find the loaditone carry lefs; then make them a fmall matter larger. The chief things to be ininded are the purity, the uniformity, and the foftnefs of the iron, and the clofeft poffible cuntact.

If the obltruction refemble that to motion through a clammy fuid, the final accumulation in hard feel may be nearly equal to that in iron, but will requine much lenger time. Alfo, becaufe fuch oiftruction to the moison of the fluid will nearly balance the propelling force in parts that are far removed from the magnet, the ac. cumulation will begin thereabonts, while the bar veyond is not yet afficted. A redundant pole will be formed in that place. This will onerate on what is immediately beyone it, driving the fluid farther on, and occafioning another accumulation at a fmall diftance. 'I'his may produce a fimilar effect in a ftill fmaller degree farther on. Thus the fteel bar will have the fluid alternatels sondenfed and raretied, and contain alternate north and fouth poles. 'This fate of ditribution will not be permanent; fluid witl be gradually changing its place; thefe poles will gradually advance alonis the bar, the remoter poles becomirg gradually more diffinfe and faint; and it will not be till after a very long time that a re. gular magnetifm with two poles will be produked. 'Io ttate mathematically the procedure of this mechanifin would require many pages. Yet it may be done in fome fimple cafes, as Newton has ftated the procefs of aerial undulation. But we cannot enter upon the tafk in this limited differtation. What is faid in the Supple. mentary article Electricity ($\mathrm{n}^{\circ} 217,218$.) on the diftribution of the electric fluid in an imperfect infulator, will affit the reader to form a notion of the flate of magnetifm during its induction. That fuch alternations proceed from fuch mechanifm, we have fufficient
proof in the inflances mentioncd in the former part of this article. The wave, or curl, produced on the furface of a clamm. fluich, is a phenomenou of the fame kind, an ! owing to limilar caufes.

When the magnet which has prodisce 1 all thefe chanfres is removed, it is evidenc that a part of this accumultion will be undone arrin. 'The repulfion of the condenfed fuid, and the attraction of the deferted iron, will bring back forme of the lluid. But it is very evident, that a part of the accesmulation will remain, by reafon of the obftriction to its motion in returning; and this remaincer mu:. be fo much the greater as the obit:uction to the change of fination is greater. In fort, we cannet doubt but that the magnetifis rwhich remains will be greater in liard than is foring tempered fecel.

Thus have we traced the hypothefis in a great variety Rationale of circumflances and fituations, and pointed out what of the prom fhould be the external appearance in each. We did not, in each inftance, mention the perféct coincidence of thefe confequences with what is really obterved, but left it to the recollection of the leader. Ihe coinci. dence is indeed fo conrpleic, that it feems hardly poffible to refufe granting that natme operates in this or tome very fimilar manner. We get fome contidence in the carjecture, ard may eren p:ureed to explain complicated phenomena by this liypothetical theory. We misht proneed to fiew, that the effects of a!l the methods practifed by the antifts in naking antiticial magnets are eafy confeginences of the hypothelis ; but this is laardly neceffary. We fhall jult mention fome facts in thofe proceffes which have puzaled the naturalits.

1. A ftrong magliet iş known to communicate the greateft magnetifm to a bar of hard flcel; but Mufchenbroek frequently found, that a weak magnet would communicate more to a foft than to a hard tritr.

İ planation. When the majnet is ftrong enough to impregnate both as highly as they are capable of, the hard bar mult be the itronged ; but if it can faiurate neither, the fpring lempered bar nult be lefl the molt magnnetical.
2. A froner magnet has fometimes communicated no higher magnetifm than a weaker one; betil have been 2ble so fatarate the bar.
3. A weak magne: las ofrer imnaired a ftrong one by fimply pafling along it two or three times; but a yiece of iron aiwars inptoves a maract by the fame ireatment.

Iixpianation. When the north pole of a weak but hard magnct is fet on the north pole of a ftrong one, it mult certainly repel part of the fluid towards the other end, and thus it mutt weaken the magnet. When it is carried forwald, it cannot repel this back agुain, becaufe it is not of itfelf fuppofed capable of making the magnet fo trong. Jut the end of a piece of iron, always acquiring a magnetifm oppolite to that of the part which it touches, muft increafe the accumnlation of fluid where it is alieady condenfed, and ninult expel more from thofe parts which are already deficient.
4. All the parts of the proce 5 of the double touch, as practifed by Meffis Mitchell and Canton, are cafily explained by this hypothefis. A particle of fluid p (fig. 33.), fituated in the middle between the two magnets, is repelled in the direction $p e$ by the redundant pule of the magnet $A N$, whofe centre of effort is fuppoled to
be at C. It is aitrated with an equal force in the direction $p d$ toward the centre of effort of the deficient pole of AS. By theie combined aetions it is impelled in the direction $p f$. Now it is plain that, although by increafing the diflance between N and S, thie forces with which thefe poles ast on p are dimirifhed, yet the compound force $p f$ may increafie by the diminution of the angle $d p e$. If the action is as $\frac{1}{x^{2}}, p f$ will be greatefl when $\frac{\text { Cof. } d p f}{d p^{2}}$ is a maximum, or (nearly) when $\operatorname{Sin}^{2} d p f \times$ Cof. $d p f$ is a maximum : but this depends on the place of the centre of effort. We can, however, gather from this nbfervation, that the nearer we fuppofe the centres of effort of the poles N and S to the extremities of the magnets, the nearer muft they be placed to each other. But we muft alfo attend to another circumftance; that by bringing the poles nearer together, although we produce a greater action on the intervening fluid, this action is exerted on a fmaller quantity of it, and therefore a lefs effect may be produced. This makes a wider pofition preferable; but we have ton imperfeet a knowledge of the circumftances to be alle to determine this with accuracy. The unfavourable action on the fluid beyond the magnets muft alfo be conlidered. Yet all this may be afcertained with p:ecifion in fome very fimple inflances, and the determination might be of fervice, if we lad not a better method, independent of all hypothcfes or theory; namely, to place the magnets at the diftance where they are eiferved to lift the heavieft bar of iron; then we are certain that their action is moft favourable, all circumtlances being combined.

We alfo fee a fufficient rcafon for pieferring the pofution of the mannets employed by Mr Antheaume (and before him by Mr Servington Savery), in his pro©rfs for making artificial magnets. The form of the parallelogram $d p$ ef is then much more favourable, the diagonal $p f$ being much longer.

We alfo fee, in general, that, by the method of double touch, a much greater accumulation of fuid may be produced than by any other known procefs.

And, laftly, fince no appearances indicate any diffesence betwcen natural and artificial magnetifn, this hy-- pothetis is equally applicable to the explanation of the phenomena of natural magnetilin; fuch as the polition --of the horizontal, and of the dipping Tieede, and the impregnation of natural loadfones.

Having fuch a body of evidence for the aptitnde of this hypothefis for the explanation of phenomena, it will furely be agreeable to meet with any circuinflances - which render the hypothefis itfelf more p:obable. Thefe are not wanting : although it muft be acknowledged that nothing has yet appeared, befides the phenomiena of magnetifin, to give us any indication of the exiftence of fuch a fluid; but there are many particulars in their appear ance which greatly refemble the mechanical pro-
81
Irobabili. ey of the exittence of a magnetical Auid! perties of a fluid.

Heating a rod of iron, and aliowing it to cool in a pofition perpendicular to the ningnetic direction, defiroys its inagnetifm. Iron is expanded by heat. If the particles of the magnetic fluid are 1 ctained kitween thofe of the iron, notwilitarding the forces which tend to diffute them uniformly, they 1 ay this elcane from Wetween the ferregineous puticles which with-hidd them.

For fimilar reafons, magretifm thould be acquired ly heating a bar and letting it cool in the magnetic direction. But, befides this evident mechanical ofportunity, of motion, the union of fire (or whatever name the neologitts may choofe to give to the canfe of ex. panfon and of heat) with the particles of iron may to. tally change the action of thofe particles on the particles of fiuid in immediate contact with them; 1:ay, it may even change the fenfible law of action between magnet and magnet. Of this no one can doubt who underftands the application of mathematical fcience to corpufcular attraction (See Boscovich, Suppl.) A change may be produced in the actiou between magnets without any remarkable change happening in the actions within the magnet, and it may be juft the reverfe. The union of fire with the magnetic fluid may increafe the mutual repulfion of its parts, as it does in all aerial fluids or gafes. 'This alone would produce a diffipation of fome magnetifm. It may increafe the attraction (at infenfible diftances) between the fluid and the iron, as it does in numberkfs cafes in chemiftry.

It is well ktown that violently knocking or hammer. Farther ing a magnet weakens its force, and that hammering agrounds piece of i:on in the magnetic direction will give it fome of Lelif. magnetifm. By this treatment the parts of the iron are put into a tremulons motion, alternately approach. ing and receding from each other. In the inffants of their recefs, the pent-up particles of the fluid may make their cecape. A quantity of fimall thot may be unifurmly mixed with a quantity of wheat, and will remain fo for ever, if nothing difurb the veffel ; but continue to tap it finartly with a ttick for a long time, and the grains of fmall fhot will efeape from their confinements, and will all go to the buttom. We may conceive the particles of magnetic fluid to be effected in the fame way. The fame effect is produced by grinding or fling magnets and loadfones. The latter are frequently made worthlefo by grinding them into the proper hlape. This fhould be avoided as much as pof. fible, and it fhould always be done in moulds made of foft iron and very maffive; but this will not alwavs preve:!t the diffipation of firong magnetifm. As a farther reafon for aftigning this caufe for the diffipation in fuch cafes, it mult be obferved (Mufchenbroek takes notice of it), that a magnet or loadtore may be ground at ive neutral point without much damage. But we had the following moit dittinct example of the procefs. A very fine artificial magnet was fufpended by a thread, with its fouth pole down. A perfon was employed to knock it inceffantly with a piece of pebble, in fuch a mauner as to make it ring very clearly, beirg extremely hard and elaftic. Its magnetifm was examined from time to time with a very fmall compalis needle. In three quarcers of an hour, its magnetifm was not only deftroyed, but the lower end mewed figns of a north pole. The fame magnct was ayain touched, and made as flong as before, and was then wound about very tight with wetted whipcord, leaving a fmall part hare in the middle. It was again knocked with the pebble, but could no longer ing. At the end of three quarters of an hour its inagnetifm was : Alill vigorous, and was not near gone after two hours and a quarter. We difcharged a Leydeil jar (coated with gold leaf) in the fame way. It Heod on the cop of an axis; and while this was turned round, the edge was rubbed with a very dry cork filled
with rofen, and faffered to the end of a glafs rod. This made the jar found like the glafs of a harmorica. One of them sad fplit in this operation.

A fmall bar of ftel was heated red hot and tempered hard between two ftrong inagrets lying in fhallow boxes filled with water, and was more frongly impregnated in this way than in any other that we could think of for a bar of that Mape. It has not yet been afcer. tained in what temperature it is moff fufceptible of magnetifm, but it was confiderably hotter than to be ju!t vinble in a dark place. It is no objection to our way of conceiving magnetifm, that the fluid is immoveable or inactive when the irun is red hot. Either of thefe, or both of them, may refult from the union with the caufe of heat. Even a particular degree of expanfion may fo change the law of action as to make it immovealle; or the union with caloric may render it inalive at all fenfible diftances. We cannot but think, that fome very isfltructive facts might be ohtained by experiments made on ion in the moment of its production, and changes in various cheniical proceffs. All magnetifm is goue when it is united with fulphur and arfenic in the greatef number of ores; and when it is in the fate of an nchre, ruft. eihiops, or folution in acids; and when united with aftringent fubftances, fuch as galls. When, and in what fate, does it become magnetic? And whence comes the fluid of Epinns? It were worth while to try, whether magnets have ary influence in the formation or cryflallization of the martial falts; and what will be their fflect on iron when precipitated from its folutions by another metal, \&c. \&c.

There remains one remarkable fact to be taken no. tice of, which, in one point of view, is a confirmation of the hypothefis, but in ano:her prefents confiderable difficultics. It is well knows, that no magnet has ever been feen which has but one pole; that is, on the hypothefis of Appirus, which is wholly reduadant, or wholly deficient. If all magnetifm be either the immediate or the emcte effees of the great magnet contained in the earth, and if it be produced by induction, without any communication of fubftance, but only by changing the difpuftion of the fluid already in the iron, we never fould fee a margnct with only one pole. It muft be owned, that we never can make fuch a magnet by a: y of the procefis hithento deferibed; but the exittence of fuch toes not feem impoffible. Suppofing a magnet, of the moth regular magnetifm, having only two poles; and that we cut it though at the neutral point, or that we cut or break off any part of it - the tact is, (for the experiment has been tried ever fince men began to fpeculate about magnetifm), that each part becomes an ordinary magnet, with two poles, one of uhich is of the fame kind as before the feparation. The queflion now is, What fhould happen according to the theory maintained by Epinus? - Tentam. Tleor. ETlect. et Magnetifmi, p. 104, \&c.
Let NÁS (fig. 34.) be a magnet, of which N is the overcharged pole. Let the oidinates of the curve I) AE expreds the difference between the natural denfi. ty of the fluid, in a flate of uritorm diffufion, and its denfity as it is really difpofed in the magnet. 'lhe area $p n \mathrm{ND}$ will there exprefs the quantity of redun. dant fluid in the part $n \mathrm{~N}$, and the area q ES m expreffes the fluid wanting in the part Sm . The interfection A marks that part of the magnet where the fluid is of
its natural denfity. Suppole the part $\mathrm{N} n$ to be feparated from the reft, containing the redundant fluid ND pu. The tendency of this fluid to efeape from the iron with which it is comnestel will be greater (Mr Aspinns thinks) than before; becaufe its tendency to quit the magnet formerly was repreffed by the attractions of the redundant matter contained in AS. This is certainly true of the extremity N ; ray, perhaps of all the old external furface. Fluid will therefore efcape. Supuofe that fo much has quitted the iron that the point n has the fluid of its natural denfity, as is reprefented in $n^{\circ} 3$. there is fill a force operating at n, tending to efcape, arifing from the repulfion of ail the redundant fluid $n \mathrm{DN}$. If this be finfficient for overcoming the obltruction, it will really efcape, and the irnn will be $k f t$ in the ttate reprefented by n. with an overcharged part $f \mathrm{~N}$, and an undercharged part $f n$.

In like manner, the tendency of the magnetic fluid furrounding the magnet to enter into its deficient pole, will be greater when it is feparated from the other, not being checked by the repultion of the redundant fluid in that other.

Mr Æpinus rclates fome experiments which he made on this fubject. 'ithe general refult of them was, that the moment the paits were feparated, each had two poles, and that the neutral point of each magnet was much nearer to the place of their former union than to their other ends. In a quarter of an hour afterward, the neutral points had advanced nearer to their middle, and continued to du fo, by very fmall fteps, for fome hours, and fometimes days, and finally were fationary in their middles.

84
We acknowledge, that this reafoning does not alto-Defects of gether fatisfy us, and chat the gradual progrefs of the this reafursneutral point toward the middle of each piece, althongh ing. agreeable to what fhould refult from an efcape of flnid, is not a proof of it. We know already, that the in. duction of magnerifm is a progreflive thing; and we fhould have expected this change of the fituation of the nentral point, whatever be the nature of magnetifm. There is fomething fmilar to this, and perhaps equally puazling, in the immediate recovery of magnetifin which has been weakened by heat; it is partly recovered on cooling.

But our chicf dificulty is this: At the point A (fig. 34.) every thing is in equilibrium before the fracture. The particle A is repelled by the redundant Hhic in AN, and attracied by the redundant mater in AS; yet it does not move, for the magnetifin is fuppoffed to have permanency. Therefore the obftruction at A cannot be overcome by the united repulfion of $A N$ and attraction of AS. Nor can the obffruction at N be orercome by the difference of thefe two furces. Now fuppofe AS annihilated. The change made on the ftate of things at A is furely greater than that at N , becaufe the force abflraced is greater, the diflance being lefs. It does not clearly appear, therefore, that the removal of $A S$ frould occation an eflux at N. This, however, is not impuffiole ; becaufe the fluid may be fo difpofed; by great conftipation near N , and no great excefs of denfity rear A, that a fmaller change at N may produce an cflux there. But furely the tendency to efcape at A mult now be diminifhed; inftead of being greater after the fracture. And if any efcape from N , this will ftill more diminin that tendency to of ape
frocs
from Λ. It does not therefore appear a clear confe. quence of the general theory, that the conftipated fluid flould efcape; and more particularly, that A fhould become deficient. And with refpect to the entry of Buid into the other fragment, and its becoming overcharged at m, the reafoning feems fill lefs convincing. The feps of the phylical procefs in the two parts of the original magnet are by no means convertible or counterparts of each other. There is nothing in the part AS to refemble the force of repulfion really exerting itfelf in the correlponding point of AN. There would be, if there were a particle of fluid in that place; but there is not. The tendency therefore of external fluid to enter there, does not refemble the tendency of the internal huid to expand and diffipate. It is true, indeed, the difcourfe fhould be confined to points of the furface. But the intemal motion muft alfo be confidered; and the great objection always remaiis, namely, that the obftruction at $\mathrm{A}\left(\mathrm{n}^{\circ} 1\right.$.) or at $n\left(\mathrm{n}^{\circ} 3\right.$.) is fufficient to prevent the paffage of a particle of fluid from the pole AN into the pole AS, when urged by the repulfon of the fluid in the one and the attraction of the iron in the other; and yet will not prevent the efcape of a particle when one of thofe caufes of motion is removed. Add to this, that the whole hypothefis affumes as a principle, that the refiftance to efcape from any point is greater than the obitruetion to motion through the pores. This is readily granted; for how. ever great we fuppofe the attraction, in the limits of phyEcal contact, it will be no obftruction to motion through the pores, becaufe the particle is equally af. fected by the oppofite fides of the pores; whereas, in quitting the body altogether, there is nothing beyond the body to counteract the attraction by which it is retained.

There feem fomething wanting to accommodate this beautiful hypothefis of Mr Iepinus to this remarkable phenomenon; and the coincidence is otherwife fo complete, that we are almolt obliged to conclude that it is merely a deficiency, arifing from our not having a fufficient knowledge of the law of magnetic action. This is quite fufficient: For it may be itrictly demonftrated, that if the magnetic action decreafes in higher ratio than that of the fquares of the diftances, the permanency of the fluid in any particular difpofition has fcarcely any dependence on the particles at any fenfible diftance, and is affeced only by the variations of its denfity (See Electricity, Suppl. ni 217. for a cafe fomewhat fimilar). Therefore, if the fluid be fo difpofed, that its denfity may be reprefented by the ordinates of fuch a curve as is drawn in fig. 34. having its two extremitics concave toward the axis, and a point of contrary flexure at A, the tendency to efcape at A will be the greateft poffible ; and when the magnet is broken at A (n^{0} 1.), or when the fluid has taken the arrangement reprefented by $n^{\circ} 3$. it cannot top there, and mufl become deficient in that part. Now, it mult be acknowledged, that we are not abfolutely certain that the magnetic action is in the precife inverfe duplicate ratio of the diftence. All that we are certain of is, that it is much nearer to it than to either the inverfe fimple or inverfe triplicate ratio. We own ourfelves rather difpofed to afcribe the prefent difficulty to our ignorance of fome circumitance, purely mathematical, overlooked, or mif-
taken, than to think a conjecture unfounded, which tallies fo accurately with fuch a varicty of phenomena.
We may here obferve, that we are not altogether fatisfied with IEpinus's form of the experiment. He did not break a magnet ; he' fet two flecl bars end to end, and touched them as one bar, making the magnetifm perfectly regular ; he then feparated them, and found that each had two poles. But was he certain that, when joined, they made but one magnet? We have fometimes fucceeded in doing this, as we thought, by the curves of iron filings; but on putting the needle with which we were examining their polarity into proper fituations, we fometimes found it in the fecond interfection of the fecondary curves, fhewing that the bars were really two magnets, and not one.

On the other hand, when a piece is broken off from a magnet, the fuccuffion and eleftic tremor into which the parts are thrown, and even the bending previous to the fracture, may give opportunity to a diflipation, which could not otherwile happen. The parts fhould be feparated by corrofion in an acid, and the gradual change of magnetifm fhould be carefully noted. The writer of this article has made fome experiments of this mature, the tefults of which prefent fome curious oblervations : but they are not yct brought to a conclufion that is fit to be laid before the public.

Mr Prevót of Geneva, in a differtation on the origin Hyponhefin of magnetic forces, endeavours to give a theory which of Pervô. obviates the only difficulty in that of Æ.pinus; but it is incomparably more complex, employing two fluids, which by their union compore a third, which be calls combiner fluid. There is much ingenuity, and even mathematical addrefs, in adjufting the relative praperties of thofe fluids. But fome of them are palpably incompatible ; ex. gr. the particles of each attract each other, but thofe of the other kind moff ftrongly ; yet they are both elaftic like air. This is furely ineonceivable. Granting this, however, he fuits his different attractions, fo that a ftrong elective attraction of the combined fluid for iron decompofes part of the fluid in the iron, and each of its ingredients occupies oppofite ends of the bar: then will the bars approach or recede, according as the near ends contain a different or the fame ingredient. All this is operated without repulfion.

But the whole of this is mere accommodation, like Epinus's, but fo much more complex, that it requires very intenfe contemplation to follow the author through the confequences. Add to this, that his attractions are operated by another fuid, infinitely more fubtle than either of thofe already mentioned, every particle of thefe being, as it were, a world in comparifon of thofe of the other. In fhort, he adopts all the extravagant fuppofitions of Iee Sage of Geneva, and every thing is ultimately impulfion. Nor is the contrivance for obviating the difficulty (foo often mentioned.) at all clear and convincing; and it is equally gratuitous with the refl. We cannot think this hypothefis at all intithed to the narre of explanation.

This muft ferve for an account of the hypothefis of Remaths Epinus. The philofophical reader will fee, that how on hypp ever exactly it may tally with every phenomenon, it theles. cannot be called an explanation of the phenomena; becaufe it is the phenomena which explain the hypothefis, or give us the characters of the magnetic fluid, if
fuch fuid exifta. But we are not obliged to admit this exiftence, as we admit that to be the true decyphering of a letter which makes fenfe of it. In that cafe we know both parts of the fubjef-the characters
and the founds ; but are ignorant which and the founds; but are ignorant which correfponds to which. Did we fee a fluid abftracted from one part of a bar and conftipated in another, and perceive the abftraction and conttipation always accompanied by the obferved attractions and repulfions, the rules of philofophical difcuffion, nay, the conftitution of our own mind, would oblige us to affign the one as the caufe or occation of the other. But this important circumftance is wanting in the prefent cafe. We think, loowever, that it merits a clofe attention; and we entertain great hopes of its being one day completed, by including this fingle exception.

At the fame time, it mult be owned, that it gives no extenf:on of knowledge; for it can have no greater extenfion than the plenumena on which it is founded, and cannot, withont rifk of error, be applied to an untried cafe, of a kind diffimilar in its nature to the phenomena on which it is founded. We doubt not but that its ingenious author would have faid, that a bit broken off from the north pole of a magnet would be wholly a north pole, if he had not known that the fact was otherwife.

But this hypothefis greatly aids the imagination in conceiving the procefo of the magnetical plenomena. The more we fudy them, the more do they appear to refemble the protrufion of a fluid through the parts of all obftructing body. It proceeds cुradually. It may be, as it were, overdone, and regorges when the propelling caule is removed. The motion is aided by what we know to aid other obftructed motions. As a fliid svould be conttipated in all protuberances, fo the faculty of producing the phenomena is greater in all fuch fituations, \&ec. \&c. This, joined to the impofibility of \{peaking, with clearnefs of conception, of the propagation of powers without the protrufion of fomerhing in which they inhere, gives it a hold of the imagination which is not cafily fhaken off.
To fay that nothing is explained when the attraction of the fluid is not explained, and that this is the main queftion, gives us little concern. We offer no explanation of this attraction, inore than of the attraction of gravity. There is nothing contrary to the laws of human intellect, nothing inconfiftent with the rules of reafouing, in faying, that things are fo conftituted, that when two particles are together, they feparate, although we are ignorant of the immediate caufe of their feparation. Thofe who thisk that all motion is performed by impulfion, and who explain magnetifm by a fream of fluid circulating round the magnet, mult bave another fluid to impel this fluid into its curvilineal path; for they infift, that the planets are fo impelled. Then they muft have a third fluid to deflect the vertical inotions of the fecond, and fo on without end. This is evident, and it is abfurd. But we have faid enough in the article Impulsion, Suppl. to fhew that all loypothefes framed on purpofe to explain action e diflanti by impulfion are illogical ; becaufe impulfion requires explanation as much as the other, and neither the one nor the other will ever be refolved into any thing but the fiat of the Allwife Author of the univerfe.

Suppl. Vol. II. Part I.

We conclude with defiring the reader to remark, that the explanation which we have given of the magnetical phenomena is independent of the hypothefis of Expi解 nus, or any hypothefis whatever. We have narrated a pothefion variety of very diftingnifhable facts, and have marked their diftinctions. We have been able to reduce them to general clafies; and even to groupe thofe claffes into others fill more general; and at laft, to point out one which is difcoverable in them all. This is giving a philofophical theory, in the ftricteft fenfe of the word; becaufe we fhew, in every cafe, the modification of the general fact which allots it this or that particular place in the claffification. Thus we have fhewn that the polarity or directive power of magnets is only a modification of the general fact of attraction and repulfion. Dr Gilbert's theory of terreflrial magnetifm is indeed a hypothefis, and we enounced it as fuch. It only claims probability, and we apprehend that a very hioh degree of credit will be given to it.

We hope that many of our readers will have the ir coriofity excited by the account we have given of π IR inus's theory. I'o fuch we earnefly recominend the ferivus perufal of his book Tentamen Theoria Eleçricitatis et Magnetijmi, Aust. F. EEpino, Petropoli, 17 59. Van Swinden has included a very good abttraet of it in his 2 d volume Sur P'Elecaricité, written by Profffor Steiglehner of Ratifloon or Ingolftadt. The mathematical part is greatly fimplified, and the whole is prefented in a very clear and accurate manner. Mr Van Swinden is a profefed foe to all hypothefes; but he is not moderate, and we wifh that we could fay that he is candid. He attacks every thing; and takes the opportunity of every analogy pointed out by たepinus between magnetifm and eleetricity to repeat the firlt fentence of his differtation, namely, that magnetifm and electricity are not the fame; a thing that Êpinus alfo maintains. But he even charges Æpinus with a miltake in his fundamental equations, which invalidates his whole theory. He fays that Repinus has omitted one of the acting forces affumed in his hypothefis. This is a mott groundlefs charge ; and we own that we cannot conceive how Van Swinden could fall into fuch a mittake. We are unwilling to call it intentional, for the mere purpofe of raifing a man of ftraw to knock him down again. Abbé Haiiy of the French Acadeny has atfo publifhed an abridgment of Æpinus's theory, with many excellent remarks, tending to clear the theory of the only defeet that has been found in it. This work was much approved of, and recommended by the Acadeny. We have not had the good fortune to fee a copy of it.
The reader cannot but have remarked the clofe analo- Analogy of 88 gy between the magnetical phenomena and thofe of indu-mectifm ced electricity; indeed, all the phenomena of att:action and eiectriand repulfion are the fame in both. 'The mechanical ${ }^{\text {cty }}$. compolition of thofe actions procuces a directive power and a polarity, in electrical as well as in magnetical bodies. We can make at electrical needle which will arrange itfelf, with refpect to the overcharged and undercharged ends of a body electrified by inere pofition, juft as a compafs needle is arranged by a magnet. We can touch a ftick of fealing wax in the manner of the donble tonch, $f o$ as to give it poles of conliderable force and durability. As a red hot fteel bar acquires permanent poles by quenching it near a magnet, fo melted wax acquires them by freezing in the neighbourhood of a
pofitive and negative electric. Some have inferred a famenefs of origin of thefe two fpecies of puwers from thofe various circumftances of refemblance; but the original caufes feem to be diftinct on many accounts. Electricity is common to all bodies. The caufe of magnetifm can operate only on iron. Although lightning or an electrical fhock gives polarity to a needle, we need not infer the identity of the caufe, becaufe the polarity which it gives is always the fame with that given by great hear ; and there is always intenfe heat in this operation. The phenomenon which looks the moft like an indication of identity of the origin of electricity and magnetifm is the direction of the rays of the aurora horealis-they converge to the fame point of the heavens to which the elevated pole of the dipping needle directs itfelf. But this is by no means a fufficient fonndation for eitablifhing a famenefs. Electricity and magnetifm may, however, be related by means of fome powers hitherto unknown. But we are decidedly of opinion, that the electric and magnetic fluid are totally different, although their mechanical actions are fo like that there is hardly a phenomenon in the one which has not an exact counterpart in the other. But we fee them both operating, with all their marks of diftinction, in the fame body; for iron and loadftones may be electrified, like any other body, and their magnetifm fuffers no change or modification. We can fet thefe two forces in oppofition or compofition, jult as we can oppofe or compound gravity with either. While the iron filings are arranging themfelves round a magnet, the mechanical action of electricity may be employed either to promote or binder tlie arrangement. 'They are caufe. therefore diftinct ?owers, inherent in cifferent fubjects.

But there are abundance of other phenomena which fhew this diverfity. There is nothing in magnetifm like a body overcharged or underchar ged in teto. There is nothing which incicates thic prelence of the fluid to the other fenfes - nothing like the fpark, the fap, the vi- fible ciffipation ; becuufe the magnetic fluid enters into no union with air, or any tling but iron. There is nothing refembling that inconceivably rapid motion which we fee in eleetricity; the quickett motion of magnetifm feems inferior (even beyond comparifou) with the flow. eft motion along any eleetric conductor. Thereffore there is no poffibility of difcharging a magret as we difcharge a coated plate. Indeed, the refemblance between a magnet and a coated plare of glafs is exceedingly f ight. The only refemblance is between the magnet and an inconceivably thin ftratum of the glafs, which Aratum is poftive in one fide and negative in the other. The only perfect refemblance is between the induced magnetifm of common iron, and the induced electricity of a conductor.

The following feem the mott infructive differtations on magnetifin, either as valuable collections of obferva. tions, or as judicious reafonings from them, or as the fpeculations of eminent or ingenious men concerning the nature of magnetifin.

Silbertus de Magnete, Lond. 1600 , fol.
Epini Tentamen Theoriæ Magn. et Electr.
Eherhard's 'Tentam. Theor. Magnetifmi, 1720.
Differtations fur l'aimant, par du Fay, 1728.
Mufchenbroek Differt. Phyfico Experimentalis de Magnete.

Pieces qui ont emporté le prix de l'Acad. des Sciences
à Paris fur la meilleure conftruéion des Fouffoles de declination. Recueil des pieces conrounćes, tom v

Epleri opufcula, tom. iii. continens Theoriam Magnetis, Berlin, 1751.

Epini Oratio Academica, 175%
Eypini item Comment. Petrop. nov. tom. x.
Anton. Brugmanni tentam. Pliil. de materia Magnetica, Francqueræ, 1565 .

There is a German tranflation of this work by Ei. fenbach, with many very valuable additions.

Scarella de Magnete, 2 tom fol.
Van Swinden 'I'entamina Magnetica, 4 to.
V ani Swinden fur l'Analogie entre les phenomenes Electriques et Magnetiques, 3 tom. 8 vo.

Differtation fur les Aimans artificielles par An. theaume.

Experiences fur lez Aimans artificielles par Nicholas, Fufs, 1732.

Effai fur l'Origine des Forces Magnetiques par Mr Prevoft.

Sur les Aimans artificielles par Rivoir, Paris 1752.
Differtatio de Magnetifmo par Sam. Klingenttier et Jo. Brander, IIolm. 1752.

Defcription des Courants Magnetiques, Strabourg, 1753°

Traitć de l'Aiman par Dalancé, Amft. 1687.
Befides thefe original works, we have feveral differta. tions on magnetical vortices by Des Cartes, Bernoulli, Euler, Du 'Tour, \&c. publifhed in the collections of the works of thofe authors, and many differtations in the memoirs of different academies; and there are many popular treatifes by the traders in experimental philofophy in London and Paris. Dr Gown Knight, the perfon in Europe who was moft eminently fkilled in the knowledge of the phenomena, alfu publifaed a diflertation intitled, sin attempt to explain the Pleenomena of Nature by two principles, Attraction and Repulfion, Lond. 174^{8}, $4^{\text {to, }}$, in which he has inclun' d a theory of magnetifm. It is a very cunious work, and Thould be thudied by all thofe who have recourfe without foruple to the agen y of invifiole fluids, when they are tired of patient thinking. 'They would there fee what thought and combination are necetfary before an invilible fluid can be really fitted for performing any office we choofe to affign it. And they will get real initruction as to what fervices we may expect of fuch agents, and from what tafks they muft be excluded. 'The Dostor's theory of magnetilin is very unlike the reft of the performance; for he does not avail himfelf of the vaft apparatus of propofitions which he had eftablif.ed, and adopts without any nice adjuitment the moft common notions of an impulife vortex. Both the production and maintenance of this vortex, and its mode of operation, are irreconcileable with the acknowledged laws of impulfion.

Si quit novijfi reitius iftis, candidus imperti- \sqrt{i} non bis utere necam.

APPENDIX.

We have been favoured with the following inveltign- inveftipze tion of the curver, to which a meedle of indefinite mi-tion of che mutenefs will be a tangent, by Mr Playfair, Profeffor of magı enic Mathematics in the Univerfity of Edinburgh.

Two magnetical poics being given in pofition, the furce of each of which is fuppufed to be as the m th pewer of the dittance from it reciprocally, it is required to find a curve, in any point of which a needle (indefinitely fhort) being placed, its direction, when at reft, may be a targertit to the curve?

1. Let A and B (fig. 35.) be the poles of a magnet, C any point in the curve required; then we may fuppofe the one of thefe poles to act on the needle only by repulion, and the other only by attracion, and the direction of the needle, when at reft, will be the diagonal of a parallelogram, the fides of which reprefent thefe forces. Therefore, having joined AC and BC, let AD Le drawn parallel to BC , and make $\frac{1}{\mathrm{AC}^{m}}: \frac{1}{\mathrm{EC}^{m}}:: \mathrm{AC}$: AD ; join CD , then CDF will touch the curve in C .
2. Hence an expreflion for AF may be obtained. For, by the conftruction, $\mathrm{AD}=\frac{\mathrm{AC}^{m}+^{2}}{\mathrm{BC}^{m}}$, and fince BC $: A D:: B F: F A$, and $B C-A D: A D:: A B: A F$, we have $A F=\frac{A B \times A C^{m+1}}{B C^{m+1}-A C^{m+1}}$.
3. A fluxionary expreffion for AF may alfo be found in terms of the angles $\mathrm{CAB}, \mathrm{ABC}$. In CF take the indefinitely fmall part CH , draw $\mathrm{AH}, 13 \mathrm{H}$, and from C draw CI , perpendicular to AH and CK to BH . 1)raw allo BC and AM at right angles to FH. Let tise angles $\mathrm{CAB}=$? , and $\mathrm{CBA}=\psi$; then $\mathrm{CA} H$ $=i$, and $\mathrm{CBH}=-i$; alfo $\mathrm{CL}=\mathrm{AC} \times i$, and CK $=-B C \times \dot{\psi}$. Now IIC:CL::AC:AM= $\frac{\overline{A C}^{2} \times \dot{i}}{\mathrm{HC}}$; and for the fame reafon $\mathrm{BC}=-\frac{1 \mathrm{C}^{2} \times}{\mathrm{HC}}$. Therefore fince $A F: F B:: A M: B C, A F: F B::$ $\frac{\mathrm{AC}^{2} x_{i}}{\mathrm{HC}}:-\frac{\mathrm{PC}^{2} \times i}{\mathrm{HC}}$, and $\mathrm{AF}: \mathrm{AT}:: \operatorname{lin} \cdot \dot{i}^{2}:-$ fin. ψ^{2} - fin. $\psi^{2} \psi$; wherefore if $A B=a, A F=$ $-a i \operatorname{fin} . \psi^{2}$ $\overline{i \operatorname{fin} 1^{2}+\operatorname{fin} .} \overline{v^{2}}$.
4. If this value of $A F$ be put equal to that already found, a fluxionary equation will be obtained, ly the integration of which the curve may te confructed. Becaufe $A F=\frac{\mathrm{AB} \times \mathrm{AC}^{m}+^{1}}{\mathrm{~B} e^{m+1}-\mathrm{A} e^{m+1}}$; and fince
 have by fubflitution $\mathrm{AF}=\frac{a \mathrm{fin} \cdot \psi^{m+1}}{\ln .7^{m+1}-\operatorname{lin} . \psi^{m+1}}=$ $-\frac{a j \sin \cdot \downarrow^{2}}{v \operatorname{fin} \cdot q^{2}+\operatorname{lin}^{2} \cdot \psi^{2}}$. Hence, fin. $q^{2} \times \dot{\psi} \operatorname{fin} \cdot \psi^{m+1}+$ $\dot{\square} \operatorname{fin} \dot{\psi}^{m+3}=-\operatorname{fin} . \downarrow^{2} \times \dot{j} \operatorname{fin} . \phi^{m+1}+\dot{q} \operatorname{fn} . \psi^{m+3}$, and therefore i fin. $\psi^{m-1}=-\dot{q} \mathrm{fin}_{q^{m-1}}^{m-1}$; and alfu, $\int \dot{\psi}$ fin. $\psi^{m-1}+\int \phi \mathrm{fm} . p m^{-1}=C$.
5. Thefe flwents are eafily found when m is any whole pofitive number.

If $m=1$, we have $\dot{\psi}+i=0$.

$m=2$,	ifin. $\psi+\dot{\operatorname{fin} .0}=0$.
$m=3$,	inin. $\psi^{2}+q \operatorname{lin} r^{2}=0$.
$m=4$,	ifin. $\psi^{3}+i \operatorname{in} .95=0, \& c$.

Therefore, \&c-
Alfo if $m=1, \quad ; t \psi=$ C.
$\begin{array}{lc}m=2, & \text { cof. } z+\operatorname{cof} . \psi=C . \\ m=3, & - \text { fin. } 27+27-\operatorname{cn} 2 \psi+2 \psi=C . \\ m=4, & \text { cof. } 3 q-\text { cof. } q+\operatorname{cof} 3 \psi-9\end{array}$
ccf. $\dagger=\mathrm{C}, \dot{\alpha}$ c. \&c.

The firlt of the above equations belongs to a fegment of a circle defcribed upon $A B$, which therefure would be the curve required if the magnetical force were inverfely as the diftances.

If the inagnetical force be inverfely as the fquare of the diffance, that is, if $m=2$, cof. $7+\operatorname{cof} \psi$ is equal to a confant quantity. Hence if, befide the foints. A and B, any other point be given in the curve, the whole may be deferibed. For inftance, let the point E (fig. 36.) be given in the curve, and in the line DE which bifects $A B$ at right angles. Defcribe from the centre A a circle through E, viz. QER; then AI) being the cofine of DAE to the radius AE, the fum of the cofines of $\mp X \downarrow$ will be everywhere (to the fame radius) $=2 A D=A B$. Therefore to find E, the point in which any other line $\mathrm{A} N$, making a given angle with $A B$, meets the curve, draw from \hat{N}, the point in which it meets the circumference of the circle QER, N (), perpendicular to $A B$, fo that $A O$ may be the co. fune of NAO, and from O toward A take OP $=A B$, then $A P$ will be the cofne of the angle AME ; fo to find $B E$ ', draw $P(L$ perpendicular to is P, meeting the circle in $\mathrm{Q} ;$ join AO . and draw BE ' parallel to $A Q$, meeting $A E^{\prime}$ in E^{\prime}, the point E^{\prime} is in the curve. In this way the other points of the curve may be found.

The curve will pafs through B, and will cut $A B$ at an angle of which the cofine $=$ RBB. If then E be fuch, that $A E=A B$, the curve will cut $A B$ at rifhlt angles. If $\mathrm{E}^{\prime \prime}$ be more remoie from A , the curve will make with $A B$ an obtufe angle toward D; in other cafes it will make with it an acute angle.
A conftruction fomewhat reore expeditious may be had by defcribing the fumicircle A. Fib, cutting A E in F , and $A E^{\prime}$ in N , and defcribing a circle round A , with the diflance $A L=2 A F$, citting $A E$ in b. If AG be applied in the fernicircle $A F H=N b, A G$ muit cut AN in a point E of the curve, becaufe AN $+B G=2 A F$, and $A N$ and $G B$ are cofines of thec angles at A and B.
As the lines $A . N$ and $B G$ may be applied either a. bove or below AB , there is another fitmation of their interfection E^{\prime}. Thurs $A n$ being apphed above, and 13 g below, the interfection is in e^{\prime}. The curve has a branch extending below A; and if $D e$ be inade $=D E$, and $B C$ be drawn, it will be an affymptote to this branch. There is a fimilar branch b. 1ow B3. But thefe portions of the curve evidently fuppofe an oppofite direction of one of the two magnetic furses, and therefore have no connection with the polition of the needle.

We omitted the inferting in its propes place, $11^{\circ} 65$. sddition to a hy pothefis of the celebrated affronomer T'obias May er is $\left(.55^{\circ}\right.$ of Gottingen, by which the direction of the marincr's needle in all parts of the earth nay be detcrmined. He fuppofes that the earth contains a very powerful mar. net of inconfiderable dimenfions, which arrarges the needle according to the known laws of megnetifin. The centre of this magnet was diflant from the centre of the earth about 480 Eliglifh miles in 175 1 , a ad a line joining thefe centres intufected the cuitli's flus face in a point fituated in 17° N. Lat. and 183 E Long. fiom London. The axis of the marnet is perpencichler to this line, and the plane in which it lies is incline? albout 11° to the plane of the meridan, the north end of the axis lying on the caft fide of that meridim.

From

From thefe ddta, it will be found that the axis of this magnet cuts the furface of the earth about the middle of the ealtern fhore of Baffin's Bay, and in another point about 800 miles S.S.W. of the fouthern point of New Zealand. Profefor Lichtenberg of Cottingen, who gives this extract from the manufcript, fays, that the hypothefis is aecompanied by a confiderable lift of variations and dips calculated by it, and compared with obfervations, and that the agreement is very remarkable. He gives indeed a dozen inflancea in very different regions of the earth. But we fufpect that there is fome error or defect in the data given by him, becaufe the annial charges, which he alfo gives, are fuch as are inconfiffent with the data, and even with each other. He fays, that the diftance from the centre increafes about four milcs annually, and that thence arifes an annual diminution of 8 minutes in the latitude and 14 in the longitude of that point where the ftraight line joining the centres meets the furface. It can have no fuch confequence He fays alfo, that the above mentioned inclination of the plares increales 8 minutes annually. The compound force of the magnet is faid to be as the fquare root of the diftance invelfely. We are at a lofs to underftand the meaning of this circumfance; becaufe Mayer's hypothefis concerning the law of magnetic action is exceedingly different, as related by Mr Lichten. berg from the fame manufeript. But it was our duty to communicate this notice, though imperfect, of the fpeculations of this celebrated mathematician. See Exliben's Elem. of Nat. Phil. publified by Lichten. berg 178_{4}, p. 645.
Addition to $n^{\circ} 04$.
meridian, $\mathrm{H} n^{\prime} \mathrm{O}$ the plane of the horizon, and NS the pofition of the magnetic needle in any place, when it is at liberty to fettle in the true magnetic direction. The angle HON is the inclination or dip of the needle. Let Z n F be a vertical circle, in which a well conftructed dipping needle can freely play up and down. This needle cannot place itfelf in the magnetic direction, becaufe it can only move in a vertical plane. Its north point is inpelled in the direction $n 0$, and its fouth point in the direction $s p$, both of which are parallel to NS. By the laws of mechanical equilibrium, it cannot. reft, except in fuch a pofition that the forces 200 and $s p$ are in a plane pcrpendicular to the plane ZnF . In any other pofition, there would be a force impelling the needle toward that fide on which $n o$ makes an acute angle with the tangent $r n t$ of the vertical circle. Therefore the fpherical triangle $\mathrm{N} n \mathrm{~F}$ is right angled in n, and $\operatorname{Cof}, \mathrm{NF} n: \mathrm{R}=$ 'Tan. $n \mathrm{~F}:$ 'Tan. $\mathrm{NF},=$ Tan. HN : Tan. $n^{\prime} n$. Therefore

$$
\text { Tan. } n^{\prime} n=\frac{\text { Tan. HN }}{\operatorname{Cof} \cdot \mathrm{H} n^{\prime}}=\text { Tan. HN } \times \text { Sec. H } n^{\prime} \text {. }
$$

Therefore, in any place, the real inclination of the magnetical direction to the horizon is different from what is pointed out by a dipping needle when it is in a plane which declines from the magnetic meridian ; and the tangent of the obferved dip of the needle exceeds that of the inclination of the magnetic direction in the proportion of radius to the coline of the deviation $\mathrm{HC} n$, or the proportion of the fecant of this angle to the radius. If therefore the dipping needle play in a magnetic eaft and weft circle, it will ftand perpendicular to the horizon.

M A L

Malefherbes.

M A L

MALESHERBES (Chriftian William de Lamoig. non) was burn December the Gth 1721 . At the age of 24 he becance a counfellor of Parliament, and lix years afterwards chief prefident of the cour des aides. He remained in that important fituation during a period of 25 years, and difplayed on many occalions proofs of tirmnefs, eloquence, and wifdem.

When the prince of Condé was fent by the king in ${ }_{17} 68$ to filence the magilitrates who oppofed the taxes, Malefherbes replied to him, "Truth. Sir, mult indced be formidable, fince fo many effiorts are made to prevent its approach to the threne." About the fame time that he became preficent of the cour des aides, he was appointed by his father, then chancellor of France, fuferintendant of the prefs; an office of the greatef importance, of which the principles which Maletherbes had imbibed from D'Alembert rendered him very ill qualified to difcharge the duties. He was what the French called a philofopher; a term with them of the fame import with a naturalift, who openly denies revealed religion, and has no adequate notions of the moral attributes of God. The confequence was, that when the authors of impious and immoral books were brought before him in his official capacity to undergo examination, he appeared to them as advifing, affifting, and protecting them, againft that very power which was vefted in himfelf; and they were commonly difmiffed with this fenfelefs obfervation, that all books of whatever tendency fhould be confidered merely as objeds of com-
merce. Had it not been for the protecting influence of Malefherives, the Encyclopeclie, of which the publication was frequently fufpended (fee Diderot in this Supplement), would probably have been altogether fuppreffed; and the works of Rouffeau and Raynal, which fo powerfully contributed to that revolution in which he was. overwhelmed, would cerrainly not have fpread fo rapid. Iy over the kipgdom of France. It was he, faid D'A. lembert, who broke the foackics of literature.
In vain will it be replied, that he left the famc liberty to the religious as to the impious writers; for that was not always ftrictly true. The Abbé B'arruel has brought the teftimony of D'Alembert himfelf to prove, that it was much againf his will that Malefherbes fuffered works refuting the fophifters to appcar; and, as he very properly obferves, what a minifter allows with reluctance, he finds abundant means of preventing.

In 1775 he refigned the office of chief prefident of the cour des aides, and was appointed miniter and fecretary of flate in the place of Ia Vrilliere. Thus placed in the centre of a frivolous yet brilliant court, Malefherbes did not in the leaft deviate from his former fimplicity of life and manners; but, in lieu of complyirg with the eftablifhed etiquette which required magiltrates, when they became minifters of ftate, to exchange their fable habit and head.drefs for a coloured fuit, bag-wig, and fword, he retained his black coat and magifterial peruke! This is recorded by a panegysift to his honour ; but we perceive not the honour
which it veflects on him. It furely requires no great porvers of abftraction to difcover, that a coloured cont, bag-wig, and fword, are not in themfelves more frivolous or contrary to nature, than a black coat and enormous peruke; and if the manners of a country have appropriated thefe different dieffes to different flations in life, the individual murt be actuated by a very abfurd kind of pride, who fets up his own caprice againlt the public opinion.

As, when invelted with the power to reftrain witlin jut limits the freedom of the prefs, it was his chief aim to encourage and extend that freedom; fo, when raifed to an office which gave him the unlinited power of if. fuing lettres de cactuet, it was their total tuppreffion that became the earlieft object of his mof ardent zeal. Till that time lettres de cachet, being conlidered as a part of the general police, as well as of the royal prerog.tive, were iffued not only at the will of the minifter, but even at the pleafure of a common clerk, or perfons fill more infignificant. Malefherbes began by relinguihing him:telf this abfurd and iniquitous privilege. He delegated the right to a kind of tribunal, compofed of the moft upright magitrates, whofe opinion was to be unanimous, and founded upon open and well eftablifhed facts. He had but one more object to attain, and that was to fubritute a legal tribunal in the place of that which he had eftablifhed; and this object he was upon the point of accomplithing, when the intrigues of the court procured the difmiffion of Turgot ; and Male fherbes, in confequence, refigned on the 12 th of May 177 . For this part of his conduct lie is intited to praife, which we feel not ourfelves inclined to withhold from his memory. Even M. Barruel admits, that he had many moral virtues, and that he difplayed real benevolence when alleviacing the rigours of imprifonment, and remedying the abufe of letires de cacbet; bint France, fays he, ftall neverthelefs demand of him her temples that liave been deftroyed; for it was he who, above all other minifters, abufed his authority to efta. tlih in that kingdon the reign of impiety.

After this epoch he undertook feveral journeys into different parts of France, Holland, and Swityerland, where he colle eted with zeal and tatle ohjects of every kind interelting to arts and fciences. As he travelled with the fimplicity and economy of a man of letere, who had emerged from obfcurity for the purpofe of making obfervations and acquiring knowledge, he by that meano was enabled to referve his fortune for important occalions, in which it might procure him information on intereffing fubjects. Ite travelled flowly, and frequently on foot, that his obfervations might be the more minute; and employed part of his time in fuitably arranging them. Thefe obfervations formed a valuable collection of interefting matter relative to the arts and feiences, but which has been almoft totally dettroyed by the fury of revolutionifts, who have done as much prejudice to the interents of fcience as of humanity.
Returning from his travels, Malefherbes for feveral years enjoyed a philofophic leifure, which he well knew how to direct to ufeful and important objects. The two treatifes which he compofed in the years 1785 and 1786 on the civil flate of the proteftants in France are well known. The law which he propofed in thefe, was only preparatory to a more extenfive reform; and thefe treatifes were to have been followed up by another
work, the plan of which he had already laid down, when alfairs growing too difficult to be managred by thofe who held the reins of government, they were compelled to call him to their councils. They did not, however, affign him the direction of any department, and introduced him merely (as fubiequent events have fiewn) to cover their tranfactions under a popular name, and pafs thens on the world as acts in which he had taken part. Malefherbes accepted the ir overtures merely to fatisfy the defire he felt to reveal forme ufeful truths; but it was not for that purpofe that they had iuvited him to their councils. Thofe who prefided at then took umbrage at his firft efforts to call their attention to the voice of truth and wifdom; and fucceeded fo well in their oppofition, that he was rechiced to the neceffity of delivering in variting the counfll which he wibed to of. fer. Such was the origin of two treatifes relative to the calamities of France, and the means of repairing them. He tranfinitted thefe treatifes to the king, who never read them; nor was he ever able to obtain a private andience although a minitter of fate.
Such is the account of his laft conduet in office which is given by his friends ; and as we have not read his treatites on the calamities of France, we have no right to comtrovert it. From his known priniciples, however, we are intitled to conclude, that his plans of reformation were fimilar to thofe of Neckar, the offfpring rather of a head teeming with vifionary theories, than of the enlightened inind of a practical itatefman, or the corrupt lieart of a Jacobin confpirator.
Perceiving the inutility of his endeavours, difgufted with what he thought the repeated errors of the go. vernment, and deprived of every means of expofilig them, or preventing their fatal ffects; after frequent fo. licitations, he at length obtained leave to retire. He repaired to his eftate at Malefherbes, and from that mo. ment cutirely devoted liis time to thofe occupations that had ever formed the chief pleafure of his life. He palfed the evenings and a great part of the night in reading and ftudy.

In this tranquil flate he was paffing the evening of his days amidtt his woods and fretds, when the horrors of the Revolution brought him again to l'aris. During the whole of its progrefis, he bad his eyes conflantly fix. ed on his unhappy fovercign, and, fubduing his natural fonducfs of retirement, went regulaly to coairt every Sunday, to give him proofs of his refpect and attachinent. He impofe! it as a duty on himfelf to give the miniters regular information of the defignas of the regicide faction * ; and when it was determined to bring * Bertrand"s thas king to trial, he voluntarily offered to be the de- Membirrs, fender of his matter, in his memonable letter of the it th vol. iii. of December 1792, that eternal monument of his loy. chap. $3^{\text {I. }}$ alty and affection. His offer was accepted; and he pleaded the caufe of the monarch with a Alrength of argument that nothing could have refifted but the bloodthirfty minds of a den of Jacnbins. "What Frenclman (fays a valuable writer), what virtuous man, of any country, can ever forger that affecting fcene, when the refpectable old man, penterrating, for the firft time, into the prifon of the Temple, nelted into tears, on finding himfelf prefled in the ar:us of his king; and that ftill more affecting fcene, when, entruited with the mont agonizing commifion that a fubject could poffibly have to his fovereign, he threw himfelf at the feet of the in. nocent vittim, while, fuffocated with his fobs, his voice,

M A I

- Mate. f:arcs.

* Chery's

fournal, p.
tili reanimated by the courage of the virtuoue I.onis, was inadecquate to annource the fital fertence of death*.

Having difcharged this panfu! and haza: dous duty he once more returned to his country refidence, and refumed his tranquil coun fe of life. But this tranquillity was of thort duration. About a twelvemonth afterwards, in the month of December 1793 , three worthy menbers of the Revslutionary Committee of Paris came to relide with him, his fon-in law, an! his daugliter, and appre1 ended the two latter as criminals. Left alone with his grandchildren, Malenterbes endavoured to confole the relt of his unfortunate family with the hopes which he himfelf was far from entertaining, when, the next day; the new formed guards arrived to apprehend him, and the whole of his family, even the younceft infants. This circumflance fpread a general confternation throughout the whole department; for there was hardly a man in France, a few ex jefuits excepted, who did net revere the mild virtues of the laft friend of the unfortunate king.

In this calamity Malefherbcs preferved the undifturbed equanimity of wirtue. His affability and good huthour never forfook him, and lis converfation was as ufual ; fo that to have beheld him (without noticing his weetched guards), it feemed that he was travelling for his pleafure with his neighbours and friends. He was conducted the fame night to the prifon of the Madelosette with his grandfon Louis I, epdletier, at the fame time that his other grandchildren were feparated into different prifons. This feparation proving extremely afflicting to him, he earneflly folicited againtt it ; and at Iength, on his repeatcd entreaties, they all met together once more at Port-Libre. They remained there but a flort perind. The fon in-law of Malefherbes, the viriums Lepelletier Rafambo, the firt of them viho was orrefted, was ordered into another prifon, and facrificed a few days after. Malefherbes limfelf, lis daughter, Jis grand-daughter, and her huband, were foon after a!!! brought to. the guillotine. They approached it with fortitude and ferenity. It was then that his danghter adelrefled thefe pathetic words to Mademoifelle Sombrevil, who had faved the life of her own father on the 2d of September: "Yuu have had the exilted honcur to preferve yous father-I have, at lealt, the confolation to die with mine."

Malesherbes, ftill the fame, even to his laft moments exhibited to his rulations an example of fortitude. He converfed with the perfons that were near him without Feftowing the leaft attention on the brntalities of the wrerclies who tied his hands. As he was leaving the prifon to afcend the fatal cart, he Atmmbed agramf a ttone, and made a falfe ltep. "See (fad he fiming), low bid an omen! A Roman in my fituation would have been fent back again." Fie paffed through Paiss, alcended the foaffohl, and fubmited to death with the fame unthaken courage. He died at the age of 72 years, 4 months, and 1 ; days. He had only two clangliters, and the fon of one of them alone remains to fircecd. From this account of Mate herbes's behaviour at his lat monents, we are irchased to believe that his intentions were better than fome parts of his practical conduct; and we kuow, that having dipelled the vain itlufions of philufophifm, he ackrow? ${ }^{\text {dged }}$ his palt errors; exclaining, in the accents of grief, "Ihat falfe philofopliy (to which I confcfs I was my felf a dupe)

8] M A L

has plunged us into the gn'p'l of deftruction, and, by Malenzzs an inconceivable magic, has fafcinated the eyes of the nation, and mude us iacrifice reality to a mere phantom. For the limple words political iiberty, France has loit that focial friedom wiich fle poffedied in every refpect, in a higher degree, than any other nation! How truly great did the king appear in his la't moments! All their efforts to degrade him were vain; his uthaken virtue trinmphed over their wickednefs. It is truc, then, that religion alone transfufes fufficient courage into the mind of man, to enable him to fupport, with fo much dignity, fuch dreadful trials \dagger.

MALGUZZARY, in the language of Bengal, payment of revenue ; the revenue itfelf.

MALPHAGHINO (John), otherwife called John de Ravenna, from the place of his birth, was born in the year 1352 , of a family diftinguifhed neither by riches nor nobility. His father, however, committed him to the carc of Donatus the grammarian, an intimate friend of Petrarch, who at that time taught the Latin tongure with great applaufe at Venice. Donatus thought he difcovered fuch happy difpofitions in young Malohaghino, that he recommended him to I'etrarch, not only as an excellent affittant to facilitate his labours, by reading or tranfcribing for him, but as a youth of the moft promifing talents, and worthy of being formed under the infpection of the greatell man of the fourteenth century.

It appears from fome of Pctrarch's letters, for it is from thefe chiefly we can obtain information refpecting John de Ravenna, that he fully anfwered the expectations formed of him; and that he even gained the favour and affection of his patron fo much, that he loved him and treated him as if he had been his own fon. In a letter to Johar de Ceitaldo (A), Petrarch lighly extols him, not only for his genius and talents, but alfo for his prudent and virtuous conduct. "Hc poffifes (fays he) what is very rare in our times, a great turn for poetry, and a noble defire to become aczuainted with every ufeful and ornamental part of knowledge. He is favoured by the Mufes, and already attempts verfcs of his own ; from which one can foretel, that, if his life be fpared, and if he goes on as hitherto, fomething great may be expected from him."

Not long, however, after this panegyric was written, young Malphaghtian conceived an infuperable defire to fee the world; and, notwithflanding all I'etrarch's remonftrances, perfithed in his refolution of quiting him. Petrarch's patcrial carc and regard for his pupil appear, on this occation, in the molt favomable light, as may be feen in his letters to Donatus; and his whole behaviour, though the young man infitted on leaving him, without affgning a futricient reafon for his precipitate and ungrateful conduct, does as much howour to his head as to his heart.

The precipitation with which John de Ravenna carricd his plan into excention was not likely to make it anfiwer his expectations. Ife departed withont taking with him letters of recommendation which Petrarch offued tim to his friends. He, however, purfaed his journey over the Appenines, amidit continual rain, giving ont that he had been difiniffed by Petrarch; but, thongry he experienced from many a compaffion to which he was not entitled by his conduct. he now began to atwaken from his dream. He proceeded therefore to

[^3]

1'Fhag- Pifa, in order to procure a veffel to carry him back to. wards Pavia : but being difappointerd, while his money waited as much as his patience decreafed, he fuddenly refolved to travel back acrefs the Appenines. When he defouded into the Liguian plains, he attempted to wade through a river in the dittrict of Parma, which was nuth fwelled by the rains : and being carried by the force of the ftream into a whirlpool, he would have loft his life, had he not been faved by fome people who were accidentally paffing that way. After efcaping this danger, he arrived, pemylifes and fanifhed, at the houre of his former patron, who happened then not to be at home ; but he was received and kindly entertained by his fervants till their maller returned.
Petrarch, by his intreaties and paternal admenitions, retained the young man at his houfe for about a year, and prevented him from engaging in any more romantic adventures; but, at the end of that period, his defire for rambling again returned; and as Petrarch found that all attempts to check him would be fruitiefs, he gave him letters of recommendation to two of his friends, Hugo de St Severino and Framifens Brunus, at Rome. To the former of thefe, Petraych fays, "This youth of rare talents, but fill a youth, after propofing to himfelf various plan:s, has at length embraced the noblett ; and as he once travelled, he is now defirous of doing to again, in order to gratify his thirft of knowledge. He has, in particular, a frong inelination for the Greek language; and entertains a wifh which Cato firft conceived in his old age. This wifh I have endeavoured for fome years to fubdue; fonctimes by intreaties, at other times by admonition ; fomerines by reprefenting how much he is till deficient in the Roman language ; and fometimes by laying before him the difficulties which muft attend him in his journey, efpecially as he once before left me, and by want was obliged to return. As long as that unfortunate exsurfion was fre? in his memory he remianed quiet, and gave me hopes that his rullefs fyivit could be overcome and refrained. Bui mow, fince the remenbrance of his misfortunes is almolt oblitcrated, he again fighs after the world; and can be retained meitler by force nor perfuafion. Excited by a defire which betrays more ardour than prndence, he is refolved to leave his country, friends, and relations, his aged father, and me whom he loved as a father, and whofe company he preferred to a refidence at home, and to halten to you whom he knows only y y neme. This precipitation even lias an appeara:ce of prudence. The young mai firt wifhed to viiit Conftantinople; but when 1 told him that Grecee, at prefent, is as poor as it was formerly rich in learning, he gave credit to my affertion, and at any rate altered lis plat, which he could not carry into execution. He is now defirous of traverling Calatria, and the whole coatt of Italy, dittinguifhed formerty by the name of Magna Grreia, beeaufe I once told hin that there we:e in that quarter feveral men well fkilled in the

Greek language, particularly a monk, Barlaam, and one MaphageIeo, or Liontins. with whom I was intimately accuaint. ed, and of whom the firlt had! been fome time my fuholar. In confeguence of this propufal, he berrged me to give him a recommendatory letter:? you, as you have confederable influence i: that yat of the country. This requelt I granter!, in tropes that the yoms man, by his genius and talents, will afford you fatisfaction equal to the Serviee which yon may render to him." In his letter to Brunus, Petrarch expreffes hinfelf as follows: "ITe is a young man who wifhes to fie the world as I formerly did; but I never reflect on it without horror. He is defirolls of feeing Rome; and this defire I cannot condemn, as I myfelf have fo often vilited that city, and conld fill revifit it with pleafure. I fufpect, however, that he will venture on a more extenfive ocean, and that he imag:nes to find a fortune where he will, perhaps, meet with a thipwreck. At any 1 ate, he is defirous, he fays, of putting his fortune to a trial. I wifh it may be favourable; fhould it be adverfe, he is ftill at liberty to return to my peacefur\}, thonigh fmall, haven; for I hang ont a light, duriug the day as well as the night, to guide thofe who quit me through youthful folly, and to enable them to find their way back. 'The ardout by which he is impelled muft not be aferibed fo much to him as to his age, and is in itfelf commendable. If I am not much deceived, the young man loves me and virtue in gerieral. He is unfteady, but modeft ; and de ferves that all good men fhould contribute to his pro: fuerity as far as they can."

From the letters of Petrarch, there is reafon to be: lieve, that John de Ravenna lived with him only about threc years in all ; and that he had not attained to the full age of mauhood when he left him. It appears alfo, for this circumitance is very obfcure, that after he quit. ted him, he wandered abont a confiderable time before he was fo fortunate as to meet with a protector and patron, at whofe houfe, as he wrote to Petrarch, he at laft found a permanent afylum. Now loag he remained with his patron, whoni fome belicve to have been Car. dinal Pailip, and what happened to him till the deat'h of l'etrarch in 1374, and for foine ycars after, is un. known. The literary monuments of the fourteenth and fiftecntly centuries fay nothing farther of him till his apd pearance at Padua; where, accorking to the teltimony of Sicen (B), one of the mont celcbrated of his fcholars, he not only taught the Roinan Eloquence, but allo the fcience of moral philofophy, with fuch fuccefs and applaure, and improved his fcholars fo much by his life and example, that, according to univerfal opinion, he far excelled all the profeffors of thofe fciences who has? ever: before appeared. 'I'hat he was here of coufiderable fervice in reviving the ftudy of the Latin langruage, and of the works of the ancient Romans, was acknowledgred ty all his fcholars, and is coufirmed by the following teltimony of Bloridus (c).
"About the faine period, Ravenna produced that learned
(B) Adolefcens tum ego poetaa, et inflututa Tullii audiebam. Legehat tunc hac in civitate Padua, literarum nutrice, Tobannes Ruvennas vir et fanctimonia morum, et fudio ifto excellens, atque fi putelt fine invilia, dici eco teris, qui magiftri artis hujus in terra Italia ufquam degerent et doctifimi haberentur, quantum recordari videor, omrium judicio praferendus. Hoc namque a praceptore non eloquentia modo, quam ex ordine legerit fed mures etiam, ac quædam bere honefteque vivendi ratio cum doctrina tum exemplis difeebatur. - Sicio Poulcntonus, Ag. Mehus, 1. c. p. 139.
(c) Blondi Flavii Forlivienfis Italia illuftrata. Bas. 1559 . fol. p. 345.

Malphag. learned grammarian and rhetorician Jolanunes, of whom hino. Leonardus Aretinus ufed to fay, that he firft introduced into Italy, after a long period of barbarifm, the ftudy of the Latin language and eloquence, now fo flourifhing; a circuinftance which deferves to be cnlarged on in the prefent work. Thofe well acquainted with Roman literature know, that after the periods of Ambrofe, Jerom, and Auguftine, there were none, or very few, who wrote with any elegance, unlefs we add to thefe good writers, St Gregory, the venerable Bede, and St Bernard." Francis Petrarcha was the firt who, with much genius, and flill greater care, recalled from the dult the true art of poetry and of eloquence. He did not attain to the flowers of Ciceromian eloquence, with which many are adorned in the prefent century ; but this was owing rather to a want of hooks han of talents. Theugh he boafted of having found at Yercelli Cicero's letters to Lentulus, he was macquainted with the books of that great Ruman De Oratore, Quin tilian's Infitutes, the Orator, the Brutus, and other writings of Cicero. John de Ravenua was known to Petrarch both in his youtb and in bis old age. He was not more converfant with the ancients than Pe trarch ; and, as far as I know, left no works behind him. By his excellent genius, however, and, as Leonardus Aretimus fays, by the particular difuenfation of God, he was the preceptor of this Leonardus, of Petrus Paulus Vergerius, of Arnebonus de Padua, of Robert Roffi, of James Angetli of Florence, of Poggius and Guarino of Veronia, of Victoinus, Sicco, and other men of tefs note, whon he incited to the fludy of better knowledge, and to imitate Cicero, if he could not form them or initruct them completely.
"About the fame time, Manuel Chryfoloras, a man as virtuous as learned, came from Conitantinople to Italy, and infructed in the Greek language, partly at Venice and partly at Florence and Rome, all the before mentioned fcholars of John de Ravenna. After he had continued this inftruction for fome years, thofe unacquainted with the Greek language, and the ancient Greck writers, were confidered in ltaly as more igno. rant than thofe unacquainted with the Latin. A great many young men and youths were inflamed with an enthufialtic delire for the works of the ancient Greeks and Komans. At the time of the council of Conflance, in the beginning of the fifteenth century, many of my countrymen endeavoured, by fearching the neighbouring cities and convents, to difeover fume of the Roman manuferipts which had been loft. Poggius firlt cifcovered a complete copy of Quintilian, which was foon followed by the letters of Cicero to Atticus. As our youth appliced to the ftudy of thefe works with the utmoft diligence, that celcbrated grammarian and rhetorician Cafparinus de Bergamo, upened a fchool at Ve:ince, fuperior to the former, and in which young perfons were encouraged to ftudy the ancient languages and writers. About the fame time flomifhed Petrus Paulus Vergerus, Leonerdus A retinus. Robert Roff, Ja es Angcli, Poggius, and Nicolaus de Medici, whom Aretiu: had long initrueed. Guarinus alfo had begun to infruct many at Venice, and Viforinus at Mantua, when Philip III. Duke of Milan, recalled Cafparinus as his fubject, from Venice to Padua and Milan. The incereafing itudy of ancient literature was much promoted by Gerard Landriano bifhop of Lodi, difcovering under fome ruins an old copy of Cicero, written in cha.
racters fcarcely legible, which, among other rhetorical Malphas writings of that great Roman, contained the whole books De Oratore, with his Brutus and Orator. This faved Cafparinus the trouble of fupplying the books of Cicero De Oratore, as he had attempted to fupply the works of Qnintilian. As no one was found in all Milan who could read this old manufuript of Cicero, an ingenious young man of Verona, named Cafmus, was fo fortunate as firft to tranfcribe the books De Oratore, and to fill all Italy with copies of a work which was univerfally lought for with the utmoit avidity. I myfelf, in my youth, when I went to Milari on the bufinefs of my native city, tranfcribed, wich as much ardour as fpeed, the Brutus of Cicero, and fent copies of miy tranfeription to Guarinus at Verona, and to Leonard Juttiniani at Venice; by which means this work was foon difiperfed all over Italy. By thefe new works eloquence acquired new fire; and hence it happens, that in our age people fpeak and write better than in the time of Petrarch. The fludy of the Greek language, befides the abundance of new and uffef knowledge which it difclofed, was attended with this great advantage, that many attempted to tranflate Greek works into Latin, and thereby improved their flyle much more than they could have done without that practice. After this period, tchools for teaching the ancient languagres incleafed in Italy, and flour:thed more and more. Moit cities had fchools of this kind; and it gives one pleafure to obferve, that the fcholars excelled their man iters, not only when they left them, but even while they were under their tuition. Of the fcholars of Juhn de Ravenna, two of the oldeft, Guarinus and Victorimns, the former at Venice, and the latter at Mantua, Vero. na, Florence, and Ferrara, inftructed an immenfe number of pupils; and among thefe, the Princes of Ferrara and Mantua. George of Trebilonde, when he lectured at Rome, had for his auditors, befides Italians, many French, Spaniards, and Germans, among whom fometimes there were men of rank and eminence. Francifcus Philelphus, who had been taught at Conftantinople by Chryfoloras himfelf, infructed a great many young men and youths in the Greek and Latin languages at Venice, Florence, Siena, Bologna, and, laft of all, at Milan." In the above quotation, the ก..are which John de Ravenna had in reviting and diffufing a knowledge, not only of the Roman, but alfo of the Grecian literature, is lo clearly reprefented, that no farther teftimony is neceflary to ettablifh his claim to celebrity.

After John de Ravenua had taught at Padua, he removed for the like purpofe to Florence; where, as appears, he in? rueted young people for fome time, without being exprefsly invited by the goverument, and without being publicly paid for his labours. In the beginning of his refidence at Florence, he feems to have been recommended by Colucius to the learned Charles de Malatefta. "Ihere lives here at prefent (fays Colucius, in one of his letters) a teacher of great menit, John de Ravenna.-He is (contimues he) of mature age ; irreproachable in his manners, and fo difpofed in general, that if you receive him, as I hope and wifh, among the number of your intimate friends, you will find him an agreeable and incomparable affiltant to you in your labours and ftudies. What can be more defirable to you than to poffers a man who will lucubrate and labour for you? and who, in a fhort time, can communicate to you what you could not obtain by your

MA L [161$] \quad$ M A L

3lphag. own exertions without great difficulty. I do not know hino, whether yon will find his like in all ltaly; and I therefore wifh, that, if you confide in my judgment, you will receive John de Ravenna in the room of your late learned friend James de Alegretti." It is not kiown whether John de Ravenna went to refide with Malatefta or not. It is, however, certain, that the former, in 1397 (the fame year in which Manuel Chryfoloras came to Florence), was invited thither by the magiftrates of that city, with the promife of an annual falary, to infruck young people in the Roman language and clo. quence; that John de Ravenna, at the period when he entered into this honourable engagement, was 45 years of age; and that the fcholars of John de Ravenna were, at the fame time, fcholars of Cliryfoloras. Saluratus Colucins, in all probability, was the caufe of this invitation, as he was acquainted with the fervices of John de Ravenna, and knew how to appreciate them. "We know (fays he, in one of his letters to John de Ravenna), and all who refpect you know allo, that none of the moderns, or even ancients, approached fo near to Cicero as you; and that to the mof wonderful beauty and powers of fpeech, you join the deepeft knowledge." John de Ravenna, like Chryfoloras, and moft of the teachers of the Greek and Roman languages in the beginning of the fifteen century, was, no doubt, engraged at firft only for a few years ; when thefe were elapfed, the engagement was renewed, perhaps for the laft time, in 1412 , and he was bound, befides teaching the Roman cloquence, to rcad publicly, and explain in the cathedral, on feftivals, the poems of Dante. John de Ravenna did not long furvive the above renewal of his enragement ; for an anonymous writer, who, in 1420 , finifhed A Guide to Leiter-zuriting, according to the Principles of Jolon de Ravenna," fpeaks of his preccptor as of a man not then in exiftence.
MAL'T. See Brewing (Encycl.), where a full ac. count is given of Sir Robert Murray's method of maltmaking, together with fome valuable obfervations on malt by Mr Richardfon of Hull. In a late edition of this latter gentleman's Theoretic Hints on Brewwing, we are told, that Mr Edward Righy of Norwich is of opinion, that the mere exficcation of corn is not the only object obtainable by drying it on the kiln, but that fome portion of the faccharum of malt is the effect of that procefs. "The operation of kiln drying the malt (fays Mr Rigby) is as follows :- The grain is fpread thick upon a floor made of flat bricks (tiles), or iron plates, which are full of perforations; immediately under this floor is the oven or furnace, in which is a large fire made of conks, cinders, or, in fome places, billet wood; a current of air, at the mouth of the furnace, keeps up the combuftion of the coaks, and the air which is phlogitticated by their burning, and which, in a common fire place, rifes up the chimney, paffes, in this inflance, through the apertures in the floor, and penetrates the whole ftratum of malt before it can pafs into the external air. Under thefe circumftances, it is evident, that the interfices of the malt mult be filled with phlogiflic air; and as the grain ufually remains in this fituation about two days, it is obvious, that if it have the power of abforbing phlogifton, it certainly muft do it when fo long in contact with it. And that the malt does really imbibe fome of this principle, is not only probable on the general ground of the truth of the preceding Suppl. Vol. II. Part I.
and would evidently impart fome offenfive flavour, if not fome obnoxious quality to $i t$.
"Reafoning from the above premiles (Mr Rigby concludes), it would feem, that as all the farinaceous parts of the barley are feldom diffolved in brewing, and the grains which are left have ufially the difpofition to become four, thereby manifelting fome of the acid prin. ciple to be ftill exitting in theni, it is not improbable but fome further faccharine matter might be obtained from the grain by another expofure to phlogifticated air, or, in other words, by being once move laid on the kiln."

This is indeed fo far from being improbable, that we think it muft infallibly be the cafe. Sugar, it is well known, confifts of oxygen, hydrogen, and carbon (fee Chemrstry in this Supplement, $\mathrm{n}^{\circ} 466$.) ; but from the difpolition of the grains to become four, it is plain, that after the procefs of brewing they ftill retain much oxygen; and the azotic gas, which is here called phlogifticated air, there is every reafon to believe centains both hydrogen and carbon. Thefe, therefore, uniting with the oxygen of the grain6, muft make an addition to the faccharine matter. This has, indced, been found to be the fact by Mr Richardfon, who, in confequence of Mr Rigby's fuggeftion, was induced to brew a fmall brewing of malt, of ten quarters only, and ftopping the proccis when, according to his general practice, one extract was Itill due, he ordered the grains to be laid upon one of his malt-kilns, and cinders to be applied the fame as for drying of malt. This was continued for two days and a half, when the grains, being perfectly dried, were put into facks, and, when cold, returned again into the mafh-tun. The event, in fome mafure, juitified Mr R X Rigby's
theory, but, I belicse, it will be found, that the philo. gifticated air which riles from the burning fubftances tinderneath, is corrceted in paffing through the malt; for without its being meliorated by thisoor fome other caufe, it is evident that the air in the kiln-chamber, morc efpecially the lower firata of it, mutt be noxions, and probably even fo much fo as to be unfit for refpiration and combuttion. But fo far from this being the cafe, I am infornied, that workmen will lie and fleep many hours on the malt in this fituation without fuffering any inconvenience. And after mentioning this, it is Icarcely neceffary to add, that I find alfo, hy experiment, that a candle will burn perfectly well in the air which is immediately on the furface of the malt.
"Were heat alone fiufficient for the purpofe of completing the operation of malting, it certainly might be applied in a much more cheap way than is at prefent done; for the floor on which the grain is laid might, unqueftionably, be heated equally withont there being perforations in it, as with them. In which cafe, one kind of fuel would be as good is another ; and, conlequently, the prefent expence of previon:ीy burning the coals, to convert them into coaks or cinders, might be faved.
"But, admitting that the application of phlogifton to the malt, as well as heat, is requifite in this oper?tion, the neceffity of thefe perforations becomes evident, and alfo the propriety of previoully burning the coals in fuch a way, that all the water, and thofe other hetctogeneous particles which compofe fmoke and foot, may be diffipated; for thefe, merely as fuch, would obviouny contribute little to the phlogittication of the malt, 2
\qquad

\qquad
\qquad
\qquad
\qquad . Sexs -2 it $-2 x+1$

MA M. [iठる $]$ in A M

Mamma- Rigby's expectation ; for the produce of fermentable luker. matter was confiderably more than he had reafon to
conchude would have been the cafe, had the extract been made in irmediate fucceffion, as it would have been in the ordinary courfe of his practice. He attenipts, indeed, to account for it in a way very different from ours; but though we have the higheft confidence in Mr Richardfon as an experienced brewer, we mult fometimes bes leave to think for ourfelves as cheinits. Like a man of fenfe, however, and a man of fcience, he fays, "I am fo well fatisficd with the event of this experiment, that I thall probably be inclined, on fome future occation, to repeat it, in variouss fages of the procefs. Tlie fine lively froch on the furface of the wort, in the underbach, added to its tranfparency and good flavour, are circumfences which induce me to thank Mr Rigby for the hint, which, it is not improbable, may be ap. plied to fome ufeful parpofe, in certain fituations which fometimes occur in the brewing trade."

MAMMALUKES, Mamalucs, Mamaloucs, or Mamluks, were a dynafty that reigned for a confiderable time in EGYpr, and of which fome account has been given in that article (Encycl.). A fuller account of them muft, however, be acceptablc to our readers, as, fince the expedition of Buonapaite, they have attracted the attention of all Europe.

They were firt introduced into Egypt, as we have already oblerved, by Saladine, who, when he hat it in contemplation to befiege Jerufalem, very naturally endeavoured to collect the mot forciole means to accomplifh fo defirable an end; and, in confequence, obferving that the ancient inhabitants of Egypt were, from their effeminate mode of efacation, and the quiet and tranquil habits of their lives, much fitter for thofe occupations in which they delighted, namely, the arte, merchandizc, and mechanics, than military tactics and mili. tary toit, he refolved, as little as poffable, to employ or depulupan them.

This refolution fimulating him to procure a hardier race of foldiers, he thercfore commifioned agents to treat with the Circaffians, by the Lake of Mrootis, near Tawrica Cherfonefas, whence, about the year 1176 , they purchafed more than a thoufand flaves. Men inured to hardithip, nurtured in the lap of toil and danger, and bred from their iufancy to war, which was to them rather an inflinct than a fcience, as the continual incur-

Anificobin
Review, $\mathrm{n}^{\text {® }}$
12. and

Brozen's
Travels. fions of the Tartars rendered felf. defence, in their fitua-
to the commiry; and, as it has been obfenved, they ex. celled the Egyptians in frength of body, in miliary difcipline, in their fkill in honfemanfhip, and in courage; fo they, by the liberality of their generals, and the plun: der of cities and provincee, alfo excelled them in wealth. In fact, their mode of education fitted them fur the moft dangerous and adventurous enterprifes'; and, from being the flaves, enabled them in tine to become the nafters of even the Hurks, by whom they had originally been purchafed.

After the death of Saladine, who left the kingdom to his brotber, they role to fill greater importance than they had acquired during his reign, and continued, if not abfolutely to govern, yet, like the Roman' foldieis in the time of Pertinax, Alexander, and Vaterian, to awe the monarch.

This iufluence continued through the reigns of five fuccefinve Caliphs, until that of Nelachfals, the laft of the polterity of Saladise, who being at war with the Arrittians, and, at the fane time, withing to reprefs the enormous power of the Mameloucs, purchafed ilaves from all the furroinding countries, whom, in imitatio:1 of his anceftor, he armed and appointed to defend his dominions. The event of this meafure was exactly what might have been expected. Melachfala was, in confequence of a confpiracy betwixt his new and his old foldiers, fain; and Turquemenus, the leader of this mutiny and rebellion, hailed by the title of Great Sultau of Egypt. With him began the government of the Mameloucs, about the year 1250; which'had the next year grathered fuch ftrength, that it was thonirgt rieceffary, in order to reprefs thofe exuberances to which new formed governments are liable, and bring it nearer to a fyitem, to caufe the following aticles, in the form of a charter, to be fubicribed to by the! prineipal leaders, as an act of the whole people:-" ift, 'I hat the Suttan fhowld be chofen from the body of Mameloucs; 2dly, 'That none fhould be adinitted into the ofer that were by birth either Jews or 'I'urks, but only Chiifian captives; 3 dly, That the native Egyptians foould not be pernitted to nfe, or have, any weapons, except the in. Atruments of agriculture."
'I'urquemenus, as is frequently the piactice with thofe that experience a fudden elevation, endeavoured to kick down the ladder by which he had been railed; or, in other words, his catriage was fo haughty and difdainful to his former companions, that he was by them, or rather by one of them named Clotho, fuddenly flain; for which the murderer was lewarded with his feeptre. After him fucceeded a luig race of princes, many of whom were as eminent for their talents as for their valour; ameng whom, the name of Caitbeius has been tranfinited to is as that of the greatelt itatefman and gentral of his age; but, as every one who confiders the nuterials of which the government was compoled, muit rather wonder that it exifed folong, than that it fhould, through almot the whole courfe of its operation, be expefed to all the various evils and diftreffes arifing from a long train of fedition and tumults, to he mult lament that it hould expire in the reign of one of their wifeft and beft monarchs: yet it is fome confolation to reflect, that Campfon, the laft Sultan of the Mame. lotics, was not murdered by lis ocun fuljects, but having for many years governed the kingdoms of Egypt, Ju-
dea, and Syria, in a manner that has excited the praife tion, abfolutely neceffary.

Thefe flaves Saladine trained to military difcipline, and, at the fame time that he made them renounce Chriftianity, had them inftructed in the Mahometan re. ligion; and although he prohibited them from marry. ing, he allowed them an unbounded licence with refpect to defultory gallantry. What progrefs they made in the doetrines of the Alcoran, whether the tenets of that facred volume effectually eradicated all their frift principles, is uncertain; but it is certain, that in time they became excellent foldiers, and that the military glory of Saladine, which was feebly fupported by the native Egyptians, expanded in the hands of the Mameloucs, who extended their conquefts on every fide, until, pervading the Holy Land, they entered in the plain of Afkelon.

Thefe Mameloucs, who were continually adding to their numbers, in procefs of time became naturalized
anma. of the hiflorie pen, he, oppreffed with age and difeafe, and encumbered with his armeur, funk upon the field of battle, and, with his latt breath, yielded the victory to the fortunate Sclim.
-With this, menarch, who expired January 20,1516 , ended the government of the Mamcloucs, after it had continued 276 years; for although an attempt wa, made by Tomumby to get himfelt' declared Sultan, in which attenpt he actually fucceeded fo far as to be invefted with the title, yet he was foon after defeated by the viftorious Selim. He was then forfaken by his troops, taken and executed; while the Mameloucs, broken and difperfed, it was the policy of Selin to rally, and, by offers tou temptiug to be by thein refufec, engage in his fervice: The ufe of thefe foldiers foon be-t came fufficiently apparent to the Turkifl Emperors, to Rimulate them to augment their number, enlarge their fphere of action, and combine them clofer to the flate, by the allowance of flill greater privileges and advanta. ges than they had before enjoyed.

The Bcys were ordained to be chofen from among thein: and the Pafha, or chief governor for the Porte, was to fhare his power yiril thofe Beys, and even to continue in office no longer than flould be agrecalle to their collective will. At firt the power of the Pafha was very extenfive ; but, by the intrigucs and ambition of the Beys, it has been reduced alino!t to a cypher. It was rather of a civil than military nature. He was always prefident of the Divan, which was held in the calle where he refided. But that council now commonly meets in the palace of one of the chicf Beys, excent when a firman or mandate is received from Conftantinople, when the Beys are fummored to the catle, to hear the comnands of the Poite.. The few who attend, as foon as the reading is finifhed, anfwer, as is ufual, "Efnana wa tama," "We have heard, and we obey." On leaving the cafle, thicir geperal voice is "Ijfinama wa azufina," We have heard, and thall difobey." "dis
In the year 1791 , Salah Aga, a flave of Murad Bey, was deputed from the government of Egypt to nego. ciate their peace with the Porte. He carricd prefents of horfes, rich fluffs, \&c. A fpontancous tribute, which the Porte was in no condition to enforce, implied obligration on the part of the latter. He was well received, and afterwards was appointed IVaquil es Sultan, agent or attorncy to the Sultan in Cairo. It is probable, this office was given him to incline him to fecond the efforts of the Court in difuniting the Beys; but it was incffestual. Thefe had formerly experienced the evils of divifion, and now were united by common interefl, grown rich, and well provided with flaves; fo that no tribute has fince that time found its way to Conftantinople.

The Mameloucs remain, as they have ever been, military: flaves, imported from Georgia, Circaffia, and Min* grelis. A few have beell prifoners, taken from the Auftrians and Kuffians, who have exclanged their religion for an citablifhment. The Beys give gencral orders to their agents at Conftantinople, to purchafe a certain number every year; and many are brought to Egypt by private merčhants on feculation. When the fupply proves infufficient, or many have heen expended, black fates from the interior, of Africa are lib. tlituted, and, if found docile, are armed and accoutred like the refl.
-Particular attention is paid to the education of thefe .Mammafavoured navcs. They are inftructed in every exercife of agility or Itrength, and are, in general, diftinguihed by the grace and heauty of their perfons. The gratitude of the difciples is equal to, the favour of their mafters, whom they never quit in the hour of canger. If they have a difpofition for learning, they are talght the ufe of letters, and fome of them are excellent fcribes ; but the greater part neither can read nor write. A Ariking example of which deficiency is obfervable in Murad Bey himfelf.

The inferior Mameloucs comfantly appear in the military drefs, and are common!y armed with a pair of piltols, a, fabre, and a dagger- Thiey wear a piculiar cap of a greenih hue, around which is wreathed a turban. The reft of thcir deefs refombles that of other Mohamedan citizens, and is reftricted to no particular colour : but another fingularity is, their large drawers of thick Veuretian cloth, of a crimfon colour, to which are attached their 月ippers of red leather. On horlcback they add to their arns a pair of large horfe pifols, and the dubbus or batcle axe. In battle, many of them wear an open helmet, and the ancient ring armour of interwoven links of iteel, worn under part of their drefs, and thus concealed. Thefe are dear ; fometimes colting 500 piattres, or about L. $\mathcal{1}$. Some of them are mace at Conitantmople, others in Perfia. Their horfes are of the fincit Arabian breed, and are often purchafed at three or four purfes, L. 150 to L. 200 fterling.

They have no pay, as they eat at a cable in the houfe of their malter the Bey, Canhef, or other offices. Any mulitary officer may purchafe a flave, who becomes, ipjo facto, a Mamelouc. The name, from malck, to poffefs, implies inerely a perfon who is the property of another. After a proper cducacion, the candidate thus condlitnted a Mamelouc, receives a prefert of a horfe and arms from his malter, together with a fuit of clothes; which is renewed every year in the month Ramadan. The generofity of their mafters, and rewards or cestortions from others, afford them fupplies of money, cither for avarice or debauchery. Some of them, admitted to peculiar favour by the Beys, as chalnadars, or purfe-bearers, \&c. acquire great wealth. They are rather gay and thoughtefs than infolent, fond of flow, and unprincipled in their means of acquiring it. They fildom marry till they acquire fome office.
Though born of Chrittian parents, they feem highly fatisfied with their condition, which they have been known to refufe to exclatige for freedom. The majority are regarded by the Arabs as litule thrict in the principles or duties of Mohanedifu. It is worthy of remark, that though the Mameloucs, in general, be Atrong and perfonable men, yee the few who marry wery felilom have children. As the fon, even of a Bey, is not honoured with any particular conlideration, the women, perhaps, procure abortions. Of eighteen Beys, with whofe hiftory Mr Browne was well acqua:uted, two only had any children living.

- Ilardy, capable of svery fatignie, of mondaunted conrage, and cminent fisill in horfemanflity and the ufe of the fabie, the Mancloncs nay be reggande? as by far the hef troups in the Eall. But in a regular batte, conducted by mancenvres, and large or rapid movemests, they are equally inferior to Eurcopean tioops.

Being diftinguifhed by favouritifm or merit, the Mamelouc becomes a Caflief, and in time a Bey. The chief caule of preference arifes from political adherence to fome powerful leader.

The government of Cairo, and Egypt, in general, is vefted in 24 Beys; eacli of whom is nominally chofen by the remaining 23, but, in fact, appointed by one of the moft powerful. The Yenk-tchery, A ga, and fevesal other officers, are enumerated among the 24 Beys.

Befides being governors of certain diltricts of Egypt, feveral of the Beys receive other dignities from the Porte: Such are the Shech el Bellad or governor of the city ; the Defterdar, or accountant-general; the Emir el Hadj, or leader of the facred caravan; and the Emir es Said, or governor of the Upper Egypt. Thefe two laft offices are annuál. Thefe officers have alfo revenues allotted them by the Porte, ill defined, and liable to much abufe.

Of the other Beys, each appoints all officers and governors within his diffrict, putting into it fome flave of his own, who is compelled to render an acconnt of the receipts, of which a great part paffes to fupport the grandeur of his mafter. An oputent Bey may have from 600 to 1000 purfes annually ; the revenue of Mu sad Bey more than doubles that fum. The inferior Beys may have 3 ,o purfes, or I. 15,000.

Every Bey fits in judgment on cafes of equity. Thefe perfonages are very obfervant of their refpective jurifdictions; and no Bey will imprifon a man liberated by another. Though fometimes too impetuous, they neverthelefs difplay great acutenefs and knowledire of characters. This goveinment, at lealt, poffefes every advantage of publicity, as every Bey is a magiffrate.

MAN, has been conficered in a great number of particnlars under the title Man (Encyul.) ; but a reference was made from that atticle to the article YARIFTFRS of the Human Species, which was, after all, omitted entirely.

Perhaps enough has been faid on the varieties of the human fpecies in the articles Complexion and Ne rro (Encjocl.) ; but as infidel ignorance is perpetually pretending, that the diminutive Icelan ${ }^{2}$.-n the ugly Efquimaux, the woolly-headed Negro, and the coppercoloured American, could not have defcended from one original pair, either of European complexion or of Hindoo fymmetry - it may not be improper, in this place, to thew the weaknefs of this popular objection to the Mofaic lriftory of the origin of man. Tlis has been done in fo fatisfactory a manner by Profffor Blumenbach, that we bave nothing to do but lay his obfervations before our readers, convinced, as we are, that they are intelligible to every capacity, and that they will carry conviction to all who are not the flaves of prejucice.
pbit. Mag. "Some late writers on natmal hiftory (fays the Pro-
vol. iii. feffor) fcem doubtful whether the numerous diftinct p. 284. races of men ought to be confidered as mere varieties, which have arifen from degeneration, or as fo many fpecies altogether different. The carrfe of this feems chiefly to be, that they took too narrow a view in their refearches; felected, perhaps, two races the moft different from each other poffible, and, overluoking the intermediate races that formed the comecting links between them, compared thefe two togecher; or, they fixed their attention too nach on man, without examining other fpecies of animals, and comparing their varietics and degeneration with thofe of the human fpecies. The
firft fault is, when one, for example, places together a Senegal negro and an European Adonis, and at the fame time forgets that there is not one of the bodily differences of thefe two beings, whether hair, colour, features, \&*. which does not gradually run into the fame thing of the other, by fuch a variety of fhades, that no phyfologift or naturalift is able to eftablifh a certain boundary between thefe gradations, and confequently: bet ween the extremes themfelves.
"The recond fatult is, when people reafon as if man were the only organifed being in nature, and confider the varieties in his fpecies to beftrarge and problematical, withont reflecting that all thefe varieties are not more fliking or more uncommon than thofe with which fo many thoufands of other fpecies of organifed beings Qegenerate, as it were, before our cyes."
As what we have faid under the articles Complexion and NEGRO may be fufficient to warn mankind againft the fift error, and at the fame time to refute it, we haften to refute the fecond by our author's comparifon between the human race and that of fwine.
" More reafons (fays he) than one have induced me to make choice of fwine for this comparifon; but, in particular, becaufe they have a great fimilarity, in many refpects, to man: not, however, in the form of their entrails, as people formerly believed, and therefore ftudied the anatomy of the human body purpofely in fwine; fo that, even in the laft century, a celcbiated difpute, which arofe betw'een the phyficians of Heidelberg and thofe of Dirlach, refpecting the pofition of the lieart in man, was determined, in confequence of orders from government, by infpecting a fow, to the great tilumph of the party which really was in the wrong. Nor is it becaufe in the time of Galen, according to repeated affertions, human flefh was faid to have a tafte perfeetly fimilar to that of fwine; nor becaufe the far, and the tanned hides of both, are very like to each other; but becaufe both, in regard to the economy of their bodily ftructure, talien on the whole, fhew unexpectedly, on the firft view, as well as on clofer examination, a very friking limilitude.
"Both, for example, are doineftic animals ; both omnivora; both are difperfed throughout all the four quarters of the world; and both confequently are expofed, in numerons ways, to the principal caufes of degeneration arifing from climate, mode of life, nourihment, \&c. ; both, for the fame reafon, are fubject to many difeafes, and, what is particulaly worthy of remark, to difeafes rarely found among other animals than men and fwine, fuch as the fone in the bladder; or to difcafes exclnfively peculiar to thefe two, fuch as the wormsfound in meafled fwine.
"A nother reafon (continues he) why I have made choice of fwine for the prefent comparifon is, becaufe the degeneration and defcent from the original raceare far more certain in thefe animals, and can be better traced, than in the varieties of other domeftic animals. For no naturalift, I believe, has carried his fcepticifm fo far as to doubt the defcent of the domeftic fwine from the wild boar; which is fo much the more evident, as it is well known that wild pigs, when caught, may be ealily rendered as tame and familiar as domeftic fwine : and the contrary alfo is the cafe; for if the latter by any accident get into the woods, they as readily become wild again; fo that there are inftances of fuck animals

165]

Man. animals being fhot for wild fwine; and it has not been till they were opened, and found caftrated, that people were led to a difcovery of their origin, and how, and at what time, they ran away. It is well afcertained, that, before the difcovery of America by the Spaniards, fwine were unknown in that quarter of the world, and that they were afterwards carried thither from Europe. All the varitties, therefore, through v:lich this animal has fince degenerated, belong, with the original European race, to one and the fame fpecies ; and fince 110 bodily difference is found in the human race, as will prefently appear, either in regard to fature, colour, the form of the cranium, \&c, which is not obferved in the fance proportion among the fwine race, while no one, on that account, ever doubts that all thefe different kinds are merely varieties that have arifen from degeneratiun through the influence of climate, \&e. this comparifon, it is to be hoped, will filence thofe fecptics who have thought proper, on account of thefe varieties in the human race, to admit more than one fpecies.
"With regard to flature, the Patagonians, as is well known, have afforded the greatef employment to anthropologitts. The romantic tales, however, of the old travellers, who give to thefe inhabitants of the fouthern extremity of A merica a flature of ten feet and more, arc fcarcely worth notice; and even the more modeft relations of later Englifh navigators, who make their height from fix to feven feet, have been doubted by other tiavellers, who, on the fame coaft, fought for fuch chivildren of Enoch in vain. But we fhall admit every thing faid of the extraordinary fize of thefe Patagonians by Byron, Wallis, and Carteret ; the firt of whom affigns to their chief, and feveral of his attendants, a height of not lefs than feren feet, as far as could be determined by the eye; the fecond, who afferts that he actually meafured them, gives to the greater part of them from 5 feet 10 inches to 6 feet; to fome 6 feet 5 inches, and 6 feet 6 ; but to the talleft, 6 feet 7 inches: and this account is confirmed by the laft-mentioned of the above circumnatigators. Now, allowing this to be the cafe, it is not near fuch an excefs of ltature as that obferved in many parts of America among the fwine, originally carried thither from Earope; and of thefe I fall mention in particular thofe of Cuba, which are more than double the lize of the original tock in Europe.
"'ithe natives of Guinea, Madagafcar, New I Iolland, New Guinea, \&cc. are black; many American tribes are reddifh brown, and the Europeans are white. An equal difference is obferved anong fwine in different countries. In Piedmont, for example, they are bleck. When I paffed (fays our author) through that country, during the great fair for fwine at Salenge, I did not fee a lingle one of any other colour. In Bavaria, they are reddifh brown ; in Normandy, they are ell white.
"Human hair is, indeed, fomewhat different from fwine's briftles ; yer, in the prefent point of view, they may be compared with each other. Fair hair is foft, and of a filky texture; black hair is coarfer, and among
feveral tribes, fuch as the Abyffinians, Negrocs, and the Man, inhabitants of New Holland, it is woolly, and moft Co_{o} Mariding, among the Hottentots. In the like mainer, among the white fwine in Normandy, as I was affured by an incomparable nlferver, Sulzer of Rornebueg, the hair on the whole body is longer and fofter thitit among other fuine: and even the brifles on the back are vely little different, but lie flat, and are ouly longer than the hair on the wher parts of the body. 'I hey cannot, therefore, be employed by the brufi makers. The differcnce between the hair of the wild boar and the domeftic fwine, particularly in regard to the fofter part between the itrong brittles, is, as is well known, ftill greater:
"The whole difference between the cranium of a Negro and that of an European, is not in the leaft degree greater than that equally friking difference which exifts between the cranium of the wild boar and that of the comeftic fwine. Thofe who have not obferved this in the animals themfelves, need only to catt their eye on the figure which Daubenton has given of both.
"I thall pals over (lays our author) lefs national rarieties which may be found among fwine as well as among men, and only mention, that i have been affured by Mr Sulzer, that the peculiarity of having the bone of the \log remarkably lotg. as is the cafe among the Hindoos, lias been remarked with regard to the fiwine in Normandy. "They ttand very long on their hind legs (fays he, in one of his letters) ; their back, therefore, is lighett at the rump, forming a kind of inclined plane; and the head proceeds in the fame direction, f_{o} that the fnout is not far from the ground.' I faall here add, that the fwine, in fome countries, have degenerated into races which in fingularity far excced every thing that has been found dlvange in bodily variety among the human race. Swine with folid hoofs were known to the ancients, and large herds of them are found in Hungary, Sweden, \&c. In the like manner, the European Swine, firtt carried by the Spaniards, in. 7509, to the ifland of Cuba, at that time celcbrated for its pearl fifhery, degenerated into a monftrous race, with hoofs which were half a fpan in length."

From thefe facts, our author concludes, that it is abfurd to allow the valt varicty of fwine to have defcended from one origizal pair, and to contend that. the varieties of men are fo many ditinct fpecies.
$M \triangle N D I N G, a$ large llate in the interior of Africa, of which the onily fatisfactory account that we have is by Mr Park, who, for feveral months, was hofpitably entertained in Kamalia, one of its towns, fetuated in $12^{\circ} 40^{\prime} \mathrm{N}$. Lat. and $6^{\circ} 40^{\prime} \mathrm{W}$. Long..$^{-i}$ he government of Manding appeared to our author to be a fort of republic, or rather an oligarchy. Every town is indeed governed by a chief magittrate called Manfa, which ufually fignifies king; but the chicf power of the flate, in the laft refort, is lodged in the affembly of thefe maufas (A). The cafe, however, is different in other countries, which are occupied by people who have emigrated from Manding; for in all the Mandingo ftates
(A) Mr Park, for the moft part, writes with remarkable perfpicuity; but we are not fure that here we have not miftaken his meaning. He fays, that the chief power of the ftate is lodged in the affembly of that rubole body; but we think, that by the whole body muft be meant the body of Manfas, otherwife the government.
could not be called an oligarchy.

Manling. near the Gambia, the gevermment is monarchical, tho' the power of the fovercign is by 110 means mulimited.

As Mr Park's route was confined to a trat of coun. try, bounced nearly by the. 12th and 15 th parallels of latitude, the clinate throughout the whole was nearly the fame as that of Manding, and extre:nely hot: Yet, where the country afcended into lills, he found it comparatively cool and pleafant : though none of the diAtricts which he traverfed could be calied mountainous. A bout the middle of June, the hot and fultry atmofiphere is agitated by vioient gults of wind (called tornadoes), accompanied with thunder and rain. Thefe ufher in what is denominated the ratiry feufon: which continues until the month of November. During this time, the diurnal rains are very heavy; and the prevailing winds are from the fouttr-weft. The termination of the rainy feafon is likewife attended with violent tornadoes; after which the wind flifts to the north-eaft, and continues to blow from that quarter during the reit of the year.

When the wind fets in from the north-eaft, it produces a wonderful change in the face of the country. The grafs foon becomes dry and withered ; the rivers fubfide very rapidly, and many of the trees thed their leaves. About this period is commonly felt the barmattan, a dry and parching wind, blowing fiom the north eaft, and accompanied by a thick fmoky haze; through which the fin appears of a dall red colour. Thlis wind, in pafing over the great defert of Suhara, a:cquires a very flrong attraction for humidity, and parches up every thing expofed to its current. It is, however, reckoned very falutary, particularly to Europeans, who generally recover their health during its continuance. The truth of this our author experienced toth at Kamatia and Pifania, when he liad been brought to the very brink of the grave by ficknefs.
Whenever the grafs is futficiently dry, the negroes fet it on fire; but in Ludamar, and other Mourifh countries, this practice is not allowed; for it is upon The withered fubble that the Moors feed their cattle antil the return of the rains. The burning of the grass in Manding exhibits a feene of terrific grandeur. "In the middle of the night (fays Mr Park), 1 could fee the plains and mountaine, as far as my cye could reach, vafiegrated with lincs of fire; and the light reflected on Hie fiy, made the heavens appear in a blaze. In the day time, pillars of fmoke were feen in every direction; while the birds of prey were obferved hoverirg round the confiagration, and pouncing dow'r upou the fnakes, lizatds, and other reptiles," which attempred to cfape from the flames." This annual burning is foon followed by a frefh and fweet verdure, and the country is thereby rendered more healthful and pleafant.

Whough many fpecies of the edible mots, which grow in the Weft India iflands, are found in Africa, jet our traveller never faw, in any part of his journcy, either the fugar cane, the coffce, or the cocoa tree; nor wuld he leann, on inquiry, that they were known to the natives. 'ithe pinc-apple, and the thoufand other delicious fruits which the indufty of civilized man (inproving the bountics of nature), has brought to fo g:eat perfection in the tropical climates of Anerica, are here equally unknown. He obferved, indeed, a few orange ard banana trees, near the mouth of the Cambia; but whether they wse indigenous, of were formerly plated
there by fome of the white traders, he could not pofitively learn.

Concerning propetty in the foil, it appeared to Mr Park, that the lands in native woods were confidered as belonging to the king, or (where the govemment was not monarchical) in the ftate. When any individual of free condition had the mean. of cultivating more, land than he actually poffeffed, he applied to the chief man of the diftrict, who allowed him an extenfion of territory, on condition of forfeicure if the lands were not bronght into cultivation by a given period. The condition being fulfilled, the foil became velted in the pof. feffor; and, for anght that appeared, defcended to his heirs.
The Mandingoes are a.sery gentle race of people; cheerful in their difpofitions, inquifitive, credulous, fimple, and fond of flattery. The men are commonly above the middle fize, well fhaped, ftrong, and capable of enduring great labour ; the women are good natured, fprightly, and agrecable. 'Ihe drefs of both fexes is compufed of cotton cloth of their own manufacture ; that of the men is a loofe frock, not unlike a furptice, with drawers which reach half way down the leg; and they wear fandals on their feet, and white cotton caps on their heads. The womens drefs confifts of two pieces of cloth, each of which is about fix feet long and three broad; one of thefe they wrap round the wait, which, hanging down to the ancles, anfwers the purpofe of a petticoat ; the other is thrown negligently over the bofom and hhoulders. Buth men and women among the Mandingoes fecm to liave an invincible propenfity to conmnit depredations on the property of muprotected frangers; whillt fuch is the good nature of thofe poor heathens, that they will readily fympathife in the fufferings, relieve the diftreffes, and contribute to the perfonal fafety, of the very thanger. whom they are bent upon planjering.

Among the Mandingees, the parental and filial affection is remarkably frong between the mother and her child; but not fo letween the father and his children. This, as Mr Park obferves, is ealily acconnted for. The fyltem of polygamy, while it weakens the father's attadnnent, by dividing it among the children of different wives, concentrates all the muther's jealous tendernels to one point, the protedtion of her own offupring. He perceived, with great fatisfaction too, that the maternal fulicitnde extended, not only to the growth and fecurity of the perfon, but ahfo, in a certain degree, to the improveroent of the mind of the infant ; for one of the fift leffons, in which the Mandingo women intruct their children, is the pracice of truth.

The Mandirgo women fuckle their children until they are able to walk of thenfelves. Three years nurfing is not uncommon; and during this period, the huffand devotes his whule attention to his other wives. To this practice it is owing, that the family of each wife is feldom very numerous. Few women lave more than five or fix children. As foon as an infant is able to walk, it is permitfed to run alout with great freedom. I he mother is not over folicitous to preferve it from night falls, and other trifling accidents. A little practice foon crables a child to take care of itfelf, and experience acts the part of a nurfe. As they advance in life, the givls are taught to fpin cotton, and to beat corn, and are inftucted in other comeltic dutics ; and
rondirg. the boys are employed in the labours of the fick. Both fexes, whether Buhreens or Kafirs, on attaining the age of puberty, are circumcifed. This painful operation is wot confidered by the Katirs fo much in the light of a religious ceremony, as a matter of convenience and utility. They have, indecd, a fuperflitious notion, that it contritutes to render the marriage ftate prolific.

When a young man takes a faucy to a young girl, and withes to marry her, it is by no means contictered as neceffary that he fhould make an overture to the girl heifelf. The firt object is to agree with the parents, concerning the recompence to be given them for the lofs of the company and fervices of their daughter. The value of two flaves is a common price, untefs the girl is thought very handfone ; in which cafe, the parents will saife their demand very confiderably. If the lover is rich eniugh, and willing to give the fum demanded, he then commuricates his wifhes to the damfel : but her confent is by no meenn nectflary to the match; for if the parents agree to it, and eat a few kolla nuts, which are prefented by the fuitor as an earnett of the bargain, the young lady muft either have the man of their choice, or continue unmarried, for the cannot afterwards be given to another. If the parents fhould attempt it, the lover is then authorifed, by the laws of the country, to feize upon the girl as his flave. At the celebration of a marriage, no religions ceremnony feems to be practifec. A felect number of people are indeed invited to the wedding, and feafted; but confummation conftitutes the marriage; for towards the morning, the new married couple are always difturbed by the women, who af. femble to infpect the nuptial fheet (according to the manners of the ancient Hebrews, as recorded in Scriptire), and dance round it. This ceremony is thouglit indiftenfably necelfary; nor is the marriage conkidered as valic without it.

The Mandingoes, and indeed all the negro Atates, whether Mahomedan or Pagan, allow a plurality of wives. 'the confequence is, that the wives frequer:tly quarrel among themfetves. When this happens, the hufand decides between them; and fometimes finds it neceffary to adminifter a litule corporal chaftifement before tran. quillity can be reflored. But if any one of the ladies complains to the chief of the town, that her hubband has unjuftly punilhed her, and fhewn an undue partiality to iome other of his wives, the affair is brought to a pur blic trial. In thefe palavers, however, which are condicted chiefly by married men, our author was inform. ed, that the complaint of the wife is not always confidered in a very ferious light; and the complainant herfelf is fometines convicted of ftrife and contention, and left without remedy. If me murmurs at the decifion of the court, the magic rod of Mumbo 'yumbo fonn puts an end to the bufinefs. Sce Mumbo Jumbo in this Suppl.
A child, among them, is nanied when it is feven or eight days old. The coremony commerices by maving the infant's head; and a dift called dega, made of pounded corn and four milk, is prepared for the guefls. If the parents are rich, a fheep or a goat is commonly adHed. This feaft is callet ding koon lee, "the child's head Pavi:g." During Mr Park's flay at Kamalia, - he was prefent at four different fealls of this kind, and the ceremony was the fame in each, whether the child belonged to a Buithreen or a Kafir. The fehootmafter, who officiated as priffl on thofe occafions, and who is
neceffarily a Dumpeen, faft faid a long prayer over the Manding. dega; during which, ewery perfon p:efent took hold of $\underbrace{\text { un }}$ the brino of the calabalh with his right hand. After this, the fchoolmanter trok the child in his arms, and faid a fecond prayer; in which he repeatedly folicit.d the bleffing of God upon the child, and upon all the company. When this prayer was ended, he uhifpered a few fentences in the child's car, and fpit threc times in its face ; after which he pronounced its name aloud, and returned the infant to the mother. This part of the ceremony being ended, the father of the child divided the ciegra into a number of balls, one of which he diftributed to every perfon pretent. And inquiry was then macie, if any perfon in the town was dangeroufly fick ; it being ulual, in fuch cafes, to fend the party a large portion of the dega, which is thonght to poffefs great medical virtues.
The Mandingoes have no artificial method of dividing time. They calculate the years by the number of rainy facfons. They portion the year into moons, and reckon the days by fo many funs. The day they divide into morning, mi! day, and evening; and further fubdrvide it, when neceffary, by pointing to the fun's place in the heavens. Our author frequently inquired of fome of them, what became of the fun during the night, and whether we thould fee the fame fun, or a different one, in the morning? But that fubject appeared to them as placed beyond the reach of human inveftigation; they had never in:dulged a conjecture, nor formed any liypothefis, about the matter. The moon, by varying her form, has more attracted their attention. On the firft appearance of the new moon, which they look upon to be newly created, the Payan natives, as well as Mahomedans, fay a flort prayer; and this feems to be the only vilible adoration which the Kafirs offer up to the Supreme Being. 'I'his prayer is pronounced in a whilper; the party holding up his hands before his face: its purport is to retarn thanks to God for his kindnefs though the exillence of the paft moon, and to folicit a continuation of his favour during that of the new one. At the conclufion, they fpit upon their hands, and rub them over their faces. Great atteation io paid to the changes of this luminary in its monthly courfe; and it is thought very unlucky to begin a jounney, or any other work of confequence, in the laft quarter. An eclipfe, whether of the fun or moor, is fuppofed to be effected by witcheraft. The Itars are very little regarded; and the whote fudy of aftronomy appears to them as a ufelefs purfini, and attended to by fuch perfons only as deal in magic.

Their notions of geograplyy are equally puerile. They imagise that the world is an extenced plain, the termination of which no eye has difcovered; it being, they fay, overhung with clondo and darknefs. They deferibe the fea as a large river of falt water, on the farther fhore of which is fituated a country called Tobunbo doo; "the tand of the white people." At a diflance from 'Tobaubo doo, they defcribe another country, which they allege is inhabited by cannibals of gigantic fize, called Kromi.

Mr Park fays he has converfed with all ranks and conditions of negroes on the futject of their faith, and that he can promunce, without the fmalieft fhadow of doubt, that the beli, f of one God, and of a future ftate of reward and punifhment, is entire and univerfal among them.

Manding. them. It is remarkable, however, that, except on the appearance of a new moon, as before related, the Pagan natives do not think it neceffary to offer up prayers and fupplications to the Almighty. They reprefent the Deity, indeed, as the creator and preferver of all things; but in general they confider him as a Being fo remote, and of fo exalted a nature, that it is idle to imagine the feeble fupplications of wretched mortals can reverfe the decrees, and change the purpofes, of unerring wifdom. The concerns of this world, they believe, are committed by the Almighty to the fuperintendance and direction of fubordinate fpirits, over whom they fuppofe that certain magical ceremonies have great influence. A white fowl, fufpended to the branch of a particular tree, a fnake's head, or a few handfuls of fruit, are offerings which ignorance and fuperltition frequently prefent, to deprecate the wrath, or to conciliate the favour, of thefe tutelary agents.

The Mandingoes feldom ettain extreme old age. At forty, inoft of them become grey haired, and covered with wrinkles; and but few of them furvive the age of fifty-five, or fixty. Yet their difeafes appeared but few; fevers and fluxes being the moft common, and the moft fatal. For thefe they generally apply faplies, i. e. charms, to different parts of the body ; though fometimes, on the firft attack of a fever, the patient is, with great fuccefs, placed in a fort of rapour bath. The other difeafes which prevail among the negroes, are the yazus, the elephantingis, and a leprofy of the very wort kind, together with the Guinea zuorm, which they attribute to bad water.

When a perfon of confequence dies, the relations and neighbours meet together, and manifett their forrow by loud and difmal howlings. A bullock or goat is killed for fuch perfons as come to affit? at the funeral ; which generally takes place in the evening of the fame day on which the party died. The negroes have no appropriate burial places, and frequently dig the grave in the floor of the deceafed's hut, or in the fhade of a favourite tree. The body is dreffed in white cotton, and wrapped up in a mat. It is carried to the grave, in the dufk of the evening, by the relations. If the grave is without the walls of the town, a number of prickly buthes are laid upon it, to prevent the wolves from digging up the body; but our author never obferved that any thone was placed over the grave as a monument or memorial.

With refpect to employment, the men cultivate the ground, or catch fith in large rives ; white the women manufacture cotton cloth. It is only the fpinuing and the dyeing, however, that are performed by the women ; for the web, which is feldoni more than four iuches broad, is wove by the men in a loom made exactly npon the fame principle as that of Europe. As the arta of weaving, dyeing, fewing, \&cc. may eafily be acquired, thofe who exercife them are not confidered in Africa as following any particular profeffion; for almoft every flave can weave, and every boy can few. The only artifts which are diftinctly acknowledged as fuch by the negroes, and who value themelves on exercifing appropriate and peculiar trades, are the mamfacturers of leather and of iron. The firlt of thefe are called Karrankea (or as the word is fometimes pronounced Gaun$g_{a}(y)$. They are to be found in almoft every town, and they frequently travel through the country in the exercife of their calling. They tan and drefs leather with
very great expetition, by ftecping the hide firt in a mixture of wood athes and water, until it parts with the hair; and afterwards by ufing the pounded leaves of a tree, called goo, as an aftringent.

The manufaturers in iron are not fo numerous as the Karrankeas; but they appear to have fudied their bufinefs with equal diligence. The negroes on the coaft being cheaply fupplied with iron from the European traders, never attempt the manufacturing of this article themfelves; but in the inland parts, the natives fmelt this ufeful metal in fuch quantities, as not only to fupply themfelves from it with all neceffary weapons and inftruments, but even to make it an article of commerce with fome of the neighbouring itates. During our author's flay at Kamalia, there was a fmelting furnace at a fhort diftance from the hut where he lodged, and the owner and his workmen made no fecret about the manner of conducting the operation; and readily allowed him to examine the funuace, and affilt then in breaking the iron-tone. The procefs it is needlefs to defcribe ; though it be proper to obferve, that the mafs of metal obtained by it was rather fteel than iron. Mott of the African blackfniths are acquainted alfo with the method of fmelting gold, in which procefs they ufe an alkaline falt, obtained from a ley of burnt corn-talks evaporated to drynefs. They likewife draw the gold into wire, and form it into a variety of ornaments, fome of which are executed with a great deal of tafte and ingenuity.

The reader will obferve, that in the extracts which we have made from Mr Park's interefting travels, the terms African and Negro are frequently ufed as if all Africans and Negroes were Mandingoes. The reafon is, that the Mandingoes were not only the moft numerous tribe which he vifited, but were alfo fpread over all that tract of country which he traverfed.

MANIANA, a fmall negro kingdom lying between 12° and 14° North Lat. and between the meridian of Greenwich and 1° and 30 Weft Long. Its inhabitants, as Mr Park was iuformed by a variety of people in many different kingdoms, are remarkable for cruelty and ferocity; carrying their refentment to their enemies fo far as never to give quarter, and even indulging themfelves with hanquets of human flefh. Hence thie inhabitants of 13anbarra, who carried on with them a long and bloody war, and muft of courfe be well afcertained of the fact, call them Ma dummulo, which fignifies meneate"
M ANURE is fo effential to agriculture, that the want of it, or an improper manner of ufing it, is the principal caufe of the ferility of a country. We have therefore treated of manures and their action at fome length in the article Agriculture in the Encyclapecia; but as the theoretical part of that difquifition retts in a great meafure on the doctrine of phlogitton, which is now exploded, it may not be improper to refume the fubject here. Experience however being, after all, the only guide which the farmer can fafely and contidently follow, inttead of annufing our ceaders with theories of our own, we fhall lay before them the obfervations of a man who feems to have united theory with practice.
"The ufe of manures (fays M. Parmentier *) has been known in all ages, but we are yet far from having sen of any clear and precife ideas of the nature of the juicesgriculture which are deftined for the nourifhment of vegetables, and of the manner in which they are tranfmitted to their olgans. The writers on agriculture, who have endeavoured to explain thefe inatters, perceiving falts in moft plants, were perfuaded that thefe falts, by the help of water and heat, paffed, in a faline form, through the vegetable filter. Thefe firft philofophers did not hefitate to confider every thing that has been done by the induftry of man, to improve the nature of land, and its productions, as merely forming refervoirs of thefe falts, which they confidered as the principle of fertility. This opinion was fo well eftablifhed among the improvers of land, that, to this day, many of them have no object in view, in their operations, but to difengage falts; and, when they attempt to explain certain phenomena which take place in their fields or orchards, they talk confidently about the nitre of the air, of rain, of fnow, 'of dew, and fogs; of the falts of the earth, of dung, of marle, of lime, of chatk, \&c. and make ufe of thofe vague terms, nil, fulphur, fpirit, \&ec. which ought henceforward to be banifhed from our elementary books on agriculcure.
"A mong the authors who have attacked, and combated with inof fuccefs, the opinion that the fruitfulnefs of foils, and the aliment of vegetables, refide in faline fubftances, muft be reckoned Eller and Wallerius. Thele philofophers examined, by every means which chymiftry at that time could furnifh, the varions kinds of earth proper for cultivation, and alfo thofe fubftances which have always been confidered as the moft powerful manures, without being able to obtain, from any of them, any thing more than mere atoms of falt.
" Animated with the fance zeal, and taking advantage of the inftructions found in their writings, I thought it neceffary to determine, by experience, whether, as has been afferted, there really exitt neutral falts in earths; and alfo, whether thofe earths are more fertile in proportion to the quantity of fuch falts they contain. With this view, I lixiviated, by means of diftilled water, many fpecies of cultivated earths, taken in various flates, from frefh earth to that which had been impoverilhed by the growth of feveral crops; I allo tried dung, redu. ced more or lefs into the ftate of mould; and likewife the moft active manures, fuch as the offal of animal fubftances rotted by putrefaction; but in none of thefe, however carefully analyzed, were found any falts in a free fate. They contain indeed the materials proper for forming falts, but if they contain any ready formed, it is merely by accident.
"The refearches of Kraft, and thofe of Allton, were not attended with different refults. Having fown fome oats in afhes, not lixiviated, and in fand ftrongly impregnated with potafh and with faltpetre, and having found that the oats did not grow, they concluded that neutral falts, and alkalies, not only retarded the growth of vegetables, but that they abfolutely prevented it. It is well known that in Egypt there are diftricts where the earth is entirely covered with fea-falt, and thefe diftriets are quite barren. It is probably owing to this property of fea-falt, that the Romano were accuflomed to fcatter large quantities of it over fields where any great crime had been committed, and of which they wifhed to perpetuate the remembrance, by rendering the part barren for a certain time.
"The idea that falts had great influence in vegetaSUPpl. Vol. II. Part I.
tion, ought to have been greatly weakened by the following fimp!e reflection. Suppoling that falts exifted in garden mould, they would be very foon diffolved by the raill, and carried away, towards the lower Arata of the earth, to a depth to which the longeft roots would not reach. Indeed the famous experiment of Vanhel. mont would have been fufficient to have deftroyed the above opinion, if it did not generally happen that we are no fooner fet free from one error than we fall into another not lefs extracrdinary. The furprifing effects of vegetation brought about by the overflowing of water, and in the neighbourhood of falt marthes, and the infinite number of inhaling capillary tuhes ohferved upon the furface of vegetables, led to an opinion that the air and water, abforbed by the roots and leaves of plants, were only vehicles loaded with faline matter, analogrous to the vegetables nourifhed by them.
"' To the experiment of Vanhelmont, which was repeated by many accurate obfervers, fucceeded thofe of modern philofophers; from which it clearly appeared, that plants could grow, and produce fruit, in the air of the atmofphere, and in difilled water, alfo in pure fand, in powdered glafs, in wet mols or fponge, in the cavity of flechy roots, \&cc. and that plants which had nothing but the above-mentioned fluids for their nourithment, gave, when fubmitted to chymical analyfis, the fame products as thofe which had undergone their procefs of vegetation in a foil perfectly well manured. It was alfo obferved, that the moft barren fuils were rendered fertile when they were propelly fupplied with water by canals; and the efficacy of irrigation was repeatedly evinced in different ways: from thefe obfervations was formed the following fyftem, that water rifes in plants in the form of vapour, as in diftillation; that air introduces itfelf into their pores ; and that, if falts contribute to the fruitfulnefs of foils, it is only in confequence of their containing the two fluids above mentioned in great abundance."

Our author, after making many experiments upons various foils and falts, and after attending minutely to the procefs of vegetation, thinks himfelf warranted to maintain, "that faline fubftances have no fenlible effects in promoting vegretation, except inafmuch as they are of a deliquefcent nature, have an earthy bafis ealily decompofed, and are ufed only in finall quantity. In thofe circuinflances they have the power of attracting, from the immenfe refervoir of the atmofphere, the vapourz which circulate in it ; thefe vapours they retain, along with the moilture that is produced from rain, fnow, dew, fog, Sce. which moilture they prevent from running together in a mafs, or from being loft, either by exhaling into the air of the atmofobere, or by filtering itfelf through the inferior Atrata of the earth, and thereby leaving the roots of vegetables dry ; they diftribute that moiture uniformly, and tranfmit it, in a ftate of great divifion, to the orifices of the tubes deftined to carry it into the texture of the plant, where it is afterwards to undergo the laws of affimilation. As every kind of vegetable manure poffeffes a vifcous kind of moitture, it thereby partakes of the property of deliquefcent falis. In fhort, the preparation of land for vegetation has 110 other object in view but to divide the earthy particles, to foften them, and to give then a form capable of producing the above mentioned effects. It is fufficient, therefore, that water, by its mixture
with
$\underbrace{\text { Manure. }}$

Manure. with the earth and the manure, be divided, and fpread out fo as to be applied only by its furface, and that it keep the root of the plant always wet, without drowning it, in order to become the effential principle of vegetation. But as plants which grow in the fhade, even in the beft foil, are weakly, and as the greater part of thofe which are made to grow in a place that is perfectly dark neither give fruit nor flowers, it cannot be denied that the influence of the fun is of great importance in vegetable economy."
Such was the opinion which our author gave of the manner in which falts act in vegetation, at a time when it was not known that air and water (which had beert fo long confidered as elements), far from being fimple fubtances, are capable of being decompofed by a great variety of operations both of nature and art ; and nothing was wanting to complete his theory, but to know that air and water act their part in vegetation only in a flate of decompofition; and that if earth well manured is a better matrix than water itfelf, it is becaufe fuch earth has the power of converting the water into gafes which are eafily abforbed, and which, while their abforption takes place, communicate to the plants a motion and heat which they received when taking the form of gas, and which they lofe when they enter again into combination ; whence it is natural to conclude, that this motion and this heat muft neceffarily develope themfelves in feeds, and maintain the sital action in plants.

What is a vegetahle, confidered chemically, according to the prefent flate of our knowledge? It is, fay the chemifts, a compound of hydrogen, oxygen, and caibon, the proportions of which vary according to the agents which have concurred to its developement, and according to the matrix which received and affimilated them, in order to create thofe combinations which are varied to infinity, by their forms and properties, and k nown by the generic terms of falt, oil, and mucilage. It appears, therefore, needlefs to feek thefe coinbinations in the different fubllances which are ufed for manure, when we wifh to determine the nature of them, and explain their manner of acting in regetation ; becaufe, fuppoling it true that thefe falts, thefe oils, or thefe mucilages, exif in their combined ftate, nothing but their conflituent elements, namely, hydrogen, oxygen, and carbon, can poffibly have any action.

The fuperiority of animal fubftances, as manures, and the remarkzble luxuriance of thofe plants which are watered with pntrid water, prove inconteflibly, that the putrid flate is favouable to vegetation, and that every fubflance which is liable to enter, to a certain degree, into that ftate, contiibutes very powerfully thereto. The moft aerated waters are, in this cafe, the moft beneficial. It is obferved that rain, particularly in formy weather, quickens vegetation fo much, that the gardeners in the neighbourhood of Paris are often obiged to drench their plants with water taken from their wells, which, in confequence of its rawnefs, or its want of air, rttards the vegetation of the plants; either becaufe it precipitates the meteorifed or electrified water, or becaufe, by being mixed with the other water, it diminifhes its fertilizing quality; whereas, in fummer, this fame well. water, by being expofed to the fun for fome days, acquires a fmel! like that of fale eggs, lofes its rawnefs, and becomes very fit for accelerating vegeta-
tion. An atom of vercetable or animal matter is, at that time, fufficient to bring about more quickly this flate of putrefaction; while thefe fame fubitances, by being employed in certain proportions, far from acting as a leaven on the liquids which hold them in folution, preferve thofe liquids, or at leaft make them more flow to change.

Salts and dung, therefore, are not merely decompofed by the power of vegetation ; by furnifhing the refults of their decompofition, they alfo aet in the manner of leavens, the action of which is fcarcely perceptible in cold or dry weather; but when they are heated by the fun, and fufficiently penetrated with moiflure, they very foon enter into a fort of fermentation, fuffering the various gafes with which they are provided to efcape. Thus manures may be confidered as decompofing inftrisments, provided by nature, and prepared by art, to act upon water fo as to bring it to a proper ftate of attenuation. The fubflances which euter into the compofition of plants are, therefore, nothing but producte of the decompofition of air and water, and combiuations of the conftitnent principles of thefe two fluids, determined by the power which prefides in the feed, and which thence bas paffed into the plant.

It is now eafy to account for the effects of charcoalpowder, ftraw, \&c which are made ufe of to cover ground during long droughts with undoubted benefit : they are meclanical means of preventing the diffipation of moifture, and of determining it to take the form of thofe gafeous fluids which have fuch powerful effect in vegetation. As water is compofed of hydrogen and oxygen, it is not furprifing that, when affitted by the influence of the fun, and that of electricity, it is capable of forming, almoot by itfelf, the folids and fluids of vegetables ; taking from the atmofphere the carbon it flands in need of, to give them their moft effential characters. We fay their moft effential characters ; for thofe terreltrial plants which have grown in air and water do not abound in principles, and their ofspring, when they have any, is by no means vigorous. We fee alfo, that plants which are naturally of an aquatic nature, have in general but little fmell, becaufe the medium in which they live and grow funnifhes only a fmail. quantity of carbon, in proportion to the hydrogen and oxygen, which are the conllituent principles of water. This is the reafon why, in cold and wet years, flowers are lefs odoriferous, fruit lefs full of flavour, and more difficult to be preferved. The germ of their reproduction is weak; and they are, if the expreffion may be ufed, in a fort of droply; that is to fay, they are loaded with the principles which conflitute water, and even with water it felf.

Thefe obfervations, to which more might be added, may ferve to explain why vegetation is flow and weak in a foil which is too much charged with faline matter, while it is rendered quick and vigorous by a fmall quantity of this fame matter; and why earth, which is perfealy lixiviated, and watered, from time to time, with diltilled water only, is capable of giving to bitter plants their bitternefs, to fiveet ones their fweetnefs, to acid ones their acidity, to aronatic ones their fpicinefs, and to poifonous ones their deleterious qualities; in hort, why the inherent characters of plants are more ftrongly marked, in proportion as the foil in which they grow is furnifhed with natural or mechanical means to pro-

M A N

duce a quantity of gas neceflary to the furmation of the fubtances on which thofe characters depend.

If a nitrous or marine plant can, even when growing in a foil deftitute of nitre or fea-falt, occafion the production of thefe falts, it mult be allowed that fuch plants would vegetate more ftrongly, and contain more of fuch falts, if they grew in foils more abounding in materials proper to form them. Thus, the different fpecies of famphire, glaffort, fea wrack, \&c. flourih on the borders of the fea, fuch fuils beiug ftrongly impiegnated with the fluids neceflary to form the muriatic gas and fea falt which enter into the compofition of thofe plants; while the fun flower, pellitory, \&c. fucceed beft in earth which is mixed with the ruins of old buildings, in which the materials for the production of nitrous gas, and even of nitre itfelf, are very abundant. In fhort, the organization of thefe plants is a real elaboratory for furming the forementioned falts.

Thofe plants which, for their vegetation, require the moft affifance from the foil and manure, are very apt to contract a difagreeable tafte, if either the foil or manure are capable of fupplying the principles from which it is acquired. The clafs tetradynamia, particularly all forts of cabbages (which contain fulphur ready formed), contract a bad tafte in a foil compofed of mud and dung, becaufe thefe fubftances, as they are decompofed, furnith a great quantity of hepatic gas, or of fulphurifed hydrogen gas ; yet plants of another clafs may grow in the fame foil, clofe by the cabbages, without partaking cren in the fmalleft degree of the bad tatte of the latter. The plants laft mentioned, when growing in hepatic gas, retain only fo much of it as is fufficient for the pieduction of the fubitances of which they are formed ; the overp!us, which could not be affimilated, is thrown out by the excretory veffels, after undergoing thofe inodilications which the digeftive juices and orgamization of the plant, and the flate of the atmofphere, have produced.
Thus we fee that thofe plants which abound moft in vily, faline, and mucilaginous principles, are generally fuch as require a foil well manured. Tobacco, for inttance, gives forty pounds of alkaline falt or potahh from every hundred weight of athes: this plant may, by being buried in the ground, be converted into a very powerful manure ; while other plants, which thrive in a middling foil, and appear as vigorous, are, in general, fuch as have not fo great a quantity of principles in their compofition, and when thrown on the dunghill, and left to rot, furnifh very little manure. From fuch obfervations, it may perhaps not be impoffible hereafter to judge, by the analyfis of a plant, not only whether it requires a large or a fmall quantity of manure, but likewife what kinds of foil and manure are moft fit to promote its vegetation: wild plants alfo may ferve to thew the nature of the foil which they feen moft to flourifh in.
Befides the phyfical action of manures, they have a very evident mechanical action. When mixed with tarth, in a certain proportion, they not only render it more permeable to water, but the roots of plants can, with greater cafe, acquire their proper fize and form in it: in other cafes, mannres tend to unite that earth which is too loofe, and, by rendering it more tenacious, they prevent the water from being loft, and the roots from becoming dry. Thofe manures which are
called zuarm are fuited to cold lands, not only becaufe Manure. they render them lefa compact, but alfo becaufe they take off a part of that moifture which fuch lands always have in too great quantity. Cold manures, on the other hard, by their vifcid quality, give tenacity to dry and hot foils, attracting and retaining, for a longer time, the moifture which comes in their way. The nature of the foil muft therefore determine what kind of manure it fands in need of, and alfo whether cultivating it by means of oxen or by horfes is preferable ; for the manures produced from thefe two animals have thofe oppofite qualities which we have above defcribed. By fuch obfervations, we fhall perlaps be able to refolve a queftion, refpecting which the fentiments of cultivators in many parts of the kingdom are much divided.

It camnot, however, be denied, that the carth is able of itfelf to ferve as a bafis and fupport to plants, and that it has an action more or lefs evident npon air, upon water, and upon cung. There is a well-known method of diftinguifhing clay from other eart lis; by merely breathing upon it, a fmell is immediately perceived, fufficiently itrong to thew that a decompofition and freth combination have taken place. In fummer, after a drought of fome days continuance, there always arifes in the fields a particular fmell during a thower of rain ; and there is no kind of vegetable manure which, when mixed with earth, does not fend forth a fmell. 'This proves, that the nature of the foil mult have an intlusence, not only upon air and now! water, but alio upon the effect of manures; and that before we fpeak of their power, we Chould always fpecify what kind of earth they were applied to; becaufe when manures and carth are mixed together, there enfucs an action and rcaction more or lefs favourable to vegetation.
Having examined to what degree air and water enter, in fubflance, into the veffls of plants, and having fhewn that the principal action of earth, of falts, and of manliecs, confits in preparing, claborating, and decompofing thefe two fluids, and in giving to the products of their decompofition the forms they require, to accomplifh the purpofe of nature in vegetation, our author makes fome obfervations upon the particular effects of certain fubitances ufed for improving land, fuch as marl, lime, chalk, and wood ahes ; which are ufually applied either to an exhaufted foil, in order to reltore it, or to a drooping plant, with a view to give it ftrength. Of the efficacy of thefe fubfances nit) one doubts, but it does not appear that we are equally agreed refpecting their manner of acting.

Mar! (a manure whofe effects are well known, and which is found to be of the greateft benefit in thofe diftricts where it can be plocured in fufficient quantity) is capable of aeting in the fame manner as the moft fertile foil, when the principles of which it is compofed, nainely, clay, fand, calcareous earth, and magnefian earth, are juflly proporticned to each other. But it is fometimes compact and tenacious, beeaufe it contains a fupciabundant portion of clay, and at other times porous and friable, becaufe it contains too much fand, and therefore is rot in general fit for vergetation by itfelf. Thefe confiderations ought always to be our guide when we mean to employ marl as a manure.

It has been fuppofed that to marl was a fort of technical expreffion, intended to denote the bringing toge-'

Manu-e. ther or dividing the earthy particles by means of clay or fand. It appears to our author, that neither of the above operations can properly be called marling; becaufe, in either cafe, all we do is, to put the foil into a fituation to receive and to profit by the influence of the atmofphere, and that of the manures made ufe of. The peculiar principle of marl is, that part of it which, like lime, aets very powerfully upon the different aeriform fluids, is cafily reduced to powder, effervefees with acids, and fends forth a quantity of air butbles when water is poured upon it. Now this matter, which in a particular manner does the office of manure, refides neither in clay nor in fand. Upon the pioportion of it depends the duration of the fertility it produces ; confequently it is of importance, when we make ufe of marl, to know which of its conflituent parts it contains in the greateft proportion, otherwife in fome cafes we Thould only add one cominon kind of earth to another. Hence our author infers, that for a chalky foil clay is the proper manure, and that in fuch a foil a clay bottom is of more value than a gold mine.
" Wood-afhes, as a manure, may be, in fome refpects, compared to roarl; at leaft they contain the fame earths as thofe which generally enter into the compofition of marl, but they contain a greater quantity of faline fubf.ances, proceeding from the vegetables of which they are the refidue, and from the procefs made ufe of in their combuftion; a procefs which increafes their activity, and fhould render us careful in what manner and for what purpofes we employ them. Wood afhes, when fcattered over fields, at proper times and in proper quantitics, ceftroy weeds, and encourage the vegetation of good plants. But do the afhes produce this effect by a fort of corrofive power? I cannot (fays our author) think it ; for in that cafe all kinds of plants would indiferiminately be acted upon by them, and to a certain degree deftroyed.
"Befides, the athes of freth wood are feldom em. ployed until they have been lixiviated, in which flate they are deprived of their cauftic principle; thofe athes which are moft commonly made ufe of for manure are produced either from wood that has been floated in water, or from turf, or from pit-coal, and contain little or no alkaline falt.
" It appears much more probable that afhes, when laid upon ground, deftroy the weeds by a well.known effect, namely, by feizing with cagernefs that moifture which ferved to produce thofe weeds, and which in a fuperabundant quantity is neceflay to their exiftence and fupport. Whereas thofe plants whicl have a firmer texture and a longer root, which are rendered ftrong by age and by having withfood the rigour of winter, and which are in fact the plants of which the fields are compoled, do not fuffer any damage from the application of the athes; but, on the contrary, by being freed from the fuperfluous weeds which itifled them, and robbed them of a part of their fuftenance, they receive a quantity of nourifhment proportioned to their wants. The fate of relaxation and languor to which they were reduced by a fuperabundance of water, leaves them, the foil gets its proper confiftence, and the grafs, corn, \&cc. acquiring the ftrength and vigour which is natural to them, foon overcome the mofs, rufhes, and other weeds; thus a good crop, of whatever the field confifts of, is produced. It is in the above manner that wood afhes act,
whenever in the fpring it is neceffary to apply them th meadows, corn fields, \&c. the plants of which are fiffed and weakened by a luxuriant vegetation of weeds, the ufinal confequence of mild and wet winters.
"When wood afhes produce an effect different from what is above defcribed, it is either becaufe they happen to contain too much alkaline falt, or that they are laid on the ground in too great quantity, or that the fields to which they are applied were not fufficiently wet to rcfrain their action; for when they are fcattered upun cold foils, and buried by the plough before the time of fowing, they are, like lime, of great fervice. The laftmentioned fubftance is very efficacious in other circumftances; and there is a well-known method of ufing it, practifed by the Germans, as follows: A heap of lime is formed by the fide of a heap of poor earth, and waler is poured upon the lime; the earth is then thrown over it, and becomes impregnated with the vapoure which efcape from the line while it is naked. 'I'he earth, after being thus aerated, may be feparated; and although no lime remains mixed with it, is, by the operation juft deferibed, rendered capable of giving a luxu. riant vegetation to whatever plants may te put into it.
"It is poffible, therefore, to acıate earth as well as fluids; for this purpofe, by mixing it with certain fubftances, during their decompofition, we mutt attach to it the principles of which thofe fubftances are compofed; from which there refults a matter fo loaded with gas, as to form a more compornd fubstance, and one which has acquired new properties. The Arabians, for example, who take great pains to improve their land, are accuftomed to make large pits, which they fill with animals which happen to die: thefe pits they afterwaids cover with calcareous or clayey earth; and after fome time thefe earths, which of themfelves are fterile, acquire the properties of the richeft manures.
"'The foregoing obfervations may at leaft be confidered as proving, that thofe fubftances which, when empioyed frefh and in too great quantity, are molt prejudicial to vegetation, have, on the contrary, an advan. tageous effect, when they are previounly made to under. go a fermentation; or when they are mixed with earth or water, in a proportion adapted to the end propofed. The grals of fields in which cattle or poultry go to feed, after the firit or fecond crop of hay, appears to be dried by the urine and dung of thofe anmals; as if fire had been applied to it; whereas thefe fame excrementitious fubllances, when combined with earth, or diluted with watcr, are capable, without any other prepa. sation, of performing the office of good manure.
" But if animal fecretions, when applied in fubftance to plants, were capable of acting upon them, as is affirmed, in fuch a way as to corrode or burn them, how could feed which has been fwallowed, and efcaped the action of the digellive powers, be prolific when thrown out by the animal, after having remained fo long in its dung? yet we often fee oats, io circumftanced, grow and produce feed. Is it not more confiftent with experience and obfervation to fuppofe, that thefe excrementitious fubftances, being ftill endowed with animal heat, and with an organic motion, diffufe round plants in vegetation a deleterious principle or inflammable gas, which deftroys them; for foon after their application, the foliage of the plant grows yellow, dries up, and the plant withers, unlefs there happens a flower of rain which
anue, which revives it. When thefe fubftances are diluted, by being mixed with water and earth, they lofe that principle which is fo deftructive to vegetable life, and an incipient fermentation augments their power as a manure, fo that they may be immediately made ufe of without any apprehenfion of injury from their effects.
"It appears, therefore, that any operation npon excrementitious fubftances, by which they are dried and reduced to powder, cannot be practifed without depriving thofe fubtances of a great part of fuch of their principles as are ealily evaporated, and upon which their fluidity depends; thefe principles, when diluted with water, and confined by being mixed with carth, are capable of increafing the produce of the foil. Such is the way in which the hufbandmen in Flanders make ufe of this kind of manure, in the cultivation of a kind of rape or cole feed, which is to them a very important branch of agricultural induftry and commerce; and they never obferve that the fap carries up any of thofe principles which give fuch manure its offenfive fmell; nor do they obferve, that the fodder produced from fields fo manused, whether eaten fref or dry, is difagreeable to their cattle. The excrements of all animals would be injurious to plants, if applied too frefh, or in too great quantity; and a gardener could not commit a greater fault, than to put more than a certain quantity of them into the water he means to make ufe of to water his young plants; in thort, this kind of manure is to be ufed in a very fparing manner; and he that is too prodigal of it will find, to his colt, that excefs, even of that which is otherwife bencficial, becomes an evil.
" It muft certainly be allowed, that excrementitious fubftances are a very advantageous manure for cold foils, and fuited to moft vegetable productions; a long expesience of their effects over a large tract of country, and the acknowledged intelligence of the Flemifh farmers, ought to be confidered as fufficient to overcome the prejudice that has been raifed againft this fort of mamure. Suppofing that the bad effects which have been attributed to it, when ufed in the fate in which it is taken olit of privies, \&c. are not the offspring of a prejudiced imagination, they may have arifen from its having been made ufe of at an improper time, or in too great quantity ; or from its having been applied to a foil and for the cultivation of plants to which it was not adapted; for we know that the excefs of any kind of manure changes the fmell and tafte of plants, and the lame effect is produced by watering them too frequently. Striking examples of this change are feen in the ftrawberry ard in the violet, when fuch as have grown in the woods are compared to thofe produced fiom fome of our over manured gardens; alfo in the lettuce, and fome other plants, when thofe raifed for fale by the gardeners about Paris are compared to thofe of fome particular kitchen gardens. In the markets of fome cities, the carrots, turnips, and potatoes of the fields, are preferred to the fame kind of roots cultivated by the gardeners (A); for though the laft are of a larger fize, they have not fo good a flavour. Some vegetables, therefore, are like certain wild fpecies of the
animal kingdom; they refift every kind of culture, as Manure. thofe animals refift every effort to tame them.
"Although experience has taught the Flemifh farmers, that excrementitions fubftances are more active in their natural fate than when dried, yet it cannot be de. nied that drying them, and reducing them into powder, is fometimes very advantageons, becaule in that ftate they are much lefs offenfive, are eafily traniported to any diftance, and may be ufed when moft convenient or moft proper. In many cities the inlabitants pay to have their privies emptied: in other places, thofe who einpty them pay for their contents ; and it would aftonifh any one to be told how great a revenue is produced in the city of Line in Flanders by the fale of this kind of manure. I am, however (lays our author), far from thinking that it is right, in all cales, to enuploy it in the above mentioned fate of concentration; it would be better, in my opinion, to follow the example of the Flemifh farmers, who ufe it the firf year for the cultivation of plants for oil, or for liemp or flax; and the fecond year for the beft kinds of grain : thus obtaining two crops, inftead of ore, without any farther preparation of the land. What is faid above may be applied alfo to the manures produced from the dung of cattle, poultry, Scc. (particularly to pigeons dung, the moft powerful manure of its kind), all which, by being dried and powdered before they are ufed, lofe a great portion of their activity. From thefe obfervations another fact may be deduced, namely, that manure fhould not be taken from the place where it has betll thrown together until the feafon of the year and the fate of the land are fuch that it may be put into the ground as foon as it is brought to it. In fome diftriets a very injurious cuftom prevails of carrying the manure into the fields, and leaw ving it there formed into finall heaps, expofed for fome days to the elements; during which time, either the fun and wind dry up its natural moifture, leaving a mals which is much lefs active; or the rain diffolves and carries away the extractive part impregnated with the falt. This kind of brine, which is the moft powerful part of the manure, penetrates the earth to a confiderable deptl, and Shews (by the thick tufes which arife in thofe places, and which produce more ftraw than grain) that manure ought to be put iuto the ground as foon as it is brouglit to it, becaufe it then poffeffes its full force and effeet, and confequently would be then ufed to the greate:t advantage.
"We have always at hand the means of compofing, from a great variety of vegetable and animal fubftances, fuch manures as, when brought into a proper flate, and mixed with land, contribute to its fertility. Chemiftry alfo offers to us a number of fubftances, which, although when ufed feparately they tend to diminifh the fertilifing quality of the earth, are yet capable, by being combined, of forming excellent manures ; fuch, for inftance, is that faponaceous combination which is produced from a mixture of potafh, oil, and earth. What an advantage it would be, if, inftead of being fparing of minure, the inhabitants of the country would endeavour to increafe the number of thele refources, and to render them more beneficial, by employing them in a more
(A) We believe they are univerfally preferable.

Manure, more effectual manner. How many years had pafted Mallana. before it was known that the refufe of apples and pears,
after they are preffed (and which ufed to be thrown away 28 ufelefs), is capable of forming as valuable a manure, in cyder aud perry countries, as the refufe of grapes does in wine countries."

From what has been obferved, our author concludes, that manures act, in many circumftances, like medicines, and confequently that the fame fort of manure cannot be adapted to every fituation, and every kind of foil; we muft therefore take care to make proper diflinetions between them. Whoever fhall pretend that any particular kind of manure may be ufed, with equal benefit, in grafs land, corn-fields, vineyards, orchards, kitchen gardens, \&c. ought to be claffed amongtt thofe quacks who undertake to cure all perfons with the farre remedy, withont any regard to their age, conflitution, \&c. It is probably from not having paid fufficient attention to the forementioned diftinctions, that fome authors have found fault with particular manures, while others have fpoken too highly in their favour. He thinks, however, and we agree with him, that we are ftill in want of a courfe of comparative experiments upon the various kinds of manures, confidered according to their influence with refpect to different foils, fituations, and productions. If this part of rural economy were better undertood, we fhould perhaps fee many places in a ftate of cultivation, which, on account of the bad quality of their foil, have hitherto refifted all our endeavours to render them fertile.

Perhaps it would not be proper to difmifs this fubject without noticing Mr Middleton's obfervations on various kinds of mazure, which were publifhed in the Tranfactions of the Society of Arts for the year 1799. 'This gentleman, agrees with Mr Parmentier in recominending the excremientitious matter of privies as the moft powerful of all manures on fome kinds of foil ; but he differs from hin, and we believe from moft writers on agriculture, when he affirms, that zoood a/bes, when spread on the grafs in Febfuary or March, are of very little fervice, and that the athes of coal and even of peat are of none npon any kind of land. He likewife affirms foot to be of very little value as a manure, foapmakiers wafle to be of none, or rather to be hurfful; and he leems to confider malt-duf, including the duff from the malt-kilins, to be, after the foil of privies, one of the moft powerful manures. He affrms, from his own experience, that, with refpect to fertilifing power, the foil of privies, compared with farm-yard dung, is in the proportion of five to one.

MAOUANA, one of that clutter of iflands in the South Sea which were difcovered by M. Bougainvilie, and by him named Navigator's Inands. It was vifited by La Peroufe in 1787, who defcribes it as exceedingly Tich in every animal and vegetable production neceflary to the fufterance of man. The two frigates which he commanded had no fooner approached the fhore, than he difcovered at the bottom of each creek a number of villages, from whence came innumerable canoes, tacen with hings, cocoa nuts, and other fruits, which were purchaied for glafs ware. This was in the evening; and next arorning the commerce was renewed in the moft friendly manner. As early as the dawn of day, the iflanders had furrounded the two figates with 200 canoes full of different kinds of provifion, which they would ex-
change only for beads-in their eftimation diamonds of Maovana the firt water. Axes, cloth, and all other articles of commerce, they difdained. Abounding in real bleffings, they were delirous of obtaining fuperfluities alone.

Two boats, filled with empty cafks, were fent aftore for frefh water; and Peroufe hiinfelf accompanied them in his pinnace. A line of foldiers was pofted between the beach and the Indians, who amounted to about 200 , including a great many women and children. The French commander prevailed upon them all to fit down under cocoa trees, that were not more than eight toifes diftant from the fhips boats. Each of them had by him fowls, hogs, parrots, pigeons, or fruit, and all wifhed to fell them at once, which occafioned fome confufion.

The women, fome of whom were very pretty, offered their favours, as well as their fowls and fruit, in all thofe who had beads to give them; and foon tried to pafs through the line of foldiers, who oppofed but a feeble reffittance to their attempts. Europeans who have made a voyage round the world, efpeciatly French--men, have no arms to ward off fimilar attacks. Accordingly the fair favages found little difficulty in breaking the ranks; the men then approached; and the confufion was growing general ; when Indians, who feemed to be chiefs, made their appearance with flicks in their hands, and reftored order, every one returning to his polt, and the traffic beginning anew, to the great fatisfaction of both buyers and fellers.
White all this was paffing with the greateft tranquillity, and the cafks were filling with water, Peroufe th ought he might venture to the diftance of 200 yards to vifit a charming village, fituated in the midft of a wood, or rather of an orchard, all the trees of which were loaded with fruit. The houfes were placed upon the circumference of a circle, of about 150 toifes in diameter, the interior forming a vaft open fpace, covered with the moit beautiful verdure, and fhaded by trees, which kept the air detightfully cool. Women, children, and old men, accompanitd him, and invited him into their houfes. They fpread the fineft and frefheft mats upon a floor formed of little cliofen pebbles, and raifed about two feet above the ground, in order to guard againtt humidity. The went into the handfomeft of thefe hute, which probably belonged to a chief; and great was his furprife to fee a large cabin of lattice-work, as well executed as any of thofe in the euvirons of Paris. The beft architect could not have given a more elegant curve to the extremities of the ellipfis that terminated the building; while a row of pillars, at five feet diftance from each other, formed a complete colonnade round the whole. 'Ihe pillars were made of trunks of trees very neatly wrought, and between thein were fine mats taid over one another with great art, like the fcales of a firh, and drawing up and down with cords, like our Venetian blinds. The reft of the houfe was covered with leaves of the cocoa palm.

This charming country combines the advantages of a foil fruifful without culture, and of a climate which renders clothing unneceffary. The trees that produce the bread-fruit, the cocoa-nut, the banana, the guava, and the orange, hold out to thefe fortunate people an abundance of wholefome food; while the fowls, hogs, and dogs, which live upon the furplus of thefe fruits, afford them an agreeable variety of viands. What cold innagination could feparate the idea of happinefs from
foourna, fo enchanting a place! But Manuana is not the abode Mafon. of innocence. No arms were indeed perceived; but the todies of the Indians, covered over with fcars, proved that they were often at war, or elfe quarrelling among themfelves; while their features announced a ferocity that was not perceptible in the countenances of the women. Nature had, no doubt, ttamped this character on their faces, by way of fhewing, that the half favage, living in a fate of anarchy, is a more milchievous being than the moft ferocious of the brute creation.
Of their ferocity and their treachery, Peroufe had too foon the mot complete evidence. M. de Langle, the fecond in command, went athore for frefh water, accompanied by fixty Frenchmen, officers, failors, and foldiers. They were received with an air of good humour by crowds of people waiting on the beach with immenfe quantities of fruit and hogs; but this calm was of fhort duration. The Indians picked a quarrel with them, pelted them with flones, thrown with great dexterity and with equal force; and it was with difficulty that, of the fixty-one, forty-nine reached the hips, many of whom were feverely wounded. Among the killed were De Langle, and Lamanon the naturalift (See Lamanon in this sufpl.). Peroufe defcribes the men of Maowana as of gigantic ftature, and of great mufcular ftreugth. See Navigatoks I/anads in this Suppl.

MASON (the Rev. William) was a man of fuch eminence both as a poet and as a fcholar, that a more particular account of his life and of his ftudies fhould be publifhed than our fcanty materizh enable us to give. He was born at Hull, where his father poffeffed the vicarage of St Trinity; but where he received his fchool education we have not been able to learn. At the proper time he was admitted into St John's College, Cambridge; where he took the degrees of B. A. and M. A. and in 1747 , he obtained a fellowhip in Pembroke Hall. It was there that he contrasted an intimate friendfhip with Gray the poet, and with Mr Hurd, now Bifhop of Worcefter. When the former of thefe gentlemen died, Mr Mafon took upon himfelf the office of editor of his works and guardian of his fame; and upon the promotion of the latter to the fee of Litchfield and Coventry, he expreffed his fatisfaction in fome beautifnl verfes, which we read at the time, but do not recollect where.

In 1754 he entered into holy orders, and was patronized by the then Earl of Holdernefs, whowtained for him the appointment of chaplain to the king, and prefented him with the valuable rectory of Atton in Yorkhire. He was fome time afterwards made precentor of York Cathedral, when he publified a fmall volune of church mufic, which has alternately met with appofition and applaufe. In our opinion forme of his anthems are unrivalled.
It was natural for the precentor of a cathedral charch, Who was likewife a poet, to turn his attention to facred mullic; and Mafon had been a poet from his early years. His Elfrida and Caractacus, two tragedies on the Grecian model, were both publifhed before the year 1757. Thefe two dramas, in the opinion of Dr Hurd, do honour to modern poetry, and are, according to him, a fufficient proof of the propriety of reviving the chorus on the Britifh ltage. In this fentiment few critics, we believe, will agree with his LordThip; but the tragedies have certainly great merit, and
tranfeend pertajs every poem of the fame caft in our own or any other modern tongne. In the firf, the language is elegant and fweet ; in the latter, it is daring and fublime. The author himfelf always confidered the former as the mott perfect; and Johnfon, whofe critical judgment will not be rathly queftioned, feems to have been of the fame opinion. Johnforn's partiality to Oxford, as is well known, made him embrace every oppor. tunity of turning into ridicule Cambridge men and Cambridge poems; but while he boailed of having fpent hours in burlefquing Caractacus for the amufement of his Oxford friends, he confeffed that Elfrida was ton beautiful to be hurt by ridicule. 'I'he voice of the public, however, feems to give the preference to the latter, and to confider it as ftanding, like Dryden's ce. lebrated ode, without a rival. In both are fentiments and expreffions which would do honour to the genius of Shaktfpeare; and Caractacus, in the Greek verlion of Mr Glafs, would not have difgraced an Athenian theatre.

Befides his two tragedits, Mr Mafon publifhed many other poems. His Englifh Garden is univerfally read and admired, being unque?tionably the fineft poen of the kind that has appeared fince the days of Thomfon; though fome have affected to confider it as treating the fubject rather with profeffonal fkill than with puetical genius. That there are in it a few profaic expreffions we fhall not contruvert; for fuch feem infeparable from didactic poctry; but, taken as a whole, where fhall we find its equal? His elegies, particularly that on the death of his wife, and that on the demife of Lady Coventry, have been generally read and extoited, though not more than they deferve, as fuperior in claffic elegance to any thing of the kind in the Englifh tongue, and expreffing a manlinefs and tendernefs of the pathe. tic, rarely found in the moft polifhed elegies of Roman writers. The \{plendor of genius, and accuracy of judgement, confpicuous in his dramas, are equally difplayed in his chardeter as a lyric writer. His quarry was bold and impetuous, and he never fwept the ground with an ignominious flight. In his Sappho and Phaon lie has happily imitated the tyle of Dryden and Metaftafio: and at his deatly he was employed on a poem in which he propofed to meafure his ftrength with Dryden.

We have reafon to believe that this ingenious man was not only a poet and a mulical perfurmer, but the inventor of the faflionable inftrment the Piano Forte. We caunot indeed at prefent bring evidence of this fact ; but we have intlituted fuch inquiries as, we hope, fhall enable us to afcertain the truth under the article Piano Fiorte.

Poetry and mufic, and the duties of his office, miglit be fuppofed to have employed all his time; but, unfor: tunately, he caught the alaim which in 1769 was fpread aver the nation by the expulfion of Mr Wilkes from the Houfe of Commons, and immediately inolled himfelf among the fupporters of the Bill of Kights. 'I he decifion of the Houfe, whicli pronounced Mr Luttera! duly elected in oppofition to Mr Wilkes, he contidered as a grofs violation of the rights of the people; and though be furely did not a!prove of the conduct of the exiled member, he joined with other frecholders in Yorkihire in a petition to the king that he would dif. folve the parliament.
teing now leagued with the oporfition, he joined in fome vioknt clamours for a parliamentary reform. In

Mafon. the year 1779, when the city of London, and fome other commercial towns, agreed to prefent their petitions to parliament for a more economical expenditure of the public money, and a more equal reprefentation of the people, Mr Mafon canie forward, and took an active part in promoting thefe defigns, as one who was convinced of their importance and neceffity. When the county of York affembled, on the 30th of December 1779 , and refolved unanimounly, "that a committee of correfpondence fhould be appointed, for the effectually promoting the object of the petition then agreed to, and alfo to prepare a plan of affociation to fupport that laudable reform, and fuch other meafures as may conduce to reltore the freedom of parliument," he was chofen upon the committee, and was confulted with, or af. f:fted in drawing up thofe various lighl-firited refolutions and addreffics to the public, for which the York hhire committee was fo celebrated; and which was afterwards generally adopted by the other affociated bodies of reformers. This part of his conduct is furely entitled to no praife. Thinking as we do of the parliamentary reformers, we cannot tut regret that a man of Mr Mafon's talents and virtues fhould have embarked in their dangercus purfuits; and though we perceived lefs hazard in thofe purfuits than we do, we fhould ftill contider them as unfuitable to the character of a clergyman. Our author, however, was of a different opinion. In reply to a cenfure pafifed by a dignified clergyman on the political condict of himfelf and fome of liis reverend brethren, he publifhed, without his name indeed, a fuirited defence of their proceedings and defigns in fome of the country papers. The York committee, too, at its next meeting, refolved, "that a Proteftant, by entering into holy orders, does not abandon his civil rights;" they alfo refolved, "that the thanks of the committee be given to thofe reverend gentlemen who, thus preferring the public good to their own private emoluments, have flood forth the firm friends to the true interefts of their country."
Mr Mafon, however, thowed, by his fubfequent conduct, that however earneftly he might wifh for what he doubtlefs confidered as an expedient reform in the com-mons-houfe of Parliament, he was firmly attached to the Britifh conflitution. He was indeed a whig ; but he was a whig of the old fchool. In the beginning of 1794, when the reformers had betrayed the principles of French democrates, he deferted them, and ranged himfelf under the banners of the fervants of the crown ; and for this conduct, which was certainly conffitent, he has been plentifully traduced by our Jacobin journalitts as an alarmilt, who not only deferted his old friends, but afcribed to them a certain degree of guilt and political depravity.

The death of this great and good man, which happened in April 1797, was occalioned neither by age nor by inveterate difeafe. As he was ttepping into liis chariot, his foot 隼价ed, and his thin grazed againft the flep. This accident had taken place feveral days before he paid the proper attention to it; and on April the 3 d a mortification enfued, which, in the fpace of fortyeight hours, put a period to his life.

That he was a fcholar and a poet of high eminence is unive:fally acknowledged; and we are affured, that his pofthumous works, when publifhed, will not detract from his living fame. In private life, thongh he affect.
ed perhaps ton much the fatidious manners of Mr Matonis Gray, whofe genius he eftimated with a degree of enthufiafm amounting almoft to idolatry, his character was diftinguilhed by philanthropy and the moft fervid friendithips; and he may be confidered as a man who merits to be ranked with the ableft fupporters of Britifh liberty and Britifh morals.

Free MASONRY, is a fubject which, after the copious detail given in the Encycloperdia of its lodges, and med in the and grand mafters, we fhould not have refuthe pernicis place, but to warn our countrymen againit by the French and Germans on the fimple fyttem of Britifh mafonry.

Much falfehood is current refpecting the origin and antiquity of the mafonic affociations. That the Dio. nyfiacs of Afia Minor were a fociety of architeets and engineers, who had the exclufive privilege of building temples, fladia, and theatres, under the mytterious thtelage of Bacchus, feems to be unqueftionable. "We are alfo certain, that there was a fimilar trading affociation during the dark ages in Chriftian Europe, which monopolized the building of great churches and caftes, and enjoyed many privileges under the patronage of the various fovereigns. Circumflances (Rays Dr Robifon), which it would be tedious to emumerate and difcufs, continued this affociation longer in Britain than on the continent ;" but there is no good evidence, that, anterior to the year 1648 , any man fonght adiniffion into it, who was not either a builder by piofeffion, or at leait fsilled iu the fcience of architecture. At that period, indeed, Mr Ahmole, the famons antiquary (fee Ash mole, Encycl.), was admitted into a lodge at Warrington, together with his father-in-law Colonel Mainwaring; and thefe are the firft diftinct and unequivocal inflances that we have in Britain of men unconnected with the operative mafons being received into their myfterious fraternity. The fecrecy, however, of the lodges, made them fit places for the meetings of the royalilts; and accordingly many royalits became free mafons. "Nay, the ritual of the mafter's degree feems to have been formed, or perhaps twilted from its original inttitution, fo as to give an opportunity of founding the political principles of the candidate, and of the whote bretliren prefent. For it bears fo eafy an adaptation to the death of the king, to the overturning of the venerable conflitution of the Englifh government of three orders by a mean democracy, and its re-eftablihment by the efforts of the loyalilts, that this would ftart into every perfon's mind during the celemonial, and could hardly fail to fhew, by the countenances and behaviour of the brethren, how they were affected."

This fuppofition receives much countenance from the well known fact, that " Charles II. was made a mafon, and frequented the lorges. It is not unlikely, that befides the amufement of a vacant hour, which was always agrecable to him, he had pleafure in meeting with his loyal friends, and in the occupations of the lodge, which recalled to his mind their attachment and fervices. His brother and fucceffor James II, was of a more ferious and mauly caft of mind, and had little pleafure in the frivolons ceremonies of mafonry. He did not fiequent the lodges. But, by this time, they were the refort of many perfons who were not of the profeffion, or members of the trading corporation. This circumfance,
afonry. fance, in all probability, produced the denominations of free and accepted mafons. A perfon who has the privilege of working at any incorporated trade, is faid to be a freeman of that trade. Others were accepted as brethren, and admitted to a kind of honorary freedom; as is the cafe in many other trades and incorporations, without having (as far as we can learn for certain) a legal title to earn a livelihood by the exercife of it."

It was not till fome years after this period that the lodges made open profeffion of the cultivation of general benevolence, and that the grand aim of the fraternity was to enforce the exercife of all the focial virtues. The eftablifment of a fund for the relief of unforti:nate brethren did not take place till the very end of the lalt century ; and we may prefume, that it was brought about by the warm recommendations of fome benevolent members, who would naturally enforce it by addrefles to their affembled brethren. Hence the probable origin of thofe philanthropic difcourfes, which are occafionally delivered in the lodges by one of the brethren as an official tafk.

The boafted philanthropy of mafons ferves, however, another purpofe. The inquifitive are always prying and teazing, eager to difcover the fecrets of their neigh. bours; and hence the brethren are induced to fay, that univerfal beneficence is the great aim of the order, for it is the ouly point on which they are at liberty to fpeak. They forget, that univerfal beneficence and philanthropy are inconfiftent with the exclufive and monopolizing firit of an antociation, which not only confines its benevolence to its own members (like any other charitable affociation), but hoards up in its bofom ineftimable fecrets, whofe natural tendency, they fay, is to form the heart to this generous and kind conduct, and infpire us with love to all mankind. The profane world cannot fee the beneficence of corcealing from public view a principle or a motive which fo powerfully induces a mation to be good and kind. The brother fays, that publicity would rob it of its force; and we muft take him at his word: and our curiofity is fo much the more excited, to learn what are the fecrets which have fo fingular a quality, for they mult be totally unlike the principles of fcience, which produce their effects only when made public.
From this account of malonry, it would appear to have been at firft a loyal affociation, and as fucl it was carried over from England to the continent; for all the mafor:s abroad profefs to have received their my iteries from Great Britain. It was firft traufported into France by the zealous adherents of King James, who, together with their unfortunate inafter, took refuge in that country ; and it was cultivated by the French in a manner fuited to the tafte and habits of that highly polifhed and frivolous people. T'o the three fimple Britifh degrees of apprentice, fellow-craft, and mafer, they gradually added degrees innumerable, all decorated with flars and ribbons; and into their lodges they introduced the impieties and feditious doctrines of Voltaire and the other philofophifts. Indeed, if the account which the Abbé Barruel gives of mafonry be juft, it muft be admitted, that even the fecrets of the molt ancient lodges, though in one fenfe harmlefs and juft, are fo exprefled, that they may be eafily twiffed to very dangerous pur. pofes. This author was advanced by a few friends to the degree of mafter, without being obliged to take the Suppl. VoL. II. Part I.
oath of fecrecy; and being furnifhed with the figns, he Mafenry. got admifion into a lodge, where he heard the fecret regularly communicated, with all the ordinary forms, to an apprentice. "It would be ufelefs, fays he, to deferibe the ceremonials and trials on fuch occafions; for in the firft degrees, they are nothing more than the play of children. The grand objeet was the communication of the famous fccret, when the cancidate was ordered to approach nearer to the venerable. It that moment, the brethren, who lad been armed with fwordo fur the occafion, drawing up in two lines, held their fwords elevated, leaning the points towards cach other, and formed what in mafomy is called the arch of fleel. The candidate paffed under this arcly to a fort of altar elevated on two theps, at the farthe.t cud of the lodge. The mafter, feated in an arm chair, or a fort of throne, behind this altar, pronounced a long difcourfe on the inviolability of the fecret which was to be imparted, and on the danger of breaking the oath which the candidate was going to take. lie pointed to the naked fwords, which were always ready to pierce thic breatt of the traitor; and declared to him that it was inpolfible to efcape their vengeance. The candidate then fwore, "that rather than betray the fecret, he confented to have his head cut off, his heart and entrails toin out, and his afhes caft before the winds." Having taken the oath, the matter faid the following words to him : "My dear brothcr, the fecret of mafunry confifts in thefe words, :QUALITY AND Liblerty; all men are equal and free; all men are brethren." The mater did not utter auother fyllable, and every body embraced the new brotber equal and free. The lodge broke up, and we gayly adjourned to a mafonic repalt."

In the Britifh lodges, the author admits, that no other interpietation is given to this famous fecret, than that, as all men are children of one common parent, and creatures of the fame God, they are in duty bound to love and help each other as brethren; but he contends, that in France it was differently interpreted; and he fupports his opinion by the following arguments:

On the 12 th of Augult 1792 , Louis XVI. was carried a prifoner to the cower of the temple, fo called becaufe it formerly belonged to the kuights templars. On that day, the rebel affembly decreed, that to the date of liberty the date of equality fhould be added in futurc in all public acts; and the decree itfelf was dated the fourth year of liberly, the firlt year and firt day of equality. It was on that day, for the firlt time, that the fecret of free-mafonry was made public; that fecret fo dear to them, and which they preferved with all the folemnity of the nolt inviolable oath. At the reading of this famous decree, they exclaimed, "We have at length fucceeded, and France is no other than an immenfe lodge. The whole French people are free mafons, and the whole univerfe will foon follow their example."
"I witnefled (fays our author) this enthuliafm; I heard the converfations to which it gave rife; I faw mafons, till then the moft referved, who freely and upenly declared, 'Yes, at length the grand object of freemafonry is accomplifhed, equality and liberty ; all men are equal and brothers; all men are free. That was the whole fubftance of our doctrine, the object of our wifhes, the zuhole of our grand Jecret !"'
This is a very ferious charge againft the original feZ

M A S

[17
Mafonry. cret of mafonry, as it was undertood in France; and though the author does not bring it directly againft the fame fecret as undertood in Britain, he yee feems to fay, that in all lodges, the following queftion is put to the eandidate before he is entrulted with any fecret :"Brother, are you difpofed to execute all the orders of the grand mafter, though you were to reeeive contrary orders from a king, an emperor, or any other fovereign whatever?"' And as the brother is obliged to promife this unlimited obedience, it is cafy to conceive how much a traiterous confpiracy may be promoted by means of mefon lodges. The allegorical fory whieh is told at the conferring of the degree of mafter, is eapable of various and even contrary interpretations; for though in this country it was originally rendered fubfervient to the purpofes of the royalifts, in the oecult lodges on the contivent it has been made the vehiele of treafon and impiety.
When the degree of mafer-mafon is to be conferred, the lodge is hung round with black. In the middle is a coffin eovered with a pall, the brethren flanding round it in attitudes denoting forrow and revenge. When the new adept is admitted, the mafter relates to him the following thittory or fable:
" Adoniram prefided over the payment of the workmen who were building the temple by Solomon's orders. They were three thoufand workmen. That each one might receive his due, Adoniram divided them into three claffes, apprentices, fellow crafts, and mafters. He entrufted each clafs with a word, figns, and a gripe, by which they might be recognifed. Eaeh elafs was to preferve the greateff fecreey as to thefe figns and words. Three of the fellow-crafts, wilhing to know the word, and by that means obtain the falary, of matter, hid themfelves in the temple, and each pofted himfelf at a different gate. At the ufual time when Adoniram eame to fhut the gates of the temple, the frit of the three inct him. and demanded the zoord of the maflers; Adoniram refufed to give it, and received a violent blow with a fiek on his head. He fies to another gate, is met, clallenged, and treated in a fimilar manner by the fecond: flying to the third door, he is killed by the fellow-craft potted there, on his refuling to betray the word. His affaffins buried him under a heap of rubbinh, and marked the fpot with a braneh of acacia.
"Adoniram's ablenee gave great uneafiuefs to Solo. mon and the maters. He is fought for every where : at length one of the mafters difcovers the corpfe, and, ta. king it by the finger, the finger parted from the hand; he took it by the writt, and it parted from the arm; when the maiter, in aftonifhment, eried out, Mac Benuc; whieh the craft interprets by "the foffo parts from the bones."
" L.eft Adoniram fhould have revealed the woorld, the ma.ters convened and agreed to change it, and to fubthitute the words Mac Berac; Facred words, that freemafons dare aot pronounce out of the lodges, and there each only pronounces une fyllable, leaving his neighbour to pronounce the other."
The hiffory timht, the adept is informed, that the object of the degree he has jult reecived is to recover the word lof by the death of Adoniram, and to revenge this martyr of the mafonic fecrecy. The gener-

8] M A S
ality of mafons, looking upon this hiltory as no more Mafonny. than a fable, and the ceremonics as puerile, give themfelves very little trouble to fearch farther into thefo my Reries.

Thefe fports, however, affume a more ferious afpect when we arrive at the degree of elect (Elu). This degree is fubdivided into two parts; the firtt has the revenging of Adoniram for its objeet, the other to reeover the word, or rather the facred doctrine which it expreffed, and whieh has been lolt.
In this degree of elect, all the brethren appear deffied in black, wearing a breatt-piece on the left fide, on which is entroidered a death's head, a bone, and a poignard, encircled by the motto of Conquer or die. The tame motto is embroidered on a ribband which they wear in faltier. Every thing breathes death and reve:ge. The candidate is led into the lodge blindfolded, with bloody gloves on his hands. An adept with a poignard in lis hand the catens to run him through the heart for the erime with whieh he is accufed. After va. rious frights, he obtains his life, on condition that he will revenge the father of mafonry in the death of his affaffin. He is thewn to a dark eavern. He is to penetrate into it ; and they call to him, Strike all that fhall oppofe you ; enter, defend yourfelf, and avenge our matter; at that priee you flall receive the degree of elect. A poignard in his right liand, a lanp in his left, he proceeds; a phantom oppofes his paffage; he hears the fame voice repeat, Strike, avenge Hiram, there is his affaffin. He ftives, and the blood flows.-Strike off his head, the voiee repeats; and the head of the corpfe is lying at his feet. He feizes it by the hair (A), and triumphantly carries it back as a proof of his victory; fhows it to each of the brethren, and is judged worthy of the new degree.
Our author fays, that he has queftioned divers mafons whether this apprenticethip to ferocity and murder had never given them the idea, that the head to be cut off was that of kings ; but thyy all affirmed that fuch an idea had never occurred to them till the Freneh revolution had convineed them of the faet. At this indecd we are not furprifed. The affaffin of Hiram is no where faid to have been a king; and why fhould the young elect lave fuppofed, that when flabibing that aflaffin, he wzs training to be a regicide? The ceremony, however, is certainly ferocious in the higheft degree, and obviouny caleulated to reconeile the mafons of the occult lodges to the practice of affaffination at the eommand of their fuperiors; and when it is remenbered, that they are bound to pay obedience to thofe unfecn fulperions even againft their lawful fovereigns, the atroeities of the revolution would naturally make them interpret this hocking ceremony as it is interpreted by the Atbé。

It was the fame with refpect to the religious part of this degree, where the adept is at once pontiff and facrificer with the reft of the brethren. Vefted in the ornaments of the priefthood, they offer bread and wine, aeeording to the order of Melchifedec. The lecret objeet of this ceremony is to re-e.tablifh religious equality, and to exhibit all men equally priefts and pontiff, to reeal the brethren to natural religion, and to perfuade them that the religion of Mofes and of Chriit had violated religious equality and liberty by the ditticetion
(A) The reader may eafily conceive that this corple is no more than a mannikin containing bladders full of blood,
sfonty of priefts and laity. It was the revolution again which opened the eyes of many of the adepts, who then owned that they had been dupes to this inpiety, as they had been to the regicide eflay in the former part.

Our author treats the fraternity of the occult lodges through the higher degrees of Scotch mafonry, thofe of the Roficrucians, and that of the knights Kadofch; and fums up his account in the following terms:
"In the two firft degrees, that is to Cay, in thofe of apprentice and fellow-craft, the feet begins by throwing out its equality and liberty. After that, it occupies the attention of its novices with puerile gamcs of fraternity or mafonic repafts; but it already trains its adepts to the profoundeft fecrecy by the moft frightful oaths.
"In that of maffer, it relates the allegorical hiftory of Adoniram, who is to be avenged; and of the zvord, which is to be recovered.
"In the degree of elect, it trains the adepts to vengeance, without pointing out the perfon on whom it is to fall. It carries them back to the time of the patriarchs, when, according to them, men knew no religion but that of nature, and when every body was equally prieft and pontiff. But it liad not as yet declared that all religion revealed fince the time of the patriarchs was to be thrown afide.
"This laft myftery is only developed in the Scotch degrees. There the brethren are declared free: The word fo long fought for is, Deifm; it is the worfhip of Jehovah, fuch as was known to the philofophers of nature. The true mafon becomes the pontiff of Jeho. vah; and fuch is the grand myftery by which he is extricated from that darknefs in which the prophane are involved.
" In the degree Rofe Crucis, he who wrefled the zuord, who deltroyed the worthip of Jehovah, is Chrilt himfelf, the author of Chriftianity; and it is on the Gofpel and on the Son of Man that the adept is to avenge the brethren, the pontiffs of Jehovah.
"At length, on his reception as Kadofch, he learns that the affaffin of Adoniram is the king, who is to be killed to avenge the grand mafter Molay, and the order of the mafons fucceffors of the knights templars. The religion which is to be deftroyed to recover the word, or the true doctrine, is the religion of Chrit, founded on revelation. This word in its full extent is equality and liberty, to be eftablifhed by the total overthrow of the altar and the throne.
"Such are the incipient degrecs, the procefs, and the whole fyttem of mafonry; it is thus that the fect, by its gradual explanation of its twofold principle of equalily and liberty, of its allegory of the founder of inafonry to be avenged, of the word to be recovered, leading the adepts from fecret to fecret, at length initiates them into the whole Jacobinical code of revolution,"

If this account of mafonry be not greatly exaggerated, what are we to think of thofe men among ourfelves, who, fince the publication of the Abbé Barrnel's book and Dr Robifon's, have difplayed a zeal for the proparation of their myfteries, by which they feemed not to be formerly actuated, and to which the import. ance of the bufinefs that, by their own account, is tra-facted in the lodges, cannot be thought to bear an adequate proportion? It is not enough to fay that Britifh mafonry is harmlefs, and that the equality and $l i$ berity taught in our lodges are the equality and liberty
taught in the bible. Without directly queftioning this aflertion, we only beg leave to put our countrymen in remembrance, that Fiench and German mafonry, as it was dcrived from Britain, muft have been originally as harmlefs as our own; and to call their attention to the monftrous fuperftructures of impiety and rebellion which in thefe countries have been raifed upon our foundation. Have there bcen no fymptoms of fedition and irreligion amorg us, fince the conimencement of the French re. volution, that we fhould be fo confident that the equality and liberty of our lodges will never degenerate into the equality and liberty of the French Jacobins? This cannot be faid ; for it lias been proved, that there are feveral occult lodges in Britain; and what fecurity have we, or what fecurity can we receive, that their nurr.ter will not increafe? The legiflature indecd has lately laid fomc falutary reftraints on the meetings of mafons; but fuch is the nature of thefe meetings, that nothing can effectually fecure us againft the introduction of the higher myfteries, but the volurtary fhutting up for a time of all lodges. This has been done by the honelt mafons in Germany ; and why may it not be done by the maions in Britain? The fund for the rclief of poor bretlıren may furely be managed without fecrecy; the figns and gripe may be communicated without the woord, or exacting a promife of implicit obedience; and the relinquifhing of the joys of a focial hour would be no great facrifice to the peace of a country.

But is Britifh mafonry really fo harmlefs as the younger mafons wifh us to believe? The writer of thefe reflections was never initiated in its myfteries, and therefore cannot, from his own knowlechge, fay what is their tendency ; but he has no hefitation to affirm, becaufe he believes himfelf able to demontlrate, that it is grofsly immoral to promife implicit obedience to unknown fuperiors, or to fwear that one will keep inviolate a fecret, to the nature of which he is an abfolute ftranger. He hopes, indeed, and is inclined to believe, that, in the decent lodges of Britain, the candidate is aflured, before he is required to take the oath, that the fecret to be communicated, and the obedience which he is to pay, milicate in no refpect againtt the civil government or the religion of his country ; but flill if the fecret contain information of value, it is, in his opinion, finful to keep it a fecret ; and he cannot conceive upon what principle a native of Eritain can promife unlinited obedience to any human being. The myfteries of inafonry muft relate to fomcthing which is either important and laudable; frivolous, though innocent; or dangeroue and immoral. To confine to a fect any information which is laudable and important, is furely not to act the part of genuine philanthropifts ; to addminifter the moft tremendous oaths in the miditt of frivolous amufements, is to violate one of the inolt facred precepts of our holy religion ; and, as no man will pretend to vindicate dangcrous and iminoral mytheries, mafunry appears, in every point in which it can be placed, an affectation which no good Cluritian will think himfelf at liberty to encourage.

MASUAH (Sec Massuah, Encycl.) is in latitude $15^{\circ} 35^{\prime} 5^{\prime \prime}$ north, and in longitude $39^{\prime \prime} 36^{\prime} 30^{\prime \prime}$ ealt of Greenwich. On the 22 d of September 1769 Mr Bruce found the variation of the needle at Mafual to be 12° $4^{8!}$ weit.

MATMAI, or Matsumal, is the largeft of the Kurile inands; and if it be not independent, is trijutary

11
Mamai.

M A Y [180$] \quad$ M E A

Mayorga, to Japan. The capital town of the fame name, Mat- is generally believed to be a new art. He did not col-

It was built and is inhabited by the Japanefe. It fide. fortified place, furnifhed with artillery, and defended by a numerous garrifon. The ifland of Matmai is the place of cxile for perfons of diftinction at Japan: it is feparated from that empire by only a narrow channel, but which is confidered as dangerous, becaufe the capes, which project on both fides, render the navigation difficult 'The people are faid to be fenfible to friendfhip hofpitable, generous, and humane.

MAYORGA (Martin de). See Don Martin, \&c. in this Suppl.
MAYOW (John), whofe difcoveries in chemiftry have aftonifhed the fcientific part of the public, defcended, fays Wood, from a gentecl family living at Bree in the connty of Cornwill. His father was probably a younger fon, bred to bufinefs; for our author was born in Flett-freet, London, in the parih of St Dunflan's in the Well. At what fchool he rectived the rudiments of his education, a circumflance which the biographers of men eminent in the repuhlic of tetters fhould never omit, we have not been able to learn; but on the 27 th of September 1661, when he had juft completed his 16 th year, he was admitted a fcholar of Wadham college, Oxford. Some time afterwards, on the recommendation of Henry Coventry, Efq; one of the fecretaries of fate, he was chofen probationer fellow of All-fouls college. As Wood informs us that he had here a Legiff's place, an expreffion by which we underftand a law fellowihips it is not wonderful that he took his degrees in the civil law, though phyfic and the plyyical fciences were the favourite objects of his ftudy. He was indeed an eminent phyfcian, practifing both in London and in Bath, but in the latter city chiefly in the fummer months, till the year 1679 , when he died, fome time during the month of September, in the houfe of an apothecary in York-ftreet, Covent Crarden, and was buried in the ehurch of that parifh. He had been married, fays Wood, a little before his death, not alcogether to his content ; and indeed he muft have been very difcontented, if he chofe to die in the houfe of a friend rather than in his own. He publifhed, "Tractatus quinque medico phyfici, 1. De fatnitro; 2. De refpiratione; 3. De refpiratione fectus in utero et ovo: 4 . De motu mulculari et fpiritibus animalibus; 5. De Rachitide." Thefe were publifhed together in 8vo at Oxford, in 1674; but there is an edition of two of then, " De refpiratione," and "De Rachitide," publifhed together ac Leyden in 1671.

The fame of this author has been lately revived and. extended by Dr Beddoes, who publifhed, in 1790, "Chemical Experiments and Opinions, extracted from a work publifhed in the laft century," 8 vo ; in which he gives to Mayow the higheft credit as a chemif, and afcribes to him fome of the greateft modern difcoveries refpecting air, giving many extracts from the three firft of his treatifes. His chief difcovery was, that oxygen gas, to which he gave the name of fire air, exifts in the mitrous acid, and in the atmofphere ; which he proved by fuch decifive experiments, as to render it impoffible to explain how Boyle and Hales could avoid availing themfelves, in their refearches into air, of fo capital a difcovery. Mayow alfo relates his manner of paffing aeriform fluids under water, from veffel to veffel, which
lect dephlogifticated air in veffels, and transfer it from one jar to another, but he proved its exiftence by finding fubftances that would burn in vacuo, and in water when mixed with nitre; and after animals had breathed and died in veffels. filled with atnofpheric air, or after fire had been extinguifhed in them, there was a refiduum which was the part of the air unfit for refpiration, and for fupporting fire; and he further fhewed, that nitrous acid cannot be formed, but by expofing the fubflances that generate it to the atmofphere. Mayow was undoubtedly no common man, efpecially fuce, if the above dates are right, he was only 34 at the time of this death. But he was not fo unknown as Dr Beddoes fuppofed; for fince the repetition of the fame difcovery by Priefley and Scheele, reference has frequently been made by chemiftes to Mayow as the original inventor; thus allowing to him a fpecies of merit, to which he has perhaps but a doubtful claim, and which, if that claim be well founded, muft certainly be fhared between him and Dr Hooke. See Hooke in this Supplement.

MEAN, in general. See Encycl.
Arithnetical Mean, is half the fum of the extremes. So 4 is an arithmetical mean between 2 and 6 , or between 3 and 5 , or between 1 and 7 ; alfo an arithnetical mean between a and b is $\frac{a+b}{2}$, or $\frac{1}{2} a+\frac{1}{2} b$.

Geonetrical MRAN, commonly called a mean proportional, is the fquare root of the product of the two extremes; fo that, to find a mean proportional between two given extremes, multiply thefe together, and extract the fquare root of the product. Thus, a mean proportional between : and 9 , is $\sqrt{1 \times 9}=\sqrt{9}=3:$ a mean between 2 and $4 \frac{1}{2}$ is $\sqrt{ } 2 \times 4 \frac{1}{2}=\sqrt{2} 9=3$ alfo; the inean between 4 and 6 is $\sqrt{4 \times 6}=\sqrt{ } 24$; and the mean between a and b is $\sqrt{a} b$.

Harmonical Mesn. See Harmonical Proporfion, Encycl.

Mean and Extreme Proportion, or Extreme and Mean. Proportion, is when a line or any quantity is fo divided that the lefs part is to the greater, as the greater is to the whole.

MEAN Anomaly of a Plazet, is an angle which is always proportional to the time of the planet's motion from the aphelion or perihelion, or proportional to the area defcribed by the radius vector; that is, as the whole periodic time in one revolution of the planet, is to the time paft the aphelion or perihelion, fo is 360° to the mean anomaly. See Anamoly, Encycl.
$M_{E A N}$ Conjundion or Oppofition, is when the mean place of the fun is in conjunction, or oppofition, with the mean place of the moon in the ecliptic.

MEAN Difance of a Planet from the Sun, is an arith. metical mean between the planet's greateft and leaft diftances.

MEAN Motion, is that by which a planet is fuppofed. to move equably in its orbit; and it is always proportional to the time.
$M_{\text {EAN }}$ Time, or Equal Time, is that which is meafured by an equable motion, as a clock; as diftinguifhed from apparent time, arifing from the unequal motion of the earth or fun.

Universal or Perpetual MEASURE, is a kind

A hanics. of meafure unalterable by time or place, to which the meafures of different ages and nations might be reduced, and by which they may be compared and eftimated. Such a meafure would be very ufeful if it could be attained; fince, being wfed at all times, and in all places, a great deal of confufion and crror would be avoided.

It has been attemptec, at different times and in different countries, more efpecially by the French, who, fince the commencement of their revolutionary governnient, have laboured hard to obtrude their innovations in arts and fcience, as well as in politics, upon all nations. Propofals, however, have beell made by foberer men for a flandard both of weights and of meafures for ail nations; and fome of the mioft rational of thefe fhall be noticed under the word Weights in this Supple. ment.
MECHANICS.-Our readers will recollect that in the article Physics, Encycl. we propofed to difinguifh by the term Mechanical Pbilofophy that part of n*tural frience which treats of the local motions of bedies. and the caufes of thofe phenomena. And, although all the changes which we obferve in material nature are accompanied by local motion, and, when completely explained, are the effects (perhaps very remote) of thofe powers of matter which we call moving forces, and of thofe alone, yet, in many cafes, this local motion is not obferved, and we ouly perceive certain ultimate refults of thofe changes of place. This is the cafe (for example) in the folution of a grain of filver in a phial of aquafortis. In the beginning of the experiment, the patticles of filver are contained in a fina!l fpace at the bottom of the phial; but they are finally raifed from the bottorm, and uniformly diffeminated over the whole fluid. If we fix our attention fteadily on one particle, and trace it in its whole progrefs, we contemplate nothing but a particle of matter acted on by moving forces, and yielding to their action. Could we flate, for cvery fituation of the particle, the direction and intenfity of the moving force by which it is impelled, we could conftruct a figure, or a formula, which would tell us the precife direction and velocity with which it changes its place, and we could delineate its path, and tell the time when it will arrive at that part of the veffel where it finally refts in perfect equilibrium. Newton having done all this in the cafe of bodies acted on by the moving force called gravity, has given us a complete fyftem . fmechanical altronorny. The philofopher who fhall be as fortunate in afcertaining the paths and motions of the particles of Gilver, till the end of this experiment, will eftablifh a fyftem of the mechanical folution of fil. ver in aquafortis ; and the theorems and formule which charafterife this particular moving force, or this modification of force, ftating the laws of variation by a change of diffance, will be the complete theory of this chemical fact. It is this modification of moving force which is ufually (but moft vaguely) called the chemical affinity, or the elective attradion of filver and aquafortis.

But, alas! we are, as yet, far from laving attained this perfection of chemical knowledge. All that we have yet difcovered is , that the putting the bit of filver into the fpirit of falt will not give occafion to the exertion of this moving force; and we exprefs this obfervation, by calling that unknown force (unknown, becaufe
we are ignorant of the law of its action) an affinity, an Mechanicas elective attraction. And we have obferved many fuch elections, and have been able to clafs them, and to tell ont what occafions they will or will not be exerted ; and this fcrap of the complete theory becomes a molt valut. able acquifition, and the claffification of thofe fcraps a moft curious, and extenfive, and important fcience. The chemical philufopher has alfo the pleafure of feeing gradual appioaches made by ingenious men to the complete mechanical explanation of thefe unfeen motions and their caufes, of which he lizs arranged the ultimate refults.
'I he ordinary chemin, however, and even many molt acute and penctrating enquirers, do not think of all thefe motions. Familiarly converfant with the refults, they coutider them as principles, and as topics to reafon from. They think a chemical phenomenon fufficiently explained, when they hase pointed out the affinity under which it is arranged. Thus they afcribe the propagation of heat to the expanfive nature of fire, and imagine that they comceive clearly how the effect is produced. But if a mathematical philofopher frould fay, "What is this whicle you call an expanfive fluid? Explain to me dittinety, in what manner this property which you call expanfivenefs operates in producing the propagation of heat." We imagine that the chemilk would find himfelf put to a fland. Ife will then, perhaps for the firft time, try to form a diftinct conception of an expanfive fluid, and its manner of operation. He will. naturally think of air, and will refleci on the manner in which air actually expands or occupies more room; and be will thus contemplate local motion and mechanical preffure. He will find, ton late, that this gives him no affiltance; becaufe the phenomena which he has been accuftomed to explain by the expanfivenefs of fluids have no refemblance whatever to what we fee refult from the actual expanfion of air. Experience has made him acquainted with many cffeets which the air produces duing its expanfion ; but they are of a totally dif. ferent kind from thofe which he thought that he liad fufficiently explained by the expanfivenefs of fire. The only refemblance he obferves is, that the air and the heat, which were formerly perceived orily in a fmall. fpace, now appear in a much larger fpace. The mathematician now defires him to tell in what manner he conccives this expanfivenefe, or this actual expanfion of air or gas. The chemitt is then obliged to confider the air or gas as confilting of atoms or particles, which mult be kept in their prefent fituation by an external force, the moft familiar of all to his imagination, namely, preflure; and all preffures are cqually fit. Preflure is a moving force, and can only be oppofed to fuch an. other moving force; therefore expanfivenefs fuppofes, that the particles are under the infliuence of fomething which would feparate them from each other, if it were not oppofed by fomething perfecily of the fame kind. It cannot be oppofed by greennefs, nor by loudnefs, nor by fear, but only by what is competent to the prodnction of motion; and it may be oppofed by any fucls natural power ; therefore by gravity, or by magnetifm, or electricity, or corpufcular attraction, or by an elective attraction. The chemift, being thus led to the contemplation of the phenomenon in its moft fimple ftate, call now judge with fome diflinetnefs, what is the nature of thofe powers with which expanfivenefs can.

- Nacehanice be brought to co-operate or combine. And only now will he be able to fpeculate on the means for explaining the propagation of heat; and he will perceive, that the general laws of motion, and of the action of moving forces (doetrines which we comprehended under the title of Dynamics, supil.), mult be reforted to for a complete explanation of all chemical phenomena. The fame may be faid of the phenomena perceived in the growth of vegetables and animals. All of them lead us ultimatcly to the contemplation of an atom, which is characterifed by being fuiceptiole of local motion, and requires for this purpofe the arency of what we call a moving force.

We would ditinguifh this particular OBJECT of our contemplation (confifting of two conitituent parts, the atom and the force, related, in fact, to each other by conflant conjunction) by the term mechanism. We conceive it to be the characteriflic of what we call matTER; and we would confider it as the moft fimple n:Echanical phenomenon. We are difpofed to think, that this moving force is as fruple and uniform as the atom to which it is related; and we would afcribe the inconceivable diverfity of the moving forces which we fee around us to combinations of this univerfal force exerted by many atoms at once ; and therefore modified by this combination, in the very fame manner as we Erequently fee thofe feemingly different moving forces combine their influence on a fenfible mafs of tangible matter, giving it a fenfible local motion. Having formed fuch notions, we would fay that we do not conceive either the atom or the force as being matter, but the two thus related. And we would then fay, that whatever object of contemplation does not ultimately lead us to this complex notion is Immaterial; meaning by the epithet nothing more than the negation of this particular character of the object. . It is equivalent to faying, that the phenomenon does not lead the mind to the confideration of an atom actuated by a moving force; that is, moved, or prevented from moving, by an oppolite preflure or force.

Such is the extenfion which the difcoveries of laft century have enabled us to give to the ufe of the term mechanifm, mechanical action, mechanical caufe, \&ic.

The Greeks, from whom we have berroved the term, gave it a much more limited meaning ; confuring it to thole motions which are produced by the intervention of machines. : Even many of the naturalits of the prefent day limit the term to thofe motions which are the immediate confequences of impulfe, and which are cafes of fenfible motion. Thus the chemint fays, .that printers ink is a mechanical fluid, but that ink for writing is a chemical fluid. We make no objection to the diftmetion, becaule chemiltry is really a vaft body ot real and important fcience, although we have, as jet, been able to clafs only very complicated phenomena, and are far from the knowledge of its clements. \because his diftinction made by the chemilts is very clear, and very proper to be kept in view ; but we fhould be at a lols for a term to exprefs the analogy which is perceivable between thefe fenfible motions and the hidden motions which obtain even in the chemical phenomena, unlefs we give mechanifin a ftill greater extenfion than the ef-- fects of percuffion or inpullion.

Mechanics, in the ancient fenfe of the word, confiders only the entrigy of organa, machines. The authors who
have treated the fubject fyftemutically, have obferved, Mechasic that all machines derive their efficacy from a few fimple forms and difpofitions, which may be given to that piece of matter called the tool,' 'Ophowor or mackine, which is interpofed between the workman or natural a. gent, and the fatk to be performed, which is always fonething to be moved, in oppofition to refiting preffures. 'To thofe-fimple forms they have given the name of mechanical poiwers, fimple powers, fimple machines.

The machire is interpoled for various reafons.

1. In order to enable a natural power, having a certain determinate intenfity, which cannot be increafed, to balance or overcome another natural power, acting with a greater intenfity. For this purpofe, a piece of folid matter is interpofed, conneczed in fuch a manner with firm fupports, that the preffure exerted on the impelled point by the power occafions the excitement of a preffure at the working point, which is equal or fuperior to the refiftance, arifing from the work, to the motion of that point. Thus, if a rod three feet logeg be fupported at one foot from the end to which the refiftance of two pounds is applied, and if a oreffure of one pourd be applied to the other end of the rod, perpendicular to its length, the cohefive forces which connect the particles of the rod will all be excited, in certain proportions, according to their fituation, and the fupported peint will be made to prefs on its fupport as much as three pounds would prefs on it; and a preffure in the oppofite direction will be excited at the working point, equal to the preffure of two pounds. The refiftance will therefore be balanced, and it will be overcome by increafing the natural power acting on the long divifion of the rod. This is called a lever. Toothed wheels and pinions are a perpetual fucceffion of levers in one machine or mechanical power.
2. The natural power may act with a certain velocity which cannot be changed, and the work requires to be performed with a greater velocity. A machine is interpofed, noveable round a fixed fupport, and the diftances of the impelled and working points are taken in the proportion of the two velocities. Then are we certain, that when the power acts with its natural velocity, the working point is moving with the velocity we defire.
3. The power may act only in one unchangeable diitction, and the refiftance mult be overcome in another direction. As when a quantity of coals mult be brought from the bottom of a pit, and we have no power at command but the weight of a quantity of water. We let the water pull down one end of a lever, either immediately or by a rope, and we hang the coals on the other tud, while the middle point is firmly fupported. This lever may be made perpetual, by lapping the ropes round a cylinder which turns round an axis firmly fuppuited. 'This is a fixed pulley. We can fet unequal powers in oppofition, by lapping each rope round a different cylinder, having the fame axis. This is a windlass o: Gin. All thefe forms derive their cnergy from the lever virtually contained in them.

Ary of thefe three purpofes may be gained by the interpulition of a folid body in another way. Inftead of being fupported in one point, round which it is moveable, it may be fupported by a folid path, along which it is impelled, and by its thape it thrufts the refifting
chanice. body out of its way. This is the cafe with the wedge when it is employed to force up a fwagging joit, or prefs things ftrougly together. If this wedge be lapped or formed round an axis, it becomes a SCREW or a Spiral wiper. This is alio the operation of the balance wheel of a horizontal or cylinder watch. The oblique face of the tooth is a wedige, which thrufts the edge of the cylinder out of its way. The pallet of a clock or watch is allo a wedge, acted un in the oppofite direction.

Thefe are the different forms in which a folid body is interpofed as a mechanic power. All are reducible to the lever and the wed gige.

But there are other mechanic powers befides thofe now mentioned. The carmen have a way of lowering a cafk of liquor into a cellar, by paffing a rope under it, making the end faft to fome flake clofe to the ground, and bringing the other end of the rope round the cafk, and thus letting it lip down in the bight of the rape. In this procefs they feel but half of its weight, the other half being fupported by the end of the rope that is faftened to the ftake. This is called a PAReuckle by the feamen. A hanging pulley is quite the fame with this more artefs method. The weight hangs by the axis of the pulley, and each half of the hanging rope carries half of the weight, and the perfon who pulls one of then upwards acts only againt half of the weight, the other being carried by the hook to which the ftanding rope is faftened. This mechanical power does not (as is commonly imagined) derive its efficacy from the pulley's turning round an axis. If it were made faft, or if the tackle rope merely paffed through a loop of the rope which carries the weight, it would ftill require only half of the weight acting on the running rope to brlance it. The ufe of the motion round an axis is merely to avoid a very great frition. When the two hanging parts of the rope are not parallel, but inclined in any angle, the force neceffary fur balancing the weight is to the weight as the fide is to the diagoual of the parallelog:am furmed by the directions of the three ropes. Varigion calls this the funicular machine or power. Our failors call it the swigg.
We may employ the quaqua verfum preffire of fluidity with great effect as a mechanic power. Thus, in the hydroftatic bellows defcribed by Gravefande, § 145 1, and by Defaguilliers, the weight of a few ounces of water is made to raife feveral hundred pounds. In like manner, Dr Wallis of Oxford, by blowing with a pipe into a bladder, raifed 64 pounds lying on it. Otto Guericke of Magdeburgh nuade a child balance, and even overcome, the pull exerted by the emperor's fix coach horfes, by merely fucking the air from below a pitton. Mr Bramah, ironmonger in Piccadilly, London, has lately obtained a patent for a macline acting on this principle as a prefo*. A pifton of one-fourth of an iuch in diameter, forces water into a cylinder of 12 inches dianneter, and by this intervention raifes the pirton of the cylinder. A boy, acting with the fourth part of his flrength on the fmall puiton by meams of a lever, raifes 42 tons, or $94,0 x 0$ libs, preffing on the great pifton. It is very furprifing, that thi application of the quaqua verf fum preffure of fluids has been overlooked for more than a century, although the principle has been inculcated and lecture: on by every itinerant teacher, and illuftrated by the above mentioned experimento of Gravelande and Wallis; nay, it has been exprefsly
taught as a mechanic power of great efficacy by the Profeffor of Natura! Philofophy at Edinburgh every feffon of the college for the fe twenty years pant, but he never thought of futtiog it in practice. It forms a moft compendions machine of prodiginus power, and is fufceptible of the greateft trength. If the fame multiplication of power te attempted by toothed wheels, pinions, and racks, it is fcarccly pofible to give Itrength enough to the teeth of the raiks, and the machine becomes very cumberf me and of great expence. But Mr IBramah's machine may be made abundantly ftrong in very fmall compafs. It only requires very accurate execution. We give it all praife; but Mr Bramah io mittaken when he publifhes it as the invention or difcovery of a new mechanic power: for it has been familiar to every ftudeut of mechanics and hydroflatics ever fince Boyle's firft publication of his hydroftatic para. doxes.

Medical Jurisprudence. See Medicina Foo renfis in this Suppl.

MEDICI, is the name of an illuftrious family in Florence, which contributed more than perhaps any other family whatever to the revival of letters in Europe. To trace this family from its origin, or even to give biographical fketches of all the great men whom it produced, would occupy by far too great a part of nur work; for, during fome centuries, almoft every individnal of the houfe of Medici was diftinguifhed among his contemporaries. That houfe, after having rendered itfelf memorable in the annals of Florence, for oppofing the encroachments of the nobles on the liberties of the people, had loft much of its influence under the ariftocratic government of the Albizi, when it was raifed to a rank fuperior to what it had ever held, by

Giovanni de Msdtct, who was born in the year 13 (c). This man determined to reflore his femily to fplendour : but, confcious of his critical fituation, furrounded as he was by powerful sivals and enemies, he affected rather a fecure privacy than a dangerous popularity. Even when raifed to the office of goufalonier, or gener a-* liffimo of the republic, be carefully avoided any defire of partaking in the magiftracy, and fecmed to be entirdy engioffed by merchandize, which he extended from the Eaft throughout Europe. This conduct, as on one hand it threw his enemies off their guard, on the other, enabled him to acquire an immenfe fortune, of which he made a proper difpofition amongft all ranks of people.

Many, even of the ruling party, either grained by his liberality, or pleafed with his anliable and retired conduct, propofed to the feigniory to admit him into the magiftracy ; and though the propofal met with great oppofition, it was carried in the affirmative.

It was by raffly declaring for the plebeians againft the nobles that an anceftor of Giovanni's had loft to his family their rank in the fate. Giovanni, refolving not to fplit on the fame rock, continued to affect privacy and retirement, accepting, any office in the flate with the utmott appearance of reluctance, and never attending at the Palazzo, unlefs particularly fent for by the feigniory. Rifing by thefe means in the efteem of the people, his enenics became, of conrfe, unpopular ; and having obtained a decided fuperiority over his oppo. nents, he now ventured to procure, that thofe taxes which the nobles had exacted with the utnoft feverity and partiality from the people alone, fhould be levied

Medical, $\underbrace{\text { Medic; }}$

$\begin{array}{lllll}\mathrm{M} & \mathrm{D} & {\left[\begin{array}{lll}184 &]\end{array} \mathrm{M}\right.} & \mathrm{E} & \mathrm{D}\end{array}$

Melici, upon the two firft orders, in common with the plebeians; and that a law mould be ordained, by which perfonal property might be taxed,

The nobles feeing, with the deepef concern, their confequence fo fenfibly wounded, and their power fo much diminifhed, held feveral confultations in private how they miglit effect his ruin; but their want of unanimity prevented any thing decifive from being carried into execution. The people, alarmed for the fafety of their leader and patron, offered him the fovereignty, which his relations and friends urged him to accept ; but this his prudence forbad him to take, as with the title of lord he would have gained alfo that of tyrant. Thus, by his fingular prudence, he died poffeffed of all the power of the ftate, with the affectation of being the mof difnteretted citizen in the commonwealth. His death happered in the year 1428.

Giovanni was graceful in his perfon, and his affabili. ty to all eftablifhed his character for moderation. His extenfive knowledge and pleafantry made his company eagerly fought. As all his actions were placid and ferene, he was not in want of that trumpet of fedition, popular declamation, which he never attempted. Much to his honour, his elevation was not procured even by the banifhment of a fingle individual; a circumftance until then unknown in Florence, where every new adminiftration was marked with the ruin of familits, and by fcaffolds fained with blood.
"The maxims (fays Mr Rofcoe) which, uniformly purfued, raifed the houfe of Medici to the fplendour which it afterwards enjoyed, are to be found in the charge give: by this venerable old man, on his deathbed, to his two fons Cofmo and Lorenzo. 'I feel (faid he) that I have lived the time prefcribed me. I die content, leaving you, my fons, in afluence and in health, and in fuch a ftation, that, whilft you follow my example, you may live in your native place honoured and refpected. Nothing affords me more pleafure than the reflection, that my conduct has given offence to no one ; but that, on the contrary, I have eudeavoured to ferve all perfons to the beft of my abilities. I advife your to do the fame. With refpect to the honours of the ftate, if you would live with fecurity, accept only fuch as are beltowed on you by the laws, and the favour of your fellow.citizens; for it is the exercife of that power which is obtained by violence, and not of that which is voluntarily given, that occafions hatred and contention."

Medici (Cofmo de), the eldef fon of the preceding, was born in 1389. During the life-time of his father, he liad engaged himfelf deeply, not ouly in the extenfive commerce by which the family had acquired its wealh, but in the weightier matters of government. When Giovanni died he was in the prime of life; and though his complexion was fwarthy, he had an agreeable perfon, was well made, of a proper ftature, and in converfation urited a happy intermixture of gravity with occafional fallies of pleafantry and repartce. His conduct was uniformly marked by urbanity and kindnefs to the fuperior ranks of his fellow-citizens, and by a conftant attention to the interelts and the wants of the lower clafs, whom he relieved with unbounded generofity. By thefe means he acquired numerous and zealous partizans of every denomination; but he rather confidered them as pledges for the continuance of the
power which he poffeffed, than as inftruments to be employed in extending it to the ruin and fubjugation of the fate. An interchange of recipiocal good offices was the only tie by which the Florentines and the Medici were bound ; and perhaps the long continuance of this connection may be attributed to the very circumflance of its being in the power of either of the partics at any time to have diffolved it.

But the prudence and moderation of Cofmo could not reprefs the ambitious defigns of thofe rival families, who wifhed to poffefs or to fhare his authority. In the year 1433, Rivaldo de Albizi, at the head of a powerful party, carried the appointment of the magittracy. At that time Cormo had withdrawn to his feat in the country, to avoid the ditturbances which he faw likely to enfue ; but at the requeft of his fiends he returned so Florence, where he was led to expeet fuch a union of partics, as might at leaft preferve the peace of the city. No fooner cid he make his appearance in the palace, where his prefence had been requefted, on pretence of his being intended to thare in the adminittration of the republic, than he was feized upon by his adverfaries, and committed to prifon.

The confpirators were divided in their opinions as to the difpofal of their prifoner. Moft of them inclined to follow the advice of Peruzzi, who recommended taking him off by poifon. Cofmo, confined in the Alberzettino, a room in one of the turrets of the Palazzo, could hear this dreadful confultation, which was determining, not in what manner he fhould be tried, but in what manner he fhould be put to death; and finding that he was to die by an infufion of poifon fecretly adminiftered to him, a fmall portion of bread was the only food which he thought proper to take.

Cofmo lived in this manner four days; and, fhut up from all his kindred and friends, he foon expected to be numbered with the dead; but here, as it fometimes happens, he found relief where leaft expected, from the man who had been engaged to take him off. Malavolta, the keeper of the prifon, either from compunction, diffatisfaction, or the youth and misfortunes of the illuftrious fufferer, relented; and inftead of purfuing any criminal intentions agantt the life of Cofmo, after upbraiding him with entertaining fo unworthy an opinion of him, declared that his fears were entirely groundlefs. To convince hisı of this, he fat down, and partook of every thing the prifoner chofe to eat of. The expreffions of gratitude, together with his moft engag -g manners, and great promifes, entircly wori Malavolta, who, to insratiate himfelf ftill farther in the good opinion of Cofmo, invited Fargaccio, the moft celebrated wit in Florence, to dine with him the next day, from the idea that his fprightly mirth would contribute to lighten his misfortunes.

In the mean time, his brother Lorenzo, and his coufin Aserardo, having raifed a confiderable body of mell in Romagna and other vieighbouring diftricts, and being joined by the commander of the troops of the republic, approached towards Florence to his relief. The apprelenifion, however, that the life of Cofmo nighit be endangered, if they fhould proceed to open violence, induced them to abandon their enterprife. At length Rinaldo and his adherents obcained a decree of the magittracy, by which Cofmo was banifhed to Padua for ten years, his brother to Venice for five years; and fe-

1 dici. veral of their relations and adherents fhared the fame fate.

Cofmo received this determination of his judges with a compofure that gained him the compaftion and the admiration of many of his moft inveterate enemies. He would gladly have left the city purfuant to his fentence; but he was detained by his enemies till their anthority fould be eftablifhed: and it was not till he thought of hribing the gonfalonier, and another creature of Rinaldo's, that he was privately taken from lis confinement, and conducted out of Florence.

Padua, to which he was confired by his fentence, was in the dominions of Venice; but beforc he could reach that place, he received a deputation from the fenate, the purport of which was to concole with him for his misfortunes, and to promife hin their protection and affitance in whatever he fhould defire. He experienced the ercatment of a prince rather than that of an exile. Nor were that wife people without good reafons for fuch a conduct. Venice had long regarded Florence as her rival in commerce, and hoped, by conferring upon Cofmo the moff flattering diftinctions, to prevail upon him to refide there in future ; prudently fuppofing, that the manufactories of Florence, and the great commerce the Medici had carried on throughont Italy, and extended far beyond it to the wealthieft kirigdoms in liurope, would become their own by enrolling him amongtt their fubjects.
The readinefs with which Cofmo had given way to the temporary clamour raifed againf him, and the reluctance which he had fhewn to renew thofe rencounters which had fo often deluged the freets of Florence with blond, gained him new friends, even during his exile. The utmoft exertions of his antagonifts could not long prevent the choice of fuch magiffrates as were knowis to be attached to the caule of the Medici; and no fooner did they enter on their office, than Cofmo and his brother were recalled, and Rinaldo with his a!herents were compelled to quit the city. This event tonk place about a year after the banifhment of Cofmo.

The fubfequent conduct of this great man (for great all allow him to have been) has been painted in diffe. rent colours by different writers. Mr Noble, after Machiavel, compares his cruelties to his fallen foes with thofe of Sylla and Oetavius to the partizans of Marius and Brutus; whilf Rofone reprefents his conduct as in a high degree amiable and generous. It appears to us evident. from his own words, that he had exercifed fome cruelties on his exiled enemies; for when one of them wrote to him, that "the hen was hatching," he replied, "She will have but a bac time of it, fo far from her neft." When fome other exiles acçuainted him that "they were not affeep," he anfwered, "he conld eafily believe that, for he thought he had fpoiled their fleeping." At another time, fome of the citizens remonftrated with him upon the odioufnefs of his conduct in banifhing fo many perfons; telling him, "the republic would be extremely weakened, and fod offended, by the expulfion of fo many good and pious men as he was fending into banifhment." His anfwer was, "It would be better for the republic to be weakened than utterly ruined; that two or three yards of fine cloth matle many a one look like a good man ; but that flates were not to be governed or maintained by counting a ftring of beads, and mumbling over a few Pater nofers."
Supfl. Vol. 1I. Part I.

From this time the life of Cofmo de Medici was an almoft uninterrupted feries of profoerity. His misfur. tunes had tanght lim, that the affectation of grandeur is more dangerous in a free fate than ufurpation. He adopted, cherefore, the drefs, behaviour, and manners, of a private citizen. His clothes were of the fame fafhion and materials as the reft of the Florentines. In the ftreets he walked alone and unguarded. His table was fupplied from what his eftate of Mugello produced. nor had he one fervant more than was abfolutely neceffary; thus endeavouring to unite the character of a prince with that of a merchant, and a private perfon in a republic.

Whillt he rejected all offices in the magiffracy, no bufinefs was tranfacted without its being firlt fettled at Mugello: nor did he contraft any alliances but with the fons and daughters of the citizens of Floreace ; yet all foreign princes and courts paid his children the refpect due only to thofe of fovercigni; ; and the family of Cofmo received educations equal to thofe of the greateft potentates

A proper judgment may be formed of hi: immenfe traffic, and the prodigious advantages accruing from it: Forthough a private citizen of Florence only, yet he pof. feffed at one time more money than what was in all the trcafuries of the different fovereigns in Europe. When Alfonfo king of Naples leagued with the Venctians againft Florence, Cofmo called in fuch immenfe debto from thofe places, as deprived them of refources for carrying on the war. During the conteit between the houfes of York and Lancafter, he furnifhed Edward IV. with a fum of money fo great, that it might almoof be confidered as the means of fupporting cliat monarch on the throne.

In his public and private charities, in the number and grandeur of the edifices he erected, not only in Florence, but in the moft diftant parts of the world, and in the foundations which he endowed, he feemed to more than vie with majetly. He fupplicd moft of the exigencies of the ftate from his private purfe; and there were few citizens that had not experienced his liberality, and many without the leaft application, particularly the nobles.

But in nothing did his munificence produce fo much good to the world, or acquire fuch lynour to himfelf, as when it was exerted for the promotion of fcieace, and the encouragement of learned men ; and upon nothing did Cofmo delight fo much to exert it. The ftudy of the Greek language had been introduced into Italy towards the latter part of the preceding century; but it had again fallen into neglect. After a fhort interval, an attempt was made to revive it, by the intervention of Emanuel Chryfoloras, a noble Creek, who taught that language at Florence, and other cities of Italy, about the beginning of the r th century. His difciples, who were numerous and refpectable, kept the flame alive till it received new aid from other learned Greeks. who were driven from Conftantinople by the dread of the Turks, or by the total overthrow of the Eaftern Empire. To thefe illuflrious foreigners, as well as to the learned Italians, who fhortly becamc their fuccefsful rivals, even in the knowledge of their national hiftory and language, Cofmo afforded the moft liberal fupport and protection. The very titles of the works of ancient authors, which were brought to light by his muA a nificence,

Medici. nificence, would extend this article beyond its proper lirits. Such, indeed, was the eftimation in which thefe work9 were then held in Italy, that a manufcript of the liitory of Livy, fent by Cofmo de Medici to Alfonfo king of Naples, with whom he was at variance, conciliated the breach between them.
As the natural difpofition of Cofmo led him to take an active part in collecting the remains of the ancient Greek and Roman writers, fo he was enabled by his wealth, and by his extenfive mercantile intercourfe with different parts of Europe and of Afia, to gratify a paffion of this kind beyond any other individual. 'To this end he taid injunctions on all his friends and correfpondents, as well as on the miffionaries and preachers who travelled into the remoteft countries, to fearch for and pro. cure ancient manufcripts, in every language, and on every fuhject. The fituation of the Eaftern Empire, then falling into ruins, afforded him an opportunity of obtaining many ineflimable works in the Hebrew, Greek, Chaldaic, A rabic, and other eaftern languages. From thefe beginnings arofe the celebrated library of the Medici ; which, after various vicififtudes of fortunc, and frequent and confiderable additions, has been preferved to the prefent times under the name of the Billiotheca ITediceo Laurentiana.

Nor was Cofino a mere collector of bnoks, he was thimfelf, even in old age, a laborious fludent. Having been fluck with the fublime fpeculations of Plato, which he had heard detailed in lectures by a Greck monk, who had come from Conltantinople to the council of Florence, he determined to found an academy for the cultivation of that philofophy. For this purpofe he felected Marilio Ficino, the fon of his favourite phyfician, and deitined him, thongh very young, to be the fupport of his future eflablifhment. The education of Ficino was entiely directed to the Platonic philofophy; nor were the expectations which Cofmo had formed of him difappointed. The Florentine academy was fome years afterwards eitablifhed with great credit, and was the firft inftitution in Europe for the purfuit of fcience, detached from the fcholatic method then univerfally adopted. It is true, the fanciful doctrines of Plato are as remote from the purpofes of life as the fubtleties of Arifotle ; but, by dividing the attention of the learned between them, the dogmas of the Stagyrite were deprived of that fervile refpeet which had follong been paid to them, and men learned by degrees to think for themfelves.

The fofering hand of Cofmo was held out to art as well as to fcience; and architecturc, fculpture, and painting, all flourifhed under his powerful protection. The countenance fhewn by him to thefe arts was not frich as their profeffors generally receive from the great. It was not conceded as a bounty, nor received as a favour, but appcared in the friendfhip ald equality that fublifted between the artitt and his patron; and the fums of money, which Cofino expended on pieturcs, fatues, and public buildings, appear almoft incredible.

Cofmo now approached the period of his mortal exiftence ; but the faculties of his mind remained unimpaired. About twenty days before he died, he fent for

Ficino, and enjoined him to tranflate from the Greek the treatife of Xenocrates on death. Calling into his chamber his wife and his fon Piero, he entered into a sarrative of all his public tranfactions; in which he gave a full account of his extenfive mercantile connections, and adverted to the ftate of his domeftic concerns. 'To Pieno he recommended a frict attention to the ecucation of his fons; and requelted, that his funeral might be conducted with as much privacy as poffible. ITe died on the firt of Augult 1464, at the age of 75 years, deeply lamented by a great majority of the citizens of Florence: Their efteem and gratitude had indeed been fully thewn fome time before, when, by a public decree, he was hononred with the title of Pater Patrix, an appellation which was infcribed on his tomb; and which, as it was founded, fays Rofcne, on real merit, has ever lince been attached to the name of Cofino de Medici.

Medici (Lorenzo de), jufly flyled the magnificent, was the grandfon of Cofmo, and about 16 years of age when his grandfather died. His father Piero de Medici, though poffefled of more than ordinary talencs, as well as of a very con!derable fhare of worth, was, from various circumftances, litule qualified to maintain the influence which his family had gained in the republic of Florence. From very carly life he had been tortured by the gront; and almolt uninterrupted pain had made him peevifh. Such a difpofition waz not calculated to retain the affections of the giddy Florentines, or to perfuade republicans that they were free, while they fubmitted to the government of a fingle individual. All this Cofmo had forefeen, and had done what wifdom could do to preferve to his family that afcendency in the republic which he had himfelf acquired. He exhotted Piero to beftow the utmont care on the education of his fons, of whofe capacity he expreffed a high opinion; he recommended to him Diotifalvo Neroni, a man whom he had himfelf raifed from obfcurity to an eminent rank, as a counfellor, in whofe wifdom and fidelity he might place the utmolt confidence : and to bind the inhabitants of Florence to the houfe of Medici by the ftrongelt of all ties, he had diftributed anong them, under the denomination of loans, immenfe fums, which he knew they would not foon be able to repay.

Piero paid the utmoot deference to the dying injunctions of his father. He had himfelf an ardent love of letters ; and under the cye of the venerable Cofmo, he had given his two fons, Lorenzo and Juliano, the belt poff:ble domeftic education. In the Greek language, in ethics, and in the principles of the Arittotelian phiInfophy, Lorenzo, the eldert, had the advantage of the precepts of the learned Argyropylus (A), and in thofe of the Platonic fect he was fedutoully inftructed by Marlilio Ficino (fee Ficinus, Eincycl.) ; but fur his mott valuable accomplifinments he was not indebted to any preceptor. To complete his education, however, it was judged expedient that he fhould vifit fome of the principal courts of Italy; and very foon after the death of his grandfather, he repaired to Rome, Bologna, Ferrara, Venice, and Milan, where he gained the elteem of all whofe efteem was of value.
(A) This man had fled from Contantinople, when it was taken by the Turks, to Florence, where he was protected by Cofino de Medici.

MED

Thus attentive was Piern to the advice of his father with refpect to the cducation of his eidett fon; nor was lie lefs attentive to it in the choice of his principal counfellor. He intrutted the whole of his affairs intu the hands of Neroni, and gave him Cofmo's accounts to perufe and fettle. That ambition, which perhaps had lain lurking in this men's mind, was now called forth, and he baffly formed the fcheme of ruining the fon of his patron, by building upon his misfortunes his own future grandeur. For this purpofe, he lamented the abfo. lute neceffity there was for an immediate call upon thofe who were indebted to Yiero as Cofmo's reprefentative; telling him, that a delay might fubject hin to the greateft inconveniences. Piero confented, though with reluctance, to his fuppofed friend's advice. The refult was fuch as Neroni expected. Thofe who were friends of the father became enemies of the fon; and had not Piero difcovered the fuare, and defifted from fuch rigorous proceedings, he might have found, when too late, that in fupporting the character of the merchant, he had forgotten that of the ftatefman; for all the citizens of Florence were his debtors.

Soon after this, an attempt was made to affaffinate Piero, by a powerful party which had always been inimical to the houfe of Medici ; but it was defeated by Lorenzo, who difplayed on that occafion a fagacity and promptitude of mind which would have done honour to the oldelt Itatefinan. Λ few of the confpirators were declared enemies to the ftate, and condemned to banifhment; but by far the greater part of them were pardoned on the fulicitation of Lorenzo, who declared, that " he only knows how to conçuer, who knows how to forgive."

In the year 1469 Piero de Medici died; and Lorenzo fucceeded to his authority as if it had been a part of his patrimony, being requefed by the principal inhabitaints of Florence, that he would take upon himfelf the adnuiniftration of the republic in the fame manner that his gra::dfather and father had done.

In the month of Decenber 1470, a league was fo. lemnly concluded between the pope, the king of Naples, the duke of Milan, and the Florentines, againlt Mahomet II. who had vowed not to lay down his arms till he had abolifhed the religion of Chritt, and extirpated all his followers. The pope, however (Paul 1I.), died on the 26 th of July 14^{271}; and Sixtus IV. fucceeding to the chair of St Peter, Lorenzo was deputed from Florence to congratulate him on his elevation. Two piore oppofite characters can hardly be conceived than thofe of sixtus and Lorenzo. The former was cruel, treacherous, and fordid; the latter was merciful, candid, and generous. Yet fuch inflances of nuutual good will took place between them on this occafion, that I.orenzo, who, under the dinection of his agents, had a bank eftablifhed at Rome, was formally invefted with the office of treafurer of the Holy See.

Pifa had been under the dominion of Florence from the year 1406 , and it had acquired fome celebricy on account of its academy, which had exifted almoft two centuries. That academy, however, had fallen into de. cay; and, in the year 1472, the Plorentines refolved

I87 J M E D

to refore it to its printine fplendour. Five citizens, of whom Lorenzo de Medici was one, were appointed to fuperintend the execution of their purpofe; but Lorenzo, who was the projector of the plan, undertook the chief management of it; and, in addition to 6000 florins annually granted by the fate, expended, in ef. fecting his purpofe, a large fum of money from his private fortune. In doing this, he only imitated the example of liis father and grandfather; for in the courfe of 37 years, reckoning from the return of Cofmo from banifhment, this illutrious family had expended on works of charity or public utility upwards of 660,000 florins. "Some perfons (faid Lorenzo) would perhaps he better pleafed to have a part of it in their purle; but I conceive that it has been of great advantagre to the public, and well laid out, and ain therefore pertectly fatisfied."

In the year 1474, Lorenzo incurred the difpleafure of the pope for oppofing fome of his encroachments on the petty princes of Italy ; and the revenge planned by Sixtus was of fuch a nature as would have difgraced, we do not fay a Chriffian biflop, but the endeft iavage. He began by depriving Lorenzo of the office of triafirrer of the Roman See, which he gave to the Pazzi, a Florentine family, who, as well as the Medici, had a public bank at Rome. By this ftep he fecured the interelt of the Pazzi, who, it is probable, were to govern Florence under the pope, when Lorenzo and Jubliano de Medici fhould be cut off, and their friends and adherents driven from the republic. The principal agent engaged in the undertaking was Franfefeo Salviati archbilhop of Pila, to which rank he had lately been promoted hy Sistus, in oppolition to the wifhes of the Medici. The other confpirators were Giacopo Salviati, brother to the archbihhop ; Giacopo Poggio, one of the fons of the celebrated Poggio Bracciolni (fee Poggrus, Encycl.) ; Barnardo Bandini, a daring libertine, rendered delpelate by the confequence of his exceffes; Giovanni Battilti Monteficco, who thad diftinguifhed himfelf as general of the pope's arnies ; Antonio Maffei, a prictt of Volterra; and Stephano de Bagnona, ore of the apoftolic feribes; with feveral others of inferior note. 'The cardinal Riario, then at Pifd, was likcovife. an inftrument in the confpiacy; but hee can hardly be confidered as an agent, for he was kept ignorant of what was going on, and enjoined ouly to obey whatever directions he inight receive from the archbintop of lifa.

The affaffination of the illuftrious youths was fixed for Sunday, A priil 26.147^{8}; the place the cathedral of Florence, at the moment the hoft was to be elevated; and their murder was to be the fignal for feizing and expelling from the walls of the city all their relations and friends. What a tranfaction this for one who prefumed to fyle himfelf the vicar of Chritt, the common tather of Chriftendom, to patronize!

The fatal day arrived, and Lorenzo was already in the church; but Juliano remaincd at home, occafioned by a flight indifpotition. The confpirators, determining not to lofe one of cheir victims, went to invite, to intreat him, to go. They embraced (E), and led him, by a tender violence, to the cathedral. The, figual was A a 2
given
(B) The affefins embraced Juliano, to difcover whether he wore any fecret armour, that they might know where to frike with the fureft aim.

Medici. given by the elevation of the confecrated wafer; and whillt the people fell upon their knees to adore, the affafins rofe, and, as was concerted, two of them, Francifco Pazzi and Barnardo Bandini, fell upon Juliano. The latter directed his poignard fo truly, that it entered into the bofom of the unoffending youth, and he fell mortally wounded at his feet.

In a moment, as muft be fuppofed, all was confufion. Lorenzo, alarmed, put himfelf in a pofture of defence, when, in an inftant, Antonio of Volterra, and Stephano a prieft, the dependant of the archbifhop, who, upon Giovanni liatifti's declining the infamous tafk, undertook his deffruction, rufhed upon him as their deflined prey. The conteft continued fome time. Lorenzo had received a wound in his neck, and feemed to contend for his life in vain; but a fervant, whom he liad lately relieved from prifon, infpired by gratitude, heroically threw himfelf between his beloved lord and his affaffins, receiving in his body thofe weapons that were aimed at the breaft of Lorenzo. This fidelity faved him; for by one vigorous effort he broke from Antonio and Ste. phano, and with a few friends rufhed into the facrity, fhutting the doors behind them, which were of brafs. Apprehenfions being entertained, that the weapon which had wounded hin was poifoned, a young man fucked the wound, endangering liie own life to fave that of Lorenzo.

The rage of the people to fee one of their favourites expiring, and the other covered with blood, was inex. preffible. The cardinal Riario found it difficult to fave his life at that altar which he had fteined by fo horrid a deed, and to which he then fled for protection.

Whilt this infanous fcene was acting in the cathedral, others of the confpirators were attempting to feize the Palazzo ; but with no better ficceefs. The archbifhop Salviatti, who had undertaken to head them, gave the magiftrates fufpicion by thofe violent emotions which agitated his whole frame. The nine fenators who compofed the magiftracy, inclucing the gonfalenier, who had been appointed by, and were, in other words, the privy council of the Medici, immediately attacked thofe who intended to have furprifed them; and Salviatti and his followers had no fooner gained the fecond floor, than they found themfelves prifoners.

Jacobo Fazzi foon appeared in the itreet, proclaim. ing, with exultation, the murder of Juliano ; and inviting the Florentines to free themfelves from the Medicean flavery; but perceiving that he was not joined by the people, the magiftrates fent off ico horfe to the refeue of Lorenzo. Ihis was the more to be commended, becaufe they continued to be affaulted by the confpirators, who, finding their fituation defperate, forced themfelves to the ground floor, determining, if poffible, to feize the Palazzo. The magiftrates, with their attendants, aeted with fuch refolution and valour, that as often as they grained an entrance, they drove them back, killing fome of the affailants upon the fpot, others they threw out of the windows upon the pavement; and to Itrike an awe iuto thofe that were without, they had the bold nefs and virtue to hang the archbifhop from one of the windows, dieflied as he was in his pontifical robes, with Poggio, another of the chief confpirators. Flonence refounded in every part with the exclamation-Medici, Medici! down with their enemies!

Lorenzo was liberated fiom that part of the cathe-
dral to which he had fled, and conveyed home in tri- Median umph, where his wounds were attended to, and where he found himfelf furrounded by his moft valuable friends, to whom he was endeared by the fhocking occurrences of the day. His partizans, however, did not fpend their time only in lamentations for the death of one of the brothers, and exultations for the prefervation of the other; they united in purfuing the confpirators, fparing none that fell into their hands. Jacobo Pazzi was taken flying with his forces into Romania, and immediately hurg. An officer of the pope's, who command. ed a brigade under count Hirronimo, had alone the fa. veur of decapitation. Bandini fled privately to Pifa, thence to Naples, and, laftly, to Conftantinople; but Mahomet, to oblige Lorenzo, feized, and fent him back; and he was hung out of the fame window from which the archbifhop liad fuffered. An embally was fent from Florence to thank the fultan in the name of the republic.
Throughout the whole of this juft but dreadful retribution, Lorenzo had exerted all his influence tos reArain the indignation of the populace. He entreated that they would refign to the inagiftrates the tafk of afcertaining and of punifhing the guilty, left the innocent fhould be incautioufly involved in deftruction; and his appearance and admonitions had an inftantaneons efflei. By his moderation, and even kindnefs to the relatives of the confpirators, he fought to obliterate the remembrance of paft difturbances; and by his interference, even the furvivors of the Pazzi were reftored to their honours, of which they had been deprived by a decree of the ftate.

The generofity and moderation of Lorenzo had no effeet on the temper of Sixtus, who folemnly excomnunicated him, the gonfalonier, the magiftrates, and their immediate fucceffors; and in the bull which he iffued on this occafion, he ftyles Lorenzo de Medici "the child of iniquity, and the nurfling of perdition !" Not content with this ebullition of refentment, he fufpended the bifhops and clergy of the Florentine territories from the exercife of their firitual functions; thus laying the whole republic under an interdict. This had been a formidable weapon in the hands of his predeceflors, who. had, by means of it, overawed the moft powerful monarchs ; but the general character of Sixtus was fo infamous, and his prefent injultice fo inanifeft, that by the exertions of the bilhop of Arezzo, a convocation was held in the cathedral church of Florence, in which Sixtus was accufed of fornication and adultery, with other infamous vices; declared to be the principal initigator of the confpiracy againtt the Medici; and the fentence of excommunication which he had fulninated againitLorenzo and the Florentine magitrates was called is dircet terms, the "execrable malediction of a damned judge (maledizam mulediztionem damnatijimi judicis) !

How fuch language could be reconciled to the notions which then prevailed of the fanctity of the pope, and the plenitude of his power it is neculefs to inquire; but the reader will not be furprifed that the prelates, who made ufe of it, paid no regard to the interdict of Sixtus. The pontiff, however, did not relax from his purpofe. Whilit he brandifhed with one hand the fpiritual weapon, which the Florentines treated with fuch contempt, in the other, he grafped a temporal fword, which he now openiy, as he had before fecretly, aimed at the brealt of Lorenzo. At his inftigation the king of Naples difpatched
difpatched an envoy to Florence, to require the citizens to banifh Lorenzo from the Tufcan territories, if they would not incur the vengeance both of him and of the pope. Thefe threats produced not the intended effect; for the Florentines avowed their firm refolution to fuf fer every extremity, rather than betray the man whom they confidered as guardian of the republic. War thercfore was commenced; and the republic was on the point of being ruined, when Iorenzo taking advantage of a thuce, threw himfelf, with a refolution not to be equalted, into the hands of the king of Naples. He judged, perhaps, that any flipulations for his perfo:al fafety would be ufelefs with a prince who had fported with honour, juftice, mercy, and the moft folemn treaties. But, whilf all viewed him as a victim who had devoted himfelf to fave his country, he, by perfuafive eloque:ce, obtained of this crafty perfidious monarch a feparate peace, and returned to Florence crowned with a finceefs that no one thought poffible, and where he was received as its titelar deity. The pope, however, continued inflexible, till a defcent of the Turks upon Italy reftored him to his fenfes, and made him willing to receive the fubmiffion of Florence, and reconcile its inlabitants to the church.

Soon after the termination of the hoftilities between Sixtus and the republic of Florence, Lorenzo began to unfold plans for fecuring the peace of Italy, which confer the ligheft honour on his political life. To counterpoife all the jarring interefts of the petty flates of which that country was compofed, to reftrain the powerful, fuccour the weak, and to unite the whole in one firm body which might be able, on the one hand, fuccefffully to oppofe the formidable power of the Turks, and, on the other, to repel the incurtions of the French and Germans, were the important ends which this great man propofed to aecomplifh. But before he engared in thefe monentous undertakings, he had further perional dangers to encounter. By the infligation of Cardinal Riario, and fome Florentine exiles, one Battifta Frafcobaldi, with only two affiftants, undertook to affaffinate him in the church of the Carmeli, on the ferival of the afcenfori 1481 ; but the plot was difcovered, the confpirators executed, and Lorenzo henceforth feldom went abroad without being furrounded by a number of tried friends.

Lorerzo was now at liberty to profecute his benevolent purpofes; and after contributing to the expulfion of the 'I'urks from Italy, he fet himfif in good tarneft to fupport the weak fates againt the encroachments of the more powerful. This neceffarily embroiled the repiblic at one time with the pope, at another with the king of Naples; now with the Venetians, and then with the Duke of Milan: but when fome exclaimed againft him as being too precipitate in involving the republic in clangerous and expenfive wars, he explained to them the neceflity of maintaining the balunce of power, if they would preferve the independence of their own ftare; and fo completely had he made himfelf malter of this fubject, that he convinced the mof incredulous of the propiity of his meafurts, which, in 1488 , introduced general tranquillity into Italy.

At this period, the city of Florence was at its higheft degree of profperity. The vigilance of Lorenzo had fecured it from all apprehenfions of external attack; and his acknowledged difintereflednefs and moderation had
$189] \quad \mathrm{M}$ E
almoft extinguifed that fpirit of internal diffenfion for which it had been folong remarkable. The Fiorentines gloried in their illuftrious citizen, and were gratified by numbering in their body a man who wielded in his hands the fate of nations, and attracted the refpect and admiration of all Europe.
Yet amidlt public affairs fo intricate and fo momentous, fuch was the capacity of this man's mind, and fuch his verfatility of genius, that, for the greater part of his life, he carried on a commerce as extenfive as that of his grandfather, whillt he afforded ftill greater encouragement to learning and learned men. Cufino had greatly promoted the itudy of the ancient languages and ancient philofor,hy. Lorenzo did the fame thing: but he did much more; he encouraged the cultivation of his own tongue, which had been neglected fince the age of Petrarca; and by fetting a great example humfelf, he produced a race of 1 talizn poets, which have hardly been furpaffed in any age or nation. To enumerate even the names of the elegant fcholars whom he patronifed, would extend this article far beyond its limits. In the academy of Pifa, of which mention has been al. ready made, the fludies were cliefly corfined to the Latin language, and to thofe fciences of which it was the principal vehicle. At Florence the Greek tongue was taught under the fanction of a public inflitution, either by native Grecks or learned Italians, whole fervices were procured by the diligence of Lorenzo de Medici, and repaid by his bounty. He placed Michacl Angelo at the head of an academy, which he creteed for painting and fculpture, furnifhing it with the beft modets of antiquity. He built and cudowed a public library, and fent Lafcaris, of imperial defeent; to Conftantinuple mote than once, to procure Greek manıferipts. For father Moriano, the orator, a monaltery was built; and Florence owed many of her fineft edifices to him. Politiano and Ficino were among his mof intimate friends; and it is not perhaps too much to fay, that he did more for letters and ference and art than any other individual that ever exifted. His own acquirements in learning were great; and his poetry, of which the reader will tand many fpecimens in the clegant work of Rofcoe, was exquilite.

Is it furprifing, when we examine Lorenzo's charac: ter, that all Italy, all Chriftendom, even the Mahometans, gave him the mott flattering marks of approbation, and ftrove who fhould oblige hiin moft, by prefenting him with whatever was rare and valuable? His. palace was conftantly tilled with men famous in every elegant, every ufeful fcience, and the neighbouring princes flocked to it as to the temple of widdom. The celebrated prince of Mirandola, on his accuunit, chofe Florence for his relidence, and died there.

To a molt engaging perfon was added each grace, and every accomplifhment. He was the favourite of the ladies, the envy of the men. and the admiration of both. Ihe Itatefman of his time; unrivalled in chivalry ; one of the moft eminent orators that the world has produced. His poetic merit, with his judgment in, and patronage of that art, procured him the title of "Father of the Mufes." In liberality to his fellowcitizens, as well as in every other efefpet, except as a general, he exceeded even Cxelar himifelf; and had not peace been his dear delight, his talents would have made him a confummate commander. Yet with all thefe fu-
perio:

Ftion accumplifhments, he did not think it Leneath him to indul e in amufements vilich perforis, lefs wife, would have thought an inifeachment of their underfanding, and lie would often feek pleafure in his nurfery, fpending hours there in all the frivolous pranks of chitdifn diverfon. In fine, "the gravity of his life, if compared with its levity, nuft nake him appear as a compolition of two different perfons, incompatible, and, as it were, imporible to be joined with the other."

Lorenzo, like moit other great men, had wifhed to fpend his lafl years in the tranquillity of retirement. Ile therefore at an early period wonnd up his mercantile concerns, and divided his time between the cares of the republic at Florence, and the cultivation of his eflates in the country. He wifhed even to diveft himfelf of all public concerns, and get his fecond fon Giovanni admitted into loly orders at the age of feven years, that he might be fit for ecclefiaftical preferment before he fhould be deprived of the protection of his father. The young ecclefiaftic, who afterwards made fuch a figure as. Leo X. was accordingly appointed by Louis XI. of France, abbot of Fonte Dolac, before he was eight years of age ; and by Innocent VIII. a cardinal, when he was little more than thirteen. This added much to the infuence of the family, not orly in the Tufcan ftates, but through all Italy ; and Lorenzo having intrucueed his eldeft fon into public life, and accomplifhed a marriage between him and the daughter of a nuble family at Rome, thought he might cominit the affairs of the republic in a great nieafure to Piero, and indulge his own tafle in the converfation of his learned friends. This dream of felicity however was not realized. Early in the year 1492, he was attacked by a difeafe, under which he liad long laboured, with fuch violence, that on the Sth of A pril he died in the midit of his weeping friends, after having taken of them, one by one, an aflechionate farewel, and given to his for Piero much falutary counfel, which he thought not fit to follow.

The character of this great and good man is developed in the detail which we have given of his conduct through life: But it may not be improper to add, that fuch was the love and veneration of the citizens to him, that the phyfician, who liad attended him on his deathhed, afraid to return to Florence, left the houle in a ftate of diftraction, and plunged himfelf into a well. Throughout the reit of Italy the death of Lorenzo was regarded as a public calanity of the mof alarming kind. Of the arch which fupported the political fabric of that country he had long been contidered as the centre, and his lofs feemed to threaten the whole with immediate deftruction. When Ferdinand king of Naples was informed of the event, he exclained, " This man has lived long enough for his own glory, but too Shurt a time for Italy."

MEDICINA forensts, is a phrafe ufed in Germa: y to denote thofe parts of anatomical and phyfiological knowledge, which cnab'e phyficians and furgeons to decice ceitain caufes as jurdges in courts of jultice. In that commiry it has long been law and criftom (if we mittake not, by the Caraline coce of Charles V.) to refer cafes of prijging, hild muster, repe, pregnoncy, impotency, ideotijiin, \&c. 10 the inctical fuculty, which, in the univer fities and fome other great towns, is conftituted into a kind of court for the trial of firch cuse! ions. In this country there are no fuch coutts; but in criminal
trials medical gentlemen are often called upon to defcribe Mediins the fymptoms of poifoning, cbild murier, rape, \&c. and therefore it becomes them to obtain an accurate knowledge of thefe fymptoms, and to fore thcir memories vith a number of minute facts, to which they may lave occafon to appeal when griving their cvidence.

The importance of this fubject induced the profefor of the inflitutes of phyfic in the univerlity of Dinburgh to refolve lately to read an annual courfe of lecture on Medical Jurisprudence. 'This, we doubt not, wail prove a valuable courfe; for though it is hardly conce:vable that, under the head medical jurijpriadence, any Anozuledge can be communicated which a well educated phyfician would not receffarily have acqinired, without attending fuch a courfe; yet it is very obvious, that the recollection of the young pliyfician may receive great aid from his liftening to the well arranged lectures of an accurate profeffor. From thefe lectures he may ftore his mind with a collection of aphorifms which fiall be always ready on the day of examination; or the lectures themfelves may be delivered in cquettions and anfwers with all the formalities of a criminal court.

We have heard it obferved, that to attend a courfe of fuch lecures would be of the utmoft advantage to all who may be called upon to ferve as jurymen in criminal trials; but of the truth of this obfervation we are more than doubtful. Perfons who are ouly balf inftructed are always conceited of their own attaimments; and men not acquainted with anatomy and pliyfology cannot be more than half inftructed by the ableft courfe porfible to be given of medical jurifprudence. Such perfons in. deed can hardly avoid mittaking the fenfe of the profeffor's language, however perfpicuous that language may be. Of this we had lately a very ftriking inftance. A gentleman, by no means illiterate, though a itranger to anatomical and phyfiological fcience, was expatiating to the writer of this article upon the general importance of medical jurifprudence, a courle of which, he faid, he had attended for the fole purpofe of qualifying himfelf for difcharging the important duties of a juryman. Upon being aiked what he had learned? he replied, that he had been taught, among other things which we thought frivolous, to difcern, from the fymptoms of langing, whether the dead man had been hanged by limpelf or by another. We need not furely ubferve, that no fuch leffon was ever taught in any univerfity, or by any medical lecturer; but it is worthy of confideration, whether lectures on medical juifprudence may not have the moll pernicions (ffeets on the minds of men fo little qualifed as this gentleman to profit by them. To the regularly educated phyfician and furgeon fuch lectures may prove ufuful; to the plain citizen, not kitlied in anatony and phyfology, they muft prove dangernus; as their only tundency is to make him defpife the cuidence given before lim by the regular phyfician or furgeon; to place implicit confidence in his own fuperficial knowledge; and thus to decide at random on the life or death of his fellow. creature:

A little learning is a dangerous thing;

Drink deep, or tafte not the Pierian Ppring.
MEDINA, the capital of the kingdom of Woolli in Africa, is fituated in $13^{\circ} 40^{\prime} \mathrm{N}$. Lat. and $12^{\circ} 40^{\prime} \mathrm{W}$. Long. It is a place of confiderable extent, and may contain from 800 to $1: 00$ houfes. It is fortified in the cominon
ediff, common African manner, by a furrounding high wall buith of clay, and an outward fence of pointed fakes and prickly bufhes; but the walls are neglected, and the outward fence has fuffered confiderably from the active hands of bufy honfewives, who pluck up the fakes for firewood. Mr Park paffed through it on his romte eaftward, and was treated with much kinduefs both by the king and the people. The good oll foveriga warned him of the dangers he was about to encounter, and endeavoured to perfuade him to relinquifh all thoughts of his journey eaftward; but when he conld not prevail, he gave him a guide, who condueted him in fafety to Koojar, the frontier town of the kingdom towards Bondou, from which it is feparated by an intervening wildernefs of two days jounney. Here our author was prefented, by way of refrefhmert, with a liguos which tafted fo much like the ftrong beer of his native country (and very. good beer too), as to induce lim to inquire into its compofition; and he learned, with fome degree of furprife, that it was actually made from corn which had been previonfly malted, much in the fame manner as barley is malted in Great Britain : a root yielding a grateful bitter was ufed in lieu of hops, the name of which he forgot; but the corn which yields the wort is the bolcus jpicatus of botanits.
MEDUSA. In addition to the different fpecies of this genus of vermes deferibed in the Encyclopadia, that which is reprefented in two different attitudes, fig. I and 2. and which ftrongly refembles a bagpipe in thape, may be worthy of notice. It is merely a white tran parent veficle, furnifhed with feveral blue tentacles yellowilh at their extremity; its long tail, which is alfo blue, appears to be compofed of a number of fmall glandulous grains, flattened and united together by a gelatinons membrane. The upper part of the veficle exhibits a kind of feam with alternate punctures of three different fizes ; its elongated part, which may be confidered as the head of the animal, is terminated by a fingle trunk, the exterior edge of which is fringed with 25 or 26 tentacles, much fmaller than thofe which originate from the infertion of its long tail, and the number of which fometimes amounts to 3 . By means of thefe latt, the diameter of which it is capable of increaling at pleafure by forcing in a little of the air from its body; it fixed iifelf to the fide of the veffel, in which it was placed, in fuch a manner as that the extremity of fome of its tentacles occupied a furface of two or three lines from its body. The molt moveable part of the veficle is its elongation, or the head of the ani mal, as it is by means of this that it performs its different motions. The rounded fubftance, marked by the letter P , is fituated in the centre of the larger tentacles, which are firmly fixed to the body of the animal near its tail; and is only an affemblage of a few minute gela. tinous globules, from the middle of which arife other larger globules, with a finall peduncle, about the middle of which is fixed a curved bluifh coloured borly, which is reprefented magnified in two politions at R. Martiniere, the naturali?, who accompanied Peroufe in his voyage round the world, met with this animal in about the zoth degree of lat. and 179° of long, ealt from Faris.

MEGAMETER, a name fometimes given to the Micrometer, which fee, Encycl.

MEHALL, in the language of Bengal, a place or diltrict.
MENINSTKI (Francifas), a moft celebrated German orientalift, was born in Lorraine, then fubject to the emperor, in the year 1523 ; and $f r$ copioufnefs of learning, elegance of genins, and profound knowledge of langnages, particularly thofe of the Eatt, proved undoubtedly one of the priscipal ornaments of the age in which he lived. He ftudicd at Rome under Giattino. When he was about 30 , his luve of letters induced him to accompany the Polifh ambafrador to Conflantinople, where he ftudied the Turkih language under Bobovius and Ahmed, two very fiiful teachers. So fuccefoful was he in this ftudy, that when he had been there only two years, the place of firft interpreter to the Polifh embafly at the Porte was promifed to him. When the place became vacant, he was accordingly appointed to it, and obtained fo much credit by his condust, that, after a time, he was fent for into Poland, and again fent out with full powers as ambaffador to the Porte. For his able execution of this office, he was further honoured, by being naturalized in Poland; on which occafion he added the Polifh termination of /ki to his family name, which was Menin. Being defirous afterwards to extend his Sphere of action, he went to the court of the emperor as interpreter of oriental languages in 166 r . Here aifo, as in other inftances, his talents and behaviour obtained the higheft approbation; on which account he was not only fent as interpreter to feveral imperial ambaffadors at the Porte, but was intrufted in many important and confidential fervices; and, in 1660 , having paid a vifit to the holy fepulchre at Jerufalem, was made one of the knights of that order. After his return to Vienna he was advanced to further honours; being made one of the counfellors of war to the emperor, and firlt interpreter of oriental languages. At Vi enna he died at the age of 75 , in the year 1698 . His great work, 1. The "Thefaurus linguarum orientalium," was publifhed at Vienna in 1680 , in 4 vols folio ; to which was added, in 1687 , another volume, intitled, " Complementum Thefauri linguarum orientalium, feu onomafticum Latino. 'Turcico-Arabico. Perficum." The former volumes having become extremely fcarce, partly on account of the deffruction of a great part of the impreffion, in the fiege of Vienna by the Turks in 1683 , a defign was formed fome time ago in England of reprinting the work: by a fociety of learned men, arong whom was Sir Williain Jones. But as this undertaking, probably on account of the valt expence which muft have been incurred, did not procecd, the emprefs queen Maria Therefa, who had heard of the plan, took it upon herfelf, and with vat liberality furnifhed every thing neceffary for its completion. In confeguence of this, it was begun to be fplendidly republifhed at Vienna in 1780, with this title: "Francifci a Mefgnien Menin』ki Lexicon Arabico-Perfico-Turcicum, adjecta ad fingulaz voces et Phrafes interpretatione Latina, ad ufitatiores; etiam Italicâ." Of this edition only two vols fulio are yet publifhed, extending no farther than zal, the ninth letter of the Arabic alphabet, which is about a third of the whole. The delay of the reit is much to be lamented. In this edition, fay the editors, the Lexicon. of Menin nki may be faid to be increafed, diminifhed, and amended. Increafed, becaufe many Arabic and Perlian
worda-

Netial, Meninfki.

Menluni, wards are added, from Wankuli and Forkengi, the beft Merchetta, Arabic and Perfic lexicographers whom the Eiat has produced ; and from Herbelot are inferted the names of kingdoms, cities, aud rivere, as well as phrafes in common wfe ainong the Turks, \&c. Diminifbed, becaufe many ufelefs fynonyma are omitted, which rather purzled than affited the fludent; as well as all the French, Polifh, and German interpretations, the Latin being confidered as fufficient for all men of learning. Amended, with refpect to inumeriable typographical errors; which, however, from a work of this nature, no care can verhaps altogether exclude. The other works of Meninfki were occafioned cliefiy by a violent contef between him and a man named J. B. Podefta, in which much acrinony was employed on both fides. Thefe it is hardly worth while to enumerate, but they may all be feen in the account of his life from which this article is taken (A). It fhould be obferved, however, that in 1674, Podefta publifhed a book, intitled, "Prodro. mus novi liaguarum crientalium collegii, juffin Aug. \&c. erigendi, in Univ. Viennenf ;" to which Mieninkli oppofed, 2. "Meninfkii Antidotum in Prodionum novi ling. orient. collegii, \&c." 4to. Put fuch was the credit of his antagrouift in the univerlity, that foon after there came cut a decree in the name of the rector and conliftory, in which that antidote of Meninfri's is proferibed and prohibited, for fix fpecific reafons, as impinus and infamous. Meninfki was defended againft this formidable attack by a friend, in a fmall tract, intitled, "Veritas defenfa, feu jullitia eaufo Dn. F. de M. M. [Meninfici] contra infame decretum Univerfitatis Vínnenfis, Anto 1674, 23 Novembris, \&c. ab Amico luci expofita, Amso 1675," in which this friend expores, article by article, the falfchood of the decree, and exclaims Atrongly againft the arts of Podefta. This tract is in the Britifh Mufeum. Podefta was oriental fecretary to the emperor, and profeffor of thofe languages at Vienua; but is defcribed in a very fatirical man. ner by the defender of Meninfki. "Podefta, natura Semi Italus, ftatura nanus, cxcutiens, balbus, imo bardus repertus, aliifque vitiis ac fultitiis plenus, adeoque ad difcendas linguas orientales inhabilis." A lit of the works of Podefta is, however, given by the late editors of Meninfki.

MERCHETTA, or Marchetta Mulierum, is commonly fuppofed to have been a right which, during the prevalence of the feudal fyftem, the lord had of pafing the firt night after marriage with his female villain. This opinion has been held by the greater part of our antiquatians; and we have adopted it in our hiftory of Sontland publifhed in the Encycitopedia. It appears, however, to be a miftake. That there was a cuftom called mercbetta mulierum, which prevailed not only in England, Scotland, Wales, and the ifle of Guernfey, but alfo on the continent, is indeed a fact uriqueftion-
Gerchienologia, able; but Mr Alle has clearly proved, that, initead of
vol. xii. being an adulterous connection, the merchocta was a compact between the lord and his vaffal for the redemp. tion of an offince committed by that vaffal's unmarried daughter. He admits, however, that it denoted likewife a fine paid by a fokeman or a villain to his lurd,
for a licence to marny his daughte- to a free man ; and thar if the vaflal gave her away without obtaining fuch a licence, he was liable to pay a heavier fine. He quotes two authorities in fupport of his opinion from Bracton ; one of which we thail tranferibe, as being alone complete evidence.
" Ric. Burre tenet unum mefuagium et cebet tellia. gium fectam curise, et merchet, hoc modo, quod f_{2} maritare voluerit filiam fuam cum quodam libero bomine, extra villam, faciel pacem demini pro maritagio, et fi cam maritaverit alicui cuffumario vill., nilhil debuit pro marita. sio."
" The probable reafon of the cuftom (fays Mr Afte) appears to have been this. l'erfons of low rank, refiding on an eftate, were either afcripli slebe, or were fubjected to fome fpecies of fervitude fimilar to the afcripli gleble. They were bomid to refide on the eftate, and to perform feveral fervices to the lord. As women neceffarily followed the refidence of their humbands, the confequence was, thet when a woman of low rank married a ftranger, the lord was deprived of part of his live ftork; he therefore required a fine to indemnify him for the lefs of his property." Further particulars on the merchetta are to be found in the Appendix to vol. ift of Sir David Dalrymple's Annals of Scotland.

MERIDIAN Line, an arch, or part of the meridian of the place, terminated each way by the horizon. Or, a meridian line is the interfection of the plane of the meridian of the place with the plane of the horizon, of en called a north-and-fouth line, becaufe its direction is from north to fouth.

In the article Astronomy (Encycl.), no 376 and 377, we have given two methods of drawing a meridian line; but it may be proper to add, in this place, the following improvement of the former of thefe from Dr Hutton's Mathematical Dictionary. "As it is not eafy (fays the Doctor) to determine precifely the extremity of the fhadow, it will be beft to make the file flat at the top, and to drill a fmall hole through it, noting the lucid point projected by it on the feveral concentuic circles, inftead of marking the extremity of the fhadow itfelf on thefe circles."

We fhall give another method of drawing a meridian line from the fame valuable dictionary.
" Knowing the fouth quirter pretty nearly, obferve the altitude FE of fome ftar on the eaft fide of it, and not far from the meridian $H Z Z R N$: then, keeping the quadrant firm on its axis, fo as the plummet may fhll cut the fame degree, direct it to the weftern fide of the meridian, and wait till you find the flar has the fame altitude as before, as fe. Laftly, bifect the angle EC e, formed by the interiecion of the two planes in which the quadrant has been placed at the time of the twn obfervations, by the right line HR, which will be the meridian fought."

Magnetical Miridian, is a great circle paffing thro' or by the inagnetical poles; to which meridians the magnetical needle conforms itfelf. See Magnetism, Suppl.
MESOLABE, or Meзп1.Abium, a mathematical inftrument invented by the ancients, for finding two
(A) We have taken this article from the Biographical Dictionary ; the editors of which took it from the life of Meninfki prefixed to the new edition of his great work.
fi. mean proportionals mechanically, which they could not ithm perform geometrically. It confifts of three paralleloils. gram3, moving in a groove to certain interfections. Its figure is defcribed by Eitocius, in liis Cominentary on Archimedes. See allo Pappus, lib. 3.

MESO-Logarithm, a term ufed by Nepler to fignify the logarithms of the cofines and cotangents.

MESURATA, a feaport of the kingdom of Tripoli, in Africa. A caravan proceeds from this place to Fezzan, and other interior parts toward the fouth of Africa. It is 260 miles north of Mourzook. E. lon. 15.5.N. lat 31. 3.

METALLic '「ractors. Sce Perkinism in this Suppl.

MITONIC Cycle, called alfo the Golden Number, and Iunar Cycle, or Cycle of the Moon, that which was invented by Meton the Athenian ; being a period of 19 years. See Cycle, Enycl.
MFA Rajah, the highert title of Himdons.
microcoustics, or Micruphonis, inflilments contrived to magrify fmall iounds, as microfcopes
do finall objects.
MICROCOSMIC Salt. See Chemistry.Index, Suppl.

Middie latitude, is half the fum of two given latitudes; or the arithmetical mean, or the middle between two parallels of latitude. Therefore,

If the latitudes be of the fane name, either both north or both fouth, add the one number to the other, and divide the furn by 2 ; the quotient is the middle latitude, which is of the fame nanie with the two given latitudes. But ${ }^{2}$

If the latitudes be of different names, the one north and the other fouth ; fubtract the lefs from the greater, and divide the remainder by 2 , fo fhall the quotient be the middle latitude, of the fame name with the greater of the two.
MIDSUMMER-DAY, is held on the 24 th of June, the fame day as the uativity of St John the Baptift is held.

MiLk, or Milkyet, property in Bengal.

MILLS of various kinds are defcribed in the article Mechaxics (Encycl.): and he who fhall fudy that article, togetlier with Water-Works, and Machinery, in this Supplement, will have a fufficient knowledge of the principles upon which mills muft be conftructed fo as
that they may produce their proper efficas. The firbject is introduced into this place mercly to put it into the power of our countrymen to adopt, if they fall think fit, the improvements which have been made is the machinery of flour mills in Ame ica.

The chief of thefe conlift in a new application of the fcrew, and the introduction of what are called eleyators, the idea of which was evidently borrowed from the chain pump. The fcrew is made by flicking frnall thin pieces of board, about three inches long and two wide, into a cylinder, fo as to form the foiral line. 'This ferew is placed in a horizontal pofition, and by turning on its axis it forces wheat or flour from one end of a trough to the nther. For inflance, in the trough which receives the meal immediately coming from the ftones, a fcrew of this kind is placed, by which the ineal is forced on, to the diftance of fix or eight feet, perhaps, into a refervoir; from thence, withont any mannal lahour, it is conveyed to the very top of the nill by the elevators, which confift of a number of imall buckets of the fize of tea cups, attached to a lorg band that goes round a wheel at the top, and another at the bottom of the mill. As the band revolves round the wheels, thefe buckets din into the refervoir of wheat or flour below, and take their loails up to the top, where they empty themfelves as they turn round the upper wheel. The elevators are inclofed in fquare wooden tubes, to prevent them from catching in any tling, and alfo to prevent duft. By means of thefe two fimple contrivances uo manual labour is required from the moment the wheat is taken to the mill till it is converted into flour, and ready to be packed, during the varions proceffes of fcreening, grinding, fifting, \&c.

That this is a confiderable improveinent is ubvious; and we are not without liopes that it may be adopted. The licentioufnefs of an Englifh mob has indeed perfe. cuted an Arkwright, expelled the inventor of the flyThuttle from his native country, and by fuch condici: prevented the re-erection of the Aloion mills, and the general eftablifhnentr of faw-mills through the kingdom; but their fovereignty perhaps will not be roilfed by fo eafy and fimple a contrivance as this to leffen the quan. tity of manual labour. For an account of the I Jutch oil-mill, which was fomchow omitted in its proper place in the Encyclopadia, fee OIL-Mill in this Supplanent.

MINERALOGY

I^{S} a frience, the object of which is the defcription and arrangement of inoryanic bodies or minerals; or of all the bodies which belong to our globe, excepting animal and vegetable fubftances.
Since the publication of the article Mineralogy, Encycl. fcarcely a fingle day has paffed without the difcovery of fome new mineralogical fact, or the detection of fome old and unfufpected error. Thefe improvements cannot be overlooked in the prefent Supplement. But they are fo numerous in every part of the fcicnce, that we can hardly notice them without giving a pretty complete view of the prefent thate of mineralogy. This will fcarcely occupy more room, and muft be much more ufeful as well as entertaining, than an undigefted. Suppl. Vol. II. Part I.
ninfs of annotations and remarks. We undertake this tafk the inore readily, becaufe in the article Minera. nogy in the Encyclopactia, the improvements of Mr . Werner and his difciples, to which the fcience is indebted for a great part of its prefent accuracy, have been entirely overlooked.

The object of mineralogy is twofold. 1. To defcribe every mineral with fo much accuracy and precifion, that it may be eafily diftinguithed from every other mineral; 2. Too arrange them into a fyftem in fuch a manner that every mineral may be eafily referred to its proper place, and that a perfon may be able, merely by the help of the fyitem, to difcover the name of any mineral whatever. When thefe two objects are accomplifhed, miB b
neralogy,

Deferprion neralogy, ftrictly fo called, is completed. But were we of Minerals. to forp here, the utility of the fcience, if it wonld be entitled to the name of fcience, could hardly be confidered as very great. We muft therefore apply chemiflry to difcover the ingredients of which minerals are compofed, and to detect, if poffible, the laws which thefe ingredients have obferved in their combination. Thus we fhall really extend our knowledge of inorganic na. ture, and be enabled to apply that knowledge to the improvement of almofl every art and manufacture.
3
Dive article. The Mineralogy naturally divides itfelf into three parts. The firf treats of the method of defcribing minerals; the fccond, of the method of arranging them; and the third exlibits them in a fyftem defcribed and arranged according to the rules laid down in the two firft parts. Thefe three parts thall be the finbjects of the following chapters; and we fhall finifh the article with a chapter on the chemical analy fis of minerals.

Chap. I. Of the Description of Minerals.

Nothing, at firf fight, appears eafier than to defcribe a mineral, and yet, in reality, it is attended with a great deal of difficulty. The mineralogical defcriptions of the ancients are fo loofe and inaccurate, that many of the minerals to which they allude cannot be afcertained ; and confequently their obfervations, howcver valuable in themfelves, are often, as far as refpects us, altogether loft. It it obvious, that to diftinguifh a mineral from every other, we muft either mention fome peculiar property, or a collection of properties, which exift together in no other mineral. Thefe properties muft be defcribed in terms rigidly accurate, which convey precife ideas of the very properties intended, and of no other properties. The fmalleft deviation from this would lead to confufion and uncertainty. Now it is impoffible to defcribe minerals in this manner, unlefs there be a peculiar term for each of their properties; and unlefs this term be completely underfood. Mineralogy therefore muft have a language of its own; that is to fay, it muft have a term to denote every mineralogical property, and each of thefe terms mutt be accurately defined. The language of mineralogy was invented by the celebrated Werner of Freyberg, and firt made known to the world by the publication of his treatife on the external charallers of minerals. Of this language we fhall give a view in the following general defcription of the properties of minerals (A). the texture of the mineral; $2 d$, Properties refulting from the action of other bodies on it. The firft clafs has, by Werner and his difciples, been called external properties, and by fome French writers ployfical; the fecond clafs has been called chemical.

The external properties may be arranged under the following heads:

| 1 Figure. | 8 Ductility. |
| :--- | :--- | :--- |
| 2 Surface. | 9 Fracture. |
| 3 Tranfparency. | 10 Texture. |
| 4 Colour. | 11 Structure. |
| 5 Scratch. | 12 Fragments. |
| 6 Luftre. | 13 Feel. |

14 Sound.
15 Smell.
16 「afte.
17 Cravity.
18 Magnetifm.
19 Electricity.
I. By Figure is meant the thape or form which a mineral is obferved to have. The figure of minerals is either regular, particular, or amorpbous. 1. Minerals which affume a regular figure are faid to be cryttallized *. The fides of a crytal are called faces; the $\mathrm{S}_{\mathrm{see}}^{\mathrm{Cm}}$ fharp line formed by the inclination of two faces is call. M1 ITTRY, ed an edge; and the corner, or angle, formed by the part in.s. meeting of feveral edges in one point, is called a folid angle, or fimply an angle. 'Thus a cube has fix faces, twelve edge3, and eight angles. 2. Some minerals, though not crytallized, affect a particular figure. Thefe particular figures are the following: Globular, like a glube; oval, like an oblong fpheriod; ovate, like an egg; cleefe.floped, a very flattened fphere; almondfoaped, like an almond ; centicular, like a double convex leafe, compreffed and gradually thinner towards the edges ; cuneiform, like a wedge; modulous, having depreffions and protuberances like a potatoe ; botryoidal, like grapes clofely preffed together; dentiform, longilh and tortuous, and thicker at the bottom than the top; rwireform, like a wire; capillary, like hair, finer than the preceding; retiform, threads interwoven like a net : dendritic, like a tree, having brancles iffuing from a common ftem; תorubform, branches not ariing from a common ftem ; coraloidal, branched like coral ; תalactitical, like ificles; clavated, like a club, long, and thicker at one end than another; fafcijorm, long ftraight cylin. drical bodies, united like a bundle of rods ; tubular, cylindrical and hollow. 3. When minerals have neither a regular nor particular thape, they are faid to be amorphous.
II. By surface is meant the appearance of the ex- surfue. ternal furface of minerals. The furface is either uneven, compofed of fmall unequal elevations and depreffions; fcabrous, having very fmall /sarp and rough elevations, more eafily felt than feen; drufy, covered with very minute cryftals; rough, compofed of very minute bluat elevations, cafily dittinguifrable by the feel; fouly, compofed of very minute thin fcale-like leaves; fmooth, free from all inequality or roughnefs; .pecular, having a fmooth polifhed furface like a mirror ; or fireaked, liaving elevated, Atraight, and parallel lines. This laft character is confmed to the furface of cry Itals. The freaks are either tranfverfe; longitudinal; alternate, in different directions on different faces; plumofe, running from a middle rib; or decufated, croffing each other.
III. By transparency is meant the proportion of Tranfpa light which minerals are capable of tranfmitting. They rency. are tran/parent or pellucid, when objects can be feen diftinctly through them ; diaphanous, when objects are feen
(A) The fulleft account of Werner's external characters which we have feen in the Englifh language, has been given by Dr Townfon in his Plilofophy of Mineralogy. We have availed ourfelves of this book, in order to exhibit fome of the lateft improvements of Werner and his difciples. The reader may alfo confult Werner's Treatife, publifhed at Leipfic in 1774 ; or the French tran/ation publifhed at Dijon in 1790. See alfo Roné de Lifle. Des caraters exterieur des mineraux. And Hauy Your, d'hijl. Nat. II. 56.
ternal feen through them inditinctly; fubdiapbanous, when (caters. light paffes but in fo fmall a quantity that objects cannot be feen through them (B) ; opaque, when no light is tranfmitted.

When opaque minerals become tranfparent in water, they are called bydrophanous. When objects are feen double through a tranfparent mineral, it is faid to refraa doubly.
IV. The colours of minerals may be reduced to eight claffes.

1. Whites.

Snow white. Pure white.
Reddifh white. White with a light tint of red.
Yellowifh white. White with a light tint of yellow. Silver white. Yellowifh white with a metallic luftre. Greyifh white. White with a light tint of black. Greenifh white. White with a light tint of green. Milk white. White with a light tint of blue.
Tin white. Milk white of a metallic luftre.

> 2. Greys:

Bluifh grey. Grey with a little blue.
Lead grey. Bluifh grey with a metallic luftre.
Pearl grey. Light grey with a flight mixture of vioiet blue.

Smoke grey. Dark grey with a little blue and brown.

Greenifh grey. Light grey tinged with green, Yellowifh grey. A light grey tinged with yellow.
Steel grey. A dark grey with a light tint of yellow and a metallic luftre.

Black grey. The darkeft grey with a tint of yellow. 3. Blacks.

Greyifh black. Black with a little white.
Brownifh black. Black with a tint of brown.
Black. Pure black.
Iron black. Pure black with a fmall mixture of white and a metallic luftre.

Bluifh black. Black with a tint of blue. 4. Blues.

Indigo blue. A dark blackih blue.
Pruffian blue. The pureft blue.
Azure blue. A bright blue with fearce a tint of red.

Smalt blue. A light blue.
Violet blue. A mixture of azure blue and carmine.
Lavender blue. Violet blue mixed with grey.
Sky blue. A light blue with a night tint of green. 5. Greens.

Verdigris green. A bright, green of a bluifh caft.
Seagreen. A very light green, a mixture of verdigris green and grey.

Beryl green. The preceding, but of a yellowifh caft.

Emerald green. Pure green.
Grafs green. Pure green with a tint of yellow.
Apple green. A light green formed of verdigris green and white.

Leek green. A very dark green with a caft of brown.

Blackifh green. The darkeft green, a mixture of leek green and black.

Piftachio green. Grafs green, yellow and a little External brown.

Olive green. A pale yellowifh green with a tint of brown.

Afparagus green. The lightelt green, yellowifh with a little brown and grey.

6. rellows.

Sulphur yellow. A light greenifh yellow.
Brafs yellow. The preceding, with a little lefs green and a metallic luftre.

Lemon yellow. Pure yellow.
Gold yellow. The preceding with a metallic luftre,
Honey yellow. A deep yellow with a little reddilh
brown.
Wax yellow. The preceding, but deeper.
Pyritaceous. A pale yellow with grey.
Straw yellow. A pale yellow, a nixture of fulphur yellow and reddifh grey.

Wine yellow. A pale yellow with a tint of red.
Ochre yellow. Darker than the preceding, a mixture of lemon yellow with a little brown.

Lfabella yellow. A pale brownifh yellow, a mixture of pale orange with reddifh brown.

Orange yellow. A bright reddifh yellow, formed of lemon yellow and red.

> 7. Reds.

Aurora red. A bright yellow red, a mixture of fcarlet and lemon yellow.

Hyacinth red. A high red like the preceding, but with a flade of brown.

Brick red. Lighter than the precediug; a mixture of aurora red and a little brown.

Scarlet red. A bright and high red with fcarce a tint of yellow.

Copper red. A light yellowih red with the metallic luftre.

Blood red. A deep red, a mixture of crimfon and fearlet.

Carmine red. Pure red verging towards a calt of blue.

Cochineal red. A deep red; a mixture of carmine
with a little blue and a very little grey.
Crimfon red. A deep red with a tint of blue.
Flefh red. A very pale red of the crimfon kind.
Rofe red. A pale red of the cochineal kind.
Peach bloffom red. A very pale whitilh red of the crimfon kind.

Mordoré. A dark dirty crimfon red; a mixture of crimfon and a little brown.

Brownifh red. A mixture of blood red and brown. 8. Browens.

Reddifh brown. A deep brown inclining to red.
Clove brown. A deep brown with a tint of carmine.
Yellowifh brown. A light brown verging towards ochre yellow.
Umber brown. A light brown, a mixture of yellowifh brown and grey.

Hair brown. Intermediate between yellow brown and clove brown with a tint of grey.

Tombac brown. A light yellowifh brown, of a metallic luftre, formed of gold yellow and reddifh brown.
(B) After Mr Kirwan, we have denoted thefe three degrees of tranfparency by the figures 4, 3, 2. When a mineral is fubdiaphanous only at the edges, that is denoted by the figure 1. Opacity is fometimes denoted by 0 .

External Character:

Liver brown. A dark brown; blackifh brown with a tint of green.

Blackifh brown. The darkeft brown.
Colours, in refpect of intenfity, are either dark, llecp, ligbt, or pale. When a colour cannot be referred to any of the preceding, but is a mixture of $t w o$, this is exprefled, ly faying, that the prevailing one verges towards the other, if it has only a fmall tint of it ; palfes into it, if it has a greater.
V. By the SCRATCH or STREAK, is meant the mark left when a mineral is Icratched by any hard body, as the point of a knife. It is cither fimilar, of the fame colour with the mineral ; or dijlimilar, of a different colour.
VI. Lustre, is the glofs or brightnefs which, appears on the external furface of a mineral, or on its intern:l furface when freft broken. The firt is called external, the fecoed internal luftre. Iuftre is either common, that which moft minerals poffers; filky, like that of filk or mother of pearl; ruaxy, like that of wax; greafy, like that of greafe; or metallic, like that of metals.

As to the degree, the greateft is called /plendent, the next 乃ining, the third dullijb; and when only a few fcattered particles fhine, the luftre is called ciull (c).
VII. We have ufed figures to denote the comparative hardeess of bodies; for an explanation of which, we refer to the anticle Cammistry, Vol. I. p. 224. of this Supplement.
ViII. With refpect to nuctility and brittleNess, minerals are cither mallcable; fectile, capable of being cut without breaking, but not malleable; ficxile, capable of being bent, and when bent retaining their Shape; or elafic, capable of being bent, but recovering their former hape. Minerals deftitute of there properties are lrithle. Brittle mincrals, with refpect to the eafe with which they may be broken, are either very tough, tousth, fragile, or very fragil.
IX. By eracture is meant the frefh furface which a mineral difplays when troken. It is either flat, without any general clevation or depreflion; or concloidal, having wide extended roundifh hollows and gentle rifings. Wher the fe are not very evident, the fracture is called, fat concheidal; when they are fimall, it is called finall conchoidal; and when of great extent, great. conchoidal.

The fracture may alfo be even, free from all afperities; uneven, having many fmall, fharp, abrupt, irregular elevations and inequalities; and from the fize of thefe, this fracture is denominated courfe, fmall, or fine; Jiplintery, having fmall, thin, half detached, fharp edged fplinters, aceording to the fize of which this fracture is donomimated coarje or fine; or rugged, having many very minute fharp hooks, more fenible to the hand than the
X. By TEXTURE is meant the internal fructure or difpofition of the matter of which a mineral is compofed, which may be difcovered by breaking it. The texture is either con:par, without any diftinguifhable parts, or the appcarance of being compofed of fmaller parts; earthy, compofed of very minute alingf imperceptible rough parts; granular, compofed of fmall fhapelefs graius;
globulif orm, compofed of imall fpherical bodies; firous, compofed of fibres which may be long. Sloort, Jlraight, crooked, parallel, diversent, Pellated, fufciculated, or decuf. fated; radiated, confifting of long narrow flattih lamell:x; or lamellar or folialcd, confitting of finooth continued plates covering each other: thefe plates may be either Araishl, crookicd, or unduluting.
XI. The structure or compound texture is s:ructur the manner in which the parts that form the texture are difpofed. It is either Jlcty, in Araight layers like nate; teflaccous, in incurvated layers; concentric, in concentric laycrs; or colimnar, in columns.

The texture and firucture may at firil view appcar the fame; but in reality they are very different. Thus common flate has often the flaty flucicure and eartby texture. The texture of pitcoal is compact, but its itructure is often flaty.
XII. By fragments is meant the thape of the pieces into which a inineral breaks when fruck with a ham. mer. They are either cubic; rhomboidal; zucdgefloaped; fplintery, thin, long, and pointed; tabular, thin, and broad, and fharp at the conruers, as common flate; or indeterminate, without any particular refemblance to any other body. The eifges of indeterminate fragments are cither very Jaarp, Ja arp, barpifb, or blunt,

XIlI. By the feel of minerals is meant the fenfation which their furfaces comnunicate when handled. The feel of fome minerals is greafy, of others dry, \&c.
XIV. Some minerals when ftruck give a clcar souvis, as common flate; others a dill found.
The smell, taste, specific grayity, and magnerism of minerals, require no explanation.

With refpect to ELECTRICITY, iume minerals become tectric when beaitet, others when rubled, others cannot be rendered electic. 'The electricity of fome ininerals is pofitive or vitrecus, of othiers negative or refinous.
As for the chemical properties of minerals, they have been already explained in the article Chemistry, which makes a part of this Supplement. And for the defcription of the blow-pipe, and the manner of ufing it, we refer the reader to a treatife on that fubject prefixed to the article Mineralogy in the Eucyclopadia.

Chap. II. Of the Arrangement of Minerals.

Minerals may be arranged two ways, according to their external characters, and according to their chemical compofition. The firit of thefe inethods has been called an artificial claffification; the fecond, a natural one. The firtt is indifpenfably necellary for the ftudent of nature; the fecond is no lefs indifpenfable for the proficient who means to turn his knuwledge to account. Without the firt, it is inpoffible to difcover the names of minerals; and without the fecond, we mult remain ignorant of their ufe.

Almoft every fyftem of mineralogy hitherto publifhed, at lealt fince the appearance of Werner's external cluaraters, has attempted to combine thefe two arrangements, and to obtain at one and the faine time the ad. vantages peculiar to each. But no attempt of this kind has hitherto fucceeded. Whether this be owing to any thing impoffible in the undertaking, or to the prefent
(c) Thefe four degrees have been denoted by Kirwan by the figures $4,3 \times 2$, 1 , and no luftre by 0 . We have imitated him in the prefent article.
iificial prefent imperfect ftate of mineralogy, as is more pronen. bable, we do not take upon us to determine. But furely the want of fuccefs, which has hitherto attended all attempts to combine the two arrangements, ought to fuggelt the propriety of feparating them. By adhesing ithictly to one language, the trouble of ftudying two different fyltems would be entirely prevented. 'They would throw mutual light upon each other: the artificial fyltem would enable the fludent to difcover the names of minerals ; the natural would enable him to arrange them, and to ftudy their properties and ufes.
'The happy arrangement of Cronftedt, together with the fublequent inurovements of Bergman, Werner, Kirwan, Hauy, and other ctlebrated mineralogifts, has brought the natural fyltem of inirieralogy to a confiderable degree of perfection. Dut an artificial fyytem is fill a delideratum ; for excepting Linnæus, whofe fuccefs was precluded by the ftate of the feience, no one has hitherto attempted it. Though we are very far from thinking ourfelves fulficiently qualified for undertaking fuch a tafk, we fhall neverthelefs senture, in the next chapter, to fketch out the rudinsents of an artificial fyttem. The attempt, at leaft, will be laudable, even though we fhould fail.

Char. III. Artificial System.
Miverals may be divided into fix claffes :

1. Minerals that cannot be fufed by the blow-pipe per fe.
2. Minerals fufiole per $\sqrt{ }$ e by the blow-pipe.
3. Minerals fugible by the blow-pipe per fe when exfoled to the blue flame, but not when expofed to the yellow flame.
4. Minerals fufible per fe by the blow-pipe; and when in fufon, partly evaporating in a vifible fmoke.
5. Minerals which totally evaporate before the blowpipe.
6. Minerals totally foluble in muriatic acid with effervefcence, the folution colourlefs.

Under thefe heads we fhall arrange the fubjects of the mineral kingdom.

Class I. INFUSIBLE.

ORDER I. Specific gravity fromir6 to 12.
Genus I: Colour whitifh iron grey. Spocies 1. Native platinum.
ORDER II. Sp. gr. 8.5844 to 7.006 .
Genus I. Attracted by the magnet.
Sp. 1. Native iron.
Genus II. Not attracted by the magnet. Sp. 1. Native copper.

Flexible and malicable. Colour ufually - un asi: red.

Sp. 2. Wolfram.
Drittle. Colour ufually brown or black.
ORDER III. Sp. gr. from 6.450 to 5.8 .
Genus I. Forms a blue glals with microcofmic falt, which becomes colourlef3 in the yellow, but recovers its colour in the blue flame.

Sp. 1. Tungftat of lime.
Genus II. Forms with microcofnic falt a permanently coloured bead.

Sp. 1. Sulphuret of cobalt.

ORDER IV. Sp. gr. from 4.8 to 4.5 .
Genus I. Tinges borax dark green.
Sp. I. Common magnetic iron ftone.
Genus II. Tinges borax reddifh brown. Sp. I. Grey ore of manganefe.
ORDER V. Sp. gr. from 4.4165 to 3.092 . Infu* fible with fixed alkalies.

Genus I. Hardnefs 20.
SP. I. Diamond.
Geves II. Hardnefs 15 to 1\%. Caufes Gingle refraction.

Sp. 1. Telefia.
S, 2. Corundun.
Genvis 111. Hardnefs 13 . Single refraction. Sp. 1. Ruby. Cryitallizes in octohedrons.
Genus IV. Harducts 12. Single refraction. Sp. 1. Chiyfoberyl.
Genvis V. Hardnct's 12. Caufes double refraction. Becomes electric when lieated.
Sp. I. Topaz.
Genves VI. Hardnefs 10 to 16 . Double refrac. tion. Sp. gr. 4.2 to 4.165. Ss. :. Zircon.
Genvis VII. Hardnefs 6 to 9. Feels greafy. Sp. 1. Çanite.
Gexu's VIII. Hardnefs 9 to Io. Feel not greafy. Double refraction. Sp. gr. 3.283 to 3.285 . Sp. I. Chryfolite.
Genus IX. Hardnefs 12. Infufible with borax. Colour of large mafles black, of thin pieces deep green.

Sp. Ceylanite.
(Pbojploat of lime.)
ORDER VI Sp. gr. from 2.9829 to 1.987 . Infufible. witl fixed alkalies.

Genus I. Hardnefs in.
Sp. 1. Emerald.
Genus II. Hardnefs io. Sp. I. Jade.
Genus III. Hardnefs 6 to \%. Somewhat tranf. parent.

Sp. 1. Phofphat of lime.
Before the blow-pipe becomes furrounded with a luminous green vapour.
Genus IV. Hardnefs 6. Opaque.
Sp. r. Micarelle.
Genus V. Stains the fingers. Colour lead grey. Sp. 1. Plumbago.
Spanifl wax rubbed with plumbago does not become electric; or if it does, the electricity is negative. Streak lead grey even on earthen ware.
ORDER VII. Sp. gr. from $4 \cdot 73^{8} 5$ to 4.569 . Fufible with fixed alkalies.

Genus I. Stains the fingers. Colour lead grey. Sp. 1 Molybdena.

Spanifh wax rubbed with molybdena becomes pofitively electric. Streak on earthen ware yellowifh green.
ORDER VIII. Sp. gro from 4.1668 to 2.479. Fufible with fixed alkalies.

* Hardnefs from 10 to 12 .

Genus I: Ufually white. Cryftals dodecahedrons. Double refraction. Fracure imperfectly conchoidal or \{plintery. Brittle.

Sp. 1. Quartz.
Genvs II. Ulually dark brown. Fracture perfeetly conchoidal. Brittle. Eafily breaks into - - p linters.

Sp. 1. Flint.

- Genus III. Not brittle. Fracture even or imperfectly conchoidal.
sp. 1. Chalcedony.
Sp. 2. Jafper.
Genus IV. Forms with potafs a violet glafs, with foda or borax a brown glafs, with microcofmic falt a honey yellow glafs. Colour green. Amorphous.

Sp.1. Chryfoprafium.
Genus V. Tinges foda red. The colour difappears before the blue flame, and returns before the yellow flame.

Sp. 1. Oxyd of manganefe and barytes.
Sp. 2. Black ore of manganefe.
Sp. 3. Carbonat of manganefe.
(Brown ore of iron. Red ore of iron.)
** Hardnefs 9 to 3 .
Genus VI. Flexible and elaftic in every direction.

Sp. 1. Elaftic quartz.

Genus VII. Emits white flakes before the blowpipe. Sp. I. Blende.
Genus VIII. Becomes electric when heated. $s p$. I. Calamine.
Genus IX. Tinges borax green. Blackens before the blow-pipe.

Sp. 1. Mountain blue.
Colour blue.
Sp. 2. Green carbonat of copper. Colour green.
Genus X. Tinges borax green. Becomes attractable by the magnet by the action of the blow-pipe.
$S p$. I. Brown iron ore.
$S p .2$. Red iron ore. Colour red.
Genus XI. Tinges borax fmutty yellow. Becomes brownifh black before the blow pipe. $s p$. I. Carbonat of iron.
Genus XII. Feels greafy. $s p$. 1. Steatites.
(Black ore of Manganefe. Carbonat of - manganefe. Mica.)

ORDER IX. Sp. gr. from 2.39 to 1.7.
Genus I. Luftre glafly.
Sp. 1. Opal.
Sp. 2. Hyalite.
Genus II. Luftre greafy. $s p$. 1. Pitchftone.
Genus. III. Luftre waxy or pearly. Sp. 1. Staurolite.

Ceass II. FUSIBLE.
ORDER I. Sp. gr. from 19 to 10.
Genus I. Colour Yellow.

Sp. I. Native gold.
Genus II. Colour white.
Sp. I. Native Silver.
Genus IIl. Colour yellowih white. Sp. 1. Alloy of filver and gold.
ORDER II. Sp. gr: from 7.786 to 4.5 .
Genus I. Flexible and malleable.
Sp. 1. Sulphuret of filver.
** Brittle.
Genus II. Tinges borax white.
sp. 1. T'inttone.
Genus III. Tinges borax green.
sp. 1. Sulphuret of copper.
Colour bluíh grey.
Sp. 2. Chromat of lead.
Colour aurora red.
Sp. 3. Purple copper ore. Colour purple.
Genus IV. Tinges borax faint yellow. Becomes black when expofed to the vapour of fulphuret of ammonia.

Sp. I. Galena.
Colour bluifh grey. Luftre metallic. Fragments cubic.
Sp. 2. Black lead ore.
Colour black. Luftre metallic.
Sp. 3. Lead ochre.
Colour yellow, grey, or red. Luftre 0.
Sp. 4. Carbonat of lead.
Colour white. Luftre waxy.
Sp.5. Phorphat of lead.
Ufually green. Luftre waxy. After fufion by the blow-pipe cryftallizes on cooling.
Sp. 6. Molybdat of lead.
Colour yellow. Streak white. Luftre waxy.
ORDER III. Sp. gr. from 4.35 to 3. * Hardnefs 14 to 9 .

Genus I. Melts without frothing into a grey enamel.

Sp. 1. Garnet.

Colour red.
Genus II. Melts into a brownifh enamel.
Sp. 1. Shorl. Colour black. Opaque.
Genus III. Froths and melts into a white enamel. sp. I. Tourmaline. Becomes electric by heat.
Genus IV. Froths and melts into a greenifh black enamel.

Sp. 1. Bafaltine.
Genus V. Froths amd melts into a black enamel.
$S p .1$. Thallite.
Colour dark green.
Sp.2. Thumeiftone. Colour clove brown. ** Hardnefs 5 to 8.
-Genus VI. Melts into a tranfparent glafs.
Sp. 1. Fluat of lime. Powder phofphorefces when thrown on a hot iron.
Genus VII. Melts into a black glafs.

Genus VIII. Melts into a black bead with a pulphureous fell, and depofits a blue oxyd on the charcoal.
Sp. I. Sulphuret of tin.
Genus IX Melts into a brown glafs. Tinges borax violet.

Sp. 1. A Ceftoid.
Colour green.
Genus X. Melts into a brown (?) glafs. When fufed with potafs, and diffolved in water, the solution becomes of a fine orange yellow.
$s p$. 1. Chromat of iron.
Genus XI. Before the blow-pipe yields a bead of copper.

Sp. 1. Red oxyd of copper.
(Sulpburet of copper.)
ORDER IV. Sp. gr. from 2.945 to $2: 437$.
Genus I. Compofed of fcales.
Sp. I. Talk.
Feels greafy. Spanifh wax rubbed by it becomes positively electric.
Genus II. Compofed of thin platef, eafily fepamable from each other.

Sp. 1. Mica.
Plates flexible and elaftic, may be torn but not broken. Spanifh wax rubbed by it becomes negalively electric.
Sp. 2. Stilbite.
Plates fomewhat flexible. Colour pearl white. Powder renders fyrap of violets green. Froths and melts into an opaque white enamel.
Sp. 3. Lepidolite.
Colour violet. Powder white with a tint of red. Froths and melts into a white femitranfparent denamel full of bubbles.
Genus III. Texture foliated.
Sp. 1. Felifpar.
Fragments rhomboidal. Hardnefs. 9 to 10.
Sp. 2. Leucite.
Always cryftallized. White. Powder renders fyrup of violets green. . Hardnefs 8 to 10.
Sp. 3. Argentine felfpar.
Always cry ftallized. Two faces dead white, two filvery white.
Sp. 4. Prehnite.
Colour green. Froths and melts into a brown enamel.
Gents IV. Texture fibrous. Fibres deafly feprated.

Sp. I. Aßeftus.
Feels fomewhat greasy.
Genus V. Texture ftriated.
Sp. 1. Edelite.
Abforbs water. Froths and melts into a frothy malls.
Genus VI. Texture earthy or compact.
Sp, 1. Lazulite.
Froths and melts into a yellowifi
black mafs. If previoufy calcined, gelatinizes with acids.
Sp. 2. Boat of lime.
Tinges the flame greenifh, froths and melts into a yellowifh enamel garnished with Small projecting points. If the blat be continued, there dart off in parks.
ORDER V. Sp. gr, from 2.348 to 0.68
Genus I. Hardness 10. Sp. 1. Obfidian.

Colour blackifh, in thin pieces green.
Genus II. Hardnefs 6 to 8 .
sp, 1. Zeolite.
Gelatinizes with acids. Becomes electric by heat.
Genus III. Hardnefa 3 to 4.
Sp. I. Amianthus.
Feels greasy. Texture fibrous.
Sp. 2. Mountain cork.
Elattic like cork.
Class III. FUSIBLE by the BLUE FLAME, INFUSIBLE by the YELLOW.
Genus I.. Sp. gr. from 4.43 to 4.4.
Sp. I. Sulphat of barytes.
Genus II. Sp. gr. from 3.96 to 3.51 .
Sp. I. Sulphat of ftrontites.
Genus III. Sp. gr. from 2.311 to 2.167 。 Sp. 1. Sulphat of lime.
Class IV. FUSIBLE, and partly EVAPORATING.
ORDER I. Sp. gr. from 10 to 5 ,
Genus I. Colour white or grey. Luftre metallic.

* Sp. gr. 9 to 10.

Sp. 1. Native amalgam,
Tinges gold white. Creaks when cut.
Sp. 2. Alloy of filler and antimony.
Powder greyifh black.
** Sp. gr. from 6467 to 5.309 .
Sp. 3. Sulphuret of bifmuth.
Melts when held to the flame of a candle.
sp. 4. Dull grey cobalt ore.
Streak bluifh grey. Hardnefs to. When ftruck, emits an arfenical fmell. Luftre fearcely metallic.
Genus II. Colour red, at leaf of the freak.
Sp. 1. Red fiver ore.
Burns with a blue flame.
Sp. 2. Hepatic mercurial ore. Does not flame, but gives out mexcary before the blow. pipe.
Genus III. Colour blue.
Sp, 1. Blue lead ore.
Burns with a blue flame and fulphureous fell, and leaves a button of lead.
Genus IV. Colour yellowifh green.
Sp. 1. Phofphat and arfeniat of lead combined. When fused by the blow-pipe, cry--
thallizes on cooling,
Genus V. Colour usually that of copper. Sp .

Artificial
System.

\rightarrow
\qquad
O

Artificill Syitem.
gr. 6.6084 to 6.648 t.
Sp. 1. Sulphuret of nickel. Exluales before the blow-pipe an arfenical fmoke.

ORDER II. Sp. gr. fiom 4.6 to 3.44 .
Genus I. Colour grey.
Sp. 1. Grey ore of antimony.
Burns with a blue flame, and leaves a white oxyd.
Sp. 2. Grey copper ore. Crackles before the blow-pipe.
Genus IT. Colour yellow.
Sp. 1. Pyrites.
Burns with a blue flame and fulphurenus fmell, and leaves a brownifh bead.
Sp. 2. Yellow copper are. Melts into a black mafe.

Class V. EVAPORATING.

ORDER I. Sp. gr. 13.6.
Genus I. Fluid.
Sp. I. Native mercury.
ORDER II. Sp. gr. from to to 5.419 .
Genus I. Colour red.
Sp. 1. Native cinnabar.
Genus II. Colour white or grey. Luffre metallic.

Sp. 1. Native bifmuth.
Melts into a white bead, and then evaporates in a yellowin white fmoke. Sp. gr. 9 to 9.5 .
Sp.2. Native antimony. . 5 Melts and evaporates in a grey finoke. Sp. gr. 6.6 to 6.8.
Sp. 3. Native arfenic.
Evaporates without melting, and gives out a garlic fmell.

ORDER III. Sp. gr. from 4.8 to 3.33 .
Genus I. Colour red.
Sp. 1. Red antimonial ore.
Melts with a fulphureous fmell. Sp. gr. 4.7.
Sp. 2. Realgar.
Melts with a garlic finell. Sp. gro $3 \cdot 384$.
Genus II. Colour yellow.
sp. 1. Orpiment.

Genus I. Sp. gr. from 4.338 to 4.3 .
Sp. I. Carbonat of barytes.
Genus II. Sp. gr. from 3.66 to 3.4 .
Sp. 1. Carbonat of frontites.
Genus III. Sp. gr. from 2.8 to 1 or under. $s p$. 1. Carbonat of lime.
We have purpofely avoided giving names to the claffes, orders, and genera; becaufe a more careful examination will doubtlefs fuggeft many improvements in the arrangement, and an artificial fyftem ought to be brouglit to a great degree of perfection before its claffes, orders, and genera, be finally fettled.

We have excluded from this arrangement all thofe bodies which in the following fyltem are arranged unde1 the cinfs of combuftibles; becaufe there can fcarcely be any difficulty in diftinguifhing them both from the other claffes and from one another. For fimilar reaions we have excluded the clafs of falts.

Chap. IV. Natural System.

Avicenna, a writer of the 11 th century, divided minerals into four claffes; ftones, falts, inflammable bodies, and metals (D). This divifion has been, in fome meafure, followed by all fucceeding writers. Linnæus, indeed, the firft of the moderns who publifhed a fytten of mineralogy, being guided by the external characters alone, divided minerals into three claffes, petra, minera, folfilia: but Aviccuna's claffes appear among his orders. The fame remark may be made with refpeet to the fyftems of Wallerius, Woliterdorf, Cartheufer, and Jufti, which appeared in fucceffion after the firft publication of Linnæus's Sylcma Natura, in 1736. At laft, in 175°, the fy ftem of Cronftedt appeared. He reinf?ated the claffes of Avicenna in their place; and his fyftem was adopted by Bergman, Kirwan, Werner, and the moft clebrated mineralogifts who have written fince. We alfo fhall adopt his claffes, with a few night exceptions; becaufe we are not acquainted with any other divifion which is intitled to a preference.

We flall therefore divide this treatife into four clafles. Na ${ }^{20}$ I. Stones. II. Salts. III. Comburtibles. IV. Ores. da ites.

The firft clafs comprehends all the minerals which are compofed chiefly or entirely of earths ; the fecond, all the combinations of acids and alkalies which occur in the nineral kingdom; the third, thofe minerals which are capable of combuftion, and which confift chiefly of fulphur, carbon, and oil; the fourth, the mineral bodies which are compofed chic?ly of metals.

Class I. EARTHS and STONES.

WE fhall divide this clafo into three orders. The firt order fhall comprehend all chemical combinations of earths with each other; the fecond order, chemical combinations of earths with acids; and the third order, mechanical mixtures of earths or flones. All the minerals
beionging to the firft order exhibit the fame homogeneous appearance to the eye as if they were limpie bodies. We thall theıfore, for want of a better name, call the firt order fimple; the fecond order we fhall diftinguifh by the epithet of fuline; and the third we fhall
(D) Corpora mineralia in quatuor fpecies dividuntur, fcilicet in lapides, et in liquefactiva, fulphurea, et fales. Et horum quædam funt raræ fubflantix et debilis compofitionis, et quedam fortis fubftantix, et quædam ductibilia, et quaedam nou, Avicenna de congelatione of conglutinatione lapidum, Cap. 3. Theatrum Chemicun, t. iv. p. 997.

Ea s and call aggregates; becaufe moft of the minerals belonging to it confift of various $\sqrt{2} \mathrm{mple}$ hones, cemented, as it were, together.

Order I. SIMPLE STONES.

Cronstedt divided this order into nine genera, correfponding to nine earths; one of which he thought compofed the ftones arranged under each genus. The names of his genera were, calcarea, filicea, granatine, argillacea, micacea, fuores, afbefine, zeolithice, magnefia. All his earths were afterwards found to be compounds, except the firft, fecond, fourth, and ninth. Bergman, therefore, in his Sciagraphia, firt publifhed in 1782 , reduced the number of genera to five; which was the number of primitive earths known when he wrote. Since that period three new earths have been difcovered. Accordingly, in the late!t fyftems of mineralogy, the genera belonging to this order amount to eight. Each genus is named from an earth; and they are arranged in the neweft Wernerian fyttem, which we have feen, as follows:
-1. Jargon genus.
2. Siliceous genus.
3. Glucina genus.
5. Maguefian genus.
6. Calcareous genus.
4. Argillaceous genus.
7. Barytic genus.
8. Strontian genus.

Mr Kirwan, in his very valuable fyltem of mineralogy, has adopted the fame genera. Under each genus, thofe itones are placed, which are compofed chiefly of the earth which gives a name to the genus, or which at leaft are fuppofed to poffefs the characte1s which diftinguifh that earth.

A little confideration will be fufficient to difcover that there is no natural foundation for thefe genera. Mof Rones are compofed of two, three, or even four ingredients; and, in many cafes, the proportion of two or more of thefe is nearly equal. Now, under what genus foever fuch minerals are arranged, the earth which gives it a name muft form the fmalleft part of their compofition. Accordingly, it has not been fo much the chemical compofition, as the external character, which has guided the mineralogift in the diftribution of his fpecies. The genera cannot be faid properly to have any character at all, nor the fpecies to be connected by any thing elfe than an arbitrary title. This defect, which muft be apparent in the moft valuable fyftems of mineralogy, feems to have arifen chiefly from an attempt to combine together an artificial and natural fyftem. As we have feparated thefe two from each other, it becomes neceffary for us to attend more accurately to the natural diftribution of genera than has hitherto been done. We have accordingly ventured to form new genera for this order, and we have formed them according to the following rules.
gene- The only fubftances which enter into the minerals belonging to this order, in fuch quantity as to deferve attention, are the following :

Alumina,	Glucina,
Silica,	Zirconia,
Magnefia,	Oxyd of iron,
Lime,	Oxyd of chromum,
Barytes,	Potafs,

All thofe minerals which are compofed of the fame ingredients we arrange under the fame genus. According to this plan, there mult be as many genera as there are varieties of combinations of the above fubitances exifting in nature. The varieties in the proportion of the ingredients conltitutc fpecies. We have not impofed names upon our genera, but, in imitation of Bergman *, * Opufa. iv. have denoted each by a fymbol. This fymbol is com- 231 . pofed of the firft letter of every fubflance whicls enters in any confiderable quantity into the compofition of the minerals arranged under the genus denoted by it. 'Thus, fuppofe the minerals of a genus to be compofed of alumina, filica, and oxyd of iron, we denote the genus by the fymbol $a f$. The letters are arranged according to the proportion of the ingredients ; that which enters in the greateft proportion being put firlt, and the others in their order. Thus the genus afz is compoled of a confiderable proportion of alumina, of a fmatler proportion of filica, and contains leaft of all of iron. By this contrivance, the fymbol of a genus contains, within the compafs of a few letters, a pretty accurate defcription of its nature and claracter. Where the proportions of the ingredients vary in the fame genus fo inuch, that the letters which conflitute its fymbol change their place, we fubdivide the genus into parts; and whenever the minerals belonging to any genus become too numerous, advantage may be taken of thefe fubdivifions, and each of them may be formed into a feparate genus. At prefent this feems unneceffary (E).
The following is a view of the different genera belonging to this order, denoted each by its fymbol. Every genus is followed by the fpecies included under it ; and the whole are in the order which we mean to follow in deferibing them :

I. A. Telefia, ${ }^{\text {Corundum, }} \begin{aligned} & \text { Cor } \\ & \\ & \text { Natisc alumina. }\end{aligned}$	VI. 1. 1
	Micarell,
	Shorl,
	Granatite

II. амс.

Ruby.
III. arm.

Ceylanite,
IV.s.

Quartz,
Elaftic quartz,
Flint,
Opal,
litchfone, Chryfoprafium.
V. I. As.

Topaz,
Sommite,
Shorlite.
2. $\mathrm{s} A$.

Rubellite,
Hornflate,
Hornftone,
Chalcedony,
Jafper,
'Tripoli.
2. SAI.

Tourmaline,
Argentine felfpar,
Mica,
Talc,
Bafaltine,
Hornblende,
Obfidian,
Petrilite, Felite.
VII. sap.

Felfpar,
Lepidolite,
Leucite.
Vili. sag.
Emerald.
IX. sab.

Staurolite.
X. I. asl.

Chryfoberyl.
2. SAL.

Hyalite,
不delite.
C c
3. sawe.
(E) We need hardly remark, that the laft three genera of Werner belong to the fecond order of the firf clafs of this treatife.
3. SAWL. Zeolite, Stilbite, Analcime.
4. SLa. Lazulite.
XI. SALI.

Garnet, Thumerflone, Prehnite, Thallite.
I. 1. AMS. Cyanite.
2. MSA. Serpentine.
XIII. MsAI.

Potfone, Chlorite.
XIV. sLam. Siliceous 〔par.
XV. sAMLi. Argillite.
XVI. sm. Kiffekill, Steatites.
XVII. msi. Chryfolite, Jade.
XVIII. smz. A fbeftus, Arbeftinite.
XIX, I. silm.
Pyroxen, Arbettoid.
2. SMIL.

ACtinolite.
XX. sz. Shiftofe hornettone.
XXI. zs.

Zircon.

* Ann de

Cbim. xvis.
$3: 3$.

+ Plate
XXXVI.
fig. x.

Genus 1. A.

species 1. Telefia (f). Oriental ruby, fopphire, and topaz of mineralogitts. Rubis d'orient of De Lifle.
Three fones, diftinguifhed from each other by their colour, have long been held in high eftimation on account of their hardnefs and beauty. 'Thefe ftones were known among lapidaries by the names of ruby, fapphire, and topaz, and the epithet oriental was ufually added, to diftinguith them from other three, known by the fame names and the fame colours, but very inferior in hardnefs and beauty. Mineralogitts were accuffomed to confider thefe fones as three diftinct fpecies, till Romé de Lifle-obferved that they agreed in the form of their cryftals, their hardnefs, and moft of their other properties. Thefe obfervations were fufficient to conflitute them one fpecies; and accordingly they were made one fpecies by Romé de Lifle himfelf, by Kirwan, and feveral other modern mineralogical writers. But this fpecies was deflitute of a proper name, till Mr Hany, whofe labours, diftinguified equally by their ingenuity and accuracy, have contributed nat a little to the progrefs of mineralogy, denominated it teleffa, from the Greek word texio.os, which fignifies perfett.

The telefia is found in the Eaft Indies, efpecially in Pegu and the ifland of Ceylon; and it is moft commonly cryftallized. The crytals are of no great fize: Their primitive form, according to Mr Hauy, is a regular fixfided prifm, divifible in directions parallel hoth to its bafes and its fides; and confequently giving for the form of its. primitive nucleus, or of its istegrant molecule, an equilateral three fided prifm *. The moft ufual variety is a dodecahedron, in which the telefia appears under the form of two very long nender fix-fided pyramids, joined bafe to bafe t. The fides of thefe pyramids
are ifofceles triangles, having the angle at their vertex Simple $22^{\circ} 54^{\prime}$, and each of thofe at the bafe $78^{\circ} 4^{5^{\circ}}(\mathrm{c}) . \underbrace{\text { Stoies, }}$ The inclination of a fide of one pyramid to a contigu. ous fide of the other pyramid is $139^{\circ} 54^{\prime} \dagger$. In fome + Ibd ank fpecimens the fummits of the pyramids are wanting, fo Rome de that the ciyftal has the appearance of a fix-fided prifm, $L_{\text {Lilfe }}$ ii. fomewhat thicker in the middle than towards the extre- ${ }^{3+5}$. mities*. The three alternate angles at each extremity of $*$ Fig. . . this prifm are alfo fometimes wanting, and a fmall triangular face inftead of them, which renders the bafes of the fuppofed prifm nine-fided. The inclination of each of thefe fmall triangles to the bafe is $122^{\circ} 18^{\prime} \ddagger$. For figures $;$ Hays, t of thefe cryttals we refer the reader to Romé de Lifle and Hauy *.

The texture of the telefia is foliated, and the joints are parallel to the bafe of the prifm \dagger. Its luftre va- \dagger Hary, ries from 3 to $4(\mathrm{H})$. Tranfparency ufually 3 or 4 , fometimes only 2. It caufes only a fingle refraction. Specific gravity from 4, to 4.288. Hardnefs from 15 to 17. It is either colourlefs, or red, yellow or blue. Thefe colours have induced lapidaries to divide the telefia into the three following varieties.

Variety 1. Red telefia.
Oriental ruby.
Colour carmine red, fometimes verging towards violet. Sometimes various colours appear in the fame ftone, as red and white, red and blue, orange red. Hardnço 17. Sp. gr. 4.288.

Variety 2. Yellow telefia.
Oriental topaz.
Colour golden yellow. Tranfp. 4. Hardnefs 350 Sp gr. 4.0106 .

Variety 3. Blue telefia, Oriental fapphyr.
Colour Berlin blue, often fo very faint that the flone appears almoft colourlefs. Tranfp. 3, 4, 2. Hardnefs 17. Sp. gr. 3 99: to $4083 \ddagger$. This variety is not \ddagger Grevint probably the fame with the fapphyr of the ancients. Nibolfan Their fapphyr was diftinguifhed by gold-coloured fyots, Jour.ii none of which are to be feen in the fapphyr of the moderns ||.

A fpecimen of this laft variety, analyfed by Mr Kla - Thuphtre proth, was found to contain in 100 parts;

$$
\begin{aligned}
& 98.5 \text { alumina, } \\
& 1.0 \text { oxyd of iron, } \\
& 0.5 \text { lime, } \\
& 100.0
\end{aligned}
$$

The colouring matter of all thefe varieties is, accordthe ruby . I , and the fapphyr .02 of that metal \dagger. But when thefe experiments were made, the analy fis of ftones $i \mathrm{ii} .96$. was not arrived at a fufficient degree of perfection to enfure accuracy. No conclufion, therefore, can be drawn from thefe experiments, even though we were certain that they were made upon the real varieties of telefia.

SPECIES
(f) See Kirwan's Mineralogy, I. 250.-Gmelin's Syfema Nature of Linneus, IIL 170.-Romé de Lille's Cryfallographie, II. 212.-Bermanni Opufcula, II. 72.
(c) In fome inflances, the angle at the vertex is 31°, thofe at the bafe $74^{\circ} 30^{\prime}$, and the inclination of two sriangles $122^{\circ} 36^{\prime}$. See Hauy, ibid.
(4) When the kind of luftre is not fpecified, as in the prefent inftance, the common is always meant.
species 2. Corundum (1).
Corundum of Gmelin-Adamantine Spar of Klaproth and Kirwan - Corindon of Hauy--Corivindum of Woodward.
This fone, though it appears to have been known to Mr Woodward, may be faid to have been firt diftinguifhed from other minerals by Dr Black. In 1768, Mr Berry, a lapidary in Edinburgh, received a box of it from Dr Anderfon of Madras. Dr Black afcertain. ed, that thefe fpecimens differed from all the ftones known to Europeans; and, in confequence of its hard. nefs, it obtained the name of adamantine fpar. Notwithftanding this, it could \{carcely be faid to have been known to European mineralogitts till Mr Greville of London, who has done fo much to promote the fcience of mineralogy, obtained fpecimens of it, in 1784 , from India, and diftributed them among the moft eminent chemifts, in order to be analyled. Mr Greville alfo learned, that its Indian name was Corundum. It is found in Indoftan, not far from the river Cavery, which is fouth from Madras, in a rocky matrix, of confiderable hardnefs, partaking of the nature of the ftone itfelf*. It occurs alfo in China; and a fubftance, not unlike the matrix of corundum, has been found in Teree, one of the weftern iflands of Scotland \dagger.

The corundum is ufually cryftallized. Its primitive form, difcovered by Mr Hauy \ddagger and the Count de Bournon *, is a rhomboidal parallelopiped, whole fides are equal rhombs, with angles of 86° and 97°, according to Bournon, or whofe diagonals are to each other as - $\sqrt{17}$ to $\sqrt{15}$, according to Hauy; which is very nearly the fame thingt. The moft common variety, for the primitive form has never yet been found, is the regular fix-fided prifm, the alternate angles of which are fometimes wanting $\|$, and the triangular faces, which occupy their place, are inclined to the bafe at an angle of 122° Bur- $34^{\prime} \ddagger^{\circ}$. Sometimes the corundum is cryltallized in the form of a fix fided pyramid, the apex of which is generally wanting. For a defcription and figure of thefe, and all the other varieties of corundum hitherto obferved, we refer the reader to the differtation of the Count de Bournon on the fubject *.

The texture of the corundum is foliated, and the natural joints are parallel to the faces of the primitive rhomboidal parallelopiped. Luftre, when in the direction of the laminæ, 3 ; when broken acrofs, 0 . O. pake, except when in very thin pieces. Hardnefs 15. Sp. gr. from 3.710 to 4.180 t. Colour grey, often with various fhades of blue and green.

According to the analyfis of Klaproth, the corundum of India is compofed of
89.5 alumina,
5.5 filica,
1.25 oxyd of iron,
96.25 \#.

A fyecimen from China of

$$
\begin{aligned}
& 84.0 \text { alumina, } \\
& 6.5 \text { filica, } \\
& 7.5 \text { oxyd of iron, } \\
& \frac{9}{9.0} 11 \text {. }
\end{aligned}
$$

Notwithfanding the quantity of filica and of iron which thefe analyles exhibit in the corundum, we have been induced to include it in the prefent genus, on account of the ftrong refemblance between it and the third variety of telefia. The ftriking refemblance between the cryftals of telefia and coruncum will appear evident, even from the fuperficial defcription which we lave given; and the obfervations of De Buarnon * ren * *Nicba\% der this refemblance ftill more ittiking. It is not im. Jon's 'jour. probable, therefore, as Mr Greville and the Count de ${ }^{\text {iii. } 9 .}$ Bournon have fuggetted, that corundum may be ouly a variety of telefia, and that the feeming difference in their ingredients is owing to the impurity of thofe fpecimens of corundum which have hitherto been brought to Europe. Let not the difference which has been found in the primitive form of thefe fones be confidered as an infuperable objection, till the fubject has been again examined with this precife object in view; for nothing is eafier than to commit an overfight in fuch difo ficult examinat:ons.

SPECIES 3. Native alumina (x). Native

This fubftance has been found at Halles in Saxong mina.
in compact kidney-form maffes. Its confiltence is earthy. Luftre c. Opaque. Hardnefs 4. Brittle. Sp. gr. moderate. Feels foft, but meagre. Adheres very flightly to the tongue. Stains very fiightly Colour pure white. Does not readily diffufe itfelf in water.
It corfifts of pure alumina, mixed with a fmall quantity of carbonat of line, and fometimes of fulphat of lime $\dagger \cdot+$ Scbreber.

$$
\begin{array}{ll}
\text { Genus II amc. } & \text { G. H. anco } \\
\text { species 1. Ruby (}) & \text { Ruby. }
\end{array}
$$

Spirel and balufs Ruby of Kirwan-Ruby of Hauy - Rubis fpinelle ocioodre of De Lifle-Spinellus. of Gmelin.
This ftone, which comes from the inland of Ceylon, is ufually cryftallized. The prinitive form of its cryftals is a regular actohedron, compofed of two fourfided pyramids applied bafe to bafe, tach of the fides of which is an equilateral triang!e \ddagger (M). In fome cafes \ddagger Fig. so two opporfite fides of the pyramide are broader than the other two ; and fometimes the edges of the oetohedron are wanting, and riarrow faces in their place. For fio gures and defcriptions of thefe, and other varieties of thefe cryftals, we refer the reader to Romé de Lifle and the Abbé Fffner*.
*Cryfoll. ii.
The texture of the ruby is foliated. Its luftre is $3.226 . \mathrm{F} / \mathrm{f}^{-}$ Tranfp. 3.4. It caufes a fingle refraction. Hardncfs ner's winer. 33. Sp. gr. $3.570 \dagger$ to $3625 \ddagger$. Colvur red; if deep, ${ }^{7}$ the rubly is ufually called balafs; if pale roly, foinell.
(1) See Kiruecn's Mineralogy, 1.-Klaproth in Beob. der Berlin, VIIz. 20j. and Britriive, I. 47. - Mr Greville and the Count de Bournon in the Philofophical Tranfations 1798, p. 403. and in Nicha'fon's Fournal, II. 540. and III. 5.- Mr Hauy Jour. de Phyf. XXX. 193. and Four. de Mir. N' XXVII1. 262.
(x) See Kirwan's Mirieralogy, 1. 175, and Sclriber. 15. Sü̈ck, o. 209.
(L) 'ee Kirwan's Min. I 253.-Romé de Lijke, II. 224-Klaproth Beob. der Bertin, 1II. 336. and Beisorage, 11. 1.-Vauquelin Ann. de Chim. XXVII. 3. and XXXI. 141.
(m) We thall afterwarcis diftinguin this oftohedron either by the epithet regular or a.uniniform, becaufe it is the well known form of cryftals of alum.

204

Earths and Stones.

The ruby, according to the analyfis of Vauquelin, is compofed of 86.00 alumina, 8.50 magnefia, 5.25 chromic acid.

99.75 *

** Anr. de
Chim.xxvii. 15.
\dagger Plinii, 1.
37. c. 9.

29
G. III. A1м.

Ceylanite.
Genus IIJ. aim.
species i. Ceylanite.
The mineral denominated ceylanite, from the ifland of Ceylon, from which it was brought into Europe, had
\ddagger Cryfal. been obferved by Romé de Lifle \ddagger; but was firft de-
\log. iii. I 80 . fcribed by La Metherie in the Journal de Phyfique for
Note 21. January 1793.

It is moft commonly found in rounded maffes ; but fometimes allo cryftallized. The primitive form of its cryftals is a regular octohedron: it commonly occurs under this form, but more commonly the edges of the
\ddagger Houy, octohedron are wanting, and fmall faces in their place \ddagger.
Four. de
${ }^{\text {Man }}$. N^{Q}
sxxviii.
2640
-1bid. 263

+ Hary.
\ddagger Defcuils.
The fracture of the ceylanite is conchoidal *. Jts internal luftre is glaffy. Nearly opaque, except when in very thin pieces. Ha:dnefs 12 . Sp. gr. from $3.7647+$ to $3 \cdot 793 \ddagger$. Colour of the mafs, black; of very thin pieces, deep green. Powder, greenifh grey. According to the analyfis of Defcotils the ceylanite is compofed of

68 alumina,
16 oxyd of iron,
3.2 magnefia,

2 Gilica.
$\overline{98} \oint$
Cbim. xxiii.
113.

30
G. IV. s.

Quartz.

- VKirwan's

Min. i. 241.
This fone, which is very common in moft mountain. ous countries, is fornetimes cryftallized, and fometimes amorphous. The primitive form of its cryftals, according to Mr Hauy, is a rhomboidal parallelopiped; the angles of whofe rhombs are $93^{\circ} 22^{\prime}$, and $86^{\circ} 38^{\prime \prime}$; fo

* Jour de Min, N° xxviii. 255 \ddagger Fig. 6 .
+ Cryfal.
ii. 7 I.
\ddagger Men. de Pby. xlii. 470 . that it does not differ much from a cube *. The mont common variety is a dodecahedron \ddagger, compofed of two

Fig. 7.

Par. 1786,
\ddagger Mem. ture, conchoidal or fplintery. Its lufre varies from
Par. 1786 , 3 to 1 , and its tranfparency from 4101 ; and in fome
p. 78 . See ${ }^{2}$. alfo Lame- cafes it is opaque. It caufes a double refraction. Hard alfo Lame- cafes it is opaque. It caules a conble refraction. Hard-
therie, 耳our. nefs, from 10 to 11 . Sp. gr. from 2.64 to 2.67 , and
de Pbyf. ifofieles triangles, having the angle at the vertex 40°, and each of the apgles at the bafe 70°; the inclination. of a fide of one pyramid to the contiguous fide of the other pyramid is 104°. There is often a fix fided prifin interpofed between the two py ramids, the fides of which always correfpond with thofe of the pyramids $\|$. For a defcription and fignre of the other varieties of quartz cryftals, and for a demonftration of the law which they have followed in cryftallizing, we refer the reader to Romé de Lijlet and Mr Hauy \ddagger.

The texture of quartz is more or lefs foliated. Fracture, conchoidal or fplintery. Its luftre varies from in one variety 2.691 . Its colour is exceedingly va-
rious; a circumftance which has induced mineralogitts to divide it into numerous varieties. Of thefe the following are the chief:-
I. Pure colourlefs, perfectly tranfparent cryftallized quartz, having much the appearance of artificial cryttal; known by the name of rock cryfal.
2. Quartz lefs tranfparent, and with a fplintery fracture, has ufually been diftinguiked by the name of quartz, and feparated from rock cryftal. As there is no occafion for this feparation, we have, in imitation of Mr Hauy, chofen the word quartz for the fpecific name, comprehending under it all the varieties.
3. Blood red quartz; formerly called compoftella byacinth, and by Hauy quartz bematoide. It owes its colour to oxyd of iron. The mineral known to mineralogits by the name of finople, and confidered by them as a variety of jafper, has been difcovered by Dolomieu to be mercly this variety of quartz in an amorphous ftate *.
4. Yellow quartz ; called falfe topaz.
5. Rofy red quartz ; called Bohemian ruby.

For a fuller enumeration of thefe varieties, we refer the reader to Smeiffer's Mineralogy \dagger, Kirwan's Miner- \dagger i. 89. alogy \ddagger, and Gmelin's edition of the Sy/lema Nature of Linnæus fe. This laft writer, however, has arranged feveral minerals under quartz which do not belong to it.

Pure quartz is compofed entirely of filica; but fome of the varieties of this fpecies are contaminated with metallic oxyds, and with a fmall quantity of other earths.

species 2. Elaftic Quartz (N).

Elatic.
'I'his fingular tone is moderately elaftic, and flexiblequartz. in every direction. Texture, earthy. Luftre, 0 or 1. Hardnefs, 9. Brittle. Sp. gr. 2.624. Colour, greyifh white. Phofphorefces when fcraped with a knife in the dark. The fpecimen analyfed by Mr Klaproth contained

$$
\begin{aligned}
& 96.5 \text { flica, } \\
& 2.5 \text { alumina, } \\
& 5 \text { oxyd of iron, } \\
& 99.5 \text { t }
\end{aligned}
$$

Pyromachus - Pierre a fufil-Silex of Hauy. Flint.
This flone, which has become fo neceffary in modern war, is found in pieces of different fizes, and ufually of a figure more or lefs glubular, commonly among clalk, and often arranged in fome kind of order. In Saxony it is faid to have been found cryfallized in hexahedrons, compofed of two low three.fided pyramids applied bafe to bafe *.

Its texture is compact. Its fracture, fmooth con- Syfeman N choidal. Luftre, external o, the flones being always ${ }^{\text {ture, }}$ iiih covered by a white cruft; internal 1, inclining to ${ }^{183 .}$ greafy. Tranfp. 2; when very thin, 3. Hardnefs, 10 or 11. Sp. gr. from 2.58 to 2.63. Colour varies from honey yellow to brownifh black. Very brittle, and fplits into fulinters in every direction. Two pieces of fint rubbed fmartly together phofphorefce, and emit a peculiar odour. When heated it decrepitates, and becomes white and opaque. When expofed long to the
(n) Kirwan's Min. 1. 316.-Gerhard Mem. Berlin, 1783, 107.-Klaproth's Beilrage 2 Band. 113. See alfo Four. de Pby. XLi. 91.
(o)Kirww's Min. I. 301.-Dolomien Four de Min. No XXXIII. 693. and Salivet, ibid. 713. Thefe latt gentlemen give the only accurate account of the method of making gun fintso

$100.00 \dagger$

Another fpecimen analyfed by Dolomieu was compofed of 97 filica,

1 alumina and oxyd of iron,
2 water. fifts of the fame ingrediente, and alfo a little carbonat of lime. Dolomieu difcovered that water is effential to fint ; for when it is feparated by heat the fone lofes its pronerties §.

The manufacture of gun flints is chiefly confined to two or three departments in France. The operation is exceedingly fimple: a good workman will make a 1000 flints in a day. The whole art confifts in ftriking the fone repeatedly with a kind of mallet, and bringing off at each ftroke a fplinter, fharp at one end and thicker at the other. Thefe fplinters are afterward fhaped at pleafure, by laying the line at which it is wifhed they fhould break, upon a fharp iron infrument, and then giving it repeatedly fmall blows with a mallet. During the whole operation the workman holds the flone in his hand, or merely fupports it on his knee \|.

species 4. Opal (p).

This flone is found in many parts of Europe. It is ufially amorphous. Its fracture is conchoidal, commonly fomewhat tranfparent. Hardnefs from 6 to 10. Sp . gr. from 1.7 to 2.66 . The lowneis of its fpecific gravity, in fome cafes, is to be afcribed to accidental cavities which the ftone contains. Thefe are fumetimes filled with drops of water. Some fpecimens of opal have the property of emitting various coloured rays, with a particular effulgency, when placed between the eye and the light. The opals which poffefs this property, are dillinguifhed by lapidaries by the epithet oriental; and often by mineralogifts by the epithet nobilis. This property rendered the fone much efteemed by the ancients.

Variety 1. Opal edler-Opalus nobilis.
Luftre glafify, 3. Tranfp. 3 to 2. Hardnefs, 6 to 8. Colour, ulually light bluifh white, fometimes yellow or green. When heated it becomes opaque, and fometimes is decompofed by the action of the atmofphere. Hence it feems to follow, that water enters effertially into its compofition. A fpecimen of this variety, analyfed by Klaproth, contained

90 filica,
10 water.

100 II

Variety 2. Semi-opal.
various, greys, yellows, reds, browne, greens of different kinds.
Specimens of this varity fometimes occur with rifts: Specimens of this varicty fometimes occur with rifts:
thefe readily imbibe water, and therefore adhere to the tongue. Theife fpecimens formetimes become tranfparent when foaked ial water, by imbiling that fluid. They are then called bydrophanes.

$$
\begin{aligned}
& \text { Varicty }{ }^{3 .} \text { Cat's eye }{ }^{*} \text { Kirwan's } \\
& \text { This variety comes from Ceylon, and is feldom feen Min } \mathrm{i} .30 \mathrm{~s} .
\end{aligned}
$$ by European mineralogitts till it has been polifhed by the lapidary. Mr Klaproth lias defcribed a fpecimen Klaprotb, Beiträge, io 2 90. en 90 . which he received in its natural fate from Mr Greville of London. Its figure was nearly fquare, with flarp edges, a rough furface, and a good deal of brilliancy.

Its texture is imperfectly foliated. Luttre greafy, z. Tranfp. 3 to 2. Hardnefs 10. Sp. gr. 2.56 to 2.66. Colour, grey; with a tinge of green, yellow or white: or brown, with a tinge of yellow or ied. In certain pofitions it reflects a fplendid white, as does the eye of a eat ; herce the name of this ftone.

Two fpecimens, analy fed by Klaproth, the firf frons Ceylon, the other from Malabar, were compofed of

95.00	94.50 filica,
1.75	2.00 alumina,
1.50	1.50 lime,
0.25	0.25 oxyd of iron.
$98.5 *$	$98.25+$
SPECIES 5. Pitchitone ρ.	
Menelites.	

This ftone, which occurs in different parts of Germany, France, and ocher countries, has obtained its name from fome refemblance which it has been fuppofed

* Beiträgeo

i. 94. +1 ibid. p. 96. to tave to pith it is mot ufually in amorphons piecesi. 292 of different fizes ; and it has been found allo cryttalli. Mem. Par. zed in fx-fided prifms, terminated by three-fided py- ${ }^{1787, p, 86 .}$ ramids.

Its texture is conchoidal and uneven, and fometimes approzches the fplintery. Luftre greafy, from 3 to 1 . 'Iranfp. 2 to i, fometimes o. Hardnefs 8 to 10. Ex. ceedingly brittle; it yields even to the nail of the fin. ger. Sp. gr. 2.049 to 2.39. Its colours are numerous, greyifi black, bluih grey, green, red, yellow of different fhades. Sometimes feveral of thefe colours appear together in the fame flone. A fpecimen of pitchftone from Mefnil-montant near Paris *, analyfed * See Goura by Mr Klaproth, contained

$$
\begin{aligned}
& 85.5 \text { filica, } \\
& \text { 1.0 air and water, } \\
& \text { 1.0 alumina, } \\
& .5 \text { iron, } \\
& \frac{.5 \text { lime and magnefia. }}{98.5 \dagger}
\end{aligned}
$$

xxxi. 219.

+ Beiträges
species 6. Chryfoprafium (c).
This mineral, which is found in different parts of chryfopras Gernany, particularly near Kofemiitz in Silefia, is al. fium. ways amorphons. Its fracture is either even or inclining to the fplintery. Scarccly any luftre. Tranfp. 2 to 3. Hardnefs 10 to $12 . \mathrm{Sp}$. gr. 2.479. Colour, green. In a heat of 130° Wedgcwood it whitens and becomes opaque.
Fracture, inperfectly conchoidal. Luftre, glaffy 2.
Tranfp. 2 to 3. Hardnefs, 7 to 9. Its colours are very
\$ Beiträge,
ii. $=3.3$.
G. V. ${ }^{36}$ A9. Tupaz.

Earths and A ppecimen of this fone, analyfed by Mr Klaproth, $\underbrace{\text { Stowes. }}$
96.16 filica,
1.0n oxyd of nickel,
0.83 lime, 0.08 alumina, 0.08 oxyd of iron. 98.15 \ddagger

* Hauy,

Four. de
Min. N° xxviii, 28 \$ Fig. S.

- Fig. 9.
+ Jour. de
Min. ibid. refer the reader to Mr Hauy \dagger.

The texture of the topaz is foliated. Its luftre is from 2 to 4. Tranfp: frome to 4. It caufes a double refraction. - Hardnefs 12 to 14 . Sp. gr. from $3.53 \mathrm{~T} /$ to 3.564 . The Siberian and Brazil topazes, when heated, become pofitively electrified on one fide, and neWhany, ibid. gatively or the other \oint. It is infurible by the blow. - gipe. The yellow topaz of Brazil becomes red when expofed to a ltrong heat in a crucible; that of Saxony becomes white by the fame procefs. This fhews us, that the colouring matter of thefe two flones is dif. ferent.

The colour of the topaz is various, which has indueed mineralogifts to divide it into the following varieties:
I. Red topaz, of a red colour inclining to yellow; called Brazilian or occisental ruby.
2. Yellow topaz, of a golden yellow colour, and fometimes alfo nearly white; called occillental or Brazil topaz. The powder of this and the following variety caufes fyrup of violets to affeme a green colour I.
3. Suxon topaz. It is of a pale wine yellow colour,
M Min \mathbb{N}° and fometimes greyilh white.
Min
axiz. 165. and the integral molecule has the fame form*; and the height of the prifm is to a fide of the rhomboidal bafes as 3 to $2 \ddagger$. The different varieties of topaz crytals hitherto oblerved, amount to 6 . Five of thefe are eightfided prifms, terminated by four-fided pyramids, or wedge-fhaped fummits, or by irregilar figures of $7,!3$, or 15 fides $\|$; the laft varicty is a twelve-fided prilm, terminated by fix fided pyramids wanting the apex. For an accurate defcription and Ggure of thefe varieties we heare, become porinely elin o one fide, and neC
4. Aigue marine. It is of a bluith or pale green colour.
5. Occidental fapphyr. It is of a blue colour ; and fometimes white.

A fpecimen of white Saxon topaz, analyfed by Vauquelin, contained 68 alumina, 31 filica.

99 If
species 2. Sommite.
9 Your. it
Min Ni
xziv. 3 .
This fone was called fommite by La Metherie, from the moutain Somn:a, where it was firlt found. It is Sommite, ufually mixed with volcanic productions. It cryftallizes in fix-fided prifms, fometimes terminated by pyramids. Colour white. Somewhat tranfparent. Sp. gr. 3.274r. Infufible by the blow-pipe. According to the analyfia - of Vauquelin, it is compofed of

$$
\begin{aligned}
& 49 \text { alumina, } \\
& 46 \text { filica, } \\
& 2 \text { lime, } \\
& \frac{1 \text { oxyd of iron. }}{08 *}
\end{aligned}
$$

specres 3. Shorlite \dagger o

* Ybus N
xxviiti. 27:
This fone, which received its name from Mr Klap- shorite roth, is generally found, in irregular oblong maftes or + Kirruan columns, inferted in granite. Its texture is foliated. Min, i,, 8 Fracture uneven. Luftre 2. Tranfparency 2 to 1. Hardnefs 9 to 10. Sp. gr. 3.53. Colour greenifh white, or fulphur yellow. Not altered by heat. According to the analyfis of Klaproth, it is compofed of

> 50 alumina,
> 50 filica.
> 100

Genus V. 2 sa.
species 4. Rubellite (r). Red juorl of Siberia.
This fone is found in Siberia mixed with white quartz. It is cryftallized in fmall needles, which are grouped together and traverfe the quartz in various directions. T'exture fibrous. Fracture even, inclining
 Hardnefs 10. Brittle. Sp. gr. 3.1. Colour crimfon, blood or peach red. By expofure to a red heat it becomes fnow white; but lofes none of its weight. It tinges foda blue, but does not melt with it.

According to the analyfis of Mr Bindheim, it is come pofed of 57 filica,

35 alumina,
5 oxyds of iron and manganefe.
97
species 5. Hornfate (u). Slijhofe porphyry.
\qquad
the ftones called by mineralogitts occidental ruby, topaz, and fapphyr; which, agreeing in their cryftallization and molt of their properties, were arranged under one〔pecies by Mr Romé de Lifle. The word topaz, derived from an inland in the Red Sea (s), where the ancients ufed to find topazes, was applied by them to a mineral very different from ours. One'variety of our topaz they denominated cbryjolite.

The topaz is found in Saxony, Bohemia, Siberia, and Brazil, mixed with other minerals in granite rocks.

It is commonly cryftallized. The primitive form of its cryftals is a prifm whofe fides are rectangles, and bafes rhombs, having their greateft angles $124^{\circ}: 22^{\prime}$,
(R) Kirwan's Min. I. 254-Pott. Mem. Berlin, 1747, p. 46.—Margraf, ibid. 1776. f. 73. and 160.— Henkel. Aet. Acad. Nat. Cur. IV. 316.
(s) It got its name from zira\} , $_{\text {, to }}$ feck; becaufe the ifland was often furrounded with fog, and therefore diffisult to find. See Piinii lb. 37. c. 8 .
(x) Kirwan's Min I. 288. Bindbeim. Crell's Annals, 1792 p. 320.
(u) Kirwan's Min. I. - 307. -Wieglre. Crell's Annals, 1787 . I Bund. 302.-See alfo Reufs. §amml. Natur. Hij. Aufsize, $\$ 207$.
and ture flaty. Texture foliated. Fracture uneven and fplintery; fometimes approaching the conchoidal. Luftre o. Traniparency 1 or 0. Hardnefs about io. Sp. gr. from 2.512 to 2.7. Colour different Madea of grey, from afs to bluifh or olive green. Melts at 145° Wedgewood into an enamel. A fpecimen, analyfed by Wedge. wood, contained 73.0 filica,

$$
23.9 \text { alumina, }
$$

3.5 iron.

100.4

species 6. Hornfone (x). Petrofilex-Chert.
This fone, which makes a part of many mountains, is ufually amorphous ; but, as Mr Kirwan informs us, it has been found cryftallized by Mr Beyer on Schneeberg. Its cryftals are fix fided prifms, fometimes terminated by pyramids; hexahedrons, confifting of two three-fided pyramids applied bafe to bafe; and cubes, or fix-fided plites *. Its texture is foliated. Fracture fplintery, and fometimes conchoidal. Luftre o. Tranfparency 1 to 2. The cryftals are fometimes opaque. Hardnefs 7 to 9. Sp. gr. 2.532 to 2.653 . Colour ufually dark blue : but hornftone occurs alfo of the following colours; grey, red, blue, green, and brown of different fhades \dagger.

According to Kirwan, it is compofed of 72 filica, 22 alumina, 6 carbonat of lime.

This fone is found abundantly in many countries, particularly in Iceland and the Faro inands. It is molt commonly amorphous, falactitical, or in rounded maffes; but it occurs alfo cryftallized in fix fided prifms, terminated by pyramids, or more commonly in four or lix fided pyramids, whofe fides are convex. Surface rough. Fracture more or lefs conchoidal. Luftre 1. Somewhat tranfparent. Hardnefs 10 to II. Sp. gr. 2.56 to 2.665. Not brittle.

According to Bergman, the chalcedony of Faroe is compofed of 84 filica, 16 alumina, mixed with iron.

L®O

Variety 1. Common chalcedony

Eracture even, inclining to conclioidal. Tranfparency 2 to 3 ; fometimes 1 . Its colours are various; it is moft commonly greyifh, with a tint of yellow, green, blue, or pearl; often alfo white, green, red, yellow, brown, black, or dotted with red. When ftriped white and black, or brown, alternately, it is called onyx: when Itriped white and grey, it is called chalcedonix. Black or brown chaleedony, when held between: the eye and a frong light, appears dark red.

Variety 2. Cornelian.
Fracture conchoidal. Tranfparency 3 to I; often eloudy. Its colours are various fhades of red, brown,
and yellow. Several colours often appear in the fame mafs. To this variety belong many of the flones known by the name of Scotch pebbles.
SPECIES 8. Jafper (Y).

Sinuple

stones.

This flone is an ingredient in the compofition of Jarper. many mountains. It occurs ufually in large amorphons maffes, and fometimes alfo cryftallized in fix fided irregular prifms. Its fracture is conchoidal. Luitrefrom 2 to 0 . Either opaque, or its trauparency is I. Hardnef9 9 to 10. Sp. gr. from 2.5 to 2.82. Its colours are various. When heated, it does not decripitate. It feems to be compofed of filica and alumina, and often alfo contains iron.

Variety 1. Common jafper.
Sp. gr. from 2.58 to 2.7 . Its colours are, different fhades of white, yellow, red, brown, and green; often variegated, fpotted, or veirred, with feveral colours.

Variety 2. Egyptian pebble.
This variety is found chicfly in Egypt. It ufually has 2 fpheroidal or flat rounded figure, and is enveloped in a coarfe rough cruft. It is opaque. Hardnefs $10 . \mathrm{Sp}$. gr. 2.564. It is chienly diftinguifned by the varicty of colours, which always cxif in the fame fpecimen, either in concentric fripes or layers, or in dots or dentritical figures Thefe colours are, different browns and yellows, milk white, and ifabella green; black allo has been oblerved in dots.

Variely 3. Striped jafper.
This variety is alfo difinguifhed by concentric ftripes or layers of different colours: there colours are, yellows hownifh red, and green. It is difinguifhed from the laft variety by its occurring in large amorphous maftes, and by its fracture, which is nearly even.
species 9. Tripoli.
Tripoli.
This mineral is found fometimes in an earthy form, but more generally indurated. Its texture is earthy. Its fracture often fomewhat conchoidal. Luftre 0. Generally opaque. Hardnef3.4 to 7. Sp. gr. 2.080 to 2.529. Ablorbs water. Feel, harfh ciry. Hardly ad. heres to the tongue. Takes no polifh from the nail. Does not fain the fingers. Colour generally pale yellowifh grey, alfo different kinds of yellow, brown, and white.

It contains, according to Haaffe, $9 \circ$ parts of filica, 7 alumina, and 3 of iron. A mineral belonging to this fpecies was analyfed by Klaproth, and found to contain 66.5 filica, 7.0 alumina, 2.5 oxyd of iron, 3.5 magnefia, 1.25 lime, 19. air and water.

97:75
Genus VIiri. ast. SPECPES I. Micarell *. G.Vi.s.
This name has been given by Mr Kirwant to a fone ${ }^{\text {asi. }}$ which former mincralogitts conlidered as a variety of " Kirwas"s mica. It is found in granite. Its texture is foliated, Min i. and ${ }^{212}$.
(x) Kirwan's Min. I. 303.-Baumer Your. de Phyf. II. 154. and Mönet, ibid. 33 1.-Wiegleb. Crell's A7~ Ea/s, 1788, p. 45 and 135.
(Y) Kirw. Min. I. 309.-Borral Hif. Natur. de Corfe.-Henkel AE. Acad. Nat. Curios. V. 339 -

Earths and and it nay be fplit into thin plates. Lufte metallic, 3 . Stone:. Opaque. Hardnefs 6. Sp. gr. 2.980. Colaur brownifh black. At 153° Wedgewood, it nelts into a black \dagger Kirw. ibid compact glafs, the furface of which is reddifh \dagger.

A fpecimen analyfed by Klaproth contained

> 63.00 alumina, 29.50 filica, 6.75 iron.

99.25

Shorl. \ddagger Ibrd. i. 265.

* Ibid. i.
166.11
species 2. Shorl \ddagger.
No word has been ufed by mineralogits with lefs limitation than fhorl. It was firft introduced into mineralogy by Cronftedt, to denote any tone of a columnar form, confiderable hardricfs, and a fpecific gravity from 3 to 3.4. This defcription applied to a very great number of ftones. And fucceeding mineralogifts, though they made the word more definite in its fignification, left it ftill fo general, that under the defiguation of Jborl almoft 20 dittinet freecies of minerals were included.

Mr Werner firft defined the word Jborl precifely, and reftricted it to one fpecies of ftones. We ufe the word in the fenfe affigned by him.
Shorl is found abundantly in mountains, either maffive or cryllallized, in three or nine fided prifms, often terminated by three fided fummits. The fides of the cryftals are longitudinally ftreaked. Its texture is foliated. Its fracture conchoidal. Luftre 2. Opaque. Hardnefs 10. Sp. gr. 2.92 to 3.212 . Colour black. Streak grey. It does not become electric by heat. When heated to rednees, its colour becomes brownifh red; and at 127° Wedgewood, it is converted into a brownifh compaet enamel*. According to Wiegleb, it is compofed of 41.25 alumina,
34.16 filica,
20.00 iron,
5.41 manganefe.

+ Crell's
Beitrige, 1.
Bandes. 4 Stuick, p. - 21.

47
Granatite.

Fig. 10.

* Romé de

Lifle, ii.
435.

Staurotide of Hauy - Pierre de Croix of De LifleStaurolithe of Lametherie.
We have adopted from Mr Vauquelin the term granatite to denote this fone, becaufe all the other names are ambiguous, having been applied to another mineral poffeffed of very different properties.

Granatite is found in Galicia in Spain, and Britan, ny in France. It is always cryttallized in a very peculiar form ; two fix-fided prifms interfect each other, either at right angles or obliquely \ddagger. Hence the name crofsfone, by which it was known in France and Spain *. Mr Hauy has proved, in a very ingenious manner, that the primitive form of the granatire is a rectangular
diagoual of the rhomboidal bafe. From this Aructure he has demonftrated the law of tlie formation of the cruciform varieties *. The colour of granatite is greyith or reddifh brown.

Cbim, vi.
According to the analyfis of Vauquelin, it is com-142. poled of 47.06 alumina, 30.59 filica, 15.30 oxyd of iron, 3.00 lime.
$95.95 \dagger$ rency 2. Coluur white; two oppolite faces of the cryftals are filver white, two others dead white. Hardnefs of the filvery laminæ 6, of the reft 9 . Brittle. Sp. gr. 2.5. When the flame of the blow-pipe is directed againft the edges of the cryftal (ftuck upon glafs), it eafily melts into a clear compact glafs; but when the flame is directed againlt the faces, they preferve their luftre, and the edges alone flowly melt.
. According to the analyfis of Dodun, it is compofed of 46 filica,
3^{6} alumina,
16 oxyd of iron, prifm, whofe bafes are rhombs, with angles of $129 \frac{z^{2}}{5}$ and $50 \frac{10}{2}$; and that the height of the puifn is to the greater diagonal of a rhomb as 1 to 6 ; and that its integrant molecules are triangular prifnes, fimilar to what would be obtained by cutting the prinitive cryftal in two, by a plane paffing vertically through the fhorter

This flone was frit made known in Eurape by fpecimens brought from Ceylon ; but it is now found frequently forming a pat of the compofition of mountains. It is either in amorphous pieces, or cryltallized in three or nine fided prifms, with four.fided fummits.

Its texture is foliated: Its fracture conchoidal. Internal luftre 2 to 3 . Tranfparency 3 to 4 ; fometimes only 2 (A). Caufes only fingle refraction *. Hardnefs * Hary, 9 to 11. Sp. gr. 3.05 to 3.155. Colour brown, often Your. de - To dark that the ftone appears black; the brown has al- Min. . ${ }^{0}$ fo fometimes a tint of green, blue, red, or yellow. x xviii. 26

When heated to 200° Falrenheit, ir becomes electric ; one of the fummits of the cryftal negatively, the other pofitively \uparrow. It reddens when heated; and is fu- \dagger fible per \int e with intumefcence into a white or grey enamcl .

A fpecimen of the tourmaline of Ceylon, analyfed by Vauquelin, was compofed of

```
40 filica,
39 alumina,
12 oxyd of iron,
4 lime,
2.5 oxyd of manganefe,
```


97.5 \ddagger.

```
species 5. Argentine felfpar \(\oint\).
This flone was difcovered by Mr Dodun in the black mountains of Languedoc. It is either amorphous, or cryitallized in rhomboidal tables, or fix or eight fided felfpar. prifms. Its texture is foliated. Fragments rectangu- \(\oint\) Kiru lar. Laminx inflexible. Internal luttre 4. Tranipa-i. 327.
\(\ddagger\) Anma
40 filica,
39 alumina,
lyyd of iron,
    2.5 oxyd of manganefe,
```

```49.
\(\qquad\)

\footnotetext{
-
}


\footnotetext{

}
\[
\begin{aligned}
& \text { Genus VI. } 2 . \text { SA1. } \\
& \text { species 4. Tourmaline }(z) .
\end{aligned}
\]

> \(9^{8}\)

> 

When this fone is expofed to the atmofphere, it is

4
apt
(z) Kirwu. 1. \(271 .-\) Berg. II. 118. and V. 402.-Gerbard. Mem. Berlin, 1777, p. 14.-Hauy Mem. Par. 1784, 270. -Wilfon Phil. Tranf. XLI. 308.- Etinus. Recueil Jur la Tournaline. See allo La Porterie. Le Sapphir, 'Doeil de Cbat, et la Tourmaline de Ceylon demafqués.
(A) And when black only 1.
and apt to decay: Its furface becomes iridefeent, and at lait changes to ochre yellow: Its fecific gravity is 2.3 or 2.212 ; and when breathed upon, it gives out an earthy fmell.

\section*{species 6. Mical|.}

This ftone forms an effential part of many mountains, and has been long known under the names of glacies maGme. rie and Myufcory glafs. It confifts of a great number catro of thin lamine adhering to each other, fometimes of
549. a very large fize. Specimens have been found in Siberia nearly \(2 \frac{1}{3}\) yards fquare (B).

It is fometimes cryftallized: Its primitive form is a reetangular prifm, whofe bafes are rhombs, with angles
11. of \(120^{\circ}\) and \(60^{\circ} \dagger\) : Its integrant molecule has the fame form. Sometimes it occurs in rectangular prifms, whofe bafes alfo are rectangles, and fometimes alfo in fhort fix12. fided prifms \(\dagger\); but it is much more frequently in plates or fcales of no determinate figure or fize *.
Its texture is filiated. Its fragments flat. The lamellx flexible, and fomewhat elaftic. Luftre metallic, from 3 to 4. Tranfparency of the laminæ 3 or 4 , fometimes only 2 (c). Hardnefs 6 . Very tough. Often abforhs water. Sp. gr. from 2.6546 to 2.9342 . Feels finooth, but not greafy. Powder feels greafy. Colour, when pureft, filver white or grey ; but it occurs alfo ycllow, greenifh, reddifh, brown, and black. Mica is fufible by the blow-pipe into a white, grey, green, or black, enamel ; and this laft is attracted by the magnet (D). Spanifh wax rubbed by it becomes negatively electric *.
A fpecimen of mica, analyfed by Vauquelin, contained
\[
\begin{aligned}
& 50.00 \text { filica, } \\
& 35.00 \text { alumina, } \\
& 7.00 \text { oxyd of iron, } \\
& 1.35 \text { magnefia, } \\
& \text { 1.33 lime, } \\
& 94.68+.
\end{aligned}
\]

Mica has long been employed as a fubflitute for glafs. A great quantity of it is faid to be ufed in the Ruffian marine for panes to the cabin windows of hips; it is preferred, becaufe it is not fo liable as glafs to be broken by the agitation of the Thip.
species 7. Talc \(\ddagger\).
This ftone has a very ftrong refemblance to mica, - Pott \(^{\text {w. }}\) and was long confidered as a mere variety of that mineBerl. ral. It occurs fometimes in fmall loofe fcales, and fomep us.times in an indurated form ; but it has not hitherto been found cryftallized.

Its texture is foliated. The lamelle are flexible, but not elaftic. Its luftre is from 2 to 4 . Tranfparency from 2 to 4. Hardnefs 4 to 6. Sp. gr. when indurated, from 2.7 to 2.8 . Feels greafy. Colour moft common!y whitifh or greenifh. Spanifh wax rubbed with it becomes poffitively electric f.

\section*{Variety I. Scaly talc. \\ Talcite of Kirwan.}

This variety occurs under the form of fmall fcales, Suppl. Vol. II. Part I.
fearcely cohering. Luftre 3 to 4. Very light. Ad. Simple heres to the fingers. When rubbed upon the fikin, it Stones. gives it a glofs. Colour white, with a fhade of red or green ; fometimes leek green.

\section*{Variety 2. Common talc. Venetian talc.}

This variety often occurs in oblong nodules. Luftre, nearly metallic, 4. 'I'ranfparency 2 to 3 ; when very thin 4. Hardnefs 4 to 5. Colour white, with a fhade of green or red; or apple green, verging towards filver white. By tranfinitted light green.

Variety 3. Shiftofe talc.
Its ftructure is flaty. Fracture hackly and long fplintery. Eafily crmmbles when rubbed in the fracture. External luftie 2 to 3 ; internal, 1 ; but fometimes, in certain pofitions, 3. Colour grey, with a fhade of white, green or blue. Becomes white and fcaly when expofed to the air.

A fpecimen of common talc, analyfed by Mr Chenevix, contained 48.0 filica,
37.0 alumina,
6.0 oxyd of iron,
1.5 magnefia, 1.5 lime, 5.0 water,

species 8. Bafaltine \(\dagger\).
Bajaltic bornblende of Werner-Aginote of Hauy-Zillertite of Lamethcrie-Shorl pri/matique bexagone of Sauflure.
This ftone is found commonly in bafaltic rocks; hence its name, which we have borrowed from Mr Kirwan. It is cry Itallized, either in rhomboidal prifms, or fix or eight fided prifms, terminated by three-fided pyramids. Its texture is foliated. Its fracture unever. Luftre 3. 'I'ranfparency, when in very thin plates, I. Hardnefs from 9 to 10. Sp. gr. 3.333. Colour black, dark green, or yellowifh green. Streak white. Tranfmits a reddifh yellow light. Before the blow-pipe, it melts into a greyifh coloured enamel, with a tint of yellow \(\dagger+\) Le Liever; A fpecimen, feemingly of this ftone, analyfed by Berg. Jour. de man, contained \(5^{8}\) filica,

27 alumina,
9 iron,
4 lime,
I magnefia,


This flone enters into the compofition of various blende. mountains. Its texture is very confpicuoufly foliated. ๆ Kirw. is Fracture conchoidal. Fragments often rhomboidal. 21 3 . Luftre 2. Opaque. Hardnefs 5 to 2. Tough. Sp. gr. 2.922 to \(3.4^{1}\). Colour black, blackifh green, olive D d green
(в) Hif. General de Voyages, T. XVIII. 272, quoted by Hauy Four. de Min. No XXVIII. 299.
(c) Black mica is often nearly opaque.
(D) Hauy, ibid. p. 295. Bergnian, however, found pure mica infufible per fe; and this has been the cafe with all the fpecimens of Mufcovy glafs which we have tried.
(E) We fufpeet, that under this name Mr Hauy comprehends foorl alfo.

Earthsand
Stones.
* Hauy,

Four de
Min. \({ }^{3}\)
Exviii. 267 .
+ Beob. der
Berlin, 5 .
Band 317.
\(\stackrel{54}{5}\)
Refpien.

\section*{dent horn-}
bleade.
species 10. Refplendent Hornblende.
There are two minerals which Verner confiders as varieties of hornblende, and Mr Iirwan as conftituting a diftinct fpecies. Thefe, till future analyfes decide the point, we thall place here under the name of refplendent hornblende, the name given them by Mr Kirwan; and we fhall defcribe them feparately.

Varicty 1. I abradore hornblende.
Texture, curved foliated. Isuftre, in fome pofitions, 0 ; in others metallic, and from 3 to 4. Opaque. Hardnef3 8 to 9. Sp. gr. from 3.35 to 3.734. Colour, in moft politions, greyifh black; in others, it reflects a ftrong iron grey, fometimes mixed with copper red.
* Kirzv. i. 221.
-


Texture foliated. Luftre metallic, 4. Tranfparency, in thin pieces, r. Hardnefs 8 to 9. Sp. gr. 2.882. Colour grcen, often with a hade of yellow; alfo golden yellow. In fome politions it reflects white, grey, or yellow. At \(1_{14}\) Wedgewood, hardened into a porcelain inafs. A fpecinien, analyzed by Gmelin, was compofed of 43.7 filica, 179 alumina, 23.7 iron, 11.2 magnefia.
+ Eergbau-
kunde, 1 Band. p. 92.
55.

Obgrian.
| Kirw. :. 264.
\(\cdot+\)
green, or leek green. Gitreak greenifh. It neither becomes electric by frictiun nor heat *. Before the blowpipe it melts into a black glafs. A fpecimen of black horrblende, analyfed by Mr Hermann, was compofed of

37 filica,
27 alumina,
25 iron,
5 lime.
3 magnefia,
97 t
is amorphous. Texture fomewhat foliated. Fracture uneven, approaching to the fplintery. Lutre r. Tranfparency fuarce 1. Hardnefs 9. Colour azure blue, and fometimes brown and green. Streak white. Before the blow-pipe, whitens and becomes rifty; but is infulible per fe.

\section*{Genus VII.}

\section*{species t. Felfpar \(\ddagger\).}
```

MGenus VJI. sap.

```

This fone forms the principal part of many of the Kirw.i, highelt mountains. It is cormmonly cryftallized. Its four, de primitive form, according to De Life, is a rectangular \(P\) fobr. de paf prifm, whofe bafes are rhombs, with angles of \(6 \rho^{\circ}\) and finm \(115^{c}+\). Sometimes the edges of the prilm are wanting, + Fig. 15 . and faces in their place; and fonetimes this is the cale and 4. alfo with the acute angles of the rhomb. For a defcription and figure of thefe, and other varieties, we refer the reader to Romé de Lifle *, Mr Hauy t, and Mr* Cryalle, Pini \(\ddagger\).

Its texture is foliated. Its crofs fracture uneven. Fragments rhomboidal, and commonly fmooth and polinhed on four fides. Luftre of the polifined faces often. 273 . 3. Tranfparency from 3 to 1. Hardrefs 9 to 10. Sp. Novectle gr. from \(2 .+37\) to 2.7 . Gives a peculiar odour when rubbed. It is made electric with great difficulty by friction. Fufible per fe into a more or lefs tranfparent glafs. When cryltallized, it decrepitates before the blow.pipe.

\section*{(-Wariety 1. Pure Felfpar. Moon Ione - Adularia.}

This is the pureft felfpar hitherto found. It occurs in Ceylon and Switzerland ; and was firt mentioned by Mr Sage. Luftre nearly 3. 'Tranfparency 2 to 3 . Hardnefs 10. Sp. gr. 2.559. Culuur white; fometimes with a fhade of yellow, green, or red. Its furface is fometimes iridefcent.

Variety 2. Common Felfpar.
Luttre of the crofs fracture 0 ; of the fracture, in the direction of the lamine, from 3 to 1. Tranfparency 2 to I. Colour moft commonly fleth red; but often bluiff grey, yellowith white, milk white, brownith yellow; and fometimes blue, olive green, and eren black.

Varicty 3. Labradore felipar.
This wariety was difcovered on the coatt of Labradore by Mr Woilf ; and fiace that time it has been fonnd in Europe. LuAte \(\mathbf{2}\) to 3. Tranfparency from 1 to 3. Sp. gr. from 2.67 to 2.6925 . Colonr grey. In centain pohtions, lyots of it refleet a blue, purple, red, or green colour.
Variety 4. Continuous felfpar.
This variety moft probably belongs to a different fpe. cies; but as it has not hitheito been analyfed, we did not think ourfelves at liberty to alter its place.

It is found in large maffes. Texture earthy. Fracture uneven, fometimes fplintery. Luftre o. Tianfparency 1. Hardnefs 10. Sp. gr. 2.609. Coluur reddifh grey, reddifh yellow, flefh red.

A fpecimen of green felfpar from Siberia, analyfed by Vauquelin, contained

> 62.83 filica,
> 17.02 alumina,
> 16.00 potafs,
> 3.00 lime,
1.co oxyd of iron.

Compail felfpar.

\section*{SHECTES 2. Lepidolite (F). Lila'ite.}

This fone appears to have been Eirf obferved by the Abbé Poda, and to have been fitt defcribed by De Born §. Hitherto it has only been found in Moravia in Germany, and Sudermania in Sweden *. There it is mixed with granite in large amophous mafles. It is compofed of thin plates, eafily feparated, and nut unlike thofe of mica \(\uparrow\). Luftre, pearly 3. Tranfparency between 1 and 2. Hardeefs 4 to 5. Not eafily pulverifed \(\ddagger\). Sp. gr. from \(2.816 \|\) to 2.8549 \%. Colour of the mafs, violet blue; of the thin piates, filvery white. Powder white, with a tint of red \(\$\). Before the blowpipe, it froths, and melts eafly into a white femitranfparent enamel, full of bubbles. Diffolves in borax with effervefcence, and communicates no colour to it *. Effervefces flightly with foda, and melts into a mafs fpotted with red. With microcofmic falt, it gives a pearl coloured globule \(\dagger\).

This fone was firft called lilalite from its colour, that of the lily. Klaproth, who difcovered its component parts, gave it the name of lepidolite (G).

> It is compofed of 53 filica,
> 20 alumina,
> 38 potafis,
> 5 fluat of lime,
> 3 oxyd of mangane \(i e\), 1 nxyd of iron.
> 1007
> spectes 3. Lencite \|.
> Tefivian of Kirwan-WV.ite garnet of Vefuvius.

This fone is ufually found in volcanic productions, and is very abundant in the neighbourhond of Vefuvius. It is always cryftallized. The primitive form of its cryftals is cither a cube or a thomboidal dodecaledron, and its integrant mrolecules are tetraliedrons; but the varieties hitherto obferved are all polyhedrons: 'The moft common has a fpheroidal figure, and is bounded by 24 equal and fimilar traperiods \(\dagger\); fometimes the faces are 12, 18, 36,54, and triangular, pentagonal, \&c. For a defcription and figure of feveral of thefe, we refer thre reader to Mr Hauy \(\|\). The cryltals vary from the fize of a pin liead to that of an inch.
The texture of the leucite is §oliated. Its fracture fomewhat conchoidal. Lultre 3 ; when in a flate of decompofition 0 . Tranfparency 3 to 2 ; when decompofing 0 . Hardnefs 8 to 10 ; when decompoting 5 to 6 . Sp. gi. 2.7(148. Culour white, or gresifl white (H). Its powder caufes fyrup of violets to afliume a green colour*.

It is compofed, as Klaproth has fhewn, of
\[
\begin{aligned}
& 54 \text { filica, } \\
& 23 \text { alumina, } \\
& 22 \text { potafs. }
\end{aligned}
\]
\[
\overline{99}(r)
\]
- It was by analyfing this ftone that Klaproth difcovered the prefence of potafs in the mineral kingdom; which is not the leaft important of the numerous difcoveries of that accurate and illuftrious chemitt.
Leucite is found fornetimes in rocks which have never been expofed to voleanic fire; and Mr Dolomient has rendered it probahle, from the fubllances in which it is found, that the leucite of volcanoes has not been formed by volcanic fire, but that it exifted previoully in the rocks upon which the volcanoes have acted, and that it was thrown out unaltered in fragments of thefe rocks §.

\section*{Genes VIII. sag.}
species 1.' Emerald (x).
This ftone has hitherto been ouly found cryfallized. G.vill.sac The primitive form of ite creftals is a regular fix.fided Limerald. prifm; and the form of its intcgrant molecules is a triangular prifm, whofe fides are fquares, and bafes equilateral triangles \({ }^{*}\). The moft common variety of its cryftals is the regular fix-fided prifm, fometimes with the edgee of the prifm, or of the bafes, or the folid angles, or both wanting \(\ddagger\), and fmall faces in their place \(\dagger\). The frdes of the prifm are gencrally channelled.

Itstexture is foliated. Its fracture conchoidal I Iile, ii. ufually from 3 to 4 . Tranfparency from 2 to 4 . Caufes a double refraftion. Hardncf 12 . Sp. gr. 2.65 to 2.775. Colour green. liecomes elcciric by friction, but not by lieat. Its powder does not phorphorefee when thrown on a hot iron \(\dagger\). At 150 , Wedyewoud it melts into an opaque coloured mafs. According to Dolomieu, it is rutrble per fe by the blow-pipe \(\ddagger\).

This mineral was formerly fubdivided into two diflinet 1 1bi2 \(1 \%\). fpecies, the emerald, and beryl or ayua marin. Hauy demonftrated, that the emerald and beryl conefponded exactly in their flructure and properties, and Vauquelin found that they were con pofed of the farre ingredients; benceforth, therefore, thicy mult be confidered as varieties of the fame fipecies.
The varicty forme:ly called emerald varies in colour from the pale to the perfect grectl. When heated to \(120^{\circ}\) Wedgewood, it becomes blue, but recovers its colour when cold. A fpecimen, analyfed by Vauquelin, was compofed of

> 6 1.60 filica,
> 14.00 aluminn,
> 13.00 glucina,
> 3.50 oxyd of chromurn,
> 2.56 lime,
> z. .00 moitture or other volatine ingredient.
\[
99.66|\mid
\]
|| Ann. des \(^{2}\)
The bergl is of a greyif green colour, and fometimes
blue, yellow, and even white : fometimes different co.
Chim. xxvi. lours appear in the fame fone \(\oint\). It is found in Ceylon, \(\oint\) Dolomieut, different parts of India, Brazil, and efpecially in Siiberia ibid. and 'Tartary, where its cyyftils are fometimes a foot
-
\(\square\) 2


-

Eartlis and long. A fpecimen of beryl, analyfed by Vauquelin, Stones. contained

69 filica,
13 alumina,
16 glucina,
1.5 oxyd of iron.
| Ann. de
Cbin.xxviii. 168. 6
G.IX. sab. Staurolite.
* Kirzu. i . 282.
99.5 11

It was by analyfing this ftone that Vauquelin difcovered the earth which he called glucina.
\(\qquad\) Genus IX. sab.
species I. Staurolite*。
Andreolite of Lametherie and Hauy-Hyacinthe blanclie crucifurme, var. 9. of Romé de lifle.
This ftone has been found at Andreaberg in the Hartz. It is cryftallized, and the form of its cryftals has induced mineralogifts to give it the name of crofs.
fFig. 17. Atone. Its cryftals \(\dagger\) are two four-fided flattened prifms, terminated by four-fided pyramids, interfecting each other at right angles: the plane of interfection paffing longitudinally through the prifms ( x ).

Its texture is foliated. Its luffre waxy, 2. Tranfparency from 1 to 3. Hardnefs 9. Brittle. Sp. gr. 2.355 to 2.361 . Colour milk white. When heated nowly, it loies 015 or 0.16 parts of its weight, and falls into powder. It effervefces with borax and miciocuf. mic falt, and is reduced to a greenift opaque mafs. With foda it melts into a frothy white enamel. When its powder is thrown on a bot coal, it emits a greenifh
+ Hary, yellow light \(\dagger\).
Four. de
Min. No
xxviii. 280.

A fpecimen analyfed by Weftrum was compofed of 44 filica,
20 alumina,
20 barytcs,
16 water.
100
Klaproth found the fame ingredients, and nearly in \(\ddagger\) Beiträge, the fame proportions \(\ddagger\).
ii. 8 o .

A variety of taurolite has been found only once, which has the following peculiarities.

Its luftre is pearly, 2. Sp. gr. 2.361. Colour brownifh grey. With foda it melts into a purplifh and yellowifh frothy enamel. It is compofed, according to Weftrum, of 47.5 filica,
12.0 alumina,
20.0 barytes,
16.0 water,
4.5 oxyds of iron and manganefe.

63
G. X. \(A_{8 L}\).

Chryfube-
syl.
* Kirw. i. 261.
100.0

Genus X. r. asz.
species 1. Chryfoberyl *.
Oriental chryfolite of jewellers-C'ymophane of Hauy.
Hitherto this ftone has been found only in Brazil, the inland of Ceylon, and as fome affirm near Nortfchink in Siberia. Werner firft made it a diftinct fpecies, and gave it the name which we have adopted. It is ufually found in round maffes about the lize of a pea, but it is fometimes alfo cryftallized. The primitive form of its cryftals is a four-fided rectangular prifm, whofe height
is to its breadth as \(\sqrt{ } 3\) to 1 , and to its thicknefs as \(\sqrt{2}\) imple to \({ }^{1} \dagger\). The only variety hitherto obferved is an ei hit- Sones, fided prifm, terminated by fix fided fummits \(\ddagger\). Two of Fig. 18, the faces of the prifm are hexagonc, two are rectangles, \(\boldsymbol{F i g}\). 19 , and four trapeziums; two faces of the fummits are rectangles, and the othcr four trapeziums. Sometimes two of the edges of the prifm are wanting, and finall faces in their place + .

It:, texture is foliated. Laminæ parallel to the faces \(\begin{gathered}\text { Four. de } \\ \text { Min. No }\end{gathered}\) of the prifm. Luftre 3 to 4 . 'Tranfparency 3 to \(4 \cdot \times x i .5\). Caules fingle ref:action. Hardnefs 12. Sp. gr. from \(3.698 \ddagger\) to \(3.7961 \|\). Colour yellowih green, furface \(\ddagger\) Werrer. foarkling. It is infufible by the blow pipe per fe, and \| Hary. with foda.

A fpecimen of chryfoberyl, analyfed by Klaproth, was compofed of 71.5 alumina, 18.0 filica, 6.0 lime, 1.5 oxyd of iron.
97.0 §

Genus X. 2. sal.
species 2. Hyalite*.
This fone is frequently found in trap. It occurs in grains, filaments, and rhomboidal maffes. Texture fo- * Kirw. liated. Fracture uneven, inclining to conchoidal. 1.uftre \({ }^{296}\). glafly (M), 2 to 3 . Tranfparency 2 to 3 ; fometimes, tho' feldom, it is opaque. Hardnefs 9. Sp. gr. \(2.11 \dagger+\) Kirua Colour pure white. Infufible at \(150^{\circ}\) Wedgewood; but it yields to foda \(\ddagger\). According to Mr Link, it is compofed of

> 57 filica,
> 18 alumina, 15 . lime.

90 and a very little iron \|. Spccies 3. Edelite*.
'This ftone has hitherto been found only in Sweden IEdelit at Moffeberg and Ædelfors. From this laft place Mr* Kirw Kirwan, who firft made it a diftinct fivecies, has given 276 . it the name which we have adopted. It was firt mentioned by Bergmant. Its form is tuberofe and knotty. + opulf. Texture ftriated; fometimes refembles quartz. Luftre from o to 1. Sp. gr. 2.515 after it has abforbed water \(\ddagger\). Colour light grey, often tinged red; alfo yel. \(\ddagger\) See \(K_{i}\) lowifh brown, yellowith green and green. Before the \({ }_{i}, 276\). blow-pipe it intumefces and forms a frothy mafs. Acids convert it into a jelly \(\oint\). A fpecinen from Moffeberg, \& Bergii analyfed by Bergman, contained

> 69 filica,
> 20 alumina,
> 8 lime,
> 3 water.
\(100|\mid\)
A fpecimen from Ædelfors yielded to the fame cbe- \({ }^{101 .}\) mift
\[
\begin{aligned}
& 62 \text { filica, } \\
& 18 \text { alumina, } \\
& 16 \text { lime, } \\
& 4 \text { water. } \\
& \hline 100 \pi
\end{aligned}
\]
(ı) See Gillot, Four. de Phy. 1793, p. I and 2.
(M) Hence probably the name hyalite, which was impofed by Werner from 'vaxis, glafs, and 26505 , a fone:
species 4. Zeolite (n).
This ftone was firt defcribed by Cronftedt in the Stockholm Tranfactions for 1756. It is found fome. times amorphous and fometimes cryffallized. The primitive form of its cryftals is a reetangular prifm, whofe bafes are fquares. The moft common variety is a long four fided prifm, terminated by low four fided pyramids*.

Its texture is ftriated or fibrous. Its luftre is filky, from 3 to 1. Tranfparency from 2 to 4; fometimes 1. Hardnefs 6 to 8; fometimes only 4. Abforbs water. Sp. gr. 2.07 to 2.3. Colour white, often with a fhade of red or yellow; fometimes brick red, green, blue. When heated, it becomes electric like the tourmaline + . Before the blow-pipe it froths (o), emits a phofphorefcent light, and melto into a white femitranfparent enamel, too foft to cut glafs, and foluble in acids. In acids it diffolves flowly and partially without effervefcence; and at laft, unlefs the quantity of liquid be too great, it is converted into a jelly.

A fpecimen of zeolite ( P ), ?nalyfed by Vauquelin, contained
\[
\begin{aligned}
& 53.00 \text { flica, } \\
& 27.00 \text { alumina, } \\
& 9.46 \text { lime, } \\
& 10.00 \text { water. } \\
& \hline 99.46 \ddagger \text {. } \\
& \text { SPECIES } 5 \text {. Stilbite. }
\end{aligned}
\]

This ftone was firt formed into a diftinct fpecies by Mr Hauy. Formerly it was confidered as a variety of zeolite.

The primitive form of its cryftals is a rectangular prifm, whofe bafes are rectangles. It crytallizes fometimes in dodecahedrons, confilting of a four-fided prilm with hexagonal faces, terminated by four-fided fummits, whofe faces are oblique parallelograms; fometimes in fix-fided prifms, two of whofe folid angles are wanting, and a fmall triangular face in their place *.

Its texture is foliated. The lamine are cafily feparated from each other; and are fomewhat flexible. Luftre pearly, 2 or \(3(a)\). Hardnefs inferior to that of zeolite, which fcratches ftilbite. Brittle. Sp. gro 1 my, ibid. \(2.500+\). Colour pearl white. Powder bright white, fometimes with a fhade of red. This powder, when expofed to the air, cakes and adheres as if it had abforbed water. It caufes fyrup of violets to affume a green colour. When ftilbite is heated in a porcelain crucible, it fwells up and affumes the colour and femitranfparen. cy of baked porcelain. By this procefs it lofes 0.185 of its weight. Before the blow-pipe it froths like borax, and then melts into an opaque white coloured enmquelin, amel S .
No
N
AWL.

According to the analy fis of Vauquelin, it is compofed of 52.0 filica,
17.5 alumina, 9.0 lime, 18.5 water.
97.011
species 6. Analcime.
red
1
(N) Kirw. I. 278.—Guettard, IV. 637.-Bucquet, Mem. Sav. Etrang. IX. 576.-Pelletier, Four. de Phyf. XX. 420 .

(p) Dr Black was accuftomed to mention, in the courfe of his lectures, that \(\operatorname{Dr}\) Hutton had difcovered foda
in zeolite. This difcovery has not hitherto been verified by any other chemical mineralogit.
(e) Hence the name given to this mineral by Hauy, fillite, from olinfu, to Jine.
(R) Hence the name analcime given it by Hauy, from avaxas, weak.
(s) Hence the name lazulite, from an Arabian word azul, which fignifies blue.
(r) Kirwu. I. 258.-Gerhard, Difquijitio phyfico-chymica Granatorum, \&c.-Pafumot, Four. de Phyf. IIJ
442.-Wiegleb, Ann. de Chim. I. 23 I.

Siriben: Stol:es.

* Fig. 20.
* De Lille. ;i. 322 and Haky, Ann. de Clivm. zvii. 305. cryhalo is a lodecahedron whore fdes are a hombs, with angles of \(78^{\circ} 33^{\prime \prime} 44^{\prime \prime}\), and \(120^{\circ} 28^{\prime} 16^{\prime \prime}\). The inclina. tion of the rhombs to cach other is \(120^{\circ}\). This dode. cabedron may be confidered as a four fided prifm, terminated by four-fided pyramids *. It is divifible into four parallelopipeds, whofe fides are rhombs; and each of thefe may the civided into fonr tetrahedrons, whofe fides are ifofeles trimgles, conal and fimilar to either of the haives into which the rhon boidal faces of the dodecaliedron are diviced by their fhorter diagonal. The
+ Hauy, ioil, integrant molecules of garnet are fimilar tetrahedrons \(\dagger\). Sometines the edges of the dodecahedron are wanting, and fimall faces in their place; and fometimes frarnet is cryfallized in poly hedrons, having 24 trapezoidal faces. For a defeription and figure of thefe, and other varieties of garnét, we refer to Romé le Lijle and Hauy \(\ddagger\).

The texture of garnet, as Dergman firlt hewed, is
\(\|\) opufo. ii. foliated \(\mid\). . Its fracture commonly conchoidal. Inter-
9.
§ Haky,
Jour. de
Min. N \({ }^{0}\)
xxvisi. 260 nal luftre from 4 to 2. Tranfparency from 2 to 4 ; fometimes only 1 or 0 . Caufes fingle refraction \(\$\). Hardnefs from 10 to 14. Sp. gr. 3.75 to 4.188. Colour ufually red. Often attracted by the magnet. Fiufible per fe by the blow pipe.

Variety I. Oriental garnet (u).
- Internal huftre 3 to 4. Tranfparency 4. Mardnefs 13 to 14. Sp. gr. 4 to 4.188 . Colour deep red, inclining to violet ( x ).

Variety 2. Comnoon garnet.
Fracture uneven, inclining to the concloidal. In ternal luftre 2 to 3. Tranfparency from 3 to 0 . Hardnefs 10 to 11 ; fometimes only 9 . Sp. gr. 3.75 to 4. Colour commonly decp red, inclining to violet ; fometimes verging towards black or olive; fometimes leek green, brown, yellow.
l'ariety 3. A. morphous garnet.
Strueture flaty. Luftre 2. Tranfparency 2 to 1. -Hardnefs il to 12. Sp. gr. 3.89. Colour brownifh or blackifh red. Found in Sweden, Switzelland, and the Eaft Incies.

A fpecimen of oriental garnet, analyfed by Klaproth, contained \(\quad 35.75\) filica,
\[
27.25 \text { alumina, }
\]
\(3^{6 . c 0}\) oxyd of iron, 0.25 oxyd of manganefe.
* Beitrige, ii. 26.

A fpecimen of red garnet, analyfed by Vauquelin, contained
52.0 tilica, 20.0 alumina, 17.0 oxyd of iron, 7.7 lime. \(\overline{96.7 t}\)
Min. No A fpecimen of black garnct yielded to the fame che. aliv. 575. milt 4.- tilica, i) alumina, 2. lime, 16 oxyd of iron, 4 moitu:e.
: Ibid. 5 ; 3

Mr Klaproth found a fpecimen of Bohemian garnet, compofed of - 40.00 filica, 28.50 alumina, 16.50 oxyd of iron, 10.00 magnefia,
3.50 lime,
.25 oxyd of manganefe.
\(98.75 \%\)
Stecies 2. Thumerfone*.
Yanolite of Lametherie-Avinite of Hauy.
This fone was firft defcribed by Mr Schreber, who fone. \({ }^{\text {Kirww it }}\). found it near Balme d'Auris in Dauphinć, and gave it 273 .- P P/ch the name of Bool violét. It was afterwards found near lctier, Your, Thum in' Saxony, in confequence of which Werner de priv. called it thumerfone.
 crytallized. The primitive form of its cryftals is a reetangular prifn, whofe bafes are parallelograms with angles of \(101^{\circ} 32^{\prime}\) and \(78^{\circ} 28^{\prime} \neq\). The mott ufual va. riety is a flat rhomboidal parallelopiped, with two of its oppofite edges wanting, and a imall face in place of each \(\$\). The faces of the paralielopiped are generally ftreaked longitudinally.

The texture of thumerfone is foliated. Its fracture
§Beiträge,
ii. 2 75
Thumer.

Simple
Stones.

The texture of thumertone is foliated. Its fracture
conclioidal. Luftre 2. Tranfparency, when cryftallized, 3 to 4 ; when amorphous, 2 to I. Caufes fimple refraction !". Hardnefs 10 to 9. Sp. gr. 3.29 ;6. Co. | Haws, itio lour clove brown; fometimes inclining to red, green, grey, violet, or black. Before the blow-pipe it froths like zeolite, and melts into a hard black enamel. With borax it exhibits the fame phenomena, or even when the ftone is fimply heated at the end of a pincer \(\mathbf{T}\).

A fpecimen of thumerfone, analyfed by Klaproth, contained
52.7 filica,
25.6 alumin
25.0 alum,
0.4 lime,
9.6 oxyd of iron with a trace of
97.3*

A fpecimen, analyfed by \({ }^{*}\) Vauquelin, contained
44 filica,
18 alumina,
19 line,
14 oxyd of iron,
4 oxyd of manganefe.
\(92 \dagger\)
specifs 3. Prelinite (y).

\section*{Four, de} Min. 궁 25.6 alumiria, manganefe.
'Ihongh this thone had been mentioned loy Sage \(\dagger\), + Mintre Rounc de Lifle \({ }^{*}\), and other mineralugifts, Werner was 232 the firf who properly dittinguithed it from other mine-* Crypitu rals, and made it a ciftinct fopeces. The fyecimeniii.2750 which he examined was brouglit from the Cape of Grood Hope by Colonel Pielun; hence the name preb. nite, by whith he diffiaguilbed it. It was found near 1) unibarton by Mr Grotche + ; and fince that time it \(+A \mathrm{~mm}\). has been obferved in other parts of Scotland.
(u) This Teems to te the cirlvincte ( \(x \psi_{5} \alpha \xi\) ) of Theophraftus, and the carbunculus garamanticus of other ancient writers. See IFill's Theopl roblus \(\pi \cdot \rho_{i} \lambda_{1} 9_{a v}\), p. 74 and 77.
(x) Hence, according to miny, the name garnet (in Latin granatus), from the refemblance of the tone in co1.ur to the Hoffoms of the pomegranate.
 sler Berling, 2 Band. 211. And Avin. de Chim. I. 201.

It is both amorphous and cryftallized. The cryftals are in groups, and confuled : they feem to be fourfided prifms with dihedral fummits \(\ddagger\). Sometimes they are irregular fix fised plates, and fometimes flat rhomboidal parallelopipeds.
Its texture is foliated. Fracture uneven. Internal luftre pearly, farcely 2. 'Tranfparency 3 to 2. Hardfy,ibid, nefs 9 to 10. Brittle. Sp. gr. \(2.6969 \|\). Colour apple green, or greenifh grey. Before the blow-pipe it froths wore violently than zeolite, and melts into a brown enarnel. A fpecimen of prehnite, analyfed by Klaproth, was compofed of
\[
\begin{aligned}
& 43.83 \text { filica, } \\
& 30.33 \text { alumina, } \\
& 18.33 \text { lime, } \\
& 5.66 \text { oxyd of iron, } \\
& 1.16 \text { air and water. }
\end{aligned}
\]

\subsection*{99.318}

Whereas Mr Haffenfratz found in another fpecimen 50.0 filica,
20.4 alumina,
23.3 lime,
4.9 iron,
. 9 water,
.5 magnefia.
100.0 .
species 4. Thallite.
Green Joorl of Dauphine of De Lifle*-Delpbinite of: Sauffure.
This ftone is found in the fiffures of mountains; and hitherto only in Danphiné and on Chamouni in the Alps.

It is fometimes amorphous, and fometimes cryftalli. zed. The primitive form of ita cryitals is a reeangu. lar prifm, whofe bafes are rhombs with angles of \(114^{\circ}\) \(37^{\prime}\), and \(65^{\circ} 23^{\prime} \dagger\). The moft ufual variety is an elongated four-fided prifm (often flattened), terminated by four-fided incomplete pyramids ई; fometimes it occurs in regular fix fided prifms \(\ddagger\). The cryftals are often very flender.

Its texture appears fibrous. Luftre inconfiderable. Tranfparency 2 to 3 , fometimes 4 ; fometimes nearly opaque. Caufes fingle refraction. Hardnefs 9 to 10. Brittle. Sp. gr. 3.4529 to \(3 \cdot 46\). Colour eiark green ( z ). Powder white or yellowifh green, and feels dry. it does not become electric by heat. Before the blow pipe, froths and melts into a biack flag. \(y\), and With boras melts into a green bead \(\|\).

A fpecimen of thallite, analy fed by Mr Defcutils, contained
\(96.5 \oint\)

Genus XIT. f. Ams.
spectes i. Cyanite*.
Sappare of Sauflure.
\(215=\)
Simple \(\underbrace{\text { Stores. }}\)
This ftone was firft defcribed by Mr Sauffure, the G . \(\mathrm{XII}_{4} \mathrm{~A} \mathrm{Ms}^{*}\) fon, whe gave it the name of fapparet. It is common- Cyanite. ly found in granite rocks. The primitive form of its * Kirw. i. cryftals is a four-fided oblique prifm, whofe fides are 209 , -Sage, inclined at an angle of \(103^{\circ}\). The bafe forms with one fourf. do \(\times x \times \mathrm{x}\). fice of the prifm an angle of \(103^{\circ}\); with another, an angle 39 . of \(77^{\circ}\). It is fometimes cry ftallized in fix-fided prifins \(\ddagger\). + Jour. de

Its texture is foliated. Laminæ long. Fragments Pby. xxxivo long, fplintery. Luftre pearly, 2 to 3. Tranfparency \(\ddagger\) Hauy of the laminæ 3. Caufes fingle refraction \(\|\). Hardnefs Foury, de 6 to 9. Brittle. Sp. gr, from 3.092 to \(3.622 \oint\). Feels Min. No fomewhat greafy. Colour milk white, with fhades of Hauy, ibid. fky or pruflian blue (A); fometimes bluifh grey; fome. \(\mathrm{H}_{\text {Hirwa }}\) Kibid. times partly bluifh grey, partly yellowifh or greenifh grey.

Before the blow-pipe it becomes almoft perfectly white; but does not melt. According to the analyfis of Sauffure, it is compofed of
\[
\begin{aligned}
& \text { 66.92 alumina, } \\
& 13.25 \text { magnefia, } \\
& 12.81 \text { filica, } \\
& 5.48 \text { iron, } \\
& \frac{1.71}{100.17} \text { lime. }
\end{aligned}
\]

Cyanite has alfo been analy fed by Struvius and Her-Pbyy ibid. mann, who agree with Sauffure as to the ingredients; but differ widely from him and one another as to the proportions.


Genus XII. 2. msa.
C Crells Ano
nals, 17go. \(\dagger\) Fidid.
species 2. Serpentine (b).
This fone is found in amorphones mafles. Its frac. G. \(\mathrm{XX}^{75}\) I. zo ture is Eplintery. Luftre o. Opaque. Hardnefs 6 to serpentive. 7. Sp. gr. 2.2645 to 2.709 . Feels rather foft, al. moft greafy. Gencrally emits an earthy fmell when breathed upon. Its colours are various fhades of green, yellow, red, grey, brown, blue : commonly one or two colours form the ground, and one or more appear in fpots or veins ( c ).

Before the blow-pipe it hardens and does not melt.
A feccimen of ferpentine, analyfed by Mr Chenevix,
cortained
\(34 . ;\) magnefia,
28.0 filica,
23.0 alumina,
4.5 oxyd of iron,
0.5 lime,
(z) Hence the name thallile given it by Lametherie, from \(\theta a \lambda \lambda 0 s\), a green leaf.
(A) Hence the name cyanite, impofed by Werner.
(в) Kirw. I. 156.-Margraf, Mem. Berlin, 1759, p. 3.-Bayen, Four. de Pbyf. XIII.46.-Mayer, Crell's

Annals, 1789 , II. 416.
(c) Hence the name fergentine, given to the fone from a fuppofed refemblance in colours to the fisin of
ferpent.

Earths and Stones.
\(\qquad\) G. XIII. amorphous. Its ftrueture is often flaty. Texture unmsat. dulatingly foliated. Luftre from 1 to 3 . Tranfpa-

Potfone.
\(\$\) Kirw i.
555.

\section*{Genus XIII. msat.}
species i. Potfonet. rency from 1 to 0 ; fometimes 2. Hardnefs 4 to 6. Brittle. Sp. gr. from 2.8531 to 3.023 . Feels greafy. Sometimes abforbs water. Colour grey with a Thade of green, and fometimes of red or yellow ; fometimes leek green; fometimes fpeckled with red.
Potfone is not much affected by fire; and has therefore been made into utenfils for boiling water; hence its name.
According to Wiegleb, the pottone of Como conใains
\(3^{8}\) magnefia,
\(3^{8}\) filica,
7 alumina,
5 iron,
1 carbonat of lime,
\(\frac{1}{90}\)
* Kirv. i . 547.
species 2. Chlorite*.
This mineral enters as an ingredient into different mountains. It is fometimes amorphous, and fometimes cryftallized in oblong, four fided, acuminated cryftals.

Its texture is foliated. Its lultre from \(\circ\) to 2 . Opaque. Hardnefs from 4 to 6 ; fometimes in loofe fcales. Colour green.

Variety 1. Farinaceous chlorite.
Compofed of fcales fcarcely cohering, either heaped together, or invefting other ftones. Feels greafy. Gives an earthy fmell when breathed on. Difficult to pulverife. Colour grals green; fometimes greenifh brown ; fometimes dark green, inclining to black. Streak white. When the powder of chlorite is expofed to the blowpipe it becomes brown. Before the blow pipe, farinaceous chlorite froths and melts into a dark brown glafs;
* Vauquelin, with borax it forms a greenifh brown glafs *.

Four. de
Min. No
mxix. \(16 \%\).

Fehis variety is cryftallized. Luftre I. Hardnefs 6 . Feel meage. Colour dark green, almoft black. Streak mountain green.

Variety 3. Slaty chlorite.
Structure faty. Fragments flatted. Internal luftre I to 2. Hardnefs 5. Colour greenifh grey, or dark green inclining to black. Streak mountain green.

A fpecimen of the firft variety, analyfed by Vauquelin, contained
43.3 oxyd of iron,
26.0 filica,
15.5 alumina,
8.0 magnefia,
2.0 muriat of potals, 4.0 water. \(\overline{98.8} \dagger\)

A fpecimen of the fame variety yielded Mr Hæp-
12.92 oxyd of iron,
37.50 filica,
4.17 alumina,
43.75 magnefia, 1.66 lime.
100.07

A fpecimen of the fecond variety, analyfed by the Voyager, iil fame chemilt, contained

> 10.15 oxyd of iron,
> 4 I .15 filica,
> 6.13 alumina,
> 39.47 magnefia,
> 1.50 lime,
> 1.50 air and water.
> -99.9 f.

On the fappofition that thefe analyfes are accurate, nals, 1790 , the enormous difference between them is a demonftration that chlorite is not a chemical combination, but a mechanical mixture.

Genus XIV. slam.
SPECIES I. Siliceous fpar (D).
This ftone has been found in Tranfy Siliceous cryftallized in 4 or 6 fided prims, chania. It is f par. prims, channelled tranfverfely, and generally heaped together. Its texture is fibrous. Its luftre filky, 2. Its colours white, yellow, green, light blue. According to Bindheim, it contains
\[
\begin{aligned}
& \text { 1.1 filica, } \\
& \text { 12.7 lime, } \\
& 6.6 \text { alumina, } \\
& 5.0 \text { magnefia, } \\
& \text { 1.3 oxyd of iron, } \\
& 3.3 \text { water. }
\end{aligned}
\]

\section*{Gerus XV. samli.}
speces I. Argillite \(\dagger\).
Argillaceous 乃bifus -Common fate. fplintery. Fragments often tabular. Luftre moft commonly filky, 2; fometimes 0 . Tranfparency from \(\circ\) to I. Hardnefs from 5 to 8. Sp. gr. from 2.67 to 2.88. Does not adhere to the tongue. Gives a clear found when ftruck. Often imbibes water. Streak white or grey. Colour moft commonly grey, with a Thade of blue, green, or black; fometimes purplifh, yellowifh, mountain green, brown, bluifh black; fometimes ftriped or fpotted with a darker colour than the ground.

It is compofed, according to Kirwan, of filica, alumina, magnefia, lime, oxyd of iron. In fome varieties the
+ Ann. de
Cbim. xxx.
206.
(D) Is this the tremolite of Lowitz from the lake Baikal in Siberia? If fo, the name of the genus ought to be SLM ; for he found it to contain no alumina. According to his analyfis, it was compofed of
\[
\begin{aligned}
& 52 \text { filica, } \\
& 20 \text { lime, } \\
& 12 \text { carbonat of lime, } \\
& \frac{12}{96}
\end{aligned}
\]

1s and the lime is wanting. Several varieties contain a confiderable quantity of carbonaceous matter.

\section*{Genus XVI. slacmi. \\ species 1. Smaragdite.}

This ftone was called fmaragdite by Mr Sauffure, from fome refemblance which it has to the emerald. Its texture is foliated, The laminæ are infexible. Fracture even. Hardnefs 7. Colour in fome cafes fine green, in others it has the grey colour and metallic luftre of mica: it affumes all the Thades of colour be. tween thefe two extremes \(f\).

According to the analyfis of Vauquelin, it is compofed of

This minerai is dug up near Konie in Natolia, and is employed in forming the bowls of 'lurkioh tobacea pipes. The fale of it fupports a large monaltery of dervifes eftablifhed near the place where it is dug. It is found in a large fiffure fix feet wide, in grey calcareous earth. The workmen affert, that it grows again in the fiffure \(\dagger\), and puffs itfelf up like froth ( E ). This mineral, when frefh dug, is of the confiftence of wax ; it feels foft and greafy ; its colour is yellow; its fp. gr. \(1.600 \ddagger\) : when thrown on the fire it fweats, emits a fetid vapour, becomes hard, and perfectly white.

A ccording to the analyfis of Klaproth, it is compofed of
\[
\begin{aligned}
& \text { 90.50 filica, } \\
& 17.25 \text { magnefia, } \\
& 25.00 \text { water, } \\
& 5.00 \text { carbonic acid, } \\
& .50 \text { lime. } \\
& \hline 98.25 \oint \\
& \text { SPECIES 2. Steatites (F). }
\end{aligned}
\]

Though this mineral was noticed by the ancients, little attention was paid to it by mineralogifts, till Mr Pott publifed his experiments on it in the Berlin Memoirs for 1747.

It is ufually amorphous, but fometimes it is cryftallized in fix-fided prifms. Its texture is commonly earthy, but fometimes foliated. Luftre from 0 to 2. 'I'ranfparency from 0 to 2. Hardnefs 4 to 7. Sp. gr. from Jon. 2.61 to \(2.794^{\text {* }}\). Feels grealy. Seldom adheres to the tongue. Colour ufually white or grey; often with Suppl. Vol. II. Part I.
a tint of other colours ; the foliated commonly green. Does not melt per fe before the blow-pipe.

Variety 1. Semi-indurated fteatites.
Texture earthy. Fracture fometimes coarfe fplintery. Luftre 0. Tranfparency. 0 , or farce 1. Hard. nefs 4 to 5. Abforbs water. Takes a polif from the nail. Colour white, with a fhade of grey, yellow, or green; Cometimes pure white; fometimes it contains dendritical frgures ; and fortetimes red beins.

Varizty 2. Incurated fteatites.
Fracture fire fplintery, often mixed with imperfectly conchoidal. External !uftre 2 to 1 , interual o. Tranfparency 2. Often has the feel of foap. Abforbs water. Colour yellowith or greenith grey; often veined or \{potted with decp yellow or red.

Varie'y 3. Foliated or ftriated flertites.
The texture of this variety is ufualiy foliated ; fome. times ftriated. Fragments cubiform. Luitre 3. Tranf. parency 2 to 1 . Mardnefs 6 to 7. Colour leek green, paffing into mountain green or fulphur yellow. Streak pale greenifh grey. When heated to rednefs, it becomes grey; and at \(147^{\circ}\) Wedgewood, it forms a grey porous porcelain mals*.
* Kirwan

A fpecimen of iteatites, analyfed by Klaproth, con-i. 1550 tained
\[
59.5 \text { flilea, }
\]
30.5 magnefia,
2.5 iron, 5.5 water,
98.0+.
\(\dagger\) Beitrïge,
A fpecimen of white ileatites, analyfed by Mr Che- ii. 179 .
nevix, contained
60.00 filica,
28.50 magnefia,
3.00 alumina,
2.50 lime, 2.25 iron.

Genus XVIII. msi.
SPEEIES 1. Chryfolite (G).
Peridot of the French-Topaz of the ancients.
The name chryjolite was applied, without difcrimina- Chryfolite。 tion, to a great varjety of fones, till Wernes defined it accurately, and confined it to that fone which the French chemifts diftinguifh by the appellation of peridot. This fone is the topaz of the ancients; their chryfolite is now called topaz \(\delta\).
§ Plinit, lib.
Chryfolite is found fometinses in unequal fragments, \({ }_{37}\) Po. \(c_{0} 8_{0}\). and fometimes cryftallized \(\uparrow\). The primitive form of its + Fig. \({ }_{2} 3\). cryftals is a right angled parallelopiped \(\ddagger\), whofe length, \(\ddagger\) Fig.. 24. breadth, and thicknefs, are as \(5, \sqrt{ } 8, \sqrt{ } 5^{*}\).

The textıre of the clıryfolite is foliated. Its frac- \({ }^{*}\) Haur. de , ture conchoidal. Its internal luftre from 2 to 4 . Its Min. N , tranfparency from 4 to 2 . Caufes double refraction, \(x \times v i i i\).

E e Hardnefs \({ }^{281}\).

The carbonat of lime was only mechanically interpofed between the fibres of the ftone. See Pallas, Neu. Nord. Beitriige, 6 Band, p. 146.
( E ) Hence the name kiff.kil, or rather keff-kelli, "clay froth," or "light clay."
(ғ) Kirw. I. 151.-Pott, Mem. Berlin, 1747, P. 57.-Wiegleb, Four. de Pbyf. XXIX. 60.-Lavoificr,
Mem. Par. 1778, 433.
(a) Kirw. I. 262.-Cartheufer, Min. 94.-Dolomieu, Jour. de Min. N \({ }^{\circ}\) xxix. 365.-La Metherie, Nouv.

Four. de Phyf. I. 397.

Earths and Hardnels 9 to 10. Brittle. Sp. gr. from 3.265 to Stoles.
+ Kir. Min i. 263 . 3.45. Colour green. It is infufible at \(150^{\circ}\), but lofes its tranfparency, and becomes blackilh grey \(\dagger\). With borax it melts without effervefcence into a tranfparent glafs of a light green colour. Infufible with microcofmic \(\ddagger\) Vauquelin, falt \(\ddagger\) and fixed alkali \(\delta\).

\section*{Ann. de Variety i. Common chry folite.}

Cbim. xxi. Found in Ceylon, and South America, and in Bohe\(\$ 7\). Kirvo.ibid. mia, amidt fand and gravel \(\|\). Luftre 3 to 4 . Tranf1 Coquebert, parency 4 to 3 . Colour yellowifh green, fometimes verFour. de ging to olive green, fometimes to pale yellow.

 Min. i. in fmall grains, fometimes in pretty large pieces : but 203. - Lee it has not been obferved in cryftals. Lultre 2 to 3 Lievere,four. Tranfparency 3 to 2. Colour olive green.
\({ }_{397}\) de Phy. xxx. The firtit variety, according to the analy fis of Kla-
397. proth, is compufed of 41.5 magnefia,
38.5 filica,
19.0 oxyd of iron.
+Klaproth's
\(99.0+\)
Beitraige, i. According to that of Vauquelin, it is compofed of 103.
51.5 magnefia,
38.0 filica, 9.5 oxyd of iron.
\(\ddagger\) Ann. de
Climo ilid.
\(99.0 \ddagger\)
The fecond varicty, according to the analyfis of Klaproth, is conpofed of 37.58 marnefia,
50.00 filica,
11.75 oxyd of iron,
. 2 I lime.
\$ Beiträge,
8. 112.

84
Jadc.

\subsection*{99.54 §.}

SPECIES 2. Jade (h).
This flone was formerly called lafis niphriticus, and was much celtebrated for its medical virtues. It is found in Egypt, China, America, and in the Siberian and Hungarian mountains. It is fometimes adhering to roeks, ard fometimes in detached round pieces.

Its furface is fmooth. Its fracture fplintery. Ex. ternal hiftre 0 , or fearce 1 ; internal waxy, 1. Tranfparency from 2 to 1. Hardnefs 10 . Not brittle. Sp. \%r. from 2.95 to 2.9829 ; or, according to Sauflure, in 3.38 g . Feels greafy. Look as if it had imbibed ail. Colour dark leek green, or verging to wards blue; in fome prominencies inclining to greenifh or bluifh white. When heated it becomes more tranfparent and brittle, but is infufible per fe. According to Hoepfuer, it is compofed of 47 filica,
\(3^{8}\) carbonat of magnefia,
9 iron,
4 alumina,
Noun \(\quad 2\) carbonat of lime,
insai!
ICO
This is the flone which the inhabitants of New Zealand make into hatchets and other cutting inftruments.

Cenus XIX. smz.
species 1. Afbettis (1).
This mineral was well known to the ancients. 'They even made a kind of cloth from one of the varieties, which was famous anong them for its incombultibility. It is found abundantly in moft mountainous countries, and no where more abundantly than in Scotland.

It is commonly amorphons. Its texture is fibrous. Its fragments often long fplintery. Luftre from o to 2 ; fometimes 3 , and then it is metallic. Tranfparency from 0 to 2. Hardnefs from 3 to \(7 . \mathrm{Sp}\). gr. from 2.7 to 0.6806 . Abforbs water. Colour ufually white or green. Fufible per \(\int e\) by the blow. pipe.

Variety 1. Common aßefus.
Luftre 2 to 1. Tran \(\mathrm{D}_{\mathrm{p} \text { arency 1. Hardnefs } 6 \text { to } 7 .}\) Sp. gr. 2.577 to 2.7. Feels fomewhat greafy. Colour leek green; fometimes oilive or mountain green; fometimes greenifh or yellowifh grey. Streak grey. Powder grey.

\section*{Variety 2. Flexible afbeflus. \\ Amiantus.}

Compored of a burdle of threads nightly cohering. Fibres flexible. Luftre 1 to 2 , fometimes 3. Traufparency 1 to 2 , fometimes o. Harduefs 3 to 4. Sp. gr . before it abtorbs water, from 0.9088 to 2.3134 ; after abforbing water, from 1.5662 to \(2.3803 \dagger\). Feels \(\dagger B\) i iform greafy. Colour greyifh or greenith white ; fometimes yellowifh or filvery white, olive or inountain green, pale Hefh red, and mountain yellow.

\section*{Variety 3. Elaftic afbeftus.}

Mountain cork.
This variety has a ftrong refemblance to common cork. Its fibies are interwoven. Luitre commonly 0 . Opaque. Hardnefs 4. Sp. gr. before abforbing water, from 0.6806 to 0.9933 ; after abforbing water, from 1.2492 to \(1.349^{2}\). lieels meagre. Yields to the fingers like cork, and is fomewhat elattic. Colour white; fometimes with a flade of red or yellow; fometimes yellow or brown.
A fpecinen of the firlt variety from Dalecarlia, analyfed by Bergman, contained

> 63.9. filiea, 16.0 carbonat of magneila, 12.8 carbonat of lises, 6.0 oxyd of iron, \(\frac{1.1}{49.8}\) alumina.

A fpecimen of the fecond variety yiedded to the fame
chemift 64.0 filica,
17.2 carbonat of magnefia,
33.9 carbonat of line,
2.7 alumina,
2.2 oxyd of iron.
\(100.0 \ddagger\)
\(\ddagger\) Yoil :
A fpecimen of the third variety contained, according \(163^{\circ}\)
to the fame analy fis, 56.2 filica,
, 56.2 nica,
25.1 carbonat of magnefia,
12.7 carbonat of lime,
3.0 iron,
2.0 alumina.
100.011
(h) Kirzv. I. 17 I .-Bartolin, De Lapide Nephritico.-Lebmann, Nov. Comm. Petropol. X. 38 r.-Hapfner, Hijf. Nat. de la Suife, I. 25 I.
(1) Kirw. I. 159--Bergman, IV. 160.-Plot, Phil. Tranf. XV. 1051.-Nebel, Four. de Phy. II. 62.Ibid. III. 367 .

E tran I Twelve different fpecinens of afbeftue, analyfed by

Bergman, yielded the fame ingredients, differing a little in their proportions \(\dagger\).

\section*{species 2. Afbeftinite (k)}

This fone is amorphous. Texture foliated or broad ftriated. Luftre filky, 3. Tranfparency I to 2. Hard. nefs 5 to 6. Sp. gr. from 2.806 to 2.880 . Colour white, with fiades of red, yellow, green, or blue. At \(150^{\circ}\) Wedgewood it melts into a green glafs.

\section*{Genus XX. i. silm. \\ species 1. Pyroxen.}

This fonc is found abundantly in lava and other volcanic productions (L). It is always cryftallized. The primitive form of its cry ftals is an oblique angled prifm, whofe bafes are rhombs with anples of \(92^{\circ} 18^{\circ}\), and \(37^{\circ} 42^{\prime} \ddagger\). It generally cryftallizes in eight fided prifens, terminated by dihedral fummits \(\|\). Its texture is foliated. Hardnefs 9. Colour black; fometimes green. Powder greenifh grey*. Commonly attracted by the magnet \(\dagger\). Scarcely fufible by the blow pipe \(\ddagger\). With borax it melts into a yellowifh glafs, which appears red while it is loot \(\oint\).
According to the analyfis of Vauquelin, it is compofed of
52.00 filica,
14.66 oxyd of iron,
13.20 lime,
10.00 magnefia,
3.33 alumina,
2.00 oxyd of manganefe.
95.1911

I C : ftonc has obtained its namc from its fimilarity to common afoeftus. It is amorphous. Its texture is foliated or ftriated. Its luftre common or glaffy, from 2 to 3. Tranfparency from 0 to 1. Hardnef3 6 to 7. Sp. gr. from 3 tu 3.31 . Colour olive or leek green; when decompofing, brown. Before the blowpipe it melts por fe into a brown globule. With borax it forms a violet coloured globule verging towards lacquart, hyacinth \(\dagger\). According to the analyfis of Mr Macquart, it is compofed of 46 filica,

> 20 oxyd of iron,
> II lime,
> io oxyd of mangancfe,
> 8 magnefia.

\section*{\(95 \ddagger\)}

There is a variety of this fpecies which Kirwan calls metalliforrn afbeftoid. Its luftrè is femimetallic, 3. Opaque. Hardnefs 8 to 9. Sp. gr. 3.356. Colour *irwan's grey, fometimes inclining to red *.
\({ }^{\text {i. i. }} 167\).
J. i. 167.

\section*{Genus XX. 2. smil.}
spectes 3. Shorlaceous actinolite ( m ).
This fone cryitallizes in four or fix fided prifms, thicker at one end than the other; hence it has been G. XX. 2 . called by the Germans frabljlcin, " arrow-ftone." The smix. cryftals fometimes achere longitudinally. Fracture Shoriaceous hackly. External liftre glaffy, 3 to 4 ; internal, i to actinolite. 2. T'ranfparency from 2 to 3 ; fometines 1 . Hard. nefs from 7 to 10. Sp. gr. 3.023 to 3.45 . Colour leek or dark green.

This ftone is often the matrix of iron, copper, and tin ores.

SPECIES 5. Lamellar actinolite.
90
Lamellar
This fone refembles hornblende. It is amorphous, actinolite.
Texture foliated. Luftre various in different places.
Tranfparency o, or farce :. Sp. gr. 2.916. Colour dark yellowifh or greenifh gres.

> species 6. Glaffy actinolite. Glaffy

This fone is found amorphons, compofed of fibres nolite. adlering longitudinally, or in flender four or fix fided prifms. I'exture fibrous. Iragments long fpliritery, fo fharp that they can farcely be handled withont injury. External luftre glaffy or filky, 3 to 4 ; internal o. 'Iranfparency 2. Exceedingly brittle. Sp gr. 2.95 to \(3 \cdot 493\). Colour leek green; fometimes veiging towards greenifh or filver white ; fonmetimes ftamed with yellowifh or brownith red. According to Bergman it is compofed of 72.0 filica,

127 caibonat of magnefia,
6.0 carbonat of lime,
7.0 oxyd of iron,
2.0 alumina.

\section*{99.7*}
- op:scoiv。

Genus XXI. su.
SPECIES I. Shittofe hornttonc \(\dagger\).
The fructure of this ftone is naty. Luftre from o to 1 . Commonly opaque. Hardnct's 9 to \(10 . S p\). gr. from 2.596 to \(2.6+1\). Culuur dark bluith or black- i. ifh grey. Infufible per fe.

> Variety 1. Siliceous fliftus.

Commonly interfected by reddifh veins of iron ftone. Fracture fplintery. Luftre 0 . T'ranfparency fromo to 1.

Variety 2. 13afanite or Lydian fone.
Commonly interfected by veins of quartz. Fracture. even; fometimes inclining to conchoidal. Luftre farce 1. Hardnefs 10. Sp. gr. 2.590. Powder black. Colour greyifh black.
'This, or a flone fimilar to it, was ufed by the ancients as a touchfone. They drew the metal to be examined along the ftone, and judged of its purity by
\[
\mathrm{Ee}_{2} \text { the }
\]
(k) Kirw. Min. I. 165. Is this the tremolite of Wemer? It certainly is not the tremolite of the French mineralogifts.
( L ) I-ience the name pyroxen given it by Hauy; from rus fire, and explains it, a franger in the regions of fire. By this he means to indicate, that pyroxen, though prefent in lava, is not a volcanic production.
( m ) In this and the following fpecies we have followed Mr Kirwan's new arrangement exactly, withont even venturing to give the fymonimes of other authors. The defcriptions which have been given are fo many and incomplete, and the minerals themfelves are ftill fo imperfectly knowe, and have got fo many hames, that no pait of mineralogy is in a fate of greater confufion

Earths and the colour of the metallic flreak. On this account Scunes.
+ Hill they called it \(6 \times \sigma\) avas, the trier. They called it alfo \(L y\) dian fone, becaufe, as Theoplraftus informs us, it was ns found moft abundantly in the river Tmolus in Lydia \(\dagger\). Theoprafus, A fpecimen of the fir:t variety, analyfed by Wieg. grp \(\lambda\) 入imv, leb, contained
\[
\begin{aligned}
& 75.0 \text { filica, } \\
& 10.0 \text { lime, } \\
& 4.6 \text { magnef:a, } \\
& 3.5 \text { iron, } \\
& \frac{5.2}{9^{3} .3}
\end{aligned}
\]

This fpecies is rather a mechanical mixture than a chemical combination.
G. \(9^{93}\) xit. zs.
Zircon.
* Kiman.
i. 297 . alld 333.
§ Fig. 25.
\(\dagger\) Hauy.
Jour. de
Min. No
zxvi. 9 s.
\(\|\) IFig. 26 prifm with hexagonal faces, terminated by four fided
mits with rhomboidal faces \(\|\); fometimes the edges of this prifm, fometimes the edges where the prifm and fummit join, and fometimes botlı together, are wanting, and we find fmall faces in their place. Fur an accurate defcription and figure of thefe varietics, we refer to Mr Hawy \(\ddagger\).
The texture of the zircon is foliated. Internal linfre 3. Tranfparency from 4 to 2. Caules a very great double refraction. Hardnefs from 10 to 16 . Sp. gr.

A fpecimen analyfed by Klaproth contained
\[
\begin{aligned}
& 70.0 \text { zirconia, } \\
& 25.0 \text { filica, } \\
& 0.5 \text { oxyd of iron. }
\end{aligned}
\]
95.5 \(\ddagger\)
70.0 zirconia,
\(\ddagger\) Neitrág
The fecond variety, according to Klaproth, who dif.i. 23.4. covered the component parts of both thefe ftones, contains
\[
\begin{aligned}
& 68.0 \text { zirconia, } \\
& 31.5 \text { filica, } \\
& 0.5 \text { nickel and iron. } \\
& \overline{100.0 \$}
\end{aligned}
\]

\section*{Order II. SALINE STONES.}

Under this order we comprehend all the minerals 94 which confift of an earthy batis combined with an acid. They naturally divide themfelves into five genera. We fhall defcribe them in the following order.

\section*{I. calcareous salts.}

Carbonat of lime, Sulphat of lime, Phofphat of lime, Eluat of lime, Borat of lime.
II. barytic salts.

Carbonat of barytes, Sulphat of barytes.

\section*{III. strontitic salts.}

Carbonat of ftrontites, Sulphat of flortites.

\section*{IV. magnestan salts. Sulphat of magnefia.}

\section*{V. aluminous salts.}

Alum.

\section*{Genus I. calcareous salts.}

This genus comprehends all the combinations of lime \({ }^{\text {reous falts. }}\) and acids which form a part of the mineral kingdom.
species i. Carbonat of lime.

No other mineral can be compared with carbonat of of lime. lime in the abundance with which it is fcattered over the earth. Many mountains confift of it entirely, and hardly a country is to be found on the face of the globe where, under the names of limeftone, chalk, marble, fpar, it does not conltitute a greater or fmaller part of the mineral riches.
It is often amorphons, often Alalactitical, and often cryttallized. The primitive form of its cryylals is a parallelopiped, whofe fides are rhombs, with angles of \(77^{\circ}\) \(30^{\prime}\) and \(102^{\circ} 30^{\circ} \mathrm{F}\). Its integrant molecules have the \(\ddagger\) Fig. 28 . fame form. The varieties of its cryftals amount to more than 40 ; for a defcription and figure of which we refer to Romé de Lifle * and Hauy (o).

When cryftallized, its texture is foliated; when amor-497* phous, its itructure is fometimes foliated, fometimes ttriated, fometimes granular, and fometimes earthy. Its
( N ) Let \(\mathrm{ABC}(\) fig. 27.) be one of the fides. Draw the perpendicular BD ; then \(\mathrm{AB}=5, \mathrm{BD}=4, \mathrm{AD}=3\). (o) Effai d'une Theorie, \&cc p. 75.- Your. de Pbyf. 1793, Auguft, p. \(114 .-\) Gour. d'HiJ. Nat. 1792, February, P. 148.-Ann. de Chim. XVII. 249. \&c.-Four de Min. No XXVIII. 304.
luftre varies from 0 to 3. Tranfparency from 0 to 4. It caufes double refraction ; and it is the only mineral which caufes double refraction through two parallel faces of the cryftal. Hardnefs from 3 to 9 . Sp. gr. from 2.31 ; to 2.78 . Colour, when pure, white. Ef fervefces violently with muriatic acid, and diffolves completely, or leaves but a finall refiduum. The folution is colourlefs.

This feecies occurs in a great variety of forms; and therefore has been fubdivided into numerous varieties. All thefe may be conveniently arranged under two general divifions.
I. Soft carbonat of lime.

Variety I. A garic mineral.
Mountain nilk, or mountain meal of the Germans.
This variety is found in the clefts of rocks, or the botom of lakes. It is nearly in the fate of powder; of a white colour, fometimes with a fhade of yellow; and fo light, that it almoft floats on water.

Variety 2. Chalk.
The colour of chalk is white, fometimes with a flade of yellow. Luftre 0 . Opaque. Hardiefs 3 to 4. Sp. gr. from 2.315 to 2.657 . i'exture earthy. Adheres flightly to the tongue. Feels dry. Stains the fingers, and marks. Falls to powder in water. It generally contains about \(\frac{\mathrm{T}_{0}}{2}\) of alumina, and \(\mathrm{T}^{\frac{3}{5} \sigma}\) of water; the relt is carbonat of lime.

Variety 3. A renaceous limeftone.
Colour yellowifh white. Luftre 1. Tranfparency 1. So brittle, that fmall pieces crumble to powde: between the fingers. Sp. gr. 2.7.42. Phofphorefces in the dark when fcraped with a knife, but not when heated. It confifts almoft entirely of pure carbonat of lime.

Variety 4. Teftaceous tufa.
The colour of this variety is yellowifh or greyif white. It is exceedingly porous and brittle; and is either compofed of broken fhells, or refembles inotar containing fhells ; or it confifts of fifulons concretions variouny ramified, and refembling mofs.

\section*{II. Indurated carbonat of lime. \\ Variety 1. Compact limeftone.}

The texture of this variety is compact. It lias little luftre; and is moft commonly opaque. Hardnefs 5 to 8. Sp. gr. \(1.386+\) to 2.72 . Colour grey, with various fhades of other colours. It moft commonly contains about ríd th of alumina, oxyd of iron, \&c. ; the reft is carbonat of lime. This variety is ufually burnt as lime.

Variety 2. Granularly foliated limeftone.
Structure fometintes flaty. Texture foliated and granular. Luftre 2 to 1. Tranfparency 2 to 1. Hardnefs 7 to 8. Sp. gr. 2.71 to 2.8376 . Colour white, of various fliades from other colours.

Variety 3. Sparry limefone.
Structure fparry. Texture foliated. Fragment 3 rhomboidal. Luftre 2 to 3. Tranfparency from 2 to 4 ; fometimes 1. Hardnefs 5 to 6 . Sp. gr. from 2.693 to 2.718. Culour white : often with various fhades of other colours. To this variety belong all the crytals of carlonat of lime.

\section*{Variety 4. Striated limeftone.}

Texture ffriaied or fibrous. Luftre 1 to 0 . Tranfparency 2 to 1. Hardnefs 5 to 7. Sp. gr. commonly from 2.6 to 2.77. Colours various,

Texture often eartly. Fracture often fplintery. Luttre 1 to 0. 'Tranfparency 0 to 1. Hardnefs 6 to 7. Sp. gr. 2.701 to 2.7121 . Colour dark grey, of various fhades. When fcraped or pounded, it emits an urinous or garlic fmell.

\section*{Variely 6. Oviform.}

This variety confitte of a number of fmall round bodies, clofely compacted together. Luttre o. Tranfparency 0 or I. Hardnefs 6 to 7.

SPECIES 2. Sulphat of lime. Gypflum - Selenite.
\(\qquad\) ? is tuand
Italy, \&c.
rance, England, Italy, \&c.
It is found fometimes in amorphous maffes, fometimes in powder, and fometimes cryftallized. The primitive form of its cryftals, accordirg to Romé de Lifle, is a decaliedron \(\ddagger\), which may be conceived as two four-fided pyramids, appliec bafe to bafe, and which, inftead of terminating in pointed fummits, are truncated near their bafes; fo that the fides of the pyramids are trapeziums, and they terminate each in a rhomb. Thefe rhombs are the larget faces of the crytal. 'The angles of the rhombs are 520 and \(558^{\circ}\). The inclination of two oppofite faces of one pyramid to the two fimilar faces of the other pyranid is \(145^{\circ}\), that of the other faces \(110^{\text {c }}\). Sometimes fome of the faces are elonga. ted: fometimes it cry ftallizes in fix. fided prifms, termi- - . Cryfat, nated by three or four fided fummits, or by an indeterminate number of curvilinear faces. For a defription and figure of thefe varieties, we refer to Romí de Lijht.
The texture of fulphat of lime is mof commonly fo- + Ibido liated. Luftre from 0 to 4. 'Tranfparency from o 10 4. It caules double refraction. Its liardnefs does not exceed 4. Its fp. gr. from 1.872 to 2.31 . Colour commonly white or grey.

Before the blow-pipe, it melts into a wlinte enamel, provided the blue flame be made to play upon the edges of its lamine. When the liame is directed agraint its faces, the mineral falls into powder \(\ddagger\).

It does not cffervefee with muriatic acid, except it be impure ; and it does nut diffolve in it.
\(\ddagger\) Le Licure,
The following varieties of this mineral are deferving of attention.

> Fariety 1. Broad foliated fulplizt.

Texture broad foliated. Luftre glafsy, from 4 to 2. Tranfparency from 4 to 3. Hardinefs 4. Sp. gr. 2.311. Colour grey, often with a fhade of yellow.
\(V\) ariety 2. Grano-foliated fulphat.
Texture foliated, and at the fame time granulir; fo that it eafily crumbles into powder. Luilte 2 to 3. Trarif. parency 2 to 3. Hardnefs 4 to 3. Sp.gr. from 2.274 to 2.310. Feels foft. Colour white or grey, often with a tinge of yellow, blue, or green; fometimes flefh red, brown, or olive green.

Variety 3. Fibrous fulphat.
Texture fibrous. Fragmenta long fplintery. Luffre 2 to 3. Tranfparency 2 to 1 ; fometimes 3. Hardnefs. 4. Brittle. Sp. gr. 2.300. Colour white, often with a fhade of grey, yellow, or red; fometimes flefh red, and fometimes honey yellow; fometimes feveral of thefe co lours meet in flipes.

Variely 4. Compact fulphat.
Texture compact. Luftre I or 0 . Tranfparency 2 to
\(\ddagger\) Fig. 30.
§ Hauy,
Gour. de
Min. \({ }^{\text {® }}\) xxviii. p.
310.

Fig. 3T. ed ; fometimes the terminating edges and the angles of
*Hauy, ibid, the prifin is terminated by four fided pyramids *.
Its texture is foliated. Its fracure uneven, tending to conchoidal. External luffre from 2 to 3, internal 3 to 2. Tranfparency from 4 to 2. Caufea fingle refraction. Hardnefs 6 to 7 . Brittle: Sp. gr. from 2.8249 to 3.218 . Colour commonly green or grey ; fometimes brown, red, blue, and even purple.

Jt is infufible by the blow-pipe. When its powder is thrown upon burning coals, it emits a yellowih green phofphorefcent light. It is foluble in muriatic acid without effervefcence or decompolition, and the folution often becomes gelatinous.
lime. SPECIES 4. Fluat of lime. species 4. Fluat of lime.
Fhor.

This mineral is found abundantly in different countries, particularly in Derbyfhire. It is both amorphous and cryftallized.

The primitive form of its cryftals is the regular octohedron; that of its integrant molecules the regular te-- Hauy, ibid. trahedron *. The varieties of its cry fals hitherto obp. 325. Served amount to 7. Thefe are the primitive oftohedion; the cube; the rhomboidal dodecahedron; the
+ Fig. 32. cubo octohedron \(\dagger\), which has both the faces of the cube and of the ofohedron; the oftohedron wanting the edges; the cube wanting the edges, and either one
\(\ddagger\) Fig. 33. face \(\ddagger\), or two faces in place of each. For a defcription
\(\dagger_{1}\) Ibid.
\(\ddagger\) I \(1 ; d\).
rco
Yco
Borat of
lime. and figure of thefe we refer to Mr Hauy \(\dagger\).
The texture of fluat of lime is foliated. Luftre from 2 to 3 , fometimes 0 . Tranfparency from 2 to 4 , fometimes I. Caufes fingle refraction. Hardnefs:8. Very brittle. Sp gr. from 3.0943 to 3.191 . Colours numeqous, red, violet, green, red yellow, blackifh purple. Its powder thrown upon hot coals emits a bluifh or greenifh light. Two pieces of it rubbed in the dark phofphorefice. It decrepitates when heated. Before the blow-
18:a. pipe it mehs into a tran parent glafs \(\ddagger\).
It admits of a polith, and is often formed into vafes and other ornaments.

1, fometimes 0 . Harảnefo 4. Sp. gr. from 1.872 to 2.288. Feels dry, but not harfh. Colour white, with a fhade of grey, yellow, blue, or green; fometimes yellow; fometimes red; fometimes fpotted, fluiped, or veined. Variety 5. Farinaceous fulphat.
Of the confiftence of meal. Luttre 0 . Opaque. Scarcely finks in water. Is not gritty between the teeth. Feels dry and meagre. Colour white, When heated below rednefs, it becomes of a dazzling white.
specier 3. Phofphat of lime.
Apatite - Pbopphorite - Chryyolite - of the French.
This fubflance is found in Spain, where it forms whole mountains, and in different parts of Germany. It is fometimes amorphous, and fometimes cryftallized. The primitive form of its cryltals is a regular fix-fided prifm \(\ddagger\). Its integrant molecule is a regular triangular prifm, whofe height is so a fide of its bale as I to \(\sqrt{ } 2 \delta\). Sometimes the edges of the primitive hexagonal prifin are wanting, and finall faces in their place; fometimes there are fmall faces inftead of the edges which terminate the prifm ; fometimes thefe two varieties are united ; fometimes the terminating edges and the angles of
neburg, feated in a bed of fulphat of lime. It is cryftallized. The primitive form of its cryftals is the cube §, In general, all the edges and angles of the cube are truncated; fometimes, however, ouly the al. ternate angles are truncated *.D The fize of the crytals does not exceed half an inch.

The texture of this mineral is compact. Its fracture is flat conchoidal. External luftre 3 ; internal, greafy, 2. Tranfparency from 2 to 3 . Hardnefs 9 to to. Sp. gr. 2.566. Colour.greyifh white, Iometimes paffirg in. to greenifh white or purplifh.
When heated it becones electric; and the angles of the cube are alternately pofitive and negative \(\dagger\).

Before the thom pine it froths, emits a greenim lin Hawy and is converted into a yellowifh enamel, garnifhed with fmall points, which, if the heat be continued, dart out in fparks II.

According to Weftrum, who difcovered its compo- \(L_{e}\) eur nent parts, it contains 68 boracic acid,
13.5 magnefia,
i1 lime,
1 alumina,
2 filica,
I iron.
\(96 \$\)
species 6 . Nitrat of lime.
Found abundantly mixed with native nitre. For a defeription fee the article Chemistry in this Supplee limen ment, \(\mathrm{n}^{\circ} 672\).

\section*{Genus II. barytic salts.}

This genus comprehends the combinations of barytes ryticf with acids.
species, I. Carbonat of barytes. Witheritc.
This mineral was difcovered by Dr Withering; hence Werner has given it the name of witherite. It is found both amorphous and cryftallized. The cryftals are octohedrons or dodecahedrons, confifting of four or fix fided pyramido applied bafe to bafe; fometimes the fixfided pyramids are feparated by a prifin ; fometimes feveral of thefe prifms are joined together in the form of a flar.

Its texture is fibrous. Its fraعure conchoidal. Its fragments long fplintery. Luftre 2. Tranfparency 2 to 3. Hardnefs 5 to 6. Brittle. Sp. gr. 43 to \(4.33^{8 .}\) Colour greenifl white. When heated it becomes opaque. Its powder phofphorefces when thrown on burning coals \({ }^{*}\).

It is foluble with effervefcence in muriatic acid. The folution is colourlefs.

According to Pelletier it contains
\[
\begin{aligned}
& 62 \text { barytes, } \\
& 22 \text { carbonic acid, } \\
& 16 \text { water. }
\end{aligned}
\]
\(100 \dagger\)
sPECIES 2. Sulphat of barytes. BoroJelenite.
This mineral is found abundantly in many countries, bayy particularly in Britain. It is fometimes in powder, often in amorphoua mafles, and often crytallized. The primitive form of its crytals is a rectangular prifm, whofe

1 whofe bafes are thombe, with angles of \(101^{\circ} 30^{\prime}\) and \(78^{\circ} 30 \ddagger\). The varieties of its cryftals are very numerous. For a defeription and figure of them we refer to Rom de I, ifle \(\|\) and Hany *. The moft commont varieties are the oetcliedron with cunciform fummit, the Ex or four fided prifin, the hexangular table with bevelled edges. Sometimes thefe cry/tals are needle form.

Its texture is commonly foliated. Luftre from o to 2. Tranfparency from 2 to 0 ; in fome cafes 3 or 4 . 3. Hardnefs from 5 to 6. Sp. gr. from 4.4 to 4.44. Colour commonly white, with a fhade of ycllow, red, blue, or brown.

When heated it decrepitates. It is fufible per \(\int\) e by the blue flarne of the blow-pipe, and is converted into fulohmat of barytes. Soluble in no acid except the fulphuric; and precipitated from it by water.

> Variety I. F liated fulphat.

Iultre 3 to 3. Tranfparency from 4 to 2 , fome. tir es 1. Colours white, reddifh, bluifh, yellowift, Wackin, greenith. Mr Werner fubdivides this variety To thrie, according to the nature of the texture. Thefe thrce iubdivitions are graumlarly foliated, Araight foliated, caree joliated.

\section*{FVariety \({ }^{2}\). Fibrous fulphat.}

T'exture fibrous; fibres converging to a common centre. Luftre filley or waxy, 2. Tranfparency 2 to 1. Hardnefs 5. Colours jellowith, bluifh, reddifh. Variety 3. Compaet fulphat.
Texture compact. Lultre o to 1. T'ranfparency i to 0. Fetls meagre. Almott conftant'ly impure. Colours light yellow, red, or hine.

> Fariety 4: Jarthy fulphat.

In the form of coarfe dutty particles, ilightly coile. ring. Colour reddifh or yellowih white.

> Genus III. Strontitic Salts.

This genus cormprehends all the combinations of frentites and acids which form a part of the raincral kingdom.
of Lfecies !. Carbonat of ftrontites.
This nineral was firft cifcovered in the lead mine of Strontion in Argylelhire; and fince that time it is faid to have been difcovered, thongh not in great abundance, in other countries it is fund amorphons, and ahio cryfallized in needles, which, according to Hany, are regula fix fided prifms.

Its texture is fibrows ; the fibres converge. Fracture uneven. Luftre 2. Thaufparency 2. Hardnefs 5 . Sp. gr. from 3.7 to 3.6 . Colour light green. Does not decrepitate when heated. Before the blow- pipe becomes opacque and white, but does not melt. Wihh borax it effervefces, and melts into a traufparent colourlifs glafs. Effervefces with muriztic acid, atid is cutally difflved. The folution tinges flame purple.

> SPECIES 2. Sulphat of frontites. Celefine.

This mineral has been found in Pernfylvania, in Germany, in France, in Sicily, and Britain. It was firft difcovered near Brifol by Mr Clayfield. There it is found in fuch abundance, that it has been employed in mending the roads.

It occurs both amorphous and cryffallized. The cryftals are moft commonly bevelled tables, fometimes rhomboidal cubee. Its texture is foliated. More or
lefs tranfpareut. Hardnefs 5. Sp. gr. from 3.5 I to A ggregates. 3.96. Colour mot commonly a fine fiy blue; fometimes reidifh; fometimes white, or nearly collourlefs *. \({ }^{*} \mathrm{Cl}_{2}\) yelld, Klaproth found a fpecimen of this mineral from Penn- Nicbolfon's fylvania compofed of 58 Arontites, 42 fulphuric acid. Four. iii. 36.
58.25 froutites,
41.75 fulphuric acid of 2.24 , and a little iron \(\ddagger\).
\(\ddagger\) Ibid. Ni.
cbolfon's
Fourna!

According to the analy fis of Vauquelin, the fulphat of frontites found at Bouvron in France, which was contaminated with .I of carbonat of lime, is compofed of

> 54 frontites,
> 45 fulphuric acid.

\section*{995 \\ § Four. \({ }^{\text {den}}\) \\ Min. \(\mathrm{N}^{\circ}\) Genus IV. magnesian salts.}

This genus comprehends the combinations of magne- 108 fia and acids which occur in the mineral kingdom. Un- G IV. ly two fpecies have hitherto been found ; nainely, Salts.

SPECIES I. Sulphat of inagnefia.
\({ }_{10}^{\text {Ic9 }}\)
It is found in Spain, Bohemia, Britain, 2ec.; and malphat of enters into the compofition of many mineral waters.
For a defeription of it, we refer to Chemistry, rio 633. in this Sufp/.


This genus comprehends thofe combinations of alu- G. V. Ale mina and acids which occur in the mineral kingdum. Falts.

> species i. Alum.

This falt is found in cryltals, in foft maffes, in flakes, and invifibly mixed with the foil. For a defcription, we refer to Calmistry, \(\mathrm{H}^{\circ} 636\).

\section*{Order III. AGGREGATES.}

This order comprehends all mechanical mixtures of earths and tiones found in the mineral kirydom. Thefe are exceedingly numercus: the mountains and hills, the mould on which vegetables grow, and indeed the greater part of the globes may be contidered as compoied of them. A complete defription of aggregates belonga rather to geology than mineralogy. It would be improper, therefore, to treat of them fully here. But they cannot be altogether omitted; becaufe aggregates are the fint fubttances which prefent themfetves to the view of the practical mineralogit, and becaufe, without being acquainted with the names and componeut parts of many of them, the moft valuable mineralogical works could not, be underfood.

Aggregates may be comprehended under four divi. Divifiun if fions: J. Mixtures of earths; 2. Amorphous fragments asg egateso of fones arglutinated together; 3. Cry lallized Hones, either agglutinated together or with anorphous fones; 4. Aggregates formed by fire. It will be exccediugly. convenient

Earth and corvenient to.treat each of thefe feparately. We flall Stones. therefore divide this order into four fections.

\section*{Sect. I. Aggregates of Earths.}

The moft common carthy aggregates may be comprehended under the following genera:
1. Clay,
2. Colorific earths,
3. Marl,
4. Mould.

114
Clay.

II 5
Porcelain
clay.
* Anr. de

Cbim. xiv.

Genus I. clay.
Clay is a mixture of alumina and flica in various proportions. The alumina is in a fate of an inpal pable powder; hut the filica is almoft alway;s in fmall flones, large enough to be diftinguifted by the eye. Clay, therefore, exh:bits the character of alumina, and not of filica, even when this laft ingredient predominates. The particles of flica are already combined with each other ; and they have fo ftrong an affinity for each other, that few bodies can feparate them; whereas the alumina, not being enn.bined, readily difplays the charaeters which diftinguifh it from other bodies. Delides alumina and filica, clay often contains carbonat of lime, of magnefia, barytes, oxyd of iron, sce. And as clay is merely a mechanical mixture, the proportion of its ingredients is exceedingly various.

Clay las been divided into the following feccies:
Its texture is eartiy. Its luftre 0 . Opaque. Hardnefs 4. Sp. gr. from 2.23 to 2.4 . Colour white, fometimes with a fhade of yellow or red. Adheres flightity to the tongue. Feels foft. Falls to powder in water.
A fpecimen, analyfed by Haffenfratz, contained 62 filica, 19 alumina, 12 magnefia, 7 fulphat of barytes.

100*
A fpecimen, analyfed by Mr Wedgewood, contained 60 alumina, 20 filica, 12 air of water.

\section*{\(9^{2}\)}
species 2. Common clay.
Its texture is earthy. Luttre 0 . Opaque. Hardnefs 3 to 6. Sp. gr. 1.8 to 2.68. A dheres nightly to the tongue. Often feels greafy. Falls to powder in water. Colour, when pure, white; often tinged blue or yellow.

\section*{Variety z. Potter's clay.}

Hardnefs 3 to 4. Sp. gr. 18 to 2. Stains the fingers nightly. Acquires fome polifh by friction. Colour white; often with a tinge of yellow or blue; fometimes brownith, greenifh, reddith. 'Totally diffutible in water; and, when duly moiftened, very ductile.

Variety 2. Indurated clay.
Hardnefs 5 to 6 . Does not diffufe itfelf in water, but falls to powder. Difcovers but little ductility. Colours grey, yellowifh, bluifh, greenifh, reddif, brownifh.

Wariety 3. Shinofe clay.
Structure flaty. Sp. gr. from 2.6 to 2,69 , Feels \(-r\) fmooth. Streak white or grey. Colour commonly bluifh, or yellowifh grey; fometimes blackifh, reddifh, greenif. Found in Atrata, ufually in coal mimes.

This variery is fometimes impregnated with bitumen. It is then called bituminous foale.
species 3. Lithomarga.
Texture earthy. Fiacture conchoidal. I uftre fromg. 0 of 2. Opaque. Hardnefs 3 to 7 . Sp. gr. when pretty hard, \(2.8: 5\). Surface fmiooth, and feels foapy. Adheres ftrongly to the tonguv. Falls to pieces, and then to powder, in water; but does root diffufe itfelf through that liquid. Fufible per fe into a frothy mafs. Variety I . Friable lithomarga.
Formed of fialy particles fightly cohering. Luftre 1 to o. Hartnefo 3 to 4. Exceedingly light. Feels very fmooth, and affumes a polifh fiom the nail. Colour white ; Cometimes tinged yellow or red.

Fariely 2. Indurated lithomarga.
Hardnefs 4 to 7 . The fofter forts adhere very Arongly to the tongue when newly broken; the harder very moderately. Colours grey, yellow, red, brown, blue.

A fipecimen of lithoinarga from Ofmund, analyfed by Bergman, contained Go.o filica,
11.0 alumina,
5.7 carbonat of lime,
4.7 oxyd of iron,
a. 5 carbonat of magnefia,
18.0 water and air.
\(99.9 \dagger\)
species 4. Bole.
Texture earthy. Fracture conchoidal. Luftre 0. T'ranfparency fcarce 1. Hardnefs 4. Sp. gr. from 1.4 to 2. Acquires a polifh by friction. Scarcely adheres to the tongue. Feels greafy. Colour yellow or brown; fometimes red; fometimes fpotted.

The lemnian earth which belongs to this fpecies, according to the analyfiz of Bergman, contains

> 47.0 filica,
> 19.0 alumina,
> 6.0 carbonat of magnefia,
> 5.4 carbonat of fime,
> 5.4 oxyd of iron,
> 17.0 water and air.
\(99.8 \ddagger\)
species 5 . Fullers earth.
Texture earthy. Structure fometimes flaty. Fracture impertectly conchoidal. Luttre 0. Opaque. Hardnefis 4 . Receives a polifh from friction. Does not adhere to the tongue. Feels greafy. Colour ufually light green.
A fpecimen from Hampfhire, analyfed by Bergman,

51.8 filica,
25.0 alnmina,
3.7 oxyd of iron,
0.7 carbonat of magnefia,
15.5 moitture.

This eatth is ufed by fullers to take the greafe out of their cloth before they apply foap. It is effential to fullers earth that the particles of filica be very fine, otherwife they would cut the cloth. Any clay, porfelied of this laft property, may be confidered as fullers earth; for it is the alumina alone which acts upon the cloth, on account of its flrong affinity for greafy fubftances.

\section*{Genus II. Colorific Eartas.}

The minerals belonging to this genus confift of clay, mixed with fo large a quantity of fome colouring ingre. dient as to render them ufeful as paints. The colouriag matter is commonly oxyd of iron, and fometimes charcoal.

\section*{SPECIES I. Red chalk. \\ Reddle.}

Texture earthy. Fracture conchoidal. Luftre 0 . Opaque. Hardnefs 4. Sp. gr. inconliderable. Colour dark red.

Feels rongh. Stains the fingers. Adheres to the tongue. Falls to powder in water. Does not become ductile. When heated it becomes black, and at \(159^{\circ}\) Wedgewood melts into a greenif yellow frothy enamel.

Compofed of clay and oxyd of iron.

\section*{species 2. Yellow chalk.}

Texture earthy. Fracture conchoidal. Hardnefo 3. Sp . gr inconfiderable. Colour ochre yellow.
Feels fmonth or greafy. Stains the fingers. Adheres to the tongue. Falls to pieces in water. When heated becomes red; and at \(156^{\circ}\) Wedgewood melts into a brown porous porcelain.

According to Sage, it contains
50 alumina,
40 oxyd of iron,

SPEC18s 3. Black chalk.
Structure flaty. Texture earthy. Fragments fplintery. Luftre o. Opaque. Hardnefs 5. Sp. gr. 2.144 to 2.277. Colour black. Streak black.
Feels fmooth. Adheres flightly to the tongue. Does not moulder in water. When heated to rednefs it becomes reddifh grey.

According to Wiegleb, it is compofed of
64.50 filica,
11.25 alumina,
11.00 charcoal,
2.75 oxyd of iron, 7.50 water.
\(97.00+\)
species 4. Green earth.
Texture earthy. Luftreo. Opaque. Hardnefs 6 to 7. Sp gr. 2.637. Colour green.

Commonly feels fmooth. Does not flain the fingers. Often falls to powder in water. When heated it becomes reddifh brown; and at \(147^{\circ}\) Wedgewood melts into a black compact glafs.

Compofed of clay, oxyds of iron and nickel.
Genus III. Marl.
A mixture of carbonat of lime and clay, in which the Suppl. Vot. II, Part I.
carbonat confiderably exceeds the other ingredient, is Aggregates called marl.

Its texture is earthy. Luftre 0 . Opaque. Hardnefs from 4 to 8 ; fometimes in powder. Sp. gr. from 1.6 to 2.877 . Colour ufually grey, often tinged with other colours. Effervefces with acids.

Some marls crumble into powder when expofed to the air; others retain their hardnefs for many years.
- Marls may be divided into two fpecies: 1. Thofe which contain more filica than alunina; 2. Thofe which contain more alumina than filica. Mr Kirwan has called the firt of thefe filiceous, the fecond argillaceours, marls. Attention Thould be paid to this diftinction when marls are ufed as a manure.
\[
\begin{aligned}
& \text { Genus IV. Mould. }
\end{aligned}
\]

It contains the following ingredients: filica, alumina, lime, magnefa (fometimes), iron, carbon derived from decayed vegetable and animal fubftances, carbortic acid, and water. And the good or bad qualities of foils depends unon a proper mixture of thefe ingredients. The filica is feldom in the fate of an impalpable powder, but in grains of a greater or fmaller fize: Its chief ufe feems to be to keep the foil open and pervious to moifture. If we pals over the carbon, the iron, and the carbonic acid, the goodnefs of a foil depends upon its being able to retain the quantity of moifture which is proper for the nourifhent of vegetables, and no more. New the retentive power of a foil increafes with the proportion of its alumina, lime, or magnefia, and diminifhes as the proportion of its filica increafes. Hence it follows, that in a dry country, a fertile foil fhould contain lefs filica, and more of the other earths, than in a wet country.
Giobert found a fertile foil near Turin, where it rains annually 30 inches, to contain

From 77 to 79 tilica,
\[
\begin{aligned}
& \text { 9-14 alumina, } \\
& 5-12 \text { lime. }
\end{aligned}
\]

Near Paris, where it rains about 20 inches annually, Mr Tillet found a fertile foil to contain Coarfe fand 25 Fine fand
\[
\begin{aligned}
& 2146.0 \text { filica, } \\
& 16.5 \text { alumina, } \\
& 37.5 \text { lime. }
\end{aligned}
\]
\(100.0 \ddagger\)
\(\ddagger\) Kirwar
The varieties of inould are too numerons to admit an on Manuresi accurate defcription: we fall content ourfelves, therefore, with mentioning the moft remarkable.
\[
\begin{aligned}
& \text { Species 1. Sand. } \\
& \text { This confifts of finall grains of filiceous fones not Sand. } \\
& \text { cohering together, nor foftened by water. When the } \\
& \text { grains are of a large fize, the foil is called gravel. } \\
& \text { SPECIES 2. Clay. }
\end{aligned}
\]
Any foil which does not cohere fo ftrongly as clay, \({ }^{229}\) Loand. but more Atrongly than chalk, is called loum. There are many varieties of it. The following are the moft common.

Ff Variety

Earthe a nd Variety 1. Clayey loam; called alfo frong, filf, colll, Stones.

\section*{\(\xrightarrow{\sim}\)}

It confifts of a mixture of clay and coarfe fand.
Vuriety 2. Chalky loam.
A mixture of clay, chalk, and coarfe fand ; the chalk predominating.

Variety 3. Sandy loam.
A mixture of the fame ingredients; the fand amounting to .8 or 9 of the whole.

Thll is a mixture of clay and exyd of iron. It is of a red colour, very hard and heavy.

\section*{Sect. II. Aggregates of amorphous fones.}

The aggregates which belong to this fection confift of amorphous fragments of flones cemented together. They may be reduced to the following genera:

> 1. Sanditone,
> 2. Puddingftone,
> 3. Amygdaloid,
> 4. Breccia.

I3
G 1. Sand. fone.

\section*{Genus I. Sandstone}

Small grains of fand, confifting of quartz, firit, homftone, filiceous fhitus, or felfpar, and fometimes of mica, cemented together, are denominated fandfones. They feel rough and fandy; and when not very hard, eafily crumble into fand. The cement or bafis by which the grains of fand are united to cach other is of four kinds; namely, lime, alumina, filica, iron. Sanditones, therefore, may be divided into four fpecies.

SPECIES 1. Calcareous fandllones.
Calcareous fandftones are merely carbonat of line or marl, with a quantity of fand interpofed between its particles. Though the quantity of fand, in many cafes, far exceeds the lime, calcareous fanditones are fometimes found crytallized: and, in fome cafes, the cryftals, as might be expected, have fome of the forms which diftinguifh carbonat of line. Thus the calcareous fandflone of Fountainbleau is cryftallized in rhomboidal tables. It contains, according to the analyfis of Laffone
62.5 tiliceous fand,
37.5 carbonat of lime.

Calcareous fandfones have commonly an earthy texture. Theil furface is rough. Their hardnefs from 6 io 7. 'Their fpecific gravity about \(\mathbf{2 . 5}\) or 2.6. Their colour grey ; fometimes yellowifh or Lrown. They are fometimes burned for lime.

\section*{species 2. Aluminous fandfones.}

The bafis of argillaceous fandfones is alumina, or rather clay. Their ftrufure is often חaty. Their texture is compact, and either fine or coarfe grained, according to the fize of the fand of which they are chiefly compofed. Their hardnefs is from 6 to 8 , or even 9. Their colour is ufually grey, yellow, or brown.

They are often formed into mill.fones, filteringftones, and coarfe whet ftones.

Siliceous fandftones confift of grains of fand cemented together by filica, or fome fubflance which confifts chiefly of filica or fint. They are much harder than any of the other fpecies.

Sometimes ftones occur, confiting of grains of lime gg egat cemented together with filica. Thefe ftones are alfo denominated filictous fandforres.

SPECIES 4. Ferruginous findfones.
Ferrugi.
The iron which acts as a cement in ferruginous fand-nous. flones is not far from a metallic flate. When iron is completely oxydatcd, it lofea the property of actiug as a conent. This is the reafon that ferruginous fandflones, when expofed to the air, almoft always crumble inte powder.

The colour of ferruginous fanditones is ufually dark red, yellow, or brown. The grains of fand which compofe them are often pretty large. Their kardnefs is commonly inconfiderable.

Genus II. Pudding Stone.
Pebbles of quartz, flint, or other fimilar ftones of Gint. P. round or eliptical form, from the fize of rape feed to that of an egg, cemented together by a filiceous cenient, often mixed with iron, have been denominated puidding fones.

Pudding ftones, of courfe, are not inferior in hardnefs to quartz, flint, chalcedony, \&c. of which the pebbles may confift. The culour of the cement is ufually yellow, brown, or red. Its facture is conchoidal.

The finer forts of pudding tones are capable of a fine polifh ; the coarfe are ufed for mill ftones.

Genus III. Amygdaloid.
Rounded or eliptical maffes of chalcedony, zeolite, ,oid. limeftone, lithoinarga, fleatites, green earth, garnets, hornblend, or opal, cemented together by a bafis of indurated clay, trap, mullen, walken or kragg, conititute an amygdaloid.

Amygdaloids are opaque. They have no luftre. Their fracture is uneven or conchoidal. Hardnefs 6 to 9. Their colours are as various as the ingredients of which they are compored.

\section*{Genub IV. breccia.}

A ngular fraginents of the faine Species of tione agglu. Breco tinated together, conflitute a breccia. Thus calcareous breccia coulifts of fragments of marble cemented together by means of lime.

\section*{Sect. III. Aggrcgates of Cryfals.}

The minerals belonging to this fection confite either of cryftals of different kinds cemented together, or of cryitals and amoiphous tones cemented together.

They may be reduced under the following genera.
1. Granite.
2. Sienite.
3. Granatine.
4. Granitell.
5. Granilite.
6. Trap.
7. Porphyry.

Genus I. granite. ever be the fize or the figure of the ingredients, is denominated granite. This aggregate may be divided into two fpecies, namely, common granite, and 乃ijiofe granite or gneifs.
species i. Common granite.
Its Atructure is always granular. The felfpar is often amor.

\section*{\(\left\{\begin{array}{l}\text { r } \\ \text { 以 } \\ \text { in } \\ \text { in } \\ 0\end{array}\right.\)}
and amorphous, and conftitutes moft frequently the greateft part of the aggregate.

Common granites differ much in their appearance, ac. colding to the fize, proportion, colour, and figure of their component parts. They are commonly very hard: Their specific gravity waries from 2.5388 to 2.9564 .

\section*{spectes 2. Shiftofe granite or gneifs.}

The ftrmeture of gneifs is always flaty, and this confitutes its fpecific character. In gneifs, the proportion of quartz and felfpar is nearly equal: the proportion of mica is fmalleft. It is evidently fubject to the fame varieties with common granice.

\section*{Genus II. Sienite.}

Mr Werner has given the name of frenite to aggregates compofed of felfpar, hornblende, and quartz; or of felfpar, hornblende, quartz, and mica. Thefe aggre. gates were formerly confounded with quartz.

Sienite is found both of a granular and faty ftructure: it might, therefore, like granite, be divided into two fpecies. In fienite the quartz is communly in by far the imalleft proportion.

Genus III. granatine.
Mr Kirwan has applied the name granatine to the following aggregates.
\begin{tabular}{|c|c|c|c|}
\hline Quartz, Felfpar, Shorl. & Quartz, Mica, Garnet. & Quartz, Hornblende, Jade. & Felfpar, Mica, Shorl. \\
\hline Quartz, Felipar, Jade. & \[
\begin{gathered}
\text { Quartz, } \\
\text { Shorl, } \\
\text { Hornblende, }
\end{gathered}
\] & Quartz, Hornblende, Garnet, & Felfpar, Mica, Hornblende. \\
\hline Quartz, Felipar, Garnet. & Quartz, Shorl, Jade. & \[
\begin{aligned}
& \text { Qartz, } \\
& \text { Jade, } \\
& \text { Garnet. }
\end{aligned}
\] & Felfpar, Quartz, Serpentine. \\
\hline Quartz, Mica, Shorl. & \begin{tabular}{l}
Quartz, \\
Shorl, \\
Garnet.
\end{tabular} & Quartz, Hornblende, Hornftone, & Felfpar, Quartz, Steatites. \\
\hline Quartz, Mica, Jade. & & & \\
\hline
\end{tabular}

One of thefe aggregates, namely, quartz, mica, garnet, was called by Cronftedt norka or murlfien.
Genus IV. granitell.

Mr Kirwar gives the name of granitell to all aggregates compofed of any two of the following ingredients: quartz, felfpath, mica, fhorl, hormblende, jade, garnet, fleatites. The moft remarkable of thefe are:
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{c} 
Quartz, \\
lelfar
\end{tabular} & \begin{tabular}{c} 
Quartz, \\
Hornblende.
\end{tabular} & \begin{tabular}{c} 
Quartz, \\
Steatites.
\end{tabular} & \begin{tabular}{c} 
Felfpar, \\
Hornblende.
\end{tabular} \\
\hline \begin{tabular}{c} 
Quartz, \\
Mica,
\end{tabular} & \begin{tabular}{c} 
Quartz, \\
Jade.
\end{tabular} & \begin{tabular}{c} 
Felfpar, \\
Mica.
\end{tabular} & \begin{tabular}{c} 
Felfpar, \\
Jade.
\end{tabular} \\
\hline \begin{tabular}{c} 
Quartz, \\
Sherl.
\end{tabular} & \begin{tabular}{c} 
Quartz, \\
Garnet.
\end{tabular} & \begin{tabular}{c} 
Felfpar, \\
Shorl.
\end{tabular} & \begin{tabular}{c} 
Felfpar, \\
Garnet.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Mica, & \begin{tabular}{c} 
Mica, \\
Shorl.
\end{tabular} & \begin{tabular}{c} 
Hornblende, \\
Jade.
\end{tabular} & \begin{tabular}{c} 
Jade, \\
Garnet.
\end{tabular} \\
\hline \begin{tabular}{c} 
Mica, \\
Hornblende.
\end{tabular} & \begin{tabular}{c} 
Mica, \\
Garnet.
\end{tabular} & \begin{tabular}{c} 
Hornblende, \\
Garnet.
\end{tabular} & \begin{tabular}{c} 
Steatites, \\
Shorl.
\end{tabular} \\
\hline
\end{tabular}

Some of thefe aggregates have received particular names. The aggregate of quartz and mica, when its fructure is flaty, is called by Werner fiifofe mica: by the Swedes, it is denominated fellfern, whatever be its Atructure.

The aggregate of hornblende and mica is called grunfein, from the dark green colour which it ufually has.

Under the name of granilite, Mr Kirwan compreherds' all aggregates containing more than three ingredients. Of thefe the following are the moft remarkable.
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{c} 
Quartz, \\
Fellpar, \\
Mica, \\
Shorl.
\end{tabular} & \begin{tabular}{c} 
Quartz, \\
Mica, \\
Shorl, \\
Garnet.
\end{tabular} & \begin{tabular}{c} 
Sulph. of barytes, \\
Mica, \\
Shorl.
\end{tabular} \\
\hline \begin{tabular}{c} 
Quartz, \\
Felfpar, \\
Mica, \\
Steatites.
\end{tabular} & \begin{tabular}{c} 
Quartz, \\
Felfpar, \\
Mica, \\
Garnet.
\end{tabular} & \begin{tabular}{c} 
Qulph. of bartz, \\
Mica, \\
Hornbles,
\end{tabular} \\
\hline
\end{tabular}

Genus VI. trap (p).
Under this genus we clafs not only what has commonly been called trap, but alfo wacken, and mullen, and kragftone of Kirwan.

Species i. Common trap.
is very common in Scotland, and is known This fone is very common in Scotland, and is known by the name of whinglone. Whole hills are formed of
it; and it occurs very frequently in large rounded detached fragments. Sometimes it altumes the form of immenfe columns, and is ther called bafalt. The Giants Caufeway in Ireland, the ifland of Staffa, and the fouth fide of Arthur's Seat in Scotand, are well known inEtances of this figure.

Its texture is earthy or compaet. Its fracture uneven. Its luftre commonly o. Opaque. Hardnefs 8 to 9. Not brittle. Sp. gr. from 2.78 to 3.021 *. * Kirwano Colour black, with a fhade of grey, blue, or purple; fometimes blackifh or reddifh hrown; in fome cafes greenifh grey. By expofure to the atmofphere, it often becomes invefted with a brownifh rind. Before the blow-pipe, it melts per \(\int e\) into a more or lefs black glafs.

Trap confilts of fmall cryitals of hornblende, felfpar, olivine, \&c- ufually fet in a gronnd compofed apparent1 y of clay and oxyd of iron. A fpecimen, in the form of bafaltes, from Staffa, analy fed by Dr Kennedy of Edinburgh, contained 48 filica,
\[
\begin{aligned}
& 16 \text { alumina, } \\
& 26 \text { oxyd of iron, } \\
& 9 \text { lime, } \\
& 5 \text { moifture, } \\
& 4 \text { foda, } \\
& \text { I muriatic acid. } \\
& 99 \text { t }_{2} \\
& \text { F f } 2
\end{aligned}
\]

(p) Kirw. I. 231 and 431. . Faujas de St Fond. Eflaifur l'Hif. Nat des Rocbes de Trap. -Pbil. Tranf. pafim. \({ }^{\text {Po }}\) See alfo a very ingenious fet of experiments on the fufion of trap, by Sir James Itall in Tranf. Eifin. V. 43.

Earihs and

Edin.
Tranf. 90.

A specimen from Salifoury rock, near Edinburgh, contained, according to the analyfis of the fame gentle.man,
46.0 fillica,
19.0 alumina,
17.0 oxyd of iron,
8.0 lime,
4.0 moillure,
3.5 roda, 1.0 muriatic acid.

\section*{\(98.5 \ddagger\)}

Dr Kennedy conducted thefe analyfes with great in genuity and judgment ; and the difcovery in which they terminated, that trap contains foda, is certainly of importance, and may lead to valuable coniequences both in a geological and mineralogical view.

\section*{species 2. Wacken*}

This ftone often forms confiderable parts of hills, and, like trap, is amorphous. Its texture is earthy. Its fraciure ufually even. Iuftre o. Opaque. Hardnefs 6 to 9. Sp. gr. from 2.535 to 2.893 t. Colour grey, with a thade of green, black, red, brown. When expofed to the atmoffhere, it withers and becomes more grey.

It melts into a grey porous nag.

\section*{species 3. Mullen \(\ddagger\).}

This fone is alfo found in confiderable mafies, and fometimes has a tendency to a columnar form like bafalt. Texture eathy. Fracture uneven, and fine fplintery. Luftre \(r\), except from fome fhining particles of: bafaltine. Opaçue. Hardnefs from 7 to \(9 . \quad\) Sp. gr. from 2.6 to 2.73 . Colour afh or bluifh grey ; fomerimes mixed with ochre yellow, in confequence of the decompofition of the ftone. At \(330^{\circ}\) Wedgewood it melts into a black compact glafs.

When mullen is expofed to the air, its furface becomes covered with a greyifn white rind, fometimes nightly ochry.

150
Kragitnne.
* Kirw. i . 226.
species 4. Kragfone*.
'Ihis fone, which, like the others, forms confiderabie parts of rocks, was formed into a diftinct fpecies by Mr Kirwan. Its texture is earthy. It is cxceedingly porous, and the pores are often filled with the cryitals of other minerals. Fracture uneven. Luftre o. O. paque. Hardnefs 5 to 7. Sp. gr. 2.314. Fecls rough and harh. Colour reddifh grey. Streak yellowifh grey. At \(138^{\circ}\) Wedgewood it melts into a reddilh brown porcelain mafs.

\section*{Genus VII. porphyry.}
I. Hornftone porphyry.
2. Pitchfone porphyry.
3. Hornflate porphyry.
4. Felfpar or petunfe porphyry.
5. Clay porphyry.
6. Hornblende porphyry.
7. Trap porphyry.

The aggregates belonging to this feetion compofe moft of the mountains of the globe. In giving an account of them, we have adhered implicitly to the arrangement moft generally received by mineralogifts. It mult be acknowledged, that this arrangement is by no means complete, and that fome of the genera are too vague to be of much ufe. The number of aggregates already difcovered is too great for giving to each a particular name. lerhaps it would be better henceforth to adopt the method propofed by Mr Hauy, namely, to conftitute the genera from that ingredient which enters mof abundantly into the aggregate, and which forms as it were its bafis, and to diltinguifh the fpecies. according to the nature and proportion of the other ingredients. According to this plan, the aggregates hitherto difcovered have been divided by Hauy into the. following genera:
1. Felfpathic rock.
2. Quartzous rock.
3. Micaceous rock.
4. Chloritous rock.
5. Serpentine rock.
6. Trappean rock.
7. Hornblendean rock.
8. Petro-filiceous rock.
9. Garnetic rock.
10. Calcareous rock.
11. Argillaceous rock.
12. Corneous rock.

Sect. IV. Volcanic Aggregates.
Aggregates formed by volcanoes may be reduced to the following genera.
1. L.ava.
2. Tufa.
3. Pamice.
4. Afhes.

Genus 1. iava.
All fubftances which have iffued out of a volcano in a flate of fufion are called lavas. They have been divided into three fpecies.
species 1. Vitreous lava.
Found in fmall pieces.
Texture gloffy. Fracture conchoidal. Luftre 3. Traniparency from 3 to 1. Hardnefs 9 to 30 . Sp. gr. from 2 to 3. Colour blackifh, greenifh, or whitifh. Commonly fomewhat porous.
species 2. Cellular lava.
This fpecies is full of cells. Surface rough and full of cavities. Texture earthy. Luftre 0 . Opaque. Hardnefs 7 to 9. Sp. gr. varies, but does not exceerd 2.8. Colour brown or greyifh black. Commonly fomewhat magnetic.
species 3. Compact lava.
This fpecies is the moft common of all ; it runs into
ur. the fecond by infenfible degrees; and indeed is feldom found of any confiderable lize without fome pores. It bears in general a very ftrong refemblance to trap.

A fpecimen of the lava of Catania in Sicily, analyfed by Dr Kennedy, contamed

> 51.0 filica,
> 19.0 alumina,
> 1.4 .5 oxyd of iron,
> 9.5 lime,
> 40 foda,
> 1.0 muriatic acid.
> \(9.9 .0+\)

A fpecimen of the lava of Sta. Venere in Sicily lee found to contain
50.75 filica,
17.50 alumina,
14.25 oxyd of iron,
10.00 lime,
4.00 foda,
1.00 muriatic acid.

\section*{\(97.5 \ddagger\).}

Thus we fee, that the refemblance between trap and lava holds not only in their external appearance, but al. fo in their component parts.

Genus II. puzzorana.
Found in fmall pieces. Surface rough. Texture tibles. earthy and porous. Fracture uneven. Luftre 0 . O. 156 paque. Harduefs 3. Very brittle. Sp. gr. from 2.57 G. II. Puza to 2.8. Colour brown or dark grey. Magnetic. Eazzulana. fily melts into a black flag.

When mixed with line into a mortar, it pofferfes the property of hardening even under water. This property it owes moft probably, as Mr Kirwan fuppofes, to the iron which it contains. The iron decompores the water of the mortar, and by this means it becomes too hard to be acted upon by water in a very fhore time.

\section*{Genus Ill. pumice. \\ G. \(111 . \mathrm{Pu}=\)}

This is a very light fubitance ejected from volcanoes. mice.
It is porous. Hardnefs 3. Brittle. Sp. gr. helow 1. Colour grey or brown.

In fome varieties the liftre and tranfparency are 0 : in others, the luftre is glaffy, 2. Tranfparency from 1 ta 2.

Thefe are analogous to the afhes of common pit coal. canic anes al Loofe and fmooth, very light, and fine. Slowly diffufitle in water, and when wet fomewhat ductile.

\section*{Class II. SAL'TS.}

UN1DER this clafs we comprehend all the combinations of alkalies with acids which exift in the mineral kingdom. As they have heen already defcribed in the article Chemistry, Suppl. we thall here only give a lift of their names.

Genus I. potass.
Sp. t. Sulphat of potals
2. Nitrat of potafs.

Genus IJ. soda.
sf. I. Carbonat of foda.
2. Sulphat of foda.
3. Muriat of foda.
4. Borax.

Genus III. ammonia.
Sp. 1. Sulphat of ammoniä.
2. Muriat of ammonia.

\section*{Class III. COMbUSTibles.}

THE combuftible fubfances belonging to the mineral kingdom, excluding the metals, may be comprehended under the following generas
I. Sulphur.
2. Carbon.
3. Bitumen.
4. Coal.
5. Amber.

Genus I. surphur.
species 1. Native fulphur.
This fubftance is found abundantly in many parts of the world, efpecially near volcanocs, as Hecla, AEtna, Vefuvius, the Lipari iflands, \&xc. It is either in the ftate of powder, or maffive, or cryftallized. The primitive form of its cryftals is an octohedron, compofed of two four fided pyramids, joined bafe to bafet. The fides of thefe pyramids are fcalene triangles, and fo inclined that the plane where the bafes of the pyramids join is a rhomb, whofe long diagonal is to its fhort as 5 to 4*. Sometimes the apices of the pyramids, to ufe the language of De Lifle, are truncated; fometimes they are feparated from each other by a prifm;
fometimes they are truncaied near their bafes, and a low four fided pyramid rifes fron the truncature: this pyranid is alco fometimes truncated near its apex \(\ddagger\). Fi. Fig. \(35=\) nally, one of the edges of the pyramids is Cometimes truncated. For figures of thefe varieties, and for the laws of their formation, we refer to Mr Lefroy t. t Jour. dse

Colour yellow, with a faade of green ; fometimes Min. No reddifin (Q). Luftre greafy, 2. Tranfparency varies \({ }^{\text {xxix. } 337^{\circ}}\) from o to 4. Caufes dunble refraction \(\ddagger\). T'exture \(\$\) Hasy. compact. Hardnefs 4 to 5. Brittle. - For its other properties, we refer to Chimistry in this Suppl.

Sometimes fulphur is mixed with different propor. tions of earths. Thefe combinations are hardly fuf. ceptible of accurate defcription.

Sulphur combines alfo with metals. Thefe combinations fhall be defcribed in the fourth clafs.

Genus II. carbon.
This genus comprehends all minerals compofed of Carbous pure carbon, or of carbon combined with a little earth.

\footnotetext{
speciss 1. Diamond.
163
Diamonds
}


\section*{I91.}
tyour. de -it n. No xxix. 343. \(\ddagger\) Hauy, ivid.
is found in d:Merent pats of Ais, parti, olaty in the kingdoms of Golconda and Vifapowr ; it is found alio iil Brazil.

It is alivays cryfallized; but femetimes fo imperfectly, that at the firit fyght it night pafs for amorphous. Its primitive form is a regular ofogon \(\uparrow\); but it no e commorly aftumes ? fpheroida! form, and then has ufually 36 cmrilinear iriangular faces, f \(x\) of which are raifed upon each of the faces of the primitive oeto. gon \(f\). Its integrant molecule, according to Hany, is a regular tetrahedron. - For a more particnlar account uf the cryals of this mineral, we sefer the reader to Mr Kumé cie liflu* and Mr Hauyt.

Tosture \(\mathrm{E}_{\mathrm{ol}}\) 'iated. Lufte 4. 'Tranfarency from 2 to 4. Caufes firgle refraction. Hardness 20. Sp. gr. 3.5185 to \(3.5310 \%\) Colour valious; fometimes limpid, fometimes red, orange, y fllow, green, blue, and even blackith.
|! Id ibid. § Morvean,
-Snn: de
Clim xxxi. 2. 2 .

164
Mil eral
charcoal.
When rubbed it becomes pofitively electric, even before it has been cut by the lapidary, which is not the cafe with any other gem \(H_{\text {. }}\).

It is compofed of pure carbon \{.

\section*{stecies 2. Mineral clarcoal. \\ Kilkenny coal-Wales culm.}

This mineral has been found in Hungary, italy, France, Ireland, and Wales. It occurs in Atratificd mafes, or in lumps nef.ed in clay.

Colour black. Luftre 4, metallic. Opaque. Texture foliated. Hardnefs 5 to 7. . Sp. gr. 1.4 to 1.526. Often fains the fingers. Infoluble in acins. Deflagrates with nitre. Ioes not burn till wholly ignited, and then confumes flowly without cmitting flame or fmoke.
It confifts almoft entirely of charcoal, which, as Morveau has proved, is an oxyd of carbon*.
```

srecies 3. Anthracite (3).
Aintlocacolite.

```

This fubftance, as Dulomien informs us, is found ex. dufively in the primitive mountains. It is always amorphous. Colour black or brownifh black. Luftre 3 to 4. Strueture flaty. Fregments rhombnidal. Hardnefs 6 to 7. Sp. gr. greater than that of coal. Often \(A\) fins the fingers.

Burns precifely like the laff fecies, and leaves. 40 of white arhes. According to Dolomiet, it is compofed
- - 4 of about
\[
\begin{aligned}
& 6_{4.0} \text { charcoal, } \\
& 32.5 \text { filica, } \\
& 3.5 \text { iron, }
\end{aligned}
\]
+ Tour de
Min \(\mathrm{N}^{0}\)
xxix \(33^{8 .}\)
\(\ddagger\) Murveau, ibid.

166
G III. Bitumen.

It is probable that the charcoal in the two laft fubflances is in the fame fate in which it exits in plum. bago, combined with oxygen, but not containing fo much as charcoal does \(\ddagger\).

\section*{Genus III. bitumen.}

By bitumen we uncier? and, with mineralogits in general, an uil, which is found in different parts of the earth, in various thates of confiftence. Thefe differellt thates form diftinet ipecies; in our ariangument of
14 which we f.all be guided by the obfervations which Mr
- Hatchett has made in his valuable papest on bituminous
*Nicho'fan fuidtances *.
Tournal ii.
2ul \(2+8\)
(R) This rame was given by Hauy from avigan:, a ceal.
bur- lead mine of OBin, near Caftetown, Derbyhire. It was firft mentioned by Mr De Born.

Coluur yellowith or reddifl brown, fometimes blackif brown. In its appearance it has a frong refernblance to caoutchouc or Indian rubber; hence its n neme. Confiftency various : fometimes fo foft as to adlere to the fingers; fometimes nearly as hard as afphalt. When fuft it is elaftic; when fard brittle. Sp. gr. 0.9253 to
deett, \(1.0233 \neq\).
Infolutle in alcohol, ether, and oil of turpentine, but foluble in oil of olives Not affected by nitric acid. When dittilled, it yields a tituminous oil imfoluble in metco alconol; the refiduum is carbonaceous*.
our de There is a variety of this fubflance found in a rivuxxai. let near the mine of Odin, which, when frefh cut, exasly fefembles fine cork in colour and texture; but in a few days after being expofed to the air, becomes of a pale reddif brown. This fubflance contanis withiu trebtt, it a nucleus of elafic Fitumen. It feems to be the elaffic bitumen altered in is: texture by the water \(\uparrow\).

\section*{Genus IV. coal.}

The fubfances belonging to this genus are compofed of carbon or rather chatcoal, and bitumen.

\section*{species 1. Jet (s).}

This fubflance is found in France, Spain, Germany, Britain, and other countries. It is found in detached kidney form mafles, of various fizes, from an itich to feven or cight feet in length.

Colour full black. Luffre 3 to 4 ; internal glafly. Opaque. Hardnefs 7 to 8. Not near fo brittle as afphalt. 'Texture ftriated. Fracture conchoidal. Sp.
rifon. gr. I.259*. It has uo odour except when heated, and
then it refembles the odour of afphatum. Melts in a Atroig heat, burns with a greenifh flame, and leaves an tarthy refiduun \(\dagger\).

Becomes fomewhat electric by friction \(\ddagger\). When diftulled yields a peculiar acid \(\S\).

This mineral is format into buttons, beads, and other trinkets. The manufactuse has been almoft confined a : iviv. to France II.

\section*{species 2. Cannel coal.}

This mineral is found in lancafinire, and in cifferent parts of Scotland, where it is known by the name of farrot co.nl.
Colour black. Luftre common, 2. Opaque. Structure fometimes faty. Texture compact. Fracłure conchoidal. Hardnefs 5 to 8. Brittle. Sp. gr. 1.232 to 1.426. Does not flain the fingers.

Kindles eafily, and buns with a bright white flame like a candle ( T ), which lafts but a fhort time. It does not cake. It leaves a ftony or footy refiduum.

A fpecimen of Lancahire cantel coal, analy fed by Mr Kirwan, contained 75.20 charcoal,

> 21.68 maltha,
> 3.10 aiumina and filica.

A frecimen of the naty kind from Airfire, calited fiplent ioal, was conupofed of
\[
\begin{aligned}
& 47.62 \text { charcoal, } \\
& 32.52 \text { malth13, } \\
& 20.05 \text { earths. } \\
& \hline 100.14 \ddagger
\end{aligned}
\]

Cannel coal is fufceptible of polifh, and, like jet, is often wrought into trinkets.

This very uffeful combuntible i, never found in the primitive mountains, but only in the fecondary mountains, or in plains formed of the fame materials with them. It is always in Atrata, and gencrally alternates with clay, fanditone, or limeltone.

Colour black, more or lefs perfect. Luftre ufually greafy or metallic, 2 to 4. Opaque. Structure generally faty. Texture of en foliated. Fracture varions. Hardnefs 4 to 6 . Sp. gr. 1.25 to 1.37 . Ufually fairs the fingers. Takes fire mole flowly, a:1d burns longer, than the laft feccies. Cakes more or lefe during combuition.

Of this fpecies there are many varieties, diftinguifhed in Britain by the names of caking coal, rock coak, \&c. Thefe are tho well known to require any defuription.

Mr Kirwan analyfed a variety of different kinds of coal: The refult of his experiments may be feen by the following table.
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Whictia } \\
& \text { ven coal. }
\end{aligned}
\] & W- gan & Swanfey. & Leeirin & \\
\hline 57.0 & 61.73 & 73.53 & 71.43 & charcoal. \\
\hline 41.3 & 36.7 & 23.14 & 23.37 & mathia \& afph. \\
\hline 1.7 & 1.5 ; & \(3 \cdot 33\) & \(5 \cdot 25\) & cartlis \(\ddagger\). \\
\hline 100.0 & 100.00 & 100.00 & 100 -0 & \\
\hline
\end{tabular}

\section*{\(\ddagger\) Minera!.} 525.

177
puriout
This mineral is generally found arridft frata of ge-cual. nuine coal. It is alfo calted parrot coal in Sentand.

Colour greyifh black. S.uftre o to 1. Structure ufual1y flaty. Texture earthy. Hardncfs 7 to 8. Sip. gr. 1.5 to 1.6 Generally explodes, and burts when lieated.

Compofed of charcoal, maltlia, atd afphatt, and above. ic of flony matter.

\section*{Genes V. amber.}
species 1. Common amber.

\section*{\({ }^{177^{9}} \mathrm{Am}\). \\ her.}

This fubfarice, called cligrum by the ancients, is found in different countries; but mont abundantly in I'ruffia, either on the fea fhore, or under ground at the ctepth of abont 100 feet, repoffug on wood cual *. It * Kiruc. is in lumps of different lizes.
Cohour yellow. Luthe 3 to 2. Tranfparency 2 to \(4 .{ }^{66}\). Fracture conchoidal. IHardnefs 5 to 6 . Sp. gr. 1.078 to 1.085 . liccomes electric by frietion.

If a piece of anber be fixed upon the point of a knife, and then kindled, it burns to the end without meling \(t\).

13y dillillation it yields fuccinic acid.
\[
C_{\text {LASS }}
\]
(s) It was called gagathes by the ancients, from the river Gages in Licia, near which it was found ; jajet in French, ozabache in Spanifh, gagath in German.
( T ) Hence it bas been called camnel coal. Candle, in the Lancafhire and Scotch dialeet, is pronannced saunel.

THIS clafs comprehends all the mineral bodies, compofed either entirely of metals, or of which metals conftitute the molt conliderable and important part. It is from the minerals belonging to this clafs that all metals are extracted; for this reafon they have obtained the name of ores.

The metals hitherto difcovered amount to 21 ; we flall therefore divide this clafs into 21 orders, allotting a diftinet order for the ores of every particular metal.

Metals exift in ores in one or other of the four following Itates. I, In a metallic fate, and either folita. ry or combined with each other. 2. Combined with fulphur. 3. In the ftate of oxyds. 4. Combined with acids. Each order therefore may be divided into the four following genera.
\[
\begin{array}{ll}
\text { 1. Alloys. } & \text { 3. Oxycs. } \\
\text { 2. Sulphurets. } & \text { 4. Salts. }
\end{array}
\]

It muft be obferved, however, that every metal has not hisherto been found in all thefe four flates, and that fome of them are hardly fufceptible of them all. Some of the orders therefore want оие or mure genela, as may be feen from the following table.

Order I. Gold ores.
1. Alloys.

Order II. Silzer ores.
1. Alloys.
2. Sulphurets.
3. Oxyds.
4. Salts.

Order III. Platinum ores. 1. Alloys.

Order IV. Ores of mercury. I. Alloys.
2. Sulphurets.
3. Oxyds.
4. Salts.

Order V. Copper ores. 1. Alloys.
2. Sulphurets.
3. Oxyds.
4. Salts.

Order VI. Iron ores. 1. Alloys.
2. Sulphurets.
3. Carburets.
4. Silicated iron.
5. Oxyds.
6. Salts.

Order VII. Tín ores. 1. Sulphurets.
2. Oxyds.

Order Vili. Lead ores. r. Sulphnrets.
2. Oxyds.
3. Salts.

Order IX. Zinc ores. 1. S:alphurets.
2. Qxyds.
3. Salts.

Order X. Artimonial cies. 1. Alloys.
2. Sulphurets.
3. Oxyds.
4. Salts.

Order XI. Bijmuth otci. 1. Alluy:.
2. Sulphurets.
3. Oxyds.

Order XII. Arfenic ores.
1. Alloys.
2. Sulphurets.
3. Oxyds.

Order XIII. Colalt ores. I. Alloys.
2. Sulphurets.
3. Oxyds.
4. Salts.

Order XIV. Nickel ores. 1. Sulphurets.
2. Oxyds.
3. Salts.

Order XV. Manganefie ores. 1. Oxyds. 2. Salts.

Order XVI. Tungsten ores. 1. Oxyds. 2. Salts.

Order XVII. Ores of mo. lybdenum. 1. Sulphurets.

Order XVIII. Ores of \(u\) ranium.
1. Oxyds. 2. Salts.

Order XIX. Ores of titunium.

\author{
1. Oxyds. \\ Order XX. Ores of tellu. rium. \\ 1. Alloys. \\ Order XXI. Ores of churomum. \\ I. Oxyds.
}

\section*{Order I. GOLD ORES.}

No metal perhaps, if we except iron, is more widely where \({ }^{18 \mathrm{r}}\) fcattered through the mineral kingdom than gold \({ }^{*}\). found. Hitherto it has been found only in a metallic flate ; \({ }^{*}\) Bergmo moft commonly in grains, ramifications, leaves, or rhomboidal, octohedral, or pyramidal cryltals. It is generally mixed with quartz, though there are inflances of its having occurred in calcareous rocks. It is not uncommon alfo to find it diffeminated through the ores of other metals; efpecially iron, mercury, copper, and zinc. The greateft quantity of gold is found in the wariner regions of the earth. It abounds in the fands of many African rivera, and is very common in South A merica and India. Europe, however, is not deftitute of this metal. Spain was famous in ancient times for its. gold mines, and feveral of the rivers in France contaiu it in their fands \(\dagger\). But the principal gold mines \(t\) Recumnn in Europe are thofe of Hungary, and next to them thofe Men. \(_{\text {Ma }}\) of Salaburg. Gold alfo has been difcovered in Sweden and Norway, and more lately in the county of \(f\) Lloyd, \(W\) icklow in Ireland \(\ddagger\).

\section*{Genus I. Alloys of gold. species s. Native gold.}

Native gold is never completely pure ; it is alloyed fourn. ii. with fome filver or copper, and fometimes with iron. 224 . In the native gold found in Ireland, indeed, the cuant. 183 tity of alky appears to have been exceedingly fmall. G.I. Nati

Its colour is yellow. Luftre metallic. Fracturegoid. hackly. Hardnefs 5. Sp. gr. from 12 to 19.

\section*{Order II. SILVER ORES.}

Silver is found moft commonly in quartz, limeftone, where hornftone; or combined with the ores of other metals, found. moft commonly with copper, antimony, zinc, cobalt, and lead. 'This latt metal indeed is feldom totally def. titute of filver.

> Genus I. Alloys of filver.
> SPECIES I. Native filver *.

Native filver, fo called becaufe the filver is nearly in \(*\) Kirvu i a tate of purity, forms the principal part of fome of los.- Can \(_{a}\) the richeft filver mines in the world. It is cometimes \({ }_{L i n t e r . ~ S v, ~}^{\text {ling. }}\). in fmall lumps; fometimes cryitallized in cubes, hexa- cie, \(177^{5}\), hedrons, octohedrons, or dodecahedrons ; fometimes in p. 420. leaves, or threads, often fo connected with each other as to refemble branches of trees, and therefore called dendrites. The filver in the famous mines of Potofi has this laft form. When newly extracted, it is not unlike fmall branches of fir \(\dagger\) -
The colour of native filver is white; often taraifhed. Pbyf. Gee Luitre metallic. Fracture hackly. Hardnefs 6. Mal- Your, de \(\mathrm{Min}^{\mathrm{N}}\) leable. Sp. gr. from 10 to \(10.33^{8}\).

The filver in this fpecies is almoft conftantly alloyed with from .03 to .05 of fome other metal, frequently gold or arfenic.

SPECIES 3. Alloy of filver and antimony \(t\). Antimoniated filver ore.
This alloy, which is found in the filver mines of Spain and Germany, is fometimes in grains or lumps, and fometimes cryitallized in fix-fided prifms, whofe fides are longitudinally chaunelled \(\ddagger\).

Its colour is white. Its luftre metallic. Hardnefs 10. Brittle. Sp. gr. from \(9.44 \subset 6 \oint\) to \(10 \|\). Texture foliated. Fracture conchoidal. Before the blow-pipe the antimony evaporates in a grey moke, and leaves a brownifh flag, which tinges borax green. If borax be ufed at firlt, a filver bead may be obtained.
This alloy was long fuppofed to contain arfenic. Bergman examined it, and found only filver and antimorıy \(斤\). His analyfis has been confirmed by the experiments of Vauquelin and Selb*. According to Selb, it is compofed of 89 filver, If antimony.

\section*{100}

A fpecimen, analy fed by Klaproth, contained 84 filver, 16 antimony.

100
Another fpecimen contained
76 filver,
24 antimony.
ommon
Spectes 2. Alloy of filver and gold. Auriferous native fitver.
This alloy is not uncommon in filver mines. Its colour is yellowifh white. Its luftre metallic. Hardnefs 5. Malleable. Sp. gr. above 10.6. Dr Fordyce found a specimes from Norway compofed of
dhimsla uf
2ub bluyenos \begin{tabular}{l}
72 filver, \\
28 gold. \\
\hline \(100^{8}\)
\end{tabular} This ore occurs in the filver mines of Germany and thagy. It is fometimes in maffes, fometimes in hreads, and fometimes cryftallized. Its cryftals are either cubes or regular octohedrons, whofe angles and edges are often varioufly truncated. For a defcription of the varieties produced by thefe truncatures, we refer the reader to Romé de Lijle g.
Its colour is dark bluifh grey, inclining to black; often tarnihed. Internal luftre metallic. Texture foliated. Fracture uneven. Hardnefs 4 to 5. May be cut with a knife like lead. Flexible and malleable. Sp. gr. 6.909* to \(7.215 \dagger\). In a gentle heat the fulpliur evaporates. Melts when heated to rednefs.
A fpecimen of this ore, analyfed by Klaproth, contained
85. filver, \(\frac{15 \text { fulphur. }}{100 \neq}\)
Genus II. sulphurets of silver.
Vitreous filver ore.
\begin{tabular}{l} 
Be \\
pe \\
Se \\
\\
\\
f \\
thr \\
eit \\
ed \\
of \\
the \\
oft \\
liat \\
cut \\
Sp \\
pl \\
tai \\
\hline
\end{tabular}
 It is fometimes in maffes, but more frequently cryftalli. . zed in fix.fided prifms, tables, or rhomboids; generally 1 i. \(1 \times 8\). indiftinet and accumulated together.
Its colour is iron grey ; often tarnifhed. Its luftre metallic. Fracture uneven. Hardnefs 4 to 5. Brittle. Sp. gr. \(7.208 \dagger\). Before the blow-pipe the fulphur \(\mid\) Gellerto and antimony exhale, leaving a bead, which may be freed from iron by fufion with nitre and borax.
A fpecimen of this ore, analyfed by Klaproth, eontained
66.5 filver,
12.0 fulphur,
10.0 antimony,
5.0 iron,
2.0 filica,
0.5 arfenic and copper.
species 2. Antimoniated filver ore*.
Metallic
\(\xrightarrow{\text { ores }}\)
This ore, which occurs in Saxony and Hungary, 188 feems to be fulphuret of filver contaminated with anti-Antimoni* mony and iron, and ought therefore, in all probability, ated filver to be confidered merely as a variety of the laft fpecies. ore.
* Kiruan
ii. 118 . ?


\[
25.0 \ddagger
\]
\(\ddagger\) Beiträge i. 166.

\section*{SPECEES 3. Sulphnret of filver and copper*.}

Cupriferous fulpburated filver ore.
189
This ore, which is found in the Korbolokink mounlof Sulphuree tains in Siberia, was firft defcribed by Mr Renovantz. and copper. It is in amorphous maffes, varying in lize from that of *irwan, the thumb to that of the fift.

Its colour is bluifh grey like lead. Luftre metallic. Hardnefs 5 to 6. Bittle. Its powder, when rubbed on the fkin, gives it a black colour and a leaden glofs. Before the blow-pipe the fulphuret of filver melts readily; that of copper with difficulty. This ore is compofed of about

42 filver,
21 copper,
35 fulphur.
98

> Genus III. oxyds of silver.
> species i. Calciform filver ore \(\dagger\).

This ore was firft defcribed by Mr Widenman. It Calciform is fometimes in maffes, fometimes diffeminated through + Kirvan \(n_{s}\) other minerals.

Its colour is greyifh black. Its ftreak bright. Its luftre metallic. Its fracture uneven. Hardnefs 4 to 5 . Brittle. Sp. gr. confiderable. Effervefces with acids. Melts eafily before the blow-pipe. Froths with borax.
\[
\begin{aligned}
& \text { According to Selb, it contains } 72.5 \text { filver, } \\
& \qquad \begin{array}{r}
15.5 \text { copper, } \\
12.0 \text { carbonic acid. }
\end{array}
\end{aligned}
\]

\section*{SPECIES 2. Red filver ore (u).}

This ore is very common in feveral German filver ore filver mines. It occurs in maffes, diffeminated and cryftalli ore. zed. The primitive form of its cryftals is a dodecahedron \(\ddagger\), whofe fides are equal rhombs, and which may be \(\ddagger\) G g

Fig. 38
ii. 121 .

\(\qquad\)
 It


\author{
ii. 212. \\ 190 \\ G. III. Oryds. Calciform
filver ore.
}

\footnotetext{
\(\qquad\)
}
\(\qquad\)

\footnotetext{

}
(u) Kirw. II. 122.-Scopoli de Minera Argenti Rubra.-Sage, Four. de Pbyf. XXXIV. 33 I. and XLI. 370 ; and Nouv. Four. de.2Pl2y. II. 284.-Weflrum, Four. de Phy. XLIII. \(291 .-\) Klaproth, Beiträge, I. 14 r .


sitver\(\underbrace{}_{*} \underbrace{\text { sinéd }}\)
* Romé de Lifle, iii. A47.
\(+1 b i d\)

\section*{+7 our.}
d'Hiff. Naturelle, \(\mathrm{N}^{\circ}\) 18. p. 216.
§ Kirzuas.
Four de
Min, \(\mathrm{N}^{7}\) yvii. p. 2 . \#Hauy, ibid, wefore the blow pipe melts, blackens, burns INoxxx. p. garlic fmell, and leaves a filver bead \(\dagger\).
476.
confidered as a fix-fided rhomboidal prifm, terminated by three-fided fummits ... Sometimes the prifm is lengthened, and fometimes its edges, or thofe of the terminating fummits, or both, are wanting. For a defcription and figure of thefe varieties, we refer to \(D_{c}\) Liflet and Hauy \(\ddagger\).
Its colour is commonly red. Streak red. External luftre metallic, internal common. Tranfparency from 3 to 1 ; fometimes opaque. Fracture flat conchoidal. Hardnefs 5 to 7 . Brittle. Sp. gr. from 5.44 to 5.592 ๆ. Becomes electric by friction, but orily when infulated \|. Soluble in nitric acid without efferver\({ }^{\text {No }}\) Nouxy, xibid. . Colour intermediate between blood and cochineal red; \({ }_{518}{ }^{\mathrm{xyxx}}\). P. fometimes variegated. Streak orange red. Powder + Vauquelin, black.
ibin.

\section*{Variety 2. Dark red.}

Colour commonly between dark cochineal red and lead grey; fometimes nearly black and without any fhade of red. Streak dark crimfon red.

This ore was long fuppofed to contain arfenic. Kla-
\(\ddagger\) Ann, de
Cbim, xviii. 81. proth firft afcertained its real compofition \(\ddagger\); and his analy fis has been confirmed by Vauquelin, who found a fpecimen compofed of 56.6748 filver,
\[
\begin{aligned}
& 16.1300 \text { antimony, } \\
& 15.0666 \text { fulphur, } \\
& 12.1286 \text { oxygen. }
\end{aligned}
\]

Klaproth proved, that the filver and antimony are in the ftate of oxyds; and Vauquelin, that the fulpliur is combined partly with the oxyd of filver and partly with the oxyd of antimony. Klaproth obtained a little fulphuric acid; but this acid, as Vanquelin, with his ufual ingenuity, demonftrated, was formed during the analyfis.

This ore fometimes contains a minute portion of ar* Vauguelin, fenic, but never more than .02*.
ibid. p. S.
192
G. IV.

Salts. Muriat of filver.
* Brij/n.
\(\dagger\) Gellort.

This ore occurs at Johanngeorgenftadt in Saxony, in South America, \&c. It is often amorphous, fometimes nearly in powder, and fometimes cryftallized in cubes or parallelopipeds.

Its colonirs are various: when expoled to the light it becomes brown. Internal luftre greafy, 2 ; external, 2 to 1. Acquires a glofs when Icraped with a knife. Tranfparency 2 to 1. Texture foliated. Hardnefs 4

\section*{Genus IV. salts of silver.}

SPECLES 1. Muriat of filver (x).
Corneous filver ore. to 5, Sp. gr. \(4.745^{*}\) to 4.804 t. Before the blow-
pipe it inftantly melts, and gradually evaporates, but may be reduced by adding an alkali.
That this ore coutains muriatic acid, has been long known. Mr Woulfe firlt Thewed that it contained allo fulphuric acid \(\ddagger\) : and this difcovery has been confirmed by Klaproth, according to whofe analyfis this ore is Trinf. 1270 . compofed of 67.75 oxyd of filyer,
6.00 oxyd of iron, 21.00 mnriatic acid,
.25 fulphuric acid, 1.75 alumina.

The alumina can only be confidered as mixed with i. 134 . the ore. Sómetimes its quantity amounts to .67 of the whole \(\wp\).

\section*{Order III. ORES OF PLATINUM(y).}

Hitherto no mine of platinum has been difcovered. Mines. It is found in fmall fcales or.grains on the fands of the river Pinto, and near Carthagena in South America. It is always ir a metallic flate, and always combined with iron.

> Genus I. alloys of platinum. species 1. Native platinum.

Its colour is whitiß iron grey. Magnetic. Sp. gr. from 12 to 16. Soluble in nitro-muriatic and oxymuriatic acids.

\section*{Order IV. ORES OF MERCURY.}

Mercury is employed in medicine; it ferves to feparate filver and gold from their ores; the filvering of looking glaffes, gilding, \&c. are performed by means of it ; and its fulphuret forms a beautiful paint.

Mercury abounds in Europe, particularly in Spain, Mines. Germany, and Hungary: it is found alfo in China(z), the Philippines *, and in Peru, and perhaps Chili (A) * Carreri in South America. The moit productive mines of \(V_{\text {oygr }}\) mercury are thofe of Idria \(\dagger\); of Almaden, near Cordo- \(\dagger\) Soppoit, va in Spain, which were wrought by the Romans ( B ) ; Yuir de Min \(\mathrm{N}^{0}\) of the Palatinate \(\ddagger\); and of Guanca Velica in Peruf(c). Mixxvi. P .
Mercury has never been found in Britain, nor has xx any mine worth working been difcovered in France. \(\ddagger\) Your d It occurs moft commonly in argillaceous. faittus, lime- Minn No ftones, and fanditones.

\section*{Genus T. alloys of mercury. spectes i. Native mercury.}

\section*{GI.Alle} Native Native mercury is found in moft mercurial mines: it netivewy is in fmall globules, fcattered through different kinds of ftones, clays, and ores.

Fluid. Colour white. Sp. gr. about 13.6 . species
(x) Kirzu. II, 113.-Laxmann. Nov. Camm. Petropol. XIX. 482-Monnet. Mem. Sçav. Etrang. IX. 717.
(y) See Brownrigg, Pbil. Tranf. XLVI. 584.-Lewis, ibid. XLVIII. 638. and L. 148.-Margraf. Mem. Berlin, 1757, p. 314.-Macquer, Mem. Par. 1758, p. 119.-Buffon, Four. de Phyf. III. 324.-Morveau, ibid. V1. 193-Bergman, Opufc. II. 166.-Tillet, Mem. Par. 1779, P. 373, and 385, and 545.-Crell, Crell's Annals, 1784 , I Band. 328. - Willis, Manchefler Memoirs, III. 467.-Mufin Pufchkin, Anñ de Ghimi XXIV. 205.-Morveau, ibid. XXV. 3.
(z) See Entrecolle's Lettres Edificantes.
(A) See Molina's Natural Fiiflory of Chili.
(в) See Bozule's Natural Hifory of Spain, and Four, de Min. N'xxxi. p. \(555-\)
(c) See Ulloa's Memoirs concerning America. in the mines of Denx Pontst，in the Palatinate；and in other places．It is in thin plates，or grains，or cry． Aallized in cubes，parallelopipeds，or pyramids．
Its colour is filvery white or grey．Lititre metal－ lic．Creaks when cut．Sp．gr．above 10．Tinges gold white．Before the blow－pipe the mercury evapo－ rates and leaves the filver．

A fpecimen of this amalgam，analyfed by Klaproth， contained \(6+\) mercury，
36 filver．
100 \(\$\)
Sometimes it contairts a mixture of alumina，and fometimes the proportion of mercury is fo great that the amalgam is nearly as foft as paite．

> Genus II. sulphurets of mercury. species I. Common fulphuret * Native cinnabur.

This ore，which is found in almot all mercurial mines，is fometimes in veins，fometimes diffeminated， fometimes in grains，and Fometimes crytallized．The form of its crytals is a tetrahedron or three－fided py－ ramid，moft commoniy wanting the Yumnnit；formetimes two of thefe pyramids are joined bafe to bafe；and fometimes there is a three－fided prifm interpofed be． twicen thein 7 ．
Its colour is red．Its fteeak red and metallic．Luffre when cryflallized 2 to 3 ；when amorphous，often o． Tranfparency，whten cryflallized，from I to 3 ；when amorphous，uften o．Texture generally foliated．Hard－ nefi from 3 to 8 ．Sp．gr．from 5.419 to 10.1285 ．
Before the blow．pipe exaporates with a bluc lame and fulphureous finell．Infoluble in nitric acia \(\ddagger\) ．
\[
\text { Variety } 1 . \text { Dark red. }
\]

Coletre cochineal red．Hardnces 6 to 7．Sp．gr． when pure， \(10.128 \% \$\) ；fometimes only 7.2 ，or even \(6.188 \%\) ．

Cullar Taridy 2．Bright red．
Colon：commonly fcarlet．Sp．gr． \(6.9022+\) to 5．419ま．

Gentes IIt．nzyds of mercury． specirs 1．Hepatic mercurial ore＊．
This ore，which is the inoft common in the mines of Idria，is always anorphous，and is often mixed with na－ tive nocrury and cinnabar．

Ita colour is fomewhat red．Its ftreak dark red and brighter．Luffre commonly metallic．Harduefs from 6 to 8．Sp．gr．from \(9.2301+\) to \(7.186 \%\) ．When heated the mercury evaporatcs．

Though this ore has never been accurately analyfed， chemits have concluded that the mercury which it contains is in the ftate of a red oxyd，becaufe it is info． luble in nitric and foluble ia muriatic acid of．When． pureft，it contains about 7.7 of mercury \(\$\) ．It contains alfo fome fulphinr and iron．

Werner has divided this fpecies into two varieties， the compaat and the flaty：The fecond is often nothing more than bituminous fhale ineregrated with oxyd of mercury t．

Genus IV．mfrcurtal sates．
sPECIES I．Muriat of mercury＊．

\section*{Comeons maccury}

This ore，which occurs in the Palatinate，is fome Mercurial times in fcales，fometimes in grains，and fometimes cry－ailts． ftallized．Its cryAtals are either fmall four or fix fided Mariat of priims whofe fides are rhombst，or cubes，or fuur－fided pyranids wanting their anglcs．They are always very finall mand generally confufed． merctiry． white．irs are various；but it \({ }^{13}\) molt frequently white．Its luftre，when white，is pearly．Sometimes opaque，and fometimes femitranfparent．Evaporates before the blow pipe．

Mr Woulfe difcovered，that this ore gererally con－ tains fome fulphuric acid \(\ddagger\) ．Speoimens liave been found \(\dagger\) Pbil． in which the quantity of fulphuric acid exceeds that of Trang． 1 lvio the muriatic \(\oint\) ．
18.

Stackere．

\section*{Orderv．copper ores．}

Mavr of the moft ufeful utentils are formed of cip－ per ：it enters largely into the comporition of brafs， bronze，and bell metal；not to mention the dyes and paints of which it is the bafts．

Copper mines abomnd in moft countries．They are Minincs． wrought in China，Japan，Sumatra ；the north of Afri－ ca；in Chili and Mexico ；and in moft parts of Europe； efpecially Britain，Germany，Ru！fia，Innigary．
Copper is found mott commonly in rocks of horn． blende，fhiftus，and quaitz．

> Genus I. Alloys of copplir. spectirs i. Native copper ?

Native copper nccurs now and then in the greater \(p\) number of copper mines：Sometimes it is in inaftis，＂．Kirzan， fometinces in plates and theeads，which affune a variety \({ }^{\text {i．}}\) ． 127 ． of forms；and fometimes，as in Siberia，it is cry Rallized + Haryy， in cubes，or other forms nearly refenbling cubes \(\dagger\) ．Your，de
Colour commonly ：hat of copper，but fometinies dark Min． \(\mathrm{N}^{j^{3}}\) ： brown．Luftre metallic．Streak brighter．Fracture \({ }^{\text {xxai．} 509 .}\) hackly．Flexible and malleable．Hardiefs 6 to 7 ． Sp．gr．from \(7.6 \neq\) to 8.5844 ．

Kiumat
species 2. White copper ores.

Kirtran＇，
Min．ii．
128.

THauy，
This ore，which is faid to be micommon，occurs in ilid．p．sog． malles．Colour white．1，ufte metallic．Fracture nu． 2033 even．Harduefs 8 to 9 ．Brittle．Sp．gr．confider－per ore cop－ able．

Before the blow．pioe gives out a white arfenical i． 152 ． fmoke，and melts into a greyin black Лクag＊．．Wilenmano
\[
\text { bai Gesus Il. sumpherets oe copper. g. } 204 \text {. sulo. }
\]
splecies 1．Common tulphuret of copper \(\dagger\) ．phurets． Fitreasus copper or：．
This ore，which is found in Conawal，Hungry，and Cemmon Sibcria，occurs in maffes，plates，threads，and cry falli－coppur． zed in lix－fided prifins，or four lided pyramids，joinedt Kirsean， bate to bale．
ii．I +4
Colour bluifn grey．Streak brighter grcy，Luftre \(\ddagger\) Kirwañ．
 fometimes fo low as \(4.12 .9^{*}\) ．Detonates wihh mitre．

Before the blow pipe it inelts calily；and while in fu－ fron exhibits a green peayl，which，on cooling，is cove－ rod with a brown cruft．Tinges borax gient

Weiner makes two varieties of this ore：the fir？he

\section*{;}
calls compach, from its fractuie; and the fecond, for the fame reafon, he calls foliated. This laft is fomewhat darker coloured than the firt, but in other refpects they agree.

This ore, which is probably nothing elfe than fulfore, would be more properly placed among iron ores, is found frequently in copper mines, and mixed with common pyrites or fulphuret of iron. It is fometimes amorphous, and fometimes cryftallized. Its cryftals are cither three or four fided pyramids applied bafe to bale, or fix-fided plates.

Its colour is yellow ; often tarnifhed. Its internal luftre metallic. Hardnefs 6 to 7 ; fometimes 9. Brittle. Sp. gr. 4.314 t to 4.08 f. Deflagrates; but does not detonate with nitre \(\|\).

Before the blow-pipe decrepitates, gives a greerifh fulphureous fmoke, and melts into a black mafs, which tinges borax green. Does not effervefce with nitric acid.
species 3. Purple copper ore *.
This ore is found in maffes, or plates, or diffemina. ted; fometimes, alfo, it is cryftallized in oetohedrons. Colour various, but moft commonly purple; internally reddif. Streak reddifh and bright. Luftre metallic. Hardnefs 6 to 7. Brittle. Sp. gr. 4.956 to 4.983 T. Effervefces with nitric acid, and tinges it green. Deflagrates with nitre. Before the blow.pipe melts readily, without fmoke, vapour, or fmell ; but is not reduced. Tinges borax a bright green.

A fpecimen of this ore, analyfed by Klaproth, contained \(5^{8}\) copper, 18 iron,
19 fulphur,
5 oxygen.

\section*{\# Beiträge, \\ ii. 286.}

207
Grey copper orc. Sirzuan, ii. 146 .
|| Romé te Lifle, iii. 315.

Hauy,
Jour. de
zxxi. 512.
species 4 . Grey copper ore \(\delta\).
This ore is found in Cornwal, Saxony, Hungary, Esc. It is often amorphous, but often alfo cryftallized. The primitive form of its cryftals is the regular tetrahedron ; but, in general, either the angles or the edges, or both, are trincated or bevelled \(\|\).

Colour Iteel grey; often tarmifhed, and then dark grey. Streak dark grey ; fometimes reddifh brown. Powder blackifh; fometimes with a tint of red. Luftre metallic Hardnefs 7 or 8 . Very brittle. Sp. gr. \(4.864^{8}\). Deflagrates with nitre. Before the blowpipe crackles, but at laft melt 3 , efpecially if affitted by borax. The bead gives a white fmoke, without any particular fmell ; tiages burax yellow or brownifh red, but does not unite with it.

A feccimen of this ore from Cremnitz, analyfed by Klaproth, contained 31 copper,

14 filver,
34 antimony,
3 iron,
II fulphur.
93

Napion, in an ore from the valley of Ianzo, found Metallic copper, filver, and antimony, nearly in the fame pro- Ores. portions, but more iron, and fome arfenic \(t\). Savorefi, as Baron Born informs us, befides the ingredients of rim, v. Tus Klaproth's analyfis, found fome gold and mercury in grey copper ore \(\ddagger:\) and Klaproth himfelf found lead in \(\ddagger\) Cutal. ii moll of the other fpecimens which he examined.
\[
\begin{array}{cc}
\text { GENUS III. oxyds of copper. } & 208 \\
\text { Specites I. Red oxyd of copper } \oint . & \text { G.HI. } \\
\text { Florid red copper ore-Red copper glafs. } & \text { Oxyds. } \\
\text { ore is found in Cornwal, and many other coun- of connen }
\end{array}
\]
\(49^{8}\).

This ore is found in Cornwal, and many other coun- of coxper. tries. It occurs in maffes, diffeminated, in fcales, and \(\$\) Kirruan, cryftallized. The figure of its cryttals is moft common- \({ }^{\text {ii. }}\) I 35 . ly the regular octohedron*.

Colonr commonly cochincal red. Streak brick red. Four. de I, uftre lemimetallic. Tranfparency, when amorphous, Min. No generally 0 ; when cryttallized, 3 or 4 . Hardnefs from \({ }^{\text {xixi. } 517 .}\) 4 to 7. Soluble with effervefcence in nitric acid. Before the blow-pipe melts eafily, and is reduced.

This ore was fuppofed to be compofed of carbonic acid and red oxyd of copper; but a fpecimen, examined by Vauquelin, which confifted of pure cryftals, contained no acid \(\dagger\). It mult therefore be confidered as an \(\dagger 7 b i d\). oxyd of copper.
Werner has made three varieties of this ore, which, from their texture, he has denominated compact, foliuted, and fibrous. The firft is feldom or never found cryitallized, and is opaqne; the fecond occurs amorphous, cryftallized, and in fcales; the third is carmine, ruby, or fcarlet red; and occurs always in fhort capillary cryfals, or delicate flakes.

This ore fometimes contains a mixture of red oxyd of iron; it is then called brick red. copper ore, copper malm, or copper ochre.

This ore is fometimes mixed with bitumen. Its co. lour is then brownin black, and it is called pitch ore.
\[
\begin{aligned}
& \text { species 3. Green oxyd of copper } £ \text {. } \\
& \text { Green fand of Peru. }
\end{aligned}
\]
\(\begin{array}{r}209 \\ \hline\end{array}\)

> Green oxy of c pper.
, § Kirrvan,
is a grafs green powder, mixed with grains of quartz. \({ }^{\text {ii. }}{ }^{149 .}\) When thrown on burning coals, it communicates a green colour to the flame. It is foluble both in nitric and muriatic acids without effervefcence. The folution is green. It was fuppofed to contain mosiatic acid *; Berthollat but Vauquelin has difcovered, that the appearance of Mem. Pur. this acid was owing to the prefence of fome common \(1786,46 \mathrm{ze}\) falt, which is accidentally mixed with the fand \(\ddagger\).

Genus IV. salts of copper.
species 1. Blue carbonat of copper (D).

\section*{Mountain blue-Azur de suivre-Blue calx of copper-} Kupfer lazur.
This ore, which occurs in the copper mines of Sibe nat of copria, Sweden, Germany, Hungary, Cornwal, \&c. is ei-per. ther amorphous or cryttallized. The cryttals are fmall, and difficult to examine. According to Romé de Lifle, their primitive form is an octohedron, the fides of which are ifofceles triangles, and two of them more inclined than the others \(\oint\). Be that as it may, the cryfals of \(\oint\) Cryjpaliii blue carbonat of copper are often rhomboidal prifms, \({ }_{j 4 j}\) either regular, or terminated by dihedral fummits*.

Its colour is azure or fmalt blue. Streak blue. Hard * Ibid. o
\(\ddagger\) Four de
Min. No
\(\mathbf{x \times x . 0} 519\).
210
G.IV. Salts

Blue carbo.
nat of cop.
(D) Kirrv. II. 129.-Morvecu, Mem. Dijon, 1782. I Semeftre, p. 100.
pper nefs 4 to 6. Brittle. Sp. \(\mathrm{g}, 3.608 \ddagger\). It effervefces with nitric acid, and gives it a blue colour. Before the blow-pipe it blackens, but does not melt. '「inges borax green with effervefcences.

The cryftals, according to Pelletier, are.compofed of 66 to 70 copper,
18-20 carbonic acid,
8 - 10.0 oxygen,
\(2-2\) water.
Fontana firf difcovered that this ore contained carbonic acid gas.

Variety I. Earthy blue carborat.
Mountain blue.
This variety generally contains a mixture of lime. It is never cryftallized; and fometimes is almoft in the fate of powder. Luffre 0 . Texture earthy.

Variety 2. Striated blue carbonat of copper.
Luftre glafly. Tranfparency, when cryfallized, 2 ; when amorphous, 1. Texture ftriated; fometimes approaching to the foliated.
icar- species 2. Green carbonat of copper (E).
Oxygenated carbonat of copper - Malackite.
This ore is generally amorphous, but fometimes it is cryftallized in four-fided prifms, terminated by fourfided pyramids.

Colour green. Luftre filky. Hardnefs 5 to 7 . Brittle. Sp. gr. 3.57 I \(^{*}\) to \(3.653 \ddagger\). Effervefees with nitric acid, and gives a blue colour to ammonia. Before the blow pipe it decrepitates and blackens, but does not melt. Tinges borax yellowih green. It is compofed of carbonic acid and green oxyd of iron.

Variety 1. Fibrous malachite.
Texture fibrous. Opaque when armorphous; when cryfallized its tranfparency is 2. Celour generally grafs green.

\section*{Variety 2. Compaet malachite.}

Texture compact. Opaque. Colour varies from the dark emerald green to blackifh green.
A fpecimen of malachite from Siberia, analyfed by Klaproth, contained
\[
\begin{aligned}
& 58.0 \text { copper, } \\
& 18.0 \text { carbonic acid, } \\
& 125 \text { oxygen, } \\
& 11.5 \text { water. } \\
& \frac{100^{*}}{}
\end{aligned}
\]

This fpecies is fometimes mixed with clay, chalk, and gypfum, in various proportions; it is then known by the name of

\section*{Common mountain green.}

Its colour is verdigris green. Luftre 0 . Tranfparency \(\circ\) to 1 . Harduefs 3 to 4. Brittle. Texture earthy. Effervefces feebly with acids. Before the blow. pipe it exhibits the fame phenomena with malachite.

For a defcription of this falt, fee Chemistry, no 648. in this Supplement.
fometimes olive green. Luftre glaTy. Tranfparency Metallic from 4 to 2. Fracture conchoidal. Hardnels 4 to 7 . Ores. Before the blow-pipe deflagrates with an arfenical fmoke, and melts into a grey coloured bead. 'This bead, fufed with borax, leaves a button of pure copper \(\#\).

Klaproth difcovered that it was compofed of oxyd of copper and arfenic acid.
| Klaprotb's

Sometimes this ore is combined with iron. It then p. 29 . cryflallizes in cubes. 'Thefe' cubes are of a dark green colour; bcfore the blow-pipe they frothe, give out an arfenical fmoke, and do, not fo quickly form a grey bead as the arfeniat of copper *.

\section*{Order Vi. iron ores.}

To defcribe the ufes of iron, would be to write the hiftory of every art and manufacture, fince there is not one which is not more or lefs dependent upon this ufeful metal. Nor is its abundance inferior to its utility. 214 It exifts almoft everywhere, and feems, as it were, the Mines. \({ }^{214}\) bond which conneets the mineral kingdom together.
Genus I. alloys of iron
species 1. Native iron (e).
215 G.I. Alloys.
Native

Native iron has been found in Siberia and in Peruiron. in immenfe maffes, which feemed as if they had been fufed. Thefe maffes evidently did not originate in the place where they were found. See FIRE-Bal/s, Suppl.

Colour bluifh white Fracture hackly. Luftre metallic. Malleable. Magnetic. Hardnels 8 to 9. Sp. gr. 7.8. Prouft has difcovered, that the native iron found in Peru is alloyed with nickel of.

Genus II. sulpaurets of iron.
sPECIES 1. Common fulphuret of iron*: Pyriles.
This mineral occurs very frequently both in ores and mixed with other bodies, for inftance in lates. It is
 .i. amorphous, and often alfo crytalized. The pri. fulphuret Qf mitive form of its cryftals is either a regular cube or an irun, octohedron. The varieties of its form hitherto deferi-ii. 76 .bed amount to 30 ; for a defcription of whick we refer Henkel's Fy. the reader to Romé de Lille \(\dagger\).

Its colour is yellow. Its-luftre metallic. Hardners t Gryful. 8 to 10 . Brittle. Sp. gr. 3.44 to 4.6 . Soluble in \({ }^{\text {iii. } 208 .}\) nitric acid with effervefcence. Scarce foluble in fulphuric acid. Before the blow-pipe burns with a blue flame and a fulphureous finell, and leaves a browpifh bead, which tinges borax of a fmutty green.

Variety 1. Common pyrites.
Fracture uneven. Hardnefs io. Decrepitates when heated. Emits a fulphureous fmell when rubbed. Not magnetic. It occurs often in coal nuines and in llates.

Variety 2. Striated pyrites.
Texture ftriated. Hardnefs 10. Not magnetic. Variety 3. Capillary.
Colour often fieel grey. Found in needle-form cryftals. Uncommon. Not magnetic. Variety 4. Magnetic pyrites.
Found in mafles. Texture compact. Hardnefs 8, 9. Slightly magnetic. Seems to contain lefs. fulphur than the other varieties.

In pyrites the proportion of the fulphur to the ironis variable, and this explains the variety of its cryftalline forms.

TNicbelyon's, Your. iii. 374. \(316-\)
G. III. Sula
G. III. Commion iron.

\footnotetext{
\(\qquad\) -
}
artenar or copper: a a grey veá

\begin{abstract}
\author{

}
\end{abstract}
(E) Kirw. II. 135.-Fontana, Four. de Phyf. XI. 509.-Klaproth, Beiträge, II. 287.
(F) Pallas, Phil. Tranf. LXVI. 523.- Rubin de Celis, ibid. LXXVIII. 37.-See alfo Scbreiber, Four. de Phy. XLI. \(3 \cdot\); and Stelin, Phil. Tranf. LXIV. 461.

1ron Ores.
\(\underbrace{}_{\text {217 }}\)
217
G. 111. Plun bago.
* Kivatian, ii. 5.8 .

Genús mif. carzuret of iron.
SPECIES 1. Plumbago*.
Graphite of Werner.
This mineral is found in England. Germany, France, Spain, America, \&cc. It occurs in kidney form lumps of various fizes. Ite colour is dark iron grey or brownih black; when cut, bluifh grey. Luftre metallic, from 3 to 4. Opaque. Structure flaty. Texture fine grained. Hardnefo 4 to 5 . Bristle. Sp gr. from 1.987 to 2.089 ; after being foaked in water 2.15 ; after being heated 2.3 , and when heated after that
t Brigon. \(2.41 \dagger\). Feels fomewhat greafy, stains the fingers, and marks Atrongly. The ufe of this mineral when manufactured into pencils is known to every perfon. Its compofition was difcovered by Scheele. When pure it contains 90 carbon,

10 iron.

But it is often exceedingly impure: A fpecimen, for inftance, from the mine of Pluffier, in France, analyfed ' by Vauquelin, contained 23 carbon,

2 iron,
38 filica,
37 alumina.
\(\ddagger\) Tour. de
Min. Na
zii. \(\mathrm{P}^{16}\).
218
(3.1V.

Emcry.
*irwan,
ii. 193.
( CH
- Brijon.
(46. ai -
\(-\mathrm{s}^{2}+18\)

> CFin us IV. IRON COMBINED with silica. specil: 1. Einery \(^{*}\).

This mineral is cominotly diffeminated through other foffils, but fometimes in the Lait Indies it occurs in large maffes.
Its colour

Its colour is bluifh grey, greyifh brown, or bluifh black, oftern covered with a yellowith rind ; internally it difcovers red or purple fpots. Luftre 1 or 0 ; in Come. parto 2, and metallic. Opaque. Hardnefs 14. Brittle. Sp. gr. \(3.92+\). Before the blow pipe it tbackens and gives a fmutty yellow tirge to borax.

According to Wiegleb it containe

> 95.6 filica,
> 4.3 iron.
-99.9
- 819

Oxyds.
Genus V. oxyds af inon.
This genus is very extenfive; for irom is nuch more frequently found in the thate of an oxyd than in any other.

\footnotetext{
Black oxyd \(20 . \quad\) species i. Black oxyd of iron + .
of iron.
\(\ddagger\) Kirzan,
ii. 158.

Co
Common magnetic ir on fone-Blackillo oraboedral iron orr.
This fuecies of ore is very common in Sweden; it is foutad alio in Switeerland, Norway, Ruflie, \&c. it occurs in maffies.plates, grains, and ceyftallized. The
\(\dagger\) Romé de
Lifle, iii.
178.
\({ }_{6}{ }^{2}\) Ibid.
* Hauy,
four. de
Min, \(\mathrm{N}^{\mathrm{Q}}\)
xxxiii. 059 .
+ Kirzuan's
Min. ii.
\({ }_{1} 159\).
\(\ddagger\) Hauy,
Four . do
Min. N \({ }^{\circ}\) metallic. Ilardrefs 9 to 10 . Brittle. sp. gr. from primitive form of its eryitals is a regular octohedron \(t\). Sometimes two oppolite fides of the pyranids are trapeziums, which rendero the apex of the pyramids cunciform. Sometimes the cryltals pals into thomboidal parallsopipeds, and intu dodecalicedrons with thombuilal

Exxi. 527 .
}

Whens pure it confifts entirely of oxyd of iron; and this oxyd appears to contain from .15 to .24 oxygen, and from .76 to .85 iron \(\delta\). Undoubtedly it confifts \()\) Kirma of a mixture of iron in two different ftates of oxycia. Mina ii. tion. It is often alfo mixed and contaminated with \({ }^{159}\). foreign ingredients.

There are two varieties of this ore. The firit is what we have juft deferibed ; the fecond is in the form of fand, and has therefore been called

\section*{Magnetic fand *.}

This fubftance is found in Italy, Virginia, St Do. mingo, the Ealt Indies, and in the fand of the river Don get, yout at Aberdeen in Scotland. It is black, very hard, mag. xxi. p. 2 netic. Sp. gr. about 4.6. Not altered by the blow. pipe per fe ; melts into a black glafs with potafs, and into a green glafs with microcofmic falt, both opaque \(\dagger\). + Fourrer It probably contains fome filica, as Kirwan has fup. Ann. do pofed \(\ddagger\).

SPECIES 2. Specular iron ore 1 .

\section*{Fir oligjle.}

This ore is found abundantly in the ine of Elba near specula Tufcany. It is either in maffes or cryftallized. The iron ore primitive form of its cryftals, and of its integrant mole- \(\uparrow\) Kinvo cules, is the cube *. The varieties hitherto oblerved a. \(102-1\) mount to \(\%\). Thefe are the rhomboidal parallelopiped; dre phaye. the cube, with three triangular faces inftead of two of \(\xi_{2}\). its angles diagonally oppolite; two fix. fided pyranids, Haury applied bafe to bafe, wanting the furmmits \(\ddagger\), and fome- ourr af times the angles at the baies, and fometimes the alter- Nxxinis. nate edges of the pyramid; a polyhedron of \(2+\) fides, \(\ddagger\) Fig. refembling a cube with three triangular faces for two angles diagonally oppofite, and two triangles for the relt of its angles. Por a defcripsion and fygure of thefe varieties, we refer to Romé de Lifle \(\dagger\) and Hauy \(\ddagger\). \(\dagger\) Crygh.

Colour fteel grey; often tarnihhed, and beautifully 189 . iridefcent, reflecting yellow, blue, sed. Streak red. ' bioid Powder dark red. Luttre metallic. Hardnefs 9 to 10. Not brittle. Sp. gr. 5.0116. to 5.21 . \(\ddagger\). Slightly + Ham magnetic. Little altered by the blow-pips. Tinges \(\ddagger\) brid borax a: obfcure yellow

This ore, according to Mr Muflet, is compofed of
\[
66.9 \text { iron, }
\]
21.2 oxygen,
10.7 water and carbonic acid, 2.0 lime.

\section*{\(100.0+\)}

The quantity of oxy geu here fated is probably ton fimall, owing to the unavcidable inaccuracy which re- \({ }^{3}\) fillts from the dry aroy of analyfis which Mr Muflet followed.

Micacenus iron ore
Is generally confidered as a variety of this fecies. Kirwan, however, fuppufes it to contain carbon, and to be a difinct fpecies.
It is found in Saxony, and in the ific of Elba, \&c. generally in amorptoons mafies, compofed of thin fixfided laminx. Colour iron grey. Streak bluifh grey. Luitre metallic. Opaque. Fiel greafy. Iiardnefs 5

Ores magnétic. Infufible by the blow-pipe. Tinges borax greeniif brown.

\section*{species 3. Laminated fecular iron ore. \\ Fer pyrocete of Hauy.}

This ore, which is found at Montd'or in Auvergn, was ufually arranged under the laft fpecies; but has been feparated from it, we think properly, by Mr Hauy, becaufe the form of its cryftals is incompatible with the fuppofition that their primitive nucleus is a cube, as we have feen is the cafe with common fpecular iron ore. Its cryftals are thin octagonal plates, bounded by tix linear trapeziums, alternately inclined different ways \(\dagger\).

Culour fleel grey. Powder reddifh black. Luftre metallic ; furface polifhed. Fracture glafly. Very brittle \(\ddagger\). Hauy fuppofes that this ore has been produced by fire, and accordingly has given it a name which denotes ita origin.

\section*{species 4. Brown iron ore 4 .}
\({ }^{23}\) iron This fpecies of ore is found abundantly in Britain, particularly in Cumberland and Iancafaiie; and it is alfo very common in other counties. It confifts of the brown oxyd of iron, more or lefs contaminated with other ingredients.

Its colour is brown. Its ftreak reddifl brown. Sp. gr. from 3.477 I to 3951 . Before the blow pipe blackens, but does not melt. Tinges borax grecaifh yellow.

Varicty f. Brown hromatites.
The name hæmatites (bloodflone) was probably applied by the ancients only to thofe ores which are of a red colour, and have fome refemblarce to clotted blond; but by the modems it is applied! to all the ores of iron which give a reddih coloured pouder, trovided they be of a fibrous texture.

Brown lixmatites occurs in maffes of various fhapes, and it is faid alfo to have been found cryftallized in five or fix fided acute angled pyramids. Colour of the furface brown or black, fometimes iridefcent ; inte rnally nut brown. Powder red. Texturc tibrons. Hardnefs 8 to 10. Brittle. Sp. gr. \(3.789 \dagger\) to \(3.951 \neq\). Not magnetic.
This variety has not been analyfed, but it feems to confit of brown oxyd of iron, oxyd of manganefe, and alumina e .
\(V\) ariety 2. Compact brown iron flone.
This variety occurs in nuffes of very various arcd often fantartical thapcs.

Colour brown. Internal luftre metallic. Texture compact. Hardnefs 6 to 9. Brittle. Sp. gr. \(3 \cdot+771 \psi\) to 3.551 .
\(V\) ariety 3. Brown Scaly iron ore.
This variety is generally incumbent on other minerais. Colour brown. Luftre metallic. Sitains the fingers, marks frongly. Feels unctuous. Testure fi)liated. Hardnefs 3 to 5 . Brittle. So lighthas often to hoat on water.

Variety 4. Brown iron ochre.
This variety occurs both maffive and difieminated. Colour from nut brown to orange. Luftre o. Strongly ftains the firgers. Texture earthy. Hardnefs 3 to 4 . When Ilightly heated reddens.

\section*{species 5. Red iron ore \(\dagger\).}
to 5.005. Before the blow pipe blackens, but does Metallic not melt. Tinges borax yellowihh olive green. When Ores. cigefted in ammonia, it becomes black and often magnetic.
\(V^{\top}\) aricty 1 . Red hxmatites.
Found in maffes, and all the variety of forms of Ralactites. Colour between brownifh red and fteel grey. Powder red. Internal luftre metallic. Texture fibrous Hardnifs 9 to 10 . Brittle. Sp. gr. \(4 \cdot 74 t+\) Gellore. to \(3.005 \ddagger\).
\(\ddagger\) Kirzar.
When pure it conlifts of red oxyd of iron, but it of. ten contains manganefe and alumina \(\mathfrak{y}\).
§ Kirucn's
Variety 2, Compact red irun ore /Min, ii.
Found maffive and falactitic; fumetinics in cryftals \({ }^{169}\). of various forms, but they ferm to be only fecondary; fonctimes in columns like bafalt.

Colour hetween brown red and Aeel grey. Stains the fingers. Luitre i to 0 ; often femimetallic. T'exture compact. I-Iardnefs 7 to 9 . Brittle. Sp. gr. 3.423 to \(3.76 \dagger\) Sometimes invefted with a rofy red + Kirzant ochre.
\(V\) aricty 3. Red ochre.
Found fometimes in powder, fometimes indurated. Colour hlood red. Stains the fingers. Luftre 0 . 'I'exture earthy. Hardnefs 3 to 5 . 13 rittle.

Variety 4. Red faly iron ore.
This variety is generally found incumbent upon other iron ores. Colour between cherry red and iteel grey. Stains the fingers. Iuftre filky, inclining to inetallic. Texture foliated. Feels unctuous. Hardnefs 3 to 4. Brittle. Heavy.
\[
\text { species 6. Argillaceous iron ore }{ }_{7}
\]
Atgillace.Cut itulure.

This ore is exceedingly common; and though it ore. contains lefs iron than the fpecies already defrribed, it \({ }_{57 \mathrm{j}}{ }^{\text {Kirr }}\) is, in this country at leait, preferred to then, becaufe the method of extracting pure iron from it is eafier, or rather becaufe it is teiter underfood.

Colour mott comrnonily dark brown. Streak red or yellowifh brown. Sp gro from 2673 to \(3.471+\). Be- \(\ddagger\) Kilzurno fore the blow-pipe blackens, and tinges borax dive green and blackith. It is compofed of oxyd of iron. elumina, lime, filića in various proportions It gentrally yields from 30 to to per cemt, of iren.

Variety , 1. Common argillaceous iron ore.
The mine rals arranged under this varicty differ con. fderably from each other in their external characters. They are found in maties of various thate, and often form large frata.

Colour varions hades of grev, brown, yellow, and red. Strak reddiff yellow ar dark red. Lutve o. Harduff fiom 3 to 8. Sincll earthy whe: breathed npon.

Varicty 2. Columnar or feepiform iron orc.
This varicty is found in colurns, adhering to ezch other, but catily feparable: They are commotry incurvated, and their furface is rough. Colour hrowzifi red. Streak dark red. Slightly fains the fingers. Lufte o. Adheres Atrongly to the tongue. Sound hollow. Fell dry. Texture earthy.
71. Variety 3. Acinofe iron ore.
'lhis variety is found in maffes, and is commonly lenticular. Colour gencraily brownifh red. Lattre metallic, nearly. 'Texture granular. Mardnefs 5 to 3. Brittle.

\section*{Farriefy 4. Nodular, or kidney form iron ore. Ititites or Easlefone.}

This variety, which was inentioned by the ancients, is generally found under the form of a rounded knob, more or lefs refembling a kidney, though fometines it is quadrangular ; and it contains within it a kernel, which is fometimes loofe, and fometimes adheres to the outfide rind. Colour of the flone yellowifh brown ; of the kernel ochre yellow. Surface generally fouled with earth. Luflte of the rind metallic; of the kernel 0 . Hardnefs from 4 to 7 . Brittle.

Variety 5. Piffiform or granular iron ore.
This variety occurs in rounded mafles, from the fize of a pea to that of a nut. Surface rough. Colour commonly dark brown. Streak jellowifh brown. Hardnefs 5 to 6 . Brittle.
The oclitic ore found at Creufot, near mount Cenis, belongs to this variety. It is compored of

50 lime,
30 ition,
20 alumina.
: :2. . \(15 \frac{100}{100}\)

Lowland
iron ore.
* Kirzv. ii
© 79.

227
G.VI. Salts.

Sparry ilon
cre.
sPECTES 7. Lowland iron ore *.
This fpecies of ore is fuppofed to confift of oxyd of iron, mised wilh clay and phofphuret or phofphat of iron. It is called lowland ore, becanfe it is found only in low grounds; whereas the laft fipecies is more commonly in high grounds; and is therefore called bigbland ore.
This ore occurs in amorphous maffes, and alfo in grains or powder. Its colour is brown. Streak yellowith brown. Luftre o, or common. Texture earthy. Hardnefs 3 to 5 .
\(V\) rivity 1. Mieadow lowland orc.
Colour blackifh or yellowifh brown: Both colours often meet in the fame fpecimen. Found in lumps of vatious fizes, often perforated. Fracture compact. Moderately heavy.

Frequently yields from 32 to \(3^{8}\) per cent, of iron.

> Variety 2. Swampy iron ore.

This variety is generally found under water. It is in lumps, which are commonly perforated or corroded, and mixed with fand. Colour dark yellowifh brown, or dark nut brown. Hardnefs 3 to 4. Brittle. Sp. gr. 2.944. It often contains 36 of iron.

Variety 3. Morafly iron ore.
This variety is found either in a lonfe form or in perforated lumps. Colour light yellowifh brown. Stains the fingers. Hardnefs 3. Friable.

\section*{Genus Vi. salts of iron.}
species i. Sparry iron ore ( \(G\) ).
This ore is common in Germany, France, and Spain.

It O G Y.
times cryftallized
Its colour is white; but it bccomes tarnifhed by expofure to the air, and then affumes various colours. Streak grey or wlite. External luftre often metallic; internal common or glaffy. Tranfparency 1 or 2; fometimes 0 . Texture foliated. Fragments rhomboidal. Hardnefs 5 to \%. Brittle. Sp. gro 3.6 to 3.810. Not magnetic. Soluble in acids with very little effervefcence. Before the blow-pipe decrepitates, becomes brownifh black, and magnetic; but is fcarcely fufible. 'Tinges borax fmutty yellow, with fome effervefcence.

This ore, as Bergman afcertained, confifts of iron. manganefe, lime, and carbonic acid.
One fpecimen, according to his analyfis, cortained
\[
\begin{aligned}
& 38 \text { irun, } \\
& 24 \text { manganefe, } \\
& 3^{8} \text { carbouat of lime. }
\end{aligned}
\]

\section*{Another contained 22 iron, \\ 28 manganefe, \\ 50 carbonat of lime.}

Whether the iron be combined with the carbonic acid is ftill a difputed point. The cryftals of this ore are thomboidal parallelopipeds; which is precifely the form of carbonat of lime. This amounts nearly to a demonftration, that the carbonic acid is combined with the lime ; and that, as Cronftedt and Hauy have fuppofed, this ore is merely carbonat of lime, contaminated with a quantity of the oxyds of iron and manganefe.
species 2. Arfeniat of iron.
Mr Prouft has difcovered this ore in Spain. Its co. Aron. lour is greenifh white. Its texture granular. Infoluble in water and nitric acid. When melted on charcoal, the arfenical acid efcapes with effervefcence \(\ddagger\).
species 3. Sulphat of iron.
For a defcripcion of this falt, fee Chemistry, \(n^{\circ}\) 63 I. in this Suppl.

\section*{Order Vif. Tin Ores (h).}
\(\mathrm{T}_{18}\) is employed to cover plates of iron and copper, and to filver the backe of looking glaffes: It enters into the compofition of pewter; and forms a very important article in dyeing.

Tin ores are by no means fo common as the ores of the metals which we have already defcribed. They are found only in the primitive mountains (1). Hence Werner fuppofes them to be the mof ancient of all metallic ores. They occur moft frequently in granite, fometimes in porphyry, but never in limeftone.
\(\dagger\) Anm
Clim,
195.

Sulphat
iroin.

Almolt
(g) Kirzu. II. 190-Bergman, II. 184.—Bayen. Four. de Pbyf. VII. 21 3.-Razowmowlki, Men. LauSanne, 1783 , p. 149.
(н) Geeflroy, Mem. Par. 1738 , p. 103.-Morreau, Ann. de Cbim. XXIV. 1.27.
(1) Geologitts have divided mountains into three claffes; primitive, fecondary, and tertiary. The primitive occupy the centre of all extenfive chains; they are the highelt, the molt rugged, and exhibit the moft pointed tops. They are confidered as the moft ancient inountains of the globe.
The fecondary rountains occupy the outlide of extenfive ranges. They are ufually compofed of frata, more or lefs inclined, and commonly reft againft the fides of the primitive mountains. - The tertiary mountains are much fmaller than the others, and are often folitary. We ufe the terms primitive, fecondary, \&cc. merely as
in Oies. Almoft the only tin mines known to Europeans are - thofe of Cornwal, Devonhire, Saxony, Bohemia, Silefia, Hungary, Gallicia; thofe of the ifland of Banca and the peninfula of Malacea in India; and thofe of Chili and Alexico in America.

Hitherto this ore has only been found in CornKlaprotl's the furface + .
rnuall, Its colour is yellowifh grey, paffing into the fteel grey. \({ }^{21}\). Not unlike grey copper ore. 1,uitre metallic. FiardKlaproth. nefs 5 to 6. Very brittle. Sp. gr. 4.35 \(\ddagger\). Before the blow pipe it melts eafily, with a fulphureous fmell, into a black bead, and depofits a bluifh oxyd on the charcoal.

The compofition of this ore, as Klaproth informs us, was firt difcovered by Mr Rafpe. According to Kla. prath's analylis, it is compofed of
\[
\begin{aligned}
& 34 \text { tin, } \\
& 35 \text { copper, } \\
& 25 \text { fulphur, } \\
& 3 \text { iron, } \\
& 2 \text { earth. }
\end{aligned}
\]
is. E . .
232
II. Ox.
1. Brown yyd of tin.
Kirzo. ii. Kirzo. 17. is \(70^{\circ}\), and each of the other angles \(55^{\circ}\). The fides of the two pyramids are inclined to each other at an Reméde angle of \(90^{\circ} \S\). This primitive form, however, never ocetrs, but cryftals of tinftone are fometimes found, in which the two pyramids are feparated by a prifm. For a complete defeription of the varieties of the cryftals of Suppl. Vol. II. Part I.
tinftone, we refer the reader to Romé de Life and \(M\) ro Metallic Day \({ }^{*}\).

Its colour is commonly brown. Streak grey. Hard- \(\underbrace{\text { Prent }}_{\text {Plilof. }}\) nefs 9 to 10. Sp. gr. 0.9 to 7.0. Brittle. Mag.ikid.

Variety 1. Common tinftorie.
Colour dark brown ; fometimes yellowifh grey, and fometines nearly white. Streak light grey. Somewhat tranfparent when cryftallized. Hardnefs 10. Sp. gro 6.9 to 6.97. Defore the blow.pipe it decrepitates, and on charcoal is partly reduced. Tinges borax white.

According to Klaproth, it is compofed of
\[
\begin{aligned}
& 77.50 \mathrm{tin} \text {, } \\
& 21.50 \text { oxygen, } \\
& .25 \text { iron, } \\
& .75 \text { filica. } \\
& \begin{array}{l}
\overline{100.02}+ \\
\text { Variety 2. Woodin. }
\end{array}
\end{aligned}
\]

This variety has hitherto been found only in Cornwal. It occurs always in fragments, which are generally rounded. Colour brown ; fometimes inelining to yellow. Streak yetlowifh grey. Opaque. Texture fibrous. Hardnefs 9. Sp. gr. 7.0. Before the blow-pipe becones brownifh red; decrepitates when red hot, but is not reduced.

Klaproth obtained from it .63 of tin; and, ill all probability, it is an oxyd of tiun nearly pure.

\section*{Order Vili. ores of Lead.}

The ufeful purpofes to which lead in its metallic flate is applied, are too well known to require defcription. Its oxyds are employed in painting, in dyeing, and fometimes alfo in medicine.

Ores of lead occur in great abundance in almoft every part of the world. 'They are generally in veins; fometimes in filiceous rocks, fometimes in calcareous rocks.

\section*{Genus I. sulphurets of lead.}
species i. Calena, or pure fulphuret of lead \(\ddagger\). ans ore, which is very common, is found both in pureful. maffes and cryftallized. The primitive form of its cry. phuret of ftels is a cube. The mof common varieties are the cube, lead. fometimes with its angles wanting, and the octohedron, \& Kirzo. iio compofed of two four-fided pyrainids applied bafe to \({ }^{210}\). bafe: The fummits of thefe pyramids are fometimes cuneifurm, and fometimea their folid angles are wanting \(\|\). \(\|\) Roméd de

Its colour is commonly bluifh grey, like lead. Streak \({ }_{364}\) ife, iii. bluifh grey and metallic. Luftre metallic. Sometimes Hh
ftaina
proper names, without affirming or denying the truth or falfehood of the theory on which thefe names are founded. That the reader may have a more accurate idea of the compofition of thefe different claffies of mountains, we have fubjoined a lift of the fubtances which, according to Werner, enter into the compofition of each.
I. Primary Mountains.
\begin{tabular}{llll} 
1. Granite, & 4. Argillaceous fhiftus, & 7. Shittofe porphyry, & 10. Serpentine, \\
2. Gneifs, & 5. Syenite, & 8. Quartz, & 1. Topaz rock. \\
3. Micaceous fhitus & 6. Porphyry, & 9. Primitive limeftone, &
\end{tabular}
II. Secondary Mountains.
1. Argillaceous fhiftus, 2. Rubble flone,
3. Secondary limeftone,
5. Grunftein,
4. Shiitofe hornblende,
6. Amygdaloid.

\section*{iII. Tertiary Mountains.}
1. Trap,
2. Argillaceous fhiftus,
3. Stratified limeftone,
4. Sanditone,
5. Breccia,
6. Coal,
7. Chalk,
8. Sulphat of lime,
9. Rock falt,
10. Ferruginous clay,

1s. Potters earth. Sp. gr. 6.884 to 7.786 @ . Effervefces with nitric and muriatic acids. Before the blow-pipe decrepitates, and melts with a fulphureous fmell; part finks into the charcoal.

It is compofed of from .45 to .83 lead, and from .086 to .16 of fulphur. It generally contains fome filver, and fometimes alfo antimony aud zinc.

\section*{Variety 1. Common galena.}

This variety correfponds nearly with the above defcription. Sp. gr. 7.051 to 7.786 . Sometimes ftains the fingers.

\section*{Compart galena.}

Found only in amorphous maffes. Texture compact, inclining to foliated. Hardnefs 6 to 8. Sp. gr. 6.886 to 7.444. Luftre common. Streak lead grey, brighter and metallic. Often feels greafy, and ftains the fingers.

23:4
Sulphuret of lead, with filver and anti-
mony
* Kirw. ii. 119. sPECIES 2. Sulphuret of lead, with filver and antimony*. Plumliferous antimoniated filver ore.
Found in amorphous maffes. Colour grey. Hardnefs 5 to 6. Brittle. Sp. gr. from 5.2 to 8.

Varicty 1. Light grey filver ore.
Colour light bluifh grey. Streak light bluifh grey, and brighter. Luftre metallic. Texture compact. Before the blow pipe partly evaporates, and leaves a filver bead on the charcoal, furronnded by yellow duft.

According to Klaproth, it contains

> 48.06 lead,
> 20.40 filver,
> 7.88 antimony,
> \(\times 2.35\) fulphur,
> 2.25 iron, 7.00 alumina, .25 filica.
\(\dagger\) Beilräge, d. 373 .
\(9^{8 . c 9 t}\)
Variety 2. Dark grey filver ore.
Colour iron grey, verging on black. Powder black, and ftains the fingers. Luftre o. T'exture earthy.

According to Klaproth, it contains
\[
\begin{aligned}
& 41.00 \text { lead, } \\
& 21.50 \text { antimony, } \\
& 29.25 \text { filver, } \\
& 22.00 \text { fulphur, } \\
& \text { 1 } 75 \text { iron, } \\
& \text { i.co alumina, } \\
& . i 5 \text { filica. }
\end{aligned}
\]
- 1bid. \(175^{\circ}\)
\(97.25 \ddagger\)
species 3. Blue lead ore *.
This ore, which is found in Siberia, Germany, and Hungary, and is very rare, occurs fometimes in maffes, and fometimes cryftallized in fix-fided prifms.

Colour between indigo blue and lead grey; fometimes inclining to black. Internal luftre metallic. Streak brighter. Texture compact. Hardnefs 6. Sp. gr. \(5.461+\). Before the blow pipe melts with a low blue flame and a fulphureous fmell, and is eafily reduced.
species 4. Black lead ore \(\ddagger\).
This ore, which is found in Germany and Brittanny,
and which is fuppofed to be common gralena decayed, is fometimes in ftalactites of various forms, and fometimes cryfallized in fix. lided prifms, which are generally truncated and coufufed.

Colour black, often with fome ftreaks of red. Streak light bluifh grey. Internal lunre metallic. Hardnefs 5 to 6. Brittle. Sp. gr. from 5.744 || to 5.77 *. Be-|| Brifon. fore the blow-pipe decrepitates, melts eafily, and is re.*Gellert. duced.

According to the experiments of Laumont, this ore is a fulphuret of lead (or rather fulphuret of oxyd of lead), mixed with fome pliofphat of lead.

Species 5. Sulphurct of lead, bifmuth, and filver. Sulphure
This ore, which occurs in the valley of Schapbach in of lead, hif. Saxony, was firlt taken notice of by Selb, and after- mu:h, and wards defcribed by Weidenmann and Emerling.

Its colour is light bluifh grey. Its luttre metallic.
Its fracture uneven. Hardnefs 5. Melts eafily before the blow pipe, emitting fome fmoke, and leaves a filver bead.

A fpecimen, analyfed by Mr Klaproth, contaised
\(9^{6.5 \dagger}\)

\section*{Genus II. oxyds of lead. species I. Lead ochre \(\ddagger\).}
\(\uparrow\) Beiträge,
ii. 297.

238 G 11. Ox. yde. Lead

This ore, which is a mixture of the oxyd of leadochre. with various earths, is found maffive, and of various de- \(\ddagger\) Kirev. grees of hardnefs.

Its colour is either yellow, grey, or red. Luftre o. Tranfparency o to 1. Hardnefs 6 to 8; fometimes in powder. Sp. gr. from 4165 to 5.545 s . Texture compact. Effervefces with nitric and inuriatic acids. Eafily reduced by the blow-pipe, leaving a black flag, unlefs the lead be mised with too great a proportion of earth.

> Genus III. salts of lead.
> species I. Carbonat of lead \(\ddagger\). White leud Spar.

This ore of lead, which is very common, is fometimes \(\ddagger \stackrel{\text { of lead. }}{\ddagger}\) Kiru. it
\[
\begin{aligned}
& \text { 33.0 lead, } \\
& 2 \% .0 \text { bifmuth, } \\
& 15.0 \text { filver, } \\
& 16.3 \text { fulphur, } \\
& 4.3 \text { iron, } \\
& \text { C.9 copper. }
\end{aligned}
\] in maffes, and fometimes cryffallized. But the crytal. 203. lization is in general fo confufed, that the primitive form of the cryftals has not yet been afcertained ( k ).

Its colour is white. External luftre, waxy or filky, from 3 to 1 ; internal 1 to 2 . Generally fornewhat tranfparent. Harduefs 5 to 6. Brittle. Sp. gr. from 5.349 If to 6.92 \&. Effervefces with nitric and muriatic \# Kiruan. acids when they are heated. Soluble in fat oils. Blackeried by fulphuret of ammonia *. Decrepitates when
 ellow cone of the flame, while the Clim, is. blue cone renders it yellow \(\dagger\). On charcoal it is inmediately reduced.

It contain tropp, \(A\) trit號 60 to .85 of lcac, and from .18 to .24 of carbonic acid. It is generally contaminated with carbonat of lime and oxyd of iron.

Fhis ore, which has been found in Auvergne in France, is either in maffes, or cryftallized in fmall fix-fided prifms, with curvilineal faces.

Colour yellowith green, or fhews alternate layers of pale and light green. Powder yellowifh. The cryttals ate fomewhat tranfparent; but when maffive, this ore is opaque. Hardnefs 5 to \(\%\). Brittle. Sp. gr. \(6.8465 \ddagger\). Soluble in hot muriatic acid, but not in nitric. When heated it decrepitates. Before the blow-pipe melts eafily, effervefces, emits a white fmoke, with an arfenical fmell. Some particles of lead are reduced, a brown fluid remainis, which cryftallizes on cooling like phofphat of lead.

According to Fourcroy, from whom the whole of Merallic this defcription has been taken, it is compofed of

Ores.
65 arfeniat of lead,
27 phofphat of lead,
5 phofphat of iron,
3 water. * Sinn. de
100*
specres 5. Molybdat of lead (m).
This ore, which is found in Carinthia and at Leadhills in Scotland, was firt mentioned in 1781 by Mr Jacquin ( N ). It occurs either in maffes, or cryltallized in cubic, or rhomboidal, or octohed́ral plates.

Its colour is yellow. Streak white. Luftre waxy. Generally fomewhat tranfparent. Texture foliated. Fracture conchoidal. Hardnefs 5 to 6. Sp. gr. \(5.486 \dagger ; \dagger\) Macquart. when purified from its gangue by nitric acid, \(5 \cdot 706 \ddagger\). \(\ddagger\) Hatcbett.

Soluble in fixed alkalies and in nitric acid. Communicates a blue colour to hot fulphuric acid. Soluble in muriatic acid, and decompofed by it. Before the blow. pipe decrepitates, melts into a yellowifh grey mafs, and globules of lead are reduced \(\|\).

Klaproth firft proved that this ore was molybdat of lead.

A very pure feccimen, analyfed by him, contained 64.42 oxyd of lead, 34.25 molybdic acid.
98.67 TI

9 Beitr Mige,
According to the analy fis of Mr Hatchett, it is com. \({ }^{\text {ii. } 2 / 5 \text {. }}\). pofed of
58.40 oxyd of lead,
38.00 molybdic acid, 2.10 oxyd of iron, .28 filica.
\begin{tabular}{cc}
\(\overline{98.78} *\) & \begin{tabular}{c} 
Proil. \\
Macquart found a fpecimen to contain
\end{tabular} \\
58.74 lead, & Tranf. \\
4.76 oxygen, & \\
28.00 molybdic acid, & \\
4.50 carbonat of lime, & \\
4.00 filica. & \\
\hline
\end{tabular}
\(\overline{100.00+}\)
Its gangue is carbonat of lime.
\(\dagger\) Four. de
Min \({ }^{\circ}\)
xvii. 3 .
spectes 6. Sulphat of lead \(\ddagger\).
This ore, which is found in Anglefey and in Anda. Sulthat of lufia, is generally cryftallized. The crytals are regular * Kirzo. octohedrons \(\oint\), and very minute.

Min ii.
Colour white. Lultre 4. Tranfparency 4. Before \({ }_{\S}^{2 r 1}\) Hauy the blow-pipe it is immediately reduced. Your. de
The compofition of this ore was firft afcertained by Min. No
Dr Withering.
mixis 50 .

\section*{Order IX. ORES OF ZINC.}

Hitherto zinc has not been applied to a great va* riety of ufes. It enters into the compofition of brafs; it is ufed in medicine; and Morveau has fhewn that its Hh2 oxyd
(L) Cryfal. III. 39 I. See alfo Hauy's remarks on the fame fubject in the Four. de Min. No XXXI, \({ }^{\circ} \mathrm{c} 6\).
(m) Kirw. II. 212.-Klaproth, Ann. de Chim. VIII. 103.-Hatchett, Pbil. Trainf. 1796, p. 285.
(N) In his Mifcellanea Aufiriaca, Vol. II. p. 139.
oxyd might be employed with advantage as a white paint.

Ores of zinc are very abundant; they generally accompany lead ores, particularly galena. Calamine, or oxyd of zinc, has never been difcovered in the primitive mountains.

245
G I. Sulphurets. Common fulphuret of zinc. \(\stackrel{\text { of }}{2 \text { inc. }}\) \({ }_{23} 3\).-Berg. lized. The primitive form of its cryftals is a rhomboiii. 329 . dal dodecahedron, confifting of a fix.fided prifm, terıni-

\section*{Genus I. sulphurets of zinc.} species i. Commen fulphuret of zinc*. Blende.
This ore very commonly accompanies fulphuret of lead. It occurs both in amorphous maffes and cryttal.
* Hauy,

Gour. de
Min. No
xxxiii. 669.
* Fig. 40 .

4 Fig. 4x. nated by three-fided pyramids. All the faces of the cryftals are equal rhombs. T'his dodecahedron may be mechanically divided into four equal rhomboidal paralmechanically divided into four equal rhomboidal paral-
lelopipeds, and each of thefe into fix tetrahedrons, whofe faces are equal ifofceles triangles. The figure of its integrant particles is the tetrahedron, fimilar to thefe *.

The principal varicties of its cryltals are the tetrahedron; the octohedron; the octohedron with its eelges wanting \({ }^{*}\); a 24 -fided cryftal, 12 of whofe faces are trapezoids, and 12 elongated triangles \(\dagger\); and, lafly, a 28. fided figure, which is the laft variety, augmented by - See Hauy, four equilateral triangles \(\dagger\).
sbid and Romé de lifle, iii 65 .
\(\$\) Gellert.
\(\uparrow\) Brifon.
Colour yellow, brown, or black. Streak reddifh, brownifh, or grey. Lufte commonly metallic. Generally fomewhat tranfoarent. Texture foliated. Hardnefs 6 to 8. Sp. gr. \(3 \cdot 9.3 \pm\) to \(4.1665 \%\). Before the blow-pipe decrepitates, and gives out white flowers of zinc, but does not melt. Borax does not affect it. When breathed upon, lofes its luftre, and recovers it
| Hauy, very flowly II.
Houy,
Jour de
Min.ibid. Variety 1. Yellow blende.
Colour commonly fulphur yellow, often paffing into olive green or brownifh red. Powder pale yellow. Streak yellowifh or reddifh grey, not metallic. Luftre metallic. Tranfparency 2 to 4 . Often phofphorefces *. Bergman, when fcraped or rubbed*.
ii. 345 . According to Bergman, it is compoled of

64 zinc,
20 fulphur,
5 iron,
4 fluor acid,
1 filica,
6 water.
\(\$ 13 i d .347\).
\(100 \dagger\)
Variety 2. Brown blende.
Colour different hades of brown. Surface often tarnifhed. Powder brownifh grey. Streak reddifh or yellowifh grey, not metallic. Luftre commonly metallic. Tranfparency 0 to 2.

A fpecimen of this variety, analyfed by Bergman, contained

44 zinc,
17 fulphur,
24 filica,
5 iron,
5 alumina,
5 water.
; 2bid. 333.

\section*{\(300 \ddagger\)}

Variety 3. Black blende.
Colour black, or brownifh black ; furface often tar-
nifhed blue; tips of the eryitals often blood red. Pow. Metallig der brownifh black. Streak reddifh, brownifh, or grey. I.uftre common or metallic. Tranfparency o to 1; the red parts 2. Hardnefs 8.
A fpecimen of this variety, analyfed by Bergman, contained 52 zinc ,

26 fulphur,
4 copper,
8 iron,
6 filica,
4 water.
:00 \(\ddagger\)
\(\ddagger\) Bergman.
ii. 335 .

> 246 \(G .11\)
G. II.

Oxyds.
White or-
This ore is either found loofe, or in maffes, or cry- yd of zinc. + Kirvo ii ftallized. The prinitive form of its cryflals appears, \({ }_{2}, 33\) Kirvo it irg from the mechanical divifion of one of them by Mrii. 32 II .
Hauy, to be an octohedron compofed of two fourfided pyramids, whofe fides are equilateral triangles \(\dagger\). \(\dagger\) Tour. de But the cryftals are minute, and their figure not very Min. No diffinct They are either four or fix fided tables with bevelled edges, fix-fided prifms, or three-fided pyramids.

Colour cominonly white, grey, or yellow. Luftre often 0 , fometimes 2 or 1 . Opaque. The cryftals are fomewhat tranfparent. Harduefs from 4 to 9 , fometimes in powder. Sp. gr. from 2.585 to \(3.674 \ddagger \cdot \ddagger\) Kiruaro When heated, becomes electric, without friction, like the tourmaline \(\dagger\). Not blackened by fulphuret of ammonia. Soluble in fulphuric acid. Before the blowpipe decrepitates, and does not melt.
+ Houy,
four. de
This ore confifts of oxyd of zinc more or lefs contaminated with iron, filica, lime, and other foreign ingredients. In one fpecimen Bergman found the following ingredients: 84 oxyd of zinc,

3 oxyd of iron,
12 filica,
I alumina.
100 \|
Bergman
In another fpecimen, which gelatinized with acids, ii. \(323^{\circ}\) like zeolite, Klaproth found 66 oxyd of zinc, 33 filica.

99
In another fpecimen, analyfed by Pelletier, the contents were 52 filica, 36 oxyd of zinc. 12 water.

100*
* Your. \({ }^{2}\)

Mr Kirwan has divided this fpecies into three varie- Phy. xz ties.
\(V\) ariety r. Friable calamine.
In maffes which eafily crumble between the fingers. Luftre 0 . Opaque. Texture earthy. When its co. lour is white, it is pure oxyd of zinc ; when yellow, it is mixed with oxyd of iron. The white often becomes yellow when placed in a red heat, but refumes its colour on cooling. Common in China, where it is called wo. ban or ore of Tutenago.

Fariety 2. Compaet calamine.
Colour different fhades of grey; fometimes yellow or brownifh red. Luitre 0 . Opaque. Texture compact.

\section*{Variety 3. Striated calamine.}

This variety alone is found crytallized ; but, like the others, it is alfo often amorphous. Colour white, and alfo various fhades of grey, yellow, and red. Sonewhat tranfparent. '「exture flriated. Luftre 2 to 1. Genus III. salts ofzinc. species I. Sulphat of zinc.
For a defcription of this falt, we refer to Che. mistry, \(\mathrm{n}^{n} \mathrm{G}_{43}\). Suppl.

\section*{Order X. ores of antimony.}

Antimony is much ufed to give harchefs to thofe metals which otherwife would be too foft for certain purpofes: printers types, for inflance, are compofed of lead and antimony. It is ufed alfo in medicine.
Ores of antimony are found abundaritly in Germany, Hungary, France, Spain, Britain, Sweden, Norway, \&c. They often accompany galen3 and hæmatites. They are found both in the fecondary and primitive ftratified mountains. Their gangue ( 0 ) is often quartz and fulphat of barytes.

\section*{Genus I. alloys of antimony. \\ species 1. Native antimony *.}

This mineral, which was firt difcovered by Dr Swab, has been found in Sweden and in France, both in maffes and kidney-fhaped lumps. Colour white, between that of tin and filver. Luftre metallic. Texture foliated. Hardnefs 6. Sp. gr. above 6. Deflagrates with nitre. Before the blow-pipe melts and evaporates, depofiting a white oxyd of antimony.

It confifts of antimony, alloyed with 3 or 4 per cent. of arfenic.

\section*{Genus II. sulphurets of antimony.}
species i. Grey ore of antimony*.
This ore, which is the moft common, and indeed almolt the only ore of antimony, occurs both maffive, diffeminated, and cryftallized. Itz cryftals are four-fided prifms, fomewhat flattened, whofe fides are nearly rectangles, terminated by fhort four-fided pyramids, whofe fides are trapeziums \(\dagger\). Sometimes two of the edges are warting, which renders the prifm fix-fided \(\ddagger\).
See Colour grey. Luftre metallic.. Streak grey, metallic, and brighter. Powder black or greyifh black. Hardné's 6 to \(7 . S \mathrm{Sp}\). gr. from 4.1327 to 4.516 \%. Often flains the fingers. Before the blow pipe melts eafily, burns with a blue flame, and depofits a white oxyd on the charcoal. When placed in an open veffel, nver a flow fire, the fulphur evaporates, and leaves a grey oxyd of antimony. Thia oxyd, if fufed with tartar, is reduced.

This ore, when taken out of the mine, almoft always
contains a large proportion of quartz or other fony Metallic matter. When pure, it is compofed of about

26 fulphur.
100
Werner has divided this fpecies into three varieties.

Variety 1. Compact fulphuret.
Colour bluifh grey, furface often tarnifhed, and then it is blue or purplifh. Luftre 1 to 2. Texture compact. Fracture fine grained, uneven. Powcer black, cull, and carthy. slightly fains the fingers.

Variety 2. Folisted fulphuret.
Cobour light fleel grey. Luftre 3 to 4 . Texture foliated. 1'owder as that of the left variety.

Variety 3. Striated fulphuret.
Colour तark fteel grey, and light bluifh grey; furface ofter tarnithed, and then it is dark blue or purplifi. Luftre 3 to 2. Texture friated. Powder greyifh black. This variety alone has been hitherto found cryftallized.

> 3pacies 2. Plumofe antimonial ore \(\dagger\). Sulphurets of antimony and arfonic.

This fyecies, which is fometimes found mixed with the cryftals of fulphurated antimony, is in the form of brittle, capillary, or lanuginous cryftals, often fo fmall that they cannot be dillinetly feen without a micro. fcope.
Colour fteel or bluifh grey, often tarnißhed, and then brown or greyifh black. Luftre 1 , femimetallic. Befure the blow-pipe emits a fmoke, which depofits a whitifh and yellowifli pewder on the charcoal : it then melts into a black flag.
It is fuppofed to confift of fulphur, antimony, arfe. nic, and fome filver.
\[
\begin{aligned}
& \text { sPECIES 3. Red antimonial ore } \dagger \text {. } \\
& \text { Hydrofulpluret of antimony. }
\end{aligned}
\]

\section*{258}

Fed anti-
monial ore:
This fpecies is gencrally found in cavities of fulphu- \(+\begin{gathered}\text { monial } \\ \text { Kirw. iie }\end{gathered}\) rated antimonial ore. It is cryftallized in delicate 250 . needles, often diverging from a common centre.

Colour red. Luftre 2, filky. Sp. gr. 4.\%. Before the blow-pipe melto eafily, and cvaporates with a fulphureous fmell.
This ore has not been analyfed. Mineralogifts have fuppofed it to be a natural kermes. If fo, we may conclude, from the experiments of Berthollet \({ }^{\circ}\), that it is * Ann. de a hydrofulphuret of antimony, and confequently com. Cbim, xxo. pofed of oxyd of antimony, fulphur, and fulphurated \({ }^{259}\). hydrogen gas.
\[
\begin{array}{ll}
\text { Genus III. oxyds of antimony. } & 252 \\
\text { Gill }
\end{array}
\]

There is a fubflance found incurnbent on fulphuret O. Oyds of of antimony, of a yellow colour, and an earthy appear-antimony. ance, which has been fuppofed an oxyd of antimony, and denominated antimonial ochre. But hitherto it has not been analyfed.

Genus
(o) The word gang is ufed by German mineralogifts to denote a metallic vein. Now, it is not often that thefe veins confift entirely of ore; in general, they contain flony matter befides. For inftance, in the copper mine at Airthry, near Stirling, the copper ore is merely a narrow ftripe in the middle of the vein, and the reft of it is filled up with fulphat of barytes. We ufe the word gangue (as the French do), to denote, not the metallic vein, but the fony matter which accompanies the ore in the vein. The gangue of the copper oreat. A irthry is
fulphat of barytes.

Ore§ if
13ifonth. 253 \(\mathrm{alv}^{253}\) Turine ols Mariat of
* Kiru. it. 251.
+Hauy ,
Four. ie
Min. No xxxii. 609.

Genes 11 . sides of antimony. specirs 1. Muriat of antimony *.
This ore, which has beon fonnd in Bohemia, is fometimes in quadrangrular tables; fometimes in acicular cryRals grouped like zeolites; and fometimes in prifms.

Colour pale yellowifh or greyith white. Luttre 3 to 1, nearly metallic. Tranfparency 2. 'Гesture foliated. Melts cafily by the flame of a cande, and emits a white vapour. \(\dagger\). Before the blow pipe decrepitates; when powdered, and juft ready to melt, it evaporates, and leaves a white powder around. Between two pieces of coal it is reducible to a metallic ftate.

\section*{Order XI. OrES OF BISMUTH *。}
ferv. Clbyn.
Bismuth is employed in the manufacture of pewter, of printers types, in foldering; and perhaps alfo its property of rendering other metals more fufible, might make it ufeful in anatomical injections. The quantity confumed in commerce is not great.

It has been found only in the primitive monntains, and is by no means common. When unaccompanied by any other metal, it does not form veins, but kidneyform maffes. It often accompanies cobalt. Its gangue is commonly quartz. Its ores are not very abundant. They have been found chielly in Sweden, Norway, Tranfylvania, Germany, France, and England

\section*{Genus I. alloys of bismuth.}
species i. Native bifmuth \({ }^{*}\).
This mineral, which is found at Schneeberg, Johangeorgenftadt, \&c. in Germany, has commonly the form of finall plates lying above one another. Sometimes it is cryftallized in four-fided tables, or indiftinct cubes.

Colour white with a Thade of red; furface often tarnifhed red, yellow, or purple. Luftre metallic, 3 to 2. Opaque. Texture foliated or ftriated. Hardnefs 6.
t. Brifon. Sp. gr. \(9: 022\) t to \(9.57 \ddagger\). Exccedingly fufible. Be-
\& Kirzwan. fore the blow-pipe gives a filvery white bead, and at lait evaporates in a yellowifh white fmoke, which is depofited on the charcoal.

It is generally accompanied by cobalt, and fometimes contains arfenic.

255
G. II. Sul. phurets. Common fulphuret of bifmuth
* Kirz. ii. 266. -Sage \(\mathrm{SHem}_{\mathrm{m}}\). Far. 1782,307.
+ Kirzuan
-Brijono
* Gillot,
- Four. de

Min. N \({ }^{3}\) 28xii. 585

Genus IT. sulphurets of bismuth. SPECIES 1. Cominon fulphuret of bifmuth*.
This ore, which is found in Sweden, Saxony, and Pohemia, occurs fometimes in amorphous maffes, and fometimes in needleform cryftals.
Colour commonly bluifh grey, fometimes white; furficc often tarnifhed yellow, rcd, and purple. Powder black and mining. Luftre metallic, 2 to 3. Streak obfcurely metallic. Texture foliated. Fardnefs \(5^{\circ}\) Brittc. Sp.gr. \(6.131+\) to \(6.4672 \neq\). When held to the flame of a candle, it melts with a blue flame and fulphureous fmell. Before the blow-pipe emits a reddih yellow dinoke, which adheres to the charcoal. 'Thris powder becomes white when it cools, and refumes its former colour when the flame is directed upon it *.
'This ore, according to Sage, contains co bifmuth, And, accordine to La Peroife, it holds 36 fulphur.

A fpecimen, analyíed by Klaproth, contaired 95 bimuth, 5 fulphur.
\(100 \dagger\)
It is commonly accompanied by quartz, afbeftos, or fuarry iron ore.

Genus III. oxyds of bismuth.
species 1. Yellow oxyd of bifmuth \(\ddagger\). Bifmuth oclre.
This ore generally accompanies the two fpecies al. oxy ready defcribed. It is found in two ftates; either of \(\ddagger K\) an earthy confiftence, or cryftallized in cubes or qua. \(26_{j}\) drangular plates.

Colour ufually greenifh yellow, fometimes grey. Soluble in nitrous acid without effervefcence, and may in a great meafure be precipitated by the effufion of water.

\section*{Order Xil. ORES of ARsenic.}

Arsenic is ufed as an alloy for feveral other metals, efpecially copper. It is fomctimes employed to facilitate the fufion of glafs, or to render it opaque, in order to form an enamel. Preparations of arfenic are employed as paints ; and, like moft other violent poifons, it has been introduced into medicine.

This metal is fcattered in great abundance over the mineral kingdom, accompanying almoft every other meta!, and forming alfo fometimes peculiar veins of its own. Of courfe it occurs in almoft every fpecies of mountain, and is accompanied by a variety of gangues.

\section*{Genus I. alloys of arsenic. species 1. Native arfenic \(\dagger\).}

This mineral is found in different parts of Germany. fe It occurs generally in mafles of various flapes, kidney- \({ }_{2}\) form, botryoidal, \&c.

Colour that of fteel. Its furface quickly becomes tarnifhed by expòfure to the air. Lultre metallic (when frefh), 3 to 2. Streak bluifh grey, metallic, and bright. Powder dull and black. ' 'iexture compact. Hardnel's 7 to 8. Brittle. Sp. gr. 5.67 t to \(5.7249 \neq\). Gives an arferical fmell when ftruck. Before the blow-pipe \(\ddagger\) emits a white fmoke, diffufes a garlic fmell, burns with a blue flame, gradually evaporates, depofiting a white powder.

It is always alloyed with fome iron \(\S\), and often con \(\cdot{ }_{R}^{G}\) tains filver, and fometimes gold.

\section*{Genus II. sulphurets of arsenic. \\ species i. Orpiment (p). \\ Auripigmentum.}

This ore, which is found in Hungary, Wallachia, Georgia, and 'Turkey in A fia, is either maffive or cryflallized. The cryPals are confufed, and their figure cannot be cafily deternined; fome of them appear octohedrons, and othe:s minute four fided prifins.

Its colour is yellow. Streak orange yellow. Luftre waxy, 2 to 3. Tranfparency from 0 to 2. Texture foliated. Hardnefs 4 to 8 . Sp. gr. tiom \(3.04^{8 *}\) to
a bluifh white flume. Before the blow-pipe melts, fmokes, and evapouates, leaving only a little carth and fome traces of iron.

Compofed of

> 80 fulphur,
> 20 arfenic.

100

> species 2. Realgar*.

This mineral is found in Sicily, about Mount Vefuvius, in Hungary, Tranfylvania, and various parts of Germany. It is either maffive or cryftallized. The primitive form of the cryftals is, according to Romé de Line, a four-fided rhomboidal prifm, terminated by four-fided pyramids, the fides of which are rhombs \(\dagger\). It cominonly appears in \(4,6,8,10\), or 12 fided prifnis, terminated by four fided fummis \(\ddagger\).

Colour red. Streak yellowifh red. Powder fcarlet. Luftre 3 to 2. Tranfparency from 2 to 3 ; fometimes c. Hardnels 5 to 6. Sp. gr. \(3 \cdot 33845\). It is an electric per \(\int\) e, and becomes negatively electric by friction ||. Nitric acid deprives it of its colour. Before the blow pipe it melts eafily, burns with a blue flame and garlic fmell, and foon evaporates.

\section*{Compofed of 20 fulphur,}

80 arfenic.

\section*{100}

Genus III. oxyds of arsenic. species i. White oxyd of arfenic *. Native calx of arfenic.
This ore is found in various parts of Germany, IHungary, \&c. either in powder, or mafive, or cryitallized in prifmatic needles.
Colour white or grey, often with a tint of red, yellow, green, or black. Luftre common, i to 2. Tranfparency it to 0 ; when cryftallized, 2. Texture earthy. Hardnefs 6. Brittle. Sp. gr. 3.7才. Soluble in hot diluted nitric acid withont effervefcence. Soluble at \(\delta 0^{\circ}\) Fahrenheit in 80 times its weight of water. Before the blow-pipe fublimes, but dues not inifame. Tinges borax yellow.

\section*{Order Xili. cobal.t ores.}

Cobalt is employed to tinge ghafs of a blue colour, and is ufeful in painting upon porcelain.

Cobalt ores are found almolt exclufively in the ftra. tified mountains, except one fpecies, fulphuret of cobal:, which affects the primitive mountains. They are not very abundant ; and for that reafon cobalt is more valuable than many of the other metals which have been already treated of. They are commonly accompanied by nickel, bifmuth, or iron. They are molt abundant in Germany, Sweden, Norway, and Hungary; they have been found alfo in Britain and France, but nut in any great quasitity.

Genus I. alloys of cobalt.
species t. Cobalt alloyed with arfenic \(\dagger\). Dill grey cobalt ore.
This ore, which occurs in different parts of Germany, is either amotphous or cryftallized. The forms of its cryftal3 are the cube; fometimes the cube with its angles, or edges, or both wanting; and the octohcdron \(\ddagger\).

Its colour, when frefo broken, is whitis or bluih Metallic grey, fometimes with a fhade of 1 ed ; when expofed to Ores. the air it fuon becomes tarnithed. Streak bluith grey and metallic. Luftre farecly metallic, o to I. 'I'exture compact. Hardnefs io. Difficultly frangible. Sp. gr. when anorphous, 5.309 to 5.571 §; when cryftal. § Kirw. ii. lized \(7 \cdot 7207 t^{\circ}\) When truck it gives out an arfenical \({ }^{270}\) fmell. Defore the blow pipe it gives out an arfenical four. de vapour, becomes magnetic, and inelrs cafly, unlefs it Mour. de \(\mathrm{N}^{2}\) contains a great quantity of iron. Tinges borax dark xxxii. 58B. blue, and a fmall metallic bead is obianned.

A fpecimen of this ore from Cornwall, examined by Mr Klaproth, contained 20 cobalt,

24 iron,
33 a:fenic,
77
with fome bifmuth and ftony matter *.
* Klaṕrotb',

Another fpecimen from Tunaberg, according to the Cornzvall, analyfis of the fame chemift, contained
55.5 arfenic,
44.0 cobalt,
. 5 fulphur.
\(100 \dagger\)
Genus II. sutphurets of cobalt. species i. White cobalt ore \(\ddagger\).
Sulphuret of cobalt, arfenic, and iron.
The defcriptions which different mineralorits White cu given of this ore are fo various, that it is impoffible not \(\ddagger\) Kirzu. ii. to fuppofe that diftiuct fubilances have been confounded together.
It occurs either in maffes, or cryRallized in cubes, 53. dodecahedrons, octohedrons, and icofahedrons.

Colour tin white, fometines tarnifhed reddifh or yellowifh. Powder ftel grey. Luftre partly metallic, and from 2 to 4 ; partly 0 or 1 . Texture foliated.
 Before the blow-pipe generally gives out an arfenical \(\ddagger\) Hauy. vapour, and does not melt.

The analy fes that have been given of this cre are very various. Sometimes it has been found to contain nis arfenic nor iron, and fometimes to contain both. A fpecimen fron Tunaberg in Siweden, which ought to belong to this fpecies, was analyfed by Taffaert, and
found to confilt of 49 arfenic,
36.6 cobalt,
5.6 iron,
6.5 fulphur.

55.5 arfenic, 44.0 cobalt, 0.5 fulphur. A Beitrï̈es \(100.0 \ddagger\) ii. 307. Genus III. oxyds of cobaly. cill \(\quad\)\begin{tabular}{c}
263 \\
\hline
\end{tabular} sfecies I. Black cobalt ore or ochre \(\$\). Oxyds.
This ore, which occurs in different parts of (Germa- Black cony, is either in the form of a powder, or indurated. .ecire.
Colour black, often with a fhade of blue, grey, brown; § Kirzo. it. or green. Luftre o to I. Streak brighter. Hardncfs 275 . (of the indurated) from 4 to 8. Sp. gr. 3 to 4 . Soluble in muriatic acid. Tinges borax blue.
bale ore.
* Kirtu. ii.

\section*{Yellow co-}
balt ore.
+ Ibid.
266
G. IV.

> Salts.

Arfeniat of cobalt.
\(\ddagger\) Id. 378 .

SPECTES 3. Yellow cobalt ore \(\dagger\).
Colour yellow. Dull and earthy. Hardneis 4 to 5. Texture earthy. Streak brighter, unctuous. Gives a weak blue tinge.

Genus IV. salts of cobalt. SPECIES 1. Arfeniat of cobalt \(\ddagger\). Red cobalt ore.
This fpecies, like molt other orez of cobalt, has neither been accurately deferibed nor analyfed.

It is found in maffes of various thapes, and cryftallized in quadrangular tables or acicular prifms.

Colour red. Luftre from 2 to 3 , Cometimes 0 . Tranfo parency 0 to 2. Hardnefs 5 to 7 . Brittle. Before the blow.pipe becomes tlacking grey. Diffufes a weak arfenical fmell. Tinges borax blue.

\section*{Order XIV. Ores OF Nickel.}

Hitherto nickel has been found in too fmall quan. tities to be applied to any ufe; of courfe there are, properly fpeaking, no mines of nickel. It occurs only (as far as is yet known) in the fecondary mountains, and it commonly accomoanies cobalt. It has been found in different parts of Germany, in Sweden, Siberia, Spain, Flance, and Britain.
\(-267\)
G. I. Sulphurets. Sulphuret of nickel
with arfe. nic and iron. zed.
* Ibid. 286. Colour often that of copper, fometimes yellowifh whice or grey. Recent fracture often filver white. I uftre metallic, 2 to 3. Texture compact. Hardnefs
F Brifon. 8. Sp. gr. 6.6086 to \(6.6481 \ddagger\). Soluble in nitric and nitro-muriatic acids. Solution green. Before the blowpipe exhales an arfenical fmoke, and melts into a bead which darkens by expofure to the air.

It is compofed of varions proportions of nickel, arfenic, iron, cobalt, fulphur; often contains bifmuth, and fometimes filver and copper.
268
G. \(11.0 x y\) ds.

Nicke:
ochre.
* Kirw. ii.
389.

Genus II. oxyns of nickel.

> SPECIES I. Nickel ochre *.

This mineral occurs either in the form of a powder, or indurated, and then is either amorphous, or cryftalli- zed in acicular form cryftals. The powder is generally found on the furface of other nickel ores.

Colour different thades of green. I,uftre ito 0. Texture earthy. Sp. gr. confiderable. Slowly diftolves in acids: folution green. Before the blow-pipe does s.ot melt ; but gives a yellowifh or reddifh brown tinge to borax.

This ore often contains fulphat of nickel, which is foluble in water. The folution, when evaporated, gives oblong rhomboidal cryftals, from which alkalies precipitate a greyifh green oxyd. This oxyd is foluble by
acids and by ammonia, The acid folution is green; Meali the alkaline blue.

\section*{Genus IIf. salts of nickel.}
species i. Arfeniat of nickel \(\dagger\).
This ore, which was lately difcovered at Regendorff Arfenis by Mr Gmelin, is found in fhapelefs maffes, and is of \(\quad\) - \(\quad\) Kircel. ten mixed with plates of fulphat of barytes.

Colour pale grey, here and there mixed with pale green. Streak white. Luftre o. Texture compact. Hardnefs 7 . Difficultly frangible. Sp. gr. confiderable. Adheres nightly to the tongue, and gives an earthy fmell when breathed on. Soluble in hot nitric and muriatic acids : folution green.

Contains fome cobalt and alumina.

\section*{Order XV. Ores of MANGANESE (Q).}

Hitherto manganefe, in its metallic fate, has fcarcely been put to any ufe; but under the form of an oxyd it has become of great importance. The oxyd of manganefe has the property of rendering colourlefs a variety of bodies which injure the tranfparency of glafs; and it has been long ufed in glafs manufactories for this purpole under the name of glafs foap. By means of the fame oxyd, oxy-muriatic acid is prepared, which has rendered manganele of great importance in bleaching. Not to mention the utility of manganefe to the chemift, the property which it has of facilitating the oxydation of other metals, and of rendering iron more futible-will probably make it, in no very remote period, of very confiderable importance in numerous manufactories.

Ores of inanganefe occur often in Atrata, both in the primitive and fecondary mountains ; fcarcely ever, how. ever, we believe, in thofe mountains which are confidered as the moft ancient of all. They are very common, having been found abundantly in Germany, France, Spain, Britain, Sweden, Norway, Siberia, and other countries.

Genus I. oxyds of manganese.
Hitherto manganefe has only been found in the ftate of oxyd. La Peroufe, indeed, fufpected that he had found it in a metallic ftate: but probably there was fome miftake or other in hiis obfervations.
species I. Oxyd of manganefe combined with barytes.
This fpecies, which exitts in great abundance in Romaneche near the river Soane in France, is found malc wht five, forming a ftratum in fome places more than 12 r, te feet thick.

Colour greyift black or brownifh black, of great intenfity. Luiltre, external, 0 ; internal, metallic, 1. Soon tarnifhes by expofure to the air, and then becomes intenfely black. Texture granular. Fracture uneven; fometimes conchoidal. Often porous. Hardnefs 11. Difficultly frangible. Sp. gr. from 3.950 to 4.10 . Abforbs water. When taken out of water after a minute's inmerfion, it has a ftrong argillaceous fmell. Conducts electricity nearly as well as if it were in a metallic ftatef. Infufible by the blow-pipe. Tinges foda red; the colour difappears before the blue cone of flame, and is reproduced by the action of the yellow flame.
(2) Pott. Mifcelan. Berolens, VI. 40.-Margraff, Mem. Berlin, 1773, p. 3.-La Peroufe, Your. de Pbys. XVI. \({ }_{5} 6\). and XV. 67. and XXVIII. 68.-Sage, Mem. Par. 1785, 235.

From the analy fis of Vauquelin, it appears that it is compofed of

\section*{50.0 white oxyd of manganefe,}
3.3 .7 oxygen,
14.7 barytes,
1.2 filica,
.4 charcoal.
\(100.0 \%\)
SPCIES 2. Grey ore of manganefe *.
This ore occurs both maffive and diffeminated; it is alfo fometimes cryftallized in flender four fided prifms or needles.

Colour ufually dufky fteel grey ; fometimes whitih grey, or reddifh grey. Streak and powder black. External luftre 3 to 2 ; internal metallic, 2 to 1. Texture ftriated or foliated. Hardnefs 4 to 5. Brittle. Sp. gr. from 4.073 t to \(4.8165 \%\). Before the blow-pipe darkens: tinges borax reddifh brown.

A fpecimen of oxyd of manganefe from the mountains of Vofgee, which probably belonged to this fecies, and which was analyfed by Vauquelin, was compofed of

> 82 oxyd of manganefe,
> 7 carbonat of lime,
> 6 filica,
> \(\frac{5 \text { water. }}{1 \text { co }}\)

Sometimes it contains a little barytes and iron.

> species 3. Black or brown ore of manganefe *

This ore is found fometimes in the flate of powder, and fometimes indurated in amorphous maffes of various figures. Colour either black, fometimes with a fhade of blue or brown ; or reddifh brown. Streak of the harder forts metallic \(\xi\) of the others, black. Luftre o to I ; internal (when it is indurated), metallic. Texture compact. Hardnefs 5 to 7. Sp. gr. 3.7076 to 3.9039 ; that of the powdery fometimes only 2. Before the blow-pipe it exhibits the fame phenomena as the laft fpecies.

A fpecimen of this ore, analyfed by Weftrum, contained
45.00 manganefe,
14.00 oxyd of iron, 11.00 filica,
7.25 alumina, 2.00 lime, 1.50 oxyd of copper, 18.00 air and water. 98.75

Genus II. salts of manganebe. species i. Carbonat of manganefe \(\dagger\). White ore of manganefe.
This feccies occurs in Sweden, Norway, and Tran. fylvania. It is either in the form of loofe fcales, or maffive, or cryftallized in needles.

Colour white, or reddifh white. Texture either ra. diated or fcaly. I uftre of the fcaly 2. Tranfparency 1 to 2. Hardnefs of the maffive 6 to 9. Sp. gr. 2.794. Effervefces with mineral acids. Heated to rednefs, blackens. Tinges borax violet.

Suppl. Voz. II. Part I.
species 2. Red ore of manganele \(\dagger\).
Carbonat of mangancfe and iron.
This fpecies has been found in Piedmont and in the 275 Pyrences. It is fometimes in powder, fometimes maf- Red ore of five, fometimes cryftallized in rhomboidal prifms or mangarefe. needles. \(\dagger\) Kirtoan,
Colour pale rofy red, mixed with white. Powder ii. 297 nearly white. Luftre 0. Tranfparency 1. Hardne \(\int_{3} \mathrm{M}\) ? m . \(\mathrm{T}_{\text {wo }}\) 8. Sp. gr. 3.233. Effervefces with nitric and muria-rin,iv. 303. tic acids. When heated to rednefs becomes reddifh brown. Tinges borax red.

A fpecimen, analyfed by Ruprecht, contained
55 filica,
35 oxyd of mangancfe,
7 oxyd of iron,
1.5 alumina.
\(98.5 \oint\)

\section*{Order XVI. Ores of tungsten.}

As no ealy method has hitherto been difcovered of reducing tungften to a metallic ftate, we need not be furprifed that it has been applied to no ufe. Ores of tungten are by no means common. They have hitherto been found only in the primitive mountains. Their gangue is commonly quartz. They very often accompany tin ores.

\section*{Genus I. oxpds of tungiten. species i. Wolfram (r).}

Oxyds of tung fen, iron, and manganefe - Twnyltat of iron and manganefe.
This fpecies is found in different parts of Germany, in Sweden, Britain, France, and Spain ; and is almoft conftantly accompanied by ores of tin. It occurs both maflive and cryftallized. The primitive form of its cryffals, according to the obfervations of Mr Hauy, is a rectangular parallelopiped \(\ddagger\), whofe length is 8.66 , whofe \(\ddagger\) Fig. 42. breadth is 5, and thicknefs \(4.33^{*}\). It is not common, Tour. ds however, to find cryffals of this perfect form; in many Min. No cafes, the angles, and fometimes the edges, of the cry-xix. 8. ftal are wanting \(\ddagger\); owing, as Mr Hauy has thewn, to the fuperpofition of plates, whofe edges or angles decreafe according to a certain law \(\dagger\).

Colour brown or browuifh black. Streak reddih
\(\dagger\) Your. de brown. Powder flains paper with the fame colour. Luftre external, 2 ; internal, 2 to 3 ; nearly metallic. Texture foliated. Fafily feparated into plates by percuffion. Hardnefs 6 to 8. Sp. gr. from 7.006 ** Kirvano \(7.333 \uparrow\). Moderately clectric by communication. Not + Hauy. magnetic. Infufible by the blow-pipe. Forms with borax a greenifh globule, and with microcofmic falt a tranfparent globule of a deep red \(\pi\).

The fpecimen of this ore examined by Meffrs d'El- Jour. de
huyarts, was compofed of \(6_{5}\) oxyd of tungften, Min , \(\mathrm{N}^{\circ}\) 22 oxyd of manganefe, xix. 11 .
13 oxyd of iron.
100
I i
Another
(r) Kirw. II. 316.-De Luyart, Mem. Thouloufe, II. 141,-Gmelin, Crell's Four. Englifh tranf. III. 12\% 205, and 293,-La Peroufe, Jour. de Min. No IV. p. 23.

Ores of Another fpecimen from Pays le Mines in France, M. lyhde- analyfed by Vauquelin and Hecht, contained
8) Vauquelin,
four. de
Min \(\mathrm{N}^{\circ}\)
dix. If.

277
G. 11 Salt. This ore, which is now exceedingly fcarce, has hiTanghat of therto been found only in Sweden and Germany. It lime. is either maffive or cryftallized; and, according to Hauy, \(\dagger\) Four de the primitive form of its cryltals is the octohedron \(\dagger\).
Min. No \({ }^{\circ}\)
xxxiii-6s\%.
Colour yellowifh white or grey. Luftre 3 to 2 .
to 9. Sp. gr, 5.8 to 60665 . Becomes yellow when digefted with nitric or muriatic acids. Infufible by the blow-pipe. With borax forms a colourlefs glafa, unlefs the borax exceed, and then it is brown. With microcofmic falt it forms a blue glafs, which lofes its colour \(\ddagger\) Scbelcend by the yellow flame, but recovers it in the blue flame \(\ddagger\). Bergman. It is compofed of about 70 oxyd of tungiten, 30 lime,

100
\(\oint\) Scberlco with a little filica and iron \(\oint\).

\section*{sPECIES 2. Brown tungffat.}

This ore is found in Cornwal, and is either maffive or compofed of fmall cryftalline grains.
- Colour grey, variegated with yellow and brown. Luftre 2, waxy. Hardinefs 6 to 7. Sp. gr. 5.57. Its powder becomes yellow when digefted in aqua regia.

According to Klaproth, it is compofed of
88 oxyd of tungten,
11.5 lime.
99.5

\section*{ORDER XVII. ORES OF MOLYBDENUM.}

If ever molybdenum be found in abundance, it will probably be ufeful in dyeing and painting. At prefent it is very fcarce, having only been found in Sweden, Germany, Carniola, and among the Alpes. Like tin and tunglten, it affects the primitive mountains.
279 Sul. Genus I. sulphuret of molybdenum.
G.1. Sul-
phuret. Common fulphuret.

This ore, which is the only fecies of molybdenum ore at prefent known, is found conmonly maffive; fometimes, however, it is cryftallized in hexahedral tables.

Colour light lead grey; fometimes with a fhade of red. Streak bluifh grey, metallic. Powder bluifh. Luftre metallic, 3 to 2. Texture foliated. Lamellæ
* K:rfen. flightly flexible. Hardnefs 4: Sp. gr. \(4.569^{*}\) to
\(\dagger\) BriJon. \(4.73^{85} \dagger\). Feels greafy; ftains the fingers. Marks
bluifh black. A piece of refin rubbed with this mine. Meeralic ral becomes pofitively eleeric \(\ddagger\). Infoluble in fulphu- Ores ric and muriatic acids; but in a boiling lieat colours \(\ddagger\) Hayy, them green. Effervefces with warm nitric acid, lea- Yourr. de ving a grey oxyd undiffolved. Before the blow-pipe, on Min. No a filver fpoon, emits a white fmoke, which condenfes in. xix. \(\geqslant 0\). to a white powder, which becomes blue in the internal, and lofes its colour in the external, flame. Scarcely affected by borax or microcofmic falt. Effervefces with foda, and gives it a reddif pearl colour.

Compofed of about 60 molybdenum,
40 fulphur.
100*

\section*{Order XVIII. ORES OF URANIUM.}

Uranium has hitherto been found only in Germany, and has not been applied to any ufe. The only two mines where it has occurred are in the primitive mountains.

> Genus I. oxpds of uranium. Species I. Sulphuret of uranium \(\dagger\). Pecbblende.

This ore, which has been found at Johanngeorgenftadt in Saxony, and Joachimfthal in Bohemia, is either maffive or Atratified with other minerals.

Colour black or brownifh black; fometimes with a fhade of grey or blue. Streak darker. Powder opaque and black. Luftre femimetallic, from 3 to 4. Fracture conchoidal. Hardnefs 7 to 8. Very brittle. Sp. gr. from \(6.3785 \ddagger\) to 7.5 , and even higher \(\S\). Imper- \(\ddagger\) Morvaw, fectly foluble in fulphuric and muriatic acids; perfectly yourr de in nitric acid and aqua regia. Solution wine yellow, Min No \(\mathrm{N}^{0}\) Infufible with alkalies in a crucible: infufible by the xxxii . 610 , blow-pipe per fe. With borax and foda forms a grey Beitrogghiil opaque flag ; with microcofmic falt, a green glafs.
Compofed of oxyd of uranium and fulphur, and mixed with iron and filica, and fometimes lead.

A fpecimen of this ore from Joachimithal, analyfed lately by Klaproth, contained
\[
\begin{aligned}
& 86.5 \text { uranium, } \\
& 6.0 \text { fulphuret of lead, } \\
& 5.0 \text { filica, } \\
& 2.5 \text { oxyd of iron, } \\
& \frac{100.0}{}
\end{aligned}
\]
sPECIES 2. Yellow oxyd of uranium \(\mathfrak{f}\). Uranitic ochre.
This ore is generally foond on the furface of the laft fpecies at Johanngeorgenftadt, and is either maffive or in powder.
Colour yellow, red, or brown. Streak of the yellow forts yellow ; of the red, orange yellow. Iufte 0 . Slightly ftains the fingers. Feels meagre. Texture earthy. Hardnefs 3 to 4. Sp. gr. \(3 \cdot 243^{8}\).1. Infufible by the blow-pipe; but in a ftrong heat becomes brownifh grey.

Compofed of oxyd of uranium and oxyd of iron.
Genus
(s) Kirw. II. 314.-Scbeele's Works (French tran@ation), II. 81.-Bergman, ihid, p. 94.-Crell, Chem. Annalen. 1784. 2 Band 195.
(т)Kirw. II. 322.-Scheele's Works (French tranflation); I. 236:-Pelletier, Four. de Phyf. XXVII. 434.Ilfemann, ibid. XXXIII, 292, - Sage, ibid. 389,-Klaproth and Modeer, Ann. de Chim. ILI. 120.

This fubttance is alfo found at Johanngeorgenftadt, and near Eibenftock and. Rheinbreidenbach \(\oint\). It is fometimes amorphous, but more commonly cryftallized. Its cryftals are Iquare plates, octohedrons, and fix fided prifms.

Colour green ; fometimes nearly white ; fometimes, though rarely, yellow. Streak greenifh white. Luftre 3 to 2 ; internal, 2 ; fometimes pearly ; fometimes nearly metallic. Tranfparency 2 to 3. Texture foliated. Hardnefs 5 to 6. Brittle. Soluble in nitric acid without effervefcence. Infulible by alkalies.

Compofed of carbonat of uranium, with fome oxyd of copper. When its colour is yellow it contains no copper.

\section*{Order XIX. ORES OF TITANIUM.}

Titanium has been known for fo fhort a time, and its properties are yet fo imperfectly afcertained, that many of its ufes muft remain to be difcovered. Its oxyd, as we learn from Mr Darcet, has been employed in painting on porcelain *. Hitherto it has been found only in the primitive mountains, the Crapacks \(\dagger\), the Alpes ( \(\cup\) ), and the Pyrenees \(\ddagger\). It has been found alfo in Brittany || and in Cornwal.

> Genus I. oxyds of tiranium. species 1. Red oxyd of litanium. Red forl-Sagenite.

This ore has been found in Hungary, the Pyrences, Alpes, and in Brittany in France. It is generally cryflallized. The primitive form of its crytals, according to the obfervations of Mr Hauy, is a relangular priim, whofe bafe is a fquare; and the form of its molecules is a triangular prifm, whofe bafe is a right angled ifofceles triangle, and the height is to any of the fides of the bafe about the righte argle as \(\sqrt{ }\) I2 to \(\sqrt{ } / 5\), Trar de or nearly as \(3: 2 \mathrm{~m}\). Sometimes the crytals of titainti. \(\mathrm{N}^{0}\). nium are fix ©ided, and fometimes four-fided, prifms, 28. and and often they are implicated together \(\ddagger\).
iil. 15. Colour red or brownifh red. Powder brick or orange ted with water, a white powder precipitates, heavier than the titanium employed. Before the blow-pipe it does not melt, but becomes opaque and brown. With microcofmic falt it forms a globule of glafs, which appears black; but its fragments are violet. With borax it forms a deep yellow glafs, with a tint of brown. With foda it divides and mixes, but does not form a tranfparent glafs.

When pure, it is compofed entirely of oxyd of tita. nium.

SPECIES 2. Menachanite
Oxyd of titanium combined with iron
This fubftance has been found abundantly in the val- ley of Menachan in Cornwal; and hence was called me-
nachanite by Mr Gregor, the difcoverer of it. It is in finall grains, like gunpowder, of no determinate fhape, and mixed with a fine grey fand. Colour black. Eafily pulverized. Powder attracted by the magnet. Sp. gr. 4.427. Does not detonate with nitre. With two parts of fixed alkali it melts into an olive coloured mafs, from which nitric acid precipitater a white powder. The mineral acids only extract from it a little iron. Diluted fulphuric acid, mixed with the powder, in fuch a proportion that the mafs is not too liquid, and then evaporated to drynefs, produces a blue coloured mafs. Before the blow pipe does not decrepitate nor melt. It tinges microcofmic falt green; but the colour becomes brown on cooling : yet microcofmic falt does not diffolve it. Soluble in borax, and alters its colour in the fame manner.

According to the analyfis of Mr Gregor, it is compofed of 46 oxyd of iron, 45 oxyd of titanium.

91 with fome filica and manganefe \(\uparrow .+M\) Gregor, According to Mr Klaproth's analyfis, it is compofed Jour. de
of

\(\delta\) Four. de
Min. No
xix. 57.

Oxpecres 3. Calcarco ind ore of titanium. Oxyd of titanium combined with lime and filica - Titanite \(\dagger\)
This ore has hitherto been found only near Paffan. It was difcovered by Profeffor Hunger. It is fome filiceous ore times maffive, but more cominonly cryflallized in four \(\dagger\) Kirwan, fided prifms, not longer than one fourth of an inch. ii. 331.

Colour reddifh, yellowifh, or blackith brown ; fometimes whitifh grey. Powder whitifh grey. Luftre waxy or nearly metallic, 2 to 3 . Tranfparency from o to 2. Texture foliated. Hardnefs 9 or more. Brittle. Sp. gr. 3.510. Muriatic acid, by repeated digeltion, diffolves one-third of it. Ammonia precipitates from this folution a clammy yellowifh fubitance. Infufible by the blow-pipe, and alfo in a clay crucible; but in charcoal is converted into a black opaque porous flag.

According to the analylis of Klaproth, it is composed of


Order
(u) Dotomicu, Four. de Min. No XLII. 43I. and Saufure, Voyages, No 1894.
(x) Kirw. II. 326.-Gregor, Jour. de Pby. XXXIX. 72. and 152.-Schmeifer, Grell's Anna's (Englifh trangation), IIL. \(25^{2}\).

Ores of Tellurium.

\section*{Order XX. ores of tellurium.}

Hitherto tellurium has only been found in 'Tranfylvania. It occurs in thice different mines; that of Fatzbay, Offenbanya, and Nagyag, which are confidered as gold mines, becaufe they contain lefs or more of that metal. Its gangue is commonly quartz.

286
G.1. Alloys.

White gold ere of Fatz.
bay.

Anr. de
Cbim. xxv. 327.

Genus I. Alloys of tellurium. SPECIES 1. White gold ore of Eatzbay.
silloy of te lurium and iron, with fome gold.
This fpecies is generally maffive. Its colour is be. tween tin white and lead grey. Luftre confiderable, metallic. Texture granular*.
According to Klaproth's analyfis, it is compofed of 72.2 iron, 25.5 tellurium, 2.5 gold.
+ Ibid. 280.

287
Graphic
golden ore
of Offen-
banya.
\(\$\) Ann. de
Cbim xxv. 328.

De Born, Kirwan's
Min.ii.
101.

8 Ann. de Cbim. xxv. 2 SO.
- 1bid. 258
Grey foliated gold ore of Nagyag. thicknefs, is found in plates, of different degrees of thefe are fometimes hexahedral, and often accumulated fo \(2 s\) to leave cells between them.
Colour deep lead grey, paffing to iron black, fpotted. Luitre merallic, moderate. 'Texture foliated; leaves
+ Kliproth, Ann. do fightly flexible \(\dagger\). Hardnefs 6. Sp. gr. 8.919. Stains Clim. \(\times \times\).
\({ }_{7}^{320 .}\) De Born,
Kirzuan's
MKin. ii. 99.
the fingers. Soluble in acids with effervefcence \(\ddagger\).
According to Klaproth, it is compofed of
\[
50.0 \text { lead, }
\]
3.3 tellurium,
8.5 gold,
7.5 fulphur,
§ Ann. de
Cbim, ibid.
380 .
spectrs 2. Graphic grolden ore of Offenbanya. Tellurium alloyed with, gold and filver.
This ore is compofed of flat prifinatic cryftals ; the arrangement of which has fome refemblance to Turkifh letters. Hence the name of the ore.

Colour tin white, with a tinge of brafs yellow \(\ddagger\). Luftre metallic, 3. Hardnefs 4 to 5. Brittle. Sp. gr. 5.723 . Before the blow-pipe decrepitates, and melts like fead. Burws with a lively brown flame and difagreeable fmell, and at laft vanifhes in a white fmoke, leaving only a whitifh earth \(\|\).
According to Klaproth's analyfis, it is compefed of 60 tellhrium, 30 gold, 10 filver,

\section*{\(100 \$\)}

The yellow gold ore of Nagyag, would belong to this fpecies were it not that it contains lead. Its compofition, aecording to Klaproth's analylis, is as follows:
\[
\begin{aligned}
& 45.0 \text { tellurium, } \\
& 27.0 \text { gold, } \\
& \text { 19.5 lead, } \\
& 8.5 \text { filver, }
\end{aligned}
\]
1.0 filver and copper.
100.0 §

\section*{Order XXI. ORES OF CHROMUM.}

Chromum has hitherto been found in too fmall quan. tities for its extenfive application to the arts. Whenever it becomes plentiful, its properties will render it of great importance both to the dyer and painter. Nature has ufed it to colour fome of her mofe beautiful mineral productions: And can art copy after a better modcl? Hitherto it has been found only in two places, near Ekaterinbourg in Siberia, and in the department of the Var in France. In the firft of thefe places, and probably, alfo in the fecond, its gangue is quartz.
\[
\begin{aligned}
& \text { Genus I. salts of ehromum. } \\
& \text { species i. Chronat of lead. } \\
& \text { Red lead ore of Siberia. }
\end{aligned}
\]

Metallic

This fingular mineral, which has now become fearce, \({ }^{\text {, }}\) is found in the grold mines of Beeefof wear Ekaterimbourg in Siberia, cryftallized in four-fided prifms, fumetimes terminated by four fided pyramids, fometimes not.

Colour red, with a fhade of yellow. Streak and powder a beautiful orange yellow. Luftre from 2 to 3. Tranfparency 2 to 3. Structure foliated. Texture compact. Fracture uneven. Hardnefs 5 to 4 . Sp. gr. \(6.0269+\) to \(5.75 \ddagger\). Does not effervefce with + Brijome acids. Before the blow-pipe decrepitates; fome lead is \(\ddagger\) Bindscim reduced, and the mineral is converted to a black flag, which tinges borax. greell.

According to the analyfis of Vauquelin, it is compofed of
65.12 oxyd of lead,
34.88 chromic acid.

\section*{\(100.00 \|\).}
species 2. Chromat of iron.
This mineral, which has been found only near Craf. fin in the department of Var in France, io in irregular maffes.

Colour brown, not unlike that of brown blende. Luftre metallic. Hardnefs moderate. Sp. gr. 4.0326. Melts with difficulty before the blow pipe; to borax it. communicates a dirty green. Infolnble in nitric acid. Melted with potafs, and diffolved in water, the folution affumes a beautifin orange yellow colour.

It is compofed of 63.6 chromic acid,
36.0 uxyd of iron.

\section*{\(99.6 \uparrow\) \\ Chap. IV. Of the Chemical Analysis of Minerals.}

The progrefs which the art of analyfing minerals has made within thefe laft twenty years is truly aftonifhing. To feparate five or fix fublfances intimately combined together, to exhibit each of them feparately, to afcertain the precife quantity of each, and even to detect the prefence and the weight of. fubftances which do not approach \(\frac{3}{50}\) th part of the compound, would, at no very remote period, have been conficered as a hopelefs, if not an impoffible, tafk ; yer this can now be done with the molt rigid accuracy.

The firt perfon who undertook the analyfis of mi- Begin by nerals was Margraff of Berlin. His attempts were in-Mirgafio deed rude ; but their importance was foon perceived by other chemifts, particularly by Bergman and Scheele,
is of whofe induftry and addrefs brought the art of analyfing minerals to a confiderable degree of perfection.

But their methods, though they had very confiderable merit, and, confidering the flate of the fcience, are wonderful proofs of the genius of the inventors, were often tedious and uncertain, and could not in all cafes be applied with confidence. 'I'hefe defects ware perceived by Mr Klaproth of Berlin, who applied himfelf to the analy fis of minerals with a pelfevering induftry which nothing could fatigue, and an ingenuity and accuracy which nothing could perplex. He corrected what was wrong, and fupplied what was wanting, in the analytical method; invented new proceffes, difcovered new inftruments ; and it is to his labours, more than to thofe of any other chemift, that the degree of perfection, to which the analyfis of minerals has attained, is to be afcribed. Many improvements, however, were introduced by other chemitts, efpecially by \(\mathrm{Mr}_{\mathrm{r}}\) Vauquelin, whofe analyfes in point of accuracy and ingenuity rival thofe of Klaproth himfelf.

We fhall, in this chapter, give a fhort defcription of the moft perfect method of analyfing minerals, as far as we are acquainted with it. We fhall divide the chapter into four fections. In the firft, we fhall give an account of the inftruments ufed in analyfes; in the fecond, we fhall treat of the method of analyfing ftones; in the third, of analyfing combutibles; and in the fourth, of the analyfes of orcs.

\section*{Sect. I. Of the Infiruments of Analyfis.}
I. The chemical agents, by means of which the analyfis of minerals is accomplifhed, ought to be prepared with the greateft care, becaufe upon their purity the exactnefs of the operation entirely depends. Thefe agents are the three alkalies, both pure and combined with carbonic acid; the fulphuric, nitric, and muriatic acids; hydrofulphuret of potafs and fulphurated hydrogen gas diffulved in water; pruffic alkali, and a few neutral falts.
1. Potafs and foda may be obtained pure, either by means of alcohol, or by the method defcribed in the article Chemistrx, \(n^{2} 37^{2}\). Suppl. Thefe alkalies are known to-be pure when their folution in pure water occa. fions no precipitate in lime and barytic water; when the precipitate which it produces in a folution of filver is completely diffolved by nitric acid; and, laftly, when faturated with carbonic acid it depolits no filica.
2. Ammonia is procured by diftilling one part of, mur. riat of ammonia with two parts of quicklime, and receiwing the gas in a difh containing a quantity of pure water, equal in weight to the muriat employed. Its purity is known by the fame tefts which. afcertain the purity of fixed alkalies.
3. The carbonats of potafs and foda may be formed by diffolving the potafs and foda of commerce in pure water, faturating the folution with carbonic acid, and eryfallizing them repeatedly. When pure, thefe cry. ffals efflorefce in the air; and the precipitate which they occafion in folutions of barytes and of filver is completely foluble in nitric acid. Carbonat of ammonia is obtained by diftilling together one part of muriat of ammonia and two parts of carbonat of lime.
4. The fulphuric acid of commerce often contains nitric acid, potafs, lead, \&c. It may be purified by disillation in a low cucurbite. The firf portion, when
it comes over, muft be fet afide; it contains the nitnic Anal) fiv of acid. The other impurities remain behind in the cu- Ninucrals curbite. Sulphuric acid, when pure, diffolves indigo without altering its colour, does not attack mercury while cold, and caufes no precipitate in pure alkaline fow lutions.
5. Nitric acid often contains both fulphuric and inuriatic acids. It is eafily purified by throwing into it. about three parts of litharge in fine powder for every 100 parts of the acid, allowing the nixtare to remain? for 24 hours, faking it occafionally, and then dillilling it. 'The fulphuric and muriatic acids combine with the lead, and remain behind in the retort. Pure nitric acid occafions no precipitate in the folutions of barytes and filver.
6. The muriatic acid of commerce ufually contains. fulphuric acid, oxymuriatic acid, and oxyd of iron. It may be purified by dillillation with a little muriat of foda; taking care to fet afide the firlt portion which comes over. When-pure it canfes no precipitate in the folution of barytes, nor of.pure alkalies, and does not attack mercury while cold.
7. Hydrofulphuret of potafs is made by faturating a folution of pure potafs with fulphurated liydrogen gis; and water miay be faturated with fulphurated hydrogen gas in the fane manaer. See CHEMISTRY, \(1 n^{\circ} 85 \%\) Suppl.
9. The method of preparing pruffic alkali, oxidic acid, and the other fubftances nifed in analyfes, has been already defcribed in the article Chemistry, Suppl. it is unneceffary therefore to repeat it here.
II. Before a mineral is fubinitted to analyfis, it might \(H^{2}{ }^{296}{ }^{6}\) to re. to be reduced to an impalpable powder. This is by no duce the means an eafy tafk when the ftone is extremely laard nineral to. It ought to be railed 10 a bright red or white heat in P a crucible, and then iatlantly thrown into cold water. This fudden tranftion makes it crack and break in:o pieces. If thefe pieces are not fmall enough, the operation may be repeated on each till they are reduced to the proper fize. Thefe fragments are then to be beaten to fmall pieces in a polihied fleel mortar ; the cavity of which mould be cylindrical, and the feel peftle thould fit it exactly, in order to prevent any of the ftone from efcaping duriug the act of pounding. As foon as the tone is reduced to pretty finall pieces, it uught to be put into a mortar of rock cryttal or fliut, and reduced to a coarfe powder. 'This mortar fhould be about fonr inches in diameter, and rather more than an inct, in depth. The peftle fhould be formed of the fame ftone with the mortar, and care fhould be taken to knows exactly the ingredients of which this mortar is compo. fed. Klaproth's mortar is of flint. We have given its analyfis in \(n^{\circ} 32\). of this article.

When the flone has been reduced to a coarfe powder, a certain quantity, whofe weight is known exactly, 100 grains for inflance, ought to be taken and reduces? to as fine a powder as poffible. 'This is beft done by' pounding fmall quantities of it at once, not exceeding 10 grains. The powder is as fine as pofible when it feels foft, adheres together, and as it were forms a cake under the peftle. It ought then to be weighed exactly. It will almoft always be found heavier after being pounded than it was before; owing to a certain quantity of the fubftance of the mortar which has been rubbed off during the grinding and mixed with the pow-

Ana'y fis of der. This additional weight muft be carefully noted;
Minerale: Minerals.

297 Chomical difh:s and after the anzlyfis, a portion of the ingredients of the mortar, correfponding to it, muft be fuLtracted.
III. It is neceflary to have a crucible of pure filver, or, what is far preferable, of platinum, capable of hold- ing rather more than feven cubic inches of water, and provided with a cover of the fame metal. There thould alfo be ready a fatula of the fame metal about four inches long.

The difhes in which the folutions, evaporations, \&cc. are performed, ought to be of glafs or porcelain. Thofe of porcelain are cheaper, becaufe they are not fo apt to break. Thofe which Mr Vauquelin ufes are of porcelain ; they are feetions of Spheres, and are glazed both within and without, except that part of the bottom which is immediately expofed to the fire.

\section*{Sect. II. Analy fis of Stones (y).} expofed in the filver or platinum crucible to a ftrong heat. The heat fhould at firft be applied flowly, and the matter thould be conftantly ftirred, to prevent the potafs from fwelling and throwing any part out of the crucible. When the whole water is evaporated, the mixture fhould be kept for half an hour or three quarters in a ftrong red heat.
If the matter in the crucible melts completely, and appears as liquid as water, we may be certain that the fone which we are analyfing confifts chiefly of filica; if it remains opaque, and of the confiftence of pafte, the other earths are moft abundant; 'if it remains in the form of a powder, alumina is the prevalent earth. If the matter in the crucible be of a dark or brownih red colour, it contains oxyd of iron; if it is grafs green, manganefe is prefent; if it is yellowifh green, it contains chromum.
-When the crucible has been taken from the fire and wiped on the outfide, it is to be placed in at capfute of poreclain, and filled with water. This water is to be renewed from time to time till all the matter is detached from the crucible. The water diffolves a part of the combination of the alkali with the filica and alumina of the ftore, and if a fufficient quantity were ufed, it would diffolve the whole of that combination.

Muriatic acid is now to be poured in till the whole of the matter is diffolved. At firft a flaky precipitate appears, becaufe the acid combines with the alkati
which kept it in folution. Then an effervefcence takes Analriod place, owing to the decompofition of fome carbonat of Mineras potafs formed during the fufion. At the fame time the flaky precipitate is rediffolved; as is alfo that part of the matter which, not having been diffolved in the water, had remained at the bottom of the difh in the form of a powder. This powder, if it, confills only of filica and alumina, diffolves without effervefcence ; but if it contains lime, an effervefcence takes place.

If this folution in muriatic acid be colourlefs, we may conclude that it contains no metallic oxyd, or only a wery fmall portion; if its colour be purplifh red, it contaitis manganefe; orange red igdicates the prefence of iron; and golden yellow the prefence of chromum.
This folution is to be poured into a capfule of porcetain, covered with paper, and evaporated to dryness in a fand bath. When the evaporation is drawing towards its completion, the liquor affumes the form of jelly. It muft then be ftirred conftantly with a glafs or porcelain rod, in order to facilitate the difengagement of the acid and water, and to prevent one part of the matter from being too much, and another not fufficiently dried. Without this precaution, the filica and alumina would not be completely feparated from each other.
When the enatter is reduced almoft to a dry powder, \(\mathrm{How}^{300}\) the a large quantity of pure water is to be poured on it ;ficica isif and, after expofure to a flight heat, the whole is to beparated, poured on a filter. The powder which remains upon the filter.is to be wafhed repeatedly, till the water with which it has been wafhed ceafes to precipitate filver from its folutions. This powder is the whole of the filica which the ftone that we are analyfing contained. It mult firft be dried between folds of blotting paper, then heated red hot in a platinum or filver crucible, and weighed while it is yet warm. It ought to be a fine powder, of a white colour, not adhering to the fingers, and entirely folt:ble in acids. If it be coloured st is contaminated with fome metallic osyd; and fhews, that the evaporation to drynefs has been performed at too high a temperature. To feparate this oxyd, the filica mult be boiled with an acid, and then wafhed and dried as before. The acid folution mult be-added to the water which paffed through the filter, and which we fhall denominate A .

The watery folution A is to be evaporated till its quantity does not exceed 3 a cubic inches, or nearly an Englifl pint. A folution of carbonat of potafs is then to be poured into it till no more matter precipitates. It ought to be boiled a few moments to enable all the precipitate to fall to the bottom. When the whole of the precipitàte has collected at the bottom, the fupernatant liquid is to be decanted off; and water being fubftituted in its place, the precipitate and water are to be thrown upon a filter. When the water bas run off, the filter with the precipitate upon it is to be placed between folds of blotting paper: When the precipitate has acquired fome conliflence, it is to be carefully collected by an ivory knife, mixed with a folution of pure potafs, and boiled in a porcelain capfule. If any
(y) Part of this fection is to be confidered as an abitract of a treatife of Vauquelin on the analyfis of ftones, publithed in the dinales de Climitic, Vol. XXX. p. 66.
(z) Barytes has alfo been difcovered in one lingle ftone, the faurolite; but its prefence in ftones is fo uno common, that it can feareciy be luoked for. The method of fleiteting it :hall be noticed afterwards. ........
alumina or glacina be prefent, they will be diffolved in the potafs ; while the other fubflances remain untouched in the form of a powder, which we thall call B.
Into the folution of potafs as nuch acid meil be poured as will not only faturate the pota's, but alfo completely redifrolve any precipitate which may have at firt appeared. Carbonat of armmonia is now to be ałded in fuch quanntity that the liquid fhall tafte of it. By this addition the whole of the alumina will be precipitated in white fleaks, and the glucina will remain diffolved, provided the quantity of carbonat of ammonia ufed be not too fimall. 'The liquid is now to be filterct , and the alumina which will remain on the filter is to be wafted, dried, heated red hot. and then weighed To fee if it be really alumina, diffolve it in fulphuric acid, and add a fufficient quantity of fulphat or acetite of potafs; if it be alumina, the whole of it will be converted into cry flals of alum.
Let the liquid which has parfed through the filter be boiled for fome time, and the glucina, if it contains any, will be precipitated in a light powder, which may be dried and weighec. When pure, it is a fine, foft, very light, taftelefs powder, which does not concrete when hiceted, as alumina does.
The refiduum B may contrin lime, magnefia, and one or more metallic oxyds. Let it be diffolved in weak fulphuric acic, and the folution evaporated to drynefs Pour a fmall quantity of water on it 'The water will difolve the fulphat of magnefia, and the metallic fulplats ; but the fulphat of lime will remain undiffolved. Let it be heated red hot in a crincible, anid weighecl. The line amounts to 0.41 of the weighlit.
Let the folution containing the remsining fulphats be dilluted with a large quantity of water, let a fmall excefs of acid be added, and then let a faturated carboniat of potafs be poured in. The oxyds of chromun, irort, and nickel, will be precipitated, and thic magnefía and oxyd of man grenefe will remain difolved. 'The precipitate we fhall call C .
Into the follution let a folution of liydrefulphuret of poafs be poured, and the manganefe will be precipitated in the flate of a hydrofulphuret. Let it be calcined in contact with air, and weighed. The magnefia may then be precipitated by pure potafs, wafhed, expofed to a red heat, and then weighed.
Let the rcfiduum C be boiled repeatedly with nitric acid, then mixed with pare potafs; and after being hieated, let the liquid be decanited off. Let the precipitate, which coniifts of the oxyds of iron and nickel, be wafted wish pure water ; and let this water be added to the folution of the nitric acid and potafs. That fointion contains the cliromum converted into an acid, Add to this fo'utio? an excefs of muriatic acit, and cvaporate till the liquiil allumes a green colour; then add a parc alkali : '1'he chromnm precipitates in the liate of an oxyd, and may be dried, and weighed.
Let the precipitate, confiting of the oxyds of ison and nickel, be dififolved in muriatic acid ; add an excefs of ammonias: the oxyd of iron precipitates. Let it be waltied, died, and weighed.
Evaporate the follution, and the oxyd of nickel will allo precipitate ; and its weight may be afcertained in the fame manner with the other ingredients.

The weights of all the ingredients obtained are now to be added together, and their fum total compared with
the weight of the matter fuiumitted to analyfis. If the Analyfis uf two are equal, or if they differ only by .03 or .04 parts, Mine-als. we may conclude that the analyfis has been properly performed: but if the lofs of weight be conficerable, fomething or other has beeu loft. The atialytis mult therefore be repeated with all poffible care. If there is frill the faine lofs of weight,, we may coniclude that the ftone contains fome fubftance, which has either evaporated by the heaz, or is folubite in water.

A frefh portion of the fone inut therefore be bro-Mcthod of ken into fmall pieces, and expofed in a potcelain cru-dctecting cible to a ftrong heat. If it contains water, or any volatile bo. other volatile fubftance, they will come ower into the re- dies. ceiver; and their nature and weight may be afcertained.

If nothing comes over into the receiver, or if what comes over is not equal to the weight wanting, we may conclude that the ftone contains fonie ingredient which is foluble in water.

I'o difcover whether it contains potafs, let the fone, Methot \({ }_{310}^{310}\) reduced to an impalpable powder, be boiled five or fix afcertain. times in fucceffion, with very ftrong fulphuric acid, ap- ing wheplying a pretty frong heat towards the cnd of the ope- contain ration, in order to expel the excefs of acid; but taking potals care that it be not frong enough to decompofe the falts which have been formed.

Water is now to be poured on, and the refiduum, which does not diffolve, is to be wafhed with water till. it becorres taltelefs. The watery folution is to be fil. tered, and evaporated to drynefs, in older to drive off any excef3 of acid which may be prefent. Thiefalts are to te again diffolved in water : and the folntion, after being boiled for a few moments, is to le filtered and evaporated to a confitence proper for cryltallizing. If the ftone contains a fufficient quantity of alumma, and it potals be pre؟ent, cryilals of alum will be formed ; and the quantity of putals may be dilcovered by weigh. ing them, it being deearly troth of their weight. If the Atone does not contain alumina, or not in fufficient quantity, a folution of pure alumina in fulphuric acid mut be added. Sometimes the alum, even when potals is prefent, does not appear for feveral days, or even weeks; and fometimes, when a great quantity of alumina is prefent, if the folution has been too much concentrated by evaporation, the fulphat of alumina prevents the alum froin cryfallizing at all. Care, therefore, mat be taken to prevent this laft fource of error. 'The alum obtained iray be diffolved in water, and barytic water poured into it as long as any precipitate forins. 'The liquor is to be filtered, and evaporated to drynels. The reliduum will confeft of potafs and a little carbonat of potafs. The potal's may be diffulved in a little water. This folution, evaporated to drynefs, gives us the pot. afs pure; which inay be examined and weighed.

If no cryfats of alurn can be obtained, we muit look \(3^{3:}=\) for forme other fubtance than potafs. The ftone, for Or lùa. inttance, may contain foda. 'I he preferce of this alkali may be difcovered by decomooling the folution in fulphuric acid, already defcribed, by incans of ammo. nia. The liquid which remains is to be evaporated to drynefs, and the refiduum is to be calcined in a crucible. By this method, the fulphat of ammenia will be volatilized, and the foda will remain. It may be redif. folved in water, cryttallized, and examined.

If fulphuric acid does not attack the ftone, as is ofo ten the cafe, it mult be decompofed by fufion with fo.
- Ana'ylis of da, in the fame manner as formerly directed with pot\(\underbrace{\text { Minerals. afs. The matter, after fufion, is to be diluted with }}\) water, and then faturated with fulphuric acid. The folution is to be evaporated to drynefs, the refiduum again diffolved in water, and evaporated. Sulphat of foda will cryftallize firt ; and by a fecond evaporation, if the ftone contains potafs and alumina, cryftals of alum will be depofited.
The prefence of potafs may be difcovered, by mixing with a fomewhat concentrated folution of muriat of platinum, the falt obtained, either by decompofing the ftone immediately by an acid, or by faturating with an acid the matter obtained by fufing the fone with foda. If any potafs be prefent, a very red precipitate will be formed. This precipitate is a triple falt, compofed of potals, muriatic acid, and oxyd of platinum. Ammonia, indeed, produces the fame precipitate; but ammonia has not hitherto been difcovered in flones.
Anary is of In this manner may fiuple ftones and aggregates be raline analyfed. As to faline ftones, their analy fis muft vary Sones, according to the acid which they contain. But almoit all of them may be decompofed by one or other of two methods; of each of which we thall give an example.

\section*{I. Analyfis of Carbonat of Strontites.}

\section*{313} nut:, parts of inth analyfed this mineral by diffolving 100 30 parts of carbonic acid efcaped. The folution cryftallized in needles, and when diffolved in alcohol, burit with a purple flame. Therefore it contained flrontites. He diffolved a grain of fulphat of potafs in fix ounces of water, and let fall into it three drops of the muriatic folution. No precipitate appeared till hext day. Therefore the folution contained no barytes ; for if it had, a precipitate would have appeared immediately.

He then decompofed the muriatic acid folution, by mixing it with carbonat of potafs. Carbonat of ftrontites precipitated. By the application of a ftrong heat, the carboric acid was driven off. The whole of the earth which remained was diffolved in water. It cry* Khap rotb's itallized; and when dried, weighed \(69 \frac{1}{s}\) *.

Mr Vauquelin analyfed an impure fpecimen of this mincral as follows :

On 200 parts of the mineral, diluted nitric acid was poured. A violent effervefcence took place, and part of the mineral was diffolved. The undiffulved portion, after being heated red hot, weighed 167 . Therefore 33 parts were diffolved.

The nitric folution was evaporated to drynefs: A red tifh fubftance remained, which indicated the prefence of oxyd of iron. This fubftance was rediffolved in water, and fome ammonia mixed with it; a reddifh precipitate appeared, which, when dried, weighed 1 , and was oxyd of iron. The remainder of the folution was precipitated by carbonat of potafs. The precipitate weighed, when dried, 20 , and poffeffed the properties of carbonat of lime. Therefore 200 parts of this mineral contain 20 of carbonat of lime, 1 of oxyd of iron, and the remainder of the 33 parts he concluded to be water.

The 167 parts, which were infoluble in nitric acid, were mixed with 500 parts of carbonat of potafs, and 7000 parts of water, and boiled for a confiderable time.

The folution was then filtered, and the refiduum wah- Analfinad ed and dried. The liquid fcarcely effervefced with a. Minerah cids; but with barytes it produced a copious precipitate, totally indiffoluble in muriatic acid. 'Therefore it contained fulphuric acid.

The undifiolved refiduum, when dried, weighed 129 parts. It diffolved completely in muriatic acid. The folution cryftallized in needles; when diffolved in alco. hol, it burnt with a purple flame; and, in fhort, liad all the properties of muriat of Alrontites. Therefore thefe 129 parts were carbonat of firontites. Now, 100 parts of this carbonat contain 30 of carbonic acid; therefore 129 contain 38.7. Therefore the mineral mull con. tain in 200 parts 90.3 of flrontites.

Now, the infoluble refiduum of 167 parts was pure fulplat of frontites; and we have feen that it contained 90.3 of ftrontites. Therefore the fulphuric acid mult amount to 70.7 parts \(\dagger\).

Nearly in the farre manner as in the firt of thefe ex- \(\dagger\) Yowr des amples, tnay the analy fis of carbonat of lime and barytes axyii. \(p\). be performed; and nearly in the fame manner with the fecond, we may analyfe the fulphats of lime and barytes.

Phofphat of lime may be diffolved in muriatic acid, and the lime precipitated by fulphuric acid, and its quantity afcertained by decompofing the fulphat of lime obtained. The liquid folution may be evaporated to the confiftence of honey, mixed with charcoal powder, and diftilled in a ftrong heat. By this means phofphorus will be obtained. The impurities with which the phofphat may be contaminated will partly remain undiffolved, and be partly diffolved, in muriatic acid. They may be detected and afcertained by the rules laid down in the fecond fection of this chapter.

The fluat of lime may be mixed with fulphuric acid and diltilled. The fluoric acid will come over in the form of gas, and its weight may be afcertained. What remains in the retort, which will conlift chiefly of fulphat of lime, may be analyfed by the rules already laid down.
The borat of lime may be diffolved in nitric or ful. And bo. phuric acid: The folution may be evaporated to dry- rats nefs, and the boracic acid feparated from the refiduum by means of alcohol, which will diffolve it without acting on any of the other ingredients. The remainder of the dry mafs may be analyfed by the rules laid down in Sec. II. of this Chapter.

\section*{Sect. III. Of the Analy fis of Combuffilles.}

The only combutibles of whofe analyfis it will be neceffary to foeak are coals and fulphur ; for the method of analyfing the diamond and oil has already been given in the article Chemistry, Suppl.

Coal is compofed of carbon, bitumen, and fome por Earrths tion of earth. The earthis may be detected by burning coal ho completely a portion of the coal to be analyfed. The examin athes which remain after incineration confift of the earthy part. Their nature may be afcertained by the rules laid down in Sect. II. of this Chapter.

For the method of afcertaining the proportion of carbon and bitumen in coal, we are indebted to Mr Kirwan.

When nitre is heated red hot, and charcoal is thrown Menedic on it, a violent detonation takes place; and if the owne dere tity of charcoal be fufficient, the nitre is completely de propon" compofed Now, it requires a cempletely de- of of cha compofed. Now, it requires a certain quantity of pure and \(b^{\circ}\)
carbon meca.
yfis of carbon to decnmpofe a given weight of nitre. From the experiments of Lavoifier, it follows, that when the detonation is performed in clofe veffels under water, 13.31 parts of charcoal are capable of decompofing 100 parts of nitre*. But when the detonation is performed in an open crucible, a fmaller proportion of charcoal is neceflary, becaufe part of the nitre is decompofed by the acion of the furrounding air. Scheele found, that under thefe circumflances 10 parts of plumbago were fufficient to decompofe \(9^{s}\) parts of nitre, and Mr Kirwan found, that nearly the fame quantity of chatcoal was fufficient for producing the fane effect.

Macquer long ago obferved, that no volatile oily matter will detonate with nitre, unlefs it be previouny reluced to a charcoal; and that then its effect upon nitre is precifely proportional to the ehareoal which it contains \(\dagger\). Mr Kirwan, upon trying the experiment with regetuble fitch and malibut, fornd, that thefe fubftances did not detonate with nitre, but inerely burn upon its furface with a white or yellow flame; and that after they were confumed, nearly the fame quantity of charcoal was neceffary to decompofe the nitre which would have been required if no bitumen lad been ufed at all \(\ddagger\). Now coals are chiefly compofed of charcoal and bitumen. It occurred therefore to Mr Kirwan, that the quantity of charcoal which any coal coritains may be afeertamed by detonating it with nitre: For fince the bitumer of the coal has no effect in decompofing nitre, it is cvident that the detonation and decompofition mult be owing to the charcoal of the coal ; and that therefore the quantity of coal neceffary to decompofe a given portion of nitre will indicate the quantity of carbon which it contains : and the proportion of charcoal and earth which any coal contains being afcertained, its bituminous part may be cafily had from calculation.

The crucible which he ufed in his experiments was large ; it was placed in a wind furnace at a diftance from the flue, and the heat in every experiment was as equal as puffible. The moment the nitre was red hot, the coal, previouny reduced to fmall picces of the fize of a pin head, was projected in portions of one or two grains at a time, tull the nitre would no longer detonate ; and every experiment was repeated feveral times to enfure accuracy.

He found, that 480 grains of nitre required 50 grains of Kilkenny coal to decompofe it by this method. Therefore 10 grains would have decompofed 96 of nitre; precifely the quantity of charcoal which would have produced the fame effect. Therefore Kilkenny coal is compofed almolt entiely of charcoal.

Cannel coal, when incinerated, left a refiduum of 3.12 in the 100 parts of earthy afles. 66.5 grains of it were required to decompofe 480 grains of nitre; but 50 parts of charcoal would have been fufficient : therefore 66.5 grains of cannel coal contain 50 grains of charcoal, and 2.08 of earth; the remaining 14.42 grains mult be bitumen. In this manner may the compofition of any other coal be afcertained.

As for fulphur, in order to afcertain any accidental impurities with which it may be contaminated, it ought to be boiled in thirty times its weight of water, afterwards in diluted muriatic acid, and laftly in diluted ni-tro-muriatic acid. Thefe fubftances will deprive it of all its impurities without acting on the fulphur itfelf, at leaft if the proper cautions be attended to. The Suppl. Vol. II. Part I.
fulphur may then be dried and weighed. The defi. Analy fio of ciency in weight will mark the quantity of the fubftan- Mirerals, ces which contaminate the fulphur. The folutions may be evaporated and examined, according to the rules lad down in the fecond and fourth lections of this ch"pter.

Sect. IV. Of the Anily is of Ores.
32 I
The method of analyfing ores muft vary confider- N getweral ably, according to the metals which they art fufpected a meth dof to contain. A general method, theretore, of analy fing ores. would be of no ufe, even if it could be given, becanie it wonld be too complicated ever to be practufed. We fhall content ourfelves with exhbiting a fufficient number of the analy fes of ores, to take in mott of the cafea which can occur. He who wifhes for more information on the fubject, may confult the treatife of Bergnan on the inalyjes of Ores; Mr Kirwan's treatife on the Iame fubject; and, above all, he ought to itndy the numerous analyfes of ores which have been publiihed by Mr Klaproth.

\section*{I. Analyfis of Red Silver Ore.}

Mr Vauquelin aualy fed this ore as follows:
322
He reduced 100 Me hod of over it 500 parts of nitric acid previounty diluted with red lilver water, and applied a gentle heat to the mixture. The orto colour of the powder, which before the mixture with nitric acid was a decp purple, became giadually lighter, till at laft it was pure white. During this change no nitrous gas was extricated; hence he concluded, that the metals in the ore were in the flate of oxyds.
When the nitric acid, even though builed gently, did not appear to be capable of diffulving any niore of the powder, it was decinted off, and the refiduum, after being carefully wafhed, weighed \(\ddagger 2.06\).

Upon thefe 42.06 parts concentrated inuriatic acid was poured; and by the application of heat, a confiderable portion was diffolved. The reliduum was repeatedly wafhed with muriatic acid, and then dried. 1ts weight was 14.6666 . One portion of thefe 146666 parts, when thrown upon burning coals, burnt with a blue flame and fulphureous faell. Another portion fublined in a clofe veffel without leaving any refiduum. In thert, they had all the properties of fulplur. 'itherefore 100 parts of red filvel ore contain 14.6666 of fulphur.

The muriatic acid folution was now dillted with a great quantity of water; it became milky, and depofited a white flaky powder, which when wafhed and dried weighed 21.25 . This powder, when heated with tartar in a crucible, was converted into a bluifh white brittle metal, of a foliated texture, and poffeffing all the other properties of antiniony. Red filver ore therefure contains 21.25 of oxyd of antimuny.

The folution in nitric acid remained now to be examined. When muriatic acid was ponred inte it, a copious white precipitate appeared, which, whell walhed and dried, weighed 72.66. It had all the properties of muriat of filver. According to Mr Kirwan's tables, 72.66 of muriat of filver contain 60.57 of oxyd of filver. 'Therefore red filver ore, according to this analyfis, is compofed of 60.57 oxyd of filver,
21.25 oxyd of antimony,
14.66 fulphur.

Analyfis of The lofs, which amounts to 3.52 parts, is to be ateri-Mimeral-, bed to unavoidable errors which attend fuch experiments.

\section*{II. Antimoniated Silver Ore.}

323
Analyfis of antimenia. eed filver ore.

Klaproth analyfed this ore as follows:
On 100 parts of the ore, reduced to a fine powder, he poured diluted nitric acid, raifed the mixture to a boiling heat, and after pouring off the acid, added new quantities repeatedly, till it would diffolve nothing more. The refiduum was of a greyifh yellow colour, and weightd, when dry, 26 .

Thele 26 parts lie digefted in a mixture of nitric and muriatic acid; part was diffolved, and part ftill remained in the form of a powder. This refiduum, when wathed and dried, weighed 13 parts. It had the pro. perties of fulphur; and when burnt, left a refiduum of one part, which had the properties of filica. Antimoniated filver ore, therefore, contains, in the 100 parts, 12 parts of fulphur and 1 of filica.

When the nitro-muriatic folution was diluted with about 20 times its weight of water, a white precipitate appeared; which, when heated to rednefs, becane yellow. Its weight was 13. No part evaporated at a red heat : therefore it contained no arfenic. On burning coals, efpecially when foda was added, part was reduced to a inctal, having the properties of antimony ; and in a pretty high heat, the whole evaporated in a grey fmoke. Thefe 13 parts were therefore oxyd of antinony: They contain about 10 parts of metallic antimony ; and as the fate of oxyd was produced by the action of the nitric acid, we may conclude, that antimoniated filver ore contains 10 parts of antimony.

The nitric acid folution remained ftill to be exanined. It was of a green colour. When a folution of common falt was poured in, a white precipitate was obtained, which poffeffed the properties of muriat of filver. When dried, it weighed 87.75 parts; and when reduced, 65.8 I parts of pure filver were obtained from it. Antimoniated filver ore, therefore, contains 65.81 of Eilver.

Into the nitric acid folution, thus deprived of the filver, he dropped a litule of the folution of fulphat of foda; but no precipitate appeared. Therefore it contained no lead.
He fuperfaturated it with pure ammonia, on which a grey precipitate appeared. When dried, it weighed 5 parts. This, on burning coals, gave out an arfenical fimell. It was rediffolved in nitric acid; fulphurated alkali occafioned a fmutty brown precipitate ; and pruffic alkali a pruffian bluc, which, after turrefaction, was magnetic. Hence he concluded, that thefe 5 parts were a combination of iron ant arfenic acid.

The nitric folution, which had been fuperfaturated with ammonia, was blue; he therefore fufpected that it contained copper. 'To difcover this, he faturated it with fulphuric acid, and put into it a polifhed plate of iron. The quantity of copper was fo finall, that none could be collected on the ison.

\section*{III. Grey Copper Ore.}

324
Araly fis of grey copper ore.

Klaproth analyLed this ore as follows:
Three lundred grains of it, not completely freed from its matrix, were reduced to a fine powder; four times their weight of nitric acid was poured on them, and the
whole as cigefted. The acid was then poured off, Analyfis of and an equal quantity agdin digefted on the reliduum. Minerals. The two acid folutions were mixed togetler. 'I he refiduum was of a yellowifh grey colour, and weighed I 88 grains.

On this refiduum fix times its weight of muriatic acid was boiled. The refiduum was wafhed, firlt with muriatic acid, and afterwards with alcohol, and the wafhings added to the muriatic acid folution. The refiduun, when dried, weighed 105.5 grains. Part of it burned with a blue flame; and was therefore fulphur. The refiduum amounted to 80.25 grains, and had the properties of filica. When melted with black flux, about \(\frac{3}{4}\) ths of a grain of filver were obtained from it. Thus 300 parts of grey copper ore contain 25.25 gr . of fulphur, and 79.5 of filica.

The muriatic acid folution, which was of a light yellow colour, was concentrated by diftillation, a few cryftals of muriat of filver appeared in it, which contained about \(\frac{1}{7}\) th grain of filver. The folution, thus concentrated, was diluted with a great quantity of water; a white precipitate was depofited, which, when dried, weighed \(97: 25\) grains. It poffeffed the properties of oxyd of antimony, and contained 75 graina of antimony. Therefore 300 grains of grey copper ore contain 70 of antimony.

The nitric acid folution was of a clear green colour. A folution of common falt occafioned a white precipitate, which was muriat of filver, and from which 31.5 grains of filver were obtained.

A little fulphat of potafs, and afterwards fulphuric acid, were added, to fee whether the folution contained lead; but no precipitate appeared.

The folution was then fuperfaturated with ammonia; a loofe fleaky brownifh red precipitate appeared, which, when heated to rednefs, became brownifh black, and weighed \(9 \frac{1}{4}\) th grains. This precipitate was diffolved in muriatic acid; half a grain of matter remained undiffolved, which was filica. The muriatic acid folution, when pruffic alkali was added, afforded a blue precipitate ; and foda afterwards precipitated 1.5 grains of alumina. 'I'herefore 300 grains of grey copper ore contain 7.25 grains of iron, and 1.5 of alumind.

Into the nitric folution fuperfaturated with anmonia, and which was of an azure blue colour, a polihed plate of iron was put: By this method 69g grains of copper were obtained.

\section*{IV. Sulphuret of I'in.}

Klaproth analyfed this ore as follows*:
On 120 grains of the ore reduced to powder, fix times their weight of nitro muriatic acid, compoled of \(p\) 2 parts of muriatic, and 1 of nitric acid, were poured. There remained undiffolved 43 grains, which had the appearance of fulphur ; but containing green fpots, was fufpected not to be pure. After a grentle combultion, 13 grains remained; 8 of which were diffolved in nitromuriatic acid, and added to the firft folution. The remaining. 5 were feparated by the filtre, and heated along with wax. By this method about a grain of matter was obtained, which was attracted by the magnet; and which therefore was iron. The refiduum weighed 3 grains, and was a mixture of alunina and filica. Thus 120 grains of fulphuret of tin contain 30 grains of fulphur, I of iron, and 3 of alumina and filica.

The nitro-muriatic folution was completely precipitated by potafs. The precipitate was of a greyifh green colour. It was wafhed and dried, and again diffolved in diluted muriatic acid. Into the folution a cylinder of pure tin was put, which weighed exactly 217 grains. The folution became gradually colonrlefs, and a quan. tity of conper precipiated on the cylinder of tin, which weighed 44 grains. To fee whether it was pure, a quantity of nitelic acid was digefted on it ; the whole was diffolved, except one grain of tin. Therefore 120 grains of fulphuret of tin contains 43 grains of copper.

The cylinder of tin now weighed only 128 grains; fo that 89 grains had been diffolved. Into the folution a cylinder of zinc was put ; upon which a quantity of tin precipitated. When wafhed and dried, it weighed I 30 grains. The tin he melted with tallow and powde ed charcoal; and when cold, he wafhed off the charcoal. A mong the tin globules were found fome black flocculi of iron, which weighed one grain. Dedıeting this grain, and the 89 grains of the tin cylinder which had been diffolved, we fee that the 120 grains of fulphuret of \(t\) in contained 40 grains of tin befides the grain which had been detected in the copper.

\section*{V. Plumbiferous Antimeniated Silver Ore.}

Klaproth analyfed this ore as follows:
He digefted 400 grains of it, reduced to a fine powder, firlt in five times its weight of nitric acid, and then in twice its weight of the fame acid. He then diluted this laft portion of acid with eight times its wcight of water, and continued the digeltion. The undiflolved refiduum, when wafhed and dried, weighed 326 grains.

On this refiduum lie boiled muriatic acid repeatedly. The folution, on cooling, depofited acicular cryftals. Thefe he carefully feparated, and put by. The undiffolved refiduum weighed 51 grains. It had the properties of fulphur. When burned, it left one grain of ifica.
The muriatic acid folution was concentrated to half its former bulk by diftillation: this made it depofite more acicular cryftals. He continued the difillation as long as any cryftals continued to appear. He then collected the whole of thefe cryftals together. They had the properties of muriat of lead. When mixed with twice their weight of black flux, and heatoe in a crucible lined with charcoal, they yielded \(160 \frac{3}{8}\) grains of lead.

Sulphuret of ammonia was now added to the muriatic acid folution; an orange-coloured precipitate appeared, which fhewed that the folution contained antimony. It was precipitated by a copious effufion of water, and by foda. The oxyd of antimony being re. duced to a mafo with Spanifh foap, mixed with black flux, and heated in a lined crucible, yielded 28.5 grains of antimony.
Into the nitric acid folution, obtained by the firft part of the procefs, a folution of muriat of foda was drop. ped ; a white precipitate was depnfited, and over it acicular cryttals. Thefe cryftals he diffolved, by pouring loiling water on the precipitate. The water was added to the nitric acid folution. The white precipitate was muriat of filver: when lieated with twice its weight of foda, it yielded 81.5 grains of filver.

He now concentrated the nitric acid folution by eva.
poration; and then adding a folution of fulphat of foda, Analyfic of a white precipitate was obtained, which liad the pro- Mine alo, perties of fulphat of lead, and weighed 43 grains. It contained 32 grains of pure lead.

He now poured ammonia into the folution; a pale brown precipitate was obtaincd, which weighed to grains, and which appeared to confift of oxyd of iroas and alumina. He rediffolved it in nitric acid, precipitated the iron by prufic alkali, and the alumina hy fo da. The alunina, after being heated to rednefs, weighed 28 grains; confequently the oxyd of iron was 12 grains, which is equivalent to 9 grains of iron.

\section*{VI. Molybdat of Lead. \\ Mr Hatchett analy fed this ore as follows 1 : \\ + Pbit. \\ Trunf.}

On 250 arains of the ore, reduced to a fine powcer \(1 \times x \times x i .320\). he poured an ounce of trong fulphuric acid, and digett- Aralyyis of ed the mixture in a ftrong heat for an hour. When tmol fidat the folution was coul, and had fettled, he decanted it off, and wafhed the undiffolved powder with pure water, till it came away taftelefs. This operation was repeated twice more; fo that three ounces of fulphuric acid were ufed All thefe folutions were mixed together, and filtered.

Four ounces of a folution of carbonat of fonta were poured upon the powder which remained undifolved, and which confifted of fulphat of lead. The mixture was boiled for an hour, and then poured off. The powder was then wathed, and diluted nitric acid poured on it: The whole was difolved, except a litte white powder, which, when wafhed, and dried on a filter by the heat of boiling water, weighed feven-tenths of a grain. It poffeffed the properties of fil:ca.

The nitric acid folution was faturated with pure foda; a white precipitate was obtained, which, when wafhed, and dried for an hour in a heat rather below reduefs, weighed 146 grains. It poffeffed the properties of oxyd of lead.

To fee whether this oxyd of lead contained any iron, it was diffolved in diluted nitric acid, and the lead prccipitated by fulphuric acid. The fulution was then faturated with aminonia ; a brown powder precipitated, which, when dried, weighed one grain, and had the propertics of oxyd of iron.
'the fulphuic acid folution was of a pale blue colour: It was diluted with 16 times its weiglit of pure water, and then faturated with ammonia. It became of a deep blue colour, and appeaved turbid. In 24 hours a pale yellow precipitate fublided, which, when cullected on a filter, and dried by a boiling water heat, weighed 4.2 grains. Its colour was yellowifh brown. Muriatic acid diffolved it, and pruffiat of potafs piecipitated it from its folution in the ftatc of pruffian bluc. It was therefore oxyd of iron.

The fulphuric cid folution, faturated with ainmonia, was gradually evaporated to a dry falt. 'Ilhis falt was a mixture of inolybdat of aminonia and fulphat of ammonia. A ftrong heat was applied, and the diftillation continued till the whole of the fulplat of ammonia was driven off; and to be certain that this was the cafe, the fire was raifed till the retort became red hot. - The refiduum in the retort was a black bliftered mafs; three onnces of nitric acid, diluted with water, were poured npon it, and diftilled off. The operation was again re\(\mathrm{Kk}_{2}\) peated.

Analy fis of Minerals.
peated. By this methot the oxyd of molybdenum was converted into a yellow powder, which was yellow acid of moly bdenum. It weighed 95 grains.

\section*{VII. Grey Ore of Manganefe.}
\(\ddagger\) Four. de
Min \(\mathrm{N}^{\circ}\) vii. \%. 12. 328 Analyfis of grey ore of cubic 10 grains of water, and is manganefe.nic acid gas. The mineral now weighed only 176 grains. Therefore the weight of the gas was 14 grains.

On 200 grains of the fane nineral muriatic acid was poured, and heat applied. 75 cubic inches of oxy muriatic acid gas came over, which, though mixed with fome carbonic acid gas, enflamed metals when reduced to powder. Whien no more gas came over, the refiduum was boiled. The whole was diffolved, except a white powder, which weighed 12 grains, and which poffeffed the properties of filica.

Carbonat of potafs was poured into the folution ; a white precipitate was obtained, which became black by expofure to the air, and weighed 288 grains. Strong nitric acid was boiled on it repeatedly to drynefs. It became of a deep black colour, and, when well wathed with water and dried, weighed 164 grains. This powder was black oxyd of manganefe.

To fee whether it contained iron, nitric acid, with a little fugar, was poured upon it, and digefted on it. The acid diffolved it completely. Therefore no oxyd of iron was prefent.

Into the water with which the black oxyd of manganefe had been wafhed, carbonat of potafs was poured; a white powder precipitated, which, when dried, weighed 149 grains, and which poffeffed the poperties of carbonat of lime.

\section*{VIII. Wolfram.}

329
Analyfis of Mefrs Vauquelin and Hecht analyfed this mineral as wolfram.
follows:
- On 200 parts of Wolfram in powder, three times its weight of muriatic acid were poured, and the mixture boiled for a quarter of an hour: a yellow powder appeared, and the folution was of a brown colour. The acid was allowed to cool, and then carefully decanted off, and the refiduum wafhed. The refiduum was then digelled for fome hours with ammonia, which diffolved a part of it. The refiduum was wafhed, and new muriafic acid again poured over it; then the refidumm was digeffed with ammotia, as before: and the operation was continued till the whole wolfram was diffolved.

All the ammoniacal folutions being joined together, were evaporated to drynefs, and the falt which remained was calcined: a yellow powder was obtained; it weighed \(13+\) grains, and was yellow acid of tungten.

Into the muriatic acid folutions, which were all mixed together, a fufficient quantity of fulphuric acid was poured to decompofe all the falts. The folution was then evaporated to drynefs; and the falts which were obtained by this evaporation were rediffolved in water.

A white powder remained, which weighed three grains, and which poffeffed the properties of tilica.

The excefs of acid of the folution was faturated with carbonat of potafs; the liquer became brown, but no. thing precipitated. When boiled, a red powder precipitated, and the brown colour difappeared. The addition of more carbonat of potafs caufed a farther precipitation of a yellowith powder. 'Ihis precipitate confited of the oxyds of iron and manganefe combined. Nitric acid was diftilled off it repeatedly; it was then boiled in acetous acid. The acetous folution was precipitated by potafs. Nitric acid was again diftilled off it, and it was again boiled in acetous acid. 'This procefs was repeated till nitric asid produced no further change. The different powders which could not be diffolved in the acctons acid were collected, mixed with a little oil, and heated red hot. The puwder became black, and was attracted by the magnet. It was therefore oxyd of iron. It weighed 36 grains.

The acetous folution contained the oxyd of manga. nefe: It was precipitated by an alkali, and, when dried, weighed 12.5 grains.

\section*{IX. Oxyd of Titanium and Iron.}
"Vauquelin analyfed this ore as follows:
A hundred parts of the ore, reduced to a fine powder, and mixed with 400 p parts of potafs, were melted in a filver crucible for an loour and a half. When cool, the inixture was dilnted with water; a powder remained of a brick red colour, which, when wathed and dried, weighed 124 parts.

The watery folution had a fine green colour; when an excefs of muriatic acid was added; it became red. By evaporation the liquor loft its colour. When evapora. ted to drynefs, a falt remained, which was totally dif. folved by water. From this folution carbonat of potafs precipitated two parts, which had the properties of oxyd of manganefe.

The 124 parts of refiduum were boiled in a folution of pure putafs for an hour. The folution was faturated with an acid, filtered, and carbonat of potafs added, which precipitated three parts. Thefe had the properties of oxyd of titanium.

The remainder of the 124 parts of refiduum, whichs ftill was undiffolved, was boiled with diluted mutiatic acid. The liquor became yellow, and depofited 46 parts of a white powder, with a tint of rel. . This powder was foluble in fulphuric and muriatic acids: from thefe folutions, it was precipitated of a brick red colour by the infufion of nut galls; of a green colour by fulphuret of ammonia and pruffiat of potals ; and of a white colour by carbonat of potafs and pure ammonia. A rod of tin made thefe folutions red; a rod of zinc made them violet. Thefe 46 parts, therefore, are oxyd of titanium.
'The muriatic folution, fiom which thefe 46 parts were depofited, formed, with pruffiat of potafs, a pruf. fian blue; and ammonia precipitated from it 50 parts, which had the properties of yellow oxyd of iron.
"INOSE iron ore, no 225 . Agincitte, fhorlaceous, 89. lameller, 90.
glaffy, 91 .
zote, 52.
mantine fpar, 26.
lite, 65.
es, 225.
ric mineral, 96.
te, Iceland, 55.
1e marine, 36.
nina, native, 27 .
lgam, native, \(197^{\circ}\)
er, 178.
antus, 85.
bibole, 53.
gdaloid, 137.
Icime, 68.
reolite, 62.
bracite. 165.
iracolite, 165.
moniated filver ore, 186. 38.
mony, native, 248.
_- grcy ore of, 249.
tite, 98.
a marina, 36. and 61 .
illaceous iron ore, 225.
illite, 79.
niat of lead, 24 I .
nic, native, 257.
nio-pho/phat of lead, \(24^{2}\).
finite, 86.
Roid, 88.
fus, 85.
balt, 171.
iferous native filver, 18 .
ipigmentum, 258.
uite, 71
re de cuivre, 210.
B.

2fs ruby, 28.
ofelenite, 104.
ytcs, carbonat of, 103.
- - fu!phat of, 104.
inite, 93.
altine, 52.
\(y l\), 6 t .
men, 166.
- elaftic, 172.
nuth, native, \(254^{\circ}\)
- ochre, 256.
:k chalk, 123 .
:kifb octohedral iron ftone, 20.

Ide, 245.
calx of copper, \(2 \cdot 10\).
;, 118.
acite, 100.
cia, \(13^{8 .}\)
.k red copper ore, 208.

Brithlenefs, no 12.
Brawn iron ore, 223.

\section*{C.}

Calamine, 246.
Calciform filver ore, 190.
Gannel coal, ry 1. 176.
Carbon, 162
Carbonat of lead, 239.
Cat's eye, 33 .
Celefline, 107.
Ceylanite, 22.
Cbalk, 96.
Cbalcedony, 42 .
Cbert, 41 .
Cblorite, 77.
Cbryjoberil, \(\mathrm{K}_{3}\).
Cbryjolite, \(83 \cdot 9^{8 .}\)
--.. oriental 63.
Cbryyoprafium, 33.
Cinnabar, native, \(1,8\).
Clay, 114.127.
- porcelain, II \(5{ }^{\circ}\)
- common, 116.
- potters, I 16.

Coal, 173.
- cannel, I7I.
-Kilkenny, 164.
- parrot, 171. 176. fpurious, 177.
Cobalt ore, black, \(26_{3}\).
———— brown, 264 . dull grey, 261.
—— red, 266.
—— white, 262.
——yellow, 265 .
Colour, 8.
Calumnar iron ore, 225 .
Copper pyrites, 205.
- malm, 208.
ochre, 208.
Corivindum, 26.
Cork, mountain, 85 .
Cornelian, 42 .
Corneous mercury, 200.
filver ore, 192.
Corundum, 26.
Culm, Wales, 164.
Cupriferous fulphurated filver ore, 189.
Cyanite, 63.
Cymophame, 74.
D.

Delphinite, 73.
Diamond, 163.
Duaility, 12 .
E.

Eagle ftone, 225.
Emerald, 6I.
Einery, 218.
F.

Feels 17.
Felfite, \(57^{\circ}\)

Faljpar, \({ }^{\circ}{ }_{5} 8\).
- - argentine, 49.

Fer oligife, 221.
-. pyrocete, 222.
Flint, 32
Florid red copper ore, 208.
Fluor, 99.
Fraiture, 13.
Fragments, 16.
Fullirs earth, ing.
G.

Galera, 23.
Gangue, page 245, note.
Garnet, n \({ }^{\circ} 70\).
———white, 60.
Glacies mariæ, 50.
Gneifs, 140.
Gold, native, 182.
Granatine, 142.
Grinatite, 47 .
Granilise, 144 .
Granite, 138.
Granitcll, 143.
Granular iron ore, 225.
Graphite, 217.
Green earth, 12 .
- fand of Peru, 20 g.

Grey copper ore, 207.
Gypfum, 97.
H.

Hamatites, 223. 224 .
Hardne \(/ s, 11\).
Hefatic mercurial ore, 199.
Hoinllonie, 53.
- bafaltic, 52 .
--merplerident, 54 .
Horiflate, 40.
Hortfone, 41 .
- finifofe, 92.

Hyacinth, 93.
62.

Hyalite, 64 .
Hydrofulpluret of antimony, 25 .
I.

Fude, 84.
Fargon, 93.
Fajper, 43 .
Jot, 174 .
Iron ore, 214.

\section*{K.}

Kiffekil, 81.
Krajgfone, 150.
Kupfer lazur, 210.
- nickel, 267 .
\[
1 .
\]
L.apis nephriticus, \(84-\)
- lazuli, 69.

Lava, 152 .
Lazulite, 69.
Lead ochre, 238.

Sopidolite, \(\mathrm{n}^{\circ} 59\).
Jeucite, 60.
J.ilalite, 59.

Lime, borat of, 100 .
- carbonat of, 96.
- fluat of, 99.
- phufphat of. 98.
-- fulphat of, 97.
Limefone, 96.
Litbomarga, \(1 \mathbf{1} 7\).
Loum, 128.
Losuland iron ore, 226.
Luflre, 10.
Lydian Alone, 92.
M.

Magnetic iron flone, 220.
-...- fand, 220.
Malacluite, 211.
Maltha, 170.
Mangune fe, black or brown ore of, 273 .
_-_ grey ore of, 272 .
——white ore of, 274 .
Marl, 124.
Meaduzu lowland ore, \(2 \approx 6\).
Menachanite, 284 .
Menalites, 34 .
Alercury, 195.
Mica, 50.
Nicaceous iron ore, 221 .
Micarell, 45 .
Mineral caoutchouc, 172.
—— pitch, : 70.
\(\Longrightarrow\) tar, 169.
Molybdena, 279.
Molybdat of lead, 243.
Morafly iron ore, 227.
Mould, 125.
Mountain blue, 2 Ic.
——.-.- green, 2 Ir.
Mountains, different, p. 271,
Note.
Mullen, 149.
Muriat of antimony, 252 .
Mufcory glaf8, 50.
Myrjen, 81.
N.

Napbetba, \(16 \%\).
Nickel ochre, 208.

\section*{O.}

Obfidian, 55.
Olive copper ore, 213.
Olivine, 83.
Opal, 3.3 .
Orpiment, 258.
Oviform, 96.
Oxygrenated carbonat of copper, \(2 I\) I.
P.

Pechblende, 280.
Peridot, 83.

P'trilite, \(n^{\circ} 56\).
Petroleum, 168.
Petraflex, 4 I .
Phofphat of lead, 240.
Plsojphorite, \(9^{8}\).
Pierve a fufil, 32.
——. de croix, 47.
Pifiform, 225 .
Pitcli.fone, 34:
Platinum, native, 193.
Plumbago, 217.
Plumbiferous antimoniated filver ore, 234.
Plumofe antimonial ore, 250 .
Porpbyry, 151.
Potfone, 76.
Prclonite, 72.
Pudding fone, 136.
Pumice, 157.
Puzzolano, 156.
Pyrites, 216.
Fyromachus, 32.
Pyroxen, 87 .


2tartiz, 30. elaftic, \(3^{1}\).
R.

Realgar, 259 .
Red antimonial ore, 251.
——chalk, 121. copper glafs, 208.
- iron ore, 224 .

Red filver ore, \(n^{\circ} 191\).
Reddle, 12 I.
Rock cryftal, 30.
Rubellite, 39 .
Ruby, 28
- balafs, 28 .
-bohemian, 3 Cb
- occidental, 36 .
- octohedral, 28.
-oriental, 25 .
-- fpinell, 28.

> S.

Sagenite, 283.
Sand, \(12 \%\).
Sandfone, 13 r .
Sappare, 74:
Supplyr, oriental, \(2 j^{\circ}\).
- occidental, 36.

Scapiform iron ore, 225 .
Seafroth, 81.
Selenite, 97.
Serpentine, 75.
Sbiller fpar, 54.
Shiftus, argillaceous, 79.
Shorl, 46.
- green, 73. prifmatic hexagon, 52 . red, 39, 283.
Shorlite, \(3^{8 .}\)
Sienite, 142.
Silex, 32.
Siliceous fpar, 78.
Silver, native, 184 .
Sinople, 30:

Slate, n 79.
Smaragdite, 80.
Sommite, 37.
Sound, is.
Sparry iron ore, 227.
Specular iron ore, 221.
- laminated, 222.

Spinell, 28.
Staurolitc, 62.
Staurolithe, \(4 \%\) -
Staurotide, 47.
Steatites, 82 .
Stillite, 67.
Streak, 9 .
Strontites, carbonat of, 106.
-....- fulphat of, \(10 \%\)
Structure, 15.
Sulphat of lead, 244.
-...- rinc, \(247^{\circ}\)
Sulphur, 16 I.
Surface, 6.
Swampy iron ore, 226 .
Sruinefone, 176.
Talc, 5 I .
Talcite, 5 I .
Tilefrit, 25 .
Texture, 14.
Thullite, 73 .
Thumerfone, 7 F .
Till, 129.
Tin pyrites, 231.
Tinflone, 232.

Tritanite, \(\mathrm{n}^{0} 285\).
Topaz, ancient, 83.
- falfe, 30.
- occidental, 36.
-- oriental, 25 .
- Saxon, 36.

Tvurmaline, 48 .
Tranjparency, \(\%\).
Trap, 146.
Tripoli, 44.
Tufa, teftaceous, 96 .
Tunglen, 277.
V.

Vefuvian, 60.
Vitreous filver ore, \(18 \%\).
- copper ore, 204.

Tolcanic afhes, 158.
Uranitic ochre, 28 I .
W.

Wacken, 148.
White copper ore, 203 .
-_lead fpar, 239.
- Witherite, 102.

Wolfran, 276.
Wooltin, 232.
Y.

2゙anolite, 71.
Tellow chalk, 122.
- copper ore, 208
Z.

Zeolite, 66.
Zillertite, 52.
Zircon, 93 .

\section*{M I R}

IvEirabesu. MIRABEAU (Honnorć Gabriel, Comte de), well known both by his writiags, and the active part which he took in bringing about the French revolution, was born in 1749 of a noble family. Throughout life, he difplayed a fpirit averfe from every reftraint, and was one of thofe unhappy geniufes in whom the moft brilliant talents ferve only as a fcourge to themfelves and all around them. It is told by his democratical panegyrifts, as a wonderful proof of family tyranny under the old goverument, that not lefs than 67 lettres de ca. chet had been obtained by Mirabeau the father againt this fon and others of his relatives. This ftory, if true, proves, with at leaft equal force, what many anecdotes confirm, that, for his thare of them, the fon was not lefs indebted to his own ungovernable difpofition than to the feverity of his parent. He was indecd a monfter of wickednefs. Debauchery, raming, impiety, and every kind of fenfuality, were not enough for him. IE was deftitute of decency in his vices; and to fupply his expences, fcrupled not to perform tricks which wonld difgrace a thief catcher. I-Iis father and mother cifagreeing, commenced a procefs of feraration; when Mirabeau, juft liberated from prifon for a-rifofs mildemeanor, was in want of money. Fie went to his father, fided with him againt his mother, on whom he poured a torrent of invectives; and, for 100 guineas, wrote his

\section*{M I R}
father's memorial for the court. He then went to his Mirabes mother; and by a fimilar conduct got the fame fum from her; and both memorials were prefented. That the father of fuch a man fhould frequently get him fhut up in prifon, can excite no furprife ; for confinement only could withhold him from the perpetration of crimes.

The talents of Mirabeau led him frequently to employ his pen: and his publications form the chief epoclas of his life. His firt publication was, t. Effui fur le Defpotifine, "An Effay on Defpotifm," in 8vo. Next, in one of his confinements, he wote, 2 . a work in 2 vols 8 pon , On Leettres de Cachet. 3. Confiderations fur l'Ordre if Cincinnatus, 8vo. A remonftrance againt the order of Cincinnatus, propofed at one time to be eftablified in America. The public opinion in America favoured this remonttrance, and it proved effectual. 4. His next work was in favour of the Dutch, when Jofeph II. demanded the opening of the Scheldt, in behalf of the Brabançons. It is entitled, Doutes fur la Liberté de l'lifant, 8vo. 5. Lettive ì l' Empereur Yofepls II. Jur Jinn Reglement concernanit l'Emigration; a pamphlet of Forty pages, in 8vo. 6. De la C'aifle d' Jifompte; a volume in 8ro, written againft that citablithinent. 7. De la Banque d' IV \(\sqrt{p} a g n e\), ivo; a remonfrance againft eltablifhing a Frencls bank in Spain. A
controverfy


abeau controverfy ariing upen this fubject, he wrote again upon it. 8. Two pamphlets on the monopoly of the water company in l'aris.

Soon after the publication of thefe works, he was fent in a public character to the court of Berlin; where he conducted the king's affairs juft as he had formerly done thofe of his father and mother, fully ready to fa. crifice all parties, and to fell limfelf to the highelt bidder. With fuch a difpofition, he could not long avoid the notice of the Pruffian illuminees; and Nicolai Biefter, Gedicke, and Leuchferring, foon became his conflant companions. At Brunfwick he met with Manvillon, the worthy difciple of Philo Knigge, and at that time a profeffor in the Caroline college. Ihis was the man who initiated the profligate Marquis in the laft mytteries of illuminifm.

Mirabeau was till at Berlin when Frederick II. died. That monarch, as is well known, was a naturalift, who, holding this life for lis all, encouraged the propagation of infidelity in his duminions, from which refulted the very worlt confequences to the peace of fociety. Of this truth his fucceffor Frederick William was duly fen. fible; and determined to fupport the church eftablifhment in the moit peremptory manner, confiftent with the principles of religious toleration. He publifhed, therefore, foon after his acceffion, an edict on religion, which is a model worthy of imitation in every country; hut it was attacked with the greateit virulence in nuin. berlefs publications. It was called an unjuftifizble ty1 anny over the confciences of men; the dogmas fupported by it were termed abfurd fuperaitions; the king's private character and his religious opinions were ridiculed and fcandaloufly abufed. The moft daring of thefe attacks was a collection of anonymous letters on the conftitution of the Pruffian fiates, univerially be lieved to be the compolition of Mirabean, who certainly wrote a French iranflation, with a preface and notes more impudent than the work itfelf. 'The monarch is decearece to be a tyrant ; the people of the Pruffian do. minlons are addreflid as a parcel of tame wretches, crouchirg under oppreffion ; and the inhabitants of Silefia, reprefented as ftill in a worfe condition, are repeatedly called upon to roufe themiclves, and afert their rightis.
ibout this tine he publifked, of An Fffii fur le Seïe des Illuminis; one of the Arangeft and moft impurdent bnoks that ever appeared. In it lie defcribes a fect exifting in Gernaany, called the Illunihiute.l; and fays, that they are the moft abfurd and grois fanatics imaginable, waging war with every appearance of reafon, and mantaining the molt ridiculous fuperplitions. He gives fome accourt of thefe, and of their rituals and ceremonies, as if he had feen them all; yet no fuch fociety as he defcrites ever exilled: and ilirabeau enployed his powers of decentien, inerely to fereen from obiervation the real illuminati, by hokling nut to the rulers of itates this ignis fatumes of his own brain. For a while the effay certainly contributed to blind the eyes of the German princes ; and Nicolai. with others of the junto, adopting the whim, called Mirabeau's fanatics Obfcuranten, and joined with him in placing on the lift of Olfcuranten feveral perfons whom they wifhed to make ridiculous.
Long before his initiation in the myfferies of illumiLifm, Mirabeau had been acquainted with all the rc-
volutionary fowers of the mafonic lodges; nor did he, Mirabeenu. when initiated, undervalue thore which Howed, or might flow, from Weiflaupt's insentive genius. On his return to France, he hegan to introduce the new myfle. rics among fome of his mafonic brethren. His firlt afo fociate was the Abbé Talleyrand de Perigord, who had already begun to act the part of Judas in the firft order of the church. But to have only introduced the myfleries was not fufficient for the Marquis; he would have teachers come from Germany, who were better verfed than he was in the illuminizing arts. Well acquainted with the reafons that had induced the chiefs of the order to defer the converfion of France, he found means to convince them, that the time was now come for the accomplifhment of their views; and at his requeft a deputation was fent by Spartacus to illuminize that great kingdom. See Illuminati, \(n^{\circ} 40\), 41, Suppl.

When the affembly of Notables was convened at Pa ris, Mirabeau foretold that it would foon be followed by a meeting of the States; and at that period he publifhed a volume againft the ftockjobbing, then carried to a great height, intitled, 10. 1)enonciation de l'agiotage aul Roi, et a l'AJJemblie de Notalles, 8 vo. A lettre de cachet was iffued againft him in confequence of this publication ; but he cluded purfuit, and publihed a pamphlet as a fecquel to the book. Iiis next work was againf M. Necker, it. Lettre á MT. de Cretelle, fur l'Adminifiration de MT. Necker, a pamphlet in 8vo. 12. A voluine, in \(\delta\) vo. againft the Stadtholderthip: Aux Butaver, fur le Stadithomleras. 13. Obfervations fur la maijon at force appella lizictre, an 8 vo pamphlet. I4. A nother tract, intitled, Conficils à un jcure Prince gue fent la néceflié de ry̌uire fon education. 15. He now proceeded to a larger and more arduous work than any he lad yet pullifhec', on the Pruffian monarchy under Frederick the Great: De la Monarckie Priflicnne fous Fréderic le Grand, 4 vols, 4 to, or eight in 8 ro. In this work, he undertakes to define precifly how a monarchy fould be conitituted. When the orders were iffued for convening the States general, Mirabeau returned into Provence ; and at the fame time publifhed, 16. Hifloire Secrette de la Ciour de Berlin, two volumes of lecters on the sictet IIflory of the Court of Berlir. This worl was condemned by the parliament of Paris, for the unr ferved manner in which it delivered the charatters of imary foreign princes. As the clections pro. ceeded, he offered himicif a candidate in his own order at Aix ; Lut he was fo abhorred by the nolleffe, that they not only rejected hin, but even drove him from their prefence. This affront fetticd his meafurcs, and he determined on their ruin. He went to the common!, diftaimed lus being a genteman, fet up a litule faop in the market-place of Aix, where he fold trifes; and now, fully refolved what line he flould purfue, he courted the commons, by joining in all their exceffes againtt the noblefle, and was at lait returned a member of the affembly.

In confequence of this, he went to Paris; where the part he took was active, and fuch as tenced, in general, to accelerate all the violences of the revolution. He now publifhed, periodically, 17. his Lettres if fis Commmettans, Letters to his Conitituents, which form, when collected, 5 vols, 8 vo . It is fuppofed, that the fatal meafure of the junction of the three orders mitu one na-

\section*{M I S}

Mirabeau, tional affembly, was greatly promoted by thefe letters. Miftral.

The public events of thefe times, and the part taken in
them by Mirabeau, are the fubject of general hiftory. He lived to fee the conftitution of 1789 eftablifhed, but not to fee its confequences- the deftruction of the mosiarchy, the death of the king, and the ruin of all propeity! He was accufed, as well as the duke of Orfeans, of hiring the mob which attacked Vel failles on the 5 th and 6th of October 1789 ; bit with him was alfo acquitted by the tribunal of the Chàtelet. The dominion of his eloguence in the National Affer bly had long been abfolute, and, on the 29th of January 179 r , he was elected prefident. At the latier end of March, in the fame year, he was feized by a fever, and died on the \(2 d\) of \(A\) pril.
'Ihe talents of Mirabeau will nct be doubted though they were certainly rather brilliant than profound. To be noticed, and to lead, were the fole cobjects of his am bition; and for the attaiument of them, he took the ficle of the difcontented, as the beff fild for his matchlefs eioquence. I'et there was no man more devoted to the grinciples of a court than this Marquis, provided he could have a thare in the adminifration; and a Mare he would have obtained, if any thing moderate would have fatisfied him: But he thought nothing worthy of him Lut a place of active truft, and a high department ; ftations which all knew hin not qualified to fill. Wanting knowledge of great things, he was learned only in the bufling detal of intrigue, and would, at any time, have facrificed his deareft friend, and the interefls of liis country, for an opportunity of exercifing bis brilliant eloquence, and indulging his propenfity to fatire and lampoon. But the greateft obftacle to his advancement under the old government was the abje? worthleffnefs of his character. Driuking was the only vice in which he did not indulge; and from this he was reffrained by his exhaufted conttitution. To his brother, the Vif. count, whe was frequently intoxicated, the Marquis one day faid, "How can you, brother, fo expofe yourfelf ?" " What (replied the Vifcount)! how infatiable are you? Nature has given you every vice; and having left me only this one, you grudge it me !"

MISTRAL, the name of a wind, which is mentioned in almoft every account that we have of Provence, and which is remarkable for blowing alnot the whole year from north weft or weft-north-weft, in a climate where the wind fhonld be variable. It is faid to contribute to the falubrity of the air, by difperling the exhalations of the marfhes and ftagnant waters, fo common in the fouth of Languedoc and Erovence; but at times it is alfo very injurious, or at leatt very thoublefome. It is not, however, on either of thefe acconnts that it is introduced into this Work, but for the fake of the caufes affigned by Sauffure for its conftancy, which may be applied to other winds that nearly refemble it ; and which he found might be reduced to three.
"The firlt and moft effectual caufe (he fays) is the fituation of the Gulf of Lyons, the banks of which are the principal theatre of its ravages. This Gulf, in fact, is fituated at the bottom of a funnel, forined by the Alps and Pyrenees. All the winds blowing from any point between weft and north, are forced by thefe mountains to unite in the Gulf. Thus, winds which would not kave prevailed but at one extremity of the

Gulf, or even much beyond it, are obliged to take this route, after having undergone the repercuffion of thefe mountains; and the middle of the Gulf, inftead of the calm which it might have enjoyed, is expofed to the united efforts of twe ftreams of wind, defcending in dif. ferent directions. Fizence arife thofe, whillwinds which feen to charaderife the miltral, and appear to have induced the ancicnts to call it Circius, à turbine cjus ac vertigine. See Aul. Gellius, l. ii. cap. 22.
"The fegund caufe is, the general flope of the grouncs, defcending from all fidets towards the Gulf; which becoming all at once lower and more fontherly than the lands extendirg behind it, is, from thefe joint circumftances, rendered the hoteft point of all the ad. jacent country : and, as the air on the furface of the carth always tends fiom the colder to the warmer regions, the Gulf of Lyons is actually the centre toward3 which the air from all colder points between eatt and weft mult prefs. This canfe, then, alone would be productive of winds directed to the Gulf, even if the repercuffion of the mountains did not exert its influence.
"Final!y, it is well known, that in all gulfs the landwinds blow more forcibly than oppofite to plains and promontories, whatever be the fituation of thofe gulfs. I apprehend, indeed, on ftrict examination (fays our author), that this caufe is blended with the preceding; but as the fact is generally admitted, and in fome cales can be explained only by reafons drawn from the efficts of heat, it may not improperly, perhaps, be diftinctly mentioned. It is, at leaf, neceflary to fuppofe, that feveral caufes produce the miftral, in order to underftand why, notwithfanding the variablenefs of the fcafons and temperatures, that wind is fo fingularly conftant in Lower Languedoc and Lower Provence. A very remarkable inftance of this comftancy is recorded by the Abtć Papon, in his Voyage de Provence, tom. ii. p. 81. He afferts, that during the years \(17(6)\) and 1770 , the miltral continued for fourteen months fugcel. fively. But the three caufes which I have fated, taken feparately, will explain its frequency, and, united, will account for its force."

MIXT \(A\) ngle, or Figure, is one contained by both right and cutved lines

MIXT Number, is one that is partly an integer and partly a fraction; as \(3 \frac{1}{2}\).

Mixt Ratio, or Proportion, is when the fum of the antecedent and confequent is compared with the difference of the antecedent and confequent ;
\[
\begin{aligned}
& \text { as if }\left\{\begin{array}{l}
4: 3:: 12: 9 \\
a: b:: c: d \\
7: 1::=1: 3 \\
a+b: a-b:: c+d: c-d .
\end{array}\right.
\end{aligned}
\]

MOCASSIMAH, in Bergal, revenue fettled by a divifion of the proluce.

MOCHULKAH, bond or otligation.
MCERIS, a lake in Egypt, occationally mentioned in that article (Encycl.), and generally fuppofed the production of hunan art. Of this, however, Mr Brown fays it bears no mark. "The fhape, as far as was diftinguifhable, feems not inaccurately laid down in \(\mathrm{D}^{\prime}\) Anville's map, unlffs it be, that the end neareft the Nile fhould run more in a north weft and fouth-eaft direction. The length may probably be between 30 and 40 miles ; the breadth, at the wideft part he could gain, was 5000 toifes, as taken with a fextant ; that is, near-
they fell for extirpating thofe deftructive animals are of
ficl, ly fix miles. The utmoft poffible extent of circuit nuft of courfe be 30 leagues. On the north-eaft and fouth is a rocky ridge, in every appearance primeval. In fhort, nothing can prefent an appearance more unlike the works of men. Several fifhernien, in miferable boats, are conftantly employed on the lake. The water is brackilh, like mo? bodies of water under the fame circumftances. It is, in the language of the country, Pirket-cl-kerun, probably from its extremities bearing fome refemblance to horns.

MOFUSSEL, a relative term, fignifying the fub. ordinate lands or diftricts, oppofed to Sudder, which is the head.

MOHACZ, Mohatz, or Moboz, a lown in the Lower Hengary, unon the Danube, between the river Sarwiza to the noith, and the Drave to the fouth; four (German mites from either, fix from Effeck to the north, and nine from Colocoa to the fontl. This otherwife Imail place is memorable for two great battles here fought ; the firlt between Lewis king of Hungary and Solyman the Magnificent, in 1526: in which that te11fortunate Prince Lewis (being about 20 years old), with 25,000 men, fought 300,000 Turks ; when, being overpowered by numbers, 22,000 of the Cluriftian army were flain upon the place; scoo waggons, eighty great cannon, Goo fmall ones, with all their tents and bagkage, were taken by the victors; and the King, in his tlight over the brook Curefs, fell into a quagninire, and was fwallowed up. After which, Solynan took and flew 200, 000 Hungarians, and \({ }^{\star}\) got fuch a footing in that kingdom, that he could never be expelled. This fatal battle was fought October 29. The fecond, in fume part, retrieves the lofs and iufamy of the former. The I)uke of Loraine being fent by the Emperor, with exprefs orders to pafs the Drave and take E.ffeck, his highnefs, July 10, 1687 , with great difficulty paffed that river, then extremely fwelled with rains; but find ing the Prinie Vifier encamped at Effeck, with an army of 100,000 men, fo ftrongly, that it was not poffible to artack him in that poft without the ruin of the Chriflian army, he retreated, and repaffed it the 23 d of the fame month ; where, upon the 29th, the Prime Vifier paffed that river at Effeck ; and upon Auguft 12th, there followed a bloody fight, in which the Turks loft 100 pieces of cannoll, 12 mortars, all their ammunition, provifions, tents, baggage, and treafure, and about 8000 men upon the place of battle, befides what were drowned in paffing the river, which could never be known. After which victory, General Dunewalt, September 30th, found Effeck totally deferted by the Turks, and took poffeffion of it.

MOHER, in Jengal, a gold coin, worth about 33 fhillings.

MOHERIR, a writer of accounts.
MOINEAU, a flat baftion raifed before a curtin when it is ton long, and the baftions of the angles too remote to be able to defend one another. Sometimes the moineau is joined to the curtin, and fometimes it is divided from it by a moat. Here mufquetry are placed to fire each way.
MOLE (See TALpa, Encycl.), is an animal exceedingly toublefome, both to gardeners and farmers; and there are perfons who contrive to make a livelihood by the trade of molecatching. Thefe men, it is well known, are generally quacks and cheats; and the fecrets which Suppl. Vol. II. Part I.
very little avail. Even poifon feldom produces any confiderable effect; becaufe the mole, while it does not drink, lives only on roots and worms. Under the word MOLE (Encycl.), fome directions will be found for clearing fields of this defrnctive animal; but the fullo wing are perhaps preferable, as they feem to have been the refult of much experience:

Inmediately at day-break, it will be neceffary to make a tour round the garden or nieadow, from which it is wifhed to extirpate the moko ; for at that time they will he all found at work, as may be feen by the hills newly thrown up. It the perfoni is thien clofe to the hill, he muft procesd as the gardeners do, and turn up with a ftroke of the fpade the hill together with the digger. The paffage is then cut through before the a nimal is aware of the attack: and therefore it las not power to efcape. If the nole-hill be fre?, even though the animal may not be throwing up carth, the perfon ought not to lofe his time iu waitini, but fhould immediatcly proceed to the operation above-mentioned.

If jou find a frefh hill ftanding by itfelf, which feems to fhew by its fituation that it has no communication with any other, which is always the cafe when the mole has worked from the furface downwards in cndeavouring to procure a more convenient habitation, after the hill has been turned up with the fpade, a bucket of water flould be poured over the inouth of the paffage. By thefe means the animal, which is at no great difo tance, will be obliged to come forth, and may be cafily caught with the hand.

You may difcover alro whether a hill has any communication with another, if you apply your ear to it, and then cough or make a loud noife. If it has no communication with the neighbouing hills, you will hear the terrified animal make a noife by its motion. It will then be impoffible for it to efcape; and you may either pour water into the hole, or turn up the hill with a spade, until the mole is found; for, in general, it never goes decper into the earth than from fifteen to eighteen inches.

When any of the beds in a garden have been newiy watered, the mole, attracted by the cooluefs and moithure, readily repairs thither, and takes up its refidence in them, making a paffage at the depih of fcarcely an inch below the furface. In that cafe it may eafily be caught. When you fee it at work, you need only tread behind the animal with jour feet on the paflage to prevent its retreat, and then turn up the hill with a fpade; by which means you will be fure to catch it.
When you dig after it with a fpade, the animal forces its way downwards into the earth in a perpendicular direction, in order that it may the better efcape the threatened danger. In that cafe it will not be neeceffary to dig long, but to pour water over the place, which will foon make the animal return upwards.

People, in general, are not aware of the great mifo chief occationed in fields and gardens by thefe animals. We are, however, informed by Bufion, that in the year 1740 he planted fifteen or fixteen acres of land with acorns, and that the greater part of thein were in a little time carried away by the moles to their fubterranean retreats. In many of thefe there were found half a bufhel, and in others a bufhel. Buffon, after this circumftance, caufed a great number of iron traps to be L.
conftructed

Whmente, conftueted; by which, in lefs than three weeks, he Nongearts. eaught 1300. To this inflance of the devaftation nc-
cafoned by thefe animals, we may add the following: In the year 1742 they were fo numerous in fome parts of Holland, that one farmer alone caught between five and fix thoufand of them. The deftuction occafioned by thefe aninals is, however, no new phenomenon. We are informed by hiltory, that the inhabitants of the inland of Tenedos, the 'Trojans, and the Æolians, were infefted by them in the earlieft ages. For this reafon a temple was erected to Apollo Smyntlius, the deftroy. er of moles. See Economifche Hefte. Vol. VII. Part 5. and Vol 1X. Part 4. ; or Pbil. Magazine, \(\mathrm{N}^{\circ} 5\).

MOMENTS, in the new doctrine of infmites, denote the indefinitely fnuall parts of quantity; or they are the fame with uhat are otherwife called infinitefimals and differenccs, or increments and decrements ; being the momentary increments or decrements of quantity confidered as in a continual flux.

Moments are the generative principles of magnitude; they have no determined magnitude of their own, but are only inceptive of magnitude.

Hence, as it is the fame thing if, inttead of thefe moments, the velocities of their increafes and decreafes be made ufe of, or the finite quantities that are proporlional to fuch velocities; the method of proceeding which confiders the motions, changes, or fluxions of quantities, is denominated by Sir Iface Newton, the method of fuxions.

Leibnitz, and mof foreigners; confidering thefe infinitely fmall parts, or infinitefinals, as the differences of two quantities, and thence endeavouring to find the differences of quantities, i.e. fome moments, or quanrities indefinitely imall, which taken an infinite number of times fhall equal given quantities, call thefe moments differences; and the method of procedure, the differential calculus.

MONGEARTS, one of the tribes of wandering Arabs which inlabit the Sahara, or Great Defert of Africa. Their time is wholly occupied by tending their cattle; and becaufe they are little feilled in the ufe of arms, Mongeart is a term of contempt among the people by whom thicy are furrounded. Their country, with its produce, will be deferibed under the title Sahara in this Supplement; it is the bufinefs of this article merely to exhibit tle manners of the people.

They are all Mahometans, and offer up prayers three times a-day, fometi:nes oftener; but having no mofques, thefe prayers are never pronounced in public, except when the horde is vifited by a prieft, who feldom comes but mpon account of the childrens education. 'Then all the A rabs affemble at the hour of prayer, place themfelves in a line, turn to the eaft, and, wanting water in the defert, rub their face and arms with faud; while the prieft recites alond the general prayer. It is the fame as that which is rehearfed by the public crier in the mofques in civilized countries.
'The pricfts are employed in travelling about the country to initruct the children. There is nothing like force in their education. 'The little boys meet in the morning of their own accord, at the place of inttruction, which is to them a place of recreation. They go there with a fma!l board infcribed with the Arabic charactere, and a few maxims of the Koran. The oldeft, and the beft informed, receive their leffons dire气ly from
the priefts, and afterwards communicate them to their Monge, fellows. They are never corrected; becaufe it would be a crime to, beat a child, who, according to the received notions, has not fufficient reafon to diftinguifh good from evil. This lenity extends even to the chil. dren of Chriftians, though in a ftate of 价every. They are treated in all refpects like the children of Arabs; and the man who flould be rafh enough to ftrike one of them, would endanger his life. Very different is their treatment of Negro clildren; who may indeed join in all the amufements of the young Arabs, and even attend the public fchools; but if they be guilty of a fault, they are feverely punifhed.

When the child of a Mongeart becomes tiled of the places of public inttruction, he quits them at pleafure, and, without feeling couftraint, or hearing reproach, goes and employs himfelf in tending his father's flocks : and accordingly there are very few among them who cen read. Thofe who perfevere in the ftudy of the Koran are made priefts, after having palt an examination before the learned elders, and enjoy the greateft public confideration. 'They have no need of cattle; for thofe of the nation being theirs, they find their fubfiftence every where.

It is generally at feven or eight ycars of age that chil. dren undergo the painful operation of circumcifion. Their head is alfo fhaved, nothing being left but four locks of hair ; one of which is cut off in a meeting of the family, at each remarkable action performed by the child. If, at the age of 12 or 12 , he kill a wiid boar, or other beaft of prey, that thould fall upon his flock, he lofes one of his locks. If, in the paffage of a river, a camel be carried away by the fiream, and he fave it by fwimming to its affitance, another is cut off. If he kill a lion, a tiger, or a warrior of an hottile nation, in a furprife or an attack, he is confidered as a man, and his liead is entirely thaved.

Different from the other Arabs their neighbours, and indeed from the Mahometans in general, the Mongearts trouble no man on account of his religion. The only one which they do not tole ate is the Jewifh; and were a Jew to enter their territory, and have the milfortune to be taken, he would ceitainly be burnt alive.

According to M. Saugnier, the women are much more refpected among the Mongearts than among the neighbouring nations; but the evidences which he gives of that refoect are very extraordinary.

When a Mongeart is defirous of undertaking the care of a family, he pitches upon the gill that pleafes lim the moft, and afks her of her father without further formality; nor can the latter refuife her, unlefs the man who pretends to her hand have doue fomething contrary to the laws of the nation. 'I'ise girl is condincted by her parents to the tent of her future hut. band, where there is always an abundant repart prepared for the ceremony. Prefents are made to the father; but if the fon-in law be pour, his wife's family affit him, and furnifh him with the medns of increafing lis flucks; if, on the contrary, he be rich, and the father poor, he fupports the whole family in his own tent. The employment of the wife, thus married, is to prepare the food; to fpin the goats and camels hair, of which the tents are made; to milk the cattle; to pick up the neceffary fupply of wood for the night; and when the hour of repalt is come, to wait upon her hufand. She

\section*{\(\mathrm{M} \quad \mathrm{O} \quad \mathrm{N}\)} then eats by herfelf what has been left by him and his male flaves. She is, indeed, in no great danger of having a rival brought into the family ; for though polygamy be allowed by his religion, the poverty of the Mongeart generally prevents him from taking a pluality of wives. She is, however, liable to be divorced at will when the does not bear boys; but if the have the good forture to have one or nore male childien, her hufband's regard for her is inconceivable. She has no longer a divorce ro fcar, has an abfolute authority in the tent, and paffes her whole time in converfation, fleep, or dancing, as the thinks fit. The captive negreffes do all her work, and are no longer affifted in their labour by the Arab's wife, who treats them, on the contrary, with the greateft harfnefs and arrogance.

When a woman is not agreeable to her huband, or when he is difagreeable to her, they have it in their power to part. The formality in this cafe conf:fts in the wife's retiring to her parents. If the hußband be attached to her, he goes thither in queft of her ; but if the perfift in refufing to return, the is free, and at liberty to marry another. If, however, fhe have had a child, efpecially a boy, the has not the fame privilege; in that cafe, if her retreat fhould laft more than eight days, it might be purnifhed with death.

When a man beats his wife, it is a fure fign that he is fincerely attached to her, and that he does not mean to part with her; if he content himfelf with reproaches, the wife thinks herfelf defpifed, and infallibly retires to her parents. Hence it is, that in the moft trifling difputes the women are cruelly beaten: they prefer it to the complaints that the huband might make to their parents; this proof being the molt certain one of a man's fondnels for his wife. When a cirl marries, the makes up her mind to fuch treat ment, deeming it much more fupportable than the humiliations fhe would otherwife experience from her family, in confequence of her hufband's complaints.

The conjugal fidelity of the Morgeart women is incorruptible. Differing in their upinions from many other Mahometans, they believe themfelves inmortal like the men; but they do not flatter themfelves with the poffinility of happinefs in the other world, mulefs they fhall have been faithful to their hubands in this. Women; who have been falfe to their hufband's bel, will be cloomed, they think, to eternal flavery to the more virtuous part of their \(\int \in x\), without ever partaking, in the fmalleft degree, of their blifs.

Mongeart women often vilit one another; and on thefe occafions, the honour confifts in letting the female who comes to fee her friend or relation do all the work of the tent. The vifitor affumes the management of every thing, creffes the vietuals, churns the butter, and keeps lierfelf continually employed; while her friend entertains her with an account of the different affairs of the family or nation. The heartinefs of the welcome is meafured by the extent of the wonk fubmitted to the gueit, who generally prepares double the ufual quantity of food; fo that the Arab is obliged to invite his neighbours to partake of the repalt. The flaves are always pleafed with thefe entertainments, a larger por. tion then coming to their lot. It is the bufants of the vifitor to do the honours ; nor will fhe fuffer any body slmot her to remain diffatisfied.

The laws of hofpitality are obferved among the Mon-
gearts as among all the wandering Arabs. Indeed they Mongeates are carried to fuch a length, that vere a man to enter the tent of him whom he had wounded, or even killed, he would there nieet with a facred and inviolable afylum, although furrounded by thofe who mult naturally defire his ruin. The tent of the chief is always that to which ftrangers, upon their arrival in the horde, are directed. But the chief could not entertain, at his ow.1n expence, all the ftrangers that happen to pafs; and therefore cvery tent in the horde is obliged to furnifh him with two pounds of ground barley fer week, to enable him to maintain the ancient holpitality.

The chiefs of hordes are always the eldeft of their families. 'The difference of wealth is nut confidered: the chief often having feveral individuals at his houfe richer than himfelf, who neverthelefs obey him in every particular. He is, propesly fpeaking, their king: examines their difference with the old men, and judges without appeal. As to himfelf, he camot be tried but by the chiefs of fevesal hordes affembled. It is his bulinefs to determine the fpots where the tents are to be pitched, the moment of departure, and the place where the caravan is to flop. If the palturage do not fuffice for the herds of all the horde, it divides, and the chief affigns the ground for the different encampments. They are very often compofed of ro more than feven or eiglit tents, according to the quality of the ground they mect with. The tent of the chicf is always the largest and moft lofty, and is placed in the centre of the divitions. When it is determined upon to quit an encampment, which neverhappens till the pafture is exhaufted, the chief fets off to choffe another fpot. In thefe removals the woinen alone do all the work. Jarly in the morning they fold up the tent, and load cvery thing mpon the camcls backo; they then move nowly on, that the cattle may have time to feed upon the way.

Great refpect is paid by the Mongearts to all ols men, who enjoy the fame prerogatives as the prielts, and fuch \(A\) rabs as have vilited the tomb of Mahomet at Mecca. 'rogether with the chicf they are the judges of the horde, and take cognizance of all uffences. the pain of death being the only pusifhment which they cannot decree. An afferibly of feveral chiefs is the ouly tribunal which can inflict capital punifhment ; but as the accufed has generally a number of friends, it fel dom happens that he is capitally convisted.

A war between two Mongeart tribes fellom happens, and is never bloody ; but the different families deltroy one ancther faft enough in their inteltine broils. 'Ihey are all thieves; and incleed theft is a crime only in the day time, being authonifed by law during the night, in order to compel them to take care of their cattle. Could they find redrefs when robbed by night, they would be lefs vig!lant; and thie herds and flocks would be more expofed to the wild beafts that over-run their country; but being obliged to be on their guard even againft their neareft neighbours, they are always ready to repel both the lion and the tiger. Theft, tven in the day-time, is fo far from being puniflted, unlefs de. tected at the inftant of commiffion, that when any thing is etolen unperceived, it becomes the lawful property of the thief. In vain would the rightful owner recognize it in his neighbour's tent ; he cannot reciaian it; it ceafes to be his from the moment he has been negligent in its care. Hence arifes this peoples inclimation for rapine :

\section*{M O N}

Mongearts. they do not think they commit a crime, and ouly fol. - low, in this regard, a cuffom allowed by their laws.

When an \(A\) rab is going to market, or on his return from thence, if he do not take the greateft care to keep his journey a fecret, he is often attacked. Neighbouring Arabs are defirous of profiting by his induftry ; and as there are no perfons in the country appointed to apprehend robbers, the hope of bouty fuurs them on to the attack. That they may have nothing to fear, they lie in wait, when the night is coming on, for him whom they mean to pillage. Their intention is never to kill; they only endeavour to furprize, to difarm, and to make themfelves mafters of every thing that comes in their way. But it fometimes happens, that the mar they intend to plunder, being acquainted with the cuftoms of his country, keeps an attentive ear, flands on his guard, fires upor his affailants at the firtt motion he obferves, and then fights defperately with his dagger. The report of the mufket almolt always brings out the neighbouring Arabs, who, in virtue of the laws of hofpitality, take the defence of the weaker lide. They run up well armed; and then woe to the aggreffors, if they do not fave themfelves by a fpeedy flight.

The flocks and herds of the Mongearts are compofed of nothing but fheep, goats, and camels ; all adimals patient of thirlt. Horles are very farce in thefe cantons, none but the poffeffors of numerous herds being able to keep them ; becaufe, for want of water, it is neceffary to have milk in fufficient abundance to give it them to drink. Great care is taken to preferve the eamel's urine, both to mix with milk, and to wafl the different veffels in which they put their food. Deteftable as is this mixture of milk and urine, they are often reduced to the ufe of it; hunger and thirft give a relifh to every thing.

The only workmen ufeful to this nation are blackfmiths or goldimiths, as they may be called indifferently. The Mongearts not being fufficiently laborions to apply themfelves to fuch occupations, thefe workmen come from Bilidulgerid, and difperfe themfelves all over the different parts of the defert. Whetever there are rents they are fure to find work. They are fed for nothing, and receive befides the hire for their labour. They make trinkets for the women, fuch as ear-rings and bracelets, \&c. mend the broken veffels, by rivetting them, and clean the arms. They are generally paid in fkins, goats and camels hair, or oltrich teathers, according to their agreement. 'Thofe who have filver paytheem a tenth part of its weight for any thing wrought out of that metal. On their return they fell what they have earned; four or five excurfions at mo!t enabling them to live afterwards at their eafe in their own country.

The Mongearts always carry a leathern bag, fufpended from their neck, in which they put their tinder, their pipe, and their tobacco. Their daggers are elegant; the liilt is always black, and inlaid with ivory; the blade is crooked, and fharp on either fide; the fheath is of brafs.on one fide, and of filver on the other, and of very tolerable workmanRhip. They wear fabres when they can gret them, and prefer thofe of Spanifh make. Their mufkets are always highly ornamented; the ftock is very fmall, and intaid on every fide with ivory, and the barrel enboffed with brafs or filver, according to the opulence of the owner. There is a fpring to the
lock, covening the priming, to prevent the piece from Monges going off, contrary to the intention of him who carries it. The poor, who do not pofers mufkets, wear daggers, inade like the Flemifh knives, with leathern theaths. They arm themfelves alfo with a thick fick, to the end of which they fix a kind of iron wedge. This weapon is exceedingly dangerous at clole quarters. Others carry zagays, or tlender javelins. In a word, the principal riches of an Arab, and his highelt gratifications, are a handfome mufket and a good dagger. He prefers them to neatnefs of apparel; for as to drefs, it is indif. ferent to hin whether he be clothed in Guirea blues, woollen ftuffs, or goats fkins. 'I'hcir arms being their principal ornament, they take particular care to put the mufkets in leathern bags, by way of keeping them in good order, and preferving then from the ruit.

All the riches of the Mongearts confift in their herds; and accordingly they take the greateft care to precerve them. If a beaft be fick, eevery thing is done to cure it ; no care is fpared; it is even treated with more attention than a man : but when it evidently appears that there is no hope of faving its life, they kill and eat it. If it be a camel, the neighbours are called in to partake of the repalt ; if a goat, the inhabitants of the tent fuffice for its confumption. An animal that dies without fhedding blood is unclean. Its throit mult be cut; the perfon who kills it turning to the ealt, and pronouncing beforehand the firlt words of the general prayer. An animal killed by a wild boar is unclean; nor is is eaten although its blood has been fled, becaufe the wild boar is itfelf an unclean bealt. That fpecies is fo numerous in the defart, that they do more mifchief than all the other wild bealts together. The Arabs kill as many as they can; but never tafte their flefh.

Whatever loffes an Arab may meet with, he is never heard to complain; he rifes fuperior to poverty, fupports hunger, thirf, and fatigue, with patience, and liis courage is proof againft every event. God will have it fo, fays he: he employs, however, every means in his power to avert misfortune; and often expofes himfelf to the greateft dangers to procure matters of no real utility.

When a father of a family dies, all the effects in his tent are feized upon by the eldeff fon prefent at his. deceafe. Gold, filver, trinktts, every thing difappears; ard the abfent children have only an equal fare in the divifion of the cattle and the flaves. The giils are entirely excluded from all participation, and take up their relidence with their eldeft brother. If the deceafed leave children in helplefs infancy, the mother takes. them with her to her fifler's, if the have a filter married ; if not, to her own maternal roof. The dead man's pof:effions, however, are not lo?; the chief of the horde takes care of them, and delizers them in equal portions to the heirs, as foon as they are old enough to manage their own property. If an Arab die without male children, his wife returns to her relations, and his brother inhe:its his effects.

The Mongearts have a rooted abhorrence of the Sp aniards, and never fail to maffacre every madn of that nation who is fo unfortunate as to be fhipwrecked on thcir coalts, while they referve the women for fale at Morocco. The reafon of this hatred is, that the inhabitants of the Canaries make frequent defcents on the Mongeart coafts, and carry off men, women, cattle, and
nier. every thing that they meet with; and thefe people, being ignorant of the fate of their countrymen, retaliate by death on all Spaniards that fall into their hands, whillt they treat the Britifh and French as well as they can.
MONNIER (Peter Charles Le), was born at Paris on the 20th of Navember 1715 The profeffion of his father, or the rank which lie held in fociety, we have not learned; and we are equally ignorant of the mode in which he educated his fon. All that we know is, that young Munnier, from his earlieft years, devoted himfelf to the ftudy of altronomy; and that, when only fixteen years of age, he made his firit oblervation, viz. of the oppofition of Saturn. At the age of twenty he was nominated a member of the Rayal Academy of Sciences at Paris. In the year 1735 he accompanied Maupertuis in the celebratcd expedicion to Lapland, to meafure a degree of latitude. In 1748 he went to Scotland wi:h Lord Macelesfield, to obferve the annu. lar eclipfe of the fun, which was moft vifible in that countiy; and he was the firt aftronomer who had the pleafure to meafure the diameter of the moon on the dikk of the furn.
L.ouis XV. it is well known, was extrenely fond of aftronomy, and greatly honoured its profeflors: he lo. ved and etleemed Le Monnier. I have feen the king himielf (fays Lalande) come out of his cabinet, and look around for Le Monnier ; and when his younger brother was prefented to him on his appointment to the office of firlt phyfician, his Majelty wats pleafect to wifh him the merit and reputation of his brother the aftronomer. All the remarkable celeftial phenomena were always obferved by the king, in coinpany with Le Monnier. Thus he obfenved with him, at his chatean of St Hubert, the two celebrated tranfits of Venus thro' the difk of the fun in the years 1761 and 1769 ; as ap. pears fron the Mermoirs of the Royal Paritian Academy of S'ciences. It well deferves to be here recorded in what inanner the king behaved during thefe important obfervations, and how little he difturbed his attronomers (the celebrated La Condamine being likewife permitted to obferve the tranlit in his prefence) in this occupation; the proper time for which, if permitted to pafs by, could not be recalled. Le Monnier relates in his Differtation, that "his Majelty perceiving that we judged the laft contacts to be of the greatelt importance, a profound filence at that moment reigned around us." At the tranfit of Venus in 1760 , the king allowed the Marquis de Chabert, an intelligent and expert naval officer, wher was juft returned from a literany voy. age to the Levant, to affift at the obfervation. In a court like that of Louis XV. fo ferupuloufly obfervanc of etiquette, thefe will be allowed to have been moft dittinguifhed marks of honour, and of royal favour and condelicention.
In the year 1750, Le Monnier was ordered to draw a mieridian at the royal Chateau of Bellevue, where the king frequently made obfervations. The monarch on this occation rewarded him with a prefent of 15,000 lives; but Le Monnier applied this fum of money likewife in a manner that redounded to the honour of his munificent fovereign and of his country, by procuring new and accurate irffruments, with which he afterwards made his beft and moft remarkable obfervations. In 1742, the king gave him in Paris Reu dela

Poffe, a beautiful free dwelling, where, till the break. Monnier. ing out of the revolution, he refided, and purfued his attronomical labours, and where his inftruments in part yet remain. Some of them the prefent French government has, at the inftance of Lalande, purchafed for the National Obfervatory. In 1751, the king prefented him with a block of marble, eight fret in height, fix ftet in breadth, and fifteen inches in thicknefs, to be ufed for fixing his mural quadrant of five feet. This marble wail, together with the inftruments appended to it, turns on a large brafs ball and focket, by which the quadrant may be directed from fouth to north; thus ferving tu rectify the lavge mural gua Irant of eight feet, whicl is immoveably made fait ti) a wall towards the fonith.

With thefe quadrants Le Monnier obferved, for the long period of forty years, the mionn with univearied perfeverance at all hours of the night. It is requifite, to be a diligent atronomer, to be able to conceive to what numberlef's inconveniences the philofopler is ex. pofed luring an uninterrupted feries of lunar obferva. tions. As the moon during a revolution may pais through the ineridian at all hours of the day or nimght : the altronomer who, day after day, proferutes fiuch obfervations, muft be prepared at ail, even the moft in. converient, hours, and facrifice to them his tleep and all his enjay nents. How fectuded from all the pleafures of focial intercourfe, and how fatiguing fuch a mode of life is, thofe altronomers, indeed, know not who then ouly fet their pendulum clocks in mation, when fome of the eclipfes of the lun, moon, or of the fatellites of Jupiter, are to he viewed. At this time, and in the pritent tlate of the fcience, thele are juft the moft infignificant obfervations; and an able aftronomer, well fupplied with accurate inftruments, nayy cvery day, if he take into his view the whole of his profeffion, make more important and more neceffary obfervations.

Le Moninier was Latande's preceptor, and worthy of fuch a fcholar; and he promoted his Audies by his advice, and by every other meeans in his power. Lee Monnier's penetrating nind, indeed, prefaged in young. Lalande, then only fixteen years old, what in the foquel lias been fo fplendidly confirmed. In his twentieth year, he became, on the recommendation of his preceptor, a member of the Royal Acaderny: and in 1752 he was propofed by him as the fiteft perfon to be fent toBerlin, to make with La Caille's, who had been fent to the Cape of Gond Hope, correfpondent obfervations, for the purpufe of determining the parallaxes of the moon, then but inpelfectly known. Le Monnier lent his pupil for this expedition his mural quadrant of five fect. His zeal for aftronomy knew no bounds. For this reafon Lalande, in his Notice des Travaux du C. Le Monnier, fays of himfelf: "Ye fuis moi-meme le principal refultat de fon aele pour l'aflironomic."

Le Monnier was naturally of a very irritable temper: as ardently as he loved his friends, as eafily could he be offended; and his hatred was then implacable. Lalande, as he himfelf exprefles it, "had the misfortune to incur the difpleafure of his beloved preceptor; and he never after could regain his favour. But L.alande's gratitude and refpect for him always continned unduninifhed, and were on every occafion with unremitung conttancy publicly declared : patiently he endured from him undeferved ill treatment; fo much did he love and.

Dinnicr. effeem his inftructor and mafter to the day of his death. "I have not ceafed to exclain (writee Lalande), as 1) iogenes exclaimed to his maffer Artifitheres, You cannot find a fick ftrong enough to drive me away from you!"

What a noble trait in the character of Lalande, who in 1797 wrote likewife an eulogium on Te Monnier in the flyle of a grateful pupil, penctrated with fentiments of profound veneration and efteen for his beloved ma. fler ; but Le Monnier would not tead it. This is not the place to give a circumflantial account of this intricate quarrel; we fall only further remark, that La lande vas the warm friend and admirer of the no lefs eminent aftronomer La Caille, whom Le Monnier mortally hated. An intimate friendfhip likewife fubfitted between Le Monnier and D'Alembert; but Lalande had no friendly intercourfe with the latter.

Among the fcholars of Le Monnier may likewife be reckened Henwart, the celebrated geometrician and profeffor of mathematics at Utrecht; who, in aletter to Von Zach, aftronomer to the Duke of Saxe Gotha, dated the 26th of May :797, fays, "Le Monnier is a penetrating and philofophical aftronomer : I learned inuch from lim in Paris; though I lodged with the late De l'Ine, where I frequently made obfervations in company with Meffier. Le Monnier was the friend of D'Alembert; and confequently an oppofer of Lalande."

This great man, who had, for fome yearz, ceafed to exitt either for the fcience of aftronomy, or for the comfort of his fr ends, died at Lizeaux, in the province of Normandy, in 1799, aged 84 years. He left behind him fome valuable manufcripts, and a number of good obfervations; with refpeet to which he liad always been very whinifical, and of which in his latter ycars he neser would publifi any thing. He had by him a feries of hinar obfervations, and a multitude of olffervations of the ftars, for a catalogne of the flars, which he had anrounced fo early as the year 1741; among which was twice to be found the new planet Uranus: (Sce LaLande's Afroromie, Tables, p. 188 , (A). The inore he - was requefted to communicate his obfervations, the more obitinate he becarne; he even threatened to deAroy them. At the breaking out of the revolution, Lalande was greatly alarmed for the fafety of thefe pa. pers; he wified to preferve them from deftruction, and made an attempt to get them into lis poffeffion : but all his endeavours were in vain. He was only able to learn, that Le Monnicr had hidden them under the roof of his houfe. Le Monnier having been firft feized with a fit of the apoplexy fo early as the 10 th of November 1;9r, Lalande apprehended, left, if no one except limfelf fould know where he had hidden his papers, the infirm old man might perhaps have hin. felf thrgot it. He hopes, however, that La Grange, who married his fecond danghter, toay have fome informa-
tion concerning them. Le Monnier left behind him no Mono fon.

MONOMIAL, in algebra, is a fimple or fingle no. mial, confifting of only one term; as \(a\) or \(a x\), or \(a^{2}\) \(b x^{3}\), \&c.

MONOTRIGLYPH, a term in architecture, denoting the fpace of one criglyph between two pitatters, or two columins.
MONSEI.EIINES, are a people which inhabit that part of Miledulgerid (fee Encycl.) that borders on the teritorics of the Einperor of Morocco. They are a mixed race, being defcended from the ancient \(A\) rabs and fugitive Moors; and they occupy a fpace of land, of which the limits are indicated by lofty columns placed at intervals towards the defart. Their territory extend's from about 30 leagnes beyond Cape Non, to the diftance of 20 leagues fiom St Croix or Agrder. Though of different qualities, it is, for the moft part, very fertile, and produces the neceffaries of life with little cultivation. The plains are watered by an infinite number of \(\AA\) ream3, and abound with palm, date, fig, and almon trees. The gardens produce excellent grapes, which are dried by the Arabs, and converted into brandy by the Jews. Great quantities of oil, wax, and tobacco, appear in the public narkets.

More induftrious and more laborious than their neighbours, the Monfelemine nation cultivates the earth. The chiefs of families choofe the ground moft fit for cultivation. Its furface is turned nightly over with a kind of hoe, and then the feed is fown upon it : the field is furrounded with bufhes, to mark the fpot, and to preferve it from the cattle of the wandering A rabs. When the crop is ripe, which is generally at the end of Auguft, three months after the fowing of the feed, it is cut about fix inches from the ear, and formed into little buncles: duing which time every one labours without intermiffion from morning to night. The corn is brought before the tent, thrafhed, winnowed, and placed in the inagazines. When the harveft is over, they fet fire to the long flubble, and abandon the field for two or thrce years. Their magazines are large holes in the earth, formed like the frultum of a cone, the in fides of which are hardenes by burnirg wood in then, before the half winnowed corn be depofited. When filled with corn, they arc covered with planks placed clofe to each other ; over which a layer of earth is laid level with the foil, to prevent it from being difcovered by enemies. In thefe matrazines every one fhares in propotion to the number of men he employed in the common labour.

The inhabitants of the plaius remain by the cultiva. ted fields in feed uime, and return at the time of harveft. During the intervals they wander in all directions with their cattle, taking only neceflaries along with them, and having recourfe to the mayazines when they re-
(A) Such is the Trench and German account of his difcovery of this planet; but our readers have ieen very inattentive, if they have not perceived, in various articles of this Work, complete proofs of the plagiarifm of our neighbou:s on the Continent, from the celebrated phiiwfophers and divines of England. Ao it is extremely probabbe that, half a century hence, a clam nay be put in for Le Monnier's difcovery of the Georgiunn Silus (Uranus), fimilar to that which in 1757 the editor of Abbé St Real's works put in for that Ablé being the zuthor of Lellie's Short Method with the Deifls (fee Leslie in this Sufpl.), we think it onr duty to deelare, that in 1800 there was no evidence whatever on which to found that claim, and that the difcovery was then univerfa'ly allowed to have been made by Herfchel.
ele. quire a fupply. The more opulent people, and the artizans who are engaged in fedentary occupations, dwell in towns, which are all fituated upon the declivity of hills. Their houfes are built of fone and earth, ac cording to the Moorifh conftruction, low and covered with floping terraces; yet they are fo much injured by the heavy rains which prevail for three months of the year, as to be rendered uninhabitable in 15 or 20 years. Thofe who refide in towns are generally weavers, Moemakers, goldfmiths, potters, \&c. and have no cattle ; but the more opulent perfons have flocks and herds of cows, horfes, camels, fheep, goats, befides poultry, which are kept by their flaves at a diffance from the towns. In the towns they take two meals a day; one at ten o'clock, and the other at the fetting of the fun, though the inhabitants of the country only eat in the evening. In the towns they fleep in mats npon the floors of their apartments, and make ufe of linen; but the inhabitants of the country feep upon terraces in the open air. The patloral families of the country practife hofpitality like thofe of the defart, and make the tra. veller pay nothing for his entertainment. In the towns this practice is impoffible, as the concourfe of ftrangers, efpecially on market-days, would foon impoverifh the inhabirants. In this manner hofpitality is always extinguifhed among a trading and commercial people. It is only where the fuperfluity of commodities runs neceffarily to wafte, that it is ever practifed in a great extent; but where every commodity can find a market, every kind of property acquires a definite value, and will be preferved with the faine care as money.
By M. Saugnier the government of the Monfelemines is faid to be republican; but he writes inconfiffently about it In one place, be fays that they choofe their chiefs annually; in another, that in the time of war they choofe from the natives or fugitive Moors indifcriminately, chiefs, whofe authority lafts no longer than the campaign, during which it is abfolute; and he afterwards repreferits their government as a kind of theocracy, during war as well as peace. But we muft follow him in his detail, as it has been well arranged in a late anonymous publication, entilled, An Hiflorical Sketch of Difcoveries in Africa.
At the end of each campaign, he fays the chief gives an account of his actions to the affembled aged men, and is rewarded or punifhed according to his conduet; after which his fucceffor is appointed, and he ferves in the army he commanded as an undittinguifhed individual. The country is populous, and would be fill more fo, were it not for the continual wars which its inhabitants are obliged to fupport againft the Emperor of Morocco. The liberty they enjoy imparts energy and courage to their cha aiter, and renders their arms invincible to the Moors. They confider it as the molt invaluable poffeffion, and defeed it to the laft extremity. The nature of the country, furrounded on every fide by Atecp and arid mountains, coztributes to fruftrate the efforts of their enemies. The Monfelemine, richer than the fubject of Moroceo, is akways well clothed and armed. He pays no tribute, enjoys the fruit of his labour and commerce, and, as no contributions are requi. fite for the charges of the flate, whatever he acquires is his own. The fugitive Moors are never armed, except when they go to battle; but the natives go continually armed, whether they refide in the country, refort
to the matkets, attend the affemblies of the nation, or pay vilits.

As the Morfelemine territory is the retreat of the Monfeie rich Moors, who wifl to fly from the tyranny of the Emperor of Morocco, they are too well acquainted with the Moorifl cuftoms to be furprifed by that prince. No fooner does a Moorifh ariny take the field, than the inliabitants of the country cantons mount their horfes, and occupy the paffes of the mountains; while the wo men and flaves, efcorted by a fufficient number of warriors, retire to the interior parts of the country, or, if they be hard preffed, to the defart. Among the pafloral tribes there are many that addict themfelves entirely to arms, and ferve as cavalry in the time of war. During peace they efcort caravans, or exercife themfelves in military evolutions, and the management of their horfes. Being almoft always on horfeback, and wearing no boots, they have a callous lump on that part of the leg that comes in contact with the iron of the ftirrup. Their horfes, which they break in an admirable manner, are the tefl in the world: as they are treated with great care by their maflers, they know them, and are obedient to their voice, and will admit no flranger to mount them.

The Monfelemines derive their origin and name from Mofeilama, a contemporary of Maloomet; and, in their love of liberty, as well as in many of their cuftoms, refemble the Arabs of remoter times. They refpeet the prophet like other Mahometans; but neither believe that he was infallible, nor that his defcendants are all infpired by God, nor that their will flould be a law, nor that fuch faith is neeeffary in order to be a good Mahometan. Their priefts are refpected, and in old age generally become the civil judges of the nation ; but the influence of the ligh prieft is almof defpotic. Though he has no troops, he may command the nation; and war and peace depend upon his will. Though he has no property, every thing is at his difpofal: he requires nothing from any one, and yet all are inclined to give. He adminifters juftice according to the opinion of his counfel, without pretending to be infpired by the prophet.

On Friday the Monfelemines affemble in their mofques to pray: this is likewife the day of their principal market, when their merchandize is expofed to fale in the public fquares, where the old men judge without appeal, when difputes arife. Different from their neighbours of Moroceo and Sahara, the Monfelemines never attempt to make profelytes. Their Chriftian faves are treated with humanity; but they owe this to the avarice of their matters. Thefe detell ChriIttians, but they love money, and are afraid left ficknefs or death fhould deprive them of the ranfon of the flave, or of the advantage of his labour. Among the inhabitants of the defart, a Chriftian, that adoots the religion of Mahomet, is admitted as a citizen and mem. ber of the family, and is prefented with cattle to form. an eftablifhment. The Monielemires pay more atten. tion to the value of their property than the fituation of the infidel. A Chriftian who enters a mofque at Morocco is put to death, or forced to affume the turban. The Monfelemines would turn him civilly out, and content themfeles with impofing the highelt puffible fine. Among the Moors, a Chrifian difcovered in an intrigue with a woman of that nation fuffers death, or fubmits to

Monfele. converfion; but the Monfclemines prefer money to relin mines, Monicrey
gion. From them the Chriftian has nothing to fear: the woman alone is punifhed, being put into a fack, and thrown into the fea. If a Chriftian flave among the neighbouring uations defends himfelf againft his malter, he is punifted with death; but money faves him anong the Monfelemines; he would at moft receive a flight correction.
The Jews are allowed the free excreife of their religion among the Monfelemines, but are treated with the fame indignity as among other Mahometan tribes. A Jew is not permitted to carry arms; and if he fhould make ufe of them againit an Arab, he would be punifhed with death, and probobly involve his fanily in his fate. The Jews inhabic the towns only, where they follow trade and vatious arts, but are not allowed to cultivate the earth.

Polygamy is permitted, as in other Mahometan countries; but the fituation of the women is more refpectable, and they are not fo much fecluded as anong the Moors. Thicy mingle more in fociety, walk at large, and vifit their friends; neither are their apartments fo inviotable. Among the Monfelemines, that degrading pictuie of humanity is never feen which fometimes occurs in Morocco, a woman drawing the plough with an afs, a mule, or fome other beaft of burden. More happy thin the women of the Salara, and treated with greater attention by their hufbands, they are more hamane in their difpofitions. Like other Arab women, they ftain the edges of their eyelids black with henna, and paint their faces red and yellow. Their children are brought up with gieat care, and are not obliged to exhibit proofs of their courage before they can be confidered as men, as is the cultum in the defart. Avarice is the principal defect in the character of the Monfelemines. They hoard their money with the utmo!t care, buyy it in the earth, and in many cafes die without difcovering their fecret even to thir children. Mifers, fays M. Saugnier, fhould go to that country, where they would learn means of economy; which would fhew. them, that, in comparifon with the Monfelemines, they are themfelves perfeet prodigals.

The reedicinal applications of the Monfelemines, which differ not from thofe of the Mongearts and other inhabitants of the defart, are extremely fimple, but appear fufficiently complex from the munmery of the priefts, who are the depofitories of their medical fcience. Fleth wounds are cauterifed with a hot iron, and then covered with herbs dipped in turtles oil and tar. Iri headachs, a compres' is applied with fuch violence that the blood ftarts from the forehead. In internal difeafes, the general reasedies are regimen, reft, and a few maxims of the Koran myfteriouly applied to the affected parts.

MONTEREY BAY, in Noth California, was vifited in 1786 by La Peroufe, who places it in \(36^{\circ} .5^{8^{\prime}}\) \(43^{\prime \prime}\) N. Lat. and \(124^{\circ} 40^{\prime}\) W. Long. from Paris. It is formed by New-year Point to the north, and by that of Cyprus to the fouth; has an opening of eight leagues in this direction, and nearly fix of depth to the eaftward, where the land is fandy and low. 'The fea breaks there as far as the foot of the fandy downs with which
the coaft is furrounded, with a roaring which may be Monic heard more than a league off. 'The lands north and frouth of this bay are high, and covered with trees. Thofe fhips which are defirous of touching there ought to follow the fouth coalt, and after having doubled the Point of Pines, which ftretches to the northward, they get fight of the prefidency, and may come to an anchor in ten fathoms within it, and a little within the land of this point, which thetters from the winds from the offing. 'ithe Spanifh hlips, which propofe to make a long itay at Monterey, are accuftomed to bring up within one or two cable's dengths of the land, in fix fathoms, and make falt to an anchor, which they bury in the fand of the beacll ; they have then nothing to fear from the foutherly winds, which are iometimes very Atrong; but, as they blow from the coaft, do not expofe them to any danger. The two French frigates, which our author commanded, found bottom over the whole bay, and auchored four leagues from the land, in 60 fathoms, foft muddy ground; but the \(=\) is a very heavy fea, and it is only an anchorage fit for a few hours, in waiting for day, or the clearing up of the fog. At full and change of the moon it is high water at half paft one oclock : the tide rifes feven feet; and as this bay is very open, the current in it is nearly imperceptiole. It abounds with whales; a genus of fifhes, of which our Scientific voyagers knew fo hittle, that they were furprifed at their 1 pouting water!

The coalts of Monterey Bey are almoft continually enveloped in fogs, which caufe great difficulty in the approach to them. But, for this circumitance, there would be few more eafy to land upon; there is not any rock concealed under water that extends a cable's length from the thore; and if the fog be too thick, there is the refource of comiug to an anchor, and there waiting for a clear, which will enable you to gret a good fightit of the Spanifh fettlement, fituated in the angle formed by the fouth and eaft coatt. The fea was covered with pelicans. Thefe birds, it feems, never go farther than five or fix leagues from the land; and navigators, who thall hereafter meet with them during a fog, may relt afiured that they are wifhin that dillance of it.

A lieutenaut-colonel, whofe relidence is at Monterey, is governor of the Califurnias: the extent of his government is more than 80 leagues in circumference, but his real fubjects confilt only of 282 cavalry, whofe duty it is to garrifon five fmall forts, and to furnifh detachments of four or tive men to each of the 25 miffions, or patifhes, eltablifhed in old and new California. So fmall are the means which are adequate to the reftraining about 50,000 wandering Indrans in this valt part of America, anong whom, wearly 10,000 have embraced Chriltianity. i hele Indians are, in general, fmall and weak (A), and difcover none of that love of liberty and independence which characterifes the northern nations, of whofe arts and induftry they are alfo dellitute. Their colour vely nearly approaches that of the negroes whote hair is not woolly; the hair of thefe people is ftrong, and of great leugth ; they cut in four or five inches from the roots. Several among them have a beard; others, according to the miffionary fathers, have never had auy ; and this is a queftion which is even undecided
(A) The chief furgeon of the expedition fays they are firong, but ftupid.
eared decided in the country. The governor, who had travelled a great way into the interior of thefe lands, and wh had paffed 15 years of his life among the favages, affired our author, that thofe who had no beards had plucked them up with bivalve fhells, that ferved them as pincers : the prefident of the miffions, who had refided an equal length of time in California, maintained the contrary ; -it was dificult, therefore, for travellers to decide between them." The difficulty, furely, was not great. By their own account, the governor had travelled much farther into the country than the iniffonary; and his report being confirmed by the evidence of their own fenfes, was intitled to unlimited cre. dit.

Thefe Indians are extremely fikiful in crawing the bow; they killed, in the prefence of the French, the fmalleft birds: it is true, they difolay an inexpreffible patience in approaching them ; they conceal themfelves, and, as it were, glide along near to the game, feldom thooting till within 15 paces. Their induftry in hunting the larger animals is fill more admirable. Peroufe faw an Indian, with a flag's head fixed noon his own, walk on all. fours, as if he were browfing the grafs; and he played this pantomime to fuch perfection, that all the French hunters would have fired at him at \(3 \bigcirc\) paces, had they not been prevented. In this manner they approach herds of ftags within a very finall difance, and kill them with a flight of arrows.

Before the Spanifh fettlements, the Indians of California cultivated nothing but maize, and almoft entirely lived by tifhing and hunting. There is not any country in the world which more abounds in fift and game of every defcription : hares, rabbits, and flags are very commont there; feals and otters are alfo found there in prodigious number3; but to the northward, and during the winter, they kill a very great number of bears, foxes, wolves, and wild cats. The thickets and plains abound with imall grey tufted partridges, which, like thofe in Eurcpe, live in fociety, but in large companies of three or four lundred; they are fat, and extremely well flavoured. The thees ferve as labitations to the mof delightful birds; and the ornitholugits of the voyage fluffied a great variety of fparrows, titmice, fpeckled wood-peckers, and tropic birds. Among the birds of prey are found the white-headed eagle, the great and imall falcon, the gofs hawk, the fparrow hawk, the black vulture, the large owl, and the raven. On the ponds and fea-fhore are feen the wild duck, the grey and white pelican with yellow tufts, different fpecies of gulls, cormorants, curlews, ring-plovers, fmall fea water hens, and herons; together with the bee-eater, which, according to moft ornithologits, is peculiar to the old continent.
The country about Monterey Bay is inexpreffibly fertile. The crops of maize, barley, corn, and peafe, cannot be equalled but by thofe of Chili; our European cultivators can have no conception of a fimilar fertility; the medinm produce of corn is from feventy to eighty for one; the extremes fixty and a hundred. Fiuit trees are ftill very rare there, but the climate is extremely fuitable to them: it differs a little from that of the fouthern French provinces. The foreft trees are, the flone-pine, cyprus, evergreen oak, and occidental plane tree. There is no underwood; and a verdant carpet, over which it is very agreeable to walk, covers the

273 ] M ○
ground. There are allo valt favannahs, abounding with \(\underbrace{\text { Mongearts }}\) all forts of game.

Peroufe writes with gre?t refpect of the wife and pious conduct of the Spanifh miffionaries at Monterey, who fo faithfully fulfil the purpofe of their inftitution. Totally unlike the monks at Cosception in Chili (fee that article in this Suppl.), they have left the lazy life of a cloifter, to give themfelves 1up to cares, fatigues, and folicitudes of every kind. They invited the officers of the frigates to dine with them at their monaltery, contignous to which fands the Indian village, conlinting of about 50 cabins, which ferve as dwelling. olaces to 740 perfuna of both fexes, comprifing their chidren, which compofe the miffion of Saint Challes, or of Mon. terey. Thefe cabins are the mo? milerable that are to be met with among any people; they are ronnd, fix feet in diameter, by four in height ; Come Aakcs, of the fize of an arm, fixed in the earth, and which appluach each other in an arch at the top, compofe the timber work of it; cight or ten bundles of traw, very itl arranged over thefe ftakes, defend the inhabitants, we!l or ill, from the rain and wind; and more than half of this cabin remains open when the weather is fine; their only precaution is to have each of then two or three buncleg of ftraw at hand by way of referve.

All the exhortations of the miffonaries have never been able to procurc a change of this general architecture of the two Californias. The Indians fay, that they like plenty of air; that it is convenient to fet fire to their houfes when they are devoured in them by too great a quantity of 月leas; and that they can build another in lefs than two hours. The independent Indiana, who as hunters fo frequently change their places of abode, have a flronger motive.

The monks gave the moft complete information refpecting the government of this fpecies of religious community; for no other name can be given to the legifla. tion they have eftablifhed. They are fuperiors both in fpiritual and temporal affairs : the products of the land are entirely entrufted to their adnuiniftration. There are feven hours allotted to labour in the day, two hours to prayers, and four or five on Sundays and feltivals, which are altogether dedicated to reft and divine worfhip. Corporal punifhments are inflicted on the Indians of both fexes who neglect pious exercifes ; and feveral fins, the punifhment of which in Europe is referved only to Divine Juftice, are punifhed with chains or the flocks.

The Indians, as well as the miffionaries, rife with the fun, and go to prayers and mafe, which laft an hour ; and during this time there is cooked in the mildle of the fquare, in three large kettles, barley meal, the grain of which has been roatted previous to being ground; this fpecies of boiled food, which the Ludians call atole, and of which they are very fond, is feafoned neither with falt nor butter, and to us wonld prove a very infipid mefs. Every cabin fends to take the portion for all its inhabitants in a veffel made of bark: there is not the leaft confulion or diforder ; and when the coppers are empty, they diftribute that which fticks to the bottom to the children who have beft retained their le?ons of catechifm. This meal continues three quarters of an hour, after which they all return to their labouts; fome go to plough the earth with oxen, others to dig the garden; in a word, every one is eniployed in diffeM m

Mongearts. rent domeftic occupations, and always under the luper. intendance of one or two of the religious.

The women are charged with little elfe but the care of their houftwifery, their children, and roa?ing and grinding the feveral grains: this laft operation is rety long and ! borious, becaure they have no other means of doing it but by crufhing the grain in pieces with a cylinder upon a fone. M. de Langle, being a witnefs of this operation, ade the miffonaties a prefent of his mill; and a greater fervice could not have been rendered them. as by thefe muans four women would in a day perform the work of a hundred, and time enough will remain to foin the wook of their !.eep, and to manufacture coarle ifuffs.

At noon the dinuser was annmenced by the bell; the Indians quitted their work, and fent to fetel their rations in the fame veffels as at breakfalt: but this fecond mefs was thicker than the frift; there was mixed in it corn and maize, and peafe and beans; the Indians name it pouffole. They return again to their labour from two o'clock till four or five; afterwards they attend evening prayers, which coutinue near an hour, and are followed by a new ration of atole like that at breakfalt. Thefe three diftributions are fufficient for the fubfiftence of the far greater number of Indians ; and this very economical foup might perhaps be very profitably adopted in our years of fearcity; fome feafoning would certainly be neceffary to be added to it, their whole knowledge of cookery confifting in being able to roaft the grair before it is reduced into meal. As the Indian women lave no veffels of earth or metal for this operation, they perform it in large bafkets made of bark, over a little lighted charcoal; they turn thefe veffels with fo much rapidity and addrefs, that they effect the fwelling and burting of the grain without burning the bafket, though it is made of very combuftible materials.

The corn is diftributed to them every morning ; and the fmallef difhonefty, when they give it out, is punifhed by whipping : but it is very feldom, indeed, they are expofed to it. Thefe punifhments are adjudged by Indian magiftrates, called caciques ; there are in every miffion three of them, chofen ty the people from amongft thofe whom the miffionaries lave not excluded: but thefe caciques are like the governors of a plantation, pafine beings, hlind executors of the will of their fuperiors ; and their principal functions confift in ferving as beadles in the church, and their maintaining order and an air of coniemplation. The women are never whip. ped in public, but in an inclofed and fomewhat diftant place, left perhaps their cries might infpire too lively a compaffion, which might fimulate the men to revolt ; thefe lat, on the contrary, are expofed to the view of all their fellow-citizens, that their punifment may ferve as an example. In general they afk pardon; in which cafe the executioner leffens the force of his lafhes, but the number of them is never receded from.

The rewards are particular fmall diftributions of grain, of which they make little thin eakes, baked on burning coals : and on the great feltivals the ration is in beef; many of them eat it raw, efpecially the fat, which they efteemequal to the beft bitter or cheefe. They nkin all animals with the greateft addrefs; and when they are fat, they make, like the ravens, a croaking of
parts with their eyes.
They are frequently permitted to hunt and fint on their own account ; and on t?wir return they generally make the miffonaries fume prefent in game and fifh; but they always proportion the çrantity to what is abfolutely neceffary for them, always taking care to in creafe it if they hear of any new guefts who are on a vifit to their fuperiors. The women rear fowls about their cabins, the eggs of which they give their children. Thefe fowls are the property of the Iudianz, as well as their clothes, and other little articles of houfchold furniture, and thofe neceffary for the chace. There is no inflance of their having robbed each other, though their faftenings to the doors confift only of a fimple bundle of ftraw, which they place acrofs the entrance when all the inhabitants are abfent.

The men in the miffions have facrificed much more to Chriflianity than the women ; becaufe they were accuftomed to polygamy, and were even in the cuitom of efpoufing all the lifters of a family. The women, on the other hand, have acquired the advantage of exclufively receiving the carefles of one man only. With this, however, it would appear that they are not fatisfied; for the religious have found it neceflary to confitute themfelves the guardians of female vircue. At an hour after fupper, they have the care of thutting up, under lock and key, all thofe whofe hußands are abfent, as well as the young girls above nine years of age; and during the day they are entrufted to the fuperintendance of the matrons. So many precautions are fill infufficient ; for our voyagers faw men in the focks, and women in irons, for having deceived the vigilance of there female arguffes, who had not been fufficiently fharp-fighted.

The converted Indians have preferved all the ancient ufages which their new religion does not prohibit ; the fame cabins, the fame games, the faine dreffes: that of the richeft confits of an otter's \(\mathbb{1 k i n}\) cloak, which covers their loins, and defeends below their groin ; the moft lazy lave only a fimple piece of linen cloth, with which they arc furnithed by the miffion, for the purpofe of hiding their nakednefs; and a fmall cloak of rabbit's fkin covers their fhoulders, which is faltened with a pack-thread under the chin; the head and the reft of the body is abfofutely maked; fome of them, however, have hats of Itraw, very neatly matted. The womens drefs is a cloak of deer frin, ill tamed; thofe of the miffions have a cuftom of making a finall boddice, with fleeves, of them: it is their only apparel, with a fmall apron of rufhes, and a petticoat of flag's nkin, which covers their loins, and defcends to the middle of the leg' 'I he young girls, under nine years of age, have merely a fimple girdle; and the children of the other fex are quite naked.

The independent favages are very frequently at war; but the fear of the Spaniards inakes them refpeet their miffions; and this, perhaps, is not one of the leatt caufes of the augmentation of the Chriftian villages. Their arms are the bow, and arrow pointed with a fint very fkilfully worked: thefe bows are made of wood, and ftrung with the finews of an ox. Our author was affured, that they neither eat their prifone1s, nor their enemies killed in battle; that, neverthelefs, when they
had vanquifhed, and put to death on the ficld of battle, chiefs, or very courageous men. they have eaten fome pieces of them, lefs as a fign of hatred or revenge, than as a homage which they paid to their valour, and in the full perfuation that this food would be tikely to increafe their own courage. 'Ihey fcalp the vanquifhed as in Canada, and pluck out their eyes; which they have the art of preferving free from corruption, and which they carefully keep as precious figns of their victory. Their cutiom is to burrit their dead, and to depofit their athes in morais.

MOORS, in common language, are the natives of Morocco, of whom an account is given under that title in the Encyclopedia; but there is another people, a mixed race, called alfo Moors, who lead a wandering and paftoral life in the habitable parts of the Great Defert, and in the countries adjacent to it. Of the ot igin of thefe Moorifh tribes, as diftinguifed from the inhabitants of Barbary, nothing farther feems to be known than what is related by John Leo the African; whofe account may be abridged as follows:

Before the Arabian conqueft, about the middle of the feventh century, all the inhabitants of Africa, whether they were defcended from Numidians, Ploænicians, Carthaginians, Romane, Vandals, or Goths, weie comprehended under the general name of Mauri or Moors. All thefe nations were converted to the religion of Ma. toomet, during the Arabian empire under the Kaliphs. About this time many of the Numidian tribes, who led a wandering life in the defert, and fupported themfelves upon the produce of their cattle, retired fouthward acrofs the Great Defert, to avoid the fury of the Arabians; and by one of thofe tribes, fays Leo (that of Zanhaga), were difcovered, and conquered, the Negro nations on the Niger By the Niger, is here undoubtedly meant the river of Senegal, which in the Mandingo language is called Bafing, or the Black River.

To what extent thefe people are now fpread over the African continent, it is difficult to afcertain. There is reafon to believe, that their dominion ftretches from weft to caft, in a narrow line or belt, from the mouth of the Senegal (on the northern fide of that river) to the confines of Abyffinia. Mr Park defcribes them as tefembling, in complexion, the Mulattoes of the Weft Indief, and as having cruelty and low cunning pietured in their countenances. "From the tlaring wildnefs in their eyes (fays he), a franger woold inimediately fet them down as a nation of lunatics. The treachery and malevolence of their character are maniffefted in their plundering excurfions againit the Neglo villages. Oftertimes, without the fmallef provocation, and foinetimes under the faireft profefions of friendihip, they will fud. denly feize upon the Negroes cattle, and even on the inhabitants themfelves. The Negroes very feldom retaliate. The entcrprifing boldnefs of the Moors, their knowledge of the country, and, above all, the fuperior flcetnefs of their horfes, nake them fuch formidable enemies, that the petty Negro fates, which border upon the defert, are in continual alarm while the Moorifh tribes are in the sicinity, and are too much awed to think of refiftance.
"Like the roving Arabs, the Moors frequently remove from one place to another, according to the fea. fon of the year, or the convenience of pafturace. In the m:onth of Fionuary, when the heat of the fan foorches
up every fort of vegetation in the defert, they frike their tents, and approach the Negro country to the fonth: where they refice until the rains commence, in the month of July. At this time, having purchafed corn, and other neceflaries from the Negroes, in exchange for falt, they again depart to the northward, and continue in the defert until the rains are over, and that part of the country becomes burnt up and barren.
"This wandering and refflefs way of life, while it inures them to hardihips, Arengthens, at the fame time, the bonds of their little fociety, and creates in them an averfion towalds ftrangers, which is almoft infurmountable. Cut off from all intercourfe with civilized nations, and bonfling an advantage over the Negroes, by pofiefing, though in a very limited degree, the know. ledge of letters, they arc at once the vaineft and proudeft, and perhaps the molt bigutted, ferocious, and intolerant, of all the nations on the earth; combining in their character the blind fuperltition of the Negro, with the favage cruelty and treachery of the Arab." But for them Mr Park would have accomplifted the utmoft object of his miffion, and have reached Toinhuctoo, and even Houffa, with no other danger than what arifes neceflarily from the climate, from wild beafts, and from the poor accommodation afforded in the huts of the hof. pitable Negroes. The wandering Moors, lowever, have all been taulght to regard the Chriflian name with inconceivable abhorrence ; and to confider it nearly as lavful to murder a European as it would be to kill a dog. It is, thereforc, much lefo furpifing that our traveller did not proceed farther along the banks of the Niger, than that he efcaped the fiares of to relenclefs a people.
MORIN1) A, is a plant, of which a very meagre defcription has been given in the Encyclopadia, though it is of much inportance in oricital commerce. It is cul. tivated to a great extent in the province of Maleva in the Eaft Indies. where it furnimes a valuable dye.ftuff; and is thus defcribed by William Hunter, Efq; in the fourth volume of the Afiatic Refearchics:
"It is a tree of a middling fize ; the root branchy; the trunk columuar, ercet, coveced with a feabrous bark. Branches, from the upper part of the trunk. fcattered; of the ft ucture of the trunk. Lecaves (leminal) oval, obtufe, entire (mature), oppofite, decuffated, ovate, pointed at both ends, fmooth, with very thort petioles. Stipules, lanced, very fmall, withering.' Peduncles, from the axils of the leaves, folitary, bearing an aggiegate fower. Calyx, common receptack roundifh, collecting the feffile flowers into an irregular head. Perviunth, moif entire, Icarce obfervable abure. Coral, one-petalled funnel-form. Tube, cy lindric: Border, five cle't ; the divifions lanced. Stamen: Pillamorits, five thieadform, ariling fiom the tube, and adhering to it through two thirds of their length, a little fhurter than the ube. Artherrs, linear, ercet. PiJhil. Germ, beneath, four celled, containing the rudinients of four feeds. Sly'f, thread form longer than the flamens. Sigma, \(2 w^{*}\)-cleft, thickifh. Pericarp, commen, irregular, divided on the furface into irregular angular fpaces ; compofed of berries, py:amidal, compreffer on all fictes by the adjacent onee, and concreted with them ; lopped; containiing towards the bate a fichy pulp. Sceds, in each berry fuur ; towards the point oblerg, externally convex, internatly ancular."

Morion The fpecies here deferibed is the morinda arlorea pe. dunculis folitariis of Limmæus. It grows beft in a black rich foil, free from ftones, in fituations moderately moilt, rot too high, yet fufficiently elevated to prevent the rain water from ftagnating, and where a fupply of water can be had for the dry months. As the colouring matter, for which alone it is valuable, refides chiefly in the bark of the root, the fmall twigs, which contain litthe wood, bear a higher price than the larger picces. The natives employ it in dyeing a pale red, or clay colour ; which Mr Hunter fays 13 more valuable for its durability than for its beanty. They likewife ufe it in dyeing a dark purple or chocolate colour: but for the prucels, in both cafes, we mult refer to the original memoir.
MORION, in botany, a name given by the ancients to a kind of nightfhade. See Solanum, Encycl.

Morion, in ancient mineralogy, a name given to one of the femipellucid gems, more commorly called pramnion. It is a fone appearing extenally of a fine ceep black ; but when held up againft a candle, or againlt the fun beams, it gives a very beautiful red in different degrees.

MOSHAIRA, or Mcshahereh, penfion or allowance in Bengal.
MOSS, the name given in Scotland, and we believe alfo in fome parts of England, to what is more properly called a morafs, a fen, or a bog. On the formation of thefe moffes fome conjectures have been hazarded in the Encyclopadia, where the reader will likewife find a copious account of the methor which has for many years been fuccefsfully employed to convert the Moss of Kincardine into an arable foil, or rather to remove the fubflance called mofs or peat from the rich foil which is found below it. A method, however, has been invented by Mr John Smith of Swindrig-muir, in the thire of Ayr, for actually converting the fubftance calted mofs into a vegetable mould, which has been found by experience to carry rich crops of corn, hay, potatoes, \&c. Of this gentleman's practice we have the following account in a fmall pampliket publifhed in Edinburgh, 1798, by Fairbairn and Dickfon.
" The firft thing to be done is to mark off, and cut out, proper main or matter drains, in order to carry off the fupeifluous water, taking care to preferve the greateft poffible level; which drains are fo conftructed as to divide the field into inclofures from fix to ten Scotch acres. If the mofs hangs or declines, the inclofures may be of any dimenfion whatever. The dimenlions of thefe drains when firft made are cight feet wide, by four and a half feet deep, dechining to two and a half feet at bottom, and colt at the rate of one आhilling per fall of sighteen and a half feet, running meafure. The ridges are then to be narked of regularly, fix or feven yards bread, formed with the Ipade in the manner following.
" In the centre of each ridge, a fpace of about 20 inches is allowed to remain untouched, on each fide of which a furrow is opened, and turned upon the untouched fpace, fo as completely to cover it (like what is called the feering of a gathered ridge). Thus begun, the wark is continued, by cutting with the fpade, in width about 12 inches, and turning it over to appearance as if done with a plough, until you come to the divifion furrow, which fhould be two feet wide, cut cut and thrown upon the fides of the ridges. The
depth of the divifion furrow is to be regulated by circumftances, according, as the mofs is wet or diy, but fo as to anfwer the purpofe of as it were bleeding the mofs, and conducting the water to the main drains.
" It may be here obferved, that the fuccefs of the aftercrops depends very much upon a proper formation of the ridges. They muft not be made too high in the midide, for there they will be too dry like a peat, up. on which the lime cannot act, and near the furrows they will be too wet, which is equally prejudicial ; they fhould therefore be conftrmeted with a gentle dectivity to the furrows, fo as the rain which falls \(n\) ay rather filtrate through the ridge to the furrows than run quickly off the furface.
"The next operation is to top-drefs the ridges with lime, at the rate of from four to eight chalders per acre. Five Wincliefter bufiels make a boll, and eight bolls a chalder of fhell lime, producing fixteen bolis powdered lime. The quicker the lime is put on after beirg. flacked the better.
"T'he proper feafon to prepare the mofs for a firt crep is carly the prececing fummer; in that cafe the lime, aided by the heat, the after rains, and the winter frofs, makes confiderable progrefs in the procefs of putrefaction, confequently forms a monld to rective the feed.
"Though oats have fometimes fucceeded as a firft crop, potatoes have been found greatly preferable. The method of plantirg them is fimple, and attended with little expence. 'I he mufs, prepared by ridges, and limed as before defcribed, beds for the potatoes are, in the fpring, narked off, acrofs the ridges, five or fix feet broad, with intermediate fpaces of aboust two feet, as furrows or trenches. The beds are covered over wilh a thin ftratum of dung, about eighteeen fingle-horfe carts to an acre, the cuttings of the potators are laid or placed upon the beds, about ten or twelve inches afunder, and the whole covered over with a thin ftratum of mofs from the intermediate trenches, which is followed by another covering from the trenches when the potatoe plants make their firft appearance ; the cuvering in whole four or five inches. In this flate they remain without any hoeing till the crop is taken up. The produce on Mr Smith's mofs bas never been lefs than from forty to fifty bolls of excellent potatoes, eight Winchefter bufhels to the boll, and the bufnel a hinte heaped.
"When the potatoe crop is removed, the ridges are again formed as before defcribed, and the divifion furrow cleared out. In performing this part of the work, it will naturally occur, that a great part of the manured furface will be buried in flling up the trenches between the potatoe beds: but that is not the cafe ; the workman makes two cuts with the fpade, at eighteen inches dittance, upon the fide of the trench; another, one foot from the edge of it, as deep as the trench; which, in. flead of turning over, he preffes a foot forwand into the trench, which is continued the length of it ; and when he comes to the other fide he does the fame, making both meet, and fo proceeds; fo that no part of the manured furface is chrown down, and the ridge is left in \(\mathrm{FTh}_{\text {That }}\) ? the famie form as before the hazy-beds* were made.
" When the potatoe crop is taken off, and the ridges formed as before defcribed, they remain in that thate till fpring, when oats are fown (a wet or dry feafon has kind do
from experience been found a matter of indifference), and harrowed in with a fmall harrow drawn by two men. Four men with eafe harrow at lealt one acre one rood per day, two and two by turns with the harrow, and the other two in the interim with fpades, fmooth. ing the inequalities, breaking and dividing the mould, and clearing out the divifion furrows; which latt in all operations upon mofs are effentially neceffary. The early or tot leed oats are always preferred for feed. The late or cold feed runs too much to flraw, falls down, and becomes floomy, confequently the grain is of inean quality, and unproductive in meal.
"The produce of the firft crop of oats after potatoes is feldom lefs than ten bolls per acre, the Linlithgow boll of fix Wincheiter bufhels, and confiderably more has been known; as good grain in quality, and meals as well as any in the country. It has been fold when growing, what is called upon the foot, including the Itraw, from eight to ten pounds per acre. T'o prepare for a fecond crop of oats, the ridges mult be dug acrofs, and turned over in the mariner before defcribed, and the divifion furrows cleared out as foon as convenient after the firlt crop is removed.
"Such is the effect of lime in confolidating mofs, aided by the draining, that often after the fecond, and always after the third year, it can be ploughed by hoifes within two bouts or ftitches of the divifion furrow; and alfo harrowed by horfes, and the crous taken off by catts.
"Five and often fix confecutive crops of oats are taken, without any other manure than what it received the firt year for potatoes, without any apparent figns of it being exhaufted. The produce of the firft two crops of oats has been mentioned to be ten tolls, and the third, fourth, fifth, and fixth, produce from fix to ten bolls per acre. The mofs is now turned into a feeming rich dark brown mould; and what renders it lefs productive of corn crops the fouth, fifth, and fixth years is, its naturally running into fwect and luxuriant graffes. The foft ineadow grafs, the daify, fome plaintain, but principally the white clover, are the moft prevalent grafles; or more probably it may be aicribed to thefe crops being ploughed, in place of being dug with the fpade, as the furmer years were. Along with the fifth or fixth crop of oats, rye grafs is fown, which, with the natural graffes in general, produce an abundant crop of hay.
"If the mofs in the original ftate bas been wet and fpongy, it will be found to have fubfided fome feet after the third or fourth year's operation has been performed ; but care muft always be taken to deepen, clear out, and keep clear the main drains and the divifion furrows, to prevent a fuperabundance of moifure, which would infallibly be the cafe were they neglected in confequence of the fubfidence of the mofs. Indeed mofs of all forts will fublide lefs or more, in proportion as it has been dry or wet in its original flate; at the fame time, as fated before, care muft be taken not to lay it too dry, but to keep in a proper degree of temperature between thefe two extremes."

By having recourfe to the pamphlet from which this extract has been made, the reader may fatisfy himfelf of the real advantages of this Species of agriculture. The author calculates, with much apparent fairnefs, the expence of improvement, and the value of each crop,
and concludes that no wafte can be improved with equal advantage as mofs. It mult not, however, be concealed, that we have heard practical farmers, who feemed to be acquainted with the fubject, give it as their opinion that this mode of cultivation anfwers only in moffes of no great depth; though our anthor affirms that it has with great fuccefs been practifed by Ivir Smith in moffers of the depth of 14 feet.

MOTION in fluids. When in the publication of this Supliment we had arrived at the title Fluids, we were Aruck with the importance given, in fome of the journals, to The Eixperimental Rejearches of Venturi concerning the Principle of the lateral communication of Motion in Fluids, afplized to the Explanation of various Hydraulic I'senomena. Of thefe refearches we intend. ed to lay an abridged account before our readers under the prefent title; but having examined the work with fome attention, we find in it harcly any thing of confo. quence which the mechanical philofophermay not learn from our articles Resisqanee of Fivids and River iis the Encyclopadia. 'I'hat our readers, however, may find fomething under a tithe to which we raßly referied them, we fhall, in the words of Nicholforn's Journal of Natural Philofoplyy, sco inform them what Venturi's work contains.
"This author, who is profefor of experimental philofophy at Modena, has introduced an horizontal current of water into a veltel filled with the fame fluid at re!t. This fream elltering the vefel with a certain velocity, paffes through a portion of the flaid, and is then received in an inclined channel, the bottom of which gradually rifes unitil it paffes over the border or rim of the veffel itfelf. The eftect is found to be, not only that the ftrean iffelf pafies ont of the veffel through the channel, but carrics along with it the fluid contained in the reffel; to that after a fhort time no more of the fluid remains than was origitrally below the aperture at which the Itream enters. 'I'lis fact is adopted as a principle or prinitive plienomenon by the author, under the denomination of the lateral communication of mo. tion in fluids, and to this he refers many important hy. dranlic facts. I-Ie does not undertake to give an explanation of this principle, but fhew's that the nutual attraction of the particles of water is far fioms being a fufficient caufe to account for it.

The fift phenomenon which the author propofes to explain by this citablifhed principle, is the emiffion of a fluid through different adjutages applied to the refervoir which contains it. It is known that the vein of fluid which iffues from an orifice or perforation throur! a thin plate, becomes contracted, fo as to exhibit a fec-, tion equal to about \(0,{ }^{\circ} 7\) of the orifice itfelf, fuppofet \({ }^{\prime}\) to be circular ; and that the place of the greateit contraction is ufually at the diftance of one femi diameterof the orifice itfelf. If a fmall adjutage be adapted 10 the orifice, having its internal cavity of the fame conoidal form as the fluid itfelf affects in that interval, the. expenditure is the fame as by the limple orifice. But if at the extremity of this adjutage a cylindric tube be affixed, of a greater diameter than that of the contracted vein, or a divergent conical tube, the expence of fluid increafes, and may exceed the double of that which. paffes through the aperture in the thin plate, though the adjutage poftefs an horizontal or even afeending direction.

ABntion.

By the interpofition of a fmall adjutage, adapted to the form of the contracted vein, Venturi afcertained, in the firt place, that there is an increafe of velocity in the tubes he employed, though the velocity of erniffion itfelf be lefs than that of the frearn which iffues from a hole in a thin plate. He afterwards proves, by the fact, that the irterior velocity and expenditure of fluid; which is increafed through tubes, even iu the horizontai or afcending direction, is owing to the preffure of the atmofphere. If the fmalleft liole be inade in the fide of the tube rear the place of contraction of the vein, the increafed expenditure does not take place; and when a vertical tube is inferted in fuch a hole, the lower end of which tube is immerfed in water or mercury, it is found that afpiration takes place, and the wa. ter or mercury rifes; and this afpiration in conical tubes is lefs in proportion, as the place of infertion of the upright tube is more remote from the fection where the greateft contraction would have taken place. And, laftly, the difference between the expenditure of flnid, through an orifice made in a thin plate, and that which is obferved through an additional tube, does not take place in vacuo.

The infuence of the weight of the atmoiphere on the horizontal or afcending flux being thus eftablifhed, the author confiders it as a fecondary caufe, referable to, and explicable by, his principle of the lateral com. munication of motion in fluids. In conical divergent tubes, for example, the effeet of this lateral communication is, that the central cylindrical jet, having for its bafis the fection of the contracted vein, carries with it the
-lateral fuid which would have remained ftagnant in the enlarged part of the cone. Hence a vacuum tends to be produced in this enlarged part which furrounds the central cylindric fiream; the preffure of the atmofphere becomes acive to fupply the void, and is exerted on the furface of the refervoir, fo as to increafe the velocity of the fluid at the interior extrenity of the tube.
'The author proves, that the velocity or total expenditure of fluid through an aperture of given dinenfions, may be increafed by a proper adjutage in the proportion of 24 to 10: he applies this refult to the contruction of the funnels of chimneys. He determines the lofs of emitted fluid, which may be fuftained by finuofity in pipes. He thews by experiment, that a pipe which is enlarged in any part affords a much lefs quantity of Auid than if it were throughout of a diameter equal to that of its finalleft fection. This, as he remarks, is a circumftance to which fufficient attention has not been paid in the conftruction of hydraulic machincs. It is not enough to avoid elbows and contractions; for it fometimes happens that, by an imerinediate enlargement, the whole of the advantage arifing from other judicious difpoftions of the parts of the machine is loft.
There are two caufer of the increafe of expenditure through defcending pipes. The firft is owing to the lateral communication of inotion which takes place in Cofeending pipes, in the fame manner as in thofe which poffefs an horizontal fituation; the fecond arifes from the acceleration by gravity which takes place in the fluid while it falls through the defcending tube. This fecond kind of augmentation was known to the ancients, though they polfeffed no good theory nor decilive expesiments refpecting it. The author endeavours to ella-
blifh a theory on the principle of virtual afcenfion com. Moid bined with the preffure of the atmofphere. His de. \(\quad\) r ductions are confirmed by experiment, in which he has fucceeded fo far as to feparate the two caulos of aug. mentation, and affigned to each their refpective degree of influence.

Profeflor Venturi then proceeds to different objects of erquiry, to which his principle feemed applicable, He gives the theory of the water blowing machine (fee \(W_{A T F R}\) Blowing MTachine in this Suppl.), and he determines by calculation the quantity of air which one of thefe machines can afford in a given time. He obferve3, that the natural falls of water in the mountains always produce a local wind; and he even thinks, that the falling ftreams in the internal parts of mountairs are in fome inftances the caufe of the winds which iffue fiom caves. He proves, by the facts, that it is poffible, in certain inflances, to carry off, without any machinery, the waters from a fpot of ground, though it may be fituated on a lower level than that of the channel which is to receive the water.
The whirlpools, or circular eddies of water fo frequent in rivers, are, according to the theory of our author, the effect of motion communicated from the parts of the current which are mof rapid, to thofe lateral parts which are leaft fo. In the application of this principle, he points out the ciccumftances adapted to produce fuch coddies at the furface or at the bottom of rivers. He concludes, that every movement of this kind deftroys a part of the force of the current, and that in a channel through which water conflantly flows, the height of this fluid will be greater than it would have been if the dimenfions of the channel had been uniformly reduced to the meafure of its fmalleft fection.

There is another kind of whirling motion fumewhat different in its nature from thefe lalt. It is produced in the watcr of a refervoi, when it is fuffered to flow through an horizontal orifice. The author deduces the theory of thefe vortices from the doctrine of central forces. The form of the hollow furnel, which in this cafe opens through the fluid of the refervoir, is a curve of the 6 th fpecies of the lines of the third order, enumerated by Newton. Theory and experiment both unite here in proving, that it is not only poffible, but that there really cxifts in nature a vortex, the concavity of which is convex towands the axis, and of which the revolutions of its different parts follow the ratio of the fquate of the diftance from the centue. Daniel Bernoulli was in the wrong, in his Hydrodynamics, to reproach Newton for having fuppoled a vortex to be moved according to this law.

In the lat place, the author confiders that lateral communication of motion which takes place in the air as well as in the water. This is the caule of fuch local and partial winds as fometimes blow contrary to the direction of the general wind. It is by viitue of the same principle, that the refonant vibration, excited la. terally in the extremity of an organ pipe, is communicated to the whole column of air contained in the pipe itielf.

From the fame principle, the author deduces the augmentation of force whicl: found receives in conical divergent tubes, compared with thofe of a cylindrical form. Oli this occalion, he points out the remarkable
d:fferences which arpear to take place between the refonant vibrations of air contained in a tube, and the fonorous pulfations propagared through the open atmoSphere. Sce Spathing Truapeq, Encycl.

In an appendix, Venturi relates different experiments which he has made to determine the convergence and velocity of the fluid filaments which prefs forward to iffae out of a refervoir by an orifice through a thin plate. Ife proves, by a vely clear experiment, that the contraction of the vein is made at a greater diftance from the orifice under ftrong than under weak preffures. He explains why, in a right lined orifice, the ficies of the contra?ed vein correfpond with the angles of the orifice and the angles with the fides. He examines the expenditure through a tube, the extremity of which is thruft into the refervoir itfelf, according to the method of Borda in the Memoirs of the Acacemy of Sciences for the year 1766."

For a full account of the author's experiments, and his deductions from thein, we refer the reader cither to the original work, intitled, Recherches expérimentales fur le Principe de la Communication latírale du Mouvement dans les Fhuides, apppliqué "l l'Explication de différens Pléenoniènes bydrauliques. Par le Citoyen F.B. Venturi, Profefear de Phyfique expérimentale ì Modèng, Membre die la Societé Intilicnue, छ゙c. E゙r. A Paris chez Houelet Ducros, Rue da Bacq, N 940 - Théophile Barrois, Rue Howte-feuille, N' 22. Ann. VI. 1797-or to the 2 d and 3 d vols of the valuable Journal from which this abfract is taken.

MOURZOUK, the capital of Ferman in Africa, is fituated on a fmall river, and fupplied with water from a multitude of furings and wells. Being formerly built of fone, it flill retains the appellation of a Chitlian town; and the medley which it prefents to the eye, of the valf ruins of ancient buildiugs, and the humble cottages of tarth and fand that form the dwellings of its prefent Arab inhabitants, is fugularly yrotefque and itrange. It is furroun? led by a high wait, which not only affords the means of defence, but enables the goverument to collect, at its ihree gates, a tax on all goods (provifions excepted) that are brought for the fupply of its people it caravan fets out annually from Mrfurata to this place; and hence the Ficzianers themfolves difpatch every year a caravan to Cahna and another :o Bornon. For the latitude of Mourzonk, fee Fl:L7.AN in this Suppl. Dr Broukes, in his Gazetteer, places it in \(15^{\circ} 5^{\prime} \mathrm{E}\). long.

MOWAZZEF, i: Bengal, fixed revenue.
MOZART, the celebrated German mutician, was born at Silzburg in the year 1756 . His father was alfu a naifecian of fome eminence, but not to be compared with the fon; of whom we have the following account in one of the monthly mifcellanies, taken by Mr Eufliby from fome tiographical tketehes by two eminent German profeffurs.

At the age of three ycars, young Mozart, attending to the leffons which his fifter, then feven years shd, was recciving at the harpfichord, he became captivated with harmony; and when fhe has left the inttrument, he would inftantly place himfelf at it, find the thirds, found them with the livelielt joy, and employ whole hours at the exercife. His father, urged by fuch early and Atriking indications of genius, immediately began to teach bim fome little airs; and foon perceived that his pupil
improzed cven beyord the hopes lie had formed of him. Half an hour was generally fufficient for his acquiring a ininuet or a little fong, which, when once learned, he would of himfelf perform with ta? e and expreflion.

At the age of fix years lie had made fuch a progrefs as to be able to conpore thont pieces for the harpfichord, which his fatlier was obliged to commit to paper for him. From that time nothing made any impreffion upon him but ham1ony; and infantine ainufements loft all their attractions mulefs mufic had a fhare in them. He advanced from day to day, not by ordinary and infenfible degrees, but with a rapidity which hourly excited new furprite in his parents-the happy witnefles of his progrefs.
IJis father returning home one day with a ftranger, fonnd little Mozart with a pen in his hand. "What are yon writing," faid he? "A concerto for the harpfichord," replied the child. "Let us fee it (rejoined the father); it is a marvellous concerto without donbt." He then took the paper, and faw nothing at firlt but a mafs of notes mingled with blots of ink by the mal addrefs of the young compofer, who, unfilled in the management of the pen, had dipped it too freely in the ink; and having hlotted and fineared his paper, had endeavoured to make out his ideas with his fingers ; but on a clofer examination, his father was loft in woulder ; and his eyes delighted and flowing with tears, became rivetted to the notes. "Sce (exclaimed he to the Atranger) how juf and regular it all is! but it is innpoffible to play it ; it is too difficult." "It is a conccrto (faid the child), and mult be practifed till one can play it. Hear how this part goes." He then fat down to perforin it ; bit was not able to execute the paffages with fufficieat lluency to do juftice to his own. ideas. Extraordinary as his manual facility was univerfally allowed to be for his age, it did not keep pace with the progrefs of his knowledge and invention. Such an intlance of intellectual advancement, in a child only fix years of age, is fo far out of the common road of nature, that we can only contemplate the fuct with atori:ifment, and acknowled ge, that the poffible rapidity of mental naturation is not to be calculated.
in the year 1762 , his father took him and his filter to : Tunich, where he perfurmed a concerto before the electur, which excited the admiration of the whole count; nor was he lefs applauded at Viemina, where the emperor called him the litele jorcercr.
His father gave him leffons only on the harpfichord; but he privately taught limfelf the viclin; and his command of the inltrument afforded the elder Mozart the ntmott furprife, when he one day at a concert toak a fecond violin, and acquitted himfelf with more than paffable addrefs. True genius fees no obftaciles. it will not therelore excite our wonder, if his conitant fitccefs in whatever he attempted begot an unbounded confidence in his own powers; he had even the liudalle hardihood to undertake to qualify himfelf for the firjt violin, and did not long remain fhort of the neceiflary proficiency.

He had an car focorrect, that he felt the molt mi. nute difcordancy ; and fuch a fondut fs for itudy, that it was frequently neceffary to take him by force from the infrument. 'This love of application never dim!nifhed. He every day paffed a confiderable time at his harpfichord, and geneally practiled till a late hour at

Mozart. night. Another characteriftical trait of real genius; always full of its object, and loft as it were in itfelf.

In the year 1763 he made, with his father and fifter, his firft grand mufical jomrney. He vifited Paris ; and was heard by the French court in the chapel-royal at Verfailles, where his talent on the ongan vias admired even more than on the harpfichord. At Paris the mufical travellers gave two concerts, which procured them the higheft reputation, and the diftinction of public portraits. It was here that a fet of fonatas for the harpfichord, fome of his earlieft compofitions, were engraved and publifhed.

From Paris they went to London, where they ako gave two concerts, confifting of fymphonies compofed by young Mozart, who even at that carly age fang alfo with nuch expreffion, and praetifed publicly with his fifter. Mozart played already at figlit. and in a concert, at which the king was one of his auditors, a bals being placed before him as a ground, immediately appied to it a motl beautiful melody. Thofe who are beit acquainted with the extent of fuch a tafk, will be the mott aftonifetd at fuch mature familiarity with the intricacies of the feit:re, and fuch prompt and ready in. vention in fo juvenile a mind.

From Loodon, where Mozart alfo publifhed fix fo. matas for the harpfichord, the mufical family went to Holland, thence again to France, and in 1766 returned to Salaburg. There this extraordinary youth remained more than a year in perfect repofe; devoting the whole of his time to the fudy of compofition, the princinles of which he ferutinized with the depth and penetration of coifirmed manhood. Emmanud! Bach, Haffe, and Handel, were his chief guides and models; though he by no means neglected the old Italian mafters.

In 1768 he again vifted Vienna, where Jofeph II. encraged him to fet to mufic a comic opera, entitled, La Firta Semplice, which obtained the aprprobation of Haffe and Metatafio. At the houfe of the prince of Kaunitz, it often happened that the firlt Italian air which came to hand would be given hin, that in the prefence of the company he might add to it accompaniinents for numerous inftrumenis; which be would write in the firft ltyle of excellencc, and without the leaft premeditation. "This is at once a proof with what acutenefs of obfervation he had littened to the mufic of the heft malters ; how intinate he hal already rendered himfelf with the characters, capacities, and effeess of the different inftruments; and what fkill he had acquired in that abfrufe art of mixed combination which, while it calculates the conjoint effect of founds, as they regard the eftablifhed laws of larmony, accommodates the different parts to the fcales, tones, and powers of the refnective infruments by which they are to be executed. It was at this time alfo that, althongh but twelve years of age, he compofed the mufic for the co:1fectation of the church of orphans, at the performance of which he himfelf prefided.

In \({ }^{1769}\) Mozart again returned to Salzburg, where he became muitre de concert. Not having yet feen Italy, in December of the fame year he fet out for that feat of the fine arts. Thofe talents which had already excited the admiration of Germany, France, and England, now awakened in that land of mulical tafte the moft lively enthufiafm.

In 1771 he had no fooner given perfonal proofs of
his genius, than la foittura for the following carnival Mozi was conferred upon him. He vifited Bologna, then as \(-r\) famous for harmonic excellence as Naples, where the celebrated theorift Martini was amazed to fee a German boy work and execute the therre of a fugue which he prefented to him, in the extraordinary ftyle in which Mozart acquitted himfelf. He next went to Florence. Florence even enhanced the eulogiums which Bologna lad lavithed upon him.

During the holy wetk he arrived at Rome, and af. fifted at the Miferere in the Sixtine chapel; which performance is jultly confidered as the ne plus ultra of vocal inulic. This circumflance claims particular notice, as inducing a proof of another faculty of his mind, only to be equalled by thofe wonderfil powers which he had already demonftrated. He was prohibited from taking a copy of this Miferere, and therefore piqued himfelf on retaining it in his menory. Having heard it with attention, he went home, made out a manufcript from recollection, returned the next day to the chapel, heard the piece a fecond time, corrected the rough draught, and produced a tranfeript which furprifed all Kome. This Miferere formed a fcorer numerous in its parts. and extremely difficult of execution. His mind had embraced and retained the whole!

He foon after received from the Pope the order of the gilt \{pur ; and at Bologna was comolimented, by an unanimous decifinn, with the title of Menler and Ma. fer of the Pbil-Larmonic Academy. As a pronf, pro formu, of his qualifications for this academical honour, a fugne, for four voices, in the church fyle, was required of him, and he was fhut up alone in his chamber. He completed it in half an hour, and received his diploma. This evinced that he poffeffed an imagination conflantly at his command, and that his mind was ftored with all the riches of his beloved fcience.

The opera which he compofed for Milan was called Mithridates. This piece procured him la foritura for the grand opera of the carnival of 1772 , which was his Lucin Sulla. At length, after a tour of fifteen months, he returned to Salzburg.

In 1771 Mozart vifited Paris; but not relifhing the mufic of that capital, he foon quitted it, and returned to his domeftic comforts. In \(178_{1}\), at the requeft of the elector of Bavaria, he compored the opera of Idomoneo for the carnival of that ytar. The general merit of this opera is fo great, that it might ferve alone for the bafis of a diftinguifhed reputation. At his twentyfifth year he was invited to Vienna, where he contisued fpreading, as from a centre, the tafte of his compolitions through all Germany, an! the luftre of his name over the whole of Eurooe.

Of all the sirtuof of the piano forte who tlen crowd. ed Vienna, Mozart was much the moft fkilful. His finger was extraordinarily rapid and taftefnl, and the execution of his left hand exceeded every thing that had before been heard. His touch was replete with delicacy and expreffion; and the profound Itudy he had beflowed on his art, gave his performance a flyle the moft brilliant and finifhed. Fis compofitions had a rapid circulation; and in every new piece the connoiffeurs were ftruck with the originality of its caft, the novelty of the paffages, and the energy of the effect.

Jofeph II. folicitons for the perfection of the German opera, engaged Mozart to compofe a piece. He ac-
cordingly produced \(L\) 'enlevement du Serail; performed for the firit time in \(\mathbf{1 7 8 2}\). It excited the jealoufy of the Italian company, who therefore ventured to cabal againtt it. The emperor, addrefling himfelf to the compofer, faid, "It is too fine for our ears, my dear Mozart, and moft charningly crowded with notes." " Precifely what it ought to be," replied the fpirited mufician, who jufly fufpected ehat this remark had been fuggefted to Jofeph by the envious Italians. " Though I cannot defcribe, as an auricular evidence, (fays the faithful author of the biograpliy), the ap plaufes and the admiration which this opera produced at Vienna, yet I have witnefled the enthufiafin it excited at Prague among all the connoiffeurs, as well as among thofe whofe ears were lef3 cnltivated. It was faid, that all which laad been heard before was not mufic: it drew the moft overflowing audiences: every body was amazed at ite new traits of harmony, and at paflages fo original, and till then fo unheard from wind inftruments."

The ceutious reader will perhaps hefitate to admit, in its fulleft extent, this account by the author of the biography; but even after an allowance for fome exaggeratinn, the moft phlegmatic will grant that much mult have heen atchieved by this great mafter, to afford a bafis tor fo glowing a picture of the merit and fuccefs of \(L\) 'en'everment dus Serail. During the compofition of this opera, he married Mademoifelle Weber, a dittingruithed virtuofa; and the piece was fuppofed to owe to this felicitons circuinftance much of that elldearing claracter, that tone of tendernefs, and that expreffion of the fofter paffions, which form its principal attractions.
"The Marriage of Figaro," which was in the higheft repute at all the theatres, was in the year 1787 trausformed into an Italian opera; and Mozart, at the inflance of the emperor, fet it to mufic. This piece was highly received everywhere, and kept poffeftion of the theatre at Prague during almoft the whole of the winter in which it firlt appeared: numerous extracts were made from it, and the fongs and dances of Figaro were vociferated in the ftreets, the gardens, and the taverns. Mozart came that very winter to Prague, and performed in public on the piano forte. His auditors at all times liftened to him with admiration; but whenever he played extempore, and indulged the fpontaneous and uninterrupted fallies of his fancy, which he fometimes would for more than half an hour, every one was feized with the moft enthutialtic raptures, and acknowledged the unrivalled refources of his imagination. About this time the manager of the theatre contrafted with hin for the compolition of a new opera, which, when produced, was called Il difgluto Punito, or Don Giovanni. His reputation was now fo exalted, that the Bohemians piqued themfelves on the circumftance that this opera was compofed for their entertainment.
But this fame, this great and univerfal applaufe, had not yet produced to the admired artift any folid advantages; he had obtained no place, no fettled income; but fubfifted by his operas, and the inftructions and occational concerts which he gave. The profits of thefe proved infufficient for the ytyle which he was obliged to fupport; and his finances became much deranged. The critical fituation in which he now found himfelf, made him refolve to quit Vienna, and feek an afylum in Suppl. Vol. II. Part I.

London ; to which metropolis he had often been invi- Mozart. ted; but Jofeph nominating him compofitear de la chambre, though, with a very inadequate falary, he was induced to accept it; and Germany had the advantage of retaining him.

It is lamentable that premature genius too rarely en. joys a long career: The acceleration of nature in the mental powers feems to hurry the progrefs of the animal œeconomy, and to anticipate the regular clofe of temporal exittence.

In the year 1791, Mozart, juft after he had received the appointment of Mailre de chapeclle of the church of St Peter, and whea he was unty thirty-five years of age, paid the laft tribute; and left the world at once to admire che brilliancy, and lanent the fhortnefs of his earthly fojournment.

Indefatigable, even to his death, he produced, during the laft few months of his life, his three great mafter pieces La Flutte Encloantée, La Cilemence de Titus, and a Requiem, his latt production. La Fhutre Encluantée was compufed for one of the theatres at Vienna; and no dramatic Olio could ever boalt a greater fuccefs. Every air ftruck the audience with a new and fweet furprife; and the tout enfermble was calculated to afford the deepelt and mott varied impreffions. This piece had, in faet, fo great a number of fucceffive reprefentations, that for a long time it was unneceflary to confult the operabill; which only anuounced a permanent novelty. Aud the ains felected from it, and repeated throughout the empire, as well in the cottage as in the palace, and which the echoes have refounded in the molt diftant provinces, favoured the idea that Mozart had aetually the defign to enchant all Germany with his Flutte Linchantée.

La Clemence de Titus was requefted by the flates of Bohemia for the coronation of Leopold. The compo. fer began it in his carriage during lis route to Prague, and finifhed it in eighteen days.

Some circumltances attending the compofition of the piece which we have already mentioned as the laft effort of his genius, are too interefting to be omitted. A Thort time before his death, a ftranger came to him with the rerqueft that he woald compofe, as fpeedily as poffible, a requiem for a catholic prince, who, perceiving himfelf on the verge of the grave, wifhed, by the execution of fuch a piece, to foothe his mind, and familiarife it to the idea of his approaching diffolution. Mozart undertook the work; and the ftranger depofited with him as a fecurity 400 ducats, though the fuin demanded was only 202. The compofer immediately began the work, and during its progrefs felt his mind unufually raifed and agitated. He became at length fo infatuated with his requiem, that he employed nor only the day, but forme hours of the night in its compofition. One day, while he was converfug with Madame Mozart on the fubject, he declared to her that he could not but be perfuaded that it was fur himfelf he was writing this piece. His wife, diltrefled at her inability to diffipate fo melancholy an inpreffion, prevailed on him to give her the foorc. He afterwards appearing fomewhat tranquillized, and more matter of himfelf, fhe returned the fcore to him, and he foon relapfed into his former defpondency. On the day of his death the afked for the requiem, which was accordingly brought to his bed: "Was I not right (faid he), when I declared that it

Wozart. was for myfelf I was compofing this funeral piece?" And the tears trickled from his eyes. This production of a man, impreffed during its compofition with a prefentiment of his approaching death, is unique in its kind, and contains paffages which have frequently drawn tears from the performers.

Only one complaint efcaped him during his malady : "I muft quit life (faid he), precifely at the moment when I could enjoy it, free from care and inquietude ; at the very time when, independent of fordic fpecula. tions, and at liberty to follow my own principles and inclinations, I fhould only have to write from the im. pulfes of my own heart: and I am torn from my family juft when in a fituation to ferve it." Mozart, at the time of lins death, was confiderably involved in debt; but Vienna and Prague difputed the honour of providing for his widow and children.

The countenance of this great mafter did not indi. cate any thing uncommon. He was fmall of ftature; and, except liis eyes, which were full of fire, there was nothing to announce fuperiority of talent. His air, unlefs wleen he was at the harpfichord, was that of an abfent man. But when he was performing, his whole phyfiognomy became changed : a profound ferioufnefs recalled and fixed his eyes; and his fentiments were ex preffed in every movement of his mufcles. Never has a mufician more fuccefsfully embraced the whole extent of his art, and fhone with greater luttre in all its departments. His great operas, no lefs than his moft fimple fongs; his learned fymphonies as well as his airy dances-all carry the famp of the richet imagination, the deepeft fenfibility, and the pureft tafte. All his works develope the originality of his genius; and im. ply a mind great and exalted; an imagination which flrikes out for itfelf a new courfe. He therefore nierits to be ranked with that fmall number of original geniufes, thofe phanomena Jplendida, who form an epoch in their art, by carrying it to perfection, or giving it an unknown career.

It is in the employment of wind inftruments that Mozart difplays lis greatef powers. His melody is always fimple, natural, and full of force; and expreffes with precifion the fentiments and individual fituations of his perfonages. He wrote with extraordinary facility. "La Clemerice de Titus," the reader will recollect, coft him the ftudy of but eighteen days; and his requiem, which is equal in length to an opera, was produced in four weeks. It is alfo worthy of remark, that the overture to his Don Giovanni was not begun till the night before the piece was te be performed. At midnight, after having devoted the evening to amufement, he locked hinifelf up in his tludy, and compored it in a few hours. His memory was wonderfully retentive, as we may judge from his copying by recollection the miferere at Rome. But a fact equally aftonifhing is, that, foon difcovering the eagernefs of people to procure his works, and fearful that they might be pirated, it was his comftant cuftom to tranfcribe from the foores of his fonatas only a part for one hand, and at the public performance to fupply the other by memory.

He very early began to difplay that true dignity of an artitt which renders him indifferent to the praifes of thofe who are unqualified to judge. The conmendations of the ignorant great he never confidered as fame. His hearers, whether the wealthy or the titled, muft
have acquired fome credit for their juigment before he could be ambitious of their aoplaufe. Indeed he entertained fo juft a fenfe of fcientific clevation and importance, that he would infif upon refpect. And the leaft noife or idle babhle, while he was at the inftrument, excited a difpleafure which he was too irdiguant to conceal. Once, to the honour of his feelings, he fuddenly rofe from lins feat, and left his inattentive allditory to experience the keen thourg filent reprosch of infulted genius.

His mind was by no means unlcttered; nor was it embellifhed with one fcience alone. He was mafter of feveral languages, and had made confide rable pregrefo in the mathematics. He was honeft, mild, generous, full of franknefs; and with his friends had an air at once amiable, gay, and free from the leaft tincture of pedantry.

Far from viewing with envy the fuccefs of others, a weaknefs too clofely interwoven in the general nature of man, he was always juft to the talents of his fellow profeffors; and valued and refpected merit wherever he found it ; a clearer proof of which cannot be adduced than the following circumflance: At a concert, where a new piece compofed by the celebrated Jofeph Haydn was performed, a certain mufician, who never difcovered any thing worthy of praife except in his own productions, did not fail to criticife the mufic ; exclaiming to Mozart, "There now! there again! why, that is not what \(I\) fhould have done:" "No; neither fhould I (replied Mozart); but do you know why? Becaufe neither you nor 1 fhould have been able to conceive it."

MUMBO.Jumbo, a ftrange bugbear employed by the Pagan Mandingoes (fee Manding, Suppl.) for the purpofe of keeping their women in fubjection. Polygany being allowed among thefe people, every man marnies as many wives as he can conveniently maintain; and the confequence is, that fannily quarrels fometimes rife to fuch a height, that the lumband's authority is not fufficient to rettore peace among the ladies. On thefe occafions, the interpofition of Mumbo. Fumbo is called in ; and it is alwayss decifive. This frange miniter of juftice, who is either the hufland himfelf, or fome perfon inftrufted by him, difguifed in a fort of mafquerade habit, made of the bark of trees, and arm. ed with the rod of public authority, announces his coming by loud and difinal fcreams in the woods near the town. He begins the pantomine at the appreach of night ; and as foon as it is dark, he enters the town, and proceeds to the Bentang or market-place, at which all the inhabitants immediately affemble.
It may cafily be fuppofed that this exhibition is not much relifhed by the wornen; for as the perfon in dif. guife is entirely unknown to them, every married female fufpects that the vifit may poffibly be intended for herfelf; but they dare not refufe to appear when they are fummoned; and the ceremony commences with fongs and darices, which continue till midnight, about which time Mumbo fixes on the offender. This unfortunate victim being thereupon immediately feized, is ftripped naked, tied to a poit, and feverely fcourged with Mumbo's rod, annidit the fhouts and derifion of the whole affembly; and it is remarkable, that the reft of the women are the loudef in their exclamations on this occafion againft their unhappy fifter. Daylight puts an end to this indecent

Thy infecent and unmanly revel. It is truly aftonifhing that the women flould be deluded by fo clumfy an inpoiture, and that the men mould fo faithfully keep their own fecret. That the women are deluded feems evident ; for Mr Park affures us, that the drefs of Munnbo is fuffered to hang on a tree at the entrance of each town; which could hardly be the cafe, if the women were not perfuaded that it is the drefs of fome fupernatural being.

MUNSHY, a Perfian fecretary or writer.
MUNSUB, in the languagre of Bengal, a dignity or command conferred by the emperor.

MUNSUBDAR, a dignitary or commander.
MURRAY (William), afterwards Earl of Mansfield and Lord Chief Juftice of England, was the fourth fon of David Vifcount Stormont. He was born on the ad day of March r 705 at Perth, in the kingdom of Scotland, of which kingdom his father was a peer. His refidence in Scotland, however, was of fhort duration ; for he was carried up to London at the early age of three years. Hence his total exemption from the peculiarities of the dialect of his native country.

At the age of fourteen he was admitted as a king's fcholar of Weftmintter fchool; and during his refidence in that feminary, fays his contemporary Bifhop Newton, he gave early proofs of his uncommon abilities, not fo much in his poetry, as in his other exercifes; and particularly in his declamations, which were fure tokens and prognoftics of that eloqnence which grew up to fuch maturity and perfection at the bar, and in both houfes of palliament. At the election in May 1723, he ftood firt on the lift of thofe gentlemen who were fent to Oxford, and was entered of Chrift Church, June the 18 th, in that year. In the year 1727 he had taken the degree of B. A. and on the death of King George the Firft, was amongt thofe of the univerfity who com. pofed verfes on that event.

In April \(172+\) he was admitted a ftudent of Jin. coln's Inn, though he ftill continued to refide much in the univerfity; where, on the 26th of June 1730 , he took the degree of M. A. and foon afterwards left Oxford, determined to wake the toar of Europe before he fhould devote himfelf ierioully to bufinefs. About this period he wrote two letters to a young nobleman on the ftudy of ancient and modern hiftory, which are publifled by his biographer Mr Holliday, and flew how amply his own mind was then Itored with general literature.

On his return to England he commenced his legal fludies; but proceeded not in the way then ufually adopted, of labouring in the chambers of a fpecial pleader, or copying (to ule the words of Blackltone) the trath of an attorney's office. Being bleffed with the powers of oratory in their higheft perfection, and having foon an opportunity of difplaying them, he very early acquired the notice of the chancellor and the judges, as well as the confidence of the inferior practifers. How much he was regarded in the houfe of lords, Pope's well-known couplet will prove:

> Grac'd as thou art with all the power of words, So known, fo honour'd at the houfe of lords.

The graces of his elocution, however, procused their Murray. ufual effeet with a certain clafs of people, who would not believe that fuch bright talents could affociate with the more folid attainments of the law, or that a man of genius and vivacity could be a profound lawyer. As Pope obferved at that time,

> The Temple late two brother ferjeants faw, Who deem'd each other oracles of law; With equal talents thefe congenial fouls, One lull'd the exchequer, and one ftunn'd the rolls : Each had a gravity would make you fplit, And fhook his head at Murray as a wit.

It is remarkable that this ridiculous prejudice accompanied Lord Mansfield to the end of his judicial life, in fpite of daily proofs exhibited in the court of King's Bench and in the Houfe of Lords, of very profound knowledge of the abifrufelt poiuts of jurifprus. dence. Lord Chelterfield has given his fanction to this unfounded opinion. In a letter to his fon, dated Feb. 12. 1754 , he fays, "The prefent Solicitor General Murray has lefs law than many lawyers, but he has more piactice than any, merely upon account of his eloquence, of which he has a nevcr-failing ftream."

In the outfet of Lord Mansfield's life, it will be the lefs furprifing, that a notion fhould havc been entertained of his addicting himelf to the purfuits of Pellez Lettres too much, when the regard fhewn to him by Mr Pope, who defpotically ruled the regions of literature at that period, is confidered. 'Ihat great Poet fecmed to entertain a particular affectoon for our young lawyer, and was eager to fiew him marks of his regard. He addrelfed to him his imitation of the 6th Epintle of the Firft look of Horace; and even condefcended to become his mafter in the att of elocution. "Mr Murray (fays his biographer) was one day furprifed by a gentleman of Lincolu's Inn, who could take the liberty of entering his rooms without the ceremonions introduction of a fervant, in the fingular act of practifing the graces of a fpeaker at a glafe, while Pope fàt by in the character of a friendly preceptor. Mr Murray, on this occafion, paid that poet the landfome complinent of, Tu es mibi Macenas (A)."

Whatever propenfities this fprightly lawyer might have towards polite literature, lie did not permit them to divert his attention from his profeffion. He foon dittinguifhed himfelf in an extraordinary manner, as may be feen by thofe who are convelfant with, or chule to refer to the Books of Reports. In the year 1736, the murder of Captain Porteous by a mob in Edinburgh, after he had been reprieved, occafioned a cenfure to fall on that city, and a bill of pains and penalties was brought into Parliament again? the Lord Provoft and the corporation; which, after various moditications, and a firm and unabated oppofition in every flace of its progrefs, paffed into a law. In both Houfes Mr Murray was employed as an advocate, and fo much to the datisfaction of his clients, that afterwards, in September \(17+3\), he was proferted with the freedom of Edinburgh in a gold box, proftfedly, as it was declaN n 2
red,
(1) It is thus that eminence is attained even by genius, and Mr Murray was properly e:nployed ; chough we do not clearly perceive the uie of the glafs, when his mafter was watching all his greltures.

Murpay. red, for his fignal fervices by his fpeeches to both Houfes of Parliament in the conduct of that butinefs.

On the 24th of November 1738 , he had married Lady Elizabeth Finch, daughter of the Earl of Winchelfea, and in the month of November 1742, was appointed Solicitor General in the place of Sir John Strange, who refigned ( s ). He likewife was chofen to reprefent the town of Boroughbridge in Parliament, for which place he was alfo returned in 1747 and 175.4 .

In the month of March 1746.7 he was appointed one of the managers for the impeacliment of Lord Lovat by the Houfe of Commons, and it fell to his lot to obferve on the evidence previous to the Lords giving their judgment. This tafk he executed with fo much candour, moderation, and gentleman-like propriety, that Lord Talbot, at the conclufion of his fpeech, paid him the following compliment: "The abilities of the learned manager who juit now fpoke, never appeared with greater fplendour than at this very hour, when his can. dour and lumanity has been joined to thofe great abilities which have already made hin fo confpicuous, that I hope one day to fee him add luftre to the dignity of the firft civil employment in this nation." Lord Lovat himfelf alfo bore teftimony to the abilities of his adverfary: "I thought myfelf (fays his lordhip) very much loaded by one Murray (c), who your I.ordfhips know was the bittereft evidence there was again.t me. I have fince fuffered by another Mr Murray, who, I mult fay with pleafure, is an honour to his country, and whofe eloquence and learning is much beyond what is to be expreft by an ignorant man like me. I heard him with pleafure, though it was againft me. I have the honpur to be his relation, though perhaps he neither knows it nor values it. I wifh that his being born in the North may not hinder him from the preferment that his merit and learning deferve."

During the time that Mr Murray continued in office, be fupported, with great ability, the adminiflration with which he was connected; and, of courfe, rendered hinifelf obnoxious to thofe who were in oppofition. Nothing, however, could be urged either againft his public conduct or his private life; but he was involved in fome trouble by an ill-devifed tale, concurring with the known principles of the fanily of Stormont, to make him fufpected of Jacobitifm. Of this affair, a full and particular account is given by the late L.ord Melcombe in the following words :
"Meffrs Murray, Fawcett, and Stone, were much acquainted, if not fchool-fellows, in earlier life. Their fortune led them different ways; Fawcett's was to be a country lawyer and recorder of Newcaftle. Johnfon, now Bifhop of Gloucefter, was one of their affociates.

On the day the King's birth-day was kept, they dined Murn at the Dean of Durham's at Durham ; this Fawcett, Lord Ravenfworth, Major Davifon, and one or two more, who retired after dinner into another room. The converfation turning upon the late Biflop of Glous celter's preferments, it was alked who was to have his prebend of Durham ? The Dean faid, that the laft news from London was, that 1)r Johnfon was to lave it: Fawcett faid, he was glad that Johnfon got off fo well, for he remembered lim a Jacobite feveral years ago, and that he ufed to be with a relation of his who was very difaffectes, one Vermon, a mercer, where the Pretender's health was frequently druuk. This paffing among a few femiliar accquaintance, was thought no more of at the time: it fpread, however, fo much in the North (how 1 never heard accounted for), and reached town in fuch a manner, that Mr Petham thought it neceflary to defire Mr Vane, who was a friend to Fawcett, and who employed him in his bufinefs, to write to Fawcett, to know if he had faid this of Johnfon, and if he had, if it was true.
"This letter was written on the 9th of January ; it came to Newcaftle the Friday following. Fawcett was much furprifed; but the poft groing out in a few hours after its arrival, he immediately acknowledged the letter by a long, but wot very explicit, anfwer. This Friday happersed to be the club day of the neighbouring gentlemen at Newcaltle. As foon as Lord Ravenfworth, who was a patron and employer of Fawcett, came into the town, lawcett acquainted him with the extraordinary letter he lad received; he told him that he lad already anfwered it; and being afked to fhew the copy, faid he kept none; but defired Lord Ravenfivorth to recolleet if he held fuch a converfation at the Deanry of Durham the day appointed for the bith-day. Ravenfworth recollected nothing at all of it : they went to the club together, and Ravenfiworth went the next morning to fee his mother in the neighbourlood, with whom he ftaid till Monday; but this thing of fuch confequence lying upon his thoughts, he returned by Newcaftle. He and Fawcett had another converfation; and in endeavouring to refrefh each other's memory about this dreadful delinquency of Johnfon, Fawcett faid he could not recollect pofitively at fuch a diftance of time, whether Johnfon drank thefe healths, or had been prefent at the drinking of them, but that Murray and Stone had done both feveral times. Ravenfworth was exceffively alarined. at this with relation to Stone, on account of his office about the prince; and thus the affair of Johnfon was quite forgotten, and the epifode became the principal part. There were many more conferences between Ravenfworth and Faw-
(B) On this occafion a doggrel poem was publifhed by one Morgan, a perfon then at the bar, entitled, "The Caufidicade," in which all the principal lawyers were fuppofed to urge their refpective clains to the pef. A: the conclufion it is faid,

> Then Murray, prepar'd with a fine panegyric In praife of llimfelf, would have fpoke it like Garrick ; But the Prefident fopping him faid, "A As in truth
> "Your worth and your praife is in every one's mouth,
> "T 'Tis needlefs to urge what's notoriounfy known,
> "The offece, by mererit,
> "The your's all muft own ;
> "Concurree of the public approves of the thing,
(c) One of the evidences againft him.
19. cett upon this fubject, in which the latter always perfifted that Stone and Murray were piefent at the drinking, and did drink thofe healths. It may be obferved here, that when he was examined upon oath, he fwore to the year \(173^{\mathrm{r}}\) or 1732 , at latef. Fawcett comes up as ufual about his law bufinefs, and is examined by Meffrs Pelhem and Vane, who never hasd heard of Murray or Stone being named : he is afked, and anfivers only with relation to Johnfon, never mentioning either of the others; but the love of his country, his king, and pofterity, burned fo ftrongly in Ravenfiworth's bofom, that he could have no reff till he had difcovered this cnormity. Accordingly, when he came to town, he acquainted the miniftry and almoft all liis great friends with it, and infifted upon the removal of Stone. The miniftry would have fighted it as it deferved; but as he perfifted, and had told fo many of it, they could not help laying it befure the king, who, though he himfelf nighted it, was advifed to examine it ; which examination produced this mott injudicious proceeding 4. 1 -in parliament *"

This is Lord Melcombe's account ; and the fame author informs us, that Mr Murray, when he heard of the committee being appointed to examine this idle af fair, fent a meffage to the king, humbly to acquaint him, that if he fhould be called befure fuch a tribunal on fo fcandalous and injurious an account, he would refign his office, and would refufe to anfwer. It came, however, before the IHoufe of Lotds, 22d January 1753, on the motion of the Duke of Bedford.
The debate was long and heavy, fays Lord Melcombe; the Duke of Bedford's performance modeate enough; he divided the Houfe, but it was not told, for there went below the bar with him the Earl Harcourt, Lord Townflend, the Bifhop of Worcefter, and Lord Talbot only. The Bifhop of Norwich and Lord Harcourt both fpoke, not to much purpofe ; but neither of them in the lealt fupported the Duke's queftion.

Upon the whole, Lord Melcombe concludes, "It was the wortt judged, the worft executed, and the wort fupported point that I ever faw of fo much expectation."

The King, his late Majefty, viewed it in its true light; and is reported to have faid, "Whatever they were when Weftmintter boys, they are now my very good friends." He was likewife, as we have been informed by a gentleman connected with the family of Stormont, fo delighted with Mr Murray's fpeech in his own vindication, that he defired to have a copy of it, as a model of dignified and candid eloquence. Fawcett, the original author of the fory, feema indeed to have been a very fneaking knave, totally unworthy of credit. Bifhop Johnfon, who was overlooked in the turmoil, excited by the fuppofed guilt of Murray and Stone (fee Stone, in this Suppl.), went to Fawcett's chambers in the 'I'emple, and defired an interview. Being told by the fervant that his mafter was not at home, he renewed his vifit very early next morning, and declared his refolution to wait till Mr Fawcett fhould rife, the laundrefs having inadvertently confeffed that he was fill in bed. Fawcett, upon this, left his thorny pillow with reluctance; for fomething fharper than thorns (fays Mr Holliday) awaited him, which he could not now poffibly avoid. The refult of the interview produced expreffions of deep contrition, together with
a letter, addreffed to the Lord Bifhop of Ciloucefter, acknowledging, in the moft explicit terms, that his Lordhip was innocent of the charge which he had been the inftrument of bringing againtt lim.

On the edvancemient of Sir Dudley Rider to the chief jufticefhip of the King's Bench in 17 it, Mr Murray fucceeded him as attorney general; and oul his death, November 1756, again becanie his fucceffor as chief juftice, when le was created Beron of Manstitle, in the county of Nottingham, with remainder to the heirs inale of his body lawfully begotten.

As foon as Lord Mansfeld was effablithed in the King's Eench, he began to make improvements in the practice of that court. On the 12 th of Noveniber, four days after he had taken his feat, he made a very neceffary regrulation, obferving, "Where we have no doubt, we ought not to put the parties to the delay and expence of a farther argument; nor leave other perfons, who may be interefted in the determination of a point fo general, unueceffarily under the ansiety of fufpence."

The anxiety of fufpence, from this period, was no longer to be complained of in the court of King's Bench. The regularity, punctuality, and difpateh of the new chieई juticee, afforded fuch general fatisfaction, that they, in procefs of time, drew into that court mult of the caufes which could be brought there for deter. mination.

Sir James Burrows fays, "I am informed, that at the fittings fur London and Middl fex only, there are not fo few as 800 caufes fet down in a year, and all dif. pofed of. And though many of them, efpecially in Lordon, are of confiderable value, there are not more, upon an average, than between 20 and 30 ever heard of afterwards in the fhape of fpecial verdicts, fpecial cafoe, motions for new trialis, or in arreft of judgment. OE: bill of exeeptions there has been no inttance (I do not include judgments upon criminal profecutions; they are neceffary confequences of the convictions). My report: give but a very faint idea of the extent of the whole bu:linefs which comes before the court : I only report whilat I thinis may be of ufe as a determination or illuitration of fome inatter of law. I take no notice of the numerous queftions of fact which are heard upon affidavits (the mott tedious and irkfome part of the whole bufiwefs). I take un notice of a varicty of conteflations, which, after having been fully difcuffed, are decided without difficulty or doubt. I take no notice of matuy cafes which turn upon a contruction fo peculiar ani particular, as not to be likely to form a precedent fur any other cafe. And yet, notwithflanding this immenfity of bufinefs, it is notorious, that, in confequence of method, and a few rules which have been laid down to prevent delay (even where the parties themfelves would willingly coufent to it), nothing now hange in court. Upon the laft day of the very latt term, if we exclude fuch motions of the term as by defire of the parties went over of courfe as peremptories, there was not a fingle matter of any kind that remained undetermined, excepting one cafe relating to the proprietary Lordhip of Maryland, which was profeffedly poffponed ou account of the prefent fituation of America. One might fpeak to the fame effcet concerning the laft day of any former term for fome ycars backward."
'The fame author alfo informs ue, that, excepting two cafes,

Mur ray. cafes, there had not been, from the 6th of November 1756 to the time of his then prefent publication, 26 th May 1776 , a final difference of opinion in the court in any cafe, or upon any point whatfoever. "It is remarkable, too (he adds), that, excepting thefe two cafes, no judgment given during the fame period has been reverfed, either in the exchequer chamber or in parliament: and even thefe reverfals were with great diverfity of opinion among the judges." Of the two cafes here mentioned, one was the famous queftion concerning literary property, which the majority of the judges of the court of King's Bench held to be permanent ; and in fupport of which opinion, fuch arguments were urged by the chief juftice, as have not yet perhaps been completely anfwered.

The ill fuccefs of the war, which had lately been begun, occafioned a change in the adminiftration; and the conflicts of contending parties rendered it impracticable for the crown, at that juncture, to fettle a new miniftry. In order, therefore, to give paufe to the violence of both fides, Lord Mansfield was induced to accept the poft of chancellor of the exchequer on the 9 th of April 1757; which he held until the ad of Joly in the fame year. During this interval, he employed himfelf, with great fuccefs, to bring about a coalition; which being effected, produced a feries of events, which raifed the glory of Great Britain to the higheft point at which it has ever been feen. In the fame year he was offered, but refufed, the bffice of Lord High Chancellor; and in November 1758 , he was elected a governor of the charter houfe, in the room iof the Duke of Marlborough, then lately deceafed.

For feveral years after this period, the tenor of Lord - Mansfield's life was marked only with a moft fedulous dircharge of the duties of his office. In 1760 Geo . II. died, and the new reign commenced with alterations in the adminiffration ; which gave rife to a virulent fpirit of oppofition, conducted with a degree of violence and afperity never known at any former time. As a - friend to the then adminiftration, Lord Mansfield was marked out for a more than ordinary fhare of malicious invective. It is in allufion to this, that Warburton, after tracing the rife and progrefs of the irreligion and licentioufnefs which then prevailed, and obferving that, amid fuch general corruption, the pure adminiitration of public juttice fill afforded a chcerful confolation to thinking men, proceeds thus :
"But the evil genius of England would not fuffer us to enjoy it long; for, as if envious of this laft fupport of government, he liath now inftigated his blackeft agents to every extent of their malignity ; who, after the moft villainous infults on all other orders and ranks in fociety, have at length proceeded to calumniate even the king's fupreme court of juftice, under its ableft and moft unblemifhed adminiftration. After this, who will not be tempted to defpair of his country, and fay with the good old man in the fcene,

\section*{-_Ip \(\int_{\text {- }}\) cupiat falus "Servare, prorfus non poteft, banc Familiam (D) ""}

A change of adminiftration again took place in \(1_{7} 65\), which introduced the Marquis of Rockingham and his friends to govern the country; and the meafures then adopted not agreeing with Lord Mansfield's fentiments, he, for the firft time, 'became an epponent of government. On the bill for repealing the ftamp act, he fooke, and divided againft it; and is fuppofed to have had fome fhare in the compofition of the protefts on that occafion, though he did not fign them. In the fame year, he is faid to have animadverted, with no fmall degree of feverity, on the incautious expreffions of Lord Camden, on the affair of prohibiting the exportation of corn, that it was but a 40 days tyranny at the outfide (E).

In 1767, the Differiters caufe was determined, in which Lord Mansfield delivered a fpeech, which has fince been printed, and Thews his Lordhip to have been a fteady friend to religious toleration, as well as to the rights of the eftablifhed church. 'I'lie confcientious. Diffenters themfelves lavifhed upon that fpeech the highett praife; whilf others of them, in the fucceeding year, deluged the public prints with torrents of abufe on the Chief Juftice. In that year was the general election. Mr Wilkes returned from abroad, became a candidate for the city of London, and afterwards was chofen reprefentative for the county of Middlefex. Having been ontlawed fome years before, he now applied for a reverfal of that proceeding. On the 8th of June, the confideration of it came before the court of King's Bench; when the judges delivered their opinions very fully, and were unanimous that the outlawry was illegal, and mult be reverfed. On this occafion Lord Mansfield took the opportunity of entering into a full flatement of the cafe, and a jultification of his own conduct. The reader will find the cafe reported by Sir James Burrow; from whom we fhall extract the following, which appears to have been the moft important part of his L.ordhhip's fpeech:
" It is fit to take fome notice of the various terrors hung out ; the numerous crowds which have attended, and now attend, in and about the hall, out of all reach of hearing what paffes in court; and the tumults which in other places have fhamefully infulted all order and government. Audacious addreffes in print dictate to us, from thofe they call the people, the judgment to be given now, and afterwards upon the conviction. Reafons of policy are urged, from danger to the kingdom, by commotions and general confufon.
"Give me leave to take the opportunity of this great and refpectable audience, to let the whole world know all fuch attempts are vain. Unlefs w/e have been able to find an error which will bear us out to reverfe the outlawry, it mult be affirmed. The conftitution does -not allow reafons of fate to influence our judgment :

God
(D) See the dedication of the gth edition of the Divine Legation of Mofes, which deferves to be read at prefent with peculiar attention, as the work of a man of gigantic talents, deeply read in law as well as in theology.
(E) The fpeeches in the debate were never printed; but the fubftance of them all was confolidated in a pamphlet publifhed at the time, intitled, "A Speech againit the fufpending and difpenfing prerogative," 8vo. Since zeprinted in Debrett's Debates, Vol. IV. p. \(3^{8} 4\).

God forbid it hould! We mult not regard political confequences, how formidable foever they may be; we are bound to fay, Fizt Fuflitia, ruat Celum. The conftitution trufts the king with reafons of fate and policy: He may pardon offences; it is his to judge whe. ther the law or the criminal fhould yield. We have no election. None of-us encouraged or approved the comm:fion of either of the crimes of which the defender is convicted : none of us had any hand in his being profecuted. As to myfelf, I took no part (in another place) in the addreffes for that profccution. We did not ardvife or affitt the defender to fly from juftice; it was his own act, and he muft take the confequences. None of us have been confulted, or had any thing to do with the prefent profecution. It is not in our power to ftop it ; it was not in our power to bring it on. We cannot pardon. We are to fay what we take the law to be If we do not fpeak our real opinions, we prevaricate with God and our own confciences.
"I pafs over many anonymous letters I have received : thofe in print are public; and fome of them have been brought judicially befure the court. Wheever the writers are, they take the wrong way. I will do my duty unawed. What am I to fear? That mendax infannia from the prefs, which daily coins falle facts and falfe motives? The lies of calumny carry no terror to me. I truft, that my temper of inind, and the colour and conduct of my life, have given me a fuit of armour againt thefe arrows. If, during this king's reign, I have ever fupported his gosernment, and affitted his meafures, I have done it withont any other reward than the confcioufnefs of doing what 1 thought right. If 1 have ever oppofed, I have done it upon the points them. felves, without any collateral views. I honour the king, and refpect the people. But many things acquired by the favour of either are, in my account, objeess not worth ambition. I wifh popularity ; but it is that popularity which follows, not that which is run after.It is that popularity which, fooner or later, never fails to do juiticice to the purfuit of noble ends by noble means. I will not do that which my confcience tells me is wrong upon this occafion, to gain the huezas of thoufands, or the daily praife of all the papers which come from the prefs. I will not avoid doing what I think is right, though it fhould draw on me the whole artillery of libels, all that falfehood and malice can invent, or the credulity of a deluded populace can fwallow. I can fay with a great magiftrate, upon an occation, and urder circumitances not unlike, 'Ego boc animo femper fuit, ut invidiam virtute partam, glusiam, non invidium putarem.'
"The threats go further than abufe: Perfonal violence is denounced. I do not believe it : it is not the genius of the wort men of this country in the wort of times. But I have fet my mind at reft. The laft end that can hampen to ary man never comes too \(f_{1}, \cdots\), if he falls in fupport of the law and liberty of his country (for liberty is fynonymous to law and government). Such a fhock, too, muft be productive of public good : It might awwake the better part of the kingdom out of that lethargy which feems to have benumbed them; and bring the mad part back to their fenfes, as men intoxicated are fometimes !?unned into fobriets
"Once for all, let it be underftood, that no endeaPours of this kind will inflluence any man who at prefent fits here. If they had any effect, it would be contrary
to their intent : Leaning againft their impreffion might Murray. give a bias the other way. But I hope, and I know, that I have fortitude enough to refift even that weaknefs. No libels, no threats, nothing that has happened, nothing that can happen, will weigh a feather againf allowing the defendant, upon this and every other queftion, not only the whole advantage he is intitled to from fubflantial laiv and juftice, but every benefit from the mof critical nicety of form, which any other defender could claim under the 1 ke objection. The only effeet I feel is an anziety to be able to explain the grounds upon which we proceed; fo as to fatisfy all mankind, that a flaw of form given way to in this cafe, could not have been got over in any other."

In January \({ }^{1} 770\), Lord Manafield again was offered the Great Seal, which was given io Mr Charles York : and in Hilary Term 1771, he a third time declined the fame offer, and the Seal was entrufted to I.ord Bathurf.

The year 1770 was alfo neemorable for various attacks made on his Lorunhip's judicial charaeter, in both the Houfes of Lords and Commons. In one of thefe, the propriety of a direction given to the jury in the cafe of the king and Woodfal was called in queftion; which occationed his Lordhip to prodnce to the Houfe a copy of the unanimous opinion of the court of King's Bench in that caufe; which, after being inuch canvaf. fed and oppofed, was fuffered to ftand its ground without being over-ruled.

Ont the 19 th of Oetober 1776 , his L.ordfhin was advanced to the dignity of an Earl of Great Britain, by the title of the Lanl of Mansfield, and to his male iffue; and for want of fuch iflue, to Louifa Vitcountefs Stormont, and to her heirs male by 1)avid Vifcount Stormont her hufband. The fame title, in 1792 , was limited to Lord Stormont himfelf; who afterwardo fucceeded to it.

We come now to a period of his Lordhin's life, which furnifes an event difgraceful to the age and country in which the fact was committed. An union of folly, enthufiafm, and kuavery, had excited alarms in the minds of fome weak people, that encourage:nente were given to the favourers and profeffors of the Roman Catholic faith inconfiftent with religion atch trus policy. The act of Pailiament, which exceted the ctamour, had paffed with litele oppofition, and had init received any extraordinary fupport from Lord Mans. field. The minds of the public were inflamed by art. ful mifrep:efentations; the rage of a popular mob was foon direeted towards the molt eminent perions. Ac. cordingly, in the bight between 'Tuefday the 6th and Wedneflay the 7 th of June 1780 , his Lordflip's houfe in Bloo.mbutry Square was attacked by a party of rioters, who, on the Friday and Cuelday preceding, had, to the amosnt of many thoula:ds, fur:ounded the avenues of both Houfes of Parliament, under pretence of attending Lord George Gordon when he prefented the petition from the Proteftant Affociation. On Tuefday evening the prifon of Newgate had been thrown opell, all the combultible part reduced to afhes, and the felons let loofe upon the public. It was after this attenipt to deftroy the means of fecuring the vietims of criminal jis. ftice that the rioters alfaulted the refidence of the chief magiltrate of the firf ciminal court in the kingdom; nor were they difperfed till they had burnt all the furniture, pictures, bouks, manufcripts, deeds, and, it mort, cevery thing which fire could confunte in his Lord.

\section*{\(M \cup R\)}
[ 288
Murray. Ship's houfe; fo that nothing remained but the walls, which were feen next morning almoft red hot from the violence of the flames, prefenting a melancholy and awful ruin to the eyes of the paffengers. For a fuller account of thofe dreadful riots, fee Britain, n \({ }^{\circ}\) 644. Encyclopadia.

So unexpected was this daring outrage on order and government, that it burft on Lord Mansfield without his being prepared in the flightelt manner to refift it. He efcaped with his life only, and retired to a place of fafety, where he remained until the 14th of June, the laft day of term, when he again took his feat in the court of King's Bench. "The reverential filence (fays Mr Donglas) which was obferved when his LordMip refumed his place on the Bench, was expreffive of fentiments of condolence and refpect, imore affecting than the moft eloquent addrels the oceation could have fuggefted.
"The amount of that part of Lord Mansfield's lofs which miglit have been eftimated, and was capable of a compenfation in money, is known to have been very great. This he had a right to recover againt the buntired. Meny others had taken that counse; but his Lordfhip thought it more confiftent with the dignity of his character not to refort to the indemnification provided by the leginature. His fentiments, on the fubject of a reparation from the flate, were conmunicated to the 13oard of Works in a letter, datod I Sth July 1780, written in co:sfequence of an application which they had made to him (as one of the principal fufferers), purfuant to directions from the treafury, founded on a vote of the Houfe of Commone, requefting him to ftate the nature and amount of his lofs. In that letter, after fome introductory expreffions of civility to the furveyor general, to whom it was addreffed, his Lordhhip fays, - Befles what is irreparable, my pecuniary lofs is great. I apprehended no danger, and therefore took no precaution. But how great foever that lofs may be, I think it does not become me to claim or expect reparation from the ftate. I have mate up my mind to my misfortune, as I ought, with this confolation, that it came from thofe whofe object manifetly was general confu. fion and deffruction at home, in addition to a dangerous and complicated war abroad. If I thould lay before you any accomnt or computation of the pecuniary damage I have fuftained, it might feem a claim or expectation of being indemnified. Therefore you will have no further trouble upon this from, \&c.- Mansfield."

From this time the luftre of Lord Mansfield continued to fhine with unclouded brightnefs until the end of his political life, unlefs his oppofition to the meafures of the prefent adminiftration, at the early period of their appointment, frall be thought to detract, in fome imall degree, from his merit. It is certain many of his admirers faw, with concern, a connection with the opponents of government at that juncture, fcarce compatible with the dignity of the chief juftice of Great Britain. At length infirmities preffed upon him, and he became unable to attend his duty with the fame punctuality and affiduity with which he had been accuftomed. It has been fuppofed, that he held his office after he was difabled from executing the duties of it, from a wifh to fecure the fucceffion of it to a very particular friend. Be this as it may, the chief juftice continued in his office until the month of June 1788, when he fent in his refignation.

From this period the bodily powers of his Lordhhip Murra contimued to decline ; his mental faculties, however, remained without decay almoft to the laft. During this time he was particularly inquifitive and anxious about the proceedings in France, and felt his fenfibility, in common with every good man, wounded by the horrible inftance of democratic infatuation in the murder of the innocent Louis XVI. He lived juft long enough to exprefs his fatisfaction at the check given to the French by the Prince of Cobourg in March 1793 ; on the 20th of which month, after continuing fome days in a thate of infenfibility, he departed this life, at the age of 88 years.
" In his political oratory (fays a writer of the prefent times), he was not without a rival; no one had the honour of furpaffing him ; and let it be remembered, that his competitor was PITT.
" The rhetorician that addreffed himfelf to Tully in thefe nemorable words-Demofthenes tili praripuit ne primus effes Orator, tu illi ne folus-anticipated their application to Mansfield and Pitt. If the one poffeffed Demofthenean fire and energy, the other was at leaft a Cicero. Their oratory differed in fpecies, but was equal in merit. There was, at leatt, bo fuperiority on the fite of Pitt. Mansfield's cloquence was not, indeed, of that daring, bold, declamatory kind, fo irrefiflibly pow'erful in the momentary buftle of popular affemblies; but it was poffeffed of that pure and Attic fpirit, and fedictive power of perfuation, that delights, inftructs, and eventually triumphs. It has been very beautifully and juftly compared to a river, that meanders through verdant meads and flowery gardens, reflecting in its cryfal bofum the varied objects that adom its banks, and refrefhing the country through which it flows.
"To illuttrate his oratory by example, would require voluminous tranferipts from the records of Parliament ; and it is unneceffary, as we can appeal to living recollection.
"Having added weight and digrity to the offices of attorney and folicitor general, his reputation as a fpeaker, a lawyer, and a politician, elevated him to the peerage, and the exalted pooft of chief juftice of England. He afcended to the dignities of ftate by rapid frides : they were not beftowed by the caprice of party favour or affection. They were (as was faid of Pliny) liberal difpenfations of power upon an object that knew how to add new luftre to that power, by the rational exertion of his own.
" Here we can fpeak of this great man within our own recollection ; and however party prejucices may adopt their different favourites, and each contend in detracting from the merit of the other, it is, we believe, generally underflood, that precedence is allowed the Earl of Mansfield, as the firtt magiftrate that ever fo pre-eminently graced that important fation. The wifdom of his decifions, and urbiaffed tenor of his public conduft, will be held in veneration by the fages of the law, as long as the fpirit of the conttitution, and juft notions of equity, continue to have exiftence. No man has ever, in an equal degree, poffeffed that wonderful fagacity in difcovering chicanery and artifice, and fepa. rating fallacy from truth, and fophitry from argument, fo as to hit the exact equity of the cafe. He fuffered not juftice to be Atrangled in the nets of form.
"His memory was aftonifhing - he never took notes,

\section*{\(M\) U R [ 289\(] \quad\) M U R} or, if he did, feldom or ever confulted them." His references to expreflions which fell from him in the courfe of the debate, or his quotations from books, were fo faithful, that they might have been faid to have been repated verbatim. The purpofes to which lie employed thefe amazing talents were ftill more extraordinary: if it was the weak part of his opponent's arguments that he referred to, he was fure to expofe its fallacy, weaknefs, or abfurdity, in the moft poignant fatire, or hold it up in the moft ridiculous point of view. If, on the contrary, it were a point on which his adverfarics laid their chicf ftrefs, he thted the words correêly : colleted their obvious mizanieg, confidered the force of the feveral arguments that had or might have been raifed unon them, with a precifion that would induce an auditor almoft to fuppofe that he had previouny confidered the whole, and that his fpeech was the refult of much previous ftudy.
"It may be faid of Mansfield as of Virgil, that if he had any faults, they might be confidered in the fame manner with thofe of fome eminent fixed ftar, which, if they exift at all, are above the reach of human obfervation. The luminous rether of his life was not obfeured by any. fhade dark enough to be denominated a defect. On account of his defcent, local prejudices and propenfities were imputed to him, and his conduct, on that account, examined with a microfcopic cye ; but the optic through which it was viewed poffeffed a party tinge, equally odious and deceptive.
" His political principles were ever confiftent; and to preferve confiftency in fuch fations and in fuch times as occupied the life of Mansfield, conftitutes an ordeal ftrongly impreffive of virtue. It has been faid that he wanted Spirit. Is the uniform oppofition of popular opinion, and apparently the contempt of it, any proof of the affertion? His fpeech and conduct. in the affair of Wilkes's outlawry, wher popular prejudice ran in torrents, illuftrate each other. He defpifed (to borrow an exprefion of his own) that mufhroom popularity that is raifed without merit, and loft without a crime. He difdained being the flave of popular impulfe, or to acknowledge the fhouts of a mob for the trumpet of fame."

He had a mind too great to be afhamed of revering the ordinances of religion ; and as, after the moft impartial inquiry, he was a firm believer of the truth and importance of Chriftianity, he frequented the church regularly, and received the holy facrament on the higher feftivals. Mr Holliday has publifhed a fermon, which he fays was dietated by Lord Mansfield to his friend bifhop Johnfon, and preached by that prelate before the Houfe of Lords. It is a very ferious and appropriate difcourfe; but judging upon internal evidence, we fhould not have fuppofed it the compolition of the eloquent and argumentative chief juftice of England. His Lordfhip's will, which was written with his own hand, upon little more than half a fheet of paper, begins with the following elegant and pious paragraph, with which we fhall conclude this fiketch of his character :
"When it fhall pleare Almighty God to call me to that flate, to which, of all I now enjoy I can carry only the fatisfaction of my own confcience, and a full re-

Suppl. Vol. II. Part I.
liance upon his mercy through Jefus Chrift, I defire Mufeum. that my body may be interred as privately as may be: and out of refyect for the place of my carly education, I fhould wifh it to be in weftuiniter Abbey." It was interred in Weftminfter Abbey, in the fame vault with the Countefs (who had died April 10. 1784), between the late Earl of Chathum and Lord Robert Manners.

MUSEUM, in the language of the prefent day, is a building in which are deprofted feceimens of every object that is in any degree curious, whether fach objects be natural or artificial. What the word mufeum exprefled originally, has been told under that title in the Encyclopadia.

A complete muferm contains collections of preferved bealts, birds, tithes, reptiles, B.c.; models of machines; rare manufctipts; and indeed fpecimens of every thing neceflary to illuftrate phyfical fcience, to improve art, to aid the antiquarian in his refearches, and to exlibit the manners and cultons of men in diftant ages and nations. As natural objects of uncommon fize or beauty, and other rare protuctions, were, in the earlieft periods, confecrated to the gods, the-temples were, of courfe, the firlt repolitories of fuch collection3, or, in other words, the firft Mufeums. This, we think, has been completely proved by Profeffor Beckmann *. *Inventionss
" When Hanno (fays he) returned from his diffant vol. ii. voyages, he brought with him to Carthage two fkins of 44. the hairy women whom he found on the Gorgades iflands, and depolited them as a memorial in the temple of Juno, where they continued till the deftrustion of the city. The horns of a Scythian animal, in which the Stygian water that deltroyed every other veffel could be coutained, were fent by Alexander as a curio. fity to the temple of Delphi, where they were fufpended, with an infcription, which has been preferved by Allian. The monftrous horns of the wild butls which had occafioned fo much devaftation in Macedonia, were, by order of King Philip, hung up in the temple of Hercules. The unnaturally formed fhoulder bones of Pelops were depofited in the temple of Elis. The horns of the fo called Indian ants were fhewn in the temple of Hercules at Erythre: and the crocodile found in attempting to difcover the fources of the Nile was preferved in the temple of Ifis at Cxfarea. A large piece of the root of the cinnamon tree was kept in a golden veffel in one of the temples at Rome, where it was examined by Pliny. The Rin of that monfter which the Roman army in Africa attacked and deitroyed, and which, probably was a crocodile, an animal common in that country, but never feen by the Romans before the Punic war, was, by Regulus, fent to Rome, and hung up in one of the temples, where it remained till the time of the Numantine war (A). In the temple of Juno, in the inand of Melita, there were a pair of elephants teeth of extraordinatry fize, which were carried away by Mafiniffa's admirat, and tranfmitted to that prince, who, though he fet a high value upon them, fent them again back, becaufe he heard they had been taken from a tem. ple. The head of a baflifif was exhibited in one of the temples of Diana; and the bones of that fea monfter, probably a whale, to which Andromeda was expofed, were preferved at Joppa, and afterwards brought to
(A) We think, with the tranflator of Beckmann's Hiftory, that this animal was not the crocodile, but the Boa renffritior. See Boa and Serpent, Encycl.

Mureum. Rome. In the time of Paufanias, the head of the cele. brated Calydonian boar was fhewn in one of the temples of Greece ; but it was then deftitute of brifles, and had fuffered confiderably by the hand of time. The mon. ftrous tufks of this animal were brought to Rome, after the defeat of Anthony, by the Emperor Augulus, who caufed them to be fufpended in the temple of Bacchus. Apollonius tells us, that he faw in India fome of thofe nuts which in Greece were preferved in the temples as curiofities."

Though thefe curiofities were preferved in the temples for purpofes very different from thofe for which our collectious are made, there can be no doubt but that they contributed to promote the knowledze of natural hiftory. If it be true, as Pliny and Strabo inform us, that Hippocrates availed himfelf of the accounts which were hung up in the temple of \(厄\) 厄culapius of different difeafes, and of the medicines and mode of treatment by which they were cured; it will eafily be believed, that the natural hiftorians availed themfelves, in a fimilar manner, of the various rare objects which were preferved in the temples of the other gods. This, we fee, Pliny actually did.

Suetonius informs us, that Auguftus had, in his palace, a collection of natural curiofities; and it is well known that Alexander gave orders to all hunt fmen, bird- catchers, fifhermen, and others, to fend to Ariftotle whatever rare animals they could procure. M. Beckmann feems to be of opinion, that the firf private mufeum was formed by Apuleius, who, next to Ariftotle and his fcholar Theophraftus, certainly examired natural objects with the greatef ardour and judgment; who caufed animals of every kind, and particularly fifh, to be brought to him either dead or alive, in order to defcribe their external and internal parts, their number and fituation, and to determine their claracterifing marks, and eftablifh their real names; who undertook diftant journeys to become acquainted with the fecrets of nature; and who, on the Getulian mountains, collected petrefactions, which he confidered as the effects of Dencalion's flood.

The principal caufe why collentions of natural curiofities were farce in ancient times, muft have been the ignorance of naturalifts in regard to the proper means of preferving fuch bodies as foon fpoil or corrupt. Some meilods were indeed known and pratifed, but they were all defective and inferior to that by firit of wine, which prevents putrefaction, aurd which, by its perfect tranfparency, permits the objects which are covered by it to be at all times viewed and examined. Thefe me. thods were the fame as thofe employed to preferve provifions, or the bodies of great inen deceafed. They were put into falt brine or honey, or were covered over with wax. Thus the hippopotamus, deferised by Columna, was fent to him from Egypt preferved in falt. The body of Agcfipolis King of Sparta, who died in Macedonia, was fent home in honey; the celebrated purple dye of the ancients was preferved frefh for many years ly the fame means; and at this day, when the Orientals are defirous of tranfporting fifh to any diftance, they cover them over with wax.

In thofe centuries which are ufually called the middle ages, the Profefior finds no traces of what can be called a mufeum, except in the treafuries of emperors, kings, sud princes, where, befides articles of great value, cu-
riofities of art, antiquities, and relics, one fumetimes Muren found fcarce and fingular foreign animalf, which were dried and preferved. Such objects were to be feen in the old treafury at Vienna; and in that of St Denis was exlibited the claw of a griffin, fent by a king of Perfia to Charlemagne; the teeth of the hippopotamus, and other things of the like kind. In thefe collections, the number of the rarities always increafed in proportion as a talte for natural hiltory became more prevalent, and as the extenfion of commerce afforded better opportunities for procuring the productions of remote countries. Menageries were eftablifhed to add to the marnificence of courts, and the fluffed flins of rare animals were liung up as memorials of their having exifted. Public libraries alfo were made receptacles for fuch natural curiofities as were from time to time prefented to them; and as in univerfities the faculty of nedicine liad a ball appropiated for the diffection of human bodies, curiofities from the animal kingdom were collected there alfo by degrees; and it is probable that the profeffors of anatomy firft made attempts to preferve different parts of animals in fpirit of wine, as they were obligid to keep them by them for the ufe of their fcholars; and becaufe in old times dead bodies were not given up to them as at prefent, and were more difficult to be or tained. I'rivate collections appear for the fift time in the 16 th century ; and there is no doubt (fays our anthor) that they were formed by every learned man who at that period applied to the ftudy of natural hiftory.
MUSHROOM, a fungus, of which fome of the principal fpecies have been defcribed in the Encyclopadia under the generic name Agericus. There is, however, one fpecies not mentioned there - the Boletus birfutus of Bulliard, which is certainly worthy of notice, fince one of the French chemifts has lately extracted from it a bright, fhining, and very durable yellow dye. This pretty large muffroom grows commonly on walnut and apple-teces. Its colouring-matter is contained in abundance, not only in the tubular part, but alfo in the parenchyma of the bndy of the mufhroom. In order to extract it, the mufhroon is pounded in a mortar, and the liquor thence obtained is boiled for a quarter of an hour in water. An ounce of liquor is fufficiert to communicate colouring-matter to fix pounds of water. When the licuor has been frained, the ftuff to be dyed is put into it, and boiled for a quarter of an hour. All kinds of ftuff receive this colour and retain it ; but on linen and cotton it is lefs bright. This colour may be modified, in a very agreeable manner, by the tffect of mordants.

The procefs fucceeded beft on filk. When this fubftance, after being dyed, is made to pars through a batb of foft foap, it acquires a fhining golden yellow culour, which has a perfect refemblance to the yellow of that filk employed to imitate embroidery in gold, and whict has hitherto been brought from China and fold at a dear rate, as the method of dyeing it is unknown its Europe. The yellow colour extracted from this mufhroom may be employed alfo with advantage for paiuting in water cuiours as well as in.oil.

MU TSUDDIES, in Lengal, writers, accountanten officers of government.

MUZCOORET, allowances to zemindars in land or money. See Zemindar, Suppl.

\({ }_{10}^{\text {abib }} \mathrm{N}\)ABOB, or NOwaE, a title of courtefy given in India to Mahomedans high in flation, particularly provincial governors.

The SUN's NADIIR, is the axis of the cone project. ed by the fhadow of the earth: fo called, becaufe that axis being prolonged, gives a point in the ecliptic diametrically oppofite to the fun.

NAIB, a deputy.
NAKED, in architecture, as the naked of a wall, \&c. is the furface, or plane, from whence the projectures arife; or which lerves as a ground to the projectures.

NANCOWRY, or SOURY, as it is fometimes called, is one of the Nicobar ifles, and fituated nearly in the centre of the clufter (See Nicobar, Encycl.). Its length may be about eight miles, and its breadth nearly equal. The illand of Comerty, which is near it, is more extenfive, but does not perhaps contain more folid land, being excavated by a very large bay from the fea. The fpace between thefe two iflands forms a capacious -and excellent harbour, the eaftern entrance of which is fheltered by another ifland, called Trikut, lying at the diftance of about a league. The inlet from the weft is narrow, but fufficiently deep to admit the largett fhips when the wind is fair.
The Danes have long maintained a fmall fettlement at this place, which ftands on the northern-molt point of Nancowry, within the harbour. A ferjeant and three or four foldiers, a few black flaves, and two rufty old pieccs of ordnance, compofe the whole of their eftablinment. They have here two houfes; one of which, built entirely of wood, is their habitation; the other, iormerly inhabited by their miffionaries, ferves now for a : forehoufe.

Thefe iflands are in general woody, but contain likewife fome portions of clear land. From the fummits of their hills the profpects are often beautiful and romantic. The foil is tich, and probably capable of producing all the various fruits and vegetables common to hot climates. The natural productions of this kind, which mofly abound, are cocoa nuts, papins, plantains, limes, taman inds, beetle nuts, and the melori, a fpecies of breadfruit ; yams, and other roots are cultivated and thrive; but rice is here unknown. The mangefain-tuee, whofe fruit is fo jufly extolled, grows wild; and pineapples of a delicious flavour are fonnd in the woods.

Of all the Nicobar ifles Nancowry and Comerty are faid to be the belt poopled ; the pupulation of both being fuppofed to amount to eight hundred. The natives of Nancowry and of the Nicobar iflands in general, live in villages on the fea-ihore, and never ercet their habitations inland (A). 'i'heir houfes are of a circular form, and are covered with elliptical domes, thatched with grafs and the leaves of cocoa nut. They are raifed up.
on piles to the height of fix or eight feet acove the Nancowry. ground; the floor and fides are laid with planks, and the afcent is by a ladder. In thofe bays or inlets. which are fheltered from the furf, they erect them fometimes fo recar the margin of the water as to admit the tide to flow under, and wah away the ordure froin below.

In front of their villages, and a little advanced in the water, they plant beacons of a great height, which they adorn with tufts made of grafs, or the bark of foine trce. Thefe objects are difcernible at a great diftance, and are intended probably for lardmarks; their houfes, which are overthadowed by thick groves of cocoa-nut trees, feldom being vifible from afar.

The Nicobareans, though indolent, are in general robuft and well-linbed. Their features are fomewhat like the Malays, and their colour is nearly fimilar. The women are much inferior in flature to the men, but more active in all domettic affairs. Contrary to the cuftom of other nations, the women fhave the hair of their heads, or keep it clofe cropt, which gives them an uncouth appearance, in the eyes of Arangers at lealt.

The inhabitants of Nancowry perform, every year, a very extraordinary ceremony in honour of the dead. It is thus defcribed by Licutenant Colebrooke:
"On the anniverfary of this feftival, if it can be fo called, their houfes are decorated with garlands of flowers, fruits, and branches of trees. The people of each village affemble, dreft in their beft attire, at the principal houfe in the place, where they fyend the day in a convivial manuer; the men, fitting apart from the women, fmoke tobacco, and intoxicate themelves ; while the later are nurling their children, and employed in preparations for the mournful bufinefs of the night. At a certain hour of the afternoon, announced by friking the Goung, the women tet up the mott difmal howls and lamentations, which they continue without intermifion till about fun-fet; when the whole party get up, and walk in proceffion to the buryingground. Arrived at the place, they form a circle around one of the graves, when a ttake, planited exactly over the head of the corpfe, is pulled up. The woman who is neareft of kin to the deceafed, fteps out from the crowd, digs up the fiull, and draws it up with leer lands. At t!ght of the boics, her Atrength feems to fail her; The thricks, the fobs; and tears of anguilh abundantly fall on the mouldering object of her pious care. She clears it from the earth, fcrapes off the feftering fleft, and laves it plentifully with the milk of frefh cocoa-nuts, fupplied by the byitanders; after which fhe rubs it over with an infufion of fation, and wraps it carefully in a piece of new cloth. It is them depofited again in the eatth, and covered up; the fake is replanted, and hung with the valious trappings and 002 imple-
(1) The great Nicubar inand is perhaps an exception, where, it is faid, a race of men exifs, who are totally different in their colour and mamers. They are confidered as the Aborigines of the country. Ihey live in the interior parts among the mountains, and commit frequent depredations on the peaceable inhabitants of the ccalts.

Nancowry implements belonging to the deceafed. They proceed then to the other graves; and the whole night is fpent in repetitions of thefe difmal and difgufful rites. 1
"On the morning following, the ceremony is concluded by an offering of many fat fwine; when the facrifice made to the dead affords an ample feat to the living: they befmear themfelves with the blood of the flaughtered hogs, and fome, more voracious than others, eat the flefh raw. They have various ways, however, of dreffing their mear, but always eat it without falt. A kind of patte made of the melori, ferves them for bread; and they finifh their repaft with copious potations of taury, an inebriating liquor."
The Nicobareans are hofpitable and honef, and are remarkable for a ftrict obfervance of truth, and for punctuality in adhering to their engagements. Such erimes as theft, robbery, and murder, are unknown in thefe iflands; but they do not want fpirit to revenge their injuries, and will fight refolutely, and flay their enemies, if attacked or unjuitly dealt with. Their only vice, if this failing can be fo called, is inebriation; but in their cups they are generally jovial and good-humoured. It fometimes, however, lappens at their fealts, that the men of different villages fall out; and the quarrel immediately becomes general. In thefe eafes they terminate their differences in a pitched battle; where the only weapons ufed are long flicks, of a hard and knotty wood. With thefe they drub one another moft heartily, till, no longer able to endure the conflict, they mutually put a ftop to the combat, and all get drunk again.

NANKAR, ancient allowance to zemindars in land or money.

NANKEEN, or NAN-king, is a well known cotton fuff, which derives its name from the ancient capital of China (See Nan-king, Encycl.). It is, however, according to Van Brazm, manufactured at a great diftance from that city, in the diftrict of Fong-kiang-fou, fituated in the fouth-eaft of the province of Kiang-nam upon the fea-fhore. The colour of nankeen is natural, the down of which it is made being of the fame yellow tinge with the cloth. The colour, as well as fuperior quality of this cotton, feems to be derived from the foil'; for it is. faid that the feeds of the nankeen cotton degenerate in both particulars when \(\operatorname{tranf}\) planted to another province, however little different in its climate. The common opinion, that the colour of the ftuff is given by a dye, occafioned an order from Europe, fome years ago, to dye the pieces of nankeen of a deeper colour than they had at that period; and the reafon of their being then paler than formerly is as follows :

Shorlly after the Americans began to trade with China, the demand increafed to nearly double the quantity it was poffible to furnifh. To fupply this deficiency, the manufacturers mixed common white cotton with the brown; this gave it a pale caft, which was immediately remarked; and for this lighter kind no purchafer could, be found, till the other was exhaufted. As the confumption is grown lefs during the laft three years, the mixture of cotton is no longer neceffary, and nánkeen is become what it was before. By keeping them two or three years, it even appears that they have the property of growing darker. This kind of ftuff muft be acknowledged to be the ftrongeft yet known. Many perfons have found that clothes made of it will laft three
or four years, although for ever in the wafth. This it is Naplat, that makes them the favourite wear for breeches and waiftcoats both in Europe and. America. The white
nankeen is of the fame quality, and is made of white cotton as good as the brown, and which alfo grows in Kiang nam.

NAPLES-Yeslow, cailed alfo Neapolitan earth, in Italian Giallolino, and in French Faunc de Naples, is a beautiful pigment, concerning which we have inuch in. formation from the indefatigable Beckmann. "It has (fay's he) the appearance of an earth, is of a pale orangeyellow colour, ponderous, granulated, exceedingly friable, does not efllorefce, nor become moitt when expofed to the air, but when applied to the tongue feems to adhere to it. When reduced to a fine powder, it remains for fome time fufpended in water, but foon depofits itfelf at the bottom in the form of a llime. When boiled with water, the water, at leaft fometimes, is obferved to have a fomewhat faline tafte. It does not effervefce with acids, but is in part diffolved by aqua regia (nitro-muriatic acid). In the fire it emits no fulphureous vapour, is difficult to be fufed, and by that operation undergoes no material change, only that its colour: becomes fomewhat redder. When fufed with colourlefs glafs, it gives it a milk-white colour, a fure proof that it contains no iron; and, with inflammable fubftances, there is obtained from it a regulus which has the appearance of a mixture of lead and antimony.
"This article is brought from Naples for the mott part in the form of an earthy cruft about three or four lines in thicknefs, and it fometimes retains the form of the veffel in which it has hardened. It can be procured alfo as a fine powder, as the colourmen keep it fometimes ready pounded for ufe."

About the nature of the fubftance called Naples yellow there has been much diverfity of opinion. Moft of thofe who have written about it, confider it as originating from fire, and as a volcanic production of Mount Vefuvius or Mount. Ettna; others have pronounced it to be a natural ochre. Guettard thought it rather a kind of bole; but Pott approached neareft the truth, by afferting it to be an artificial preparation *. Fou-* Litbge: geroux is entitled to the merit of having proved this, gropfis, i.i. and of having fhewn the poffibility of prepating it. Ac-P. is. cording to his experiments, Naples yellow will be ob tained, if you boil for feven or eight hours, fift over a flow and then over a ftrong fire, a mixture finely pul. verifed of twelve parts of pure white lead, one part of alum, one part of fal ammoniac, and three parto of diaphoretic antimony \(\dagger\) (white oxyd of antimony by + Mm. of nitre). But before Fougeroux, who may have obtain- tbe Acad. ed an account of the procefs during his travels through of Sciatere, Italy, a more certain procefs was oublifhed in the year \({ }^{1766}\). 1758, by Giambattifta Pafferi, in his interefting work on the painting of earthen-ware \(\ddagger\). The articles to be \(\ddagger\) In Nur employed, according to this author, are, " one pound racolla of antimony, a pound and a half of lead, one ounce of doppraflis alume di feccia, and the fame quantity of common fiemitifcic, falt." I am inclined (fays M. Beckmann) to think \({ }^{t}\) that this receipt was not unknown to Fougeroux, and that he confidered alume di feccia to be alum. Profeffor Leonhardi, a man of very found learning, has tranीated this expreffion by the word alum. I will, however, freely confefs, that I confider alume di feccia not to mean alum, but falt of tartar, or potafh. Paf-
ferif fays, that the proportions may be varied different ways \({ }^{7}\); and he gives fix other receipts, in which he docs not mention alume di feccia, but only feccia; and this word certainly means weinhefen or wineftone (tartar). Profeflor Leonhardi himfelf feerns to confirm this opinion, by faying, that Vaire, profeffor of chemiftry at Naples, has tranflated "the afies of wine lees" (cineres infctiorii) by the words alume di feccia.

After Fougeroux's paper was priritec̀, De la Lande publifhed a receipt which he had received from the well-known prince San Severo, and in which lead and autimony only are employed; but no mention is made either of alum, tartar, or any other falt. This receipt is as follows:

Take lead well calcined and fifted, with a third pant of its weight of antimony pounded and fifted alfo. Mix thefe fubltances well together, and fift them again through a piece of filk, Then take large flat earihen difhes, not varnifhed, cover them with white paper, and fpread out the powder upon them to the depth of about two inches. Place thefe difhes in a potter's furnace, but only at the top, that they may not be expofed to too violent a heat. The reverberation of the flame will be fufficient. The difhes may be taken out at the fame time as the earthen-ware, and the fubflance will then be fonnd hard, and of a yellow colour. It is then pounded on a piece of marble with water, and af. terwards dried for ufe.

The enamel-painters in Germany prepare a yellow glazing, not very different from the real Naples yellow. by a prefcription, according to which, "one pound of antimony, fix ounces of red lead, and two ounces of white fand, are to be fufed together. The prodace, which appears quite black, is to be pounded, and then fured again; and this procefs is to he repeated till the whole mats becomes thoroughly yellow. Half a ponnd of this mals is to be mixed with two ounces of red lead, and afterwards fufed; and by this tedious procefs an orange-yellow pigment will be obtained."
All artits who fpeak of the ufe of Naples yellow, give cautions againft applying iron to it, as the colour by thefe means becomes greenifh, or at leaft dirty. For this reafon, it muft be pounded on a flone, and fcraped together with an ivory fpatula. It is employed chiefly in oil painting, becaufe the colour is fofter, brighter, and richer than that of ochre, yellow lead, or orpiment, and becaufe it far exceeds thefe pigments in durability. It is employed in particular when the yellow ought to have the appearance of gold, and in this refpect it may be prepared with gum water, and ufed as a water colour. A Atll greater advantage of it is, that it is proper for enamel painting, and on that account may be employed on porcelain or earthen ware (A). Profeffor Beckmann, however, recommends to artilts to examine whether the oxyd prepared from wolfram, by boiling in the muriatic acid, which has a beautiful yellow colour, might not be ufed in the fame manner as Naples yellow.
NARDUS. Under this generic term we have, in the Encyclopaclia, given, from the Pbilofophical Tranfattions, a defeription of the plant or grafs which Dr Blane confiders as the fikenard of the ancients. It is
our cuty, in this place, to inform our readers, that Sir William Jones, in the 2 d and 4 th volumes of the Afiatic Refearclues, feems to have completely proved that the fpikenard of Diofiorides and Galen, or Nardus Indicit, was a very different plant from the Andropogon of Dr Blane, and that it grows in a country far diftant from Mackrath. 'The proofs brought by the illufrious prefident of the Aliatic society, in fupport of his own opinion, are ton nunierons and circurnftantial to be introduced into fuch a work as this. We flall therefore only give one of thein; which though, when feparated from the relt, it lufes mich of its force, mult be allowed, eveu fingly, to have great weight.

The true Indian fpikenard is confeffedly called by the Arabs Sumbula'l Hind; for fo they tranflate the name of it in Diofcorides. Now (fays Sir William) I put a fair and piain queftion feverally to three or four Muffulman phyfecians: "What is the Indian name of the plant which the Arabz call Sumbulu'l Hind :"" They all anfwered, but fome with more readinefs than others, Fitmimans:. After a pretty long interval. I Thewed then the fikes (as they are calied) of Fitimansi, and afked, what was the Arabic name of that Indian drug? They all anfwered readily, Sam.b:in' Hind. The fame evidence may be obtained in thio country by any othe: Enropean who feeks it ; and if anoong twelve native phyficians, verfed in A rabian and Indian philology, a fingle man fhould, after due corilideration, give different anfwers, I will cheerfally lubmit to the Roman judgment of non liquet. But the Fátámansi* evidently belongs to the natural order which Linnæus calls aggreati'; with the following cha. racerers:

Calyx, fcarce any; margin, harclly difcernible. Ciorolla, one petal ; tuke fomewhat gribbous; border five cleft. Staming, three Antbers. Pijlula, Germ bencath; one Style erect. Seed, [olitary, crowned with a pap. pus. Root, fibrous. Leaves, hearted, fourfold; radical leaves petioled.

It appears therefore (continues the learned autior) to be the Protean plant Valerian, a filter of the Mountain and Celtick Nard, and of a fpecies which I fhould defcribe in the Linnean Nyle, Valeriana Fatiomansi floribus trizndris, fuliis cordatis quaternis, radicalibus petiolutis. The radical leaves, riling from the ground, and enfolding the young flem, are plucked up with a part of the root, and being dried in the fun or by an artificial heat, are fold as a drug, which, from its appearance, has been called fpikenard. 'The Játámansí is a native of the inoft remote and hilly parts of India, fuch as Ne'pa'E, Marang Butan, near which Ptolemy fixes the native foil of the Nardus Indica. It grows erect above the furface of the gromel, refenbling an ear of green wheat ; and when recent, it has a faint odour, which is greatly increafed by the finiple procefs of drying it.

NARES (JAmes), doctor of mufic, an eminent Biog. Dic. compofer and teacher in that fcience, under whom fome new ecit. of the firft muficians of the prefent day received the whole or part of their education, was the fon of Mr Nares, who was, for many years, fteward to Montague
(A) In the Memoirs of the Acaderny of Sciences for \(\mathbf{1 7 6 7}\), Fougeroux has proved that the giallolino prepared by him produced on porcelain a much more beautiful colour than the Naples yellow fold in the fhops.

\section*{N A R [ 204 ] N A R}

Nares. and Willoughby; earls of Abingdon. He was born, as well as his brother, the late Mr Juftice Nares, at Stanwell in Middlefex; the former in 1715 , the latter in 1716. His mufical education he commenced under Mr Gates, then mafter of the royal choritters ; and completed it under the celebrated Dr Pepulch. Thus prepared, he officiated, for fome time, as deputy to Mr Pigott, organif of Windfor; but on the refignation of Mr Salifbury, organift of Yoik, in 1734, was chofen to fucceed him, being then only nineteen. It is related, on undoubted authority, that, when the old mulician firt faw his intended fucceffor, he faid, rather angrily, "What ! is that child to fucceed me?" which being mentioned to the organift-elect, he took an early op. portunity, on a difficult fervice being appointed, to play it thioughout half a note below the pitch, which brought it irto a key with feven Sharps; and went through it without the flightefit error. Being afked why he did fo ? he faid, that "he only wifhed to fhew Mr Salifbury what a child could do." His knowledge in all branches of his profeffion was equal to his practical fkill in this inflance; and, curing his refidence at York, where he was abundantly employed as a teacher, and where he married, Mr Nares, by his good conduct, as well as profeffional merit, obtained many powerful friends. Among the foremoft of thefe was Dr Fontayne, the refpectable and venerable dean of York; who, when Dr Green died, towards the latter end of 17.55, exerted his intereft fo fuccefffully, that he obtained for him the united places of organift and compofer to his majefty. He removed therefore to London in the beginning of 1756 ; and, about the fame time, was created doctor in mufic at Cambridge.

On the refignation of Mr Gates, in 1757, Dr Nares - obtained alfo the place of mafter of the chorifters; which having been, for a long time, without increafe, notwithfanding the increafe of expences attending it, was, by royal favour, augmented about 1775 , firlt with the falary of the violift ; and, on the revival of that place for Mr Crofdill, in 1777, with that of lutanit, which was amnexed to it for ever. It was in this lituation that Dr Nares fuperintended the education of many pupils, who have fince become famous ; particularly Dr Arnold, who, though with him only for a fhort time, was highly dittinguifhed by him for talents and application. The anthems and fervices which Dr Nares produced, as compofer to the royal chapel, were very numerous; many of them have fince been printed, and many which exit only in manufcript ftill continue to be performed in the choirs with much effuct. Having been originally a mufcian rather by aecident than choice, with very ftrong talents and propenfities alfo for literature, Dr Narea was particularly attentive to exprefs the fenfe of the words he undertook to fet; and was the firft who attempted to compofe the Te Deum for the choir-fervice, in fuch a manner as to fet off the fentiments it contains to advantage. Before his time, it had been fet rather to a regular ftrain of chaunt than to any expreffive melodies. The merits of Dr Nares were not overlooked by his royal patrons, whom he had occafionally the honour to attend in private, though not a part of his regular duty. To manifeft his refpeet and gratitude for them, he compofed his dramatic ode, entitled The Royal Paftoral, the words of which were
written by Mr Bellamy, author of a book, entitled Nisen Ethic Amufements.

In July 1780 , Dr Nares was obliged, by declining health, to refign the care of the chorifters, in which place he was fucceeded by Dr Ayrton, his pupil and valued friend, In his fixty-eighth year, a conftitution, never robuft, gave way, and he died on February 10 . 1783. Teftimony has been borne to the merits of Dr Nares by feveral writers, but more particulaly by Mr M 2 fon, in his preface to a book of anthems, printed for the ufe of York Cathedial ; and in his late Effays on Church Mufic, page 138. The late Lord Mornington, fo well known for mufical talents, frequently confulted him; and Sir John Hawkins derived advantage from kis acquaintance, in the progrefs of his Hiftory of Mufic. Throughont life, he was not lefs refpected as a man than admired as a mufician ; he had a vivacity that rendered his fociety always pleafing; and a generous contempt for every thing bafe, that manifefted itfelf on all proper occafions, and very juftly commanded efteem.

His printed works are thefe: 1. Eight Sets of Leffons for the Harpfichord ; dedicated to the Right Hon. Willoughby Earl of Abingdon. Printed in 1748 ; reprinted in 1757. 2. Five Leffons for the Harpfichord, with a Sonata in feore for the Harpfichord or Organ ; dedicated to the Right Honourable the Countels of Carlifie; publifhed in 1758 or 1759. 3. A Set of Eafy Leffons for the Harpfichord, three in number; with a dedication to the public, figned J. N. 4. A Treatife on Singing, fmall fize. 5. 11 Principio ; or A regular Introduction to playing on the Harplichord or Organ. This was the firft fet of progreflive leffons publifhed on a regular plan. 6. The Royal Paftoral, a Dramatic Ode; dedicated to his Royal Highnefs the Prince of Wales; printed in fcore, with an overture and chorufes. 7. Catches, Canons, and Glees; dedicated to the late Lord Mornington. 8. Six Fugues, with Introductory Voluntaries for the Organ or Harplichord. 9. A Concife and Ezry Treatife on Singings with a Set of Englifh Duets for Beginners. A difterent work from the former fmall treatife. 10. Twenty Anthems, in fcore, for one, two, three, four, and five Voices. Compofed for the Ule of his Majefty's Chapels Royal, 1778. 11. Six Eafy Anthems, with a favourite Morning and Evening Service, left for publication at his death, and publifhed in 1788 , with a portrait and a concife account of the author. Of thefe compofitions the following fhort character is given by an eminent mufician, to whom they are all well known : "The leflons are compofed in a mafterly and pleafing fyle; free from thofe trieks and unmeaning fucceflions of femitones, to which a good ear and lound judgment never can be reconciled. The treatifes on finging contain duets compofed for the ufe of the children of the royal chapels, fuperior to any thing yet publifh. ed; and fuch as every teacher ought to perufe. His catches, canons, and glees, are natural and pleafing; efpecially the glee to all Lovers" of Harnony, which gained the prize medal at the catch-club in 1770 . The Royal Pattoral is compofed throughout in a very matteriy manner; particularly the chorufes, with which each. part concludes. This ode, containing 108 pages, was written, and all the vocal and inftrumental parts trawfribed for performing, within twelve days. The

\section*{N A V}

N a: a:rs. fix fugues, with introdufory voluntarics for the organ, contain the frongelt proofs of ingenuity and juagement ; few, if any, have cver been written that can be preferred to them. In bott: fets of the anthems, the fame characterittics appear ; and the fervice of the latler very jutly acquired the title of favourite ; nor can there be any doubt that the works of this aurhor will be admired as long as a tatte for mufic fhall fublift."
NAVIGATORS IsLANDS, an archipelago in the South Sea, difoovered by Bougainville, who gave to them that name, becaufe the natives do not pafs betwcen the different villages, which are all built in creeks and bays, but in their canoes. The Navigators IQands are ten in number; namely, Opoun, Leoné, Fanfoú́, Maounina, Ojolava, Calinafé, Pola, Shika, Ofamo, and Ouera.

We have already given an account of the foil and procuctions of Manvana; and as the other iflands of this clutter are equally fertile, we need not go over the fame ground again. It may be proper, however, to obferve, that in fome of them the fingar-cane was found growing fpontaneoully, though its jnice contained lefs of the faccharine fublance than the fugar cane of the Weft Indies, which our voyagers attributed to its growing in a richer foil and in the made. According to Peroufe, the Navigators Iflands are fituated about the \(14^{\text {th }}\) degree of fouth latitede, and between the 171 It and \(\quad\) iffit degrees of longitude weft from Paris. In Oyolava the fmoke was feen hovering over a village as over a large European town ; and the number of canoes which from that ifland furrounded the frigates was immenfe. Thefe are very ticklifh veffels, and would be abiolutely ufelefs to any hody but fuch excellent fwimmers as the inanders, who are no more furprifed or uneafy at their overfetting than we are at the fall of a hat. Takirg up the canoe on their fhoulders, they einpty it of water, and then get in again, with the certainty of having the fame operation to perform a fecond time in half an hour. Sometimes they join two canoes together by means of a crofs piece of wood, in which they make a flep to reccive the malt; and in this way they are lefs liable to be overfet, fometimes performing a long voyage without any fuch accident. It is needlefs to add, that thefe canoes are very fmall, generally containing only five or fix perfons, though fome few of them may contain as many as fourteen.

The natives of the Navigators Iflands are tall and well made. Their ufual height is five feet ninc, ten, and eleven inches; but their ?ature is lefs altonifhing. than the coloffal proportions of the different parts of their bodies. "Our curiofity (fays Peroufe), which often led us to meafure them, gave thern an opportunity of making frequent comparifons of thcir bodily ftrength with ours. "Thefe comparifons were not to our advantage; and we perhaps owe our misfortu:les ( See Maounna in this Suppl.) to the idea of individual fuperiority refulting from repeated trials Their coun. tenances often appeared to exprefs a fentiment of difdain, which I hoped to deftroy, by ordering our arms to be ufed in their prefence: but my end could only have been gained by direeting them againft human victims ; for otherwife they took the noife for §port, \(^{2}\) and the trial for a diverfion.
" A mong thefe Iudians a very finall number is below the height indicated above. I have, huwever, raes-
\(295] \quad \mathrm{N}\) A V
fured feveral who were only five feet four inches, but Navigatort. thefe are the dwarfs of the country; and although their ftature refembles ours, their ftrong and nervous arms, their broad chefts, and their legs and thighs, are of a very different proportion.
"The men have the body painted or ratowed, fo that any one would fuppofe then clad, although they go almoft naked. They have only a girdle of feaweeds encircling their loins, which comes down to their knecs, and gives them the ajp pearance of the river godo of fabulous hiithry, whom it is cuftomary to depict with rufhes round the ir waitt. Their hair is very long. They often twift it round their heads, and thus add to their native ferocity of countenance, which always exprefes either furprife or anger. The leaft difpute between them is followed by blows of flicks, clubs, or paddles; and often, without duubr, cofts the combatants their lives They are almo!t all covered with fcars, which can only be the confequence of their individual quar1. 1s. The ftature of the women is proportioned to that of the men. 'They are tall, fendcr, and not without grace; but they lofe, while yet in their prime, thofe elegant forms, of which nature has not broken the mould ainong this barbarous race, but of which the appears to leave them in poffeffion only for' a moment, and with relucfance. A mong a great number of women that I had an opportunity of feeing, I only obferved three really pretty. The grofs effrontery of the reft, the indecency of their motions, and the difgufting of. fers which they made of their favours, rendered them fit mothers and wives for the ferocious beings that furrounded us." Our author gives the following inflance of indecent manners, which is, perhaps, without a parallel.

The young and prettict females foon attrated the attention of feveral Frenchmen, who, in Spite of the Commodore's prohibition, endeavoured to furm a connect:on with them, and were fuccefsful. The looks of the Europeans expreffing defires which were foon divined, fome old women undert ook the negociation. The altar was prepared in the handfomeft hut in the village, all the blinds were let down, and the inquifitive were excluded. The victim was then laid in the arms of an old man, who exhorted her, during the ceremony, to moderate the expreffion of her pain; while the matrons fang and howled: the ceremony being performed in their prefence, and under the aufp:ces of the old man, who ferved at once as prielt and altar. All the women and children in the village were round the houfe, gently lifting up the blinds, and feeking to erion ti:e light through the fmalle ll crevices in the mats. Whatever former navigators may have faid, Peroufe was convinced that, in the Navigators Illands at leal. the young girls, before they are married, a:e miitreffis of their perfons, and that they are not dihhonomred by their complaifance. It is even more than probable, that in marrying they are called to no account concerning their palt conduct ; but he had no doubt that they are obliged to be more referved when provided with a hußand.
thefe people cultivate certain arts with fuccefs. UnCer the article Maovana mention has beelu made of the: elegart form which they give to their huts. It is not with fuch folly as is commonly fuppofed that they dif: Jdin our inftruments of iron; for they finifh their work

Navigatore. very neatly with tools made of a very fine and compact fpecies of bafaltes in the form of an adze. For a few glafs beads they fold to Peroufe large three-legged difhes of a fingle piece of wood, and fo well polified that they feemed to have been laid over with a coat of the finelt varnifh. It would take an Enropean workman feveral cays to produce one of thefe difhes, which, for want of proper inftruments, mult coft an Indian feveral months labour. They fet, however, fcarcely any value upon them, becaufe they fet little upon the time they employ. The fruit trees and nutritious routs that grow fpontancounfy around them, infure to them their fubfiltence, as well as that of their hogs, dogs, and fowls; and if they fometimes floop to work, it is to procure enjoyments rather agreeable than ufeful. They manufacture very fine mats, and fome paper ftuffo. Our anthor remarked two or three of them, whom he look for chiefs, with a piece of cloth tied round their waift like a petticoat, inftead of a gircle of weeds. It is compofed of real thread, prepared no doubt froin fome filamentous plant like the nettle or flax; and is manufactured without a fhuttle, the threads being ab. fotutely laid over one another like thofe of their mats. This cloth, whicl has all the fupplenefs and folidity of ours, is very fit for the fails of their canoes; and appeared far fuperior to the paper ftuff of the Society and Friendly Inands, which they manufacture alfo. Their canoes are well conitructed, and furnifh a good proof of the nkill with which they work in wood. For a few glafs beads they gave to the Frenchmen, among other things, a wooden veffel filled with cocoa nut oil, exaetly of the fhape of our carthen pots, and fuch as no European would undertake to fathion by any other means than a turning lathe. Their ropes are round, and twiftcd like watch chains of ribbon: their mats are very fine; but their fuuffs are inferior to thofe of the Eafter and Sandwich Iflands.

Peroufe derives the natives of thofe iflands, whofe colour, he fays, nearly refembles that of the Algerines and other nations on the coaft of Barbary, from the Malays; and as we do not vouch for the truth of his theory, though we admit it to be ingenious, we thall give the reafoning by which he fupports it in his own words.
"We did not at firft difcover (fays he) any identity between their language and that of the natives of the Society and Friendly Inands, of which we had vocabularies ; but a more mature examination convinced us, that they fpeak a dialect of the fame language A fact which tends to prove it, and which confirms the opinion of the Luglifh concerning the origin of thefe people, is, that a yourg domeftic, a native of the province of 'Tagayan in the north of Manilla, underflood ard explained to us the greater part of their words. It
is well known that the Tagayan, the Talgal, and theNavigato generality of languages fpoken in the Philippines, are derived from the Malay: a language more diffufed than were thofe of the Greeks and Romans, and common to the numerous tribes that inhabit the iflands of the great Pacific Ocean. It appears to me evident, that all thefe different nations are the progeny of Malay colonies, which, in fome age extremely remote, conquered the iflands they iuhabit. I fhould not even wonder, if the Chinefe and Egyptians, whofe antiqeity is fo much vaunted, were mere moderns in comparifon of the Malays. But however this may be, I am fatisfied that the aborigines of the Philippine Inlands, Formofa, New Guinea, New Britain, the New Hebrides, the Friendly Iflands, \&x. in the fouthern hemifphere, and thofe of the Marianna and Sandwich iflands in the northern, were that race of woolly lreaded men ftill found in the interior of the iflands of Luconia and Formofa. They were not to be fubjugated in New Guinea, New Britain, and the New Hebrides; but being overcome in the more ealtern ifands, which were ton fmall to afford them a retreat in the centre, they mixed with the conquering nation. Thence has refulted a race of very black men, whofe colour is fill feveral fhades deeper shan that of certain families of the country, probably becaufe the latter have made it a point of honour to keep their blood unmixed. I was ftruck with thefe two very diftinct races in the Iflands of Navigators, and cannot attribute to them any other origin.
" The defcendants of the Malays have acquired in thofe iflands a degree of vigour and ftrength, a lofty flature, and a Herculean form, which they do not inherit from their forefathers, but which they owe, without doubt, to an abundance of food, to a mild climate, and to the influence of different phyfical caufes which have been conftantly aeting during a long feries of generations. The arts which they perhaps brought with them may have been lof for want of materials and in ftruments to practife them; but the identity of language, like Ariadne's clue, enables the obferver to fullow all the windings of this new labyrintl2. The feudal governinent is alfo preferved here: that goverument which little tyrants may regret; which was the difgrace of Europe for feveral centuries; and of which the Gothic remains are ftill to be found in our laws, and are the medals that atteft our ancient barbarifin: that government, which is the moft proper to keep up a ferocity of manners, becaufe the fmalleft difputes occafion wars of village againft village, and becaufe wars of this nature are conducted without magnanimity, and without couragc. Surprifes and treachery are employed by turns; and in thefe unfortunate countries, inftead of generous warriors, nothing is to be found but bafe affalfins.(A). The Malays are fill the moft peridious na-
(A) This was written under the old government of France by a man who, like other dechaimers in the caufe of liberty, forgot the excellencies, and infited only on the defects of the feudal inftitutions. Had Peroufe, however, returned to Europe, and witneffed the philofophic government of his country, he would have perceived, that liberty and equality, and the rights of man, are as well calculated to generate bafe affaffins, as the Gothic remains of that government by which he fuppofed Earope to have been fo long difgraced. He might even have lived to regret, that his lot was not caft among the bold and ferocious inhabitants of Maouana; for the treachery and cruelty of thefe people bears no proportion, even in his affecting narrative, to the fyttematic crnelty of thofe who decreed, that the end fanctifies the means, and that nothing, however atrocious in the eftimation of antiquated moralifts, is to be omitted, which centributes to elevate the mean above the noble.
tion of Afia ; and their children have not degenerated, becaufe the fame caufes have led to and produced the fame effects. It may be objected, perhaps, that it mult have been very difficult for the Malays to make their way from welt to eaft, to arrive at thefe different iflands; but the wefterly winds blow as frequently as the eafterly in the vicinity of the equator, along a zone of feven or eight degrees from north to fouth, where the wind is fo variable, that it is hardly more difficult to navigate eaft than welt. Eefides, thefe different conquefts may not have been effected at the fame time: the people in queltion may, on the contrary, have fyread themfelves by little and little, and gradually have introduced that form of government which ttill exifts in the peninfula of Malacca, at Java, Sumatra, and at Borneo, as well as in all the other countries fubject to that barbarous nation."
NaZER, Nazr, Nezer, Nuzzer, Nuzzerana; a prefent from an inferior: fees of office.

NEBULOUS, or Cloudy, a term applied to certain fixed ftars which thew a din hazy light; being lefs than thefe of the fixth magnitude, and therefore fearce15 vifible to the naked eye, to which at belt they only appear like little dufky fpecks or clouds. Through a mojerate telefcope, thefe nebulous flars plainly appear to be congeries or clutters of feveral little ftars.

NECKAR isLe, a fmall barren ifland, or rather rock, difcovered by Peroufe in the Pacific Ocean. Though its flerility renders it of no importance in itfelf, its exaet fituation mult be interefting to navigators, who are therefore obliged to the French Commodore for having afcertained its latitude to be \(23^{\circ} 34^{\prime}\) north, and its longitude to be \(166^{\circ} 52^{\prime}\) weft from Paris. From the foundings the Neckar feemed to be only the top or nucleus of a much more confiderable ifland, which, probably from being compofed of a foft and diffoluble fubflance, the fea had gradually wathed away. In proportion as the frigates left the fhore, the depth, which at the diffance of a mile was very little, gradually increafed, till, at the diflance of about ten miles, no bottom was found with a line of 150 fathoms; and over the whole of that fhore the bottom confifted of coral and broken fhells.

NEPAL, a kingdom of India, fituated to the north-ealt of the city of Patna, at the diftance of ten or twelve days journey. Within the diftance of four days journey from Nepal the road is good in the plains of Hiudoftan, but in the mountains it is bad, narrow, and dangerous. At the foot of the hills the country is called Teriani; and there the air is very unwholefome from the middle of March to the middle of November; and people in their paffage catch a diforder called in the language of that country aul; which is a putrid fever, and of which the generality of people, who are attacked with it, die in a few days; but on the plains there is no apprehenfion of it. Although the road be very narrow and inconvenient for three or four days at the paffes of the hills, where it is neceffary to crofs and recrofs the river more than fifty times, yet, on reaching the interior mountain before you defcend, you have an agreeable profpect of the extenfive plain of Nepal, refembling an amphitheatre covered with populous towns and villages : the circumference of the plain is about 200 miles, a little irregular, and furrounded by hills on

Suppl. Vol. II. Part I.
all fides, fo that no perfon can enter or come out of it without paffing the mountains.

There are three principal cities in the plain, each of which was the capital of an independent kingdom ; the principal city of the three is fituated to the northward of the plain, and is called Cat'bmandu: it contatins about 18,020 houfes; and this 1 kinglom, from fouth to north, extends to the diftance of twelve or thirteen days journey as far as the borders of Tibet, and is almoft as extenlive from eaft to welt. The king of Car'lumandu has always about 50,000 foldiers in his fervice. The fecond city to the fouth-weit of Cat'hmandu is called Lelit P'attun; it contains near 24,000 houfes. The third principal city to the ealt of Lelit Pattan is called B'batgan: it contains about 12,000 families ; and is the metropolis of a diltrict which extends towards the eaft to the diftance of five or fix days journey; and borders upon another nation, alfo indepen. dent, called Ciratas, who profefs no religion. Befides thefe three principal cities, there are many other large and lefs confiderable towns or fortrefes; one of which is Timi, and another Cipoli, each of which contains about 8000 houfes, and is very populous. All thofe towns, both great and fmall, are well built; the houfes are conftructed of brick, and are three or four ftorica high ; their apartments are not lofty; they have doora and windows of wood well worked and arrange' with great regularity. The ftreets of all their towns are paved with brick or flone, with a regular declivity to carry off the water. In almoft cvery flreet of the capital towns there are alfo good wells made of ftone, from which the water paffes through feveral fone canals for the public benefit. In every town there are large fquare varandas well built, for the accommodation of travellers and the public: thefe varandas are called Pali; and there are alfo many of them, as well as wells, in different parts of the country for public ufe. There are alfo, on the outfide of the great towns, fmall fquare refervoirs of water, faced with brick, with a good road to walk upon, and a large flight of fteps for the convenience of thofe who choofe to bathe.

The religion of Nepal is of two kinds: the more ancient is profeffed by many people who call themfelves Baryefu; they pluck out all the hair from their heads; their drefs is of coarfe red woollen cloth, and they wear a cap of the fame: they are confidered as people of the religious order, and their religion prohibits them from marrying, as it is with the Lamas of Tibet, from which country their religion was originally brought; but in Nepal they do not obferve this rule, except at their difcretion. They have large monafteries, in which every one has a feparate apartment or place of abode. They obferve alfo particular feftivals, the principal of which is called Yatra in their language, and continues a month or longer according to the pleafure of the king. The ceremony confifts in drawing an idol, which at Lelit Pattan is called Bagbero, in a large and richly ornamented car, covered with gilt copper: round about the idol ftand the king and the priucipal Baryefus; and in this manner the velicle is almoft every day drawn thro' fome one of the freets of the city by the inhabitants, who run about beating and playing upon every kind of inftrument their country affords, which make an inconceivable noife.

Nepal. that of the Brahmens, and is the fame as is followed in Hindoftan, with the difference that, in the latter country the Hindus being mixed with the Mahommedans, their religion alfo abounds with many prejudices, and is not ftrictly obferved; whereas in Nepal, where there are no Muffelmans (except one Cafhmirian merchant), the Hindu religion is practifed in its greatef purity : every day of the month they clafs under its proper name, when certain facrifices are to be performed and certain prayers offered up in their temples : the places of worfhip are more in number in their towns than are to be found in the moft populous and moft flourifhing cities of Chriftendom; many of them are magnificent according to their ideas of architecture, and conftructed at a very confiderable expence; fome of them have four or five fquare cupolas, and in fome of the temples two or three of the extreme cupolas, as well as the doors and windows of them, are decorated with gilt copper.

In the city of Lelit Pattan the temple of Baghero is more valuable, on account of the gold, filver, and jewels it contains, than even the houfe of the king. Befides the large temples, there are alfo many fmall ones, which have ftairs, by which a fingle perfon may afcend, on the outlide all around them; and fome of thofe fmall temples have four fides, others fix, with fmall fone or marble pillars polifhed very fmooth, with two or three pyramidal flories, and all their ornaments well gilt, and neatly worked according to their ideas of tafte. On the outlide of fome of their temples there are great fquare pillars of fingle flones from twenty to thirty feet high, upon which they place their idols fuperbly gilt. - She greatef number of their temples have a good ftone faircafe in the middle of the four fquares, and at the end of each flight of fairs there are lines cut out of flone on both fides: around about their temples there are alfo bells, which the people ring on particular occafions; and when they are at prayers, many cupolas are alfo quite filled with little bells hanging by cords in the infide abont the diftance of a foot from each other, which make a great noife on that quarter where the wind conveys the found. There are not only fuperb temples in their great cities, but alfo within their caftles.

To the eafward of Cat'hmandu, at the diftance of about two or three miles, there is a place called Tolu, by which there flows a fmall river, the water of which is efteemed holy, according to their fuperfitions ideas, and thither they carry people of high rank, when they are thought to be at the point of death : at this place there is a temple, which is not inferior to the beft and richeft in any of the capital citics. They alfo have it on tradition, that at two or three places in Nepal valuable treafures are concealed under ground: one of thofe places they believe is 'Tolu; but no nne is permitted to make ufe of them except the king, and that only in cafes of neceffity. Thofe treafures, they fay, have been accumulated in this manner: When any temple had become very rich from the offerings of the people, it was deftroyed, and deep vaults dug under ground one above another, in which the gold, filver, gilt copper, jewels, and every thing of value, were depofited. this was found to be actually the cafe when the miffionary, from whofe memoir this account of Nepal is taken, was at Cat'limandu. One of the kings, or pretenders to the crown, who were then at war with each
other, being in the ntmoft diftrefs for want of money to Nepal. pay his tronps, ordered the vaults at 'Jolu to be opened; and found in the firf vault more money, befides filver and gold idols, than he had immediate occafion for.

To the wefward alfo of the great city of Lelit Pattan, at the diftance of only three miles, is a caftle call. ed Banga, in which there is a magnificent temple. No one of the miffionaries ever entered into this caltle; becaufe the people who have the care of \(i t\), have fuch a fciupulous veneration for the temple, that no perfon is permitted to enter it with his fhocs on; and the miffionaries, unwilling to fhew fuch refpect to their falfe deities, never entered it. 'The author of this memoir, how. ever, who acted as phyfician to the commandant, was of courfe admitted within the caftle, and got a fight of the celebrated temple, which he declares, that for magnificence he believes fuperior to every thing in Europe.

Befides the magnificence of the temples, which their cities and towns contain, there are many other rarities. At Cat'hmandu, on one fide of the royal garden, there is a large fountain, in which is one of their idols called Narayan. This idol is of blue ftone, crowned and fleeping on a mattrafs alfo of the fame kind of ftone, and the idol and the mattrafs appear as floating upon the water. This ftone machine is very large, being about 18 or 20 feet long, and broad in proportion, but well worked, and in good.repair.

In a wall of the royal palace of Cat'hmandu, which is built upon the court before the palace, there is a great ftone of a fingle piece, which is about fifteen feet long, and four or five feet thick; on the top of this great ftone there are four fquare holes at equal difances from each other; in the inlide of the wall they pour water into the holes; and in the court fide, each hole having a clofed canal, every perfon may draw water to drink. At the foot of the ftone is a large ladter, by which people afcend to drink; but the curiofity of the fone conlifts in its being quite covered with characters of dif. ferent languages cut upon it. Some lines contain the characters of the language of the country, others the characters of I'ibet, others Pertian, others Greek, befides feveral others of different nations; and in the middle there is a line of Romian characters, which appears in this form, AVTOMNEW INTER LHIVER'I'; but none of the inhabitants have any knowledge low they came there, nor do they know whether or not any European had ever been in Nepal before the miffiona* ries, who arrived there only the beginning of the prefent century. They are manifefly two lirench names of feafons, with an Lingliih word between them.
'Ihere is alfo to the northward of the city of Cat'hmandu a hill called Simbi, upon which are fome tombs of the Lamas of Tibet, and other people of high rank. of the fame nation. The monuments are conftructed after various forms: two or three of them are pyramidal, very high, and well ornamented; fo that they have a very good appearance, and may be feen at a confiderable ditance. Kound thefe monuments are remarkable tones covered with characters, which probably are the inferiptions of fome of the inhabitants of Hibet whofe bones were interred there. The natives of Nepal not only look upon the hill as facred, but imagine it is protected by their idols; and from this erroneous fup= pofition never think of ftationing troops there for the defence
deferice of it, although it be a pof of great importance, and only at a fhort mile's diftance from the city. During the hoftilities, however, which prevailed when our author was in the country, this facred hill was fortified by one of the armies, who, in digging their ditches among the tombs, found confiderable pieces of gold, with a quantity of which metal the corples of the grandees of Tibet are always interred.

The kingdom of Nepal our anthor believes to be very ancient, becaufe it has always preferved its peculiar language and independence. It was completely ruined, however, about thirty or forty years ago by the difenfions of its nobles, who, on the death of their fovereign, and, as it would feem, the extinction of the royal line, could not agree in their choice of a proper fucceffor. The confequence was, that different fovereigns were fet up by the nobles of different diftricts; and thefe waged war with each other, with a degree of treachery and favage atrocity that has hardly a parallel in the annals of the world. Even the Brahmens, whom we are accuftomed to coufider as a mild and innocent people, were, in the civil wars of Nepal, guilty of the meaneft and bafeft villanies: they brought about treaties between the rival fovereigns, and then encouraged hin whom they favoured, to maffacre the adherents of the other in cold blood.
NEWTON (John), an eminent Englifh mathematician, was born at Oundle in Northamptonfhire, 1622. After a proper foundation at fchool, he was fent to Oxford, where he was entered a commoner of St Ed. mund's Hall in 1637. He took the degree of bachelor of arts in 164 r ; and the year following was created mafter, among feveral gentlemen that belonged to the king and conrt, then refiding in the univerlity. At which time, his genius being inclined to aftronomy and the mathematics, he applied himfelf diligently to thofe fciences, and made a great proficiency in them, which he found of fervice during the times of the ufurpation. After the reftoration of Charles 1I. he reaped the fruits of his loyalty ; being created doStor of divinity at Oxford Sept. 166r, he was made one of the king's chap. lains, and rector of Rofs in Fierefordhire, in the place of Mr John 'T'oounbes, ejected for nonconformity. He held this living till his death, which happened at Rofs on Chriftmas-day 1678 . Mr Wood gives him the character of a capricious and humourfome perfon: however that may be, his writings are fufficient monuments of his genius and fkill in the nathematics. Thefe are, 1. Afronomia Britannica, \&c. in three parts, 1656 , in 4to. 2. Help to Calculation; with Tables of Declination, Afcenfion, \&cc. 1657, 4to. 3. Trigonometria brilannica, in two books, 1658 , folio; one compofed by our author, and the other tranfated from the Latin of Henry Gellibrand. 4. Cbiliades centum Logarithmorum, printed with, s. Geometrical Trigonometry, 1659. 6. Mathematicel Elements, three parts, 1660 , 4 to. 7. A perpetual Diary of: Almanac, 1662. 8. Defcription of the Ufe of the Carpenter's Rule, 1667.9 . Ephemerides, fhewing the Intereft and rate of Money at 6 per cent. \&c. 1667. 10. Cbiliades certum Logarithmorum, et Tabula Partium proportionalium, 1667 . 11 . The Kule of Intereft, or the Cafe of Decimal Frac. tions, \&c. Part II. 1668, 8vo. 12. School-Paltime for young Children, \&c. 1669, 8vo. 13. Art of practical Ganging, \&c. 1609. 14. Introduction to the Ast of

Rhetoric, 1671. 15. The Art of Natural Arithme- Nicole tic, in whole Numbers, and Fractions Vulgar and Decimal, \(5671,8 \mathrm{vo}\). 16. The Englifi Academy, 1677, 8vo. 17. Cofmography. 18. Introduction to Aftronomy. I9. Intrnduction to Geography, 1678,8vo *. *Eiog. Dit.

NICOLE (Francis), a very celebrated French ma- new edre. thematician, was born at Paris December 23. 1683. His early attachment to the mathenatics induced M. Montmort to take the charge of his education; and he opened out to him the way to the higher geomerry. He firft became publicly remarkable by detecting the fallacy of a pietended quadrature of the circle. This quadrature a M. Mathulon fo affuredly thought he had difcovered, that he depolited, in the hands of a public notary at Lyons, the fum of 3000 livres, to be paid to any perfon who, in the judgment of the cicadeny of Sciences, fhould demonflate the falfity of his folution. M. Nicole, piqued at this challenge, undertook the tefk, and expoling the paralogifm, the Acadeniy's judgment was, that Nicole had plainly proved that the rectilineal figure which Mathulon had given as equal to the circle, was not only unequal to it, but that it was even greater than the polygon of \(j^{2}\) fides circumferibed about the circle. The prize of 3000 livres Nicole prefented to the public hofpital of Lyons.
The Academy named Nicole, Eleve-Mechanician, March 12. 1707; Adjunct in 1716, A fociate in 1718, and Penfioner in 1724 ; which he coutinued till his death, which happened the 18 th of Jamary 1758, at 75 years of age.

His works were all inferted in the different volumes of the Memoirs of the Acadeny of Sciences; and are as follow: 1. A General Method for determining the Nature of Curves formed by the Rolling of other Curves upon any Given Curve ; in the volume for the year 1707. 2. A General Method for Rectifying all Roulets upon Right and Circular Bafies, 1708 . 3. Cenetal Method of determining the Nature of thofe Curves which cut an Infinity of other Curves given in Polition, cutting them always in a Couftant Angle, \(1715 \cdot 4\). Solution of a Problem propofed by M. de Lagny, 17:6. 5. Treatife of the Calculus of Finite Differences, 1717 6. Second Part of the Calculus of Linite Differences, 1723. 7. Second Scétion of ditto, 1723. 8. Addition to the two foregoing papers, 1724. 9. New Propofition in Elementary Geometry, 1725.10 . New Solution of a Problem propofed to the Englifh Mathenaticians, by the late M. Leibnitz, 1725. 11. Method of Summing an Infinity of Aew Serics, which are not fummable by any other known method, 1727. 12. 'T'reatife of the Lines of the Third Order, or the Curves of the Second Kind, 1729. 13. Exanination and Refolution of fome Queltions relating to Play, 1730. 14. Method of determining the Cliances at 1 lay. 15.Obfervations upon the Conic Sections, 1731. 16. Manner of generating in a Solid Body all the Lines of the Third Orcer, 1731. 17. Manner of determining the Nature of Roulets formed upon the Convex Surface of a Sphere; and of determining which are Geometric and which are Rectifiable, 1732. 18. Solution of a Problem in Geometry, 1732. 19. The Ufe of Scries in refolving many Problems in the Inverfe Mathod of Tangents, 1737. 20. Obfervations on the lneducible Cafe in Cubic Equations, 1738. 21. Obfervation:s up. on Cubic Equations, 1738. 22. On the Trifection of

Nicuwland. an Angle, 1740. 23. On the Irreducible Cafe in Cubic Equations, 1741. 24. Addition to ditto, 1743. 25. His Laft Paper upon the fame, 1744. 26. Determination, by Incommenfurables and Decimals, the Values of the Sides and Areas of the Series in a Double Progreffion of Regular Polygons, infcribed in and circumfcribed abont a Circle, \(1747^{*}\).

NIEUWLAND (Peter), profeffor of mathematics and natural philofophy in the univerfity of Leyden, was born at Diemermeer, a village near Amfterdam, on the 5th of November, 1764 . His father, by trade a carpenter, having a great fondnefs for books, and being tolerably well verfed in the mathenatics, inftructed his for himfelf till he attained to his eleventh ycar. Young Nieuwland appears to have difplayed ftrong marks of genius at a very early period. When about the age of three, his mother put into his hand fome prints, which had fifty verfes at the bottom of them by way of explanation. Thefe verfes fhe read aloud, withour any intention that her fon fhould learn them; and fhe was much furprifed fome time after to hear him repeat the whole from memory, with the utmoft correctnefs, on being only fhewn the prints.

Before he was feven years of age he had read more than fifty diffcrent books. and in fuch a manner that he could frequently repeat paffages from them both in profe and in verfe. When about the age of eight, Mr Aenere at Amfterdam, one of the greatef calculators of the age, afked him if he could tell the folid contents of a wooden flatue of Mercury which food upon a piece of clock-work. "Yes (replied young Nieuwland), provided you give me a bit of the fame wood of which the flatue was made; for I will cut a cubic inch out of it, and then compare it with the flatue." Poems which (fays his eulogit) difplay the utmoft livelinefs of imagination, and which he compofed in his tenth year, while walking or amufing himfelf near his father's houfe, were received with admiration, and inferted in different poetical collections.

Such an uncommon genius muft foon burft through thofe obflacles which confine it. Bernardus and Jeronime de Bofch, two of the firft and wealthieft men at Amfterdam, became young Nieuwland's benefactors, and contributed very much to call forth his larent talents. He was taken into the houfe of the former in his eleventh year, and he received daily inftruction from the latter for the fpace of four years. While in this fituation he made confiderable progrefs in the Latin and Greek languages, and he fudied philofophy and the mathematics under Wyttenbach. In the year 1783 he tranflated the two differtations of his celebrated inffructors, Wyttenbach and de Bofch, on the opinions which the ancients entertained of the fate of the foul after death, which had gained the prize of the Teylerian theological fociety.

From the month of September 1784 to 1785 , Nieuwland refided at Leyden as a fudent in the univerfity, and afterwards applied with great diligence, at Amfterdam, to natural philofophy and every branch of the mathematics, under the direction of Profeffor van Swin. den. He had fcarcely begun to turn his attention to chemiftry, when he made himfelf mafter of the theory of the much-lamented Lavoifier, and could apply it to every phenomenon. He could read a work through
with uncommon quicknefs, and yet retain in his mind Neuwhar the principal part of its contents.

Nieuwland's attention was directed to three principal purfuits, which are feldom united; poetry, the pure mathematics, and natural philofophy. In the latter part of his life he added to thefe alfo aftronomy. Among the poems which he publifhed, his Orion alone has rendered his name immortal in Holland. Of the fmall eflays which he publifhed in his youth, the two following are particularly deferving of notice: 1. A Comparative View of the Value of the different Branches of Science ; and, 2. 'The beft Means to render general, not Learning, but Soundnefs of Judgment and Good Talte.

One of his great objects was to bring the pure mathematics nearer to peifection, to clear up and conneet their different parts, and in particular to apply them to natural philofophy and aftronemy. Cornelius Douwes diicovered an eafy method of determining the latitude of a place at fea, not by the meridian altitude of the fun, but by two obfervations made at any other period of the day. This method, however, being ftill imperfeet, Nieuwland turned his thoughts towards the improvement of it, and in the beginning of the year 1789 wrote a paper on the fubject, which he tranfmitted to M. de Lalande at Paris, from whom it met with great approbation. In the year 1792, when Nieuwland refided two months at Gotha with Major von Zach, thefe two learned men ofte:s converfed on this muthod of finding the latitude, and calculated the refult of obfervations which they had made with a fextant and an artificial horizon. The above papcr, emlarged by thefe obfervations, was inferted by Major von Zach with Nieuwland's name in the firft Supplement to Bode's Aftronomical Almanack, Berlin, 1793.

This, however, was not the only fer vice which Nieuwland endeavoured to render to aftronomy. It had been obferved by Newton, Euler, De la Place, and others, that the axes of the planets do not ftand perpendicular, but inclined, to the plane of their orbits; and Du Sejour, in his analytical treatife on the apparent motion of the heavenly bodies, confiders it as highly probable that this phenomenon depends oul fone phyfical caule; which, however, he does not venture to affign. Nieuwland proceeded farther, and laid down principles, from which he drew this conclufion, that the above pheno. menon is intimately conneeted with the whole fyftem of attraction. On thefe principles he made calculations, the refult of which was exaply equal to the angle of the inclination of the earth's axis to the plane of its. orbit. Nieuwland communicated his dicovery witb much modefty to the celebrated Profeflor Damen at Leyden, who propofed fonte objections to it which difcouraged Nieuwland, and induced him to revife his calculations with more accuracy. Major von Zach tranfmitted the paper which contained them to M. De la Place at Paris, and caufed it to be printed alfo, for the opinion of the learned, in the Supplement to Profeffor Bode's Afronomical Almanack for the year \(1793^{\circ}\)

The writer of this'article is not acquainted either with the principles which this young aitronomer affumed, or with the calculations which he made from them; but if he holds gravitation to be effential to matter, and the inclination of the axes of the planets to be the neceflary refult of the law of gravitation, he is un. doubtedly

Ni. land. doubtedly in an error. The axes of the planets are not act proportion to the fquares of the diftances.

Nieuwland's talents and diligence foon recommended him to the notice of his country. In his twenty-fecond year, he was appoiuted a member of the commiffion chofen by the College of Admiralty at Amfterdam for determining the longitude and improving marine charts. On this labour he was employed eight years, and undertook alfo to prepare a nautical alinanack, and to calculate the neceffary tables. The mathematical part was in general entrufted to Nicuwland; but he affited alfo his two colleagues van Swinden and van Keulen, in the departments affigned to them, with fuch affiduity, that moft of the work publifhed on the longitude, together with the three additional parts, were the fruits of his labour. In the fecond edition of the explanation of the nautical almanack, he had alfo the principal thare ; and he was the author, in particular, of the explanation of the equation of time, the method of determining the going of a time-piece, and of calculating the declination of the moon.

Soon after Nieuwland engaged in this employment, it appeared as if his deftination was about to be changed. In the year 1987, he was chofen by the States of Utrecht to fucceed Profeffor Hennert; but on account of certain circumftances this appointment did not take place. He was, however, invited to Amfterdam by the magiftrates of that city, to give lectures on mathematics, aftronomy, and navigation. While in this fituation, he wrote his ufeful and excellent treatife on navigation, the firft part of which was publifhed at Am. f.erdam in 1793 , by George Hullt van Keulen; and it is much to be wifbed that M. van Swinden would complete this work from the papers bequeathed to him by lis deceafed friend the author.
In aftronomical puifuits, Nieuvland applied not only to the theoretical, but alfo to the practical part; and in this ftudy he was encouraged and affifted by Major von Zach, with whom he refided fome time in the courfe of the year 1792, and who inftructed him in the prope: ufe of the fextant. This affectionate friend publifhed alfo all liis obfervations and calculations in the beforementioned Supplement to Bode's Aftronomical AImanack.

In the year 1789 , Nieuwland was chofen member of a tearned fociety whofe objece. was chemical experi ments; and fo apt was his genius for acquiring knowledge, that in a little time he made himfelf completely mafter of the theory of chemiftry. A proof of this is the treatife which he read on the 24th of May 1791 , in the fociety, diftinguifhed by the motto of Felix Meritis, and which has been printed in the firt part of the New General Magazine (Nierw Algemeen Magazyn). At the fame time he was able to examine the important difcoveries made by the fociety, to affift in preparing an account of them for the prefs, and to publifh them with fufficient accuracy in the French language. Three parts of this work appeared under the title of Recherches Phyjico-chymiques. The firt part appeared in 1792, and was afterwards reprinted in the Fournal de Pbyfique. The fecond was publifhed in 1793, and the fourth in 179.4. Some letters of his on chemiftry may be found alfo in a periodical work called The Meffenger (Letterbode).

This ingenious and diligent man was of great fervice Nie.nwlands alfo in the philofophical department to the above fociety, Felix. Meritis, of which he had been chofen a titular member on the 25 th of January 1788, and an honorary member on the 15 th of March 1791 . The papers for which it was indebted to hin are as follows:I. On the Neweft Difcoveries in Aftronomy, and the Progref's lately made in that Science, 1788. This is an extract from a Latin oration which he intenced to deliver at Utrecht when he expected to fucceed Profuffor Hennert. - 2. On the Figure of the Earth, 178 y. - 3. On the Courfe of Comets, and the Uncertainty of the Return of the Comet now Expected, 1790.4. On the Nature of the Mathematics. The primcipal object of this paper was to illuntrate the idea, that the mathematics may be conlidered as a beautiful and perfect language.-5. On the P'eriodical Decreafe or Increafe in the Light of Certain Fixed Staŗs, and Particularly of the Star Algol, 1790.-6. On the Solution of Sphecieal Trigonometry by Means of a New Inftriment Invented by Le Guin, 1791. M. le Guin having trantmitted to the College of Admiralty at A ro Rerdam an in trument which might be ufed with g:eat advantage in trigononetrical operations, and by which, in calculating the longitude, one could deduce the real from the apparent dittance, the admiralty charged Nieuvland to examine this inftrument; and he found that it might be of excellent fervice for the above purpofe. -7 . On the Relative Value or Impertance of the Sciences, 1791.-8. On the Syltem of Lavoifier, 1792. -9. On the Selenotopographia of Schröder, 1793.10. On what is Cominonly Called Cultivation, Intruction, or Enlightering, 17.03.
Nieuwland had applied clofely to the mathematics, aftronomy, and navigation, for fix years; during which time he made contiderable inprovements in nautica! charts, and filled up his vacaut hours with the thudy of philoiophy and chemiltry. In the month of July 1593 he was invited to the univerfity of Leyden, to be profefor of philofophy, aftronomy, and the higher mathematics, in the room of the celebrated Damen; and the admiralty of Amiterdam requefted hin to continue his nautical refearches, which he did with great afliduity till the period of his death. The only variation which he now made in his ftudies related to natural philofophy, for with the mathematics he was already fufficientIy acquainted. He applied therefore to the experimental part, and fpared no pains nor labour to becone perfect in it; which would certainly have been the cafe, had he not been fuatched from fcience and his friends at the early age of thirty. He died of an inflammation in his throat, accompanied with a fever, oll the 13 th of November 1794.
In his external appearance, Nieuwland was not what might be called handfome, nor had he ever been at pains to acquire that eafe of deportment which dittinguifhes thofe who have frequented polite company. His behaviour and converfation were however agreeable, becaufe he could difcourfe with facility on fo many fubjects, and never wifhed to appear but under his real character. On the firt view one might have difcerned that he was a man of great modefty and the ftricteft morality. His father was a Lutheran, and his mother a baptift; but he himfelf was a member of what is called the reformed church, i. e. a Calvinit, and always fhew-

Niger. ed the utrno? refpect for the Supreme Being both by his words and his actions.

NIGER, a large river in Africa, of which many erroneous accounts have been publifhed, and among them that which we have given in the lincyclopaclia Britannica. By Herodotus, Pliny, Piolemy, and other ancient authors, ic is uniformly faid to flow from weft to eaf, dividing Africa as the Danube divides Europe; and from the report of the Africans, the firt of thefe authors calls it a large river abounding with crocodiles. In the twelfth century, however, Edrifi defcribes the Niger, which he calls the Nile of the negroes, as running from eaft to rueft, and falling into the Atlantic Ocean ; and his account was univerfally adopted by fub. fequent writers, till its falfehood was difcovered by the African Affociation. From a number of concurring reports, Major Houghton was led to believe that the courle of the Niger is from wefl to eafl, according to the mont ancient account; and the truth of thefe reports has been eftablifhed beyond all controverfy by Mr Park, who faw the Niger himfelf, and actually accompanied it for many miles in its majeftic courfe as laid down by Herodotus.

This river rifes in or near the country of Manding (which fee in this Supplement), between the parallels of 15 and II degrees of north latitude, and bctween the 5 th and 9 th degree of welt longitude, which compre. hends a fpace the moft elevated of all this portion of Africa. This is evident from the oppofite courfes of the three great rivers which rife in it. 'Thefe are the Ciambia, which runs to the weft north-weft; the Senegal, which runs to the north-wef; and the Joliba (A), or Niger, running to the eaft-north-eaft. 'the head of the principal branch of the Senegal river is about 80 geographical miles to the weft of that of the Niser; and the lead of the Gambia is again about 100 miles welt of the Senegal.

Mr Park-traced the Niger to Silla, a confiderable town about 420 miles from its fource; and it was there larger than the I'hames at Weftminfter. But 420 mites are but a very finall part of the courfe of the Niger, which doubtlefs receives many tributary freams before it reach Kaffina, 700 miles farther eaftward, where there is every reafon to believe that it was viewed by the ancient Romans. Our traveller collected at Silla what information he could from the Moorifh and Negro traders concerning the further courfe of this nuajeftic Atream, as well as of the kingdoms through which it runs; and the following notices he believes to be authentic :

Two fhort days journey to the caftward of Silla, is the town of Jenne, which is fituated on a fmall ifland in the river; and is faid to contain a crreater number of inhabitants than Sego itfelf, or any other town in Bambarra. (Sec Scgo, Suppl.) At the difance of two days more, the river tpieads into a confiderable lake, called Dibuie (or the dark lake); concerning the extent of which, all the information which our author conld obtain was, that in croming it, from weft to eaft, the canoes lofe fight of land one whole day. From this lake, the water iffues in many different treams, which ferminate in two. large bianches, one whereof fiows to-
wards the nortli eaf, and the other to the eaft; but thefe branches join at Kabra, which is one day's journey to the fouthward of 'I'umbuctoo, and is the port or fhipping-place of that city. The tract of land which the two freams encircle, is called Jinbala, and is inha. bited by negroes; and the whole diltance, by land, from Jenne to 'l'umbuctoo, is twelve days journey.

From Kabra, at the dittance of eleven days journey. down the Aream, the river paffes to the fouthward of Houffa, which is two days journey diftant from the river. Of the further progrefs of this great river, and its final exit, all the natives with whom Mr lPark converfed feemed to be entirely ignorant. Their commercial purfuits feldom induce them to travel further than the cities of Tumbuctoo and I-Iouffa; and as the fole object of thofe jounneys is the acquirement of wealth, they pay but little attention to the courfe of rivers, or the geography of comntries. It is, however, highly probable that the Niger affords a fafe and eafy communication between very remote nations. All our author's informants agreed, that many of the negro merchants who arrive at Tumbuctoo and Houffa, from the eaftward, fpeak a different language from that of Bainbarra, or any other kingdom with which they are acquainted. But even thefe merchants, it would feem, are ignorant of the termination of the river; for fuch of them as can fpeak Arabic, defcribe the amazing length of its courfe in very general terms, faying only, that they believe it runs to the sworld's end.

Major Remnel, by comparing a great many accounts of the progrefs of this river beyond Houffa, with the idea which prevails in that city of its termination, has fhewn it to be in a very high degree probable, that the watcrs of the Niger have no direct communication with the fea, but that they are fpread out into a great lake in Wangara and Chana, and evaporated by the heat of the fun. See Wangara in this Supplement.

NILE, the name of a celebrated river, which, as it has been deforibed in the Encyclopectia, fhould not have been intruduced into this place, did we not think onrfelves bound candidly to confefs that, in our opinion, its fources, at leaft tho fe fources which were the objects of ancient curiofity, lave never yet been feen by any European. This feeme to be proved, beyond the poffibility of controverfy, by Major Rennel in the Appendix to Mr I'ark's 'Travels, and by Mr Browne in his account of the Balkr-el-abiad, and Dar-Lur or Soudan. Sce Soudan in this Suplement.

Mir Bruce limfelf acknowledges that the Nile, which waters Egypt, is the confluence of two Atreams, and that the weltern ftrean, which he, with others, calls Bubiel-abiad, or the qubite river, is the largett of the two. Were a man therfore to travel from Cairo up the banks of the Nile in quett of its lounce, he would, doubtlefs, when he fhould arrive at the divifion of the river into two channels, continue his journey up the geater of thefe; for what could induce him to turn atice with the lefs? Not the name ; for neither the lefs nor the greater has by itfelf the name which, in Egypt, is given to both when united. The former, which un-. doubtedly has its fource in Abytinia, is there called the Abay or Abavi; and, in other countries tlirough
which it runs, the Bahr.el Afrek; the latter is, from its fource to its junction with the Abay, called the Bahr.el abiad. Pliny believed that the Nile came from the wett; and P'tolemy fays experfily that its remote lource is in the mointains of the moon. But this Nile mnuft be the White River, which certainly rifes to the weftward of Aby finia, and, according to Abulfeda, in the mountains of Komri or Kummeri; ; which, in Arabic, fignifics lunar, being the adjective of Kummer, the momi.
In perfeet conformity with this ancient account of the faurce of the Nile, Mr Ledyard was told at Cairo by certain perfons from Dar. Fur, that this celebrated river las its coy fountains in their country, at the di? ? ance of 55 days journey to the weftward of Senaar, which brings them to the Komri mountains of Abulfeda, who, as well as Polemy and Edrifi, places the head of the Nile in a quarter far removed from Abyffinia. Ptolemy has indeed mentioned both branches; and while he defcribes the eaftern in fuch a way as that it cannot be taken for any other than the Abyfinian branch, or the Nile of Bruce and the Portuguefe Jefuits, fpeaks of a larger branch flowing from a more ditant fouice, fituated to the fouth-wef. But this can be no other than Ernce's white river, the Bahr-cl-abiad of Ledyard and Browne. It is true, there is an apparent difference in the account given by thefe two laft mentioned travellers of the country in which the Bahr.el-abiad rifes; but it is a difference only apparent. Ledyard was told at Cairo that it rifes in Der-Fur ; Mr Browne, who re. fided long in Dar. Fur, was there told, that the fources of the river are near to a place culed Dongu, the reff. dence of the ciitif or king of an iduaturus nation to the fouthward of Dar. Fur. It is to be oblerved, liowtere, that the flave-merchants who trade between DonEad and Cairo are always attached to the Soudan or 1) arYur caravan ; and that therefore the perfons who tuld Ledyard that the Nile rifes in their commery were prouLably from Donga, though he took them fo: Furinns from the name of their caravain. Mr Browne informs na, that the country about Donga is very mocurtainotis, and that in the fipot where the river rifes there are faid to te forty difinct hills, which are called Kumri. From theen iffues a great number of forings, that, uniting i:sto rne great chennecl, form the Balir clabiad, which fuffers the fame periodical increafe and diminution 2s the Sile in Egypt. The people of Donga are quite maked, black, and, as we have already obferved, idulaLirs. Major Rennel places the mountains of the moon letweegn \(5^{\circ} 40^{\prime}\) and \(8^{\circ} 10^{\prime} \mathrm{N}\). Lat. and between \(24^{\circ}\) 30' and \(30^{\circ} 25^{\prime}\) E. Long. Their latitude and louggi. tude, as laid down by Mir Browne, are fomewhat, tho, very little, dififerent; whilft Geefh, the fource of Bruce's Nile, lies between the 10 th and 1 th degree of N . Lat. and in about the 3 Th degree of E . Long.
NIMIQ UTAS, a nation, or, more properly, two tribes in South A frica, called by Vaillant the Lefs and Greater Nimiquas.
The coustry of the Lees Nimiquas extends in longitu.te from the mountains of Camis to the fea on the wett, i. e. from \(15^{\circ} 25^{\prime}\) to \(18^{\circ} 25^{\prime}\) ' eaft from London, and in latitule'e from \(28^{\circ} 12^{\prime}\) to \(29^{\circ} 3^{6^{\prime}}\) fouth. From the information which our author could collect, he thinks that the number of inhabitants througtout the whole of this tract does not exceed 6000 fouls. Even
this number is annually diminithed by the frequent attacks of Bofhmen, and the aridity of the foil. Of the Boshmen we have already give: fuch a:1 account as can leave no doubt of the cellructive nature of their in curlions; and the foil mult be arid indeed, if it be true, as Vaillant affures us, that in the country of the Lefs Nimiquas rain never falls except when it thunders, and that thunder is fo rare as frequently not to be heard for the fpace of a whole year.

For this want of rain our author accounts in a fatis. factory manner: "The country (he fays) having neither forefts nor lofty mountains to arreft the clouds, thofe which come from the north pafs freely over it, and proceed on to Camis, where they burft and fall, either in rain "in the valleys, or in fnow on the fummits of thefe mountains, which are the loftieft throughout the fouth of Africa." 'The country is of courfe not fruitful, and its fterility obliges the inhabitants frequently to change their refdence, fo that they are the moft wandering of all the Hottentot tribes. In this barren region the Dutch colonifts fuppofe that gold mines may be found; but our author difcovered among the hordes no traces of this metal, though he found many indications of rich copper mines.

The Lefs Nimiquas, though of a tolerable ftature, are not fo tall as their neighbours to the eaftward; and indeed Vaillant affirms, that the people to the caft in the fouthern part of Africa are much fuperior to thofe of the well both in moral and phyfical qualities, while the animals are far inferior. The Leefs Nimiquas are great believers in witcheraft; and our author gives a ridiculous account of an interview that he had with an oit with nained Kakoes, who liad a complete afcendency, not only over the whole horde, but alfo over the favare Boflimen. 'Thefe robbers, he fays, never attempted to planker the territory where fhe tonk up her refidence; and fhe has been known, when their thefts came to her knowledge, to proceed alone, and unguarded, to their retreats in the inidt of the woods, to threaten them with her vengeance, and thus compel them to a reflitution of the folen property. All her influence, however, over her own trilue, could procure for our au* thor and his attendants coly fix fheep.
The wornen of the horde received his Iottentots wilh great kinciefs s, ant permitted them to difeover very fingular clarms, of which it is needlefs here to infert a defcription. Among this people lie faw abundance of bracelets, necklaces, and ear-rings of copper: and fome of thefe ornaments were fo well made and finely polithed, that they mult have been manufactured in Furope, and the fruits of an intercotn fe with the whites. But he faw feveral others, which, from their grotefque hlape and cude workmanhlip, evidently fhewed that they were fabricated by the favages themiflees.
" Thefe ornaments (fays he) are worn by the Niniquas in the fame inanner as by the other favages; yct I obferved among them fome whimfical pecularities. I have feen perfons with fix ear-rings of the fame finape in one ear, and none in the other: I have fecu fome with bracelets from the wrilt to the clbow on one arm, while the other arm was bare: I have feen others with one fide of the face painted in compartments of various colours, while on the other fide both the colsurs and figures were different. In general, I obferved great propenfity to ornaments ameng the Leefs Nimiquas;

\section*{N I M}

Nimiquas. for their krofles and all their garments were plentifully covered with glafs and copper beads, frung on threads, and faftened on every part of their drefs. They even wore them in their hair, which was plaftered with greafe in the moft difgufting manner. Many had their heads covered with a reddifh incrutation, compofed of greafe and a powder refembling brick duft, with which their lair was fo patted together, that you would have fworn it to be a cap of red mortar. Thofe who had it in their power to difplay this luxury of dref3, were as proud as are our petits-maitres, when they can thake a head loaded with powder, perfume, and pomatum. The muyp. kros, or fhort apron, of the women, was adorned with rows of glafs beads hanging down to their feet; in other tefpects they were dreffed like the other Lifottentors."
The country of the Greater Nimiquas is placed by the author in nearly the fame longitude with that of the Lefs, and between \(25^{\circ}\) and \(28^{\circ}\) fouth latitude. It is barren like the other; but the people are much taller, being generally about five feet ten inches high. The men are dull and fupid, but the women are lively and extremely amorous; and both men and woinen are comparatively handfome and of a flender make. Estravagantly addicted to fmoking tobacco, the young girls bartered their favours for a fingle pipe ; and as Yaillant was clief of the caravan, a white, and poffeflor of tobacco of much better qquality, many advances were made to him. "I have do doubt (fays he) but I might have formed, for a few pipefuls only, an alliance with every family in the horde. I was even preffed fo clofely, as to be obliged to employ fome refiftance: but, at the fame time, I muf conffef, that my refufals were given in fuch a way as not to offend; and they who, in confequence of their advances, had been expofed to them, having foon found other arrangements to make, did not thew me the 1 lf f friend hhip. I muft here add, that the girls alone appeared to me thus fiee; while the married women on the contrary were modeft and referved. This is a characteriftic difference, which diltinguifhes the Greater Nimiquas from the Hottentot people in general ; as likewife does the low cringing air they affume when they have any thing to ank."

It has been faid by Kolben, that the Nimiqua women, when they bear twins, deftroy one of the infants; but Vaillant affures us that this is a falfehood, as is likewife another tale which is current in the colony. It has been faid that the fathers, to fhew what affection they bear their children, feed their eldeft in a particular manner, as being of right the firt object of paternal care. For this purpofe they put him in a coop as it were ; that is, they fhut him up in a trench made under their hut, where, being deprived of motion, he lofes little by perfpiration, while they feed and cram him in a manner with milk and greafe. By degrees the child fattens, and gets as round as a barrel; and when he is come to fuch a fate as not to be able to walk, but to bend under his own weight, the parents exhibit him to the admiration of the horde; who from that period conceive more or lefs efteem and confideration for the family, according as the monfter has acquired more or lefs rotundity.

Such was the account given to our author by a man who affirmed that he had been an eye-witnefs of this mode of cramming the heir-apparent; but whenever
any queftions were anted on the fubject of the Nimiquas themfelves, the perfons addreffed were ready to laugh in our author's face. "Still (fays he), as it appeared ftrange to me, that a man flhould talk of what he had feen, when he had in reality feen nothing; as it was poffible that the falle might have fome founda. tion, without being true in all particulars-I was willing to convince my felf what could have given rife to it; and every time I vifited a horde, I took care, under different pretences, to examine, one after another, all the huts of the krazl, and to afk which was the eideft child of the family: but I nowhere faw any thing that indicated either this pretended coop, or this pretended cranming:"

The Nimiquas are great cowards ; yet, like the furrounding nations, they have their affagays and poifoned arrows; and, like them, can handle thefe arms with dexterity. They pouffefs alfo thofe war oxen, fo formidable in battle, and fo favourable to the cowardice or inaeivity of the combatants. 'They have even a peculiar implement of war, which their neighbours have not. This is a large buckler, of the height of the perfon who bears it, behind which the Nimiqua can completely conceal himfelf. But, befide that his natural epathy prevents him from giving or taking offence, he is in reality pufillanimous and cowardly from the coldnefs of his difpofition. To utter only the name of Houzouana before him is fufficient to make him tremble. See Houzouanas in this Suppl.

Notwithflanding his frigidity, the Nimiqua is not infenfible to pleafure. He even feeks with avidity thofe which, requiring but little exertion, are capable of agitating him and procuring agreeable fenfations. Their mufical inftruments are the fame as thofe of the other Hottentots; but their dancing is very different, and refembles the temper of the nation. If the countenance have received from nature features that can exprefs our paffions, the body alfo has its attitudes and movements that paint our temper and feelings. The dance of the Nimiqua is frigid like himfelf, and fo devoid of grace and hilarity, that, were it not for the extreme gaiety of the women, it might be called the dance of the dead.

Thefe tortoifes, to whom dancing is a fatigue, thew little eagernefs for any thing but wagers, games of calculation and chance, and all the fedentary amufements which require patience and reflection, of which they are more capable than they are of motion. When oir author, with great propriety, prohibited gaming in tis camp, the Nimiquas, who had ftaid long with him, took their departure.

Ni'TiAA, a fpecies of the Mimosa, which flourifes on the banks of the Senegal in Africa. It is valuable to the inhabitants for its fruit, the pods of which are long and narrow, containing a few black feeds enveloped in a fine mealy powder, of a bright yellow colour, which refembles the flour of fulphur, and has a fweet mucilaginous tafte. When eaten by itfelf it is clammy; but when mixed with milk or water, it conftitutes a very pleafant and nourifhing food, fupplying the place of corn to the neyroes. - Park's Travels.

NIZOLIUS (Marius), a grammarian of Italy, who by his wit and crudition contributed much to the promotion of letters in the 16 th century. He publifhed, in 1553, Lib. 4. De veris Principiis et vera Ratione 1
,qurnal pbilofophandi, contra Pfcudo phizofophos. In this work v- he attacks, with much vivacity, the fchoolmen, not only for the barbarifm of their terms, but for many ridiculous opinions which they held. Leibnitz was fo fruck with its folidity and elegance, that, to expofe the obltinacy of thofe who were zealoufly attached to Arittotle, he gave a new edition of it, with critical notes of his own, 1670, in 4to. Nizolius publifhed alfo, Thefaurus Ciceronianus, five Apparatus Lingue La. tince e Scriptis Tullii Ciceronis collecius, in folio. This is a good Latin dictionary, compofed of the words and expreffions of Cicero; to which, it feems, Nizolius fhewed as much bigotry as the fchoolmen to their no. tions; and fell under the character of thofe pedants whom Erafmus has ridiculed in his Ciceronianus. We do not find the year cither of his birth or death.
NOCTURNAL ARCH, is the arch of a circle defcribed by the fun, or a ftar, in the night.

NONAGESIMAL, or Nonagesimal Degree, called alfo the Mid heaven, is the higheft point, or goth degrce of the ecliptic, reckoned from its interfection with the horizon at any time ; and ite altitude is equal to the angle that the ecliptic makes with the horizon at their interfection, or equal to the diftance of the zenith from the pole of the ecliptic. It is much ufed in the calculation of folar eclipfes.

NONAGON, a figure having nine fides and angles. In a regular nonagon, or that whofe angles and fides are all equal, if each fide be \(x\), its area will be 6.1818242 \(=\frac{2}{2}\) of the tangent of \(70^{\circ}\), to the radius r .

NORMAL, is ufed fometimes for a perpendicular.

NUEL, or Newel, the upright poft about which fairs turn, being that part of the faircafe which fuf. tains one end of the fteps.

\section*{O.} ASIS (plur. OASES), a fertile Ipot in the midft of a fandy defart. In the Sahara, or Great Defart of Africa, there are many Dajes of extreme fertility.
OBL ATE, flatted or fhortened; as an oblate fpheroid, having its axis fhorter than its middle diameter; being formed by the rotation of an ellipfe about the fhorter axis.
OBLILUE ASCENSION, is that point of the equinoctial which rifes with the centre of the fun, or flar, or any nther point of the heavens, in an oblique fphere.
OBLI2UE Circle, in the ftereographic projection, is any circle that is oblique to the plane of projection.
Obligur Defcenfion, that point of the equinoetial which fets with the centre of the fun, or ftar, or other point of the heavens, in an oblique fphere.
Obligue Force, or Percufion, or Pozver, or Stroke, is that made in a direction oblique to a body or plane. It is demonflrated, that the effee of fuch oblique force, \&c. upon the body, is to an equal perpendicular one, as the fine of the angle of incidence is to radius.

OBLONG spheroid, is that which is formed by an ellipfe revolved about its longer or tranfverfe axis; in contradiftinction from the oblate Spheroid, or that which is flatted at its poles, being generated by the revolution of the ellipfe about its conjugate or thorter axis.
observatory, portable. See Astronomy, \(\mathrm{n}^{\mathrm{C}} 504\), Encycl.

OCCIDEN I EQuinoctial, that point of the ho. rizon where the fun fets, when he croffes the equinoctial, or enters the fign Aries or Libra.

Occidfnt Effival, that point of the horizon where the fun fets at his entrance into the fign Cancer, or in our fummer when the days are longeft.
OcCIDENT Fiybernal, that point of the horizon where Suppl. Vol. II. Part I.
the fun fets at midwinter, when entering the fign Capricorn.

OCTANT, the eighth part of a circle.
ODD, in arithmetic, is faid of a number that is not even. The feries of odd numbers is \(1,3,5,7\), \&c.

ODDLY:ODD. A number is faid to be oddly odd, when an odd number meafures it by an odd number. So 15 is a number oddly odd, becaufe the odd number 3 meafures it by the odd number 5 :

ODOUR, that quality of certain bodies which excites the fenfation of fmell. In the Annales de Cbimie, Vol. XXI. p. 254, we have a detailed account of certein experiments made by M. Benedict Prevoft of Ge. neva, with a view to render the emanations of odorant bodies perceptible to figlot. The account is by much too long for a work like ours; efpecially as we feel not ourfelves inclined to attribute to the experiments all the importance which feems to have been allowed to them by the firlt clafs of the French National Inftitute. We Thall therefore fate only a few of them, which feem moft to favour the author's hypothefis.
1. A concrete odorant fubftance, laid upon a wet glafs or broad faucer, covered with a thin ftratum of water, immediately caufes the water to recede, fo as to form a fpace of feveral inches around it.
2. Fragments of concrete odorant matter, or fmall morfels of paper or cork, impregnated with an odorant liquor, and wiped, being placed on the furface of water, are immediately moved by a very fwift rotation. Romien had made this obfervation on camphor, and erroneounly attributed the effect to electricity. The motion was perceptible even in pieces of camphor of feven or eight gros.
3. An odorant liquor being poured on the water, fops the motion till it is diffipated by evaporation. Fized oil arrefts the motion for a much longer time,

Qq and


Odour. and until the pellicle it forms on the water is taken off.
4. When the furface of the water is cleaned by a leaf of metal, of paper, or of glafs, pluriged in and withdrawn fucceffively until the pellicle is removed, the gyratory motion is renewed. If a piece of red wax or of taper be dipped in water, and the drops fhaken off into a glafs of water containing odorant bodies in motion, the movement will be ftopped. The fame effect is not produced by metal.
5. A morfel of camphor, plunged to the depth of three or four lines in water, without floating, excites a movement of trepidation in the furrounding water, which repels fmall bodies in its vicinity, and carries them again to the camphor by flatts. The author concludes, that an elaftic fluid efcapes from the odo. rant body in the manner of the fire of a fufee or the difcharge of fire-arms.
6. When there is a certain proportion between the height of the water and that of the fmall fragment of camphor, the water is brikkly driven off, returns again to the camplor, and again retires, as if by an explofion, the recoil of which often caufes the camphor to make part of a revolution on its axis.
7. Camphor evaporates thirty or forty times more fpeedily when placed upon water, than when entirely furrounded with air.
8. Cainphor, during the act of diffipation in the air, preferves its form and its opaque whitenefs; upon water it is rounded, and becomes tranfparent as if it had undergone a kind of fufion. It may be inferred, that this arifes from the acquired motion, which caufes it to prefent a greater furface to the air.
9. When fmall pieces of camphor are plunged in water, the camphor becomes rounded and tranfparent, does not acquire any motion, and its diffipation is lefs perceprible than in the air. The concurrence of air and water is therefore neceffary to difengage the fluid which is the caufe of the motion and total diffipation of odorant bodies.
10. 'The motion of odorant bodies upon water decays and ceafes fpontaneoufly at the end of a certain time; becaufe the water having then contracted a ftrong fmell, the volatilization takes place in all the points of its furface: and the fmall mafs being thus furrounded by the odorant fluid, which is no longer air, diffolves, as in the ordinary odorant fluids, without forming the gafeous jet which is the caufe of the motion. The author compares the volatilization of the aromatic fubftance to a combuftion excited by water.
M. Prevoft hopes, that thefe, and other experiments which he explains, will contribute to the theory of odours, which fo nearly refembles that of the gafer. He does not flatter himfelf with having exhaufted this fubject, but confiders his aifcoveries as the means of rendering odour perceptible by water, not only to the fight, but even to the touch, as are likewife the vibrations of fonorous bodies. Men ceprived of the fenfe of fmell, and even the blind, according to him, may in this manner diftinguifh odorant bodies from thofe which have no fmell. "Perhaps (fays be) this kind of odorofcope may, by improvement, become an odorimeter. The exceptions, fuch for example as that of the cerumen of the ears, which produces much effect on water without being perceptibly odorant, and that of the
fingers when hot or moilt, are merely apparent; for if our fenfes do not in thofe cafes difcover odour, thofe of animals more powerfully energetic, fuch as the dog, perceive and diftinguifh individuals by its peculiar cha. racter. The odorofcope may afford the information which is wanting refpecting thefe eflluvia. Thus it is that the fat of game, the fmell of which is nearly to us imperceptible, is very much fo to dogs, and exhibits fenfible marks by the odorofcope."

Profeffor Venturi of Modena, who heard Prevoft's memoir read in the National Inftitnte, had himfelf made fome experimente with camphor kept feparately in the air, in the water, and at the furface of the water; whence he deduces, that the mof active virtue for diffolving camphor refides at that part where both the air and the water tonch the camphor at the fame tine. Hence he explains why, in like circumftances, camphor evaporates more quickly in a moit than in a dry air \(\%\). and why the Hollanders ufe water in their procefs for fubliming this fubftance.
It might be thought that the camphor was decompofed at the furface of the water; that the water might feize the acidifying part, which renders the camphor concrete; and that the volatile part is diffipated in the atmofphere. The author rejects this notion. He thinks that water with camphor floating on its furface becomes charged with no more than a very fmall portion: 1. Becaufe in thefe circumftances the water acquires the fame tafte and fmell of canphor as it obtains when a fmall quantity of this fubftance is kept. plunged in the fame fluid. 'Ilis water, by expofure to the air, lofes the qualities with which it had been charged, and becomes infipid, and without fmell. 2. Becaufe when the water is faturated with all it can take up, the diffipation of the camphor continues at its furface as before. 3. Becaufe the acrial emanations of camphor made at the furface of water do themfelves cry ftallize into canaphor.
Camphor at the fuiface of the water does nothing, therefore, but diffolve; and when diffolved at the ordinary temperature of the atmofphere, it is not at firt in the flate of rapour, as has been thought. It is fimply a liquid which extends itfelf over the furface of water itfelf; and by this means coming into contact with a. great furface of air, it is afterwards abforbed and evaporated. This is proved by the following facts: 1. The folution of camphor at the furface of water is more rapid in proportion to the extent of the furface. In narrow veffels, the fection of the column would not be completed in ten days, even though the water might be extremely pure. 2. When the columi of camphor has projecting parts, the liquid may be feen iffuing by preference from certain points of the columa, covering the furface of the water, and driving finall floating bodies. before it, in the fame manner as floating bodies go and return in a bafon into which the water of a canal enters with rapidity. 3. If a fmall piece of camphor, already wetted at one end, be brought near the edge of water contained in a broad faucer, and be made to touch the faucer itfelf, it depofits a vifible liquor, which is oily ; and by attaching itfelf to the faucer, deftroys the adhefion between the veffel and the border of the water, fo that the water retires on account of the affinity of aggregation, which not being oppofed by the attraction of the faucer, caufes the water to terminate in a round
edge.

Nour, edge. If you remove the piece of camphor, the water Scononiifs. will not return to its place until the oily fluid is evaporated. 4. In the fame manner, when the column of camphor is half immerfed in the water, the oily liquor which iffues forth deftroys the adhefion of the water to the column, and produces a fmall furrounding cavity. The folution fops, or is retarded for a moment, until the fluid, extending itfelf over the water, becomes evaporated: the water then returns to its place, and touches the fame part of the camphor; the folution begins again, and in this manner the procefs is effected by alternations of contact and apparent repulfion.

Of thefe memoirs by Prevoft and Venturi, the Englifh reader will find accurate and full tranflations in the firf volume of Nicholfon's Pbilofoplical Fournal, toge ther with fome judicious obfervations on them by the editor, which we fhall take the liberty to adopt. "The philofophical coufideration of odorant bodies is fomewhat obfcured by the old method of generalifing, or referring the properties of bodies to fome diftinct principle or thing fuppofed capable of being feparated from the body itfelf. Thus the odours of bodies have been fuppofed to depend on a fubftance imagined in a loofe way to be common to them all and feparable from them. Hence the terms, principle of fmell, (piritus rector, and even in the modern nomenclature we find aroma. There does not in effect feem to be any more reafon to infer the exiftence of a common principle of fmell than of tafte. The fmell of ammoniac is the action of that gas upon the organ of fenfe; and this odorant invifible matter is exhibited to the fight when combined with an acid gas. But in the fame manner as ammoniac emanates from water, and leaves moft part of that fluid behind, fo will the volatile parts of bodies be moft eminently productive of this action ; and very few, if any, natural bodies will be found which rife totally. The moft ftriking circumftance in the effect is, that an act of fuch power fhould be attended with a lofs by exhalation which is fcarcely to be appreciated by weight, or in any other method during a fhort interval of time. But we know fo little of nervous action, and of other phenomena of electricity, of galvanifm (See Galvawism in this Suppl.), or even of heat, which Atrongly affect the fenfes, but elude admeafurement by gravitation, that the difficulty of weighing the effluvia of odorant bodies becomes lefs aftonilhing."

ECONOMISTS, a fect of philofophers in France, who have made a great noife in Europe, and are generally believed to have been unfriendly to religion. The founder of this feet was a Dr Duquefrai, who had fo well infinuated himfelf into the favour of Louis XV. that the king ufed to call him his thinker. The fect was called reconomifs, becaufe the œconomy and order to be introduced into the finances, and other means of alleviating the diftreffes of the people, were perpetually in their mouths. 'The Abbé Barruel admits, that there may have been fome few of them who directed their fpeculations to no other object ; but he brings very fufficient proof that the great aim of the majority of the fect was to eradicate from the minds of the people all reverence for divine revelation.
" Duquefnai (fays he) and his adepts had more efpecially undertaken to perfuade their readers, that the country people, and mechanics in towns, were entirely defticute of that kind of inftruction neceffary for their
profeffions; that men of this clafs, unable to acquire knowledge by reading, pined away in an ignorance equally fatal to themfelves and to the flate; that it was neceffary to eftablifh free fchools, and particularly throughout the country, where children might be brought up to different trades, and intructed in the principles of agriculture. D'Alembert, and the Vol. tairean adepts, foon perceived the advantages they could reap from thefe eflablifhments. In union with the œconomifts, they prefented various memorials to Louis XV. in which not only the temporal but even the fpiritual advantages of fuch eftablifhments for the people are ftrongly urged. The king, who really loved the people, embraced the project with warmth. He opened his mind on the fubject to Mr Bertin, whom he honoured with his confidence, and had entrufted with his privy pulfe;" and it was with great difficulty that this minifter could convince him of the dangerous defigns of the fect.
"Determines (fays he) to give the king pofitive proof that the œconomifts impofed upon him, I fought to gain the confidence of thofe pedlars who travel through the country, and expofe their goods to fale in the villages, and at the gates of country feats. I fufpected thofe in particular who dealt in books to be nothing lefs than the agents of philofophifin with the good country folks. In my excurfions into the country I fixed my attention above all on the latter. When they offered me a book to buy, I queftioned them what might be the books they had? Probably catechifms or prayer-books? Few others are read in the villages? At thefe words I have feen many fmile. No, they anfwered, thofe are not our works; we make much more money of Voltaire, Diderot, and other philofophic writings. What ! faid I; the country people buy Votaire and Diderot? Where do they find the money for fuch dear works? Their conftant anfwer was, we have them at a much cheaper rate than prayer-books; we can fell them at ten fols ( 5 d .) a volume, and have a pretty profit into the bargain. Queftioning forne of them fill farther, many of them owned that thofe books colt them nothing; that they received whole bales of them without knowing whence they came, but being fiunply delired to fell them in their journeys at the lowett price."
"Louis XV. warned by the difcovery made by his minifter, was at length fatisfied that the ettablifhment of thefe fchools, fo much urged by the confpirators, would only be a new inftrument of feduction in their hands. He abandoned the plan ; but, perpetually lia。 raffed by the protecting fophiffers, he did not ftrike at the root of the evil, and but feebly impeded its progrefs. The pedlars continued to promote the meafures of the confpirators ; yet this was but one of the inferior means employed to fupply the want of their fiee fchools, as a new difcovery brought to light one far more fatal.
"A bout the middle of the month of September 1789 , little more than a fortnight antecedent to the atrocious \(5^{\text {th }}\) and 6 th of Oetober, at a time when the conduct of the National Affembly, laving thrown the people into all the horrors of a revolution, indicated that they would fet no bounds to their pretenfions, Mr Le Roy, iieutenant of the King's Hunt, and an academician, being at dinner at the houfe of \(\mathrm{Mr} \mathrm{D}^{\prime}\) Angevilliers, intendant of the buildings of his majefty, the
conver-
converfation turned on the difafters of the revolution, and on thofe that were too cleatly to be forcfeen. Dinner over, the nobleman above-mentioned, a friend of Lee Roy, hurt at having feen him fo great an admirer of the Cophifters, reproached him with it in the following expreffive words: Well! this, then, is the work of PhiloJoply! Thunderftruck at thefe words-Alas! cried the academician, to whom do you fay fo? I know it but too well, and I flall die of grief and remorfe! At the word remorfe, the fame nobleman queftioned him whether he had fo greatly contributed towards the revolution as to upbraid himfelf with it in that violent manner? ' Yes (anfwered he), I have contributed to it, and far more than I was aware of. I was fecretary to the committee to which you are indebted for it ; but 1 call heaven to witnefs, that I never thought it would go to fuch lengths. You have feen me in the king's fervice, and you know that I love his perfon. I little thought of bringing his fubjects to this pitch, and I Joall die of grief and remorfe?
" Preffed to explain what he meant by this committee, this fecret fociety, entirely new to the whole company, the academician refumed: 'This fociety was a fort of club that we philofophers had formed among us, and only admitted into it perfons on whom we could perfectly rely. Our fittings were regularly held at the Baron. D'Holbach's. Left our object fhould be furmifed, we called ourfelves œconomilts. We created Voltaire, though abfent, our honorary and perpetual prefident. Our principal members were I)'Alembert, 'Turgot, Condorcet, Diderot, La Harpe, and that Lamoignon, keeper of the feals, who on his difmiffion fhot himfelf in his park.'
"The whole of this declaration was accompanied with tears and fighs; when the adept, deeply penitent, continued: "The following were our occupations; the moft of thofe works which have appeared for this long time paft againtt religion, morals, and government, were ours, or thofe of authors devoted to u3. They were all compofed by the members or by the orders of the fociety. Before they were fent to the preis, they were delivered in at our office. There we revifed and corrected them; added to, or curtailed them, according as circumftances required. When our plilofophy was too glaring for the times, or for the object of the work, we brought it to a lower tint ; and when we thought that we might be more daring than the author, we fpoke more openiy. In a word, we made our writers fay exactly what we pleafed. Then the work was publifhed under the title or name we had chofen, the better to hide the hand whence it came. Many, fuppofed to have been pofthumous works, fuch as Cibrifianity \(U_{n}\) mafked, and divers others attributed to Freret and Boulanger after their deaths, were iffued from our fociety.
- When we had approved of thofe works, we began by printing them on fine or ordinary paper, in fufficient \({ }^{\text {s}}\) rumber to pay our expences, and then an immenfe number on the commoneft paper. Thefe latter we fent. to hawkers and bookfellers free of coft, or nearly fo, who were to circulate then among the people at the loweft rate. Thefe were the means ufed to pervert the people, and bring them to the fate you now fee them in. I fhall not fee them long, for I foall die of grief and remorfe!"

This recital is too well authenticated to be called in queftion, and tno plain to need a commentary. Let it be a warning againft all fecret focieties, by whatever title of benevolence they may be defigred by thofe who form them.

OIL-mile, a mill for expreffing the oils from fruits, or grains, \&c. As thefe kingdoms do not produce the olive, it would be needlefs to defcribe the mills which are employed in the fouthern parts of Europe. We fhall content ourfelves, therefore, with a defcription of a Dutch oil-mill, employed for grinding and preffing lintfeed, rape-feed, and other oleaginous grains. Farther, to accommodate our defcription ftill more to onr local circumftances, we thall employ water as the firft mover; thus avoiding the enormous expence and complica. tion of a windmill.

In Plate XXXVIII. fig. A,
1. Is the elevation of a wheel, over or underfhot, as the fituation may require.
2. The bell-metal focket, fupported by mafonry, for receiving the onter gudgion of the water wheel.
3. The water courfe.

Fig. B.
1. A fpur wheel upon the fame axis, having \(52^{\circ}\) tecth.
2. The trundle that is driven by \(N^{3} 1\). and has \(7^{8}\) flaves.
3. The wallower, or axis for raifing the peftles. It is furnifhed round its circumference with wipers for lifting the peflles, fo that each may fall twice during one curn of the water wheel, that is, three wipers for each peftle.
4. A frame of timber, carrying a eoneave half cylinder of bell-metal, in which the wallower (cafed in that part with iron plates) refts and turns round. It will be feen in profile, fig. G.
5. Mafonry fupporting the inner gudgeon of the water wheel and the above-mentioned frame.
6. Gudgton of the wallower, which bears againft a bell-metal ftep fixed in the wall. This double fupport of the wallower is found to be neceffary in all mills. which drive a number of heavy itampers.

Fig. C, Is the elevation of the pefle and prefsframe, their furniture, the mortars, and the prefspeftes.
1. The fix peftles.
2. Crofs pieces between the two rails of the frame, forming, with thefe ralls, guides for the perpendicular motion of the peftles.
3. The two rails. The back one is not feen. They are checked and bolted into the ftandards \(\mathrm{N}^{\circ} 12\).
4. The tails of the lifts, correfpondiug to the wipere upon the wallower.
5. Another rail in front, for carrying the detcnts which hold up the pefles when not acting. It is narked 14 in fig. M.
6. A beam a little way behind the peftles. T'o this are fixed the pulleys for the ropes which lift and fop. the pettles. It is reprefented by 16 in fig. M.
7. The faid pulleys with their ropes.
8. 'I'he driver, which frikes the wedge that preffes the oil.
9. The difcharger, a ftamper which ftrikes upon the inverted wedge, and loofens the prefs. ower guides of the pefles.
11. A fmall ceg wheel uoon the wallower, for turning the fpatulu, which ftirs about the oil-feed in the chauffer-pan. It has 28 teeth, and is marked \(\mathrm{N}^{\circ} 6\) in fig. M.
12. The four ftandards, mortifed below into the block, and above into the joifts and beams of the building.
1.3. 'The fix mortars hollowed out of the block itfelf, and in thape pretty much like a kitchen pot.
14. The feet of the pefles, rounded into cylinders, and fhod with a great lump of iron.
15. A board behind the peftles, fanding on its edge, but inclining a little backwards. There is fuch another in front, but not reprefented here. Thefe form a fort of trough, which prevents the feed from being fcattered about by the fall of the peftles, and loft.
16. The firft prifs-box (alfo hollowed out of the block), in which the grain is fqueezed, after it has come for the firf time from below the milfones.
17. The fecond prefs-box, at the other end of the block, for fqueezing the grain after it has paffed a fecond time under the peftles.
18. Trame of timber for fupporting the other end of the wallower, in the fame manner as at \(\mathrm{N}^{\circ} 4\). fig B .
19. Small \(\operatorname{cog}\) wheel on the end of the wallower for giving motion to the milfones. It has 28 teeth.
20. Gudgeon of the wallower, bearing on a bell metal focket fixed in the wall.

2I. Veffels for receiving the oil from the prefs. boxes.
22. Joitts fupporting the blook.

Fig. D Elevation and mechanifm of the mil. fones.
1. Etpright Joaft, carrying the great cog wheel above, and the runner milfones below in their frame.
2. Cog . wheel of 76 cogs , driven by \(\mathrm{N}^{\circ} 19\). of fig C.
3. The frame of the runners. This will be more diftinetly underftood in \(\mathrm{N}^{\circ}\) 4. fig. H .
4. The innermot runner, or the one neareft the fhaft.
5. Outermoft ditto, being farther from the fhaft.
6. The inner rake, which collects the grain under the outer runner.
7. The outer rake, which collects the grain undes the imer runner. In this manner the grain is always turned over and over, and crufhed in every direction. The inner rake lays the grain in a nope, of vinich fig. O. is a fection; the runner flattens it, and the fecond rake lifts it again, as is marked in fig. \(P\); fo that every fide of a grain is prefented to the milltone, and the reft of the legger or nether milfone is to fwept by them, that not a tingle grain is left on any part of it. The outer rake is allo furnifhed with a ragg of cloth, which rubs againft the border or honp that furrounds the mether miftone, fo as to drag out the few grains which might otherwife remain in the comer.
8. The ends of the iron axle which pafies through the upright fhaft, and through the two runners. Thus they have two motions: imo, A rotation round their own axis. 2do, That by which they are carried zound upon the nether miltone on which they roll. The holes in thefe milfones are made a little widif.;

\section*{309 ] \\ O I I}
and the holes in the ears of the frame, which carry the ends of the iron axis, are made oval up and down. This great freedom of motion is neceffary for the runner milftones, becaufe frequently more or lefs of the grain is below them at a time, and they muft therefore be at liberty to get over it without ftraining, and perhaps breaking, the fhaft.
9. The ears of the frame which lead the two extremities of the iron axis. They are mortifed into the under lide of the bars of the fquare frame, that is carried round with the fhaft.
10. The border or hoop which furrounds the nether milftone.
11. and 12. The nether milfone and mafonry which fupports it.

Fig. E. Form of the wallower, fhewing the difpofition of the wipers along its furface.
1. 'Two parts of this fhaft, which are nicely rounded, and fortified with iron plates, and which reft upon the bell-metal coneaves, which are reprefented in \(n^{\circ} 4\). of fig. C.
2. The little wheels at each end, for giving motion to the two fpatulæ, marked \(n^{J}\) II. fig. C.
3. The wipers for the fecond prefs.
4. The wipers for the firft prefs.
5. The wipers for the fix peftles.

Fig. F Reprefents the furface of the wallower unfolded into a rectangular parallelogram, in order to flew the diltribution of the wipers, and confequently the fucceffion of the Atrokes given by the different pefles. This difribution has fomething peculiar. Each peftle has three wipers; and there are alfo three for the driver and elifcharger of the fecond prefs. The driver and wiper of the firft prefs have but one and a half; one for the driver, and the half for the difcharger; fo that it Atikes twice, and the driver only once, in a turn of the flaft. This is the Dutch practice, which differs from that of Flanders. The fucceffion of the ftrokes may be conceived as follows: Reckon the fampers, including thofe of the preffes, from the water wheel toward the other end of the wallower, and calling them \(a, l, c, d, e, f, g, h, i, k\), and fuppofing that \(a\) makes the firft ftroke, they proceed in the following order for one turn of the wallower:
\(a b, d, f, b, c, e, g, a b, d, f, b, c, c, g, a b, d, f, b, c, e, g\).
Here it may be obferved that \(a\) and \(b\) ftrike together. They would do fo if alloweci; but ore of them is held up by its detent till the workman fees proper to difengage it. Each peftle, and the driver and difcharger of the fecond prefs, makes three ftrokes for one turn of the wallower. But the driver \(k\) of the firt prefs makes only one ftroke in that time, namely, in the interval between the laft Atrokes of.e and \(g\). The difcharger \(i\) of this prefs makes two flrokes; one of them in this fare interval, and the other along with the firft Atroke of \(e_{\text {. }}\) The fecond preffing requires a much more violent preffure than the firft, becaufe the cake mult be left perm fectly dry and hard.

Fig. G. Protile of the frame of timber which carries the vallower, and greatly contributes to render its motion fteady.
Fig. H. Is a view of one of the milfones.
1. The nether milfones, and the mafonry fupporting: the whole.
2. The runner.
9. A lever, moveable round the piece no 14, and hathe milfone at a very fmall diftance from it, in order to prevent the grain which flicks to it from being feattered. There is another method practifed at fome mills.

Fig. I. Rcprefents that of Sardarnm. AA are two iron rods, about half an inch fquare, hanging on the axte, on each fide of the milltone. Thefe rods are joincd by a crofs piece \(C\), which almoft touches the milltone. A piece of leather is put between, which rubs upon the milfone, and clears it of the grain which chances to flick to it. \(\mathrm{N}^{\circ} 4\). and 6 . reprefent the ears of this frame, by which the end of the iron axle is fup. ported, and carried round by the upight flaft \(n^{\circ} 5\).

Fig. K. Plan of the runner milfones, and the frame which caries them reund.

I, I. Are the two militones.
\(3,3,3,3\). The outfide pieces of the frame.
\(4,4,4,4\). The crofs bars of the frame which em. brace the upright fhaft 5 , and give motion to the whole.

6,6 . The iron axis upon which the rumers turn.
7. The outer rake.
8. The inner ditto.

Fig. L. Reprefents the nether millone feen from above.
1. The wooden gutter, which furrounds the nether militone.
2. The border or hoop, about fix inches high, all round, to prevent any feed from being fcattered.
3. An openiug or trap door in the gutter, which can be opened or thut at pleafure. When open, it allows the bruifed grain, collected in and fhoved along the gutter by the rakes, to pafs through into troughs placed below to receive it.
4. Portion of the circle defcribed by the outer runner.
5. Portion of the circle defcribed by the inner one. By thefe we fee that the two fones have different routes round the axis, and bruife more feed.
6. The outer rake.
7. The inner ditto.
8. The fweep, making part of the inner rake, occafionally let down far fweeping off all the feed when it has been fufficiently bruifed. The preffurc and action of thefe rakes is adjufted by means of wooden forings, which cannot be eafily and diftinctly reprefented by any figure. The oblique pofition of the rakes (the outer point going foremoft) caufes them to fhove the grain inwards or toward the centrc, and at the fame time to turn it over, fomewhat in the fame manner as the mould-board of a plough fhoves the earth to the right hand, and partly turns it over. Some mills have but one fweeper; and, indeed, there is great variety in the form and conftruction of this part of the machinery.

Fig. M. Profile of the peftle frame.
1. Section of the horizontal fhaft.
2. Three wipers for lifting the pefles.
3. Little wheel of 28 tecth for giving motion to the fpatula.
4. Another wheel, which is driven by it, having 20 teeth.
5. Horizontal axle of ditto.
6. A nother wheel on the fame axle, having I3 teeth.
7. A wheel upon the upper end of the fpindle, having 12 teeth.
8. Two guides, in which the fpindle turns freely, and fo that it can be fhifted higher and lower.
ving a hole in it at 9 , through which the Epindle pafles, turning freely. The fpiridle has in this place a fhoulder, which refts on the border of the hole 9 ; fo that by the motion of this lever the fpindle may be difengaged from the wheel work at pleafure. This motion is given to it by means of the lever 10, 10 , moveable round its middle. The workman employed at the chauffer pulls at the rope \(10, I f\), and thus difengages the fpindle and fpatula.
11. A peftle feen fidewife.
12. The lift of ditto.
13. The upper rails, marked \(n^{3} 3\). in fig. C.
14. The rail, marked \(n^{\circ} 5\). in fig C. To this are fixed the detents, which ferve to top and hold up the peftles.
15. A detent, which is moved by the rope at its outer end.
16. A bracket behind the pefles, having a pulley, through which paffes the rope going to the detent 15 . 17. The faid pulley.
18. The rope at the workman's hand, paffing through the pulley 17, and fixed to the end of the detent 15 .

This detent naturally hangs perpendicular by its own weight. When the workman wants to flop a pefle, he pulls at the rope 18, during the rife of the peftle. When this is at its greateft height, the detent is horizontal, and prevents the pefle from falling by means of a pin projecting from the fide of the pettle, which refts upon the detent, the detent itfelf being held in that pofition by hitching the loop of the rope upon a pin at the workman's hand.
19. The two lower rails, marked \(\mathrm{n}^{0}\) 10. fig. C.
20. Great wooden, and fometimes ftone, block, in which the moitars are formed, marked \(n^{\circ} 21\). in fig. C.
21. Veffel placed below the prefs boxes for receiving the oil.
22. Chauffer, or little furnace, for warming the bruifed grain.
23. Backet in the front of the chauffer, tapering downwards, and opening below in a narrow flit. The hair bags in which the grain is to be preffed after it has been warmed in the chauffer, are filled by placing them in this backet. The grain is lifted out of the chauffer with a ladle, and put into thefe bags; and a good quantity of oil runs from it through the fit at the bottom into a veffel fet to receive it.
24. The fpatula attached to the lower end of the fpindle, and turning round among the grain in the chauffer-pan, and thns preventing it from flicking to the bottom or fides, and getting too much heat.

Fig. N. Plan of part of the works.
1, I. \({ }^{\circ}\) Furnaces for warming the grain.
2,2 . The backets for holding the facks while they arc a-filling.

3,3. The pan in which the bruifed grain is heated by the chauffer.
4, 4. A trough for receiving the chips, into which the prefled oil-cakes are cut, to be afterwards put into the pan and warmed.
5. The prefs-box for the fecond preffing.
6. The prefs-box for the firlt preffing.
7. The fix mortars.
8. The floping boards, to hinder the fcattering of the oil feed.
9. The
ing, and its adaptation to the various parts of the procefs for extracting the oil from feeds or kernele.
9. The nether milfone, but out of its place.
10. Its centre a little higher than the reft.
11. A rib of wood going round the edge of the nether miltone, and even with its furface, but rifing a very little outwards, and furrounded with a border or hoop about an inch high, to prevent the feed from being fcattered on the ground.

Fig. Q. A fection, lengthwife, of the great block, with the mortars and prefs-boxes.
1. The fix pefles.
2. The fix mortars, each of which has an iron plate at its bottom.
3. The driving ftamper, which falls on the wedge of the firft preffing.
4. Ditto, for the fecond ditto.
5. The difi barger, which frikes on the inverted wedge in order to free the prefs.
6. Ditto, for the fecond preffing.
7. Wedge for freeing the prefs.
8. Wedge for preffing.
9. Wooden cheeks, two inches thick, which are placed between the middle wedge and the Jiding wedges on each fide.
10. Prefs-irons, between which are placed the hairbags containing the bruifed grain.
II. Iron plate, called the fountain, at the bottom, pierced with holes, correfponding with a hole in the block, for allowing the oil to run off from the preffed grain.
12. Veffel for receiving ditto.
13. A long iron plate at the bottom of the prefs box, under the drawing and difcharging wedzes.

Fig. R. Another view of the prefs-irons.
1. The fide-irons laid flat.
2. The fame feen edgewife.
3. The pierced iron plate, upon which the two irons, \(\mathrm{n}^{0} \mathrm{I}\). fland upright, with the hair-bag between them.
4. One of the hair-bags. It may be obferved that the feams of thefe bags are made on the flat fides, and not on the edges, where they would be in danger of burting.
5. A long hair-cloth, in which the bag is wrapped before it is fet into the prefs. The bag, being filled with bruifed grain, is placed with its bottom at \(a\), and the top at \(b\); the part \(c a\) is lapped over it, reaching to \(b\), and then the other end \(d\) is lapped over that, and reaches to \(a\), and the loop at its end ferves as a handle by which to lift it, and place it properly between the prefs-irons.

Fig. S. The principal pieces of the prefi.
1. The wooden cheeks.
2. The difcharging wedge.
3. The driving wedge.

4 and 5. The fliding blocks, which tranfmit the preffure produced by the driving wedge.
The foregoing enumeration and views of the different parts of a Dutch oil-mill, are fufficient, we imagine, to enable an intelligent mill-wright, to whom the machine is altogether new, to underftand its manner of work-

It would require a very minute defcription indeed to explain it to a perfon altogether unacquainted with millwork.

The firft part of the procefs is bruifring the feed under the rimner ftones (a). That this may be more expeditiounly done, one of the runners is fet about \(\frac{2}{3}\) ds of its own thicknefs nearer the fhaft than the other. Thus they have different treads; and the grain, which is a little heaped towards the centre, is thus bruifed by both. The inner rake gathers it up under the outer ftone into a ridge, of which the fection is reprefented in Plate XL. hig. O. The flone paffes over it and flattens it. It is gathered up again into a ridge, of the form of fig. P. under the inner fo:ze, by the outer rake, which confilts of two parts. The outer part preffes clofe on the wooden border which furrounds the nether ftone, and fhoves the feed obliquely inwarde, while the inner part of this rake gathers up what lad fpread toward the certre. 'Tlie other rake has a joint near the middle of its length, by which the outer lalf of it can be saifed from the nether ftone, while the inner half continues preffing on it, and thus fcrapes off the moift patte. When the feed is fufficiently bruifed, the miller lets down the outer end of the rake. This immediately gathers the whole pafte, and fhoves it obliquely outwards to the wooden rim, where it is at lait brouglit to a part that is left unboarded, and it falls through into troughs placed to receive it. Theie troughs have holes in the bottom, through which the oil drips all the time of the operation. This part of the oil is direeted into a particular ciftern, being confidered as the pure:t of the whole, h:ving been obtained, without preflure, by the mere breaking of the hull of the feed.

In fome mills this operation is expedited, and a much greater quantity of this beft oil is oblained, by having the bed of mafonry which fupports the legger formed into a little furnace, end gently heated. But the utmoft care is neceffary to prevent the heat from becoming confiderable. This, enabling the oil to diffolve more of the fermentable fubflance of the feed, expofec the oil to the rifk of growing foon very rancid; and, in general, it is thought a hazardous practice, and the oil does not bring fo high a price.

When the paite comes from under the flones, it is put into the laair bags, and fuljected to the firft prefting. The oil thus obtained is alfo etleemed as of the firtt quality, fcarcely inferior to the former, and is kept apart ('The great oil cittern being divided into feveral portions by partitions).
The oil cakes of this proffing are taken out of the bags, broken to pieces, and put into the mortars for the firt famping. Here the paite is again broken down, and the parenchyma of the feed reduced to a fine meal. Thus free egrefs is allowed to the oil from every veficle in wlich it was contained. Buc it is now rendered much more clammy, by the forcible inixture of the mus-
(A) We are told, that in a mill at Reichenhoffen in Alface, a confiderable improvement has been made by paffing the feed between two fmall iron rollers, before it is put under the milltones. A great deal of work is pafing the feed between two fmall iron rollers, before this preliminary operation, and finer oil produced, which we think very probable. The. famping and preffing go on as in other mills,
©ii. cilage, and even of the fincr parts of the meal. When fufficiently pounded, the workman ftops the pefle of a mortar, when at the top of its lift, and carries the - contents of the mortar to the firt chauffer pan, where it is heated to about the temperature of melting bees wax (chis, we are told, is the telt), and all the while ftirred about by the \{patula. From thence it is ?gain put into hair bags, in the manrer already defcribed; and the oil which drips from it during this operation is confidered as the beft of the fecond quality, and in fome mills is kept apait. The pafte is now fubiected to the fecond preffing, and the oil is that of the fecond quality.

All this operation of pounding and leating is performed by one workman, who has conflant employ ment by taking the four mortars in fuccelfion. 'The putting into the bags and conducting of the preffing gives equal employment to another workman.

In the mills of Piccardy, Alface, and moft of Flanders, the operation ends here; and the produce from the chauffer is increafed, by putting a fpoonful or two of water into the pan among the pare.

But the Dutch take more pains. They add no water to the pafte of this their firff famping. They fay that this greatly lowers the quality of the oil. The cakes which refult from this preffing, and are there fold as food for cattle, are ftill fat and fuftifh. The Dutch break them down, and fubject them to the pefles for the feiond famping, Thefe reduce them to an impalpable pafte, Pliff like clay. It is lifted out, and put into the fecond chauffer pan; a few \{poonfuls of water are add. ed, and the whole kept for fome tinue as hot as boiling water, and carefully ftirred all the while. From thence it is lifted into the hare bags of the laft prefs, fubjected to the prefs; and a quantity of cil, of the loweft quality, is obtained, fufficient for giving a fatisfactory profit to the milier. The cake is now perfeelly dry, and hard, like a piece of board, and is fold to the farmers. Nay, there are fmall mills in Holland, which have no other employment than extracting the oil from the cakes which they purchafe from the French and Brabanters; a clear indication of the fuperiority of the Dutch practice.

The nicety with which that induftrious people conduct all their bufuefs is remarkable in this manufacture.

In their oil cittern, the parenchymous part, which un. avoidably gets through, in fome degree, in every operation, gradually fublides, and the liquor, in any divifion of the ciftern, comes to confilt of itrata of different degrees of purity. The pumps which lift it out of each divifion are in pairs ; one rakes itup from the very bot. tom, and the other only from half depth. The laft only is barrelled up for the market, and the other goes into a deep and narrow ciltern, where the dreg again fubfides, and more pure oil of that quality is obtained. By fuch careful and judicious prątices, the Dutch not only fupply themfelves with this important article, but annually fend confiderable quantities into the very provinces of France and Flanders where they bought the feed from which it was extracted. When we refleet on the high price of labour in Holland, on the want of timber for machinery, on the expence of building in that counitry, and on the enormous expence of wind mill machinery, both in the firft erection and the fubfequent
wear and tear, it muft be evident, that oil mills erected in England on water falls, and after the Dutch manner, cannot fail of being a great notional advantage. The chatellanie or feigneurie of Lille alone makes annually between 30,000 and 40,000 barrels, each containing about 25 gallons.

What is here delivered is oniy a fletch. Every pezfon aequainted with machinery will un.!ertand the general movements and operations. But the intelligent mechanic well knows, that operations of this kind have many minute circumitances which cannot be defcribed, and which, neverthelefs, may have a great influence on the whole. The rakes in the bruifing-mill have an office to perform which refembles that of the hand, directed by a careful eye and unceafing attention. Words eannot communicate a clear notion of this; and a mill, conitructed from the beft drawings, by the moft fkilful workman, may gather the feed fo ill, that the half of it thall not be bruifed after many rounds of the macliinery. This produces a fcanty return of the fineft oil; and the mill gets a bad character. The proprietor lofes his money, is difcouraged, and gives up the work. There is no fecurity but by procuring a Dutch millwright, and paying him with the liberality of Britons. Such unhoped-for tafks have been performed of late years by machinery ; and mechanical knowledge and invention is now fo generally diffufed, that it is higbly probable that we fhould foon excel our teachers in this branch. But this very diffufion of knowledge, by encouraging foeculation among the artifts, makes it a ttill greater rikk to erect a Dutch oil-mill without having a Dutchman, acquainted with its molt improved prefent form, to conduet the work. We do our duty in giving this counfel.

OKU-jesso. See Segalien in this Suppl.
OMPHALOPTER, or Omphaloptic, in optics, a glafs that is convex on both fides, popularly called a conver lens.

ONISCUS (See Enrycl.). Two new fpecies of this genus of infects were difcovered by La Martiniere, the naturalit who accompanied Peroufe on his ladt voyage of difcovery. For the information of fuch of our readers as are entomologifts, we fhall give the author's defeription of thefe fpecies. Of the firft, which he fays only nearly anfwers to the generic character of onifcus, E (fig. 1.) is a view of the upper part of its body, and at F of the lover. Its body is crultaceous, and of an opaque white, with two round ruft-coloured fpots on the anterior part of its corfet; two others, much larger, in the form of a crefcent, are on the elytra; ito fhield is alfo of the fame colour. The under part of the thorax is furnifhed with four pair of legs: the firit and third of which are terminated with harp claws; the fecond, from its form, ferves it to fwim with; the fourth is very fnisll, confifing of two menbranaceous threads. Some fcales, alfo membranaceous and very channelled, may alfo perform the office of legs: of thefe the two lower are the largeft. Its belly is filled with vermicular intectines of the fize of a hair; its mouth is placed between the firft and fecond pair of legs, and is of the form of a fmall trunk placed between two lips, ioined only at the upper extremity.

Fig. 2. reprefents an iufect of the genus onifcus I.inn. Its body is nearly of the form, confiftence, and colour, of the onificus ajollus, except that it is not di-


Fig M.



opaque, vited by fegments as this laft is. It has a double tail, Opiry three tinies as long as the body; from the infertion of which, at the hiuder part of the budy, fpring two legs, ufed chiefly by the animal in fwimming upon its back. The infect, viewed on the lower part H, prefents fix pair of legs ; the two firf of which terminate in very fharp and thick points; it makes ufe of the third to fwin with, and to balance its body, together with that pair which is inferted at the bafe of the tail; the fourth pair, and the largeft of all, is armed with two vety fharp points, which the animal forces into the eody of any fifh on which it feizes ; the two laft pair are nothing -more than very fincly divided membranes. Between the two firit is fituated its trunk, finooth, and about half a line long; at the tafe of the third pair are two points, of a horny confiftence, very hard, and firmly fixed. The two horns alfo below the large pair of legs are, in like manner, very firmly united to its body. Martiniere :magines it to be by means of thefe carts that it pierces the body of the fifh on which it is found,' and that then, changing its fituation, it finds means to introduce its trunk into the loles thas formed. When put into a glafs it finks to the bottom, and rifes again to the furface with the greateft eafe, advancing with the edge of its body, and defcribing curves. Its two long tails are very eafily pulled off, without the animal appearing to fuffir any pain.

OPAQUE, not tranflucent, nor tranfparent, or not admitting a free paffage to the rays of light.

OPARO or Oparzo, the name given by Captain Vancouver to a frall iffand which he difcovered in latitude \(27^{\circ} 36^{\prime}\) fouth, and in longitude \(215^{\circ} 49^{\prime}\) ealt from Greenwich. It was eltimated at about \(6 \frac{1}{2}\) miles in length, and no other land was in fight. Its principal character is a clufter of high craggy mountains, forming, in feveral places, moft romantic pinuacles, witlo per. pe:.dicular cliffs neariy from their fummits to the fea: the vacancies between the mountains would more properly be termed chafms than valleys. The tops of fix of the higheft hills bore the appearance of fortified places, refembling redoubts; having a fort of blockhoufe, in the fhape of ann Englifh glafs-houfe, in the centre of each, with rows of pallifadoes a confiderable way down the fides of the hills, nearly at equal diftances. Thefe overhanging, feemed intended for advanced works, and apparently capable of defending the citadel by a few againft a numerous hoft of affailants. On all of them people were noticed as if on duty, conftantly moving about. What we confidered (fays the author) as block houfes, from their great fimilarity in appearance to that fort of building, were fufficiently large to lodge a confiderable number of perfons, and were the only habitations we faw. Yet, from the number of canoes that in fo fhort a time affembled round the Englifh fhip, it is natural to conclude, that the inhabitants are very fre. quently afoat ; and to infer, that the fhores, and not thefe fortified hills which appeared to be in the centre of the ifland, would be preferred for their general refidence.

Whether the fortified places here deferibed were intended for defences of the iflanders againft each other, or ajainft attacks from fome more powerful neighbours, conld only be conjectured; but the latter idea feems the moft probable. Fiom the language of the people, and their refemblance to the Friendly iflanders, Captzin Vancouver confiders them all as having fprung Suppl. Vol. II. Part I.
from the fame original fock. The people of Oparo, however, are diftinguifhed by two circumfances, certainly in their favour. Not one of them was tattowed; an! though they appeared not to have ever feen a European before, they all feemed perfectly well acquainted with the ufes to which they could apply iron, and preferred articles of it to looking glafiés, beads, and other trinkets, with which favages are ufually delighted. Though there appeared to be anchoring ground near the north weff end of the infand, cireumflances rendered it inconvenient for Captain Vancouver to land on it ; fo that we are yet in a great meafure ftrangers to the difpofitions of the people, though they appeared to be hofpitable.

OPEN Flank, in fortification, is that part of the flank which is covered by the orillon or fhoulder.

OPENING of the Trencles, is the firt breaking of ground by the befiegers, in order to carry on their approaclies towards a place.

OPERA Glass, is a diagonal perfpective, of which the following concife and perficuous defription is taken from Dr Hutton's Mathematical Dictionary. ABCD (Plate XLI.) reprefents a tube about four inches long; in each fide of which there is a hole EF and GH, exactly againit the middle of a plane mirror IK, which reflects the rays falling upon it to the convex glafs LM; through which they are refracted to the concave eye-glafs NO, whence they emerge parallel to the eye at the hole \(r s\), in the end of the tube. Let \(P a Q\) be an object to be viewed, from which proceed the rays \(\mathrm{P} c, a b\), and \(\mathrm{Q} d\) : thefe rays, being reflected by the plane mirror IK, will fhew the objeet in the direction \(c p, b a, d q\), in the image \(p q\). equal to the object \(P Q\), and as far behind the mirror as the object is before it : the mirror being placed fo as to make an angle of 45 degrees with the fides of the tube. And as, in viewing near objects, it is not neceffary to magnify them, the focal difitances of both the glaffes may be nearly equal ; or, if that of LM be three inches, and tlat of NO one inch, the dittance between them will be but two inches, and the object will be magnified three times, being fufficient for the purpofes to which this glafs is applied.

When the object is very near, as XY, it is viewed through a hole \(x y\), at the other end of the tube AB , without an eye-glafs ; the upper part of the mirror being polifhed for that purpofe as well as the under. The tube unfcrews near the object-glafs LM, for taking out and cleanfing the glaffes and mirror. The pofition of the object will be erect through the concave eye-glafs.

The peculiar artifice of this glafs is to view a perfor at a fmall diftance, fo that no one fhall know who is obferved; for the inftrument points to a different object from that which is viewed ; and as there is a hole on each fide, it is impoffible to know on which hand the object is ficuated which you are viewing. It is chiefly ufed in play-houfes; and hence its name: but we have feen it moft indecently employed by thofe who Thould have fet a better example, even in a cathedral church!

OPHRYS (See Encycl.). A new fpecies of this plant has been lately defcribed in the A:nnual Hamp, zire Repofitory, by a Felluw of the Limnean Society, in the following words:
"Stem-about 12 inches high, erect, flipulate, geni-
kr culate,

\section*{O P I \\ \(14] \quad O \mathrm{R} \mathrm{A}\)}

Ophincus, culate, pubefcent at the upper genicles. Spike-Atrictly Opium, fpiral, flowers fpirally afcending, about 24 , brightly white. Upper petal ovato acuminate, pubefcent, lightly ciliate, Atraight. Two middle petals oblong-recurved. 'Two lower petals oblong-acuminate, lightly ciliate orly on the lower fide near the bafe, projecting like elephant's tufks. Nechury, broad, recurved, ragged, bicipitate. Leaves foral-carinate acuminate, ciliate reaching and pointing to the middle of the flowers. Leaves radical-five or fix, about fix inches long, narrow, atrenuate both ways, acuminate, the lower more haftate. Leaves cauline-lanceolate, alternate.
"Obfervation. -This plant has much the habit, as well as autumnal florefcence, of Oriental fpiralis, and is fo perfectly fpiral alfo, that the fpecific name of the other thould be altered, as being no longer exclutively fpiral; at the fame time that a fecific name fhould be given to this: neither of which (fays the author) I fhall prefume to do, but fhall fuggeft it to the Linnean So ciety, of which I have the honour to be a Fellow." This ophrys flowered, for the lirit time, it is believed, in England, in Hampfhire, October \({ }^{1} 796\).

OPHIUCUS, a conftellation of the northern hemif. phere; called alfo Serpentarius.

OPIUM (See Encycl.), is a medicine of fuch intrinfic value, and of fo high a price, that every method which promifes to increafe the quantity in the market munt be of importance. It was therefore, with much propriety, that the Society for the Encouragement of Arts, E'c. forne time ago, voted 50 guinueas to Mr John Ball of Williton, Somerfetthire, for the difcovery of his method of preparing opium from poppies of the growth of England. The poppies, which he recommends as the moft productive, are the doulle or fomi double, of a dark colour; the feeds of which he advifes to be fown the latter end of February, and again about the fecond week in March, in beds three feet and a half wide (well prepared with good rotten dung, and often turned or ploughed, in order to mis it well, and have it fine), either in fmall drills, three in each bed, in the manner fallads are fown, and when about two inches high, to thin thern one foot apart; or otherwife, to fow them in beds, in the broad-catt way, and thin them to the fame diftance. If they be kept free from weeds, they will grow well, and will produce from four to ten heads, thewing large and different coloured flowers; and when their leaves die away, and drop off, the pods then being in a green ftatc, is the proper time for extracting the opium, by making finch longitudinal incifions as are, for this purpofe, made in the ealt (See Opium and Papaver, Encycl.). Inmediately on the incifion being made, a milky fluid will iffue out; which is the opium, and which, being of a glutinous nature, will adhere to the bottom of the incilion ; but fome poppies are fo productive, that it will drop from the pod on the leaves underneath. The next day, if the weather thould be fine, and a good deal of funfhine, the opium will be found a greyifh fubttance, and fome alroof turning black: it is then to be fcraped from the pods, and (if any there) from the leaves, with the edge of a knife, or other inftrument for that puipofe, into pans or pots; and in a day or two it will be of a proper confiftence to make into a mafs, and to be putted.

According to Mr Bail, fields cannot be fown with any thing more lucrative to the farmer than poppies,
efpecially if thofe fields have a fouth expofure. "By a calculation (fays he) which I have made, fuppofing one poppy to grow in one fquare foot of earth, and to produce only one grain of opium, more than L. 50 will be collected from one ftatutc acre of land; but if we confider, that one poppy produces from three or four to ten heads, that in eacli head from fix to ten incifions may be madc, and that from many of them (I mean from one incifion) I have taken away two or three grains of opium-What muft then be the produce?"

Mr Ball produced to the Society letters from Dr Latham of Bedfurd-row, Dr Pearfon of Leicetter. fquare, and Mr. Wilfon of Bedfurd-Atreet, declating, that, in their opinion, his Englifh opium is equal in et. fect, and fuperior in purity, to the beft foreign opium.
op'TIC Inequality, in aftronomy, is an apparent irregularity in the motions of far diltant bodies; fo called, becaufe it is not really in the moving bodies, but arifing from the fituation of the obferver's eye. For if the eye were in the centre, it would always fee the mo. tions as they really are.

Opric Pyramid, in perfpective, is a pyramid formed? by the vifiole object which is the bafe, and the rays drawn from the perimeter of thatobject, which meet at the eye in a point, which is the apex of the pyramid. Hence, alfo, we may know what is meant by an optic triungle.

Optic Rays, particularly means thofe by which an optic pyramid, or optic triangle, is terminated.

ORAN, a confiderable city. occupied by the Spaniards, in the province of Mafoara, in the country of Algiers. It has ftrong and regular fortifications, and can cafily be fupplied from Spain with provifinis and warlike ftores. It lies in \(35^{\prime}\) of longitude we:t from Greenwich, and in \(35^{\circ} 55^{\prime}\) north latitude. Since the year 1732, the Spaniards have held uninterrunted poffeffion of Oran. It has a parifi-church, three monzfteries, an hofpital : and the number of the inhabitants, according to the account given of it by the Spaniards, amount to 12,000 . Cowards the fea, the city rifes in the form of an anphitheatre, and is furrounded with forts and batteries. Clofe to the city lies a ftrong cafle, Alcazava, in which the Spanifh governor retides. On the highelt hill ftands Fort St Croix, whole guns command the city and the adjacent country. From this fort they make fignals of the approach of fhips, and carefully watch the motions of the Moors, who often attenpes predatory incurlions into the neighbouring diAricts. A confiderable number of Mahomedans take refuge in Oran ; they dwell in a diltinct part of the city, receive pay from the court of Spain, and render fignal fervices againft the Moors. The greate!t part of the inlabitants of Oran contifts of fuch as have been banifhed from Spain ; and the fame may, in a great mezfure, be faid of the foldiers who compofe the garrifon. Five regiments are commonly ttationed here ; but, ow ing to continual defertion, their Itrength fcarcely equals that of four complete reginents. One of them wholly conlitts of malefactors, who have been condemned to remain here for life; the reft are fuch as have been tranfported for one or more years. 'There is here likewife a military fchool. Around the city are pleafant gardens; but it is very dangerous to cultivate them, on account of the Moors and Arabs, who frequently lie in ambuth among them. The fame reafon prevents the cultivation of the fields in the vicinity; and the garri-

\section*{ORAA \(\quad\left[\begin{array}{lll}315\end{array}\right] \quad\) O R C}
range. fon and inhabitants mult be fupplied with provifions imMen.

ORANGE-MEN, an appellation affumed by certain
focieries in Ireland, of which the firft was formed in the county of Armagh, on the 21 ft of November 1795 , others in fome towris of Ulfter and Leinfter in the year 1797, another in the city of Dublin 1798; and lince that period, thefe focieties have fpread over the whole of our fifter kingdom. The object of thefe affociations is exhibited in the following authentic Declaration of the Principles of Orange-men, publifhed 1799.
"From the varioue attempts that have been made to poifon the public mind, and flander thofe who lave had the fpirit to adhese to their king and conflitution, and to maintain the laws :-
"We, the Proteftarts of Dublin, affuming the name of Orange-men, feel ourfelve, calied upon, not to vindicate our principles, for we know that our honcur and loyalty bid defiance to the fhafts of malevolence and difaffection, but openly to avow thofe principles, and declare to the world the objects of our inftitution.
"We have long obferved, with indignation, the efforts that have been made to foment rebellion in this kingdom, ty the feditious, who have formed themfelves into focieties, under the fpecious name of United Irifhmen.
"Wc have feen with pain the lower orders of our fellow-fubjects, forced or feduced from their allegiance, by the threats or machinations of traitors.
"A And we lave viewed with horror the fuccefsfnl exertions of mifcreants, to encourage a foreign enemy to invade this happy land, in hopes of riling into confequence on the downfal of their country.
"We therefore thought it high time to rally round the conftitution, and there pledge ourfelves to each other, to maintain the laws, and fupport our good king agrainft all his encmies, whether rebels to their God or to their country ; and by fo doing, fhew to the world that there is a body of men in this ifland, who are ready, in the hour of danger, to ftand forward in defence of that grand palladium of our liberties, the conftitu. tion of Great Britain and Ireland, obtained and eftablifhed by the courage and loyalty of our anceftors under the Great King William.
"Fellow. fubjects, we are accufed with being an in. fitution, founded on principles too hocking to repeat, and bound together by oaths, at which human nature may fhudder: but we caution you not to be led away by fuch malevolent falfehoods; for we folemnly affure you, in the prefence of the Almighty God, that the idea of injuring any one, on account of his religious opinion, never entered into onr hearts : we regard every loyal fubject as our friend, be his religion what it may ; we have no enmity but to the enemies of our country.
"We farther declare, that we are ready, at all times, to fubmit ourfelves to the orders of thofe in authority under, his majefty, and that we will cheerfully undertake any duty which they Thall think proper to point out for us, in cafe either a foreign enemy fhall dare to invade our coafts, or that a domeltic foe fhall prefume to raife the flandard of rebellion in the land. 'To thefe
principles we are pleaged-and in fupport of them we Orchard. are ready to Spend the laft drop of our blood.- (Signed) Thomas Verner, Grand Mafier; John Clau. Beresford, Grand Secretary; William Janes, J. De Joncourt, Edward 13all."

ORCHARD. As an appendix to this article in the Encycl. fome of our readers will be pleafed with the following mean3, employed by the Rev. Mr Ger. merfourfen, for promoting the growth of young trees, and increaling the fize aand flavour of the fruit in orchards.

Having planted fevcial young plum trees in an orchard, he covered the gronind, for fome jears, around the trunks, as far as the roots extenc'ed, with flax-fhows (A) ; by which means thefe trees, though in a grafsfitld, increafed in a wonderful manner, and far excelled others planted in cultivated ground. As far as the fhows reached, the grafs and weeds were choaked; and the foil under them was fo tender and foft, that no better mould could have been wifhed for by a forift.

Wher he obferved this, he covered the ground with the fame fubftance, as far as the roots extended, around an old plum-tree, which appeared to be iu a languiking fate, and which ftood in a grafs-field. The confequences were, that it acquired a throng new bark; produced larger and better-talted fruit; and that thofe yourg fhoots, which before grew up around the Item, and which it was every year neceffary to deltroy, weie prevented from fprouting forth, as the covering of flaxShows impeded the free accefs of air at the bottom of the trunk.
In the ycar 1793, he tranfplanted, from feed-beds, into the nurlery, leveral fruit-trees; the ground around fome of which he covered, as above, with flax-flows. Notwithftanding the great leat of the fummer, none of thofe trees where the earth was covered with fhows died or decayed ; becaufe the fhows prevented the earth under them from being dried by the fun. Of thole trees, around which the ground was not covered as before mentioned, the fourth part mifcarried; and thofe that continued alive were far weaker than the former.

The leaves which fall from trees in autumn may alfo be employed for covering the ground in like manner ; but fones, or logs of wood, inult be laid on them, to prevent their being difperfed by the wind. In gralsland, a fmall trench may be made around the roots of the tree, when planted, in order to receive the leaves. If flax fhuws are ufed, this is not neceffary ; they lie on the furface of the ground \(\mathrm{f}_{0}\) falt as to refift the force of the moft violent ftorm. The leaves which our author found moft effectual in promoting the growth and fertility of fruit trees, are thofe of the walnut-tree. Whether it is, that, on account of their containing a greater abundance of faline particles, they communicate manure to the ground, which thereby becomes tender under thein; or that they attract nitrous particles from the atmofphere; or that, by both thefe means, they: tend to nourifh the tree both above and below.

Thofe who are defirous of raifing tender exotic trees from the feed, in order to accuitom them to our climate, may, when they tranfplant them, employ flax-fhows

R r 2
with
(A) Shows are the refufe of flax when it is fcutched or heckled.

Orchilla with great advantage. This covering will prevent the frolt from making its way to the roots; and rate and mice, on account of the fharp pickly points of the flax. fhows, will not be able to fhelter themfelves under them.

ORCHILLA, a weed ufed in dyeing, which grows in the Canary iffands, and is monopolized by the government. "It is a minute vegetable (fays Sir George Staunton), of the lichen kind, growing chiefly upon rocks of a loofe texture, and produces a beautiful violet blue colour."

ORDEAL. See this article in the Encycloperdia, at the end of which we have given, from 1)r Henry's Hiitory of England, fome flrong reafons for fufpecting that the ordeal, by fire at leaft, was a grofs impofition on the credulity of an ignorant and fuperftitious age. This fufpicion of impofture is raifed to certainty by Profeffor Beckınann, who, in his Hiftory of Inventions, gives us the whole procefs by which the clergy conducted the trial, and brought proofs of innocence or of guilt at their pleafure. The perfon accufed was put entirely under their management for three days before the trial, and for as many after it. 'They covered his hands (when he was to lift red-hot iron) both before and after the proof; fealed and unfealed the covering. The former was done, as they pretended, to prevent the hands from being prepared any how by art ; the latter, that it might be accurately known whether or not they were burnt.

Sume artificizl preparation was therefore known, elfe no precautions would lave beea neceffary. It is highiy probable, that during the three firtt days the preventative was applied to thofe perfons whom they wifhed to appear innocent ; and that the three days after the trial were requifite to let the hands refume their natural fate. The facred fealing fecured them from the examination of prefumptuous unbelievers: for to determine whether the hands were burnt, the three laft days were cerrain. ty not wanted. When the ordeal was abolifhed, and this art rendered ufelefs, the clergy noo longer kept it a fecret. In the \(13^{\text {th }}\) century, an account of it was publifhed by Albertus Magnus, a Dominican monk (A). If his receipt be genuine, it feems to have confifted rather in covering the hands with a kind of pafte than in hardening them. The fap of the althoa (marhmallow), the flimy feeds of the flea-bane, which is fill ufed for ftifiening by the hat-makers and filk-weavers, together with the wlite of an egg, were employed to make the pafte adhere. And by thefe means the hands were as fafe as if they had been fecured by gloves.

ORFFYREUS's Wheel, in mechanice, is a ma-

Histon's
Diohicnary. chine fo called from its inventor, which he affierted to be a perpetual motion. This machine, according to the account given of it by Glavefande, in his Oeuvres PbiIofopiriques, publifhed by Allemand, Amft. 1774, con. fifted externally of a large circular wheel, or rather drum, 12 feet in diameter, and 14 inches deep; being
very light, as it was formed of an affemblage of deals, O.ffyreus'e having the intervals between them covered with waxed Wheel, cloth, to conceal the interior parts of it. The two extremities of an iron axis, on which it turned, refted on two fupports. On giving a flight impulfe to the wheel, in either direction, its motion was gracually accelerated ; fo that, after two or threc revolutions, it acquired fo great a velocity as to make 25 or 26 turns in a minute. This rapid motion it actually preferved during the fpace of two months, in a chamber of the Landgrave of Heffe, the door of which was kept locked, and fealed with the Landgrave's own feal. At the end of that time it was ftopped, to prevent the wear of the materials. T'he Profeffor, who had been an eye witnefs to thefe circumiltances, examined all the external parts of it, and was convinced that there could not be any communication between it and any neighbouring room. Orffyreus, however, was fo incenfed, or pretended to be fo, that he broke the machine in piects : and wrote on the wall, that it was the impertinent curiofity of Profeffor Gravefande which made him take this ttep. The I'rince of Heffe, who had feen the interior parts of this wheel, but fworn to fecrecy, being afked by Gravefande, whether, after it had been in motion fur fome time, there was any change obfervable in it, and whether it contaired any pieces that indicated fraud or deception? anfwered both queftions in the negative, and declared, that the machine was of a very fimple conitruction.

ORICOU, a new fpecies of the vulture, difcovered by Vaillant at Orange river in South Africa. As he thinks it unqueftionably the mof beautiful of its genus, and tells, as ufual with him, a wonderful fory about it, we have given a figure of this vulture in Plate XLI, Our traveller fays, that it is more than three feet high, and eight or nine in breadth of wing. Its feathers, the general hue of which is a light brown, are of a particular kind on the breaft, belly, and fides, where they are of unequal lengths, pointed, curved like the blade of a fabre, and briftle up diftinct from each other. The feathers being thus feparated, would difclofe to view the fkin on the breath, if it were not completely covered with a very thick and beautiful white down, which is eafily feen between the rufted plumage.
A celebrated naturalif has faid, that "no bird has eye lafhes or eye-brows, or, at leaft, hair round the eyes like that in quadrupeds." "I his aflertion, ardvanced as a gencral law of Nature, is a mittake. Not only the oricou has this peculiarity, but we know of many other fpecies in which it exitts; fuch as, in general, all the calaos, the fecretary, and feveral other birds of prey. Befide thefe cye lafhes, the vulture in queftion has itiff black hairs on its throat. All the head and part of the neck are bare of feathers: and the naked \{kin, which is of a reddifh colour, is dathed in certain places with blue, violet, and white. The ear, in its external circumference, is bounded by a prominent fkin, which forms a fort
(A) In his work De Mirabilibus Mundi, at the end of his book De Sesretis Mulierum, Amftolod. :70ze 12 mo , p. roo. Experimentum mirabile quod facit hominem ire in ignem fine lofione, vel portare ignem vel ferrum ignitum fine læfione in manu. Recipe fuccum bifmalve, et albumen ovi, et femen pfylli et calcem, et pulveriza, et confice cum illo albumine ovi fuccum raphani; commifce ; ex hac confectione illineas corpus tuum vel manum, et dimitte ficcari, et potea iterum illineas, et poft hoc poteria audacter fuftinere ignem fine nocuo mento.
fort of rounded conch, that muft neceffarily heighten the faculty of hearing in this fpecies. This kind of conch is prolonged for fome inches, and defcends down the neck; which induced our author to give it the name of oricou.

Its ftrength, he fays, muft be very confiderable, if we may judge from its mufcles and finews; and he is perSuaded, that there is not a fronger among the whole order of carnivorous birds, not excepting the famous condor, which fo many travellers have leen, but of which their deferiptions are fo different as to render its exift. ence extremely doubtful. Eut there was no occafion for this reafoning, and thofe inferences, if what he retates as facts deferve any credit. The oricou which he defcribes, he firf perceived perched on the carcafe of a hippopotamos, cagerly devouring its flefh. He fhot at it, and wounded it nightly ; upon which, " though it had already gorged itfelf with a confiderable quantity of flefh (for upon opering it, he found in its fomach no lefs a quantity than fix pounds and a balf), yet its hunger and voracity were fuch, that it ftruck its beak into the carcafe when attempting to take wing, as if defirous of carrying the whole of it away.
"On the other hand, the weight of the flefh it had devoured rendering it the more heavy, it could not eafily rife; fo that we had time (fays he) to reach it before it was on the wing, and we endeavoured to knock it on the head with the but-ends of our mufkets. It defended itfelf a long time with great intrepidity. It bit or ftruck at our weapons with its beak, and its ftrength was ftill fo great, that every ftroke made a mark on the barrel of the fices."

ORIENI; the eaft, or the eaftern point of the hovizon.

Orient Equinoctial, is ufed for that point of the borizon where the fin rifes when he is in the equinoc. tial, or when he enters the figns Aries and Libra.
\(O_{\text {RIENT }}\) Aefival, is the point where the fun rifes in the middle of fummer, when the days are longeft.

Orient Hybernal, is the point where the fun rifes in the middle of winter, when the days are fhortef.

OROTAVA, a town in the ifland of Teneriffe, at the bottom of thofe mountains out of which the Peek rifes, neatly built of tone, on an irregnlar furface. The moft remarkable object near it is a dragon's blood tree, of which the trunk meafures, at the height of ten feet from the ground, 36 feet in girih. Concerning this tree there is a tradition current in the iffand, that it exifed, of no inconfiderable dimenfions, when the Spaniards made the conqueft of Teneriffe, about three centuries ago; and that it was then, what it ftill is, a land. mark, to diltinguifh the boundaries of landed poffef= fions near it.

Diftant about three miles on the fea coaft is the puerto, or fea-port, of O1otava, where is carried on a conqderable degree of commerce, principally for the exportation of wine. It is chiefly, as at Madeira, in the. hands of a few Britifh commercial houfes, which import, in retuin, the manufactures of Great Britain. Within a mile is a collection of living plants from Mexi. co, and other parts of the Spanifh dominions in A raerica. From hence they are to be tranfplanted into Spain. It is an eftablifhment of fome expence; and, whatever may be its fuccefs, it fhews a laudable atten-
tion, on the part of that government, to the promotion Osotchys. of natural knowledge.

OROTCHYS and Birchys, two tribes of Tartars, who were vifited by La Peroufe in 1787 , and of whofe manners he gives fuch an account as renders it difficult to fay whether they have the beft claim to be called a favage or a civilized people. He fell in with a fmall village of them on the eaft coaft of Tartary, in a bay to which he gave the name of Baie de Caftrie, in Lat. \(51^{\circ} 29^{\prime}\) North, and I.on. \(139^{\circ} 39^{\prime}\) Eaf from Paris.
'Iheir village, their employment, their drefs, and their apparent ignorance of all religion, befpoke them favages. Their village was compofed of four cabins, built in a folid manner, of the trunks of fir-trees, and covered with bark. A wooden bench compaffed the apartment round about ; and the hearth was placed in the middle, under an opening large enough to give vent to the fmoke.

This village was built upon a tongue of low marfhy land, which appeared to be uninhabitable during the winter ; but on the oppofite fide of the gulf, on a more elevated fituation, and expofed to the fouth, there was, at the entrance of a wood, another village, confifting of eight cabins, much larger and better built than the firt. Above this, and at a very fmall diftance, were three yourts, or fubterraneous houfes, perfectly fimilar to thofe of the Kamtfchadales, defcribed in the third volume of Captain Cook's latt voyage; they were extenfive enough to contain the inhabitants of the eight cabins during the rigour of the cold feafon; befides, ors fome of the ki irts of this village were feen feveral tombs, which were larger and better built than the houfes; each of them enclofed three, four, or five biers, of a neit workmanhip, ornamented with Chinefe fluffs, fome pieces of which were brocade. Bows, arrows, lines, and, in general, the moft valuable articles of thefe people, were fufpended in the interior of thefe monuments, the wooden door of which was clofed by a bar, fupported at its extremities by two props.

Their fole employment feemed to be the killing and curing of falmon, of which they eat raw, the fnout, tho gills, the fmall bones, and fometimes the ertire fkin, which they fript off with infinite dexterity. When the ftript falmon were carried to the huts, the women? in the moft difguiting manner, devoured the mucilagi-s nous part of them, and feemed to think it the moit exquifite food. Every cabin was furrounded with a dry-1 ing place for falmon, which remain upon poles, expofed to the heat of the fun, after having been during three or four days fmoked round the fire, which is in the middle of their cabin; the women, who are charged with this operation, take care, as foon as the fmoke has penetrated them, to carry them into the open air; where they acquire the hardnefs of wood.

The boncs of the falmon fo cured were fcattered, and the blood \{pread round the hearth; greedy dogss though gentle and familiar enough, licked and devour. ed the remainder. The nattinefs and fiench of this people are difgufting. There is not perhaps anywhere a race of people more feebly conftituted, or whofe features are more different from thofe forms to which wo attach the idea of beanty; their middle fature is below four feet ten inches, their bodies are lank, their voicea thin and feeble, like that of children; they have high check

Orotchys, check bones, [mall blear eyes, placed diagonally; a large mouth, flat nofe, fhort chin, almoft beardlefs, and an olive-coloured fkin, varnifhed with oil and fenoke. They fuffer thcir hair to grow, and tic it up nearly the fame as we do; that of the women falls loofc about their fhoulders, and the portrait which has juft been drawn agrees equally well with their countenances as thofe of the men, from whom it would be difficult to diftinguifh them, ware it not for a flight difference in the drefs, and a bare neck ; they are not, however, fubjected to any labour, which might, like the American Indians, change the elegance of their features, if nature had furnifled them with this advantage. Their whole cares are limitcd to the cutting and fewing their chothes, difpofing of their fifh to be dried, and taking care of their child: \(: \mathrm{n}\), to whom they give the brcaft till they are three or four years of agre.

With refpeet to drefs, the men and little boys are clothed with a waif coat of nankecn, or the fkin of a dog of a fifh, cut in the flape of a waggoncr's frock. if it reach below the knee, they wear no drawers; if it do not, they wear fome in the Chinefe Ayle, which fall as low as the calf of the leg. All of them have boots of feal's fkin, but they keep them for the winter; and thicy at al! times, and of every age, even at the breaft, wear a leather girdle, to which are attached a knife in a fieath, a fteel to Atrike a light with, a pipe, and a fmall bag to contain tobacco. The drefs of the womcn is fomewhat different ; they are wrapped up in a large nankeen robe, or falmon's fkin, which they have the art of perfectly tanning, and iendering extremely fupple. This drefs reaches as low as the ankle bone, and is fometimes bordered with a fringe of fmall copper ornaments, which make a noife fimilar to that of fmall bells. Thofe falmout, the fkins of which ferve for clothing, are never caught in fummer, and weigh thirty or forty pounds.
'Ihough they had neither priefts nor temples, they feemed to be believers in forcery, and took the motion of the Frenchmens hands, when writing, for figus of magic. Thus far they appeared favages.

Their facred regard of property, their attention to their women, and the delicacy of their politenefs to ftrangers, would, on the other hand, do honour to the moft civilized nation. White Peroufe and his people were in the bay, one of the families took its dcparture on a voyage of fome length, and did not return during their flay. When he went away, the mafter of the family put fome planks before the door of his houfe, to prevent the dogs from entering it, and in this ftatc left it full of their effects. "We were foon (fays our author) fo perfectly convinced of the inviolable fidelity of thefe people, and their almoft religious refpect for property, that we left our facks full of ftuffs, beads, iron tools, and, in general, every thing we ufed as articles of barter, in the middle of their cabins, and under no other feal of fecurity than their own probity, without a fingle inflance of their abuling our extreme confidence; and on our departure from this bay, we firmly entertained the opinion, that they did not even fufvect the exiltence of fuch a crime as theft."

Their attention to their women, fo uncommon among favages, was difplayed in their exempting them from hard labour; in their never concluding a bargain with the Frenchmen withont previounly confulting their wives;
and in their referving the pendent filver ear-rings and copper trinkets, which they purchafed, for their wives and daughters. Of the delicacy of their manncrs 10 ftrangers, we fhall give the following interefting inftance in the words of Peroufe's tranflator:

Obferving with what repugnance they received prerents, and how often they refufed them with ob\&inacy, " I imagined (fays Peroufe) I could perceive, that they were perhaps defirous of more delicacy in the manner of offering them; and to try if this fufpicion werc well founded, I fat down in one of their houfes, and after having drawn towards me two little children, of three or four years old, and made them fome trifling careffes, I gave them, a piece of rofe-coloured nankeen, which I had brought in my pocket. The mof lively fatisfaction was vifibly teftified in the countenances of the whole family, and I am certain they would have refufed this prefent, had it bcen directly offered to themfelves. The hufband went ont of his cabin, and foon 2 fterwards returning with his molt beautiful dog, he entreated me to accept of it. I refufed it, at the fame time endeavouring to make him underfland, that it was morc ufful to him than to me: but he infifted; and perceiving that it was without fuccefs, he caufed the two children, who had received the mankeen, to appreach, and placing their littlc hands on the back of the dog, he gave me to underfland, that I ought not to refufe his children.
"The delicacy of fuch manners cannot exift but among a very polifhed people. It feems to me, that the civilization of a nation, which has neither flocks nor hufbandry, cannot go beyond it. It is neceflary to obferve, that dogs are their molt valuable property; they yoke them to fmall and very light nedges, extremely well made, and cxactly fimilar to thofe of the Kamtfchadales. Thefe dogs, of the fpecies of wolf dogs, and very ftrong, though of a middle fize, are extremely docile, and very gentle, and feem to have im. bibed the charaCter of their matters."

ORTHODROMICS, in navigation, is great-cicle failing, or the art of farling in the arch of a grcat circle, which is the fhortelt courfe : lor the arch of a great cicle is orthoilromia, or the fhorteft ditance between two points or places.

ORYCTEROPUS, the name given by M. Geoffroy, profeffor of zoology in the French mufeum of natural hiftory, to the animal called by othcr zoologifts Myrmecophaga Capenfis. (See Myrmecophaga, Encycl.) He confiders it as a dilinct genus, and feems indeed to have proved, by a comparifon of the organs of the orycteropus with thofe of the tatous dafipus of Linnæus, and of the myrmecoppagi, that this genus is intermediate, by its forms and habite, between thofe two families. It approaches to the tatous in its organs of maltication, and the form of the toes and nails, and in having a fhort and fingle crecum, whilft that of the myrmecophagi is double, as in birds, by the reuniting of the bones of the os pubis, which are not articulated together in the myrmecophagi. The orycteropus, however, bears a relation to the laft, fince it has, like them, a very fmall mouth, whence its tongue, covcred with hair, may be protruded to a conficerable length. Finally, the habits of the orycteropus refemble thofe of the animals to which it approaches the moft ; it does not climb trees, but lives under the earth like the ta-

Atero tous ; it feeds like them on roots, but alfo it hunts after anthills, like the myrmecophagi. Its fnout terminates in a blunt callous; a character which is peculiar to it. It may be diftinguifled in the works of naturalitts by the following defcription:

Orycteropus. Molar tecth ( (ix) with flat vertices ; the body covered with lair.
The orycteropus, as appears from the preceding, counests the tatous with the my rmecophargi and with the pangolin manis of Linneus. The large foffle fpecies found in Paraguay, for which Citizen Cuvier has eltablifhed a new genus, under the name of megaterium, is intermediate between the floth and the myrmecophayus; and, laftly, the aftonifhing animal of New Holland, coverd with brifles like the porcupine, fupported by very fhort legs, and of very fingular conformation, and with a head round at the occiput, terminating in a fnout, without teeth, very flender, long, and cylindrical, and defrribed by Mr George Shaw under the name of myrmecophaga aculeata, appears to have very ftriking relations to the pangolin and the orycteropus : from hence it follows, that in confequence of thefe important acquifitions, we ought for the future to count, in the number of nur natural orders, that of the edentated, or edented, confifting of the following genera: Dafipus, oryderopus myrmecophagra, and aculata, manis, myrmecophiga, megaterium et lradypus.

OSCILIAATION, in mechanics, vibration, or the reciprocal afcent and defcent of a pendulum.

Axis of Oscillation, is a line parailel to the ho. rizon, fuppofed to pafs through the centre or fixed point about which the pendulum ofciliates, and perpendicular to the plane in which the ofcillation is made.

Centre of Oscillation, in a fufpended body, is a certain point in it, fuch that the ofcillations of the body will be made in the fame time as if that point alone were fufpended at that dittance from the point of fufpenfion. Or it is the po:nt into which, if the whole weight of the body be collected, the feveral ofcillations will be performed in the fame time as before: the of cillations being made only by the force of gravity of the ofcillating body.
OSCULATION, in geometry, denotes the contact between any curve and its ofculatory circle ; that is, the circle of the fame currature with the given curve, at the point of contact or of ofculation. See Involution in this Suppsl.

Osculation alfo means the point of concomre of two branches of a curve which touch each other. For example, if the equation of a curve be \(y=\sqrt{ } x++\sqrt{x}\), it is eafy to fee that the curve has two branches touching one another at the point where \(x=0\), becaufe the roots have each the figns + and - .

OUADELIM and LABDESSEBA, two tribes of \(A\) rabs inhabiting the Sabara or Great Defart of A frica, of whom almoft nothing was known to Europeans till the publication of Brifon's narrative of his fhipwreck and captivity among the latter tribe. He defcribes the Ouadelim and Labdeffeba as the molt formidable of all the interior tribes of Arabs, and as often extending their ravages to the very gates of Morocco. "Their hordes (he fays) are frequently intermingled with thofe of the Roufege, Rathidium, Chelus, Tucanois, and Ouadeli tribes, as they have no diftinct boundaries, and change their habitations as the defart affords pafturage
and water. Thiey are tall, handfome, ftout, and vigo- Ouatelirz. rous men. Their hair is brifled, and their mails, which they often ufe in battle, as long as claws; large hanging ears and a long beard give them a ftern ferocious air. The Ouadelim in particular are fierce, arrogant, and warlike, but foon difpirited by olbfinate refitlance, efpecially when they have not a decided fuperiority in numbers. In their loordes they lodge by familits, in tents which are covered with a thick cloth of camella hair, which the women fpin and weare upon a lonm fo fmall, that they work fitting on the ground. The furniture of their tent: confift of two large facks of leather, in which they keep nld clothes and pieces of old in on, three or four goat Rkins for holding milk and wa. ter, two large ftones for grinding their balley, a fmalle: one for ciriving the pins of thicir tents, an ozier matting which ferves for a bed, a thick carpet for a covering, a
finall ketule, and fome finall ketle, and fome wooden difles, with pack fadelk, for their camels. The peifon who, tefiles thefe ais: cles, porfeffes a few horfes, camels, heep, and groats. is reckoned wealthy, as there are many A rabs who only poficis fheep and rroat 3. Except fore eyes and the cho. lic, they are fubject to few endemic cifeafes. The fin't diforder is caufed by the reflection of light from the burning fands of the defart, the other proceeds from the rerdigreafe which contaminates all their vietuals. Their kettles are not tinned, and never wafhed, fo tha: they are quite crufted over with verdigreafe, the virulence of which is probably diminifacd lyy the quantity of milk they ufe. When they refide long in one place, they fometimes plough the fonts which are moiftered l.y the rain, and fprinkle them with feed in a carelefs inan. ner. Plentiful crops are often thus produced; but inItead of waiting till the grain attaims maturity, they clit it down, and dry it over' hot cinders. 'I'reachery and perfidy are the innate vices of the Arabs; affafinations are frequent; no man trufts the promife of another ; no inan makes a written agreement, as the poignard cancels all bonds and obligations. 'The men often relate their exploits to each other; the embellithing of a ftory is fucceeded by a charge of falfehood, and the poignard folves every difficulty. The ancient rites of hofpitality, however, are practifed anong thefe tribes in their utmoft extent. The Arab, who in the field is a rapacious pluncerer, becomes liberal and generous as foon as he enters his tent. War is only a fpecies of rapine, and the victory is decided at the firtt fhock. The Araib is devoid of fanguinary courage; he attecks only to plinder, and never thinks that bocty is to be pur in comperition with his life. When the batule is ended, each party makes graves for the flain, and euclofe the tombs with mounds of flones. The ages of the warrio:s are denoted by the fpace of ground which the grave occupies, and the funeral proceflion is clofed by
the howls of the females. the howls of the females.
" The women never affume the name of their hufbands, and never eat with them at meals. They are faithful to their hufbands, and cannot be divorced except by the decree of the feniors of the horde. The Arabs difplay their oputence by the ornaments of their women, whofe ears, arms, and legs, are generally adorned with rings of gold and filver. An Arab beauty muft havc long teeth fhooting out of her mouth, a body extremely thick, and limbs of the longeft fize. At the birth of a fon, every woman, to tellify her joy, black
-Cuadelin. ens her face for 40 days. At the birth of a daughter, - fhe only daubs the half of her face during the tpace of 20 days. A mother treats her fon with the fame rerpect as her hufoand, almoft as foon as he is able to walk ; the prepares his food, ferves him, and eats when he has finifhed his repaft. In the elucation of their young inen, the mo't important acquifitions are, dexterity in the ufe of the poignard, fkill in embowelling their enemies with their loog mills, and a plaufible air in uttering a fallehcod. More rude and ferocious than the tribes whofe territories lie upon the fhore of the Sea, the Labdeffeba and Ouadelim Arahs are alfo more confined and illiberal in their ideas, not only believing that they are the frrt ration in the world, but fancying that the fun rifes only for them. Briffon relates, that fome of them exprefed this idea in unequivocal terms. 'Behnld (faid they) that luminary, which is unknown in thy country. During the night, thou art not entightened, as we are, by that heavenly body, which regulates our days and our fafts. His children (the ftars) point out to us the hours of prayer. You have neither trees nor camels, freep, goats, nor dogs. Are your women fimilar to ours?' "How long didft thou remain in the womb of thy mother (faid another)?' - As long (repl:ed Briffon) as thou in that of thine.' - Indeed ( faid a third, counting the fingers and toes of the Frencliman) he is made like us; he differs only in his colour and language.' 'Do you fow barley in your houfes?" faid the A rabs, alluding to the flips of the Europeans. 'No (faid Briffon), we fow our fields atmoft in the fane feafon as you.' 'How! (cried feveral) do you inhabit the carth ? we believed that you were born and lived upon the fea.' Thefe Arabs, according to the Tarkinh proverb, believe that all the world is like their father's houfe: unacquainted with the manners of other nations, and unaccuftoned to reBeet upon the caules of national character, evcry variation from their own cuftoms appears not only ridiculous, but monftrous; every difference of opinion not only abfurd, but criminal. This ignorance of the \(\Lambda\). rabs. conjoined with their local and religious prejucices, enables us to account for the infulting ireatment which Briflon and his companions received, without having recourfe to inherent depravity of nature." That treatment was indeed fhocking.

Briffon had furrendered limfelf, on his fhipwreck, to Sidi Mahomet, a Talbe or prieft of the tribe of Labdeffeba. During the abfence of the prieft, the Labdeffeba, who guarded the captives, weie attaoked and maltreated by a party of the Ouadelims, and during the buttle which enfued, Briffon had almoft loft his hife. Infead of compaffionating his furlorn fituation, the women threw fand into his eyes, as they faid, to dry his eye-lids. The Arabs, into whofe hands he had fallen, had only come down to the fea.coalt to gather wild grain, three days before the fhipwreck; and to preferve their booty, they immediately retreated to the interior part of the defart. A guide preceded the horde, to place at intervals finall pyramida of fone, to direct their courfe, at a diftance from every holtile ribe. After paffing fome very high mountains, wholly covered with fmall greyifh pebbles as fharp as flats, they defcended into a fandy plain overfpread with thorns and thiftles. When Briffion was unable to walk, -on account of the bleeding of his feet, he was mounted
on a camel; the brifly hair and hard trot of which foon excoriated hin fo much, that the bloud run copioufly down its flanks. By throwing heated fones into a wooden veffel, filled with bailey meal, diluted with water procured on the fea-thore, preferved in a goat's fkin, and mixed with pitch to prevent putrefaction, the Arabs prepared a kird of four, which they kneaded with their hands, and ate unchewed. They roafted a goat in heated fand, ate its fat raw, and, after having devoured the ffen, gnawed the bones, and fcraped them with their nails, threw them to Briffon and his companions, defiring them to eat quickly, and load the camels, that the journey might not be impeded. Proceeding eaftward, they croffed a valt plain, covered with fmall ftones white as frow, round and flat as a lentil, where not a fingle plant was produced. The earth beneath their feet refounded dull and hoilow, and the fmall fones pricked them like fparks of fire. The reflection of the rays of the fun from the fand was feorching; the atmofiphere was loaded with a red vapour, and the country appeared as if filled with flaming volcanoes. Neither birds nor infects could be feen in the air. The profound filence was frightful. If a gentle breeze ever arofe, it produced extreme languor, chopping of the lips, burning heat of the fkin, with fmall fmarting pimples. T'his phain was even fhuno ned by wild beafts. After traverfing this plain, they entered another, where the wind had thrown up in furrows the fand, which was of a reddifh colour. On the tops of the furrows grew a few fiweet-fcented plants, which were devoured by the camels. On quitting this fandy plain, they entered a valley furrounded by mountains, where the foil was white and fliny, and where they found water of a noxious fmell, covered with green mofs, and foon after difcovered a horde of the friendly tribe Rouffye.
After another journey of fixteen days, they arrived at the tents of the Labdeffeba horde, to which Sidi Mahomet belonged. The tents pitched among thick bufhy trees, and the numerous flocks feeding along the fides of the hills, prefented at a diltance an afpeet of happinefs and paftoral fimplicity. On approaching near, the trees of beautiful green foliage proved to be only old gummy ftumps, almoft void of branches, fo encircled with thorns that their fhade was inacceffible. The women approached, with loud cries and the moft fawning fervility, to welcome their tyrants, to throw ftones at the Cbriftians, and fpit in their faces, while the children imitated the example of their mothers. Brifon, who endeavoured to ingratiate hinifelf with his matter's favourite, not onty failed in this, but incurred her inplacable refentment, through his irritability, which to the Arab women feemed extremely to refemble petuance. During his refidence with Sidi Ma. homet, the hardhips he endured were almoft incredible. With the exceffive heat, the milk of the freep, goats, and camels, diminifled, and then the dogs fared tetter than the Chritians, who were forced to fubifit on wild herbs and raw fnails. When the rains fell, and the leaft preffure made the water to fpring up through the fandy toil, the Chrittian ullept behind a bulh, unfheltered, on the bare ground. Biifon and his matter fonetimes reafoned about religion; when the latter al. ways aufwered the harangues of the former by declaring, that he preferred a bowl of churned milk to fuch

\section*{0 X Y}

1 gglycus, abfurdities. Several of his companions perifhed, and were left by the Arabs to be devoured by the ravens, while in the ftrugglcs of death. One of them was fuppofed to be mu:dered by his matter for milking his camels clandeltinely. An application made by Brifion to the conful at Mogador, by a letter entrufted to a Jewifh inerchant, was fruftrated through the negligence of the vice-conful; and the Labdeffeba Arabs thought the journey ton dangerous to be encountered for the ranfom of their flaves. He was, however, at laft relieved, through the humanity of his mafter's brother-in-law, who carried him to Moroceo, where his ranfom was paid by the Emperor, and whence he returned to France. For a fuller account of thefe two favage tribes, fee Saugnier's and Brillon's Narratives; or a very pleafing Hiflorical and Philofophical Sketch of the Difooverics, \(\mathcal{O}_{c}\). of the Europeans in Northern and Wcflern Africa, pub. lifhed ' 799 by Symington Edinburgh, and Vernor and Hood Lendun.

OXYGLYCUS CERASUS, the name given by the editor of Dalzel's Hiftory of Dahony to a very fingular fruit produced in that country, as well as in fome other parts of Africa. It refembles a fmall olive in every refpect but the colour; being of a dufky reddifh hue, changing at the end next the ftalk to a faint yet. low. The pulp is firm, and almof infipid; the flone is hard like that of the olivc. After having chewed one or more of fuch berries, and fpit out or fwallowed the pulp at pleafure, a glafs of vinegar will tafte, to the perfon trying the experiment, like fweet wine ; a lime will feem to have the flavour of a very ripe China orange; and the fame change is produced on other acids, the ordinary effeets of which upon the palate is defroyed in a very unaccountable manner, without of. fervefence or any fentible motion. Indeed, the effect is very different from neutralization, arifing from the mizture of acid and alkali; fuch combination producing a neutral faline liquor, whiltt this miraculous ber. ry feems to convert acids to fiweets. Food or drink, not containing any acid, fuffer no change by the previous ufe of this fruit ; its effect upon acids continues, even after a meal, though in a much fmaller degree. The natives ufe it to render palatable a kind of gruel called guld doe, which is made of bread after it becomes too tale for any other purpofe. They defcribe it as the fruit of a large trec.
Plants fix or feven inches high were raifed from this fruit by Mr Dalzel, who tried to carry them from \(\mathrm{An}_{\mathrm{n}}\) gola to the botanic garden at St Vincent's ; but they died on the paffage. He preferved the berries in \(f_{p i-}\) rits, in fyrup, and in a dry form; but they loft their fingular quality in all thofe preparations. The plant is an evergreen, and the leaves in this infant fate are like thofe of the olive.
OXY.Muriatic Acid (See Chemistry-Index in this Suppl.), is the principal agent in the new procefs of bleaching (fee Bleaching, Suppl.); but, till very lately, at leaft, if not even at prefent, the bleachers were in the practice of adding fome alkali to the acid, notwithfanding the ftrong objections which M. Bertholet made to that addition, and notwithflanding the proofs urged by Mr Rupp, that it increafes the expence of bleaching about 40 per cent. The chief reafon for pertifting in a practice to which fuch objections were urged was, that the addition of the alkali deprives Suppl. Vol. 1I. Part I.

\section*{\(32 \mathrm{I}] \quad 0 \mathrm{XX}\)}
the liquor of its fuflocating effects without deftroying Oxy-Murio, its bleaching powers. Mr Rupp, however, has contri- atic Acid. ved the following 'apparatus, in whici, may be fafely ufed the pure oxy muriatic acid fimply diffolved in water, which is at once its cheapett and beft vehicle.

Figure 1. (Plate XLI.) is a feetion of the apparatus. It confifts of an oblong deal ciftern \(A B C D\), made, water-tight. A rib EE of afh or beech wood is firmly fixed to the middlc of the bottom CD, being mortifed into the euds of the ciftern. This 1 ib is provided with holes at \(F F\), in which two perpendicular axes are to turn. The lid AB has a rim GG, which finks and fits into the ciftern. Two tubes HH are fixed into the lid, their centres being perpeudicularly over the centres of the fockets 1 FF when the lid is upon the ciltern. At \(I\), is a tube by which the liquor is introduced into the apparatus. As it is neceflary that the fpace within the rim GG be air tight, its joints to the lid, and the joints of the tubes, mutt be very clofe; and, if reeceflary, fecured with pitch. Two perpendicular axes KL, made of ath or beech wood, pals thro' the tubes HH , and reft in the fuckets FF. A piece of Atrong canvas \(M\) is fewed very tight round the axis K, one end of it projecting from the axis. The other axis is provided with a fimilar piece of canvas. \(N\) are pieces of cloth rolled upon the axis L . 'Two plain pulleys OO are fixed to the axes, in order to prevent the cloth from flipuing down. The fhafis are turned by a moveable handle \(P\). \(Q\) is a moveable pulley, round which paffes the cord R. 'This cord, which is faftened on the oppolite fide of the lid (fee fig. 2.), and paffes over the fmall pulley S , produces friction by ireana of the weight I . By the fpigot and fauffet V , the liquor is let off when exhaufted.
The dimenfions of this apparatus are calculated for the purpofe of bleaching twelve or fifteen pieces of \(\ddagger\) calicoes, or any other ftuffs of equal breadrh and fub. ftance. When the goods are ready for bleaching, the axis \(L\) is placed on a frame in an horizontal polition, and one of the pieces N being faftened to the ca::vas M by means of wooden fisewers, in the manner reprefented in fig. I. it is rolled upon the axis by turning it with the handle \(P\). This operation muft be performed by two perfons; the one turning the axis and the other directing the piece, which mult be rolled on very tight and very even. When the firf piece is on the axis, the next piece is faltened to the end of it by fkewers, and wound on in the fame manner as the firft. The fame method is purfued till all the pieces are wound upon the axis. The end of the laft piece is then fattened to the canvas of the axis K . Both axes are afterwards placed into the ciftern, with their ends in the fockets FF, and the lid is put on the ciltern by paffing the axes through the tubes HH . The handle \(P\) is put upon the empty axis, and the pulley \(Q\) upon the axis on which the cloth is rolled, and the cord \(R\), with the weight ' \(T\), is put round it and over the pulley S . The ufe of the firction, produced by this weight, is to make the cloth wind tight upon the other axis. But as the effect of the weight will increafe as one cylinder increafes and the other leffens, Mr Rupp reconsmends that three or four weights be fufpended on the cord, which may be taken off gradually as the perfon who works the machine may tind it convenient. A,s the weights hang in open hooks, which are faftened to

\section*{O X X [ 322\(]\) X Y}

Oxy-Muri-the cord, it will be little or no trouble to put them en atic Acid. and to remove them.

Things being thus difpofed, the bleaching liquor is to be transferred from the veffels in which it has been prepared into the apparatus, by a moveable tube paffing through the tube I, and defcending to the bottom of the ciftern. This tube being connected with the veffels, by means of leaden or wooden pipes provided with cocks, hardly any vapours will efcape in the transfer. When the apparatus is filled up to the line \(a\), the moveable tube is to be withdrawir, and the tube \(\mathbf{l}\) clofed. As the liquor rifes above the edge of the rim \(G\), and above the tubes HH , it is evident that no evaporation can take place, except where the rin does not apply clofely to the fides of the box ; which will, however, form a very trifling furface if the carpenter's work be decently done. The cloth is now to be wound from the axis \(L\) upon the axis \(K\), by turning this; and when this is accomplifined, the handle \(P\) and pulley \(Q\) are to be changed, and the cloth is to be wound back upon the axis L. 'This operation is, of courfe, to be repeated as often as neceffary It is plain, that by this procefs of winding the cloth from one axis upon the other, every part of it is expofed, in the moft complete manner, to the action of the liquor in which it is immerfed. It will be neceffary to turn, at firf, very brifily, not only becaufe the liquor is then the ftrongeft, but alfo becaufe it requires a number of revolutions, when the
axis is bare, to move a certain length of cloth in a given \(\mathrm{O}_{x y}\)-Murin time, though this may be performed by a fingle revolu. atic acid. tion when the axis is filled. Experience mult teach how long the goods are to be worked; nor can any rule be given refpecting the quantity and ftrength of the liquor, in order to bleach a certain number of pieces. An intelligent workman will foon attain a fufficient knowledge of thefe points. It is hardly reeceffary to obferve, that, if the liquor fhould retain any ftrength after a fet of pieces are bleached with it, is may again be employed for another fet.

With a few alterations, this apparatus might be made applicable to the bleaching of yarn. If, for intance, the pulley \(O\) were removed from the end of the axis K, and fixed immediately nnder the tube H ;-if is were perforated in all directions, and tapes or ftrings paffed througlr the holes, fkains of yarn might te tied to thefe tapes uuderneath the pulley, fo as to hang down towards the bottom of the box. The apparatus being afterwards filled with bleaching liquor, and the axis turned, the motion would caufe every thread to be acted upon by the liquor. Several axes might thus be turned in the fame box, and being connected with each other by pulleys, they might all be worked by one per* fon at the fame time; and as all would turn the fame way and with the fame fpeed, the flxains could not gofer fibly entangle each other.

Encauspic PAINTING is an art of very high antiquity, which, after being loft for many ages, was reftored, as is commonly believed, by the celebrated Count Caylus, whofe method was greatly improved, firft by Mr Jofiah Colebrooke, and afterwards by Mifs Greenland, who brought the rudiments of her knowIedge from Italy (See Encaustre, Encycl.). In that country encaultic painting had employed the attention of various artiits and men of learning, fuch as Requeno, Lorgna, and Afori, \&c. ; but the beft account of it that has fallen under our notice, is in that valuable mifcellany called the Pbilofophical Magazine, taken from a work of Giev. Fabbronis, publifhed at Rome in the year 3797.

According to this author, "the knowledge and ufe of encauftic painting is certainly older than the time of the Grecks and the Romans, to whom the learned Requeno feems to affign the exclufive poffeffion of this art ; becaufe the Egyptians, who, with the Etrufears, were the parents of the greater part of the inventions known among mankind, and from whom the Greeks learned fo much, were acquainted with and employed encauftic painting in the ancient agez of their greatnefs and fplendour, as is proved by the valuable fragments of the bandages and coverings of fome mummies which he had examined. No oil-painting (he fays), of only two or three hundred years old, exhibits a white paint -which has kept fo well as that feen on thefe fragments; and this circumflance fufficiently proves the fuperiority
of the encauffic metho! over the common oil-painting, Painin which, notwithftanding the general opinion, cannot, he \(-r\) thinks, have been unkrown to the ancients.
"It is impoffible (fays lee) that in Egypt and lhero nicia, where fo inuclu ufe was made of flax, the oil procured in abundaace from that plant fhould have been unk nowni: 'i'hofe who have kept cil, or who have fpilt any of it, whether nut or lintfeed oil, rant have remarked that it pontffes the property of foon drying by the effects of the atnofphere; and therefore it may be eafily believed that mankind mult foon have conceived the idea of employing it, particularly for thips, which, as Herodotus lays, were painted with red ochre in the earlieft periods, and acorned with figures and ornaments. The ufe of oil afforded painting a much fimpler and eafier method than that of wax; it mult therefore have been firft adoptct, and the tranfition from oil ta wax mult be confidered as a ftep towards bringing the art to perfection; becaufe encauftic painting is not ex. pofed to the irremediable inconveniences that arife in oil-painting, the value of which we extolled through ignorance, and praifed as a new invention.
"Oil in general, and in particular drying oil which the painters ufe, has naturally a ftrong inclination to combine itfelf with the vital air or oxyger of the atmofphere, and by imbibing oxygen it becomes dry, and affumes the character of refin; but the colour then be comes darker, as is the cafe with tranfparent turpentine, which gradually becomes a btack pitch.
"s Aecord.
"According to the new and more accurate method of decompofing bodies, oil confifts principally of hydrogen and carbon. By coming into contact with the atmofphere, and abforbing its oxygen and light, it undergoes a flow and imperceptible cornbuftion, which is not effentially different from the fpeedy and violent one. which it would undergo in the common mode of burning. It firtt pafles, by imbibing oxygen, into the fate of a more or lefs dark refin ; loles gradually its effential hydrogen, which makes a new combination, and afteravards the oxygen itfelf which has attracted the carbon; and at length leaves behind a thin layer of actual carbon, which in the end becones black in the courfe of time, and confiderably obfcures the oil painting. By a continuance of the before-mentioned now combution, the carbon itfelf, as it were, burns alfo : if it be ftrong. ly acted upon by the light, it attracts the oxygen of the atmofphere, and again brings forward the carbonic acid or fixed air, which gradually flies off. By this, which I may call the fecond degree of combuttion, the painting muft become dulty and friable, like crayon painting.
"Hence it appears (fays our author) that one can hope only for a tranfient or deceitful effect from the refrefhing of oil-paintings with oil; becaufe the harmony of the tones, which the painter eftablifhes as fuited for the moment, does not proceed with equal Reps, and cannot preferve itfelf in the like meafure for the courfe of a few years, as each tint, as they fay, ought to inereafe, or, to fpeak more properly, to burn in proportion to its antiquity. It thence follows, that mere wafhing may be prejudicial to an old painting; and that the method of refrefhing paintings, as it is called, by daubing over the furface, from time to time, with new drying oil, is highly prejudicial and ill calculated for the intended purpofe, fince the cil when it becomes dry contracts in its whole furface, carries with it the paint under it, and occafions cracks in the painting. New oil of this kind gives occafion to mineral paints to be reflored; but covers the pi\&ture with a new coat of refin, and then of carbon, which arifes from the gradual combuftion, and always caufes more blacknefs, and the decay of the painting which one wifhes to preferve.
"Wax, on the other hand, undergoes a change which is very different from that of drying oil. The wax, inftead of becoming black by the contadt of the atinofphere, increafes in whitenefs, and, according to its natural quality, is not decompofed in the air, and it does not ftrongly attract the oxygen of the calces or metallic athes which are cemmonly ufed in painting. Mureover, the fo called earths, which are in themfelves white, and are never variable either by the prefence or abfence of oxygen, cannot be employed in oil-painting, becaufe that fluid makes them almoft tranfparent, and caufes them to remain as it were without body, and not to produce the wifhed for effect. That beautiful white, which may be obferved on the before-mentioned Egyptian encautic, is mothing elfe than a fimple earth, and according to our author's chemical experiments, a chalk which is alfo unalterable."

That the ancients were once acquainted with the ufe of oil-painting, and neglected it on account of the great
fuperiority of the encauftic method, our author thinks ferther evident from the different accounts which we have of the ancient paintings. "Thus Petronius praifes the fref? appearance which the valuable works of Zeuxis and Apelles had, even in his time; but Cicero, on the other hand, fpeaks of the paintings of the ancients having fuffered from blaciknefs. The former fpeaks of wax-painting, and the latter certainly alludes to paintings in sil. It is well known that paintings with wet chalks or water colours do not become black by age, and that this is the cafe alfo with encauftic. Of this any one may be convinced, not only by the expreffions of the above quoted authors, but by one's own eyes on furveying the Egyptian fragment alluded to. Galland proves, on various grounds, that a painting was made with oil fo early as the reign of Marcus Aurelius; and if no fpecimens of that period have reached us, this is perhaps to be afcribed to the frail and perimable nature of this fpecies of painting."
Sign. Fabbroni, after fome farther obfervations, calculated to prove that metallic oxyds or calces could not have been employed as pigments on fuch mummies as ftill retain their colours freft, proceeds thus: "Thofe who are acquainted with the accuracy and certainty of the merlod not long filice introduced into chemical operations, will be convinced, that in 24 grains of the encauftic painting, which I ventured to detach from the above-mentioned Egyptian fragment, in order to fubject it to examination, the mixture of an hundredth part of a foreign fubltance would have been difcovered with the greatelt certainty; that the refin of Requeno muft undoubtedly have betn perceptible to me, and that the alkali of Bachelier and Lorgna could not have efcaped the counteracting medium. But in this Egyptian encaulfic I found nothing except very pure wax, though I varied my analytis in every known method. I muit therefore conclude, that modern learned writers, at leaft in refpect to this E.gyptian mode of painting, were as far from the truth as the accounts of ancient authors appear to me precife and fatisfactory; and that the encaultum with which formerly the fore part of Thips and the walls of houfes and temples were painted, was fomething different from foap or refinous crayons.
"I am well aware that it will be afked, In what manner can wax at prefent be rendered fufficiently 1 l quid for the ftrokes of the pencil, if it be not converted into powder or foap? This queftion, in my opinion, can be fully anfwered from the words of an an cient author, and, in the next place, by experience.
" Vitruvius int particular, book vii. chap. ix. expreffes himfelf in the following clear manner:
- Thofe (fays he) who wilh to retain cinnabar on walls, cover it, when it has been well laid on and dried, with Punic wax diluted in a little oil. (let this be well remarked); and after they have fpread out the wax with a lair brufh, they lieat the wall by means of a brazier filled with burning coals (hence it is called encauftic painting), and then make it frooth and level by rubbing it with wax tapers and clean cloths, as is done when marble ftatues are covered with wax. The effect of this wax cruft is, that the colour is not de. flroyed by the light of the fun or the moon (A).'
\[
\mathrm{S} s 2 \text { "It }
\]
(A) The reader will find the original of this paffage, with a tranfation fomewhat different, in the article Exy
austic, Encycl. caustic, Encycl.

\section*{P A I}

Painting, Paintings. was honoured by the Society for the Encourayement of Arts, \(\mathcal{E}^{\circ}\). with the greater filver pallet, for communicating the method by which he accomplifhed it.
"s 'The firft thing (fays Mr Salmon) to be attended to with refpect to paintings, either on plattered walls or ccilings, or on boards, is, that the place in which they are be fecure from wet or clamp. If the paintings are on old walls in large buildinge, or other places where this cannot be attained by art, then the fummer feafon fhould te taken for the purpofe, as the picture will rarely efcape damagre, if wet or damp grets at it while under the procefs. At the fame time, care fhould be taken that the room, or other place, be not overheated; as that would produce equally bad effects.
"Thefe precautions being taken, the next thing is to examine the furface of the painting. If there are any holes in the fame, they muft be carefully filled up with a pafte or putty, made of glue and whiting: this, if the holes are large, fhould be twice or thrice done, fo as entirely to fill them up, and leave the furface even and fmooth; but if there are any bruifed places, with paint fill remaining on the furface of the bruifed parts, then this fopping mutt not be applied, but the fecu-ring-canvas, hereafter defcribed, muft be preffed down into thefe places. In the places that are ftopped, there will of courfe appear blemifhes when the picture is transferred; but the procefs is rendered much more certain and fure by being fo done. Attention muft next be paid to lay down any blifters, or places where the paint is leaving the ground: this is done by introducing, between the paint and the ground, fome very ftrong patte of flour and water; and the furface of the blifterect paint being damped with a wet fponge or bruhh, it may be prefled with the hand home to the ground, to which it will then adhere.
"All the unfound places being thus fecured, care muft be taken to clear the furface of any greafe or dirt, as alfo of any particles of the patte that may happers to be left on it. The next thing is, to determine the fize of the painting meant to be taken off: If it is on a plain furface, a hoard of the fize of the picture mu:t be procuted, not lefs than an inch in thicknefs, and framed together with well feafoned wood, in finall pannels, fmooth and flufh on one fide. This done, a piece of fine open canvas muft be provided, fuch as the fineft fort ufed for hanging paper on; which canvas is to be fomewhat larger than the picture, and fo fewed together, and the feam fo preffed, that it be perfeetly fmooth and even. This is what Mr Salmon calls the fecuring canvas; which, being fo prepared, is to be ftuck on the furface of the picture with a pafte made of ftrong beer, boiled till it is half reduced, and then. mixed with a fufficient quantity of flour to give it a very ftrong confiftence. To large pictures on walls or ceilings, the canvas muft for fome time be preffed, and rubbed with the hand as finooth as poffible, working it from the middle to the outfide, fo as to make it tolerably tight ; obferving, as it dries, to prefs it, with the hand or a cloth, into any hollow or bruifed placea, fo that

\section*{P A I}
\& ting. that it may adhere to every part of the painting: this done, it is left to dry ; which it will generally do in a day or two. When dry, a fecond canvafs, of a ftronger and clofer fort, and of the fame fize as the other, is in like manner to be attached on the top of the firt. This laft will want very little attention, as it will readily adhere to the firt ; and, being dry, attention mult be paid to take off any fma!! knots or unevennefs that may be upon the furface of it ; which done, the whole thould be again covered with a thin pafte of fize and whiting; which is to be pumiced over when dry, fo as to make the whole perfeclly fmooth and even.
" The painting being thus fecured, the board, already prepared to the fize of the picture, is to be put with the fmooth fide againt the furface thereof, fo as exactly to cover as much as is intended to be transfersed. The edges of the canvas, which, as before directed, is to be larger than the painting, are then to be pulled tight over, and clofely nailed to the edge of the board. If the painting is large, and either on a ceiling or wait, the board muft, by proper fupports, be firmly fixed againf it, fo that it can readily be lowered down when the plafter and painting are detached.
"The canvas and board being fixed, the painting is to be freed from the wall or ceiling, together with a certain portion of the plaflering: this, with proper care and attention, may be readily done. If on a ceiling, the firft thing is to make fome holes through the plaf. tering, round the outfide of the board and painting; end, with a fmall faw, to faw the plaftering from one hole to another, till the whole is difunited from the other parts of the ceiling: this done, the workman muft get at the upper fide of the ceiling, where he muft free the plaftering from the laths, by breaking off the keys thereof, and with a chifel cut out the laths; where by the plaftering, together with the pieture, will be left refling on the board and fupports.
"If the painting is on a brick or fone wall, the wall muft be cut away at top, and down the fides of the painting; and then, by means of chitels or faws in wood. en handles, of different lengths, the wall muitt be cut a way quite behind the painting; leaving the fame, together with the plaftering, refting on the board. This operation may fometimes be done with a faw; or, if the wall be not thick, nor the other fide of much confequence, the bricks or ftones may be taken out from that fide, leaving the plaftering and painting as beforc. This laft method (fays the author) I have not practiled: the other, of cutting away fome part of the wall, I have, and fee no difficulty, or very great labour, in the operation ; but that, of courfe, nuft be various, according to the texture of the wall and mortar.
"If the paintings are on cuived furfaces, fuch as the coves of ceilings, then the only difference of operation is, that fome ribs of wood mult be cut out, and boarded fmooth to the curve of the furface of the painting, and then fixed up thereto, in place of the before defcribed bearing-board; the painting is then to be freed, and left with the plattering, refting on the bearers.
"For paintings on wainfcot or boards, the fame fe* curing and procefe is to be exaelly followed; only that, as the wainfcot or board can always be cut to the fize wanted, and laid horizontal, the fecuring-canvas is to be ftretched thereon, and turned over the edges of the fame, till it io dry ; after which, the edges are again to

\section*{325 P P I}
be turned up, and nailed to the board, in the fame man. Haintingto ner as with refpett to paintiugs from walls.
" Having, as before deferibed, in any of the aforementioned cafes, freed the paintings from their original places, you have got them fecured to two thickneffes of canvas, with their furfaces on the board prepared for that purpofe; this being the cafe, they can readily be removed to any room or thop, to be finifhed as follows: Having carried the painting into the fhop or rocm, which fhould be moderately warm and dry, but by no means overheated, lay the board on a bench or treffels, fo that the hack of the picture be uppermoft : the plaftering or wood, as may happen, is then to be cleared away, leaving nothing but the body of paint, which will be firmly attached to the fecuring.canvafs. T's per. form this, a large rafp, a narrow plane, and chifels, will be requifite. This nperation, though difficule to be defcribed, would foon be learned by any one who fould make the attempt; nor is it very tedious; and being performed, the picture is ready to be attached to its new canvas, as follows.
"The painting being cleared, and lying on the board, the back thereof is to be painted three or four timeat over fucceffively, with any good frong-budied paint ; leaving one coat to dry before arother coines on : a day or two between each will generally be found fufficient. Each of thefe coats, and particularly the firft, fthould be laid on with great care, taking but a fmall quantity in the brufh at a time, and laying it very thin. 'This precaution is neceflary, to prevent any of the oil or paine from pafing through any fmall cracks or holes in the furface of the pictane; as fuch oil or paint would run into the pafte, and fo attach the fecuring canvas to the pieture, as to prevent its being afterwards got off. If any fuch holes or cracks are obferved, they fould be: ftopped up with the glue and whiting paite, and thic painting then repeated, till a complete coat is formed on the back of the picture. It is then seadly for at. taching to its canvas, which is done by fpreading all over the picture a pafte made of corval varnifh, mixed with. ftiff white lead, and a fmall quantity of any other uld fat paint ; all which being fpread equally over with a pallet knife, fuch a canvas as the firt fecuring-canvas is laid thereon, and flrained and nailed round the edgets of the board; in which fate it is left till it becomes tolerably dry : then a fic cond canvas, of a fronger fort, munt be in like manner attached on the firf, and left till it is peffectly diy and hard. This generally takez about two mnonths; and she longer the painting is left, the more fecurely it will be attached to its canvas, and lefs liable to crack or fly therefrom. When fufficiently dry, all the four canvafies are to be unnailed from the board, and the edges turued up the reverfe way, and nailed to a proper itretching. frame. This is done by unnailing froin the board a part on each fide at a time, and immediately nailing it to the ftretching-frame, fo as ncver to leave the canvas to crack or partially ftretch, which would damage the picture. In this manner, by degrees, the cloths are entirely detached from the board, and firmly fixed on the ftretching.frame. The fuperfluous canvas, feft larger than the frame, may then be cut off, and the wedges put in the frame, and moderately tightened up. There remains then only to clear the furface of the painting from the fecuring-canvals; which is done by repeatedly wafhing the furface

\section*{\(P\) A 1 \\ P A L}

Faintinge with a fponge and moderately warm water. In doing this, no violence or force mult be ufed; and, by frequent and gentle wafhings, the pafte will all be worked out with the fponge. 'The edges of the outer canvas are then to be cut round, and ftripped off : the other, next the furface of the pieture, is to be ferved in like manner ; which done, nothing remains but to take the pare clean off, and repair any defects: the picture will then be as ftrong as if painted on the canvas.
"For taking pictures off walls, without taking the walls down, or cutting away more thereof than the plaftering, the following procefs is propofed :
"The furface of the picture is to be firft fecured, in the manner before deferibed; but inftead of the plain board, a bearer fhould be prepared with a convex furface, compofed of ribs, boarded over, fo as to form part of a cylinder, of not lefs than five feet radius, and as long as the height of the picture. This bearer being prepared, in order to apply it, a floor or platform fhould be erected, and placed horizontally, with its furface level, and its edge immediately in contact with the bottom of the picture meant to be transferred. The ufe - of this platform is for the above defcribed bearer to reft and move upon ; which bearer fhould befet on its end, with one edge in contact with the wall, at one fide of the picture; confequently the other edge will be at fome diftance from the wall, according to the fize of the picture and convexity of the bearer. Being thus placed, the fuperfluous edge of the fecuring-canvas fhould be turned over, and nailed to that edge of the bearer thrat is next the wall: This done, the operation of cutting away the plaftering fhould be begun; which may he done with the corner and end of a fhort faw; fawing between the brick-work and plaftering, and leaving the thicknefs, or part of the thicknefs, of the plaftering on the painting faftened to the bearer. When this edge of the picture is freed, the whole height, for sine or ten inches under the edge of the bearer that is fartheft from the wall, mult then be gently forced nearer; confequently the other edge, together with the painting and plafter that is freed, will leave the wall, and give an opportunity of introducing the faw behind, and cutting away the fame to a certain diftance farther under ; and, by repeating this, the whole of the picture will at !ength be freed, and. left on the bearer. Each time the bearer is removed, and, as it were, rolled on the vertical firface of the wall, ease nuft be taken to turn and nail the fecuring-canvas on the top and botcom edges of the bcorer, fo as to fecure the freed plaftering and picture from moving about ; and, lafly, before the bearer and piaftering be -moved, to nail the other edge of the picture in the fame way, which will fecure the whole to the bearer. 'Ilhis done, the picfure and bearer are at liberty to be moved to a proper place, in order to be freed from the remaining platter. The edges may then be unnailed; the painting and canvas flipped from this bearer on to a plam board; and the new canvas may be then put on; which is to remain till dry, as in other cafes.
"It may appear, that the bending of the canvas and plaftering to the convex bearer will crack the plafifr, and damage the painting ; but, from exprerience -(iays Mr Salmoñ) I have obferved, that, to a curve of - fuch or even lefs radius, plattering will bend, without any vilible crack, crẹu un the extesior part thereof; and
that part next the bearer, not having occafion, in bend- Palility ing, to extend its parts, will confequently be much lefs liable to be difturbed by fuch bending."

In clearing the wood from the paintings, our author never made ufe of aquafortis, or any other liquid: the ufe of which he conceives would be very tedious, and attended with danger, left it fhould get through the paint, and wet or damp the pafte by which the fecuring canvals is fixed. In working off the wood, he generally made ufe of fuch planes as by the joiners are called the levelled rablit-plane, and fall rounds. By the corners of the former, and proper handling of the latter, the wood is cleared off without force or violence: even the fmallett particles may, in general, be got off; although in fome paintings, and in particular parts of others, he has met with places on which he thought it beft to leave fome particles, or fine fplinters, of wood, but nothing more. Rafps, and fometimes a fine chifel, are ufeful, to clear off fuch parts as may be in hollow places, or where particles of wood are left, as above. The time required will be various, accord.\(\varphi g\) to the manner in which the painting was originally done; fome being painted on boards previoully prepared with a water colour ; others immediately painted with oil on the wood. This laft fort is by much the moft difficult; the other is more ea\{y, as the previous preparation pre. vents the wood from imbibing the oil, and confequently admits it to be more eafily feparated.
- I'ALILICUM, the fame as Aldebaran, a fixed far of the firt magnitude, in the eye of the bull, or fign Taurus.
«PALLIFICATION, or PiLing, in architecture, denotes the piling of the ground-work, or the ftrengthening it with piles, or timber driven into the ground; which_is practifed when buildings are erected upon a moitt or marlly foil.

PAL.M, an ancient long meafure, taken from the extent of the hand. See Palmus, Encycl.

PALMA, palms. See Encyclopredia. The fubject is introduced here to notice a kind of palm, the product of North America, of which we have the following account by Dr Barton.
"There grows upon the river Mobile a fpecies of palm, which is but little known to naturalits, but which promifes to be an importent article of food to man. It has no ftalk or ftem above ground. The leaves fpread regularly all round, and when fully expanded are flabelliform. In the centre of thefe leaves is produced the receptacle of the fruit, which is of the form and fize of a common fugar-luaf. This receptacle confifts of a -valt number of crupes, or berries, of the fize and fhape of common plums: each is covered with a fibrous, farinaceous, pulpy coating, of confiderable thicknefs. This Nubtance is faid to refemble manna in texture, colour, and tafte; or, perhaps, it ftill more refembles moitt brown figgar, with particles of loaf fugar mixed with it It is a moft delicious and nourifhing food, and is diligently fought after in the places where it grows. Upon firtt talting it, it is fomewhat bitter and pungent.

PANORAMA, a word derived from \(\approx \alpha \nu\) and op \(\alpha \mu \alpha\); and therefore employed of late to denote a painting, whether in oil or water colours, which reprefents an entire view of any country, city, or other natural objects, as they appear to a perfon ftanding in any fituation, and turning quite round. ' To produce this effect,

\section*{P A N}
B. rama, the painter or drawer muft fix his flation, and delineate correctly and connectedly every object which prefents itfelf to his view as he turns round, concluding his drawing by a connection with where he began. He mult obferve the lights and fhadows, how they fall, and perfect his piece to the beft of his abilities. There muft be a circular building or framing eretted, on which this drawing or painting may be performed; or the fame may be done on canvas, or other materials, and fixed or fufpended on the fame building or framing, to anfwer the purpofe complete. It mult be lighted entirely from the top, either by a glazed dome, or otherwife as the artit may think proper. There muft be an inclofure within the faid circular building or framing, which thall prevent an obferver going too near the drawing or painting, fo as it may, from all parts it can be viewed, have iis proper effect. This inclofure may reprefent a roons, or platform, or any other fituation, and may be of any form thought moft convenient ; but the circular form is particularly recommended. Of whatever extent this infide inclofure may be, there muft be over it (fupported from the bottom, or fufpended from the top) a fhade or roof; which, in all directions, कhould project fo far beyond this inclofure, as to prevent an obferver from feeing above the drawing or painting when looking up; and there mult be without this inclofure another interception, to reprefent a wall, paling, or other interception, as the natural objects reprefented, or fancy, may direct, fo as effictually to prevent the obferver from feeing below the botton of the drawing or painting; by means of which interception, nothing can be feen on the outer circle but the drawing or painting intended to reprefent nature. The entrance to the inner inclofure mult be from below, a proner building or framing being ere ted for that purpofe, fo that no door or other interruption may diltub the circle on which the view is to be reprefented. And there fhould be, below the painting or drawing, proper ventilators fixed, fo as to render a current circulation of air through the whole; and the inner inclofume nay be eleyated, at the will of an artift, fo as to make obfervers, on whatever fituation he may wifh they fhould imagine themfelves, feel as if really on the very fpot.

PAPER is an article of fuch importance, and at 1800. prefent * of fo enormous a price, that no improvement in its manufacure fhould pafs unnoticed in a work of this nature. The difcovery made in France by M. Bertholet of the efficacy of oxy-muriatic acid in expediting the procefs of Bueschisg (fee that article in this Suppl.), has contributed effentially to facilitate the manufactures, not only of cotton and linen cloths, but alfo of paper, of which it has even increafed the materials. Formerly writing paper could be made of \(\nu n\) printed linen alone; but by means of the prucefs of M. Bertholet even printed linen may be made into the finett and whiteft paper. In the year 1795 a patent was granted to Mr Elias Carpenter of Bermondfay, Surrey, for a method of bleaching paper of fuch materials in the water-lenf or heet, and fixing. it without drying:

In the preparation of the pulp, the coarfer rags are to be macerated for two or three days. in a cauttic alkaline ley, and wrought into fheets of paper in the ufual way ; a ftrong wooden box or trough is then to be procured, of a fize proportioned to that of the paper, lined on the infide with white paint, and furnifhed
with feveral flages of crofs bars of glafs: the bottom of the box is to be covered with a ftratum about one inch deep of cauftic ley, and the paper laid by quarter reams, or lefs, acrofs the glafs bar. A hole muft be made in the box to admit the beak of an earthen-ware retort, into which muft be put manganefe and fea falt, in powder, fulphuric acid, and an equal quantity of water impregnated with the fleams of burning fulphur (fulphureous acid). The cover of the box is to be made airright by liting or Лlips of paper dipped in pafte. The apparatus being thus prepared, the belly of the retort is to be plunged in water, kept boiling, and in a fhort tine the oxy-muriatic gas will be driven into the box, will penetrate the paper, and render it of a dazzling whitenefs, while the alkaline ley at the bottom will, by gradually abforbing it, prevent its becoming fo concentrated as to deftroy or injure the texture of the paper. From three to four pounds of fulphuric acid will fuffice for one hundred weight of paper, and the operation will be completed in about eight hou:s. The fheets as they are taken out of the box are to be fized with the following mixture:

To 1 cwt . of clippings of Kin add 14 lb . of alum, 7 of calcined vitriol, and 1 lb . of gum arabic, with a fufficient quantity of water to fize 50 reams of fools.capo

The fame method will ferve equally well to clean engravings or printing; for though the oxy-muriatic acid difcharges all ftains, dirt, Exc. yet it is incapable of acting on printers ink:

This, however, is not the only improvement in the manufacture of paper derived from modern chemiftry. In Crell's Cbemical Annals for the year 1797, we have an account of fome curious experiments made by M . L. Brugnatelli, with the view of rendering

Paper incormbultible, and the writing on it, of courfe, indeftruetible by fire. Of all the fubitances whicls he tried, he found the liquor of fints the mot proper to fecure paper from deftruction by fire. He dipped a fheet of paper feveral times in the above itquor frefh made, or daubed it feveral times over the whole paper with a hair bruth, a:d dried it in the fun or in an oven. Yaper prepared in this manner lof forne of its fufturefs, became a little rougher than before, and acquired a lixivious cauntic tafte. In other refpects it was not different from common white paper. When this paper was laid upon glowing coals, it did not burn like common paper, but became red, and was converted to a coal, which however did not fall into aftes like the cual of common paper, fo that it might therefore be conlidered as petrified-paper. This coal, however, is exceedingly friable; for when it is taken between the fingers, or prefied together in any manuer whatever, it drops to pieces. Still the difcovery mult be a valuable one, if there be any kind of ink of fuch a nature as that the characters written with it continue vifible on this coal. Such an ink M. "Brugnatelli made by combining diffolved nitrite of zinc with commors ink; and found, that the colour of this mixture, though it appeared fomewhat pale on common paper, became fo dark on prepared paper, that words written with it appeared more confpicuous than words written with common ink. When the paper was burnt, or reduced to a coal, thofe characters were fo vifible, in a clear white colour on a dark. ground, that they could be read with 33 much eafe as characters written with the beft ink on

\section*{P A R}
white paper. If the ingenious author fucceed in his attempts to difcover a method of rendering his prepared paper lefs friable when burnt, his difcovery will be one of the moft important of the prefent age.
PARABOLIC Conoid, is a folid generated by the rotation of a parabola about its axis. This folid is equal to half its circumferibed cylinder; and therefore if the bafe be multiplied by the height, half the product will be the folid content.

Paraboric Pyramidoid, is a folid figure, thus named by Dr Wallis from its genefis or formation, which is thus: Let all the fquares of the ordinates of a parabola be conceived to be fo placed, that the axis fhall pafs perpendicularly through all their centres; then the aggregate of all thefe planes will form the parabolic pyramidoid. This figure is equal to half its circumfrribed parallelopipedon. And therefore the folid content is found by multiplying the bafe by the altitude, and taking half the produet; or the one of theie by half the other.

Parabolic Space, is the fpace or area incliwed by the curve line and bafe or double ordinate of the parabola.
P.araboric Spindle, is a folid figure conceived to be formed by the rotation of a parabola about its bafe or double ordinate.

Parabolic Spiral, is a curve arifing from the fuopofition that the common or Apollonian parabola is bent or twifted till the axis come into the periphery of a circle, the ordinates flill retaining their places and perpendicular pofitions with refpeet to the circle, all thefe lines ftill remaining in the fame place. This figure is fumetimes called the Felicoil parabola.
PARABOLOIDES, parabolas of the higher orders. The equation for all curves of this kind being \(4^{m-n} x^{n}=y^{\text {mn }}\), the proportion of the area of any orie to the complement of it to the circumferibing parallelogram, will be as \(m\) to \(n\).
PARACENTRIC Motion, denotes the face by which a revolving planet approaches nearer to, or recedes farther from, the fun, or centre of attraction.
\(P_{\text {aricentric Solicitation of Gravity, }}\), is the fame as the vis centripeta.

PARACHUTE, a kind of large and frong um. brella, contrived to break a perfons fall from an airballoon, fhould any accident happen to the balloon at a high elevation. This contrivance was firlt thonght of by Blanchard, who at different times, by means of the parachute, let fall from his balloon dogs and other aniinals. He ventured even to defcend in this manner himfelf; but, whether from the bad conftruction of his parachute, or from falling among trees, he had the inisfortune to break one of his legs. Citizen Garıerin, as he choofes to be called, was more fucceffful. On the 21ft of October 1797, he afcended from the garden de Mauffeux at half palt five in the evening; between the balloon and the car, in which he fat, was placed the parachute, half opened, and forming a kind of tent over the acirial traveller; ard when the whole apparatus was at a confiderable height, he feparated the parachute and car from the balloon. The parachute unfolding it felf, was, by his weiglit and that of the car, drawn of courfe towards the earth. Its fall was at firlt now and vertical ; but foon afterwards it exhibited a kind of ba. lanciug or vibration, and a rotation gradually increaling,
which might be compared with that of a leaf falling Paraguat from a tree. The aëronaut, however, reached the ground unhurt.
This parachute was of cloth, and its diameter, when unfolded, about twenty-five feet. To ufe fuch inftruments with fuccefs, it is neceffary that the car be fufpended at a confiderable diftance from the parachute, fo as that the centre of gravity of the whole thall be vertically below the centre of refiftance made by the air to the defcent of the parachute; for if the car be otherwife placed, it is evident that the parachute will incline to one fide, defcend obliquely, ofcillate, and the fmalleft irregularity in its figure will caufe it to turn round its vertical axis.
PARAGUATAN, a kind of wood which grows in Guiana, and promifes to be of great utility as a dye fuff." We have feen no botanical defeription of the tree; but from the report made to the Council of Trade and Mines, by 1). Dominique Garcia Fernandez, in fector of coinage, we learn that its bark, boiled in water, affords a colouied extract which refifts the agency of acids for a lenger time than brazil or logwood: that the colour may be revived by means of alkalies, after it has been deftroyed by combination with acids; that vinegar, lemon-juice, and tartar, render this colour more brilliant, while they entirely defroy the colours of brazil and \(\log w o o d\); that the fecula of the bark of paraguatan fixes and attaches itfelf to wool, cotton, and fiik : and that the colour is brighter on filk than on wool, and brighter on wool than on cotton. The fame fecula dried is afterwards foluble in alcohol, to whick it communicates a tinge fimilar to that afforded by cochineal ; but it mult be confeffed, that the coluur ob. tained from paraguatan has not the force of that of cochineal, though it is fuperior to thofe of madder, brazil wood, and logwood. From thefe facts 1). Fernandez confiders the paraguatan as one of the moft valuable productions which America farnifles to Spain.

PARALLAX (fee Encycl.) is ufed, not only in aftronomy, but alfo in levelling. for the angle contained between the line of true level, and that of apparent level. And, in other branclies of fcience, for the difference between the true and apparent places.

PARALLEL Ruler, is a mathematical inftrument, confifting of two equal rulers, either of wood or metal, connected together by two flender crofs bars or blades of equal length, moveable abour the points of junction with the rulers. 'There are cther forms of the inftrument; fome, for inltance, having the two blades crofling in the middle, and fixed only at one end of them, the other two ends fliding in grooves along the two rulers, \&c.

The ufe of this inftrument is obvious. For the edge of ore of the rulers being applied to any line, the other opened to any extent will be always parallel to the former; and confequently any parallels to this may be drawir by the edge of the ruler, opened to any extent.

Parallels, or Flaces of Arms, in a fiege, are deep trenchee, 15 or 18 feet wide, joining the feveral attacks together; and ferving to place the guard of the trenches in, to be at hand to fepport the workmen when attacked. There are ufually three in an attack : the firf is about 600 yards from the covert-way, the fecond between 3 and 400, and the third near or on

\section*{P A R}
ralielifn the glacis. It is faid they were firlt invented or ufed by Vaubin.

PARALLELISM of the Earti's Axis, is that invariable fituation of the axis, in the progrefs of the earth thro' the annual orbit, by which it always keeos parallel to itfelf; fo that if a line be drawn parallel to its axis, whilc in any one pofition, the axis, in all other poffionis or parts of the orbit, will always be parallel to the fame line.

PARAMETER, a certain contant right line in each of the three conic fections; otherwife called alfo latus reflum.

PARAMARIBO, the capital of the Dutch fettle. ment at Surinam, is fituated on the right fide of the beautiful river Surinam, at about 16 or 18 miles diflance from its month. It is built upon a kind of gravelly rock, which is level with the rf:t of the country, in the form of an oblong fquare; its length is about a mile and a half, and its breadth about half as much. All the freets, which are perfectly fraight, are lined with orange, faddock, tamarind, and lemon trees, which appear in ever lafting bloom; while, at the fame time, their branches are weighed down with the richeft clufters of odoriferous fruit. Neither flone nor brick is made ufe of here for pavement ; the whole being one continued gravel, not inferior to the fineft garden walks in England, and ftrewed on the furface with fea fhells. The houfes, which are mottly of two and fome of three ftories high, are all built of fine timber, a very few excepted; moft of the foundations are of brick, and they are roofed with thin folit boards, called /hingles, inftead of flates or tiles. Windows are very teldom feers in this country, glafs being inconveniemt on account of the heat; inftead of which they ufe gauze frames: fome have only the fhutters, which are kept open from fix o'clock in the morning until fix at night. As for chim. neys, there are none in the colony; no fircs being lighted except in the kitchens, which are always built at fome diftance from the dwelling houfe, where the vietuals are dreffed upon the floor, and the fmoke let out by a hole made in the roof: thefe timber houfes are, however, very dear in Surinam, onc of them tiaving coft atove L. 15,000 fterling. There is no fpring water to be met with in Paramaribo; noft houfes have wells dug in the rock, which afford but a brackifh kind of beverage, only ufed for the negroes, cattle, Sc. and the Europeans have rcfervoirs or cifterns, in which they preferve rain-water for their own confumption; thofe of nicer tafte let it firft drop through a filtering fone into large jars or earthen pots, made by the native In. dians on purpofe, which they barter at Paramaribo for other commodities. The inhabitants of this country, of every denomination, fleep in hammocks, the negro flaves excepted, who moftly lie on the ground: the hammocks ufed by thofe in fuperior fations are made of cotton, ornamented with rich fringe; thefe are alfo made by the Iudians, and formetimes worth above tiventy guineas; neither bedding nor covering is neceflary, except an awning to keep off the mulquitoes. Some people indeed lie on bediteads; in that cafe they are furrounded, inftead of curtains, with gauze parilions, which admit the air freely, and at the fame time keep of the fmalicft infect. The houfcs in general at Paramaribo are clegantly furnifhed with paiutings, gilding, cyytal chandeliers, china jars, \&cc.; the roon:s are never
Surpl. Vor. II. Part I.
papered or plaftered, but beautifully wainfcotted with Parama* ceder, and Brazil, and mahog̣any wood. at about 1400 , of which the principal is the governor's palace, whence there is a private paffage through the garden which communicates with Fort Zelandia. This houre, and that of the commandant, which has lately
been burnt, were the only brick buildings in the been burnt, were the only brick buildings in the colony. The town-hall is an elegant new building, and covered with tilcs ; here the different conrts ane held. and underneath are the prifons for European delinquente, the military excepted, who are confined in the citadel of Fort Zelandia. The Proteflant church, where divinc wurfhip is perfurmed both in Frencls and Low Dutch, has a fmall fpire with a clock ; befides which there is a Lutheran chapel, and two elegant Jewifh fynagogues, one German the other Portuguefc. Here is alfo a large hofpital for the garrifon, and this marfion is never empty. 'The military flores are kept in the fortrefs, where the fociety foldiers are alfo lodged in barracks, with proper apartments for fome officers. The town of Paramaribo has a noble road for fhipping, the river before the town being above a mile in breadth, and containing fometimes above 100 veffels of burden, moored within a piftol fhot of the fhore. Before Holland became a province of France, and thereby lolt hacr tradc, there were feldom fewer than 80 fhips at Paramaribo, loading coffee, fugar, cocao, cotton, and indigo, for the mother country, including alfo the Guinea.men that bring flaves from Africa, and the No th American and Leeward Ifland vefiels, which bring flour, beff, pork, fpisits, herrings, and mackarcl falted, fpermaceti candles, hoifes, and lumber; for which they receive chicfly moleffes to be dittilled into rum. This town is not fortified, bit is bounded by the river on the fouth eatt; by a large favannah on the we?; by an impenetrable wood on the north. eaft ; and is protected by Fort Zelandia on the eaft. This citadel is only feparated from the town by a large efplanade, where the toops parade occafionally. The fort is a regular pentagon, with one gate fronting Paramaribo, and two baltions which command the river ; it is very finall but flrong, being made of rock or hewwn ftone, furronnded by a broad foffe well fupplied with water, hefides fome out. works. - On the calt fide, fronting the river, is a battery of 21 pieces of cannon. On one of the baftions is a bell, which is ftruck with a hammer by the centinel, who is directed by an hour-glafs. On the other is planted a large enfign-Raff, upon which a flag is hoifted upon the approach of fhips of war, or on public rejoicing days. The walls are fix feet thick, with embra. fures, but uo parapet.

Paramaribo is a very lively place, the ftreets being genemaly crowded with planters, failors, foldiers, Jews, Indians, and Negroes, while the river is covered with canoes, barges, \&cc. conftantly paffing and repaffrug like the wherries on the Thames, often accompanied with bands of mufic ; the fhipping alfo i:2 the read adorned with their different flags, guins firing, \&e not to mention the many groupes of boys and girls playing in the water, altogether form a plealing appearance; and fich gaiety and variety of objects ferve, in forme meafurc, to compenfate for the many inconvenicnces of the climate. Their carriages and drefs are truly inagnificent; filk embroidery, Genoa velvets, diamonds, gold and filver luce,

Parama- lace, being daily worn, and even the matters of trading rilo, Thips appears with buttons and buckles of folid gold. Paris.

They are equally expenfive at their tables, where every
thing that can be called delicate is produced at any price, and ferved up in plate and china of the neweit fafhion, and moft exquifite workmanfhip. But nothing difplays the luxury of the inhabitants of Surinam more than the number of naves by whom they are attended, often twenty or thirty in one family. White fervants are feldom to be met with in this colony.

The current money are ftamped cards of different value, from five fhillings to fifty pounds: gold and filver is fo farce, that the exchange premium for feccie is often above 10 per cent. A bafe Dantzic coin called a bit, value fomething lefs than fixpence, is alfo current in Surinam. Englifh and Portuguefe coin are fometimes met with, but moflly ufed as ornaments by the Mulatto, Samboe, Quaderoon, and Negro girls. The Negro flaves never receive any paper money; for as they cannot read, they do not underftand its value; befides, in their hands it would be liable to many accidents, from fire or children, and particularly from the rats, when it becomes a little greafy.

This town is well fupplied with provifions, viz. butchers meat, fowls, fifh, and venifon. Vegetables in particular the country abounds with; befides the luxuries peculiar to this climate, they import whatever Earope, Africa, and Afia can afford, Provifions, however, are exceffively dear in general, efpecially thofe imported, which are moftly fold by the Jews and mafters of fhips. The firft enjoy extraordinary privileges in this colony; the latter erect temporary warehoufes for the purpofe of trade, during the time their thips are loading with the productions of the climate. Wheat flour is fold from four-pence to one fhilling per pound; butter, two Millings; butcher's meat never under one hhilling, and often at one fhilling and fixpence; ducks and forwls from three to four fhillings a couple. A fingle turkey has fometimes coft one guinea and a half; eggs are fold at the rate of five, and European potatoes twelve, for fixpence. Wine thrce fhillings a bottle. Jamaica rum a crown a gallon. Fifh and vegetables are cheap, and fruit almoft for nothing.

PARIS (Francis), a man more famous after his death than during his life, by the miracles which were faid to be performed at his tomb. He is generally known by the name of Abbé Paris; and his pretended miracles, with others of like mannfacture, have furnifhed deiftical writers, and Mr I-Iume in particular, with a kind of argument againt the reality of the miracles of which we have an account in the Gofpel. It is merely that we may fate his pretenfions fairly, that we have introduced him to the notice of our readers; for in every other refpect he is wholly unworthy of their regard. He was the fon of a courfellor in Parliament, and had the profpect, if he had chofen it, of fucceeding to his father's appointment; but he chofe rather to become an ecclefiaftic, and he became a very zealous one. He gave up all his poffeffions to his brother, refufed preferment intended for him by the cardinal de Noailles, devoted himfelf entirely to retirement, and made ftockings for his own fupport, and for the affit. ance of the poor. He died, perhaps in confequence of his rigorous mode of life, May 1.1727, at the age of only 37. His brother raifed a monument to him in the
fmall churchyard of St Mfedard, to which the poor and the pious foon began to flock; and after a time it was reported, that, in confequence of their prayers at that tomb, fume fick perfons had received cures. As Paris. had been a rigorous Janfenift, this was a fine opportunity for that fect to gain credit to their caufe; the miracles were therefore multiplied, and a variety of perfons affected the mott fingular convulfions.
'The minds of the people lecoming inflamed by thefe extravagancies, the court found it neceflary to thut up the churchyard, which was done on the 27 th of January 1732. On this occafion, fome profane wit wrote upon the wall of the place,

De par le Roy, defenfe a Dien, De faire miracles en ce lieu.
The convulfions were continued, for a little while, in private houfes, but by degrees the matter fubfided, and the Abbé Paris was forgotten.

The diftinction between miracles exhibited to ferve a party, and attefted only by thofe who are zealous in its fuppert, and miracles performed in the fight of unbelievers, who, in fite of their deep-rooted prejudices, were converted by them, is too ftriking to be overlooked by any, but thofe who are defirous of drawing a falle and impious parallel; yet, has Mr Hume dared to repiefent the miracles performed at the tomb of thisfaint as outvying in number, nature, and evidence, the miracles of Chrift and his apoftles-with what truth, the following obfervations will hew :
\(1 / 2\), It was often objected by the enemies of the faint, and the objection was never confuted by his friends, that the proflrations at his feputchre, like animal magnetifm mose lately, produced more difeafes than they cured. Such, furely, was not the nature of our Saviour's miracles.

2dlly, Though the crowds of fick and infirm perfons who flocked to the tomb for relief were, by all accounts, innumerable; yet all the cures, of which the zealons hitorian of the Miracles could procure vouchers, \({ }^{\text {a- }}\) mounted only to NiNe! Now, were thonfands, and ten thoufands of difeated perfons to apply to fome circumforaneous quack, in full affurance of his extraordinary abilities and fkill in phyfic, could it furprife any perfon, if the dittempers of eight or nine of them fhould take afavourable turn while they were uncer a courfe of his ufelefs medicines?
\(3 d l y\), We do not read that of thofe nine who were cured by the dead Abbć, the greater patt were Jefuits and enemias to the Janfenifts; whereas the greater part of our Saviour's miracles were performed' upon anconverted Jews, and one of them upon the fervant of the high prieft, who was thiriting for his blood.

4thly, The cures reported to have been performed at the grave of Paris were all fuch as might have been accomplifhed by natural means. Thus, a Spaniard who had loft one eye, and was diftreffed with an inflammation in the other, had the inflamed eye gradually cured, but not the loft eye reftored. Another perfon having pricked his eye with an awl, loft the fight of it in confequence of the aqueous humour dropping out ; but his fight was reftored whilft he was paying his devotions to the Abbé- and fo it would have been while he was curfing the Abbé, had he continued his execrations for a fufficient length of time.

5thly, None of the cures faid to have been performed were inftantaneous. All the worfhippers at the tomb perfifted for days, feveral of them for weeks, and fome for nontbs, daily imploring the interceffion of the Abbé before they received relief from their complaints.

6thly, Molt of the devotees had been uling medicines before they applied to the faint, and continued to ufe them during the zubole time of their application; whillt it is confeffed that the difempers of others had abated before they determined to folicit his help.

7tbly, Some of the cures attefted were incomplete, and only of a temporary duration. Thus, the Spaniard was elieved only from the moft inconfiderable part of his complaint, and that too but for a very fhort period; for foon after his return lome he relapfed into his former malady, as was fully attefted by certificates and letters from Madrid. All this has been completely proved by the Archbithop of Sens; who in his P'afioral Inftruction, publifhed at the time the miracles were making a noife, has,

Sthly, Clearly detected the deceit and little artifices by which thofe pretended miracles were fo long fupported. To that work we refer our readers ; requelt. ing them, after they have read it, to compare the evidence for the miracies of Paris with the evidence which in the article Miracle (Encycl.) we have ftated for the reality of the Golpel miracles, and to judge for themfelves with the impartiality of philofophers.

Paris wrote a few very indifferent books of annotations on the Epiftes to the Romans, to the Galatians, and the Hebrews; but few have ever read them, nor would they have refoned the author from oblivion, without the aid of his lying wonders.
P.ARKHURST (the Rev. John), was the Second fon of John Parkhurft, Efq; of Catefby in Northamptonfhire. His mother was Ricarda Dormer, daughter of Judge Dormer. He was born in June 1728, was educated at the fchool of Rugby in Warwickfhire, and was afterwards of Clare hall, Cambridge; B. A. 1748 , M. A. 1752 ; and many years fellow of his college.

Being a younger brother, he was intended for the church; but not long after his entesing into holy orders his elder brother died. This event made liim the heir of a very confiderable eftate; though, as his father was fill living, it was lome time before he came into the full poffeffion of it; and when he did come into the poffeffion of it, the acquifition of fortunc produced no change on his manners or his purfuits. He continued to cultivate the ftudies becoming a clergyman; and from his family conncetions, as well as from his learning and piety, he certainly had a good right to look forward to preferment in his profeffion; but betaking himfelf to retirement, and to a life of clofe and intenfe fludy, he fought for no prefer. ment ; and, according to the author of the biographical Aketch of him publifhed in the Gentleman's Magazine, he lived not in an age when merit was urged forward. Yet, in the capacity of a curate, but without any falary, he long did the duty, with exemplary diligence and zeal, in his own chapel at Catefby, which, after the demolition of the church of the nunnery there, ferved as a parifh-church, of which alfo he was the patron.

When, feveral years after, it fell to his lot to exercife the right of prefentation, he was fo uufafhionable as to
confider church-patronage as a truft rather than a pro. Parkf urto. perty; and, accordingly, relifting the influence of intereft, favour, and affection, prefented to the vicarage of Epfom, in Surrey, the Rev. Jonathan Boucher, who ftill holds it. This gentleman was then known to him only" by character ; but having diftinguifhed himfelf in America, during the revolution, for his loyalty, and by teaching the unfophifticated doctrines of the church of England to a fet of rebellious fchifmatics at the peril of his life, Mr Parkhurft thought, and juftly thought, that he could not prefent to the vacant living a man who had given better proofs of his havirg a cue fenfe of the duties of his office.

In the year 1754, Mr Parkhurlt married Sufanna Myter, daughter, and, we believe, heirefs of Johut Myfter, Efq; of Eprom. It was thus that le became patron of the living which he beltowed on Mr Boucher. 'This lady died in 1759, leaving him a daughter and two fons; buth the fons are now dead. In the year 1761, he married again Millicent Northey, daughter of Thomas Northey, Efq; by whom he had one daughter, now married to the Rev. Jofeph Thomas.

In the year 1753 , he began his career of authorfip, by publifhing, in 8vo, "A friendly Addrefs to the Rev. Mr John Wefley, in relation to a principal Doctrine maintained by him and his Affiftants." This work we have not feen ; but though we have no doubt of its value, we may fafely fay that it was of very little importance, when compared with his next publication, which was "An Hebrew and Englifs Lexicon, without Points; to which is added, a methodical Hebrew Grammar, without Points, adapted to the ufe of Learners, 1762 ," 4 to. To attemot a vindication of all the etymological and philofophical difquifitions which are fcattered through this dictionary, would be very fruitlefs; but it is not perhaps too much to fay, that we have nothing of the kind equal to it in the Englift language. He continued, however, to correct and improve it ; and in 1778 another edition of it came out much enlarged, and a third in 1592 .

His philological ftudies were not confined to the \(I-J\) ebrew language ; for he publif.ed a Greek and Englifl Lexicon to the New 'reftament; to which is prefixed, a plain and eafy Greek Grammar, i 769 , 4 to ; a Cecond edition, 1794: and at his death there was in the prefs a new edition of both thefe lexicons, in a large 8 vo , with his laft corrections; for he continned to revile, correct, add to, and improve, thefe works, till within a few weeks of his death. As, from their nature, there cannot be fuppofed to be any thing in dictionaries that is particularly attractive and alluring, this continned increafing demand for thefe two feems to be a fufficient proof of their merit.

He publifhed; "The Divinity and Pre exitence of our Lord and Saviour Jefus Chritt, demonftrated from Scripture ; in Anfwer to the firft Section of Dr Prieftley's Introduction to the Hittory of early Opinions concerning Jefus Chift ; together with Strictures on fome other Parts of the Work, and a Poffcript reldting to a late Publication of Mr Gilbert Wakefreld, 1787 ," 8vo. 'This work was very generally regarded as completely performing all that its title-page promifed; and accordingly the whole edition was foon fold off. The brief, evafive, and very unfatisfactory notice taken of this able pamphlet by Dr Prictley, in "A

\section*{P A R [ 332 ] P A R}

Parkhurf. Letter to Dr Horne," \&c. Thewed only that he was unable to anfwer it.

Mr Parkhurft was a man of very extraordinary independency of mind and firmnefs of principle. In early life, along with many other men of diftinguifhed learning, it was alfo objected to him, that he was an Hutchinfonian; and on this account alone, in common with them, it has been faid that he was neglected and fhunned.

There is not, in the hifory of the times, fays the Biographer already quoted, a circumftance more difficult to be accounted for than the unmerited, but increafing, difcountenance fhewn to thofe perfons to whom Hutchinfonianifm was then objected. Methodifte, Papifts, and fectarics of any and of every name, all fond a better chance of heing noticed and eltcemed than Hutchinfonians. Had it even been proved that the few peculiar tenets by which they were diftinguifhed from other Clyiltians were erroneous, the oppofition they experienced might have been deemed bard meafure, becaufe even their opponents allowed their principles to be inotfentive, and themfelves to be learned.

Is this a fair ftate of the cafe? We think not. The early Hutchinfonians had imbibed all the peculiar notions of their mafter, and maintained them with a degree of acrimony which would have difgraced any caufe. Being in general very little acquainted with the higher mathematics, as Mr Hutchinfon himfelf feems likewife to have been, they cenfured dogmatically works which, without that knowledge, they could not fully underftand; whilft they maintained, with equal dogmatifm, as matters of fact, hypothefes, which a moderate fhare of mathematical fcience would have fhewn them to be impoffible. Had they ftnpt here, no harm would lave been done ; they might have enjoyed their favourite notions in peace: but unfortunately they accufed of Atheifm, Deifm, or Socinianifm, all who thought not exactly as they thought, both in natural philofophy and in theology. Becaufe Newton and Clarke had demonftrated that the motions of the planets cannot be the effect of the impulfion of any material fluid, IIutchinfon, with fome of his followers, affirmed, that thefe two illuttrious men hed entered into a ferious dedign to overturn the Cbrittian religion, and eftablifh in England the worthip of the Heathen Jupiter, or the Stoical anima mundi. Becaufe the Bifhops Peafon, Bull, and others, who had uniformly been confidered as the ableft defenders of the Catholic faith, thought not exactly as Hutchinfon thought of the filiation of the Son of God, they were condemned by the pupils of his fchool as Ariaus, or at leaft Semi-arians; and the writer of this ketch has heard a living Hutchinfonian pronounce the fame cenfure, and for the fame reafon, on the prefent illuftrious Bihop of Rochefter, and the no lefs illuftrious Whitaker.

That men, who thus condemned all that before them had been deemed great and good in phyfical fcience and Chriftian theology, fhould meet with fome
difcountenance wifile they continued of fuch a firit, Parkhunt needs not furely excite much wonder; but that the difcountenance is increafing, we believe not to be true. The Hutclinfonians, as foon as they became lefs violent againft thofe who differed from them, had their fhare of preferment, in proportion to their number, with others; and we doubt not they will continne to lave it, while they allow that a man may be no heretic, though he believe not Mr Hutchinfon to have been in. fallible. The late excellent Bifhop Horne was an avowed. Hutchinfonian, though not an outrageous one like Julius Bate; and we have been told, and have reafor to believe, that the Bifhop of St A faph is likewife a moderate favourer of the fame fyttem. There may be others on the epifcopal bench; but perhaps two out of twenty fix is the full proportions of Hutchinfonian divires of emirence in England. It is true that Mr Parkhurft was a man of great learning and great worth; but before we attribute his want of preferment in the church to his Hutchinfonianifm, it is incumbent upon us to fay why Mr Whitaker, who is no I Iutchinfonian, is \&ill nothing more than the rector of Ruan-Lanyhome.

Mr Parkhurf, however, was not, if his biographer deferves credit, a thorough paced Hutchinfonian ; for though he continued to read Hutchinfon's writings as long as he read at all, he was ever ready to allow, that he was oftentimes a confufed and bad writer, and fometimes unbecomingly violent. 'ITo have been deterred from reading the works of an author, who, with all his faults, certainly throws out many ufeful lints, for fear of being thought a IJutchinfonian, would have betrayed a pufllanimity of which Mr Parkhurft was incapable. What he believed he was not afraid to profefs; and never profeffed to believe any thing which he did not very fincerely believe. An earneft lover of truth, he fought it where only it is to be found - in the Scriptures (A) The ftudy of thefe was at once the bufinefs and the pleafure of his life: from his earlieft to his latelt years, he was an laard ttudent; and liad the dailyoccupations of every 24 hours of his life been portioned out, as it is faid thofe of king Alfred were, into three equal parts, there is rafon to believe that a deficiency would rarely have been found in the eight hours allotted to ftudy. What the fruits have been ot a life fo conducted, few theologians, it is prefumed, need to be informed, it being liardly within the fcope of a fuppofition, that any man will now fit down to the ftudy of the Scriptures without availing himfelf of the affitance to be obtained from his learned labours. Thefe labours ceafed at Epfom in Surrey, where this §reat and good man died, on March the 21ft, 1797. Befides the works which we have mentioned, there is in the Gentlemars's Magazine, for Auguft 1797, a curious letter of his on the Confufion of Tongues at Babel.

Mr Parkhurf's character may be collected with to. lerable accuracy evenf from this imperfect fketch of his. life. His notions of church patronage do lim honour; and as a farther inftance of the high fenfe he entertain.
(A) This is vague language, which is the fource of much ufelefs controverfy, and therefore ought to be avoided. If by truth, in this paffage, be meant religicus truth, we admit the affertion in the only fenfe in which we think it can have been made. If the author means all truth, he writes nonfenfe; for the Scriptures treat not of geometry or algelra, where truth is certainly to be found; and we think that they have a higher object than even mechanics and aftronomy.

\section*{P A R}
urft, ed of ftrict juftice, end the fteady refolution with which :rfon. he pracifed it on all occafions, an incident which occurred between him and one of his tenants, within thefe ten years, may herc be mentioned. This man falling behind hand in the payment of his rent, which was L. 500 per annum, it was reprefented to his landlod that it was owing to his being over rented. 'This being believed to be the cafe, a new valuation was made ; and it was then agreed that, for the future, the rent fhould not be more than L. 450 . Jutlly inferring, moreover, that if the farm was then too dear, it mult neceflarily have been always too dear, unakked, and of his own accord, he immediately flruck off L. 5 ग from the commencement of the leafe; and infta:tly refunded all that he had received more than L. 450 per annum.

Mr Parkhurft was in his perfon rather below the mỉale fize, but remarkably upright, and firm in his gait. He was all lis life of a fickly habit : and his leading fo remarkably ftudious and fedentary a life (it having, for many years, been his conflant practice to rife at five, and, in winter, to light his own fire) to the very verge of David's limits of the life of man, is a confolatory proof to men of fimilar habits, how much, under many difadvantages, may ftill be effected by ftrict temperance and a careful regimen. He alfo gave lefs of his time to the ordinary iuterruptions of life than is common. In an hofpitable, friendly, and pleafant neighbourhood, he vifited little; alleging, that fuch a courfe of life neither fuited his temper, his health, nor his ftudics. Yet he was of fociable manners; and his converfation always inftructive, often delightful: for his ftores of knowledge were fo large, that he too has often been called a walking library. He belonged to no clubs; he frequented no public places; and there are few men who, towards the clofe of life, may not, on a retrofpect, reflect with fhame and forrow, how nuth of their precious time has thus teen thrown away, or, perhaps, worfe than thrown away.

Like many other men of infirm and fickly frames, Mr Parkb rit was alfo irritable, and quick, warm, and earnef, in his refentments, though never unforgiving. Eut whether it be or be not a matter of reproach io poffefs a mind foconttituted, it certainly is much to any man's credit to counteract and fubdue it by an attention to the injunctions of religion. This Mr Parkhurft effectually did: and few men have paffed through a long life more at peace with his neighbours, more refpected by men of learning, more beloved by his friends, or reore honoured by his fanily.

PARIKINSON (John). Of this ingenions Englifh
Dia botanif, one of the firft and moft induftrious cultivators of that fcience among us, the memorials that remail are very feanty. He was born in 15.67, was bred an apothecary, and refided in London. He rofe to fuch reputation in his profeffion as to be appointed apu. thecary to King James I.; and, on the publication of his Theatre of Plants, he obtained from the unfortunate fucceffor of that prince the title of Botazicus Regis primarius. The time of his death cannot be exactly alcertained; but, as his Herbal was publified in 1640 , and it appears that he was living at that time, he mut have artained his 73 d year.
Parkinfon's firlt publication was, his i. Paradija in Sole Paradifus terrffris, or, A Garden of all Suits of

333 ] P A R
Pleafant Flowers which our Englifh. Ayre will permit Parkinfan, to he nurfed up : with a Kitchen-gaiden of ail manser Parfons. of Herbes, Roots, and Fruits, for Meat or Saufc, \&cc. \&c. Collected by John Parkinfon adothecary, of London, 1629 , folio, 612 pages. In this work the plants arc arranged without any exact order: nearly 1000 plants are feparately defcribed, of which 780 are figured oil 129 tables, which appear to have been cut exprefsly for this work. Parkinfon was, it is conceived, the firft Englifh author who feparately defribed and figured the fubjecta of the flower garden; and this book is therefore a valuable curiofity, as exlibiting a complete view of the extent of the Englith garden at the beginning of the laft century. It may, perhaps, be neccffary to inform the reader, that Paradifus in Sole, is meant to exprefs the author's name, Park in - fun. 2. In 1640 he publifhed his Theatrum Botanicum; or Theatre of Plants, or an Herbal of a large extent: containing thercin, a more ample and exact Hittory and declaration of the Phy fical Herbs and Plants than are in other Authors, \&c. \&c. London, folio, 1746 pages. This work had been the labour of the author's life; and he tell3 us that, owing to " the difaftrous times," and other inpediments, the printing of it was long retarded. Dr Pulteney is of opinion, that, allowing for the defects common to the age, Parkinfon will appear " more of an original author than Gerard or Johnfon, independent of the advantages he might derive from being pofterior to them. His theatre was carried on through a long feries of years, and he profited by the works of fome late authors, which Jolr.fon, thouglı they were equally in his power, had neglected to ufe. Yarkinfon's defcriptions, int many inflances, appear to be new. Fle is more particular in pointing out the places of :owth. Johnfon had defrribed abour 2850 piants, Parkinfon has near 3800. Thefe accumulations rendered the Theatrum Botanicum the moft copious book on the fubject in the Englifla languare; and it may be prefumed, that it gained equally the approbation of r.edical people, and ot all thofe who were curions and irquifitive in this kiins of knowledge."

PARSONS (Janice), an excellent plithician and polite fcholar, was boma at Barnitaple, in Devonhire, in March 1705. His fother, who was the youngeft of nine fors of Colonel Parfons, and nearly related to the baronet of that nanse, being appointed barrack mafer at Bolton in Ireland, remored with his fanily into that kingdom foon after the birth of his then only fon James, who received at Dublin the early part of his education, and, by the afiffance of proper mafiers, laid a confiderable foundaion of claffical and other ufful leanning, which cnabled him to become tutor to Lord Kingfion. Turning his attention to the fudy of medicine, he went afterwards ta Earis, where (to ufe his owa words) "he followed the moft eminent profeffors in the feveral fchools, as Aftric, Dubnis, Lemery, and others; attended the anatomical lectures of the molt famons [Hunaud and Dc Cat]; and chemicals at the King's Garden at St Come. He followed the phylicians in both hofpitals of the Hotel Dieu and la Cha* rité, and the chemical lectures and demontrations of Lemery and Bouldoc; and in botany Juffien. Having finifhed thefe fludies, his profeflors gave him honomrable atteftations of his having, followed them with dili-

\section*{PA R}
gene and industry, which intuited him to take the degreases of doctor and profeflin of the art of medicine, in any univerfity in the dominions of France. Intending
to return to England, he judged it unneceffary to take degrees in Paris, unlefs he had refolved to refine there; and as it was more expenfive, he therefore went to the univerfity of Rheims, in Champaign, where, by virtue of his atteftations, he was immediately admitted to three exarninations, as if he had finifhed his ftudies in that academy; and there was honoured with his degreen June 11. 1736, In the July following he came to London, and was from employed by Dr James Dourglas to affift him in his anatomical works, where in forme time he began to prastife. He was elected a member of the Royal Society in 1740; and, after due examnation, was admitted a licentiate of the college of phrficians April r. \(175^{1}\); paying college fees and bond tamps of different denominations to the amount of L. \(41: 2: 8\), fubject alio to quarterage of L. 2 per annam. In 1755 he paid a farther fam of L. 7 , which, with the quarterage money already paid, made up the fum of I.. 16, in lieu of all fixture payments." On his arrival in London, by the recommendation of his Paris friends, he was introduced to the acquaintance of Dr Mead, Sir Hans Sloane, and Dr James Douglas. This great anatomift inade fe of his affiftance, not onby in his anatomical preparations, but also in his reprefentations of morbid and other appearances; a lit of feveral of which was in the hands of his friend Dr Mat, who had prepared an eloge on Dr. Parfons, which was never ufed, but which, by the favour of Mrs Parsons, Mr Nichols has preferved at large. Though Dr Parfrons cultivated the feveral branches of the profeffion of physic, he was principally employed in the obftetrical lisle. In \(173^{8}\), by the intereft of his friend \(\mathrm{D}_{1}\) Douglas, he was appointed phyfician to the public infirmary in St Giles's. In 1739 he married Mifs Elizabeth Reynolds, by whom he had two fons and a laughter, who all died young. 1)r Parsons refided for many years in Red Lion Square, where he frequently enjoyed the company and converfation of Dr Stukely, BiChop Lytteton, Mr Henry Baker, Dr Fright, and many other of the mott diftinguifhed members of the Royal and Antiquarian Societies, and that of Arts, Manufactures, and Commerce; giving weekly an ellgat dinner to a large but felect party. He enjoyed alfo the literary correspondence of D'Argenville, Buffon, Le Cat, Beccaria, Amp. Bertrand, Valltravers, Afca1:ius, Turberville Needham, Dr Garden, and others of the molt diffinguifhed rank in feience. As a practitioner, he was judicious, careful, honeft, and remarkably humane to the poor; as a friend, obliging and communicative; chearful and decent in converfation, fever and frict in his morals, and attentive to fill with pro. piety all the various duties of life. In 1769 , finding his health impaired, he proposed to 1 titre from sufinefs and from London; and with that view difpofed of a confiderable number of his books and foffits, and went to Priftol. But he returned foo after to his old house, and died in it after a week's illness, on the th of April, 1770. By his lat will, dated in October 1766 , he gave his whole property to Mrs Parfons; and in cafe of her death before him, to Mifs Mary Reymolds her only filler, " in recompence for her af. fectionate attention to him and to his wife, for a long \(\underbrace{\text { Pa }}\)
course of years, in ficknefs and in health." It was his particular requett, that he fhould not be buried till forme change fhould appear in his corpie; a requeft which occafioned him to be kept unburied 17 days, and even then farce the fighteft alteration was perceivable. He was buried at Hendon, in a vault which he had caufed to be built on the ground purchafed on the death of his for James, where his tomb lad a very commendatory inscription.

It would carry us beyond our ufual limits to enter into an enumeration of the many curious articles at various times communicated to the public by Dr Parfons, which may be Pen in the Anecdotes of Bowyer. We Shall therefore clofe this` article with an extract from Dr Mary's eulogium: " The furprifing variety of branches which Dr Parfons embraced, and the Several living as well as dead languages he had a knowledge of, qualified him abundantly for the place of affiftant fecretary for foreign correfpondences, which the council of the Royal Society bellowed upon him about the year 1750. He acquitted himself to the utmoft of his power of the functions of this place, till a few years before his death, when he refigned in favour of his friend, who now gratefully pays this lat tribute to his memory. Dr Parfons joined to his academical honours thole which the Royal College of Physicians of London beftowed upon him, by admitting him, after due examination, licentiate, on the firft day of April 1751. The difufive spirit of our friend was only equalled by his defire of information. To both there principles he owed the intimacies which he formed with forme of the greateft men of his time. The names of Folks, Hales, Mead, Stukely, Needham, Baker, Collinfon, and Garden, may be mentioned on this occafion, and many more might be added. Weekly meetings were formed, where the earlic? intelligence was received and communicated of any difcovery both here and abroad; and new trials were made, to bring to the tefl of experience the reality or ufefulnefs of there difcoveries. Here it was that the microfcopical animals found in feveral infufions were first produced; the propagation of feveral infects by fection afcertained; the contancy of Nature amidst the fe wonderful changes eftablifhed. His Remains of Japhet, being Hiftorical Encuiries into the Affinity and Origin of the Eurepean Languages, are a mot laborious performance, tending to prove the anticuity of the firth inhabitants of the fe iflands as being originally defended from Gower and Magog, above 1000 years before Chit, their primitive and til tubGifting language, and its affinity with forme others. It cannot be denied but that there is much ingenuity, as well as true learning, in this work, which helps conviction, and often Supplies the want of it. But we cannot help thinking that our friend's warm feelings now and then miflead his judgment, and that forme at lat of his conjectures, retting upon partial traditions, and poetical fraps of Irifi filids and Welfh bards, are lefs latisfactory than his tables of affinity between the fevcral northern languages, as deduced from one common flock. Literature, however, is much obliged to him for having in this, as well as in many of his other works, opened a new field of observations and difcoverises. In enumerating our learned friend's differtations, we find ourfelves at a logs whether we fhould follow the order of fubjects or of time; neither is it eafy to
account

\section*{P A R}
account for their furprifing variety and quick fucceffion. The truth is, that his eagen nefs after knowledge was fuch, as to embrace almoft with equal facility all its branches, and with equal zeal to afcertaiu, the merit of inventions, and alcribe to their refpective, and fometimes unknown, authors, the glory of the difcovery. Many operations, which the ancients have tranfmitted to us, have been thought fabulous, merely from our ig. norance of the art by which they were performed. Thus the burning of the fhips of the Romans at a confiderable diftance, during the fiege of Syracufe, by Archimedes, would perhaps fill continue to be exploted, had not the celebrated M. Buffon in France fhewn the poffibility of it, by prefenting and defribing a model of a fpeculum, or rather affemblage of mirrors, by which he could fet fire at the diftance of feveral hundred feet. In the contriving, indeed, though not in the executing of fuch an apparatus, he had in fome meafure been forefalled by a writer now very little known or read. This Dr Parfons proved in a very fatisfactory manner; and he had the pleafure to find the French philofopher did not refule to the Jefuit his frare in the invention, and was not at all offended by the liberty he had taken. Another French difcovery, I mean a new kind of painting fathered upon the ancients, was reduced to its real value, in a paper which f.ewed our author was poffeffed of a good tatte for the fine arts: and I am informed that his fkill in mufic was by no means inferior, and that his favourite amufement was the flute. Richly, it appears from thefe perfornances, did our author merit the honour of being a member of the Antiquarian Society, which long ago had affociated him to its labours. To another fociety, founded upon the great principles of humanity, patriotifm, and natural emulation, be undoubtedly was greatly uifful ( A ). He affifted at moft of their general meetings and committees, and was for many years chairman to that of agriculture ; always equally ready to point out and to promote ufeful improvements, and to oppofe the interefted views of fraud and ignorance, fo infeparable from very extenf:ve affociations. No fooner was this fociety (B) formed, than Dr Parfons tecame a nember of it. Intinately convinced of the noblenefs of its views, though from his flation in life little concerned in its fuccefs, he grudged neither attendance nor expence. Neither ambitious of taking the lead, nor fond of oppofition, he joined in any meafure the thought right; and fubmitted cheerfully to the fentiments of the majority, though agzainl lis own private ppinion. The juit ideas he had of the dignity of our piofeffion, as well as of the common links which ought to unite all its members, not withitanding the differences of country, religion, or places of education, made him bear impatiently the fheckles laid upon a great number of refpectable praetitioners: he wihhed, fondly wifhed, to fee thefe broken; riot with a view of emp:y honour and dangerous power, but as the only means of ferving mankind more effectually, checking the progrefs of defigning men and illiterate practitioners, and diffufing
through the whole body a fpirit of emulation. 'Thongh by frequent difappointments he forefaw, as well as we, the little chance of a fpeedy redrefs, he nobly perfited in the attempt; and had he lived to the final event, would undoubtedly, like Cato, thill have preferred the conquered caufe to that fupported by the gods. After laving tried to retire from bufinefs and from London, for the fake of his health, and having difpofed of mott of his books with that view, he found it inconfittent with his happinefs to forfake all the advantages which a long refidence in the capital, and the many connections he had formed, had rendered habitual to him. He therefore returned to his old houle, and died in it, after a fhore illnefs, April 4: \({ }^{1770 \text {. The Ryle of our friend's }}\) compofition was fufficiently clear in defcription, the' in argument not fo clole as could lave been wimed. Full of his ideas, he did not always fo difpofe and conneet them together, as to produce in the minds of his readers that conviction which was in his own. He too much defpifed thofe additional graces which comman! attention when joined to learning, obfervation, and found reafoning. Let us hope that his example and fpirit will animate all his colleagues ; and that thofe practitioners who are in the fame circumftances will be induced to join their brethren, fure to find amongtt them thofe great bleffings of life, freedom, equality, information, and friendflip. As long as thefe great principles Ball fubfit in this fociety, and I truft they will outlaft the longeft liver, there is no doubt but the mernbers will meet with the reward honef men are ambiticus of, the approbation of their confcience, the efteem of the cirtuous, the rememorance of pofterity."

PARODICAL Degrees, in an equation, a term that has been fometimes uted to denote the feveral regular terms in a quadratic, cubic, biquadratic, \&e. equation, when the indices of the powers afeend or defeend orderly in all arithmetical progrefion. 'Llua, : \(+m x^{2}+n x=p\) is a cubic equation where no terms is wanting, but having all its parodic degrees; the in. dices of the terms reguiarly defrending thus, \(3,2,1,0\).

PAR?'V Arches, in architceture, are arches lailt between feparate tenures, where the property is intermixed, and apartrients over tach other do not belong to the fame eltate.

PaRq: W'alls, are partitions of brick made betweca buildings in feparate occupations, for preventing llic fpread of firc. Thefe are made thicker than the externa! walla : and their thicknefs in Iondon is regulated by act of Parliament of the \(14^{\text {th }}\) of George III.

PASSIGRAPHY, the art of writing on any fuh. jeet fo as to be undertond by all nations (See (Iriverfal Chiractars in this Supplement). In France, where every thing is admised that is new, and every raga:y of the imagination of a pretended philofopher thoreght practicable, a propofal has lately been made to introduce one univerfal language into the world, conftructed by a few metaphyficians on the laws of human thought. An' to this language, in its written form, is to be given the name of pafligraphy. Such readers as think this idle dreand
(a) The Society for the Encouragement of Arts, Manufactures, and Commerce. He likewife was aflociateủ to the Economical Society at Berne, Dec. 26. 1763.
(c) A Medical Society inflituted by Dr Fothergill, and other refpectable phyficians, licentiates, in vindication of their privileges; where, it fhould feem, this eulogy was intended to be pronounced. theam worthy their attention the cafe with us), will find fome ingenious thonghts on the hifory of a philofophical language, in the 2 d volume of Nicholfon's Journal of Natural Pbilofoplyy, E®c.

PATH of the vertex, a terni frequently ufed by Mr Flanfteed, in his Doctrine of the Spliere, denoting a circle, deforibed by any point of the earth's furface as the earth turns round its axis. This point is confidered as vertical to the earth's centre ; and is the fame with what is called the vertex or zenith in the Ptolo. maic projection.

PEARL F \({ }_{18 \mathrm{H}}\), is commonly confidered as an afcidia (fee Mytilus, Encycl.) ; but this is denied by a late author, who feems to have paid great attention to the pearl-fifhery at Ceylon. It has never, he fays, been accurately defcribed. It does not refemble the afcidia of Linnxus ; and as he thinks it may form a new genus, he gives the following account of it :
"The finh is faftened to the upper and lower fhells by two white flat pieces of mufcular fubltance, which have been called ears, and extend about two inches from the thick part of the body, growing gradually thinner. The extremity of each ear lies loofe, and is furrounded by a double brown fringed line. Thefe lie almoft the third part of an inch from the outer part of the fhell, and are continually moved by the animal. Next to thefe, above and below, are fituated two other double fringed moveable fubftances, like the bronchix of a fifh. Thefe ears and fringes are joined to a cylindrical piece of fiefh of the fize of a man's thumb, which is harder and of a more mufcular nature than the reft of the body. It lies about the centre of the fhells, and is firmly attachad to the middle of each. This, in fact, is that part of the pearl.fifh which ferves to open and fhut the fhells. Where this column is faftened, we find on the fefh deep impreffions, and on the fhell various nodes of round or oblong forms, like iniperfect pearls. Between this part and the linge (cardo) lies the principal body of the animal, Ceparated from the reft, and fhaped like a bag. The mouth is near the hinge of the fhell, enveloped in a veil, and las a double flap or lip on each lide ; from thence we obferve the throat (afoplagus) diefcending like a thread to the fomach. Clofe to the mouth there is a curved brow:ifh tongue, half all inch iil length, with an obtufe point ; on-the concave fide of this defceinds a furrow, -which the animal opens and thuts, and probably ufes to convey food to its mouth. Near its middle are two bluifh fpots, which feem to be the eyes. In a pretty deep hole, near the bafe of the tongue, lies the beard (by/Vus), faftened by two flefhy roots, and contitting of almoft 100 fibres, each an inch
- long, of a dark green colour, with a metallic luftre; they are undivided, parallel, and flattened. In general, the byfus is more than three quarters of an iuch without the cleft (rima); but if the animal is diturbed, it contracts it conficerably. The top of each of thefe threads terminates in a circular gland or heat, like the figma of many plaits. With this by/fus they fatten themfelves to rocks, corals, and other folid bodies; by it the young pearl fifh cling to the old ones, and with it the animal procures its food, by extendirg and contracting it at pleafure. Small thell fifh, on which they partly live, are often found clinging to the former. 'Tie flomach diss chofe to the root of the beard, and lias, on its lower fide, a protraced obtufe point. Above the fomach
are two finall red bodies, like lungs; and from the flo- Pean mach goes a long channel or gut, which takes a circuit Peiom round the mufcular column above-mentioned, and ends in the anus, which lies oppofite to the mouth, and is covered with a fimall thin leaf, like a flap. Though the natives pretend to dittinguifh the fexes by the appearance of the thell, calling the flat ones males, and thofe which are thick, concave, and vaulted, females, our author, on a clofe infperion, could not perceive any vifible fexual difference."

The pearls are only in the fofter part of the animal, and never in the firn mufcular column above-mentioned. They are found, in general, near the earth, and on both fides of the mouth. From the appearance of the fhell a judgment may be formed, with greater or lefs probability, whether it contains pearls or not. Thofe which have a thick calcareous cruft upon them, to which ferpula (fea tubes) Tubuli marini irregulariter intorti, Criffa.gali Chamar lazuras, Lepas tintinabulum, Madreporee, Millipore, Cellipore, Gorgonta, Spongia, and other Zoophytes, are faftened, have arrived at their full growth, and commonly contain the beft pearls; but thofe that appear finnoth, contain either none, or fmall ones only.

In the article (Encycl.) intitled, Manner of FijJing for Prarls in the Eiaft Indies, we have molt unaccountably faid, that "the beft divers will keep under water suear balf an bour, and the reft not lefs than a quarter!" This is a very great miltake; for M. Le Beck affures us, that the time during which a diver is able to remain under water feldom exceeds two minutes; and that, even after that fhort period, he difcharges, on emerging from the fea, a quantity of water, and fometimes a little blood, from his mouth and nofe. We have mentioned the danger which the divers run of becoming a prey to monftrous fifhes. Thefe fifhes are fharks; of which fuch a dread is juftly entertained, that the moft expert divers will not, on any account, defcend, till the coujurer lias performed his ceremonies of inchantment. Thefe confift in a number of prayers, learned by heart, that nobody, probably not even the conjurer thimfelf, undertands, which he, ftanding on the fhore, continues muttering and grumbling from fun rife until the boats return: During this period, he is obliged to abftain from food and neep, otherwife his prayers would have no avail : he is, however, allowed to drink ; which privilege he indulges in a high degree, and is frequently fo giddy, as to be rendered very unfit for devotion. Some of the conjurers accompany the divers in their buats; which pleafes them very much, as they have their protectors near at hand.
PEDOMETER (fee Encycl.), is the name given by Mr Lewin Thugwell to an in'trument, which is rather an improved perambulator than the infliument which we liave noticed by the name of Pedometer. The chief improvement made by him on the perambulator (fee that article, Encycl.) is in the fize of the wheet, of which the circumference meafures \(16 \frac{1}{2}\) feet, or one pole, adapted to Gunter's concife method of arithmetic, and divided into 25 equal parts, correfponding to the links of his chain for land meafuring. There is likewife a contrivance in Mr Thugwdi's pedometer, for compelling the attention of the traveller to the inftrument at the end of every mile. It is very ingenious, a:"d abundantly fimple ; but we hardly think it of fuffi-
cient importance to fill the face which a complete de-
fcription of it would occupy in this Work. It is fully defcribed in the Letters and Papers of the Bath and Weft of Eng land Society, for the Encourragement of 'lgriculture, and likewife in the oth volume of the Repertory of Arts and Manufatures.

PEGUE, the ancient capital of the kingdom of the fame name (fee Pegu, Encycl.), appears to have been a quadrangle, each fide meafuring about a mile and a half. It was furrounded by a ditch and wall ; which, before the latter tumbled down, and the former was filled up, mutt have furnihed no contemptible defence. The breadth of the ditch appears to be about 60 yards ; its depth, where not choked up, about ten or twelve feet ; and there is fill in it water enough to imperde an eaflern fieze. The wall has been at leait 25 feet hight, and its breadth at the baie not lefs than 40. It is compofed of brick, badly cemented together with clay mortar, and has had on it fmall equiditant baftions, about 300 yarcs afunder.
Nothing can cxhibit a more friking picture of defolation than the inlide of this wall. We have elfeewhere given an account of the almolt inceffant wars between the kings of Pegue and Birma or Barma. In the year 1757, the Birman fovereign carried the city of Pegue by affault, razed every dwelling to the ground, and difperfed, or led into captivity, all the inhabitants. The pagodas, which are very numerous, were the only buildings that efcaped the fury of the conqueror; and of thefe the great pagoda of Shoemadoo las alone been attended to, and repaired.
This extraordinary edifice is built on a double terrace, one railed upon another. The lower and greater terrace is about ten feet above the natural level of the ground. It is quadrangular. The upper and leffer terrace is of a like flape, raifed about 20 feet above the lower terrace, or 30 above the level of the country. Thefe terraces are afcended by flights of ftone fteps, broken and negleeted. On each tide are dwellings of the Rabaans or prielts, raifed on timbers four or five feet from the ground. Their houfes conlift only of a fingle hall. The wooden pillars that fupport them are turned with neatnefs. The roof is of tile, and the lides of fheathiug-boards. There are a number of bare benches in every houlfe, on which the Rabaans fleep. They appear to have no furniture.
Shoernadoo is a pyramid, compofed of brick and plafter, with fine hell mortar, without excavation or aperture of any fort ; ochagonal at the bafe, and fpiral at the top. Six feet from the ground there is a wide ledge, which furrounes the barc of the building; on the plane of which are 57 fmall fpires, of equal fize, and equidiflant. One of them meafured 27 feet in height, and 40 in circumference at the bottom. On a higher ledge there is another row, confifiting of 53 fpirees, of fimilar fhape and meafurement. A great variety of mouldinge encircles the building; and ornaments, fomewhat refembling the fleur de lys, furround what may be called the bafe of the foire. Circular mouldings likewife gird this part to a confiderable height; above which there are ornaments in ftucco, not unlike the leaves of a Corinthian capital ; and the whole is crowned by a tee, or umbrella of open iron-work, from which rifes an iron rod with a gilded penant.
The extreme heigl:t of the building, from the level Suppl. Vol. II. Part I.
race, 3.31 feet. On the fonth ealt angle of the upper terrace there are two handfome falonns, or keouns, lately erected. The roof is compofed of different ttages, fupported by pillars. Captain Symes, from whofe memoir in the Atiatic Refeatches this account is takert, judged the length of each faloon to be about 60 feet, and the breadth 30 . The ceiling of one of them was already embellifhed with grold leaf, and the pillars laequered; the other, when he faw it, was not completed. They are made entircly of wood. The carving on the outfide is very cmious. He faw feveral unfinifh. ed ligures, intended to be fixed on different parts of the building; fome of them not ill fhapen, and many exceedingly grotefque. Splendid images of Gaudına (the Birman object of adoration) were prepating, which he underftuod were defigned to occupy the infide of thefe kcouns.

At each angle of the interior terrace is a pyramidical pagoda, 67 feet in height, refembling, in miniature, the great pagoda. In front of the one in the fouth-weft corner are four gigartic reprefentations in mafonry of Palloo, or the man defroyer, half bealt, half hıman, feated on their hams, each with a large club on the right fhoulder.

Nearly in the centre of the ealt face of the area are two human figures in fucco beneath a gilded umbrella. One ftanding, reprefents a man with a book before hin, and a pen in his hand, He is called Tbagiamee, the recorder of mortal merits and mortal mifdeeds. The other, a female figure knecling, is Maba Sumulere, the protectrefs of the univerfe, as long as the univerfe is doomed to laft : but when thee time of general diffolution arrives, by her hand the world is to be overwhelmed, and deftroyed everlaftingly.

On the north fide of the great pagoda ane three large bells, of good workmanhip, fufpended near the ground between pillars. Several deers horns are ftrewed around. 'I'hofe who come to pay their devotions firt take up one of the horns, and frike the bell three times, giving an alternate ftroke to the ground. This act is to an. nounce to the fpirit of Gaudma the approach of a fup. pliant. There are feveral low benches near the bottoms of the payoda, on which the perfon who comes to pray places his offering ; which generally confits of boiled rice, a plate of fweetmeats, or cocoa-nut fried in oil. When it is given, the devotee cares not what becomes of it. The crows and dogs commonly eat it uo in the prefence of the donor, who never attempts to prevent or moleft the animals.
'There are many fmall pagodas on the areas of both terraces, which are neglected, and fuffered to fall into decay. Numberlefs images of Gaudma lie indifcriminately fcattered. A pious Birman who purchafes an idol, firlt procures the ceremony of confecration to be performed by the Rabaans, then takes his purchafe to whatever facred building is moit convenient, and there places it either in the fhelter of a keoun, or on the open ground before the temple: nor does he ever after feem to have any anxiety about its prefervation, but leaves the divinity to fhift for itfelf.

From the upper ledge that furrounds the bafe of Shoemadoo, the profpect of the country is extenfive and picturefque ; but it is a profpect of Nature in her rudeft ftate. There are few inhabitants, and fcarcely Uu
any

Fegne. any cultivation. The hills of Maraban rife to the eaftward ; and the Sitang river, windi-g along the plains, gives here and there an interrupted view of its waters. To the north-north weft, above 40 miles, are the Galladzet hills, whence the Pegue river takeg its rife ; hills remarkable only for the noifome effects of their atmof. phere. In every other direction the eye looks over a boundlefs plain, chequered by a wild intermixture of wood and water.

The prefent king of the Birnans has entirely altered the fyltem of his predeceffors. He has turned his attention to the population and improvement, rather than the extenfion, of his dominions; and feems more defirous to corciliate his new fubjects by mildnefs, than to rule them through terror. He has abrogated feveral fevere penal laws impofed upon the Tuliens or Pe guers: juftice is now diftributed impartially; and the only diftinction at prefent between a Birman and Talien confifts in the cxclufion of the latter from all public offces of trult and power.

No act of the Birman government is more likely to reconcile the Taliens to the Birman yoke than the reftoration of their ancient place of abode, and the prefervation and embellithment of the pagoda of Shotmadoo. So fentible was the king of this, as well as of the advantages that muft accrue to the flate from an increafe of culture and population, that fome years ago he iffued orders to rebuild Pegue, encouraged new fetthers by liberal grants, and invited the fcattered families of forner inhabitants to return and repeople their deferted city.

Pegue, in its renovated fate, feems to be built on the plan of the former city. It is a fquare, each fide meafin:ing about half a mile. It is fenced round by a flockade, from 10 to 12 feet high. There is one main frreet running eaft and weft, which is interfected at right angles by two fmaller ftreets, not yet finifhed. At each extremity of the principal ftreet there is a gate in the itockade, which is thut carly in the evening. After shat hour, entrauce during the night is confined to a wicket. Each of thefe gates is defenced by a forry piece of ordnance, and a few mulqueteers, who never poft centinets, and are wfuatly afleep. There are affo two other gates on the north and fouth fides of the flockade.

The houfes of the inhabitants of Pegue are far from commodious, agreeably to European notions of accommo dation ; but they are at leaft as much fo as the houfco of orher Indian towns. There are no brick buildings in Pegue, except fuch as belong to the king, or are dedicated to Gaudma. The king has prohibited the ufe of brick or fone in private buildings, from the apprehenfion, that if people got leave to build brick houfes, they might crect brick fortifications, dangerous to the fecurity of the ftate. The houfes, therefore, are all made of mats or theathing boards, fupported on bamboos or pofts. Beirig compofed of fuch combuftible materials, the inhabitants are under continual dread of fire, againtt which they take every precaution. The roofs are lightly covered; and at each door flands a long bamboo, with a hook at the end, to pull down the thatch : alfo another pole, with a grating of fplit bamboo at the extremity, about three feet fquare, to fupprefs flame by preflure. Almoft every houfe bas earthen
pots of water on the roof. And there is a particular Peificar clafs of people, whofe bufinefs it is to prevent and extinguif, fircs.
PEISHCAR, in Mengal, principal in office.
PEISHCUSH, a fme, tribute, or prefent.
PELL (Dr John), an eminent Englifh mathemat:cian, defeended from an ancient family in !.incolnfhire, was born at Southwick in Suffex, March 1. 1610, where his father was miniter. He received his grammar education at the free fchool at Stenning in that county. At the age of 13 he was fent to Trinity college in Cambridge, being then as good a fcholar as moft maiters of arts in that mimiverfity; but though he was eminentiy frilled in the Greek and Hebrew languagee, he never offered himfelf a candidate at the election of fcholars or fellows of his college. His pel fon was, handfome; and being of a ftrong conftitution, ufing litile or no recreations, he profecuted his fludies with the more application and intenfenefs.

In 1629 he drew up the "Defcription and Ufe of the Quadrant, written for the Ufe of a Friend," in two books ; the original manufcript of which is ftill extant among his papers in the Royal Society. And the fame year he held a correfpondence with Mr Brigys on the fubject of logarithms.

In 16:0, he wrote Modus fupputandi Epbemerides Afronomicas, Ecc. al an. 1630 accommodatus; and, A Key to unlock the meaning of Johames Prichemins, in his Difcourfe on Steganography: which Ikey he imparted to Mr Samuel Hartlib and Mr Jacob Homedx. The fame year he took the degree of Matter of Arts at Cambridge. And the year following he was incorporated in the univerfity of Oxforc. June the 7 th, ha wrote is Letter to Mr Edmond Wingate on Logarithins: and, Oct. 5.1631, Commentationes in Cofino. grakbiam Aifledii.
In 1632 he married Ithamaria, fecond daughter of Mr Henry Reginol!es of London, by whom he had four fons and four daughters.-March 6. 1634, he finißed his "Aftronomical Hittory of Obfervations of Heavenly Motions and Appearances;" and April the 1cth, his Ecliptica Prognaffica, or Foreknower of the Eclipfes, \&cc. In 1634 he traunlated " \(i\) he Everlafting Tables of Hea* venly Motions," grounded upon the Obfervations of all Times, and agrceing with them all, by Philip Lan!. berg, of Ghent in Flande13. And June the 12th, the fame year, he committed to writing "The Manner of Deducing his Aftronomical Tables out of the Tables and Axioms of Plilip Lanberg."-March the 9th, 1625, he wrote "A Letter of Remarks on Gellibrand's Mathematical Difcourfe on the Variation of the Magnetic Needle." And the 3d of June following, another on the fame fubject.

His eminence in mathematical knowledge was now fo great, that he was thought worthy of a Profeffor's chair in that fcience; and, upon the vacancy of one at Amftercam in 1639, Sir William Bofwell, the Engliftr Refident with the States General, ufed his intereft, that he might fucceed in that Profefforfhip. It was not filled up, however, till 1642 , when Pell was chofen to it; and he read with great applaufe public lectures upon Diophantus. - In 1644 he printed at Amiterdam, in two pages 4to, "A Refutation of Longomontanus"3 Difcourfe," De Vera Circuli Menfura.

Pell. In 1646, on the invitation of the Prince of Orange, he removed to the new college at Breda, as Profeflior of Mathematics, with a falary of 1000 guilders a year. 1 lis Idea Matbefeos, which he had addreffed to Mr Hartib, who in 1639 had fent it to Des Cartes and Merfenne, was printed 1650 at London, in 12 mo , in Englinh, with the title of An Idca of Mathematics, at the end of Mr Joln Durie's Reíormed Library keeper. It is alfo printed by Mr Hock, in his Philofophical Collections, \(\mathrm{N}^{\circ}\) 5.p.127.; and is efteemed our author's principal work.

In 1652 Pell returned to England; and in 1654 he was fent by the protector Cromwell agent to the Proteftant Cantons in Switzerland; where he coitinued till June 23. 1658 , when he fet out for England, where he arrived about the time of Cromwell's death. His negociations abroad gave afterwards a general fatiofaction, as it appeared he had done no fmall fervice to the intereft of King Charles II and of the church of England; fo that heowas encouraged to enter into holy orders: and in the year 1661 he was inflituted to the sectory of Fobbing in Effes, given him by the king. In December that year, he brought into the upper houre of convocation the calendar reformed by him, affifted by Sancroft, afterwards archbilhop of Cantertury. In 167,3 he was prefented by Sheldon, bifhop of London, to the rectory of Laingdon in Effex ; and, upon the promotion of that bifhop to the fee of Canterbury foon efter, became one of his domeftic chaplains. He was then doftor of divinity, and expected to be madc a dean ; but his improvement in the philofoIhical and mathematical fciences was fo much the bent of lis genius, that he did not much purfue his private advantagc. The trinth is, he was a helplefs man, as to worldly affairs; and his tenants and relations impofed upon him, cozened him of the profits of his parfonaye, and kept him fo indigent, that he wanted neceflaries, even ink and paper, to his dying day. He was for fome time confined to the King's bench prifon for debt; but, in March 1682, was invited by Dr Whitler to live in the college of phyficians. Here he continued till June following; when he was obliged, by his ill flate of health, to remove to the houfe of a grandchild of his in St Margaret's church-yard, Weftmin?ter. But he died at the houfe of Mr Cothorne, reader of the church of St Giles's in the Fields, December the 12th, 1685 , in the 74 th year of his age, and was interred at the expence of Dr Burby, mafter of Weftminfter fchool, and Mr Sharp, rector of St Giles's, in the recton's vault under that clurch.-Dr Pell publifhed fome other things not yct mentioned; a lift of which is as fullows, viz.
1. An Exercitation concerning Eafter; 1644 , in 4 to. 2. A Table of 10,000 fquare numbers, \& \(8 \mathrm{c} . ; 1672\), folio. 3. An Inaugural Oration at his entering upon the Profeflorfhip at Breda. 4. He made grat alterations and additions to Khonius's Algebra, printed at London 1668, 4to, under the title of An Introduction to Algebra, tranflated out of the High Dutch into Englifh by Thomas Branker, much altered and aug. mented by D. P. (Dr Pell). Alfo a 'Table of Odd Numbers, lefs than 100,0c0, Thewing thofe that are incompofite, \&c. fupputated by the fame Thomas Bran. ker. 5. His Controverfy with Longomontanus con-
cerning the Quadrature of the Circle; Amferdam,
\(1645,4 . t 0\).
Pill, Peleticer.

He likewife wrote a Demonftration of the 2 d and Icth books of Euclid; which piece was in MS. in the library of Lord Breereon in Chefhire: as alfo Archimedes's A renarius, and the greatelt part of Diophantus's fix books of Arihmetic; of which author he was preparing. Augult 1644, a new edition, in which he intended to correct the tranflation, and make new illuftrations. He defigned likewife to publifi an edition of A pollonius; but laid it afice, in May 1645, at the defire of Golius, who was engaged in an edition of that author from an Arabic manufcript, given him at Aleppo is years before. Letters of Dr Pell to Sir Charles Cavendif, in the Royal society.

Some of his manuferipts he left at 13 rereton in Chefhire, where he refided fome years, being the feat of William Lord Brereton, who had been his pupil at Breda. A great many others came into the hands of Dr Burby; which Mr Hook was delired to ufe his endea. vours to obtain for the Society. But they continued buried under duft, and mixed with the papers and pamplilets of Dr Bufby, in four large boxes, till 1755 ; when Dr Birch, fecretary to the Royal Society, procured them for that body, from the truftees of \({ }^{\circ}\) Dr Bufby. 'The collection contains, not only Pell's mathematical papers, letters to him, and copies of thofe from him, \&c. but allo feveral manufcripts of Walter Warner, the mathematician and philofopher, who lived in the reigns of Janes I. and Chanles I.
Dr Pell invented the method of ranging the feveral fteps of an algebraical calcuhus, in a proper order, in fo many diftinct lines, widh the number affixed to cach ftep, and a fhort defeription of the operation or proceffs in the line. He alfo insented the charafter - for divifion, \(\theta\) for involution, \(z u\) fur evolution *.
* Hutton's

PEILETIER (Bertrand), was born at Bayorne Matbematiin 1761 , and very foon leegan to difplay an infaciable cal Disiothirft of fcience. It trequently happens, lowever, that \({ }^{\text {nary. }}\) young men, fincercly defirous of inftruction, have no means or place where they can be affifted in the developement of their natural talents, no maller who may point out the direct road to fcience, and that order and method, without which the efforts of the individual too often lead him from the ohject of his purfuit, inftead of bringing hiin nearer to \(i t\). This was not the calc with young Pelletier. He found every advantage in his father's houle, where he received the firft elements of the art of which he was efterwards the ornament; and his fubfequent progrefs was made under 1)arcet, who having remarked in him that fagacity which may be called the inftinct of fcience, admitted him among the pupils attached to the chenical laboratory of the college of France. Five years of conftant application and fudy under fuch a matter, who was himfelf formed by nature, perfected by experience, and affectionately dif. pofed towards his pupil, afforded this young man a toock of knowledge very unufual at his age. He foon gave a convincing proof of this, by putimhing, at the age of 21, a fet of very excellent oblervations on the arfenical acid. Macqucr, by mixing nitre with the oxyd of arfenic, had difcovered in the refidue of this operation a falt foluble in water, fufceptible of cryftallization in tetrahedral prifms, which he denominated the neutral

Pelletier. arfenical falt. It is the arfeniat of potafh. He was of opinion that no acid could decompofe it ; but Pelletier fhewed, that the fulphuric acid diftilled from it does difengage the acid of arfenic. He fhewed the true caufe why the neutral arfenical falt is not decompofable in clofed veffels; and particularly the order of affinity hy which the falt itfelf is formed in the ditillation of the nitrate of potanh, and the white oxyd of arfenic. He explains in what refpects this falt differs from what Macquer called the liver of arfenic. Pelletier had been anticipated in this work by Sclicele, by Bergman, by the academicians of Dijon, and by Berthollet ; but he poffeffed at leaft the merit, in the firf effay of his power3, of having clearly developed all the phenomena of this operation, by retaining and even determining the quantity of gas it was capable of affording. After the fame principles it was that he decompofed the arfenicoammonincal falt, by fhewing how, in the decompofition of this laft, the pure arfenical acid is obtained in the form of a deliquefcent glafs. In this work we may obferve the fagacity with which he was enabled to develope all the phenomena of thefe comporitions and decompofitions, by tracing thofe delicate threads of fcientific relation which connect the feries of facts, and are imperceptible to o:dinary minds.

Enconraged by the fuccefs of thefe firf works, which he prefented with the fenfibility of grateful attachment to li:s inftructor, he communicated his obfervations on the cryftallization of fulphur, cinnabar, and the deliquefcent falts; the examination of zeolites, particularly the falfe zeolite of Fribourg in Brifgaw, which he found to be mercly an ore of zinc; obfervations on the dephlogifticated or oxygenated muriatic acid, relative to the abforption of oxygen; on the formation of ethers, particularly the muriatic and the acetous; and feveral memoire on the operation of phofphorus made in the large way; its converfion into phofphoric acid, and its combination with fulphur and moft metallic fubftances.

It was by his operations on that moft afonifhing produetion of chemiftry, phofphorus, that he burned himfelf fo dangeroufly as nearly to have loft his life. After the cure of his wound, which confined him to his bed for fix months, he immediately began the analy fis of the various plumbagos of France, England, Germany, Spain, and America, and found ineans to give novelty and intereft to his work, even after the publication of Scheele on the fame object. The analy yis of the carbonat of barytes led him to make experiments on animals; which prove that this earth is a true poifon, whether it be adminiftered in the form of the native carbonat of barytes, or whether it be taken from the decompofition of the fulphat, even though again combined with another acid.

Chemits have given the name of frontian to a newly difcovered earth, from the name of the place where it was firft found. J'elletier analyfed it, and difcovered it in the fulphat of barytes, He likewife analyfed the verditer of England, of which painters and paper-hang. ers make fo much ufe. He difcovered a procefs for preparing it in the large way, by treating with lime the precipitate obtained from the decompofition of nitrat of copper by lime. By his procefs, verditer is afforded equal in beauty to that which comes from England. He was likewife one of the firt chemifts who fhewed the polfibility of refining bell metal, and feparating the
tin. His firft experiments were made at Paris; after Pendulum, which he repaired to the foundry at Romilly, to verify them in the large way. The following year he was received a member of the Academy of Sciences at Paris, and Thortly aftervards went to La Fere, with Borda and General Daboville, to affif in experiments upon a new gulupowder. Being obliged, in order to render his experiments more decifive, to pafs great part of the day in the open air during a cold and humid feafon. his health, which was naturally delicate, becamc coufiderably impaircd. He began to recover his health, when he again became the victim of his zeal for the ficience he fo fuccefsfully cultivated. He had nearly perifhed by refpiring the oxygenated muriatic acid gas. A violent attack of convulive afthma, which returned during fevcral days, was the firt confequence of this unhappy accident. The diforder then feemed to abate; but it was incurable. The affiftance of art was infufficient to fave him; and he died in J'aris, on the 21ft of July 1797 , of a pulmonary confumption, in the flower of his age.

PENDUIUM (See Encycl.). Befides the effects of heat and cold on the length of the pendulum rod, and of courfe on its ifochronifm, it may certainly be worth while, in the confruction of clocks intended to meafure time with the utmoft ponfible exact nefs, to take into confideration the refiftance of the air, which, by its unequal denfity, varying the weight of the pendulum, muft in a fmall degree acceleratc or retard its motion. The celebrated David Rittenhoufe, who paid particular attention to this fubject, eltimates the extreme dif. ference of velocity, arifing from this caufe, at half a fe. cond a day; and he obferves, that a remedy dependent on the barometer will not be ftrielly accurate, as the weight of the entire column of air does not precifely correfpond with the denfity of its lafe. He propofes, therefore, as a very fimple and eafy remedy, that the pendulum fhall, as ufnal, confiits of an inflexitle rod carrying the ball beneath, and continued above the centre of furpenfion to an equal (or an uncqual) diftance up. wards. At this extrenity is to be fixed another ball of the farne dimenfons (or greater or lefs, according as the continuation is fhorter or longer), but made as light as puefible. The ofcillations of this upper ball will be accelerated by its buoyancy by the fame quartity as thofe of the lower would he retarded; and thus, by a proper adjuftinent, the two effects might be made to balance and correct each other.

Our author made a compound pendulum on thefe principles, of about one foot in its whrle length. This. pendulum, on many trials, made in the air 57 vibrations. in a ininute. On immerfngg the whole in water, it made 59 vibrations in the fame time; fhewing evidently, that its returns were quicker in fo denfe a medium as water than in the air. (This is contrary to what takcs place. with the common pendulum). When the lower bob. or pendulum only was plunged in water, it made no. more than 44 vibrations in a minute.

PENNANT (Thomas, Efq.), fo well known in the republic of letters as a writer of travels and of natural hillory, was an ancient 13riton by birth, laving daawn his Girft breath in Flint fhire, in 1726 . I-Iis fanily las been fettled in that county for many centuries; we learn from himfelf that he received the rudiments of his education at Wrexham, whence he was removed to Fulham. Suon after this he was fent to Oxford; and ha-

\section*{PEN} ving made a confiderable proficiency in the claffics, he applied himfelf within the walls of that univerfity to attain a knowledge of jurifprudence; but we do not find that he cver entered limfelf of any of the inns of court, or followed the law as a profeffion.
The ruling paffioris of mankind are excited, and the future current of their lives frequently directed, by trivial circumftances. One of the greateft painters of our age was attracted with an irrefiltible impulfe towards - his art by the perufal of a treatife on it; and we have the authority of the fubject of this memoir for afferting, that a prefent of Willughby's Ornithology, at an early period, firft gave him a turn for natural hiftory, which has never once abandoned him through the courfe of a very long life.
Mr Pennant commenced his travels with great propriety at home, where he made himfelf acquainted with the manners, producions, and curiofities, of his native country, before he fallied forth to infpect thofe of other nations. He then repaired to the continent ; and not only acquired confiderable additional knowledge relative to his favourite ftudies, but became acquainted, and eftablifhed a correfpondence, with fome of the greateft men of the age.

On his return he married, and had two children, but did not come into the family fortune until he was thirtyfeven years of age, at which time he was fettled at Downing.
Having loft his wife, he appears to have fet out once more for the contintht, and to have formed an acquaintance with Voltaire, Buffon, Haller, Pallas, \&c. He had by this time acquired confiderable reputation as a fcientific man, laving commenced his career as an auvolk thor fo early as 1750 . His 13ritifh Zoology * eftablifed his reputation as a naturalif; ; and this received a frefa acceffion of celebrity in confequence of his ac'quaintance with Linnæus, and his intercourfe by letters with all the celebrated naturalifts in Europe.

Early in life he had undertaken a moft interefting tour to Cornwall; and he now entertained an ardent define to furvey the works of nature in the northern extremities of the ifland. He accordingly fet out for Scotland, and in 1771 favoured the public with an envolstertaining account of his Tour \(t\), which was fo well received as to pafs through feveral editions. Not content with the main land of Great Britain, he was am. bitious to furvey the iflands in the vicinity, and accordingly penetrated to the Hebrides, and vifited Man.
It is not to be fuppofed that he would leave his own country unexplored; on the contrary, he minutely defrribed all its wonders. He did not fail on this occ3fion to prefent the world with the refult of his enquiries, for in 1778 he commenced the publication of his ols Welch Tour \(\oint\).

In four years after this ( 1782 ) appeared the account of the Journey from Chefter to London \(\ddagger\), in which he refutes the vulgar opinion that it is uninterefting; and in two years more his Arctic Zoology, an adinirable work, greatly prized both here and in other countries.

In 1790 appeared a quarto volume, fimply entitled Of London; in which he obferves that this work is compofed from obfervations, originally made without any view of publication. "Let me requeft (fays he in the preface) the good inhabitants of London and Weftminiter not to be offended at my having fuffed their

Iliad into a nuthell; the account of the city of Lon. Pernare. don and liberies of Weftminfter into a quarto vo.. lume. I have condenfed into it all I could; orritted nothing that fuggeited itfelf; nor amplified any thing to make it a grinea book. In a word, it is done in my own manner, from which 1 an grown too old to depart.
" I feel within myfelf a certain monitor that warns me (adds he) to liang up my pen in time, before its powers are weakened, and rendered vifibly impaired. I wait not for the admonition of friends. I have the A rchbilhop of Grenada in my eye ; and fear the inbecility of human nature might produce in long-worn age the fame treatment of my kind advifers as poor Gil Bla; hat from lis moft reverend patron. My literaly bequefts to future tirnes, and more ferious concerns, muft occupy the remnant of my days. This clufes my public labours."
Notwithtanding his parting addrefs, the example of the Arclibifhnp of Grenada, and the concluding fentence of "Valde E Plaudite," we find Mr Pennant adventuring once more in the ocean of literature, at a late period of his life, and trying his fortune again with all the eagernefs of a young author.

He accordingly publifned the Natural Hiftory of the parifhes of Holywell and Downing *, within the pre- *One vols cincts of the latter of which he had refided about balf to. a century.

He alfo prefented the public, a very fhort time before his death, with a folendid work, confifting of 2 vols. 4to. entitled The View of Hindooflan; in the preface to which he candidly thates his motives for this new attempt. "I had many folicitations from private friends (fays he), and a few wifhes from perfo:1s un. known, delivered in the public prints, to commit to the prefs a part, in the form in which the pofthunous yo. lumes might hereafter make their appearance. I might have pleaded the imprudence of the atternpt at my time of life, of beginning fo a-duous an undertaking in iny 7 Ift year.
". I happily, till very lately, had fcarceiy any admonition of the adranced feafon. I plunged into the fear of trouble, and with iny papers in one hand, made iry way throngh the waves with the other, and brought them fecure to land. This, alas ! is finite boafting. I muft fubmit to the judgrnent of the public, and learn from thence how far I ain to be cenfured fur fo grievousan offence againt the maxim of Ariftotle, who fixes the decline of human abilities to the 49 th year.
"I ought to fhucder, when I confider the wear and tear of 22 years; and feel fhocked at the remark of the elegant Delanty, who obferves, ' that it is generally agreed among wife men, that few attempts, at lealt in a learned way, have ever been wifely undertaken and happily executed after that period!'
"I cannot defend the wifdom: yet from the gount fortune of my life I will attempt the execution."

Thefe valuable volumes are drawn up by Mr Pen. nant in the manner of his introduction to the Aretic Zoology. The plates, 23 in number, are admirably engraved, and one (the Napaul pheafant) is beautifully coloured.

In addition to the lift of literary labours already enumerated, is a letter on an earthquake felt at Downing, in Flinthire, in 1753; another inferted in the fame publi-

Penmant, publication*, in 1756 , on corallnid bodies (xnearacerdns) k:m : 1 :ula. * Plit. Grans. collected by him: his Synopfis of \(Q\) uadrupeds, publifhed in 1771 ; a pamphlet on the Militia; a paper on the Turkey; and a volume of Mifcellanies.

Mr Pennant attained academical honours of all kinds, having had the degree of LL. D. conferred on him by the univerlity in which he was educated, he was a Fellow of the Royal Society, and a member of the Society of Antiquarics, a Fellow of the Royal Socicty of Upral in Sweden, a member of the American Phitofophical Society, an honorary member of the Anglo-Linmean Society, \&c.

The ample fortune left him by his father enabled Mr Pennant to keep an hofpitable table, and alfo to prefent the profits of feveral of his works to public inftitutions, particularly the Welfh charity-fchool in Gray's-inn-lane. He encouraged feveral engravers by his patronage, and was not a little ferviceable to the advancement of the fine arts.

In 1776 he married a fecond time; on which occafion he became united to Mifs Moltyn, fifter of his neighbour, the late Sir Roger Moftyn, in Flinthire. The latter part of his life was chearful, and he foarcely felt the approaches of old age. He died at his feat at Downing in his 72 d year.

He has left feveral works behind him in MS. under the title of Cutlines of the Clobe; and as a proof that it will be a very voluminous and interefting publication, it is only neceffary to obferve, that The View of Hindoottan compofed the xivth and xuth volumes.

Mr Pennant poffeffed a well-compacted frame of body, an open and intelligent afpect, an astive and chearful difpofition, and a vivacity which rendered him always entertaining, as well in converfation as in writing. 'Though not without a nlare of irrafcibility, his heart was kind and benevolent. He was exemplary in the relations of domeftic life, and fenfibly felt for the diflreffes of his poor neighbours, whore reliff in feafons of hardhin he promoted with great zeal and liberality. His candour and freedom from ordinary plejudices, are fufficiently difplayed in his writings; and Scotland was forward to confefis, that he was the firft traveller from this fide the Tweed, who had vifited the country with no unfriendly fpirit, and had fairly prefented it under its favourable as well as its lefs pleafing afpects. As a writer, his ftyle is lively and expreffive, but not perfectly correct. His principles of arrangement in zoology are judicious, and his deferiptions characteriftic. If in fome of his later woks a little vanity appears, and a propentity to think that important to the world which was fo to himfelf, it may readily be pardoned to one who has afforded fuch copious and valuable entertainment to the public. His name will live with honour in the litelary liltory of his country, and his inemory will be cherilleed with refpect and affection by his furviring friends.

PENNAIUUL (See Encycl.). A fpecies of this animal, litherto indeferibed, was difcovered by la Martiniere near Nootka. Its body is of a cantilagiaous fubfance, and a cylindrical form ; its head, armed with two little horns of the fame fubftance, prefents a fpherical figure flatted at its anterior extremiiy. 'This part is covered with fmall papillie, fome of which are vifible at D; and which ferve the purpore of fnall mouths, by meaus of which this animal fucks the
tlood of fifhes, making its way as far as pomible into Pepur. the fleff: the extremity of its body, which always projects from the fif, appears like the feathers of a pen; thefe feather-like fubitances ferve as excretory veffels; for on making a flight preffure on the animal, from the greater patt of thefe cartilaginous babs iffued fmall drops of a very limpid liquor: at the bafe of thefe barbs, and beneath the body, are placed two large car. tilaginous threads, of which our author could not imagine the ufe, for they are not univerfally met with in each individual. The circulation of its blood is readily obferved, it forms a complete revolution about once in a minute. It is probable that this animal is only able to make its way into the bodies of different fifh when it is very young ; and when it has once buried itfelf there, having abundance of nourifhment, its head increafes confiderably, and the two horns with which it is furnifhed neceflarily form an obftacle to its regrefo, which is a remarkable inftance of the forefight of Na ture, fince it is deftined to be nourifhed at the expence of another. The pennatula, of which we have given from Martiniere a figure, was found by him at the depth of more than an inch and an half in the body of a dioclon.

PEPUSCH (John Chriftopher), one of the greateft theoretic muficians of modern times, as we are told, was born at Derlin about 1667 ; and became fo early a proficient on the harpfichord, that at the age of 14 he was fent for to court. and appointed to teach the prince, father of the late King of-Pruffia. Akout 1700 , he came over to England, and was retained as a performer at Druy Lane: it is fuppofed that he affifted in compofing the operas which were performed there. While he was thus employed, he forebore not to profecute his private ftudies; and thefe led him to enquire into the mulic of the ancients, and the perufal of the Greek authors upun that fubject. The abilities of Pepufch, as a practical compofer, were not likely to become a fource of wealth to him: his mufic was correct, but it wanted variety of modulation. Befides, Handel had got poffeffion of the public ear, in the opinion of whofe fuperior merit he readily acquiefced; and chofe a track fo: himfelf, in which he was almoft fure to meet with no obltruction. He became a teacher of mufic, not the practice of any particular inflrument, but mufic in the abfolute fenfe of the word, that is to fay, the principles of harmony and the fcience of practical compofition ; and this, not to children or novices, but in very many inftances to profeffors of mulic themfelves.

In 1713 , he was admitted to the degree of Doctor in Mufic at Oxford, and continued to profecute his Atudies with great affiduity. In 1724, he accepted an olier from Dr Berkeley to accompany him to the Bermudas, and to fettle as profellor of mufic in his iutended college there; but the mip in which they failed being wrecked, he returned to London, and married I rancefca lvargarita de l'Epine. This perfon was a native of Tufcany, and a celebrated finger, who performed in fome of the firft of the Italian operas that were reprefented in England. She came hither with onie Greber, a German, and from this connection became diftingruifhed by the invidious appellation of Greber's Peg. Afterwards the commenced a new comection with Daniel Earl of Nottinghan, who had defended the ortlodox notion of the 'Trinity againt the heretic Whiton; and to this connection Rowe, in imitation of

Horace's,
ih, Horace's, "Ne fit ancillæ tibi amor pudori," thus alludes:

\author{
1)id not bafe Greber's Peg inflame \\ The lobe1 Earl of Nottingham, \\ Of fober fire defcended?
}

That, carelefs of his foul and fame,
To play-houfes he nightly came,
And left church undefended.
She continued to fing on the fage till about 1718 ; when having, at a modeft computation, acquired above ten thoufand guineas, fhe retired from the theatre, and afterwards married Dr Pepufch. She was remarkably tall, and remarkably fuarthy ; and, in general, fo defti ture of perfonal charms, that Pepufch felcom called her by any other name than Hecate, to which the is faid to have aufwered very reatily.

The change in Pepufch's circumflances by Margarita's fortune was no interruption to his ftudies: he loved me:lic, and he purfued the knowledge of it with ardour. At the intance of Gay and Rich, he undertook to compofe, or rather to correct, the mufic for the Beggar's Opera. His reputation was now at a great height He had perufed with great attention thofe feveral ancient treatifes on Harmonics, publifhed by Meibomius, and that of Ptoleny by Dr Wallis; and the difficuities which occurred to him on the perufal, were in a great meafure removed by his friend De Moivre the mathematician, who affted him in making calculations for demonftrating thofe principles on which the harmonic fcience is founded. In confequence of thefe fudies, he was effermed, in matters of theory, one of the beft muficians of his time. In 1737, he was ch ofen organif of the Charter houfe, and retired, with his wife, to that venerable mantion. The wife died in 1740, before which he loft a fon, his only child ; fo that he had no fouree of delight left, but the profecution of his ftudies, and the teaching of a few favourite pupils, who attended him at his apartments. Here he drew up that account of the ancient genera which was read before the Royal Society, and is publifhed in the Philofophical Trarfactions for Ocłober, November, and Decenber, 1746 ; and, foon after the publication of that account, he was chofen a Fellow of the Royal Society.
He died the 2 cth of July, 752 , ayged 85 ; and was buried in the chapel of the Charter-houfe, where a tablet with an infcription is placed over him *
percusision, Force of Percussion, is the name by which mechanicians diftinguifh that faculty of producing motion, or making other fenfible mechanical impreflions on liodies, by means of the fltoke of a body in motion. It is nearly the faine with impulfe; only, it would feem that the very ferupulous and refined affeet to limit the attention to the immediate carfe of the motion, or other effect produced; to the fomething that is different, both from the force fuppofed to be inherent in the moving hody (a hammer for example), and the fubfequent motion and penetration of the nail which is driven by it, We may venture to fay that it is needlefs to attempt any-invefigration of this object. It is hid, with all other caufes of all other effect* in the univerfe, in impenetrable darknefs. If we reflect on the con Atitution of our own mind, fo far as we can know it by experience and obfervation, and on the manner in which
we draw conclufions, we mutt fee that the knotviedge Percufion, of the efficient caufe of any effect is unattainable; for were the intervening fomething pointed out to us, and clearly conceived by us, we foonld find it jult as nece?fary to find out why and how this lomething is connected with each of the events which we obferve it invariably to cornect.

But a knowledge of the force of percuffion, in as far as it may or may not be diltinguithable from other forces, is not unattainable. We can learn as mîch, and no more, concerning this, as concerning any other force; and we can conteniplate that circum!tance which, in our opinion, is common to it with all wother forces, and may perhaps difcover other circumiltances in which it differs from them. But in all this difquifition, it is plain that it is only events, which we conceive to be the chatracteriftic effects of the caufe, that we contemplate.

Percuffion, confidered as an effect, characterittic of a particular faculty of moving bodies, became an obje ct of anxious refearch, almoit as foon as philofophers began to think of motion and moving forces at all. The ancients (as has been ubferved in the article Impulsion, Suppl.) contented themfelvea with very vague fpeculations on the fubject. Galileo was the firft who confidered it as a meafurable thing, the nbjeet of mathema. tical difcuffion; being encouraged by his precions difco. very of the laws of accelerated motion, and the very refined meafure which thefe gave him if the power of gravity. It was a meafure of the heavinefe, not of the weight, of the body; and this wa3 meafured by its acceleration, and not by its prefure. Er couraged by this, he hoped to find fome fuch meafure of the furce of percuffoon, which he faw fo intimately connected with motion; whereas its connection with preflure was far from being obvicus. He therefore tried to convert the terms; and as he had found a meafure of the preflure of gravity in the acceleration of motion, he endeavnured to find in prefinure a meafure of the force of percuifion arifug from this acceleratior. He endeavoured to find the number of pounds, whofe preflure is equal to the blow of a given body. moving with a given velocity. The velocity was known to him with gleat precifion, by means of the height from which the ball irult fall in order to acquire it. It feems pre:ty clear that percuffion may be meafured in this way ; for a botly falling from a height will pierce an tiniformly tenacious body to a certain degree, and no further; and esperiment thews that this degree of penstration is very precife and conflant. The fame body, bei:g merely laid on the tenacious body, will penetinte to it fmall deptiz by its weight. laying more weight on it, will make it penctrate deeper; and a certain weight will make it penctrate as deep as the fall did, and no ceeper. Thus, percuffion feems very catily meafuable by weight, or by any preffure fimilar to that of weightit. It appears that Galileo made experiments with this view, and that he was difappointed, and obliged to acquiefce in the opinion of Ariflotle, that percuffion and weight are incomparable. He propofes, therefore, another experiment, namely, to drop a body into the feale of a ba. lance from greater and greater heights, till at laft the blow on the feale raifes a weight that lies in the other fcale. This offers itfelf fo plaut:bly, that we are perfuaded that Gahileo tried it : but as he makes no men-

Percuffion. tion of the refults, we prefume that they were unfatisfactury.

Neither of thefe experiments could give us a meafure of the force of percuffion, if this force be any thing different from the forces which are excited or bronght iuto action by percuffion, in the manner defcribed in the article Impulsion, Suppl. When the ball comes into pliyfical contaet with the fcale, it begins to comprefs it. This compreffion begins to ftretch the ftrings by which the fcale is fupported. Thefe pull at the arm of the balance, and caufe it to prefs the centre-pin a little harder on its fupport, and to bend the balance a little, and caufe it to pull at the cords which fupport the other fcale. That feale is pulled upwards, diminifhing a little its preffure on the ground, and preffing it harder to the incumbent weight. Thefe forces are excited in fucceflion from the one fcale to the other, and a fmall moment of time clapfes. The reaction of the fale diminifies, but does not inftantaneouny annihilate, the velocity of the falling ball. It therefore compreffes the fcale ftill more, Atretches the threads, preffes the fulcrum, and bends the balance ftill more (becanfe the weight in the other fcale keeps it down). The velocity of the falling ball is rapidly diminifhed; the balance is more bent, and pulls more Itrongly upwards at the threads of the other fcale; and thus preffes that fcale more ftrongly againft the incumbent weight, gradually communicating more and more motion to it, removing it farther from the ground, till, at laft, the motion becomes fenfible, or fo confiderable as to difengage fome delicate catch as a fignal. The experiment is now finifhed; and the mechanician fondly thinks that, at this in?ant, the preffure excited by the percuffion, between the oppotite fale and the under fide of the incumbent weight, is juft equal, or but a very little fuperior, to the pefliure of the incumbent weight : and, fince the arms of the balance are equal, and therefore the preffures on the two fcales are equal, he imagines that that weight exerts a preffure equal to the percuffion of the falling ball.

But all this is mifconception, and alfo falfe reafoning. It is not percuffion that we are meafuring, but the preffures, excited by percuffion, on the two fcales. And thefe preffures are the forces of elatticity or expanfivencis, belonging to, or inherent in, the particles of the balls and the fcales; forces which are brought into action by the approach of thofe bodies to each other. This reafoning is alfo erroneons; and we fhould be miftaken if we think that the preffure actually exerted is equal to that of the weight in the oppofite fcale. It is greater than the mere preffure of thai weight. The reaction of the oppofite fcalc on its load was precifely equal to that weight before the ball was dropped from the hand ; and, had the ball been equal to that weight, and fimply laid into the fale on which it falls, it would have made no change on the mutual preffures of the fcale and the other weight; it would only have relieved the ground from the preffure of that weight, and would have bronght it on the threads which fupport its feale. The preffure of this fcale upwards muft be increafed, before it can ftart the weight fenfibly from the ground. How much it mult be increafed depends on the fpringinefs of the feales, cords, and beam. By a proper adjufment of thefe particulars, the apparatus will give us almof any meafure of percuffion that we choofe. For
this reafon, the improvements inade on it by Gravefande Perculfer are of no value. The fame reafoning, nearly, may be applied to the meafurements of the force of percuffion by means of the penetration of foft hodies.

Galileo mentions another vely curious experiment, by which he thonght that he had obtained a juft ineafure of percuffion. A veffel, filled with water, was fufpended on the arm of a balance, with another veffel hanging from it, a great way below. All was exactly balanced by a weight in the oppofite feale. By meants of a fnitable contrivance, a hole was opened in the bottom of the npper veffel, without difurbing the equilibrium. As foon as the water iffined, and while it was falling through the air, that end of the balance rofe: but when the water fruck the lower veffel, the equilibrium was reftored, and contiured during the whole time of the efflux. Hence Galilen concluded, that the force of the ftroke was equal to the weight of the falling water. But we apprehend that the obfervations made on this in the article Impulsion, Suppl. will convince the reader that this conclution is far from being legitimate. Befides, the ftroke, in any one inftant, is made by thofe particles only which ftrike in that inftant, while the whole vein of water between the veffels is neither acting by its weight on the upper veffel, nor by its ftroke on the lower; and we fhould couclude from the experiment, that the force of percuffion is infinitely greater than the weight of the friking body. Indeed this is the inference made by Galileo. But if we have recourfe to the experiments and reafonings of Daniel Bernoulli, in the article Resistance of Fluids, Encycl. we frall find that the feeming impulfe on the lower veffel is really a molt complicated pure preffure, and of molt uncertain determination. The experiment is valuable, and gives room for curious reflections. We have repeated it, in a great variety of forms, and with great changes of impulfe, and fonetimes in fuch a manner that no impulfe whatever can obtain, while at the fame time a quantity of water was falling, unfupported by either veffel. In all the trials the equilibrium remained undifturbed. We were obliged to conclude, therefore, that the experiment afforded no meafure of percuffion. Indeed we were of this opinion before making the trial, for the reafons jult now given.

We cannot fay that the fubfequent labours of philofophers have added much to our knowledge of this matter. Mr Leibnitz had contrived his whimfical doctrine of living and dead forces. The action of gravity, or of a fpring, is a vis viva, when it actnally produces motion in the body on which it acts : but when a Atone lies on a table, and preffes on it, this preflure is a vis mortuc. Its exertion is made, and in the fame inftant defroyed, by an oppolite vis mortua. Each of thefe exertions would have produced a beginning of motion (fomething different from any the fmallett local motion) ; and the fum of all would, after a certain time, have amounted to a fenfible motion and velocity. There feems no difinct conception to accompany, or that can accompany, this language. And, as a proof that Leibnitz had. no diftinct conceptions of the matter, he has recourfe to this very experiment of Galileo in fupport of his genefis of a fenfible motion from the continual exertions of the vis mortua; and he concludes that the force of percuffion is infinitely, or incomparably, greater than prefo fure, becaufe it is the fum total of an infinity of indivi-
dual exertions of vis mortua. Nothing but the authority which Leibnitz has acquired on the continent, by the zealous efforts of his partizans, could excufe our taking up any time in confidering this unintelligible difcourfe. Surely, if there is fuch a thing as a vis viva, it exifts in the moving water, and its impulfions are not continual exertions of a vis mortua. Nor is it poffible to conceive continual impulfe, nor a beginning of motion that is not motion, \&c. \&c. It is paradoxical (and Leibnitz loved to raife the wonder of his followers by paradoxes) to fay that percuffion is infinitely greater than preffure, when we fee that preffure can do every thing that can be done by percuffion. Nay, Eulcr, by far the moft able fupporter of the doctrines of Leibnitz about the force of bodies in motion, aefually compares thefe two forces ; and, in his Commentary on Robins's Artillery, demonftrates, in his way, that when a mufket ball, moving with the velocity of 1700 feet per fecond, penetrates five inches into a block of elm, the force of its percuffion is 107,760 times its weight. John Bernoulli reftricts the infinite magnitude of percuffion to the cafe of perfectly hard bodies; and, for this reafon alone, fays, that there can be none fuch in the uni. verfc. But, as this juflly celebrated mathematician fcouts with fcorn the notion of attractions and repulfrons, he muft allow, that an ulcimate atom of matter is unchangeable in its form; which we take to be fyno. nymous with faying that it is perfectly hard. What muft be the refult of one atom in motion hitting another at reft ? Here mult be an inftantaneous production of a finite velocity, and an infmite percuffion. \(\Lambda\) doctrine which reduces its abetters to fuch fubterfuges, and engages the mind in fuch puzzling contemplations, cannot (to fay the beft of it) be ftyled an explanaTiON of the laws of Nature. The whole language on the fubject is full of paradoxes and obfenrities. In order to reconcile this infinite magnitude of percuffion with the obferved finitc magnitude of its effects, they fay that the preffure, or inftantaneous effort, has the fame relation to the force of percuffion that an element has to its integral ; and in maintaining this affertion, they continually confider this integral under the exprefs denomination of a fum total, robbing Leibnitz's great difcovery of the infinitefimal calculus of every fuperio. rity that it poffeffed over Wallis's Arithmetic of Infinites, and really employing all the erroneous practices of the method of indivifibles. We look upon the ftrange things which have been inculcated, with pertinacious zeal, in this doemine of percuffion and vires vive, as the moft remarkable example of the errors into which the unguarded ufe of Cavalerius's Indivifibles, and of the Leibnitzian notion of the infinitefimal calculus, have led eminent mathematicians. It is not true that the preflure, and the ultimate force of percuffion, have this relation; nor has the preffure and the refulting motion, which is miftaken for the meafure of this ultimate force, any mathematical relation whatever. The relation is purely phyfical ; it is the relation of pure caufe and effect ; and all that we know of it is their conftant conjunction. The relation of fluxion and fluent is not a mathematical or meafurable relation, but a connection in thought ; which is fufficient for making the one an indication of the other, and the meafures of the proportions of the one a mean for obtaining a meafure of the proportions of the other. In this point of view, Suppl. Voz. II. Part I.
the relation of preflure to motion, as the meafurc of the Percullion. force of percuffion,
but is not the fame.

Much has been faid by the partizans of Mr Leib. nitz about the incomparablenefs of preflure and percuf. fon, and many experimental proofs have been adduced of the incomparable fuperionity of the latter. Bulfinger fays, that the preffure of many tons will not caufe a fpike to penetrate a block of hard oak half fo far as it may be driven by a weak man with one hlow of a mallet; and that a moderate blow with a fmall Lammer will fhiver to powder a diamond, which would carry a mountain without being hurt by its preffure. Nay, tven Mr Camus, of the Academy of Paris, a ftaunch Cartefian, and an eminent mechanician, fays that he beat a leaden bullet quite flat with a liammer of one pound weight, without much force; and that he found that 200 pounds weight would not have flattened it more than this blow: and he concludes from thence, that the force of the blow exceeded 200 pounds. 'I'hefe, to be fure, are remarkable facts, and juftify a more minute confideration of a power of producing certain effects, which is fo frequently and fo ufefully employed. But, at the fame time, thefe are all very vague exprefions, and they do not authorife any precife conclutions from them. Mr Camus faying " without much force," makes his pound weight, and his 200 ponnd weight, of no ufe for determining the force of the blow. He would have given more precife and applicable data for his decition, had he told us from what lieight the hammer fhould fall in order to flatten the builet to this degrec. But even then we fhould not have obtained any rotion of the force in actual exertion diring the flattening of the bullet ; for the blow which could flatten the bullet in a longer or a fhoiter time, would unqueltionably have been lefs or greater.

All the paradoxes, obfeurities, and puzzling difficulties, in this fubjeet difappear, if we leave out of our confideration that umintelliggible force, which is fuppofed to preferve a body in motion or at rett; and if we confider both of thefe ftates of body as conditions which vill continue, unlefs fome adequate caufe operate a clange; and if we farther grant, that fuch caufes do really exit in the univerfe, however unknown their nature may be by us; and, laftly, if we acknowledge, that the phenomena of elafticity, expanfivenefs, coliefion, gravicy, magnetifm, electricity, are indications of the agency of fuch caufes, and that their actual exertions, and the motions and changes confequent on thefe exertions, are to invariably connecked with particular bodies, that they always accompany their appearance in certain mutual relations of dittance and pofition:-if we proceed thus, all the phenomena of collifion will be explained by thefe canfes alone, wilhont fuppoling the exiftence and agency of a caufe dittinct froin them all, and incomparable with them, called the EORCE OFPERcussion.

For it has been fufficiently demonitrated in the article Impulsion (Suppl.), that that property of tangible coherent matter, which we call perfect elaficity, operates as a preffure during a certain imall portion of time on both bodics, diminithing more and more the motion of the one, and augmentug that of the other, as the compreffion of one or both increafes, till at laft they leparate with fenfible velocities. In fome very fimple or perX x . ficuous

Percuffion. Ipicuous cafes, we know what this preflure is in esery inflant of the action. We can tell how many pounds weight, at reft, wilk exert the fame preffure. We can tell the whole duration of this preffure, and the fpace along which it is exerted; and, in fuch a cafe, we can fay with precifion what motion will be generated by this continued and varied preffure on the body which was at reft, and what diminution will be made in the motion of the other. All this can be done in the cafe Plate XLL of a ball A (fig. 1.), moving like a pendulum with a fmall velocity, and friking a flender elaftic hoop 13, alfo fufpended like a pendulum. We can afcertain by experiment, befure the collificn, what preffure is 1.eceffary for comprefling it one inch, one-half, onefourth, \&c. Knowing this, and the weight of the thoop, and the weight and velocity of the ball, we can tell every circumitance of the collifion-how long the compreffion continues-what is the greateft com preffion-how far the bodies have moved while they were acting on each other-and what will be the final motion of each:- in fhort, every thing that affords any mark or meafure of a force of percuffion. And we know that all this is produced by a force, familiarly known to us by the name of elaficity. Which of all thefe circumitances fhall be called the percuffion, or the force of perculfion? Is it the altimate or greateft preffure occationed by the comprefion? This cannot be, becaufe this alone will not be proportional to the final change of motion, which is generally taken as a meafure of the percufion when a change of motion is its unly obferved effect.

We know that another perfectly elaftic body, of the fame weight, and Atruck by the fame blow, and acquiring the fome final velocity by the froke, may not have fuftained the tenth part of the preffure, in any orie inftant of the collifion, if it has only been much more compreffible The greatef mutual preffure in the collifion of a billiard ball is perlaps 1002 times greater than it is in a fmilar collifion of a foor-ball of the fame weight.

We alfo know what dugree of compreffion will break this hoop, and what preffure will produce this compreffion. Therefore, fhouid the fracture of the body be conididered as the mark and meafure of the perculf fion, we know what blow will jult prodnce it, and be exhaufted by fo doing. In fhort, we know every mark and meafure of percuffion which this hoop can exhibit.

We can increafe the ftrength of this hoop till it becomes a folid difk; and we fee clearly, that in all thefe forms the mode of acing is the fame. We fee clearly that it is the fame when, inftead of the folic difk, it is an elaftic ball ; therefore every thing that can indicate or meafure the percuffion of an claftic ball, is explained without the operation of a peculiar force of percuffion, even when the ball is fhivered to pieces by the blow.

Nor is the cafe matenially different when the bodies are foft, or imperfeefly elaftic. When the ftruck body is uniformly tenacious, it oppofes a uniform refiftance to penetration, and its nootion will be uniformly accelerated by the action of its own tenacity during the whole time of mutual action, except a triffing variation occafioned by the mere motion of the internal parts, independent of their tenacity. If we knew the weight neceffary for merely penetrating this mefs, and the weight and velocity of the penetrating body, we can
tell how long it muft be refifted by this force before Perafifo: its initial velocity will be annihilated, and therefore how far it will penetrate. We have tried this with deal, birch, willow, and other foft woods of uniform texturc, and with nails baving the body formewhat flenderer than the end, that there might not be an irregularity occafioned by a friction on the fides of the nail, continually increafing as the penetration advanced. We made the hammer fall from a confiderable height, and hit the nail with great accuracy iat the direction of its length, by fixing it to the end of a long lath, moveable round an axis. The refults correfonded with the calculation with all the precifion that could be defired.

But it does not refult from all this agreement, that the force, exertion, or \(f^{f f e t}\), of a blow with a bammer is equal to the prefliure of any number of pounds whatever. They are things that cannot be compared; and yet the force operating in the penetration by a blow is no way different from a preffure. It is a phylical Blunder to compare the area of the curve, whofe abfuiffa is the depth of penetration, and the ordinates are as the refiftances, with any prefure whatever. This area expreffes thic fquare of a velocity, and its fips, bounded by parallel ordinstes indefinitely near each other, are as the decrements of this fquare of a velocity, occationed by a peeffure, afting almolt uniform! y along a very finall fpace, or during a very faall time. It is an abfurdity therefore to fum up thefe flips as fo many preflures, and to confider the fum total as capable of exprefling any weight whatever. Such a parallogifm is peculiar to Leibnitz's way of conceiving his infiwitetimal method, and it could have no place in the gemuine methori of fluxions. It is this mifconception that has madie Mr Leibnitz and his followers fuppofe that a body, accelerated by grovity, retains in it a fum total of all the preflures of gravity accumulated during its fatl, and now forming a vis viva. Suppofing that it requires a preffure of twenty pounds to prefs a fix pound flot flowly through a mats of uniformly refiting clay ; this preffure would carry it from the top to the bottom of a mountain of fuch clay. Yet this ball, if difcharged horizontally from a canaon, would nenetrate only a few yards, ceen though the clay thould refift by tenacity only, independent of the motion loft by giving motion to its internal parts. In this experiment, the utmolt preffure exerted during the motion of the ball did not much exceed the preffure of twenty pounds. In this comparifon, thercfore, percuffion, fo far from appearing infinitely greater than preffure, would appear muchz lefs. But there is perhaps no body that refifts penetration with perfect uniformity, even though uniformly tenacious. When the ball has penetrated to fome depth, the particles which are before it cannot be fo eafily difplaced, even although they had no tenacity, becaufe the particles adjoining are more hemmed in by thofe beyond them. We have atways obferved, that a ball impelled by gunpowder through water rifes toward the furface thaving entered horizontally through the fide of the veffel at fome depth), and this fo rnuch the more rapidly as it entered nearer to the furface. The reafon is plain. The particles which mult be difplaced before the ball, efcape more eafily upwards than in any other direction. It is for this reafon chiefly that a greater weight laid on the head of a nail will caufe it fink deeper into the wood; and thus a great weight appears

Pe flinn. to be commenfurable with a great force of percuffion. Alfo, while a bullet is flatering more and more under a hammer during the progrefs of a blow, it is fpreading under the hammer ; more particles are refifting at once, and they find more difficulty in effecting their efana, being harder fqueezed between the hammer and the anvil. The fame increafed refitance muft obtain while it is flattening more and more under the quiet prefiure of a weight; and thus, too, a greater weight appears to be commenfurabie with a greater blow.

After all, however, a blow given by a falling body muit excite a preffure greater than its mere weight can do, and this in any degree. Thus, fuppofe AB (fig. 2.) to reprefent a fpiral fpring in its natural unconftrained dimenfions, ftanding upright on a table. Let \(a b\) be the abfciffa of a line \(a d b k\), whofe ordinates \(c d, g h, i k, \& \mathrm{c}\). are as the elaftic reaction of the fpring when it is compreffed into the lengths \(c b, g b_{1} i b\), \&cc. Suppofe that, when it is comprefed into the form CD, it will juft fupport the weight of a ball lying on C . Then \(c d\) will be a reaction equal to the weight of the ball, and the rectangle acdf will exprefs the fquare of the velocity which this ball would acquire by falling freely through ac. If therefore the ball be gently laid on the top of the fpring at A , and then let go, it will defcend, coniprefing the fpring. It will not fop when the fpring has acquired the form \(C D\), which enabled it to carry the weight of the ball gently laid on it. For in this fituation it has acquired a velocity, of which the fquare is reprefented by the figure a dlf (See Dysimics, Suppl. n 95.). It will comprefs the fpring into the length \(g b\), fuch that the area \(c g b d\) is equal to the area a df If the ball, inttead of being gently laid on A, be dropped from M , it will comprefs the fpring into fuch a length \(i b\), that the area \(a i k\) is equal to the rectangle \(m \mathrm{~cd} n\); and, if the fpring cannot bear fo great compreffion, it will be broken by this very moderate fall.
Thus we fee that a blow may do things which a confiderable preffure cannot accomplifh. The accounts which are given of thefe remarkable effeefs of percuf. fion, with the view of inprefling notions of its great efficacy, are generally in very indefinite terms, and often without mentioning circumitances which are acceffory to the effect. It would be very unfair to con. clude an almoft infinite power of percuffion, from obferving, that a particle of fand, dropped irto a thick glafs bottle which has not been annealed, will River it to pieces. When Mr Buifinger fays that a moderate blow will break a ciamond which could carry a mountain, he not only fays a thing of which he cannot demonPrate the truth, and which, in all probability, is not true; but he omits noticing a circumfance which he was raechanician enough to know would have a conifiderable fhare in the effec. We mean the rapidity with whicl the excited preffure increafes to its maximum in the cafe of a blow. In the experiment in queftion, this happens in lefs than the millionth part of a fecond, if the velocity of the hammer has been fuch as a man would generate in it by a very moderate exertion. For the blow which will drive a good lath nail to the head in a piece of foft deal with an ordinary carpenter's hammer, min? be accounted moderate. This we have learned by experiment to be above 25 feet per fecond. The connecting forces exerted between the particles of the diamond may not lave time fufficient for their excitation
in the remote parts, fo as to flare the derangement among them all, in fuch a maniuer that it may be fo moderate in each as not to amount to a difunion in any part of the diamond. We fee many iniltances of this in the abrupt hancling of bodics of tender and friable texture. It is part'y owing to this that a ball difcharged from a pillol will go through a fheet of paper flanding on edge without thowing it down, which it wonld certainly do if thrown at it by the hand. The conneeting forces, having time to act in this laft cafe, drag the other parts of the paper along with them, and their union is preferved. Alfo, when a great weight is haid on the diamond, it is gradually dimpled by it ; and thens inclofing many parts together in the dimple, it obliges then to at in concert, and the derangement of each is thus diminifhed.

We flatter ourfelves that the preceding obfervations and reflections will contribute fomewhat towards removing the paradoxes and myfteries which difcredit, i. fome degree, our mechanical fcience. If we will not pertinacioully conjure up ideal pharitoms, which, perhaps, cannot exilt, but content ourfelves with the ftudy of that tangible matter which the Author of Nature has prefented to our view, we f.all have abundant employment, and fiall perceive a beautiful harmony thro the whole of natural operations; and we hall gradually difcover more and more of thofe mutual adaptations which enable an atom of matter, although of the fame precife nature wherever it is found, to act fuch an unfpeakable variety of parts, accooding to the diverfity of its fituations and the fcene on which it is placed. If a mind be " not captivated by the liarmony of fuch fiveet founds," we may pronounce it "dark as Ercbus, and not to be trufted"
PERFECT NUMber, is one that is equal to the frim of all ite aliquot parts when added together. Eucl. lib. 7, def. 22. As the number 6 , which is \(=\) \(1+2+3\), the fum of all its aliquot parts ; alfo \(2 \bar{\delta}\), for \(28=1+2+4+7+14\), the fum of all its aliquot parts. It is proved by Euclid, in the laft prop. of book the 9 th, that if the common geometrical feries of numbers \(1,2,4,8,16,32,8 \mathrm{c}\). be continued to fuel a number of terms, as that the fum of the faid feries of terms fiall be a prime number, then the product of this fum by the laft term of the feries will be a perfect number.

PERGUNNA, in Bengal, the fubdivifion of a diftrict.

PERKINISM, the proper name of what we muft think an impofition attempted to be put upon the world by Dr Perkins of North America.

Though the phenomena of clectricity- had been long familiar to the philofophers of Europe, it is well known that a philofophical theory of thefe phenomeria was firt formed by a tranfatlantic plilofopher. In like manner, though the difcovery of Galvani, under the name of animal elearicity (fee Galvanism in this Sup. plement ), had occupied the attention of many of the firlt phylicians and philofophers of the old world, it was referved for a pliytician of the new, to apply it to the cure of a number of difeafes. Every philofnpler of America, however, has not the fagacity of the Philadelphian fage; nor muft Dr Perkilis or his adinirers be furprifed, if we treat not incomprehenfible my:tic: fm with the refpeet due to a theory founded on facts.

X \(\times 2\)
We

\section*{P E R}

Perkinifin. We are told by the fon (A) of this rival of Franklin, that before the news of Galvani's difcovery liad reach. ed America, he had obisrved feveral phenomena pointing out the influence of metals in cafes of pain. The firt remarkable incident that prefented itfelf to his notice was the fudden contraction of a mufcle when he was performing a chirurgical operation. This, he obferved, regularly took place whenever the point of the metallic inftrument was put in contact with the mufcle. Struck with the novelty of the appearance (Is Mr Per. kins fure that the appearance was new? ), he was induced to try the points of wood and other fubftances; and no contraction taking place on thefe experiments, he thence inferred that the phenomena could be afcribed only to the influence of the metal. About the fame time, he obferved that, in one or two cafes (and if his practice had been great he might have obferved that in a thoufand cafes), a ceffation of pain had enfued when a knife or lancet was applied to feparate the gum from a tooth previous to extracting it ; and in the fame year he difcovered, that momentary eafe was given, in a few inftances, by the accidental application of a metallic inftrument to inflaned ard painful tumors previous to any: incifion.

Thefe are the judicious reafonings and affertions of a dutiful child, who, having probably heard of Leibnitz's claims to fome of Newton's difcoveries, was determined to put in a timilar claim for his father, to a Joare, at leait, of the difcovery made by the celebrated profefor at Bologna. He has not, however, copied with fervility the conduct of the Leibnitzians. We do not remember an inflance where any of them attempted to elevate the fame or the merits of their mafter above the fame and merits of Newton; but, according to our author, the purfuits of Galvani and his European pupils fink into infignificance, when compared with thofe of the tranfatlantic phyfician.

This is evident ; for when the phyfiologrifs of Eurone were engaged in experimenting on the denuded nerves and muicles of the fmaller animals, with a view to af. certain the agency of this incomprehentible property in them, Dr Perkins was profecuting a feries of experiments, which confifted in applying externally, to parts affected with difeafe, metals, and compounids of metals of every defeription which occurred to him, and conflructed into vaious forms and fizes. The refult proved, that on drawing lightly over the parts affected certain inftruments, termed tractors, which he formed from metallic fubltances into pointed thapes, he could remove moft of thofe topical difeafes of the human body, where an extra degree of nervous energy or vital heat was prefent; unlefs fuch difeafe was fituated in fome of the internal vifcera, too remote from the part where the inftruments could be applied.

The difeafes which have been found moft fufceptible of the influence of the tractors are, rheumatifin, fome gouty affections, pleurify, ophthalmias, eryfipelas, violent fpafmodic convulfions, as epileptic fits and the locked jaw, the pain and fwelling attending contufions, inflammatory tumors, the pains from a recent fprain, the painful effects of a burrio or fcald, pains in the head,
teeth, and indeed moft kinds of painful topical affec- Perkinifis tions, excepting where the organic ftructure of the part is defroyed, as in wounds, uleers, \&c. and excepting alfo where oils or fome other non conducling fubftaneis are prefent.

But we have other teftimonies than thofe of Dr Perkius and his fon for the influence of the tractors. Mr Meigs, profeflor of natural philofophy at Newhaven, in a letter on Dr Perkins's difcovery, conceives the principlea of metallic irritability as fo little underftood, that the will not pretend to explain how the tractors produce their effects ; but feems fatisfied in finding that the ef. fects are produced. After Itating an experiment on his own child, eight years of age, very dangerounfy ill with a peripneumonic complaint, and to which the tractors gave almoft inftantaneous relief, he fays, "I have ufed the tractors with fuccefs in feveral other cafes in my own family; and although, like Naaman the Syrian, I cannot tell why the waters of Jordan fhould Le better than Abana and Pharpar, rivers of Damafus; yct, fince experience has proved them fo, no reafoning can change the opinion. Indeed, the caufes of all common facts are, we think, perfectly well known to us ; and it is very probable, fifty or an hundred years hence, we fhall as well know why the metallic tractors fhould in a few minutes remove violent pains, as we now know why cantharides and opium wilt produce oppolite effects : viz, we fhall know but very liitie about "either, excepting faits."

Mr Woodward, profeffor of natural phikfophy at Dartinouth, in a letter alio on the fame fubject, has fated a number of fuccelsful experimeuts in pains of the: head, face, teeth, and in one cafe of a fprain.

Dr Vaughan, a member of the Philadelphia medical fociety, has lately publifhed an ingenions tract on Galvanifm, the object of which is to account tor the influence of the tractors in removing difeafes. ifter a citation of numerous experiments made on the nerves and mufcles of animals, he obferves, "If we only take an impartial view of the operations of Nature herfelf, and attend diligently to the analytical inveftigations of the aforementioned experimentalits on this fublime fubject, I think the feeptic mult admit that the principle of nervous energy is a modification of eleetricity. As fenfation is dependant on this energy, a pleafurable fenfation, or what may be termed a matural or healthy degree thereof; then certainly pain, or fuperfenfation, ca:s only depend on an accumulation of the clectric fluid, or extra degree of energy in the part affected. On this principle the problem admits of cafy folution; namely, that the metals, beiny fufceptible of this fluid, conduct the extra degree of energy to part3 where it is diminifhed, or out of the fyltem aitogether, relloring the native law of electric equilibrium."
We truft we are not fceptics; and yet we feel not ourfelves inclined to admit any part of this theory. We have feen no proof that nervous cnergy is a modification of eledtricity; and we think that we have ourfelves proved, that galvanifm and eledricity are in many refpects different; but we fhall not be much furprifed if we foon fee a demonftration by fome American or German
philofopher,
(A) See a pamphlet, entitled The Influence of Metallic Tractors on the Human Body, \&c. by Benjamin Douglas Perkins, A. M. fon to the difcoverer; or a very good abridgement of it in the firt volume of the Philon fophical Magazine.

Pee ifm. philofopher, that the foul of man is a compofition of filver and zinc. One of thefe fages has lately difcover. ed, that the fymptoms of putrefacion do not conftitute an infullible evidence of death, but that the application of metals will in all cafez afcertain it beyond the poffibility of doubt! A proper application certainly will; for when the Perkinitt is doubtful whether his patient be dead or alive, he has only to apply the inuzzle of a loaded pittol to his temple, and blow out his brains; after which he may fafely fivear that the man is dead.

From the Plilofophical Magazine, we learn that Profeffor Schumacher at Copenhagen made experiments with tractors of brafs and iron on ten patients in Frederick's hofpital at Copenhagen. He tried alfo tractors of ebony and ivory, which are faid to have cured a pain in the knee; with others of filver and zinc; and forne of copper and lead. By the two laft, pains in the knee, arm, and face, are faid to have been mitignted According to M. Klingberg's experiments, this remedy was of ufe in malum ifchiaticum; and according to thofe of M. Steffens, in malum ijchiaticum and incgrim. According to M. Bang, the pairs in fome cafes were increafed, and in others allayed. According to M. Blech, the tractors were of ufe in hemicrania and gouty pains in the head; and, according to M. Hahn, in rheumatic pains in both fhoulders. The priucioal document in the Danifh collcction relating to Perkinifm, appears to be a letter of Profeffor abilgaard, in whote opinion Perkins's traconrs will never acquire much value in medicine, and fcarcely even have the merit of being a palliative; but, in a phyfical point of view, he thinks they deferve the attention of phylicians, and particularly of phyfiologifte. Mankind (he fays) hitherto have paid too little attention to the influence which electricity has on the human body; otherwife they would know that the effects produced on it by our beds is no matter of indifference. If the fcather beds and hair mattreffes, \&c. are perfectly dry, the perfon who fleeps on them is in an infulated flate; but the contrary is the cafe if they are moilt. He three times removed a pain in the knee, by flicking the tractors, one on each fide of the knee, fo deep through the fockings that the points touched the flkin. He removed a rhermatic pain in the head from a lady by the fame means. M. Kafin, by the tractors, relieved, in others, gouty paius of the head and megrim; and in himfelf, a rheumatic pain of the back, which, according to his fenfations, was like a conflriction in the cellular tiffue. M. Herholdt, from his experiments, confiders the effect of the tractors as indefinite and relative as that of other remedies. He, however, farr relief given by them in the Atrangury in a cafe of fyphilis. M. Bang alfo, at Soroe, freed a man from a violent gouty pain in the thigh, by drawing the tractors 200 times over the affected part. M. Jacobfen likewife found benefit derived from thefe tractors feveral times in the common hofpital at Copenhagen. M. Tode tried them alfo in rheumatic pains, tooth-ache, and in flammation of the eyes; and obferved that they neither did good nor harm.
On fome of the attefted cures mentioned in Mr Per. kins's pamphlet, an able writer in the Monthly Review has made remarks fo very pertinent, that we cannot refufe ourfelves the pleafure of tranfcribing them.
"At page 54 of the pamphlet, we meet (fays the I
reviewer) with a frong proof of the confidence placed Perkinifms in this remedy by feveral tranlatlantic philofophers. Dr Willard, it feems, applied a red hot piece of iron to a wart on his finger, and burnt himfelf very feverely, in order that he might be relieved by the tractors; which are faid to have given him eafe in two fucceffive experiments. The author adds, ' many have fubmitted to fimilar meafures, in order to experience the effects. I once formed one of five, who burned ourfelves fo that blifters were raifed, to make the experiment; we all obtained relief in a few minutes.'
"This zeal for knowledge is trolly edifying; efpecially as the tractors are gencroully prefented to the public at only five guineas a pair: and it is clear that one pair would fulfice to cure all the bums and folds of a large parifh. Why are not fuch luculent exper: ments repeated here? If Mr Perkins, or any adminer of the difcovery, would fubmit to have a red hot pokerrun into fome part of his tody not neceflary to life (into that part subere honour's lodgect, according to Butler, for example), in any public coffee houfe within t:bills of mortality, and wonld afterward heal the wombl in prefence of the company, in ten minutes, or in half as many hours, by means of the tractors, the mo? fonghearted infidel could not refilt fuch a demonflration. Why trifle with internal inflaminations, when fuch a.t outward and vifible fign might be afforded ?
" Mr Perkins has taken fome pains, in the firlt part of his pamphlet, to fhew that the operation of his rods is not derived from animal magnetifin. In our opinion, this is an unneceflary piece of trouble in E.ngland, where there is a conltart fucceffion of fiunilar pretenfioris. 'I'he virgula diz:inatoria, and the baguette of the juggler, are the genuine p:otrtypes of this myftery. We were, indeed, rejoiced, on Dr Perkins's account, to find that the Conneetticut Socisty had only denounced him as a Mefmeriit : we trembled left he fhould have been put into the inquifitorial lands of the old women as a white witch."

Thiiz may be thought too indicrous a treatment of a difcovery which profetfes to benefit nankind; but to have treated this difcovery with lericuinnefs, would have degraded the profeflion of a fcientific critic. As if the very cures pretended to have been performed dill not of themfelves throw fufficient ridicule over the dilcovery, Mr Perkins informs ule, "that in forne inflances the metallic influence, when excited by different perfons, produces differelit effects. Experiments made to afcertain the point, proved that there were perfons who might ufe the tractors for any length of tine, in dif. cales which were fuitable for the operation, and produce no perceptible effect; when by placing them in the hands of another perion, who fhouid perform the operation precifly in the fane manner as before, the pain or infanmation woutd be removed directly." Hence he endeavonrs to prove that the influence of the tractors is Galvaric, by an argument as abfurd as the pretended faet on wlich it is founded.
"On the application (fays he) of zinc and filver to the tongue, the fenfation of tatte is very flight to fome, while with others it is very ftrong:-when the experiment is applied to the fenfe of fight, fome are hiadly fenfible of it, while others obferve a flrong flafh." But, not to mention that neither ebony nor ivory can form part of the excitatory arc in Galvanifm, though we have

\section*{P E R}

Perkinifm. have feen them both employed firccefisfully as tractors by a Danih Ferkinif, it is enough to obferve, that the different effects of the Galvanic metals on diferent perfons depend upon the difference of tructure of the organs of fenfation in the patients ; whereas the different effects of the metallic tractors refalt, according to this account, from the difference of ftructure in the organs of fenfe of the various operators! Nay, what is ©ill more extraordinary, if any thing can be-more extraordinary than this, is, that the value of the tractors depends, not upon the materials of which they are made, or the kiil of the manufacturer, but upon fome inconceivable virtue conveyed by Mr Perkins to the perfon of him by whom they are fold. This we learn from a pamphlet publifhed by Charies Cunringham Longworthy, furgeon in Bath; who informs us, that he fells trafturs by commiffon from Mr Perkins the original manufasturer in London."

After this article was fent to the prefs, and thus much of it printed, we received, from a friend in London, a copy of Mr Perkins's laft publication on the * The Ef- Cubject * ; in which he endeavours to repel the objecracy of per tions urged by Dr Hayrgath and others againd the in kins's Pa. flnence of the metallic traEtors. Had we not been tent Metal. lic Trice fors, trc. 1800. previoufly convinced of the fallity of Perkinifn, the perufal of this pamphlet would have removed from our: minds every doubt ; for we will venture to fay, that it
is not in the power of Dr Haygarth, and the whole faculty united, to bring more complete proof than Mr Peıkins has here brought, that what he calls his father's difcovery has no claim to rank othetwife than with the difcovery of Mefmer. See Animal MAGNE. gism, Encycl.

He gives indeed 250 cafes, which are attefted to have been fuccefsfully treated by the tractors; but at leaft an equal number of cafes were attefted to have been fuccefsfully treated by Mefmer and his partifans; and fix times that number of cutes were faid to have been miraculonAy performed at the tomb of the Abbé Paris (Sce Paris in this Suppl.) We would willingly allow, however, that thefe aiteftations ought to draw the attention of men of fcience to the fubject, did not the author himfelf betray a want of confidence in the tractors, by his ow't arguments in their favour, and by his caution to the public againft counterfeits. He feents indeed to cunfder their fanative influence as refulting entirely from his patent.

Dr Haygarth liaving faid that he oerforned cures of the fame kind with thofe of which Mr Perkins boafts, by the proper application of tractors made of avood; and having added, that "if any perfin would repeat thefe experiments, it fould be done with due folemnity," in order to work upon the imagination ; our author replies, by putting the following quettion: "Is there a faigle poffeffor of the futent metallic tactors in Fingland, who has frequently uled them, and will fay that this fraud is neceflary to make them perform cures?" Inftead of anfwering for the Enghth poffeffors of thefe valuable inf runents, we beg leave, in our turn, to aff, if there be a fingle expert chemit in Crreat Bri tain who can underfand this queflion in any other ferfe, than as implying that the virtue of the trabtors refides in the patent? This, however, appears fitl more falpable in the cantion to the public.
. . ist Among the various arcifices (fays Mr. Perkins)
which have been employed by certain interefted perfone, I have to mention the mean attempt to circulate faife traciors, and from the failme of thele to throw diferedit upon the difcovery. Three inltances of this kind have occurred lately. Complaints having been made to me that my tractors would not cure the difeafes for which they are recommended, I was led to make in. quiry refpecting the cales alheded to ; and conceiving them fit lubjects for the tractors, I called on the pa. tients to apply them myfelf. In botb inftances (it was ju h now in three inttances) I found they had been ufing counterfcit tractors. Had not this been difcovered, the merit of the patent tractors muft have fuffered extreme. ly!"

This is very extraordinary. The charater or fame of any thing may indeed be injured by a counterfeit; but we believe this is the firft inftance of the merit or demerit of one inanimate fubfance being increafed or diminifhed by another at a diftance from it,-- of the hardnete of fteel, for inftance, being diminifhed by the foftuefs of lead! But we beg Mr Perkins's pardon. The merit of his tractors confifts in their putting money into his pocket ; and that merit might certainly be injured by the ule of counterfeits. Hence, with great propriety, he informs the public, that every genuine fet is ftamped with the words Perkins's patent trac. TORs, accompanied with a receipt for the five guineas, numbered and figned in the handwriting of the patentee. From thefe facts we infer (and he muft acknow. ledge the inference to be jult), that the virtue of the tractors refides in the patent, reftricting the making of them to Benjamind Douglas Perkins, and not to the metal of which they are made. This is indeed mo!t obvious; for he caunot be fuch a ftranger to the ftate of chernical fcience in this conntry, as to fuppofe that his tractors may not be analyfed into their component principles, and, of courfe, that others may not be made poffefing all their virtucs except fich as refult from the patent.

We fhall conclude this article in the words of the reviewer already quoted: "To trace the relatious and dependencies of projects fimilar to that of 1)r Perkins, would now be a work of more labour than utility. The fund of public credulity is an ineshauatible refource for thofe who can refolve to levy contributions on it. It vain is the fpirit of quackery exorcifed in one form; it riles again immediately, ' with twenty ghaltly murders on its head, to puth us from our Atools.' We, who have contemplated the progrefs of real knowledge ditring a long courfe of years, have feen many bubbles hike this glitter for a moment, and then difappear for cver. People may talk of Mefmerifm, or Perkinifin, but we conlider all fuch varieties as belonging to the old and extenfive clats of Charlatanifin."

PEROUSE (Juharan Francis Galoup de la), the celebrated, though unfertunate, French navigator, was born at Abi in 1741. Of the rank or condition of his father, M. Milet-Marstal has given us no information in that meagre culogy of Peoude which he has inforted in the intruduction to his laft voyage. It appears, lwowever, that he intended to make kiis fon a feaman, and fent him, at a very early period of life, to the marine fchool, where the young man became enthufialically fond of his profeffion, and landably ambitions to enulate the fame of the mof celebrated navigators.

Being

Being appointed a midhipman on the 19 th of November 1756, he behaved, we are told, with great bravery in that fation, and was feverely wounded in the engagement between the admirals Hawke and Conflans, on the 2 cth of November 1759 . The Fornuidable, in which he ferved, was taken, after a vigorous refiftance; and it is probable that Peroufe reoped fome advantage from his acquaintance with Britifh officers.

On the ift of October 1764 he was promoted to the rank of lieutenant ; and defpiling a life of eafe and idlenefs, he contrived to be employed in fix different fhips of war during the peace that fublifted between Great Britain and France. In 1767 he was promoted to the rank of what, in our navy, is called mafler and command. er. In 1779 he commanded the Amazone, belonging to the fquadron of Vice-admiral Count d'Eftaing ; and when that officer engaged Admiral Byron, the poft of La Peroule was to carry his Admiral's orders to the whole of the line. He afterwards took the floop Ariel, and contributed to the capture of the Experiment-exploits which his eulogift feems to confider as inflances of very uncommon heroifin ; but he foon after perform. ed a greater.

Being, on the 4th of April 1780, appoirted captain of the frigate A/rea, and being on a cruife with the Hermione, thefe two f:igates attacked fix Englifh veffels of war, of from 28 to 14 guns each, and took two of them. The Frencl certainly reaped more laurels about that period than they have been accuftomed to do in naval wars with Great Britain ; but as we have completely forgotten the particulars of this fight, we fufpees that it was not altogether fo viry brilliant a bufine?s as M. Milet Mureau is pleafed to reprefent it.

In the year 1782 , La Peroufe was difpatched with the Sceptre of 74 guns, and two frigates of 36 guns each, having fome troops and field pieces on board, to deftroy the Englifh fettlements in Hudfon's Bay. This tafk was eafly accomplifhed; for when he had furmounted the difficulties of navigation in a frozen lea, be found nothing on Thore to oppofe the fmallett force. Having deftroyed the fettlements, he learned that fome of the Englifh had fled at his approach into the woods : and his eulogift confiders it (fuch are the difpofitions of French republicans) as a moft wonderful inftance of humanity, that he left to thefe unfortunate men provifions to preferve them from perifhing by hunger, and arms to protect them from the fury of the favages! Peroufe, we dare anfwer for him, was confcious of nothing heroic or extraordinary in this aft of beneficence, which he certainly could not have omitted, without incurring both infamy and guilt.

In the year 17 8.5, he was appointed to the command of a voyage round the world; which was unfortunately deftined to be his laft. Of this voyage, as far as it was accomplifhed, there is a full acceunt in the hands of every French and Englifh reader ; and from that account it appears, that Peroufe was admirably qualified to difcharge fach a truft. He feems to have been an experienced and Akilful feaman ; a man of confiderable mathematical and phyfical fcience, uncorrupted by, that plilofophifm which difgraced many of his attendants; and capable of the utmoft perfeverance in every laud. able purfuit. To thefe qualities he united a proper combination of caution and courage, with a difpoftion tuly benevolent to the various tribes of favages whom
he vifited. The difafters which occurred on the voy. age were all, except the laft, of which nothing is known, occalioned by the difobedience of his officers, or their neglecting to follow his advice.

The latt difpatches of this great and good man were dated from Botany Bay, February the 7th 1788 ; and fince that period, no account of him las been reccived which is intitled to the fmalleft confidence. M. MiletMureau has indeed given us, at fome length, the childif conjectures of the Society of Natural Hiftory refpecting his fate, which, in language equally childifh, were delivered at the bar of the National Affembly : and he has added the ridiculous decree which that body of legifative fciolifls pafled in confequence of fo extraordinary a fpeech. We will not diggrace our pages \({ }_{3}\). or infult the memory of Peroufe, by contributing to the circulation of nonfenfe, which, we are perfuaded, would have made him bluth for his country.

PERPENDICUL,AR, in gunnery, is a fmall inftrument, ufed for finding the centre line of a piece in the operation of pointing it to a given object.
PERSIAN or Persic, in architecture, a name common to all ftatnes of men, ferving inftead of columns to fupport entablatures.

PERWANN AI , in the language of Bengal, an order of government, or a letter from a perfon in authority.

PETERSBURGH (St), the cappital of Ruffia, is a city, of which a pretty full hiftorical detail has been given in the Encyclopadia. It is introduced here merely on account of its police, which, according to the anonymous author of the life of Catharine 1 I. has a very fimple and competent organization, and deferves to be afopted in other great capitals. Excepting the gosernor, whofe office naturally extends to all objects of public welfare, the head police matter is the proper chief of the whole fyftem of police. His office takes in the great compais of this department, but confined to the general objects of public fecurity and order. He is not here, as in fome large iowns, the formidable copartner of family fecret-, and the invifible witnefs of the actions of the prizate man. Under the head po-lice-mafter is the police office, where fit a police mafter, two prefidents, the one for criminal, the other for civil cafes, and two confulters, chofen from the burgher clafs. To this is committed the care to maintain decorum, good order, and morals : alfo it is its bufnefs to fee to the obfervance of the lawa, that the orders iffued by goverrment, and the decifions of the courts of juffice \({ }_{2}\) are put in force. The attainment of thefe purpoles is effected by the following mechanifm:

The refidence is divided into ten departments. Each of thefe has a preflecnt, appointed to watch over the laws, the fecurity, and the order of his diftrict. The duties and rights of this office are not lefs extenfive than important. A prelicent muft have exact knowledge of the inhabitants of his department, over which a fort of parental authority is committed to him; he is the cenfor morum of his department; his houfe mutt not be bolted or barred by night or day, but muft be a place of refuge, continually open to all that are in danger or diffrefs; he himfelf may not quit the town for the fpace of two hours, without committing the difcharge of his office to fome other perfon. The police commando (conftables), and the watchmen of his department, are under

Perpendi. cular
II Peterfburgh.
uncer his orders; and he is attencied on all affairs of his office by two ferjeants. Complaints againft unjuft behaviour in the prefident may be brought to the police office.

Each department is again divided into three, four, or five fubdivilions, called quarters, of which, in the whole refidence, are 42. Each of thefe has a quarter.infpector, in fubordination to whom is a quarter-lieutenant. The duty of thefe police-officers is in harmony with that of the prefident, only that their activity is confined to a fmaller circle. They fettle low affairs and flight altercations on the fpot, and keep a watchful eye on all that paffes.

The number of the nightly watch in the city amounts to 500 . They have their flations affigned them in watch-houfes at the corners of Areets; and, befides their proper deftination, are to affift in the taking up of offenders, and in any fervice, by day or night, as their commanders fhall require. Befides thefe, for the execution of the police orders, and to act as patroles, there is alfo a commando of i20 men, who, in cafes of emergency, are fupported by a company of kofaks, or a regiment of huffars.

This machine, confifting of fo many fubordinate parts, preferves in its orderly courfe that fecurity and peace which excite the admiration of all foreigners. The activity of every individual member is unobferved in the operation of the whole; and by fuch a diftribution alone is the attainment of fo complicated an aim practicable. - All the quarter-infpectors of a department repair every morning, at feven o'clock, to their infpector's houfe, to lay before him the report of all that has happened in their quarters during the laft 24 hours; and at eight o'clock, all the infpeetore bring together thefe feveral reports into the police-office, whereupon they firft and immediately take into examination the cafes of perfons taken into cniftody during the night. On urgent occafions, the police-office affembles at all hours.

This organization, and the extraordinary vigilance of the police, which is found competent to tho bulinefs of a numerous and reftlefs people, render all fecret inquifitions unneceflary. The police has knowledge of all perfons in the refidence; travellers who come and go are fubject to certain formalities, which render it extremely difficult to conceal their place of abode, or their departure from the city. To this end, every houfeholder and innkeeper is obliged to declare to the police, who lod'ges with him, or what flrangers have pur up at his houfe. If a ftranger or lodger itays out gill night, the landlord muit inform the police of it at latef on the third day of his abfence from his houfe. The cautionary rules, in regard to travellers quitting the town, are ftill more ftrict. Thefe mult publifh in the newfpapers their name, thei: quality, and their place of abode, three feveral times, and produce the newfpapers containing the advertifement, as a credential in the government from which they then receive their paffport; without which, it is next to impoffible to get out of the empire. This regulation not only fecures the creditor of the perfon about to depart, but alfo enables the police to kecp a clofer infpection over all furpected inhabitants.

If individuals may be fufpected by the government, becaufe their means of fupport, the company they keep, and their whole conrfe of action, are clofely wrapped
up in my Atery; fo likewife may whole focieties be lefs indifferent to it, if they carefully conceal the object of their connection, or their very exiftence, from the eye of the public. The police watches here, with laudable attention, over fecret focieties of all kinds; and frequently as the fanatical (pirit of religious or political fectaries, or the enthufiafm of pretended inyftagogues, have attempted to neftle heee, they have never been able to proceed, or only for a very fhort time. A nimal magnetifn, Martinifm, Rofycrutianifm, and by whatever other name the conceits of diftempered imaginatione may be called, have always been attended with the fame bad fuccefs on this ftage.

From this fketch it will be readily imagined, that the number of impoftors and difturbers of the public peace can be but fmall. Quarrels and affrays in the flreet or in the cabaks but felcom happen. The perfon attacked calls the neareft watchman; and in a moment both the aggreffor and the aggrieved are taken into cuftody, and led to the next fieja (police-watch-houfe), where the caufe of their quarrel is inquired into, and the ag. greflor is punifhed. For matters of fome defcriptions, there is a peculiar tribunal, under the denomination of the oral court, which, on account of its fingularity, dederves to be briefly noticed.

In each quarter of the town are one or more judges of the oral court, who are chofen from the clafs of burghers, and with whom are affociated a few jurats. This court fits daily in the forenoon, and proceeds orally in all the differences that come before it. It, however, keeps a day-book, in which are entered all the caufes and decifions of the court, and which muft be every week laid before the magiftrate. When a charge is brought, the court declares it orally to the prefident of the quarter : whereupon the accufed muft not delay his appearance before the police longer than one day after he has received the fummons. Every caufe muft be determined in one day, or, if the examinations require more time in collecting, in three days. 'I'he oral court communicates the decifion to the prefident of the quarter by means of his day-book, in order to its ratification. If either party is not fatisfied with the fentence, he may appeal to the court as appointed in the regulations.

This is a very favourable account of the police of St Peterfourgh ; but it is differently reprefented in Beau. jolin's Travels of two Frenchmen ibrough Rufia, ia 1790-1792. According to him, the police of the capital of that empire is far from being on the moft refpeetable footing. There happen, indeed, but few accidents in the night ; yet fometimes murders are committed, and efpecially thefrs; for which, according to our author, it is exceedingly rare to obtain jultice, When a perfon has been affaffinated in fome place of bad repute, the police-officer is engaged to fecrecy by means of a few rubles; fo that the affair is foon hufhed up, unlefs the deceafed belonged to fome powerful family, whofe intereft makes it neceffary that inquiries fhould be inflituted. When two perfons quarrel, either in the ftreet or in a public-houfe, he who pays the inquirer is always in the right : the inferior police officers are never proof againt money; and the poor individual, whether he be in the right or wrong, is almolt fure of a beating.

PETIVER (James), a famous Englifh botanif, was
tiver, contemporary with Plukenet; but the exaet time of his birth is not known, nor is much intelligence concerning him at prefent to be obtained. His profeffion was that of an apothecary, to which he was apprenticed under Mr Feltham, then apothecary to St Bartholomew's hofpital *. When he entered into butinefs for hinnelf, he fettled in Alderfgate.frect, and there contimued for the remainder of his life. He obtained confiderable bulinefs, and after a time became apothecary to the charter houfe. After the Tradescants, he appears to have been the only peifon, except Mr Courten and Sir Hans Sloane, who made any confiderable collection in natural hiftory, previous to thofe of the prefent day. He engaged the captains and furgeons of fhips to bring him home fpecimens, and enabled them to felect proper objects, by printed directions which he diarributed among them. By thefe mears his collection became fo valuable, that fome time before hiis death, Sir Hans Sloane offered him L. 4000 for it. After his death, it was purchafed by the fome collector. His mufenm extended his fame both at home and abroad. He was elected into the Royel Society; and becoming acquainted with Ray, affitted him in arranging the fecond volume of his Hifory of Plants. He died April 20. 1718: and much honour was fhewn to him at his funeral, by the attendance of Sir Hans Skoane, and other eminent men, as pall bearers, \&c. By future botanifts, his name was given to a plant. See Pertveria, Encycl.

He gave the world feveral publications on various fubjects of natural hiltory: 1. MTufei Petiveriani Centurie decom, 1692-1703, 8vo. 2. Guzophylucii Neture et Artis, Decudes decem, folio, 1702, with 100 plates. 3. A Catalogue of Mr Ray's Euglifh Herbal, illuttrated with figures, folio, 1713 , and continued in 1715 . 4. Many fmall publications, which may be found cirumerated in Dr Pultney's beok. 5. Many papers in the Plitolofophical Tranfactions, and a matetial article in the third volume of Ray's work, entitled, Plant.e Rariores Chinenfes Madrejpatane, at Africane, a Facobo Petivero od opus Confummandum Collatx, \&c. Many of his fmaller tracts having become very fcarce, his works were collected and publifhed, exclufive of his papers in the Tranfactions, in 2 vols folio, and one 8 vo , in the year 1764 .
PHASIANUS (See Encycl.). A fpecies of this genus of birds, formerly not defcribed, was fent from Batavia to England by Lord Macartney, or fome of his attendants, when they were on their voyage to China. The fpecies to which it feemed to be moft nearly
allied, in point of general habit or appearance, was the Phafian, phafianus curviroffris, or Impeyan pheafant; an Ealt Philutu. Indian bird, defcribed and figgured both in Mr Latham's phift. Ornithology, and in the Muleum Leverianum. From that bird, however, it differs very conliderably. The tail of the latter being in a mutilated ftate, it was fcarce poffible to determine, witl abfolute precilion, whether it fhould be referred to that fubdivifion of pheafants, which contains thofe with lony or cunciform tails, or thofe with rounded ones, as in the Impeyan pheafant. The general colour of this molt elegant bird was black, with a glofs of blue, or what, in the language of natural hitory, may be termed chalybean black, or hlack accorepanied by a fteel blue luftre. The lower part of the back was of a peculiarly rich colour, which, according to the different disections of the light, appeared cither of a deep ferruginons of of the brighteft fiery orange-red. This beautiful colour paffed in the manner of a broad zone round the whole body: but on the abdomen wa3 of a much more obfaure appearance tlaan on the back, as well as fomewhat broken or irregular, cipecially on the fides. The throat was furnifhed with a large, and fomewhat an. gular, pair of wattles, uniting with the bare fpaces on the cheeks. The feathers on the top of the head, which was of a lengthened form, rain a little backward, fo as to give the appearance of an inditinct occipital crelt. The benk was remarkable for a more lengthened and curved afpect than in any other bird of this genus, except the Impeyan plieafant. The feathers on the neck, back, and breatt, were rounded, and of the fame fhelllike or fcaly habit as thofe of the turkey. The legs very itout, and were armed with a pair of extremely Atrong, large, and fharp fpurs. 13oth legs and beak were of a pale colour. Whether this birdi be really new or not to the ornithologitts of Enrope, it may at leaft be affirmed with fafety, that it had never been properly deferibed; nor can the character of any fpecies, hitherto introduced into the books of any fyitematic naturalift, be confidered as a jult or competent fpecific character of the prefent bird. . It may be called the fire backed pheafant; and its effential character may be delineated in the following terms: Black pheafant with a feclblue glofs; the fides of the body rufous; the lower part of the back fiery ferrngirous; the tall rounded; the two middle featlers pale yellow brown. - Sir Georje Stannton's Account of an Embaly to Cbina, छcc.

PHILOSOPHIST, a lover of fophittry or falfe rea. foning, in contradititinction to plilofopher, who is a lover of found reafoning, true fcience, and practical wifdom.

\section*{Critical PHilosophy.}

CRitical PHILOSOPHY, is the appellation given to a fytten of fcience, of which the founder is Im manuel Kant, regius profeffor of logic and metaphylics in the univerfity of Koenigfoerg. Of this fyttem, which is very generally admired in Germany, we promifed, in our Profpectus, to gratify our fpeculative readers with a fhort view ; and that promife we are enabled to fulfil, by the kind communication of an illuftrious foreigner, who, after acting a confpicuous part on the theatre of the world, and ftriving in vain to ftem the torrent of Suppl. Vol. II. Part I.
democratic innovation, is now living an exile from this wretched conntry, and cultivating the fciences and che arts of peace.
"To explain (fays lie) the philofophy of Kant in Obfcurity all its details, would require a long and a painful fuly, of its lano without producing any real advantage to the reader. guage. The language of the author is equally obfcure, and his reafonings equally fubtle, with thofe of the cominentators of Ariftotle in the 15 th century."

The truth of this affertion will be denied by none,
who have endeavoured to make themfelves mafters of the works of Willich and Nit \(f_{c h}\) on the critical philofophy; and the fource of this obfcurity feems to be fuf. ficiently obvious. Befides employing a valt number of words of his own invention, derived from the Greek language, Kant ufes expreffions, which have long been familiar to metaphyficians, in a fenfe different from that in which they are generally received; and hence a large portion of time is requifite to enable the moft fagacious mind to afcertain with precifion the import of his phrafeology.

The difficulty of comprehending this philofophy has contributed, we believe, more than any thing elfe, to bring it into vogue, and to raife the fame of its author. Men are antamed, after fu laborious and fatiguing a fudy, to acknowledge that all their labour has been thrown away; and vanity prompts almof every man to raife the importance of that branch of fcience which is underfood but by a few, and in which he is confcious that his own attainments have been great. "We acknowledge, however, that in the fyftem of Kant there is difplayed much genius, combination, and fyftematic arrangement ; but this only affords one of the many reafons which it prefents, for our regretting that the author has not directed his mind to more ufeful refearches, and that he has wated the ftrength of his genius in rendering uncertain the moft comfortable truths, and in giving the appearance of novelty to opinions for the moit part taught long before his day.

The following analy fis, we believe, will fufficiently enable any one, at all converfant with metaphyfical fcience, to form a judgment of this celebrated fyltem; and our correfpondent, on whofe word the reader may rely, affures us, that, in detailing the principles of Kant, he has taken fpecial care to exhibit them with the utmolt poffible exactnefs, having feveral times preferred the obfcurity of the author's reafonings and language, to the danger of a falfe, though more perficicnous, interpretation.
Divifion of " Kant divides all our knowledge into that which is - a priori is conferred upon us by our nature. Know- ledge a poferiori is derived from our fenfations, or from experience; and is by our author denominated empyric, One would at firf be induced, by this account of the origin of human knowledge, to believe that Kant in tended to revive the fyftem of innate ideas; but we very quickly difcover that fuch is not his fyftem. He confiders all our knowledge as acquired. He maintains, that experience is the occafional caufe or produtrice of all our knowledge; and that without it we could not have a fingle idea. Our ideas a priori, he fays, are produced with experience, and could not be produced without it ; but they are not produced by it, or do not proceed from it. They exift in the mind ; they are the forms of the mind. They are diftinguifhed from other ideas by two marks, which are eafily difcerned; i.e.
they appear univerfal and neceffary; or, in other words, they adinit of no exception, and their converfe is inpor. fible. Ideas which we derive from experience have no fuch characters. We can fuppofe, that what we have feen, or felt, or heard once, we may fee, or feel, or hear again ; but we do not perceive any impofibility in its being otherwife. For inftance, a houte is on fire in my view: I am certain of this fact; but it affords me no ge. neral or neceffary knowledge. It is altogether a pofleriori; the materials are furnifhed by the individual impreflion which I have received; and that impreflion might have been very different.
" But if J take twice two fmall balls, and learn to call twice two four, I thall be immediately convinced, that any two bolies whatever, when added to any two other bodies, will conltantly make the fum of bodies forr. Expericice has indeed afforded the the o, pportunity of acquiring this knowledge; but it has nut given it to me; for how could experience prove to me that this truth thall never vary? Experience nult always be limited; and therefore cannot teach us that which is neceffary and univerfal. It is not experience which difcovers to us, that we fhall always have the furface of the whole pyra nid by multiplying its bafe by the third part of its height ; or that two parallel lines, extended in infinitum, hall never mect.
"A All the truths of pure mathematics are, in the language of Kant, " priori. .Thus, that a Atraight line is the thorteft of all poffible lines between two fixed points, that the three angles of a triangle are always equal to two right angles ; that we have the fame fum, whether we add 5 to 7 or 7 to 5 ; and that we have the fame remainder when we fubtract 5 from io as when we fubtraft io from \({ }^{15}\)-are fo many propofitions, which are true a priori.
"Pure knowledge a priori, is that which is abfolnte-Pure \({ }^{4}\) now ly without any mixtule of experience. Two and trwoledge a neen make four men, is a thuth, of which the knowledge priorio is a priori; but it is not Pure knowledge, becaufe the truth is particular. The ideas of fubflunce, and of coufe and effect, are a priori; and when they are feparated from the objects to which they refer (we fuppoie from this or that particular object), they form, in the language of Kant, woil ideas (A). It is our knowledge a priori, i.e. that knowledge which precedes experience as to its origin, whic i renders experience puffible ( \(B\) ). Our faculty of knowledge has an effect on our ideas of fenfation analogous to that of a veffel, which gives its own form to the liquor with which it is filled. 'I'hus, in all our knowledge a pofieriori, there is fonething a priori derived fron our faculty of knowledge. All the operations of our minds; all the impreffions which our external and internal fenfes receive and retain, are brought into effect by the conditions, the forms, which exift in us by the pure ideas a priori, which alone render all our other knowledge certain.
"Time and Jpace are the two effential forms of the Time and roind: foace.
(A) In the language of Locke ab/ract ideas.
(B) In our correfpondent's manufcript, this fentence runs thus: "It is our knowledge a priori, or that know. ledge which entirely precedes experience as to its origin, which experience renders pofible;" but here mult be fome mittake, either by the tranflator or by the amanuenfis Kant's philofophy is abundantly obfcure and paradoxical; but it furely never entered into his head to reprefent the effect as prior in its origin to the very caufe which alone renders it poffible. The context, ton, feems to us to agree better with the meaning of the fentence as we have printed it in the text.

Taind: the forme for impreffions receivel by the interual fenfe; the fecond for thofe received by our esternal fenfes. Time is neceffary in all the immédiate (perbaps intuitive) perceptions of objects; and fpace in all external perceptions. gy) eas unity by a particular force (we fuppole energy) a priori; and thereby forms the reprefentation of each object. Thus, a man is fucceffively ftruck with the imprefions of all the parts which form a particular garden. His undertlanding unites thefe impreffions, or the ideas refulting from them; and in the unity produced by that unifying act, it acquires the idea of the garden. If the objects which produce the impreffions afford alfo the matter of the ideas (c), then the ideas are empyric; but if the objects only unfold the forms of the thought, the ideas are a priori. The act of the underflanding which unites the perceptions of the varions parts of an object into the perception of one whole, is the fame with that which unites the attribute with its fubject.
"Jucgments are divided into two fpecies ; analytic and Jyntbetic. An analytic judgment is that in which the attribute is the mere developement of the fubject, and is found by the fimple analy fis of the perception; as boclies are extended; a triangle hats three ficles.
" A fynthetical judgment is that where the attribute ken from the faculty of knowledge, which renders this connection neceffary : as, a borly is beary ; wood is combufitible; the three angles of a triangle are equal to two right angles. There are fynthefes a priori and a pofleriori; and the former being formed by experience, we have the fure means of avoiding deception.
" It is a problem, however, of the utmof importance, to difcover how fynthetic judgments apriori are poffible. How comes it, for example, that we can affirm that all the radii of a circle are equal, and that two parallel lines will never meet? It is by ftudying the forms of our mind that we difcover the poffibility of making thefe affirmations. In all objects there are things which muft neceffarily be thought (be fup. plied by thought ) ; as, for example, that there is a fub. flance, an accident, a caufe, and certain effects.

\section*{12
Forms o}
"I'he forms of the underftanding are, quantity, qua. the under. lity, relation, modality.
ttanding. "Quantity, Kant diftinguifhes into general, particular, and individual; quality, into affirmation, negation, infinite; relation, into categoric, bypotbetic, and disjunctive; and modality, into pioblematic, certain, and neceffury.

He adds alfo to thefe properties of the four principal forms of the underfanding, a table of catigories, or fundamental ideas a priori.
\[
\text { "O Oraritv pives unite ofuralito tonalitu Ouliter an }{ }^{1} 3
\]
"Quantity, gives unity, plurality, totality. Quality, Categrories. gives rality, negation, limitation. Relation, gives inluerence, fulftance, caufe, dependence, community, reciprocity. Modality, gives polfibility, impofibility, exijfence, nothing, neceflity, acident. Thede categories can only be applied to experience. When, in the conlideration of an objeet, we abitract all that regards fenfation, there remain only the pure ideas of the underftanding, or the categories, by which a thing is conceived as a thing.
" Pure reafon is the faculty of tracing our know. ledge a priori, to fubject it to principles, to trace it from its neceflary condicions, till it be entirely without condition, and in complete unity. This pure reafon has certain fundamental rules, after which the neceffary connection of our ideas is taken for the determination of the objects in themfelves;-an illufion which we cannot avoid, even when we are acquainted with it. We can conclude from what we know to what we do not know; and we give an objective reality to thefe conclufions from an appearance which leads us on.
"The writings of Kant are multifarious; but it is Critiquive in his work entitled the Critique of Pure Recafon that "f pure reahe has chiefly expounded his fyttein. This work is a fin. treatife on a pretended Science, of which Kant's fcholars confider him as the founder, and which lias for its objects the natural forces, the limits of our reafon, as the fource of our pure knowledge a priori, the principles of all trutb. Kant does not propoie to give cven an expolition of thefe branches of knowledge, but merely to examine their origin ; not to extend them, but to prevent the bad ufe of them, and to guard us agamit error. He denominates this fcience tranjcindental criticijfm; becaufe he calls all knowledge, of which the object is not furnifhed by the fenfes, and which concerns the kind and origin of our ideas, tranfcondental knowlelge. The Criticifm of Pure Reafon, which gives only the funddmental ideas and maxims a priori, without explaiuing the ideas which are derived from them, can lead (fays Kant) to a complete fyitem of pure knowledge, which ought to be denominated tranficendicntal pbilofopby, of which it (the Criticifn, \& c. ) prefents the architecionic plan, i.e. the plan regular and well difpofed.
"The work entitled The Critique of Pure Reafon, is divided into feveral parts or fections, under the ridiculous titles of \(A\) F \(/\) betic tranfcendental; of tranfccndental logic; of the pure ideas of the underflanding ; of the tranfcendental judgment; of the paralogijn of pure reaSon; of the ideal traulcendental; of the criticifin of Specu. lative theologies ; of the difcipline of pure reafon, \&c.
"But to proceed with our abitraet of the fytem. 15 We know objects only by the matuer in which they know obaffeet us; and as the impreffions which they make uponj. At ast ey us are only certain apparitions or plenomena, it is im- thend poffible for us to know what an objed is in itfelf. In thenfelves. confequence of this affertion, fome have fuppoled that Kant is an idealif like Berkeley and fo many others, who have thought that fenfations are only appearances,

Y y 2
and
(c) This is wonderful jargon; but the reader will reflect that it is not ours.
and that there is no truth but in our reafon; but fuch is not the opinion of Kant (D). According to him, our underflanding, when it confiders the apparitions or phenomena, ack ioowledges the exifence of the objects in themfelves, inafmuch as they ferve for the bafes of thofe apparitions; though we know nothing of their reality, and though we can have no certitude but in experience.
"When we apply the forms of our underitanding, fuch as unity, totality, fuliflance, cafuality, exiflence, to certain ideas which have no object in Space and time, we make a fellacious and arbitrary application. All thefe forms can bear on!y on fentible objects, and not on the zuorld of things in itfelf, of which we can THink, but which we can never know. Deyond things feufible we can only have opinions or a belief of our reafon.
"The motives to confider a propofition as truc, are either oljective, i. e. taken from an external object, 1o that each man fhall be obliged to acknowledge them; and then there is a truth cevident and fufceprible of denoonfration, and it may be faid that we are convinced; or the motives are fubjective, i. e. they exift only in the mind of hiin who judges, and he is perfuaded.
"Truth, then, conlifts in the agreement of our notions with the oljects, in fuch a manner as that all men are obliged to form the fame judgment; belief confifts in helding a thing for true in a fubjective manner, in confequence of a perfuafion which is entirely perfonal, and has not its bafis in an object fubmitted to experience.
" There is a belief of doarine, of which Kant gives, as an example, this affertion - there are inhabitants in the planets.' We muft acknowledge (he adds) that the ordinary mode of teaching the exititence of God belongs to the belief of doarine, and that it is the fame with the immortality of the foul. The belief of dorrine (he continues) has in itfelf fomething faggering; but it is not the fame with moral bekief. In moral belief there is fomething necrflary; it is (fays he), that I fhould obey the law of morality in all its parts.' The end is flrongly eftablifhed ; and I can perceive only one condition, by means of which this end may be in accord with all the other ends, \(i\). e. that there is \(a\) Gord. I am certain that no man knows any other condition which can conduct to the fame unity of end under the moral law; which law is a law of my reafon. I will confequently believe certainly the exijlence of Gool, and a future life; becaufe this perfuation renders immoveable my moral principles-principles which I cannot reject without rendering mylelf contemptible in my own eyes. I with for happinefs, but I do not wifh for it without morality; and as it depends on nature, I cannot wifh it with this condition, except by beheving that nature depends
on a Being who caufes this cornedion between morality und happinefs. This fuppofition is founded on the zwant (or necejjity) of iny reaion, and not on my duty.
"We have, however, no certainty (fays Fant) in our knowledye of God, becaufe certainty cannot exitt except when it is founded on an object of experience. The philofopher acknowledges, that pure reajon is too weak to prove the exilkence of a being beyond the reach of our fenfes. The neceffity of believing in God is therefore only Juljerive, although neceflary and general for all thole beings who conform to their duty. This is not knowledge, but only a belief of reafon, which fupplies the place of a knowledge which is inpof. fible ( E ).
" The proofs of natural theology (fays our plilofopher) taken from the order and beduty of the univerle, \&cc. ate proofs only in appearance. ihey refolve themfelves into a bias of our reafon to fuppofe an Intinite Inteiligence as the author of all that is poffible; but from this bias it does not follow that thete really is fuch an Author. To fay, that whatever exitts mult have a caule, is indced a maxim a priori; but it is a maxim applicable ouly to experience, for one knows not huw to lubject to the laws of our perceptions that which is abfulutely independent of them. It is as if we were to fay, that whatever cxifts in experience nuft have an experience; but the world, taken as a whole, is without experience as well as its caufe. It is much better to draw the proof of the exittence of God from morality, than to weakell it by fuch reafoning. This proof is relative. It is impolfible to know that God exilts ; but we can comprehend how it is poflibie to act morally on the fuppofition of the exiftence (although iscomprehenfible) of an intelligent Creator - an exitence which practical reason forces theoretical remfón to adopt. This proof not only perfuades, Lut even acts on the CONviction, in proportion as the motives of our actions are conformable to the law of morality.
" Religion ought to be the mieans of virtue and not its object. Man has not in himelf the idea of religion as he has that of virtue. The latter has its principle in the mind ; it exilts in iffelf, and not as the means of tappinel's; and it may be taught without the idea of a God, for the pure law of molality is a priori.
" He who does good by inchnation does not act morally. The converie of the principle of moratily is to make perional happinets the bath (F) of the will. There are compalifonate minds which feel an internal pleatere in communicating joy around them, and who thus enjoy the latistaction ot others; but their actions, however jutt, however good, have no moral menit, and may be compared to other incluations; to that of honiour
(D) We muft requeft the reader to oblerve that this is the language of our correfpondent. We have fhewn elfewhere, that Berkeley did not deny the reality of fenfations; and we hope to thew by and bye, that Kant is as much an idealift as he was, if this be a fair view of the Critical Philofoply.
( E ) We have here again taken the liberty to alter the language of cur correfpondent. He makes Kant fay, "It is not this knowledige, but a belief of reafon, \&c. \(;\) " but this is furely not the author's meaning. From the context, it is apparent that Kant means to fay, that we have not, and cannot have, what can be properly called a knowledge of the exiftence of God, but only tuch a belief of his exiltence as fupplies the place of this impofilible knowledge.
( F ) 'I his is a very abfurd phrafe. We fuppofe Kant's meaning to be, that the principles of him whofe actions and volitions are influenced by the prolpect of perfonal happinefs, are the reverfe of the pure principles of morality.
honour (for exampie), which, whilft it meets with that which is juft and ufeful, is worthy of praife and encouragement, but not of any ligh degree of eftcem. According to Kant, we ought not even to do good, either for the pleafure we feel in doing it, or in orcler to be happy, or to render others happy; for any one of thefe additions (perhaps motives) would be empyric, and injure the purity of our morals. A reafonable being ought to defire to be exempted from all inclinations, and never to do his duty but for his duty's fake.
" We nught to act after the maxims derived a priori from the faculty of knowledge, which carry with them the idea of recefity, and are independent of all experience; after the maxims which, it is to be wifhed, could be erected into general laws for all beings endowed with reafon."

If this be a correct view of the object and the refults of the critical philofophy, and the character of him from whom we received it permits us not to doubt of its being nearly correct, we confefs ourfelves unable to difcover any motive which fhould induce our countrymen, in their refearches after truth, to prefer the dark lantern of Kant to the luminous torch of Bacon. The metaphyfical reader will perceive, that, in this abftract, there is little which is new except the phrafeology; and that what is new is either unintelligible or untenable.
The diftinction between knowledge a priori and knowledge a pofteriori, is as old as fpeculation itfelf; and the mode in which Kant illu\{trates that diftinetion differs not from the illuflrations of A riftotle on the fame fubject. The Stagyrite talked of gencral forms, or formal caufes, in the mind, as well as the profeflor at Koenigherg; and he or his difciples (for we quate from memory) compared them to the form of the flatue in the rough block of marble. As that form is brought into the view of the fpectator by the chiliel of the Itatuary, fo, faid the peripatetics, are the general forms in the mind brought into the view of confciour. nefs by ferifation and experience.

Such was the doctrine of Ariftotle and his difciples, and fuch feems to be the doctrice of Kant and his followers; but it is either a falfe doctrine, or, if it be true, a doctrine foolifly exprofled. A block of martle is capable of being cut into any form that the Ratuary pleafes; into the form of a man, a borfe, an ox, an aff, a fifh, or a ferpent. Not one of thefe forms therefore can be inherent in it, or effential to it, in oppofition to the reft; and a general form, including all the a aimals under it, is inconceivable and impofible. In like manner, the human mind is capatle of having the idtas of a circle, a triangle, a fquare, of black, white, red, of four, fweet, bitter, of the odour of a rofe, and the ftench of a dunghill, of propotion, of mufical founds, and of a thoufand other things. None of thefe ideas therefore can be effential to the mind in oppofition to the reft ; and every man, who is not an abfolute flranger to the operations of his own intellect, knows well that he cannot think of a thoufand things at once; or, to ufe the language of philofophers, have in his mind a general idea, comprehending under it a thoufand things fo dif. cordant as colours and founds, figures, and fmells. If therefore Kant means to affirm, with Plato, that, previous to all experience, there are actually in the mind general forms, or general ideas, to which fenfation, or experience, gives an opportunity of coming into view,
he affirms what all men of reflection know to be falfe. If he means only to affirm, what feens to have been the meaning of Ariftotle, that particular fenfations give occafion to the intellect to form general ideas, he exprefles himfelf indeed very ftrangely; but his doctrine on this fubject differs not effentiaily from that of Locke and Reid, and many other emincent metaphyficians of modern times. Of abAraction and general ideas we have given our own opinion effewhere (See Metaphysics, Encycl. Part I. Chap. iv.), and thall not here refume the fubject.

But when Kant feys that lis ideas a priori are uni- Injiproper verfal, and neceffary, and that their converfe is impolfible, ufe of he feems by the word idea to mean what more accurate terms; writers exprefs by the term prapofition. There are in. deed two kinds of propolitions, of which both may be true, though the one kind expreffes neceffary and univerfal truths, and the other fuch twuths as are contin-gent and particular: (See Metaphysics, Encycl. Part 1. Chapster vii.) Propofitions directly contrary to thofe which exprefs particular and contingent truthe may be eafily conceived; whilit fuch as are contrary to neceffary and univerfal truths are inconctio vable and impofiule; but we doubt whether any iita, in the proper fenfe of the word, has a contrary o1, as he expreflés it, a converfe. Noibing is not contrary wo fubflance, nor black concrary to culiste, nor four contrary to fweet, nor an inch contrary to an ell. Nothing is the negation of fubflance, and black the negation of white; four is different from fweet, and an inch is lefs than an ell ; but between thefe difficent ideas we perceive no contradiction.

That Kant ufes the terin idea inflead of profofiion, or fome word of limilar import, is farther evident from his inflances of the boife on fire, and the manner in which we learn that any two bodies added to any two other bodies v:ill conItantly make the fum of jour bo. dies. If it be his will to ute the terms a priori asd a poleriori in the fenfe in which orther metaphylicians ufe the terins neceflary and coming ent, we can make no other objection to his diftinction betwren thefe two propofitions, but that it is exprefed in very improper lan1guage. The houfe might certainly be on fire or not on tire ; bit twice two bodes mu/l always make the fum of four bodies, and cannot pulfibly make any other fun.
The truth of this laft propofition (he fays) we cannot have learned from experience, becaufe experience, being always limited, cannot poffibly teach us what is neceflary and univerfal. But this is egregious trifling. The expericace enployad here is not limited A child unqueflienably learns the import of the terms of n:unieration, as he learns the import of all other teims, by expericice. By putting two little balls to tw: litele balls, he learns to call the fum four balls. After two or three leffons of this kind with differeut bodies, his own reflection fuggefts to him, that the fum four has no dependance upon the fhape or conf:tence of the bodies, but merely upon the individuality of each or their numerical difference; and individuality, or numenical difference, is as completely exemplified in two bodies of any kind as in two thoufand.

All the truths of pure mathematics (fays Lant) are with its a priori. If he means that they are all neceflary, and confethat the contrary of any one of them is inconceivable, quencss. he affirms nothing but what is true, and has been known

\section*{to all mathematicians thefe two thonfand years. Jut,} if he means that they are imate truthe, not difcovered by induction or ideal meafurement, his meaning is demontrably falie. (See Inducrion in this Supplement.) When he fays, that it is not experience which difcovers to us that we fhall always have the furface of the pyramid, by multiplying its bate by the thind pant of its height, he is right, if by experience he means the actual meafurement of all poflible pyramids; but furely lie caunot mean that the truth of this meafurement is imnate in the mind, for it is in faet not a true but a falfe mea. furement ( \(G\) ). The bafe of a pyramid multiplied by the third part of its height gives, not the furface, but the folid contents of the pyramid; and he who underflands the propofition on which this trutl is immediately built, knows perfectly that Euclid proved it by a feries of idcal meafurements of thofe particulars in which all pyramids neceffarily agree.

Kant feems often to confound fenfation with experience; and if by experience he means fenfation, when he fays that pure knowledge, a priuri, is that which is abfolutely without any mixture of experience, he talks nonfenfe; for the moll firitual notions which men can form are derived from the operations of the mind on ideas of fenfation. To the reft of the paragraph, refpecting pure knowledge, we have hardly any objection to make. Locke, the great enemy of innate ideas, tanght, before Kant was born, that our knowledge depends upon our organization and the faculties of our minds, as much as upon impreffions made on the fenfes ab extra; that if our organs. of fenfe were different from what they are, the tatte of fugar might be bitter, and that of wormwood fweet; and that if we had not memory, and could not modify and arrange our ideas, all progrefs in knowledge would be impoflible.

When our author talks of time and Space as the two effential forms of the mind, we are not fure that we undertand him. We have fhewn elifwhere, that a confcious intelligence may be conceived which has no ideas either of fpace or of time (fee Metaphysics, Encycl. \(\mathrm{n}^{\circ} 182\), \&c. and 209, \&c.) ; and he who call affirm, that if extenfion were known to us only by exserience, it would be poffible to conceive fenfible objects without space, has never attended to the force of what philofophers call the affociation of ideas in the mind. But what is here meant by fenfible objects? Are they objects of touch, tafte, or fmell? Objects of touch cannot indecd be conceived without fpace ; but what extent of fpace is fuggefted by the tafle of fugar or the odour of a rofe?

When Kant talks of the form fpace enabling us to attribute to external objects impenetrability, mobility, \&ic. he t:lks at random; and another man may, with as -anuch propiliety, and perhaps more tiuth, affirm the - converfe of his propofitions, and fay, that it is the impenetrability and mobility, \&c. of external objects that eriable ue to form the idea called fpace, and the fucceffion of fome objects, comparcd with the permanence of
others, that enables us to form the notion or mode call. ed time.

On the two or three next paragraphs it is not worth while to detain the seader with nany remarks. 'They abound with the fame uncouth and obfcure phrafeology, and the fame idle dittinctions betwecn ideas a priori and a pofteriori. In \(n^{0}\) 11. he affirms, that the three following propofitions (a body is beary, wood is combuftible, and the three angles of a triongle are cqual to two right angies) are all neceflary judgments. In one fenfe this affirmation is true, and in another it is falfe. We cannot, without fpeaking unintelligibly, give the name body to any fubftance which is not heavy; and we are not acquainted with any kind of avood which is not combuftible; but furely it is not impoffible to conceive a fubitance extended and divilible, and yet not heavy, to which the name body might be given without abfurdity, or to conceive wood as incombuftible as the mineral called afbeflos. That the three angles, however, of a plane triangle can be either more or lefs than equal to two right angles, is obvioufly impoffible, and mult be perceived to be fo by every intelligence from the Supreme down to the human. 'Ihe three propotitions, therefore, are not of the fame kind, and fhould not have been claffed under the fame genus of neceffary fyno thetic judgments.

In the critique of pure reafon, Kant feems to teach that all demonitrative fcience mult proceed from general principles to particular truths. Hence his forms of the underitanding, and his categories, which, according to one of his pupils*, " lie in our undertlanding as * \(D_{r} W_{k}\) pure notions a priori, or the foundation of all our know. licb. ledge. They are neceffary forms, radical notions, of whiclı all our knowledge mu/l be compounded." But this is directly contrary to the progrefs of the human mind, which, as we have fewn in the article Induction, already referred to, proceeds, in the acquifition of every kind of knowledge, from particular truths to general principles. 'Thus tranfcendental philofophy of Kant's, therefore, inverts the order of nature, and is as little calculated to promote the progrefs of fcience as the fyllogitic fyltem of Ariftotle, which was likewife built on categories or general forms. His tranfcendental aflhesic, which, according to Dr Willich, is the knowlecige a priori of the rules of fenfation, feems to be a contradictory expreffion, as it implies that a man may know the laws of fenfation, without paying the fmallet attention to the organs of fenfe.

That we know objects only by the manser in which they affect us, and not as they are in themfelves, is a truth admitted, we believe, by all philofophers, and certainly by Locke and Reid; but when Kant fays that we know nothing of the reaiity of the objects which affect our fenfes, he feems to be fingularly paradoxical. Berkeley himfelf, the moft ingenious idealitt perhaps that ever wrote, contends Itrenuoufly for the exittence of a coufe of our fenfations diftinct from our own minds ; and becaufe he thinks inert matter a caufe inadequate
(c) 'This may look like cavilling, as the blurder may be either Kant's or our correfpondent's, though neither of them can be fuppofed ignorant of the method of meefuring the furface of a pyramid. We affure the reader, however, that we do not nican to cavil. We admit that both Kant and our correfpondent know perfectly well how to meafure the furface of a pyramid; but had that krowledge been innate in their minds, we cannot conceive the poffibility of their falling into the blunder. The blunder, therefore, though the offspring of mere intodvertence, feems to be a complete confutation of the doctrire.
inadequate to this effect, he concludes, that every fenfation of which we are confcious is a proof of the in mediate argency of the Deity. But Kant, as we fhall perceive by and bye, makes the exiltence of God and of matter equally problematical. Indeed he fays exprefsly, that beyond things fenfible we can only have opinions or beliff; but things fenfible, as every one knows, are nothing more than the quarlities of objects.

It thould feem that the greater number of wonders which Kant has found in our primitive knowledge and in the faculties of our mind, the greater number of proofs ought he to have found of the exittence and attributes of one Firft Caufe: but fo far is this from being the cafe, that we have feen him refting the evidence of this moft important of all truths, either upon the moral fenfe, which our paffions and appetites fo eafily alter, or upon the intuitive perception of abfrad moral reaitude; a perception which thoufands, as virtuous and as profound as he, have confidered as impoffible. Our philofopher's proof of a God is nothing more than his perfuafion that happinefs is conneeted with virtue by a Being upon whom nature depends; and he fays exprefsly, that this proof carries conviction to the mind in proportion as the motives of a man's actions are conformable to the law of moraity. This being the cafe, the reader cannot be much furprifed, when he is informed that feveral of Kant's difciples on the continent have avowed themfelves Atheita or Spinozifls. We have elfewhere (fec Illuminati, \(n^{\circ} 37\).) mentioned one of thofe gentlemen who was lately dif. miffed from his profefforial chair in the univerfity of Jena, for making God nothing more than an abjifrag idea, derived from our relations with the moral world. His fucceffor, a Kantif likewife, when it was told in his prefence, that, during one of the maflacres in laa is, David the Painter fat with his pencil in his hand, enjoying the fufferings of the unfortunate wretches, and trying to paint the expreffions of their agonies, exclaim. ed -" What force of character! What fublimity of foul!" That this wretch muft be an Atheift, likewife, follows of courfe from Kant's principles; for it is not conceivable that he perceives any connection between happine \(\mathrm{r}_{3}\) and virtue.

That Kant is an atheif himfelf, we have not learn. ed, though his doctrine leads thus naturally to atheifm, and though in his work called T'ugend Lehre, page 180 , he makes the following frange obfervation upon oaths: "As it would be abfurd to fwear that God exifts, it is fill a queftion to be determined, whether an oath would be poffible and obligatory if one were to make it thus-I frwear on the fupppyition that Gode exifls. It is extremely probable (fays he), that all fincere oat hs, taken with reflection, have been taken in no other fenfe !"

It is not our intention to plunge deeper into this mire of atheifin, or to enter into a formal confutation
of the deteftable dotrines which have been dragged from its bottom. Enough has been faid elfewhere to convince the theoretical reafon of the found minds of our countrymen of the exitence of one omnipotent, infinitely wife, and perfectly good Being, the author and upholder of all things (See Encycl. Merapiysics, Part III. Chap. vi. and 'l'heology, Part I. Seet. i.). It may not, however, be altogether ufclefs to point out to the reader hos completely Kant confutes himfelf, even in the fhort abitract that we have given of his fyltem.

Among his categories, or fundamental ideas, which Kant conare neceflarily formed in the mind, lie exprefoly reckons futes himcaufe and effa: but in various articles of this work, it fel has been proved beyond the poffibility of contradiction, that no fenfible object is the true mictaphyjical canfe of any one event in nature ; and indeed Kant himfelf is at mach paius to fhew that his categories or ideas a priori are not ideas of fenfation. I'here muft therefore, upon his own principles, be caules which are not the objects of Jenfe or experience; and by tracing thefe caufes backward, if there be a fucceffion of them, we mult arrive at one felf-exittent caufe, by a demonitration as complete as that by which Euclid proves the equality of the three angles of a plane triangle to two right angles. We have no other evidence for the truth of geometrical axioms than the lavs of human thought, which compel us to perceive the impoffibility of fuch propofitions being falfe. According to our philofonher, we liave the very fame evidence for the rcality of caufes and effects which are rivt the objects of fenfe. 'The confequence is obvious.

Kant's political opinions are faid to be olerably montis moraderate, though lie betrays, what we mult think, an ab. lity isextra. furd confidence in the mulimited perfotibility of the hus vagne. man mind. Oa his morality our valued correfpondent has bettowed a nuch langer thare of his approbation than we can allow it of ours. Kant feems to contend, that the actions of men fhonld be directed to no end whatever; for he expefoly condemns, as an cad ot action, the purfuit either of our own happinefs or of the happine?s of othurs, whether tempural or tternal ; but actions performed for no purpofe are iurely indications of the very effence of folly. Such actions are indeced impoffible to beings endowed with reafon, paffions, and appetites; for if there be that beauty in abitract virtue, for which Kant and the Stoics contend, it cannot be bin that the virtuous man mult feel an interual pleafure when he performs a virtuous action, or reflects upon his paft concuct. He who inakes his temporal intereft the fole rule of his conduct, has indeed no preter:ions to the charatter of a virtuous man; but ais the morality of the gofpel has always appeared to us fufficiently pure and difinterefted, we think a man may, without devidr ting into vice, have re!pect unto " the recompence of future reward."

\section*{\(\mathrm{P} \quad \mathrm{H} O\)}

PHOSPHORUS (See Chemistry-Index, Supple. ment.) has lately been employed as a medicine by Alphonfus Leroi, profeffor at the Medical School of Paris. Its effects, in a variety of cafes, are thus defcribed in the Bullelin de la Societé Pbilomatique, 1798.

\section*{P H O}
1. Phofphorus adminittered internally in confumpe Pheiphotive difeafes appears to give a certain degree of activity to life, and to revive the patiente, without raifing their pulfe in the fame proportion. 'The anthor relates feveral inflances that occurred to him in the courfe of his

\section*{P H O}

Phofpho. practice; one of which is as follows: Being called to atru*. worn out by a confumptive diforder, with which the had been afflicted for three years, in compliance with the earnelt defire of her hufband, who requefted him to give her fome medicine, he compofed one of a portion of fyrup diluted with water, in which a few ficks of pliofphorus had been kept. Next day the woman found herfelf much better. She was revived for a few days; and did not die till about a fortnight after.
2. He himfelf, as he acknowledges, was fo imprudent as to take two or three grains of folid phofphorns combined only with treacle, and experienced the mo! dreadful fymptoms. At firft he felt a burning heat in the whole region of the ftomach. That organ feemed to be filled with gas which efcaped by the mouth. Being dreadfully tormented, he tried to vanit, but in vain; and found relief only by drinking cold water from time to time. His uneafy fenfations were at length allayed; but next moming he feemed to be endowed with an aftonifhing mufcular force, and to be 1nged with an almott irrefittible impulfe to try its energy. The effect of this medicine at length cealed, adds the author, à la fuite d'un priapijine violent.
3. In many cafes the anthor employed, and ftill employs, phofphorus internally, with great benefit, to reftore and revive young perfons exhaufted by exceffes. He divides the phofphorus into very fmall particles, by Thaking it in a glafs filled with boiling vater. He continues to fhake the bottle, plunging it into cold water, and thus obtains a kind of precipitate of phofphorus, exceedingly fine, which he bruifes flowly with a little oil and fugar, or afterwards employs as liquid electuary, by diluting the whole in the yolk of an egg. By mears of this medicine he has effected afonifhing cures, and reftored the frength of his patients in a very fhort time.
4. In malignant fevers the ufe of phof phorus internally, to check the progrefs of gangrene, has fucceeded beyond expectation. The author relates feveral in ttances.
5. Pelletier told him, that having left, through negligence, fome phofphorus in a copper balun, that metal was oxydated, and remained fufpended in the water. Having thoughtlefsly thrown out the water in a fmall court in which ducks were kept, thefe animals drarik of it, and all died. Mais le male (fays the author) convrit toutes fes femelles jufque au dernier inflant de fa aic. An obfervation which accords with the tffect cxperierced by the author.
6. The author relates a faft which proves the aftonifhing divifibility of phofphorus. Having adminiftered to a patient fome pills, in the compofition of which there was not more thant a quarter of a grain of phof phorus, and having had occation afterwards to open the body, he found all the internal parts luminous; and even the hands of the perfon who had performed the operation, though wathed and well dried, retained a phofphoric fplendor for a long tinue after.
7. The phofohoric acid, employed as lemonade, has been ferviceable to the author in the cure of a great number of diteafes.
8. Leroi affures us that he oxydated iron with phor. phorus, and obtained, by the common means, a white oxyd, almoft irreducible, which he thirks may be employed with advautage in the arts, and particularly in
painting with oil, and in enamel, inftead of the white Phofphor oxyd of lead. 'I'his white oxyd of iron occafioned violent retchings to the author, who ventured to place a very fmall particle of it on his tongue. He does not hefitate, therefore, to confijer this oxyd as a terrible poifon. He was not ahle to reduce it but by fixed alkali and the glafs of phofphorns.
9. The author afferts that, by means of phofphorus, he decompofed and feparated from their bafes the fulphuric, muriatic, and nitric acids; that by help of the phofphoric acid he tranfmuted earths; and that with calcareous earth he can make, at pleafure, contiderable quanticies of niagnelia. He declares, that to his labonurs on phofphorus he is indebted for procefles by which he effects the diffipation (opere la frite) of rubies, the fufion of emeralds, and the vitrification of mercury

We agree with the editor of the refpectable Mifcellany *, from which we Yave immediately taken this article, that Britifh practitioners will do well to ufe their wonted caution in the application of fo powerful a re. vols, medy. Indeed we confider it as fo very bazardous a remedy, that we had refolved to make no mention of it, till we found it tranfcribed into various journals, both foreign and domeftic, and thence began to fufpect that we might be accufed of culpable negtigence, were we to pafs umoticed what had attracted the attention of fo many of our fellow-labourers in the field of fcience.

XHOSPHORUS, in aftronomy, is the morning ftar, or the planet Venus, when the rifes befo:e the fun. The Latins call it Lucifer, the French Etoile de berger, and the Greeks Phofphorus.

PHOTOMECER, an apparatus for meafnring the intenfity of light, and likewife the tranfarency of the medium through which it paffes. Inftruments for this purpofe have been invented by Count Rumford, M. de Sauffure, that eminent. mathematician and philofopher Mr John Leflie, and others. We frall content ourfelves with defcribing in this place the photometer of Count Rumford, and the inftrument to which Saufure gives the name of diaplsanometer: Mr Lecfle's is indeed the timpleft indrument of the kind of which we have anywhere met with a defcription ; but it meafures only* the nomentary intenfities of light ; and he who wifhes to be informed of its conftruction, will find that information in the third volume of Nicholfon's Philofophical Journal.

Count Rumford, when making the experiments which we have noticed in the article Lamp (Suppl.), was led, ftep by flep, to the conftruction of a very accurate plootonicter, in which the hadows, infead of being thown upon a paper fpread out upon the wainfeot, or fide of the rooin (See page 64 of this volume), are projected upon the infide of the back part of a wonden box \(\% \frac{1}{f}\) inches wide, \(10 \frac{1}{2}\) inches long, and \(3 \frac{1}{4}\) inches-deep, it the clear. The light is admitted into it through two horizontal tubes in the front, placed fo as to form an angle of \(60^{\circ}\); their axes meeting at the centre of the field of the intrument. In the middle of the front of the box, between thefe two tubes, is an opening thro' which is viewed the field of the photometer (see fig. 1.). This field is formed of a piece of white paper, which is not faftened immediately upon the infide of the back of the box, but is patted upon a fmall pane of very fine ground glafs; and this glafs, thus covered,
let down into a gronve, made to receive it, in the back of the box. The whole infide of the box, except the field of the inftrument, is painted of a deep black dead colour. To the under part of the box is fitted a ball and focket, by which it is attached to a fland which fupports it; and the top or lid of it is fitted with hinges, in order that the box may be laid quite open, as often as it is neceflary to alter any part of the machinery it. contains.

The Count had found it very inconvenient to compare two fhadows projected by the fame cylinder, as thefe were either neceflarily too far from each other to be compared with certainty, or, when they were nearer, were in part hid from the eye by the cylinder. To remedy this inconvenience, he now makes ufe of two cylinders, which are placed perpendicularly in the bottom of the bus jult defcribed, in a line parallel to the back part of it, diftant from this back \(2^{2}{ }^{2}\) ionches, and from each other 3 inches, meafuring from the centres of the cylinders; when the two lights made ufe of in the experiment are properly placed, thefe two cylindera project four thadows upon the white paper upon the infide of the back part of the box, or the field of the infrument; two of which fladows are in contact, precifely in the middle of that field, and it is thefe two alone that are to be attended to. To prevent the attention being diftracted by the prefence of unneceffary objects, the two outfide fhadows are made to difappear; which is done by rendering the field of the inftrument fo narrow, that they fall without it, upon a blackened furface, upon which they are not vifible. If the cylinders be each \(4^{4}\) of an inch in diameter, and \(2 \frac{2}{7}\) inches in height, it will be quite fufficient that the field be \(27_{7}^{7}\) inches wide; and as an unneceffary height of the field is not only ufelefs, but difadvantageous, as a large furface of white paper not covered by the fhadows produces too ftrong a glare of light, the field ought not to be more than \(\frac{3}{\mathrm{~T}}\) of an inch higher than the tops of the cylinders. That its dimenfions, however, may be occafionally augmented, the covered glafs thould be made \(5^{\frac{T}{2}}\) inches long, and as wide as the box is deep, viz. \(3 \frac{1}{4}\) inches; fince the field of the inftrument can be reduced to its proper fize by a fcreen of black pafteboard, interpofed before the anterior furface of this covered glafs, and refting immediately upon it. A hole in this pafteboard, in the form of an oblong fquare, \(I^{\top} \boldsymbol{T}\) inch wide, and two inches high, determines the dimenfions, and forms the boundaries of the field. This fcreen fhould be large enough to cover the whole infide of the back of the box, and it may be fixed in its place by means of grooves in the fides of the box, into which it may be made to enter. The pofition of the opening above-mentioned is determined by the height of the cylinders; the top of it being \(\mathrm{r}^{\frac{3}{0}}\) of an inch higher than the tops of the cylinders; and as the height of it is only two inches, while the height of the cylinders is \(27^{2} \mathrm{z}\) inches, it is evident that the fhadows of the lower parts of the cylinders do not enter the field. No inconvenience arifes from that circumftance; on the contrary, feveral advantages are derived from that arrangement.

That the lights may be placed with facility and pre. cifion, a fine black line is drawn through the middle of the field, from the top to the bottom of it, and another (horizontal) line at right angles to it, at the height of the top of the cylinders. When the tops of the sha-

Suppl. Vol. II. Part I.
dows touch this laft mentioned line, the lights are at a Phntenie. proper height; and farther, when the two fhadows are in contact with each other in the niddle of the field, the lights are then in their proper directions.

We have faid that the cylinders, by which the fladows are projected, are placed perpendicularly in the bottom of the box; but as the diameters of the fhadows of thefe cylinders vary in fome degree, in proportion as the lights are broader or narrower, and as they are brought nearer to or removed farther from the photometer, in order to be able in all cafes to bring thefe fhadows to be of the fame diameter, which is very advantageous, in order to judge with greater facility and certainty when they are of the fame denfity, the Count renders the cylinders moveable about their axes, and adds to each a vertical wing \(\frac{1}{2} \frac{1}{2}\) of an inch wide, \(\frac{r}{10}\) of an inch thick, and of equal height with the cylinder itfelf, and firmly fixed to it from the top to the bottom. This wing commonly lies in the middle of the fhadow of the cylinder, and as long as it remains in that fituation it has no effect whatever; but when it is neceffary that the diameter of one of the fhadows be increafed, the correfponding cylinder is moved about its axis, till the wing juft defcribed, emerging out of the fladow, and intercepting a portion of light, brings the fhadow projected upon the field of the inflrument to be of the width or diameter required. In this operation it is always neceffary to turn the cylinder outwards, or in fuch a manner that the augmentation of the width of the fhadow may take place on that fide of it which is oppofite to the fhadow correfponding to the other light. The neceffity for that precaution will appear evident to any one who has a juft idea of the inAtrument in queftion, and of the manner of making ufe of it. They are turned likewife without opening the box, by taking hold of the ends of their axes, which project beluw its bottom.

As it is abfolutely neceffary that the cylinders fhould conftantly remain precifely perpendicular to the bottom of the box, or parallel to each other, it will be beft to conflruct them of brafs; and, inftead of fixing them immediately to the bottom of the box (which, being of wood, nay wayp), to fix them to a ftrong thick piece of well-hammered plate brafs; which plate of brafs may be afterwards faftened to the bottom of the box by means of one ftrong fcrew. In this manner two of the Count's beft inftruments are conftructed; and, in order to fecure the cylinders ftill more firmly in their vertical pofitions, they are furnifhed with broad flat rings, or projections, where they reft upon the brafs plate ; which rings are \(\mathrm{r}^{\frac{2}{0}}\) of an inch thick, and equal in diameter to the projection of the wing of the cylinder, to the bottom of which they afford a firm fupport. Thefe cylinders are likewife forcibly pufhed, or rather pulled, againt the brafs plate upon which they reft, by means of compreffed fpiral fprings placed between the under fide of that plate and the lower ends of the cylinders. Of whatever material the cylinders be conftrncted, and whatever be their forms or dimenfions, it is ablolutely neceffary that they, as well as every other part of the photometer, except the field, fhould be well painted of a deep black dead colour.

In order to move the lights to and from the photo. meter with greater eafe and precifion, the oblerver fhould provide two long and narrow, but very ftrong and fteady, tables ; in the middle of each of which

Zz
there

Photome- there is a Araight groove, in which a fliding cartiage, ter. \(\underbrace{-}\) upon which the light is placed, is drawn along by means of a cord which is faftened to it before and behind, and which, paffing over pulleys at each end of the table, goes round a cylinder; which cylinder is furnifhed with a winch, and is fo placed, near the end of the table adjoining the photometer, that the obferver can turn it about, without taking hiis eye from the field of the inftrument.
Many advantages are derived from this arrangement: Firf, the obferver can move the lights as he finds neceflary, without the help of an affiltant, and even without removing his eye from the fhadows; fecondly, each light is always precifely in the line of direction in which it ought to be, in order that the fhadows may be in contact in the middle of the vertical plane of the photometer ; and, thirdly, the fliding motion of the lights being perfectly foft and gentle, that motion produces little or no effect upon the lights themfelves, either to increafe or diminif their brilliancy.

Thefe tables muft be placed at an angle of 60 degrees from each other, and in fuch a fituation, with reipect to the photometer, that lines drawn through their middles, in the direction of their lengths, meet in a point exaetly under the middle of the vertical plane or field of the photometer, and from that point the diflances of the lights are meafured; the fides of the tables being divided into Englifh inches, and a vernier, fhewing tenths of inches, being fixed to each of the fliding carriages upon which the lights are placed, and which are fo contrived that they may be raifed or lowered at pleafure; fo that the lights may be always in a horizontal line with the tops of the cylinders of the photometer.

In order that the two long and narrow tables or platforms, juft defcribed, may remain immoveable in their proper pofitions, they are both firmly fixed to the ftand which fupports the photometer; and, in order that the motion of the carriages which carry the lights may be as foft and gentle as poffible, they are made to fide upon paralkel brafs wires, 9 inches afunder, about \(x^{\frac{1}{6}}\) of an inch in diameter, and well polifhed, which are ftretched out upon the tables from one end to the other.

The fructure of the apparatus will be clearly underftood by a bare inipection of Plate XLI. where fig. I. is a plan of the infide of the box, and the adjoining parts of the photometer. Fig. 2. Plan of the two tables belonging to the photometer. Fig. 3. The box of the photometer on its ftand. Fig. 4. Elevation of the photometer, with one of the tables and carriages.

Having fufficiently explained all the effential parts of this photometer, it remains for us to give fome account of the precautions neceffary to be obferved in ufing it. And, firft, with refpect to the diftance at which lights, whofe intenfities are to be compared, fhonld be placed from the field of the inftrument, the ingenious and accurate inventor found, that when the weakeft of the lights in quertion is about as ftrong as, a common wax candle, that light may moft advantageoufly be placed from 30 to 36 inches from the centre of the field; and when it is weaker or ftronger, proportionally nearer or farther off. When the lights are too near, the fhadows will not be well defined; and when they are too far off, they will be too weak.

It will greatly facilitate the calculations neceffary in drawing conclufions from experiments of this kind, if
fome fleady light, of a proper degree of ftrength for Phorome that purpofe, be affumed as a fandard by which all others may be compared. Our author found a good Argand's lamp much preferable for this purpofe to any other lamp or candle whatever. As it appears, he fays, from a number of experiments, that the quantity of light emitted by a lamp, which burns in the fame manner with a clear flame, and zuitbout fmoke, is in all cafes as the quantity of oil confumed, there is much reafon to fuppofe, that, if the Argand's lamp be fo adjulted as always to confume a given quantity of oil in a given time, it may then be depended on as a juft ftandard of light.

In order to abridge the calculations neceffary in thefe inquiries, it will always be advantageous to place the flandard-lamp at the diftance of 100 inches from the photometer, and to affume the intenfity of its light at its fource equal to unity ; in this cafe (calling this Itandard light A, the intenfity of the light at its fource \(=x=1\), and the diftance of the lamp from the field of the photometer \(=m=100\) ), the intenfity of the illumination at the field of the photometer \(\left(=\frac{x}{m^{2}}\right)\) (See LAMP, p. 67. of this volume) will be expreffed by the fraction \(\frac{1}{\pi \sigma \sigma^{2}}=\frac{\mathrm{r} \sigma \frac{1}{8} \sigma \sigma ; \text { and the relative intenfity of }}{}\) any other light which is compared with it, may be found by the following proportion: Calling this light \(B\), putting \(y=\) its intenfity at its fource, and \(n=\) its ditance from the field of the photometer, expreffed in Englifh inches, as it is \(\frac{y}{n^{2}}=\frac{x}{m^{2}}\), as was fhewn in the article Lamp referred to; or, inftead of \(\frac{x}{m^{2}}\), writing
 fequently \(y\) is to 1 as \(n^{2}\) is to 1000 ; or the intenfity of the light B at its fource, is to the intenfity of the ftancard light \(A\) at its fource, as the fquare of the difance of the light \(B\) from the middle of the field of the initrument, expreffed in inches, is to 10000 ; and hence it is \(y=\frac{n^{2}}{10000}\).

Or, if the light of the fun, or that of the moon, be compared with the light of a given lamp or candle C, the refult of fuch comparifon may beft be expreffed in words, by faying, that the light of the celeftial luminary in queltion, at the fiurface of the earth, or, which is the fame thing, at the field of the photometer, is equal to the light of the given lamp or candle, at the diffance found by the experiment; or, putting \(a=\) the intenfity of the light of this lamp \(C\) at its fource, and \(p=i\) its diftance, in inches, from the field, when the thadows correfponding to this light, and that correfponding to the celeltial lunninary in queftion, ate found to be of equal denfities, and putting \(z=\) the intenfity of the rays of the luminary at the furface of the earth, the refult of the experiment may be expreffed thus, \(z=\frac{a}{p^{2}}\); or the real value of \(a\) being determined by a particular experiment, made expreffly for that purpofe with the ftandard lamp, that value may be written inftead of it. When the flandard lamp itfelf is made uie of, inflead of the lamp C , then the value of A will be I .

The Count's firft attempts with his photometer were to determine how far it might be poffible to afcertain,
ay w.c. by dircet experiments, the certainty of the affumed law of the ciminution of the intenfity of the light emitted by luminous bodies: namely, that the intenfity of the light is everywhere as the feuares of the diftances from the luminens budy inverfely. As it is obvious that this law can bold good only when the light is propagated through perfeetly tranfparent fpaces, fo that its intenfity is weakened mertly by the divergency of its rays, he inflituted a fet of experiments to afcertain the tranfparency of the air and other mediumb.
With this view, two equal wax candles, well trimmed, and which were found, by a previous experiment, to burn with exactly the fame degree of brightnefs, were placed forether, on one fide, before the photometer, and their united light was counterbalanced by the light of an Argand's lamp, well trimmed, and burning very equally, placed on the other fide over againft them. The lamp was placed at the difance of 100 inches from the field of the photometer, and it was found that the two burning candles (which were placed as near together as prfible, without their flames affecting each other by the currents of air they produced) werc juft able to courterbalance the light of the lamp at the feld of the plotometer, when they were placed at the diffarice of 50,8 inches from that field. One of the cancles being now taken away and extinguifhed, the other was brought nearer to the field of the inftrument, till its light was found to be jult able, fingly, to counterbalance the light of the lamp; and this was found to happen when it had arrived at the diftance of 43,4 inches. In this experiment, as the candles burnt with equal brightnefs, it is evident that the intenfities of their united and fingle lights were as 2 to 1 , and in that proportion ought, according to the affumed theo\(r y\), the fquares of the diftances, 60,8 and 43,4 , to be ; and, in fact, \(\overline{60,8^{2}}=3696,64\) is to \(\overline{43 \cdot 4^{2}}=1883,56\) as 2 is to 1 very nearly.

Again, in another experiment, the diftances were, With two candles \(=54\) inches. Square \(=2986\)
With one candle \(=3^{8,6} \quad \cdot \quad=14^{89} 96\)

> Upon another trial,

With two candles \(=54,6\) inches. Square \(=29^{91}, 16\) With one candle \(=39,7 \quad . \quad=1576,09\)

And, in the fourth experiment,
With two candles \(=58,4\) irches. Square \(=3410,56\) With one candle \(=42,2 \quad \cdots \quad=1780,84\)

And, taking the mean of the refults of thefe four experiments,

Squares of the Diftances
With two Caadles. With one Candle
in the Experiment \(\mathrm{N}^{\circ}\) 1. 3696,64 - 1883,56 \(\mathrm{N}^{0} 2.2916\) - 1489,96 \(\mathrm{N}^{\circ} 3.2981,16-1576,09\) N० \(4 \cdot 34^{10,56 ~-~ 1780,84 ~}\)
\[
\text { 4). } 13004,36
\]
4) 6730,45

Means 3251,09 and 1682,61 which again are very nearly as 2 to 1 .
With regard to thefe cxperiments, it may be obferved, that were the refiftance of the air to light, or the diminution of the light from the imperfect tranf parency of air, fenfible within the limits of the inconfiderable diflances at which the candles were placed from the photometer, in that cafe the diftance of the
two equal lights united ought to be, to the diltance of Photomev one of them fingle, in a ratio lefs than that of the fquare root of 2 to the fquare root of 1 . For if the intenfity of a light emitted by a luminous body, in a fface raid of all refifance, be diminifhed in the proportion of the fquares of the dillancer, it mulf of neceffity be dimi. nifhed in a ftill ligher 1atio when the light paffes thro' a refifting mediun, or one which is not perfeitly traniparent ; and from the difference of thofe ratios, namely , that of the fquares of the ciffances, and that other higher ratio found by the experiment, the refiftance of the medium might be afcertained. This he took much pains to do with refpect to air, but did not fucceed; the tranfparency of air being fo gitat, that the diminution which light fuffers in paffing through a few inches, or even through feveral feet of it, is not fenfible.

Having found, upon repeated trials, that the light of a lamp, properly trimmed, is incomparably more equal than that of a candle, whofe wick, continually growing longer, renders its light extremely fluctuating, he fub. ftituted lamps to candles in thefe experiments, and made fuch other variations in the manncr of conducting them as he thought bid fair to lead to a difcovery of the refiftance of the air to light, were it poffitle to render that refiltance fenfible within the confined limits of his machinery. But the refults of them, fo far from affording means for afcertaining the refiftance of the air to lighlit, do not even indicate any reffance at all ; on the contrary, it might almoft be inferied, from fome of them, thathe intenfity of the light emitted by a luminous body in air is diminiflyed in a ratio lefs than that of the fquares of the diftances ; but as fuch a conclufion would involve an evident abfurdity, namely, that light moving in air, its abfolute quantity, inlteed of being diminifted, actually goes on to increafe, that conclution can by no means be admitted.

Why not? Theories mult give place to facts; and if this fact can be fairly afcertained, inttead of rejecting the conclufion, we ought certainly to rectify our notions of light, the nature of which we believe no man fully comprehends. Who can take it upon hiin to fay, that the fubftance of light is not latent in the atmofphere, as heat or caloric is now acknowledged to be latent, and that the agency of the formor is not called forth by the paffage of a ray through a portion of air, as the agency of the latter is known to be excited by the combination of oxygen with any combutible fubfance? See Chemistry, nio 293, Suppl.

The ingenious author's experiments all confpired to fhew that the refiftance of the air to light is too inconfiderable to be perceptible, and that the affumed law of the diminution of the intenfity of light may be depended upon with fafety. He admits, however, that means may be found for rendering the air's refittance to light apparent; and he feems to have thought of the very means which occurred for this purpofe to M. de Sauffure.

That eminent philofopher, wifhing to afcertain the tranfparency of the atmofphere, by meafuring the diftances at which determined objects ceafe to be vifible, perceived at once that his end would be attained, if he fhould find objects of which the difappearance might be accurately determined. Accordingly, after many trials, he found that the moment of difappearance can be obferved with much greater accuracy when a black

Z 22
obje \(\mathfrak{C t}\)

\section*{PAR [ \(\quad 364] \quad\) P A R}

Photome objeet is placed on a white ground, than when a white ter. object is placed on a black ground; that the accuracy was ftill greater when the obfervation was made in the fun than in the fhade; and that even a ftill greater degree of accuracy was obtained, when the white fpace furrounding a black circle, was itfelf furrounded by a circle or greund of a dark colour. This laft circumftarice was particularly remarkable, and an obfervation quite new.

If a circle totally black, of about two lines in diameter, be faftened on the middle of a large fleet of paper or pafteboard, and if this paper or pafteboard be placed in fuch a manner as to be expofed fully to the light of the fun, if you then approach it at the diftance of three or four feet, and afterwards gradually recede from it, keeping your cye conftantly dirceted towards the black circle, it will appear always to decreafe in fize the farther you retire from it, and at the diftance of 33 or 34 feet will have the appearance of a point. If you continue ftill to recede, you will fee it again enlarge itfelf; and it will feem to form a kind of cloud, the darknefs of which decreafes more and more according as the circumference becomes enlarged. The cloud will appear ftill to increafe in fize the farther you re. move from it ; but at length it will totally difappear. The moment of the difappearance, however, cannot be accurately afcertained; and the more experiments were repeated the more were the refults different.
M. de Sauffure, having reflected for a long time on the means of remedying this inconveniency, faw clearly, that, as lorg as this cloud took place, mo accuracy could be obtained; and he difcovered that it appeared in confequence of the contraft formed by the white parts which were at the greateft diftance from the black circle. He thence concluded, that if the ground was left white near this circle, and the parts of the pafteboard at the greatef diftance from it were covered with a dark colour, the cloud would no longer be vifible, or at leaft almoft totally difappear.

This conjecture was confirmed by experiment. M. de Sauffure left a white fpace around the black circle equal in breadth to its diameter, by placing a circle of black paper a line in diameter on the middle of a white circle three lines in diamerer, fo that the black circle was only furrounded by a white ring a line in breadth. The whole was pafted upon a green ground. A green colour was choien, becaure it was dark enough to nlake the cloud difappear, and the eafieft to be procured.

The black circle, furrounded in this manner with white on a green ground, difappeared at a much lefs diftance than when it was on a wlite ground of a large fize.

If a perfectly black circle, a line in diameter, be patted on the middle of a white ground expofed to the open light, it may be obferved at the diftance of from 44 to 45 feet; but if this circle be furrounded by a white ring a line in breadth, while the reft of the ground is green, all fight of it is loft at the diftance of only \(15^{\frac{1}{2}}\) feet.
According to thefe principles M. de Sauffure deliweated feveral black circles, the diameters of which increafed in a geometrical progreffion, the exponent of which was \(\frac{3}{2}\). His fmalleft circle was \(\frac{3}{5}\) or 0.2 of a line in diameter; the fecond 0.3 ; the third, 0.45 ; and fo on to the fixteenth, which was 87.527 , or about 7 inches \(3 \frac{1}{2}\) lines. Each of thefe circles was furrounded
by a white ring, the breadth of which was equal to the Photome. diameter of the circle, and the whole was pafted on a green ground.
M. de Sauffure, for his experiments, felected a ftraight road or plain of about 1200 or 1500 feet in circumference, which towards the north was bounded by trees or an afcent. Thofe who repeat them, however, nult pay attention to the following renarks: When a perforn retires backwards, keeping his eye conftantly fixed on the pafteboard, the eye becomes farigurd, and fonn ceafes to perceive the circle; as foon therefore as it ceafes to be diftinguifhable, you muft fuffer your eyes to reft; not, however, by thutting them, for they would when again opened be dazzled by the light, but by turning them gradually to fome lefs illuminated object in the horizon. When you lave done this for about half a minute, and again directed your eyes to the pafteboard, the circle will be again vibible, and you muft continue to recede till it difappear once more. You muft then let your eyes relt a fecond time in order to look at the circle again, and continue in this manner till the circle becomes actually invifible.

If you wifh to fird an accurate expreffion for the want of tranfparency, you muft employ a number of circles, the diameters of which increafe according to a certain progreffion; and a comparifon of the dittances at which they difappear will give the law according to which the tranfparency of the atmofphere decreafes at different diftances. If you wifh to compare the tranfparency of the atmofphere on two days, or in two different places, two circles will be fufficient for the experiment.

According to thefe principles, M. de Sauffure caufed to be prepared a piece of white linen cloth eight feet fquare. In the middle of this fquare he fewed a perfect circle, two feet in diameter, of beautiful black wool; around this circle he left a white ring two feet in breadth, and the reft of the fquare was coveled with pale green. In the like manner, and of the fame materials, he prepared another 〔quare; which was, however, equal to only \(\frac{1}{T^{2}}\) of the fize of the former, fo that each fide of it was 8 inches; the black circle in the middle was two inches in diameter, and the white fpace
around the circle was 2 incles alfo.

If two fuuares of this kind be fufpended vertically and parallel to each other, fo that they may be both ile, luminated in an equal degree by the fun; and if the atmofphere, at the moment when the experiment is made, be perfectly tranfparent, the circle of the large fquare, which is twelve times the fize of the other, mult be feen at twelve times the diftance. In M. de Sauffure's experiments the fmall circle difappeared at the dittance of 314 feet, and the large one at the diftance of 3588 feet, whereas it flould have difappeared at the diftance of 3768. The atmofphere, therefore, was not perfectIy tranfparent. This arofe from the thin vapours which at that time were floating in it. M. de Sauflure, as we have obferved, calls his inftrument a diaphanometer ; but as it anfwers one of the purpofes of a photometer, we truft our readers will not confider this account of it as a digreffion.

To return to Count Rumford. From a number of experiments made with his photometer, he found that, by paffing through a pane of fine, clear, well polifhed glafs, fuch as is commonly made ufe of in the contruction of looking-glaffes, light lofes, 1973 of its whole

\section*{PI A [ 365\(] \quad\) P I A}
quantity, \(i\). \(e\). of the quantity which impinged on the glafs; that when light is made to pafs through two panes of fuch glafs ftanding parallel, but not touching each other, the lofs is, 3184 of the whole; and that in paffing through a very thin, clear, colourlefs pane of window.glafs, the lofs is only, 1263 . Hence he infers, that this apparatus might be very ufefully employed by the optician, to determine the degree of tranfparency of glafs, and direct his choice in the provifion of that important article of his trade. The lofs of light when reflected from the very beft plain glafs mirror, the author afcertained, by five experiments, to be \(\frac{x}{3} d\) of the whole which fell upon the mirror.
piANO forte, otherwife called Forte Prano, a well-known mufical inftrument, of which we need make no apology for confidering the peculiarities with fome attention. If we look on mufic from no higher point of view than as the laborum dulce lenimen, the innocent, the foothing, the chearing fweetener of toil, we muft acknowledge that it is far from being the meaneft of thofe enjoyments with which the Bountiful Father of Men has embellifhed this fcene of our exiftence. But there is a fcience in mufic, independent of that artificial half mathematical doctrine which we have contrived to unite with it, and which really enables us to improve pure mufical pleafure. Hence in the Englifh univerfities degrees are conferred in mufic.
The voice is the original mufical infrument, and all others are but imitations. The voice of man obeys the inpulfe of the heart with wonderful promptitude, and fill more wonderful accuracy. A very coarfe ear is hurt by an error in its tone, amounting to what is called a comma. A very limited voice can execute melodies extending to 12 notes, or an octave and a fifth. The motion of the glottis between thefe extremes does not amount to \(\pi_{r^{\frac{1}{2}} \text { th }}\) of an inch. This mult therefore be divided, by the moft ordinary finger, into more than a thoufand parts; and this muit be done in an inftant, and repeated with rapidity, without ever miftaking one of thefe divifions; and this is done everywhere, and without any feeming effort or thought. The mechanifm of the human organ for effecting this with eafe and precifion is very remarkable, and feems to prove that the Author of our Being meant to give us this pleafure.

When, in the cultivation of this fruit of our own foil, the moderns diffovered the beauties of harmony or confonance, and inftruments of fixed counds were enployed, by means of which thefe beauties could be exhibited in their utmoft riclnefs and variety; and particularly when the organ, that " magic world of found," was invented, the immenfe advantages of the ingenious fpeculations of the ancient Greeks about the divifion of the monochord were now. perceived, and mufic became a deep intellectual ftudy. It fell into the hands of men of letters, and, for a long while, counterpoint occupied all their attention. Inftruments of fixed founds were now made, not only with pipes, but with ftrings, bells, rings, and every thing that could make a noife in tune.

But all thefe inftruments were far inferior to the voice, the fpontaneous gift of Nature, in promptitude, and in the power of obeying every call of fentiment, every degree, as well as every kind of emotion, with which the heart was agitated. The pleafures of harmony, though great, were monotonous, and could
not exprefs the momentary variations of fentiment, which are as fleeting as the light and fhade of a profpect while the dappled clouds fail acrofs the fky. The violin, and a fmall number of the fimple wind inftruments, were found to be the only ones which could fully exprefs thofe momentary gradations of fentiment that give mufic its pathos, and enable it to thrill the very foul.

Attempts were made to remove this defect of the harmonic inftruments, and the swell was added to the organ. The effect was great, and encouraged the artifts to attempt fimilar improvements on other inftruments of the fame kind. This was firft done in the fame way as in the organ. The harpfichord was mut up, like the fwell organ, and was opened by means of pedals when the performer wifhed to enforce the found. But the effect was far inferior to that of the fwell organ ; for this was (at leaft in all great organs) a real addition of another properly felected found: But the tffect of the pectal on the harpfichord could not be miftaken; it was jult like opening the door of a room. where mufic was performing. Other methods were tried with better effect. Unifons were added to each. note, which were brought on either by means of pedals or by another fet of keys.

This method fucceeded perfectly well, and the power of the harpfichord was greatly improved. But fill it was imperfeer, becaufe it was unly the more confiderable changes of force which could be exhibited, and this only in one or two degrees. Other artifts, therefore, attempted to confruct the infrument, fo that the jack 3 (the moveable upright pieces which carry the quills) can be made to approach nearer to the wires, fo that the quills fhall give them a ftronger twang. The mechanifm was fuch, that a very confiderable motion of the pedal produced but a moft minute motion of the quill ; fo that the performer was not reftrieted to the utmof precifion in the degree of preffure. Some of thofe inftruments, when frelh from the hand of the artitt, gave full fatisfaction. But, though made in the moft accurate manner, at an cuormous expence, they very foon become uufit for the purpofe. The hundredth part of an inch, more or lefs, in the place of the quill, will make a great odds in the force of the found. Nor does the fame change of diftance produce an equal alteration of found on different quills. Other inftrument. saakers have therefore tried baked or prepared leather (buffalo hide) in place of quills; and it is found much more uniform in the tone which it produces, and alfo remains longer in the fame flate; but the tone is not fo powerful, nor in general fo much relifhed.

But all thefe contrivances, both in the organ and harpfichord, were fill very deficient. Whatever change they could produce in the flrength of the found, was produced through the whole inftrument, or at leaft through two or three octaves. But the captivating expreffion of mufic frequently refults from the momentary fwelling or foftening of a fingle plirafe, or a fingle note, in one of the parts. Hence arife the unrivalled powers of the harp, and the acknowledged fuperiority of the theorbo, the lute, and even the guitar, over all keyed inftruments, notwichtanding their great limitations in harmony and in practicable melodies. Thefe inftruments fpeak, while the harpfichord only plays.

Many attempts have been made to enable the performer to produce, by the intervention of the key, all the gradations of flrength, and even the varicties of
form, which the finger can bring forth by the different marner of pinching, brufhing, or, as it were, eareffing the ftring ; but we have no diftinct account of any attempt that has fucceeded. Such a thing would quickly fpread over Europe. The compiler of the article Luthier, in the Encyclopedie Methodique, fays a great deal about a harpfichord fitted with prepared buffalo leather inftead of crow quills; and afferts exprefsly, that, by the mere preffure on the key, withouc the affiftance of pedals or flops of any kind, the leather is made to aet with greater or lefs foree on the firing. But he gives no account by which we can comprelend how this is brought about; and indeed he writes in terms which thew plainly that he has not feen the inftrument, and is merely puffing fomething that he does not underftand.

The attempt has been made with more fuccefs on keyed inftruments, when the frings are not pinched, but are rubbed by a wheel or band, in the manner of the vielle (hurdygurdy), or ftruek with a plectrum, like the dulcimer. The celestina (deferibed by Merfennus by the name of archiviola) is of this kind. A fine band of horfe hair or filk, filled with rofin, is extended under the ftrings, and drawn fmoothly along by a wheel. By a particular mechanifm of the keys, this band is made to prefs or rub on any ftring tranfverfely, as the ftrings of a violin are touched by the bow. The preffure on the key regulates the ftrength of the tone. This inftrument is not without confiderable beauties, and will exeeute foft cantabile mufic in eafy modnlation, ,with great expreffion and juftnefs. But the artifts have wot yet been able to give it either clearnefs or brillian. cy of tone, nor fuffieient force for concert mufic, nor that promptitude of touch that is indifpenfably neeerfary for figurative mufic or quick movements.

The fame improvements have been made on the pulfarile inftruments ; and indeed they are here the moft obvious and eafy. When the key is employed merely as the means of caufing a plectrum to give a blow to the ftring, the performer will hardly fail to give that degree of foree whieh he feels proper for his intended expreffion. Aecordingly, many inftruments of this kind have been made in Germany, where the artitts have long been eminent for mechanical knacks. But all their inftruments of the duleimer kind are feeble and fpiritlefs, and none of them have been brought into general .ufe, if we except the clavichord. This is indeed an iintrument of feeble, and not the moft pleafing found; but is well fitted for giving every momentary gradation of ftrength by the preffure of the finger. Is is therefore a good inftrument for forming the mufical tafte by chamber practice, and was much ufed by compofitors in atheir ftudies. It is alfo an ingenious, though feemingly an obvious and fimple eontrivance, and is eapable of mueh more force, and even brilliancy of found, than has generally been given to it.
'I he conflruction is fhortly this. The inner end of the key is furnifhed with an upright pieee, which ter-- minates in an edge of brafs, fomewhat like the end of a narrow blunt chift, whofe line of direction is athwart the flrings. When the; key is prefled down, this edge Atrikes the ftring, and forces it out of the ftraight line in which it is ttretched between its pins. Thus the Atring is fhaken,or jogged into vibration, in the fame manuer as, we obferve a tight rope fet a vibrating by a fudden jark given to any part of it. The ftring, thus
agitated, gives a found, which will continue for fome little time if the key be held down. As the tone depends on the length of the vibating ftring, as well as on its tenfion, it is of importance that the flroke be made on the preeife point of the Ating which termi. nates the proper length. The Aring docs not give the note correfpondi! g to its whole length, but that which is produced by the part between the edge and the pin. And becaufe the parts of the ttring on eaeh fide of the edge are equally thrown into vibration, the fhorter portion of it mult be wrapped up in a lift of eloth, to prevent it frow difturbing the ear by its fonorous vibrations. This, however, greatly diminifhes the fweetnefs of the found giver by the other part.

The clavichord gives a fretful wafpifh kind of found, not at all fuited to tender expreflion. If the bridge (for the end of the key is really a bridge during the found) were plaeed at an exact third of the length of the ftring. and if both parts were free, and if the ftroke be of a proper ftrength, the ftring would found its twelfth with great fweetnefs, and with much more foree and brillianey than it does by the prefent conftruction, and the claviehord would be a charming inftrument for a leffon and for private ftudy. We fay this from experienee of the power of one conftructed under the direetion of the great mathematician Euler, who was alfo an exeellent judge of mufic and mufical compofition. The tones of the upper part of that initrument had a fort of pipe or voeal found, and were fuperior in clearnefs and fweetnefs to any ftringed inftrument we ever heard. But as this conftruction required every ftring to be one half longer than a harpfichord wire of the fame pitch, and as this would have made the inftrument of a moft ineonvenient fize, the baffes were made fhorter, by placing the bridge at one fixth of the length, and loading the florter portion of the Atring with wire twitted round it. But although this was executed by a moft dexteronz artift, the tones were far inferior to thofe of the trebles, and the inftrument was like the junction of a very fine one and a very bad one, and made but hobbling mufic. This was probably owing to the impoffibility of con. necting the metal wire and its cosering wich fufficient clofenets and folidity. An upright claviehord, where the length would be no inconvenience, would be indeed a capital inftrument for muffieal fludy. It is worthy of remark, that Mr Euler tried other divifions of the ftring by the bridge. When it is ftruck preeifely in the middle, it fhould found its octave; when it is ftruek at one-fourth, it fhould give the double octave, . \&c. But the maker found that thefe divifions gave very indififent, and even uncertain tones; fometimes not founding at all, and fometinies founding beautifully. Our readers will find this well explained in a future article of this Supplement, ('Trumpet, Marine). They may pleafe to reflect on the very different tone of the viulin as it is bowed on different parts of the ftring, and on the very different tones of the fore and back unifons, and particularly of the Cornet ftop of the harpfichord. The harpfichords of Rucker are noted for the grand fulnefs of their tone; thofe of Haffe of Dreiden for their mellow fweetnefs, and thofe of Kirkmann of Loudon for therr unequalled brilliancy. Thefe makers differed greatly in the placiug of their quills.

But the Englifh Piano Forte, hy its fuperior force of tone, its adequate fweetnefs, and the great variety of voice of which our artiits have made it fufceptible, has
withdrawn all farther attention from the clavichord, fo that it is no longer probable that the Iearned contribution of the great Euler to public amufement will be followed up. The Piano forte correfponds to its name with great precifion : For, without any other attention or effort than what fentiment fpontaneoully diftates, and what we practife (without knowing it) on the harpfichord, where it is incffectual, we inake the Pianoforte give every gradation of frength to the found of the fltring, and give it every exprefion that an inftrument, purely pulfatile, is capable of. It is alfo fufceptible of a very confiderable variety of tone by the clothing of the mallets, which may be acute or obtufe, hard or foft. A nd we fee, by the effect of what are called the grand Piano fortes, that they are fully equal to the harplichord in fulnefs or body of tone. Nothing feems to be wanting to it but that fliding, or (as the French call it) careffing touch of the ftring, by which a delicate finger, guiced by fine tatte, caufes the harp or lute to melt the heart, and excite its fineft emotions. We truft that the ingenuity of our Britifh artifts will accomplifh even this, and make this national inftrument rival even the violin of Italy.

We call it a national inflru:nent, not doulting but that this is a recommendation to a Britifh heart, and becaufe we are very well affured that it is an Englifh contrivance; the invention of a moft excellent man and clebrated poet, Mr William Mafon. His Caractacns and Elfrida may convince any perfon who is a judge of mutic, that he had a mind exquifitely fenfible of all its charms; and we caunot be furprifed that it was one of his chief delights. No man enjoyed the pleafires of mufic with more rapture; and he ufed to fay, that his foeedieft recruit from the fatigue of a long walk was to fit down for a few minutes to the harpfichore. He had feen feveral of the German attempis to make keyed cuicimers, which were, in fume meafure, fufceptible of the forle and piano: But they were all on one prineiple, an 1 required a particular touch of the finger, of difficult acquitition, and which fpoiled it for harpfichord practice. We have alfo feen of thofe inttruments, fome of very old date, and others of modern improvement. Some had very agreeable tones; but all were deficient in delicacy and juttnefs. The performer was by no means certain of producing the very firength of found that he intended. And, as Mi Mafon obferved, they all required an artificial peculiarity of fingering; without which, either the intended ftrength of tone was not brought out, or the tone was dettroyed by repeated rattling of the mallet on the wire.

Mr Mafon removed all thofe imperfections by detaching the mallet entirely from the key, and giving them a connection quite momentary. The fikecch in Plate XL. will give the reader a clear view of Mr Mafon's general principle by which the Englifh piano forte is diftinguifhed from all others. The parts are reprefented in their flate of inaction. The key ABK turns, as ufual, on the round edge of the bar B , and a pin \(b\), driven into the bar, keeps it in its place. The dot F repeefents a fection of the ftring. ED is the mallee, having a hinge of vellum, by which it is attached to the upper furface of the bar E. At the other end is the head \(D\), of wood, covered with fome folds of prepared leather. The mallet lies in the pofition repreiented in the figure, its lower end refting on a cußhionbar K, which lies hurizontally under the whole row of
mallets. The key AR has a pin C, tipt with a bit of the fofteft cork or buck fkin. This reaches to within \(\frac{1}{2} \frac{1}{2}\) th of an inch of the fhank of the mallet, but muft not touch it. The diftance \(\mathrm{E} e\) is about \(\frac{1}{3} \mathrm{~d}\) or \(\frac{1}{4}\) th of the length of the frank. When the end A of the key is preffed down on the fuffing (two or three thickneffes of the moft elaftic woollen litt) it raifes the mallet, by means of the pin C , to the horizontal pofition \(\mathrm{E} d\), within \(\frac{8}{8}\) th or \(\mathrm{T}^{\prime}\) th th an inch of the wire \(F\); but it caunot be fo much preffed down as to make the mallet touch the wire. At the fame time that the key raifes the mallet by means of the pin C , it alfo lifts off the damper G (a bit of (punge) fiom the wire. This damper is fixed on the end of a lictle wooden pin G \(g\), coinnected with the lever \(g \mathrm{H}\), which has a vellum hinge at H . This motion of the damper is caufed by the pin I, which is fixed into the key near to R. Thefe pieces are fo adjufted, that the firft touch of the key lifts the damper, and, immediately after, the pin C acts on the fhank of the mallet. As it acts fo near to its centre of motion, it caufes the head D to move brikly through a confiderable arch D d. Being made extremely moveable, and very light, it is thus tofled beyond the horizontal pofirtion Ed, and it Itrikes the wire F, which is now at liberty to vibrate up and down, by the previous removal of the damper G. Having made its ftroke, the mallet falls down again, and refts on the foft fubflance on the pin C. It is of effential importance that this mallet be extemely- light. Were it heavy, it would have fo much force, after rebounding froin the wire, that it would rebound again from the pin C, and again ftrike the wire. For it will be recollected, that the key is, at this time, down, and the pin C raifed as high â poffile, fo that there is very little roum for this rebound. Leffening the momentum of the mallet by making it very light, making the cuftion on the top of the pin C very foft , and great precifion in the fhape and figure of all the parts, are the only fecurities againit the difagreable ratting which thefe rebounds would occation. In refpect to the folidity and precifion of workmanflip, the !ritifin inftruments are unrivalled, and vait numbers of them are fent to all parts of the continent.

As the blow of fo light a mallet cannot bring much found from a wire, it has always been found neeceltary to have two trings for each note. Another circum!lance contributes to enfeeble the found. Tlue mechanifm neceflary for producing it makes it almolt impoffible to give any contiderable extent to the belly or found board of the inttument. There is feidomany more of it than what occupies the fpace between thic tuning pins and the bridge. 'This is the more to bo regretted, becaufe the baffes are commoniy corercel flining, that they may be of a moderate length. The bafs notes are alfo of brafs, which has a confiderahly lower tone than a fleel wive of the fame diameter an:d tenfion. Yet evern this fubflitution for theel in the bafs Atrings is not enough. I' he higheit of them are much too tlack, and the loweft ones muft be loaded, to compenlate for want of length. This greatly ciminithes the fulnefs, and ftill more the mellownefs and ditinetnefs of the tone, and fiequently makes the very lowett notes hardly appreciable. Hhis inequality of tone about the middle of the inftrument is fomewhat diminithed by conflracting the infrument with two bridges; one for the feel, and the other fo: the brafs wi:ts. But fill

Piano
Forte.

\section*{\(P\) LIA}

Pigments, the bafa notes are very much inferior to the treble. It Pitch. would furely be worth while to conftruct fome piano
fortes, of fill fize, wit
made forte, regul hey would furpafs all other inftruments for the regulating power of their thorough bals. We wifh that
the artifts would alfo try to conftruct them with the mechanifm of mallets, \&c. above the found board. This would allow to it the full extent of the inftrument, and greatly improve the tone. It docs not feem impoffible, nor (we think) very difficult.
For directions how to tune this pleafing inftrument, fee Temperament in this Supplement.

PIGMENTS, or Paints, are furnifhed by both the mineral and vegetable kingdoms. The former are the moit durable, and are generally prepared from the Oxyds of metals (fee Chemistry Index in this Suppl. and Colour-Making, Encycl.); but Fourcroy thinks that chemiftry furnifhes a metlod of Exing vegctable colours completely. From a number of experiments, which we need not detail, as they will be noticed in the article Vigetable Substances, he draws the following conclufions:
1. That oxygen, when combined with vegetable fubfances, changes their colour.
2. That different proportions of this principle produce different thades in coloured vegetable matter.
3. That thefe fhades pafs, by a fort of degradation, from the darkeft colours to thie lighteft; and that the extreme point of the latter may be confidered as a complete deprivation of colour.
4. That in many vegetable fubftances this degrada. tion does not take place, as M. Berthollet has obferwed.
5. That many red, violet, purple, chefnut, and blue vegetable colours, are produced by different proportions of oxygen ; but that none of thefe are completely fatusated with this principle.
6. That the complete faturation here fpoken of generally produces yellow colours, which are the leaft changeable of all.
7. That vegetable fubftances coloured by oxygen, not only change their colour according to the proportion of oxygen they have imbibed, but that they alfo change their nature in the fame proportion, and approach more to a refinous fate as they become nearer to a yellow colour.

Lafly, that the caufe of the changeability of the red, brown, and violet colours, procured from vegetables, is fuch as has been flated above; that there exifts a method of fixing them, or rendeting them permanent, by impregnating them with a certain quantity of oxygen, by means of the oxygenated muriatic acid; imitating, by this procefs, the method purfued by nature, who never forms fixed and permanent colours, except in fubflances which have been long expufed to the open air.

PITCH. See Encycl. - The beft black pitch is made of the refufe of rofin and turpentine, fuch as will not pafs through the ftraw filter, and the cuttings around the incifion on the tree. Thefe materials are
put into a boiler fix or feven feet in circumference, and eight or ten high. Fuel is laid around the top, and the materials as they melt flow through a channel cut in the fire-place into a tub half filled with wate:. It is at that time very red, and almoft liquid. To give this a proper confiftence, it is put in a cauldron placed in a furnace, and boiled down in the fame manner as rofin, but it requires much lefs precaution and double the time. It is then poured into moulds of earth, and forms the beft kind of black pitch. See Rosin and Turpentine in this Suppl.

Bastard PITCH, is a mixture of colophony, black pitch, and tar. 'They are boiled down together, and put into barrels of pine wood, forming, when the ingredients are mixed in equal portions, a fubftance of a very liquid confintence, called in France bray gras. If, on the contrary, it is defired of a thicker confiteence, a greater proportion of colophony is added, and it is caft in moulds. It is then called bugfard pitch.
PLAGUE (fee Medicine-Index, Encycl.), is a difeafe which has been lately afferted by Dr Mofeley to be not contagious. In fupport of this opinion, he quotes many paflages from medical writers, ancient and modern ; but he feems to place the greatelt confidence (as is indeed natural) in his own obfervations on peftilential fevers in the Weft Indies, and on what is faid of the plague in Berthier's account of Buonaparte's expedition into Syria.
"At the time of our entry into Syria (fays this Frenchman), all the towns were infected by the plague; a malady which ignorance and barbarity render fo fatal in the Eaft. Thofe who are affected by it give themfelves up for dead : they are immediately abandoned by every body ( \(\Delta\) ), and are left to die, when they might have been faved by medicine and attention.
" Citizen Degenettes, principal phyfician to the army, difplayed a courage and character which entitle him to the national gratitude. When our foldiers were attacked by the leatt fever, it was fuppofed that they had caught the plague, and thefe maladies were confounded. The fever hofpitals were abandoned by the officers of health and their attendants. Citizen Degenettes repaired in perfon to the hofpitals, vifited all the patients, felt the glandular fwellings, dreffed them, declared and maintained that the difteraper was not the plague, but a malignant fever with glandular fwellings, which might eafily be cured by attention, and keeping the patient's mind eafy."
Degerette's views in making this diffinction were highly commendable; but certainly, fays Dr Mofeley, this fever was the plague. The phyfician, however, carried his courage fo far, as to make two incifions, and to inoculate the fuppurated matter from one of thefe buboes above his brealt and under hio arm-pits, but was not affected with the malady. He thus eafed the minds of the foldiers, the firlt flep to a cure; and, by his affiduity and conftant attendance in the hofpitals, a number of men attacked with the plague were cured. His example was followed by other officers of health.
The lives of a number of men Citizen Degenettes
(A) This can hardly be true. Every one knows that Mahometans are fatalifts in the fricteft fenfe of the word ; and Mr Browne, whofe knowledge of Syria and its inhabitants mult be at leaft equal to that of Berthier, affures us, that, far from abandoning his friend in the plague, "the Moflem, awe-Atruck, and refigned to the unalterable decrees of fate, hangs over the couch of his expiring relative."

\section*{\([369] \quad\) P L A}
was thus inftrumental of faving. He difmiffed thofe who had been ill with the fever and buboes, without the leaft contagion being communicated to the army.
"There are (fays Dr Mofeley) annual or feafonal diforders, more or lefs fevere, in all countries ; but the plague, and other great depopulating epidemics, do not always obey the feafons of the year. Like comets, their courfe is eccentric. They have their revolutions; but from whence they come, or whither they go after they have made their revolutions, no mortal can tell.
"To look for the caufe of an epidemic in the prefent flate of the air, or weather, when it makes its appearance, is a very narrow contracted methocl of fcrutiny. The caufe of pettilential epidemics cannnot be confined, and local. It mult lie in the atmofphere, which furrounds, and is in contact with every part of vo; and in which we are immerfed, as bodies in fluids.
"Thefe difeafes not appeating in villages and thinly inhabited places, and generally attacking only great towns and cities, may be, that the atmofphere, which I conceive to be the univerfal propagator of peftilence, wants a commixture, or union, with fome compounded and pecular air, fuch as is generated in populons communities, to releafe its imprifoned virulence, and give it force. Like the divided feminal principles of many plants, concealed in winds and rains until they find friitable materials and foil to unite their feparated atoms, they then affume vifible forms in their own proper vegetation:
"Difeafes originating in the atmofphere feize forme, and pafs by others ; and act exclufively on bodies graduated to receive their imprefions; otherwife whole nations would be deftroyed. In fome conllitutions of the body the accefs is eafy, in fome difficult, and in others impoffible.
"The air of confined places may be fo vitiated as to be unfit for the purpofes of the healthy exiftence of any perfon. Hence gaol, hofpital, and fhip fevers. But as thefe diftempers are the offspring of a local caufe, that local caufe, and not the diftempered people, communicate the difeafe.
"Plagues and peftilences, the produce of the great atmofphere, are conveyed in the fame manner, by the body being in contact with the caufe; and not by its being in contact with the effect. If perilences were propagated by contagion, from infected perfons, the infection mult iffue from their breath or excrements, or from the exhalations of the bodies of the difeafed. The infection, if it were not in the atmofpliere, would be confined within very narrow limits; have a determinate fphere of action; and none but pliyficians and attendants on the fick would fuffer; and thefe mult fuf. fer; and the caufe and the effects would be palpable to our fenfes. Upon this sround the precaution of quarantine would be rational. But who then would vift and attend the fick, or coald live in hofpitals, prifon3, and lazarettos?"

From thefe reafonings and facts, the author is convinced, that the bubo and carbuncle, of which we hear fo much in Turkey, and read fo much in our own hiftory of plagues, arife from heating food and improper treatment ; that they contain no infection; and confequently that they are not the natural depolit of the morbific virus feparated from the contagion.
He is equally conficent that no peftilential or pandemic fever was ever imported or exported; and hence Suppl. Vol. II. Part I.
he confiders the fumigating of fhip.letters, and fhutting up the crews and pafiengers of voffels, on their arrival from foreign places, feveral weeks, for fear they fhouid give difeafes to others which they have not themfelves, as an ignorant barbarous cuitom. Whence was the im portation of the plague at Naples in 1656 ; by which 20,000 people died in one day? Can any perfon, for a moment reflectirg, believe, that the great plague of London in \(166_{5}\), which imagination traced from the Levant to Holland, and from Holland to England, was caufed by opening a bag of cotton in the city, or in I.ong Acre; or a package of hemp in St Giles's parifh? Quarantine, always expenlive to commerce, and often ruinous to individuals, is a reflection on the good fenfe of countrics.

That D: Mofeley is a man of learning, and a lively writer, is known to every one who has looked into his works, and is not himfelf a Itranger to letters. On this account, and ftill more on account of the onportunities which he has poffeffed of making accurate obfervations on various kinds of peflilential dileafes, we have detailed at fome length his notions of the plague; but as it does not apnear that he ever fow the difeafe which is know'n by the name of the plague, jultice requires that we give fome account of it from a man who !ad the bell poffible opportunities of obtaining correct information on the fubject.
"The facts that appenr to be chiefly afcertained relative to the plague (lays Mr Browne), are, 1. 'I'liat the infection is not received but by actual contact. In this particular, it would feem lefs formidable than feveral orther diforders. 2. That it is communicated by certain fubftances, by others not; as by a woolien cloth, or rope of hemp, but not by a piece of ivory, wood, or a rope made of the date tree; nor by any thing that has been completely iminerfed in water. It wonld appear from the report of the Kahirines*, that no animal * The inbut man is affected with this diforder; thongh, it ishahitants faid, a cat paffing from an infected houfe las carried of Cairo, the contagion. 3. 'Tlat perfons have often remained whinh Mrio together in the fame houfe, and entirely under the iame form'y calls circumiftances, of whom one las been attacked and died, Kabira. and the others never felt the fmallelt inconvenience. 4. That a perfon may be affected any number of timies. 5. That it is more fatal to the young than thee old. 6. That no climate appears to be exempt from it ; yet, 7. That the extremes of lieat and cold both appear to be adverfe to it. In Conftantinople it is often, but far from being always, terminated by the cold of winter, and in Kalira by the heat of fummer; both circumftances being, as may be conjectured, the effect of indifpofition for abforption in the fkin, unlefs it be fuppofed that in the latter cafe it may be attributed to the change the air undergoes from the increafe of the Nile.
"The firft fymptoms are faid to be thirft ; 2. cephalalgia; 3. a ftiff and uneafy fenfation, with redneis and tumor about the eyes; 4. watering of the eyes : 5. White puftules on the tongue 'The more advanced fymptoms of buboes, foetor of the breath, scc. \&cc. are well known ; and I have nothing authentic to add to them. Not uncommonly, all thefe lave fucceflively fhewn themfelves, yet the patient has recovered; in which cafe, where fuppuration has had place, the fkin always remains difcoloured, commonly of a purple hue. Many who have been bleeded in an early flage of the

3 A
diforder, but whether from that or any other caufe, does not appear certain ( \(\beta\) ). The fame operation is reported to have been commonly fatal in a late ftage. It is faid that embrocating the buboes continually with oil has fometimes wrought a cure; but this remedy is fo difflcult and dangerous for the operator, that it would appear experiments muft yet be very defective."

They are not, perhaps, fo defective as Mr Browne fnppofes. In the hofpital of St Allthony at Smyrna, it has been the practice for many years paft to rub over with warm olive oil the bodies of perfons infected by the plague ; and that practice has been attended with wonderful fuccefs. It was firft fuggefted by Mr Baldwin the Englifh conful; and fiom him adopted by P. Luigi di Pavia, who for upwards of 27 years has expofed himfelf to infection by his unremitting attendance on thofe who are labouring under this dreadful diftrefs. This excellent man, whofe philanthropy equals that even of "Marfeilles" good bifhop," declares, that during the long period mentioned, he has found no remedy comparable to that of rubbing olive oil, with the ftrongeft friction, into the whole body of the infected perfon. When the body is thus rubhed, the pores being opened, imbibe the oil, and a profufe perfpiration takes place, by which the poifonous infection is again thrown out. This operation mult be performed the firft day of the infection; and if only a weak perfpirarion enfues, it mult be repeated till it is obferved that every particle of infection is removed, and that the whole body of the patient is covered with a profufe fweat. Neither the patient's fhirt nor bed-clothes mult be changed till the perfpiration has entirely ceafed. The operation muft be performed in a very clofe apartment; and at every feafon of the year there mult be kept in it a fire-pan, over which fugar and juniper muft be thrown from time to time, that the vapour which thence arifes may promote the perfpiration. The whole body of the patient, the eyes alone excepted, mult in this manner be anointed, or rather rubbed over with the greatelt care.

This practice of the pious monk is mentioned by Mr Howard in his work on Lazarettos; but a more facisfactory account of it is given by Count Leopold von Berchtold, who adds the following remarks by way of illuftration: 1. The operation of rubbing in the oil
muit be performed by means of a fpouge, and fo fpeedi. Plague. ly as not to laft more than about three minutes. 2. The interval between the firft and the fecond rubbirg, if a fecond be neceffary, mutt be determined by circumitances, as the fecond muit not be performed till the firlt perfpiration is over, and this will depend on the conflitution of the patient. If any fweat remains upon the Inin, it mult be wiped off with a warin cloth before the fecond rubbing takes place. This ftrong friction with oil may be continued, for feveral days fucceffively, until a favourable change is remarked in the difeafe; after which the rubbing may be performed in a more gentle manner. The quantity of oil requifite each time cannot be determined with accuracy ; but, in general, a pound may be fufficient. The purelt and frelhelt oil is the beft for this operation: it muft not be hot, but only lukewarm. The brealt and privities mult be rubbed foftly. In a cold climate fuch as ours, thofe parts only into which the oil is rubbed mult be expofed naked. The other parts muft be covered with warm clothing. In this manner each part of the body muft be rubbed with oil in fucceffion, as quickly as poffible, and be then inftantly covered. If the patient has boils or buboes, they muft be rubbed over cently with the oil till they can be brought to fuppurate by means of emollient pla fters. The perfons who attend the patients to rub in the oil mult take the precaution to rub themfelves over in the like manner, before they engage in the opera. tion. 'Ihey must, if poffible, avoid the breath of the patient, and not be under any apprehenfions of catchang the infection.
P. Luigi then fays: "In order to prevent the patients from lofing their ftrength, I prefcribed for them, during four or five days, foup nuade of vermicelli boiled in viregar without falt. I gave them fix or feven times a-day a fmall fpoonful of preferved four cherries ; preServed not with honey, but with fugar, as the former might have occationed a diarrhoca. When convinced that the patients were getting better, I ufually gave them the fifth morning a cup of good Mocha coffee, with a piece of toafted bifcuit (bifiolto) prepared with fugar; and I doubled the latter according to the Arength and improvement of my patients."

In the courfe of five years, during which friction with oil was employed in the hofpital at Smyrna, of 2 jo perfons attacked by the plagie the greater pait
(B) Dr Mofeley, we think, has affigned a very fufficient reafon why bleeding fhould generally prove effectual, if recourfe be had to it at the commencement of the difeafe. "In the cornmon order of peftilential fevers. (faya, he), they commence with coldnefs and fhivering; fimply demonfrating, that fomething unufual has been in contatt with the fikin, agonizing cutaneous fenfibility. Sicknefs at the ftomach, and an immoveable preffure about the precordia, follow. Thefe demonitrate, that the blood cannot pervade the extremities of the body, and that the quantity which ought to dilate through the whole machine is confined to the larger organs, and is crowding and diftending the heart and central veffels.
"The reftraining power of the remoter blood vefels being deftroyed, the thinner parts of the blood efcape their boundaries; hence arifes yellownefs in the flin in fome climates; in others, the extravafated grofer parts of the blood fagnate, forming black lodgements, bubo, anthrax, and exanthemata.
"The object in thefe fevers is, to decide the conteft between the folids and the fluids; and this appears to me to be only practicable, when fpontaneous fweats do rot happily appear, or cannot be raifed by a cooling regimen; and by draining the vital parts, by bleeding and purging, before the fiuids have burft their confues, and diffolved their bond of union with the folids. The next ftep is to regain the loft energy of the furface of the body, by exciting perfpiration; and then of the whole fyltem, by tonics.
"When thefe things are not done in the firt hours of attack, in pefilential fevers, and the conffict is not \(c x\) tinguifbed at once attempting to extort fweats from the body, by heating alexaphramics, will do mifchicf; and bark, wine, fimulants, and cordials, may be called on, like undertakers, to perform an ufelefs ceremony."

Plague, were cured ; and this would have been the cafe with Plants. the reft had they not neglected the operation, or had it not been employed too late after their nervous fyltem had been weakened by the difeafe fo as to render them incurable. Inmenfe mumbers of people have been preferved from the effects of this malady by the above means; and of all thofe who have anointed themfelves with oil, and rubbed it well into their bodies, not one has been attacked by the plague, even though they ap. proached perfons already infeeted, provided they abfained from heavy and indigeftible food.

Thus we fee, if this account may be depended on, that oil rubbed into the fkin acts as a preventative, as well as a cure. When the operation is performed to prevent infection, and it is fuccefsfully performed with that view at Smyrna, as often as the plague makes its appearance in the city, as it is not done for the purpole of promoting perfpiration, it is not requifite that it fhould be performed with the fame fpeed as when for curing the diforder; nor is it neceffary to abftain from flefh and to ufe foups; but it will be proper to ufe only fowls or veal for ten or twelve days, boiled or roafted, without any addition or feafoning (condimento). In the laft place, it will be neceffary to guard againft fat and indigettible food, and fuch liquors as might put in motion or inflame the mafs of the blood.

This important difcovery deferves the ferious confideration of all medical men; for if olive oil has been found efficacious in curing or preferving againft one fpecies of infection, it is not abfurd to fuppofe that the fame or other kinds of oil might be productive of much benefit in other malignant infectious difeafes. We hope foon to hear of fome trial being made with it in this country. Would it be of any fervice in the yellow fever, fo prevalent in the weftern world? See the PbiloSophical Magazine, Vol. II.

PLANETARY Hours, are twelfth parts of the artificial day and night; being each double in length to the hour ufed in civil computation in Europe. They are ftill ufed by the Jews as they were among their forefathers; and hence are called \(\mathcal{F}\) ewi \(i / b\) hours. The reafon of their being called planetary hours, is, thar, according to the aftrologers, a new planet comes to predominate every hour, and that the day takes its denomination fiom that which predominates the firft hour of it; as Monday from the moon, \&c.

PLANTS, organifed bodies, of which a full account has been given in the Encycl. under the title Botany, Plant, Sexes, Ecc. T'he eftablifhment of the fexual fyttem in vegetable, and the acknowledged analogy between vegetable and animal bodies, has fuggetted a method of improving plants, as animals are confeffedly improved, by what is called crofing the breed. This thought occurred firt, we believe, to Andrew Knight, Efq; and in the Tranfactions of the Royal Society for 1799, we have an account of fome very curious experiments made by him, with the view of afcertaining whether the improvement which he had conceived be actually practicable. Thofe were chiefly made on the garden pea, of which he had a kind growing in his yard; which having been long cultivated in the fame foil, had ceafed to be productive, and did not appear to recover the whole of its former vigour when removed to a foil of a formewhat different quality. On this his firt experiment in 1787 was made. Having opened a dozen of its immature blofioms, he deftroyed the male
parts, taking great care not to injure the female ones ; and a few days afterwards, when the bloffoms appeared mature, he introduced the farina of a very large and luxuriant grey pea into one half of the bloffoms, leaving the other half as they were. The pods of each grew equally well; but he foon perceived that of thofe into whofe bloffoms the farina had not been introduced, the feed remained nearly as they were before the bloffom expanded, and in that fate they withered. 'Thofe in the other pods attained maturity, but were not in any fenlible degree different from thofe afforded by other plants of the fame variety; owing, he imagines, to the external covering of the feed (as he had found in other plants) being furnifhed entirely by the female. In the fucceeding ipring, the difference, however, became extremely obvious; for the plants from them arofe with exceffive luxuriance, and the colour of their leaves and ftems clearly indicated that they had all exchanged their whitenefs for the colour of the male parent : the feeds produced in autumn were dark grey. By introducing the farina of another white variety (or in fome inftances by fimple culture), he found this colour was eafily difcharged, and a numerous variety of new kinds produced; many of which were in fize and every other refpect much fuperior to the original white kind, and grew with exceffive luxuriance, fome of them attaining the height of more than twelve feet.

The diffimilanity he obferved in the offspring, afforded by different kinds of farina in thefe experiments, pointed out to him an eafy method of afcertaining whether fuperfoetation (the exiftence of which has been admitted among animals) could alfo take place in the vegetable world. For as the offspring of a white pea is always white, unlefs the farina of a coloured kind be introduced into the bloffom, and as the colour of the grey one is always transferred to its offspring, though the female be white, it readily occurred to Mr Knight, that if the farina of both were mingled or applied at the fame moment, the offspring of each could be eafily diftinguifhed.

His firft experiment was not altogether fuccefsful ; for the offspring of five pods (the whole which efcaped the birds) received their colour from the coloured male. There was, however, a ftrong refemblance to the other male in the growth and character of more than one of the plants; and the feeds of feveral in the autumn very clofely refembled it in every thing but colour. In this experiment he ufed the farina of a white pea, which poffeffed the remarkable property of fhrivelling exceffively when ripe; and in the fecond year he obtained white feeds from the grey ones above mentioned, perfectly fimilar to it. He is therefose ftrongly difpofed to believe that the feeds were here of common paren. tage ; but doth not conceive himflif to be in poffeffion of facts fufficient to enable him to fpeak with decifion on this queftion. We have no right to form a decided opinion on this part of the fubject, having paid to it very little attention ; but at preient we are inclined to think differently from the author. We admit, indeed, that if the female afford the firlt organized atom, and the male act only as a ftimulus, it is by no means impoffible that the explofion of two veficles of farina, at the fame moment (taken fiom different plants), may afford feeds of common parentage; but whether the female or the male affords the firit organized atom, is the queftion which to us appears not yet decided.

Another

Another \{pecies, however, of fuperfectation, in which one feed appears to have been the offspring of two males, has occurred to Mr Knight fo often, as to remove, he fays, all poffibility of donbt as to its exifence. In 1797, the year after he had feen the refuilt of the laft mentioned experiment, having prepared a great many white bloffons, he iutroduced the farina of a white and that of a grey nearly at the fame moment into each ; and as in the laft year the character of the coloured male had prevailed, he ufed its farina more fparingly than that of the whitc one; and now almoft every pord afforded plants of different colours. The majority, lowever, were white; but the characters of the two kinds were not fufficiently diffinct to allow him to judge with precifion whether any of the feeds were produced of common parentage or not. In the year 1798 he was more fortunate; having prepared blof. foms of the little early frame pea, he introduced its own farina, and immediately afterwards that of a very large and late grey kind, and fowed the feeds thus obtairied in the end of furrmer. Many of them retained the co. lour and character of the fmall carly pea, not in the flighteft degree altered, and bloffomed before they were tighteen inches high; whillt others (taken from the fame pods), whofe colour was changed, grew to the hicight of more than four feet, and were killed by the frott before any bloffoms appeared.
It is evident, that in thefe inflances fuperfoetation took place; and it is equally evident that the feeds were not all of common parentage. Should fubfequent experience evince, that a fingle plant msy be the offfpring of two males, the analogy between animal and vegetable nature may induce fome curious conjectures relative to the procefs of generation in the animal world.-It certainly may ; but either we do not perfectly underfand the author's meaning, or this experiment is not conclutive. There were here feeds of different colours produced by the farina of different males, operating on the fame femele plant; and there are well attefted inftances of \(t\) win children being born of different colours, in confequence of the coition of different males, a negro and a white man, with the fame woman. Had Mr Knight difcovered, not that the fame pod, but that the fame individual pea, was the offspring of tivo makes, his difcovery would indeed have led to fone curious conjectures refpecting animal generation. But to proceed with his experiments :

By introducing the fatina of the largelt and moft luxuriant kinds into the bloffoms of the moft diminutive, and by reverfing this procefs, he found that the powers of the male and female, in their cffects on the offspring, are exaetly equal. T'he vigour of the growth, the fize of the feeds produced, and the feafon of maturity, were the fame, though the one was a very early and the other a late variecy. He had in this experiment a friking infance of the flimulative effects of croffing the breeds; for the fmalleft variety, whofe height rarely exceeced two feet, was increafed to fix feet; whilf the height of the large and luxuriant kind was very little diminifhed. By this procefs it is evident, that any number of new varieties may be obtained; and it is highly probable, that many of thefe will be found better calculated to correct the defects of different foils and fituations than any we have at prefent.

The fuccefs of Mr Knight's experiments on the pea induced him to make fimilar experiments on wheat;
but thefe did not anfwer his expectations. The varieties indeed which he obtained, efcaped the blights of 1795 and 1796; but their qualities were not otherwife good, nor werc they permanent. His experiments on the apple, the improvement of which was the firtt objees of his attention, have, as far as he could judge from the cultivated appearance of trees which had not borne fruit when he wrote his inemoir, been fully equal to his liopes. The plants which he obtained from his efforts to unite the good qualities of two kinds of apple, fcem to. poffefs the greateft health and huxuriance of growth, as well as the mott promifing appearance in other refpects. In fome of thefe the character of the male appears to prevail; in others that of the female ; and in others both appear blended, or neither is dittin. guihable. Thcfe variations, which were often oblervable in the feeds taken from a fingle apple, evidently arife from the want of permanence in the chaacter of this fruit, when raifed from feed. Many experiments of the fame kind were tried on other plants; but it is fufficient to fay, that all tended to cevince, that improved varieties of every fruit and of efeulent plants may be obtained by this procefs, and that Nature intended that a fexual intercourte fhould take place between neighbouring plants of the fame fpecies.
\(P_{\text {LAA'TS, }}\), Nutrition of'. 'This is a fubject on which a variety of opinions has been entertained by modern chemifts. Haflenfratz confiders carbon as the fubflance which nourifhes vegetables. Ingenhouz, in his work. on the nutrition of plants, publithed in 1797, endea. vours to prove, that if carbon has any influence in this refpect, it can be only in the ttate of carbonic acid, as that acid is abforbed and decompofed by vegetables; while the ligneous carbon, furnithed by Nature, produces no effect on the expanfion of plants. Mr A. Young. has cideavoured to demouftrate the fame thing by ex. periments. M. Rafn, a Danifh chemift, decirous of difcovering the truth amidit thefe contradictory opinions, made, for three years, a teries of experiments; from which he concludes, by the expanfion, tize, and colour of the plants employed, that carbon, either vegetable or animal, has a decided influence in the nourithment of vegetables. What is new, and particulanly worthy of remark in thefe refearches, is, that, according to M. Rafu, the carbonic acic produces cxactly the fame effect as charcoal of wood.

According to Mr Rafn, coal aftes, on which the German and Enghith farners beftow fueh praili, deftroy the plants it the foil contzins an cighth part of that admisture. The leaves become faded, as if 1corched, at the end of from fifteen to twenty days, and the plants themfelves die at the end of four or five weeks.

No feed germinates in oil, A fingle grain of common falt, in 200 grains of water, is fufficient to retard the vegetation of plants, and may even kill them if they are watered with that faline liquor.

Shavings of horn, next to infufion animats, are the moft favourable to vegetation: charcoal holds the third rank. For the truth of thefe opinions, fee Vegetabie Substances in this Suppl.
platinum, or Platina (See Chemistry, Suppl. Part I. Chap. iii. Sect. 3.), is a metal, of which every chemitt regrets the difficulty of making it malleable. Of the different procefies adopted to accomplifh this end, we have reafon to believe that of Mr Richard Knight the molt fuccefsful; aud, with the
fpiris

\section*{P O L}
[ 373 ]
fpirit of a true philofopher, he wifhes to make that procefs as generally known as poffible. We fhall give it in his own words:
"To a given quantity of crude platinum, I add (fays he) 15 times its weight of nitro-muriatic acid (compofed of equal parts of nitric and muriatic acids) in a tubulated glafs retort, with a tubulated receiver adapted to it. It is then boiled, by means of an 4 rgand's lamp, till the acid has affumed a deep faffron colons: it is then poin ed off; and if any platina remains undifolved, more acid is added, and it is again boiled until the whole is taken up. The liquor, being fuffered to reft till quite clear, is again decanted: a folution of falammoniac is then added, by little and little, till it no longer gives a cloudinefs. By this means the platina is thrown down in the form of a lemon-coloured precipitate, which having fubfided, the liquor is poured off, and the precipitate repeatedly wahted with difilled water till it ceafes to give an acid talte (too much water is injurious, the precipitate being in a certain degree foluble in that liquid); the water is then poured off, and the precipitate crapurated to drynefs.,"

Thus far our anthor's method, as he candidly ob. furves himelf, differs not from that which las been followed by many others ; but the remainder of the proceff is his own. "A frong, hollow, inverted cone of crucible earth being procured, with a correfponding flopper to fit it, made of the fame materials, the point of the latter is cut off about three-fourths from the bafe. The platina, now in the flate of a light yellow powder, is preffed tight into the cone, and, a cover being fixed flightuly on, it is placed in an air- furnace, and the fire raifed gradually to a frong white heat. (The furrace ufed by Mr Knight is portable, with a chamber for the fire only eight inches in diameter.) In the mean time the conical flopper, fixed in a pair of iron tongs fuitab'e for the purpofe, is brought to a red, or to a bright red, heat. The cover being then removed from the cone, the tongs with the heated flopper is introduced through a hole in the cover of the funace, and prefled at firt genily on the pla. tina, at this time in a flate nearly as foft as dough, till it at length acquires a more folid confiftence. It is then repeatedly ftruck with the flopper, as hard as the nature of the materials will admit, till it appears to receive no farther imprefion. The cone is then removed from the furrace; and being ftruck lightity with a hammer, the platina falls out in a metalicic button, from which face it may be drawn, by repeatedly heating and gently hammering, into a bar fit for flatting, dawing sitto wire, planifining, \&c.
". 13 fides the comparative facility of this procefs, it has the farther advantage of rendering the platina much purer than when red. hot iron is obliged to be lad recourfe to; for platina, when of a white heat, has a ftrong affinity for iron, and, with whatever care it may have been previounfy feparated from that metal, will be found to have taken up a portion of it, when it is employed of a red heat, to ferve to unite the particles of the platina."
platonic Bodies, fee Regular Bodies, Suppl.
PLUVIAMETER, a machine for meafuring the quantity of rain that falls, otherwife called \(\mathrm{Ombrome-}^{\text {a }}\) mer; which fee, Encyd.

POLLARDS, the name of a coarfe kind of wheaten Aour. When the flour of wheat is feparated into three
degrees of finenefs, the third is the pollards. There is nothing between it and the bran.

PORCEIAIN, a kind of earthen or flone ware, of the manufacture of which a full account is given in the Encyclopadia from Grofier and Reaumur. It may be proper, however, to add here, from sir George Staunton, that one of the principal in iredients in the Chinefe porcelain called pe-tun-ffe, is a fpecies of fine granite, or compound of quartz, feldfpath, and mica, in which the quartz bears the largett proportion. "It appears (fays \(\operatorname{sir}\) George) from feveral experiments, that fe-tun-tfe is the fane as the growan -ftone of the Cornift miners. The nicaceous part in forme of this granite from both countries, often contains fome partictes of iron ; in which cafe it will not anfwer the potter's purpole. This material can be calcined and ground much finer by the improved mills of Eugland, than by the very imperfect machinery of the Clinefe, and at a cheaper rate, than the prepared pe-turnofe of their own country, notwithfanding the cheapnefs of labour there. The kno-lin, or principal matter mix \(=1\) with the perturtfe, is the growan clay alfo of the Cornifh miners. The w.ba.joe of the clinefe is the Eriglifh foap rock; and the Jbe ken is aflerted to be gypfun.
"The manufacture of porcelain is faid to be precalious, from the want of fome precife metlod of afcertaining and regulating the lieat within the furnaces, in confequence of which, their whole contents are baked fometimes into one folid and ufelefe mafs." lif this be fo, Wedgewood's thermoineter would be a prefent higluly valuable to the Chincfe potter, if that arregant and conceited people wonld condefcend to be taught by a native of Europe.

POSITION, Centre of, is a point of any body, or fyRtem of bodies, fo felected, that we can eftinase with propriety the fituation and motion of the body or fy ftem by the fituation and motion of this point. It is very plain that, in all our attempts to accurate difcuffion of mechanical quefions, efpecially in the prefent extended fenfe of the word mechbanijm, fuch a fecections is neceffary. Even in common converfation, we frequently find it neceflary to afcertain the diftance of ob. jects with a certain precifion, and we then perceive that we mult make fome fuch felection. We conceive the diftance to be mentioned, neither with relpett to the neare?, nor the remotett point of the object, but as a. fort of average diftance; and weconceive the point fo af. certained to be fomewlerte about the middle of the object. The more we reflect on this, we find it the more neceflary to attend to many circumltances whinch we had overlouked. Were it the gueflion, to decide in what precife part of a country parifh the chunch flould be placed, we find that the geometrical middle is not always the moft proper. We mutt confider the populoufnefs of the different quarters of the parin, and feleet a point fuch, that the diftances of the inhabitants on each fide, in every direction, fhall be as equally belanced as poffible.

In mechanical difuffions, the point by whofe pofition and difance we eflimate the pofition and diftance of the whole, muft be fo felected, that its pofition and diftance, eftimated in any direction whatever, fhall be the average of the pofitions and diftances of every particle of the affemblage, eftimated in that direction.

This will be the cafe, if the point be fo felected that, when a plane is made to pafs through it in any direc-
tion whatcoer, and perpendiculars are drawn to this plane from every particle in the body or fyltem, the fuo: of all the perpendiculars on one fide of this plane is equal to the fum of all the perpendiculars on the other fe. If there be fuch a point in a body, the pofition and motion of this point is the average of the pofitions and motions of all the particles.
For if \(\mathbf{P}\) (fig. 1.) te a point fo fituated, and if \(Q R\) be a plane (perpendicular to the paper) at any diftance from it, the ditance \(P P\) of the point from this plane is the average of the diftances of all che particles from it. For let the plane APB be peffed through P, parallel to \(Q R\). The diftance CS of any particle \(C\) from the plane \(Q R\) is equal to \(D S-D C\), or to \(P P-D C\). And the diftance \(\mathrm{GI}^{\prime}\) ' of any particle G . lying on the other fide of \(A P B\), is equal to \(\mathrm{H} \Gamma+\mathrm{GH}\), or to \(\mathrm{P} p+\mathrm{GH}\). Let \(n\) be the number of particles on that fide of AB which is neareft to \(Q R\), and let \(o\) be the number of thofe on the remote fide of AB , and let \(m\) be the number of particles in the whole body, and therefore equal to \(n+\infty\). It is evident that the fum of the diftances of all the particles, fuch as C , is \(n\) times \(\mathrm{P} p\), after deducting all the difances, fuch as 1)C. Allo the fum of all the diftances of the particles, fuch as G , is o times \(\mathrm{P} p\), together with the fum of all the diftances, fuch as GH. Therefore the fum of both fets is \(\overline{n+o} \times \mathrm{P} p+\) fum of GH - fum of DC , or \(m \times \mathrm{P}^{\mathrm{P}} p+\) fum of GH fum of DC. But the fum of GH, wanting the fum of DC, is nothing, by the fuppofed property of the point \(P\). Therefore \(m \times P p\) is the fum of all the di. ftances, and \(\mathrm{P}_{p}\) is the \(m\) th part of this fum, or the average dittance.

Now fuppofe that the body has changed both its place and its pofition with refpect to the plane \(Q R\), and that \(P\) (fig. 2.) is ftill the fame point of the body, and \(\alpha P_{\beta}\) a plane parallel to \(Q_{R}\). Make \(p_{T}\) equal to \(p \mathrm{P}\) of fig. It It is plain that \(P p\) is thill the average diftance, and that \(m \times P p\) is the fum of all the prefent diftances of the particles from QR, and that \(m \times \pi p\) is the fum of all the former dittances. Therefore \(m \times \mathrm{P} \pi\) is the fum of all the changes of diftance, or the whole quantity of motion eftimated in the direction \(\pi P\). \(P \pi\) is the \(m\) th part of this fum, and is therefore the average motion in this direction. The point P has therefore been properly felected; and its pofition, and diflance, and motion, in refpect of any plane, is a proper reprefentation of the fituation and motion of the whole.

It follows from the preceding difcufion, that if any particle C (fig. I.) moves from C to N , in the line CS, the centre of the whole will be transferred froin \(P\) to \(Q\), fo that \(P Q\) is the \(m\) th part of \(C N\); for the fum of all the diflances has been diminifhed by the quantity CN , and therefore the average dittance mult be diminified by the \(m\) th part of CN , or PQ is \(=\frac{\mathrm{CN}}{m}\).

But it inay be doubted whether there is in every body a point, and but one point, fuch that if a plane pals through it, in any direcion qubatever, the fum of all the diffances of the particles on one fide of this plane is equal to the fum of all the diftances on the other.

It is eafy to fhew that fuch a point may be found, with refpect to a plane parallel to \(Q R\). For if the fum of all the dittances DC exceed the fum of all the di. iffances GH , we have only to pafs the plane A B a little estarer to QR, but fill parallel to it. This will dimi-
the tines GH. We the lines DC , and increafe the fum of Pofiu the lines GH. We may do this till the fums are equal.
In like manner we can do this with refpect to a plane LM (alfon perpendicular to the paper), perpendicular to the plane AB. The point wanted is fome. where in the plane AB , and fomewhere in the plane I.M. Therefore it is fomewhere in the line in which thefe two planes interfect each other. This line pafes through the point P of the paper where the two lines AB and LM ent each other. Thefe two lines reprefent planes, but are, in fact, ouly the interfection of thofe planes with the plane of the paper. Part of the body muft be conceived as being above the paper, and part of it behind or below the paper. The plane of the paper therefore divides the body into two parts. It may be fo fituated, therefore, that the fum of all the diflances from it to the particles lying above it thall be equal to the fum of all the diftances of thofe which are below it. Therefore the fituation of the point P is now determined, namely, at the common inteifection of three planes perpendicular to each other. It is evident that this point alone can have the condition required in refpect of thefe three planes.

But it ftill remains to be determined whether the fame condition will hold true for the point thus found, in refpect to any other plane paffing through it; that is, whether the fun of all the perpendiculars on one fide of this fourth plane is equal to the fum of all the perpendiculars on the other fide. Therefore

Let AGHB (fig. 3.), AXYB, and CDFE, be three planes interfecting each other perpendicularly in the point \(C\); and let CIKL be any other plane, interfeeting the firft in the line CI, and the fecond in the line CL. Let \(P\) be any particle of matter in the body or fyttem. 1) raw PM, PO, PR, perpendicular to the firf three planes refpectively, and let PR, when produced, meet the oblique plane in \(V\); draw \(\mathrm{MN}, \mathrm{ON}\), perpendicular to CE. They will meet in one point N . Then PMNO is a rectangular parallelogram. Alfo draw MO perpendicular to CE , and therefore paralle! to AB, and meeting CI in S. Draw SV ; alfo draw ST peipendicular to VP. It is evident that siV is parallel to CL, and that STRQ and STPM are rectangles.

All the peroendiculars, fuch as PR, on one iide of the plane CDFE, being equal to all thofe on the other fide, they may be conlidered as compenfating 'eack other; the one being confidered as pofitive or additive quantities, the other are negative or fubtractive. There is no difference between their fums, and the fum of both fets may be called 0 or nothing. The fame muft be affirmed of all the pe:pendiculars PM, and of all the perpendicula PO .

Every line, fuch as RT, or its equal QS, is in a certain invariable ratio to its correfponding QC, or its equal PO. Therefore the pofitive lines RI' are compenfated by the negative, ancl the fum total is nothing.

Every line, fuch as 'TV, is in a certain invariable ratio to its correfponding ST, or its equal PM, and therefore their fun total is norhing.
Therefore the fum of all the lines PV is nothing; but ach is in an invariable ratio to a correfponding perpendicular from P on the oblique plane CIKL. Therefore the fum of all the pofrive perpendiculars on this 'plane is equal to the furn of all the negative perpendi--culars, and the propofition is demonitrated, wiz. that is

\section*{P O S}
in every body, or fyftem of bodies, there is a point fuch, that if a plane be paffed through it in any direction whatever, the fum of all the perpendiculars on one fide of the plane is equal to the fum of all the perpendiculars on the other fide.

The point P, thus felected, may, with great proprie. ty, be called the CENTRE OF POSition of the body or fyfem.

If \(A\) and \(B\) (fig. 4.) be the centres of polition of two bodies, whofe quantities of matter (or numbers of equal particles) are \(a\) and \(b\), the centre \(C\) lies in the traight line joining A and B , and \(\mathrm{AC}: \mathrm{CB}=b: a\), or its diftance from the centres of each are inverfely as their quantities of matter. For let \(\alpha C \beta\) be any plane paffing through C . Draw \(\mathrm{A} a, \mathrm{~B}^{3}\), perpendicular to this plane. Then we have \(a \times \mathrm{A}_{\alpha}=b \times \mathrm{B} \beta\), and \(\mathrm{A}_{a}: \mathrm{B}^{3}=b: a\), and, by fimilarity of triangles, CA : \(\mathrm{CB}=b: a\).

If a third boty D , whofe quantity of matter is \(d\), be added, the common centre of pofition \(E\) of the three bodies is in the fraight line DC, joining the centre D of the third body with the centre C of the other two, and \(\mathrm{DE}: \mathrm{EC}=a+b: d\). For, paffing the plane \(\delta E \times\) through \(E\), and drawing the perpendiculars \(D \delta\), \(\mathrm{C} \times\), the fum of the perpendiculars from D is \(d \times \mathrm{D} \delta\); and the fum of the perpendiculars from \(A\) and \(B\) is \(\overline{a+b} \times \mathrm{C} \times\), and we have \(d \times \mathrm{D} \delta=\overline{a+b} \times \mathrm{C} \times\); and therefore \(\mathrm{DE}: \mathrm{EC}=a+b: d\).

In like manner, if a fourth body be added, the common centre is in the line joining the fourth with the centre of the other three, and its diftance from this centre and from the fourth is inverlely as the quantities of matter; and fo on for any number of bodies.

If all the particles of any fyftem be moving uniform. ly , in fraight lines, in any directions, and with any velocities whatever, the centre of the fyttem is either moving unifo mly in a ftraight line, or is at reft.

For, let \(m\) be the number of particles in the fyftem. Suppofe any particle to move uniformly in any direction. It is evident from the reafoning in a former paragraph, that the motion of the common centre is the \(n\) ith part of this motion, and is in the fame direction. The fame mutt be faid of every particle. Therefore the motion of the centre is the motion which is compounded of the \(m\) th part of the motion of each particle. And becaufe each of thefe was fuppofed to be uniform and rectilincal, the motion compounded of them all is alfo uniform and rectilineal; or it may happen that they will fo compenfate each other that there will be no diagronal, and the common centre will remain at reft.

Cor. 1. If the centres of any number of bodies move uniformly in ftraight lines, whatever may have been the motions of each particle of each body, by rotation or otherwife, the motion of the common centre will be uniform and rectilineal.

Cor. 2. The quantity of motion of fuch a fyftem is the fum of the quantities of motion of each body, re. duced to the direction of the centre's motion. And it is had by multiplyirg the quantity of matter in the Syftem by the velocity of the centre.

The velocity of the centre is had by reducing the motion of each particle to the direction of the centre's motion and then dividing the fum of thofe reduced motions by the quantity of matter in the fyltem.

By the felection of this point, we render the invefti-
gation of the motions and actions of bodies incompa. rably more fimple and eafy, freeing our difcuffions from numberlefs intricate complications of motion, which would frequently make our progrefs almoft impofficle.

Position, in arithmetic, called alfo Falje Pofition, or Suppofition, or Rule of Falfe, is a rule fo called, becaufe it confits in calculating by falfe numbers fuppofed or taken at random, according to the procefs defcribed in any queftion or problem propofed, as if they were the true numbers, and then from the refults, compared with that given in the queftion, the true numbers are found.

Thus, take or affume any number at pleafure for the number fought, and proceed with it as if it were the true number, that is, perform the fame operations with it as, in the queftion, are deferibed to be performed with the number required: then if the refult of thofe operations be the fame with that mentioned or given in the queftion, the fuppofed number is the fame as the true one that was required; but if it be not, make this proportion, viz. as your refult is to that in the queftion. fo is your fuppofed falfe number to the true one required.

Example. What number is that, to which if we add, \(\frac{3}{2}, \frac{1}{1}, \frac{1}{4}\), and \(\frac{1}{6}\) of itfelf, the fum will be 240 ?

\section*{Suppole 99}
\[
\begin{aligned}
49.5 & =\frac{7}{2} \\
33 \cdot & = \\
24.75 & =\frac{7}{4} \\
165 & =\frac{7}{6} \\
222.75 & =\text { refult } \\
\text { Then, as } 222.75: 2.40: 99: 106.6 & =\text { Anfwer, } \\
53.3 & =\frac{7}{2} \\
35.5 & =\frac{2}{3} \\
26.6 & =\frac{7}{4} \\
17.7 & =\frac{7}{6} \\
\underline{240} & =\text { proof. }
\end{aligned}
\]

Sometimes it is neceffary to make two different fuppofitions or affumptions, when the fame operations muft be performed with each as in the fingle rule. If ncither of the fuppofed numbers folve the queftion, find the differences between the refults and the griven number; multiply each of thefe differences into the other's pofition; and if the errors in both fuppofitions be of. the fame kind, i. e. if both fuppofitions be either lefs or greater than the given number, divide the differences of the products by the differences of the errors. If the errors be not of the fame kind, \(i\). e: if the one be greater and the other lefs than the given number, divide the fum of the products by the fum of the errors. The quotient, in either cafe, will be the anfwer.

Example. Three partners, A, B, and C, bought a fugar-work which coft them I.. 200 ; ; of which A paid a certain fun unknown; \(B\) paid as much as \(A\), and L. 50 over; C paid as much as them both, and L. 25 . over: What fum did each pay?
(I.) Suppofe A paid L. 500
\begin{tabular}{r}
\(13-\quad 550\) \\
\(\mathrm{C}-1075\) \\
\hline 2125 \\
2000 \\
\(\square\)
\end{tabular}
\(125=\) error of excels,
(2.) Sugat

Bottery.
Sottery.
pentrating fublances, fuch as falts, metallic oxyds, Pattern glafs, \&cc. they require a fine kind of pafte, which is obtained only by reduciug the earths employed to very minute particles. Others deftined for melting metals, and fubflances not very penetrating, and which mult be able to fupport, without breaking, a fudden tranfition from great heat to great cold, require for their fabrication a mixture of calcined argil with raw argil. By thefe means you obtain pottery, the coarfe pafte of which refembles breche, or frmall-grained pudding-ttone, and which can endure fudden changes of temperature.

The baking of pottery is alfo an object of great im. portance. The heat muit be capable of expelling humidity, and agglutinating the parts which enter into the compofition of the pafte, but not Itrong enough to produce fulion; which, if ton far advanced, gives to pottery a homogenuoufnefs that renders it brittle. The faine effect takes place in regard to the fine pottery, becaufe the very minute divifion given to the earths reduces thenı nearly to the fame tate as if this matter had been fufed. This is the reafon why porcelain Atrongly baked is more or lefs brittle, and cannot eafily endure alternations of temperature. Hence coarfe porcelain, in the compofition of which a certain quantity of ca!cined argil is employed, porcelain retorts, crucibles, tubez, and cominon pottery, the pafte of which is coarfe, are inuch lefs brittle than difhes and faucers formed of the fame fubliance, ground with more labour.

The general and refpective dimenfions of the different parts of veffels of earther1-ware have alfo confiderable influence on their capability to fland the fire.

In fome cafis the glazing or covering, efpecially when too thick, and of a nature different from the body of the pottery, alfo renders them liable to break. Thus, in making fome kinds of pottery, it is always effential, if, To follow the beft proportion in the principles; \(2 d\), To give to the particles of the pafte, by grinding, a minutenefs fuited to the purpofe for which it is intend\(\epsilon \mathrm{d}\), and to all the parts the fame dimenfions as far as poffible; 3 d; To carry the baking to the highef degree that the matter can bear without being fufed; 4 th, To apply the glazing in thin layers, the fufibility of which ought to approach as near as poffible to that of the matter, in order that it may be more intimately united.
C. Vauquelin, being perfuaded that the quality of good pottery depends chiefly on uling proper proportions of the earthy matters, thought it might be of importance, to thofe engaged in this branch of manufacture, to make known the analyfis of different natural clays employed for this purpofe, and of pottery produced by fome of them, in order that, when a new earth is difcovered, it may be known by a finuple analyfis whether it will be proper fur the fame object, and to what kind of pottery already known it bears the greateft refemblance.
\begin{tabular}{|c|c|c|c|c|}
\hline & Heffian Crucibles. & Argil of D.eux. & Porce'zin Caffules. & Wedrewood' Pyromete:s. \\
\hline Silex & 69 & 43.5 & 61 & \(64 \cdot 2\) \\
\hline Argil & 21.5 . & \(33^{.2}\) & 28 & 25 \\
\hline Itinue & 1 & 3.5 & - 6 & -6 \\
\hline Oxyd of iron & 8 & 1 & \(0 \cdot 5\) & 0.2 \\
\hline Water . . & - . . & & . . . & \(6 \cdot 2\) \\
\hline
\end{tabular}

Raw
elain, Raw kaolin 100 parts.-Silex 74, argil 16.5 , lime 2, water 7. A hundred parts of this earth gave eight of -alum, after being treated with the fulphuric acid.

Wafhed kaolin 100 parts - Silcx 55 , argil 27, lime 2, iron 0.5 , water 14. This kaolin, treated with the fulphuric acid, gave about 45 or 50 per cent. of alum.

Petuntzé.-Silex 74 , argil 14.5 , lime \(5 \cdot 5\), lofs 6 . A hundred parts of this fubftance, treated with the ful--phuric acid, gave feven or eight parts of alum. But this quantity does not equal the lofs fuftained.

Porcelain of retorts.-Silex 64 , argil 28.8 , lime 4.55 , iron 0.50 , lofs 2.77 . Treated with the fulphuric acid, this porcelain gave no alum.

There is a kind of earthen veffels, calied Alcarrezes, ufed in Spain for cooling the water intencled to bc drunk. Thefe veffels confift of 60 parts of calcareous earth, mixed with alumina and a little oxyd of iron, and \(36 \frac{1}{4}\) of filiceous earth, alfo mixed with alumina and the fame oxyd. The quantity of iron may te eftimated at almolt one hundrecth part of the whole. This earth is firft kneaded into a tough pafte, being for that purpofe previoully diluted with water; formed into a cake of about fix inches in thicknefs, and left in that ftate till it begin to crack. It is then kneaded with the feet, the workman gradually adding to it a quantity of fea.falt, in the propottion of feven pounds to a hundred and fifty; after which it is applied to the lath, and baked in any kind of fun nace ufed by putters. The alcarrezes, however, are only about half as much baked as the better kinds of common earthen ware; and being exceedingly porous, water oozes through them on all fides. Hence the air, which comes in contakt with it by making it evaporate, carries off the caloric contained in the water in the veffel, which is thus rendered remarkallly cool.
poules, or Foulques, one of the principal nations which inlabit the banks of the Senegal. They poffefs an extent of more than fixty leagues along the Tiver, and exact heavy cuftoms from the Senegal traders with the interior of the country. They are not fo black as the other negroes, but of a copper colour, much inclining to red. It is remarkable, however, that their children who are fent to Senegal, and refide there for fome years, become much blacker. The females are very handfome, and the whites of Senegal generally take care to procure fome of them. But they are of a bad difpofition, and utterly incapable of attachment. When a man has a miftrefs of this nation, he mult watch her concuct very narrowly, and even chaftife her, that the may not be guilty of infidelity to him whom fhe honours with her favours. The dread of the baftinado will, in fuch cafe, efiect what attention and complaifance can never bring about.

Although the Poules inhabit one of the fineft fpots in Africa, they are neverthelefs a wretched people; they are bafe, cruel, thievifh, and fanatic in the extreme. They are commanded by a chief of their religion, which is a contemptible misture of Mahometanifm and idolatry. This chief is called the Almamy; he is always chofen from among the Tampfirs, who are twelve in number. The Tampfirs are the interpreters of the law, and are the molt learned, or rather the moft fanatical among them. The Almamy has the power of life and death over his fubjects; yet he may be depofed by an affembly of Tampfirs: it is therefore his intereft to keep on good terms with them. The payment of cuf.

Suppl. Vol. II. Part I.
toms is made to the Almamy, and is afterwards dio Printing. fributed amorig the 'Tampfirs ; and altho:gh a part belongs to the former, he neverthelefs requires a leparate prefent for himfelf.

PRINTING. (See that article, Encycl. and Typography in this Supplement.) We thall here only defribe a Printing-Prefs, for the invention of which a patent was granted, in 1790 , to Mr William Nicholfon of New North-ftreet, Red Lion Square, London. This machine, with fome flight varieties, is adapted for printing on paper, linen, cotion, woollen, and other articles, in a more neat, cheap, and accurate method, the author thinks, than the printing preffes now in ufe.

The invention confifts in three particulars, \(1 /\), The manner of preparing and placing the types, engravings, or carvings, from which the imprefion is to be made ; \(2 d l y\), In applying the ink or colouring matter to types or engravings; and, \(\rho^{d} d y\), In taking off the impreffion.
\(1 /\), Mr Nicholfon makes his moulds, punches, and matrices, for cafting letters, in the fame mamer, and with the fame materials, as other letter-founjers do, excepting that, inftead of leaving a fpace in the mould for thie flem of onc letter only, he leaves fpaces for two, three, or morc letters, to be caft at one pouring of the metal ; and at the lower extromity of each of thofe fpaces (which communicate by a common groove at top) he places a matrix, or piece of copper, with the letter punched upon its face in the ufual way. And moreover, he brings the ftem of his letters to a due form and finif, not only by rubbing it upon a ftone, and foraping it when arranged in the finifhing-ftick, but likewife by fcraping it, on one or more fides, in a finifhingftick whofe hollowed part is lefs deep at the inner than the outer fide. He calls that fide of the groove which is neareft the face of the difpofed letter, the outer fide; and the purpofe accomplifhed by this method of feraping is, that of rendering the tail of the letter gradually fmaller the more remote it is, or farther from the face. Such letters may be firmly impofed upon a cylindrical firface, in the fame manner as conmon letters are impofed upon a flat ftone.

2dly, He applies the ink or colouring matter to the types, forms, or plates, by caufing the furface of a cylinder, fmeared or wetted with the colouring matter, to roll over the furfaces of the faid forms or plates, or by caufing the forms or plates apply themfelves fu:cecefively to the furface of the cylinder. The furface of this colouring cylinder is covered with leather, or with woollen, linen, or cotton-cloth. When the colour to be ufed is thin, as in calico printing, and in almont evcry cafe, the covering is fupported by a firm elaftic fuffing, confifting of hair, or wool, or woollen cloth wrapped one or more folds round the cylinder. When the covering confifts of woollen cloth, the fluffing muft be defended by leather, or oilfkin, to prevent its imbihing too much colour, and by that means lofing its elaiticity. It is abfolutely neceffary that the colouring matter be evenly diftributed over the furface of the cyinder; and for this purpofe, when the colour is thick and ftiff, as in letter-prefs printing, he applies two, three, or more fmall cylinders, called diftributing-rollers, longitudinally againft the colouring cylinders, fo that they may be turned by the motion of the latter; and the effect of this application is, that every lump or mafs of colour which may be redundant, or irregularly placed upon the face of the colouring cylinder, will be preffed,

3 B
frread,

Printing. fpread, and partly taken up, and carried by the fmall rollers to the other parts of the colouring cylinder; fo that this laft will very fpeedily acquire and preferve an even face of colour. But if the colouring matter be thinner, he does not apply more than one or two of thefe diftributing-rollers; and, if it be very thin, he applies an even blunt edge of metal, or wood, or a ftraight brufh, or both of thefe laft, againit the colouring cylinder, for the purpofe of rendering its colour uniform. When he applies colour to an engraved plate, or cylinder, or through the interftices of a perforated pattern, as in the manufacturing of fome kinds of paper-hangings, he ufes a cylinder entirely covered with hair or briftes in the manner of a brufh.

3 dly, He performs all his in preffions, even in letterprefs printing, by the action of a cylinder or cylindrical furface. The conftruction of this machine, and the manner of ufing it, will be intelligible to every reader, who thall attentively confider Plate XL ; where fig. 1 . reprefents a printing.prefs, more efpecially applicable to the printing of books. A and E are two cylinders, running or turning in a ftrong frame of wood, or metal, or both. The cylinder A is faced with woollen cloth, and is capable of being preffed with more or lefs force npon HI, by means of the lever M . HI is a long table, which is capable of moving endwife, backwards and forwards, upon the rollers E and K . 'The roller A acts upon this table by means of a cog. wheel, or by ftrape, fo as to draw it backwards and forwards by the motion of its handle L. The table is kept in the fame line by grooves on its fides, which contain the cylinder A. D is a chafe, containing letter fet up and impofed. \(B\) is a box, containing a colouring-roller, with its diftis. buting-rollers CC; it is fupported by the arm N. O is a cylinder faced with leather, and lying acrofs an inkblock; this cylinder is fixed by the middle to a bended lever moveable on the joint \(Q\).

The adion. When D, or the letter, is drawn beneath the cylinder \(B\), it receives ink; and when it has paffed into the pofition \(R\), a workman places or turns down a tympan with paper upon it (this tympan differs in 110 refpect from the ufual one, except that its hinge opens fidewife); it then proceeds to pafs under the cylinder A, which preffes it fucceffively through its whole furface. On the other fide, at S , the workman takes off the paper, and leaves the tympan np. This motion caufes the cylinder B to revolve continually, and confequently renders its inked furface very uniform, by the action of its diftributing-rollers CC ; and, when the table has paffed to its extreme diftance in the direction now fooken of, the arm G touches the lever P, and raifes the cylinder O off the ink block, by which means it dabs againg one of the diftributing-rollers, and gives it a fmall quantity of ink. The retu*ning motion of the table carries the letter again under the roller B, which again inks it, and the procefs of printing another theet goes on as before.

Fig. 2. is another printing-prefs. In this, \(B\) is the inking-roller; \(A\) is a cylinder, having the letter impofed upon its furface; and E is a cylinder, having its uniform furface covered with woollen cloth: thele three cylinders are consected, either by cogs or ftraps at the edges of each. The machine is uniformly turned in one direction by the handle L. The workman applies a fheet of paper to the furface of \(E\), where it is retain. ed, either by points in the wfund manner, or by the ap-
paratus to be defcribed in treating of fig. 4. The pa- Printing per paffes between E and A, and receives an impreffion; after which the workman takes it off, and applies another fheet; and in the mean time the letter on the furface of \(A\) paffes round againft the furface of \(B\), and receives ink during the rotation of B . The diftributingrollers CC do their office as in the machine fig. 1. ; and once in every revolution the tail F , affixed to B , raifes the inking.piece \(G\), fo as to caufe it to touch one of the diftributing-rollers, and fupply it with ink. In this way therefore the repeated printing of fheet after fhect goes on.

Fig. \(3 \cdot\) is a printing prefs, more particularly adapted to piint cottons, filks, paper hangings, or other articles which run of a confiderable length. A is a cylinder covered with woollen cloth, or other fuft fubltance. 'The web or piece of cotton, or other goods, is paffed round this cylinder, from the carrying-roller F to the receiving-rollers GF; which are connected by a piece of linen, woollen, or hair-cloth, in the manner of a jack-towel fewed round them; the rotation of this towel carries away the printed ftuff or goods, and depolits them at \(1 . \mathrm{KL}\) is a moveable box, containing three rullers, which move againft each other in rotation. The lowelt roller C revolves in a mafs of colour, contained in a trough or veffel in the bottom part of the box KL ; the furface of this colour is reprefented by the line MN. The next roller \(B\) is ftuffed and covered as defcribed in fection 2. The preffure of \(B\) againft \(C\) prevents the cylinder \(B\) from receiving too much colour. \(D\) is a cut or carved cylinder, which receives colour, during the rotation, from the roller \(B\), and impreffes it upon the web as it pafles round the cylinder A; in this way the conftant and effectual action of the machine is lufficiently obvious. It muft be obferved, that the cylinders \(A D B\) and \(G\) are connected together by cog.wheels, Atraps, or other well-known equivalent contrivances; fo that the handle \(P\) drives the whole, without their neceffarily depending on any adhefion or friction at their furfaces. 'I'he preffure of \(B\) againft \(D\) is governed by an adjuftment of the axis of \(D\), whofe lockets are capable of a fmall mom tion; and the preffure of \(D\) againit \(A\) is governed by the polition of the whole box KL. When it is requis red to print more than one colour upon a piece, Mr Nicholfon caufes it to pals two or more times through the machine; or, in thofe cafes where the materials are liable to change their dimenfions, he applies, at one and the fame time, two or more fuch boxes as KL, with their refpective cylinders, fo that the pattern cylinder of each may make its impreffion upon the web or material to be printed on.

Fig. 4. is a printing. prefs, chiefly of ule for books and papers. \(1,2,3,4\), reprefents *a long table, with ledges on each fide; fo that the two cyliaders \(A\) and B can run backwards and forwards without any fide fhake. In one of thefe ledges is placed a ftrip or plate of metal cut into teeth, which lock into correfpondent teeth in each cylinder; by which means the two cylinders roll along, without the poffibility of changing the relative pofitions of their furfaces at any determinate part of the table. This may alfo be effected by ftraps, and may indeed be accomplifhed, with tolerable accuracy, by the mere rolling of the cylinders on the fmooth or flat ledges without any provifion \(A\) is the print-ing-cylinder, covered with woollen cloth, and B. is the inking-cylinder, with its diftributing rollers. The table
may be civided into four compartments, marked with a thicker bounding line than the reft, and numbered \(\mathbf{1}\), 2, 3, 4. At I is placed a theet of paper; at 2 is the form or chafe, containing letter fet and impofed; at 3 is an apparatus for receiving the printed fheet; and 4 is employed in no other ufe than as a place of fanding for the carriage E, after it has paffed through one operation, and when it takes ink at F. Its action is as follows: the carriage is thrult forward by the workman, and as the roller A paffes over the fpace numbered 1 , it takes up the fheet of paper pieviounly laid there, while the roller B runs over the form and inks the letter. The fheet of paper, being wrapped round the cylinder \(A\), is oreffed againft the form as that cylinder proceeds, and confequently it receives an impreffion. When \(A\) arrives at the fpace numbered 3 , it lets go the fheet of paper, while the prominent part of the carriage \(G\) ftrikes the lever \(P\), and raifes the inkingpiece, which applies it felf againt one of the diftributingrollers. In this manner therefore the cylinder A returns empty, and the cylinder \(B\) inked, and in the mean time the workman places another fheet of paper ready in the fpace numbered 1 . Thus it is that the operation proceeds in the printing of one fheet after another.

The preceding defcription is not incumbered with an account of the apparacus by which the paper is taken up and laid down. This may be done in feveral ways: Fig. 9. and 10. reprefent one of the methods. DE is a lever, moving on the centre pin C , and having its end \(D\) prefled upwards by the action of the fpring G. The fhoulder which contains the pin \(C\) is fixed in another piece F , which is inferted in a groove in the furface of the cylinder A (fig. 4.), fo that it is capable of moving in and out, in a direction parallel to the axis of that cylinder. As that cylinder proceeds, it meets a pin in the table; which (letter P, fig. 9.) acting on the inclined plane at the other end of the lever, throws the whole inwards, in the pofition reprefented in fig. 10. ; in which cafe the extremity \(D\) thoots inwards, and applies itfelf againtt the fide of the cylinder.

In fig. 11 . is a reprefentation of part of the table; the dotted fquare reprefents a fheet of paper, and the four fmall fhaded fquares denote holes in the board, with pins ftanding befide them. When the lever DE (fig. 10.) Thoots forward, it is fituated in one of thefe holes, and advances under the edge of the paper, which confequently it preffes and retains againft the cylinder with its extremity D . Nothing more remains to be faid refpecting the taking up, but that the cylinder is provided with two pair of thefe clafps or levers, which are fo fixed as to correfpond with the four holes reprefented in fig. 1 t . It will be eafy to underftand how the paper is depofited in the compartment \(n^{\circ} 3\). (fig. 4.) A pin \(P\) (fig. 10.) rifing out of the pla:form or table, åts againft a pin E, projecting lidewife out of the lever, and muft of courfe draw the flider and its lever tn the original pofition; the paper confequently will be let go, and its difengagement is rendered certain by an apparatus fixed in the compartment numbered 3 . (fig. 4.) of exaetly the fame kind as that upon the cylinder, and which, by the action of a pin duly placed in the furface of the cylinder \(A\), takes the paper from the cylinder in precifely the fame manuer as that cylinder originally wok it up in the compartment numbered 1 (fig. 4.)

379 ] P R I
Figs. 5, 6 , and 7, reprefent a fimpler apparatus for Printing. accomplifhing the fame purpofe. If \(\mathrm{A} a \mathrm{~B} b\) (fig. 7.) be fuppofed to reprefent a thick plate of metal of a circular form, with two pins, A and B , proceeding ficewife or perperidicularly out of its plane, and diametrically oppofite to each other, and \(G\) another pin proceeding in the direction of that plane, then it is obvious that any force applied to the pin A , fo as to prefs it into the pofition a (by turning the plate on its axis or centre X ), will at the fame time caufe the pin G to acquire the pofition \(g\); and, on the other hand, when B is at \(b\), or the dotted reprefentation of the fide-pin, if any preflure be applied to refore its original pofition at B , the pin \(g\) will return back to G . Now the figures 5 and 6 exhibit an apparatus of this kind, applied to the cylinder A; and that cylinder, by rolling over the pins P and \(p\), properly fixed in the table to re-act upon the apparatus, will caufe its prominent part G either to apply to the cylinder and clafp the paper, or to rife up and let it go. The compartinent numbered 3 (fig. 4.) mult of courfe have an apparatus of the fame kind to be acted upon by pins from A, in erder that it may take the paper from that cylinder.

There is one other circumftance belonging to this machine which remains to be explained. When the carriage E (fig. 4.) goes out in the diretion of the numbers \(\mathrm{I}, 2,3,4\), both rollers, A and B , prefs the form of letter in their paffage; but in their return back again the roller \(A\), having no paper upon it, would itfelf become foiled, by taking a faint impreffion from the letter, if it were not prevented from touching it : the manner of effecting this may be undelfood from fig. iz. The apparatus there reprefented is fixed upon the outfide of the carriage \(\mathbf{E}\), near the lower corner, in the vicinity of the roller A ; the whole of this projects fidewife beyond the ledge of the table, except the fmall truck or wheel B. The irregularly-triangular piece, which is fhaded by the flroke of the pen, carries this wheel, and alfo a catch moveable on the axis or pin E . The whole piece is moveable on the pin A, which connects it to the carriage. CD, or the part which is fladed by dotting, is a detent, which ferves to hold the piece down in a certain pofition. It may be obferved, that both the detent and the triangular piece are furnifhed each with a claw, which holds in one direction, but trips or yields in the other, like the jacks of a harpfichord, or refembling certain pieces ufed in clock and watch making, as is clearly reprefented in the figure. 7 hefe claws overhang the fide of the table, and their effect is as follows: There is a pin C (fig. 4.) between the compartments of the table numbered 2 and 3 , but which is marked Fin f.g. 12. where GH reprefents the table. In the outward run of the carriage thefe olaws ftrike that pin, but with no other effect than that they yield for an inftant, and as inttantly refure their original pofition by the action of their refpective fender back-fprings. When the carriage returns, the claw of the detent indeed ftrikes the pin, but with as little effect as before, becaufe its derangement is inftandly removed by the action of the Jack fpring of the detent itfelf; but, when the claw of the triangular piece takes the pin, the whole piece is made to revolve on its axis or pin \(A\), the wheel \(B\) is forced down, fo as to lift that end of the carriage, and the detent, catching on the piece at C , prevents the former pofition from being re-

Printing, covered. 'The confequence of this is, that che carriage Piints.
runs upon the truck B (and its correfpondent truck on
the oppofite fide) inftead of the cylinder \(A\), which is too much raifed to take the letter, and foil itfelf; but as fonn as the end of the carriage has paffed clear of the letter, another pin R (fig. 4.) takes the claw of the detent, and draws it off the triangular piece; at which inftant the cylinder A fubfides to its ufual place, and performs its functions as before. This laft pin R does not affect the claw of the triangular piece, becaufe it is placed ton low ; and the claw of the detent is made the longeft, oll purpofe that it may ftrike this pin.

Fig. 8. reprefents an inftrument for printing floorcloths, paper.hangings, and the like, with ftiff paint and a brufh. 1) is a copper or metallic cylinder fixed in a frame A, like a garden roller; its carved part is thin, and is cut through in various places, according to the defired pattern. A ftrong axis paffes through the cylinder, and its extremities are firmly attached to the frame A. To this axis is fixed a veffel or box of the fame kind, and anfwering the fame purpofe as the box KL in fig. 3. It carries a cylinder 1 , which revolves in the colour; another cylinder E , which revolves in contact with P ; and a third cylinder B , whofe exterior furface is covered with hair, after the manner of a bruft, and revolves in contact with E. This cylinder \(B\) is acjulted by its axis, in fuch a manner that its brufh-part fweeps in the perforated parts of the metallic cylinder D. 'I he circle C reprefents a corg-wheel, fixed concentric to the cylinder D , and revolving with it; this wheel takes another wheel concentric to, and fixed to, B ; hence the action is as follows: When the me. tallic cylinder is wheeled or rolled along any furface, its cog. wheel C drives the brufh B in the contrary direction; and this brufh cylinder, being connected by cogs or otherwife with E and P , caufes thofe alfo to revolve and fupply it with colour. As the fincceffive openings of the cylinder \(D\), therefore, come in contaft with the ground, the feveral parts of the bruifh will tra. verfe the uncovered part of that ground, and paint the pattern upon it. The wheel \(G\), being kept lightly on the ground, ferves to determine the line of contact, that it fhall be the part oppofite to B , and no other.

PRINTS (fee Encycl.) are valuable on many ac. counts; but they are liable to be foiled by fmoke, vapour, and the excrements of infects. Different methods have, of courfe, been practifed to clean them. Sonie have propofed fimple waining with clear water, or a ley made of the afhes of reeds, and then expofing the prints to the dew. Others have cleaned prints with aqua fortis (fulphuric acid); but both thefe methods are attencied with a degree of rifk at lett equal to their advantages. The following method of cleaning prints is recommended in the fecond volume of Nicholfon's Journal of Natural Philofophy, \&xc. as at once fafe and efficacious:
" Provide a certain quantity of the common muriatic acid, for example three ounces, in a glafs bottle, with a ground ftopper, of fuch a capacity that it may be orly half full. Half an ounce of minium muft then be added; immediately after which the ftopper is to be put in, and the bottle fet in a cold and dark place, The heat, which foon becomes perceptible, fhews the beginning of the new combination. The minium abandons the greateft part of its oxygen with which the
fluid remains impregnted, at the fame time that it acquires a fine golden yellow, and emits the deteftable fmell of oxygenated muriatic acid. It contains a fmall portion of muriat of lead; but this is not at all noxious in the fubfequent procefs. It is alfo neceflary to be ohferved, that the bottle muft be ftrong, and the ftop. per not too firmly fixed, otherwife the active claftic va. pour might burf it. The method of uling this prepared acid is as follows:
"Provide a fuf?ciently large plate of glafs, upon which one or more prints may be feparately ipread out. Near the edges let there be raifed a border of foft white wax half an inch high, adhering well to the glafs and flat at top. In this kind of trough the print is to be placed in a bath of feefh urine, or water containing a fmall quantity of ox-gall, and kept in this fituation for three or four hours. '1'lie fluid is then to be decanted. off, and pure warm water poured on, which mult be changed every three or four hours until it paffes limpid and clear. The impurities are fometines of a relinous nature, and refilt the action of pure water. When this is the cafe, the wafhed print mult be left to dry, and alcohol is then to be poured on and left tor a time. After the print is thus cleaned, and all the moifture drained off, the muriatic acid prepared with minium is to be poured on in fufficient quantity to cover the print ; immediately after which another plate of glafs is to be laid in contact with the rim of wax, in order to prevent the incomvenient exhalation of the oxygenated acid. In this fituation the yelloweft print will be feen to recover its original whitenefs in a very fhort time. One or two hours aie fufficient to procuce the defired. effect; but the print will receive no injury if it be left in the acid for a whole night. Nothing inove is neceffary to complete the work, than to decant off the remaining acid, and wan away every trace of acidity by repeated affufions of pure water. The print being then. left to dry (in the fun if poffibie) will be found white, clear, firm, and in no retpect damaged either in the texture of the paper or the tone and appearance of the impreffion."

The judicious editor of the Journal fubjoins the following note, to which collectors of prints will do well to pay attention: "As 1 have toot repeated this proceif, I cannot eftimate how far the prefence of the lead may weaken the corrofive action of the acid on the par per; but I fhould be difpofed to recommend a previous dilution of the acid with water. Whoever ufes this procefs will of courfe make himftlf mater of the pro! portion of water required to dilute the acid, by making his firft trials with an old print of nu value."

PRISM, in geometry, is a borly or a iolid, whofe two ends are any plane figures which are parallel, equal, and fimilar; and its fides, connecting thofe ends, are parallelograms. The definition of this figure in the Encyclopadia we mult, in candour, acknowledge to be unaccountably indiftinct, if not unintelligible.

PRISM OID, is a folid or body, fomewhat refembling a prifm, but that its ends are any diffimilar paral. lel plane figures of the fame number of fides; the upright fides being trapezoids.- If the ends of the prifmoid be bounded by diffimilar curves, it is fometimes called a cylindroid.

PRISON is faid, in the Encyclopadia, to be only a place of fafe cultody, not a place of punifhment. Such


OPERAGLASS.


Pennatula

Fig 1.


Bleaching
\[
2
\]


Percussion


\section*{P R I}
was, no doubr, the original intention of Englifh prifons ; but now temporary confinement is, in England as well as elfewhere, inflicted as a punifhment for certain crimes. Perhaps it would be expedient to fubltitute this punifment more frequently than is yet done in Great Britain, for tranfportation and death; proportioning the length of the confinemient, as well as its clofenefs, to the heinoufnefs of the crime. In no country, we believe, is this mure accurately done, or to better purpofe, than in Pennfylvania; and furely in no country las imprifonment been more abufed than in Venice under the old government.

By the laws of Fennfylvania, puniflment by imprifonment is impofed, not only as an expiation of palt offences, and an example to the guilty part of fociety, but alfo for another important purpofe-the reformation of the criminal's morals. The regulations of the gaol are calculated to promote this effect as foor as por. fible; fo that the building deferves the name of a penitentiary boufe more than that of a gaol (fee Philadel.phia, Encycl.). As foon as a criminel is committed to the prifon, he is made to wafh; his hair is fhoin; and, if not decently clothed, he is furni?ied with clean apparel. He is then thrown into a folitary cell, about nine feet long and four wide, where he remains debarred from the fight of every living being except his gaoler, whofe duty is to attend to his bare neceffities, but who is forbidden on any account to hold converfation with him. If a prifoner be at all refractory, or if the offence for which he is committed be of a very arrocious nature, he is then confined to a cell fecluded even from the light of heaven. The treatment of each prifoner, during his continement, is varied according to bis crime and his fubfequent repentance. Solitary confinement in a dark cell is lonked upon as the fevereft ufage ; next, folitary confinement in a cell with the admiffion of light; next, folitary confinement in a cell, where the prifoner is allowed to do fome fort of work; and, laftly, labour in company with others. The long. elt period of confinement is for a rape, which is net to be lefs than ten years, nor more than twenty one; for high treafon, it is not to excced twelve, nos fall Short of tix year.

The prifoners are obliged to bathe twice every weck, proper conveniences for that purpofe being provided within the walls of the prifon, and alfo to change their linen, with which they are regularly fupplied. Thofe in folitary confinement are kept upon bread and water; but thofe who labour are allowed broth, porridge, puldings, and the like. Meat is difpenfed only in imall quantities, twice in the week; and on no protence whatever is any other beverage than water fuffered to be brought into the prifon. Thofe who labour are employed in the trade to which they liave been accultomed; and for thofe acquainted with no particular trade, fome kind of work is devifed which they can perform. One room is fet apart for thoemakers, another for tailors, a third for carpenters, and fo on. In the yards are flone cutters, fmiths, nailers, \&cc. In a word, this prifon has all the advantages of the rafping houfe of Amfterdam, without any of its enormous defects. See Correction. Houfe in this Suppl.
The prifon of Venice is of a very different defcription, and is worthy of notice here only as a curiofity in the annals of tyranny, which has, we hope, paffed away
with the government which contrived it, Pr Mofeley, in confequence of his being an Englifh phyfician (a character then lighly refpected in Venice), was permitted, on the 16 rh of Sepienter 1787 , to vilit the common prifon, but was ahfolutely refufed admittance into the Solto Piomli, where the Itate prifoners were kept. As the Doetor believes that no foreigner belides himfelf ever witneffed the feenes, even in the common prifon, which he relates, we fnall give his relation. in his own words.
"I was conduted (fays he) through the prifon by one of its inferior dependants. We had a torch with us. We crept along narrow paffages as dark as pitch. In fome of them two people conld farcely pafs each other. The cell.s are made of maffy mable; the architecture of the celebrated Sanfovini.
" 'The cells are not only dark, and black as irk, but beirg furrounded and confined wish huge wills, the fmallef breath of air can fcarcely find circulation in then. They are about nine feet fquare on the floonrarched at the top, and beiween fis and feven fott high in the higher? pait. There is to each ceil a romel hule of eisht inclies diameter, throngh which the prifoner's daily allowance of twelve ounces of bitad and a pot of water is celivered. There is a fmall iron chout to the cell. The furniture if the cell is a littie ftraw and a fnall tub; nothing elfe. The thaw is renerect and the tub. emptied throngh the iron coor occalion. ally.
" The diet is ingenioully contrived for the perdura. tion of punihment. Animal food, or a cordial nutritious regimen, in fuch a fituation, would bring on difcafe, and defeat the end of this Venetian juttice. Neither can the foul, if fo inclined, fteal away, wrapt up in flumbering delution, or fink to relt; from the adme. nition of her fad exilkence, by the gaolen's daily return.
"I faw one man who had been in a cell thity years; two who had beent twelve fears; and feveral who had been eight and nine years in their refuective cells.
"By my taper's light I could difcover the prifoners . horrid countenances. They were ail naked the man who had been there thirty years, in face and tody was covered with long hair. He had tof the arraugement of words and orler of language. When I fpike to him, be made an uninttligible noife, and exprefled fear and furprife; and, like fome wild animals in defarts, which have fuffered by the treachery of the human race, or have an inflinctive abhorrence of it, he would have fled like lighoning from me if he could.
"One whofe faculties were not fo olliterated; who ftill recoilected the difference between day and night ; whofe eyes and ears, though long clofed with a filent blank, till languifhed to perforn their natural func-tions-implored, in the moft piercing manner, that I. would prevail on the gaoler to murder him, or to give him fome inftrument to deftroy himfelf. I told him I had no power to ferve him in this requeft. He then entreated I would ufe my endeavours with the inquifitors to get him hanged, or drowned in the Canal' Orfano. But even in this I could not ferve him : death was a favour I had not intereft enough to procure for him.
"This kindnefs of death, however, was, during my
I

Prifon ftay in Venice, granted to one man, who had been ' from the cheerful ways of man cut off' thirteen years.
"Before he left his dungeon I had fome converfa.
tion with him; this was fix days previons to his execution. His tranfport at the profpect of death was furprifing. He longed for the happy moment. No faint ever exhibited more fervour in anticipating the joys of a future ftate, than this man did at the thoughts of being releafed from life, during the four days mockery of his trial.
"It is in the Canal' O1fano where veffels from 'Turkey and the Levant perform quarantine. This place is the watery grave of many who have committed poli. tical or perfonal offences againit the ftate or fenate, and of many who have committed no offences at all. They are carried out of the city in the middle of the night, tied up in a fack with a large ftone faftened to it, and thrown into the water. Fifhermen are prohibited, on forfeiture of their lives, againtt fifhing in this diftrict. The pretence is the plague. This is the fecret hiftory of people being loft in Venice.
" The government, with age, grew feeble; was afraid of the difcuftion of legal procefs and of public execu. tions; and navigated this rotten Bucentaur of the A. driatic by fpies, prifons, affaffination, and the Canal' Orfano."

This is indeed a frightful narrative, and, we doubt not, true as well as frightful; but when, from the fate of the Venetian prifons, the author infinuates, that Howard was not actuated by genuine benevolence, and infers, or wifhes his reader to infer, that the propofal of that celebrated philanthropitt for fubftituting folitary confinement, in many cafes, for capital punifhment, mult have refulted from his not taking into confidera. tion the mind of the criminal-the infinuation, to fay the leaft of it, is ungenerous, and the conclufion is at war with the premifes. That there was fomething romantic and fuperfluous in Howard's wanderings, we readily admit ; but it feems impoff:ble to doubt of the reality of his benevolence; and though the horrid prifon of Venice, into which, as the Doctor affures us, Mr Howard never entered, was calculated to iojure the body without improving the mind of the criminal, it does not follow but that folitary confinement, under fuch regulations as at Philadelphia, is the belt means that have yet been thought of for obtaining the object neareft Howard's heart, the reformation of the morals of the criminal.

PROCYON, in aftronomy, a fixed ftar of the fecond magnitude, in Canis Minor, or the little Dog.

PROSTHAPHERESIS, in aftronomy, the diffe. sence between the true and mean motion, or between the true and mean place, of a planet, or between the true and equated anomaly; called alfo equation of the orlit, or equation of the centre, or fimply the equation; and it is equal to the angle formed at the planet, and fubtended by the eccentricity of its orbit.

PROTRACTING, or Protraction, in furveying, the aft of plutting or laying down the dimenfions taken in the feld, by means of a protractor, \&c. Pro. tracting makes one part of furveying.

Protracting-Pin, a fine pointed pin or needle, fit. ted into a handle, ufed to prick off degrees and minutes from the limb of the protractor.

PRUNING. Under this title (Encycl.) it is ob-
ferved, that when large branches of trees bearing ftonefruit are taken off, the crees are fubject to gum and decay. For this a remedy has been invented by Thomas Skip Dyot Bucknall, Efq; of Conduit-ftreet, which, 'notwithfanding many objections made to it at firf, experience has proved to be fucceffful, and for the difcovery of which the Society for the Encouragement of Arts, \&c. voted the filver medal to the difcoverer. It is as follows:

Cut every branch which thould be taken away clofe to the place of its feparation from the trunk; fmooth it well with a knife; and then with a painter's brufh fmear the wound over with what Mr Bucknall calls medicated tar. 'This medicated tar is compofed of one quarter of an ounce of corrofive fublimate, reduced to fine powder by beating with a wooden hammer, and then put into a three-pint-earthen pipkin, with about a glafs full of gin or other fpirit, ftirred well together, and the fublimate thus diffolved. The pipkin is then filled by degrees with vegetable or common tar, and conftantly ftirred, till the mixture be blended together as intimately as poffible; and this quantity will at any time be fufficient for two hundred trees. To prevent danger, let the corrofive fublimate be mixed with the tar as quickly as poffible after it is purchafed ; for, being of a very poifonous nature to all animals, it fhould not be fuffered to lie about a houfe, for fear of mifchief to fome part of the family.

By the application of this compotition, Mr Buck. nall can, withọut the fmalleft danger, ufe the pruning hook on all kinds of trees much more freely than we have recommended its ufe in the article referred to. "I give no attention (fays he) to fruit-branches, and woodbranches; but beg, once for all, that no branch fhall ever be thortened, unlefs for the figure of the tree, and then conftantly taken off clofe to the feparation, by which means the wound foon heals. The more the range of the branches thoots circularly, a little inclining upwards, the more equally will the fap be diftributed, and the better will the tree bear; for, from that circumftance, the fap is more evenly impelled to every part. Do not let the ranges of branches be too near each other; for remember all the fruit and the leaves fhould have their full fhare of the fun; and where it fuits let the middle of the tree be free from wood, fo that no branch fhall ever crofs another, but all the extreme ends point outwards."
PULO, the name of feveral iflands of Afia, in the Indian Ocean; the piincipal of which alone, according to Dr Brooke's, is inhabited. This is the ifland

Pulo-Gandore, which, being vifited by Lord Mao cartney as he failed to Chitia, is thus defcribed by Sir George Staunton: "It has the advantage of convenient anchoring places in either inoufoon. The fquadron accordingly topped on the 17 th of May, in a fpacious bay on the eaftern fide of the ifland; and came to an. chor at the entranse of its fouthern extremity, as the water fhoaled there to five fathoms and a half, occafioned by a bank which firetches acrofs two-thirds of the entrance. It was found afterwards, "that beyond the bank there is a fafe paffage to the inner part of the bay, the north of which is theltered by a fmall inand lying to the eaftward. The whole of the bay is formed by four fmall iflands, which approach fo nearly to each other, as to appear, from feveral points, to join.

\section*{P U L [ 383 ] P U N}

Pulo. They all feem to be the rude fragments of prinitive mountains, feparated from the great continent in the lapfe of time. The principal ifland is eleven or twelve miles in length, and about three in breadth. It is in the form of a crefcent, and confifts of a ridge of peak. ed hills. Its latitude, as calculated from a meridional obfervation, is \(8^{\circ} 40^{\prime}\) north from the equator; and its longitude, according to a good chronometer, is \(105^{\circ} 55^{\prime}\) eaft from Greenwich.
"The Englifh had a fettlement on Condore until the beginning of the prefent century, when fome Malay foldiers in their pay, in refentment for fome unjuftifable treatment, murdered their fuperiors, with the exception of a very few who efcaped off the ifland, where no Europeans have fince refided. At the bottom of the bay was a village fituated clofe to a fine fandy beach, with a long range of cocoa-nut trees before it, and it was defended from the north-eaft fea by a reef of coral rocks, within which was good anchorage for fmall vef. fels, and an eafy landing for boats. A party went on fhore from Lord Macartney's fuuadron, with the preeaution, however, of being armed, as large canoes were efpied within the reef, which might have been Malay pirates. Several of the inhabitants came to the beach, and with the appearance of much urbanity of manners welcomed them on fhore, and conducted them to the houfe of their chiff. It was a neat bamboo cabin, larger than the reft. The floor was elevated a few feet above the ground, and flrewed with mats, on which were affembled as many men as the place could hold. It was apparently on the occafion of fone feftival, or pleafurable meeting. There was in one of the apartments an altar decorated with images, and the partitions hung with figures of monftrous dicities; but the countenances and depoitment of the people conveyed no idea of religious awe, and no petfon was feen in the pofture of prayer or adoration. A few fpeas ftood againft the wall with their points downwards, together with fome matchlocks and a fwivel gun. The drefs of thofe people was compofed chiely of blue cotton worn loofely about them; and their flat faces and little eyes denoted a Chinefe origin or relation. Several long nips of paper, langing from the ceiling, were covered with columns of Chinefe writing. One of the miffionaries, who was of the party, could not, however, in any degree, underfland their converfation ; but when the words were written, they inftantly became intelli. gible to him. Though their colloquial language was altogether different from what is fpoken in Chima, yet the charaters were all Chinefe; and the fact was clearly afcertained on this occafion, that thofe characters have an equal advantage with Arabic numbers, of which the figures convey the fame meaning wherever known; whereas the letters of other languages denote not things, but elementary founds, which combined vaioufly together, form words, or more complicated founds, conveying different ideas in different lauguages, though the form of their alphabet be the fame.
"The inhabitants of Pulo Condore were, it feems, Cochin Chinefe, with their defcendants, who fled from their own country, in confequence of their attachment to one of its Covereigns, dethroned by feveral of his own fubjects. It was propofed to purchafe provifions here; and the people promifed to have the fpecified quantity ready, if poffible, the next day, when it was
intended, if the weather fhould be favourable, to land the invalids. The next morning was fair in the beginning; and a party of pleafure was made from the Hindoftan to a fmall iffand clofe to Pulo Condore. They were fcarcely arived upon it when the weather began to lower; and the boat fet off on its return, in order to reach the hip before the impending ftorm fhould begin.
"With difficulty it reached the fhip; and as foon as the weather becaine fair, meffengers were difpatched on More to receive and pay for the provifions promifed. When they a:nived at the village, they were attonifhed to find it abandoned. The houfes were left open, and none of the effects, except fome arme, that had on the fint vifit been perceived within them, or even of the poultry feeding about the doors, were taken away. In the principal cabin a paper was found, in the Chinefe language, of which the literal tranflation purported, as nearly as' it could be made, that 'the people of the inland were few in number, and very poor, yet honeft, and incapable of doing mifchief; but felt much terror at the arrival of fuch great hips and powenful perfons, efpecially as not being able to fatisfy their wants in regard to the quantity of cattle and other provifions, of which the poor inhabitants of Pulo Condore had fcarcely any to fupply, and confequently could not give the expected fatisfaction. They therefore, through dread and apprehenfion, refolved to fly to preferve their lives. That they fupplicate the great people to have pity on them; that they left all they had behind them, and only requefted that their cabins might not be burnt ; and conclude by proftrating themfelves to the great people a hundred times.'
"The writers of this letter had probably received ill treatment from other ftrangers. It was determined that they fhould not coltinue to think ill of all who came to vifit them. On their return they were perhaps as much furprifed to find their houfes fill entire, as their vifitors had been who found they were deferted. Nothing was difturbed; and a fmall prefent, likely to be acceptable to the chief, was left for him in the principal dwelling, with a Chinefe letter, fignifying that "the fhips and people were Englifh, who called merely for refreth. ment, and on fair terms of purchafe, without any ill intention; being a civilized nation, endowed with pripciples of humanity, which did not allow them to plun. der or injure others who happened to be weaker or fewer than themfelves."

PuLo Lingen, another of this clufter, is likewife a confiderable infand, remarkable for a mountain in its centre, terminating in a fork like Parnaffus; but co which the unpoctical feamen befow the name of affes ears. Every day p:efented rew iflands to the view, difplaying a valt variety in form, fize, and colour. Some ifolated, and fome collected in clulters. Many were clothed with verdure ; fome had tall trees growing on them; others were mere rocks, the refort of innumerable birds, and whitened with their dung.

PUNCTUATION, in grammar, is an art with which we have faid, in the Encycloparilu, that the an. cients were entirely unacquainted. Candour obliges us to confefs that this was faid rafhly. A learned writer, in the Monthly Magazine for September 1798, who. fubfcribes J. Warburton, has proved, we think completely, that the art is not wholly modern; and we

\section*{\(P\) U N}

Pun\&lua- thall lay his prooff, in his own words, before our readtion.

"Some fpecies of paufes and divifions of fentences
* Qui p:i mus periedum et co lon mon. travit. Sui difcovered and explained by Thralymacus, about 380 duit. sui- years before the Chiftian rera. Cicero \(\dagger\) fays, that fymacho. Thrafymacus was the firft who fludied oratorical numfymacho. bers, which entirely confilted in the artificial flrueture
+ Cicero Orat \(\$ 33\). of periods and colons. It appears from a paffage in \(\ddagger R b c t\) Lib. Arifotle \(\ddagger\), that punctuation was known in his time. iii. cs. The learned Dr Edward Bernard \(\rho\) refers the know\(\$_{\text {i is ernd }}\) Or- ledge of pointing to the time of that philofopher, and Liserud. Li- fays, that it confifed in the different pofitions of one 30. edit. fingte point. At the bottom of a letter, thus, (A.) a 689. it was equivalent to a comma; in the mindle (A.) it
* Cic. de

Orat. 1 iii. \$ 20 ihid. 7. Orat pro Murana, § 25 .
+ Sen. Epijf. was equal to a colon; at the top ( \(A^{\prime}\) ) it denote? a period, or the conclufion of a fentence.
"This mode was eafily practifed in Greek manu. feripts, while they were written in capitals. But when the inmall letters were adopted, that is, about the 9th century, this diftinction could not be obferved; a change was therefore made in the fcheme of punctuation. Unciales literas bodicrno ufu dicimus eas in vetufits codicibus, qua prifam formam fervant, ac foluta funt; nec mutuò colliçantur. Hujus modi litera unciales obfervan. tur in libris onmilus ad nonum afque Jeculuni-Montf. Palæor. Recens. p. xii.
"According to Cicero, the ancient Romans, as well as the Greeks, made ufe of points. He mentions them under the appellation of librariorum nota; and in feve. ral parts of his works he fpeaks of 'interpunge claufula in orationibus,' of 'claufula atque interpuncia ver. borum,' of 'interpundioncs verborum,' \&c *.
"S Seneca, who died A. D. 65, exprefsly fays, that Latin writers, in his time, had been uled to punctuation. 'Nos \(\dagger\), cum faribimus interpungere confucvimus.' Muretus and Lipfius imagined that thefe words alluded \(E_{1 j f}\) to the infertion of a point after each word: but they certainly were miftaken; for they mutt neceffarily refer to marks of punctuation in the divifion of fentences, becaule in the parfage in which thefe words eccur, Seneca is fpeaking of one Q. Haterius, who made no panfes in his crations.
"According to Suetonius, in his Illufl. Gram. Valerius Probus procured copies of many old books, and employed himfelf in correcting, pointing, and illuttrating them; devoting his time to this and no uther part of graminar. Nuita exemplaria contrailu emendare, ac difintrucre ct adnotare curavit ; foli buic, nec ulli pratesca, grammatices parti deditus.
"It appears from hence, that in the time of Probus, or about the year 68, I atin manufcripts had not been ufually pointed, and that grammarians made it their buginefs to fupply this deficiency.
"Quintilian, who wrote lis celebrated treatife on

Oratory, about the year 88 , fpeaks of conimas, colons, Punctur. and periods; but it muft be obierved, that by thefe terms he means claufes, members, and complete fentences, and not the marks of punctuation \(\ddagger\).
". Alius Donatus \& publifhed a treatife on Grammar \(\ddagger\) ouint. in the 4 th eentury, in which he explains the difinizio, I. ix.c. 4 . the meclia diffinaio, and the fubdifinęio; that is, the ufe of a fingle point in the various pofitions already merltioned.
" Jerom *, who had been the pupil of Donatus, in his Latin Verfion of the Scriptures, made ufe of certaiu diftinctions or divifions, which he calls cola and commata. It has, however, been thought probable, that thefe divifions were not made by the addition of any points or ttops; but were formed by writing, in one line, as many words as conftituted a claufe, equivalent to what we diftinguifi by a comma or a colon. Thefe divifions were celled fotxot or fneeata; and had the appearance of thont irregular verfes in poetry. There are fome Greek mannicripts ftill extant, which are wittea in this manaer \(\dagger\)."

Mr Warburton fays, that the beft treatife upon punctuation that he has feen, was publifhed fome years fince ty an anonymons anthor, and dedicated to Sir Clifton Wintringham, Bart. With that treatife we are not acquainted ; but we do not think that the art of punctuation can be taught by rales. The only way to acquire it is to obferve attentively how the molt perfoichous writers difpofe of their periods, colons, femicolons, and commas. This will make us acquainted with the importance of each; and then every writer, who knows his own meaning, mut be capalle of pointing his own pages more correctly than any other man.

PYRAMIDOID, is fometimes ufed for the parabolic fpindle, or the folid formed by the rotation of a femiparabola about its bafe or greatelt ordinate. See Paraboric Spindle.

PYRTTES. See Mineralogy in this Suppl.In the third volume of Mr Nicholfon's Philofophical Journal, we have a method of making artificial pyrites, which we fhall give-in the words of the author.
" I impregnated water (fays he) very ftrongly with carbonic acid, and introducing fome iron filings, I comtinued the impregnation for a day or two, and afterwards allowed the water to fand in a well corked bottle for fome days, till the acid had taken up as much iron as poffible. I then poured it into an aerating apparatus ; threw up the hepatic gas from fulphuret of potalh and fulphuric acid; and after having agitated the water* till it had got a good dofe of the gas, I poured the water into a large bafon: this was in the evening, and next morning when 1 looked at it I found it covered with a pretty thick film of a mott beautiful variegated pyrites. I had fo little of it, that the only proof 1 had of its being this fubftance was, that it was, ignited on its being placed on a hot poker."

Punclue
tion II 1'yrites, A.D. 34
* Hieron. Prif in
faiam, \(V_{i}\) ctiam. Pr. in Fofuam, 1. 20 .


OUADRATURE, in geometry (fee that article, and likewife Fluxions, Encycl.), has employed the time and ingenuity of fome of the moft eminent mathematicians both of ancient and of modern times. Dr: Halley's method of computing the ratio of the diameter of the circle to its circumference, was confidered by himfelf, and other lcarned mathematicians, as the ea ieft the problem admits of. And although, in the courfe of a century, much eafier methods have been difcovercd, ftill a celebrated inathematician of our own times has expreffed an opinion, that no other aliquot part of the circumference of a circle can be fo eafily computed by means of its tangent as that which was chofen by Dr Halley, viz. the arch of 30 degrees. Without taking upon him to determine whether this opinion be juft or not, the Rev. John Hellins has shewn how the feries, by which Dr Halley computed the ratio of the diameter to the circumference of the circle may be transformed into others of fwifter convergency, and which, on account of the fuccelive powers of \(\frac{x}{x}\) which occur in them, admit of an ealy fummation. We fhall give the memoir in the author's own words.
" I. The propofed transformation is obtained by means of different forms in which the fluenta of fome fluxions may be expreffed ; and to proceed with greater clcarnefs, "I will here (fays Mr Hellins) fet down the fluxion in a general form, and its fluent, in the two feries which are ufed in the following particular inflance, and may be applied with advantage in fimilar cafes.
"2. The fluent of \(\frac{x^{m-1} x}{1-x^{n}}\) is \(=\frac{x^{m}}{m}+\frac{x^{m}+n}{m+n}+\frac{x^{m+2 n}}{m+2 n}\) \(+\frac{x^{m+3 n}}{m+3 n}, \varepsilon c\). which feries, being of the limpleft form which the fluent feems to admit, was firft difcovered, and probably is the moft generally ufeful. But it has alfo been found, that the fluent of the fame fluxion may be exprefled in feries of other forms, which, though lefs fimple than that above written, yet have their particular advantages. Amongtt thofe other forms of feries which the fluent admits of, that which fuits my prefent purpofe is \(\frac{x^{m}}{m \cdot 1-x^{n}}-\frac{n x^{m+n}}{m \cdot m+n \cdot 1-\left.x^{n}\right|^{2}}+\)
\[
\text { n. } 2 n . x^{m+2 n} \quad \text { n. 2n. } 3 n, x^{m+3 n}
\]
\(\overline{\left.m \cdot \overline{m+n} \cdot \overline{m+2 n \cdot 1} \overline{-x^{n}}\right|^{3}}-\overline{m \cdot \overline{m+n} \cdot m+2 n \cdot m+\left.3 n \cdot \overline{1-x^{n}}\right|^{4}}\) + \&c. which, to fay pothing of other methods, may cafily be inveftigated by the rule given in p. 64. of the third edition of Emerfon's Fluxions ; or its equality with the former feries may be proved by algebra.
" 3 . On account of the fign - before \(x^{n}\), in the laft feries, it may be proper to remark, that its convergency, by a geometrical progrefiion, will not ceafe till \(\frac{x^{n}}{1-x^{n}}\) becomes \(=1\), or \(x\) becomes \(=\sqrt[\eta]{\frac{1}{2}}\); and that when \(x\) is a fmall quantity, and \(n\) a large number, this feries will converge almoft as fwiftly as the former. For infance, if \(x\) be \(=\sqrt{\frac{1}{3}}\), and \(n=8\), which are the valnes in the following cafe, the former feries will converge by the quantity \(x^{n}=\sqrt{\frac{3}{3}}{ }^{\prime}=\frac{1}{8}\), and this feries by the
quantity \(\frac{x^{n}}{I-x^{n 1}}=\frac{\pi r}{1-\frac{1}{8 T}}=\frac{8}{8 \delta} ;\) where the difference Quadra. in convergency will be but little, and the divifions by \(\underbrace{\text { ture. }}\) 80 cafier than thofe by 8 t .
* 4. With refpect to the indices \(m\) and \(n\), as they are here fuppofed to be affirmative whole numbers, and will be fo ill the ufe I am about to make of them, the reader need not be detained with any obfervations on the cafes in which thefe fluents will fail, when the iudices have contrary figns.
" 5. It may be proper further to remark, that by putting \(\frac{x^{n}}{1-x^{n}}=\approx\), and calling the firft, fecord, third, \&c. terms of the feries \(\frac{x^{m}}{m \cdot 1-x^{n}}-\frac{n \cdot x^{m+n}}{m \cdot m+\left.n \cdot \overline{1-x^{n}}\right|^{2}}\) \(+\frac{n \cdot 2 n x^{m t^{2 n}}}{m \cdot m+n \cdot m+2 n \cdot \overline{1-\left.x^{2}\right|^{3}}}+\) \&cc. A, I3, C, \&c. refpectively, the feries will be exprefled in the con. cile and elegant notation of \(\operatorname{Sir}\) Iface Newton, viz. \(\frac{x^{m}}{m .1-x^{n}}-\frac{n z A}{m+n}+\frac{2 n z B}{m+2 n}-\frac{3 n z \mathrm{C}}{m+3^{n}}+\& c\). which is well adapted to arithmetical calculation.
"6. I come now to the transformation propofed, which will appear very eafy, as foon as the common feries, expreffing the length of an arch in terms of its tangent, is properly arrangred.
" If the radius of a circle be 1 , and the tangent of an arch of it be called \(t\), it is well known that the length of that arch will be \(=t-\frac{t^{3}}{3}+\frac{t^{5}}{5}-\frac{t^{7}}{7}+\frac{t^{2}}{9}-\frac{t^{12}}{11}+\& \mathrm{c}\) 。 Now, if the aflirmative terms of this feries be written in one line, and the negative ones in another, the arch will be
\[
=\left\{\begin{array}{c}
t+\frac{t^{5}}{5}+\frac{t^{9}}{9}+\frac{t^{13}}{13}+\frac{t^{17}}{17}+\& c \\
-\frac{t^{3}}{3}-\frac{t^{7}}{7}-\frac{t^{17}}{11}-\frac{t^{15}}{15}-\frac{t^{19}}{19}-\text { \&c. }
\end{array}\right.
\]

And if, again, the firft, third, fifth, \&cc. term of each of thefe feries be written in one line, and the fecond, fourth, fixth, \&xc. in another, the fame arch will be expreffed thus:
\[
=\left\{\begin{array}{l}
+\left\{\begin{array}{l}
t+\frac{t^{9}}{9}+\frac{t^{17}}{17}+\frac{t^{25}}{25}+\frac{t^{33}}{33}+\& x c \\
\frac{t^{5}}{5}+\frac{t^{13}}{13}+\frac{t^{21}}{21}+\frac{t^{29}}{29}+\frac{t^{37}}{37}+\& x c \\
-\left\{\begin{array}{l}
\frac{t^{3}}{3}+\frac{t^{12}}{11}+\frac{t^{29}}{19}+\frac{t^{27}}{27}+\frac{t^{35}}{35}+\& x \\
\frac{t^{7}}{7}+\frac{t^{15}}{15}+\frac{t^{25}}{23}+\frac{t^{31}}{31}+\frac{t^{33}}{39}+\& x
\end{array}\right.
\end{array} .\left\{\begin{array}{l}
\end{array}\right.\right.
\end{array}\right.
\]

All which feries are evidently of the firft form in article 2. and therefore their values may be expreffed in the fecond form there given, or more neatly the Ncw. tonian notation mentioned in art. 5 . In each of thefe feries the value of \(n\) is 8 :

Suppl. Vol. II. Part I. in the firt feries, is 1 ; in the fecond feries, is 5 ; in the third feries, is 3 ; in the fourth feries, is 7 .
"If now we take \(t=\sqrt{\frac{x}{3}}\), the tangent of \(30^{\circ}\), which was chofen by Dr Halley, we fhall have the arch of \(30^{\circ}\)
 Six timees this quantity will be \(=\) the femicircumference when radius is 1 , and \(=\) the whole circumference when the diameter is I . If therefore we multiply the laft feries by 6 , and write \(\sqrt{12}\) for \(\frac{6}{\sqrt{3}}\), and exprefs their value in the form given in art. 5 . we fhall have the circumference of a circle whofe diameter is 1 ,
\[
=\left\{\begin{array}{l}
+\left\{\begin{array}{l}
\frac{8 \mathrm{I} \sqrt{ } 12}{80}-\frac{8 \mathrm{~A}}{9.80}+\frac{16 \mathrm{~B}}{17.80}-\frac{24 \mathrm{C}}{25.80}+\frac{32 \mathrm{D}}{33.80}, \& \mathrm{cc} \\
\frac{8 \mathrm{I} \sqrt{12}}{5 \cdot 9.80}-\frac{8 \mathrm{~A}}{13.80}+\frac{16 \mathrm{~B}}{21.80}-\frac{24 \mathrm{C}}{29.80}+\frac{32 \mathrm{D}}{37.80}, 8 \mathrm{cc}
\end{array}\right. \\
-\left\{\begin{array}{l}
\frac{81 \sqrt{12}}{3 \cdot 3.80}-\frac{8 \mathrm{~A}}{11.80}+\frac{16 \mathrm{~B}}{19.80}-\frac{24 \mathrm{C}}{27.80}+\frac{32 \mathrm{D}}{35.80}, 8 \mathrm{cc} \\
\frac{81 \sqrt{ } 12}{7.27 .80}-\frac{8 \mathrm{~A}}{15.80}+\frac{16 \mathrm{~B}}{23.80}-\frac{24 \mathrm{C}}{31.80}+\frac{32 \mathrm{D}}{39.80}, 8 \mathrm{cc}
\end{array}\right.
\end{array}\right.
\]
" 7 . All thefe new feries, it is evident, converge fomewhat fwifter than by the powers of 82 . For in the firtt feries, which has the floweft convergency, the coefficients \(\frac{8}{9}, \frac{1}{4} \frac{6}{7}, \frac{2}{2} \frac{4}{5}, \& c\). are each of them lefs than 1 ; fo that its convergency is fomewhat fwifter than by the powers of 80 .
" 8 . But another advantage of thefe new feries is, that the numerator and denominator of every term except the firft, in each of them, is divitible by 8 ; in confequence of which, the arithmetical operation by them is much faciitated, the divifion by 80 being exchanged for a divifion by 10 , which is no more than removing the decimal point. Thefe feries, then, when the factors which are common to both numerators and denominators are expunged, will ftand as below (each of which ftill converging fomewhat quicker than by the powers of 8 c ), and we fhall have the circumference of a circle whofe diameter is 1 ,
\(=\left\{\begin{array}{l}+\left\{\begin{array}{l}\frac{8 \mathrm{r} \sqrt{12}}{80}-\frac{\mathrm{A}}{9 \cdot 10}+\frac{2 \mathrm{~B}}{17 \cdot 10}-\frac{3 \mathrm{C}}{25 \cdot 10}+\frac{4 \mathrm{D}}{33 \cdot 10}, \text { \&c. } \\ \frac{9 \sqrt{ } 12}{400}-\frac{A}{13 \cdot 10}+\frac{2 \mathrm{~B}}{21 \cdot 10}-\frac{3 \mathrm{C}}{29 \cdot 10}+\frac{4 \mathrm{D}}{37 \cdot 10}, \text { \&c. }\end{array}\right. \\ -\left\{\begin{array}{l}\frac{2 \sqrt{ } 12}{80}-\frac{A}{11 \cdot 10}+\frac{2 \mathrm{~B}}{19 \cdot 10}-\frac{3 \mathrm{C}}{27 \cdot 10}+\frac{4 \mathrm{D}}{35 \cdot 10}, \& \mathrm{cc} . \\ \frac{3 \sqrt{12}}{7 \cdot 80}-\frac{A}{15 \cdot 10}+\frac{2 \mathrm{~B}}{23 \cdot 10}-\frac{3 \mathrm{C}}{31 \cdot 10}+\frac{4 \mathrm{D}}{39 \cdot 10}, 8 \mathrm{c} .\end{array}\right.\end{array}\right.\)
"By which feries the arithmetical computation will be much more eafy than by the original feries." \({ }^{\text {. }}\),

2Uadrature Lines, or Lines of Qualrature, are two lines often placed on Gunter's fector. They are marked with the letter \(Q\), and the figures \(5,6,7,8,9\), 10 ; of which \(Q\) denotes the fide of a \{quare, and the figures denote the fides of polygons of \(5,6,7, \& c\). fides. Alfo \(S\) denotes the femidiameter of a circle, and 90 a line equal to the quadrant or \(90^{\circ}\) in circumference.

QUADRIPARTITION, is the dividing by 4 , or into four equal parts. Hence quadripartite, \&c. the 4th part, or fomething parted into forr.
QUADRUPLE, is four-fold, or fomething taken four times, or multiplied by 4 ; and fo is the converfe of quadripartition.

QUART, a meafure of capacity, being the quarter or 4 th part of fome other meafure. The Engliß quart is the \(4^{\text {th }}\) part of the gallon, and contains two pints. The Roman quart, or quartarius, was the 4 th part of their corgius. The French, befides their quart or pot of two pints, have various other quarts, diftinguifhed by the whole of which they are quarters; as quart de muid, and quart de boiffeau.

QUARTILE, an afpect of the planets when they are at the diftance of three figns or \(90^{\circ}\) from each other; and is denoted by the character \(\square\).

QUELPAERT, an ifland lying in the mouth of the channel of Japan, and fubject to the king of Corea (See that article Encycl.) Till the laft voyage of La Peroufe, this ifland vas known to Europeans only by the wreck of the Dutch Thip Sparrow-hawk in 1635 . On the 2 Ift of May 1787, the French Conamodore made this ifland, and determined the fouth point of it to be in Lat. \(33^{\circ} 14^{\prime}\) north, and in Lon. \(124^{\circ} 15^{\prime}\) eaft from Paris. He ran along the whole fouth eaft fide, at fix leagues diftance, and fays that it is fcarcely poffible to find an inand which affords a finer afpect ; a peak of about a thoufand toifes, which is vifible at the diftance of eighteen or twenty leagues, occupies the iniddle of the ifand, of which it is doubtlefs the refervoir ; the land gradually flopes towards the fea, whence the habitations appear as an amphitheatre. The foil feemed to be cultivated to a very great height. By the affiffance of glaffes was perceived the divifion of fields; they were very much parcelled out, which is the Atrongeft proof of a great population. The very varied gradation of colours, from the different ftates of cultivation, rendered the view of this ifland ftill more agreeable. Unfortunately, it belongs to a people who are prohibited from all communication with ftrangers, and who detain in flavery thofe who have the misfortune to be fhip wrecked on thefe coafts. Saine of the Dutchmen of the fhip Sparrow-hawls, after a captivity of eightees years there, during which they received many baftina does, found means to take away a bark, and to crofs to Japan, from which they arrived at Batavia, and afo tcrwarda at Amiterdam.

QUEUE d'aronde, or Swallow's Tail, in fortification, is a detached or outwork, whofe fides fpread or open towards the campaign, or draw narrower and clofer towards the gorge. Of this kind are either fingle or double tenailles, and fome horn-works, whofe fides. are not parallel, but are narrow at the gorge, and open at the head, like the figure of a fwallow's tail. On the contrary, when the fides are lefs than the gorge, the work is called contre queue d'aronde.
\(\mathfrak{O U E U}\)

QUEVE d'aronde, in carpentry, a method of jointing, called alfo dove-tailing.
QUINTAI, the weight of a hundred pounds, in mott countries: but in England it is the hundred weight, or 112 pounds. Quintal was alfo formerly ufed for a weight of lead, iron, or other common metal,
ufually equal to a hundred pounds, at 6 fore to the hun. Quintife. dred.
QUINTILE, in aftronomy, an afpect of the planets when they are diftant the 5 th part of the zodiac, or 72 degrees ; and is marked thus, C , or O . ACHitis, Rickets (See Medicine-Index, Encycl.), is a difeafe fo formidable to children, that we believe no parent will think the following abftract of Bonhomme's memoir on the nature and treatment of it too long even for this Supplement.
The change which the bones undergo in this diforder, has long been attributed to the action of an acid on their fubftance; but this fuppofition was grounded on mere conjecture and remote analogy. Bonhomme holds the fame opinion on better grounds; and the principal notions which conflitute the bafis of his memoir are the following:
1. According to him, the nature of the rachitic diforder arifes, on the one hand, from the developement of an acid approaching in its properties to the vegetable acids, paiticularly the oxalic; and, on the other, from the defect of phofphoric acid, of which the combination with the animal calcareous earth forms the natural bafis of the bones, and gives them their folidity. Whence it follows, that the indication refulting from this propofition, if once adopted, would be, that the treatment of rachitis mult depend on two principal points, namely, to prevent the developement of the oxalic acid, and to re eftablifh the combination of the phofphoric acid with the bafis of the bones to which they owe their folidity.
2. The author proves, by experiments and obfervations, in the firft place, that alkaline lotions of the paits affected with rachitis contribute to their cure; next, that the calcareous phofphate taken internally is really tranfmitted by the lymphatic paffages, and contributes to offification ; and, laftly, that the internal ufe of calcareous phofphate, whether alone or combined with the phofphate of foda, powerfully contributes to reflore the natural proportions in the fubltance of the bones, and accelerate the cure of rachitis.

With regard to the author's endeavours to prove that the calcareous acid is wanting in the bones of thofe who are difordered with rachitis, and that the developement of oxalic acid contributes to the difeafe, we muft not conceal that his memoir contains views rather than abfolute proofs of thefe two pofitions. He declares, himfelf, he was not provided with the neceffary means to eftablifh an exact and complete analyfia. He therefore prefents his ideas, in this refpect, merely as conjectures approaching to the truth.-

The effect of the action of acids upon bones was before known ; that is to fay, that when deprived of calcareous phofphate, and reduced to the gelatinous parerchyma which forms one of their elemente, they lofe
their confiftence; and become flexible. Hence it was Rachitis, already conjectured by various phyficians, that the ra. chitis was the effect of a peculiar acid.

A difpofition to acefcence in the firt paffages is obfervable in all infants. The odour which characterizes this acefcence is often manifett in their breath, and even their perfpiration. The bile correets this difpofition; but in general the bile is wanting in rachitic infants. It does not colour their excremcits, and the acids accordingly are developed in a very decided manner. They difturb the circulation, and attack and foften the bones. As it is by defeet of animalization that thefe acids develope themfelves, it follows that their character is analogous to the fermentefcible vegetable acids, and more or lefs to the oxalic acid; and that, on the contrary, the animal acid or phofphoric acid ceafes to be formed, and to unite with the animal calcareous earth ; whence they are deprived of the principle of their folidity. This is the theory of Citizen Bonhomme.
In order to eitablifh this doetrine upon precife experiments, it was requifite to analyfe rachitic bones comparatively with thofe of healthy individuals of the fame age ; and as it is known that the urine of rachitic fub. jects depofites a great quantity of a fubflance of fparing folubility and earthy appearance, it would have been advantageous to have joined a complete analyfis of this urine and its fediment. Citizen Bonhomme, not being provided with the means fufficient to make thefe anaIyfes, and being befides of opinion that fuch rachitic bones as are deftroyed by this malady exift in a progreffive ftate of change, which might render their analy fis fcarcely fufceptible of comparifon, limited himfelf to a collection of fome of the moft remarkable phenomena of the urinc, of the aged, the adult, and infants in the healthy flate, of infants in the rachitic ftate, and of patients after the perfect cure of this diforder. From thefe obfervations he has deduced feveral important refults.

It is known, that when the uine contains difengaged phofphoric acid, as happens to aged individuals, and in fome peculiar circumftances of the fy ftem, if lime water be poured in, chere is a fpeedy depofition of calcareous phofphate. It is alfo known, that when a folution of the nitrate of mercury is poured to the frefh urine of adults, a rofe-coloured precipitate is formed, which is a phofphate of mercury produced by the decompofition of the phofphates contained in the urine. Thefe two proofs are therefore extremely proper to afcertain the prefence of phofphoric acid, whether fice or combined,

\section*{R A C}
[: Rachit:s in a fluid whichen its natural fate contains a remarkable proportion. Befides this principle, the urine depofits more or lefs of fediment, either gelatinous or of an earthy appearance ; and, lafly, by evaporation, a fa. ponaceous and faline extract, in greater or lefs abundance, is obtained by evaporation. By means of thefe four methods of examination, the author has afcertained the following facts :
I. In the healthy ftate, the fediment naturally depofited by urine is almott totally gelatinous in the infant and the adult, and in the aged individual it is furcharged with an abundant fediment of an earthy appcarauce fimilar to the earth of bones, which confequently is calcareous phofphate. 2. The quantity of brown faponaceous faline extract afforded by evaporation is greater in proportion to the age. 3 . The prefence of difengaged phofphoric acid, as fhewn by lime water, is none in the urine of infonts, fcarcely perceptille in that of adults, but very remarkable in that of old men. For two ounces of this laft urine afforded by this means tea grains of phofphate of lime. 4. The decompofition of the phofphates by nitrate of mercury is not feen in the urine of infants; an abundant precipitate of a light rofecolour is produced in this way fiom the uine of adults; and in that of old men this precipitate is al. ways of a grey colour, and very abundant. Hence Citizen Bonhomme concluder, that the phofphoric acid, whether at liberty or combined, does exift in the urine of healthy individuals in proportion to the deftruction of the folids by age, and that it increaies with the age.

With regard to the urine of rachitic fubjects, the molt remarkable facts are, I. The abundant and appare:tly earthy fediment it depofits (fpontaneoufly) is diffeent from that of old men, by its colour, which is grey, and does not refemble phofphate of lime, and alifo by its much greater quantity. For a pound of this urine let fall two gros, whereas the fame quantity of the urine of old men depofited only 45 grains. 2. The extract left by evaporation is likewife much more confiderable than in other urine. It is one-third more in quantity than the extract affurded even by the urine of figed perfons.

From thefe two furf oblervations it follows, that the folids in rachitic fu:bjects are deffroyed with much more rapidity than even in old men; and that they afford a much more abundant portion of wafte to the urine.
3. The light depofition occafioned by lime water in the urine of rachitic fubjects is very fmall in quantity, brown, gelatinous when frefh, and pulverulent when elry. It does not at all refemble calcareous phofphate. 4. The depofition formed by the folution of mercerial nitrate is not abundant, neither of a rofe colour as in the urine of adults, nor grey like that of old men. It is always white, and confequently has no exten nal refemblance to the phofphate of mercury. The author affirms that it refembles a mercurial oxalate Latly, the urine of the fame rachitic fubjects when cured, ex. hibits again all the charaders oblerved in the urine of heaithy children. We fhall not add to the reffections of the author. In effect, though thefe firft obfervations are curious, they are incompletc. We offer them to phylicians fimply as the elements of an inveftigation which it is of importance to continue and bring to perfection. We fhall therefore proceed to the curative and experimental parts of the memoir.

One of the facts which it wns of the utmolt impo:tance to eflablifh, was the tranfition of the calcarcous. phofphate from the inteftinal paflages, into thofe of circulation and fecretion. Fourcroy had already well afcertained that the ferum of milk contains this falt naturally. Vauquelin had proved its exillence, as we:l as that of pure foda, in the feminal fluid; but was iz poffible that it could pafs unaltered from the flomach and inteftines into the veffels which contain the blood and lymph? Could it by this means apply itfelf to the bones? This was to he afcertained by experiments; and the following are the experiments made by lionhomme for that purpofe. We give them in a tranfation of his own words.
"I caufed (fays he) feveral young fowls of thic fame incubation to be fed in different namners. Some reecived the ufual food 'without any mixture; others received daily a certain quantity of calcareus phofphate mixed in the fame pafte as formed the fupport of the others ; and, latlly, oue of them was fed witin variations in the ufe of the mixture: the calcareous phofphate was fometimes given and iometimes fufpended. When thefe fowls, after two months, had açuired their ordinary growth, I examined and carefully compared theftate of tacir bones. The progrefs of the offitication in the epiphyfes was various according to the nature of the fond the animal had received. The bones of the laft fowl, which had received the phofplate only from time to time, were rather more advanced than the bones of thofe which had been. fed without mixture. The bones of thofe fowls which had been habitually fed with the misture were evidently more folid, and their epiplyy fes were much lefs perceptible. Simple inSpection was fufficient to thew thefe differcnces when the bones were mixed together.
"I had fed feveral young fowls of the fame incubation according to another plan. Some were fed on a fimple palte, without mixture; for others it was mixed with pulverifed madder-root; and a rhith compolition. was made of this laft pafte and calcareons phofphate. This was alfo given habitually to other fowls. When after two months \(I\) examined the progrefs of offification in the bones of thefe different animals, I eatily perccived the red traces of the madder in the offified parts of all thofe which had ufed it ; but 1 obferved, that the offfication was not more advanced by thic limple mixture of this root than by the ordinary fioud: on the contrary, the bones of thole fowls which had fwallowed the phoiphate mised with madder were much more folid than the others. The red colour ferved admiably to ciltingniih the extremities of the long bones from their epiphyfes. After an exact comrarition, there could be no doubt of the efficacy of calcarenus phofphiste in favour of the progrefs of offitication. The virtue of the madder feemed confined to that of giving colour to the offified parts."

From thefe experiments, it was natural to make the trial of calcareous phofphate in addition to the remedies made ufe of in the treatment of rachitic fubjects. Here follows what the author himfelf fays of two remarkable inftances in which the calcareous phofplate was adminitered with fuccefs :
"The daughter of Mr Ranchon watch-maker, aged two years and a half, walked with a feeble and tottering pace, and the extremities of all her bones prefented epiphyfes:
achitis．very prominent．In this fituation fie exhibited the ap． pearance of imperfect rachitis，or the firlt period of this diforder．Alkaline lotions，which I immediately advifed，were attended with a good effect．Her fleep became more firm；and as the firt paffages were in a good fate，I gave，without internal preparation，one feruple of a mixture of equal parts of phofphate of lime and plofphate of foda twice a day．In the courfe of three weeks her legs were perfectly rellored；and this amiable infant has ever fince had the fatisfaction to sun with fpirit and agility．
＂A female infant，of the name of Boiard，aged four years．had experienced from her bith the noott decided fymptoms of rachitis．The protuberance of the epi－ phyfes and tumefaction of the abdomen firt indicated the difeafe．The impoffbility of fupporting herfelf and walking at the ufual age confirmed thefe unfortu－ aate fymptoms．13y degrees the glands of the neck and of the mefentery became fwelled ；the teeth were blackened，became carious，and were not replaced． This fituation became ttill more aflicting by crifes al－ moft periodical at an interval of three or four weeks． At thefe aflating periods，a fever of contiderable ftrength，cardialgia，and even convulfions，particularly in the right，were obferved．The termination of each paroxyfm was announced or afcertained by abundant flools，and the evactiation of urine flrongly charged with an earthy fediment．The imprudent exhibition of a purge at the beginning of one of thefe crifes had nearly deprived the patient of her life．In this llate it was that I beheld her for the firt time in the month of January 1791．The alkaline lotion was the only re－ medy the mother adopted in the firlt inflance，and it produced a remarkable effect．After eight days the infant was fo much better as to be able to fupport her－ felf．The remedy was then laid afide，and eight days aftewards the clild was incapable of fanding without fupport．The ufe of the alkaline folution being re－ newed，was attended with the fame fuccefs，and its dif－ eontinuance was again followed by the complete return of all the fymptoins．In the firft days of March，the uther remedies I had advifed were exhibited．The conftipation which tad always exitted became lefs，and the following crifis was effected without pain．And at length the convulions，the pains，and the crifes dif－ appeared；but the impoffibility of walking till remain－ ed．At this time，namely on the fecond of May，I gave the child the phofphate of foda and calcareous phofoliate mised together，in the dofe of half a dram twice a．day．At the end of the month the was able to ftand upright，leaning againtt a chair，and the fwell－ ings began to diminifl．She continutd for a long time afterwards to take the mixture of the phofphates．I likewife gave her occafionally one grain of the extract of bile，prepared with fyirit of wine；and at length in the month of July I had the pleafure to fee the patient sun and play in the middle of the ftreet with the other children of her own age，\＆c．＂

The anthor gives other inflances of this medicine be－ ing adminiftered with complete fuccefs to rachitic children，and one in which it was attended with the beft effects in a cafe of incurvated fpine．Thefe it is needlefs to infert，becaufe we truft that none of our lefs learned readers will have recourfe to the medicine with． out the advice of a phyfician ；and to him an enumera－
tion of cafes conid ferve no purpofe．It may be pro－ per，however，as alkaline lotions and their beneficial ef． fects are mentioned，to give here the autlior＇s account of the lotion which the uled．
＂In ordinary cafcs of rachitis，particularly at the commencement of the diforder，it is of advantage to ufe a timple folution of potan 20 wath the parts aftected． This folution is made by diffolving from fidif an omece to an ounce of puified pot－aी？in a pound of diftilled or very pure fipring water．When it is to be ufed，the fkin mult firtt be rubbed with a dry cloth or a piece of time flati－ nel．After this precaution，the difeafed extremities are to be wafhed carefully with the warm iclution，and at leng＇h wiped，fo as to leave no trace of moiture．＇ithis pracice and wathing muft be repeated at lealt twice a－ day．I can affirn，thom repeated triuls，that it will foun be attended with fiecefis．＂

In a note on this paflage，M．Hulice，who analyfed the memoir at the defite of the zociety of Medicine at Paris，jultly obferves，that as pule putafs，or the vege－ table alkali，is a molt poweful caultic，it camot be ufed in thefe proportions；addine，that the found one－ cighth part of the lalt here indicated to form too Atrong a lotion for the fkin of an infant．M．Bonhomme，up－ on enquiry being made，informed dim，that the potalis which he ufed was that of the thops，which is very fa： from beiug pure；and Mr Nicholfon conjectures that is was the common falt of tartar of our fhups．This，w＝ think，extremely probable，efpeciailly as M．Bonhomme affures us that even a lixium of wnod afhes，fuch as is ufed for walhing fine linell，may anfor the purpofe ex． tremely well．

For a fuller account of this iuterefting memoir ons readers are referred w the 17 th volume of the Slumats de Chimie，or to the firlt vulume of Nicholfon＇s Pbilatij． phical Yournal．

RAJA，the ray fibs．Sice Encyclopadia，where it is faid that the oxyrinchus or fharp nofed ray，is fuppofed to be the los of the ancients；but if there be any truth in the following narrative，which we confefs has mach the． air of fiction，this is probably a miftake．It is the nar－ rative of Vailant，and we flail give it in his own word．
＂In the latitude \(10^{\circ} 15^{\prime}\) north，and longituc＇e \(\geqslant 55^{\circ}\) ， an enormous flat fifl of the ray genus（fays he），caine and fwam round our veffel．It difiered from the com． mon ray，however，in the fhape of its head，which，ili－ ftead of being pointed，formed a crefeent，and from the extremities of the femicirgle iffued two alms as it were， which the failors called horns．They were two fect wide at the bafe，and only five inches at the extremity． This moniter they told me was called the fcu－cievil．
＂A few hours after，we faw two others with this， one of which was fo extremely large，that it was com－ puted by the crew to be fifty or \(\int\) isity feet wide．Each． fwan feparately，and was furrounded by thofe finall fifh which ufually precede the fhark，and which are therefore called by feamen pilot．ffb．Lallly，all three carried on each of their horns a white filh，about the fize of a man＇s arm，and half a yard long，which ap． peared to be ftationed there on duty．
＂You would have faid they were two fentinels pla－ ced to keep watch for the fafety of the animal，to in－ form him of any approaching danger，and to guide his movements．If he approached too near the veffel，they guitted their potts，and，fwimming brifkly before，led

Rachitio，
Rajı．
にコ」。

Raj1 him away. If he rofe too high above the water, they pafted brekward and forward over his back till he had defcended deeper. If, on the contrary, he fwam too
low, they difappeared, and we faw no more of them, becaufe, no doubt, they were paffing underneatl, as in the preceding inftance they had paffed above him. Accordingly we found him re-afcend towards the furface, and then the two fentinels reaffumed their poits, each on his horn."

Thefe manœuvres continued three days; and to give our author the better opportunity of obferving them, the fhip moft fortunately was becalmed the whole time. He was naturally very defirous of catching one of them that lie might examine it at leifure ; and, by bribing the feamen with a dozen of bottles of wine, he accomplifhed his object. One of the fifh was fluck with twelve or fifteen harpoons; feveral halfers were paffed round his body, and he was hoifted on board.
"This (fays our author) was the leaft of the three, being only eight and-twenty feet in its extreme breadth, and one-and trwenty in length from the extremity of the - horns to that of the tail. The tail, which was thick in proportion to the body, was twenty two inches long. The mouth, placed exactly like that of the ray, was wide enough to fwallow a man with eafe. The fkin was white under the belly, and brown on the back, like that of the ray. We reckoned the animal to weigh not lefs, certainly, than a ton."

We think it was fortunate that they chanced to flrike the fmalleft fifh; for an addition of eight or ten ton weight, which the largeft ray muft have weighed, as certainly as the fmalleft weighed one ton, might have been very inconvenient on bnard a hip already loaded. We do not remember to have anywhere met with a defeription of this ray before, and we think it fhould be confidered as a new fpecics; but we fhall not give it a name till its exiftence be better afcertained, when we - fubmit to the pupils of Linnæus, whether it may not be proper to give it the ancient name los.

KAJAH. (See Encyclopadia.) We learn from Sir Charles Roufe Boughton's : Differtation concerning the Landed Property of Bengal, that this title is conferred upon Hindoos by the emperor, and frequently given out of courtefy to the greater zemindars. It would appear therefore that the Rajahs can never be independent of the Mogul but by a fuccefsful rebellion.

RAYEI-ul-mulk, in the language of Bengal, the uage of the country, the common law.

RATIO (See Encyclopactia) has been defined by Euclid, in the 5 th book of his Elements, in terms to which many mathematicians have objected ; and his de-- finition of proportion, which is fo ultimately comeeted with it, is itill more objectionable. The Rev. Abraham Robertfon of Oxford, in a frnall tract publifhed in 1789, demoniltrates the truth, of the two definitions in queftion in feven propofitions, of which the fubfance is as follows. He firf lays down thefe four definitions:
"r. Ratio is the relation which one magnitude has to another, of the fame kind, with refpect to quantity.
"2. If the firt of four magnitudes be exactly as great when compared to the fecond, as the third is when compared to the fourth, the fir! is faid to have to the fecond the fame ratio that the third has to the fourth.
" 3 . If the firtt of four magnituces be greater, when compared to the fecond, than the third is when com-
pared to the fourth, the firft is faid to have to the fecond a greater ratio than the third has to the fourth.
\({ }^{6} 4\). If the firft of four magnitudes be lefs, when compared to the fecond, than the third is when compared to the fourth, the firft is faid to have to the fecond a lefs.ratio than the third has to the fourth."

He then demonftrates, by reafoning ftrictly geometrical, the following propofitions :

Prop. x. If the firt of four magnitudes have to the fecond, the fame ratio which the third has to the fourth; then, if the firlt be equal to the fecond, the thind is equal to the fourth; if greater, greater; if lefs, lefs.

Prop. 2. If the firft of four magnitudes be to the fecond as the third to the fourth, and if any cquimultiples whatever of the firt and third be taken, and alfo any equimultiples of the fecond and fourth ; the multiple of the firft will be to the multiple of the fecond as the multiple of the third to the multiple of the fourth.

Prop. 3. If the firt of four magnitudes be to the fecond as the third to the fourth, and if any like aliquot parts whatever be taken of the firlt and third, and any like aliquot parts whatever of the fecond and fourth, the -part of the firft will be to the part of the fecond as the part of the third to the part of the fourth.

Prop. 4. If the firt of four magnitudes be to the fecond as the thind to the fourth, and if any equimultiples whatever be taken of the firt and third, and any whatever of the fecond and fourtlr; if the multiple of the firft be equal to the multiple of the fecond, the multiple of the third will be equal to the multiple of the fourth ; if greater, greater; if lefs, lefs.

Prop. 5. If the firft of four magnitudes be to the fecond as the third is to a magnitude lefs than the fourth, then it is poffible to take certain equimultiples of the -firlt and third, and certain equimultiples of the fecond and fourth, fuch, that the multiple of the firt thall be greater than the multiple of the fecond, but the multiple of the third not greater than the multiplc of the fourth.

Prop. 6. If the firt of four magnitudes be to the fecond as the third is to a magnitude greater than the fourth, then certain equimultiples can be taken of the firt and third, and certain equimultiples of the fecond and fourth, fuch, that the multiple of the firt fhall be lefs than the multiple of the fecond, but tlie multiple of the third not lefs than the multiple of the fourth.

Prop. 7. If any equimultiples whatever be taken of the firft and third of four magnitudes, and any equimultiples whatever of the fecond and fourth; and if when the multiple of thic firft is lefs than that of the fecond, the multiple of the third is alfo lefs than that of the fourth; or if when the multiple of the firt is equal to that of the recond, the multiple of the third is alro equal to that of the fourth; or if when the multiple of the firt is greater than that of the fecond, the multiple of the third is alfo greater than that of the fourth : then, the firlt of the four magnitudes fhall be to the fecond as the third to the fourth.

RATIONAL, in arithmetic, \& c , the quality of numbers, fractions, quantities, \&cc. when they can be expreffed by common numbers; in contradiftinction to irrational or furd ones, which cannot be exprefled in common numbers.

RA YNAI. (William Thomas), commonly called the Abbé Raynal, was educated among the Jefuits, and had become one of the order. The learning of that Society is univer fally univerfally known, as well as the happy talents which its lisperiors poffeffed, of affigning to each inember his proper employment Raynal, however, after having acquired among them a talte for literature and fience, had probably become refractory, for he was expelled from the order; and the caufe of his expulfion, according to the Ablee Barruel, was his imviety.

With the real caufe of his expulfion M. Barruel is furely much better acquainted than we can pretend to be; but we have a ftrong fufpicion that his impieties had not then reached farther than to call in queltion the fupreme authority of the church; for our anthor himfelf affures un, that he did not utter his atrocious declarations againft Chrifianity till he had ceafed to be a member of the order of Jefuits. He then affociated himfelf with Voltaire, D'Alembert, and Diderot, and was by them employed to furnifh the theological articles for the Encyclopéclie. But though his religious opinions werc cerrainly lax, and his moral principles very exceptionable, he could not even then be what, in a Proteftant country, would be deemed a man remarkable for impiety; for he employed the Abbé Yvon, whom M. Barrut calls an odd metaphyfician, but an inoffenfive and upright man, to write the articles which he was engaged to furnifh. In the conducting of this tranfaction, he fhewed, indeed, that he poffeffed not a proper fenfe of honour; for he paid poor Y von with twenty-five louis d'ors for writing theological articles, for which he received himfelf lix times that furn. This trick was difcovered, Raynal was difgraced, and compelled to pay up the balance to Abbe Yvon; but tho' he had thus fhewn himfelf to be without honour, it is difficult to believe that he had yet procceded fo far as to blafpheme Chrit, fince he had employed a Chriftian divine to fupply his place in the Encyclopédie.

His firt work of eminence, and thai indeed upon which his fame is chiefly built, is his "Political and Philofophical Hifory of the European Settlements in the Ealt and Weft Indies." That this hiftory is written in an anmated ftyle, and that it contains many juit reflections, both political and philofophical, is known to all Enrope; for it has been tranlated into every Euro. pean language. Its beauties, however, are deformed by many fentiments that are irreligious, and by fome that are impure. It was followed, we think, in 1780 , by a fmall tract entitled " The Revolution of America;" in which the author pleads the canfe of the revolted colonifts with a degree of zeal, cenfures the conduct of the Britifh government with a kecunefs of afperity, and difplays a knowledge of the principles and intrigues of the different factions which at that period divided the Englifh nation, that furely was not natuial to the impartial pen of a philofophic foreigner. Hence he has been fuppofed to have been incited to the undertaking, and to have been furnifhed with part of his materials, by that defperate faction which uniformly oppofed the meafures of Lord North, and fecretly fomented the rebellion in America. Be this as it may, he propagated, both in this tract and in his hi. ftory, a number of licentions opinions refpecting goverment and religion, of which he lived to regret the conlequences.
A profecution was inftitnted againft him by the French government on account of his hiltory of the Eaft and Weat Indies; but it was conducted with fo little feverity,
that he had fufficient time to retire to the dominions of the King of P uffia, who afforded him the protection he folicited, although his Majetty's character was tieated by the author in his book with no great degree of veneration. Raynal alfo experienced the kindnefs of the Emprefs of Ruffia; and it is not a little remarkable of this fingular perfonage, that, althongh he was always fevere in difcuffing the characters of princes, yet the molt defootic among thefe heaped upon him many marks of favour and generofity. The Abbé alfo received a vely unufual mark of refpect from a Briti? Huafe of Come mons. It was once intimated to the fpeaker that Raynal was a fpectator in the gallery. The bufinefs was. imme.liately fufpended, and the ftranger conducted to a more convenient and honourable fituation. How different was the conduct of Dr Johnfon, who, when a friend advanced to him with our author, faying, "Will you give me leave, Doctor, to introduce to you the Abbé Raynal ?" Lurned on his heel, and vociferated, "No, Sir!' We are far from wifhing to vindicate the rudenefs of the fage; but it was per haps as proper as the politenefs of the Houfe of Commons.

The great trait of Rayual's character was a love of liberty, which, in his earlier writings, he did not properly define; but when he lived to fee fome of the confequences of this, in the progrefs of the French Revolution, he made one glorious effort to retrieve his erro1s. In the month of May 1791, he addreffed to the conftituent affembly one of the moft eloquent, argumentative, and impreffive letters that ever was written on any fubject; a letter which, if the majority of them had not been intoxicated with their newly acquired confequence, muft have given fome check to their mad career. After complimenting them upon what they had done, he proceeds thus: "I have long dared to fpeak to kings of their duty ; fuffer me now to fpeak to the people of their etrors, and to their reprefentatives of the dangers which threaten us. I am, I own to you, deeply afficted at the crimes which plunge this empire into mourning. Is it true that \(I\) am to look back with horror at myfe!f for being one of thofe who, by feeling a noble indignation agrant arbitrary power, may perhaps have fumithed arms to licentionfnefs? Do then religion, the lnws, the royal authority, and public order, demand back from philofophy and reafon the ties which united them to the grand fociety of the French mation, as if, by expofing abufes, and teaching the rights of the people and the duties of princes, our criminal efforts had broken thofe ties? But, no!never have the bold conceptions of philofophy been reprefented by us as the ftr:ct rule for acts of legination.
"You cannot juftly attribute to us what could only be the refult of a falle interprtation of our principles. Alas! now that I ftand an the brink of the grave; now that I am about to quir this immenfe fanily, whofe happinefs I have ardently defired, what do I fee around me? Religious troubles, civil diflentions, confternation on the one band, tyranny and audacity on the other ; a government the flave of popular tyranny; the fanctualy of the lawa furrounded by unruly men, who alter: nately dictate or defpife thofe laws; foldiers without difcipline; leaders without authority ; minilters without means; a king, the filt friend of his people, plunged into bitternefs, infulted, menaced, ftripped of all authority; and the public power no longer exitting but

\section*{REA [392] R E A}

Raynal, in clubs, in which ignorant and rude men dare to deReaping.
cide all political quétions."

He then proceeds to prove, which he does very completely, that it was not the bufinefs of the affembly to abolifh every ancient inftitution; that the genins of the French people is fuch, that they never can be happy or profperous but under a well-regulated monarchical government; and that, if they wifhed not the nation to fall under the worlt kind of defpotifm-the defpotifm of a low faction, they mult increafe the power of the king. "Alas! (continues he) what are my fufferings, when in the heart of the capital, in the centre of knowledge, I fee this mifguided people welcome, with a ferocious joy, the moll criminal propofitions, fmile at the recital of murder, and celebrate their crimes as conquefts! !"

He had then feen comparatively but little; but he lived to fee more-to fee his countrymen celebrate, as virtues, crimes, compared with which the atrocities of I790 appear almoft as harmiels. Being ftripped of all his property, which was large, by the robbers of the revolution, he died in poverty in March 1795, and in the 84 th year of his age.

Befides the works which we have already mentioned, he wrote "A Hiltory of the Parliament of England," and a "Hiftory of the Stadholderate;" but the ee are both of them more remarkable for a fpecious fyle and loftinefs of invention than for ufeful obfervation or folid argument. He wrote likewife "The Hiltory of the Divorce of Catharine of Arragon by Henry the Eighth," which is not fo much a recital of, and commentary upon, the fact from which he takes the title, as it is an able picture of univerfal Europe at that period, of the views, interefts, and power, of all the different potentates. At the time of his death he was preparing a new edition of all his works, in which were to be made many alterations; and he is faid to have left among his manufcripts a "Hiftory of the Revocation of the Edick of Nantes," in four volumes ; but it is alfo very certain, that, during the fangninary reign of Robefpierre, he burnt a great part of his papers.

REAPING, the well known operation of cutting corn either by the fickle or by the fcythe. Reaping by the fickle is by much the moft common practice, and that which, we believe, prevails univerfally in Scotland; yet the other method, where it is practicable, is certainly the leaft laborions, and by much the moft expeditious. To the fcythe, as an inftrument of reaping, nany objections are urged.

It is faid that it Thakes the ear, fo that many of the grains are loft ; that it lets the corn fall, after cutting it, in a confufed and fcattered flate, fo that either much of it is loft, or a great deal of time is confumed in gathering it together; that it can only be made ufe of in land which is very even and free from ftones; that it does not leave fufficient length of ftubble in the ground to lay the con on when cut; that it mixes bad weeds with the corn, the feeds of which are fown the next year; and, lafty, that the ufe of the fcythe is prejudicial to the health of the reaper.

Thele objections, however, are either of no weight, or they are made by thofe who are not acquainted
with the fcythes which have been adapted to this purpofe, and with the proper manner of ufing them. With a good fcythe, properly managed, the corn, after being cut, remains at firft upright, and then falls very gently upon the rake fixed to the fcythe, without any fhake or jolt ; or at leaft with lefs than tlat which it receives when reaped with a fickle. With refpect to the lofs of grain, that proceeds chiefly from the corn being too dry ; confequently it fhould be reaped only upon proper days, and proper times of the day, which is much more eafily done with the fcythe than with the fickle, becaufe the work is fo much fhorter. The ftalks, kept together by the rake, may be laid upon the ground, or rather againft the corn not yet cut, in fo regular and collected a flate, that thofe who gather and tie the Sheaves, whether they are women or children, have no. thing but their own negligence to accufe if any thing is left behind. When land is properly ploughed and harrowed, it is fufficiently even ; and in fuch as is ftony; the only precaution neceffary is to keep the fcythe a litele higher in ufing it, that it may not frike againlt the flones. If the ftubble left in the ground be fhort, the ftraw which is cut off will be the longer ; and the latter is certainly of more value than the former, which ooly ferves to incommode the cattle which afterwards go to feed in the field.

Thefe confiderations, and others of a like nature, induced the patriotic fociety of Milan to fend, fome years ugo, to thofe parts in which fcythes are made nfe of for reaping; and having procured a model of a fcythe from Silefia, they caufed one to be made of a proper fize. It was firlt tried upon corn, and afterwards unon millet ; and although the firft fcythe was not accurately made, and the reaper had never before made ufe of fuch an inftrument, yet ic was found that nearly half the ufual time was faved, and that the labour and fatigue were much diminifhed; the corn alfo was cut without receiving any fhock that could be hurtful to it, and fell in an even and regular ftate, fo that it was afterwards eafily bound up in compact theaves. They were afterwards prefented with a fcythe fomewhat different from the Silefian, which is very generally ufed in Aultria.

Thefe intruments are fo fimple, that the figure of one of them renders the defoription of either almoft unneceffary. In fig. 1. is thewn the Silefian fcythe tried by the Society; the difference between that and the Auftrian one we fhall mention in our defcription. The firt, or Silefian foythie, differs very little from the fcythe we commonly ufe for mowing grafs, except that the blade is rather fmaller; to it are added four teeth of wood, parallel to the blade, fixed and fecured in a proper manner, and intended to keep the corn toge \({ }^{\text {b }}\) ther after being cut, fo that inftead of its falling in a confufed ftate, the reaper may lay it down in a regular and compact one. The fecond, or Auftrian fcythe, is fimilar to the former, except that the blade is larger ; confequently the wooden tecth, of which there are five, are longer ; the handle alfo is more flat, and rather crooked.

In the firf, the handle \(a b\) (fee fig. I.) is two Milanefe braffes (A), and nine inches and a half in length;
(A) One himdred Milanefe braffes'are equal to fifty-eight Englifh yards and a half.
the blade \(b\), is one brafs three inches and a half; the picce of wood in which the teeth are fixed, one brafs one inch and a half. In the fecond, the handle is two braffes, and feven inches long; the blade, one brafs eleven inches; the piece in which the teeth are fixed, eleven inches and a quarter. 'The proportions of the other parts may be conceived from the figure.

The difference in the conftruction of these two feythes makes it requifite to ufe them in a different manner; but that will be better acquired in practice than by precept. Such of our countrymen as are accufomed to the ufe of the common fcythe will very foon find out the mof convenient and advantagreous manner of ufing thefe new kinds of feythe, and of laying down the corn properly when cut.

It fhould, however, be obferved, that in mowing grals the feet are kept almoll parallet to each other, whereas in reaping corn they thould be kept upon a -line, one behind the other, thrulting the right fout forward, and drawing the left towards it. This is necef. fary, becaufe when grafs is mowed it is lett to fall jult where it is cut ; but when corn is cut, it is to be carnied and laid in a proper manner againtt that which is not yet cut, and which is at the left hand of the reaper; and if the feet were kept parallel to each other, the reaper would be obliged to extend and turn his body in a very inconvenient manner.

After having made public thefe obfervations, the fociety made farther experiments upon the fubject; in which it was found, that when, on account of very wet weather, the falks of the corn are bent down, the wooden teeth of the forementioned fcythes are apt to lay hold of fome ears, to the ftalks of which the iron does not reach, and confequently not being cut below, they are pulled fo that the grain is fcattered. This happens chiefly when the reapers, not being yct fufficiently accuftomed to that kind of fcythe, do not know how to adapt it to particular circumftances.
' T o remedy this inconvenience, it occurred to an in. geniuts blackfinith to add to the common fcythe a gaiberer or collector made of cloth, as may be feen at fig. 2. where \(a b c\) is a common fcythe; \(c d m l o f n e\) is the gatherer; which at \(c d e\) is compofed of a thin plate of iron, having at its extremity a hollow for receiving the point of the blade. At ed are holes for fewing in the cloth, which is coarfe, light, and of low price; it is alfo fixed to two thick iron wires, of which the upper one is continued to \(f\), where it terminates in a hole in the handle; the other is fixed to the back of the blade. 'The manner of fixing this gatherer to the blade of the foy the will be better underflond by referring to fig. 3. Which reprefents one of the irons which, by means of a forew, are faftened to the back of the fcythe, Thefe irons procced from, and make part of, the upright irons \(m n, l o\), which ferve to keep the gatherer extended.

This is a very fimple and cheap contrivance; but an attenpt was made to render it Aill more Eimple, by fubflituting for the gatherer two iron hoops, which are fhown in fig. 2. by the dotted lines \(b g\), \(k i\), with a crofs piece \(p\) which conneets them. Experience, however, has fhewn, that the gatherer is in gentral preferable to thefe hoops, as it does not leave an ear of corn behind.

RECTIFICATION OF ETHER, a procefs for deSuppl. Vol. II. Part I.

\section*{393 R E D}
priving ether of its fulphureous acid (Sce Chemistry, Index in this Suppl.) It has been ufual to add an alkali for this purpofe ; but Dizé has found it much more advantageous to add a fubitance which might af. ford the requifite quantity of oxygen to convert the fulphureous into the fulphuric acid; in which ftate it is not difpofed to rife and come over. Various metallic oxyds were tried, among which the black oxyd of manganefe proved the beft and the cheapeft. His procels is as follows:
The fulphureous acid contained in unrectified ether being neutralized with oxyd of manganefe, the fluid is decanted into a pewter vefflt of the capacity of fifty ounces, which is placed on a water bath. To this vef. fel a head and worm are adapted, the latter of which paffes through a refrigeratory conftantly fupplied with water in a flrean: from below, which caufes the heated water to flow off above. The diftillation is then performed by railing the bath to a temperature of \(3^{5}\) ( \(113^{\circ}\) Fahrenheit, if the decimal thermometer be here meant). The rectification by this treatment ulinally requires a day to complete it. The flavour of the ether is of the beit kind, and the product about one-tixth more than in the ufual method with retort and receiver. Dizé has pract:ied this method with fuccela for three years.- Yournal de Phy íque, A'Pril, \({ }^{2} 798\).

Rectificatiov, in geometry, is the finding of a right line equal to a curve. The rectilication of curves is a branch of the higher geometry, a brauch in which the ufe of the inverfe method of fluxions is efpecially ufeful.

Turkey-RED, Leviant-Ren, and Adrianople.RFo, the names indifferently given to that beautiful red dye which diftinguifhes the cotton manufactured in the Ottoman empire, and at Afrucan in the dominions of Ruffia. We have two accounts of the procef of communicating this dye to the ftuffs; one by Profeffor Pallas as he faw it practifed at A tracan; the other in the 22d number of the Annalis de Chinie by Citizen Fe lix. As cuery thing relating to ufeful manufactures is of general importance, we fhall give pretty copious extracts from both papers.

According to Dr lallas, the dye.ftiffs enployed at Aftracan are, madder, fumach, gall-nuts, alum, an inferior kind of foda, and fin-oil. The procefs of dyeing is as follows :
+ The roots of the madder, when frefh gathered, are placed above each other in a ftove, or in a pit dug in vifcous earth which has been flrongly heated. Earth is then thrown over the madder, and it muft fweat un. til the 'flove or pit becomes cold; which the roots, the fecond or third day, are taken from it, and either fpread out or lung up to dry. When it is thoroughly dried in the fun, the madder is ground to a very fine powder, as are tikewife the round leaves of the fumach (rbus cotinus). The finh oil is boiled from the entraits of the fturgeon and other large fifhes; and the proof of its being ploper for dyeing is, that when mixed with a lixivium of foda, it muft immediately affume a milky appearance. Should that not be the cale, it caunot be ufed by the dyers.

The cotton to be dyed red is firft wafhed exceedingly clean in ruuning water; and when the weather is clear, hurg up on poles to dry. If it does not dry before the evening, it is taken into the houfe, on account

\section*{R E I)}

Turicey. of the faline dews fo remarkable in the country around Red. Afracan, and again expofed to the air next morning. When it is thoroughly dry it is laid in a tub, and fifh. oil is poured over it till it is entirely covered. In this fate it muft thand all night ; but in the morning it is hung up on poles, and left there the whole day ; and this procels is repeated for a week, fo that the cotton lies feven nights in oil, and is expofed feven days to the atmofphere, that it may imbibe the oil, and free itfelf from all air. The yarn is then again cairied to a ftream, cleaned as much as poffible, and hung up on poles to dry.

After this preparation a mordant is made of three materials, which muft give the grounds of the red colour. The pulverifed leaves of the fumach are firft boiled in copper kettles; and when their colouring matter has been fufficiently extracted, fome powdered fralls are added, with which the liquor mut be again boiled ; and by thefe means it acquires a dark dirty colour. After it has been fufficiently boiled the fire is taken from under the kettle, and alum put into the fill hot liquor, where it is foon diffolved. The proportion of thefe three ingredients cannot be afcertained, as the dyers vary that proportion at pleafure. The powder of the fumach leaves is meafured into the kettle with ladles; the water is poured in according to a gauge, on which marks are made to thew how high the water mult ftand in the kettle to foak fix, eight, ten, \&ic. puds of cotton yarn. The galls and alum are added in the quantity of five pounds to each pud of cotton. In an word, the whole mordant inuft be fufficiently ycllow, Arong, and of an aftringent tefte.

As foon as the alum is diffolved, no time muft be loft in order that the mordant may not be fuffered to cool. The yarn is then put into hollow hlocks of wond Chaped like a mortar, into each of which fuch a ouantity of the mordant has been poured as may be fufficient to moiten the yarn without any of it being left. As foon as the workman throws the mordant into the mortar, he puts a quantity of the yarn into it, and preffes it down with his hand till it becomes uniformly moiftened, and the whole cotton yarn has ftruck. By this it acquires only a pale yellow collur, which, however, is curable. It is then hung up on poles in she fun to dry; again wafhed in the ftream, and afterwards dried once more.

The next part of the procefs is to prepare the madder dye. The madder, ground to a fine powder, is fpread out in large troughs, and into each trough is poured a large cupful of fheep's blood, which is the kind that can be procured with the greateit facility by the dyers. The madder muft be ftrongly mixed in it by means of the hand, and then fland fome hours in order to be thorouglily foaked by it 'Ihe liquor then affumes a dark red appearanee, and the madder in boiling yields more dye.

After this procefs water is made hot in large kettle, fixed in brickwork; and as foon as it is warm, the prepared red dye is put into it, in the proportion of a pound to every pound of cotton. The dye is then fuffercd to boil ftrongly; and when it is enough, which may be tried on cotton threads, the fire is removed from under the kettle, and the prepared cotton is depofited near it. The dyer places himfelf on the edge of the brickwork that inclofes the kettle; dips the cot-
ton yarn, piece by piece, into the dye; turns it round Turkey. backwards and forwards; preffes it a liztle with his hands; and lays each piece, one after the other, in pails ftanding ready for the purpofe. As foon as all the cotton has received the firft tint, it is hung up to diy ; as the red, however, is flill too dull, the yarn, which has been already dyed once, and become dry, is put once more into the dyeing-kettle, and murt be left there to feethe for three hours over a frong fire; by which it acquires that beautiful dark red colour which is fo much eftcemed in the 'Turkey yarn. The yarn is now taken from the dye with ficks; the fuperfluous dye which adheres to it is thaken off; the hanks are put in order, and liung up, one after another, to dry. When it is thoroughly dry, it is wafhed in the pure ftream, and again dried.

In the laft place, the above mentioned foda is dificol. ved with boiling water in tubs deftined for that purpofe, and it is ufual at Attracan to allow 20 nounds of foda to 40 pounds of cotton, or half the weight. Large earth. en jurs, which are made in Perfia of very Itrong clay, a yard and a half in height, almoft five fpans wide irn the belly, and coding in a neck a Cpan and a half in diameter, inclofed by means of cement in brickwork over a fire-place, in fuch a manne: that the necks only appear, are filled with the dyed cotton yarn. The ley of diffolved fota, which is blackifl and very tharp, is then poured over it till the jars be slled; and fome clean rags are preffed into their mouths, that the uppermoft fkains of yarn may not lie meovered. A fire is then made in the fire place below, and continned for 24 hours; and in the mean time the feam which arifes from the jars is feen collected anong the rage in red drops. By this boiling the dye is fill more heightencd , and is made to ftrike completely ; every thing fuperfluous is removed, and all the fat natter which ftill adheres to the yarn is wafhed out. Nothing more is then neceflary for completing the dye of the yarn but, to rinfe it well feveral times in running water, and then to dry it.

Cotton cloth is dyed with madder at Aftracarı in the fame manner; but mary purfue a fraudulent procefs, by dyeing with red wood, and then fell their cloth as that which las been dyed in the proper manner.

The procefles followed in the Grecian manufactories in the Levant, as defcribed by M. Felix, varies in fome particulars from this. The firt procefs is that of cleaning the cotton: for which purpofe three leys are em. ployed; one of foda, another of afhes, and a third of lime. The cotton is thrown into a tub, and moitened with the liquor of the three leys in equal quantities: it is then boiled in pure water, and wafhed in running water.

The fecond bath given to the cotton is compofed of foda and fheep's dung diffolved in water. To facilitate the folution, the foda and dung are pounded in a mortar. The proportions of thefe ingredients employed, are one occa of dung, fix of foda, and forty of water; each occa being equal to about fifty ounces. Whem the ingredients are well mixed, the liquor expreffed from them is ftrained; and being poured into a tub, fix oceas of olive oil are added to it, and the whole is wedl ftirred till it becomes of a whitilh colour like milk. 'The cotton is then befprinkled with this water; and when the fkains are thoroughly moiftened, they are

\section*{1 E D}

\section*{RE F}
wrunc, peefed, and expofed to diry. The fame bath mult be repeated three or four tinies, becaufe it is this liquor which renders the cotton more or lefs fit for receiving the dye. Euch bath is given with the fame h cuor, and ought to continue five or fix hours. It is to be obferved that the cotton, after each bath, muft be dried without being wahed, as it ought not to be rinfed till after the laft bath. The cotton is then as white as if it had been bleached in the fields.
It may be fuppofed that the dung is of no utility for faing the colours: but this fuppolition would be rafh; for, as M. Telix obferves, it is well known that this fubflance contains a great quantity of volatile alkali in a difengaged ftate, which has the property of giving a rofy hue to the red. It is therefore probable that it is to this ingredient that the red dyes of the Levant are indebted for their fplendour and vivacity. This much, at any rate, is certain, that the Morocco leather of the Levant is prepared with dog's dung; becaufe it has been fornd that this cung is proper for heightening the colour of the lack.
The procefs of galling, which follows the bath of dung, is performed by immerling the cotton in a bath of warm water, in which five occas of pulverifed gallnuts have been boilec. This operation renders the cotton more fit for being faturated with the colour, and gives to the dye more body and ftrength. After the galling comes aluming, which is perfouned twice, with an interval of two days, and which confifts in dipping. the cotton into a bath of water in which five occas of alum have been infufed, mixed with five occas of water alkalifed by a ley of foda. The aluming muft be performed with care, as it is this operation which makes the colouring particles combine beft with the cotton, and which lecures them in part from the deftructive action of the air. When the fecond aluming is finifned, the cotton is wrung; it is then prcffed, and put to foak in running water, after being inclofed in a bag of thin cloth.

The workmen then proceed to the dyeing. To compofe the colours, they put in a kettle five occas of water, and 35 occas of a root which the Crrecks call aliaari, or painting colour, and which in Europe is known undire the name of madder. The madder, after being pulverifed, is moiftened with one occa of ox or heep's blood. The blood ftrengthers the colour, and the dofe is increased or leffened according to the fhade of colour required. An equal heat is maintained below the kettle, but not too violent; and when the liquor ferments, and begins to grow warm, the fkains are then gradually inmerfed before the liquor becomes too lout. They arc then tied with packthread to fmall rods placed croffwife above the kettle for that purpofe; and when the liquor boils well, and in an uniform manner, the rods from which the flsains were fufpended are removed, and the cotton is fuffered to fall into the kette, where it muft remain till two-thirds of the water is evaporated. When one thiid only of the lizquor renains, the cotton is taken out and waffed in pure water.

The dye is afterwards broight to perfection by means of a bath alkalifed with foda. This matipulazion is the moft difficult and the moft delicate of the whole, becaufe it is that which gives the colour its tone. The cotton is thrown into this new bath, and made to boil over a fleady fire till the colour affumes
the required tint. The whole art confifs in catching the proper degree: a carcful workman, therefore, mut watch with the utmolt attention for the moment when it is neceflary to take out the cotion ; and he will rather burn his hand than mifs that opportunity.

It appears that this bath, which the Gretks think of fo much importance, might be fupplied by a ley of foap; and it is probable that faponaceous water would give the colour more brightnefs and purity.
M. Felix feems doubttul whether the ali-zani of the Greeks be the fame plant with the Eurofean madder. If it be, its fuperiority mult arife from the noode in which it is cultivated, and the method employed to dry it. The ali zani is not collected till the lifth or fisth year of its grow: when it has acquired its full Atrength; and as it is the woody patt of the roots which affords the greatelt quantity of colouring particles, this murt give it an obvious fuperiority over madder, which is collected before it has arrived at maturity. The mode of deficcation contributes alfo, in the opinion of our author, to improve the quality of the ali-zari. The Levantines dry it in the open air; and this operation is eafy in a country where great drynefs prevails in the atmofphere, white in our dainp climates we are obliged to dry the madder by floves. Hence it happens that the fmoke, which mixes itfelf with the cold air, and penetrates the roots, impregnates them with fuliginous particles, which atter the colouring fubflance; an accident which does not take place when the madder is dried without the affiftance of fire.

For the philofophical principles of thefe pruceffes of dyeing, fee Animal and \({ }^{2}\) 'egelable Subs rances in this supplement.

REDINTEGRATION, is the taking or finding the integral or fluent again from the fluxion. See Fluxions, Encyd.

REFLECTOR for a ligut-housf, is compofed of a number of fquare plane glafs mirrors, fimilar to thofe with which Archimedes is faid to have fet fire to the Roman fleet at the fiegre of Syracufe (See Burning, Encycl.) Each of thefe mirrors is about an inch fquare; and they are all difpofed clofe to each other in the concave of a parabolic fegment, formed of fucco or any other proper bed. Stucco has been found to anfwer the purpofe beft; and is accordingly employed in all the reflectors of the light-houfes erected by Mr Thomas Smith tinplate worker, Edinburgh, at the expence, and by the authority, of government. This ingenious and modeft man feems to have conceived the idea of illumina. ting light-lioufes by means of lamps and reflectors infead of coal-fires, without knowing that fomething of the fame kind had been long ufed in France; he has therefore all the merit of an inventor, and what he invented lie has carried to a high degrec of perfection.

His parabolic moulds are from three to five or fix feet in diameter; and in the centre or apex of each is placed a long fhallow lamp of tin plate, filled with whale oil. In each lamp are fix cotton wieks, almu!t contiguous to each other, which are fo difpofed as to burn without trimming for about fix hours. The light of thefe is reftected from each mirror fpread over the concave furface, and is thus multiplied, as it were, by the number of mirrors. The itneco moulding is covered on the back with tin-plate, from which a tube, immediately over the lamp, proceeds to the roof of the

TurkeyRed II R.fleator.

\section*{\(R\) E F}

Reffector, light room, and ferves as a funnel, through which the \(\underbrace{\text { Reficsity. fimoke efcapes without fullying the faces of the mirrors. }}\) The light-room is a cupola or lantern of from eight to twelve fides, compofed entirely of glafs, fixed in catt-iron frames or fafhes, and roofed with copper. On circular benches paffing lound the infide of this lantern, at about eighteen inches from the glafs frames, are placed the reflectors with their lamps, fo as that the concave furfaces of two or three of the reflectors front every point of the compafs, and throw a blaze of light in all direfions. In the roof immediately over the centre of the room is a hole, through which pals all the funnels already mentioned, and which ferves likewife to admit frefh air to the larms. This light-room is firmly fixed on the top of a round tower fo as to be immoveable by the weather; and the number of the reflectors, and the height of the tower, are lefs or greater according as it is the intention that the light fhould be fcen at a lefs or a greater diftance.
A man judging from mere theory would be very apt to condemn light-houfes of this kind ; hecaufe the firmeft building fhakes in a violent form, and becaufe fuch ihaking, he might think, would fometimes throw the whole rays of light into the air, and thes miflead the bewildered feaman. This opimion, we know, was attually entertained of them by one of the profoundeft philo. fophers and moft fcientific meclaaicians of the age. Experience, however, has convinced him, as well as the public at large, that fuch apprehenifions are groundlefs, and that light-lioufes with lamps and reflectors are, in every point of view, preferable to thofe with fires burn. ing in the open air. They are fupported at much lefs expence; their light is more brilliant, and feen at a greater diftance, whilf it can never be obfcured by fmoke, or beaten down on the lee-fide by a violent gult of wind ; and what is perliaps of ftill greater import ance, the reflectors with their lamps may be fo varioufly placed, that, as Mr Smith obferves, one light-houfe cannot be miftaken for another. If we add to all this, that the lamps do not fland in need of trimming for often as open fires require fuel, and that the light man is never expofed cither to cold or to wet by attending to his duty, we mult be convinced that light-houfes with reflectors. are much lefs liable to be neglected in formy weather than thofe with open fires, and that this circumfance alone would be enough to give the former a preference, almon incalculable, over the latter.
- It has been propofed to make the concave furface of the parabola one fpeculum of metal, inftend of covering it over with a multitude of plain crlafs mirrors; or to diminifh the fize of each mirror, if they are to be retained in preference to the metallic fpecullun. To every man who has but dipped into the fcience of optics, it muft be obvious, that either of thefe altcrations would be wrong. 'I'he brightelt metal does not reflect fuch a quantity of light as well foliated clear glafs ; and were the fize of the mirrors to be diminifhed, the number of joinings would be increafed, in each of which fome light is loft, not merely in the feam, but from its being almoft impoffible to foliate glafs perfectly at its edge.

REFLEXITY, a word employed by Mr Brougham to denote a property of light which caufes the different rays to be acted upon by bodies, and to begin to be refracted, reffected, inflected, and deflected, at different diftances. This property follows the fame law that
the other optical properties of light follow: the red ray Refractio having moft reflexity, and the violet leaft (See Plilofo. phical Tranfadions, 1797 , p. 360.) Mr Brourham has denoted this property by the three words, rifrangity, reflexity, and flexity; but as the power is the fanc, there is no occafion for different names. Some philo. fophers have refufed to adınit this as a new property; we have not verified it by experiment.

REFRACI'ION OF Altitude, is the arc or portion of a vertical circle, by which the altitude of a ftar is increafed by the refraction of light.

Rffraction of Afcenfion and Dejfenfion, is an arc of the equator, by which the afcenfion and defceufion of a fiar, whether right or oblque, is increafed or diminifhed by the refraction.

RafRiction of Declination, is an arc of a circle of declination, by which the declination of a flar is increafed or diminifhed by refraction.

Rafraction of Latitude, is an are of a circle of latitnde, by which the latitude of a ftar is increafed or diminifhed by the refraction.
Refraction of Longitude, is an arc of the eclintic, by which the longitude of a ftar is increafed or diminifhed by meane of the refraction.
Terrgfrial Refaction, is that by which terre?trial objects appear to be raifed higher than they really are, in obferving their altitudes. I he quantity of this refraction is eftimated by Dr Mafkelyne at one tenth; by Le Gendre at one-fourteenth; by De Lambre at one-eleventh; and by others at a twelfth of the diftance of the object obferved, expreffed in degrees of a great circle. But it is ubvious that there can be no fixed quantity of this refraction, fince it depends upon the flate of the atmofphcre, which is extremely variable. Hence fome very fingular effects of it are related, of which the following is worthy of notice. It is taken from the Philofophical Traufactions of London 1798 ; being an extract of a letter, dated Haftings, Augult I. 1797.
"On Wednefday, July 26 , about five o'clock in the afternoon, while I was fitting in my dining room at this place, which is fituated upon the Parace, clofe to the fea flore, nearly fronting the fouth, my atiention was excited by a number of people running down to the fea.fide. Upon enquiring the reafon, I was infurmed that the coaft of France was plainly to be dittingniffhed by the naked eyc. I immediately went down to the fhore, and was furprifed to find that, even without the affiftance of a telcifoye, 1 could very plainly fee the cliffs on the oppolite coalt; which, at the neareft part, are betwcell 40 and 50 miles ditant, and are not to be difyerned, from that low fituation, by the aid of the beft \(\begin{gathered}\text { glaffes. They appeated to be only a few miles off, }\end{gathered}\) and feerned to extend for fome leagues along the coaf. I purfued my walk along the fhore eathward, clofe to the water's edge, converling with the failors and filhermen upon the fubject. They at firt could not be perfuaded of the reality of the appearance; but they foon became fo thoooughly convinced, by the cliffs gradually appearing more elevated, and approaching nearer, as it wre, that they pointed out and named to me the different places they had been accuiftomed to vifit ; fuch as the Bay, the Oid Head or Man, the Windmill, \&c. at Boulogne; St Vallery, and other places on the coaft of Picardy; which they aftewards confirmed when
they viewed them through their telefcopes. Their obfervations were, that the places appeared as near as if they were failing, at a fmall diftance, into the harbours."

The writer of this extraf was W. Latham, Efq; F. R. S. and A.S. who adds, that the day was extremely hot, that it was high water at Haftings about two o'clock P. M. and that not a breath of wind was ttirring the whole day.

REGIS (Peter Sylvain), a French philofopher, and great propagator of Cartefianifm, was born in Atgenois 1632. He cultivated the languages and philofoplyy under the Jefmits at Cahors, and afterwards divinity in the univerfity of that town, being defigned for the chureh. He made fo uncommon a progrefs, that at the end of four years he was officred a doctor's degree without the ufual charges ; but he did not think it became him to accept of it till he had, fudied alfo in the Sorbonne at Paris. He went thither; but was fon difiguifed with theology ; and as the philofophy of Des Cartes began at that time to make a noife through the lectures of Rohault, he conceived a talte for it, and gave himfolf up entirely to it. He frequented thefe lectures; and becoming an adept, went to Touloufe in 1665 , and read lectures in it himfelf. Having fine parts; a clear and fluent mauner, and a happy way of making limfelf underfood, he drew all forts of people; the magiftrates, the learned, the ecclefraftics, and the very women, who now all affected to abjure the ancient philofophy. In 1680 he returned to Paris; where the concourfe about him was fuch, that the flicklers for Peripateticifm began to be alarmed. They applied to the archbifhop of Paris, who thought it expedient, in the name of the king, to put a ftop to the lectures; which accordingly were difcontinued for feveral months. The whole life of Regis was fpent in propagating the new philofophy. In 1690 he publifhed a formal fyttem of it, contsining logic, metaphyfics, phyfics, and morals, in 3 vols 4 to, and written in French. It was reprinted the year after at Amfterdam, with the addition of a difcourfe uponi ancient and modern philofophy. He wrote afterwards feveral pieces in defence of his fyftem; in which he had difputes with M. Huet, Du Hamel, Malebranche, and others. His works, though abounding with ingenuity and learning, have been difregarded, in confequence of the great difcoveries and advancement in philofophic knowledge that have been fince made. He died in 1707. He had been chofen member of the academy of fciences in 1699*.

REGULAR bony, called alfo Platonic Body, is a body or folid comprehended by like, equal, and regular; plane figures, and whofe folid angles are all equal.

The plane figures by which the folid is contained are the faces of the folid; and the fides of the plane figures are the edges, or linear fides of the folid.

There are only five regulan folids, viz.
The tetrahedron, or regular triangular pyramid, having four triangular faces ;
The hexahedron, or cube, having fix fquare faces;
The octahedron, having eight triangular faces;
The dodecahedron, having twelve pentagonal faces;
The icofahedron, having twenty triangular faces,
Befides thefe five, there can be no other regular bodies in nature. See Platonic Body, Suppl.

REGULUS, in aftronomy, a flar of the firft mag-
nitude, in the confellation Leo; called alfo, from its fituation, Cor Leonis, or the Lion's Heart; by the A. rabs, Albabor; and by the Chaldeans, Kalbeleced, or Karbeleceid; from an opinion of its influencing the affairs of the heavens.

REID (Thomas, D. D.), fo well known to the public by his moral and metaphyfical writings, was the fon of the Rev. Lewis Reid, minitter of the parifh of Strachan, in the county of Kincardine, North Britain. His mother was the daughter of David Gregory, Efq; of Kinardie, of whom-fome accomit has been given in this Supplement, and fifter to David, James, and Charles Gvegories, who were at the fame time profeffors of a Aronomy, or mathematics, in the univerfities of \(O x\) ford, Edinburgh, and St Andrews.

He was born at the parfonage-honfe of Strachan in A pril 1710, and received the rudiments of his education at the parifh fchool of Kincarcine-onicl. At that period the parochial fchools of Scotland were very fuperior to what they are now ; and young men went from them to the univerfity well furnifhed with philo. logical leaming. \(T\) be progrefs of young Reid murt have been rapid; for he was removed from fehool to the Marifchal College, Aberdeen, when not more than twelve ycars of age; and we have never heard that he was admitted into the univerfity before he was qualified to profit by the lectures of the profeffors. On the contrary, he foon difplayed the genius of his mother's family, and fhone confpictions among the ftudents of mathematics in a college where that fcience has been at all times cultivated with ardour and fuccefs.

A fter the ufual courfe of four years emplayed in the Atudy of Latin, Greek, Mathematics, and Philofophy, he probably took his degree of M. A: which at that period, and for a long time fubfequent to it, was the univerfal practice in the univerfity of A berdeen, and then commenced the ftudy of theology. In due time he was liceufed to preach the gofpel according to the forms of the church of Scotland; but continued to refide for fome years in A berdeen, cultivating his. favourite fcience, mathematics.

The mathematical chair in Marifchal College was then filled by Mr John Stuart, a man of great eminence in his profefion; but who, like many orher profound mathematicians, was not happly in his mode of commulmicating fcience, at leaft to the duller part of his pupils. Mr Reid occafionally read lectures for the proffifor ; and a friend of our's, by no means dull, has often been heard to exprefs great fatisfaction that Mr Stuart was kept a whole winter from the fchoole, when he was a itedent, and that the clafs was tatight by Mr Reid. "Had it not been for this circumitance (faid he) I Ohould never have underftood more of mathematics than the firt fix books of Euclid's clements; but Mr Reid. had the faculty of making every thing intelligible to the ftudents which he elearly apprehended himfelf."

He could not, however, fpend his life in the ftudy; of mathematics, and in reading barren lectures for other men. He had been educated for the church; and it was in the church only that he had the profpect of gaining a livelihood. He was accordingly prefented, we know not in what year, to the church of Ners. Machar in Aberdeenfhire, at a time when the good people of Scotland were very far from being reconciled. to the rights of patronage; and the confequence was,
that his fettlement met with much popular oppofition. Even a little rict took place in the church at his ordination; but he foon gained the affections of his fock by his good fenfe, his acknowledged worth, and his unwearied attention to all their wants, which he was ever ready to relieve to the utmott exrent of his abilities. So deeply rooted indeed was their regar. 1 for him at laft, that, though it is now almoft half a century fince his relation to the parifh of New Machar ceaied, 'his memory continues to be revered in that parifh evell at the prefent day; and the following anectute evinces that it is not revered without reafon.

A man who, from being in decent circumfances, and a member of the kirk felfion (See Presbyterians, Encycl), when Dr Reid was minitter, had become, in his old age, poor and infirm, otferved to the then minitter of the parifh, that if he were able to go to Glafgow, and make his cafe known to his old friend and paftor, he was fure that he would get fomething done for him. This obfervation was reported to the Doctor, who inftantly recollected the man, though, in all probability, he had not thought of him for thirty years; and he fettled upon him an arnual penfion of ten pounds, which was punctually paid as long as they both lived. The pride of fcrence had not from the mind of this great man eradicated the amiable fympathies of humanity, nor had his philofophic fame made him overlook the unafpiring duties of the Chriftian paftor.

In the year 175 x , about the beginning of the feffion or annual term, one of the profeffors of philofoplyy in King's College, Aberdeen, died; and his death being unexpected, prefented to the other members of that learned body fome difficulty in carrying on the ufual courle of cducation for that year. At this our readers will not be furprifed, when they rtfeet on the mode in which feience was taught in that univerfity; for he who could with propriety be placed in the vacant -chair, mult have been qualified, without much previous preparation, to read lectures on Logic, Ontolog:, Pieumatics, Morals, Politics, Mathematics, and Natupal Philosofhy (See Gerard, in thia Sufpl.). In fuch a place as Aberdeen, it is hardly to be fuppofed that there was a fingle man unemployed, fo completely mafter of all thefe branches of fcience, as to take up the clafs where it was dropt by the deceafed profeffor, and carry it fuccefsfully through that fcience, whatever -it might be, in which, at his death, the chanced to be lecturing. It occurred, however, to the principal, and fome of the profeffors, that the minifter of New Machar was fully equal to the tank; and the late Dr John Giegory, then profeffor of medicure, aint the Rev. Dr Macleod, the prefent fubprincipal of Iing's College, were deputed to vifit Mr Reid, and requelt his immediate acceptance of the vacant profeftorfhip. He yield. ed to the requef not without iome hefitation, and was admitted profeffor of philofophy on the 22 d of No. vember.

IIe was now in the very fituation for which Neture feemed in have intended him. He had not only an oppottunity, but it was his duty to cultivate the ference to which his attachment was fol froug ; and the duties of his office made thim turn his attention more clofely than he had hitherto done to another fience, in which be wis dettined to make a more confpicuous figure than -he ever made even in his favourite mathenatico.

It was during his profefforfhip in the univerfity of Aberdeen that he wrute his "IIflay on Quantity," which was putlifted in the 4 ght rolume of the Philo. fophical Tranfacions, and is perbaps the finet fpecimen of metaphyfical mathematics, if we may ufe fuch an expreffion, that is extant in our own or in any other language (Sce Quantity, Eincyl.). It was during the fame perind that he publified his "Inquiry into the Human Nind on the Prirciples of Common senfe," a work of nnqueftionable merit, which has contributed more than any other work whatever to give a sational turn to metaphyfical fpeculations. It was about this period that the degrece of \(\mathrm{D} . \mathrm{D}\). was conferred upon him by his mother-college.

The well earned fame of Dr Reid attracted the attention of the univerfity of Glafgow to him as the fitteft perfon to fucceed the celebrated Dr Adam Smith; and he was admitted profeffor of moral philofophy in that univerfity on the 11 th of June 1764. There his attention was not diftracted by a multitude of fciences, which it was his duty to teach; and he had leifure to inplove his metaphyfical fyitem, though he continued through life to amufe himfelf occafionally with mathematical ipeculations.

In the year 1773 appeared, in Lord Kames's "Sketches of the Hiftory of Man, a brief Account of Ariftotle's I \(\operatorname{og} \mathrm{k}\) c ; with remarks by Dr Reid." It would feem that he had entered upon this takk rather reluctantly, and merely in compliance with the folicita. tions of his frited, the author of the Sketches. "In attempting (fays he) to give fome account of the analytics, and of the topics of Arifotle, ingenuity requires me to confefs, that though I have often purpofed to read the whole with care, and to underftand what is intellighible, yet ny courage and patience always failed before I had done. Why fhould I throw away fo much time and painfnl attention upon a thing of fo little ufe? If I had lived in thofe agges when the knowledge of A riftotle's Organon intitled a man to the highett rank in philufophy, ambition might have iuduced me to employ upon it \(f\) me years of painful Andy; and lefs, I conceive, would not be fufficient. Such reflections as thefe always got the better of my refolution, when the firft ardour began to cool. All I can fay is, that I lave read fome parts of the different books with care. fome flightly, and fome perhaps not at all. I have glanced over the whole often; and when any thing at. tracted my attention, have dipped into it till my appe. tite was fatisfied."

Notwithitanding this modeft acknowledgment, we are not fure that any one of Dr Reid's publications does him greater honour than his very perfpicuons view of this ftupendous fyftem. Having ourfelves occafionally looked into the writings of Arifotle, we foull not litfitate to fay, that it is by much the beft analyfis of thefe writings that we have anywhere met with, even though we could not corroborate our own opinion by that of other men much more converfant than we a:e with the oracular language of the stagyrite. But when it is known that the late 13r Doig of Stirling, to whom Cretk was ats familiar as his mother torgue, and an equaliy learned Doctor of Oxford, who has been reading Arithotle ever lince he was fourteen years of age, agreed in opinion, that a more accurate view of his Ingic coutd not be given in the fame compats than had

\section*{R E I}
been given by Dr Reid, we may firely afirm, with fome degree of confidence, that this finall work adds much to the fame of our celebrated countryman.

Though Dr Reid's health continutd good, and his mental faculties uninipaired, till a very fhort time befure his death, he ceafed for fome years to read lectures from his profefforial chair, employing that time in preparations for eterinity, and in fitting his lectures for the prefs. Thefe were publifhed in two volumes 4 to: the the firft in 1785 , under the title of "Efrays on the In. tellectusl Powers of Man," dedicated to his fiends Dr Gregory and Profefor Stewart, both of the univerity of Edinburgh; and the fecond in 1788, under the title of "Effeys on the ACtive Powers of Man," withoat any dedication or preface. He continned to enjoy the fame acquired by this work, as well as the affection of his friends and the reverence of the public, for eight years, dying at Glafgow in the end of September, or the beginaing of October 1796 , in the 87 th year of his age. He had been rarried, and he left behind him one daughter.
To do juffice to the biggraphy of fuch a man as this, we fhould here attempt to draw his intellectual char? हter, and to appreciate the merits of his works; but to perfirm this tafk in a manner at all worthy of him, or we hope of ourflves, would recquire more room than our limits permit us to allot to any article of the kind; and our readcrs will be pleafed to learn, that they may confidently expect an account of his life, with a critique on his worke, by a men better qualitied to do jurtice to both, than the writer, of this fhort fletch pretends to be. His works are in the hands of the fpeculative public: and by that public will be duly ralued, as lomg as found fenfe fhall be preferred to impious jargon. How long that may be, God only knows; But if any thing can gruard the minds of our youtit againt that fophititry of which the objeet is to attribute real agency to material fluids, and to reprefent the elective attractions of chemittry as perfectly timilar to human volitiens, it will be the unbiaffed turly of Dr Reid's "E.ffays on the Intelle?ual and Active Powers of Man." They will there find metaphyfics divelted of myltery, and the profoundeft fpecilations yendered iutelligible by the conftant ufe of words in one determined lenfe. We think, indeed, that in this conlilts the Doetur's chief inerit; for, except when treating, of our notions of power, he feems not to have added much to what certainly may be found in the writings of Locke.

Let not our readers fuppofe, that by this obfervation we wifh to detract in the fmalleit degree from our author's fame, or to leffen him by comparifon with the Englifh philofopher. If on mele topics of fpeculative fciencc, he appears to us to have thought as Locke thought, it is on the other land cercain, that the greater part of Locke's doctrines may be gleaned from the Logical: ard metaphyfical writiogs of Bacon, Hobbes, and Des Cartes. Nor need this furprife any onc; for he who reflects a moment on the fubject, mult perceive that fuch a coineidence of thought in metaphyfical fciense is among men of eminence almoft inevitable. Of mind and its powers - the fubject of that fcience-we neither know, nor can lsnow any thing, but by patiently at tending to the operations of our own minds, when we: fee, hear, feel, think, reafon, and will, \&cc. : and it is obvious, that every man who is capable of fuch patient
attention, and does not labour under the bias of fome prejudice, muft view thefc operations iut the fame way. The great fuperiority of Dr Rcid over his predeceflors, in this department of fcience, appears to have heen this, that he apprehended the operations of his own mind with a clearnefs, which gave to his language a precifion and peifpicuity which the language of Locke certainly does not poffefs

In the Eflay on the Human Underfundiug, the term idica fometimes fignifies a material fubfiance, fometimes the qualities of that fub:tance, fometimes the concep\(\therefore\).on of thefe curalities, fometimes the power or faculty of the mind by which we conceive a thing, fometines a percention of fenfe, and fometimes an intellectua! no. tion. Hence the ambignity of terms which runs thro' the whole of that imiriortal work, las furnithed both the author's friends and his cnemies with an npporturity of attributing to him pernici us doerines, which we are perfuaded he did not maintain, and which, we think, a patient analy fis of the effay muft convince every man that he did not maintain. From this ambiguity the writings of Dr Reid are perfecily free. His doctrinee, whether well or ill-founded, can never be mifunderfood by him who is delirous to underitand them ; and he who knows how much perfpicuity of ftyle dependo upon accuracy of thinking, will not deem us enemies to his fame for having faid that his chicf merit confitls in the precifion of his langaage.

He has been much cenfured by fome, and mach ap. plauded by others, for introducing the phrafe commos jenfe into fpeculative philofuphy, as the proper name of that faculty of the mind by which we apprehend firt truths; but he is on this account entitled neither to praife nor to cenfure. He adopted the phrafe from others; and has proved, by the moft unexceptionable authorities, both ancient and modern, that it may with great propriety be ufed as he has ufed it. Whether the adopting of it into works of fcience was neceffary, is another queltion, cut which we have given our opininn elfewhere; it is fufficient in this phace to vindicate his ufe of it, efpecially in his latter works, from anble guity.

Candour oiliges us in acknowledge, that he has ace. vanced fome doctrines which we cannot admit as true, Though not in genera! partial to Locke, he has adonted his uotions refpecting nur power of abltrastion, with hardly any other variation than the fubltituting of the term conceptions for Locke's favourite phrafe i.i.as. He has likewife endeavoured to prove, that we may difinesly conceive what cannot poffuly exit. Thefe mitakes, for fuch they appear to us, we liave pointed out elfcwhere (See Metaphysies, Part I. Chap. iii. and iv. Dincyol.); bnet they are infinitely more tha! countenba. lanced by his clear, accurate, and fatisfactory difurifitiona on our notions of active power. Had Dr Reid never written a fentence but the eflay which treats of this de. licate and important fubject, he would have been entitied to a place in the very firft rank of ueful meta. phytcians; for, previous to the appearance of his works, wo had nothing written directly on fower but contradiftory and unntelligitible jargon. We recommend the ferious perufal of this effay, the firt in his fecond vo. lume, to fuch of our readers as fancy that they diftinetly corceive the powers of chemical agente, and that intelligence and vulition may refult from any mechanicals

Reifke organization, or any combination whatever of matter and motion.

REISKE (Joln Jannes), a moft profound fcholar and fagacious critic, was born in 1706 at a fmall town of the duchy of A nhalt. After Atruggling with fome difficulties in his fchool education, in which, however, he, by perfeverance, obtained confiderable advantages, he went, in 1733 , to Leipfic; where he continued, for the fake of fundy, five years. Here he accomplifhed Limfelf in Arabic, and traulated and publifhed a book from that language. In order to profecnte his itudy of Arabic with yreater effect, he travelled on foot, and with many difficulties, to Leyden. Here he was employed in arranging the Arabic manufcript3, for which, however, he received a very fcanty compenfation; and here alfo he tranflated from the German and French, into Latin, various effays fent him by Dorville, whom he had vifited in his journey, and who afterwards in. ferted thefe papers in the Mificellanear Critica. Dorville was fo well pleafod with his \(\mathbb{k}\) kill and diligence, that he employed him in more inportant concerns. At his defire, Reike tranflated the whole of the Chariton from the Greek, and the Geography of A bulfeda from the Arabic, into Latin. At Leyden he continued for the fpace of eight years; where a florm of jealoury and calumny, excited againt him by the yourger Purman, fio nally ieduced him to change his relidence. This was priacinally owing to the freedon he ufed with 1 efpect to the edition of Petronius, edited l,y the younger Burman at Leyden; lowever, before he quitted it, he took the degree of doctor of phyfic, which was given him in a manner which did him the higheft horour. He then vifited different parts of Germany, till he at length fettled at Leipfic a fecond time. Here, for twelve years, notwithtlanding he was made profeffor of Arabic, he experienced all the inconveniences of poverty, and was olliged to undergo a great deal of drudgery for bookfellers, and the ecitors of periodical publications, to procure a fubfiftence ; at this period, in particular, the Acta Eruditorum were greatly indebted to him. A midit all thefe hardhips, however, he found opportunity to write, and to publifi, his Animadverfiones in Auciores Gracos, in five volumes; a work of extrad dinary learning and merit. In 1758, by the death of Haltaulius, he obtained a lituation at once honourable and lucrative, which placed him above want, and enabled him to fullow his favourite purfuits at eafer He was made rec. tor of the academy at Leipfic, in which office he continuced till the time of lis death. In 1764, he marrid Erneltina Chritina Muller, a woman of wonderful attainments, whofe knowledge was hardly iuferior to lis own, and particularly in Greek literature. She affifted him in all his literary labours, and efpecially in his immortal work of the "Edition of the Greek Orators." Thus, in the manner moft grateful to himfelf, Reifke confumed the remainder of lis life, which continued till \(17 \% 4\), when he died \(p\) offeffed of the higheft reputation. The number of works which he fuperintended and publifhed is very great ; but it will be fuf.ficient to name thofe which are mott fought after and efteemed. Thefe are, the "Remarks upon Greek Anthors," before mentioned. An "Edition of the Greek Orators," in 12 vols 8 vo, which was finifhed by his widow. "Dionyfins Halicarnaffenfis," in 7 vols. "Ptutarch's Works," in 9 vols. "Theocritus, \&c. \&ce."

This John James Reifke munt not be confounded with Yoln \(R e i j k e\), rector of the college of Wolfenbuttel, who was alfo a learned man, and publifhed various works *.

REMONSTRANTS, iu church hiftory, a title given to the Arminians (See that article, Lincycl.) by reafon of the remonftrance which, in 1610 , they made to the States of İulland, againft the fentence of the fynod of Dort, which condemned them as heretics. Epifcopius and Grotius were at the head of the Remonflrants, whofe principles were firt openly patronifed in England by Arclibifhop Laud. In Holland, the patrons of Calvinifm prefented an addrefo in oppofition to the remonftrance of the Asminians, and called it a comuter-remonftrance. Hence the Ditch Calvinits were termed Ciounter remonfirants. Much conitroverfy was carried on by thefe rival feets, which, on the fide of the Calvinifts, was extremely illiberal.

REMORA, or Sucking Fish, a fpecies of EcheNris (Sce Encycl.), M. Vaillant found, upon different parts of his enormous ray (Sce Raja in this Suppl.) about twenty fmall fucking fifh, or remoras, faftened fo firmly, that thicy did not drop off when he was hoifted on board. Some naturalitts have faid, that the head of the fucking fith is vifcous on the lower part, and furnihed with rough points fimilar to the teeth of a file; and, according to then, it is by means of thefe two qualities, its roughers and vifcofity, that it is enabled to adkere to otlier fifh.
"Figure to yourfelf (fays one of them) a row of nineteen sharp-edged and deutated laminer, placed crofswife, and iffuing immediately fom the rim of the lower jaw, and you will have a juft idea of the part with which the remora makes itfelf fait."

This defcription (fays Vaillant) is exact as far as relates to the figure and number of the dentated liminæ; but it places them on the lower part of the head, whereas they are, in reality, on the upper. Accordingly, when the remora fixes itfelf, it is obliged to turn upon its back, with its belly upward.

If the two white fif, however, that poffed themfelves on the arms of the ray, and ferved him as pilot, be of the remora fpecies, as he is inclined to think, the laminx by which that variety adheres to other ffhes mult be on the lower part of the body, fince the two pilots continued in their natural polition, and harl no occafion to turn over to fix themfelves at their poll.
REPETEND, in arithmetic, denotes that part of an infinite decimal fraction, which is continually repeated ad infinitum. Thus in the numbers \(2 \cdot 131313\) \&.c. the figntes 13 are the repetend, and marked thus \(\ddot{3}\).

REPUBIIICANS, the name given by Vaillant, with fome propriety, to a kind of birds which were obferved in South Africa, both by him and Paterfon, to inhabit apparently the fame enormous neft. Cutting one of thefe netls in pieces with a hatchet, he perceived that the principal and fundamental piece confifted of a mals of ftrong coarfe grafs (called by the Hottentots Bolomen's grafs), without any mixture, but fo compact and firmly knit together as to be impenetrable to the rain. This nucleus is the cominencement of the ftrueture ; and each bird builds and applies to it its par-a ticular neft. But thefe cells are formed only beneaths and around the mafs; the upper furface remains void, without, however, being ufelefs; for, as it has a pro-s

\section*{\(R\) E S}
publi- jecting rim, and is a little inclined, it ferves to let the water run off, and preferves each dwelling from the rain. Figure to yourfelf a huge irregular mals, the fummit forming a kind of roof, and all the other parts of the furface completely covered with cells fqueezed one againft another, and you will have a tolerably accurate idea of thefe fingular edifices.

Each cell is three or four inches in diameter, which is fufficient for the bird. But as they are all in contact with one another through the greater part of the furface of the mafs, they appear to the eye to form but one building, and are diftingnifhable from each other only by a little external aperture, which Cerves as an entrance to the neft ; and even this is fometimes common to three different nelts, one of which is fituated at the bottom, and the other two at the fides.

The neft which he examined contained 320 inhabited cells, which, fuppofing a male and female to each, announce a fociety of 640 individuals. Such a calculation, however, would not be exact; for whenever our anthor fired at a flock of thefe birds, he always killed four times as many females as males. "For the reft (fays he), thefe birds have nothing very remarkable in their plumage. It is an uniform brown grey, diverfified by a few black fpots on the fides, and a large patch of the fame colour on the throat. The male is a little larger than the female; in other refpects they exactly refemble each other."

RESIDUAL analysis, a calculus propofed by the inventor, Mr Landen, as a fubftitute for the method of fluxions. The object of this fubflitution was to avoid introducing the idea of motion, and of quantities infinitely or indefinitely frall, into mathematical inveftigation. The refidual analylis accordingly proceeds, by taking the difference of the fame function of a variable quantity in two different fates of that quantity, and exprefficg the relation of this difference to the difference between the two flates of the faid variable quantity itfelf. This relation being firft expreffed generally, is then confidered in the cafe when the difference of the two flates of the variable quantity is \(=0\); and by that means it is evident, that the fame thing is done as when the fluxion of a function of a variable quantity is affigned by the ordinary methods.

The evolution of the functions, confidered in this very general view, requires the affitance of a new theorem, difcovered by Mr Landen, and remarkable for its fimplicity, as well as its great extent. It is, that if \(x\) and \(v\) are any two variable quantities, \(\frac{x^{\bar{n}}-v^{\bar{n}}}{x-v}\)
\[
=x^{\frac{m}{x}-1} \times \frac{1+\frac{v}{x}+\frac{v^{2}}{x^{2}}+\frac{v^{3}}{x^{3}}+\cdots(m)}{1+\left(\frac{v}{x}\right)^{\frac{m}{n}}+\left(\frac{v}{x}\right)^{\frac{2 m}{n}}+\left(\frac{v}{x}\right)^{\frac{3 m}{n}} \cdots(n)}
\]
where \(m\) and \(n\) are any integer numbers.
This theorem is the bafis of the calculus; and from
the expreffions \(x^{\frac{m}{n}}-v^{\frac{m}{n}}\), and \(x-v\) having the form of Suppl. Vol. II. Part II.
what algebraits call refiduals, the ingenious inventor gave Refidual to his whole method the name of the refidual analyfis.

The firt account of this method was publifhed by
RevivificaMr Landen in 1758, under the title of a Difcourfe concerning the Refolual Analyyis. The firt book of the Refidual Analyfis itfelf was publifhed in 1764; and contained an explanation of the principles of the new calculus, with its application to feveral of the mont con: fiderable problems belonging to the direct method of fluxions. The fecond book was intended to give the folution of many of the mof difficult problems that be long to the inverfe method of fluxions, or to the inte. gral calculus ; but it has never been publifhed:/a circumftance which every one, who has taken the trouble to ftudy the firft part of the work, will very much regret.

If we eftimate the value of the refidual analyfis from the genius, profound knowledge, and extenfive views required to the difcovery of it, it will rauk high among works of invention: but if, on the other hand, we eftimate its value by its real practical utility, as an inftrument of inveltigation, we mut rate it much lower. When compared with the fluxionary calculus, which it was intended to fuperfede, its principles, though in ap. pearance more rigorous, are much lefs eafily apprehended, much lefs luminous, and lefs direct in their application ; and therefore, as a means of extending the bounds of mathematical fcience, it muft ever be regarded as vaftly inferior to the latter (A).

RETICULA, or Reticule, in aftronomy, a contrivance for meafuring very nicely the quantity of eclipfes, \&c. This inftrument, introduced fome years fince by the Paris Academy of Sciences, is a little frame, confiting of 13 fine filken threads, parallel to, and equidittant from, each other, placed in the focus of ob-ject-glaffes of telefcopes; that is, in the place where the image of the luminary is painted in its full extent. Confequently the diameter of the fun or noon is thus feen divided into 12 equal parts or digits: fo that, to find the quantity of the ecliofe, there is nothing to do but to number the parts that are dark, or that are luminous. As a fquare reticule is only proper for the diameter of the luminary, not for the circumference of it, it is fometimes made circular, by drawing fix concentric equidiftant circles, which reprefents the phafes of the eclipfe perfectly. But it is evident that the reticule, whether fquare or circular, ought to be perfectly equal to the diameter or circumference of the fun or flar, fuch as it appears in the focus of the glafs; other. wife the divifion cannot be juft. Now this is no eafy matter to effect, becaufe the apparent diameter of the fun and moon differs in each ecliple; nay, that of the moon differs from itfelf in the progrefs of the fame eclipfe. Another imperfection in the reticule is, that its magnitude is determined by that of the image in the focus; and of confequence it will only fit one certain magnitude. See Micrometer, Encycl.

REVETEMENT, in fortification, a ftrong wall built on the outfide of the rampart and parapet, to fupport the earth, and prevent its rolling into the ditch.

REVIVIFICA'TION, in phyfiology, the recalling 3 E
to
(A) For this view of the Refidual Analyfis, we are obliged to Mr Playfair profeffor of Mathematics in the Univerfity of Edinburgh.

Recivifica- to life of animals apparently dead. There are many tion, French Revolution 1795. kinds of infects which may be revivified, after all the powers of animation have been fufpended for a confiderable time. Common flies, fmall beetles, fniders, moths, bugs, \&c. after being drowned in \{pirit of wine, and continuing apparently dead for more than a quarter of an hour, have been reftored to life morely by being thrown among wood-athes nightly warm.

While Dr Franklin refided in France, he received from America a quantity of Madeira wine which had been bottled in Virginia. In fome of the bottles he found a few dead flies, which he expofed to the warm fun, it being then the month of July; and in lefs than three hours thele apparently dead animals recovered life which had been fo long fufpended. At firt they appeared as if convulled ; they then raifed themfelves or their legs, wafted their eyes with their fore feet, dreffed their wings with thofe behiad, and began in a little time to fly at:out.
But the mof extraordinary inłance of revivification that we ever heard of, is the following: In the warmer parts of France there is an infect very defructive to yye, which feems to begin its operations at the root of the plant, and gradually to proceed upwards to the ear. If the plant be completely dried while the infect is in the ront or flem, the animal is irrecoverably killed; but after it has reached the grain, the cafe is very different. Therc have been infances, which are noticed in the Academy of Sciences, of thefe infects being brought to life in a quarter of an hour, by a little warm water, after the grains, in which they were lodged, had been kept dry for 30 ycars.

What is the metaphyfician to think of thefe phrenonena, or what conclufion is lie to draw from them with refpect to the mind or fentient priuciple? If he be a fober man, he will draw no conclulion; and for this very good reafon, that of the fentient principle of infects, and indeed of every animal but man, he knows nothing. He is confcions that it is the fame individual being, which, in himfelf, thinks, and wills, and feels; he knows, that part of his thought is not in one place and part of it in another; and therefore he rationally concludes that this thinking being is not matter, whilf experience teaches him that it quits the material fyttem as foon as that fyften becomes completely unfit to difcharge its functions, and that when it has once taken its flight, it cannot be recalled. Experience teaches him, on the other hand, that the fentient principle of thefe infects does not quit the material fyttem as foon as that fyftem feems unfit for its functions; and hence he ought to infer, that the minds of men and of infects (if we may ufe fuch langriage), though probably both immaterial, are very different fubftances; and that the bond which unites the material and immaterial parts of an infect, is certainly different from that which unites the mind and body of man. This is the only inference which can be legitimately drawn from thefe phenomena; and he who makes them the bafis of materialifm, muft have his judgment warped by fome paffion or prejudice.
revolution of France. We formerly prefented to our readers a concife ftatement of the commencement and prog efs of this extraordinary event (See Revolution Encyl.). The ingularity of its nature, and the important place which it muft hereafter occupy in the moral and political hiftory of mankind,
require that we fhould now refome and continue the French detail of its wide-wafting career. We left the fubject Revolation towards the commencement of the year Iク9) , at the clofe of that wonderful camprign, during which the armies of the Republic had excrted themfelves with fuch unparalleled fuccefs in every direction. On the one fide they had croffed the Pyrennees, and flaken the Sranifh monarchy to its centre ; while on the other they had driven the united forces of Auftria, Pruffia, and Britain, from the walis of Landrecics acrofs the Rhinc, at all points from Hageneau to the fea, and had finally clofed their efforts by the conqueft of IIolland. At that period, though a prolongation of holtilities was threaiened, we fcarcely expected that Europe was fo foon to witnefs, or we to record, a fucceffion of mi. litary enterprifes of a fill more romantic and extraordinary nature, the fcene of which was even to extend into barbarous countriez, where the opiaions and the quaricls of the European nations had hitherto remained unknown.

The campaign of 1794 , however, was not imme. diately followed by any inportant miltary exertions.

\footnotetext{
217
} The Britifh troop; were recalled home, Pruffia lade ehe Con. been gradnally withdrawing from the coalition, and the vention, Autrian armies remained upon the defenfive. Neither was the French government in a lituation which could enable it to renew its enterprifes with vigour, or \(t\) t) give much trouble to the allies. The Convention Rill exifted; but it was no longer that terrible affembly which, under Robefperre and his aftociates, had, in the fhort period of fifteen months, reduced two thirds of France under its dominion, and fent forth armies which the combined. ftrength of the reft of Europe feemed unable to refit. While its authority remained almoft concentrated in one man, and while the fear of foreirgu invafion, and the new born enthefiafm for freedom, induced the people to fubmit to every meafure of go. veinment, however oppreflive or arbitrary, the power of the Convention, and the number of its armies, were unbounded. The dreadtul price, however, which they had paid for liberty, and the facility with which they faw it might be loft, had now diminifhed the political zeal of all claffes of citizens. The removal of the foreign armies had difpelled the dread of invafion, and the death of Robefpiense, by doffolving the unity of its efforts, and fuffering it to fall into contending factions, had greatly weakeried the authority of the Convention, and diminifhed its efficiency as a government.

The fall of Robefpierre had been accomplifhed by two feparate confpiracies. At the head of one of thefe were, Barrere, Billaud Varennes, and Collot d'Herbois, who had been members of the Committee of public fafety. The other confpiracy confifted of members of the Convention who did not belong to the committees, and had no immediate fhare in the adminiftration. Among thefe, Tallien, Bourdon de l'Oife, and Lecointre of Verfailles, were confpicuous. After the deftruction of their mutual tyrant, a conteft for power took place be\(t\) ween thefe parties. The popularity of Robefpierre had once been fo confiderable, and all men had fubmitted fo tamely to his dominion, that both parties accounted it neceffary, in their fpeeches and writings, to juftify to the nation the fhare they had taken in accomplifhing his ruin. It was eafy to be eloquent upon fuch a topic; but its difcuffion naturally operated to the difcredit of the members of the committee, and of

\title{
R E V
}
renilh the more violent Jacobine, who had been the inmediate fures. Théy neverthelds's retained offeffion, for fome tiaof a confiderable portion of power. 't he current of public opinion, however, ran fo ftrongly againft them, and the refloration to their Ceats in the Convention of the fe. reinty ore imaprifoned members of the Gironditt party, aded fo much to the Arength of their artagonifis, that they gracually loft their iiffuence, and were threatethed to the bronght to trial for their condua.
As early as Auguft 1794, Lecointre of Verfailles had denourced the members of the old committee of fafety ; but his accufation at that time produced little effect. Towards the end of that year, however, their approach ing fall became evident. On the 26 th of Decen.mer the Convention ordered, on the motion of Clauzel, that the committees fhould inmediately report upon the conduct of the reprefentatives denounced by Lecointre and all France. Accordingly, on the following day, Merlin of Douay reported, in the name of the committees, that there was no caufe for inquiry into the conduct of Vouland, Amar, and David; but that there was room for examining the conduft of Barrere, Dillaud Vareunes, Collor d'Herbois, and Vadier.

In confequence of this report, a committee of twentyone members was appoirted to make the enquiry. On the 2d of March this year (1795), Saladi:s prefented the report of the commiffion; in which thefe four deputies were accufed of laving participated, as members of the governing committee, in the tyranny and atrocious meafures of Robefpierre. Their trial commenced before the Convention on the 22d of March ; but previous to that period, Vadier had made his effape. The others remained, and refted their defence upon this ground, that atthongh members of the cominittee of fafety, they liad no power to refift Robefpierre, and that they were nct more culpable in having acquiefced in his tyranny than the other members of the Convention, who had all been overpoweted for the time by the knowledge that infant deltruction awaited every man who fhould dare to oppofe his meafures. Except in the cafe of the crietties conmitted by Collot d'Herbois at Lyons, this defence was probably by no means deftitute of foundation. It lad much weight with the nation at large ; in whofe eyes it tended, not to excul. pate the three peifons now accufed, but to criminate and degrade the character of the whole Convertion.
Carnot, Lindet, Cambon, Duhem, and the other members of what was now called the facolin party, defended their leaders with confuderable ability, and with much vehemence Nor was the party lefs active without duors than within the hall of the Convention. For fome time they had drawn their friends to the capital from all quarters of the country; and in the morn. ing fitting of the firit of A pril, they commenced their operations by an open infurrection. An immenfe mul. ritude having afembled in the fuburbs, proceeded to the hall of the Convention. A real or factitious fcar. city exifted at the time. 'Iaking advantage of this cirriumfance, they pretended they were going to petition tor bread; ; and this protence drew numbers along with them who kad no flare in their defigns.
Boiff \(\mathrm{C}^{\prime}\) Aryles, a ecnfpicnous member of the moderate darty, was àdreffing the Convention upon the uneans of removing the prefent fearcity when the in.
furgents arrived, drove the centinel; from their polts, Ficrectert and fuddenly filled the hall. They tumaltuounly de-Revolutiont manded "Eread, and the Conftitution." The Jacobin \(17,5 \cdots 3\) paity fupported the irfurgents; and one of the multi. tude, in a vehement haıargue, exelaimet, "We are men of the I thl of July, of the 1 cth of Angnit, and of the 3 ift of May." He demanded, that the Convention fhould charge its late meafures, that the people fould no longer be the victions of nercastile rapacity, and that the accufed patriots foould not be facrificed to the paffions of their antagonits. 'i'he Convention ordered the toclin to be rung, and the people of Paris to be called to arms. Geneıal Pichegru was in Paris at the time; and, upon the motion of Barras, he was appointed to the command of the military force.

The citizens of Paris, who remembered with horror the domination of Robefpierre and his adherents, and now faw themfelves menaced with its return, inflantly quelled by called each other to arms, and affembled, by fix in the evering, for the protection of the Convention, to the amount of \(20,0=0\) men. Till that time the aftembly had remained under no finall difquietude, furrounded by the infurgents, and liftening to the addreffes of their orators, and the fpeeches of the Jacobin minority ita their favour. The majority was now refcued from this flate of conftraint ; and, on the motion of Dumont, without proceeding farther in the tial, it was decreed that Barrere, Collot d'Herbois, and Billaud Varernes, fhould immediately be tranfported to Guiana.

During the following day the infurgents were completely fubdued; and the majority of the Convention, taking advantage of their vitiory, decrecd the arrett and cunfinement, in the cattle of I-am in Picardy, of teveral of the moft othoxious of their antagonitts. Among thefe were Leomard Bourdon, Duhtem, Chafles, Choudieu, Ruamps, Fouffedoire, Huzuet, Bayle, Le. \({ }^{2} 222\) cointre, Cambon, thuriot Maignet, Heutz, Craffous, she Con of and Levaffeur. By departing from the punifhment of vention. death, and adopting that of banifhenent on this occafion, the Convention exptetcd to diminifh the ferocity of the contending factions in the flate, by sendering the refult of a political defeat lifo fatal than formerly. The defign was good; but in attempting to accomplifh it, they eftablithed the pernicions pircedent of iuficting punifhment without a trial, which could fcarctly fail to prove highly dangerous, if not ultimately fatal, to all their proipeas of a free and juit government.
The Convertion now followed up its victory with Propolal the popular meafure of preparing for its own diffolu- Prop a new tion, by endeavouring to fiame a fixed conftitution for confituthe Republic. The conftitution which had been de. tion. creed in 1793, under the aufpices of Robefpierre, was confidered as impracticable, and a committee was ap. pointed to report upon the meafures which ought now to be adopted. It confifted of sieyes, Canibaceres, Merlin of Douay, Thibaudeau, Mathicu, Le Sage of Eure and Loire, and Latouche. On the igth of April, Cambaceres reforted, that it was the opmion of this comulitee that a commifion thould be appointed to frame an entirely new contlitution. The Convention accordingly appointed the following perlons to this important office, Le Sare, Lonvet, Hoify d's inglas, Crenze, Latonche, Benter, Daunow, Eaudim, Duand, Maillaue, Languinais, La Reveillere Lepaux, and Thibaudeau. All other citizens of every difeription' were

French at the fame time invited to communicate projects upon Revolution, the fubject, and the committee was required to order \(\xrightarrow{720 .}\) the beft conceived of thefe to be priuted.

The Convention farther gratified the feelings of the great inajority of the nation, by bringing to trial Fouquier Jenville the prefident, and fifteen judges and jurors of the late revolutionary tribunal. They were convicted on the sith of May, and executed on the following day, amidft the exccrations of a multitude of fpectators.

In the mean time, though defeated on the ift and 2 d of \(A\) pril, the Jacobins by no means confidered them.

224 rechion of the JacoDins, ring a new and more extenfive infurrection, which fhould not, like the former, be confined to the capital. They fixed upon the 20th of May as the day of revolt. 'Ihuriot, and Robefpierre's financier Cambon, had found means to efcape from the caftle of Ham in Pi cardy, and to come to Paris. They concealed themfelves in the fuburb St Antoine, and from thence gave counfel to their party, and urged them to action. The fcarcity of bread had increafed, and advantage was agrain taken of this circumftance. For fome days the walls were covered in various places of Paris with printed accufations againft the Convention of withholding bread from the people, and attempts were male to excite the tronps in the city to join the difeffected party. On the evening of the 19th, a paper was open!y dittributed in the different fections, explaining the nljeect of the approaching infurrection. It declared infurrection to tee the moft facred duty of the people, and called upon the citizens of Paris to proceed in a mals to the Convention, to demand from it bread and the eftablifinment of Robefpierre's conftitution, together with a new election of natioral reprefentatives.

On the morning of the 20th, the tocfin was rurg, and drums beat to arms in the fuburb St Antoine, which had always been the quarter of the city in which the Jacobins poffeffed the greateft ftrengtl. Up on this alarm the Convention affembled ; but althongh the intended infurrection was no fecret, and though the committee of public and general fafety now made a report, in which they confeffed their previous knowledge of it, yet it does not appear that any vigorons meafures of precaution had been taken; for it was only at the inftant when the infurgents were actually approaching, that General Hoche was appointed to command the armed force, and was fent forth to affemb'e the military and the citizens for the defence of the Convention. In the incan time, the multitude furnouncied the hall. 'ithey foon overpowered the guards, and burlt into the is:idft of the affembly. In all the turbulent days of the revolution, the women of Paris have never failed to act a confpicuous part. On this occafion they greatly. angmented the crowd by their numbers, and the tumult by their cries of "Bread, and the conttitution of 1793 ," which was the rallying exclamation of the party. After fome fiuitlefs efforts to reftore tranquillity, Vernier the prefident, an old man, refigned the chair to Boiffy D'Anglaf, who remained in it with much firmnefs during the day. The whole ftrength of the infurgents had not arrived at once; for the firf party that arproached, although they forced their way into the hall, were foon repulfed by the aid of a few fol diers and citizens, who came to the affiftance of the Convention. A short intersal of tranquillity was thus
obtained; but the attack was fpeedily renewed with French double fury by armed men, who fubdued all oppofition, Revolutio ard entered the liall with cockades, on which was written the infcription, "Bread, and the conftitution of 1792." While things were in this fate, a citizen of Wromur the party of the Convention rafhly tore off the hat of er fime one of the iufurgents, and was immediately affaulted the Com. with foords by the nultitude. He fled towards the and drive prefdent's chair, and was killed at the fide of it by af.imits mufiset \(\because\) ot. Ferand, one of the members, having at hall. tempted to refcue him, was alfo attacked. He efcaped into one of the paffages, where lie was alfo killed, and his head was brought into the Convention upon a pike. The greater number of the men bers now gradually departed, and left the hail in poffefion of the infurgents, who acted with fome regularity, and popofed a varicty of laws favourable to their paity, which werc in i* antly decreed. Duroi, Duouefnoi, Bombotre, ard Crouion, were the membens who food moof openly forward on this occafion, and appeared es chiefs of the infurrec. ticn. But their triumph only latted a few hours. To. wards the evening a large body of citizens joined the military, and marched to the aid of the Convention. Having overcome the infurgents, they entered the hall in gitat force, and reftored the powers of the majority. The decrees that had been forced upon them were repealec! as fpeectily as they had been enacted, and the deputics who had propofed or fupported them were arrefted.

The citizens of Paris, and even the members of the Convention, appear now to have fancied their victory complete; for they adopted no adequate meafures to prevent a new difturbance. But the Jacobins did not fo eafly give up their own caufe. On the following day they unse mo:e affembled in the fuburbs, and in the afternoon they returned to the attack. They took poffeffion of the Caroufal withont oppofition, and pointed fome pieces of cannon againft the hall of the Convention. Ihis aftimbly was now unprotected, and attempted not to fubdue, but to flatter, the infurgents. A Meannefo deputation of the members was fent forth to traternife of the Cur with them, and to carry forth two decrees pafed at ventions that inftant, which ordained that bread fhould abound, and that Robefpierre's conftitution of 1793 thould im. medistely be put in force. 'The infurgents, in rerarn, font a deputation, to the Convention, to expref their fatisfaction with the decrees, to demand the releafe of the imprifored patriots, and the puniffiment of thofe who preferred money to affignats. The Conventioa pretendect to agree to all their demands, and the pretident was ordered ta give to the deputation the fraternal embrace.

The 22 d , which was the thind day of the infurrection, appears to have been paffed by both parties in a Itrange degree of inaction. The Convention proceeded in its ordinary bufinefs; and the Jacobins, at their head quarters in the fuburb St Antoine, were occupied in confultations and preparations for new movements. But on the following day the citizens affembled at their fections, and haltened from thence to the Thuilleries to defend the Convention. Confiderable bodies of the military were alfo collected, and the afembly at latt reSolved to act upon the offenfive. A decree was paffed, declaring, that if the fuburb St Antoine did not in. ftantly furrender its arms and cannon, together with

\section*{\(R E\) E}
ene＇）the murderer of Ferand，it fhould be confidered as in a Iluti r．ftate of rebellion．The conventional generals were at 7 －fame time ordered to reduce it by force．The in－ furgents now found themfelves unequal to the contelt， and were compelied to furrender without conditions by the inhabitan＇s of the fuburb，who dreaded the deftruc－ tion of their property by military operations．Several foldiers bcing found anong the priforers，were put to death ：and lix nembers of the Convention were tried and condemned on this occation by a military commif． fion．Three of thefe perifhe？by felf flanghter，and three were executed．The imajority of the Conven－ tion，elated by their viftory，ordered back Collot D＇i ferbois，Billaud Varennes，and Barrere to take their trial ；but the two former had falled before the arrivat of the courier．Barrere only remained，and he was brought back and imprifoned．

In the mea：n time，the Jacobins in the fouth were not lefs active than their brethren at Paris．On the 20th of May they formed a vigorous isfurrection at Tonlon．They feized the grates，and mounted thens with cannon ；they tiberat d fuch of their allociates as had been imprifoned，and detainsd the flet，which was about to fail．Havirg begun their operations in this fuccefsful manner，they matched from Toulon towards Marfeilles．Their forse amounted to three thoufand men and twelve pieces of cannon．They were encoun－ tered on their way，however，and defeated by Generals Cliarton and Pactod．Thrce hundrell of thein were carried prifoners to Marfeilles，and Toulon wab fpeedily retaken．

The party of the Mountain，as it had been called，or of the violent Jacobins，who wifhed to revive the reign of terier and the meafures of Robefpierre，was now re． duced very low both in the Convention and out of it． Thofe who adhered to it were even in many places， and more efpeciaily in the fouth，expofed to very vio－ lent perfecution．Affociations were formed，cailed Com－ panies of \(\mathcal{F}\) ffus and of the Sun，for the purpofe of aven－ ging the crimes committed by them duing the period of their power．At Lyons feveral of the in were maf－ facred in prifon，and many of them in all places pe－ rifhed by affafination．On confidering the mercilefs character of the government of Robefpierre and his af： fociates，and the perfeention which was fuffered under it，not merely by the nubles and the rich，but by every man who was diffinguifhed by integrity，talents，or literature，it may appear furprifing that it fhould have obtained admirers，or that any number of individuals thould have been found willing to hazard their lives to procure its reftoration．A ceordingly，from the period of the fall of its leader，the party had gradually been forfaken by its adherents；and the mare clufely its conduct was confideted，it loft ground the more rapid－ ly in the eftimation of the public．After the unfuc－ ceffful infurrections of the 2 cth of May，it was treated with the utmoft contempt，and its unpopularity was ex－ treme．Still，however，a party remained．It was fmall， indeed，but its members compenfated the inferiority of their numbers by fuperior enterprife and ativity．They confifted of outrageous republicans，whole heated ima． ginations beheld royalty and ariflocracy in every propo． fal for fober and regular government．In the condict of Robefpierre，they remembered only the cnergy of his meadures，by whioh France was enabled to triumph over
the combined efforts of the kings of Europe ；and over． looked the atrocities by which he had brought difgrace upon their caufe，and rendered his party odious to their own countrymen，as well as to the neighbouring na－ tions．A midt this univelfal odium，however，the J．－ cobins did not defpair of rifing orce more into power ； and it is noe a hittle fingular，that we muft date the re－ vival of their trength from the period of the unfuccefs． ful infurrections which we have juft recorded，and whech feemed to have extinguithed their hepes for ever．

The unpopuarity under which the Jacobins labour－ ed foon began to affict the Convention itfelf．The tame fubmiffion of that body to the government of Rubefoiere was now remenbered．It wes secollitited， that the majority of its members had been the inftru－ ments of his power，and had applanded，or at leall ac． cuicfeed in，his crimes．As the prefs was row f：te， and the eeins of government unfteadily held，their con－ duct was reprefented to the public in the moft odious colours．A celebrated fong，L．e Reveil du Peupsle，be－ came extiently popular，as the means of making dis． like boith to the Convention and to the Jacobins；and their conduet was carvaffed whits the utmoft bittennets in is great variety of publications，tont more efpecially in a jourral that at this time attraeted much notice．and which was conducted by Freron，who had himielf been a Jacubin，but liad now abandoned his patty．

In this flate of things，the majority of the Conven－And terrio tion fpecdily began to eepent of their late viciory overf，the Cos－ the Jacobin3．In the firtt efforts of their zeal，they vewuon． bad taken meafures for the immediate formation and ettablifiment of a fethed conftitution to fuperfede their own anthonity；but they now regretted their 1 aflinefe， when they pececived，from the taper the nation was in，that the men，the mont avowecly hofile to thein character and meafures，would without doubt be elecsent as their fucceffors．＇I hey，and their fiends，had anfer to great diffinction and wealth under the revolutionary government ；and they now began to dread，not conly the lofs of power，but alfo a fevere inveltigation of theil conduct．I hefe confiderations foon produee their nid． turaleffects．The decrees for forninig and putting in force the conftitution conld not decently be recalled； but．the majority of the Convention let abont deviling mears for rendering them of little inportance，fo fer as they themlelves were concerned．

On the \(23 d\) of June，Boiry D＇Anglas prefented the New erm－ report of the committee that had been appointed to Newtion， prepare the plan of a conltitution．It began，likes ifinting． the former contritutions，with a declatation of the iightso \({ }^{\text {of }}\) of man；and in addition to this，confifted of fourteen chapters，upon the following fubjects：－The extent of the territorial poffisfions of the Republic，the political Aate of citizens，the primary affemblies，the electoral afficmblies，the legifature，the executive power，the mu－ nicipal bodies，the judicial authority，the public furce， public inftruction，the finances，foreign treaties，the mode of revifng the conflitution，and，lafly，an enact－ ment，that no rank or fuperiority fhould exif among ci－ tizens，excepting what might arife from the exetcife of． pub＇ic functions．

The primary affemblies were to poffefs the right of clecting the nembers of the electoral affemblies，and al． fo the juftices of the peace．The electoral affemblies． were to nominate the judges and the leginators of the

\section*{REN \([406]\left[\begin{array}{ll}4\end{array}\right] \quad\) R E N}

Firenth ftate. The leginature was civiled iuto two affemblies; - Revolvion, the one of which conffled of 250 members, and was
1735.

231 Twin Con. bers of it. The other afiembly or council confitted of sils a:d an 500 members, and poffeffed the exclufive privilege of propoling the laws; the Council of Ancients being only intited to rejeet or approve, withent fowes to alter the decrees prefented to it. To this rule there was one exception, which was afterxarchs employed as the means of overturning the whole fubuic of the conflitution; the Council of the Ancier ts might decree the re-- moval of the legiflature from its ordinary place of fitting. To this decree the app:obation of the Council of Five Hundred was not nece Tary; and when once enacted, it could not be reconfidered even by the Council of Ancients itfelf. One thisd of the members of the two Councils was to be elected annually. A member might be once re-elected, but he could not be elected a third time till an interval of two years had

232
Executive
\(=\) Directory.
= Dire The executive power was intrutted to five perfons of forty years of age at leaft, to be ftyled the Executive Dircflory. Its members were elected by the two Councils; the Council of Five Hundred electing ten times the number of candidates that might be neceffary to fill up the vacancies, and the Council of Two Hundred and Fifty nominating the directors from this lift of candidates. One member of the 1 )irectory was to go ont annually; fo that the whole might be clanged every five years. The Executive Directory had no vote in the enactment of laws; but it fuperintended the ir exe cution, regulated the coining of money, and difpoled of the armed force. Foreign treaties made by it were not binding till ratified by the legiflative body, nor could it make war without the authority of a decree of the two affenblies. The public functionaries were to receive falaries, and to appear dreffed in an approprinted habit.

Each article of this conftitution was feparately dif. cuffed; and on the 23 d of Auguit the whole was declared to be complete, and ordaired to be trav:fmitted to the primary affemblies for their approbation. Previnus to this refolution, however (that is, on the 22 d of the fame month), the majority of the Convention - had brought for ward the grand meafure by which they meant to provide for their own fafety, and the fafety of their friends and adherents, againft the change which the public opinion had undergone concerning them They decreed, that at the approaching general election, the electoral todies fhoukd be bound to choote treothirds of the new legiflature from among the intmbers of the prefent convention; and they aftes wards decreed, - that, in defoult of the elcetion of two thirds of the Convention, the Convention floutd fill up the vacancies themfelves.
233
-Tle Curlvention fee ters the - fredom of election.

Thefe decrees were tranfinitted, along with the ConItitution, to the primary affemblies, to be accepted or rijected by them. Many of the primary affemblies underlood; that they would not accent of the conftitution without accepting along with it the law for the reelertion of the trivorbirds. The point had, in all pro bability, leen purpofely left under a certain degree of ambiguity; and as the people were now weary of this Corventions the yacquiefced in any conditions that gate
them the profpect of one day getting quit of \(i t\). But French at laris, and in the neighbouring denarments, where Revolutic the fubject was more accurately inveftigated, the public \(\underbrace{1795}\) difapprobation of the Convention difplayed itfelf with great vehemence.
There was indeed forething. extremely aukward in Confeque 234 the decree about the re election of two thirds of theces of thi Convention. That body might, if neceffary, have con. conduct, tinued its own exiftence for fome time longer, or it ringht have difnified one thind of its number by ballot or otherwife, and allowed a new election only to that extent ; but a compulfory election was an abfurdity fo new, and fo obvious, that it gave their aritagonifts every advantage againlt them. Accordingly, at the meetings of the fections of Paris, the laws for the re-tlection were rejected with contempt, and their abfurdity demonftrated with much acrimony. In confequence of the debates which took place at thefe mettings, the minds of men were gradually inflamed, and it became obvions that a political convultion approached. On the one fide, the Convention took care to publifh daily the approbation of the decrees, along with the conftitution, by the majority of the primary affemblies, by moft of which the two had teen confounded and accepted in the grofs. Its committees alfo called in the aid of the tronps of the line for its protection. On the other hand, the language of the fections became every day more violent. The whole Convention was reprefented as a band of tyrants and of murcerers, the affociates of all the cruelty of Robefpierre and the Mountain party. It was eren propufed to bring to trial every individual member of the affembly before a inew revolutionary tribunal, and to punifh him accordhirg to his demerits.

For lome time: much anxiety prevailed on both fides, Numerous deputations were repeatedly fent from the fections to the Convention to remonftrate againft the obnoxious decrees. But the eagernefs with which thefe remonftraticcs wére made, ferved only to convince more ftrongly the members of the Convention of the danger to thenfelves as individuals which would attend a retignation of their: power, and confrimed the refulution chey had taken to retain it. 'I'he depnties of the foctions having obtained infpection of the reco:ds of the convention, afferted, that the national majority, if rightly numLered, had rejected the decrees; as every affembly tha: voted in oppolition to them was mly numbered as one vote, however numerons its members might be; which enabled the primary aftemblies of remote diftriets to outvote the \(m\) re populnus fections of Paris and other great towns. Whertas it was faid, that if the individual voters were counted, it would be fonnd that the decrees were difapproved of by a confiderable majority. All this was difrega:ded by the Convention, and the fections prepared to decieie the difpute by arms. The fift flen taken by them, however, was ill concerted. A votion was propagated, that as foon as the primary afo Lemblea or fections hed chofen the electors who were to choole the members of the new legifature, the na-tional-fovercignty became vifed in thele electors, and that they had a right to affume the government in their various ditities. . Accordingly, alacoat \(1 \cdots .0\) of the elec, tors of Faris affembled in the hall of the lirench theatre in the fuburb St Germain, previous to the day of xnectreg aphonted by the Convention. L.Haxing cholen

\section*{R E V}

De Nivernois (formerly the Duke de Nivernois) their prefident, they Legan their debates. 'I'he Convention was alarnied, and inftantly fent a body of the military to difmifs the meeting as illegal. This was eafily accomplifhed, as the citizens had not been unanimous with regard to it, and no meafures were taken for its protection.

Notwithtanding this firt a lvantage on the fide o! the Convention, the fections regarded its power with contempt, and imagined themfelves fecu-e of ultimate fuccefs. In every political conteft that had hitherto occurred fince the commencement of the revolution, the immenfe population of the capital had given a decifive fuperiority to the faction whofe fide it efpoufed. The citizens alf, regarded with indifference the armel force with which the Convention had furrounded itfelf, from a notion, which they fundly entertained, that the military would in no cafe be brought to aet againit the people. It would appear that the Convention itfelf entertained fome jealoufy upon this head, and did not account it felf entirely fafe under the pro. teaion of the foldiers. On this occafion, therefore, it had recourfe to a new ally, and befought the aid of thofe very Jacobins whom it had alnolt crufhed on the 24 th of May. The members of the Convention were odious to the feftions of Paris, on account of their participation in the revolutionary crimes and meafures of Robefoierre; but this very circumftance endeared them to the Jacobins, whofe claracter it was to imagine that they had never enough of war abroad or of revolution at home. It was eafy therefore to bring about a reconciliation between the Convention and thele mell. Several hundreds of them were difmiffed from the prifons, where they had been confined fince the tivo laft infurrections, and they were now put in requilition to defend the leg flative body.

Whben the feations of Paris beheld the Cunvention. furrounded by thofe Jacobins who had been the untelenting agents of the government of Robefpierre, and whlo were now denominated terrorifhs and men of úlood, their arifour for action became unbounded. They ar. fembled in arms at their lifferent fections on the 12 th. Vendemaire (October 4 th) ; but they do not feem to have acted with much concert, or upon any well digefted plan of operations. The general defign of their leaders was to feize the members of the Convention, and imprifon them in the church of the Quatre Nations till. they could be brought to trial. As this would occafion a vacancy or interregnum in the government, it was refolved that all affairs flould be conduated by coinmittees of the fections, till a new legifature could be elected. General Miranda, a Spaniaid, a native of the Carraccas in South America, who had ferved in the re. publican armies, was to be appointed to the chief command of the armed force after the overthrow of the Convention. This man, in his eagernefs for preferment, had alternately courted all parties, and he now feems to have joined the Parifians upon the fuppoftion of their being the ftrongef. As he entertained fome doubts of their fuccefs, however, he adopted the crooked and timic policy of avoiding the florm by retiring from the city till the combat flould be finihed, refulving to re: turn immediately on its conclufion to fhare the rewards and the triumph of victory.

The Convention, in the mean time, refolved to flike
nou to the fection of Le Pelletier to difperfy the citizens, , volutic1, whofe greateft force wess afiembled the Fut this of \(1,395\). ficer, diliking the fervice which he was cmployed to perform, intead of proceeding to action, begon to negociate with the leaders of the fections, and fpent the evening of this cay in frnitlefs conferencts. The fections on their fide appointed General Danican, whohad diftinguifted himfelf in the war againf the Royalifts in \(L_{a}\) Vendec to aci as their military leader. It would appear, however, that this officer, from the mo. ment that he afumed the command, began to defpair of the caufe of the fections. He found them tutally deffitute of cannor, whereas the Convention was fur. rounded by regular tronps and a numerous artilleiy. This inequality in point of weapons appears to have been confidered by him as a fufficient reafon for avoiding an engagement. Occupied in vifting and arranging the different prift, he was unacquainted with the difaff etion of the conventional generals. He therefore thought he had done much when he had prevented bloodithed for another day, and thus the favourable moment for attack was lof. Whether the fections would have been fuccefful had they been inftantly led to batte on this important occaf:on, cannot now be known. Though the fuferior officers of the Convention were unfaithful, yet the fubalterns and the troops in general might have ftood firm, confirmed as they were by the perfuation of their Jacobin auxiliaries. Even in this cafe, however, the fate of a battle might have at leaft beein coubtful. The battalions of Paris were very numerous, their contempt of danger was great, and their ardour unbounded. The mere poffeflion of cantion might not in a con:efl againft fucla men have afforded fecurity in the Convention. But the firft moments of popular enthufiafin were fuffered to pafs away, and that diftruft and difienfoon, which cielay riever fails to introduce aniong great and irregular affemblages of men, foon began to render the conduct of the fections undecided and weak.
The conventional committees, during the night of the 12ch Vendenaire (OAuber 4th), difrnifted Generals Menou, Faffet, and fome uthers, from their ftations, and gave the command of the troops to Barras. He immediately collected around him a variety of able officers, among whom we find the names of Gencrals Brune and Bonaparte. With their alfiftance he began to provide for a mof vigorous defence. Troops with cannon were ftationed in all the avenues ieading to the Thuilleries. In cale any of thefe pofts fhould be forced, malked batieries were planted in more setired ficuations. Nor was this all ; meafures were taken for conveying the public magazines of pruvifions and military forcs to Sc Clowd, whither the Convention prepared to rctreat if they flould fuffer a defeat at Paris.

On the \(13^{\text {th }}\) Vendemaire (October 5th) from which the infurrection was afierwards named, both parties remained for many hours upon the defenfive. At laft, about three o'clock in the afternoon, General Danican made advances to an accommodation by a letter to the coumrittee of public fafety; in which he flated, that the only caufe on account of which the citizens had taken arms was the dread of a maflacre being intended by the armed turorits who furrounded the Convention, and that if thefe men were removed, tranquillity would immediately be re-eftablinied. A civil meeffage was re-
tuin ned;

\section*{R E V [ 408 ] R E V}

French turned; but the Jacobin party in the Convention, being Revolution, now more confident of victory, and wifhing to ftrengthen 1795.
\({ }_{23}{ }^{3} 6\)

\section*{Subdues} the citizen of Paris. themfelves by the defeat and punifhment of their antagonifts, it was refolved that the difpute mould be decided by arms. It is not correctly known how the conteft commenced, but the armed Jacobins are moft generally underfood to have begun the attack. The citizens on the fouthern fide of the river attempted to reach the Convention by the Quay de Voltaire, but were fpeedily repulfed by the conventional cannon; but on the northern fide of the river, near the Convention, the combat was extremely obftinate. The cannon were repeatedly feized by the citizens, and repeatedly retaken by the troops and the armed Jacobins It was not till after a cortef of four honrs that the fections were repulfed and driven to the poft of St Roch. This po.t was alfo taken after great llaughter, and the fections were driven to their head quarters at the fection of Le Pelletier. After a fhort interval they wicre pur. fued thither by the tronps of the Convention, who by midnight were matters tif the whole city.

This infurection was afcribed by the victorious party to the exertions of the Royalifts. It is no doubt true, that by this time Royalty was become lefs unpopular even among the rabble of France than the extreme of Republicanifm, as it had appeared in the conduct of the Mountain party. It is alfo probable, that the Royalifs mingled in a couteft that had the overthrise of the prefent Convention for its object ; but the infurgents in general feem neither to have avowed nor entertained any farther view than the difarming of the Jacobins, and the obtaining an immediate election of new reprefentatives. The fai-
lure of the attempt had the effect of placing the Moun. tain party nuce more at the head of the fate. This party at firft thought of adjourning the new conRitution, and of renewing all the terrors of the revolution. ary government. This project, however, was oppofed in the Convention with fo much vehernence and ability by Thibaudeau, that it was renounced. Indeed it was become unneceflary to the fafety or afcendency of the men who propofed it, as the decrees for the re-election of two thirds of the Convention enabled them to retain the full polfeftion of their power. A few members of the moderate party, fuch as Buiffy D'Anglas, Languinais, and Le Sage, were elected by almoft every place in France, though they could only fit for one place. Hence the Convention itfelf liad the re election of nearly two-lhirds of its own members; and the Mountain party, which now commanded the majority, was thus enabled to fill the new legiflature with its own leaders.
On the 27 th of October the Convention terminated its fittings, and was fucceeded by the new legifature as appointed by the Conflitution. By its laft decrees, a general amnefly was granted for all revolutionary crimes and proceedings. From this amnelty, however, were excepted the emigrants, the tranfported priefts, and all perfons concerned in the laft infurrection; fo that in fact it was merely a pardon granted by the Mountain party to its own friends for all the exceffes they had committed. The inembers of the Convention, who had been imprifoned in the cafle of Ham fince the Jacobin infurrection in May, were now fet at liberty. The members of the revolutionary committees, and other agents of Robefpierre in Paris and the departments,
were all difmiffed from their prifons, and advanced to French the mof important offices under the new government. Revelution

As foon as the new legifature had divided itfelf into two council3, it proceeded to the election of an Executive Directory. Here the genius of the French nation for intrigue inftantly difplayed itfelf. The Conncil of Five Hundred was hoind to prefent to the Council of Two Hundred and Fifty a lift of ten times the number of candidates neceffary for the office. It fulfilled this The Co duty in the following manner. The majority of the cil of Pive Council of Five Hundred made out a lift, confifting of Huntred the five following perfons, ripon whom they wifhed the \({ }_{\text {Councits }}^{\text {pof }}\) election ultimately to fall : Sieyes, Barras, Rewbell, Ancients L.a Reveillere Lepaux, and Letourneur de la Manche. To complete the lift, they added the names of 45 ob feure peifors, country juftices, farmers, and even peafants. Thus there was nothing left to the Council of Ancients but the mere form of an election; and from the want of other qualified canclidates, they were under the necelity of nominating to the office of directors the five perfons at the head of the lift prefented by the Council of Five Hundred. The crafty Sieyes, however, who had been the advifer of all partics, but the ofterfible agent of none, dir! not yet thirls fit to venture upon the pofeffion of power. He had difapproved of the conflitution which was now put in force, and had even framed one of his own in oppofition to it, which, however, was rejected by the Convention. The moft remarkable circumffance in his plan of government was a national jury, upoz which he propofed to confer the power of difmiffing from their offices, without a canfe being affigued, any of the ptiblic functionaries whom they might account dangerous to the flate. Sieyes having refufed to accept the office of director, Carnot was eleeted in his flead. But on this occafion the Council of Ancients was treated with a little, and but a little, more decency than formerly ; as the name of Cambaceres, a man of confiderable eminence, appeared along with that of Carnot in the litt of candidates voted by the Council of Five Hurdred.

The republican govern'nent that was now attempted New \({ }^{2420}\). to be eftablifhed promifed little tranquillity to the na-verument tion. This great misfortuse attended it, that the chief not popuoffices in the Itate were intrufted to men who were dif. liked by the people. The members of the Executive Directory, with the exception of Reveillere Lepaux, had always belonged to the Mountain or moft violent Jacobin party. As they now owed their power to that party, they employed its members in almolt every official department. The goverment was therefore neceffarily unpopular. Things might have been gradually altered, indeed, by fucceffive elections, which would in time bring other men into power: But, by the forms of the conflitution, the executive power was more permanent than the legiflative body, without noffeffing any influence over it. Hence it was to be feared that a conteft for power might fpeedily occur between a directory nominated by the Jacobin party and the new leginators appointed by the people, in which the Conflitution inight fuffer flipwreck; an event which actually occurred.

While the poffeffion of power continued to fluequate in the manner we have already ftated, between the Moderate and the Jacobin or Mountain parties, the armies of the ftate were fuffered to languifh; but upon the

\title{
R E V
}
rench credit of its former military fuccels，the Republic was treated with refpeet by fome of the neighbouring powers．On the ioth of April，a treaty of peace with Pruflia，which had been negociated by the committees through the medium of Barthelemi the French refident at Bahe，was prefented to the Convention for ratifica－ tion．By this treaty，it was ftipulated，that the French troops fhould immediately evacuate the Pruffian territo－ ry on the right bank of the Rhine，but Mould retain the territory belonging to that power on the left bank till a general peace．Prifoners of war were to be mu－ tually reftored，and the commerce of the two countries was to be placed on its ancie footing．Meafures were alfo to be taken to remove the theatre of war from the north of Germany by treaties between France and thofe princes for whom the king of Pruffia might iirter－ pole．

During the fame month of April，the French Re－ public was acknowledged by the king of Sweden；and Baron Stael his ambaflador was received at Paris with great folemnity．In the month of May a fecond treaty with Pruffia was concluded．It chiefly regarded the line of neutrality．It is worthy of remark，that thefe treaties contained fecret articles which were to be re－ vealed only to a felect committee．By authorifing this mode of procedure，the Convention fufficiently demon－ Arated its refolution，that no form of popular govern－ ment to be adopted in France fhould ftand in the way of the national aggrandifement．The Swifs cantons now followed the example of Sweden，and acknow－ ledged the French Republic．\(\Lambda\) treaty of peace with Spain was alfo concluded at Bafle on the 22d of July． France，on this occafion，retinquifhed all the conquefts The had made in the territory of that country，and re－ fored the ancient frontier．She received in return all the Spanifh part of the ifland of St Domingo．The Dutch Republic was included in this treaty；and France agreed to accept of the king of Spain＇s mediation in favour of Portugal and the Italian princes．

On the gth of June，the Dauphin，fon of the unfor－ －tunate iouis XVI．died in the prifon of the Temple， where he had been confined，along with his fifter，fince the executions of his father，mother，and aunt．His death，which was probably produced by difeafes arifing from long confinement，if not by more unjuftifiahle means，excited in the French nation fuch a degree of in－ tereft in favour of his family，that the Convention found it neceflary to liberate his fifter from imprifonment．The committee of public fafety propofed to the Emperor to exchange this princefs for the members of the Conven－ tion whom Dumourier had delivered up to Auftria，along with two ambaffadors，Semonville and Maret，who had been feized on their way to Turkey．This propofal was accepted，and the exchange took place at Bafle in Swit． zerland．
val fupe．On the fide of Britain the war maintained its former
character．The Britifh retained their fuperiority by fea，and were unfortunate in their efforts on the conti－ nent．On the 14th of March the Britifh fleet in the Mediterranean，under Admiral Hotham，engaged the French fleet，and took two fail of the line，the Ca－Ira and the Cenfeur；but as the French fleet，four days before the engagement，had captured the Berwick，a Britifh thip of the line，when detached from the fleet， and as the Itluftrious，another Britifh thip of the line，

Supfl．Voz．II．Part II．
was fo feverely injured in the action that fhe run afhore and was loft at Avenza，the fubstantial lofs on both

French fides was nearly equal．On the 23 d of June another Britifh fleet under Lord Bridport attacked the French off Port L＇Orient，and took three fhips of the line，the reft of the fleet efcaping into that port．

This evident fuperiority of the Britifh fleet in every conteft，induced the government to take advantage of the command which it had of the fea，to give affit． ance to the French Royalits in the weltern depart－ ments．Thefe Royalifts，hitherto unaffifted by foreign powers，had，by repeated defeats，been reduced very low．The Convention had at laft olfered them a trea． ty，which was accepted and figned at Nantes on the 3 d of March，on the one lide by denuties from the Convention，and on the other by Charette，Sapineau， and other chiefs of the infurgents of La Vendée，and by Cormartin，as reprefenting the party called Chouans or Night Owls．Stofflet，another chief，held out for fome weeks longer；but at laft，on the 20 th of A pril， he too was under the neceffity of fubmitting by treaty to the Republic．

In a fhort time，however，the hopes of the Royalif 244 were revived by the countenance ment，and thefe treaties were ill obferved．In the be ron say． ginning of June the Britifh expedition was ready to fail for the French coaft．The troops to be employed confifted of emigrants in the pay of Great Britain，and many of them had been prifoners of war，who now agreed to join the royal caufe．The command during the voyage，and the felection of the place of landing， were intrufted to the Count D＇Hervilly．The com－ mand on fhore was given to Puifaye，who had been em－ ployed under the Girondifts in the military \｛ervice of the Republic，but had now become a royalift．The Count de Sombreuil was afterwards fent to join them with a fmall reinforcement．

On the 25 th of June the expedition arrived in the Bay of Quiberon，and on the 27 th 2500 emigrants made good their landing，after difperling a fmall party of republican troops．The emigrant army foon after diftributed itfelf into cantonments along the fhore，and gave arms to the inhabitants of the countiy，who ap－ peared to receive them with joy．It was foon found， however，that the Chouans，though well qualified for a defultory warfare，could not be of much ufe to regular troops．They had little fubordination．They were eafily difperfed，and never fought unlefs every advan． tage was on their fide．When it was found that their unfteady aid could not be depended on，a refolution was taken to withdraw the emigrant army within the pe－ ninfuta of Quiberon．The fort of that name was ta－ ken on the \(3^{\text {d }}\) of July．Its garrion confifted of live or fix hundred men，and it was now occupied by the emi－ grants．A republican army，in the mean time，under General Hoche，advanced，and attacked all the pofts that had been left withont the peninfula．Thefe were fpeedily taken．The emigrants and Chouans efcaped into the boats of the Britifh fleet，or fled under the cannon of the fort of Quiberon．The republicans then began to conttruct formidable works on the heights of St Barbe，at the entrance of the peninfula．To pre－ vent their operations，a fally was made from the fort on the 7 th of July；but without fuccefs．On the 15 th， another fally was attempted in greater force．The
whole

\section*{R E V [ 410 ] R E V}

French whole troops in the peninfula amounted to abont Revolution, \({ }_{2}, 000\), including Chouans. Out of thefe a detach1795.
it now became obvious that the expedition muf ul-
timately fail. Defertion became extremely common among the emigrants. Thofe men in particular who had been prifoners of war, and receive their liberty on condition of joining the expedition, feized every opporqunity of going over to their countrymen; and a correfpondence feems even to have been eftablifhed between the republicans and the difcontented troops in the fort of Quiberon. On the evening of the 20th of Puly, the weather was extremely tempeftuous, which produced a fatal fecurity in the emigrant army. Sufpicious fatroles were remarked; but as they repeated the watchword for the night, they were allowed to pafs. The republican troops were conducted in filence along an miguarded quarter of the fhore, till they were crabled to furprife one of the pofts of the garrifon, where they fornd the artillery men faft afleep. Their matches were feized, and the lanthorn intended to give the alarm to the Britif fleet was extinguifhed. The fort was fperdily in confufion. Some regiments threw away their arms, and went over to the republicans; others even maffacred their own officers. A confiderable number, however, maintained a violent conflict for fome time before they furrendered. Puifaye cicaped on board the fieet. The Count de Sombreuil was taken; and this accomplifhed young man was foon after put to death, along with the other emigrant officers and all the Chouans that were fonnd in the fort. The bifhop of Dol was alfo put to death, with his clergy who accompanied him ; but many of the private fol. diess of the emigrant army made their peace with the republicans, by pretending they had been compelled to engage in the expedition.

The Britifh ficet, with tranfports and troops, till hovered upon the French coaft, and made an unfuccefsful attempt upon the ifland of Noirmontier. In confequence of the feafon of the year, however, it returned home in December, after evacuating a fmall ifland called \(L\) 'Ifle Dieu, which the troops had for fome time occupied.
246 On the fide of Germany the fortrefs of Luxemboung in Gernas. 3y.

Succeffes of furrendered on the 7 th of June, after having been in a French blockade fince the preceding campaign. The of the \(R\) bere now in pofleffion of the whole left bank afthe excepting the ciry of Mentz, which they times throw fuccours into it from Fort could at all oppofite bank of the river. Finding the cantur the Ments imponfible in thefe circumftances, the Frence of folved to crofs the Rhine, to inveft the city on all fides. The enterprife, however, was delayed for fome time, till the refult of the Britiß expedition to Quiberon thould appear. In the month of Auguit, Generel Jourdan forced the paffage of the Rhine at Dufcldorf,
at the head of what was called the army of the Sambre French and Menfe. After driving before him three Autrian Revoution, pofts upon the Iahn, he croffed the Mein, and completely inveited Mentz and Caffel Pichegru, in the mean time, croffed the river, with the army of the Rhine and Mofelle, near Manheim, of which city he immediately took poffefion. But the French generals ey re foon found their forces inadequate to the undertaking in e :ve a which they were engaged. A confiderable detachment check. of Pichegru's army, after driving the Auftrians under General Wurmfer fiom a poft of fore importance, began to plunder, and went into confufion. The Auftrians being informed of this circumftance, returned to the charge, and defeated the-French. General Clairfait alfo, having volated the line of neutrality, came upon the rear of Jourdan's army, and tooz a con!derable part of his artilleyy. Both the French generals now retreated. Jourdan was rapidly purfued by Clairfait till he returned to Duffldorf, where he maintained his ground. Pichegru recroffed the Rhiae near Manheim, leaving a garrifon of 8000 men in that city. The Auftrians advanced in all directions. Manheim was taken after a vigorous fiege. The Fierich were driven from the neighbourhood of Mentz. The Palatinate became the theatre of war, and the Autrians feized the country called the Hundfouck, fouth of the Rhine as far as Landan and Treves. After various engagements, in which little more ground was loft or won, the two parties entered into an armiftice for three months.

On the 28 th of Auguf a treaty of peace was concluded between the French Republic and the Land. grave of Heffe Cafiel, on condition that he fhould lend no more troops to Creat Britain for the profecution of the war. It is rot a little fingular, that peace was concluded with the Elector of Hanover, at this period upon fimilar terms. The Duke of Wirtemberg, and fome other princes of the cmpire, alio began to treat ; but the negociations were broken off in confequence of the reverfe of fortune now experienced by the French.
'The Directory, however, refolved to continue the war with vigour, and valt preparations for the aroaching cantpaign were made during the winter. The Mountain party being once more poffeffed of power, its members exeried theinfelves with their ufual energy. Such, however, was the turbulent character of theie men, that they could not long fubmit peaceably to any government, and foon became weary of that Directury whom they themfelves had cftablifhed. They held clubs in all quarters, and were contimally diturbing the public tranquillity. For fune time the government fupported them. 'The Parifians, after the 5 th October, no lnnger dared to avow openly their diflike to the Jacobins; but they were undenftood to exprefs this fentiment by wearing green filk cravats, and by applauding with mruch vehemence at the public fpectacles the air called Le Reveil du Peuple. The Direc tory now prohibited, by an edict, as tokens of royalifm, Ridiculot the wearing of green cravats, or the performing at an, che Direr f the in the the the air now me timents it contained were entirely republican. The Directory alfo ordered in its ftead, that the Marfeillois hymn, and other popular fongs, fhould be performed every evening at all the theatres. The Parifians fhew. ed their difapprovation of the Directury by maintaining a profound filence during the performance of thefe
fongs,

\section*{\(R\) E V}
[411]
R E V
rench rollition
17966.
fongs, which had never failed till that period to excite burfts of applaufe. The Directory foon became athamed of this ridiculous conteft, and in a few weeks recalled their edict. Indeed they found it imponfible to give countenance for any long period to the reflefs and innovating fpirit of the Jacobins, who continually wifhed and attempted to return to revolutionary, that is, to violent meafures againft their antagonifts. In the fouth, in particular, the prefent fupremacy of the Jacobins produced very pernicious effects. Freron, who had deferted them after the death of Robefpierre, and became one of their moft violent adverfaiies, thought fit to return to their party before the 5 th Oetober, and was fent to Toulon with full powers of adminiftration. Here he difmiffed the municipality that had been elected by the people, reftored the Jacobin clubs, and proceeded to imprifon all fufpected perfons as in the days of Robefpierre. Thefe meafures produced a violent reaction on the part of the enemies of the Jacobins. Affaffinations became frequent, and many perfons began to leave the country. The Directory was alarmed by the many complaints againft the Jacobins or terrorifts that came from all quarters, and refolved to aim at popularity by deferting a fet of men who could not be prevailed upon to act with moderation. Freron was recalled from Toulon, and more manageable men were fought out to replace the more violent Jacobilis, who were in general difmiffed from the fervice of government.

The Directory proceeded farther, and acknowledged, by a public refolution, that its confidence had been abufed. The minifter of police was ordered to remove from Paris the memiers of former revolutionary tribunals, and others who now acted as leaders of the Jaco. bins, or änarclifts as they were called. A body of troops, amounting to 10,000 men, called the legion of police, that had acted againft the Parifians on the 5 th October, and was now devoted to the Jacobins, was ordered by the Directory, with the authority of the legiflature, to join the armies on the frontiers. Thefe men refufed to obey the order; but they were reduced to fubinifion by fome troops that had been brought to the neighbourhood to provide againft fuch an event. The more violent Jacobins were enraged, but not intimidated, by thefe meafures, and began to organize a plot for the overthrow of the Directory and of the majority of the councils, who had now deferted them. They were not prepared for action, hovever, before the month of May, and by that time their defigns were difcovered and counteracied. On the icth of that month the guards were increafed, and bodies of cavalry ftationed around the Luxembourg and the Thuilleries. The Directory at the fame time informed the Council of Five Hundred, by a meffage, that a dreadful confpiracy was prepared to burft forth on the following morning. At the found of the morning bell, which is evety day rung, the confpirators were to proceed in fimall parties of three or four men to the houles of fuch pertons as they had marked out.for deftruetion. After affaffnating thofe perfons, the whole parties were to unite, and to act againft the Directory, whofe guard they apprehended they could eally overpower. The con!pirators had appointed a new. Directory and a new legiflature, to contit of the molt violent of their own party. Among the leaders of this confiracy, who were
now arrefted by order of the Dircetory, was Drouet French the pofmafter of Varennes, whom we formerly men Revolutions, tioned as having arrefted the unfortunate Louis XVI. 1796. when attempting to efcape to the frontiers. Alorgi with him were Babeuf, Antonelle, Pelletier, Gaudet, Julien, General Roffignol, Germain, D'Arthe, Laignelot, and A mar, who had been a member of the com. mittee of general fafety along with Robefpierre. Va. dier and Robert Lindet were alforengaged in the con. fpiracy, but they made their efcape. Drouet alfo efcaped by the connivance of the Directory, as was generally underftood; but the reft of the confpirators were removed for trial to the high national court at Vendome, where they were condemned. At the period of their removal thither, a new attempt was made by their party for their refcue. About 600 men entered the camp at Grenelle near Paris, and endeavoured to prevail with the foldiers to join them in an infurrection. This attempt was altogether unfuccefsful. A few of the infurgents were killed, and the reft fled.

Thefe defeats of the lacobins, and the difcredit un- 25 r der which they were again brought, encouraged moderate party in the two legitative councils to attempt to repeal the laft decrees of the Convention, which had at once granted them an amnelty, and confirmed all the laws which, by confifcating the property of emigrants, excluded their relations from the fucceffion. The difcuffion lalted many days; but the refult was, that the law with regard to emigrants remained on the former footing; and the only point which the moderate party were yet able to carry was a modification of the decree to this extent, that thole terrorifts were declared incapable of holding public offices who owed their fafety to the amnefty.

The fate of the finances now began to occupy the Din \({ }^{232}\) French government in a very ferious manner. Duritig fate of the the government of Robefpierre, while the credit of the finances. affignats was preferved by the influence of terror, or by the fale of the church lands, and the property of emigrants, little attention was beftowed upon this fubject. When money was wanted, more affignats were fabricated; and as few or no taxes were demanded from the people, no enquiry was made about the public expenditure. But when the boundlefs extravagance of the agents of government had loaded the circulation with affignats till they became of little or no value, it became a very difficult queftion how the public fervice was hereafter to be fupported. A new paper currency, called refcripts, was firft adopted. 'Thefe wete orders on the treafury for cafh, payable at certain periods. But their credit foon paffed away, as the treafury had no means of fulfiling its engagements. The Directory complained very bitterly, in a meflage to the Councils, of its diftreffes, and of the want of funds to carry on the approaching campaign. In confequence of this meffage, a law was palfed, on the \(2 j\) th of March, authorifing the fale of the remainder of the national domains for the price that had been fixed upon them at an early period of the revolution, amounting to about twenty-two years purchafe. A new paper currency, called mandats, was to te received in payment. But the credit of government was now gone. The mandats inftantly loft in all private tranfactions one-fourth of their value, and they foon fell ftill lower. This, however, produced a great demand for national pro\(3 \mathrm{~F}_{2}\) perty,

\section*{R E V [412] R E V}

French perty, which was thus about to be fold far below its Revolution, value. T'o prevent this effect, the legiflature broke its
* Sce INstitute,
Suppl.
engagements, and decreed, that one-fourth of every purchafe fhould be paid, not in mandats, but in cafh. This decree put a flop both to the fale of national property and to the circulation of mandats.

Reconrfe was next had to taxation; hut this was attended with much difficulty. By the war, and the violent government of Robefpierre, the French commerce had been in a great meafure ruined. Induftrious men, who poffeffed any capital, had therefore turned their attention to the cultivation of land. Many circumftances led to this. By the emigration of the nobles, and the conffication of the church lands, the farmers were left with no landlord but the government ; which, being fupported by affignats, paid little attention to any other fource of revente. Hence they paid no rent, and fpeedily rofe into opulence. The revolutionary government, which kept the inhabitants of the towns under dreadful bondage, was farcely felt by the inhabitants of the country, who thus enjoyed the advantage of exciting no fufpicion in the rulers, and of paying neither rent nor taxes. The law which declared affignats to be a legal tender of payment, was a great fource of profit to the cultivators of the foil. They contrived to fell the produce of their farms only to fuch as offered them ready fpecie; while, at the fame time, they paid their rents, where the landford had not emigrated, in affignats, which they obtained at a trifling price. Hence it ufually happened, that while the tenant enjoyed affluence, his miferable landlord was reduced to the neceffity of felling lis moveables to buy a portion of the grain that grew upon his own eltate, or was tempted to fell the eftate itfelf, at an undervalue, to obtain the means of emigration. By thele and other circumftances, the whole induftry of the French nation came to be direeted towards agriculture. Their country was accordingly well cultivated; bnt as the riches of agricultural nations are not eafily fubjected to taxation, the French Directory now found it impoffible to carry on the fchemes of ambition and of conquet, which they had already formed, without relying for refources upon the plunder of the neighbouring ftates, which fpeedily rendered their armies odious in all thofe quarters of Europe to which they penetrated.

Amidft their pleparations for the approaching campaign, the Directory attempted to increafe their own reputation at home, by eftablifhing what is called the National Inflitute; which is a fociety of men of letters, under the protection of the government *. Into this body were collected the molt celebrated literary characters in the nation that had efcaped the fury of the Mountain Party. Among thefe were La Place, Lalande, Fourcroy, Bertholet, Volney, Dolomieu, and others, well known throughout Europe. The firft public meeting of the Inflitute was held, with great fplendour, on the \(4^{\text {th }}\) of April, in the hall of the Louvre, called the Hall of Antiques. The ambaffadors of Spain, Pruffia, Sweden, Denmark, Holland, America, Tufcany, Genoa, and Geneva, were prefent. The members of the Directory attended in their robes, and their prefident made a fpeech of inftallation, declaring the determination of the executive power to protect and encourage literature and the arts. Dufaulx, the prefident of the Intitute, replied, in a fpeech in which he declared the refolution
of the members to labour to give luftre to the republi. can government by their talents and productions. Fif. teen hundred fpectators applauded the fpeeches with enthufiafm, and vainly imagined that all the evils of the revolution were terminated, and that their country was sow entering upon a career of unexampled glory and profperity.

At this period the Britifh government made anovertures approach towards a negociation with France. On the of the Bri8th of March Mr Wickham, the minifter plenipoten-tifh governo tiary to the Swifs Cantons, tranfmitted to Barthe- \({ }^{\text {nent }}\) lemy, ambaffador from the French Republic to the Helvetic body, a note containing three queftions. Whether France would be difpofed to fend minifters to a congrefs to negociate peace with his Britannic Majefty and his allies? Whether France would be difpofed to communicate the gencral grounds on which the would be willing to conclude peace, that his Majetty and his allits might confider them in concert? and, laftly, Whether France would defire to cornmunicate any other mode of accomplifhing a peace? The note concluded with a promife to tranfmit to the Britifh court whatever anfwer fhould be returned; but declared, that Mr Wickham was not anthoriled to euter into any difcuffion upon thefe fubjects.

On the 26th of the fame month Barthelemy return- Infolently ed an antwer in name of the French Directory. 'I'his rejected by anfwer besgan by complaining of infincerity in the pro the Direc pofal made by the Briti:h court, feeing its ambaffador \({ }^{\text {tory }}\) was not authorifed to negociate, and that a congrefs was propofed, which mult render negociation endlefo. It proceeded to ftate the ardent defire of the Directory for peace; but afferted, that it could liften to no pro. pofal for giving up any territery that had been declared by the couftitutional act to form a part of the Kepublic (alluding to the Aultrian Netherlands); declaring, however, that other countries occupied by the French armies, and political or commercial interefts, might become the fubject of negociation. Upon thefe points the Directory declared its readinefs to receive reafonable propofals.

To this anfwer no reply was fent ; but the Britif court publifhed a note, of which copies were prefented to the forcign minifers refiding at London; and in it the fpirit of the Directors antwer was complained of, and alfo the refufal even to negociate about the retertion of foreign territory, under pretence of an internal regulation. It was added, with truth, that while fuch ditpolitions were perfitted in, nothing was left but to profecute a war equally ju? and neceffary ; but that, when nore pacific fentiments Mould be manifetted, his Majetty wouldbe ready to concur with his allies in taking meafures for eftablifhing a juft, honourable, and permanent peace.

The French Directory had fucceeded, during the winter, in reducing the weftern departments into fubjection. The emigrant expedition from England had induced the royalitts once more to try the fortune of war ; but, after various defeats, their leaders, Charette and Stofllet, were taken, and put to death on the 29 th of March, and the infurgents were fuppreffed in all quarters. The French government being thus left without an enemy at home, was enabled to make great efforts on mies. the frontiers. The military force of the Republic was divided into three armics. On the Lower Rhine, the army of the Sambre and Meufe was chiefly ftationed about

\section*{\(R\) E \(V\) [ \(4^{1}\)} ench Duffeldorf and Coblentz, and was commanded by JourA lution, dall. Moreau commanded the army of the Rhine and 7y6. Mofelle, in the room of General Pichegru, who had been difmifled from hiz command. 'This army was fationed on the Upper Rhine, and from Landan to Treves. The third and laft army was ftationed on the coaf of Italy, from Nice towards Genoa, and now received Bonapartc as its conmmander. The name and the actions of this man mult hereafter fill fo large a foace in the detail of this eventful period, that it is neceflary to pay fome attention to his perfonal hiftory.
A Corfican genteman, a lawyer by profeffion, tut who had appeared in arms under the celebrated Paoli in defence of the independence of his native ifland, was the father of Napolone Bonaparte. Napolone was born at Ajaccio in 1767 ; and by the intereft of M. de Marboeuf, the French governor of the ifland, he was placed for his education at the celebrated military academy of France (Ecolc Militaire), which has produced fo many accomplifhed merr. At a very early period of life he prefented himfelf as candidate for a commiffion in the artillery, and was fuccefffut, being the 12 th on the litt out of 36 victorious candidates. In confequence of this event he ferved two or three years in the French army as a lieutenant in the regiment of La Fere. Bonaparte having rifen to the rank of captain of artillery, returned to Corfica after the revolution, and was there elected heutenant-colonel of a corps of Corfican national guards. Here he formed a connection, which had nearly proved fatal to him, with General Paoli, the friend of his father. He refented the treatment which Paoli received from Robefpierre's government, and entered fo far into his interefts as to write the remonfrance, which was tranfmitted by the municipality to the Convention, againft the decree which declared the general an enemy to the Republic. In confequence of this, a warrant was at one time iffued for his arrell by the commiffioners of the Convention. He made his peace, however, on this occafion; and refolved to ad here to the interefts of France, in oppofition to Great Britain, which at this period formed the defign of taking pofeffion of Corfica. He embarked with the other members of his family for France, and arrived there at the time when Lord Hood was in pofeffion of Toulon. Salicetti, a deputy from Corfica to the Convention, introduced him to Barras, who was now fuperintending the fiege of Toulon. Here Bonaparte was advanced to the rank of general of artillery ; and, under Dugommier, directed the attack of the vaitions fortified pofts around the city. He was afterwards employed fur a fhort time againft the royalifts in the weft of France; and we have already montioned, that he was at the capital, and affifted Barras in the conteft between the Convention and the Parilians on the 5 th October. Hence he was regarded with dinike by the moderate party, and reprefented as an unprincipled adventurer, brought forward to fupport the terrorift faction. He had many enemies, therefore, at the commenccment of his career, and his character was treated with much freedom. The fcandal of the times went fo far as to affert, that he owed his prefent preferment, not fo much to any talents he had yet had an opportunity to difplay, as to his marriage with Madame Beaucharnois, a beautiful French wonan whom Barras had taken under his protection.

The French army E V
The French army of Italy amounted at this time to French 56,000 men. Bonaparte at his arrival found it ill Revolution, equipped, and the troops mutinous for want of pay and neceffaries. He addreffed them, however, in the trne 259 Ayle of military enterprife, "If we are to be vanquifh- Takes the ed, we have already too much; and if we conquer, we cummand thall want nothing;" and ordered them to preoare for of the army immediate action. His opponents, however, anticipated him in the attack. The Auffians employed in the defence of Italy, under General Beanlieu, are faid to have more than equalled the French in numbers. To thefe were united the King of Sardinia's army, under Count Colli, of \(60,0=0\) reguiar troops, befides the militia of the country, which was now embodied, and a imall body of Neapolitan cavalry, amounting to abont 2500 men. General Beaulieu began the campaign, on the \(9^{\text {th }}\) of April, by attacking a poft called Ioltri, which the French poffefied, within fis leagues of Geno.. They defended themfelves till the evening, and thin retreated to Savoua. Next morning Beanlieu, at the inead of 15,000 men, preffing upon the centre of the French army, was completcly fucceifful till one o'clock afternoon, when he reached a iedoubt at Miontenotte, which was the laft of their entrenchmerts. This redoubt contaised 1500 French. Their commander, Rampon, prevailed with them, in a moment of enthnfiafm, to fwear that they woild not furrender; and the confequence was, that they arrefled the progrefs of Beaulieu for the remainder of the day. During the night, Bonaparte flationed his right wing under La Harpe, a Swifs exile, in the rear of the redoubt of Montenotte, which fill held our, while he himfalf, with Maffena, Berthier, and Salicetti, advanced by Attara, to take the Auftrians on their flank and rear. Bealrlieu, in the mean time, had received powerful reinforcements, and on the morning of the 1 ith rencwed the attack on the French under La Harpe; but Mafena foon advancing upon the flank of the Auftrians and Sardinians, they gave way on all fides. Two of their re. 260 Sardinians, they gave way on all fides. Two of their tee His fucceés
nerals, Roccavina and Argentau, were wounded. They es. loft 2500 prifoners, and were purfued beyond Cai:o, of which the French took poffffion on the following day.
On the \(13^{\text {th }}\) at day-break, the defiles of Milicfiuno were forced by the l'rench Gencral. Augereau; and, by a fudden movement, General Provera, a knight of the order of Mari? Therefa, at the head of 1500 A b.ftrian grenadiers, was furrounded; a circumftance which proved not a little embarraffing to the French arny. For this refilute officer, inftead of furrendering, inflantly withdrew to a ruined caftle on the top of the mountain, and there entrenclicd himfelf. Augerean brought up his artilkery, and fipent many hours in attempting to diflodge him. At latt he divided his troops into four columus, and endeavoured to carry Provera's entrenclimenta by form. 'The French loft two generals, Banel and Quenin, and Joubert was wounded in this attempt, which proved unfucceffful. Provera paffed the night in the midat of the French army, which had been prevented by his obflinate relittance from coming to battle. On the 14 th the hoitile armies faced each other, but a divifion of the French troops was fil! occupied in blockading General Provera. The Auftrians attempted to force the contre of the French, but without fuccefs. Maffena, in the mean time, turned the left flank of their left wing near the village

\section*{R E V}

\section*{R E V}

French village of Dego; while La Harpe, with his divifion in 'Rev, uions, three clofe columns, turned the right flank of the fame \({ }^{1790}\).
-
wing. One column kept in awe the centre of the Auftrians, a fecond attacked the flark of their left wing, while the third column gained its rear. Thus was the left wing of the combined army completely fu:rounded and thrown irto confution. Eight thoufand men were, on this occafion, taken prifoners, and General Provera at laft alfo furrentered.
Thefe victorics were not gained over a tiraid or an inactive adverfary. On the morning after his fatal de. fcat at Millcfino, Beaulicu made one of thofe fpirited efforts which often retrieve and giter the fortune of war At the head of 7000 chofen Auftrian troops he attacked, at day-break, the village of Dego, where the French repofed in fecurity after their fuccefs. He took the village; but the French having rallied under General Maffena, fpent the greater part of the day in attempting to retake it. They were thrice repulfed, and one of their generals, Cauffe, was killed. Towards evening, however, Bonaparte in perfon having brought \(u p\) reinforcements, the poft was retaken, and the Authians retired with the lofs of 1400 made prifoners.

Bonaparte had now thrown himfelf between the Auftrian and Sardinian armies. By the poffeffion of the ftrong poot of Dego, his right was fecured agaiut the efforts of Beaulieu, while he was enabled to act with the mafs of his force againft the Piedmontefe troops. His enterprifes in this quarter were facilitated by the esertions of Augerean, who had opened a communicition with the valley of the Tanaro, where Serruriet's divifion was approzching the town of Ceva, near which the Piedmontefe had an entreriched camp defended by 8000 men.
On the 16 th Augereau attacked the redoubts which covered this camp, and rook moft of them ; which induced the Piedmontefe to evacuate it during the night, and on the 17th Ceva was entered by Serrurier. Count Colli now retreated to cover Turin; making choice, Chowever, of the frongeft pofts, and fighting in them all. He was able, on the 2cth, to repulfe Serrurier; but on the 22d Bonaparte, ftill preffing on the Piedmontefe general, defeated him near Mondovi, and entered that place. The retreating army next en:deavoured to make a ftand, with its head quarters at Foffano, and its wings at Coni and Cherafco. On the 25 th Maffena advanced againf Cherafco, which was fpeedily evacuated. Foffano furrendered to Serrurier, and Alba to Augereau.

Previons to thefe laft movements, however, Count Colli, on the 23 d of April, had written to Bonaparte, requeting an armiltice, to allow the King of Sarcinia an opportunity of negociating a peace. The French army was now within 26 miles of Turin; and that prince faw himfelf fuddenly reduced to the neceffity of flanding a liege in his capital, or of accepting fuch terms as the conqueror might think fit to impofe. Bonaparte granted an armiftice, on condidion that the thrce furtreffes of Coni, Ceva, and Tortona, flould be delivered up to him, with their artillery and magazines, and that he fhould be allowed to crofs the Po at Valentia. The armiltice was figned on the \(20 t h\), and it was followed by a formal treaty with the French Re. public, which was concluded at Paris on the 17 h of May. The conditions impofed by this treaty upon
the King of Sardiuia were humiliating and fevere. He French gave up to France for ever the duchy of Savoy, and Revolutiny the counties of Nice, Jenda, and Bretneil. He gave \(\underbrace{\text { 1; } \% 6 .}\) an amuefly to all his fubjects that wese profecuted for political opinions. He agreed that the French troops floould have free accefo to Italy through his teritory; and, in addition to the fortreffes furrendered by the armiffice, he gave up tho'e of Exiles, Sufa, Brunette, Af. fiste, Chateau Dauphin, and A lexandria, to be pofferfid by the French during the war; and they were authorifed to levy milicary contributions in the territory occupied by them. He agreed to erect no fortreffes on the fide of France, to demolifh the fortiefies of Brunette ard Sula, and to difavow his difrefpectful conduct towards the lalt French ambaffador.
In the mean time the French army advanced towards the Po Beaulieu was deceived by the article in the armiftice; which Aipulated, that the French fhould be allowed to crofs that river at Valentia, and made all his preparations for refiflance in that quarter. Bona. parte laboured, by feveral evolutions, to confirm this error ; and while the Auftrian general waited for him near Valentia, in varions well fortified pofitions, he ad--vanced haftily into Lombardy, and had proceeded fixty miles down the rive: to Placentia, wheie he arrived on the \(7^{\text {th }}\) of Miay, before the direction of his march was dif. covered. He immediately fcized whatever boats or other craft he could find, and effected his paffage without difficulty, there being only a fmall party of Aufutian cavalry accidentally on the oppofite bank, and they fled at his approach. Beaulien in the meanwhile had fent, when too late, a body of \(6 c 00\) infentry and 2000 cavalry, to prevent if poffible the Fiench from peffing the river; but Bonaparte, now on the fame fide of the river with themfelves, met and defeated them on the 8th at the village of Fombio. Another body of 5000 Imperialifs, advancing to the affiftance of thofe at with the Fombio, was met at Codogno, and repulfed by General Dake of La Harpe ; but this officer was killed on the occafion. Parma. On the oth Bouaparte granted an armiftice to the Duke of Parma, on condition of his paying a contribution of \(2,000,000\) of Erench money, and delivering 10,000 quintals of wheat, 5,000 quintals of cate, and 2,000 oxen, for the ufe of the army. This prince alfo agreed to deliver up 20 of his beft paintings, to be cholen by the French. This laft ftipulation was no fooner known in: France, than many men of letters and artifts remonftrated againft it as both impolitic and ufelefs. They contended, that it would render the French Republic odious to all Italy, without producing any advantage to compenfate this evil, as the progrefs of the arts could not be promoted by removiing their beft productions from the feenes in which they originated. But the Directory was too much occupied by views of national aggrandifement to litlen to contiderations of this kind, and fimilar flipulations were ordered to be inferted in every future treaty; by which means the mult valuable curiofities of Italy were gradually transferied to the Fiench capital.

Beallien, now driven from the Po, croffed the Adda at Lodi, Pizzighitone, and Cremona. He left fome treops, however, to defend the approaches to Lodi. The advanced guard of the French attacked theie on the reth, and doove them into the town ; which was entered in fuch clofe purfuis, that the Imperialifte, on ka.
ving it, had not leifure to break down the britge over 'the Adda. At the other end of the bridge the Imperial army was drawn up, and thirty pieces of cannon defended the paffage. The French generals, after a confultation, agreed that it could not be forced. But Bonaparte having demanded of his grenadiers if they were willing to make the attempt, they applauded the propofal, and he formed them into a clofe column. Taking advantage of a cloud of fmoke which iffued from the holtite artillery, they rufhed along the bridge, which was about 100 yards in length, and were at the midtle of it before they were difcovered. Here a general difcharge from the Auffrians deftroyed 700 men. The French column hefitated, and the carnage became terrible; but Maffena, Berthier, Dallemagne, Cervoni, Lafnefs, Dupat, and other officers, Aying to the head of the column, urged on the foldiers; and preffing furward, broke into the ranks of the Imperial army, which immediately gave way, and fled in all direetions. This exploit has been much celebrated. The intrepidity of the troops by whom it was accomplifhed is unqueftionable ; but kinw far the leader who urged them to fuch an enterprife is cutitled to approbation may well be doubted. He had paffed the Po with fearcely the lofs of a marr. The Adda is a very inferior ftream, which has fords botll above and below the town of Lodi. The river was actually croffed at one of thefe by Augereau with the cavary, during the attack upon the bridge. With the delay of one day therefore the paffage might have been effected without difficulty by the whole army, and there was no adequate motive to julify the lavih expenditure of blood which was here made; for the French array no longer prefied forward in purfuit of Beaulieu, but, after the furrender of Pizzighitone and Cremona on the 12 th, returned upon Pavia and Milan on its left ( \(s\) ). Thefe places opened their,gites without reliflance, though the citadel of Milan beld out for a floort time.
It would feen that, in the original plan of Bonav parte's campaign, the utmoft expected from his efforts was to gain fuch an afcendancy in Italy as might induce the princes and flates of that country to defert the coalition againf France, which all of them affifted with moncy and provifions, if not with troops. To accomplifh this object, though he fent Maffena in purfuit of Beaulien as far as Verona, yet he hinfelf now turned afide into Modena and the territories of the lope. He took Ferrara, Bologna, and Uibino ; and at laft granted an armiftice to his holiuefs and the Duke of Modena, on the ufual conditions of large contributions of money, paintings, and curiofities. From the Pope he farther exacted the ceffion of the legatious of Jologna and Ferrara, and poffeftion of the citadel of Ancona. His m?rch into the Roman territory fo alarm. ed the Neapolitan cabinet, that it now folicited peace; and Bonaparte granted an armiftice, without attcapting to add to it the humiliating conditions to which the other Italian ftates were fu'jected. From the territories of the Pope, Bonaparte haftily advanced with a body of troops to Leghorn, in the nentral flate of Tur. cany, under pretence of driving out the Einglifh, whofe
property there he confifcated. By thefe meafures the tafk affigned to Bonaparte was completed by the time \({ }^{\text {R }}\) the campaign upon the Rhine was begun. Mantua was Aill indeed in the hands of the Imperialifts, but it was bluckaded, and all Italy was now fubinifive to France.

To diminith, if poffible, the efforts of the French on the fide of Italy, the Imperialifts thonght it neceflary to renew the conteft in Germeny. An intimation was therefore fuit to Gencral Jourdan, that the armintice would terminate and hotilities co:nmence on the 3 ift of May. At this time General Wartenfleben oppofed Jourdan ; and the Archduke Charles commanded the army in the Fiundfruck, which covered Mentz and Manheim, and was fationed againft Moresu on the Upper Rhine. 'The French began their operations with a very artful flatarcem, intended to draw the whole Auftian force to the Lower Rhine, that Moreau might: have an opportunity of fuddenly penetrating into Swabia, and confequently of carrying the war towards the hereditary territories of Aultria. For this purpofe Moreau remained quiet, while Jourdan began to act vigoroufly. Oa the 3 ift of May his left wing, under Kleber, iffued from the lines of Duffeldorf, on the right bank of the Rhine, and, advancing towards the Sieg, defeated the Imperialifs. Thereafter they were driven fucceffively fiom the ftrong -pofitions of Ukareth and Alterikirchen, and retreated acrofs the Lahn. Jourdan, in the mean time, having advanced with his centre and right wing, forced the Auftrian pols on the Nahe, croffed the Rhine, formed the blockade of the fortrefz of Ebrenbreitftin, and haftened forward as if about to form the blockade or fiege of Mentz. By thefe movements the Archduke found himfelf in the hazardous fituation of having Moreau in his front, while Jourdan, with a victorious army, commanded his rear. He therefore haftily crofed the river, leaving the fortreffes of Mientz and Manheim to keep Moreau in check. Having joined the retreating army, he encountered Jourdan's advanced guard, which he compelied to retire af. ter an oblinate contlic. Jourdan did not hazard a general engagement, but withdrew to his former pofitione, the Archduke preffirg hald upon him, till he raifed the blockade of Ehrenbreirftein, and croffed the Rhine in its neighbourhood, till Kibber, on the 20th of June, entered the lines of Duffeldorf, from which he had fet out.

Thefe movements were forefeen. For the inftant that the Archduke withdrew from the Palatinate to dive Jourdan down the Rhine, Moreau afcended rapidly towards Stıafurg; fo that thefe hot le armies feemed to be flying from each other with all polfible \{peed. On the 24 th of June, Moreau cffecied the paffage of the river oppofite to fort Kehl. This wias an enterprife of confiderable difficulty; for a fudden fwell, by covering a part of the iflands with which the river abounds, had prevented the Auftrians from being taken by furprife, as was originally intended. The entrenchments on fuch iflands as were occupied by troops were fpeedily carried by the bayonet, and 2600 French landed on the oppolite fhore, but without cavalry or artillery. Here they were expofed to the attacks of the Aufrian
(A) We think this conduct cannot be accounted for, but by the fuppofition of a very improper correfpondenee between Bonaparte and the Auftrian officers.

\section*{R E V [ \(\left.4: 6^{\circ}\right] \quad\) R E V}

French Auftrian horfe from the camp of Willest, and to the Revolution, fire of the cammon of the fort. They maintained their 1796.
ground, however, and even acted on the offentive, till
the boats, which had been fent back, returned with a reinforcement. "The whole redoubts and the fort were then inftantly taken by form, or with the affifance of fuch cannon as had been found in the firft redoubts at which the French arrived, and the Impcrialifts fled towards Offenburgh.

The departure of the Archduke to the Lower Rhine in purfuit of Jourdan, and the large detachments which had recently been fent towards Italy to oppofe Ponaparte, now enabled Moreau to enter Swabia with a great fuperiority of force. 'Ihe ftrong military pofitions, however, which the country affords, prefented to him confiderable difficulties. On the 20 th of June he drove the Auftrians from their camp of Wilttedt ; and on the 27 th lie advanced with his army, in three columns, againt another camp of 15,000 men in front of Offenburg. General Wurmfer fent a ftrong reinforcement from Manheim to the affifance of thefe troops; but having encountered two of the French columns on its way, the reinforcement was defeated, and the camp at Offenburg was evacuated during the night. The Auftrians made an obftinate fand at Renchen. near Philipfourg, on the 29 th, but were at laft compelled to retire with the lofs of 1200 men taken prioners, and feveral pieces of cannon. On the \(2 d\) of July a divifion of the French army, under Ceneral Laroche, fucceeded in feizing the mountain Knubis, which is the higheit point of the ridge of mountains called the Black Foreft. On the 3 d, after an obftinate confict, the Auftrians were driven from the pafs of Friedenftadt; in confcquence of which they loft all communication with the emigrant troops under the Prince of Condé, and other Imperial troops fationed on the Rhine towards Switzerland. On the 6th, the left wing of the French, under Defaix, encountered the Imperialifts at Raftadt, where the Auftrians, who had received fome reinforcements from the Lower Rhine, made a very detcrmined refiRance; but werc at laft compelled to give way, and to retire to Ettingen.

The Archduke Charles now arrived in perfon with his army from the Lower Rhine, where he had left Wartenfleben, but with inferior force, to oppofe Jour. dan. The French, under this general, had inftantly refumed the offenfive upori the departure of the Archluke. Kleber advanced from the lines of Duffeldorf, as formerly ; while the centre and right wing croffed the Rhine near Coblentz. The putts of Ukareth and Altenkirchen werc forced, and on the 9 th of July the whole of Jourdan's army croffed the Lahn. On the roth, Wartenfleben was defeated near this river, after great ीlanghter on both fides, with the lofs of 500 prifoners; and the French on the 12 th entered Franckfort. 'I'he fituation of the hoftile armies was now become extremcly important. The two Imperial armies were at no great diftance from each other, and were placed in the centre betweeli the armicy of Moreau and Jourdan. Couid the Archduke, who was commander in chief, have refifted one of thefe armies for a fhort time, at any frong pofition, by a detachment of his troops, while he precipitated himfelf with the mals of his force upon the other, it is probable that any farther invafion of Germany might have been prevented. But the activity of
the French generals, whofe progrels could nowhere be French refilted by partial efforts, prevented the polfibility of Revolution executing fuch a plan. He was therefore under the neceffity of making his final exertion for the prefent fafety of Germany againft Moreau at Ettingen, on the gth of July, without having formed any junction with Wartenfleben. 'The battle was moft obftinately fought. The French were four times repulfed in their attenpts to force the heights of Rollenfolhc; and it was not till they liad experienced a dreadful flaughter that they at laft carried the field by the bayonet.

The lofs of the battle of Ettingen compelled the two Imperial armies to retire eaftward. After placing firong garrifons in Mentz, Manheim, and Philipfourg, the Archduke retreated through Swabia towards Ulm, where his magazines weve placed. At every flrong pofition, lowever, lie made an obftinate Atand ; thus endeavouring to render the progrefo of the French under Moreau as tardy as poffible. Wartenficben, with the other Imperial amy, retired throngh Franconia, refifting Jourdan in the fame manner. Many bloody battles were fought, of which it is here unneceffary to give a minute defeription. It is fufficient to remark, that the French were long fuccefsful in them all. They gradually preffed forward till Moreau's army compelled the Archduke to crofs the Neckar, and afterwards the Danube, leaving the whole circle of Swabia in the rear of the French. Wartenfleben was in like manner driven through Afchaffenburg, Wurtzburg, Schweinfurt, and found it neceffary to crofs the Reduitz, on the 6 th of Augult, at Bamberg, to avoid the preffure of Jourdan's army in his rear. 'This army continued to advance till its right wing, under Bernadotte, was pofted at Neu. marck, with his advanced pofts at T'eining, while the body of the army had driven Wartenfleben beyond the Nab , and liad reached Amberg on the 22 d of Auguft.

Excepting a part of the mountains of 'Tyrol, three French armies, under Jourdan, Moreau, and Bonaparte, now occupied the whole country reaching from the frontiers of Bohemia to the Adriatic Sea. The alarm throughout Germany was extreme. The Duke of Wirtemberg obtained peace from the French on condition of paying 4,000,000 of French money. The circle of Swabia did the famc, on engasing to pay \(12,000,000\) of livres, and to deliver 8,400 horfes, 5,000 oxem, 100,000 quintals of wheat, 50,000 quintals of rye, 100,000 facks of oats, ro0,000 pairs of fhoes, and a large quantity of hay. 'I'he Margrave of Baden obtained peace on fimilar terms. The elector of Bavaria and the circle of Franconia negociated, and offered large payments; and even the diet of Ratilbon fent a deputation to treat with the French generals for neutrality. The King of Pruffia now entered into a new treaty with the Prench; the conditions of which were concealed, but its nature appeared in the advantage which he took of the progrefs of their arms to take poffeffion of certain territories in Germany, and particularly of the fuburbs of Nuremberg, under pretence of fome antiquated title. Spain alfo entered into a treaty offenfive and defenfive with France, which was afterwards followed up by a declaration of war againft Britain.

The danger of the houfe of Auftria was now very Danger great ; and had Bonaparte, inftead of being detained in the Italy, by events of which we fhall immediately take ro-
ench tice，been able to crofs the Tyrol by Infprnck，and to
＇The Archduke，having receive？powerful reinforce． ments，refolved to make a ftand，on the tith of Au－ guft，againlt Moreatr at Umenhein．A fevere battle was fought during feventeen hours，and one of the wings of the Auftrian army，under General Riefe，even fucceeded in nccupying four leagues of territory in the rear of the French army；but the Archduke having re－ ceived intelligence，in the mean time，that Wartenfe． ben could not maintain his ground againft Jourdan，he thought it neceffary to continue his retreat，and to adopt new meafures．On the 17 th of A ugu？t he left Ge－ neral La T＇our，with a part of his numerous army，to op－ pofe Moreau，and having croffed the Danube at Neuburg and Ingolttadt，he marched to Wartenfleben＇s affifance to fall upon Jourdan with united forces．On the 23 d he attacked Bernadotte at Teining，and forced him to retire towards Nuremberg．The Archduke was thus upon the right of Jourdan，while Wartenfleben was tta． tioned on his front．The French general，finding his pofition dangerous，began to retreat on the 24 th．From the ftate of the financer，the French armies，at the com－ mencement of this campaign，had been extremely ill equipped and ill paid．Hence the two armies of Mo－ reau and Jourdan plundered，withont decency or mercy， every place into which they entered．In Jourdan＇s army，more efpecially，the want of difcipline was ex－ treme（A）．Hence，when they began to retreat，load－ ed as they were with fpoil，they fuffered not lefs from the enraged inhabitants of the countries through which they paffed，than from the military efforts of the hottile army．The Archduke having joined Wartenीeben，was enabled to fend off Nauendorf with reinforcements to La Tontr，who oppofed Moreau，and，in the mean time， he continued in perfon to purfue Jourdan towards Wurtzburg．Here the French made a fand，on the 3 d of September，and a general engagement took place．

Suppl．Vol．II．Part II． that the Emperor mutt have fubmitted to fuch condi－ tions as the French thought fit to impofe．Deferted in all quarters by the members of the coalition，he fill， however，setained an ally in Great Britain，whofe riches， liberally beftowed in the form of a loan，extricated him from the prefent difficulties．Having the command of abundance of money，he was enabled to fend one army after another to oppofe Bonaparte in It I l ，while he recruited his armies in Germany by extenfive levies，and by taking into his pay the troops of thofe flates that made peace with France．

Woth parties fuffered great lofs，but more efpecialiy the French，who retreated during the night．Jourdan now fled by Fuldaw to Wetzlaer．Having croffed the Lahn，where he made fome refiftance，he defcended along the banks of the Rhine，till his army，on the I7th， reached Coblentz and Duffeldorf，from which it had originally departed． ． Many attacks were made upon lim，but all of then without fuccefs ；and the Imperial generals at laft gave way to him wherever he turned．Findiug at laft that Jourdan＇s defeat was irretrievable，and that Bonaparte did not arrive from Italy，he refolved to retreat．He had recroffed the Lech，to prepare for this event ；but now fuddenly paffing it again，as if determined to ad－ vance fa：ther into Auftria，he drove back General La ＇Four as far as Laudfperg．Having thas obtained free－FTi＊fk lful dom for his future movements，he fet out in full retreat，rerreat． proceeding between the Danube at Ulm and the lake of Conftance．La T＇our，however，foon preffed upon his rear．IIe found the paffes of the Black loore？oc． cupied by large bodies of Auftrians and armed peafants， while Generals Nauendorf and Petrarfch haraffed his right flank with 24,000 men．Once more therefore he turned upon La Tour，at Biberach，on the \(3 d\) of October，with great impetuofity，and having deteated him，took no lefs than 5000 prifoners；whon he was able to carry to France．He now continued his re． treat ；his right wing，under General Defaix，keeping Nauendorf and Petrarfch in check，while the reft of the army cleared the paffages in front till he arsived at what is called the Valley of Hell（Val d＇Enfer），a nar－ row defile，running for fome leagnes between lofty mountains，and in fome places only a few fathoms in breadth．＇The centre of his army，advancing in a mafs，forced this paffage，while the wings refifted the Imperial troops under La Tour and Nanendorf．Af－ ter this defperate effort he reached Fribourg on the I 3 th of October，and was foon compelled by the Archduke Chales，who had now arrived fron the purfuit of Jourdan，to evacuate all his pofitious on the Swabian lide of the Rline，with the exception of Kehl，and a temporary fortification erected at Huningen，called a 3 G bridge－
（A）It would be improper to interrupt our military detail with the following information refpecting the mo－ rals of Jourdan＇s army at this time；which，however，it is of importance for our readers to know．We have it from a German Count，who faw with his own eyes a confiderable extent of the march and countermarch of the French through Franconia．

Almoft every officer in Jourdan＇s army had a miftrefs；and fuch of them as by plunder could fupport the ex－ pence，gave balls，acted plays，and exhibited every fpecies of gaiety when the army was not in aftual motion． In all this there was nothing wonderful．The ladies，however，were not unfrequently pregnant；and as nurfmg would keep them from thefe affemblies，where their company could not be difpenfed with by the folliers of li－ berty，they drowned their new－born infants－they drowned them publicly！Our correfpondent（the Count）faw two of the little victims，and he heard，from unqueftionable authority，of feveral more．At a place within fix miles of Nuremberg，a Pruffian parifh－minitter，who was alfo a fort of jufice，endeavoured to fave one innocent， and was thrown into the river and fired at by the French，when his parifhioners endeavoured to fave him．He had the happinefs，however，to fave the child，and was allowed to keep it，the mother never enquiring after it！

\section*{R E V}

French bridge-head (tete de pont), though there was no bridge Revelution, at that place.
1796. The Imperial troops, in the mean time, had taken advantage of the defencelefs flate of the French frontier to crofo the Rhine at Manheim, and to advance in various detachments to Weiffemburg, Seltz, Hagenau, and alinott to the gates of Stratburg, levying contributions and taking holtages wherever they came. Thefe detaclıments being now recalled, the Archduke refolved to terminate the campaign by the capture of Kehl, and of the fortification at Huningen. But this proved no eafy talk. As the communication with the French fide of the river was open at both places, the divifions of Moreau's army did duty at them by turns. A great part of the winter was fpent in fruilefs attempts, on the part of the Autrians, fometimes to take them by Itorm, and fometimes to reduce them by the forms of regular fiege. Different fallies were made by the French, and immenfe numbers of men were loft on both fides by the fword, and by the feverity of the feafon. It was not till the roth of January that the French agreed to evacuate Kehl, and the fortification at Huningen was not given up till the fucceeding month.

During the invafion of Germany that has been now mentioned, and the reverfes that were fuffered by the French armies there, Bonaparte fill continued to gain victories in Italy. The fuccefs and the wonderful forcune of this man, require that we fhould give fome account of the arts by which he was enabled, fo unexRefleations commanders of the age in which he lived. In the mion the dif- litary art three orders of battle, or forms of drawing
ferent orferent or- up an arny, have been chiefly adopted by thofe nations cers of battle. whofe force has principally confifted of foot foldiers. The firft form or moce confilts of arranging the troops in a deep line ; that is, with from 16 to 30 men placed clofe behind each cther. This is the molt anciert and the fimpleft order of battle. It was carritd to perfection by the Greeks, under the name of the Pbalanx; and, when the foldiers were armed with the long fpear, it was extremely formidable. It left little to the fkill of the general, except the choice of the ground where he was to fight, and made all to depend upon the feadinefs of the troop:. It was attended with thefe difadvantages, however, that an army thus drawn up commanded very little territory, and that if its ranks hap. pened to be broken by unequal ground, or an uncommon effort of the enemy at a particular quarter, its parts could not eafly be re-united, and it infallibly went into confulion. In modern times, this order of battle cannot be adopted with fuccefs on account of the facility with which it is broken by artillery, and the flaughter to which it expofes the troops from every kind of fire arms. The fecond, or modern order of battle, confifts in forming a front of an immenfe extent, with only two or three men in depth, and ufually fupporting thefe by another, and perhaps a third equally ीender line, at a confiderable ditance in the rear. Troops thus drawn up derive the greatelt poffible benefit from their own fire arms, and fuffer the lealt lofs from thofe of the enemy. They provide for their own fubfittence by covering an immenfe track of country. Their battles are not fanguinary, as they are feldom very clofely engaged ; and in cafe of a defeat, little lofs is fuffered, becaufe they can fcatter themfelyes over a wide fpace, as the rear pro-
tects the advanced body; and as the troops in a long French line can feldom all be engaged at once, they are fup- Revolution ported by each other in a retreat. This order of battle, however, is eafily broken; and the moment the flank of an army is turned, it is under the neceflity of retreating, as troops cannot fpeedily be brought from other quarters to face the eneny there. The laft order of battle confifts of cividing an army into columns of a narrow front and very great depth, and of ftationing the columns at fome diftance from each other, with a fecond fet of columns oppofite to the intervals between the firf. This arrangement is fuperior to the phalanx, in this refpect, that it does not expofe an army to dif. order by inequalities of ground, by the turning of its flank, or even by the defeat of one of its parts. The celebrated Epaninondas won the battles of Leuctra and Mantinea, by forming a part of his troops, on each of thefe occafions, into a ttrong column, which, by ita great depth, and the mechanical weight of its fhock, broke through the Spartan phalanx. I'he Romans are known to have owed their military fuccefs, in a great meafure, to the arrangement of their legion. It was drawn up upon the principle now nientioned; and tho' the columns were only 16 men in depth, it was confeffedly fuperior to the phalanx. In modern times, however, this order of battle is attended with great difficulties. It mult reduce an army to embarraffment with regard to provifions from the fmallnefs of territory which is thus occupied, and it expofes the troops in an engagement to dreadful deftruction from the powerful miffile weapons which are now employed. In every enterprife they mult inftantly carry their point or be undone, as the fire of a few guns from a fingle battery or redoubt would exterminate them by thoufands. With all its imperfections, however, this laft order of battle has at times been employed by enterprifing men. It was the favourite arrargement of Gultavus Adolphus; and his troops were drawn according to it at the battle of Lutzen, where he himfelf was killed, while his army was victorious. The celcbrated Marquis of The ortes Muntrofe aifo uled it on more than one occalion, and at ped by it was now adopted in all impo:tant cafes by Bonaparte. T'ruting to its fuccef3, he pufhed his coiumns into the inidtt of the Auffrian army at Millefimo, and fairly captured one of its wings. He ventured farther to throw himfelf iuto the centre, between the Auftrian and Sardi. rian armies, and to wanquilh the one, by acting againt it with his whole troops while feparated from the other. Being carelefs about the ihedding of blood, he never hefitated to expofe his whole army to utter ruin in cafe of a failure. The fuccefs of his battles, by enabling him to lay almoft all ltaly under contribution, gave him the means of maintaining the moit fteady and fevere difcipline over a well paid army. Filled with high notions of military glory, which he is faid to have derived from the writings of Plutarch, he laboured to infla:ne, with the fame firit, the minds of his foldiers by proclama. tions, expreffed in a very different fyle from the formal and more modet language of modern rimes. "Soldiers (faid he, when he firt entered Lombardy), you have rufhed like a torrent from the fummit of the Appenines, you have driven back and difperfed all who oppoled your march. Your fathers, your inothers, your wives, your fifters, your fweethearts, rejoice is your fuccefs, and boat with pride of being related to youl.

But remains there nothing more for you to effect? Shall

Lombardy? But I already fee you runfing to arms; an unmanly repofe fatignes you, and the days loft to glory are loft to your felicity. But let the people be tranquil ; we are the friends of all nations, and more particulally of the defcendants of the Brutufes, the Scipios, and the illuftrious perfonages whom we have chofen as models. To reftore the Capitol, to replace with honour the flatues of the herocs who rendered it renowned, and to roufe the Roman people, become torpid by fo many ages of flavery, fuch will be the fruit of your victories; they will form an epoch to pofterity, and you will have the immortal glory of renovating the faireft portion of Europe. The French nation, free and refpected by all the world, will give to Europe a glorious peace. You will then return to your homes and your fellow-citizens; who, when pointing to you, will fay, hie was of the army of Italy."

At the commencement of the French invalion of Germany, Marfhal Wurmfer was fent into Italy to replace Beaulieu, who was removed from his command. On his arrival, he collected the wrecks of the Auftrian army, and prepared, till he fhould receive re-inforcements, to confine the French within as narrow limits as poffible, by lines drawn from the lake of Garda to the river A dige. At the end of June, however, thefe lines were attacked and carried by Maffena's divifion, which induced Wurmfer to avoid farther exertion till he flould receive an increafe of force. In the mean time Bonaparte was not a little difturbed by partial infurrections of the Italians. Soon after his arrival in Lombardy, the inhabitants of Milan and of Pavia had rifen in concert againft his troops; but they were reduced to fubjeeion with little bloodfhed. In the beginning of July, farther infurrections broke out in the Komagna. The infurgents eftablifhed their head quarters at Lugo, and repulfed a party of 1 rench cavalry that was fent againtt them. It was not till Augereau had overcome them, on the 6 th, in a battle in which he lof 200 men , that they could be fubdued. The flaughter of thefe unhappy people was very great. Their town was given up to pillage, and all found in arms were deftroyed.

The firft part of the month of July was fpent by Bo. naparte in commencing the fiege of Mantua in regular form; and towards the clofe of that month he expected its capture. In this, however, he had ill calculated the immenfe military efforts which Auftria, aided by the money of Britain, was capable of making. Twenty thoufand troops had been fer.t from the Rhinc, and other reinforcements wcre marching towards Italy from all quarters; fo that Bonaparte, inftead of being able to take Mantua, had fpeedily to defend himfelf againft the force of a fuperior army to his own, that approached to raife the fiege, and even threatened to drive hin out of Italy. Wurmfer's army defcended from the 'Tyrol in two divifions. One half of it proceeded along the caft fide of the lake of Garda, and the other came by the weft to cur off the retreat of the French, who were thus enclofed by the Auftrians. On the 29th of July, at three o'clock in the morning, Maffena was driven from the flrong poft of La Corona, on the eaft of the lake, while, at the fame time, 15,000 Auftrians drove the French from Salo, and afterwards took Brefcia, with all the magazines and hofpitals of Bonaparte's arny.

There was a fatal error, however, in the general plan of operations that had been formed by the Imperialitts. Their army united was an overmatch for the French; but they had voluntarily divided it into two parts, placing IJonafarte between them. The error was inftantly difcerned, and taken advantage of by their anta. gonit. On the night of the \(30 t h\), he fuddenly raifed the fiege of Mantua, and leaving a fmall body of troops to keep in check the Imperialits on that fide, he marched rapidly weftward, and on the firft of Auguft retook Brefcia, with the magazines and hofpitals. Having the mafs of his army united, Bonaparte furpaffed his antargonits in numbers wherever he encountered them. He prepared to attack the Imperialits on the 3 d at Salo, Lonado, and Caftiglione, but was anticipated by them. Having formed a large body of his troops into clofe columns, the Auftrians, whe were not yet aware of the na. ture of his mode of fighting, extended their line to furround them; a movement which enabled the columns to penetrate the Imperial army in all directions, and throw 2,78 penetrate the Imperial army in all directions, and throw He is dee
it into compleat diforder. The French took 4000 pri- feated. foners, and 20 pieces of cannon. 'The Imperial troops were here fo completely defeated, that a confiderable divifion of them having in vain attempted to retreat by Salo, which they found occupied by the Frencl, wandered about in fearch of a road by which to efcape; and having next day come to Lonado, they fummoned it to furrender, upon the fuppofition that the greater part of the French army had gone eaftward 10 encounter Wurmfer. 'This was actually the cafe; but it fo hap. pened, that Bonaparte was in perfon at Lonado with only 1200 men. He was fufficiently perplexed by this accident; but having ordered the meflenger to be brought into his prefence, he threatened to deftroy the whole divifion for having dared to infult the Frerch army, by fummoning its commander in chicf to furrender. The ftratagem was fuccefffnl. 'The Imperial officers imagined that the whole army was in the place, and immediately, with their troops, laid down their arms, to the number of 4050 men.

Such is the account of this tranfaction, which we have from the partial pen of the panegyrift of Bona. parte, who writes the hiftory of his campaigns in Italy; but we believe that the General has himfelf affigned the true reafon of his fuccefs on this occafion, and others, where fuccefs could not be reafonably expected. In one of his intercepted letters, 13 onaparte informs his correfpondent, that the Auffrian armies in Italy coft him more money than his own ; and indeed it is not within the conpafs of fuppofition, that a body of veteran foldiers could have becn intimidated to lay down their arms by fo vain-glorious a threat as this, had not their officers been corrupted by French gold and French principles. The ftratagem might have its effect upon the common foldiers, but it could not pullibly impofe upon their leaders, or upon the meffenger who fmmmoned Lonado to furrender.

On the 5 th and 6th, Bonaparte attacked Marfhal Wurmicr, and drove him from I'efchiera and the river Mincio. On the 7 th, the Aufrians were compelled to quit Verona, and to retirc once more to the mountains of 'I'yrol. This conteft, which had lafted more than fix days, coft the Imperialits more than 20,000 men, upwards of 15,000 of whon were made prifoncrs. A part of the Emperor's troops had been levied in Gal.

French licia, the part of Poland which, in the partition of that Revolution, country, had been allotted to Auftria. Thefe men fei1796.
\(\underbrace{+}\)
zed the moment of defeat to quit a fervice which they difliked, and to go over to the French ; a circumftance which greatly fwelled the lift of prifoners.

It was now neceffaly for the French to commence the fiege of Mantua anew. The garrifon in their abfence had deftroyed their works, and carried into the place 140 pieces of heary cannon which they had left behind them, and procured a confiderable quantity of provifions. The blockade was renewed; but the French, by the loIs of their artillery, were nnable to proceed to a regular fiege; and by the beginning of the month of September, Marfal Wurmfer, having received new reinforcements, was again enabled to attempt the relief of the place. Bonaparte having information of his intended approach, keft fufficient tronps to keep up the blockade, while he advanced northward with his army; and on the \(4^{\text {th }}\) of September drove the Auftrians from the paffes of St Marco and the city of Roveredo to the pais of Calliano, where they made their principal fland. Here a battle enfued, in which the French took no lefs than 6000 prifoners, and entered Trent as conquerors. Upon fuffering this defeat, Marfhal Wurmfer adopted a meafure which cannot be fufficiently approved of. In. flead of retiring before the conqueror, who might have driven him to \(\operatorname{Infpruck}\), and arrived at a critical moment at the Danube, where Moreau, after much hefitation, had only commenced his retreat, he fiddenly threw himfelf with his vanquifhed army into Baffano, upon the flank and rear of Bonaparte, and then advanced by hafty marches towards Mantua. He attempted to make a ftand at Baffano on the 8 th, but was defeated, and 5000 of his mell were taken prifoners. He had ftill a confiderable body of tronps however. With thefe he pufhed forward ; and having fought different feattered divifions of the French at Cerea, Caftellano, and Due Callello, he effected the paffagre of the Adige at Porto I, egnano, entered Mantua with the wreck of his army, amonnting to about 4000 infantry and 4500 ca valry. In this enterprife the Imperialits loft altogether 20,000 men; but the effect of it was, that it fixed Bonaparte in Italy, where he was obliged to remain watehing and keeping under blockade the numerous garrifon of Mantua. He hoped that its numbers would foon reduce it by famine to the neceffity of a capitulation; but in this he was deceived, as the fefh of the hories, carried into it by Wurmfer, afforced fubfiftence to the thoops during a very long period.

In the mean time, the fame which their conntryman Bonaparte gained by thefe vietories, produced in the Corficans a defire to change the Britifh goverument for that of France. 'They accordingly difplayed fo mutinous a fpirit, that the Britifh Viceroy thought fit to evacute the ifland, which was no longer of any value to his government after all Italy had, in a great meafure, fubmitted to the French. The Imperial fubjects in Italy alfo, along with the inhabitants of Bologna, Ferrara, and Modena, who were completely corrupted by the falle philofophy of the age, began now to republicanife themfelves under the patronage of the French general. They fent deputies to a convention, levied troops, and abolifhed all orders of nobility.

The Emperor foon fent into the field a new army to attempt the relief of Mantua. In the beginning of

November this army advanced under the command of Fiench Field Marfhal Alvinzi, who advanced towards Vizenza Revolution on the ealt, feconded by General Davidovich, who defcended with another divilion from Tyroh. Alsinzi had already crofled the Piava, when he was met by the French, and compelled to repafs that river. But Da- \(\mathrm{p}^{2}{ }^{282}\) 治 vidovich, in the mean time, after feveral engagements, ceffes of the having fucceeded in driving the French down the Auftrians, Adige towards Verona, Bonaparte was muder the necelfity of concentrating his forces. He now adopted his ufnal expedient of keeping one divifion of the hoitile army in cleeck, while he contended with the mals of his forces againlt the other. He left Vaubois with fome tronps to detain Davidovich, while he advanced in perfon again!t Alvinzi, who was now hattening towards Verona. He was met, on his way, by the Auftrians at the village of A role. T's feize this village, which could not be fueedily turned on account of a canal, the French were under the necefficy of pafing a narrow bridge ia the face of the fire of the Authrians. ithey made the attenpt without fuccefs. Their officers rulhed to the bead of the column, and in vain attempted to rally the troops. Generals Verdier, Bon, Verne, and Lafnes, were carried off the field. Augereau advanced with a flandard to the extremity of the bridge, but nobody followed him. At laft Monaparte, who in the mean time had fent Gnieux will 2000 :ren to turn the village at two miles diffance, haftened to the bridge of Arcole. Seizing a ftandand, le advanced at the head of the grenadiers, crying, "Follow your general." They accordingly followed him to wirhin 30 yards of the bridge, when they were intimidated by the terrible fiec of the Autrians, and their leader found it weceflary to retire. Attempting to monnt his horfe to rally the columnt, left the Auftrians hosuld advance to the purfuit, he was thrown into a moras, whise itill under the fire of the troops in the village ; but here he again etcaped, as the Autrians did not attempt to follow up their advantarge.

The villare of Arcole was taken towards the evening by Guienx, and afterwards evacnated by the French. Ors the following day (the \(16 \mathrm{th}_{1}\) of November) an obItinate conflict enfued in its neighbourhood, in which rothing decifive was accompliflied. On the 1-th the 283 A in? rians, having preffed impetuoufly forward upon the defeated centre of the French army, were taken by farprife upon their flank by the left witig of the Firench, which liad been itationed for that purpoie in ambutcade. Their left wing, however, maintained its ground till Bonaparte fent round a party of horfe with iwenty-five trmipeters to their rear, who, by the roife they made, induced the A uftrians to believe themfelves furrounded, and to fly on all fides in confufion.

Here again appear eviciences of treachery among the Auftrian officers, though the battle of Arcole was the moft fevere which the Jrench had yet fought in Italy, and extremely fatal to their officers, as well as to a multitude of their troops. During its continuance, Davidovich had fucceeded in defeating Vaubois, who was oppofed to him and Rivoli, and the blockade of Man. tua was actually uncovered for a time. But Bonaparte now returned, after having driven Alvinzi acrofs the Brenta, and the politions of Rivoli and La Corona were retaken, and Davidovich repulfed into Tyrol. General Wurmfer, however, ttill held out in Mantua

Notwithftanding the fuperiority of Great Britain by tacks upon all quarters at oncc, he was unable to pene
fea, the French, towards the clofe of this year, attempt- trate the defign of their leader. At laft, on the 13 th
during the remaining part of the year ; and the only fruit hitherto derived from fo many victories was, that the French nation was led to look towards Borraparte as its only invincible commander, upon whom all its minal obltinacy of the Britifh government. The negociation which was now fet on font opered the eyes of all but thofe who wifhed to fell their country to French regicides. Iord Malmefbury propofed, that the principle of mutual reftitutions thould be agreed upon as the bafis of the treaty. After much ufelef, altercation, and many notes had paffed upon this fubject, and allo upon the queftion, how far Lord Malmefbury could negociate for the allies of Great Britain, from whom he had received no official powers, the Direstory at laft agreed to the general principle of mutual reftitutions, and required that the objects of thefe fhould be fpecified. Accordingly, the Britifh ambaffador propifed, in two memorials, that France fhould relinquif the Auftrian Netherlands, and offered to give n!p the French foreign fettlements in return. An offer was alfo made to reitore a great part of the Dutch foreign poffeffions, on condition that the Stadtholder's ancient authority fhould be acknowledgerl in that country. 'The Directory now required Lord Malmefbury to prefent the ul. timatum of his conditions within twenty-four hours. On his complaining of this demand, he was informed, on the 1gth of December, that the Directory would agree to no conditions contrary to the French conftitution; and it was added, that his farther refidence at Paris was unneceffary !

During this year, Great Britain retained her ufual fuperiority ty lea. A Britifh 〔quadron, under Admie, ral Elphintton, had taken poffeffion of the Dutch fettlement at the Cape of Good Hope, on the 16 th of September 1795. This fettlement the Dutch wifhed cagerly to recover; and for this purpofe they advanced money to enable the French to fit out a fquadron to co-operate with them in an attack upon it. The French government took the money, but the fquadron was never equipped. The Dutch themfelves this year fent a fquadron of feven fhips of war, under Admiral Lucas, to attempt to reconquer the Cape; Lut being no match for the Britifh fquadron, and being likewife caught beiween two fires, without the poffrbility of efcaping, the Dutch fleet, without firing a gun, was delivered up to the Britifh admiral.

Notwithftanding the fuperiority of Great Britain by Notwithtanding the fuperiority of Great Britain by tacks upon all quarters at oncc, he was unable to pene-
fea, the French, towards the clofe of this year, attempt- trate the defign of their leader. At laft, on the 13 th,
cd an invafion of Ireland; but the plan was ill con- French certed, and, of courfe, urfuccefsful. The whole con- Rc duet of it was intrufled to one man, General Hoche,









































 urged to give their afittance on this important occafion, and 0000 of them marched into ltaly as volunteers. Alvinzi's army amounted now to nearly 50,000 January, by fkimifhing along the whole of the French succiftes of line from below Porto Legnago upwarde, to La Co. the Auconceal the plan of his future efforts. On the icth Mantua, taking precautions againit the efcape of Wurm-
volution, 17ヶ6.

\footnotetext{
1
}
\[
4
\] men ; and he commenced his, operations on the ith of rona liear the Lake Garcia. He continued for fome itrians. days to alarm the French at all points, and thus to Bonaparte was ftill at Bologna, on the other fide of fer by that quarter, which, from an intercepted letter, he had learned was in contemplation. Being now informed of the approach of the Auttrian army, he ha. flened to Mantua, and from thence to Verona, which was the centre of the line of his army that oppofed Alvinzi. He arrived at Verona on the morning of the 12 th ; but as the Auftrians continued to make their attacks upon all quarters at oncc, he was unable to pene-
\[
70 \%
\]
2.7

\begin{abstract}

yt of December. General Hoche did not re:
\end{abstract}
\[
5
\]
\[
>
\]
\(\qquad\)

\footnotetext{

}
-

\author{
\author{
\author{
\author{
\section*{R E V}
 T
hopes of conqueft were to depend.
During thefe military tranfactions, Great Britain had
entered into a negociation with France. In confe-
quence of paffports obtained from the Directory, Lord
Malmefbury arrived in Paris, and began the negociation
with De la Croix the minifter for foreign affairs. Tho'
the Directory could not decently refufe to negociate,
yet they were unwilling ferioufly to conclude a peace
with Britain. On the other hand, the liritifh miniftry
have fince declared that, as individuals, they actually
difapproved of a peace at this time, but that they
thought it neceffary both to negociate, and even to
conclude a treaty, if proper terms could be obtained.
In judging thus, they were certainly right; for the
country at large, not feeing the danger of veace, was
very defirous of it, whillt a cefperate faction was con-
ftastly afcribing the continuance of the war to the chi-
}
}
}
}
\(\qquad\)
\(\square\)

French the efforts of the Auftians began to affume a more forRevolution, midable afpect on the lower part of his line near Porto 1797. Legnago; but on the evening of the fame day he received intelligence, that the upper extremity of his line, where Joubert commanded, had been attacked by fuch an immenfe fuperiority of numbers, that there could be no doubt that the greateft number of the Imperial troops was concentrated there. The polt of Ia Corona had even been forced, and Joubert compelled to withdraw to Rivoli, which he alfo abandoned.

The Autrians ftill perfifted in their unfortunate plan of dividing their army, that they might have two chances of fuccefs. Ten thoufand chofen troops, among whom were the Vienna volunteers, were deftined under General Provera to penetrate to Mantua by Porto Legnago, at the lower extremity of the French line; while Alvinzi in perfon advanced with the mafs of the army againft Joubert at its other extremity. On the \(13^{\text {th }}\) all went well; Joubert was compelled to retreat; and he was fo fituated, that the eafy capture of his whole divifion on the following day appeared a very probable event.

Bonaparte, in the mean time, laving learned the flate of affairs, left Verona in the evening of the \(13^{\text {th }}\), having firf ordered the whole centre of his army under Maffena to follow him to the neighbourhood of Rivoli with all poffible fpeed. Here he fpent the night with his officers in arranging the order of battle for next day, and in occupying proper pofitions. At day-break of the 14th the attack was begun by Joubert's divifion, to the no fmall furprife of the Imperialifts, who were not aware of the arrival of Bonaparte with reinforcements. The battle, however, was long and obftinate. The fuperiority of numbers on the fide of the Auftrians enabled them to defeat all the efforts of the French to turn their divifions. They at laft fucceeded in driving back upon the centre the two wings of the French army in confiderable diforder. Alvinzi now attacked the centre, which fcarcely maintained its pofition; and the Auftrian wings advancing on both fides, completely furrounded the French army. The victory feemed already won; and it is faid that Alvinzi difpatched a courier to Vienna to announce the approaching capture of Bonaparte and his army. Bonaparte indeed confidered his own fituation as very alarming; and is faid to have meditated his efcape acrofs the Auftrian right wing. From the nature of his order of battle, his troops had rather been concentrafed than fcattered by the repulfe they had received, and it was therefore ftill in his power to make a defperate effort. Having form. ed three ftrong columns, he fent them againtt the Au. ftrian right. wing. They fucceeded in penetrating it at different points ; and it fled in fuch confufion, that having encountered a party of French that had not ar-
rived in time to join the body of the army, 4000 Auftrians laid down their arms in a panic, and furrendered themfelves prifoners of war. Night put an end to any farther conteft ; but Bonaparte confidering this quarter of his line as no longer in danger, departed to oppofe \(4{ }^{290}\) General Provera, leaving Joubert to profecute the vic- feated. tory now gained. This fervice he performed with great fuccefs. A detachment under General Murat having marched all the night of the 14th after the battle, feized Montebaldo in the rear of the pofition at Co rona, to which a confiderable divifion of the Auftrians had retreated, while Joubert, next morning, attacked them in front. Finding themfelves furrounded, they foon fell into confufion. Six thoufand men were made prifoners, many were drowned in attempting to crofs the Adige, and the remainder fled to Tyrol.

During this fanguinary conteft on the upper part of the Adige, General Provera had forced his paffage acrofs the lower part of that river at Angiara near Porto Legnago, and compelled the Frerch General Guieux to retire to Ronco. Augereau collected all the troops in the neighbourhood, and marched to attack Provera; but as he haftened towards Mantua, Augereau could only come up with his rear; of which, after an engagement, he took 2000 prifoners. On the 15 th, however, General Provera arrived in the vicinity of Mantua. The city, which fands in a lake, was blockaded at the two points, by which it has accefs to the main-land called St George and La. Favorite. Alvinzi was to have form: ed his junction with Provera at the poft of St George. Receiving no intelligence of him, General Provera fummoned the French commander here to furrender; and on his refufal, endeavoured to carry the pofition by affault. Having failed in this attempt, he turned his attention towards the poft of La Favorite, which he attacked on the morning of the 16 th ; while Wurmfer, who had perceived his arrival, advanced with the troops of the garrifon againft the fame point. But by this time Bonaparte had arrived with reinforcements. General Wurmfer was repulfed ( \(B\) ); and Provera being completely furrounded by the French, was under the neceffity of furrendering himfelf with his troops prifoners of war. The refult of all thefe battles at Rivoli and Mantua was the capture of \(23,0 c 0\) prifoners and 60 pieces of cannon; and thus four Imperial armies had perifhed in Italy in the attempt to preferve Mantua. The cap. ture of this city, however, was now inevitable, in confequence of famine. It furrendered by capitulation on the ad of February. Bonaparte on this occafion endeavoured to acquire the reputation of humanity. To allow the French emigrants in the garrifon to efcape, he confented to an article in the capitulation that General Wurmfer fhould be allowed to felect and carry out of the garrifon 700 men, who were not to be examined
(в) Marfhal Wurmfer had before this time begun to, fufpect that his plans were betrayed to the enemy. When he refolved to make his laft fally to co-operate with Alvinzi, he kept his plan to himfelf; and in the morning of that day on which the army was to march out, he gave to each of the generals commanding the divifions (which we think were feven) his orders in a fealed packet. The troops marched at the hour fixed on, in fo many divifions; and they were inftantly attacked att all points by the enemy. Upon this, the old General faid to a Britifh officer of high rank, who was witif fim in the forttefs, We are betrayed, make your efcape by any means that you can. This anecdote was communicated to us through a channel which leaves no doubt of its truth in our own minds; but not being authorifed to give the names of our informers, we thought it not iight to infert it in the ecxt. Its siuth or falfehood may be ealily afcertained.

\section*{R E V}

294 The French had been fo unfuccefsful in their late ir-
naparte
inforced, ruption into Germany, through Swabia and Franconia, ruption into Germany, through Swabia and Franconia,
that they now refolved to make their principal effort from Italy now refolved to mor this pirpol effort Drom Italy under Bonaparte. that had fought under Moreau as fecretly as poflible through Savoy into Italy. The court of Vienna, how. ever, was aware of the approaching danger, and gave the command on the fide of Italy to the Archduke Charles, who of all their military leaders had alone of late been fuecelsful againit the French. He brought along with lim his beft troops from the Rhine, and along with lim his beft troops from the Rhine, and
numerous levies were endeavoured to be made in all the hereditary ftates for his farther fupport. The war was now about to be carriced into new territories, on which the houfe of A.uftria had fcarcely hitherto beheld a foe. It was neceffary that Bonaparte fhould once more attempt to fcale the fumnit of the Alps. 'I'his imnienfe chain of mountains, which takes its rife in the vicinity of Toulon, at firft ftretches northward under the names of.
mined nor congdered as prifoners; and the General himfelf was allowed to depart unconditionally.

In the meanwhile, the Pope, who of all the European princes had the beft reafon for diniking the French caufe, uncautioully perfevered in hoftility, in the hope that fome one of the Imperial armies might fucceed in driving Bonaparte from Italy. Having recovered from the panic which induced him to folicit an armiftice when the French firt entered Lombardy, he had avoided concluding a treaty of peace, and attempted to enter into a clofe alliance with the court of Vienna. He procured officers to be fent from thence to take the command of his troops, and flattered himfelf with the vain hope of being able to make an important diverfion in favour of the Imperial troops.

As the Emperor and the French were both preparing with all poffible fpeed to renew their bloody conteft on the frontiers of Germany, it was of importance to Bonaparte to leave all Italy in peace on his rear. On the ift of February he fent a divifion of his troops under General Victor, along with what was called the Lombard Legion, confifting of Italians, to enter the territory of the Pope ; and upon the furrender of Mantua Bonaparte followed in perfon. The troops of his Ho linefs made feeble refittance. The new raifed Lombard legion was made to try its valour againft them on the river Senis on the 2 d . After forming their entrenchments, it took their cannon and 1000 of themfelves prifoners. Urbino, Ancona, and Loretto, fucceffively fell an eafy prey to the French. From the chapel at Loretto the papal General Colli had carried moft of the treafure ; but the French ftill found gold and filver articles worth \(1,000,000\) of livies, and the image of the virgin was conveyed as a curiofity to Paris. Bonaparte now proceeded through Macerata to Tolentino. He was here met by a meffenger from the Pope uith offers of peace, and concluded a treaty with his Holinefs on the 1gth. By this treaty the conditions of the armiAlice were confirmed; and in addition to the payments then Alipulated, the I'ope promifed to pay \(15,000,000\) of livres, and to detiver 800 cavalry horfes, with as many draught horfes and oxen. He alfo engraged to pay 300,000 livres to the family of the French envoy Baffeville, who had been murdered at Rome, and to apologife by his minilter at Paris for that event. from Italy under Bonaparte. For this purpofe, the

\section*{R E V}

It then runs towards the eaft, Frencls forming the countries of Switzerland, Tyrol, Carinthia, Revolutions and Carniola. The three laft of thefe, paffing along \({ }^{1797 .}\) the head of the Adriatic, form the frontier in this quarter of the hereditary ftates of Auftria. Between the mountains and the fea lies the level and fertile tract of territory which belonged to Venice. It is croffed by many large ftreams, which are fed by the melting fnows of the Alps, and whofe nature is this, that they are greatef in fummer, and that their waters diminif during the frofts of winter.

The council of war at Vienna now committed an im- Blunder of portant error in the plan of defence which it adopted. the Court Inftead of making a ftand in the defiles of the moun of Vienna, tains, the Archduke was fent down into the plain to defend the paffages of the rivers. War is effentially an offenfive art. Whatever the general purpofe of hoftility may be, it is always conducted with moft fuccefs when the detail of its operations is fo managed as to affume the form of enterprife and of vigorous attack. This arifes not from any thing in the nature of the art of war, but from the immutable confltution of the human character. 'The ftrength of men who are fixed without motion in a particular fpot, is fubdued by the depreffing paffion of fear, and by the defpair of accomplifhing any important object; whereas, when urged to action and to enterprife, their energy is increafed by hope, and by that prefumption of their own fuperiority which all men readily entertain. Hence we have fo few infances in hittory of nations fuccefsfully defended by rivers or extentive fortified lines; whereas mountainous countries have ufnally fet bounds to the progrefs of armies. In fuch fituations, the defending party can always act upon the offenfive. He finds his adverfaries divided, by their lituation, into fmall parties. He hopes to vanquifh them in detail, and he acquires Arength and courage from the profpest of fuccefs.

While Bonaparte was advancing into the territory of the Pope, the Auitrian army was arranging itfelf along the eaftern bank of the Piava. The French were on the oppofite bank, and Bonaparte haftened to join them after he had conchinded his treaty with the Pope. The beginning of March was fpent in preparations; but at lat the troops advanced, that the point of refifance might be difcovered. Having croffed the \(296{ }^{\circ}\) Piava on the 12th of March, the Anftrians retired, flkir the French mifhing for fome days till they had croffed the Taglia-army. mento, where they made a fland with their whole force. Early on the 17 th the French army arrived at Valva. fone, on the oppofite bank; and afier fome ohefitation, refolved to force the paflage of the river. To have accomplifhed this object very \{peedily would have been difficult, had not a recenc fioft diminifhed the ftream, by which means the French were enabled to crofs it in the face of the enemy in columns at various points. The army of Bonaparte was now in three divifons, Joubert, with the left wing, acvanced along the courfe of the dige into Tyrol, and was ordered to crofs over from thence, and to defcend along the valley of the ris ver Drave, which is beyond the higheft chain of what the Romans called the Noric Alps. Maffena, with the centre, after croffing the Tagliamento, advanced into the defiles of thefe mountains; while the right divifion, which was atten ted by Bonaparte in perfon, proceeded along the coalt of the Adriatic.

French After forcing the paffage of the Tagliamento on the Revolution, 17 th, the French had eafily defeated the Auftrians \(\underbrace{1797 .}\) on the oppofite bank, and compelled them everywhere to retreat. The other rivers were eafily paffed; and on the rgth, the town of Gradifca, on the river Lifonzo, furrendered to the right wing of the army, and its garrifon, amounting to 3000 men, were made prifoners of war. On the 2 ift Goritz was entered by the fane divifion, who found there the principal Auftrian magazines and hofpitals. Triefte was entered on the 23 d; and the Frencl fent off in waggons, from the quick filver mines of Ydria, materials worth \(2,000,000\) of livees. In the mean time, the Auftrians, in their halty retreat, entangled themfelves and their baggage among the mountains. On the 24th, a large body of them was hemmed in between Maffena, who had reached Tarvis, and a part of the French right wing under Guieux. Reinforcements, however, having found means to reach them from the Archduke's head quarters at Clagenfurt, they hwarded an enagement on the following day, but were defeated, with the lofs of 5000 ta. ken prifoners, and 400 waggons loaded with baggage. The French teft wing under Joubert, Baraguay D'Hilliers, and Delmas, was equally fuccefeful. On the banks of the Lavis, after an obflinate engagement, 4000 Auftrians were taken; and thereafter at Clauzen they were again defeated, with the lofs of 1500 taken prifoners. Having entered Brixen, this divifion turned eaftward, and defcended the valley of the Drave towards Clagenfurt. the capital of Carinthia, where it was met by General Maffena; the Archduke, after a flight conteft, having evacuated the place, and advanced farther towards the capital of the empire, which was now ferioufly menaced, and in which great confternation prifoners, and croffed the Alps; and though the country fill prefented fome difficulties, there was no fortified place capable of refifting his progrefs towards Vi enna. He did not, however, confider his own fituation as deflitute of hazard, and feized the prefent moment of unbounded fuccefs to make propofats of peace. On the 3 IR of March he fent a letter to the Archduke, in which he deprecated the ufelefs prolongation of the war, and intreated him to interpofe his good offices to put a fop to its farther ravages. But this prince, who feems to have doubted his own influence at the court of Vienna, returned a cold anfwer, ftating, that it belong. ed not to him to inveftigate the principles on which the war was carried on, and that he had no powers to negociate.

The Auftrian chiefs made a laft effort, by raifing the peafants of the T'yrol in a mafs to embariafs the rear of the French. They accordingly gained fome fucceffes under General Laudohn, and drove out the French troops that had been left at Botzen and Brixen. The inhabitants of the Venetian fates alfo rofe againft the troops that remained in their country; and being joined by ten regiments of Sclavonians, which had been in the pay of the government of Venice, they put the French to death wherever they were found, without excepting the fick in the hofpitals, of whom 500 were maffacred at Verona. A party of Imperialifts allo drove the French garrifon out of Triefte, and thus attempted to furround the invading army. Bonaparte, however,

\section*{\(R\) E V}
knew that the court of Vienna muft be at leaft as much embarraffed as himfelf. His army amounted to 95,000 men. It had hitherto proved irrefitible; and the Auftrias knew, that to furround wes not to conquer it. He therefore perfifted in advancing. On the 2d of April he fucceeded in forcing the ftrong defiles between Freifach and Newmark, after a bloody battle, in which he tnok 600 prifoners. On the 4 th, his advanced guard reached Hunfmark, where the Auftrians were again defeated; and his army occupied Kintenfeld, Murau, and Judenbourg. Thefe advantages compelled the Auftrian cabinet to treat for peace, as there was no longer any point at which the Archduke's army could hope to make a fand till it came to the mountains in the vicinity of Vienna. Meafures were taken for removing the public treafure and effects into Hun. gary, while Generals Bellegarde and Morveld were fent to requeft from Bonaparte a fulfenfion of hoftilities. On being fuffered to take poffefion of Gratz and Leoben, within little more than so miles of Vienna, he confented, on the 7 th of April, to an armittice, which was only to endure till the night of the 13 th, but was afterwards renewed for a longer period. It was followed on the 1 gth by a preliminary treaty, figned at Leoben; by which it was agreed that the Auftrian Netherlands fhould belong to France, and that the new republic in Lombardy fhould continue under the name of the Cifalpine Republic, and fhould include the Milanefe, the duchy of Mantua, and the territories of Mo. dena, Ferrara, and Bologna. There is reafon to fufpect that formething hoftile to the independence of Venice was here alfo flipulated. Bonaparte agreed to Unjuft withdraw without delay into Italy, on receiving fub-and cruel fiftence for lis army during its march; and it was re. condua of folved, that all farther difputes fhould be afterwards fettled by a definitive treaty of peace. On his return he acculed the Venetian government of connivance at the infurrection which had taken place againft the French in his abfence; and having feized their city and whole territory, he diffolved that anciént and fingular, but now feeble, ariftocracy.

While Bonaparte was advancing towards Vienna, the French armies on the Rhine had begun to prefs upon the Aultrians, to prevent farther reinforcements from being fent againft him from that quarter. The AuAtrians offered an armiftice; but as the French demanded the fortrefs of Elirenbreitftein as the price of it, both parties prenared for action. The left wing of the army of General Hoche advanced rapidly from Dufferdorf, while the centre and right wing croffed the Rhine near Coblentz. The Auftrians under General Wer- Succeffes o necht retieated to the I, ahn, where they waited the ar-the French rival of the French. Here a violent conteft enfued on on the the 18 th of April, in which 4000 Auftrians were ta- \({ }^{\text {Rhine. }}\) ken prifoners. The French took poffeffion of Wetz. laer, and drove their antagonits to the gates of Francfort. In the mean time, General Moreau, on the Upper Rhine, forced the paffage of the river near Strafburg, and attacked the village of Dierfheim, of which he at laft retained poffeflion, after having been more than once driven out, and the village nearly deftroyed. The following day, however, the Auftrians renewed the attack, and forced the French for fome time to give way; but powerful reinforcements having croffed the

\section*{\(R\) E V}
anch river, the French were at lafl enabled to renew the Aution, battle with fuch vigour, that they took Fort Kehl, to gether with 5000 prifoners. The Imperialits in this quarter were now purfued towards the Danube; when all military operations were fuddenly arrefted by mef. fengers fent through Germany by the Archduke Charles and Bonaparte, announcing that peace was concluded. Thefe meffengers found the army of Hoche violently attacking Francfort on the Maine, which General Wernecht was endeavouring to defend. The news was diffuled in an inflant through both armies; and the contending troops, throwing afide their weapois, congıatulated each other upon the event.

France now held a very elevated rank, and a formidable character, among the nations of Europe. Spain, Italy, and Holland, were held in dependence ; while her vietorious armies had compelled the laft continen. tal member of the coalition to accept of peace from an army that approached his capital. Had the Aufrian officers been faithful, and the court of Vienna lefs felfin, fubfequent events have indeed hewn that the affairs of the Emperor were not yet defperate, and that Bonaparte was not that invincible hero which his rapid fucceffes gave fome reafon to fuppofe him. After the perufal of his letters from Egypt, his vietories lofe much of their brilliancy; nor does any action, or all the actions of his life, difplay fuch military frill, as the retrcat of Moreau through Swabia, when preffed on the rear by a victorious army, and furrounded on all hards by an incenfed populace. But Bonaparte had been fuceefsful ; the Archduke knew not whom to truft: there is reafon to believe that his plans were continually thwarted by a corrupt council at home; and the court of Vienna was bribed to make a peace. Of all the enemies of the French revolution, Britain alone remained in hoftility. From her command of the ocean the was enabled indeed to retain the feeble ftate of Portugal, attached to her caufe; but on land, fuch was the terrible energy of France, that, with this exception, which feemed only to exift by tolerance, the Britifh trading veffels were excluded, by her influence, from all approach to the continent, from the Elbe to the Adriatic ; and the Britifh government was once more iriduced, in thefe circumitances, to try the effect of a new negociation. All thefe external advantages, however, were fpeedily loft by the French nation; and it feemed the unhappy deftiny of this people to be conflantly deprived of the fruits of all their fufferings, and their courage, by the turbulence of their domettic factions, and the profigacy and unprincipled conduct of their

A ferious contefl between the executive power and the legiflature was now approaching. We already remarked, that the Directory was originally felected by thofe men who lad heen the affociates of Robefpierre; and though deferted of late by fome of the more violent fpirits, who were termed Anarchifts, it was fill confidered as the bead of the Mountain party. By the victory obtained over the fections of Paris on the 5 th of October, all oppofition had been fet at defiance for a time; but the nation at large liad never been reconciled to thefe inen. The period now arrived when a third of the legiflative body was to be changed. On the 1gth of May, Letourneur went out of the directory by lot. On the 2 oth, the new third Suprl. Vol. II. Part II.
took their feats in the Councils, a third of their predeceflors hat the following day, Barthelemi, the ambaffador to Swit- \({ }^{1797 .}\) zerland, was chofen to fucceed Letorrneur in the Directury. The election of the menbers of the new third had almoft entirely fallen upon men who were underfood to be hoftile to the Directory. Many Generals out of employment were chofen; fuch as Pichegru, Jourdan, and Willot, and many reprefentatives of the families of the ancient nobility who had not emigrated (anong, whom was the prince of Conti) were now elected into the legiflature. The moderate or oppofition party in the two Councils now poffered a complete majority. Carnot and Barthelemi were undertood to be favourable to them in the Directory; the former having made his peace with them, and the latter being eftablifhed by themfelves. The effeet of this change in the ftate of the Councils fpeedily appeared in their adopting every meafure that could embarrafs the Directory, or caft odium upon the Mountain party, and alter the flate of things which it had eftablifhed.

On the I4th of June, Gilbert Defmolieres brought forward a report from a committee upon the flate of the finances ; in which he exhibited and reprobated in the ftrongeft terms the prodigality of the Directory, and the profufion and rapacity of its agents. On the 18 th the fame committee profofed a new plan of finance, the object of which was to deprive the Directory of any fhare in the adminiftration of the public money. In the mean time, on the 17 th of the fame month, Camille Jourdan had prefented a long report on the fubject of religion; in which he endeavoured to demonitrate the impropriety of prohibiting the public difplay of its ceremonies, and the injuftice of the perfecution which its miniters ha! undergone for refufing to take oaths preferibed by the legiflature. This report was afterwards, on the 15 th of July, followed up in the Council of Five Hundred, by a decree, repealing all the laws againft refiactory priefts, or which affimilated them to enigrants. On the following day, another decree, requiring from thein a declaration of \(\mathfrak{k}\) delity to the conflitution, could only be carried by a majority of 210 againft 204. A propofal was now 307 brought forward in the Council of Five Hundred by fure of the Emery, a new member, to repeal the laws which con-Councils. fifcated the property of emigrants, and to allow their relations to fucceed to them as if they had died at the period of their emigration. Thofe who had fled into foreign countries from Toulon and other places, during the reign of terror, were alfo encouraged to return, and allowed to expect that their names would be crazed from the lift of emigrants. The conduct of the Directory towards foreign powers was attacked on different occations; and Dumoullard propofed the appoint. ment of a cominittee to enquire into the external rela. tions of the republic. This was a delicate fubject ; as it involved the character of the armies and their leaders, ar:d as it might fubvert the interefts of the Directory with fome of their friends of the Mountain party. The Venetian republic, though a neutral Atate, had been overturned by Bonaparte on account of a popular infurrection, for which the gavernment apologifed. Little account had been given of the immienfe fums of money that had been levied in Italy. The armits in the preceding year had entered Germany in the character of
p'unc.crers ;

Prench plunderers; which had difgufted all thofe in that counRevolution, try who had once teen friendly to their caufe, and \({ }^{\text {1797. longed for their arrival. The Directory, at the fame }}\) time, inftead of encouraging the progrefs of revolution, which the Jacobins eagerly defired, had fuddenly made peace with the German princes, upon receiving pecuniary contributions, which were left to be exacted according to the ancient laws of the different flates (which exempt the nobles and the clergy), and thus fell heavieft upon thofe very perfons who had cherihed the new republican principles.

The difcuffion of thefe fubjects brought the majority of the Directory and of the Councils into a flate of complete hoftility. Both parties refolved to violate the conflitution, under the pretence of preferving it. The one wifhed to change the Directory before the time preferibed by law, and the other to deprive of their feats a great number of the new legiflators elected by the people. Barras was the moft obnoxious of the directors; and an attempt was made to deprive him of his office, upon the footing that he was lefs than 40 ycars of age. But his colleagues afferted that he was torn in the year 1755 ; and as no proof to the contrary could be brought, this abortive attempt ferved only fill farther to irritate the contending parties, and they began to prepare for more effectual meafures. Had not force been speedily whed on the fide of the Directory, the Councils mutt naturally have prevailed.

\section*{426 ] \\ R E V}
fion of the army of General Hoche had advanced within Prench a few leagues of Paris; whereas, by the conftitution, the Revolutior Directory incurred the penalty of ten years imprifonment if it authorifed troops to approach nearer to the refidence of the legiflative body than twelve leagues, without its own confent. An explanation of this event was immediately demanded. The Directory denied that they had ordered the march, and afcribed it to a miftake of the officer by whom it was conducted. Their explanation was treated with contempt, and much angry debate took place in the Councile concerning it ; the Diretory all the while conducting themfelves with much feeming moderation, and even fubmiffivenefs. In the mean time their antagonifts acted a very undecided part. They long hoped to gain Lareveillere Lepaux to their fide; in which cafe they wowld have had a majority in tory vice. the Directory. This vain expectation rendered theirtorious. conduct indecifive. At length the majority of the Directory procured an addrefs of acherence from the fuburb St Antoine, which in all the tempefluous days of the revolution had been the rallying point of the Mountain party. Encouraged by this addrefs they proceeded to immediate action. General Augerean had been fent from Italy under pretence of prefenting fome Auftrian ftandards to the Directory, and he was employed as their tool upon this occation. They commanded the garrifon of Paris, and they had managed to bring over to their patey the foldiers compofing the guard of the two councils. Before day-break on the morning of the 4th, Augereau furrounded the Thuilleries with a divifion of the troops. The guard of the Councils refufed to relitt, and their comwander, Ramel, was taken prifoner. Having entered the hall, he fiund Pichegru and other twelve of the chiefs of the oppofite party fitting in confultation, and immediately fent them prifoners to the Temple. Some other obnoxious members of the Councils were alfo put under arref. The director Carnot had made his elcape on the preceding evening, but Barthelemi remained, and was imprifoned.

All this was accomplifhed without noife, and in an inftant. Many members of the Councils, when they came to the hall at the ufual bour, were furprifed to find that feals were put upon the doors, and that they could not obtain admittance. 'They were iivited, however, to go to the Surgeons Hall and the theatre of the Odeon, where they were told the Directory had appointed the Councils to affemble. At thefe places, about forty of the Council of Ancients, and double that number of the other Council, affembled about noon, and fent to demand from the Directory an account of the proceedings of the morning. They received an anfwer, declaring, that what had been done was neeef. fary to the falvation of the Republic, and congratulating the Councils on their efoape from the machinations of royalifts. Being ftill at a lofs how to aet the Coun Pretended cil of Five Hundred appointed a committee of four members (of whom Sieyes was one) to repert upon the meafures to be adopted. On the following day Boullay de la Meurth prefented a report from this committee, in which he announced, that a vaft royalit confpiracy, whofe centre was in the bofom of the Councils, had been formed to overturn the conflitution, but that it had been baffled by the wifdom and activity of the Di rectory.. The report concluded, by propofing the im. mediate tranfportation of the confpirators without a
ench trial. Accordingly, thefe degraded reprefentative boproceeded, after lome debate, on hearing the names of the accufed.perfons read over, to vote the tranfportation to Guiana in South America, of fifty-three of their own members, and twelve other perfons, among whom were the directors Cariot and Barthelemi. They annulled the elections in forty-nine departments, repealed the laws lately enacted in favour of the difaffected clergy and the relations of emigrants; and even fo far abolifhed the liberty of the prefs, as to put all periodical publications under the infpection of the police for one year. New taze 3 were voted without hefitation, Francis de Neufchateau and Merlin were elected to fill the vacancies in the Directory, and affairs were en leavoured to be conducted in their ordinary train.
All this while the city of Paris remained tranquil. That turbulent capital, which had inade fo many datlguinary efforts in favour of what it accounted the caufe of freedom, had been fo completely fubdued fince its unfortunate Itruggle on the 5 th of Oetober, that it now permitted the national, reprefentation to be violated, and the moft obvious rules of practical liberty to be iufringed, without an effort in their defence. The Directory, in the mean time, atternpted to juntify their, conduct to the nation at large, by pub:ory to lifhing various documents intended to prove the exiftify their
duct. ence of a royalift confpiracy. The mott remarkable of thefe was a paper, faid to be written by M. d'Antraigues, and found by Bonaparte at Venice; in which a detail was given of a correfpondence between. General Pichegru and the Prince of Condé in the year 1795. The correffondence itfelf was alfo, at the fame time, faid to be found by General Moreau among papers taken by him at the late paffage of the Rhine. It flated, that Pichegruh had offered to the Prince of Condé to crofs the Rhine with liis army, and having joined the Auftrians under General Wurmfer, and the cmigrants under the Prince of Condé, to return with the united armies and march to Paris, where they were to re-eftablifh royalty. The Prince is faid to have refufed to accept of the offer, from jealoufy of the participation of the Auftrians in the honour of the tranfaction. He therefore infilted that it fhould be conducted without their aid; but Pichegru thought the attempt too hazardous in this form, and, being foon after removed from his command, the projeet failed. At the time of its publication, the genuineuefs of this correfpondence, and alfo of the paper found by Bonaparte, was denied; and nothing has appeared fince to induce an unprejudiced man to thirk otherwife at prefent. Moreau, who was certainly involved in this confpiracy, if real, has been iutrufte? fince that period with the command of the armies of the republic; and though defeated by Marhal Suwarrow, he is fo far from being now confidered as a royalitt, that the revolutionary government feems inclined to intruft to his military fikill and fidelity its laft efforts for the continuance of its exiflence.
From the violation of the reprefentative government that has been now ftated, it became obvions to furrounding nations, that France had paffed under the dominion of a finall faction at variance with the majority of the people. The Directory was all powerful. Its members, however, feem very foon to have become giddy by the elevated nature of their fituation, and to have adopted a notion that there was no project of am.
bition or rapacity in which they might not venture to engage. During their conteft with the Councils, Hey \({ }^{\text {R }}\) had protracted the negociations with Lord Malmefbury at Lifle, and had fuffered thofe to relax which had been entered into between Bonaparte and the Inperial am. baffadors at Campo Formio near Udine. Great Britain had offered to confent to peace, on condition of beirg allowed to retain the Dutch fetterner of the Cape of Good Hope, and the Spanifh ifland of T'riusdad, which had been taken in the month of February this year. The Directory new recalled their former negociators Letourieur and Maret, and fent two others, I'reilhard and Bonnier, in their ftead; who immediately demanded whether Lord Malmefbury had full power to reftore all the fettements takell from France and her allies during the war? Upon his Lord(hip's declining to aufwer fuch a queftion, becaufe it implied an enquiry, not into his powers, which were in the ufual form, but into his inllructions, which would preclude all negocia. tion, he was required to return home to procure more ample powers. The negociations with the Emperor, however, were now fpeedily brourght to a conclution. On the 17 th of October, a defivitive treaty was ligned at Campo Formio. By it the Emperor gave up the Netherlands to France the Milanefe to Cifilde resty of republic, and his territories in the 31, Pplic, and his territories in the Brifgaw to the Duke of Modena, as an indemnification for the lofs of his duclyy in Italy. The Emperor alfo confented that the French fhould poffefs the Venetian iflands in the Levant of Corfu, Zante, Cephalonia, Santa Maura, Cerigo, and others. On the other hand, the Ereach Republic confented that the Emperor fhould poffefs in full fovereignty the city of Venice, and its whole other territory, from the extremity of Dalmatia round the Adriatic as far as the Adige and the lake Garda. The Cifalpine Republic was to poffefs the remaining territory of Venice in this quarter, along with the city and duchy of Mantua, and the ecclefiaitical ftates of Ferrara and Bologna. iu) Upon whatever principles the war might have litherto beerl conducted, the terms of this treaty fufficiently demonftrated to all Europe, that its leffer ftates had no better reafon to expect fecurity from the houfe of AuAtria than from that of the new republic. This truth would have been ftill more evident, had the articles of a convention, which was figned by thefe parties at the fame perind at Campo Formio, been publifhed to the world. Fearing, however, to alarm too much the Germanic body, thefe articles were kept fecret, and the parties agreed to prevail with the German princte, at a congrefs to be opened at Raftadt, to confent, in confequence of an apparently fair negociation, to what France and Auftria had deternined fhould take place. By the fecret convention or treaty now alluded to, it was ttipulated, that the Rhine, including the fortrefs of Mentz, fhould be the boundary of the French Republic; that the princes, whofe territories were alienated by this agreement, fhould be indemnified by the fecularization of church lands in Germeny ; that the Stadtholder of Holland Thould be indemnified for the lofs of his eftates in that country, by receiving German territory : that the Emperor fhould receive the Archlifhopric of Saltzburg, and the part of the circle of Bavaria fituated between that arclibifhopric, the rivers Inn and Salzt, and the Tyrol ; that the Imperial troops thould immediately withdraw to the confines of the hereditary flates be.

\section*{R E V}

French yond Ulm; and if the Germanic body fhould refufe Revolution, peace on the above terms, it was Ripulated, that the Emperor fhould fupply to it no more troops than his contingent as a coeftate amounted to, and that even thefe fould not be employed in any fortified place

Thefe treaties were immediately begun to be put in execution. The Auftrians left the Rhire, which enabled tt F French to furround the fortreffes of Mentz and Ehrenbreiftein. Of the former, they fpeedily obtained poffeffion; but the latter coft them a very tedious blockade, before the garrifon, confifting of troops of the Falatinate, would agree to furrender. 'The Imperial tronds, at the fame time, entered Venice; the French having evacuated that city after carrying off or deitroying its whole navy. The Cifalpine Republic vias e!tablifhed, and Bonaparte left Italy ; leaving, however, an army of 25,000 men to garrifon Mantua, Brefcia, Milan, and other places, and to retain this new republic in dependence upon France. Genoa was, at the fame time, brought under a fimilar dependence by means of popular commotions, inftigated by the French, and a revolution in its government which took place at this period. And thiss the French Directory, without the excufe of hofility, as in the cafes of Holland and Spain, began a fyftem of interference in the affairs of weaker neighbouring flates, which was fpeedily carried to an height that once more alarmed all Europe Thefe men even attempted, at this time, to compel the flates of North America to purchafe with money their forbearance from war. This was done through a circuisous channel, and in the form of an intrigue, by private perfons, who were inftructed to inform the American minifters at Paris, that a large loan on the part of America would be the beft means of fecuring peace; and it was hinted, that it would be rendered more acceptable if accompanied with a private prefent of L. 50,000 fierling to the members of the Direnory. This laft propofal was indeed denied by the French minifter 'l'allyrand, who had given his countenance to this erooked negociation: but the general impreffion prodiced by the tranfaction could not be removed; and its effect was to injure very deeply the character of the French government in the opinion of thofe diftant nations that were otherwife difpofed to regard it in the moft favourable light. Nor was its refpectability increafed by a law which the two Councils, at the defire of the Directory, thought fit to enact, declaring the fhips of all neutral fates bound for Britain, or returning from thence, liable to capture. This law was not lefs impolitic than unjuft. It placed the whole carrying trade of the weflern world in the hands of the Britifh, and thus enriched the very people whom it was inrended to injure.

For at this period Britain had acquired over the ocean a degree of uncontrouled dominion that was al-
f together unexampled in former times. During the whole year the French fleet lay blockaded in its own ports, and no enterprife was attempted by fea, excepcing in one folitary but fingular inftance. We have already mentioned that a number of galley flaves were fent as foldiers with Hoche in his attempt upon Ireland. On the failure of that expedition, the Directory were at a lofs how to difpofe of thefe men. They could not now with propriety be fent back to punifhment, the troops would not ferve along with them in the army; and as the
new laws of France allow no remiffion of crimes, they Frenc could not receive a pardon, nor was it fafe to let lonfe Revolut upon the country 400 criminals. In this dilemma, the Directory refolved to throw them into England. Accordingly, they were fent in two frigates and fome fmall veffels to the coaft of Wales, and there landed with mufkets and ammunition, but without artillery. In the evening of the very day on which they landed, the 23 d of Tebruary, they furrendered themfelves prifoners of war to a party of militia, yeomanry, cavalry, colliers and others, under the command of L.ord Cawdor. The Directory boafted that, by this enterprife, they had demonftrated the poffibility of landing troops on the Britif coaft in fite of the vigilance of the navy ; but this affertion was ill fupported by the fate of the two frigates accompanying the expedition; both were captured in attempting to return to Breft.

Thourg the French navy remained in port, and cors 313 fequently fafe during the reft of the year, their allies, victory the Spaniards and Dutch, fuffered feverely. On the 14 th of February, a Briti贝h fleet of 15 fail of the line, under the command of Sir John Jervis, engaged the the fl , Spanifh fleet, amounting to 27 fail of the lime, off Cape St Vincent. In this action, the Spanin force, if it be eflimated by the number of mer, the number of guns, and the weight of metal, was more than double that of the Britif; but by the fkilful manœuvres of its heroic commander, the Britifh flect twice croffed through the line of the Spaniards, and fucceeded in cutting off a part of their fleet from the re!t. Four fhips of the line were taken, and the Spanift admiral's own Mip efcaped with difficulty. 'The fleet had been on its way to Breft to join the French fleet there; but in confequence of this action, it returned to Cadiz, where it was blockaded by the Britifa.

For his gallant cooduet in this engagement, which, when every circumftance is taken into confideration, is perhaps unparalleled in the annals of naval war, Sir Joln Jervis was immediately created Earl St Vincent, and reccived the thanks of both houfes of the Britifh Parliament.

The Dutch were fill more unfortunate. The Texel, And ot within which their fleet lay, was blockaded during the miral whole fummer by Admiral Duncan. The French intended, by means of the Dutch fleet, to make another attempt upon Ireland. Troops were accordingly embarked, under the command of General Daendels ; but a refolution having as laft been adopted of hazarding an engagement with the Britifh, the Dutch admiral De Winter, in oppofition to his own remonftrances, was ordertd to put to fea. The Britifh admiral had by this time left his fation near the Texel, and gone to Yarmouth to refit. On receiving intelligence, however, that the Dutch had failed, he inftantly proceeded in quelt of them. On the 1 ith of October the Britif fleet, amounting to 16 fail of the line; and 3 frigates, came in fight of the Dutch fleet, which in force was nearly equal, within about nine miles of Camperdown in Holland. Admiral Duncan immediately run his fleet through the Dutch line, and, though on a lec fhore, began the engagement between them and their own coaft. A molt bloody and obftinate conflict erfued, which lafted nearly three hours. By that time, it is faid that almoft the whole Dutch fleet had ftruck. The fhips could not all be approached and feized, how-

\section*{R E V}
ench slut on
\(7,8\).
ever, on account of the fhallownefs of the water upon the coaft, to which the fleets were now very near. Eight fhips of the line, with two of 56 guns, and one of 44 , were taken, befides a frigate, which was afterwards loft near the Britifh coaft, and one of the fhips of 56 guns foundered at fea. Admiral de Winter was taken with his Khio, and alfo the Vice admiral Rentjies.

Similar honours were conferred upon Admiral Duncan as upon Sir John Jervis, and both admirals had each a penfion of L. 2000 per annum conferred upon him for life, with the full approbation, we may venture to fay, of every well affected man in the kingdom.

The internal hifory of France now ceafed to be very interefting. Political freedom could not be faid to exift a ter fo many of the reprefentatives chofen by the people had been driven from the legiflature, and the departments reduced to the neceffity of electing men more accentable to their prefent rulers. Public fpirit therefore rapidly declined. The high notions of the freedom and felicity it was about to enjoy, which had once been fo eagerly cherifhed by a great part of the nation, now gave way to a growing indifference about political queftions, and the future deftiny of the republic; for the people at large found themfelves little interefted in a government which exifted independent of their will, which confifted of a narrnw circle of perfons, and whofe conduct was furely not lefa crooked, intriguing, and unprincipled, than that of the ancient royalty, and its attending court, from which they had efcaped; whilft its ferocious cruelty, and total difregard even of the forms of jufcice, were infinitely greater. But though the Directory was all-powerful, yet its power was li. mited by the prefent fate of things, which denied it the poffeffion of an abundant revenue. It had not yet been found poffible to re-eftablifh a fyftem of produc. tive taxation. The legifative conncils, indeed, who now complied with every wifh of the Directory, voted abundance of taxes: but thefe were fcantily paid; partly on account of the total lofs of the national com. merce, and partly becaufe the penple were not difpofed to make great exertions in this way for the fupport of 30 vernment. By the conftitution, they fill poffeffed the election of the judges and other magitrates ; the country was filled with veteran foldiers, who at different times had returned from the armies after the lapfe of fthe ufual period of fervice. The Dircctory, kept in awe by thele circumftances, turned its attention abroad, and found means to eftablifh an extenfive paironage, by dividing among its adherents the plunder of neighbouring ftates, in whofe welfare the, people of France were little interefted. The Girondift party had formerly propofed to propagate their principles by eftablifbing a number of petty republics in the vicinity of France. The Directory now adopted the fame project ; that, under the pretence of diffufing liberty, they might obtain new fources of revenue and of power, by the dominion which they meant to exercife over thefe new governments. Holland and the Cifalpine republic were already placed in dependence upon them; and Rome and Switzerland readily afforded them opportunities for extending their plan.
ded After the treaty with the Emperor had been concluded at Campo Formin, Jofeph Bonaparte, brother of French Republic. The Pope, now deprived of all hope

429 R E V
of foreign aid, and accuftomed to humiliations, had fub- Prench mitted to every demand made by him for reducing the Revolution, number of his troops, and fetting at liberty perfons im- 1798. prifoned on account of political opinions. But an event 320 foon occurred to afford the Directory a pretence for lofurreeaccomplifing the ruin of this decayed government. \({ }^{\text {tion }}\) in that Or the 26 th of December \(179 \%\), three perfons had city. waited upon the Fremel ambaffador, and folicited the protection of his government to a revolution which a party at Rome meant to accomplifh. He rejected their propofals, and diffuaded them from the attempt; but did not, as was certainly his duty, communicate thefe propofals to the papal governinent, to which he was fent on a friendly enibaffy. On the following day, however, a tumult took place, in which the French cockade was worn by about 100 infurgerts. They were fpee. dily difperfed, but two of the Pope's draguons were killed. 'I'he ambaffador, who probably knew the difpofition of the Directory towards the Pope, feems to have refolved that his own perfonal conduct fhould be blamelefs on the occafion. He therefore went on the 28 th of December to the fecretary of fate, and prefented a lift of the perfons under his protection who were entitled to wear the French cockade, confenting that all others adopting it Thould be punifhed. He alfo agreed to furrecder fix of the infurgents who had taken refuge in his palace. Towards the evening of this day, however, the popular tumult became more ferious, particularly in the courts and neighbourhood of the French minifter's palace. 'The Pope appears to have been perfonally unacquainted with the fate of affairs; but the governor of the city fent parties of cavalry and infantry to difperfe the infurgents. About twenty perfons, having a Frenchman at their head, had, in the mean time, rufhed into the palace, and demanded aid towards accomplifhing a revolution. A number of French officers, and others who were with the ambafo fador, propofed to drive the whole infurgents by force from the jurifdiction of the palace. This was certainly a falutary advice, and fuch as could not have been rejected by the ambaffador, had not his defigns been hof. tile to the eftablifhed government. Rejected, however, it was; for, pretending to believe that his authority would be fufficient to accomplifh the object in a peaceable manner, he went out into the court to addrels the multitude. He was prevented from doing fo by a difcharge of mufquetry from the military, who were firing within the juriddiction of the palace.. He interpofed with his friends between the military and the infurgents; and while a part of the Erench officers in his train drove back the infurgents with. their fabres, the ambaftador advanced towards the foldiers, and demand ed why they prefumed to violate his jurifdiction? as if the juriddiction of a foreign ambaffador were a legal afylum for men in open rebellion againft the government of the fate. It is not, therefore, furprifing, that no attention was paid to this-arrogant and abfurd demand; and the nature of the ground being fuch, that the troops could fire over his head upon the multitude in the rear, they made a fecond difcharge, which killed feveral of the infurgents. Upon this the ambaff dor advanced clofe upon the foldiers, to prevail with them to depart; but they remained in a menacing attitude, and prepared for another difcharge. Eager to prevent this, the French General Duphot, who was with the
ambafo

\section*{R E V \\ IR E V}

French ambaffador, and was next day to have married his fiter, Revolution, rufhed into the ranks of the military, intreating them 1798.

324 A French general killed. to defirt. Here a petty officer of the Pope's troops difcharged his mufiet into the body of Duphot. Upon this, the ambaffador and his other friends found it neceffary to make their efcape through a bye-way into the palace. The Spanifh minifter hearing of this event, fent to the fecretary of fate to protelt againft this violation of the privileges of ambaffadors. But the government, equally alarmed and perplexed by the fear of a revolution, and of French vengeance, remained during many hours totally inactive. All this while the palace of the French ambaffador remained clofely befet by the military, who occupied the whole of its jurifdiction, and all its courts and palfages. He at laft fent to demand paffiports, to enable him to leave the territories of thic Pope. They were granted; but with many protelations of the innonce of the government, and its regret on account of this unfortunate occurrence.

Jofeph Donaparte retired to Florence, and from thence to Paris. The Pope folicited the protection of the courts of Viema, Naples, Tufcajy, and Spain; but they all ftoud aloof from his misfortmes : and this government, which had once poffeffed the moft uncontrouled domirion over the minds of men, new fell without a itruggle. General Berthier, at the head of a body of French and Cifalpine troops, encountered no oppofition in his march to Rome, where he overturned the government of the Pope, and proclaimed the fovereignty of the Roman people, with circumftances of wanton infult; which convey a ftriking example of French humanity and French delicacy.
"That the head of the church might be made to
feel with more poignancy his humiliating fituation, the day chofen for planting the tree of liberty on the Ca- Revalution pitol was the anniverfary of his election to the fovereign. ty. Whilit he was, according to cuftom, in the Siftine chapel celebrating his acceffion to the papal chair, and receiving the congratulations of the cardinals, Citizen Haller, the comıniffary general, and Cervoni, who then commanded the French troops within the city, gratified themfelves in a peculiar trinmph over this unfortu. nate potentate. During that ceremony they both en entered the chapel, and Haller announced to the fovereign Pontiff on his throne, that his reign was at an end.
"The poor old man feemed fhocked at the abrupt- \({ }^{323}\) nefs of this unexpected notice, tut foon recovered him-ment of th felf with becoming fortitude ; and when General Cer-l'ope. voni, adding ridicule to oppreffion, prefented him the national cockade, he rejected it with a dignity that flewed he was ftill fuoerior to his misfortunes. At the fame time that his Folinefs received this notice of the diffolution of his power, his Swifs guards were difmiffed, and republican foldiers put in their place."

He was himfelf removed to the territory of Tnfcany, where he refided in much obfcurity, till his enemies, driven from Rome in their turn, thought fit to carry him ftill farther from his capital, to end his days beyond the Alps.

In the mean time, the Roman ftates were converted Roman into a republic after the French model ; excepting that public. the ancient appellations of confuls, fenators, and tribunes, were adopted, inftead of the new names of a Directory and troo Councils (D). Bnt this oftentatious grant of freedom was rendered complecely illufory, by a condi-
(D) The character of a nation, like that of an individual, will not perlaps admit of a fudden and total change. This remark is exemplified in the French; who, even when they affect to affume the ftern manners of Republicans, cannot diveft themfelves of their frivolous and fantaltical turn, and of that fondnefs for pomp and fhow by which they were always diftinguifhed. The following account of the re-eftablifhment of the R.oman Republic, by an author of refpectability, who witneffed the folemn farce, will amply confirm the truth of our affertion.
"That the regenerated Roman people might be conftitutionally confirmed in their newly-acquired rights, a day was fet apart folemuly to renounce their old government, and fwear fidelity to the new. For the celebration of this folemnity, which took place on the zoth of March, an altar was erected, in the middle of the piaz,2a of St Peter's, with three ftatues upon it, reprefenting the French, Cifalpine; and Roman Republics. Behind the altar was a large tent, covered and decorated with filk of the Roman colonrs, furmounted with a red cap, to receive the deputies from the departments who had been fimmoned to affitt. Before the altar was placed an open orcheftra, filled with the fame band that had before been employed to celebrate the funeral honours of Duphot. At the foot of the bridge of St Angelo, in the piazza di Ponte, was erected a triumphal arch, upon the general detign of that of Conftantine, in the Campo Vacino, on the top of which was alfo placed three coloffa! figures, reprefenting the three republics. As a fubftitute for bafs-reliefs, it was painted in compartments in chiara foura, reprefenting the moft diftinguifhed actions of Bonaparte in Italy. Before this arch was another orcheftra.
"The ceremony in the piazra began by the matching in of the Roman legion, which was drawn up clofe to the colonnade, forming a femicircular line; then came French isfantry, and then cavalry, one regiment after another alternately, drawn up in feparate detachments round the piazza. When all was thus in order, the confuls made their cutrance, on foot, from the Vatican palace, where they had robed themfelves, preceded by a company of national troops and a band of mufic; and if the weather had permitted, a proceffion of citizens, felected and dreffed in gala for the occafion, from the agge of five years to fifty, were to have walked two and two cariying olive branches; but an exceffively heavy rain prevented this part of the ceremony.
"Before the high altar, on which were placed the ftatues, there was another fmaller one with fire upon it. Over this fire the confuls, ftretching out their hands, fwore eternal hatred to monarchies, and fidelity to the republic ; and at the couclufion, one of them committed to the flames a feroll of paper he held in his hand, containing a reprefentation of all the infignia of royalty, as a crown, a fceptre, a tiara, \&c.; after whichrthe French troops fired a round of mufketry ; and, at a fignal given, the Roman legion raifed their hats in the air upon the points of their bayonets, as a demonftration of attachment to the new government: but there was no fhouting -
eneh tion annexed to it , that for ten years the French Gene- ral fhould poffers a negative upon all laws and public aets. At firt, however, the conquerors took care to place the government in the lands of the moft refpectable perfons in the flate favourable to democracy. But thefe men finding that they were merely to be employed as tools to plunder their fellow. citizens, for the emolument of their northern mafters, foon re:ounced their odious dignities, and were fucceeded by men of more compliant charaeters, and lefs fcrupulous integrity. The whole public property was feized by the invaders, and contributions were levied without end. The property of the cardinals and others who fled was confifcated, and thofe members of the facred college who remained were thrown into prifons, from which they could only efcape by purchating their freedon at a high price.

When this was done, and Generals and Commiflaries had glutted themfelves with wealch, quarrelled about a juff divifion of the fpoil, mutinied, and difperfed, other unpaid, unclothed, unprovifioned armies from the north, with new appointments, fucceeded; and when at length, even by thefe confitutional means, nothing more was to be obtained, and artifice had exhautted every refource, the malk was put under the feet that had been long held in the hand ; liberty was declared dangerous to the fafety of the republic, the confituted authoritics in. frifeded capable of managing the affairs of the flate, and milimilitary tary law the only rational expedient to fupply theire
place. Thus at once the mockery of confular dignity was put an end to, the fenators fent home to take care of their families, and the tribunes to blend with the people whom they before reprefented. This new and preferable fyltem began its operations with nothing lefs important for the general welfare, than feizirg the whole annual revenue of every eftate productive of more than ten thoufand crowns; two.thirds of every eftate that produced more than five, but lefs than ten; and one half of every inferior annual income.
Even the degenerated Romans could not have fubmitted to all this, or at leaft would not have affifted in forging their own chains, had not the fame means heen employed to eradicate from their minds every moral and religious principle, which had been formerly employed for the fame purpofe in Paris. In order that the fpirit of equality might be more extenfively diffufed, a con-
flitutional demociatic club was inflituted, and held in pre cha the hall of the Duke d'Altemp's pelace. Here the Revomiom new-born fons of freedom harangued each other on the 1748. bleffings of emancipation; talked loudly and boldly a \({ }_{325}\) gaint all conftituted auhority; and even their own M tl ods confuls, when hardly invefted with thit robes, became etal! ! yed the fubjects of cenfure and abufe. The Englifin were the Rompernan held as particularly odious, and a coniftant theme of im- yourh. precation ; and this farce was fo ridiculoufly carried on, that a twopenny fubfcription was fet on foot to reduce what they were pleafed to call the proud Carthage of the North.

If this foolifh fociety had lad no other object ia view than fpouting for each other's annufement, bowing to and kiffing a buft of Brutns which was placed before the roftrum (a ceremony conftantly practiled before the evening's debate), it would have been of liute confequence to any but the idle, who preferred that mode of fending their time; but it liad other ubjects of a very different tendency, more bancful, and more deftruetive to the peace and morals of fociety-that of intoxicating young minds with heterogeneous principles they could not underfand, in order to fuperfede the firft laws of nature in all the focial duties; for there were not wanting men who knew how to direck the folly and enthufiafn of thofe who did not know how to direct themfelves. Here they were taugit, that their duty to the Republic ought cver to he paramomnt. to every other obligation; that the illuftrious Brutus, whofe buit they had before them, and whofe patriotic virtue and juftice ought never to be lolt fight of, furnithed them with the throngeft and moft beroic texample of the fubordination of the deareft ties of humanity in the public good; and that, however dear parental affection might be, jet, when put in competition with the general welfare of fociety, there ought not to be a moment's hefitation which was to be preferred.

This fort of reafoning might perhaps have done no harm to the fpeculative clofet metaphyfician, who might have had neither father, nor mother, nor brother, nor fifter, nor a chance of ever being thrown in the way to reduce his theory to praitice; buit with a people who knew of no other ties but fuch as depended ons their religion and their natural feelings, without hav:ng: been previoufly educated to diferiminate, how far theis reafon might be deluded by fuphittry, or upon what
no voluntary figns of approbation; nor do I believe that there ever was a fhow, in which the people were intended to act fo principal a part, where fo decided a tacit difapprobation was given as on this orcafion.
"After the ceremony was concluded, the French officers, with the confuls and deputies from the departmente, dined together in the papal palace on Monte. Cavallo, and in the evening gave a nagnificent ball to the exnchles and others, their partizans, which was numeroufly attended, yet with an exception to the houfes Borghefe, Santacroce, Altemp, and Cefarini : I believe not one diftinguifhed family was prefent from defire or inclination : but it was now no longer time to accumulate additional caufes for oppreffion ; and he who hoped to fave a remnaut of his property, avoided giving occafion for perfonal refentment. At night the dome of St Peter's was illuminated, with the fame fplendour as was cuftomary on the anniverfary of St Peter's day. This was the fecond time of its illumination fince the arrival of the French, having been before difplayed on the evening of the folemis fete to honour the manes of Duphot, which, though not quite fo opportune, was done to gratify the officers that were to leave Rome on the morrow.
"The day after this federation, the French publifhed the Roman conflitution in form, which was only a repetition of the one given to the unfortunate Venetians, conffiting of 372 articles, and which I think unneceffary to tranfcribe, as it would only be giving what we have already had from time to time in tranflations made from their own." -Duppa's Fournal of the moff remarkable Occurrences that took place in Rome, upon the Subverfion of: the Ecclefiaftical Government in 17.98.

Pro. ch caufes the permanent good of fociety depended, it had Revelution, the mofl direct tendency to generate the worft paffons, 1798. and to annihilate the beft.

Young men were thus initiated to lofe all refpect for their parents and relations, and even encouraged to lodge information againft them, with the hopeful profpeet of being confidered as deferving well, of what they were pleafed to denominate, the republic: and by thus weakening or deftroyirg the bonds of : ffcetion, the way was made fmooth and ealy to the deftmetion of every thing like what, in a tate of civilization, is called character; doubtlefs, in order to prepare them the better to become the faithful agents of thofe whom they were thus educated to ferve.

The moft remarkable curiofities of this celebrated city had already been conveyed to Paris; and as national vanity had now given place to avarice in the minds of the Directory, the remaining monuments of ancient or of modern art, with which Rome abounded, were fold by public auction. Advertifements ( E ) were fent through Europe, offering paffpoits to the natives of countries at war with France, if they fhould wifh to become purchafers; and thus the wealthier inhabitants of the Roman territory not only faw themfelves fubjected to fevere exactions, but they beheld with cruel mortification thofe objects now given up as a prey to vul. gar fpeculation, and difperfed over the world, which fiad folong rendered their city the refort of all narions.

Such was the progreffive conduct of the Great Nation towards an injured and oppreffed people, whofe lappinefs and deareft interefts were its firft care, and to whom freedom and liberty had been reftored, that they might know how to appreciate the virtue of their benefactors, and the ineftimable bleflings of indepertdence.

More fanguinary fcenes were, in the meanwhile, taking place in Switzerland. That country had remained neutral during the contef in which. France had lately been engaged; and had thus protected the weakeft portion of her frontier, while the reit of it was affailed by the combined forces of Europe. The merit of this fervice was now forgotten, and the Directory refolved to render Switzerland one of their tributary ftates. Ambitious nations have in all ages found it an eafy matter to devife apologies for invading the ternitory of their neighbours. The wealthier branches of the Swifs confederacy were in general governed by hereditary ariflocracies. Some of the cantons had no government within themfelves, but were the fubjects of neighbouring cantons. In confequence of this circumftance, and of the contending privileges of different orders of men, popuiar infurrections were more ficquent in Switzerland than in any country in Europe, though none was more equitably governed. When an infurrection took place in one canton, its government was frequently under the neceffity of foliciting the aid of the government of an adjoining canten, or even of the neighbouring munarchs
of France or Sardinia, to enable it to fubdue its own rebellioue fubjects. A dangerous precedent was thus eftablifhed; and as the Trench kings had fomerly interfered in favour of the rulers, the republican Directory now interfered in favour of the fubjects. The can ton of Berne was fovcreign of the territory called the Pays de Vaud. In this diftrict difcontents had always exifted ; and an infurrection, under the countenance of the French Directory, broke out towards the end of the year 1797. The government of Berne faw the dangerous nature of its own fituation; and on the 5 th of January iffued a proclamation, commanding the inhabitants of the Pays de Vaud to affemble in arms, to renew their oath of allegiance, and to reform every abufe that might appear to exift in their government. A commiffion was at the fame time appointed by the Senate or Sovereign Council at Berne to examine all complaints, and to redrefs all grievances. The proceedings of this commiffion, however, did not keep pace with the popuiar impatience; and the infurgents began to feize the ftrong places in their country. The government of Berne now refolved to reduce them by force, and fent troops againlt them; but their commander Weifs appears to have acted with much hefitation, if not with treachery. In the mean time, a body of French approached under General Menart. He fent an aide de camp with two huffars, with a meffage to General Weifs. On the return of the meffengers, an accidental aliray took place, in which one of the huf. lars was killed. This was magnified into an atrocious breach of the law of nations. "The French advanced; and by the end of January obtained poffeffion of the whole Paye de Vaud. Still, however, the government of Berne attempted to preferve peace, while it endeavoured to prepare for war. The foldiers who had killed the French huffar were delivered up, negociations were begun, and a truce entered into with Ceneral Brune, who fucceeded Menard in the command of the Freech troops in the Pays de Vaud. As internal commotions were breaking out in all quarters, an attempt was made to quiet the minds of the people, that they might be induced to unite againft the threatened invafion. Fifty-two deputies from the different diftricts UJ 329 were allowed to fit in the Supreme Council of Berne, conduct of and a finilar meafue was adopted by the cantons of Zurich, Lucerne, Fribourg, Soleure, and Schaffhaufen. An army of 20,000 men was at the fame time affem. Lled, and intrufted to the command of M. d'Erlacl, formerly field-marthal in the French fervice. But difaffection greatly prevailed in this army, and the people could not be brought to any tolerable degree of union. The French knew all this, and demanded a total change of government. M. d'Erlach, dreading the increafing tendency to defertion among his troops, requefted leave to diffolve the armiftice. It was granted by the govern. ment, and immediately recalled. But the French now refufed to negrociate; and on the 2 d of March, General Schawenberg, at the head of 13,000 men, entered Soleure.
\(\therefore\) (E) A copy of an advertilement, iffued on this eccafion by what was calted The Adminjlration of Finances and Custributions of the Fienith Republic in Italy, is to be found in Nicholfon's Journal of Philofoply, Chemiflry, and the airts, for May 1798. The advertifement is dated at Rome, 28th Feb. 1798. A copy of it was fent by Hubert, the agent of the Fresich adminiftators, to Mr Trevor the Bwitih minifter at Turin, and by him was, trav:finited to England.

\section*{R E V}
rench Soleure. Friburg was afterwards reduced by Brune, olution,and the Swifs army retreated. The government of Berne was in coniteruation, and decreed what was called the landflburn, or rifing of the people; which, in cafes of emergency, was authorifed by their ancient cultoms. The people accordingly affembled; and their firt aft was to diffolve the government, and to offer to difmifs the army, on condition that the French troops fhould proceed no farther. This offer was refufed, unlefs a French garrifon flould be received into Berne, and the invaders continued to advance. The regular troops under M. d'Erlach were reduced by defertion to 4,000 . The riling of the people had indeed fupplied him with numbers, but there was no time for arranging them. On the 5 th of March he was attacked, and driven from the pofts of Newenbeg and Favenbrun. He rallied his troops, however, at Uteren, where they made a fland for fome time. They renewe! the conteft at Grauholiz without fuccefs, and were driven from thence about four miles farther to the gates of their capital. Here the Swifs army male a laft and bloody effort. Being completely routed, they murdered many of their officers in defpair, and among others their commander M. d'Erlach. The flanghter on both fides is fai! to have been nearly equal ; but the French fucceeded in obtaining peffetton of Berne by capitulation on the evening of the day on which thefe battles were foughit. Upon the capture of this city, the other more wealthy and populous fates fubmitted to the French; but the poorer cantons, who had leatt to lofe, made a terrible effort in defence of their fmall poffeffions, and the independence of their country. Tiney even at firt compelled Schawenberg to retire with the lofs of 3000 men ; but were at laft overpowered by the fuperior numbers and military fkill of the French army. Switzerland was treated as a corquered conntry. Its public magazines were feized by the French, heavy contributions were levied, and a new conftitution, in imitation of that of France, was impofed.

While the Directory continued to encroach upon the independence of other nations, they were not likely to refpect the freedom of their countrymen at home. In the month of April, a third of the leginature was changed. Fiancis de Neufchateau went out of the Directory by ballot, and Treilhard was chofen in his ftead. The Directory had made great efforts to influence the elections in favour of their friends, but with little fuccefs. They prepared therefore to preferve the legifature in fubjection to them by a new violation of the conflitution. On the 2d of May they complained to the Council of Five Hundred of the plots of anar. chifts and royalits; by which they alleged that the elections had in many places been made to fall on men lio. Itile to the Republic. On the 7 th a committee made a report upon this meffage, and propofed that the proceedings of many electoral affemblies flould be totally or partially annulled, according to the characters of the perfons they had chofen. General Jourdan, and fome others, ventured to oppofe this plan as utterly inconfiftent with the freedom of election, and as proceeding upon alleged intrigues of confpirators againft the Republic, while no confpiracy had been proved to exitt. But the majority agreed to the propofal of the committee, and arbitrarily annulled the whole elections in fix or feven departments, befides the particular elections of a great number of individuals.

The Direfory now carried into effect the moft fata! of all their projects, that of fending a powerful army to the caft to feize upon Egypt, and from thence to attack the empire which Britain has acquired in India. The treaty with Auftria had no fooner been figned at Campo Formio, than the 1)irectory excited the expec tation of France and of a!l Europe, by loudly proclaim. ing their determination to invade Great Britain. They fent troops into their own weftern departments, called them the Army of England, and appointed Bonaparte their commander in chief. This officer, in the mean time, had refided during the winter at l'aris. Here he feems to have endeavoured to guard againtt the jealoufy of goverument, and the envy of indiviłuals, by pafing his time in retirement, and affuming the character of a man of Letters. He procured himfclf to be clected a meniber of the National Inffitute; but fo feldom did he appear abroad, that when he attended forme of its public- littings his perfion was altogether unknown to the fpectacors. Greedy of renown, but aware that it ultimately depends upon the labours and the approbation of the learned, he never falled, when called into military fervice, to remind this order of men of his a!liance with them, by addling to his name at all proclamations and difpatches the defignation of Neember of the National Infitute.

Whether the expedition to Egypt was now fuggelled by Ponaparte himfelf, or whether it was not a fnare by which the prefent rulers of France impofed upon the vanity of an enterpriling young man, to enable them to get quit of him and his veteran army, is not known. It is very poffible, however, that Bonaparte might neither be the devifer nor the unconfcious victim of this plan ; but that he might account himfelf more fafe a. broad, upon the mon hazardous expedition, than expofed at home to the malice of a government that had become jealous of his reputation, and was by no means ferupulous in its conduct.
The projected invafion of Erypt was conducted with Prepard much fecrecy. The world was amided with tales of tion for ie monflrous rafts to be conftuctet to convey the army of cwituried Encland over into Britain. To favour thie deception, with feBonaparte made a journey to the weftern coall. In th? mean time, the fleet was preparing at Toulon, and troops affembling in its neighbourhood. When all was in readinefs, Bonaparte embarked with 40,000 of the troops that had fought in Italy. On the 9th of June he arrived at the ifland of Malta, and contrived to quarrel with the Grandmafter, becaufe he refufed to admit fo large a tleet all at once into his ports to water. The Frenct General immediately landed his troops in dif. ferent quarters, and endeavoured to reduce the ifland. The knights were divided into factions. Many of them, as is now well known, were of the order of Illuminas TI, and of courfe prepared to act the part of traitors. After making a very feeble refiftance, the Grandmafter Conquicft of propofed a capitulation; and thus was treacheroufly Ma.ta. furrendered, in a few days, a fortrefs which, if defended by faithful troops, might have held out for as many weeks againft all the forces of the French Republic. Bonaparte, after leaving a garrifon of 4000 inen in the ifland, failed on the 2 Ift of June for Alexandria.
In the mean time, Rear-admiral Nelfon, who, in the ftation of Commodore, had fignalized himfelf in a very high degree under Lord St Vincent, had been difpatched in queft of him from the Britifh fleet, which ftill

French Revolution, \(1799^{\circ}\) Tlans in lans an expedicion (1) Fgype and India.

French blockaded Cadiz. Not knowing the object of the Revolution, Prench expedition, the Britifh Adriral failed finft to

Naples; and having there been informed of the attack upon Malta, he directed his courfe to that ifland. By the time he arrived there, however, Bonaparte had departed. Conjeeturing now that Alexandria might be the deflination of the French troops, he failed thither; but they had not been feen in that quarter, and he therefore went eagerly in fearch of them to other parts of the Mediterranean. Bonaparte, is the mean while, inftead of fteering in a direct line for Alexandria, had proceeded fowly, with his immenfe train of nearly 400 traufports, along the coaft of Greece, till he arrived at the eaftern extremity of the ifland of Candia. Here he fuddenly turned fouthward; and in confequence of his circuitous courfe, did not arrive at the coaft of Egypt till Admiral Nelfon's fleet had left it. He landed his troops; and on the 5th of July took by ftorm the city of Alexandria. The inhabitants defended themfelves very defperately, but without fkill; and for fome time a fcene of barbarous pillage and maffacre enfued. The tranfports that had conveyed the army were now placed within the inner harbour of Alexandria, and the flips of war under Admiral Brueys caft anchor in a line clofe along the fhore of what proved to them the fatal Bay of Aboukir. Tlie army proceeded to the Nile, and aícended along the banks of that river, fuffering great hardhips from the heat of the climate. They were met and encountered by the Mamalukes, or military force that governed Egypt; but thefe barbarians could not refift the art and order of European war. Cairo was taken on the 23 d of July. On the \(2 ;\) th another battle was fought; and on the 26 th the Manalukes made a laft effort in the neighbourhood of the celebrated pyranids for the prefervation of their empirc. Two thoufand of them were killed on this occation, 400 camels laden with their bargage were taken, along with 50 pieces of camion.

A provifional government was now eftablifhed in Egypt. Proclamations were iffued in the Aralian tongue, declaring that the French wer: friendly to the religion of Mahomet, that they ackaowledged the authority of the Grand Signior, and had only come to punifh the crimes committed by the Mamalukes againft their countrymen trading to Egypt. Thus far all had gone well; but on the Ift of Auguf the Britifh fleet appeared at the mouth of the Nile; and the fituation of the French fleet having been difcovered, Admiral Nelfon prepared for an attack. In number of thios the fleets were equal ; but in the number of guns and weight of metal the French fquadron had the fuperiority. It was drawn up, too, in a form which fuggefted to its ill fated commander the idea of its being invincible; but remaining at anchor, the Britifh Admiral was emabled, by running fome of his fhips between thofe of the enemy and the fhore, to furround and engage one part of their fleet, while the reft remained unemployed ande of to fervice. In execating this plan of attack, a 13 ritifh fhip, the Culloden, sun aground ; but this accident only ferved as a beacon to warn the others of the fpot that ought to be avoided. The battle commenced at funict, and was continued at intervals till daybreak. At laft, nine fail of the French line were taken; one flip
of the line was burned by her own commander; a fri-. Frenen gate was burned in the fame manner, to prevent her be-Revolution ing taken. The F'rench Admiral's fnip L'Orient took fire, and blew up during the action, and only a fmall number of her crew of 1000 men efcaped deftruction. Two Erench fhips of the line and two frigates were faved by a timely fight ( F ).

No naval engagement has in modern times produced conlequen fuch important confequences as this. The unexampled ces of his military efforts made by Frànce had gradually diffolved victoryo the combination which the princes of Europe formed againft ber. By the train of viftories which Bonaparte had gained, the houfe of Auftria, her moft powerful rival, had been humbled and intimidated. The whole continent looked towards the new Republic with confterination; and when the Directory feized upor Rome and Switzerland, none were fomid hardy enougk to interpofe in their favour. The current of affairs was now almoft inflantaneoufly altered. Europe beleld Bonaparte, with his invincible army, exiled from its fhores, and thut up in a barbarous country, from which the triumphant navy of Britain might for ever prevent his retnrn. The enemies of France could not beforehand have conceived the puffibility of the event which was now realifed; and the hope was naturally excited of being able to form a new and more efficient coalition againt a government which had fo grofsly abufed the tumporary profperity it had enjoyed. The northern powers began to liften to the propofals made to thera by Great Britain for commencing loifilities anew, and the Italian flates prepared to make another effort for independence. The court of Naples in particular open* ly avowed its joy on account of the recent deffruction of the French fleet. The king himfelf put to fea to meet Admiral Nelfon on his return from the Nile. Illuminations took place in the capital, and vigorous preparations were inade for war. The Grand Signior, who had poffeffed of late little authority in Egypt, and might perhaps lave been induced to relinquifh his claims on that province rather than engage his decaying empire in war, now entered into clofe alliance with Britain, and engaged in hoftilities againft the Frencll. Tippoo Sultan had fripulated for the aid of a French army againt the Britifh in India; hut Bonaparte, on taking pof feffion of Suez and the other Egyptian ports on the Red Sea, found no fhipping there fit to tranfport his army to the Iudiarı peninfula. Inftead of proceeding therefore upon any fplendid fcheme of farther conqueft, he was compelled to remain in bis prefent fituation, and to contend for exittence againit the whole force of the Ottoman empire.

The French at this time did not venture to fend forth Rebelifo any large fleet upon the ocean; but wherever their \({ }^{\text {in }}\) Irelau fmaller iquadrons appeared, the fortune of Britain overpowered them there no lefs than it had done in the Mediterranean. They had long promifed aid to the difaffected party in Ireland ; but weary of fruitlefs expectation, the Irifa had during this fummer broken out into rebellion, without waiting the arrival of the troops whom the Directory had engaged to fend to their affiftance. While the rebellion was at its height, and although the infurgents for fome tine occupied the fea port of Wexford, the French did not arrive. Afterwards,

\section*{R E V}
remeh, wares, however, when the rebellion sad been totally 8olutivi, frubdue?, they atten:pted to clude the vigilance of the \(\underbrace{}_{34 \mathrm{I}}\) Britith fleet, and to land men in fmatl parties. On the biy fup lala, at the ted ! y party might have been dangerous had it arrived a monti1 earlier; and it aftually prodiced very ferious alarm. It confifted of men felected with great care, and capable of enduring nuch fatigue. 'They were joined by a few of the molt refolute of the difcontented Irifh in the :cighbourhood, and fpeedily defeated General Lake, who adranced againft them with a fuperior force, takirg fiom him fix pieces of camon. They next marched in different directions, for the purpofe of raifing the people, and maintained their ground it the country during three weeks. Finding, however, that he was not feconded by additional troops from France, that the rebellion in Ircland had been fully fubdued, and that 25,050 men under Lord Cornwatlis were clofing round liim, Humbert difmiffed his Irifh affociates; and four days thereafter, having encountered one of the Britifh columns in his march, he laid down his arms. Now, whes it was too late, the Directory was very active in fending troops towards Ireland ; but all their efforts were defeated by the fuperiority of the Britilh navy. On the 12 th of OStober, Sir Jolin Borlafe Warren took La Hoche, a hhip of 84 guns, and four frigates, attempting to reach Ircland with nearty 3000 men on board. The other flips belonging to the French fquadron, which conveyed 5000 men in all, contrived to make their efcape by failing round by the north of the ifland. On the 2oth of the fame month another frigrate bound for Ireland was taken; and the French finding that the fea was completely occupied by the Britif fleet, were at laft compelted to defift from their enterprife.

Ever fince the treaty of Campo Formio had been concluded, a congrefs of minitters from the French Direliory, and from the German princes, had been negociating at Raftadt a treaty between France and the empire., As thefe negociations terminated in nothing, and were tedious and uninteretting during their progrefs, it is unneceflary to enter into a detail of the fleps by which they were condukted. The intended refult of them had been previoufly arranged between the Emperor and the Directory in the fecret convention of Campo Formio, which has been already mentioned. That the articles of this convention might be concealed, the French minifters at Raftadt formally brought forward their propofals in fucceffion for the difcuffion of the German deputies. The French demanded that the Rhine mould be the boundary of their Republic. The Germans refifted this. References were made to the diet of Ratifbone, and long difcuffions and negociations took place among the different princes. When it was found that little was to be expected from the protection of Auftria, the German deputies at Raftadt were inftructed to offer one half of the territory demanded. This offer was refufed, and new negociations rook piace. The other half was at laft yielded up, and a long difcuffion commenced about the debts due by the ceded territory, which the French refufed to pay. The tolls upon the river, and upon the rivers flowing into the Rhine, alfo gave rife \(t \mathrm{t}\) much altercation. It was even a matter of no fmall difficulty, after all, to de-
termine the precife boundary of France; whether her Freech territory flould exterd to the left bank, the right bank, Revotution, or the thalweg, that is, the middle of the navigable \(\underbrace{57 y 8}\). channel of the river. It became alfo a queftion how thofe princes nught to be indemnified who tott their revenues or territorics by the new acquilitions of France: and it was at length agreed that thity hould rective portions of the eceleliaftical eflates in Germany.

Thefe difcuffions, conducted with endedef formality and procrattination, ftill occupied the congrefs at Raftadt; but it now became gradually more probable that no treaty would be conctuded at that place. Auftria pieparzabegan to ftrengthen her armics in all quarters. Ruffia, tions for that had hitherto avoided any active interference in the war con the conteft, placed a large body of troops in Britinh pay, and fent them towards the German frontiers. The king of Naples avowedly and eagerly prepared for war. This impatient monarch, refolving to attack without delay the French troops who occupied the Roman territory, procured General Mack and other officers from the court of Vienna to affume the command of his army. Without waiting, however, till Auftria fhould commence the attack, he rafhly began the war alone and unaided, excepting by the Britifh flect, and thus drew upon himfelf the whole force of the French Republic. The Directory did not fufpect fuch imprudent conduct on the part of this prince ; and accordingly, when General Mack entered ihe Roman territory, at the head of 45,000 men, the Irench troops in that quarter were altogether unequal to the contell. A French ambaffador ftill refided at Naptes when this event took place, and war was not dectared. When the French General Chanpionnet complained of the attack made ufon his potts under thefe circumfances, he was informed in a letter by General Mack, that the king of Naples had refolved to take poffeffion of the Roman territory, having never acknowledged its exiftence as a Republic ; he therefure required the French quietly to depart into the Cifalpine ftates; declaring, that any act of hoftility on their part, or their entrance into the territory of Tufcany, would be regarded as a declaration of war. Championnet finding himfelf unable to refift the force 345 now brought againt him, actually evacuated Rome. He The Nea. left, however, a garrifon in the caftle of St Àngelo, and po'itans. endeavoured to concentrate whatever troops he could tafe polhaftily collect in the northern extremity of the Roman Runie. tlate. Towards the end of November, General Mack entered Rome without oppofition.
When thefe events came to be known at Paris, war was immediately declared againtt the king of Naples, and alfo againt the king of Sardinia. T'his laft prince had made no attack upon France ; but he was accufed by the Directory, in their mefliage to the Councils, of difaficition to the Republic, and of zuifsing to join the king of Naples in his holtile efforts. This accufation could not well be falfe. From the period of Bonaparte's fuccefsful irruption into Italy, the king of Sardinia had felt himfelf placed in the molt humiliating circumHances; his moit important fortreffes were occupied by the French; they levied in his country what contributions they thought fit ; and when they recently required him to receive a garrifon into his capital, he found limifelf unable to refitt the demand. Even now, \({ }^{3} 346\) when they performed the ufelefs ceremony of declaring of the fing war, he could make no effort in his own defence, and, f Sardinis.

Vrench quietly gave them a formal refignation in writing of Revolution, his whole continental dominions, confenting to retire to 1798. port from the immodiate co-opcration of Autrian
quered by tronds. In their hopes from this quarter, however,
French. the ifland of Sardinia.
Iri the mean time, the conteft with Naples was foon decided. The French on their retreat were much haraffed by the people of the country. The Neapolitan troops regarded them with fuch animofity, that they fcarcely obferved the modern rules of war towards the prifoners who fell into their hands. Even their leaders feemed in this refpect to have forgotten the practice of nations; for when General Bouchard, by order of General Mack, fummoned the caltle of St Angelo to furrender, he declared, that he would confider the prifoners of war and the fick in the hofpitals as hoftages for the conduct of the garrifon; and that for every gun that fhould be fired from the catte, a man flould be put to death. It cannot well be imagined that the Neapolitan officers would have acted in this vehement manner, had they not expected countenance and fupthey were completely difappointed. Mindful of her recent calamities, and attentive only to her own aggrati- difernent, Auftria: feems fill to have expected more from neguciation than from war, and the territory of Naples fuon fell into the hands of the French. Such indeed was the terror of the French name in Italy, or fuch was the difaffection or cowardice of the Neapolitan troops themfelves, that they were beaten by one-fourth of their number in different engagements, at Terni, Porto Fermo, Civita Caltellana, Otricoli, and Calvi. At the commencement of the contef, a body of Nea. politans, with the affflance of the Britifh flect, had been landed at Leghorn, for the purpofe of taking the French in the rear: but they, difregarding this attempt on the part of fuch an enemy, preffed on towards Na . ples. By degrees, General Mack's army being reduced by the refult of the battles which it fought, and by defertion, to \(12,000 \mathrm{men}\), he found it neceffary to advife the king and royal family of Naples to take refuge on board the Britifh fleet. They did fo; and arrived at Palermo, in Sicily, on the 27th of 1)ecember, in the Bricifh Admiral Lord Nelfon's Mip. Geneial Mack, in the mean time, requefted an armitlice, to afford an opportunity for making peace; but this was rcfufed. Being driven from Capua, which is the laft military pof of any itrength in the Neapolitan territory, and his life being in no fmall danger from the difaffection of his own treeps, he at lalt found it necerfary to feek for fafety, by furrendering limfelf, along with the efficers of his ftaff, to the French General. The governor of Naples, in the mean time, offered to the lirench a contribution in money, if the commander in chief would confent to avoid entering that city. The offer was accepted, and the invading army remained at Capua. General Serrurier, on the 28 th of December, at the head of a column of French troops, expelled the Neapolitans from Leghorn, and took polfeffion of that place. So far as the efforts of regular armies are to be confidered, the war might now therefore be regarded as brought to a termination; but the French had fpeedily a new and unufual enemy to contend againft.
899.

From the mildnefs of the climate, and the fertility of the foil, human life can be fuftained in the fouthern parts of Italy with fewer efforts of induftry than in al.
moft any other country in Eurode. Hence ariies a French general propentity to idlcnefs, which is increafed by the Revolution numerous charitable inflitutions to which the Roman Catholic reigion gives rife. In the city of Naples there liad long exited a body of perforis under the denomination of Tazzaroni or Deggars, amounting to the incre dible number of from thisty to forty thoufand men, , painf the who did nothing, and fiblifted merely by charity, or by fuch fhifts as occafionally occurred to them. One of thefe frequently was the inenacing the flate with an in. furrection, in cafe their wants were not isfantly fupplied; which ufually drew from a feeble adminil!tration very liberal diftributions of money and provifions. On the prefent occafion they demonftrated abundance of loyalty; but the king had thought fit in avoid entruf. ing his fafety to fuch defenders. During the confufoon which followed the fight of the court and the ap. proach of the French army, the Lazzaroni ticame mantinous. They heard that the French abolificil, whereever they came, all thofe monatteries and other religious eflablifinments which are the great fources of public clarity. 'ihe Lazzaroni, thercfore, conceived the moft violent hatred againft them, and argainft all who were fufpected of favouring opinions hoffile to toyal government. In the beginning of Jannary they began to fhew fymptoms of diicontent, and in a few days broke out into open infurrection. The inembers of the goveinment left by the liing, overcome by habitual terror of the Lazzaroni, confulted mercly their own personal fafety, and made no effort to preferve the public tranquillity. Prince Militorai lad gained conideralle applaufe on account of his vigorons defence of Capua againft the French. 'The Lazzaroni therefore elected him their cominander in chief; but the attempted in vain to reflrain their violunce and love of plunder. They declared hoftility againft the French and all the advifers of the armifice. They broke open the prifons, and put to death all thofe who were coufined on account of political offences againft the royal government. They next fpread themfelves over the city in Their 349 fearch of thofe perfons whom they confidered as fa-tiges. vourable to the invaders, and committed murder and robbery in all quarters, concluding ly burning the Loufes of thofe accounted chifaitected. An attempt was made by a confiderable body of the inhabitants, who thought themfelves in the greatell danger, to refift their fury, by fortifying the convent of the CeleRine, and retiring thither; but the Lazzaroni, after eacountering the tire of canmon and of mufketry, ficceeded in ftorming the place, and deffroyed all who had taken efuge there. Their power and their fury were now cqually boundlefs, and the city became in many guarters a feene of maflacre and pillage. Prince Militorni, therefore, went to Capua, and requefted Championnct to refcue Naples from utter ruin by occupying it with his army. For this purpofe it was arranged, that a column of Frencl troops fhould fecretly advance by a circuitous march, and fuddenly enter the city from the oppofite quarter. Before this plan could be fully executed, the Lazzaroni had adopted the daring refolution of attacking the French within the fortifications of Capua. Accordingly two thirds of them marched out upon this entetprife, and fpent the 19 th and 20th of January in attempting to take Capua by affault. Multitudes of thefe men here perifhed by the artillery of the place; for the French,

\section*{\(R E V\)}

French, to favour the capture of Naplea by the party , that had been fent eaftwand for that purpofe, avoidec! making any fally, and remained upon the defentive. The Lazzaroni at Capua, however, having learned on the 21 it that a French column liad marclied to Naples, and approached the gates, fuddenly returned to the affittance of their brethren in the capital. They were clofely purfued by the French; but they had leifure, neverthelefs, to barricade the ftreets, and to form themfelves into parties for the defence of different quarters. A dreadful and fanguinary conteft now enfued, which lafted from the morning of the 22 d to the evening of the 23 d of January., The Lazzaroni, with fort peafants who had joined them, difputed obtinately every foot of ground; and by the energy which they difplayed, caft a fevere reproach upon the feeble and unikilful government, which had not been able to direct in a better manner the courage of finch men. At length, after having been gradually driven from Itreet to itreet, the Lazzaroni rallied for the lait time at one of the gates of the city, where they were nearly exterminated. The inhabitants rejoiced on account of their own efcape from immediate ruin; and while the French armics found themfelves become odious in all the other'countries which they had, entered, they here found themfelves, from the peculiar circumiltances of the cafe, received with unfeigned welcome, in a city which holds the third place in population and fplendour among the capitals of Europe.

This may be regarded as the laf triumph enjoyed by the Directory. Whe confequences of their conduct were now gathering fatt around them. They were defervedly unpopular at home; not only from the violations they had offered to the conftitution of their country, but alfo from the manner in which they condueted public affairs in detail. They fet no bounds to their profulion, or to the exactions with which their agents vexed the conquered countries. Championnet, afhamed of the cxtortions of which the commiffaries of the 1)irectory were guilty, attempted in Italy to reftrain them; and the confequence was, that, upon the complaint of the commiffary Taypoult, he was deprived of his command, and thrown into prifon. Scherer, the minifter of war, was appointed his fucceffor. Under him the rapacity of the agents of government, and the cm . bezolement of the public ftores, was carried to its rheight. The numbers of the armies were fuffered to decline, that the Directory, the commiffaries, and the ge. nerals, might become rich. Thus the ftate was left totally unprepared agaiaft the ftom which was now ra. pidly gathering from abroad. Still, however, Frarce was feared by the neighbouring nations, to whom the prefent ttate of her internal affairs was obfcurely known. Though an army of 45,000 Ruffians had advanced to the aid of Auftria, yet that Cabinet hefitated to declare war. Pruffia was eagerly folicited by 13ritain to take up arms againft France, and large pecuniary aid was

\section*{\(R E V\)}
offered; but Sieyes, the Directory's ambanador at Rer- French lin, artfully contrived to defeat this negociation, and to Revolution, counteract the unpounlanity of his country in Germa. \(\qquad\) 1799. ny, by publifhing the fecret convention at Campo Fornio, which we have already mentioned. This treaty demonttrated fo clearly to the German princes the utter unco:sern with which their independence and their interefte ivere regarded by the head of the cmpire, that no Iteady co operation with Asilria could henceforth. be expected from them. The greater number of them, therefore, refolved to maintain their neutrality under the protection of Pruffia.

On the ad of January, the French nininers at Rr:ftadi prefented a note to the congrefs, in vilicis they intimated, that the entrance of Rilifian troops into Germany, if not refited, would be regarded by theirn as a declaration of war. Some negociation took flace ia confequence of this note, but hos latisfuctory anfifer was returned. On the 2oth of that morth, the Arong furtrefs of Threnbreittein funtendered, after having remained uruber blockade fince the conclufion of the treaty of Campn Formio. By the poffeffion of this place, and of Mientz and Dufillurf, France was now rendered very formidable on the likine. Is the pollefted al fo the itrong countly of Siwitzerland, and all the fortified places of Italy, the was well prepared, not only for defence, but for active operation; for it is now know 11 , that the conferences of Ralladt were purpofely protraceed, by orders from the 1)irectory, till the French armies thould be ready to take the ficll with advan. tage againft an encory whofe conduct betrayed the mof culpable tardinets. sit this time Jourdan commanded War \(35^{2}\) on the Upper Rhine from Mentz to Huningen; Mal-newed ona fena occupied with an army the eaftern frontier of Swit- the Rhines. zerland towards the Grifon country; Scherer was commander in chief in Italy; Morcau acied as gereral of a divilion under him; and Macdonald commended the troops that coccupied the territory y f Ronse and Naples. But thefe armies that leept in fehjection, and were now to defend fo many culntilies, fearcely amounted to \(170,00=\) men in all, and were far outnumbered by the armies which Anitria alone, withont the aid of Ruffid, conld birg into the field. The Directory, however, coufiding in the unity of its own plans, in the undecided politics of the conrt of Vienna, and in the confequent fow movements of the Imperial armies, was eager to renew the war; and the two Councils, on the 13 th of Miasch, declared lirance to be at war with the Emperor of Germany and the Crand Duke of Tufca1:y. The war, however, had already been begun. On the ift of March Jourcian croffed the Rhine at Strafburg, and occupied feveral ftrong pofitions in Swabia. Manheim was taken, and Philipfourg fummoned to furrender by Bernadotte ( C ), while St Cyr entered Stuto gard. On the \(41^{\circ}\) of March the Auftrians croffed the Lech, under the command of the Archduke Cliarles, to oppofe this army. Maffena advanced into the territory
(G) This fummons was conceived in very extraordinary terms, and cannot be accounted for but upon the fuppofition that Bernadotte believed the Auftrian officers infected with French principles. He calls upon the commander of the fortrefs to furrender without refiftance, and thus violate the truft repofed in him by his fovereign. He tells him, that a difcharge of his duty would produce the defection of bis officers and men. He warns him of the folly and danger of leading troops to action againft their will; and, laftly, be threatens him with vengeance if be fhould dare to refj?!

French of the Grifons; and furprifing a ftrong body of Auf. Revolution, trians, touk them all prifiners, together with their Ge-

353
Anil in Switzertand. neral Auffenburgh, and the whole of his flaff, after a defperate refiftance under the walls of Coire. The re duction of the Grifons was the confequence of this victory.

But in order to complete the plen of the French, which was to effeet a junction with their two armies, that of Meffena in Switzerland with that of fourdan in Germany, it was neceflary to carry the important pout of Feldkirch, which was occupied by the Aufrian General Hotze, whofe line extended from the frontiers of the Grifons, to the north-eaft by the Vorelberg, to the eaftern extremity of the Lake Conftance. Vigoroufly repulfed in his firft attack, Maffena renewed it, five different times, with frefh forces, and increafed impetuofiry. But all could not avail againt the fteady bravery of the Auftrians, who drove back the affailants with immenfe flaughter. The French, however, being in poffeflion of the Grifons, the invafion of the Engadine, and the county of Bormio, by a divifion of the army of Ftaly cantoned in the Valteline, under the orders of General Cafabianca, was facilitated. The Auftrians, too weak in that quarter to refift them, retreated into the Tyrol, whither they were purfued by the Fiench, who Sorced fome of the defiles by which the entrance of that country was defended, and extenced their defructive incurfions as far as Glurenz and Nauders.

Meanwhile the van guard of the main army of the Imperialifts pufhed forward to meet the enemy. On the 2oth of March it was attacked by Jourdan, who diove in the outpofts; but on the following day that general was himfelf attacked in the centre of his army, driven from his pofition, and compelled to retire during the night to Stockach. Both parties now prepared for a decilive engagement. On the 24 th, the Archduke encamped before Stockach, with his right wing towards Nellenburg, and his left near Wallenweis. On the \(2 j\) th, at day break; the French army began the attack. They directed their chief efforts againft the right wing of the Auftrians commanded by General Meerfeldt. The battle was long and obrinate From five o'clock in the morning till palt one of the asternoon, its termination remained extremely doubtful. The French fucceeded in their attempt againft General Meerfeldt. His pofition was forced, and he retreated into a wood between Lip354 tingen and Stockach. Here he renewed the combat The French without fuccefs. He was gradually driven to the ex. are defeat- tremity of the wood, thongh it is a German mile in \({ }_{b i a_{5}}^{e d}\) in Swa- breadth. The left wing of the Auftrians, however,
had in the mean time maintained its ground, and reinforcements were fent from it to General Meerfeldt. With the affiftarice of thefe he at laft-fucceeded in making a ftand, and even obliged the French to retire in their turn. At lenyth, about two o'clock, the French found it neceffary to withdraw from this quarter. The battle, however, was continued in different points till night came on. The French remained upon the ground where they had begun the attack, and they even retain ed 4000 prifoners whom they had taken during the various movements of the day. The refult of the battle, upon the whole, however, was fatal to their affairs. 3 heir lofo was fo great, and the fuperiority of the Aus. frians fo manifeft, that Jourdan dared not to hezard another engagement. On the following day he retired
to Weiller near Dutlingen ; and finding his army alto. gether unequal to offentive operations, he fent back one part of ir to cover Kehl and Strafburg, while he withdrew with the other towards Switzerland. This event compelled Maffena, who was preffing upon ' Yyrol and the Engadine, to return to the defence of Switzerland. He was immediately intrufted with the chief command of the troops in this quarter, in the room of Jourdan, who was removed. The Auftrians continued to advance in every direction, and immediately occupied the whole of the right, or German fide, of the Rhine, from the lake of Contance to Mentz.

In Italy the fuccefs of the A uftrians was equally con- And in fpicuous, not withitanding the treachery of the French ltaly. in attacking them before the expiration of the truce. The attemft of the latter to force the advanced pofts of the former, on the 26 th of March, at Santa Lucia and Buffelango, was rendered abortive ; and at Legnago, the Aultrian general, Kray, obtained a complete victory, and compelled them to feek protection under the walls of Mantna. On the 5 th of April, the Auftrians again attacked them in their pofition at Memiruolo, which lies on the road from Mantua to Pefchiera, and compelled them, after an obftinate conflict, once more to retreat. 'The lofs of the French in thefe different actions was undoubtedly great; but it is probably overrated at 30,000 men killed, wounided, and taken.

The fuccefs of the Auftrians, however, was not cheaply purchafed. Scherer, who commanded the French army, gained over them, at firft, fome advantages, which, had he known how to improve them, might have given a different turn to the tide of affairs. One divition of his army had actually forced the AuAtrian pofts on the 26 th of March, and taken 4050 prifoners; but the other divifion being repulfed, he withdrew his troops from their advanced pofition, and thus relinquifhed the advantage which he had gained. Even on the \(s\) th of April, Moreau's divition performed prodigies of valour, and took, it has been faid, 3000 prifoners; but from the injudicious difpofitions which had been made by Scherer, that general was not fupported, and the victory of the Auftrians was complete. Kray now quickly drove the French from the Mantuan, and compelled them, after having fuftaired new loffes, to relinquifh their ftrong holds on the Mincio and the Adige, and to retreat to the Adda.
- On the banks of this river, rendered remarkable for the dear bought victories which Bonaparte had obtained at the bridge of Lodi, the French general Moreau, \(M\) real to whom the Directory had given the chiff command fortifies b of their army, - prepared to make a vigorous defence. camp. The military talents of this man had been rendered un. queftionable by his celebrated retreat through a hoftile country, and before a vifforious army ably commanded. On the prefent occafion he did not belie his former character. Nothing that could give conrage or confidence to his troops was neglected. Entrenchments were thrown up wherever the river was confidered a3 pafíable; and a fituation, remarkably ftrong by Nature, was ftrengthened by every means which art could fupply.

Before this period, a confiderable body of Ruffiana had joined the Imperialifts; and the chiet command of the allied army was now affured by Field Marfhal Suwarrow Rimnifki. 'I'his celebrated leader, whofe character

\section*{R E V}
[
the upper part of the river, where the French had thought fuch an enterprife unlikely or impoffible. A party of the combined army was thus enabled, on the following morning, after croffing the river, to turn the French fortifications, and to attack their flank and rear, while the relt of the army forced the paffage of the river at different points. The French fought ob-And de. Itinately, but were fpeedily driven from all their pofi-feats him tions, and compelled to retire to Pavia, leaving 6000 with great men on the field; while upwards of 5000 prifoners, in. cluding 4 generals, fell into the hands of the allies \(10-\) gether with 80 pieces of cannor.
The advantage thus obtained aver the French, is confequence of the addrefs with which the Adda was croffed, is faid to have gained for Suwarrow more eftimation from his antagosits than they had originally been difpofed to grant to any military officer coming from Ruffia, and who had never before had perfonal experience of the mode in which war is conducted inthe fouth of Europe. But this is probably affectation. The French had furely no caufe to defpife Rulian generals, fince they could not but know that Landoho was born in Ruffia, that he had his military education there, and that he had rifen to a high rank in the army before he entered into the fervice of the Emprefs Queen Maria Therefa. Indeed it is evident, that while their orators were declaiming againf Suwarrow and his Ruf. fians as mercilefs barbarians, they were fecretly trembling at his prowefs and refources, which they could not but remember had more than once faved the armies of the Prince of Cobourg in the Turkih war.

Morean now eftablifhed the wreck of the French army, amounting to about 12,000 men, upon the Po, between Aleflandria and Valentia. On the isth of May he compelled a body of Auttrians to retire, though they had already paffed the river, and took a great number of them prifoners. On the following day, 7000 Ruffians croffed the Po at Bafignano, and advanced on Pecetto. Moreau immediately fell upon them with his army. They maintained a long and defperate conflict ; but being at laft thrown into confufion, and refufing to lay down their arms, about 2000 of them were drowned in recroffing the river, and the French, with difficulty, took a fmall number of them prifoners. But Suwarrow foon advanced, and terminated this active, but petty warfare, which was all that the French could now maintain. Moreau was under the neceffity of retiring with his troops to occupy the Bochetta, and other paffes which lead to the Genoefe territory ; and the combined army commenced vigoroufy, and at once, the fiege of all the fortrefes in the part of 1taly which it now occupied. Pefchiera, Mantua, Ferrara, Tostona, Alefiandria, and the citadels of Turin and Milan, were all attacked. The French were driven from the Engadine by Bellegarde; Maffena, clofely preffed in S witzerland by the Archduke Charies, was compelled to retreat to the neighbourhood of Zurich, and almoft all Piedmont had riien in infurrection againft the French; fo that in every quarter their affairs feemed defperate. Few or no reinforcements arrived from the interior, and their generals were. left to act upon the defenfive, and to decain the enemy at a dittance from the frontiers of France as long as pofible. One effort of offenfive war only remained, and, after fume delay, it was made with much vigour.

Macdonald was fill with a confiderable French army , in the fouthern parts of Italy, and occupied the territories of Rome and Naples. No attempt was made on the part of the combined powers to cut off his retreat; probably from the conviction that fuch an enterprife could not be accomplifined with fuccels in the mountainous countries of I'ufcany and Genoa, through which it would be in his power to pafs. Aware of this circumftance, he was in no hafte to remove, though the combincd army now occupied almoft the whole territory between him and France. He gradually concentrated his forces, however, and drew near to the fcene of action. His army amounted to 30,000 men; and he was ordered by the Directory to evacuate the new born republics of Rome and Naples, and to form a junction, if poffible, with the army of Morean. The prefent fituation of the allies, however, tempted Macdonald to hazard an action by limecif. Marfnal Sinwarrow liad extended his forces over Lombardy and part of Piedmont, in order to afford protestion to the well-difpofed inhabitants of thefe countrics ; and Macdomald and Moreau had concerted between them a plan for dividing their antagonifts, and vanquilhing thern, as the French generals had often vanquined their enemies in detait. It was only by Macdonnld, however, that any important blow could be ftruck; but it was neceffary that Morcau foould draw upon himfelf a great part of the Aufiro-Ruffian furces, that the remainder might be more completely expofed to his colleague's attack. For this purpofe he had recourfe to a itratagen.
'Towards the end of \(A\) pril, the French fleet, amounting to 16 Rips of the line, had ventured out of Breft harbour. Ireland was fuppofed to be the place of its deftination ; and the Britifh fleet was ftationed in the fituations molt likely to prevent its arrival there. 'The Freuch, however, intending to form a junction with the Spanifh fleet, which was ftill blockaled in the port

361
Junction o the French and Spanilh dieets. of Cadiz, faited fouthwayd. When they approached fadiz, a ftorm arofe. which prevented any attempt on their part to enter the harbour, and any effort on the part of the Britifh admiral, Lord Keith, to bring them to an engagement. On the \(4^{\text {th }}\) and 5 th of May, therefore, they paffed the Strait of Gibraltar, and Atecred for Toulon. Lord Keith kept his ttation near Cadiz till the gth of May, and then entered the Mediterra. nean in queft of the Trench fleet. The Spaniards im. mediately put to fea, and went into the Mediterranean a.fo. The French fleet entered Toulon, and afterwards went ont in quelt of the Spanifh flect. They failed towards Genoa, and afterwards to Carthagena, where they met their allies. The two Heets being now united once more, paffed Gibraltar, and failed round to Brett, where they arived in fafety, without being overtaken by the Britifh.

Moreau, in the mean time, took advantage of the arrival of the French and Spanifh fquadrons in the vicinity of Genoa, to fpread a report that they had
bronght him a powerful reinforcement of troops, in the hope of withdrawing from Macdonald the attention of Suwarrow. This lalt oflicer was himfelf at Turin. His advanced troops poffeffed the paffes of Sufa, Pignerol, and the Col d'Affiette; while, at the lower extremity of the vaft track of country over which his army was fcattered, Gencral Hohenzollern was pofted at Modena with a confiderable force, and General Ott was at Reg. gio with 10,000 men. On the 12 th of June, Mac. donald began his operations. His advanced divifions attacked Hohenzollern at Modena on that day, defeated him, and took 2050 of his men prifoners. The French, at the fame time, attacked General Oct ; and, after obliging him to retreat, they entered Parma on the 14 th of June. On the 17 th, General Ott was again attacked, and compelled to retirc upon Caftel St. Giovanni. But here the progrefs of Nacdonald was arrefted.

Suwarrow had been informed of his approach and alarming fucceffes: and with that prefence of mind, and that promptitude of energy, which fo ftrongly mark the whole of his conduct, he fuddenly left Turin on the 1 sih of June, at the head of 20,000 men ; and having marched feventeen leagues in eight-and-forty hours, came up with Macdonald's army on the banks of the Tilone. The Rufian Generals Rofenberg and Foerfter commanded the right and the centre ; the left wing was commanded by the Auftrian General Melas; the Ruffan General I'rince Procration commanded the advanced guard, and Prince Lichtenftein the referve. A defperate aćtion now coininenced, which, contefted with equal obftinacy on both fides, was fought during three fucceffive days. At length viEiory, ftill faithful to the Itandard of Suwarrow, declared for the allies. feated by The French, driven on the ift day from the Tidone to siswarvum, the Trebbiil, were there ultimately defeated on the 19th, after a carnage on both fides, fuch as fome of the oldeit officers in the army declared that they had never before feen. The Ruffians and French repeatedly turned each others line, and were mutually repulfed. Suwarrow, who appeared in perfon wherever the tire was heaviell, and his troops mott clofely preffec, is faid to have lad 7 horfe. killed under him, and to have ftript himfelf to the fhirt on the Igth, running onfoot from rank to rank, to urge the troops forward by his prefence and example ( \(H\) ). With all thefe exertions of hcroifin, however, and greater have feldom been made, the iffie of the contelt continued doubtful, till the gallant Kray, in direft difobedience to the pernicious orders of the Aulic Council at Vienne, arrived at the head of a large detachment from the army beffeging Mantua, and, on the 19 th, decided the fate of the day.

The lirench fled during the night; and, on the morning of the 20th, Suwarrow purfued them with his army in two columns. It feldom happens that Gernian troops can overtake the French in a march. The Ruffrans now did fo, however; and at Zena the rear guar \& of the French, being furrounded, laid down their arms.

The
( H ) We had this information from an officer of high rank, now refiding in Weimar, who was prefent in the action; and who added, that the Coffacs, as foon as they faw their old commander in his /mirt, rufhed upon the enemy with an impetuofity which nothing could withttand. The fory is by no means incredible; for Suwarrow, who defpifes coftume, is known to have fought reneatediy in his fhirt againft the Turks; and he would be as hot on the Trebbia as ever be waṣ on the Danube.

\section*{\(R\) E V [ 441\(] \quad\) R \(\quad\) E V}
ench The reft of the French army fomd fafety in the paffes Dutious, of the Appenniues and the Genoefe territory, after hapoffeffion of Alexandria and Cairo, and profeffed himfoners, not lels than 17,000 men.

Moreau, in the mean time. bad attacked the Aufriats under General Bellegarde in the vicinity of \(A\). lexandria. Though fuperior to him in numbers, they were completely beaten; hut Suwarrow having returnca with infinite rapidity after his viEtory over Macdo. nald, the temporary advantage gained by Mureau became of no importance. Suwarrow complained loudly of the conduct of the Anlic Council nn this occation; while they, in return, imputed their difatter uncer Bellecgarde to his unfkilful diftribution of the whole troops, which liad expofed an inmenfe army to great danger from the en terprifes of an handful of men. It is not our bufinefs to decide between them. 'S'he inltrutions of the Council to Kray not to co operate with the commander in chisf of the combined army, feem to us in the higheft degree abfurd, if not treacherous: and we have heard a general officer, whofe namie, were we at liberty to give it, would do honour to there parees, fay, that the diltribution of the troops, of which that council complained, was the mont malterly thing that has been doine during the war. Be this as it may, a diftruft and mutual mifundertlanding thus commenced, or, at lea!t, made its firtt open appearance, which gave good reafon to furpect that little cordiality of co-nperation would long exit between thefe allies. They continued, how ever, for fome time to enjoy uninterrupted profperity under the command of Suwarrow. The fieges of the different Italian fortreffes were very clofely preffed. They all furrendered in fucceffion; and the period appeared \(f_{\text {fat }}\) approaching when it would be in the power of the allied armies to enter the ancient territory of France.
If we turn our eyes to a different quarter, we thall find the French as mush humbled at this time in Faletine by Britifh valour, as they were in Italy by the united arnies of Ruffia and Auftria The hero of France, the conquieror of ltaly, the boafted legiflator Fr Europe, after having defeated the Mamalukes, taken felf a Mahometan in Egypt, led an army into Paleftine. with the avowed purpofe, it has been faid, to take poffeffion of Jerufalem, and by rebuilding the temple, and reftoring the Jews, to give the lie to the prophecies of the Divine founder of the Chriftian religion. At the head of a chofen band, exceeding \(\mathrm{I} 2,000\) in number, and poffeffed of a faff eminent for military fkill and ex. and poffeffed of a faff eminent for military flill and ex.
perience, he arrived at the fmall town of Acre. fituated on the fea-coaft, 28 miles fouth of Tyre, and 37 north of Jerufalem. To this town, which was wretchec--
ly fortified, and defended only by a fmall garrifon of of Jerufale m . To ethis town, which was wretchec-
ly fortified, and defended only by a fmall garrifon of Muffelmans, he laid fiege in form; and the governor would have furrendered unconditionally, had he not would have furrendered unconditionally, had he not
been, we fay not perfuaded, but decoyed, by an Englifh naval officer, to make a vigorous reliftance. We need not add, that the naval officer was \(S_{12} S_{\text {IDNEE }} S_{\text {Mith }}\), or that the befieging general was Bovaparte.

The command of the garrifon being entrufted to Sir Sidney Smith, who was not to be bribed by French gold, or corrupted by French philofophy, French gold, or corrupted by French philofophy,
the hero who, by the aid of thefe allies, had fo quickly routed armies, and conquered flates in Italy, was detained before the rown of Acre fixty.nine days; though - Suppl. Vol, II. Part II.
the number of the allies who defended that town exceeded not 2000 men! Foiled in eleven different at. tempts to carry it by affault, one of which was made during the truce which he himfeif had folicited to bury the dead, he was ultimately oblige? to retreat, leaving eight of his generals, eiglity five of his officers, and one bulf of his army behind him. The fuperiority of the Britinh over the Corlican liero was, during this foge, more fully difplayed in condact than even in courage. The true magnanimity evinced by the former; his temperate replies to the audacious calumnies and atrocious falfehnods of tis adverfary : and the moderation and lumanity which characterifed liis dipatches, and invariably marked his behaviour to thofe whom the fortune of war fubjected to his nower - give additional luttre to the brilliant victory which his valour, his energy, and his perfeverance, fo effentially contributed to fecure.

But while we pay a tribute of ju'tice to the merit3 of our gallant countryman, we mult not omit to notice the high deferts of the brave, the loyal, the virtuous Philipfaux, his gallant comrade, the partner of his toils, and the partaker of his glory The fill of this French officer as an engineer was moft fuccefsfully difplayed in the defence of Acre: and, indeed, his exertions on that memotable occafion fo far furpaffed his Atength, that he actually perifed through fatigue.

The defeat of Bonaparte at Acre, which effectually ftopped his deftructive career, will be confidered as im-p pertant indeed, when it is known that his arts of intrigue had fof far fecceeded as to prevail on the numerous tribe of the Drufes to join his ftandard with \(\sqrt{2} x t y\) thoufand men immediately after the reduction of that town. Had this junction becn effected, it was intended to proceed to Constautimople, and, after plun tering the city, to lay it in afles! It is fearcely poffible to calculate the dreailful confequences of fuch an event on the political ftate of Enrope. If Cervices are to be eftimated in proportion to their fffects, we know of none, during the prefent war, fertile as it has been in brilliant atchievements, that deferves a higher reward than the defeat of Bunaparte at Acre.

During thefe reverfes abroad, France had begun to fuffer much internal agitation, and the Directory found itfelf in a very dififcult fituation. The elections, as ufual, were unfavourable to them; and amidft the contempt with which they now began to be regarded, it was no longer poffible to fecure a majority in the © ouncils. by unconftitutionally annulling the elections of their political opponents. They demanded money, and were anfwered by reproaches, on account of their profufion, and the rapacity of their agents. The royalifts in the fouth and the weft began to form infurre tions. hey were fubdued with much difficulty, on account of the abfence of the troops. The people had totally loft that enthufiafm which, in the earlier periods of the revolution, induced them to fubmit to to many evils, and to make the moft violent efforts without murmuring They beheld the renewal of the war with regiet, and were unwilling to affitt by their exertions to reftore power and fplendour to the faction which had trampled nipon their freedom

A midalt all thefe difficulries, an event occurred which, for a time, gave the Directory the hope of being once more able to ronfe the donmant energies of their countrymen. After the defeat of Jourdan, a detachment 3 K
from

French from the army of the Archduke Charles had occupied Revolution, Raftadt, where the Congrefs ftill fat. On the 23 th of

April an order was fent by an Imperial officer to the French minifters, requiing them to quit Raftadr in 24 hours. They demanded a paffport from Colonel Barbafcy, who had fent the order; but thishe could not grant, none having that power but the commander in chief. They declared themfelves deternined to depart without delay, although the evening approached. They were detained about an hour at the gate of the town, in confequence of general orders which had been received by the military to fuffer none to pafs. In confequence of an explanation, however, and of the interpofition of fuperior officers, they were allowed to depart. The three miniiters, Bonnier, Roberjot, and Jean Debry, were in carriages. The wife of Roberjot, and the wife and daughrers of Jean Debry, were along with them; and they were atterided by the minitters of the Cifalpine republic. When they had advanced to a very fhort diftance from Raftedt, they were met by about 50 huffars of the regiment of Szeckler, who made the carriages to halt, and advancing to the frit of them, containing Jean Debry, demanded his name. He told them his name; and added that he was a French minifter returning to France. On receiving this anfwer, they immediately tore him from his carriage, wounded him in feveral places with their fabres, and caft him into a ditch, on the fuppofition that he was killed. They treated in the fame manner the two other ambaffacon, Bonnier and Roberjot, whom they murdered upon the fipot. They offered no perfonal violence, however, to the reft of the company, who were allowed to return to Raftadt; but they robbed the carriages of whatever effeets they contained ; and the papers of the ambaffa dors were conveyed to the Auftrian commander. Af. ter the departure of the foldiers, and the return of the carriages to Raftadt, Jean Debry wandered about the woods all night, and returned alfo to Raftadt on the following day. He claimed the papers belonging to the legation from the Aultrian commander, but they were refufed to be reftored.
During the whole of the long period that the Congrefs had fat, Raftadt and its vicinity had been occupied by French troops, and it was only a few days fince the Aufrians had obtained puffeffion of it. This event therefore caft, at lealt, a fevere reproach upon the difcipline of the Antrian army. It did more; it made every honeft man regret, that troops, engaged in the fupport of a good caufe, fhould thiuk to promote that caufe by the murder even of the greateft villains. 'The A rchduke Charles made hafte to difclaim all knowledge of it in a letter to Maffena; but the French Directory, regarding it as a fortunate occurrence, from its tendency to roufe the refentment of the nation, addreffed to the two Councils, on the 5 th of May, a meffage, in which they afcribed it to a deliberate purpofe on the part of the Auftrian government to infult France by the afflaffintation of her ambaffadors. They thus converted the private act of a few defperate individuals into a meafure of public policy; as if the death of thofe wretched mifcreants could have been of confequence to the enemies of the great nation. The unpopularity of the Directory, however, and the obvious inutility of fo grofs a crime, prevented this accufation from obtaining much credit, or producing great effects upon the people. In
a private letter which a friend of our's received at that period from the Continent, he was affured that the murder of the envoys "fait phus de bruit que de fenfation;" and that the general opinion was, that the Directory itfelf knew more of the authors of that crime than the Archduke or the Auftrian government.

Upon the introduction of the new third of this year \({ }^{369}\) into the Councils, a violent oppofition to the Directory in Frabe commenced. Sieyes, who was ambaffador at Berlin, and who had enjoyed, during the whole progrefs of the revolution, a very confideracle influence over all the parties that had fucceffively enjoyed the fupreme anthority, was elected into the Directory. At the firft eftablifhment of the couftitution he had refufed to occupy this fation, and it excited much furprife when he readily accepted the office in the prefent calanitous ftate of the Republic. His admiffion into the Directory, however, did not reconcile the public or the two Councils to that body. A violent contelt for power betwixt the Moderate and the Jacobin parties feemed to approach; but they foon cane to a compromife. Treilhard, was removed from the Ditcetory, under the pretence that he had held an office in the flate within lefs than a year previous to his nomination. Merlin and Reveillere were compelled to refign, to avoid an impeachinent with which they were threatened; but Barras fill contrived to retain his ftation. Moulins, Gohier, and Ducos, men little known, and by ro means leaders of the contending parties, were appointed Directors. The power was undertood to be divided, and that neither party greatly predominated. Aul attempt was made to revive public fpirit, by encouraging anew the inftitution of clubs, which had been fupprefled by the Directory. The violent Jacobins were the firlt to take advantage of this licence. They refumed their ancient תyle, their propofals for violent ineafures, and their practice of denouncing the memoers and the meafures of government. But the Directory becoming alarmed by their intemperance, obtained leave from the Councils to fupprefs their meetings before they were able to interelt the public in their favour.
Confiderable effirts were now made by the French government to recruit their armies; but the deranged Itate of the finances, which the votes of the Councils could not immediately remedy, prevented the pofifility of their gaining a fuperiority during the prefent campaigu. The difficulty was alfo increafed by the neceffity of relifting immenfe armies in difierent quarters at the fame tine, France being affailed at once on the fide of Holland, Switzerland, and Itaiy. Such, however, were the exertions of the Directory, that they feened not dellitute of the hope of being able fpeedily to affume, on the frontier, a formidable, and evern inenacing pofture. In the beginning of Augaft, their Italian army amounted to 45,000 men. The different bodies of troops of which it confifted had been drawn together, and concentrated nearly in the fame pofitions which Bonaparte had occupied before his battles of Montenotte and Millefimo. The command of the Jubert whole was given to Joubert, a young man, viho had affumes been much diftinguihed under Bonaparte; and who, commas in the fyle of gafconade employed by that general, affured his government of victory, declaring, that he and Suwarrow fhould not both furvive the firl battle. In this boafting declaration he feems to have been in earnelt:
ench earnerf; for, on taking the command, he prevailed with 769. frit battle fhould be fought. The allies had now the gen Turin, Aleflandria, Milan, Pefcliiera, and Ferrara, with a rapidity which would lead one to fuppofe that fome new mode had been invented of materially abrid\(7^{2}\) cffes of ging the duration of fieges. The ftrong citadel of allies. Turin opened its gates, to the aftonifhment of Europe, after a bombardment of only three days; the citadel of Aleffandria furrendered to the Autrian General Bellegarde, on the 22 d of July, after a fiege of feven days; and the fill more important fortrefs of Mantua furrendered to the brave General Kray, on the 29th of the fame month, after a fiege of only fourteen days. The garrifon of Aleffandria amounted to 2400 men ; that of Mantua to 13,000. The former were detained prifoners of war, and the latter were allowed to return to France on their parole; a parole which the commanders of the allied armies could not reafonably expect to be kept. This has given rife to a fufpicion, that the fortrefs was voluntarily furrendered to the Aufrians, in order that the Directory might recruit its armies with the garrifon.

The allies next began to beffege Tortona, and Jousbert refolved to attempt its relief. He hoped to accomplifh this object, and to gain fome advantage over their army, before General Kray could arrive to the af. fiftance of Suwarrow with the troops that had been occupied in the liege of Mantua. C. 1 the \(13^{\text {th }}\) of Auguf, the French drove in the whole of the Auftrian pofts, and took poffeffion of Novi. Here they encamped on a long and fteep, but not high, ridge of hills, with cheir centre at Novi, their right towards Seravalle, and their left towards Bafaluzzo. On the 14th they remained quiet ; and on the 15 th they were attacked by Suwarrow, whofe army was now reinforced by the arrival of General Kray from Mantua. The right wing of the allied army was commanded by Kray, its left by Melas, and its centre was occupied by the Ruffians, under Prince Pongrazion (Procration) and
Suwarrow in perfon. The attack began at \(50^{\prime}\) 'clock in the morning, and was continued during many hours. Soon after the commencement of the battle, while the French commander in chief, Joubert, was urging his troops forward to a charge with the bayonet, he received a mufquet flot in his body, and, falling from his horfe, immediately expired. Moreau inftantly refumed the command. After an obftinate conteft, the allied army gave way, and was compelled to fall back in all quarters. The attack, however, was repeatedly renewed, and much blood was thed. From the obftinate manner in which they fought, the Ruffians, in particular, fuffered very feverely. They made three unfuccefsful efforts againft the centre of the French army, and on each occafion thofe immediately engaged were rather deftroyed than repulfed. The laft attack along the whole line was made at three in the afternoon. The French remained unbroken; and the day mult have terminated in the defeat of the allies, had not General Melas fucceeded in turning the right flank of the French line. Their right wing was thus thrown into confufion. Melas purfued his advantage till he obtained poffeffion of Nevi, and the whole French army made a rapid retreat under the direction of Moreau.

According to the accounts given by the Auftrians,
the French loit in this battle 4000 killed and an equal number taken prifoners. They acknowledged their own lofs in killed to be equal to that of the French, but the lofs fultained by the Ruffians was never publifhed. The general refult of the battle was the total ruiil of the French affairs in this quarter. The allies retained their decided fuperiority; and there was no enterprife which, on the prefent theatre of the war, they might not have ventured to undertake. The French rerounced all hope of defending Genoa, and prepared to evacuate that city and its territory. The Directory expected an immediate invafion of the fouth of France, and addreffed a proclamation to the people, urging them to act with firmnefs and energy amidf the calamities with which the country was now menaced. But the 374 of V thefe apprehenfions were unnecetlary. of Vienna had other objects in yiew that were lefs dan- table con. gerous to their enemy. They neither invaded Genoa allies of the nor France, but quietly proceeded in the fiege of Tortona. The vanquifhed army was furprifed to find itfelf unmolefted after fuch a defeat ; and in a few days ventured to fend back parties to inveftigate, the movements of the allies. The new commander Championnet, who had fucceeded Joubert, found to his no fmall aftonifh. ment that they had rather retreated than edvanced; and he immediately occupied the lame pofitions which his army had held before the battle of Novi.
Inftead of purfuing the advantages they had gained in Italy, the Aulic council, or council of war at Vienna, now perfuaded Suwarrow to leave that country with his Ruflians, and to fet out for Switzerland to drive the French from thence. In the early part of the campaign, the Archduke Charles had fucceeded, after various attacks, in driving the French from the eaftern part of Switzerland beyond Zurich, of which lalt city he retained poffeffion. The Directory, however, had fent their new levies chiefly towards this quarter; fo that in the middle of the month of Auguft Maffena's army amounted to 70,000 men. The Archduke was now fo far from being able to purfue the advantages he had gained, that of late the French had refumed the offenfive, and threatened to endanger his pofition. Their right wing under Lecourbe had even fucceeded in taking poffeffion of Mount St Gothard, which is the great pafs that leads from the centre and eaftern part of Switzerland into Italy. The cabinet of Vienna probably wifhed to throw the fevereft duties of the war upon their northern affociates. The veteran Suwarrow 375 had never, during his long military career, fuffered a leaves 1 tafingle defeat. His prefumption of fuccefs was there- 1 l , and fore high; and he perbaps felt himfelf not a little flat- marches to tered by the requeft to undertake an enter prife in which land. the Auftrians had failed, though led by their mof fortunate commander. It is indeed certain that he confidered himfelf as called out of Italy too foon. Though confident of being properly fupported, he agreed to proceed with his troops from Piedmont to Switzerland, where another Ruffian army had lately arrived. Delays, however, were thrown in his way. Tortona did not fall quite fo foon as was expected; and when he was ready to march, the Auftrian cominander in Italy refufed to fupply him with mules for the tranfport of his baggage. Unable to reply to the indignant expoftulations of the Ruffian hero, this man defcended to a pitiful fallehood, by affuring him that he would find a
fufficient

French

\section*{evolution,}
1799.

Prench fuficient number of mules at Bellinzone, where, when Revolution, he arrived, not one was to be had. He had now no 1799. -other refource but to difmount the cavalry, and em. ploy their horfes to drag along the baggage. Under all thefe difficulties, he arrived, by forced marches, on the confines of Switzerland, on the day appointed by him and the Archduke; but the Aultrian cabinet had, in the mean time, taken a fep which made all his exertions nfelefs.
'Thinking it degrading to a Prince of the Imperial houfe, who had fo long held the highe! military rank, to ferve under the Ruffian General, and not having the confidence to require the moft experienced leader in Europe to receive the orders of a man fo young as the Archduke, they fent that prince with his army to attack the French, who, in a fmall body, had entered into Swabia. He began accordingly to draw off his troops in the beginning of September, before Suwarrow was in readirits to leave Italy. The number which he tonk with him has been differently eftimated, the loweft computation ftating it at \(48,0=0\), and the higheft at 60,000 . 'Ihe former is the moft probable; fince it is well known that 20,000 would have been fully adequate to the purpofe for which he marched. 'Lhe army which he left behind him is more perfectly afcertained: it confifted of 21,002 Ruffians, 18,900 Auftrians, Bavarians, and other auxiliaries, forming a total of 39,900 men.

Upon what principle of military tactics the Aulic conncil could fuppofe that a nkilful and intrepid commander like Maffena, with a force nearly double that of the allies, would remain in a fate of inactivity, it is not eafy to conceive. He perceived at once the advantage which might be derived from this unaccountable movement of the Archduke. The French troops in Swabia were therefore ordered to advance rapidly, an ! to threaten the rear of the Archduke's army. As the repulfe of thefe troops, and the invafion of France toward's A1face, formed a part of the Auttrian commander's plan of operations, he marched againit them with his army. The French made as much refiftance as the fmallnefs of their force would permit. The A rchduke, however, gradually drove them towards the Rhine. The better to carry on their plan of deception, they made a ferious fland in the neighbourhood of Manheim, and were defeated with the lofs of 1800 men. The Auftrians entered Manheim, and feemed ready to crofs the Rhine in this quarter.

All this while Switzerland was left cumpletely expofed to the enterprifes of Maffena. General Hotze, with the Auftians, occupied the right wing of the allied army there. The newly arrived Ruffian army was flationed in the centre at Zurich, under the command of General Korfak of; and the left, confifting chiefly of Bavarians and other troops of the empire, was commanded by Nauendorf. Maffena remained quiet till he learned that the Archduke had entered Manheim, and that Suwarrow, having taken Tortona, was on his
vent of Farr, which is three leagues diftant from \(Z_{11}\). French rich. A part of the French troops engaged the Auf- Revolution trians, while the greater part of the army marched a- \(\underbrace{1799 .}\) gainft the Ruffians at Zurich. The Auftrian General Hotze was killed in the commencement of the action. General Petrarch, who fucceeded him in the command, contrived to awoid a total rout, and retired during the night with the lofs of about 4000 men. The conteft. with the Ruffians was fingularly obftinate. In a moun. tainous country, to which they were ftrangers, and contending againft the moft fixifful military leaders that the fouth of Europe had beell able to produce, they laboured under every difadvantage. They could not be put io flight, however ; and even when different divifions of them were furrounded, they refufed to lay down their arms, and were flaughtered upon the fot. By the retreat of the Auftrizns on the evening of the 2 ith, they found themfelves on the 26 th nearly furrounded in Zurich. 'ihey now began to retreat alfo; and we are only furprifed at the ability of the Rufian General is effecting his retreat in fuch good order, and with fuch little lofs; for if the official accounts deferve credit, his lofs in killed, wounded, and taken, did not exceed 3000 men . He was obliged, however, to abandon his baggage and cannon to the enemy.

During thefe operations, Suwarrow was advancing Suwar. on the fide of Italy with an army rated, in fome ac-row's counts, at 18,000 , in others at only 15,000 ; and for-march. cing the French from their ftrong pofitions on Mount St Crothard, defeended, on the very day on which Maffena made liis general attack, into the valley of Urferens : and drising Lecourbe before him, with conliderable 毋laughter, advanced as far as Altorf. He even penetrated on the next day into the canton of Glaris, and took 1000 of the French prifoness; while the Rufo fian General Kofemberg was equally fuccefsful in the canton of Schwita, where General Awffenberg had effected a junction with him ; and General Linken defeated and took another corps of French, contiting of 1300 men.

Maffena, however, now turned upon the Field-mar-His adm fhal with the greater part of his army; and, by hem-rable conming him in on all fides, expected to have made him, tuct. and the Grand Duke Conftantine, prifoners. Suwarrow, however, defended himfelf againt every attack with unexampled vigour and addrefs. A fingle pafs among the mountains was all that remained unoccupied by the French. He difcovered this circumftance, and efcaped, thoucg clofely purfucd. He loft his cannon, baggage, and provifions, among the dreadful inoun. tains and precipices with which that country abounds. He made his way, however, eaftward through the Grifon country, and at length arrived at Coire with about 6000 men in great diftrefs.

Nothing could exceed the indignation of this old warrior when he difcovered the manner in which affairs had been conducted, the hazardous ftate in which the Ruffians had been abandoned by the Archduke, and the confequent ruin which they had encountered. He Hi* indiga confidered himfelf and his countrymen as treacherouny iation at expofed to deflruction; he loudly complained of the the court Commander of the allied forces in Switzerland; publicly taxed the council of Vienna with felfifhnefs and injuftice ; and refufed all farther co-operation with the Auftrian army. He fent an account of the whole tranfo
uch action to St Pcterbutgh in a letter, of which the comlurior, pofition would do honour to the fineft writer of the age, and withdrew with his troops to the neighbourhood of Augfourg to wait fur farther orders.

In the mean time, Great Britain prepared to invade Hollacd with an army of 40,000 men, confifting of Britifh troops and Ruffian auxiliaries. The firft divifion, under General Sir Ralph Abercromby, failed in the month of Auguft, under the protection of a flect commanded by Admiral Lord Duncan. Bad weather prevented a landing from being attempted till the 27 th. On the morning of that day the troops landed without oppolition upon the fliore of Helder Point in north Holland, at the entrance to the Zuyder Sea. They had not been expected in this quarter, and the tronps in the neighbounhood were confequently few. 'The Britifh, however, had no fooner begun to move forward, than they were attacked by a confiderable body of infantry, cavalry, and artillery, who had been haftily affembled from the nearef towns. The Dutch troops maintained the conteft with much obflinacy; but they were gradually farigued by the fteady oppofition they encountered, and retired to the diftance of two leagues. In the night they evacuated the fort of Helder, of which the Britifh took puffeffion on the morning of the 28 th. A detachment from the Britifh flcet, commanded by Vice Admiral Mitchell, now entered the Zuyder Sca by the ftrait of the Texel, to attack the Dutch fleet under Admiral Story. This laft officer, inftead of retiring for fafety to any of the ports, or to the fhallow water with which that fea abounds, furrendered the whole fleet on the 3 oth of Augut withont firing a gun, under pretence that his feamen were mutinous, and would rot fight.

Had the expedition terminated here, it might have teen reganced as extremely fortunate, and as eltablifhing the power of the Britifh navy without a rival. But it was refolved to follow up this firft fuccefs by an effort on land to reftore the authority of the Stadtholder, and the amcient government of the United Provinces. Many circur. ftances were hoftile to this enterprife. The whole army had not been fent at once from Britain. As no more then the firl divifion had arrived, the troops could only reft upon the ground they had gained till reinforcements fhould be fent. The terror arifing from the firft appearance of an invading army was thus allowed to pafs away, the eaemies of the prefent Dutch government were difcouraģed, and leifure was afforded to adopt effectual meafures of defence. The place where the landing was effeceed was well chofen for an attack upori the Dutch flect; but for an invafion, with a view to the reftoration of the Stadtholder, it was the wortt that could have been felected. North Holland, at the extremity of which it was made, is a narrow peninfula, everywhere interfected by canals and ditches, of about 40 miles in length. Here the invaders might be cietained, and even fuccefsfully refifted, by a force greatly inferior to their own. This alfo is the quarter of the country the moft unfavourable to the caufe of the Sitadtholder. In Zealand, where his eftates are fituated, and in Rotterdam, which is full of Scotchmen and of families of Scottifh extraction, his friends are numerous and powerful ; but in Amfterdam, and in North Holland, which is under its influence, his enemies abound, and the refiftance to his power has been very great du-
ring every period of the Dutch hiftory. When to all French this it is added, that the rainy feafon was approaching, Revo'ution, and that a winter campaign in Holland is almoft impoffible, it will not appear furorifing that this expedition was attended with little ultimate fuccefs. It is faid that, amidft the preffure of the many difficulties which fur. rounded them, the French Directory hefitated much about undertaking the defence of Holland; but the place, and the time of landing the invading army, at once brought them to a determination. General Brune was fent thither, with whatever troop; could be haftily collected, to fupport the Ditch Ginetal Dzendels.

General Abercromby, in the mean: time, remained Progrefsof upon the defeufive at Schager Brug, waiting for rein-the inva. forcements. His inactivity encouraged the enemy on derso the roth of September to venture an attack upon his pofition. They advanced in three columns, two of which confifted of Dutch and one of French troops. They were repulfed, however, in all quarters, and retired to Alkmaer. On the 13 th the Duke of York arrived with additional troops, and affumed the chiti command. The Ruffan auxiliaries having alio arrived, of fenfive operations were immediately refolved upon. On the 19th the army advanced. General Abcreromby commanded the left, which proceeded along the fhore of the Zuyder Sea againt Hoorne. The centre co. lumns were commanded by Generals Dundas and Pultney; and the right wing, confifting of Rufians, was commanded by their own General D'Herman. In confequence of fome ftrange mifunderftanding, the Ruffans advanced to the attack foon after three o'clock in the morning, which was fome hours previous to the movement of the reft of the army. They were fuccefsful in their firft (fforts, and obtained puffeffion of the village of Bergen; but prefling eagerly forward, and being unfupported by the other columns, they were nearly furrounded. Their commander was taken prifouer; and though the Britifh came in time to protect their retreat, they lolt at lealt 3000 men. This failure on the right obliged the Britih Commander in Chief to recal his troops from the whole advanced pofitions they had gained, theugh General Abercromby had actually taken Hoorne with its grarrifon, and alhough General Pultney's column had carried by affault the principal pofition of the Dutch army called Ourds Carjpel.

The feverity of the weather prevented another at. tack till the ad of October, when, after an engagement that lafted from fix in the morning till the fame hour in the evening, the Britif army fucceeded in driving the united I)utch and French troops from Alkmaer and the villages in its neighbourhood. "The contelt was chiefly. conducted among the fand hills in the vicinity of the ocean; and the battle was maintained with fuch obftinacy, that the fatigue of the troops, together with the difficult nature of the country, prevented the Britifh from gaining any great advantage in the purfuit. 'The retreating army immediately: occupied a new ponition between Baverwyck and Wyck op-zee. The Juke of York once more attacked them on the 6th; and after an obtlinate and bloody engagement, which was main* tained till night, he remained in poficfion of the field of battle. But this was the laft fuccefs of the inva- stopled by Lers. Finding himfelf unable to make farther progrefs the cnenly in confequence of the increafing numbers of the enemy, clemeacy the impracticable nature of the country, and the badiels of the wea.

\section*{\(R\) E \(\quad\) [ 446 ] R E V}

French of the weather, which, during the whole of this year, Revolution, was unufually fevere, the Duke of York retired to Schager Brug, and there waited for orders from lingland to return home. He was, in the mean time, clofely preffed by the United Dutch and French forces, fo that his embarkation muft have been attended with much hazard. He therefore entered into a convention with the French and Dutch generals ; by which it was agreed, that they fhould no farther moleft him in his retreat, and that, in return, he fhould not injure the country by breaking down any of the dykes which protect it againft the fea, and that Great Britain fhould reltore to France and Holland 8000 prifoners of war, taken previous to the prefent campaign.

In confequence of thefe events, the affairs of France now began to affume a lefo unfavonrable afpec. They were indeed driven to the extrernities of Italy, Championet was defeated in cyery effort which he there made againft the Auftrians du:ing the reft of the year, and Ancona, which was the laft place of any ftrength poffeffed by the French, alfo furrendered on the 13 th of November to General Frolich; but they retained the
trocps ; and all circumftances feemed now to pronife that the new coalition would fpeedily be deferted by its northern auxiliary.

While affairs were in this fate, an event occurred which exhibited the French Revolution under a new afpect. When Bonaparte found himfelf compt "ed to retreat, bafled and difgraced, from the ruins of Acre, he learned that a Turkifh army was ready in invade Egypt by fea. He returned, therefore, with his ufual celerity, by way of Suez, acrofs the defart of Arabia Petrea, which divides Syria from that country, and was ir the neighbourhood of the Pyramids on the rith of July, when an army of 18,000 Turks landed from 100 fhips at Aboukir. They took this fort by affault, and gave no quarter to the French garifon of 500 men that it contained. On the 15 th, Bonaparte began to march down the country againit them. On the 25 th he came in fight of them, at lix n'clock in the morning.

It is not wonderful that thofe barbarians afforded him an advantage which had fo often been prefented by the armies of A uftria. They had divided their force into two parts, which were encamped on the oppofite fides of a beautiful plain. He had now formed a confiderable body of cavalry, by obtaining for his men fleet horfes from Arabia. 'Thefe advanced rapidly into the centre of the Turkifh army, and cut off the communication between its different parts. His infantry then attacked the right, which was the weakeft divifion of the Turks. They being fpeedily panic ftruck, attempted to fly to their fhips, and every man was drowned in the fea. The left divifion of the Turks was next attacked. It made a more obttinate refittance, but was foort alfo put to flight. Some caft themfelves into the fea, and perithed in attempting to reach the boats of their fleet + the reft rook refuge in the fort of Aboukir. The news of this battle reached France towards the end of September, and revived the memory of Bonaparte's victories, contrafted with the reverfes which the Republican armies had lately experienced. On the Icth of OEtober a difpatch was received from him by the Directory, and read to the Councils, giving an account of the capture of the fort of Aboukir, with the whole remains of the T'urkifh army. On the 14 th of the fame month a meflage from the Directory announced, to the aftonifhment of all men, that Bonaparte, along with his principal officers, had jutt arrived in \({ }^{\circ}\) France, and that they left the army in Egypt in a profperous tate. This laft part of the meflage was foon afterwards proved, by the intercepted letters of Kleber, and the other generals left tehind, to be a feandalous falfehood. In one of thele letters, Pouffielgue fays, "Every victory carries off fome of our beft troops, and their lofs camot be repaired. A defeat would annihilate us all; and however brave the amy may be, it cannot long avert that fatal event."

Bonaparte, however, was received at Paris with diftinction, though nobody conld tell why he had deferted his army and come thither. The parties in the government were equally balanced; and both the Jaco. bins, and what were called the Moderates, folicited his affiftance. The Jacobins ftill poffeffed a majority in the Council of Five Hundred; but in the other Council their antagonits were fuperior. The Director Sieyes was underitood to be of the party of the Moderates; and the Jacobins had of late unfuccefsfully attempted

\section*{R E V}
inch to remove him from his office, under the pretence that 29. 4tion, the interval appointed by the conftitution hiad not elapfed betweer his going out of the Council of Five Hundred and his election to the office of director. Neither party was fatisfied with the exifling authorities; but none of the ufual indications of approaching hofilities appeared. The Jacobins were far from furperting that Sieyes had a plot ripe for execution, which was to overwhelm them in an inftant. They were even in fome meafure laid afleep by an artful fcene of feltivity, in which the whole members of the Councils were indured to engage, on the 6 th of November, under pretenice of doing honour to the arrival of Bonaparte. On the morning of the 9 th, one of the committees of the Council of Ancients, called the committee of Infpectors of the Hall, prefented a report ; in which they afferted, that the country was in dancer, and propofed to adjourn the fitting of the legifature to St Cloud, a village about fix miles from Paris. We have already neentioned, that the con?itution entrufted to the Council of Ancients the power of fixing the refidence of the legiflative bodies, and that this Council could in no other cafe affume the initiative, or propofe any law; their powers of legiflation being otherwife limited to the unconditional approbation or difapprobation of the decrees pafed by the Council of Five Hundred. The Council of Ancients now fuddenly decreed, that both Councils fhould meet next day at St Clond. As the Council of Five Hundred had ro conflitutional right to difpnte the authority of this decree, and as the ruling party in it was completely taken by furprife, its members filently fubmitted, and both Councils affembled on the 10 th of November at the place appointed.

The Council of Fivc Hundred exhibited a fcene of much agritation. They received a letter from Legarde, fecretary to the Directory, fating, that four of its members liad fent refignations of their offices, and that the fifth (Barras) was in cuftody by order of General Bonaparte, who liad been appointed commander of their guard by the Council of \(A\) ncients. While the Council were deliberating, Bonaparte entered the hall, attended by about twenty officers and grenadiers. He advanced towards the chair, where his brother Lucien Bonaparte fat as prefident. Great confufion cufued; he was called a Cromwell, a Cæfar, an ufurper. The members began to prefs upon him, and his countryman Arena attempted to ftab him with a dagger. He was refcued by his military efcort. Lucien Bonaparte then left the chair, and caft afide the badge of office which he wore as a member of the Council. 'The confufion did not diminifh ; but in a fort time a party of armed men rufhed into the hall, and carried off Lucien Bonaparte. A tumultunus debate now began ; in which it was propofed that Bonaparte fhould be declared an outlaw. The debate was foon terminated, however. The doors of the hall were once mote burft open. Military mufic was heard; and a body of troops proceeding into the hall in full array, the members were compelled to difperfe. The Council of Ancients, in the mean time, fetting afide the conflitution, paffed a variety of decrees. They abolifhed the Directory, and appointed in its ftead an Executive Commiffion; to confift of Bonaparte, Sieyes, and Roger Ducos, under the appellation of Confuls. They adjourned the fittings of the leginative bodies till the 20th of February, and appoint-
ed two committees, confifing of twenty-one members, felected from each of the two councils, to act aa legiflators in the mean time. 'I'hey alfo expelled a great number of members from their feats in the councils.
Molt of the members of the Council of Five Hun. dred returned to Paris, after having been driven from their hall by the military ; but a part of them remained at St Cloud, and, on the evening of the fane day, confirmed all the decrees of the Council of Ancients. The new government entered upon its functions at Paris on the following day. That city remained tranquil, and the public funds even rofe upo: the occafion. On the 17th of November the confuls decreed the tranfportation of a great nimber of the leading Jacobins and zealous republicans to Guiana, and ordered many others to be inprifoned; but thefe decrees were fpeedily recalled, and affirs went on as quiectly as if nothing unufual had occurred.

While Bunaparte was thus obtaining boundlefs per- Mortions of! fonal aggrandifement in Europe, the A frican expedition Clippon sulo in which he had been engaged was utterly unfuccefofultan in iain all its objects. 'The circumftances which led to it, 'ia. fo far as concerned foreign nations, now came to light, and were fhortly thefe: Tippoo Sultan, the fon and fucceffor of the celcbrated Hyder Ally, and foveleign of the My fore country, which forms a part of the penimfuld of India, had been compelied to conclude a treaty of peace in the year 1792 with the Britifl governor general, I.ord Cornwallis, under the valls of Seringapatam liis capital. By this treaty he refigned to the invaders a part of his territory, and agieed to pay a large fum of money. He was, moreover, under the humiliating neceffity of confenting that two of his fons fhould be delivered as huftages, to remain with the Britifh till the pecuniary payments could be completed.

A war thus cuncluded could not become the foundation of much cordial annity between the parties. Tippoo had inherited from his father a deep fentiment of hoftility again? the growing power of Britain in India. Though he fubmitted on the occafion now mentioned to the neceffity of his circumilances, yet he only waited a more furtunate ooportunity to endeavour to recover what he had lott ; and even, if poffible, to accomplifh the favounite object of all his enterprifes, the complete expulfion of the Britifl from India. At a former period, alnoft the whole of the native princes of this valt continent had entered into a combination agrainf the power of Bitain ; but their defigns had been defeated by the talents and exertions of Warren Haltings, Efo; The afcendency, of the Britifh government in this quarter was now fo greik, that no fuch combination could argain be formed, and Tippoo felt that its power could only be Maken by the aid of an European army. France was the only country from which he could hope to obtain an adequate force. By the events of the revolution, however, and by the preffure of the war at home, the iulers of France had been prevented from attending to difant views and interefts. Their fettlements in India had been feized by the Britifh, and they lad ceafed to retain any poffeffions beyond the Cape of Good Hope, excepting the iflands of Mauritius and Bourbon. In He reners. the year 1797, Trippoo refolved to endeavour to renewhis interhis intercourfe with the French by means of thefe iflands. courfe with One Repaud, who had once been a lieutenant in the \({ }^{\text {the Freach. }}\) French ravy, and had refided for fome time at Serin-

French gapatam, had mifled Tippoo into a belief that the Revolution, French had a great force at the Mauritins, which could 179). immediately be fent to his aid in cafe of a war. He therefore fitted out a fhip, of which he gave the command to Ripaud, and fent two perfons in it as his mi nifters, with powers to negrociate with the French leaders at the Mauritius. 13nt, at the fame time, to avoid exciting the fufpicions of the Britifh government in his neighbourhood, he directed his miffengers to affume the character of merchants, to act in that capacity in public, and to conduct their political negociations with fecrecy. They arrived at the Muritins towards the clofe of the year 1797, and opened their propofals to Malartic the governor, for an alliance between Tippoo and the French nation, with the view if obtaining the aid of an European army. They were rcceived with great joy, and veffels were inftantly difpatched to France to communicate their propofals to the Directory.

In the mean time, Malartic the governor of the Mauritius, from folly, from treachery, or from a defire to involve Tippoo, at all hazards, in a quarrel with the Britiß, took a ftep which ultinately was in a great meafure the means of defeating the plans, and accomplifhing the ruin of that prince. On the 3oth of January 1798 , he publifted and difributed a proclama. tion, in which he recited the whole private propofals of Tinpoo, and invited all French citizens to enlif in his fervice. Copies of this proclanation were fpeedily conveyed by different veffels, touching at the Mauritius, to the continent of India, to Britain, and to all quarsers of the world. Accordingly, as early as the 18 th of June \(179^{8}\), the fecret committee of the Court of Directors of the Eaft India Company in London wrote to their governor general in India, requiring hinn, in confequence of this proclamation, to watch the conduct of Tippoo, and even to engage in hoftilities, if the meafure fhould appear neceffary. Before that period, however, the government in India had been alarmed. by the fame means, and was making preparations for war. This, however, was no eafy matter. It is the nature of European power, in thefe countries, gradually to decline. The nature of the climate, the view of returning home, and the diftance from the feat of govern. ment, fpeedily introduce a relaxation of the efforts and the vigilance by which cominion was originally acquired. The troops require to be continually renewed by levies from the parent country; and if this precantion is neglested for a very fhort time, or negligently attended to, they become unable to protect the extenfive eerritories fuch as Britain now poffeffed in India. When Lord Mornington, the governor-generai, enquired into the ftate of the Britifh army at Madras, and whether the might hazard an offenfive war againft Tippoo; he was informed, that three, if not fix months would be neceffary to affemble the fcattered divifions of the army, and to prepare them to defend their own territory. It was added, that fuch was the feeble fate of the Britifh forces in that quarter, that it might even be unfafe to excite fufpicion in Tippoo by military preparations, as le inight, in that cafe, ruin them by a fudden attack. Lord Mornington, however, refolved to ellcounter every hazard, and ordered immediate and active preparations in every quarter.

In the meanwhile, Tippoo did not truft for fuccefs to the aid of Framce alone. He endeavoured to bring
an attack upon the Britifh and their allies, or fubjects, in India, from the north weft, by inviting Zemaun Shah to invade the commery. This prince is at the head of a formidable kingrdom, made up of provinces torn from boith Perlia and India. It was founded about fixty years ago by Ahmed Khaun Abdalla, an Affghan chief, who followed Nalir Shah on his invalion of In. dia in 1729 . IIe himfelf after wands invaded India no lefs than feven times; and, in particular, he overthrew, with dreadfulaflaughter, the unized forces of the Mahralta empire, in the year 1761 , on the plains of Paniput. Ife was fucceeded, in 1773 by his fon Timmur Shah, who died, and was fucceeded by his own fon, the prefent prince. The dominions of Zemaun Shah ex. tend from the left bank of the river Indus, on the fea. coalt, as f?r northward as the latitude of Caffmeer ; and from eaft to weft they are 650 Englifh miles in length, comprehending the provinces of Cabal, Candahar, Peifhere, Ghizni, Gaur, Sigiftan, and Korafun. He ufually keeps in pay an army of \(150,0=0\) horfe, befides infantry to garrifon his fortreffes. In expectation of direct aid from France, by Bonaparte's expedi. tion to Egypt, and of an important diverfion to be made by Zemaun Shah, Tippoo endeavoured to remain quist, and to temporife with the Britifh.

Since the firft victories of Lawrence and of Clive, the native princes of India have been eager to introduce the European art of war anong their fubjects. For this purpofe they retain European adventurers to command and difcipline a part of their troops, and even en. deavour to form a guard for their perfons of European foldiers. The Nizam, a prince in allance with the Briti'h, though in a great meafure under their infiuence, had long retained around his perfon a confiderable body of French, and of tronps under their management. Thefe, under the command of one Perou, now poffeffed great influence at Hydrabad, the capital of the Nizam. It was of much importance that thefe fhould be removed out of the way, to enable the Britifh to obtain the aid of this prince as an ally in the approaching conteft with Tippoo. Lord Mornington procured this object to be accomplifhed with fo much fuccefs, that, on the 22 d of October 179 9 , the French corps under l'erou was furrounded and difarmed without bloodfhed, and a Britifh force was fubftituted as a guard to the Nizam in its fead. The military preparations being in a confderable fate of forwardnefs, Lord Mornington next warned 'Tinooo Sultan, in a letter dated the 8th of November ry99, of his having a knowledge of his hoftite defigns and connection with the French. He alfo propofed to fent an ambaffador to treat about the means of reftoring a good underflandine between the flates. Tippoo avoided return Harris as ing an anfwer till the 18 th of December, and then gainf hit merely denied the accufation, and refufed to receive the ambaflador. On the 9th of January 1799 , the Britilh governor again urged in writing that the ambaffador fhould be received. No anfwer was returned for a month; and, in the mean time, an army of 5000 men having arrived from England, orders were iffued to General Harris to advance at the head of the Madras army againft the kingdom of Myfore. Tippoo now offered to receive the ambaffador, providing he came without an attendance ; but this conceffion was not accounted fufficient, and the army advauced. An army from

Inch from Bombay was，at the fame inftant，advancing on ution，the oppofite fide of his dominions．A part of＇lip－ pon＇s forces encountered this army and were defeated； and within a few days thereafter，on the 27 th of March， the rett of his army was defeated by General Harris． When an European army in India is tolerably numer－ nus，the detail of its military operations againtt the na－ tives is by no means interefting；for the inhabitants of thefe enfeebling and fertile regions can never be made， by any kind or degree of difcipline，to poffefs that moral energy which enables men to encounter danger with coo＇nefs and felf－commard．They can ruth on death un \({ }^{3}\) er the influence of rage or defpair，but they cannot meet the hazard of it with calmnefs and recol－ lection．It is fifficient to remark that，on the 7 th of April，General Harris fat down before Seringapatam． On the gth，Tippoo fent a letter to this officer，alleging his own alherence to treaties，and enquiring into the caufe of the war．He was anfiwered by a reference to Lord Monrnington＇s letters．On the 20th he made another attempt to negociate，hy writing io General Fiarris，requefting him to nominate commiffioners to treat of a peace．In anfiwer to this propofal，certain articles were fent to him as the only conditions that would be granted．By thefe he was required to fur－ remder half his dominions．to pay a large fum of money， to admit refident ambaffadors from the Britift and their allies，to renounce all connection with the lirench，and to give hoflages for the fulfiment of thefe ftipulations．

On the 28th of April Tippoo again wrote to Ge－ neral Harris，requefting leave to treat by ambaffadors； but his propofal was refufed，upon the footing that he was already in poffefion of the only terms of peace which would be granted．Could Seringapatam have held out for little more than a fortnight longer，the in－ vading army muft have retreated．The rainy feafon was about to commence；and，by fome ftrange effeet of negligence or treachery，provifions were fo deficient in the camp，that it was only by reducing the troops to half allowance that they could be made to laft till the I sth of May．On the 30 th of April，the beliegers began to batter the walls of Seringapatam；and a breach being made，the city was taken by affault on the 4 th of May．One o＇clock afternoon had been chofen for this purpofe，as the hotteft hour of the day，and confe－ quently the time when it would be lealt expented． ＇Tippoo was in his palace；but on being informed of the attack，he haftened to the breach，and Ell undiftin－ gruified in the conflict．His treafures，and the plunder of the city，which was inmenfe，went to enrich the conquering army，after deducting a fhare for the Bri－ tifh government and Eaft India Company．His king－ dom immediately fubmitted．The part of it which formed the ancient kingdom of Myfore，was beftowed upon a defcendant of the former race of its kings，whom Hyder Ally had deprived of the fovereignty；the ad－ ditional territories that had been conquered by Hyder Ally were divided between the Britifh and their allies， the Nizam and the Mahrattas．The family of Tippoo were either taken in the capital，or voluntarily furren． dered themfelves to the conquerors．They were remo－ ved from that part of the country，and allowed a confi－ derable penfion．

In the mean time，Zemaun Shah had actually inva－ ded＇India from the north－weft．He advanced to the Suppl，Voz．II．Part II．
vicinity of Delhi，fpreading terror and defolation where－ ever he came．Had the French army in Egypt been able to detach a body of 15,000 men to the affiftance of Tippoo，while all India was in the ftate of alarm na－ turally produced by the approach of this northern in－ vafion，it is extremely probable that the Britifh forces might fpeedily have found themfelves deferted by every ally，and funk under an unequal conteft．But the actual refult was very different．Satisfied with the plunder he had obtained，Zemaun Shah foon withdrew；and the French ariny being detained in Egypt by the war with the Turks，and by the want of veflels at Suez wherewith to reach India，Tippoo was left to contend， unaffifted，againt the whole power of Britain，and of its allies in the eaft．By the conqueft and divition of his immenfe 3933 territory，the Britifh power was keft without a rival in power of that quarter of the world，and raifed to fuch a ftate of Britain i：1 impofing fuperiority，that if affairs are only preferved in lidia． their prefent fituation，by periodical fupplies of Euro－ pean troops，no native prince，or even combination of princes，can lienceforth bring it into danger．Thus， notwithitanding the vait military efforts made by the people of France during this revolutionary war，yet all foreigners who trufted to their aid were ruined by pla－ cing confidence in them．In Italy，Cermany，Swit－ zerland，and Holland，the rapacity of the commif－ fa ies of the Frencli government，foon rendered odious and intolerable the prefence of thofe armies whofe ar－ rival had been eagerly defered．In Ireland and in \(I_{12}\) ． dia，the promife and the hope of affitance which they were never able to bettow，only ferved to produce pre－ mature hoftility，and to encreafe and eftablith the power of the Britifh government．

But to return to the domeftic hiftory of France， which has now become only an hiftory of the ufurpation of Bonaparte．

In the mildle of the month of December，the Con－New con＊ fuls，with their legiflative committees，produced to the ftimtion of public their plan of a new conftitution，which they pre France． fented to the primary affemblies，and which is faid to have been accepted by them without oppolition，like all the former conititutions．It is a very fingular pro－ duction，and neither admits of reprefentative govern－ ment，nor indeed of any other form of political free． dom．Eighty men，who elect their own fucceffors，pof－ fefs，under the appellation of a Confervative Senate，the power of nominating the whole legiflators and executive rulers of the ftate；but cannot themfelves hold any office in either of thefe departments．The fovereignty is concentrated in one man，who，under the title of Cloief Conful，holds his power for ten years，and may be re－elected．The whole executive authority is en－ trufted to him，and he enjoys the exclufive privilege of propofing new laws．He is affited by two other cont－ fuls，who join at his deliberations，but cannot controul his will．＇I＇he legiflative power is entrufted to two al－ femblies：the one，confiling of 100 nembers，called a Tribunate；and the other，of a Senate，of 300 members． When a law is propofed by the Chief Conful，the＇Tri－ bunate may debate about it，but have no vote in its enactment．The Senate votes for or agrainft its enact－ ment，but cannot debate about it．Neither the Con－ futs，nor the members of the legillative bodies，nor of the confervative fenate，are refponfible for their condue？． The minifters of Itate，however，who are appointed by

French
Revalution， 1 クリリ．

French the Chief Conful, are refpofible for the meafures they Revoluticn, adupt.

The people in the primary affemblies elect oue-tenth of their number as candidates for inferior offices; perfons thus chofen, elect one tenth of themfelves as candidates for higher offices; and thefe again elect a tenth of themfelves as cundidates for all the higheft offices of the ftate. Out of this laft tenth the Confervative Senate mult nominate the confuls, legiflators, and members of their own body. But this laft regulation is to have no effect till the ninth year of the republic. In the mean time, the fame conmmittecs that framed the conflitution, appointed alfo the whole perfons who were to exercife the government. Bonaparte was appointed Chief Conful, and Cambaceres and Lebrun fecond and third Confuls. Sieyes, with his ufual caution, avoided taking any active thare in the management of public affairs, and was ap. pointed, or appointed himfelf, a member of his own Confervative Senate; the whole being regarded as produced by him. As a gratuity for his fervices, the Chief Conful and his legiflators prefented to hins an eftate belonging to the nation, called Crofne, in the department of Šeine and Oife.

Thus, after all their fanguinary ffruggles for freedom, did the fon of a Corfican drive from their flations the reprefentatives of the French nation, and affume quict poffeffion of the government of that country, with a power more abfolute than ever belonged to its ancient monarchs. The eitablifthed privileges of the clergy, the nobles, and the parliaments, always reftrained, in fome deglee, the defoutifm of the kings of France ; thefe being now deftroyed, the will of Bonaparte could meet with no controul. Though an ufurper, however, he has net hitherto been a twrant. He has sather attempted to induce the French mation to acquiefie in his authority, in confequence of the mildnefs with which it hasbeen exercifed, and of the ability and reputation of the inen whom he has employed in the public dervice. He imrnediately fent propofals for negociating peace to the diffcrent powers at war with France. Great Britain refufed to lilten to him on account of the probable iuftability of his government, and Auftia appears to have given a finilar refufal. It is indeed difificule to believe that he wifhed his propofals to be accepted. They were not addreffed to the belligerent powers in the aggregate, but to each individually, as if his object had been to fow diffention and miffrult between the allies. When be made thefe propofats, he did not even know whether the people of France would accept of the conftitution which he had offered them; and he had taken no meafurcs to procure a repeal of thofe revohtionizing decrees which were the im:nediate caufe of the war with England.
His fituation is, in the mean time, attended with great difficulties. The want both of an hereditary title, and of a national reprefentation as the bafis of his power, renders his character as an ufurper fo obvious, that it is orly by very cautious meafures that his elevation can be maintained. If he is either unfuccefisful abroad, or compelled to prefs the people for money at home, there is little doubt that his fall muft follow. Even independent of either of thefe events, it is a poffible cafe that the violent Jacobins may recover their b/t entrgy, and by furce or fraud deftroy the man who has baftled all their projects. From the royalits he has lefs to fear ; for the men of ardent feirits and violent
paffions belonging to that party, from whom alone gieat efforta can ever be expected, were early tempted to leave the country by the hopes held out to them by the coatefced powers, which, by weakening, las hitherto prevented their party from becoming of much importance in the interior of France.
In the mean time, Bonaparte has been fuccefoful in fuppreffing a new royalift revolt which had arifen in La Vendee, and has inade great exertions to begin the campaign with vigour. The low flate of the French 4 rmy of finances, however, have nuch enfeebled all his efforts Esyph. \(^{\text {bl }}\) towards affembling very numerous armies. The army which he left in Egypt, after concluding a treaty with the Grand Vizier, by the terms of which they were to be landed fafe in France, have feen reafon to bieak the truce which had been agreed on. Kleber has attacked and completely defeated the main body of the Turkifh army, while a detachment of that army has entered Cairo, and malfacred, it is faid, every lirenchman found in the city, not fparing the members of the National Inftitnte. The probable confequcnce of this is, that no part of the army of Egypt will.ever return to Europe.

War has been recommenced between the Auftrians Recom.
d France, both in Switzerland and in Swabia, and mencerm. and France, both in Switzerland and in Swabia, and mencenee carried on with griat vigour. Maffena, after giving com. of war in plete proofs of confuminate fkill, and the molt undaunt- Europe. ed valour, has been for fome time blocked up in Genoa; and unlefs he has been relieved by the vigorous exertions of the Chief Conful, he mutt before this period (June the 12 th) have furrendered to the Antrian General Melas. The affairs of the French in that quarter feem indeed to be defperate; but in Germany they have hitherto been fuccelsful. Moreau has dilplayed his wonted abilitics, and the gallaut kray has retreated before him, whether from neceffity or to-draw him into inextricable difficulties, a very fhort time will evince.

But here we mut interrupt this detaif, without the faintelt profuect of bringing it to a conclufion during condluin the publication of the preent Work. We cannot, however, difinils the moinentous fubject without correcting fome errols into which we fell in the account of the rife and probrel's of this revolution which was publifhed in the Lincyclopedia. We do not confider Errer: io thefe errors as difgraceful to ourfelves; for in the midit the formit of commotions which have convulfed all Europe, it is hardly poffible to arrive at the truth. When time tha!! have cooled the paffions of mett, and annihilated the partics which now divide the nation, the calm woice of Truth may be everywhere heard; but when the article xeferred to was written, the ears of every man was itunned with the clamour of faction.

So fenfible of this are the editors of the only impartial periodical hittory * which we have, that they ven. * old A ture not to publifh their volumes till feveral years have nual \(R\) es elapfed from the era of the tranfactions whicl thefe vo fere lumes record; whilft their rivals - the panders of fac-tion-feize the earlieft opportunities of obtruding their partial ftatements and falfe reafonings on the public mind.

It cannot be fuppofed that one or two men, fuperintending the publication of a work fo extenfive, and treating of fubjects fo various, as ours, have leifure or opportunity to examine with much attention the correfpondence of anibaffadors, or to expifcate truth from the contradictory publications of the day. We are therefons

\section*{R E V [ 45 I \(]\) R E V}
(1an therefore obliged to draw our materials from fuch works as profefs to give a fummary, but inpartial, detail of what is aeting on the theatre of the world; and by thefe works we have often been mined. For the firlt error, however, which we fnall notice in our former account of the rife of the revolution, we cannot plead even this excufe. We ought to have known, that the French clergy and French nobleffe were not exempted from the payment of taxes ; and, of courfe, we ought not to have affigned fuch exemption as one of the caufes of the Revolution. See that article, Encycl. n 8 . and 9 .
By a writer, to whofe patriotic exertions this country is deeply indebted, it has been proved, with a force of argument which precludes all pofibility of reply, that the exemption from taxes fo loudly complained of was very trifing, that it was not confined to the nobility and clergy, and that it did not extend over the whole kingdom of France. "The vingtiemes, which may be confidered as an impoft merely territurial, was paid alike by the nobility and the tiers-etat. A great part of the clergy was indeed exempted; but their contributions, under a different form, confituted an ample equivalent. The duties upon the different articles of confumption were of courfe paid by all the confumers, except that in the pays d'etat, fuch as Artois and Brittany ; the two firft orders were exempted from paying the tax upon liquors. But thefe exemptions caunot be deemed very important, when it is known, that in the province of Artois they did not exceed 800 guineas annually, even including the exemptions enjoyed by the privilegred members of the tiersetat." The Britifl of. ficers ferving on board fhips of war are exempted from the taxes paid by the other members of the flate on wine ; and we believe no good fubject has ever murmured at that exemption. The French nobility were fubject to the pole-tax.
"Of the teilles, the impoft from which it has been falfely afferted that the nobility and clergy enjoyed a total exemption, there were two fpecies; the one perfunal, the other real. In one part of the kingdom, the right of exemption was annexed to the property; in the other, to the quality of the proprietor. In the firft cafe, the privilege was enjoyed by every clafs of perfons, by the tenants as well as the proprietor of a fief; whilft the gentleman, whofe eftate was holden by a different tenure, was obliged to pay the tax. In thofe provinces where the other cuftom obtained, the exemption was confined to a certain extent of property, and to that ouly while it continued in the aemal occupation of the privileged perfon; but as it very feldom happened that the French nobility kept any land in their own hands, and as the tax payable by the fariners was of courfe deducted from the rent, the teilles was, in this cafe, ultimately paid by the landlord. The fame obfervations apply, with till greater furce, to the clergy, who always let their eftates."
In a word, it appears from a formal declaration made by M. Necker to the Couftituent Affembly, that all the pecuniary exemptions enjoyed by the privileged claffes did not exceed L.:292,000; that the exemptions appertaining to the privileged perfons of the tiers-etat amounted to one half of that fum; and the droits de controle, or duty impofed upen public deeds, and the high capitation tax (proportioned to their rank), paid by the nobility and clergy, made ample amends to the
from other taxes. So far indeed were the eajoyed Revolutions from murmuring at the incoselat orders, that, previous to the illnminifm of the 18 th cen. tury, they difplayed, at every convention of the tates. general, the greateft anxiety to maintain the rights of the nobility and clergy ; and humbly fupplicated their fovercign to tuffer no invalion thercof, but to refpect their franchifes and immunities*. * See Cif-
We mult likewife acknowledge, that in \(n^{3} 11\). of our ford's Icter article Revolution, we have drawn a very overchar- of \(L\) tard ged pieture of the miferies and oppreffion of the French dale, ad ed. peafants under the old government. It is indeed true, 402 that they were obliged to ferve in the militia, the efta- Second blifhment of which was conducted in France nearly on erior. the lame principles as it is in England. The men were called out by ballot only for a few days in the year during peace, when they received regular pay ; but if a militia forms the beit conftitutional defence of a fate, this furely ought not to have been confidered as a grievance, efpecially fince married men were exempted from the lervice. The nobility, too, were exempted from the rift of being drawn, for the beft of all reafons-becaufe molt of them had commiffions in the regulars, and becaufe fuch as had not were engaged in profeffions, which rendered it impoffible for them to ferve in the militia. In France, as chewliere, the peafants would no doubt be averfe from this fervice, and might look perhaps with an anxions cye to the fuppofed immunities of their privileged fuperiors: but if mirth, good humour, and fucial eafe, may be confidered as fymptoms of felicity and content, thefe men furely were not miferable; for thefe fymptoms never appeared in any people fo ttrong as among the lirench peafants. They were indeed liable to be called out by the intendants of the provinces to work a certain num. ber of days every year on the public roads; but to this fpecies of orprefion, if fuch it muft be called, the Scotch peafants are liable, and were ftill more fo than at prefent, during that period when our parliamentary orators declare that the inhabitants of Britain enjoyed as much freedom as is confiftent with the public tranquillity. It ought to be remembered, too, that Lonis XVI. whofe highef gratification feems to have confifted in contributing to the eafe and welfare of his fubjects, thought he faw the neceffity of abolinhing the cuftom of the corvée, and had made confiderable advances towards the accomplifhment of that object fome years before the commencement of the revolution.

That the French monarch was defpotic; that no \({ }^{403}\) man in the kingdom was fafe; that nothing was un-monareh known to the jealous inquilition of the police; and that not defpo. every man was liable, when he leaft expected it, to be tic feized by lettres de caclet, and thut up in the gloomy chambers of the Battile - las loug been common language in England, and language which we mult confefs that we have adopted (Revolution, \(n^{\circ}\) 12.) with out due limitations. The French goverument was cer. tainly not fo free as that of Britain; but lie who under. food it better than we do, and whofe writings betray no attachment to arbitrary power, exprefsly difting uifhes between it and defpotifm. "If (lays Montelquicu) France has, for two or three centuries paft, inceflantly augmented her power, fuch angmentation muft not be \(+D_{0} l\) l \(E f=\) afcribed to fortune, but to the excellence of her lares t." Rrit des Liv,

This, 20. c. 29.

French This, furely, is not the language of a man who thought Revolution himfelf governed by an arbitrary tyrant whofe caprice is the law; nor will it be faid to be the language of one who was either afraid to fpeak the truth or not maficr

404
No charge. of the old conftitution wihned by the people of France.

The inftructions of all the different orders to their reprefentatives, before the fatal meeting of the States General under the unfortunate Louis, are drawn up in language fimilar to that of this illuftrious magiffrate, and furnifh a complete proof that they knew thenfelves to be fafe under the government of their munarchs. "The conflitution of the fate (fay the clergy) refults from the fundamental laws, by which the refpective rights of the king and of the nation are afcertained, aad from which not the fmallcft deviation can be made. The firlt of thefe laws is, that the government of France is purely monarchical. The nation muft preferve inviolate the form of its government, which it acknowledges to be a purt morarchy regulated by the lawes; and fuch it will have it to remain."

On the 28 th of November 1788 , in a general committee of the nobles affembled at Verfailles, the Prince of Conti delivered a note to the prefident, which was fanctioned by the concurrence of moft of the other princes of the blood, and was fuppoferd to fpeak the general fenfe of the nobility; in which it was infifted, that the profcription of all NEW SY3TEMS was neceffary io infure the ftability of the throne, of the laws, and of order; and that the conftitution, with the ancient forms, should be preferved entire. In their inftructions to their reprefentatives, they infift that it fhall be exprefs. ly and folemnly proclaimed, thas the conftitution of the French empire is fuch, that its government is, and muf remain, monarchical ; that the king, as fupreme chief of the French, is only fubordinate to the fundamental law of the kingdom, according to which the conftitu. tion muft be eftablifhed on the facred and immutable principles of monarchy, tempered by the laws; and this form of government cannot be replaced by any other conftitution.
" Let our deputies (fays the third eftate), before they attend to any other object, affift in giving to France a truly monarchical confitution, which muft invariably fix the rights of the ling and of the nation. Let it be declared, that the monarchical is the only form of government admiffible in France; and that in the ling alone, as chief of the nation, is vefted the power of governing according to the lazus." Is this the language of men groaning under the iron rod of defpotifm, or wifhing to reduce the power of the crown?

Even after the power of the crowa was almoft annihilated, and the order of nobility done away, fo far were thefe innovations from being acceptable to the enlightened part of the French nation, that in many departments of the kingdom they excited open infurrections, whilt the members of all the provincial parliaments oppofed them with unanfwerable arguments furnighed by the law. The chamber of vacation of the parlia. ment of Touloufe, in particular, protefted againft the proceedings of the States General, becaufe the depu-
* See the proteft at large in
Bertrand's Memoirs, vol. iii.
-1. 13. ties, who were empowered only to put an end to the ruinous flate of the finances, could not change the conftitution of the flate without violating their inftructions, and the faith fworn to their conftituents *.

That lettres de cachet were liable to abufe, and that
occafionally they were grofsly abufed, is certain. The ufe of them ought therefore to have heen either annul. Revoluthon led, or, which would have been infinitely better, fub. jected to fuch rules as fhould prevent all danger from them to the real liberties of the people; for the govern-cactres ds ment woutd be of no ufe whatever which foould poffefs no power capable of being abufed by defpotifm. Yet after all the noife that has been made about lettres de cachet, it is but juftice to obferve, that in the towers of the Battile, when it was taken by the mob, were found no more than feven prifoners; of whom four were confined for forgery; one was confined at the requett of his family on charges of the moft ferious tature; and two were fo deranged that they were fent next day, by thofe philanthropitts who had taken them out of comfortable chambers, to the mad houfe! 'That the chambers of the Baftile were as comfurtable as the chambers of a prifon could be, we are affured by M. Beitrand de Moleville, who can be urder no inducement to deceive the Britifh public, and whole opportunities of difcovering the truth were fuch as no man will call in queftion.

In our account of the opening of the States General, we have expreffed too much deference to the character Necker of of M. Necker. 'To that man's irrelolnte, if not treacherous, conduct, may, with truth, be attributed all the fubfequent miferies of Fiance. It was about the mocie of verifying their powers that the thee orders of the fate firlt differed; but that mode fhould bave been defined by the minitty in the letters fent to the different bailliwicks for the convention of the flates. Even this omiffion might have been repaired after the arrival of the deputies at Verfailles; for none of them thould have been admitted into the hall of the fates, far lefs thould the king have met them there, till the Council had been fatisfied of their being duly elected. Had either of thefe cautions been obferved, the tiers-etat never could have got the afcendant over the other two orders, and the bufinefs of the nation would have been conducted as formerly in three different chambers. M. Necker's rejection of Mirabeau's advances fhewed him to be very ill qualified to conduct the helm of affairs at fuch a crifis; and his abfenting himfelf from the royal feffion, a meafure which he had advifed, betrayed the utnoft in. gratitude to his gracious matter.

In our account of the royal feffion, we were led into a miftake, which calls loudly for correction. The circumftances of that feffion weie very different from what they appeared to us when we wrote \(11^{\circ} 24\). and 25 . of the article Revolution. The royal leffion was pro-Royal clamed in confequence of the violent uifurpations of the Seflion. tiers-etat, and the irreconcileable differences which fudfilted between that body and the two liigher orders; and fo far is it from being true that the prefident and members of the third eftate found their hall unexpecledly furrounded by a detachment of guards, that their fittings were only fufpended, for the bett of all reafons, with thofe of the uther orders. To be convinced of this, we need but to attend to the following proclamation which was made by the heralds, on the 20th of June, between feven and eight o'clock in the moming, in the ftreets and crofs-ways of Verfailles:
"June 20th. (By order of the King.) The King having refolved to hold a royal fitting in the States General, on Monday next the 22d of June, the preparations to be made in the three halls ufed by the aftem
blies of the orders, make it neceffary that thofe affem. blies fhould be fufpended until after the faid fitting. His Majefty will give notice, by another proclamation, of the hour of his going to the Affembly of the States on Monday."
M. Bailly, the prefident of the tiers-etat, had been made acquainted with the object of this proclamation, by a private letter which was fent to him by the Marquis de Brezé at feven o'clock in the morning; and to which he replied, " that having rectived no orders from the King, and the aftembly having been announced for eight o'clock, he fhould attend where his duty called him."

He repaired, accompanied by a great number of the members of the tiers-etat, to the door of the hall of the States, demanded admiffion: and on being refufed by the officer on guard, according to his orders, with which he acquainted him, he declared that he protefed againft fuch orders, and that he flould give a report of them to the Affembly. To do this he had not far to go, as three fourths of the deputies of the tiers-etat were already collected round him, or in the avenue leading to the palace. There it was that, furrounded by an immenfe crowd of people, they declained in the moft violent manner againit this pretended act of defpotifm. "'i he National Affembly is to be diffulved (faid they), and the country to be plunged into the horrors of a civil war. Want reigns every where; every where the people fee foumine flaring them in the face. This we were about to put an end to, by rending the veil which covers the mancelurres of the monopolifts, the engroffers, and the whole tribe of mifcreants. The Louifes XI. and XIII. the Richelieus, the Mazarins, the Briennes, attacked with their defpotifm only individuals or fmall bodies; but here it is the whole nation that is made the fport of the whims of a defpotic minilfry. "Leet us meet upon the Place d" Armes (faid one of thofe orators) ; there we fhall recal fome of the nobleft days of our hiftory, the National Affembites of the field of May." "Let us affemble in the gallery of the palace (faid another) ; there we fhall prefent a new fight, by fpeaking the language of liberty, in that corrupt hall, where a little while fince the head of him whe fhould have uttered that facred word would have been devoted to the executioner. - 'No, no (faid a third), let us go to Marli, and hold our fitting on the Terrace:-let the King hear us; he will come from his palace, and will have nothing more to do than to plice himfelf in the midft of his people to hold the royal fitting."

At the conclufion of thefe declamations, the fule cbject of which was to alarm and exafperate the people, the Affembly decided upon transferring their fitting to the Tenniscourt, in the ftreet called Rue du Vieux Verfailles. 'There M. Bailly read the letter which he had received from M. de Brezé, and his anfwer to it ; which he had fcarcely done, when a fecond letter from M. de Brezé was put into his hands, the contents of which were as follows:
"It wat by the King's pofitive order, Sir, that I did myfelf the honour of writing to you this moruing, to acquaint you that, his Majelty, purpofing to hold a soyal fitting on Monday, and fome preparations being requifite in the three halls of the Affemblies of the orders, it was his intention that no perfon fhould be ad.
mitted into them, and that the fittings fhould be fuf. French pended till after that to be held by his Majefly." Revolusorio
In this there was furely no marked difrefpect to the reprefentatives of the people; but fuch notions were countenanced by M. Necker, who appears indeed, on this occafion, to have been in clofe compact with the leaders of the mob. The popular violence that was employed to conpel the majority of the clergy to join the tiers-etat is well known; and we have, in Biertrand's Annals of the Revelution, what announts to eviderce almoft legal, and quite fufficient to erforce con. vietion, that Necker direeted that violence.

In our account of the commotions which were excited in Paris on the firt difmiffion of that minitter and his banifhment from the kingdom, we have been led by our democratic journalills to give circulation to a grots calumny publithed by thein againf the frice de 1 ambefe. (See Revnlutinn, \(n\). 36 . and 37.) The truth, which is fo much difguifed in tleefe two numbers, is is follows:
"A detachnén=of the Royal Allemand, fent to dif perfe the mob which was patroling the ftreets in proceffion with the bufts of Necker and the infamous Orleans, leceived a volley from the French guards as they were pafing their quarters on the Cbouffie d'Antin, ftopped to return it, and continued their march without quickerning their pace. There were fome foldiers kill. ed and wounded on both fides, but fewer of the re. giment of Royal Allemand than on that of the French guards.
"The detachment marched to the Place Louis XV. and there found a body of dragoons who had been difperfing the proceflion. The two butts were broken to pieces; and the populacc in their fright taking refuge in the garden of the Thuilleries, the Prince de Lam. befe parfired them thither, at the Lead of the detachment of Royal Allemand, according to the orders which, he reccived. Thris firmall troop corning up to the head of the Pont-fournazit (or turning bridge), at the extremity of the garden, found a kind of barricade, haftily formed by clairs lieaped upon one another: wlile they were removing this obftacle, they received a thower of fones, broken chairs, and bottles, from the two terraces, between which the Prince de Lambefc drew up lis troup, keeping couftantly at their head. Some guns and pittols were difcharged at theni, which did no hurt ; but feveral of the troopers were much bruifed by the things that had been thrown at them, and an office: was feverely wounded by a ftone.
" The Prince de Lambefc, , keeping at fix paces from the bridgre, oppofed only a fteady front to the aggreffions of the pupulace. Sceing that this poft became untenable, and that it was impoffible for him any longer to reftrain his troopers from repelling furce by force. he gave the order for retreating out of the garden. At the tame inflant a cry was heard from all lides of, turis the bridge, turn the bridge; and fome perfons, in confe. quence, ran and began to do it. The Prince de Lambefc, juflly fearing that a mof bloody carnage would be the inevitable confequence of it, ordered fome piftole to be fired in the air towards the bridge, to awe thofe who were ftriving to turn it. As the report of this volley did not deter them, he rode up himfelf, and with his fabre fruck one of thofe who were working hardelt, The man ran off; and the Prince paffing the bridge
with

French erotution. with his detachment into the Place Iouis XV. drew up near the Statue, and being foon joined by the Swifs regiment of Chateauvieux, took his poft with this force near the Garde-meuble, where he remained fome time, having placed the infantry before him. At ten at night pare of the troops were difmiffed to their quarters, and the reft fent to Verfailles." Thefe facts being ail judi. cially confirmed, prove how much the Prince de lam. befc's conduct was calumniated by thofe journalifts whofe detail we rafhly adopted.

In our account of the taking of the Baftile, mified

True account of the taking of the Baaile :

412
And of the murder of M. de FlefSelles. by our treacherous guides, the journalifts, we have greatly magnified the military fkill and prowefs of the affailants. That celebrated fortrefs was defended by a garrifon confifting of no more than YI4 men, of whom 82 were invalids. It was attacked by 30,000 men and women, armed with mufkets and pikes, and furnifhed with a train of artillery which they had found at the Hotel des Invalids, given up to them by the timidity of the governor. Even this multitude syyould have been quickly repulfed from the Battile, if the governor of that ftate-prifon, who had received no orders from the court, had been lefo reluctant to fhed the blood of his rebellious countrymen ; for the Parifian mob had then difplayed nothing of determined courage. A few dif. charges of murquetry, and one of canitter-fhot from a fingle cannon, had thrown them into confufion, and made them fkulk behind the walls, when the ill-timed humanity, of the governor made him enter into a treaty with the rebels, ftipulating only that the garrifon fhould not be maffacred. How the ftiputation was obferved with refpect to the governor himfelf, we have faithfully related; but we were miftaken when we faid that the "French guards fucceeded in procuring the fafety of the garrifon." The guards, with the utmolt difficulty, faved indeed fome of them, but moft of the invalids remaining in the courts:of the caftle were put to death in the moft mercilefs manner.

Our account of the murder of M. de Fleffelles ( \(\mathrm{n}^{\circ}\) 40.) appears likewife to be very incorrect. This man was prefident of the Affembly of EleCtors at Paris (See Revolutron, \(\mathrm{n}^{\circ} 45\).), and had not quitted the Hotel de Ville, where their rebellious meetings were held, during the whole time of thefe dreadful commotions. He had even figned all their atrocious refolutions, but became fuddenly furpected from the confternation which he manifefted at the fight of fo many horrors, and efpecially at the cruel and treacherous murder of the governor of the Battile. The confequence was, that he was treacheroully murdered himfelf by one of the vil. lains compofing that affembly in which he prefided. "The electors (fayb M. Bertrand de Molleville) hoped to extenuate the horror of this affafination, by caufing it to be confidered as a natural and almoft lawful vengeance for a treachery, the proof of which they pretended to have. In fact, they declared, that when M. de Launay, the governor of the Baltile, was arrefted, a letter had been found in his pocket from M. de Fleffelles, containing this expreffion: 'I am amufing the Parifians with cockades and promifes; hold out till night, and you will receive a reinforcement.' But this〔uppofed letter, which, had it exifted, they would not have failed to preferve very carefully, was never feen by sny body ; and I heard M. Bailly himfelf fay, in a vifit He paid me when he left the mayoralty,- that he had
no knowiedge of it, and that it was not in his power to refer to any one who had told him that he had read it."

In our account of the earlier tranfactions of the Revolution, we omitted to mention a very extraordinary inftance of ambition to which the Duke of Orleans wa incited by Count Mirabeau, but which that unnatural monfer wanted courage to carry into effect. During the commotions which prevailed in the capital on the difmiffal of M. Necker from the miniftry, Orleans was perfuaded by Mirabeau to offer his fervices as mediator between the king and his rebellious fubjects; but to Atipulate, at the fane time, for his appointment to the high office of lieutenant-general of the kingdom as neceffary to give his mediation due weight with the rebels. The real object of the profligate Count, in this dangerous propofal, and which he did not deign even to conceal, was to pave the way for the infamous Duke stepping into the throne of his relation and virtuous fovereign. He even went fo far as to compofe the Speech with which Orleans was to addrefs the king on the occafion; but that coward, when he arrived at the palace, was fo embartaffed by the confcioufnefs of his nown wicked defigus, that inftead of afking the office of lieutenant general, he only requefted permiffion to retire into England!! A requeft which was inftantly granted.

This brought upon him the contempt and indigna. tion of Mirabeau; but till there was a party defirous of placing him on the throne. This we think evident from an atrocious fact mentioned in all the journals, and confirmed by M. Bertrand. "When the king, on his firlt vifit to Paris (See no 44.) had arrived at the Cbamp Elifées, three or four guns were fired at once. It was never known whence they proceeded; but it is certain that an unfortunate woman in the crowd, who was in the direction of his Majefty's carriage, was fhot at the time, and fell dead on the fpot." As the King's carriage held at the time exactly four perfons, M. Bertrand very naturally concludes that thefe four fhots, fired at once in its direction, had been ordered and paid for; and we are unwilling to beliere that at that period of the revolution there was any party difpofed to pay for the murder of the fovereign but the Duke of Orleans and his infamous adherents. That he was equal to this wickednefs cannot be doubted, when it is known that legal evidence was afterwards produced that he, with fome other members of the Affembly, fecretly directed the infurrection of the 5 th of Oetober, and promoted the outrages of that and the fucceeding day by the diftribution of money and bread *.

We have faid ( \(\mathrm{n}^{\circ} .48\). ), the origin of the report of a train of gunpowder being laid by M. de Mernmay, to blow into the air a number of patriots, has never been well explained. It was proved judicially, that at the period when the feaft was given by M. Memmay to the inlabitants of Vefoul, he was fetting vines in a ftony foil, where he was often obliged to blow up the greater rocks. Some foldiers running through, and ferreting every where in the houfe and out-houfes, unfortunately took a candle to the dark corner where the barrel of gunpowder was lodged, and fet it on fire, in trying to fee if it contained wine. Thefe facts, reported and attefted in a memorial drawn up by \(M\). Courvoifier, fo completely juftified M. de Memmay, that the Afferm-
ch Bly could not avoid teltifying his innocence by a decree - - ion. ifiued the th of June.

In \(\mathrm{n}^{\circ} 70\). we have faid that the National Affembly, abler its removal from Verfailles to Paris, was in tolera the moft incontrovertible, that it did not think itfelf fecure; and that if the minitters had been capable of employing events to their own advantage, the powers of that factious body muft have been recalled by its own conftituents. The horrible outrages committed on the 5 th and 6th of October had hoocked all France. The wanton confifcation of the property of the church, had demontrated to every man of found judgment, that under the new order of things no property could be fe. cure ; and by the defertion of its more virtuons and moderate-members, the Affembly had become a rump uffembly. It was therefore much alarmed when the intermediate commiffion of the ftates of Cambrefis entered, on the gth of November, into a refulution, in which, confidering-" \({ }^{6}\) that certain decrees of the National Aflembly are paving the way for the ruin of the kingdom, and the annihilation of religion ; that if they have been able to place one fpecies of property at the difpo. fal of the nation, men of all kinds of property may expect the fame fate; they declare, from this moment, the power of the deputies of Cambrefis to the National Affembly to be null and revoked." Had M. Necker and his colleagues had addrefs to get fimitar refolutions entered into at the fame time by the electors of all the bailiwicks of the kingdom, the Affembly mult have been diffolved, and France, even then, might have been faved; but thofe minitters were themfloes nothing more than the humble and docile agens of the Affem. bly.

There is no part of our former narmative more incorrect, or more likely to miflead the public, than our account of the red-bonk ( \(11^{\circ} 95^{\circ}\) ). It is fich, however, as was then current, without any addition or aggravation by us. The villains ( k ) who, in direct contradicion to their own folemn promife, as well as to every principle of honour, made part of that book public, luad the impuderce to affirm, that, by the fupprefion of the inperfluous penfions regiftered in it, a laving would be made to the public of near a fifth in the bulk of the cxDences of eqery year. M. Butrand, taking for granted the accuracy of their fatements, for the exagreration of which, howevel, lie urges arguments more than plauible, proves, if arithmetical calculation affords proof, that by the fuppreftion of fuch pentions as even they called Euperfiuous, the faving in the bulk of the ammal ex. pences could not poffibly liave amounted to more than the two bundredth part! It was not therefore without reafon that M. Necker, in anfwer to their pubiication, faid, "I know not whether the books of the finauces of any fovereign in Europe can thew a fimitar total."

Our account of the mutiny of the fuldiers at Nancy ( \(n^{\circ} 83\). ) is very inaccurate. Far from being excited by the officers, that mutiny was the natural confequence of the abfurd decrees of the Affemoly; which having declared all men equal, and made it criminal to punith
difobedient foldiers in that fummary way, without French which no armed force can be commanded, had com- Revolutions pletely diforganifed the army, and fubftituted for martial law patriotic exhortations, legillative decrees, and the novel jurifdiction of municipalities. The foldiers knesv their own frength, of which indeed they were continually informed by the friends of the revolution; and while they fhook off the authority of their military commanders, they laughed at tlie impotent decrees of the Affombly. At Nancy they had imprifoned two general ofncers, and committed other outrages of the moft ferious nature. It was the duty of the Marquis de Bouillé, as governor of the province, to reduce the infurgents by force, if force fiould be found neceffary: but he had accomplifhed his object without fhedding blood, and was congratulating the two liberated generals, and fome of the principal inhabitants, upon fo happy a termination of the affair, when the populace, and many foldiers who had not followed their coloure, fired upon the troops under his command, and killed fifty or fixty men. The troops immediately returned the fire ; and a great number of the rebellions mob and mutinous garrifon were of courfe put to the fword. 'i'hat fuch able and firm conduct in Bouillé excited indignation among the Jacobins of Paris, is very probable; but even the king himfelf did not exprefo higher approbation of it than the National Affembly, who were duly feufible that it faved themfelves from defruetion, which, had he falled in his enterprife, would lave been inevitable. 'Lhree months afterwards, indeed, when the fabrication of counter-revolutionary plots became part of the daily bufiness of this enlight.. ened Affembly, fome cenfures were thrown by the I. 3 . cobins upon the Marqais's conduct on this occalion) and thofe cenfures were loutly applanded.

We have likewife been led, by our fallacious guides, M. de to accufe this gallant offcer ( \(n^{3} 9\) r.) of having laid Bouillé vix. open the country to the inroads of foreign armies; and dicated. we have given an incorrect account of the king's flight from Paris. 'There is no evidence whatever for the truth of the charge again!t the Marquis de Bouille, aud it is directly contrary to his Ereneral character. Hi: was indeed a royalitt, and would doubilits liave co. operated with the Prince af Cons? and the other emigrants in rettoring the king to his lawful authonity ; but he was likewife a Irenchman and a patriot is the beit fenfe of the word; and he would have died in cie. fence of the riglits and independence of his country, He certainly mearit to protect the king in his journey from Paris to Montmedi, where it was to terminate; and he had fationed troops of dragoons on the road for that purpofe; but the unfortunate Iouis had cie. layced his journey a day longer than was agreed upon: and even when be fet out, neglected to fend couriers before him to warn the troops of his approach. He thus travelled unprotected; and the confequence was fuch as we have related. Yet the gallant Bouille, tho' this journey was undentaken contrary to his adrice. declared himfelf the author of it, in that jetter in which he threatened the Aftembly with vengeaise of all EL:
(x) Thefe were the Marquis de Montcalm-Gozon, Baron Felix de Wimpfen, de Menou, Freteau, L. M. de Lepeanx, the Abbé Expilly, Camus, Goupil de Prefeln, Cautier de Biauzat, 'Trecilhard, Champeaux-Padafuc, and Cottin.

French, rope if they fhould dare to touch a hair of the heads of Revolution, the royal family.

418 Erroncous king was permitted to continue his journey to St Clo the arcount in This is directly contrary to truth. The prefident a \(u^{\circ} 90\). cor- ter hearing lis complaint againft thofe who had pre. rected. vented it, replied indeed in a fpeech, containing fome expreffions of gratitude and affection, mixed with reflections on the refrastory priefts; but the Affembly dictermined nothing refpecting the propricty of the journey. They did not even fuffer a fingle motion to be made on the fubject ; and threatened with imprifonment one of the members who propofed to take it into confideration! The king was therefore obliged toabandon this excurfion, though it was firit undertaken from religious motives; and it was then that he feriounly thought of attempting to elude the vigilance of his rebellious ghards, and of taking up his refidence at Montmedi.

In \(n^{\circ} 96\). we have puhlifhed, with doubts indeed of its authenticity, what was called the trenty of Paria and the convention at Pilnitz. The terms in which we
introduced that fcandalons fabrication to the notice of our readers, and the principles which we have uniformly avowed through the whole of this voluminous sork, furnih, we hope, fufficiert evidence that we could have no intention to deceive the public. Truth, however, demands of us to acknowledge, in the mon explicit terms, that the pretended treaty of Pavia is not only a forgery, but a bungling forgery, defective in fome of the moft ufual diplonatic forms ; and that the conferences at Pilnitz between the Emperor, the King of Fruffia, and the Count d'Artois, related to objects very different from a partition of the French territories.

So early as the month of May 1791, a plan had been digetted by the Emperor, the King of Pruffia, and the Fing of Spain, with the concurrence of Louis XVI. for liberating that unfortunate monarch from the confinement in which he was kept in his own capital. The means to be employed were a coalition among the principal powers on the continent to lead armies in every quarter to the borders of France. During the alarm which fo menacing an appearance could not but excite in that kingdom, a declaration by the houfe of Bourbon, complaining of the cruel and iniquitous treatment of its head, was to be icirculated through France, and to be immediately followed by the marifetto of the combined powers. This, it was prefumed, would furnifh a fufficient reafon, even to the National Affembly, for the king's groing to the frontiers, and placing himfelf at the head of the army ; but if it Thould not, petitions were to be procured from the army and the provinces, requefting his prefence, as the only means left of preventing a civil as well as foreign war. Had this meafure, which was partly fuggefted by Mirabeau and partly by Montmorin and Calonne, been fteadily purfued, there can be little doubt but it would have proved completely fuccefsful. It was defeated, however, by the king's ill-concerted attempt to efcape to Montmedi, and by a very imprudent and degrading letter which he was afterwards perfuaded to fend to every fo. reign power.

At Pilnitz, where the Emperor and the King of Pruffia met, on the 25 th of Auguft, to fettle between themfelves fome interefts too delicate to be adjuited by the ufual diplomatic modes, an agreement was entered
into by them to fupport the caule of the French princes, to liberate the king, and to fave, if poffible, the mo. Revolurin narchy. 'They delivered, accordingly, to the Count d'Artois the following declaration :
"His Majefly the Emperor, and his Majelty the King of Pruffia, having heard the defires and the reprefentations of Monfieur and his Reyal Highnefs the Count d'Artois, declare, conjointly, that they confider the fituatien in which his Majefty the King of France is at prefent placed, as a matter which concerns the in teref of every Covereign of Europe. - They hope that that interelt will not fail to be acknowledged by the powers whofe affiftance is required; and that confequertly they will not tefufe to enploy, in conjunction with their Majeflies, the moft efficacions means, according to their abilities, to put the King of France in a fituation to eftablifh, in perfeet liberty, the foundations of a monarchical government, equally agreeable to the rights of fovereigns and the welfare of the Prench: then, and in that cale, their Majefties are determined to at promptly and by murual confent, with the forces neceffary to obtain the end propofed by all of them. In the mean time they will give orders for their troops to be ready for astual fervice.
"Pilnitz, Ausuf 27th, 1791.
"Signed by the Emperor and the King of Pruffia."
Such was the agreement entered into at Pilnitz, which was fo grofsly mifreprefented by the French Jacobins, and by their zealous partizans in this country. Had not Louis XVI. accepted the conftitution fimply and uncorditionally, the confequence of this convention might have been the faving of the French monarchy, and the prefervation of peace in Enrope; but that acceptance, fo little looked for by the high contracting powers, completely thwarted their meafures for a time: and before their armies were put in motion, the monarchy was overturned, and the monarch a prifoner.

In our account of the origin of the war between 42 ? Great Britain and France ( \(\mathrm{n}^{1} 147,148\) ), we have pro the Pers ved, by evideuce which to ourfelves appears irrefittible, fors in the that the French regicides were the arerreffors, and that war with信 the Britifh miniltry did all that could be done, conlitt. ently with the independence of their own country, to maintain the relations of amity between the two nations. That we have interpreted fairly that decree of the Convention by which this kingdom was forced into the war, is rendered incontrovertible by a \{ubfequent de. cree on the 15 th of December, by which their generals were ordered to regulate their conduct in the countries which their armies then occupied, or might afterzuard's occupy. In the preamble to this decree, they exprefsly declared, that their principles avould not permit them to acknozvledse any of the inflitutions militating againg the fovereignty of the peopie; and the various articles exhibit a complete fyftem of demolition. They infift on the immediate fuppreflon of all exifing authorities, the abolition of rank and privilege of every defcription, and the fuppreffron of all exifting ingoofs. Nay, thefe friends to freedom even declare, that they will treat as enemies a qubole nation (un peuple entier) which fhall prefume to reject liberty and equality, or enter into a treaty with a prince or privileged cafls!

It is worthy of remark, that the very day on which this decree, containing a fyftematic plan for diforganizing all lawful governments, paffed the Affembly, the

Prench provifiomal executivc council wrote to their agent, Chauvolution. velin, inftructing him to difavow all hoftile intentions on the part of France, and to proclaim her deteftation of the idea of a war with England! Yet the fanie provifional council, in their comments on the 1 th article of this decree, thus exprefs themfelves: "The right of natinral defence, the duty of fecuring the prefervation of our liberty, and the fuccefs of our arms, the univerfal intereft of reftoring to Europe a peace, zwhich fbe cannot oltain but by The annihilation of the despots and their fatellites, every thing impofes on us the obligation of exercifing all the rigours of war, and the rights of conquef, towards a people fo fond of their chains, fo ooftinately wedced to their degradation, as to refufe to be reftored to their rights, and who are the accomplices, not ouly of their own defpots, but even of all the crowened ufurpers, who divide among themfelves the dominion of the earth and its inhabitants." That Britain is one of thofe countries which the affembly thought their armies might afterwards occupy, and that the great majority of Britons were a people towards whom their principles obliged them to exercife all the rigours of war, and the rights of conqueft, is evident from the following extrafil of a letter, written on the 3 rit of December 1792, by Monge, a member of the council, and minifter of the marine to the fea-ports. "The King and his parliament mean to make war upon us. Will the Englifl republicans fuffer it? Already thefe free men thew their difcontent, and the repugnance which they have to bear arms againft their brothers the Frencls. Well! we will fly to their fuc. cour. We will make a defcent on the ifland; we will lodge there 50,000 caps of liberty; we will plant there the fucred tree; and we will ffetch out our arms to our republican brethren. The tyramy of their govern. ment will be deflroyed."

As thefe two decrees of November and December 1792 have never been repealed, and as their object is fo plainly avowed in the commentaries of the executive council, and in this letter of the minifter of marinc, they would alone fufficiently authorife us to adopt as our own the following reflections of M. Bertrand de Moleville*. Witl thefe, as they give a concife but lution, or, to fpeak more correctly, that feries of revolutions which has for feven long years oppreffed, not France alone, but all Europe, we fhall conclude this long article.
422 © Popular infurrections, and an army (fays this able Bertrand's
view of the and ufeful writer), have hitherto been the ufual means, rife and or clief inftrument3, of every revolution; but thofe in progrefs of furrections being of the molt ignorant and unthinking the revolution.
regulated government ; and they employed, in quelling the troubles that had favcurd their unnpation, thole very legions, that fame army, which they had ufed to excite thern.
"This was not the cafe in France: there, the revolution, or rather the firft of thofe it experienced, and of which the others were the inevitable confequence. was not, whatever be fuppofed, the refult of a confpiracy, or preconcerted plan, to overturn the throne, or to place an ufurper uponit. It was unexpectedly engendered by a commixiure of weaknefs, iguorance, negligence, and numberlefs errors in the government. The States General, however imprudent their convocation may have been, would have produced only ufeful reforms, if they had found the linits of their power marked out by a hand fufficiently firm to have "kept them within that extent. It was, however, but too evident that, even before their opening, they were dreacid, and that confequently ilicy might attempt whatever they pleafed. From that time, nuder the nane of Clubs, various affociations and factions fprang up; fome mors: violent than othere, but all tending to the fubvertion of the exilting groverament, without agreeing upon the form of that which was to be fubftitured: and at that juncture alfo the projects of the faction, whole views weac to have the Duke of Orleans appointed licutenantgenetal of the kingdom, begran to appear.
"This faction, or more proverly this confpiracy, was indeed of the fame nature as thofe that liad produced all former revolutions, and raight have been at. tended with the fame confequences, had the Duke of Orleans been poffeffed of that energy of character, that bravery and daring fpirit, requifite in the leader of a party. The people had already declared in his favour, and he might very eafily lave commoted and brought over a great part of the arniy, had he been equal to the command of it : but, on the very firft occafion of perfonal rifk, he difcovered fuch cos'ardice and mean. nefs, that lie defeated his own confuiracy, and convinced all thofe who had entever into it, that it was impoffible to continue the revolution, either in his favonr or in conjunction with him. 'The enthufiafm the people had felt for him ended with the efforts of thofe who had excited it.
" Mr Necker, whom the multitude had affociated with him in their lomage, Itill preferved for fome time his adorers, and that little cabal which was for ever exalting him to the fkies. But as he was inferior even to the Duke of Orleans in military talents and difpolitions, he was as little calculated to be the leader of a revolution, or of a great contpiracy : for which 1 eafon his panegyrifts then confined themfelves in their pamplilets and placards, with which the capital was overrun, to infinuating, that the only means of faving the fate was to declare Mr Necker Dictutur; or at leaft to confer upon him, under fome title mone confillent with the monarcliy, the authority and powers attached to that republican office. In fact, if after his difitififion, in the month of July 1789 , he had dared to make this a condition of his return to the ininiftry, it is more than probable that the king would have been under the neceffity of agreeing to it, and perhaps of reeftablifning in lis pertun the office of mayor of the palace. At that moment he might lave demanded any thing: eight days later, he might lave been refufed every thing;

\section*{R E V}

French and very foon after, he was reduced to fneak out of the \(\underbrace{\text { Revolution. }}\) kingdom, in order to efcane the effects (.f the general contempt and cenfure which he had brought upon himfelf.
" General La Fayette, who then commanded the \(\mathrm{P}_{1}\) rifian National Guard, gathered the wrecks of all this popularity, and might have turned them to the greateft advantage, if he had poffeffed 'that refolute character and heroic juldgment' of which Cardinal de Retz fpeaks, and 'which ferves to diftinguifh what is truly honourable and uffeul from what is only extraordinary, and what is extraordinary from what is impoffible.' With the genius, talents, and ambition of Cromwell, he might have gone as great a length; with a lefs criminal ambition, he might at leaft have made himfelf mafter of the revolution, and have directed it at his pleafure : in a word, he might have fecured the triumph of whatever party he fhould have declared limfelf the leader. But as unfit for fupporting the charager of Monk as that of Cromwell, he foon betrayed the fecret of his incapacity to all the world, and was diftinguifhed in the crowd of conftitutional ringleaders only by his three-coloured plume, his epaulets, white horfe, and famous faying -- Infurrection is the moit facred of duties when oppreffion is at its height.'
"The revolution, at the period when the faction that had begun it for the 1)uke of Orleans became fenfible that he was too much a coward to be the leader of it, and when La Fayette difcovered his inability to conduct it, was too far advanced to recede or to ftop; and it continued its progrefs, but in a line that no other sevolution had taken, viz. without a military chief, without the intervention of the army, and to gain triumphs, not for any ambitious confpirator, but for poli. tical and moral ineovations of the mof dangerous nature ; the moft fuited to minead the multitude, incapable of compretiending them, and to let loofe all the paffions. The more violent combined to deftroy every thing; and their fatal coalition gave birth to Jacobinilm, that terrible monter till then unk nown, and till now mot fufficiently unmafked. This monfer took upon jtfelf alone to carry on the revolution; it directed, it executed, all the operations of it, all the explofions, all the outrages: it every where appointed the moft active leaders, and, as inftruments, employed the profligates of every country. Its power far furpaffed that which has \(t\) feen attributed to the inquifition, and other fiery tribunals, by thofe who have fooken of them with the greateft exaggeration. Its centre was at Paris; and its rays, formed by particular clubs in every town, in every little borough, overfpread the whole furface of the kingdom. The conttant correfpondence kept up between thofe clubs and that of the capital; or, to ufe their own expreffion, des Sociét ts populaires affliées avec In Soci, te mere - 'between the affiliated popular Societies and the parent Society,' was as fecret and as fpeedy as that of free-mafons. In a word, the Jacobin clubs had prevailed in caufing themfelves to be looked up to as the real national reprefentation. Under that pre. tence, they cenfured all the authorities in the moft im. perious manner; and whenever their denunciations, pe-
ritions, o addrefles, failed to produce an immediate titions, \(o\) : addreffes, failed to produce an immediate ef. fear, they gained their point by having recourfe to infurrection, affaffination, and fire. While Jacobinifm thus fubjected all France to its controul, an immenfe
number of emiffaries propagated its dofrines among foreign nations, and prepared new conquefts for it.
"The National Affembly, the capital, indeed we inay fay all France, was divided into three very diftinct parties. The moft confiderable in number, but unhap. pily the weakeft through a deficiency of plan and refo. lution, was the party purely Royal: it was adverfe to every kind of Revolution, and was folely defirous of fome improvements, with the reform of abufes and pecuniary privileges:-the moft able, and moft intriguing, was the Conftitutional party, or that which was defirous of giving France a new monarchical conftitution, but modified after the manner of the Englifh, or even the American, by a houfe of reprefentatives. The third party was the moft dangerous of all, by its daring fpirit, by its power, and by the number of profelytes it daily acquired in all quarters of the kingdom: it comprifed the Democrats of every defcription, from the Jacobin clubs, calling themfelves Friends of the Conflitution, to the anarchs and robbers.
"The Democratic party, which at firf was only auxiliary to the Conllitutional one, in the end annihilated it, and became itfelf fubdivided into feveral other parties, whofe fatal flruggles produced the fubfequent revolutions, and may itill produce many more. But in principle, the Conftitutionalits and the Democrats formed two difinct, though confederate, factions; both were defirous of a revolution, and employed all the ufual means of accomplifhing it, except troops, which could be of no ufe to them, for neither of them had a leader to put at the head of the army. But as it was equally of importance to both that the king fhould be deprived of the power of making ufe of it againft them, they labonred in concert to diforganife it ; and the complete fuccefs of that manceuvre was but too fully proved by the fatal ifflue of the departure of the royal family for Montmedi. The revolution then tork a more dariug and rapid fride, which was concluded by the Contion of pretensed conttitution act of 1791 . The incoherence 1791 com ot its principles, and the defects of its inflitutions, pre- plete- the rent a faithful picture of the difunion of its anthors, firft sen. and of the oppowite interefts by which they were fwayed. It was, properly fpeaking, a compact between the faction of the Conllicutionalitts and that of the Democrats, in which they mutually made conceffions and facrifices.
" Be that as it may, this abfurd confitution, the everlating fource of remorfe or forrow to all who bore part in it, might have been got over without a fhock, and led back to the old principlez of monarchical government, if the Affembly who framed it had not feparated before they witneffed the execution of it; if, in impofing on the king the obligation to maintain it, they had not deprived him of the power and the means; and above all, if the certain confequence of the new mode of proceeding at the elections had not been to fecure, in the fecond Affembly, a confiderable majority of the Democratic againft the Conftitutional party.
"The fecond Affiembly was alfo divided by three factions, the weaken of which was the one that withed to maintain the contlitution. The other two were for a new revolution and a republic; but they differed in this, that the former, compofed of the Brifutins and Girondifts, was for effecting it gradually, by beginning with divefting the king of popularity, and allowing the

French pubitic mind time to wean itferf from its natural attach\(=\) ment to monarchy; and the latter, which was the lealt numerous, was eager to have the republic eftablifhed as foon as poffible. Thefe two fattions, having the fame object in view, though taking different roads, were necefliarily auxiliaries io each other; and the pamphlets, excitations to cominotion, and revolutionary meafures of both, equally tended to overhhrow the conflitution of 1791.
"Thofe different factions, almolt entirely compofed of advocates, folicitors, apoftate priefts, do fors, and a few literary men, having no military chief capable of taking the command of the army, dreaded the troops, who had fworn allegiance to the conflitution, and obedience to the king, and who moreover might be influenced by their officers, among whom there ftill remained fome royalifts. The fureit way to get rid of all uneafinefs on this fubject, was to employ the army in defending the frontiers. For this purpofe a foreign war was neceffary, to which it was known that the king and his counc! were equally averfe. No more was wanting to determine the attack which was directed, almoft at the fame time, againft all the minitters, in order to compel them to retire, and to put the king under the neceffity of appointing others more difpofed to fecond the views of the partice. Unhappily this attempt was attended with all the fuccefs they had promifed themfelves; and one of the firtt aets of the new minittry was to declare war againft the emperor. At the fame time, the emigration that had been provoked, and which was almoft every where applauded, even by the lowe't clafs of people, robbed France of the Hower of the royal party, and left the king, deprived of his beft defenders, expofed to the fufpicions and infults that fprang from innumerable calumnies, for which the difafters at the beginning of the war furnifhed but too many opportuhe fecond "In this manner was prepared and accelerated the new volution. revolution, which was accomplifhed on the loth of \(A\) uguft 1792, by the depofition and imprifonment of the King, and by the moft flagrant violation of the conftitution of 1 \%gr. 'ithe latter, however, was not entireIy abandoned on that day; for the project of the GiFondifts, who had laid the plot of that horrible confpiracy, was then only to declare the king's depofition, in order to place the prince royal upon the throne, under the guidance of a regency compofed of their own creaiures; but they were hurried away much farther than -hey meant to go, by the violence with which the molt furious of the Jacobins, who took the lead in the infurrection, conducted all their enterprifes. The prince royal, infead of being crowned, was thut up in the Temple; and if France at that moment was not declared a republic, it was lefs owing to any remaining refipeet for the confitution, than to the fear the legiflative body was in of railing the army againft it, and allo the majority of the nation, who would naturally be angry to fee a contlitution which feemed to be rendered fecure and flable by fo many oaths, thus precipitately overthrown, without their having been confulted.
"It was on theie confiderations that the opmion was adopted, that a National Convertion thould be convoked, to determine the fate of royalty. Prompt in feizing all the means that might enfure the fuccefs of this fecond revolution, the Affembly, under presence
of giving every poffible latitude to the freedom of elections, decrecal, that all its menbers Ifould be eligible Revolution. for the National Convention.
"From that moment the Girondiits daily loft ground, and the noft fiaming menbers of the Democratic party; fupported by the club of Jacobins, by the new Commune of Paris, and by the Tribulies, made themfelves mafters of every debate. It was of the utmolt importance to them to rule the enfuing elections; and this was fecured to them by the horrible confternation which the maffacres of the 2 d of Septenber ftruck throughout the kingdom. The terror of being affaffinated, or at leaft cruelly treated, diove from all the Primary Affemblies, not only the royalifts and conftitutionalifts, but moderate men of all partice. Of courfe, thofe affeimblies became entirely compofed of the weakeft men and the greateft villains exifting in France; and fiom among the moff frantic of them were chofen thofe members of the Convention who were not taken from the legilative body. Accordingly, this third Affembly, in the firft quarter of an hour of their: firft fitting, were heard fhouting their votes for the abolition of royalty, and proclaiming the republic, upon the motion of a member who had formerly been a player.
"Such an opening but too plaiuly fherred what was to be expected from that horde of plunderers which compofed the majority of the National Convention, and of whom Robefpierrc, Danton, Marat, and the other ringleaders, formed their party. That of the Briffotins and Cirondilts flill exitted, and was the only one really republican. Thefe femi-wretches, glutted with the horrors already commitied, feemed defirons of arrefling the torrent of them, and laboured to introduce into the Affembly the calm and moderation that were neceffary to give the new republic a wife and folid organization. But the fuperiority of their knowledge, talents, and eloquence, which cheir opoonents could not difpute, had no powse over tigrers thirfting for blood, who neither attended to nor fuffered motions but of the blackeft tendency. No donbt they had oecation for atrocities atrocires the third arics upon atrocties to prepare the terror Atruck revolution. nation to allow them to commit, in its name, the moft execrable of all, the murder of the unfortunate Louis XVI : and that martyrdom was neceflary to bring about a third revolution, already brewing in the brain of Robefpierre. Fear had greatly contributed to the two former: but this was effected by terror alone, withont popular tumults, or the intervention of the armies: which, now drawn by their concuuefts beyond the frontiers, never leard any thing of the revolutions at home, till they were accomplifed, and always obeyed the prevailing faction, by whom they were paid.
"By the degree of ferocity difoovered by the members of the Convention in paffing fentence upon the king, and in the debares relative to the conftitution of 1793, Robefpierre was enabled to mark which of the deputies were likely to fecond his views, and which of them it was his part to facrifice.
" The people could not but with tranfport receive a conflitution which feemed to realife the chimera of its fovereigrty, but which would only have given a kind of conflruction to analchy, if the execution of this new code had not been furpended under the pretext, bel nging in common to all acts of defpotifm and tyramny, of the fupreme laze of the fivity of the flate. 'Thus furpen-
\({ }_{3} \mathrm{M}_{2}\)
fion

French fion was effected, by eftablifhing the Provifionary GoRevolution. vernment, which, under the title of Revolutionary Government, concentrated all the powers in the National Convention until there was an end to the war and all inteftine croubles.
"Althongh the faction, at the head of which Robefpierre was, had a decided majority in the Affembly, and might confequently lave confidered themfelves as really and exclufively exercifing the fovereign power, he was a demagogue of too defpotic a nature to ftomach even the appearance of fharing the empire with fo many cofovereigns. He greatly reduced their number, by caufing all the powers invefted in the National Affembly by the decrees that had eftabliffed the revolutionary government, to be transferred to a committee, to which he got himfelf appointed, and where he was fure of the fole rule, by obtaining for colleagues men lefs daring than himfelf, though equally wicked; fuch as Couthon, St Juft, Barrere, and other's like them. This committee, who had the affurance to Atyle themfelves the Committee of Public Safety, very foon feized upon both the legiflative and executive powers, and exercifed them with the mofl fanguinary tyranny ever yet heard of. The minifters were merely their clerks; and the fubjugated Affembly, without murmur or objection, paffed all the revolut\%nary laws which were propofed, or rather dictated, by them. One of their moft horrible and decifive conceptions was that of thole Revolutionary Tribunals which covered France with fcaffolds, where thoufands of victims of every rank, age, and fex, were daily facrificed; fo that no clafs of men could be free from that fupefying and general terror which Robefpierre fourd it neceffary to fpread, in orcer to eftablifh and make his power known. He foon himfelf dragged fome members of his own party, fuch as Danton, Camille des Moulins, and others, whofe energy and popularity had offended him, before one of thofe tribunals, where he had them condemned to death. By the fame means he got rid of the chief leaders among the Briffotines and Girondiits ; while he caufed all the moderate republican party who were ftill members of the Affembly, except thofe who had time and addrefs to efcape, to be fent to prifon, in order to be fentenced and executed on the firft occafion.
The fourth revolution produces
"In this manner ended the third revolution, in which the people, frozen with terror, did not dare to take a part. Inftead of an army of foldieri, Robefpierre employed an army of executioners and affaffins, fet up as revolutionary judges; and the guillotine, friking or menacing all heads indifcriminately, made France, from one end to the other, fubmit to him, by the means of terror or of death. Thus was this nation, formerly fo proud, even to.idolatry, of its kings, feen to expiate, by rivers of blood, the crime of having fuffered his to be fpilt who was the moft virtuous of all their monarchs.
"In the room of that famous Baftile, whofe celebrated capture and demolition had fet only feven prifoners at liberty, two of whom had been long in a ftate of lunacy, the colleges, the feminaries, and all the religiou's houfes of the kingdom, were converted into fo many fate prifons, into which were inceffantly crowded, from time to time, the victims devoted to, feed the ever-working guillotines, which were never fuffered to fland ftill for a day, becaufe they were at once the chief
refource of fupplies for the government, and the inftru. French ment of its ferocity. 'The gnillotine coins money for Revolutio the republie,' was faid in the tribune by one of Robefpierre's vileft agents *. In fact, according to the ju. * Barrere rifprudence of the Revolutionary Tribunals, the rich of every clafs, being declared fufpected perfons, received fentence of death, for no other reafon than that of giving the confifcation of their property a thow of judicial form.
"Still blood flowed too flowly to fatisfy Robefpierre; his aim was but partly attained by the profcription of the nobles, the priefts, and the wealthy. He fancied, not only an ariftocracy of talents and knowledge, but of the virtues, none of which would his trufty orators and journalifts admit, fave that horrid patriotifm which was eftimated according to the enormity of the crimes committed in favour of the revolution. His plan was to reduce the French people to a mere plantation of flaves, too ignotant, too itupid, or too pulitlanimous, to conceive the idea of breaking the chains with which he would have loaded them in the name of liberty; and he might have fucceeded in it, had not his ambition, as impatient as it was jealous, too foon unveiled the inten. tion of reforting to the guillotine to ftrike off the fhackles with which an affembly of reprefentatives of the nation fettered, or might fetter, his power. He was about to give this decilive blow, which he had con certed with the Commune of Paris, the Revolutionary 'Tribunal, the Club of Jacobins, and the princidal officers of the National Guard, when the members of the Convention, who were marked out to be the firfi facrificed, anticipated him at a moment when he leal expected it, by attacking himfelf in the Affembly, with energy fufficient to roufe all the fections of the capital againtt him and againtt the Jacobius. The parties came to blows, and victory remained uncertain for feveral hours ; but at length declared again!t Robefpierre. In the fpace of a day, that execrable montter was dragged from the higheft pitch of power ever attaised by any tyrant, to the very fcaffold that was fill reeking with the blood of his laft victims. His principal accomplices in the Committee of Public Safety, in the Commune, in the National Guard, in the Revolutionary Tribunal, and many of his agents in the provinces, met the fane fate. The Revolutionary Tribunals were fuppreffed, and the prifons thrown open to all whom they had caft into them.
"This fourth revolution, in which the faction then The cont efteemed the moderate party overthrew the terrorits, tution of and feized the fupreme power, was no lefa complete \({ }^{1795}\). than thofe which had preceded it, and produced the conftitution of 1795. All France received as a great bleffing a conititution that delivered them from the revolutionary government and its infernal policy. Befides, it had, in fpite of great defects, the merit of coming nearer than the two preceding ones, to the principles of order, of jultice, and real liberty; the violation of which had, for five years before, been the fource of fo many difafters and fo many crimes. The royalifts, confidering it as a ftep towards monarchy, were unfortunately fo imprudent as to triumph in it; and their joy, as premature as indifcreet, alarmed the Affembly to fuch a degree, that they paffed the famous law, ordaining the Primary Affemblies to return two-thirds of the members of the Convention to the legiflative body, which
was to fucceed that affembly. It was thus that the fpirit of the Convention continued, for the firt year, to be difplayed in the two councils.
"In the year following, the bias of the public mind, perhaps too haftily turned towards royalty, fhewed itfelf in the elections of the members for the new third, fo clearly as to alarm the regicides who compofed the Directory, and the Conventionalifts, who fill made a third of the legiflative body; nor did they lofe a moment in devifing means for their defence. That which appeared the fureft to them was, to publifh notices of plots among the royalifts, and annex one or inore deinunciations, in terms fo vague as to leave room for implicating, when neceffary, all their adverfaries; while by the help of this impofture they procured fome fecret information, artfully fabricated, and ever eafily obtained through threats or rewards by thofe who have at command the guillotine and the public treafure.
"' i his mafked battery was ready to be opened before the numbers of the new third took their feats. Thefe at firft confined theniflves to the fecuring of a conflant majonity in the two councils in favour of the inderate opivions; but in a litule time every fitting was marked by the repeal of fome revolutionary law, or by fome decree tending to reltrain the executive authority within the limits fixed by the conftitution.
" The Directory, alarmed at the abridgment of their power, and dreading fill more ferious attacks upon it, carme to a refolution ef no longer polpouing the how they had been meditating ayaintt the legiflative affem. bly: and they accomplithed, in the mamer related in ni 309. a fifth revolution, as complete as any of thofe by which it was preceded. It differed indeed from them effentially in the facility and promptuefs with which it was effected, although the party which prevailed, that is to fay, the majority of the DireStory, and the minority of the Leginative Dody, had to combat not only againtt the conflitution, but againt the opinion, and even againft the indignation, of the public. That moral force, on which the majority of the two councils had unluckily place? all their reliance, vanifl. ed in an inflant before the phylical force of a detachment of troops confilting of fix or feven hundred men; in true is it, that the power of the public opinim, ridiculoufly exaggerated in thefe days, is and can be no more, under a firm and well ordered goveriment, than a mere fancy. Men accultum themfelves too eaflity to take for public opiniout the private opinions made public by certain writers, whofe caution or audacioufnefs depends always upon the energy or feeblenefs of the finpreme authority. It is the fame thing with popular commotions: they are cafily excited under a weak goverrment, which does not poffefs the wifdom to prevent or the fpirit to fupprefs them ; but a vigorous, juft, and frict govemment has nothing to fear from them. The Direetory, compelled to withdraw the larger body of troops, which they had thought neceffary to enfure the revolution they were meditating, difcovered, no doubt, great ability in fecuring the two councils, by appearing, to dread them: but it was chiefly to the energy of their meafures, and to the concentration and promptnefs with which they were executed, that they owed their fuccefs. Two days before, the leginative body might, without obltruction, have impeached, arrefted, and even outlawed, the majority of the Directory, who
were execrated by the public under the title of Trium-
virate; and, if requifite, they would have been fuppor ed by more than 30,000 armed citizens, who with Pichegru and Villot at their head, would fonu have difperfed, and perhaps brought over, the feeble detachments of tronps of the line which the Directory hat at their command. The legifative body, relying tos much upon its popularity, did not fufficiently confider, that the people, whofe impetuofity is commonly decifive when allowed to take advantage in attack, are ahways feeble on the ciefenfive, and totally unable to withftand every affault made previeus to an infurrection, for it is always cafy to prevent their a! fembling. It was on this principle that the Directory founded their operations, and the \(5^{\text {th }}\) of September too well proves how juftly. That day ieduceri he legifative bodv, by the moft degrading fubjugation, to a mere diffuiting caricature of national reprefent:tinn ; it invefted the Directory with the moft arbitrary and tyranuic power, and reftored the fyatem of Rebefpierre, under a form lefs bloody, but not leis pernicious; for the Revolutionary 'T'ribunals which that monfter had eitablifhed, were fcarcely more expeditions than the military ones of the Dincetory. The power of arbitrary and unlimitud tranfportation is, in time. as deltructive as the grillutine, without foffefing, like that, the advantage of exciting a falutary horron, which, by recoveling the penple from the itate of flupor and apathy, thre conftant effects of terror, gives them bnth recollection and force to break their chaius. Though, in violating the mof effential regulations of the connitution, the Directory obtainet a temporary confirnistion of their power, the ir example pointed out to Bom?arte and Sisyes the parh which they parfued with infinite addrefs, and in which they accomplifhed a fixth revolution."

How long the confular goverument will antine lar govern= is impofible to conjecture; but we may, without prefumption, venture to precict, that it cannot be permanent. To the yacobins and original conftitutionalits it mult be more obnoxions than the oid government, brcaufe lomaparte is more defpotic than was Louis XIV; and the royalits, though they may prefer the vigorous and comparatively mild govenment of one man, whofe talents are indifpucable, to the ferocious. tyransy of the lowel of the rabble, muit look with indignation at a foreign adventerer feated on the throne of their ancient monarchy.

RHABDOLOGY, or RabDCLOOr, in arithmetic, a name given by Napicr to a method of performing fome of the more difficult operations of numbers by means of certain fquare little rods. Upon thefe are. inicribed the fimple numbers; theu by faifting them according to certain rules, thofe operations are performed by fimply adding or fubtracting the numbers as they fland upon the rods. See Napier's Rabdsloytia, printed in 1617 . See alfo the article NAPIer's Bones.

RHOMB SOLid, contifts of two equal and right cones joined together at their bafes.

RICE (fee that article, and Oryza, Encycl.) is ftrongly recommended, in a late publication, as the beft correetive of Pr rit flour, of which there is a great quan- \(^{\text {fin }}\) tity in Scotland every year, and of courfe a great deal of unpleafant and unwholefome bread. The gentleman, who writes the fhort paper alluded to, direets ten pounds of flour and one pound of ground rice, with the

French
Revoiutio:
RII
ufual quantity of yeit, to be placed, for about two hours before a fire, and then formed into bread in the commos way. This addition of rice, befides correcting the bad qualities of the damaged flour, adde, he fays, much to its nutriment : and he is undoubtedly right ; for the flour of rice, though very nutritious, is fo dry, that it is difficult to make bread of it by itfelf. - See Bread of Rice, in this Suppl.

As rice is a favourite fubtitnte for tread in years of fcarcity, it may not be difagreeable to our readers to know the method of cultivating the plant in thofe countries where it is the principal food of the inhabitants. We have the following full and perfpicuous account of the Chinefe practice by Sir George Staunton.
"Much of the low grounds in the middle and fouthern provinces of the empire are appropriated to the culture of that grain. It conftitutes, in fact, the principal part of the food of all thofe inhabitants, who are not fo indigent as to be forced to fubfift on other and cheaper kinds of grain. A great proportion of the furface of the country is well adapted for the production - of rice, which, from the time the feed is committed to the foil till the plant approaches to maturity, requires to be immerfed in a meet of water. Many and great rivers run through the feveral provinces of China, the low grounds bordering on thofe rivers are annually inundated, by which means is brought upon their Lurface a rich mud or mucilage that fertilizes the foil, in the - ame manner as Egypt receives its fecundative quality from the overflowing of the Nile. The periodical rains which fall near the fources of the 「ellow and the Kiang - Tivers, not very far diftant fiom thofe of the Ganges and the Burumpooter, among the mountains bounding India to the north, and China to the welt, often fwell thofe rivers to a prodigious height, though not a drop of rain fhould have fallen on the plains through which they afterwards flow.
" After the mud has lain fome days upon the plains in China, preparations are made for planting them with rice. For this purpofe, a fmall fpot of ground is inclofed by a bank of clay; the earth is ploughed up; and an upright harrow, with a row of wooden pins in the lower end, is drawn lightly over it by a buffalo. The grain, which had previoufly been fteeped in dung diluted with animal water, is then Cown very thickly on it. A thin fheet of water is simmediately brought over it, either by channels leading to the fpot from a fource above it, or when below it by means of a chain pump, of which the ufe is as familiar as that of a hoe to every Chinefe hufbandman. In a few days the Thoots appear above the water. In that interval, the remainder of the ground intended for cultivation, if Atff, is ploughed, the lumps broken by hocs, and the furface levelled by the harrow. As foon as the hoots have attained the height of fix or feven inches, they are plucked up by rhe roots, the tops of the blades cut off, and each root is planted leparately, fometimes in imall furrows turned with the plough, and fometimes in holes smade in rows by a drillinif ftick for that purpofe. The -roots are alout half a fout afunder. Water is brought over them a fecond time. For the convenience of irrisgation, and to regulate its proportion, the rice fields are fubdivided by narrow ridges of clay, into fmall in.clofures. Through a channel, in each ridge, the water is conveyed at will to every fubdivifion of the fich. As
the rice approaches to matisity, the water, by evaporation and abforption, difappears entirely; and the crop, when ripe, covers dry ground. I he firft crop or harveft, in the fouthern provinces particularly, happens towards the end of May or beginning of June. The inlt rument for reaping is -a fmall fickle, dentated like a faw, and crooked. Neither carts nor cattle are ufed to carry the theaves off from the fpot where they were reaped; but they are placed regularly in frames, two of which, fufpended at the extremities of a bamboo pole, are carried acrofs the fnoulders of a man, to the place intended for difengaging the grain from the flems which had fupported it. This operation is performed, -not ouly by a flail, as -is cuftomary in Europe, or by cattle treading the corn in the manner of other Orientalifts, but fo metimes alfo by ftriking it againt a plank -fet upon its edge, or beating it againft the fide of a large tub fcolloped for that purpofe; the back and fides being much higher than the front, to prevent the grain from being difperfer. After being winnowed, it is , carried to the granary.
" To remove the flin or hufk of rice, a large ftrong -earthen veffel, or hollow ftone, in form fomewhat like that which is infed elfewhere for filtering water, is fixed firmly in the ground; and the grain, placed in it, is flruck with a conical fone fixed to the extremity of a -lever, and cleared, fometimes indeed imperfecly, from the hufls. The ftone is worked frequently by a perfon treaduig upon the end of the lever. The fame objecz is attained alfo by paffing the grain between two flat ftones of a circular form, the upper of which turns round upon the other, but at fuch a diftance from it as not to break the internediate grain. I'he operation is performed on a larger fcale in mills turned by water; the axis of the wheel carrying feveral arms, which, by ftri*king upon the ends of levers, raife thein in the fame manner as is done by treading on them. Sometimes twenty of thefe levers are worked at once. The ftraw from which the grain has been difengrged is cut chiefly into chaff, to ferve as provender for the very few cattle employed in Chinefe hufoandry.
"The labour of the firtt crop being finifhed, the ground is immediately prepared for the reception of frefh feeds. The firft operation undertaken is that of pulling up the ftubble, collceting it into finall heaps, which are burnt, and the athes feattered upon the field. The former proceffes are afterwards renewed. The fecond crop is generally ripe late in October or early in November. The grain is treated as before; but the ftubble is no longer burnt. It is turned under with the plough, and left to putrefy in the earth. This, with the flire brought upon the ground by inundation, are the ouly manures cfually empioyed in the culture of tice."
RIDEAU, in fortification, a fmall elevation of earth, extending it felf lengthwife on a plain; ferving to cover a camp, or give an advantage to a poft.
Rideau is fometimes alfo ufed for a trench, the carth of which is thrown up on its. fide, to ferve as a parapet for covering the metn.
RIDLEY (Dr Gloner), was of the fame family with 1)r Nicolas Ricley, Bifhop of London, and Martyr to the Reformation. (See Ridley, Encycl.) He was born at fea, in 702, on board the Gloucefter Eaft Indiaman ; to which circumitance he was indebted for
his Chriftian name. He received his education at Winchefter fchool, and thence was elected to a fellowhip at New college, Oxford, where he proceeded B. C. L. April 29. 1729. In thofe two feminaries he cultivated an early acquaintance with the mufes, and laid the foundation of thofe elegant and folid acquirements for which he was afterwards fo eminently diftinguilhed as a poet, an hifforian, and a divine. During a vacancy in 1728, he joined with four friends, viz. Mr thomas Fletcher (afterwards Bifhop of Kildare), Mr (afterwards Dr) Eyre, Mr Morrifon, and Mr Jennens, in writing a tragedy called "The liruitlefs Redrefs," each undertaking an act on a plan previeufly concerted. When they delivered in their feveral proportions at their meeting in the winter, few readers would have known that the whole was not the production of a fingle hand. 'I'his tragedy, which was offered to Mr Wilks, but never acted, is fill in MS. with another called "Jugurtha." Dr Ridley in his youth was much addicted to theatrical performances. Midhurft, in Suffex, was the place where they were exhibited; and the company of gentlemen astors to which he belonged confifted chiefly of his coadjutors in the tragedy already mentioned. He is faid to have performed the characters of Marc An. tony, Jaffier, Horatio, and Monefes, with diftinguifhed applaufe; a circumftance that will be readily believed by thofe who are no ftrangets to his judicious and graceful manner of fpeaking in the pulpit.
For great part of his life he had no other preferment than the fmall college living of Weftow in Norfolk, and the donative of Poplar in Middlefex, where he relided. To thefe his college added, fome years after, the donative of Romford in Effex. "Between thefe two places the curricle of his life had (as be expreffed it) rotled for fome time alinoft perpetually upon poitchaife wheets, and left him not time for even the proper thulies of economy, or the neceffary ones of his profeflion." Yer in this obfeure fituation he remained in poffeffion of,
- and content with, domettic happineis; and was honoured with the intimate friend!nip of fome who were not lefo dititinguithed for leatning than for worth.

In \(1 ; 40\) and \(1 ; 41\) he preached " Eight Sermons at Iady Moyer's Lecture," which were publithed in 1742 , 8 vo . In 1756 he declisted an offer of groing to Ireland as firl chaplain to the Duke of Bedford; in return for which he was to have had the choice of promotion, either at Chrif-church. Canterbury, Weilmintter, or Windfor. His modety inducing him to leave the choice of thefe to his patron, the confequence was, that te obtained none of them. In \(1 ; 6_{3}\), he publifted the "Life of Pifhop Riciley," in 4to, by fubfription, and cleared by it as much as brought him \&ool. in the public funds. In the latter part of his li.e he had the misfortune to lofe both his fons, each of them a youth of abilities. The elder, James, was author of "The 'Tales of the Genii," and fome other literary perform. ances. Thomas, the younger, was fent by the Eatt India Company as a writer to Madras, where he was no fooner fettled than he died of the fnall-pox. In \({ }^{1765}\), 1)r Ridley publifhed his "Review of Philips's Life of Cardinal Pote ;" and in 1768 , in reward for his labours in this controverfy, and in another which "The Confeffional" produced, he was prefented by Archbithop Secker to a golden prebend in the cathedral church of Salifury (an option), the only reward he received
from the great during a long, ufeful, and laborious life, devoted to the duties of his function. At length, worn out with infirmities, he departed this life in 1774, leaving a widow and four daughters. His epitaph, which was written by Bifhop Lowth with his ufual elegance, informs us, that for his merits the univerfity of Oxford conferred upon him the degree of D. D. by diploma, which is the highelt literary honour which that leatned body has to beltow.

RIENZI (Niculas Gabrini de), one of the moft exthaordinary men of the 14 th century, was born at Rome, we know not in what year. His father, Iaw rence Gabrini, was a mean vintuer, or, as others fay, a miller, and his mother a laundrefs. Thefe perfons, however, found the means of giving their fon a liberal education; and to a good natural underfanding he joinced an uncommon affiduity, and made great proficiency in ancient literature. Every thing which he read he compared with fimilar paffages that occurred within his own obfervation; whence he made reflec. tions, by which he regulated his conduet. To this he added a great knowledge in the lawe and cuftoms of. nations. He had a vaft memory: he retained much of Cicero, Valerius Maximus, Livy, the two Senecas, and Cæfar's Commentaries efpecially, which he read conti. nually, and often quoted by application to the events of his own times. This fund of learning proved the bafis and foundation of his rife. The defire he had to difinguifh himfelf in the knowledge of monumental hiftory, drew him to another fort of fcience, in which few men at that time exerted themfelves. He paffed whole days among the infcriptions which are to be found a: Rome, and acquired foon the reputation of a great antiquary. Having hence formed within himfelf the mof exalted notions of the jultice, liberty, and aacient gran. deur of the old Romans, words he was perpetually repeating to the people, he at length perfuaded not only himfelf, but the giddy mob his followers, that he fhould one day become the reftorer of the Roman republic His advantageous ftature, his countenance, and that air of importance which tee well knew how to aflume. deeply imprinted all that he faid in the minds of his an. dience.

Nor was it only by the populace that he was acl. mired: he alfo found means to infinuate himfelf into the favour of thofe who partook of the adminitracion. Rienzi's talents procnied him to be nominated une of the deputies fent by the Ramans to Fope Clement Vi. who reli 'ed at Avignon. The intention of this depat.tion was to make his Holinefs fenfible, how pejud.-: cial his abfence was, as well to himfelf as to the intereft of Rome. At his frlk audience, our here charmed the: court of Avignon by his eloquence and the fprightlinefs of his converfation. Incouraged by fuccefs, he one day took the liberty to tell the 'ope, that the grandees of Rome were avowed robbers, public thieves, infamous adulterers, and illuftrious profligates; who; by their example, authorifed the moft horrid crimes. To them he attributed the defolation of Rome; of which lie drew fo lively a picture, that the Holy Fa. ther was moved, and exccedingly incenfed againft the. Roman nohility. Cardinal Colonna, in otlier refpects. a lover of real merit, could not lielp confidering thefe reproaches as reflecting utyon fome of his family; and therefore found means of dilgracing Rienzi, fo that he

Rienzi. fell into extreme mifery, vexation, and ficknefs, which, joined with indigence, brought him to an hofpital. Neverthelefs, the fame hand that threw him down, raifed him up again. The cardinal, who was all compaffion, caufed him to appear before the Pope, in affurance of his being a good inan, and a great partizan for juftice and equity. The Pope approved of him more than ever; and, to give him proofs of his efteem and confidence, made him apoftolic notary, and feut him back loaded with favours.

Being returned to Rome, he began to execute the functions of his office ; and by affability, candour, affiduity, and impartiality, in the adminiltration of juifice, he arrived at a fuperior degree of pupularity ; which he ftill improved by continued invectives againft the vices of the great, whom he took care to render as odious as poffible ; till at lalt, for fome ill-timed freedoms of fpecch, he was not only feverely reprimanded, but diiplaced. From this time it was his conftant endeavour to infpire the people with a fondnefs for their ancient liberties; to which purpole he caufed to be hung up in the moft public places emblematic pictures, expreffive of the former folendour and prefent decline of Rome. 'To thefe he added frequent harangues and predictions upon the fame fubject. In this manner he proceeded till one party looked on him only as a madman, white others careffed him as their protector. At length he ventured to open himielf to luch as he believed male contents. At firl he took them feparately; afterwards, when he thought he had firmly attached a fufficient number to his intereft, he affembled them togrether, and reprefented to them the deplorable ftate of the city, over-run with debancheries, and the incapacities of their governors to correct or amend them. As a neceffary foundation for the enterprife, he gave them an inflight into the immenfe revenues of the apoftolic chamber: He demonftrated, that the Pope could, only at the rate of fourpence, raife a hundred thoufand flosins by firing, as much by falt, and as much more by the cuftoms and others duties. As for the reft, faid he, I would not have you imagine that it is without the l'ope's confent I lay hands on the revenues. Alas! how many others in this city plunder the effects of the church contrary t o his will!

By this artful lie, he fo animated his auditors, that they declared they would make no fcruple of fecuring thefe treafures for whatever end might be molt convenient ; and that they were devoted to the will of him their chief. Having obtained fo much, to fecure his adherents from a revolt, he tendered them a paper, fuperfcribed, " an oath to procure the good eftablifhment;" and inade them fubferibe and fwear to it before he difmiffed them. By what means he prevailed on the Pope's vicar to give a tacit fanction to his project, is not certainly known ; that he did procure that fanction, and thiat it was looked on as a mafterpicee of policy, is generally admitted. "The 20th of May, being Whitfunday, he fixed upon to fanctify in fome fort his enterprife ; and pretended, that all he acted was by particular infpiration of the Holy Ghoft. About nine, he came out of the church bare headed, accompanitd by the Pope's vicar, furrounded by an hundred armed men. A valt crowd followed him with fhouts and acclamations." The gentemen confpirators carried three tandards before him, on which were wrought devices,
infinuating, that his defign was to re-eftablifh liberty, juitice, and peace. In this manner he proceeded directly to the Capitol, where he inounted the roftrum ; and, with more boldnefós and energy than ever, expatiatted on the miferies to which the Romans were reduced: at the fame time telling them, without hefitation, "that the happy hour of their deliverance was at length come, and that he was to be their deliverer, regardlefs of the dangers he was expofed to for the fervice of the Holy Father and the people's fafety." After which, he ordered the laws of what he called the good e.tablifliment to be read: "affured that the Romans would refolve to obferve thefe laws, he engaged in a fhort time to reeftablifh them in their ancient grandeur.".

The laws of the good eftablithment promifed plenty and fecurity, which were greatly wanted; and the humiliation of the nobility, who were deemed common oppreffors. Snch laws could not fail of being agreeat le to a people who found in then thefe double actvantages; wherefore, "enraptured with the pleafing ideas of a liberty to which they were at prefent ftrangers, and the hope of gain, they came moft zealoully into the fanaticifin of Rienzi. They refumed the pretended authority of the Romans; they declared him fovereign of Rome; and granted him the power of life and death, of rewards and punififments, of cnacting and repealing the laws, of treating with foreign powers; in a word, they gave him the full and fupreme authority over all the extenfive territories of the Romans.

Rienzi, arrived at the fummit of his wifhes, kept at a great diftance his artifice: he pretended to be very unwilling to accept of their offers, but upon two conditions; the firlt, that they fhould nominate the Popt's vicar (the Bifhop of Orvieto) his copartner; the fecond, that the P'ope's confent fould be granted him, which (he told them) he flatered himfelf he fhould obtain. "On the one hand, he hazarded nothing in thus making his court to the Holy Father ; and, on the other, he well knew, that the Bifhop of Orvicto would carry a title only, and no authority. The people granted his requelt, but paid all the honours to him : he poffeffed the authority without reftrition; the good Bifhop appeared a mere fhadow and veil to his enterprifes. Rienzi was feated in his triunphal chariot, like an idol, to triumph with the greater fplendour. He difmiffed the people replete with joy and hope. He feized upon the palace, where he contimed after he had turned out the fenate ; and, the fame day, he began to dictate his laws in the Capitol." This election, though not very plealing to the Pope, was ratitied by hin; neverthelefs, Rienzi meditated the obtairing of a title, exclufive of the papal prerogative. Well verfed in the Roman hiltory, be was no ftranger to the extent of the tribunitial authority ; and as he owed his elevation to the people, he chofe to have the title of their magiftrate. He afked it, and it was conferred on him and his copartner, with the addition of deliverers of their country. Our adventurer's behaviour in his elevation was at firt fuch as commanded efteem and refpect, not only from the Roman, but from all the neighbouring flates. But it is difficult for a perfon of mean hirth, eleveted at once, by the caprice of fortune, to the moft exalied Itation, to move rightly in a fphere wherein he mult brearhe an air he has been unaccultoned to. Rienzi afcended by degrees the fummit of his fortune.

Riches

\section*{R I E}

Riches foftened, power dazzled, the pomp of his cavalcades animated, and formed in his mind ideas adequate to thofe of princes hoin to empire. Hence luxury invaded his table, and tyranny took pofeffion of his heart. The Pope conceived his deligns to be contrary to the in. terefts of the holy fee ; and the nobles, whofe power it had been his conftant endeavours to deprefs, confpired againt hinn: they fucceeded; and Rienzi was forced to quit an authority he had poffeffed little more than fix months. It was to a precipitate flight that he was indebted, at this jumeture, for his life; and to different difguifes for his fubfequent prefervation.

Having made an ineffectual effort af Rome, and " not knowing where to find a new refource to carry on his defigns, he took a mon't bold flep, conformable to that raflinefs which had fo often affifted him in his former exploits. Fie determined to go to Prague, to Charles king of the Romans, whom the year before he had fummoned to his tribunal," and who, he forefaw, would deliver him up to a Pope highly inceufed againft him. He was accordingly foon after fent to A rignon, and there thrown into a prifon, where he continned three years. The divifions and difturbances in Italy, occationed by the number of petty tyrants that had eflablined themfelves in the ecclefialical territories, and even at Romer, occafioned his enlargement. Innocent VI. who fucceeded Clement in the papacy, fentible that the Romans till entertained an affection for our hero, and believing that his chaftifement would teach him to act with more moderation than he bad formerly done, as well as that " gratitude would oblige him, for the remainder of his life, to preferve an inviolable attachment to the holy fee (by whofe favour he fhould be reeftablifhed)," thought him a proper intrument to affit his defign of reducing thofe other tyrants; and - therefore, not only gave hiin his liberty, but alfo ap. pointed him goverior and fenator of Rome. He met with many obitacles to the affumption of this newlygranted authority ; all which, by cunnning and refolution, he at leugth overcame. But giving way to his paffions, which were immoderately warm, and inclined him to cruelty, he excited fo general a refentment againit hin, that he was murdered October 8. 1,354 .
"Such was the end of Nicolas Rienzi, one of the moft renowned men of the age; who, after forming a confpiracy full of extravagance, and executing it in the fight of almoit the whole world, with fuch fuccefs that he became fovereign of Rome; after caufing plenty, jutice, and liberty, to flourifh among the Romans; after protecting potentates, and terrifying fovereign princes; after being arbiter of crowned leads; after reettablifhing the ancient majefty and power of the Roman republic, and filling all Europe with his fame during the feven months of his firft reign; after having compelled his matters themfelves to confirm him in the authority he had ufinped againft their interefts - fell at length at the end of his fecond, which lafted not four monthr, a facrifice to the nobility, whofe ruin he had vowed, and to thofe vaft project which his death pre3iog. Diaz. vented him from putting into execution *."
wedit. If the reader perceive any thing fimilar at prefent to the rife of this wonderful man to fovereign authority, he may perhaps confole himfelf with the hope that the modern conful will in all probability fall like the modern tribune. Both rofe by difplays of the molt daring
courage; the affociates of both were priefts, who in the actual exercife of goverument were cyphers; both promifed liberty and plenty to the people whom they ruled with abfolute fuay ; and both have trampled uppon the order of nobility.
RING, in aftronomy and navigation, an inftrument ufed for taking the fun's altitude, Scc. It is ufually of brafs, about nine inches diamerer, fufpended by a little iwivel, at the diftance of \(45^{\circ}\) from the point of which is a perforation, which is the centre of a quadrant of \(90^{\circ}\) divided in the inuer concave furface. To ufe it, let it be held up by the fwivel, and turned round to the fun, till his rays, falling through the hole, trake a fpot among the degrees, which marks the altitude required. This inftrument is preferred before the aftrolabe, becaufe the divifons are here larger than on that infru; merit.

ROBERVALLIAN 1 ines, a name given to certain lines ufed for the transformation of figures; thus called from their inventor Roberval, an eminent French mathematician, who died in 1675 , aged 76 years. Thefe lines bound fpaces that are infintely extended in length, which are neverthelefs equal to other fpaces that are terminated on all fides.

The Abbot Callois, in the Memoirs of the Royal Academy, anno 1693 , obferves, that the method of transforming figures, explained at the latter end of Roberval's 'Treatile of Indivifibles, was the fane with that afterwards publifhed by James Gregory, in his Geometria Univerfalis, and alfo by Barrow in his Letiones Geometrica; and that, by a letter of Torricelli, it appears, that Roberval was the inventor of this manner of transforming figuree, by means of certain lines, which Torricelli therefore called Rob́ervallian lines. He adds, that it is highly probable that J. Gregory firf learned the method in the journey he made to Padua in 1668 , the method itfelf having been known in Italy from the year 16.46 , though the book was uot publifhed till the year r692.

This account has been, we think, completely refinted by David Gregory in his vindication of his uncle, publifhed in the Philofophical Tranfactions of 1694 . The Abbot, however, rejoined in the Menoirs of the French Academy of 1703 ; and it is but fair to obferve, that 11r Hutton, fpeak ing of the controverfy, expreffes himfelf as if he thought it undecided.

RODNEY (Lord). In our flort fketcl of the life. of that gallant officer (Encycl.), we mentioned with regret our not having heard of any monument being erected to his honour in his native country. We have fince learned that there is a pillar upon the Brythen in Shroothire, which was erected to his memory long before the publication of our article.

Having this great man again under our notice, we infert with pleafure the following extract of a letter, which we received from an obliging correfpondent fuon after the publication of the volume which contains our biographical fketch of the Admiral: "Whatever were Rodney's merits as a naval commander (fays our correfpondent), there is a more brilliant part of his character which you have entirely neglected. Prior to his fuccefs againft the Spanifh Admiral Dou Langara, the Englifh who had the misfortune to become prifoners of war to the Spaniards, were treated with the greateft inhumanity, and it required more than a common
ftrength

Rodney, Atrength of conflitution to exift for any length of time Roebuck \(\underbrace{-}\) in a Spanifh prifon. When the Spanifh admiral fell into the hands of Rodney, he, his officers and feamen, expected to meet with the fame treatment they had always inflicted, and which they would have inflicted on Roduey, his officers, and feamen, had the Spaniards been the victors; but, to their furprife, they found in Admiral Kodney (and, of courfe, in all that were under his command) a man who fympathifed in their misfortune, who minittered to their neceffities, and, by a humane end polite behaviour to his prifoners, made an impreffion on the minds of the Spaniards, which could not but have its effect in mitigating the fufferings of the Englifh in Spanifh prifons: but he did not fop here; he took an opportunity, when their minds were expanded by gratitude (and in a flate to receive the full force of fuch a reprefentation), to reprefent to them the miferable condition of his countrymen who were prifoners in Spain, and obtained a promife (which, I behieve, was punctually performed), that Englifhmen, when prifoners in Spain, flould be made as comfortable as their fituation would admir of. This was a piece of fevice to his country which furely merits to be recorded, and which will exalt him as much in the opinion of good men as the moft brilliant difplay of courage, which is a quality as frequeritly difcovered in the favage as in the cultivated mind."

ROEBUCK (John, M. D.), was born at Sheffield in Yorkfhire in the year 1718. His father was a conSiderable manufacturer and exporter of Sheffield goods, who by his abilities and induftry had acquired a competent fortune. John, his cldelt fon, the fubject of this memoir, was intended by his father for carrying on his own lucrative bufincfs at Sheffield; but was, from his early youth, irrefiftibly attached to other purfuits, more calenlated to gratify his ambition, and give fuller play to his powers. Notwithtanding this difappointment in his favourite object, his father liad liberality enough to encourage his riing genius, and to give him all the advantages of a regular education.

After he had gone through the ufual courfe of the grammar feliool at Sheffield, both his father and mother being frict diffenters, they placed their fon for fome years under the tuition of the late Dr Dol!dridge, who was at that time mafter of an academy at North. ampton, and liad juflly acquired high reputation among the diffenters, both as a divine and as an inftructor of youth. Under the Dotor's care Mr Roebuek made great proficiency, and laid the foundation of that claffical tafte and knowledge for which he was afterwards eminently-difinguifted. It would appear that Dr Doddridge had been much pleafed with the ardour and enthufiafm, in the purfuit of knowledge, difeovered by his pupil; for Mr Roebuck, in an after period of his life, ufed frequently to mention the fubjects of converfation and inquiries of various kinds, in which the Doctor had engaged him. It was during his relidence at this academy that he contracted an intimate acquaintance with his fellow-ftudents, Mr Jeremiah Dyfon, afterwards much known in the politieal world, and Mr Mark Akenfide, afterwards Dr Akenfide, which terminated only with their lives.

From the academy at Northampton he was fent to the univerfity of Edinburgh, where he applied to the Atudy of medicine, and particularly to that of chemiltry,
which about thar time began to attract fome attention Roebuck. in Scotland. While he refided there, he diftinguifhed himfelf much among his fellow-ftudents in their literary focieties and converfations, by great logical and metaphyfical acutenefs, and by great ingenuity and refource in argumentation. 'The late fagacions Dr Porterfield, to whom he had been introduced, obferved and encouraged his rifing genius, and was greatly inftrumental in promoting his improvement. There, too, he formed an intimate acquaintance with Mr Hume, Mr Robertfon, afterwards Dr Robertfon, Mr Pringle, afterwards Lord Alemoor, and feveral other perfons of literary eminence; a circumftance which produced in his mind a partiality ever afterwards in favour of Scotland, and contributed not a little to his making choice of it for the chief field of his future exertions and induftry.

After Mr Rocbuck had gone through a regular courfe of medical education at Edinburgh, being now determined to follow the practice of phylic, he next fpent fome time at the univerfity of Leyden, then in high reputation as the firft fchool of medicine in Europe. I'here, after the ufual refidence and courfe of trials, he obtained a degree in medicine; and his diploma, dated 2 if February 1743, has affixed to ir the refpectable names of Mufchenbroek, Olterdyk, Van Royen, Albinus, Gaubius, \&c. He left Leyden, after ha. ving vifited fome part of the north of Germany, about the end of the year 1744 .

Soon after his returis from the continent, fome cir* cumftances iaduced Dr Roebuck to fettle as a phyfician at Birmingham. Before that time, Birmingham had begun to make a rapid progrefs in arts, manufactures, and popilation ; and by the death of an aged phylician, an opening was prefented to him, which afforded an immediate profpect of encouragement in that line. His education, talents, and interelting manners, were well calculated to promote his fuccefs as a phyfician. He accordingly met there, at a period more early than lie expected, with great encouragement; and was foon diltinguifhed, in that town and the country adjacent, for his fkill, integrity, and charitable compaffron, in the difcharge of the duties of his profeffion.

It appeared, however, foon after his relidence was fixed at Dirmingham, that his itudies and induftry were turned to various objects befides thofe of his profeffion. Strongly attached to the rifing fcience of chemittry, he conceived high views of extending its ufefulnefs, and of rendering it fubfervient to the improvement of arts and manufactires. With this view, he fitted up a finall laboratory in his own houfe, in which he fpent every moment of his sime which he could fare from the duties of his profeflion. There, in the true fpirit of his great matter Lord Bacon, of whofe philofoplyy he was an ardent admirer, he carried on various chemical proceffes of great importance, and laid the foundation of his future projects on well-tried and well-digefted experiments.

The firft efforts of his genius and induftry, thus directed, led him to the difcovery of certain improved methods of refining gold and filver, and particularly to an ingenious method of collecting the fmaller particles of thefe precions metals, which had been formerly loft in the practical operations of many of the manufacturers. By other chemical proceffes, carried on about the fame time in his little laboratory, he difeovered alfo improved methods of making fublimate, harthorr, and
fundry
fundry other anticles of equal importance. After having rectived full fatisfaction from the experiments upon which fuch difeoveries and improvement were founded, he next digetted a plan for rendering them beneticial to himifelf, and ufeful to the public. A great part of his time being fill employed in the duties of his profeffion, he found it neceflary to comnect himfelf with fome perfon in whom he could repofe confidence, and who might be, in other refpects, qualified to give him fupport and affiftance in carrying on his intended eftablifhments. With this view, he chofe as his affociate Mr Samuel Garbet of Birmingham; a gentleman well qualified, by his abilities, activity, and enterprifing fpirit, for bearing his part in their future undertakings. Their firft project was the eftablifhment of an extenfive laboratory at Birmingham, for the purpofes above mentioned; which, conducted by Dr Rocbuck's chemical knowlecge, and Mr Garbet's able and judicious management, was productive of many advantages to the manufacturers of that place, and of fuch emolument to themfelves, as contributed greatly to the boldnefs of their future projects. That laboratory has, ever fince that time, continued at Birmingham, and is fill conducted by Mr Garbet. Dr Roebuck, loug befure his death, had given up his intereft in it.

About this time, in 1747, the Doctor married Mifs Ann Roe of Shefficld, a lady of a great and generous fpirit, whofe temper and difpofition equally fitted her for enjoying the profperous circumftances of their early life, and for bearing her equal fhare of thofe anxieties and difappointments in buffinefs which fhaded, but did not obfcure, the later period of their lives.

Dr Roebuck's unremitted perfeverance in his chemical ftudies, together with the fuccefs that attended them, led him, ftep by ftep, to other refearches of great public and private bencfit.

The extenfive ufe of the vitriolic (fulphuric) acid in chemiltry, and the proipect of its application to fome of the mechanic arts, had produced a great demand for that article, and turned the attention of chemifts to various methods of obtaining it. The late Dr Ward had obtained a patent for making it ; and though the fubflances from which it might be obtained, as well as certain methods of obtaining it, had been known to others, and particularly pointed out by Lemery the Elder, and by Glauber, yet Dr Ward was the firft, it is believed, who eftablifhed a profitable manufacture upon the difcovery. Much, however, was wanting to render the acid of univerfal ufe in chemiftry, an i of extenfive utility in the arts, where great quantities of it were re. quired. The price of it was ligh, arifing from the great expence of the glafs veffels, which were made ufe of by Dr Ward in procuring it, and the frequent accidents to which they were liable in the procefs.

Dr Roebuck had been for fome time engaged in making experiments with a view to reduce the price, and at length difcovered a method of preparing it, by fubffituting, in place of the glafs veffels formerly ufed, lead ones of a great fize; which fubftitution, together with fundry other improvements in different palts of the procefs, completely effected his erd.

After the neceflary p:eparations had been made, Meffrs Rocbuck and Garbet eftablifhed a manufacture of the oil of vitriol at Preftonpans, in Scotland, in the year 1749. This eftablifhment not a little alarmed Dr

Ward. who attempted to defeat their plan, hy taking Roebu. k out a patent for Scotland, in addition to the one he had formeily obtained. In this attenipt he failed. I)r Roebuck's difcovery was found not to come within the fpecification of Dr Ward's patent.

The Prellonpans company, convinced that patents are of little avail in preferving the property of new inventions or difcoveries, in conducting their vitriol works refolved to have recourfe to the more effectual methods of concealment and fecrecy. By that method they were enabled to preferve the advantages of their ingenuity and induftry for a long period of years, and not only ferved the public at a much cheaper rate than had ever been done formerly, but, it is believed, they realized, in that inanufacture, a greater annual profit from a fmaller capital than had been cone in any fimilar undertaking. 'The vitriol work is ftill carried on at Preftonpans; but long before Dr Roebuck's death, he was obliged to withdraw his capital from it.

About this time Dr Roebuck was urged, by fome of his friend 3, to leave Birmingham, and to fettle as a phyfician in London, where his abilities might have had a more extenfive field of exertion. He had been early honoured with the acquaintance of the late Marquis of Rockingham, who, as a lover of arts, had frequently engaged him in chemical experimerts at Rockinghamhoufc. It was there, alfo, he became acquainted with the late Sir George Saville, and with feveral other perfons of rank and influence. His old friend and fchoolfellow Mr Dyfon, too, by this time, had acquired confiderable name and influence, and preffed him much to take that ftep. Under fuch patronage, and with the energy of fuch talents as Dr Roebuck poffeffed, there could be little doubt of his foon arriving at an eminent rank as a phyfician in London. But the chemical concerns, with which be was at that time deeply occupied, holding out to him a profpect of a richer harvelt, determined him to give up the practice of medicine altogether, and to fix his refidence for the greatelt part of the year in Scotland.

The fuccefs of the effablifiment at Preftonpans, which had far exceeded their expectation, enabled the Doctor and his partner Mr Garbet to plan and execute other works of till greater berefit and public utility. In the profecution of his chemical ftudies and experiments, Dr Roebuck had been led to beftow great attention on the proceffes of fmelting ion flone, and had made fome difcoveries, by which that operation might be greatly facilitated, particularly by ufing pitcoal in place of charcoal. Mr William Caddell of Cockenzie, in the neighbourhood of Preftonpans, a gentleman earneflly intent upon promoting manufactures in Scotland, had, for feveral yca:s, laboured, without much fuccefs, in eftablifing a manufacture of iron ; a circumflance which may have probably contributed to turn Dr Roebuck's attention more particularly to that fubject. As the capital which he and his partner Mr Garbet could appropriate for carrying on the iron manufacture was not equal to fuch an undertaking, and chiefly depended upon the profits of their other works, their firt intention was to attempt a finall eftablifhment of that kind in the vicinity of their vitriol works at Preflonpans. But the flattering profpects of fuccefs, arifing from a courfe of experiments which Dr Roebuck had lately made, encouraged them to extend their

Roebuck. plan, and to project a very extenfive manufactory of iron. A fufficient capital was foon procured, through the confidence which many of their friends repoled in their abilities and integrity. In fact, the eftablifhment which they made, or rather the capital which gave it exiftence, was the united capital of a band of relations and friends, who trufted to Dr Roebuck and Mr Garbet the management of a great part of their fortune. When all previous matters had been concerted refpecting their intended eftablimment, the chief exertions of chemical and mechanical fkill, neceffary in the execution, were expected from Dr Roebuck. It fell to his fhare alfo to fix upon the beft and molt favourite fituation for crecting their intended works. With that view Dr Roebuck examined many different places in Scotland, particularly thofe on both fides of the Frith of Forth; and after a careful and minute comparifon of their advantages and difadvantages, he at length made choice of a fpot on the banks of the river Carron as the moft advantageous fituation for the eftablifhment of the iron manufacture. There he found they could eafily command abundance of water for the neceffary machinery; and in the neighbourhood of it, as well as everywhere both along the north and fouth-coafts of the Frith, were to be found inexhaultible quarries of ironfone, limeftone, and coal. From Carron, alfo, they could eafily tranfport their manufactures to different countries by fea. The communication with Glafgow at that time by land carriage, which opened up to them a ready way to the American market, was fhort and eafy.

Many other things, that need not be here enumerared, fell to Dr Roebuck's fhare in preparing and providing for the introduction of this new manufacture into Scotland, particularly with refpect to the planning and erection of the furnaces and machinery. To infure fuccefs in that department, nothing was omitted which ability, induftry, and experience could fuggeft. With this view, he called to his affiftance Mr Smeaton, then by far the firft engineer in England. It was from him he received plans and drawings of the water. wheels and blowing apparatus, which, notwithflanding all the me. chanical improvements which have been made fince, remain unrivalled in any of the other iron-works ereeted in Britain. This was the firf introduction of Mr Smea. ton into Scotland, and was the occafion of various other difplays of the fill and experience of that celebrated engineer in that part of the ifland. With the fame view, and to the fame effec, in a future period of his operations, he employed Mr James Watt, then of Glafgow, and had the merit of rendering that inventive genius, in the mechanical arts, better known both in this countiy and in England.

The neceffary preparations for the eftablifhment of the iron-works at Carron were finifhed in the end of the year 1759; and on the if January 1760 the firft furnace was blown; and in a Chort time afterwards a fecond was erected.

No period of Dr Roebuck's life required from lim more vigorous and laborious exertions than that of the eftablifhment of the Carron works, and the firft trials of the furnaces and machinery. His family and friends remember well the ardour and intereft which he difcovered ; the inceffant labour and watchfulnefs which he exerted on that occafion. Every thing was untried, the
furnaces, the machinery, the materials, the workmen; the novelty of the undertaking in that country, its extent and difficulty, and the great ftake at iffue, were circumftances that muft have occafioned much ferious thought and anxiety to the partner, upon the credit of whofe knowledge and experience the work had been undertaken. But the Doctor had great powers and great refources ; and the firft trial gave fufficient indications of future fuccefs.

For fome time after the eftablifhment of the Carron works, Dr Roebuck continued to give his attention and affiftance in the general management and fuperintendance of them, and with him all meafures of future operations were concerted. During this period, fome alterations of great importance were fuggefted by him, and carried into effect. By carefully obferving the progrefs of fmelting in the furnaces, at firt worked by bellows, befides their being fubject to various accidents, the Doctor difcovered the neceffity of sendering the blaft both ftronger and more equable; and propofing, as a problem to Mr Smeaton, the beft method of effecting that end, that celebrated engineer foon gave the plan of a blaft by three or four cylinders, which was af. wards tried, and fucceeded even beyond expectation.

When the bufinefs at Carron funk by digrees into a matter of ordinary detail, and afforded lefs fcope for the Doctor's peculiar talents, he was unfortunately tempted to engage in a new and different undertaking; from the failure of which he fuffered a reverfe of fortune, was deprived of the advantages refulting from his other works, and during the remainder of his life became fubjected to much anxiety and difappointment.

The eftablifhment of the Carron works, and the intereft Dr Roebuck had in their fuccefs, had naturally turned his attention to the itate of coal in the neighbourhood of that place, and to the means of procuring: the extraordinary fupplies of it which the iron-works might in future require. With the view, therefore, of increafing the quantity of coal woked in that neighbourhood, by an adventure which he thought would alfo turn out to his own emolument, he was induced to become leffee of the Duke of Hamilton's extenfive coal and falt works at Borrowflounnefs. The coal there was reprefented to exit in great abundance, and underftood to be of fuperior quality; and as Dr Roebuck had made himfelf acquainted with the moft impioved methods of working coal in England, and then not practifed in Scotland, he had little donbt of this adven. ture turning out Eeneficial and highly lucrative. In this, however, he was cruelly difappointed. The opening of the principal ftratum of coal required much longer time, and much greater expence, than had been calcu. lated; and, after it was opened, the perpetual fincceffion of difficulties and obitacles which occurred in the working and raifing of the coal, was fuch as has been feldom experienced in any work of that kind. The refult was, that after many years of labour and induftry, there were funk in the coal and falt works at Bore rowftounnefs, not only his own, and the confiderable fortune brought him by his wife, but the regular profits of his more fuccefsful works; and along therewith, what diftreffed him above every thing, great fums of money borrowed from his relations and friends, which he was never able to repay; not to mention that, from the fame caufe, he was, during the laft twenty years of

\section*{R O E}
uck. his life, fubjected to a conftant fucceffion of hopes and difappointments, to a courfe of labour and drudgrery ill fuited to his tafte and turn of mind, to the irkfome and teafing burfinefs of managing and ftudying the humours of working colliers. But all thefe difficulties his unconquerable and perfevering fpirit would have overcome, if the never-ceafing demands of his coal-works, after having exhaufted the profits, had not alfo compc!led him to withdraw his capital from all his different works in fucceffion; from the refining work at Birmingham, the vitriol work at Preftonpans, the ironworks at Carron, as well as to part with his intereft in the project of improving the fteam-engine, in which he had become a partner with Mr Watt, the original in. ventor, and from which he had reafon to hope for future emolument.

It would be painful to mention the unhappy confequences of this ruinous adventure to his family and to himfelf. It cut off for ever the flattering profeect which they had of an independent fortune, fuited to their education and rank in life. It made many cruel encreachments upon the time and occupations of a man whofe mind was equally fitted to enjoy the high attainments of fcience, and the elegant amufements of tafte. As the price of fo many facrifices, he was only enabled to draw from lis colliery, and that by the indulgence of his creditors, a moderate annual maintenance for himfelf and family during his life. At his death, his widow was left without any provifion whatcver for her immediate or future fupport, and without the fmaileft advantage from the extraordinary exertions and meritorious induftry of her hufbanc.

Dr Roebuck liad, fome years before his death, been attacked by a complaint that required a dangerous chiturgical operation. That operation he fupported with his uffual fpirit, and refolution. In a fhort time he was reftored to a confiderable fhare of his former health and aetivity ; but the effeets of it never entirely left him, and feveral nighter returns of the complaint gradually impaired his conftitution. He ttill, however, continned, till within a few weeks of his death, to viit his works, and to give direction to his clerks and overfeers. He was confined to his bed only a few days; and died on the 17 th July 1794 , retaining to the laft all his faculties, his fpirit and good humour, as well as the great intereft which he took, as a man of fcience and reflec. tion. in the uncommon events which the prefent age lias exhibited.

From a man fo deeply and fo conftantly engaged in the detail of active bufinefs, many literary compofitions were not to be expected. Dr Roebnck left behind him many zoorks, but few zuritings. The great obiect which he kept invariably in view was to promote arts and manufactures, rather than to cflablifh theories or hypothefes. The few effayz which he left, enable us to judge of what might have been expected from his talents, knowledge, and boldnefs of invention, had not the active undertakings in which, from an early period of life, he was engaged, and the fatiguing details of bufinefs, occupied the time for ftudy and inveftigation. A comparifon of the heat of London and Edinburgh, read in the Royal Society of London June 29.1775 ; experiments on ignited bodies, read there 16 th Feb . 1776; obfervations on the ripening and filling of corn, read in the Royal Society of Edinburgh 5 th June 1784-are all
the writings of his, two politic E which have been pullifhed. The publication of the effay on ignited bodies was occafioned by a report of fome experiments made by the Comte de IBuffon, from which the Comte had iriferred, that maller is heavier when hot than when cold. Dr Roebuck's experiments, made with grcat accuracy before a committee of the Royal Society at London, fecm to refute that notion.

It is the works and eftablifhments projected and executed by 1)r Roebnck, with the immediate and more remote effects of them upon the incuitry, arts, and niamufactures of Scotland, which urge a juft claim to the refpect and gratitude of his commry. 'I'his tribute is. more dine from the difcerning part of mankind, as this fpecies of merit is apt to bc uvenlooked by the hufy or the fnperficial, and to fail in obiaming its due reward. The ciscumfances of D: Rocbuck were, in this refpert, peculiarly hard: for though, mo? certainly, the projector and author of new eltablifhments highly ufeful to his comntry, and every day becoming more fo, be was, by a train of minfortunate events, obliged io break off his conncetion with them, at an unfeafonable tine, when much was yet wanting to the ir complete fuccefs: and thus be left others in the poffeffion, nut only of thee Incrative advantages now derived from then, but even in fome meafure of the gereral merit of the undertaking, to a confiderable part of which he had the mott. undoubted claim.

The eftablifnment of the laboratory at Birmingham in the year 1747, the firft public exlibition of Dr Roebuck's chemical talent3, was, it that paticular perjod, and in the ftate of the arts and manufaclures at that time, highly bentficial, and fublervient to their fiture progrefs: and the continuance and fuccefs of it, in that. place, is a proof of the advantages which many of the manufacturers receive from it. Much had already bien done, and many improvements made in arts and iset:11factures, chiefly by the fuggeftions of that ingenuity and experience which, in the detail of butinels, might be expected from the pracieal attit. Dr Roebuck was qualifed to proceed a ftep farther; to direet experience by principles, and to regnlatc the inechar. . cal operation of the artift by the lightes of feience. 'The effeets of that eftablifhment cxtended, in a particulat marner, to all that variety of manufactures in whech gold and floer were required, to the preparing of materials, the fimplify:rg of thie fint Iteps, to the faving of expence and labour, and to the surming to fome account what hed been formerly loft to the manufacture?. It is well known that, while Dr Rocbuck refided at Eirmingham, fuch was the opinion formed of his chemical knowledge and experience by the principal inanufacturers, that they ufually confulted him on any new trial or dfort to improve their feveral manufactures ; and when he left that place, they fincerely regretted the lofs of that eafy and mareferved communication they had with him on the fubjects of their feveral depart. ments.

On account of fimilar circumftances, the benefit to the public, from the eftablifhment of the vitriol works at Preflonpans, in the extenfion and improvement of many of the arts; cannot now be exactly afcertained. The vitriolic acid is one of the moft active agentz in chemiftry, and every difcovery which renders it cheap and acceflible to the chemift muft be greatly fubfervient
to the progrefs of that fcience. \(P_{y}\) the effallifiment at Prefonipans, the price of that valuable acid was reduced from fixteen to four perice per pound. It is to Dr Roebuck. therefore, that chemifts are indebted for being in poffeffion of a cheap acic, to which they can have recourfe in fo many proceffes.

But Dr Roebuck's object in the profecution of that scheme, was not fo much to facilitate the chemift's labour, as to render that acid, in a much higher degree than it had formerly been, fubfervient to many of the practical arts. By rendering the vitriolic acid cheap, great ufe came to be made of it in preparing the muriatic acid, and Glauber's falts from common falts. Its .ufe has been farther extended to many metallic proceffes; and it thas lately been employed in feparating filver from the clippings of plated copper, the ufe of which is very extenfive.
The project and eftablifhment, however, of the ironworks at Carron, the moft extenfive eftablifhment of that kind hitherto in Britain, muft be confidered as \(\mathrm{Dr}_{r}\) Roebuck's principal work. The great and increafing demand for iron in the progreffive ftate of arts, manufactures, and commerce in Britain, and the great fums of money fent every year to the north of Europe for that article, turned the attention of chemifts and artifts to the means of promoting the manufacture of iron, with the view of reducing the importation of it. No perion has a better founded claim to merit, in this particular, than Dr Roebuck. The fmelting of iron by pitccal, it is indeed believed, had been attempted in Britain in the beginning of the laft century. In the reign of James I. feveral patents feem to have been granted for making hammered iron by pitcoal, particularly to the Hon. Dud Dudley and Simon Starlevant It does not appear, however, that any progrefs had been made in the manufacture in confequence of thefe patents. In later times trials have been made by fo many different perfons, and in fo many different places in England, nearly about the fame time, that it may be difficult to fay where and by whom the firft attempt was made, patticularly as the difcoverers of fuch proceffes wifhed to conceal the knowledge they had gained as long as they could. But Dr Roebuck was certainly among the firtt who, by means of pitcoal, attempted to refine crude or pig iron, and to make bar iron of it, inftead of doing it by charcoal, according to the former prac. tice: And he was, without all queltion, the perfon who introduced that method into Scotland, and firf eftablifhed an extenfive mariufacture of it. It is not meant to afcribe to him the fole merit of the eftablifhment at Carron. : No man was ever more ready than he was to do juftice to the sabilities and fpirit of his friends and partners Meffrs Garbet, Caddell, \&c. who firt embarked with him in that great undertaking. Dut flill it may be faid with truth, that the original projeet of the ironworks at Carron, the chemical knowledge and experience on which they were founded, the complicated calculations which were previoully required, the choice of the fituation, the general conduct and direction of the buildings and machinery, the fuggeftion of many occafional improvements, together with the removal of many unforefeen obftacles and difficulties, which occurred in the infant ftate of that eftablifhment, were, in a Freat meafure, the work and labour of Dr Roebuck. Nor can it, with the leaft hadow of juflice, detraet from
his merit, that a larger capital, and greater expence than was at firft calculated, have been found neceffary to bring the wooks at Carron to their pefent flate of perfection; or, that great alterations and improvements have taken place, during the courfe of forty years, in a great end progreffive eftablifhment. In all works of that kind, the expence exceeds the calculation. The undertakers, even of the lateft iron-works which have been erected, notwithflanding all the advantages obtained from recent experience, will be ready to acknowledge, that, in thefe refpects, there is little room to blame the original projector of the firft eftablifhment of that kind in Scotland. But the beft, and moft infallible proof of Dr Roebuck's merit, and of the found principles on which thefe works were eftablifhed, is the prefent profperous ftate of that eftablifhment, the great perfection of many branclies of their manufactures, and particularly the many extenfive and flourihing ironworks which have fince been erected upon the model of Carron in different parts of Scotland, at Cleugh, Clyde, Muirkirk, and Devon. It cannot be denied that all thefe works have fprung from the eflablifhment at Carron, and are ultimately fourded upon the knowledge and experience which have been obtained from them; for fome of the partners, or overfeers of thefe new works, and many of the workmen, have been, at one time or another, connected with that of Carron. Hence, then, it is owing to the projector and promoter of the eftablifhment at Carron, that Scotland is, at this moment, benefited to the amount of many hundred thonfand pounds, in working up the raw materials of that manufacture found in the country itfelf, and which, previous to that eftablifhment, was of no value whatever. Such are the prefent, but fcarcely any idea can be formed of the future, advantages to this country, which may be derived from the extenfion of the iron manufacture. About 60,000 tons of iron have been aunually imported into Great Britain for more than twenty years paft; and though there has been for fome time about 20,000 tons of bar iron made in Britain by pitcoal, yet the foreign imported iron has fuffered little or no diminution in quantity. This great confumption of iron, no doubt, is owing to the various improvements of late years, and the general extenfion throughout all Europe of commerce and the arts. The manufacture of iron muft therefore continue to incrafe ; and Scotland, abounding everywhere in ironfone, pitcoal, and in command of water for machinery, has the profpect of obtaining the largeft fhare of it.

To the eftablifhment of the Carron works, and to the confequences of that eftablifhment, may be afcribed alfo the exiftence of other public works in Scotland of great importance and utility. The opening of a communication by water betwixt the Forth and the Clyde had long been projected, and frequently the fubject of converfation in scotland, but nothing in fact had been attempted. The eftablifhment of the iron-works at Carron foon called forth fufficient intereft and enterprife to bring about the execution of this grand defign. Some of the partners of the Carron company, forefeeing the advantages they would derive from fuch a communication, propofed, at their own expence, to execute a fimall canal ; and, after taking the preparatory fteps, actually applied to Parliament to obtain authority for that purpofe. But the project of the fmall canal not.
rueeting

\section*{R O E}
ebuck. meeting with the approbation of fome noblemen and gentlemen in that part of Scotland, they oppofed the bill, and obliged themfilves to execute a greater canal, which has now been mary years finifhed, and is found to be of the greatelt advantage to the trate and commerce of Scotland. The merit of this undertaking is not meant to be afcribed to Dr Roebuck, excepting in fo far as it neceffarily arofe from the eltablifiment of the Carron company, of which he was the origrinal projector; and it may reafonably be doubted whe: her, without that eflablifhment, it would have yet taken place. Several other canals have, fince that time, been executed in different parts of Scotland, and other very important ones are at prefent projected.

The different eftablithments which Dr Roebuck made at Borrowftounnefs in carrying on the coal and falt works there, though ultimately of no advantage to him. felf, were attended, during the courfe of thirty years, with the moft beneficial effects upon the trade, popula. tion, and indultry of that part of Scotland. They were the means alfo of adding very contiderably to the public revenue. Previous to the time thefe works fell under Dr Roebuck's manargement, they produced no advantage either to the proprictor, to the adventurers, or to the public. But by his mode of conducting them upon a more extenfive plait, by opening up new feams of coal, and of better quality, he was enabled to export a very confiderable quantity, to increafe the quantity of falt, and of courfe the revenue ariining from thefe articles. In thefe worki, and in the management of a large farm, Dr Roéouck gave employment to near a thoufand perfons at Borrowtlounnefs and in the neighbourhood.

Nor was it folely by the different eftablifiments which he projected and executed, but by many other things neceffarily connected with them, that Dr Roebuck's labours were beneficial to Scotland. Along with them he may be faid to have intoduced a firit of enterprife and indultry, before that time little known in Scotland, which foon pervaded many other departments of labour, and gave birth to many other uffful projects. He brought from England, then much farther advanced in arts and indultry, many ingenious and induatrious workmen, at great expence, who, by their inftructions and example, communicated and diffufed fiill and knowledge to others. At all times Dr Rorbuck held out liberal encouragement to rifing genius and induftrious merit ; and fpared no expence in making trials of improvements and difcoveries which were counected with the different projects and works which he was carrying on.

Such was the aetive and ufeful life of Dr Roebuck, a man of no common cafl, who united, in a very high degree, a great number of folid and brilliant talents, which, even feparately, fall to the lot of but few individuals. Diftinguifhed by an ardent and inventive mind, delighting in purfuit and inveftigation, always afpiring at fomething beyond the prefent flate of fcience and art, and eagrerly preffing forward to fomething better or more perfect, he thus united energies the moit powerful with the mot unwearied and perfevering indultry. To that peculiarity of imagination, fo fitted for fcientific purfuit, which readily combines and unites, which Ateadily preferves its combinations before the eye of the mind, and quickly difcovers relations, refults, and confe-
quences, was added, in his character, great prompti- Roebuck. thde and firmnefs in decifion. Strongly and early impreffed with the great importance of applying chemical and phyfical knowledge to the ufful arts, to the melioration of civill life, liee never loft fight of that favourite view, and difcovered great boldncis and refource in the means and expedicite which he adopted to promote it. He was certainly maner of the beit philofophy of chemiftry known in the earlier parts of his life; and though in every ftage of that feience he marked and underfood the progrels of the difeoverics, yet his numerous avocations did not permit him to follow them out by experimental proceiles of his own. Upon that, and indeed almof upon tvety fulject, his mind readily grafped the moft ufeful and finbfintial poins, and enabled him tothrow out fuch hints aud hypothefes as marked him the man of genius.

During the courfe of a regular education, both at Edinburgh and at Leyden, Dr Roebuck ftudied the claffic authors with great attention, particularly the hiftorical and political parts of their works. Upon thefe fubjects he had read nuch, fclected with judgment, and was well acquainted with the faets and philofophy of ancient governments. This talle he carried with him, and improved in every period of his life, and in every fituation. It abundantly rewarded him for the earneftuefe and diligence with which it had been acquired. It became his favourite refource, and indeed one of the chief enjoyments of his hife. Poffeffing the happy talent of turning his mind from ferious and fatiguing, to elegant and recreating purfuits, it was no uncomion thing with him to return from the laboratory or the coalpit, and draw relaxation or relief from fome one or other of the various ftores of claffical learning.

No man was better acquainted with the hiftory of his country than Dr Roebuck, or more admired and revered the conititution of its government. By temper and education le was a Whig, and at all times entered with great warinth into the political difputes and con. troverfies which agitated partics in the different periods of his life. If the natural warmth of his temper, and his enthufiafm on thefe fubjecis, led him, on fome occafions, beyond the bounds of candid argumentation, his quick denfe of decorum, and his perfect habits of good manners, produced an immediate atonenent, and rettored the rights of elergant and polifhed converfation.

The getieral accquaintance which Dr Roebuck had acquired with natural and experimental phlofophy, to gether with his claficul and political knowledge, rer:dered him an agrecable companion to the learned al. moft of every department, and procured him the attachment and friendithip of many of the frit literary characters in Britain. Wuh his friend Dr Black be lived till his death in clofe habits of intimacy; and he often ack :owledged, with much franknefs, the advantages which he derived, in his valious purfuits, from a free and unreferved communication with that eminent chemilt.

The amiable difpuftions of fenfibility, humanity, and generofity, which ftrongly marked lis character, in thas general intercourfe of fociety, wele peculiarly preferved and exercifed in the bofom of his family, ald in the circle of his friends. In the various relations of huffand, father, friend, or mafter, and in the difcharge of the refpective duties arifing from them, it would not be eafy to do jultice to his character, or to determine in which

\section*{R O R}

Roenier. of them he moft excelled; nor muft it be forgot, for it refected much honour on his benevolent heart, that his workmen not only found him at all times a kind and indulgent mater, but many of them, when their circumifances required it, a fkilful and comprfionate phyfician, who cheerfully vifited the humblet receffes of poverty, and who attached them to his fervice by multiplied acts of generofity and kindner? 3 .

ROEMER (Olaus), a noted Danifl aftronomer and mathematician, was born at Arhufen in Jutland, \(164+\); and at 18 years of age was fent to the univerfity of Copenhagen. He applied aflidunufly to the ftudy of the mathematics and aftronomy, and became fo expert in thofe fcienees, that when Picard was fent by Lontis the XIV. in 1671, to make oblervations in the north, he was greatly furprifed and pleafed with him. He engaged him to return with him to France, and had hiin prefented to the king, who honoure! him with the ciauphin as a pupil in mathematics, and fettled a penfion upon him. He was joined with Picard and Caffini, in making altronomical obfervations; ant in 1672 he was adinitted a member of the Acadeny of Sciences.

During the ten years he refided at Paris, he gained grat reputation by his difonveries; yet it is faid he complained afterwards, that his coadjutors ran away with the honour of many things which belonged to him. Here it was that Roemer, firlt of any one, found out the velocity with which light moves, by means of the eclipfes of Jupiter's fatellites. He had obferved for many yeara, that when Jupiter was at his greatef difance from the earth where he could be obferved, the emerfions of his firft fatellite happened conftantiy 15 or 16 aninutes later than the calculation gave them. Hence He concladed, that the light reflected by Jupiter took up this tine in ruming over the excefs of diftane; and corfequently that it took up 16 or 18 minutes in running over the diametcr of the earth's orbit, and 8 or 9 in coming from the fun to us, provided its velocity was nearly uniform. This difcovery thed at firt inany oppofers ; but it was afierwards confirmed by 1)r Bradley in the moit ingenious and beantiful manner.

In 168 r Roemer was recalled to his native country by Chrifian the Vth King of Denmark, who made him profeffor of aftronomy at Copenhagen. The king employed him alfo in reforming the coin and the archi*ecture, in regulating the weights and meafures, and in meafiring and laving out the high roals throughont the kingdom, offices which he dilcharged with the greatefi credit and fatisfaction. In confequence he was honoured by the king with the appointment of chancellor of the exchequer and other dignities. Finally, he became counfellor of fate, and bergomafter of Copenhagen, under Frederic the IV. the finceeflor of Chiiftian. Roenier was picparing to publifh the refilt of his obfervations, when he died the igth of September r710, at 66 years of age : but this lufs was fupplied by Horrebow, his difciple, then profeffor of attronomy at Copenhagen, who publifhed, in 4 to, 175.3 , various wis. fervations of Roemer, with his method of obferving, under the titke of Bafis Allronomis. - He had alfo printed various affronomical obfervations and pieces, in feveral volumes of the Memoirs of the Royal Acaden:y of Sciences at Paris, of the inflitution of 1666 , particularly vol. r. and ro. of that collestion.

\section*{R O L}

ROLLOCK (Robert), the firt princ:pal of the college of Edinburgh, was the fon of David Rollock of Pon boufe, or, as it is now written, Porwis, in the neighbourhoorl of Stirling. He was born in 1555; and learned the rudiments of the Latin tongue under one Mr Thomas Buchanan, who kept, fays Archbifhop Spottifwood, a famous fchool at that time, and was, according to Dr Mackenzie, one of the moft eminent grammatians in Scotland. Where Mr Buchaman keps his fchool, neither of thefe authors has informed us.
From fchool Mr Rullock was fent, 'we know not in what year, to the univerfity of St Andrews, and ad. mitted a fudent in St Salvator's college. His progrefs in the fciences, which were then taught, was fo great and fo rapid, that he had no fooner taken his degree of M. A. than he was chofen a profeflor of philofopliy, and immediately bergan to read lectures in St Saivator's college. This mult have been at a very early period of life; for he quitted St Andrews in the year 1583, when, according to Mackerzie, he had taught phillofophy for forme time in that univerfity.

Not long before this period, the magitrates of EdinEnrgh having petitioned the king to ereet a univerfity in that city, he granted them a charter under the great feal, allowing them all the privileges of a univectity ; and the college being built in \(15 \% 2\), they made choice of Mr Rollock to be their principal and profeffor of divinity.

At what time he was almitted into holy orders, by whom he was ordained, or indeed whether he ever was ordained, has been the futject of fume acrimonious controverfy; bat it is a contioverfy which we fhall not revive; for, confidering the manner in which orders were then conferred in Scotland, the queffion in debate is of very little importance. It is certain that he becanne famons in the univerfity, and among his countrymen in general, for his lectures in theology, and for the perfuafive power of his preaching; for Calderwood aflures us, that, in 1 889, he and Mr Robert Bruce, another popular orator, made the Earl of Bothwel fo fonfible of his !nful and vitious comfes, that, uron the gth of November, his hordhip humbied hinfelf upon his knees in the eatt church in the forenoon, and in the high chuich in the afternoon, confefli ig before the people, with tears in his eyes, his difislute and licentious life, and promifing to prove, fur the future, another ma:a.

In the year 1593, Principal Rollock and others were appointed by the taates of parlianent to conter with the popif lords; and in the next year he was one of thofe who, by the appointment of the general aflembly of the church, met at Edinburgh in the month of May, and prefented to his majefty a paper, enticted, The dan= gers zubich, through the impunity of EXCOMMUNICATED papists, traffickers wifh the spaniards, and otber enemies of the retigion and efotic, are imminent to the true religion profefled zuithin this realn, bis Majishy's perSon, crozen, and liberty of this our native country. His zeal ayaintt Papits was indeed ardent; and he feems to have adopted that judaical doctrine, which was embraced in fome degree by all the reformers, that it is the duty of the civil magitrate to punif idolatry with death.

In the year 1595 he was nominated one of the commifioners for the vifitation of colleges. Thefe commiffioners
illock, miffoners were empowered to vifit all the colleges in the kingdom, to inquire into the doctrine and life of the feveral mafters, the difcipline ufed by them, the ftate of their rents and living, and to make their repoit to the next affembly.

In 1596 , the factions behaviour of fome of the minillers having drawn upon them the juft refentment of the king, our principal was employed, on account of his moderation, to foften that refentment, and to turn his majent's wrath againtt the Papifs! In the year 1597, he was chofen moderator of the General Affem-bly-the higheft dignity in the Scottifh clurch; and he had the influence to get fome great abules redreffed. Being one of fourteen minifters appointed by this affembly to take care of the affairs of the church, the firt thing which he did was to procure an act of the legiflature, refloring to the prelates their feats in parliament. He had here occation for all his addrefs ; for he had to reconcile to this meafure, not only fuch of the minilters as abhorred all kinds of fubordination in the clurch, but likewife many of the lay lords, who were not delighted with the profpert of fuch affociates in parliament as the Scotch prelates were at that period (A).

Though he fpent the greater part of his life in conducting the affairs of the church, we have the authoriiy of Spottifwood for faying, that he would have preferred retirement and fudy. I'o the bufle of public life, efpecially at that period of faction and fanaticifm, his feeble conflitution was not equal ; and his inclination would have confined him to his college and his library. He was dreadfully aftlicted with the tlone; the torments of which he long bore with the fortitude and refignation of a Chriftian. He died at Edinburgh on the 28th of February 1598, in the 43 d year of his age; having exhorted his brethren, with his dying breath, to carry themfelves more dutifully to their gracious fovereign.

His works are, 1. A Commentary on the Firf Book of Theodore Beza's Queftions. 2. A Commentary on St Paul's Epiftle to the Ephefians, 4to, Edinburgh, 1590. 3. A Commentary on the Prophet Daniel, 4to, Edinburgh, 1591. 4. A Logrical Analyfis of St Paul's Epifte to the Romans, 8vo, Edinburgh, 15 \$4. 5. Some Queftions and Anfwers concerning the Covenant of Grace and the Sacraments, 8 vo, Edinburgh, 1596. 6. A Treatife of Effectual Calling, 8vo, Edinburgh, 1597. 7. A Commentary on the Epifles of St Paul to the Theffalonians and Philemon, 8 vo , Geneva, 1597 . 8. A Commentary upon Fifteen Select Pfalms, 8vo, Geneva, 1598. 9. A Commentary on the Gofpel of St John, with a harmony of the Four Evançelifts upon the Death, Refurrection, and Afcenfion of Jefus Chrift,

Supfl. Vol. II. Part II.

8vo, Geneva, 1590. 10. Ce:tain Sermons on Several Places of Si Paul's Enitles, 8vo, Elinburgh, 1599. 1r. A Commentary upon the Epifle to the Coloffians, 8vo, publifhed at Geneva, 1602. 12. A Logieal A. naly fis of the Epifte to the Hebrews, 8vo, Edinburgh, 1605. 13. A Logical Analyfis of the Epitle to the Galatians, 8vo, London, 1602. 14. A Commentary upon the Two Firt Chapters of the Firit Epifle of St Peter, 8 vo , London, 1603.15 and 16. A Treatife of Juftification, and another of Excommunication, both in 8 vo , London, 1604 . All thefe works, except the fermons, are in Latin. That Principal Rollock was held in high effimation in the college over which he prefided, is made at leaft probable by the following epitaph :

> Te Rollose, extincto, UTrbs ma.fa, Academia mafla eff; Et tota exequiis Scotral marfa, tuis.
> Uno in te nolis diderat Deus ominia, in uno Te Deus eripuit omnia que diderit.

ROSES OTTER (or effential oil) of. In the Encyclopadia, under the word Rnses, we have given one receipt for makiug this very high-priced perfune; and we fhall here give another; which, whether it be as effectual or not, is at leatt fimpler and lefo expenfive. It is by an officer who was in the country where the Oiter is prepared, and who affifted in making it limfelf; and is as follows :
"'I'ake a very large glazed earthen or ftone jar, or a large clean wooden cafk; fill it with the leaves of the flowers of rofes, very well picked, and freed from all feeds and ftalks; pour on them as much pure fpring water as will cover them, and fet the velfel in the fun, in the morning at fun-rife, and let it fland till the evening, then take it into the houfe for the night; expole it, in this manner, for fix or feven fucceffive days, and, at the end of the third or fourth day, a number of particles, of a fine yellow oily matter, will float on the furface, which, in two or three days more, will gather in. to a fcum, which is the otter of rofes. This is taken up by fome cotton, tied to the end of a piece of Atick, and fqueezed with the finger and thumb into a fmall phial, which is immeciately well fopped; and this is repeated for fome fucceffive evenings, or while any of this fine effential oil rifes to the furface of the water."

Dr Donald Monro, who communicated this receipt to the Royal Society of Edinburgh, fays, that he has been informed, that fome few drops of this effential oil have more than once been collected by diftillation in London, in the fame manner as the effential oils of other plants.

ROTA Aristotelica, or Arillotle's Wheel, denotes a celebrated problem in mechanics, concerning the mo30
tion
(A) The conflicution of the Scotch church was, at this period, a Atrange fyltem of inconfiftency and contradiction. It was, in fact, prefbyterian; for ecclefraftical difcipline was adminiftered then, as at prefent, by kirkfeffions, prefbyteries, and general affemblies; and there was not a reformed bifhop in the kingdom. Whether provincial fynods were then in ufe, the writer of this note does not at prefent recollect. The king, however, who was meditating the refloration of epifcopacy, conferred the eltates, or part of the eftates, belonging to the different fees, upon the moft eminent parochial minifters, and dignified them with the title of bifhops; though it does not appear that they had any jurifdiction over their brethren; and though they were certainly not ex efficio fo much as moderators of the prefbyteries within the bounds of which their churches were fituated. Thefe were the mea for whom Mr Rollock exerted himfelf to obtain feats in the parliament.

Rota, tion or rotation of a wheel about its axis; fo called beRow il g. caufe firt noticed by 4 rifotle.

I'he difficulty is this. While a circle makes a revo. lution on its centre, advancing at the fame time in a right line along a plane, it defcribes, on that plane, a right line which is equal to its circumference. Now if this circle, which may be called the deferent, carry with it another fmaller circle, concentric with it, like the nave of a coach wheel; then this little circle, or have, will defcribe a line in the time of the revolution, which fhall be equal to that of the large wheel or circumference itfelf; becaufe its centre advances in a right line as faft as that of the wheel does, being in reality she fame with it

The folution given by Ariftotle, is no more than a good explication of the difficulty.

Galileo, who next attempted it, has recourfe to an infinite number of infinitely little vacuities in the right line defcribed by the two circles; and imagines that the little circle never applies its circumference to thofe vacuities; but in reality only applies it to a line equal to its own circumference; though it appears to have applied it to a much larger. But all this is nothing to the purpofe.

Tacquet will have it, that the little circle. making its rotation more flowly than the great one, does on that account dufcribe a line longer than its own circumference; yet without applying any point of its circumference to more than one point of its bafe. But this is no more fatisfactory than the former.

After the fruiticfs attempts of fo many great men, M. Dortous de Mieyran, a French gentleman, had the good fortune to hit upon a folution, which he fent to the Academy of Sciences; where being examined by Meff. de Louville and Soulmon, appointed for that parpofe, they made their 1 cport that it was fatisfactory. The folution is to this effect :

The wheel of a coach is only acted on, or drawn in a right line; its rotation or circular motion arifes purely from the refiffance of the ground upon which it is ap plied. Now this refiftance is equal to the force which draws the whecl in the right line, inafmuch as it defeats that direction; of confequence the caufes of the two motions, the one right and the other circular, are equal. And hence the wheel deferibes a right line on the ground equal to its circumference.

As for the nave of the wheel, the cafe is otherwife. It is drawn in a right line by the fame force as the wheel; but it only turns round becaufe the wheel does fo, and can only turn in the fame time with it. Hence it follows, that its circular velocity is lefo than that of the wheel, in the ratio of the two circumferences; and therefore its circular motion is lefs than the rectilinear prie. Since then it neceffarily defcribes a right line equal to that of the wheel, it can only do it partly by fliding, and partly by revolving, the fliding part being more or lefs as the nave itfelf is fmaller or larger.-Hutton's Diaionary.

ROWNING (Johr), an ingenious Englifh mathematician and philoloplier, was fellow of Magdalen College, Cambridge, and afterwards Rector of Anderby in Lincolnfhire, in the gift of that Society. He was a conftant atterdant at the meetings of the Spalding Society, and was a man of a great philofophical habit and turn of mind, though of a cheerful and companion-
able difpofition. He had a good genius for mechanical contrivances in particular. In 1738 he printed at Cambridge, A Compendious Syltem of Natural Plilofophy, in 2 vols rvo ; a very ingenious work, which has gone through leveral editions. He had alfo two pieces inferted in the Philofophical Tranfactions, viz. I. A Defcription of a Barometer, wherein the Scale of Variation may be increafed at pleafure; vol. 38. p. 39. And, 2. Directions for making a Machine for finding the Roots of Equations univerfally, with the Manner of ufing it ; vol. 60. p. 240.-Mr Rowning died at his lodgings in Carey-ftreet, near Lincoln's-Inn Fields, the latter end of November 1771, at 72 years of age.

Though a very ingenious and pleafant man, he had but an unpromifing and forbidding appearance : he was tall, ftoping in the fhoulders, and of a fallow downlooking countenance.

ROY-Royan, in Bengal, the chief officer in the revenue department, next to the Dewan under the native government.

RUTHERFORD (John, M. D.), one of the illuftrious founders of che medical fchool in the univerfity of Edinburgh, was the fon of the Rev. Mr Ratherford minifter of Yarrow, in the county of S:1kirk, North Britain. Fc was born on the ift Augult 1695 , and received the rudiments of his education at the parifh fchool of Selkirk; where, from his future pioficiency, there is every reafon to believe that he made a rapid progrefs in the knowledge of the Latin and Greek languages.

After the death of his father, he went to Edinburgh in 1708 or 1710 , where, in the univerfity, he applied himfelf to the ftudy of claffical literature, mathematics, and natural philofophy. The celebrated Dr Pitcairn was then fo highly refpected for his medical fkill, that it is not improbable but that a lavidable defire of obtaining a portion of fimilar fame may have turned the attention of young Rutherford to the Itudy of medicine. Be that as it may, he engaged himfelf apprentice to Mr Alexander Nefbit, at that time an eminent furgeon in Edinburgh, with whom he remained till 1716, when he went to London. Ihere he attended fome hofpitals, and the lectures read on anatomy by Dr Douglas, on furgery by André, and on materia medica by Strother.

After a year's refidence in London, he returned to Edinburgh; and having fettled his affairs in that city, he went to Leyden, which, from the lectures of Buerhaave, was then the moft celebrated medical fchool in Europe. In 17.19 he went into France, and was at thee end of July in that year admitted to the degree of M.D. in the univerfity of Rheims He paffed the fol. lowing winter in Paris, chiefly for the fake of Winflow's private demonftrations is anatomy; and in 1720 he re. turned to Britain.

In 1721 he fettled as a phyfician in Edinburgh; and foon afterwards Drs Rutherford, Sinclair, Plummer, and Innes, purchaled a laboratory, where they prepared compound medicines. This was an art then but little known in Scotland; and as a commercial peculation, the laboratory mut therefore have proved very advantageous to the partners. But they had higher objects in view than commerce. They demonftrated, as far as they were then known, the operations of cho-
ort mitry to a numernus audience; and foon aiterwards, by the advice of their old malter Boerhaave, they extended their lectures to the other branches of phyfic. In 1725 they were appointed joint profefors in the univerfity ; where, we believe, each, for fome time, read lectures in every department of medical fcience, anatomy excepted, and carried forward their claffes in retation. The anatomical lectures were read by the elder Monro, who had been fettled a year or two before them in Edinburgh, and whofe eminerce in that department is known to all Europe.

On the death of Dr Innes, a particular branch of medical fcience was allotted to each of the other three profeffors. Dr Plummer was appointed profeffor of chemiftry and materia medica, Dr Sinclair of the inftitutes of phyfic, and Dr Rutherford of the practice; and thus was a regular medical fchool eftablifhed in E. dinburgh by Monro, Plummer, Sinclair, and Rutherford. The lectures on the inftitutes and practice of phyfic were then, and for many years afterwards, delivered in Latin; and fuch was Dr Rutherford's command of that language, that on every thing conneeted with medicine, he talked in it more fluently than in the language of his country.

Whether it was any improvement in the mode of medical education in Edinburgh to change the language of the lectures from Latin to Englifh, is perhaps more than queftionable. We have now difperfed over the country a number of illiterate men, practifing as furgeons, and even as phyficians, who never could have boalted of having gone through a regular courfe of medical infruction, had the lectures continued to be delivered in the language in which they were begun. Foreigners, too, would not have been under the neceffity of learning a new language, before they could enter on the ftudies, for the cultivation of which they came to Scotland; and though the medical claffes might not have been fo crowded perhaps a at prefent, the individuals connpofing them would have been at leaft as re. fipectable. Whether Dr Rutherford reafoned in this
way we know not; but he continued to lecture in Sa. tin as long as he filled the practical chair

About the year 1748 he introduced a very great in. provement in the courfe of medical education. Senfible that abifral lectures on the fymptoms and the mode of treating various difeafes, of which the ftudents kno v little but the names, could fearcely be of any benefit, he had for fome time encouraged his pupils to bring patients to him on Saturday, when he inquired into the nature of their difeafes, and prefcribed for them in the prefence of the clafs. This gave rife to the courfe of clinical le¿ures; the utility of which was fo obvious, that it was enacted, by a decree of the fenate of the univerfity, that no man fhould be admitted to an examina. tion for his doctor's degree, who had not attended thofe leÊures; to which an excellent hofpital, then lately ercted (fee Edinburga, in the Encyclopadia), gave the profeflors every opportunity of doing ample juftice. I'o men who mean to live by the practice of phyfic, and have no inordinate ambition to raife their fame by fanciful theories, this is perhaps the moft valuable courfe of lectures that is given in Edinburgh ; and if fo, Dr Rutherford mult be confidered as one of the greateft benefactors of the medical fchool.

To untried theories in phyfic he was indeed no friend; and we have heard a favourite and very able pupil of his, who knew him well, and refpected him highly, affirin. that, to his knowledge, Dr Rutherford retained his protefforfhip longer than he otherwife would have chofen to do ; merely that he might keep out a fpeculatift, whom he knew to be afpiring to the practical chair. Finding at laft in the late Dr John Giegory (fee Gregory, Encycl.) a fucceefor entirely to his mind, he refigned to him in 1765, after laving taught medicine in its different departments for upwards of forty years. He lived, after this period, loved by his friends. and revered by many eminent plyyficians, who had been his pupils, till 1779, when lee died in Edinburgh, where he had fpent the greater part of his life, in the 84 th year of his age.

\section*{S.}

ACCHAROMETER, the name given, by Mr Richardfors of Hull, to an inftrument invented by him for afcertaining the value of worts, and the ftrength of different kinds of malt liquors. In plain Englifh, the name fignifies a meafurer of foweetne/s; and therefore, if etymology were to be attended to, the inftrument thould be employed merely as a meafurer of the fweetnets of worts. It is in fact beft adapted for this purpofe, being merely an hydrometer contrived to afcertain the fpecific gravity of worts, or rather to compare the weight of worts with that of equal quantities of the water employed in the brewery where the inftrument is ufed.

The principle which fuggefed the invention of the inftrument to Mr Richardfon is as follows: The menAruum or water, employed by the brewer, becomes heavier or more denfe by the addition of fuch parts of the materials as have been diffolved or extracted by,
and thence incorporated with it : the operation of boil- Saccharon ing, and its fubfequent cooling, ftill adeds to the denfity of it by evaporation; fo that when it is Tubmitted to the action of fermentation, it is more denfe than at any other period.

In paffing through this operation of nature, a remarkable alteration takes place. 'The fluid no fooner begins to ferment than its denlity begins to diminifh; and as the fermentation is more or lels perfeet, the fermentable matter, whofe acceffion lias been traced by the increafe of denfity, becomes more or lefs attenuated; and in lieu of every particle thus attenuated, a firitu. ous particle, of lefs denfity than water, is produced: fo that when the liquor is again in a flate of quietude, it is fo much fpecifically lighter than it was before, as the action of fermentation has been capable of actenuating the component parts of its acquired denfity ; and, indeed, were it practicable to attenuate the whole, the
liquor
liquor would become lighter or Icfs denfe than water; becaufe the quantity of fpirit produced from, and occupying the place of the fermentable matter, would diminift the denfity of the water in a degree bearing fome proportion to that in which the latter had increafed it.

From thefe facts, the reader, who is acquainted with hydroftatical principles, will be able to confruct a faccharometer for hinfelf. Brewers, who are ftrangers to thefe principles, we muft refer to Mr Richardion's book for details, which our limits permit us not to give.

SAGTTHA, in aftronomy, the Arrow or Dart, a conftellation of the northern hemifphere near the eagle, and one of the \(4^{8}\) old afterifms.

SAHARA, or, as it is fometines written, ZaAra, the Great Defert, is a vaft ocean of fand in the interior parts of Africa, which, with the leffer deferts of Bornou, Bilma, Barca, Sort, \&cc. is equal in extent to about one half of Europe. If the fand be confidered as the ocean, the Sahara has its gulphs and bays, as alfo its iflands, or OAses, fertile in groves and pattures, and in many infances containing a great population, fubject to order and regular government.

The great body, or weftern divifion of this ocean, comprifed between Fezzan and the Atlantic, is no lefs than 50 caravan journeys acrofs, from north to fouth ; or from 750 to 800 G. miles; and double that extent in length: without doubt the largeft defert in the world. 'This divifion contains but a feanty portion of iflands (or oafes), and thofe alfo of finall extent: but the eaftern divifion has many, and fome of them very large. Fezzan, Gadamis, 'Taboo, Ghanat, Agadez, Augela, Berdoa, are amongft the principal ones: befides which, there are a vaft number of fmall ones. In effect, this is the part of Africa alluded to by Strabo, when he fays from Cneius Pijo, that Africa may be compared to a leopard's fkin.

From the beft inquiries that Mr Park conld make when a kind of captive among the Moors at Ludamar, the Weftern Defert, he fays, may be pronounced almoft deftitute of inhabitants ; except where the fcanty vegetation, which appears in certain fpots, affords pafturage for the flocks of a few miferable Arabs, who wander from one well to another. In other places, where the fupply of water and pafturage is more aburdent, fmall parties of the Moors have taken up their relidence. Here they live, in independent poverty, fecure from the tyrannical government of Barbary. But the greater part of the defert, being totally deftitute of water, is feldom vifted by ariy human being; unlefs where the trading caravans trace ont their toilfome and dangerous route acrofo it. In fome parts of this extenfive wafte, the ground is covered with low ftunted frubs, which ferve as land marks for the caravans, and furnif the camels with a feanty forage. In other parts, the difconfolate wanderer, wherever he turns, fees nothing around him but a vaft interminable expanfe of fand and Nky; a gloomy and barren void, where the eye finds no particular object to relt upon, and the mind is filled with painful apprehenfions of perifhing with thirft. Surrounded by this dreary folitude, the traveller fees the dead bodies of birds, that the violence of the wind has brought from happier regions; and, as he ruminates on the fearful length of liis remaining paffage, liftens with horror to the voice of the driving blaft; the only found that interrupts the awful repofe of the defert.

The few wild animals which inhabit thefe melancholy regions, are the antelope and the oftrich; their fwiftnefs of foot enabling them to rexch the diftant wateringplaces. On the fkirts of the defert, where the water is more plentiful, are found lions, panthers, elephants, and wild boars.

Of domeftic animals, the only one that can endure the facigue of croffing the defert is the camel. It is therefore the only beaft of burden employed by the trading caravans which traverfe, in different directions, from Barbary to Nigritia. The flefh of this uffful and docile creature, though to our author's tatte it was dry and unfavory, is preferred by the Moors to all otliers. The milk of the female, he fays, is in univerfal efteem, and is indeed pleafant and nutritive.

That the defert has a dip towards the eaft, as well as the fouth, feems to be proved by the courfe of the Niger. Moreover, the highett points of North AfriCa, that is to fay, the mountains of Mandinga and Atlas, are fituated very far to the wef. The defert, for the moft part, abounds with falt. But we hear of falt mines only in the part contiguous to Nigritia, from whence falt is drawn for the ufe of thofe countries, as well as of the Moorifh ftates adjoining ; there being no. falt in the Negro countries fouth of the Niger. There are falt lakes alfo in the the eaftern past of the defert.

SAI, a large town on the banks of the Niger, or at leaft very near to that river, which Mr Park fays throngly excited his ctrriofity. It is completely furrounded by two very deep trenches, at about two hundred yards diftant from the walls. On the top of the trenches are a number of fquare towers ; and the whole has the appearance of a regular fortification. Inquiring into the origin of this extraordinary entrenchnent, our author learned from two of the towns people the following particulars; which, if true, furmith a mournful picture of the enormities of African wars:

About fifteen years before our traveller vifited Sai, when the King of Bambarra defolated Maniana, the Dooty of Sai had two fons flain in battle, fighting in the king's caufe. He had a third fon living: and when the king demanded a further reinforcement of men, and this youth among the reft, the Looty refufed to fend him This conduct fo enraged the king, that when he returned from Maniana, about the beginning of the rainy feafon, and found the Dooty protected by the inhabitants, he fat down before Sai with his army, and furrounded the town with the trenches which had attracted our author's netice. After a liege of two months, the towns-people became involved in all the horrors of famine ; and whillt the king's army were feafting in their trenches, they faw with pleafure the miferable inhabitants of Sai devour the leaves and bark of the Bentang tree that tlood in the midalle of the town. Finding, however, that the befieged would fooner perih than furrender, the king had recounfe to treachery. He promifed, that if they would open the gates, no perfon fhould be put to death, nor fuffer any injury, but the Dooty alone. The poor old man determined to facrifice himfelf, for the fake of his fellowcitizens, and immediately walked over to the king's army, where he was put to death. His fon, in attempting to efcape, was caught and maffacred in the trenclies; and the reft of the towns people were carried away captives, and fold as flaves to the different Negro traders
int, traders. Sai is placed by Major Rennel in \(\mathbf{r} 4^{\circ}\) N. Lat. Mines and \(3^{\circ} \eta^{\prime}\) Weft. Long.

Saint' Catherine, a Portuguefe ifland in the South Sea, not far diftant from the coaft of Brazil. It was vifited by La Peroufe, who afcertained it to lie betweell \(27^{\circ} 19^{\prime} 10^{\prime \prime}\), and \(27^{\circ} 49^{\prime}\) N. Lat. and its molt northerly point to be in \(49^{\circ} 49^{\prime}\) longitude weft from Paris Its breadth from eaft to weft is only two leagues; and it is feparated from the main land by a channel only 200 toifes broad. On the point which ftretches furtheft into this channel is fituated the city of NoftraSenora del Deftero, the capital of the government, and the place of relidence of the governor. It contains at mott 3000 fouls, and about 400 houfes. Its appearance is exceedingly plcafant. According to Frezier's account, this ifland ferved, in 1712, as a retreat to vagabonde, who made their efeape from different parts of the Brazils; who were only n -ninal fubjects of Portugal, and who acknowledged no authority whatever. The country is fo fertile, that they were able to fubfirit without any fuccour from the neighbouring colonies: and they were fo deflitute of money, that they could neither tempt the cupidity of the governor-general of the Brazils, nor infpire hin with any defire of fubduing them. The fhips that touched at the ifland gave them in exchange for their provifions nothing but clothes and fhirts, of which they were in the utmoft want. It was not till about \(17+0\) that the court of Lifbon eftablifhed a regular government in the illand of St Caiherine, and the parts of the continent adjacent. 'This government extends fixty leagues north and fouth from the river San Francilco to Rio Grande; its population being about 20,000 fouls; but there are fo great a number of children in the different families, that probably it will foon be much more confiderable. The foil is exceedingly fertile, and produces all forts of fruit, vegetebles, and corn, almoit fpontaneonfly. It is covered with trees of everlafting green; but they are fo interwoven with briars and creeping plants, that it is impoffible to get through the forefts otherwife than by opening a path with a hatchet. Danger is befides to be apprehended from fnakes, whofe bite is mortal. The habitations, both on the ifland and continent, arc ail clofe to the fea fide. The woods that furround them are delightfully fragrant, owing to the great number of orange trees and other odoriferous trees and frubs that they contain. But, notwithflanding all thefe advantages, the country is very poor, and totally deffitute of manufactured commodities, fo that the peafants are almoft naked, or elie covered with rags. Their foil, which is very fit for the cultivation of fugar, remains unproductive for the want of flaves, whon they are not rich enough to purchafe. The whale fifhery is very fuccefsful; but it is the property of the crown, and is farmed by a company at Lißon, which has three confiderable eftablifhments upon the coaft. Every year they kill about 400 whales; the produce of which, as well oil as fpermaceti, is fent to Lisbon by the way of Rio-Janeiro. The inhabitants are idle fpectators of this fifhery, from which they derive not the fmalleft ad. vantage. La Peroufe gives a very amiable picture, however, of their hofpitality to ftrangers.

SALT. See Chemistry-Index, in this Suppl.
Salt-Mines of Vielicza, near Cracow in Poland, are very extraordinary caverns; for a defcription of which
we referred, in the article Salt (Encycl.) to M. Dar. Sat N Rines, niard in the Yournal do Pbyique for the year 1786. Sllepetre. Some of our readers have complained of this, and requefted an account of them in the Supplement. With this requett we Mall comply, by giving them Mr Wrax. all's detcription of thefe caverns *.
* Merroirs
"After being let down (fays he) by a rope to the of the Court, depth of 230 fect, aur conducturs led us through galle of Berlin, rics, which, for loft:nefs and breadth, feemed rather to re- Wiriravo, femble the avemes to fome fubterranean palace, than pafonil Vinnaco fages cut in a mine. They were perfectly dry in every part, and terminated in two chapels compofed entirely of falt, hewn out of the folid mafo. The images which adorn the altars, as welk as the pillars and ornaments, were all of the fame tranfparent materials: the points and fpars of which, reflecting the rays of light from the lamps which the guides held in their hands, prodnced an effeft equally novel and beautiful. Defeending lowet into the earth by means of ladders, I found myielf in an immente hall or cavern of falt, many hundred feet in heighit, lenith, and dimenfions, the floor and fides of which were cut with exaet regularity. A thonfand perions might dine in it without inconvenieace, and the eye in vain aitempted to trace or detine its limits. Nothing could be more fubline than this valt fubterrancara apartment, illuninated by flambeaux, which faintly difcover its prodigious magnituce, and leave the imagrination at liberty to enlarge it indefinitehy. After remain. ing about two hours and a half under ground, I was drawn up again in three minutes with the greatelt Ea. cility."

SALTPETRE (fee Nitre, Chemistry-Index, in this Suappl.) is an article of fo much importance, and fometimes fo difficult to be had, that it is wonderfu! more attention is not betlowed in endeavouring to difcover fome eafy method in increafe the quantity. Such a method has been long practiled by the farmers of A n penzell in Switzerland. In fo hilly a country, moits bnufes and Aables are built on flopes, one fide of the edifice refting on the hill, and the other being fupported by two frong polls, elevated two or three feet above the ground; fo that the air has a free current unde: the building. Inmediately under the flable a pit is clug, ufually occupying both in breadth and length the whole fpace of ground covered by the bulding; and inftead of the clayey earth which is dug out, the pit is filled up with fandy foil. This is the whole procefs, and all the reft is dene by nature. The animal water, which is continually onzing through the planks of the floor, having drenched the earth contained in the pit for the fipace of two or three years, the later is emp. tied, and the faltpetre is refined and prepared in the ufual manner.
That manner, however, is not the beft; and the French chemits, during th. inceffant wars occafioned by the revolution, have, for the fake of fupplying their armics with gunpowder, turned their attention to the beft method of refining faltpetre. The following are directions given for this purpofe by Chaptal, Champy, and Bonjour.

The crude faltpetre is to be beaten fmall with mallets, in order that the water may more eafily attack every part of the mafs. The faltpetre is then to be put into tubs, five or fix hundred pounds in each tub. Twenty per cent. of water is to be poured into each tub,

Sal'petre. and the mixture well firred. It muft be left to macerate or digeft until the fpecific gravity of the fluid ceafes to augment. Six or feven hours are fufficient for this firlt operation, and the water acquires the denfity of between 25 and 35 degrees. (Sp. gr. 1.21, and 1.306, afce1tained by Baumé's liydrometer. See Hydrometer, Suppl.

The firft water mutt then be poured off, and a fecond portion of water muft be poured on the fame faltpetre amounting to 10 per rent.; after which the mixture muft be flirred up, fuifiered to ma\%rate for one hour, and the fluid drawn or poured off.

Five per cent. of water mult then be poured on the faltpetre; and after ftirrirg the whole, the fiuid muft be immediately drawn off.

When the water is drained from the faltpetre, the falt muft be thrown into a boiler containing \(j 0\) per cent. of boiling water. When the folution is made, it will mark between 66 and 68 degrees of the hydrometer. (Sp. gr. 1.848, and 1.898.)

The folution is to be poured into a proper veffel, where it depoits by cooling about two-thirds of the faltpetre originally taken. The precipitation hegins in about half an hour, and terminates in between four and f:x hours. But as it is of importance to obtain the faltpetre in fmall needles, becaule in this form it is more eatily dried, it is neceffary to agitate the nuid during the whole time of the cryffallization. A flight motion is communicated to this liquid mafs by a kind of rake; in confequence of which the cryitals are depofited in very fender needles.

In proportion as the cryffals fall down, they are feraped to the borders of the veffel, whence they are taken with a fkimmer, and thrown to drain in bafkets placed on treffels, in fuch a manner that the water which paffes through may either fall into the cryftallizing veffel, or be received in bafons placed underneath.

The faltpetre is afterwards put into wooden vefiels in the form of a mill-hopper or inverted pyramid with a double bottom. The upper bottom is placed two inches above the lower on wooden ledges, and has many fmall perforations through which water may pafs to the lower bottom, which likewife affords a paffage by one fingle aperture. A refervoir is placed beneath. The crytallized faltpetre is wafhed in thefe veffels with 5 per cent. of water; which water is afterwards employed in the folution of faltpetre in fubfequent operations.

The faltpetre, after fuficient draining, and being dried by expofure to the air upon tables for feveral hours, may then be employed in the manufacture of gunpowder.

But when it is required to ufe the faltpetre in the Ipeedy and immediate manufacture of gutpowder, it muft be dried much more aftrongly. 'This may be effected in a ftove, or more fimply by heating it in a flat metallic veffel. For this purpofe the falfpetre is to be put into the veffcl to the depth of five or fix inches, and heated to 40 or 50 degrees of the thermoneter (or about \(135^{\circ}\) of Fahrenleit). The faltpetre is to be ftirred for two or three hours, and dried fo much that, when ftrongly preffed in the hand, it thall acquire no confiftence, nor adhere together, but refemble a very sine dry fand. This degree of dryrress is not req̧uired when the powder is made by pounding.

From thefe circumftances, we find that two faline liquids remain after the operation; (1) the wate: from the wahning; and (2) that from the crytallizing veffels.

We have already remarked, that the walhing of the faltpetre is performed in three fucceffive operations, in which, upon the whole, the quantity of fluid made ufe of anounts to 35 per cent. of the weight of the crude faltpetre. Thefe wafhings are eftablithed on the principle, that cold water diffolves the muriats of foda, and the earthy nitrats and muriats, together with the colouring principle, but fcarcely attacks the nitrat of potafh.

The water of thefe three wafhings therefore contains the muriat of foda, the earthy falts, the colouring prin. ciple, and a fmall quantity of nitrat of potafh; the amount of which is in proportion to that of the muriat of fola, which determines its folution.

The water of the cryftallizing veffels contains a portion of the muriats of foda, and of the carthy falts which efcaped the operation of wathing, and a quantity of nitrat of potafh, which is more confiderable than that of the former folution

The waters made ufe of at the end of the operation, to whiten and wafh the cryftale depofited in the pyramidal veffel, contain nothing but a fmall quantity of nitrat of potafh.

Thefe waters are therefore very different in their nature. The water of the waftings is really a mother water. It mult be collected in veffels, and treated with potafh by the known proceffes. It mult be evaporated to 66 degrees (or \(1,848 \mathrm{fp}\). gr.), taking out the muriat of foda as it falls. This folution is to be faturated with 2 or 3 per cent. of potafh, then fuffered to fettle, decanted, and poured into cryttallizing veffels, where 23 per cent. of water is to be added to keep the whole of the muriat of foda fufpended.

The waters which are thus obtained by treatment of the mother water may be mixed with the water of the firft cryftallization. From thefe the marine falt may be feparated by fimple evaporation; and the nitrat of petafh, which they hold in folution, may be afterwards obtained by cooling.
The fmall quantity of water made ufe of to wafh and whiten the retined faltpetre, contains nothing but the nitrat of potafh : it may therefore be ufed in the folution of the faltpetre when taken from the tubs.
From this defcription it follows, that a manufactory for the Epeedy refining of faltpetre ought to be provided with (I) mallets or rammers for pounding the faltpetre; (i) tubs for wafhing; (3) a boile for folution; (4) a cryftallizing veffel of copper or lead, in which the faltpetre is to be obtained by cooling; (5) bafkets to drain the cryftals; (6) a wooden cafe or hopper for the lalt walhing and draining the faltpetre ; (7) fcales and weights for weighing; ( \(\delta\) ) hydrometers and thermometers, to afcertain denfities and temperatures; (9) rakes to agitate the liquor in the cryftallizing veffel ; (10) scimmers to take out the cryftals, and convey them to the bafkets; (It) fyphons or hand-pumps to empty the boilers.

The number and dimenfions of thefe feveral articles muft vary according to the quantity of faltpetre intended to be reiined.

GUM-SANDARAC, is faid, in the Encyclop adia,
arac, to be produced from a fpecies of juniper. This was
ly proved( \(\Lambda\) ) it to be a mitake. The juniperus com.
munis, from which many have derived this gum, does not grow in Africa; and Sandarac feems to lelong exclufively to that part of the world. The gum fandarac of our thops is brought from the fouthern provinces of the kingdom of Morocco. Avout fix or feven hun. dred quintals of it are exported every ycar from Santa Cruz, Mogador, ant Saffy. In the language of the country it is called el grafla. The tree which produces it is a Thuia, found alfo by M. Vahl in the kingdom of Tunis. It was made known feveral years ago by Dr Shaw, who named it Cypreffus frucu quadrivalvi, Equifeti inflar articulatis; but neither of thele learned men was acquainted with the economical ufe of this tree; probably becaufe, being not common in the northern part of Barbary, the inhabitants find little advantage in collecting the refin which exades from it.
M. Schoufboe, who faw the fecies of \(t\) luia in queftion, fays that it does not rife to more than the height of twenty or thirty feet at moft, and that the diameter of its trunk does not exceed ten or twelve inches. It diftinguifhes itfelf, on the firft view, from the two other fpecies of the fame genus, cultivated in gardens, by having a very diftinct trunk, and the figure of a real tree; whereas in the latter the branches rife from the root, which gives them the appearance rather of bufhes. Its branches alfo are more articulated and brittle. Its flowers, which are not very apparent, fhew themfelves in \(\Lambda\) pril; and the fruit, which are of a fpherical form, ripen in September. When a branch of this tree is held to the light, it appears to be interfperfed with a multitude of tranfparent veficles which contain the refin. When thefe veficles burft in the fummer months, a refinous juice exudes from the trunk and brarches, as is the cafe in other coniferous trees. This refin is the fandarac, which is collected by the inhabitants of the country, and carried to the ports, from which it is tranfported to Europe. It is employed in making fome kinds of fealing-wax, and in different forts of varnifh. In 1793 a hundred weight of it coft in Morocco from 13 to \(13 \frac{1}{2}\) piaflires, which make from about L. 3,5 s. to L \(3,7 \mathrm{~s} .6 \mathrm{~d}\). Aterling. The duty on exportation was about 7 s. 6 d . Aterling per quintal.

Sandarac, to be good, muft be of a bright-yellow colour, pure and tranifparent. It is an article very dif. ficult to be adulterated. Care, however, mult be taken, that the Moors do not mix with it too much fard. It is probable that a tree of the fame kind produces the gum fandarac of Senegal, which is exported in pretty confiderable quantities.

SANDERS-red (fee Pterocarpus, Encycl.) is ufed as a dye ftuff, but generally in a manner which is very difadvantageous. In Crell's Cliemical Annals are given, by Mr Vogler, the following directions for dyeing with this wood.
I. Irto a folution of tin made with aquafortis (nitric acid), and mixed with three times as much falt water, put clcan-wafhed wool, filk, linen, and cotton. After fix hours, take them out, and waff them carefully in three different quantities of clean cold water,
wringing them well each time. Let them dry, and then put half the quantity of each article into the fpirituous tincture of red faiders, hereafter defcribed in \(\mathrm{n} \circ 6\). letting them foak therein, without heat, from hals an hour to an hour. To afcertain the fuperiority of his different proceffes, the other half of each article mult be boiled in the tincture of fanders mixed with water, defcribed in \(\mathrm{n}^{\circ}\) 7. a bare quarter of an hour. After being taken out, wrung, and dried in the fhade, all of them will be dyed throughout of a fine rich poppy-colour.
2. Take three drams of powdered alum, and diffolve it in twelve ounces of clean hot water. Into this folution, while yet warm, put fome well.wafhed wool, filk, linen, and cotton. After fuffering them to remain therein for the fpace of twelve hours, take them out, wafh them well in three quantities of clean cold water (wringing them each time), and dry them. Then fteep the half of each article in the cold firituous tincture of fanders ( \(\mathrm{n}^{\circ} 6\). ), from half an hour to an hour; and boil the other half of each in the diluted tincture of fanders ( \(\mathrm{n}^{\prime} 7\).) for the fpace of fix or feven minutes. After being taken out, wrung, and dried in the fhade, they will be found to have acquired a very beautifus and rich fcarlet colour.
3. Diffolve three drams of blue vitriol, or vitriol of copper, in twelve ounces of hot water. Steep in this folution, for twelve hours, wool, filk, linen, or cotton ; and having fufficiently, wafhed the fuff in clean cold water, immerfe the one half of it in the fpirituous tincture of fanders ( \(\mathrm{n}^{\circ} 6\).), from half an hour to an hour ; and boil the other halfoof each for fix or feven minutes in the diluted tincture, \(n^{\circ} 7\). Being then taken out, wrung, and dried in the fhade, as before, they will have acquired a beautiful, rich, bright, crimfon colour.
4. Steep wool, filk, linen, ard cotton, which has been well wathed, during twelve hours, in a folution of three drams of white vitriol, or vitriol of zinc, in twelve ounces of hot water. After being taken out, well wafhod in clean cold water, and dried, immerfe one half of each in the cold Spiritnous tincture of fanders ( \(n\) " 6. ) and boil the other half in the diluted tincture ( \(11^{\circ} 7\).) as before. When taken out, wrung, and dried, they will be of a fine, rich, deep crimfon collour.
5. Diffolve three drams of commo:t green vitriol, o: vitriol of iron, in twelve ounces of hot water: Reep well wafhed wool, filk, linen, and cotton, in the folution, for the fpace of twelve hours. When takell outs wahhed feveral times in clean cold water, and dried, treat them, as in \(n^{\circ}\) 4. and they will be generally found to be of a fine, rich, deep violet colour; though, on repeating his experiments, our author fometimes fuund the colour a dark brownuth red.

The tincture in which the fuffs a:c to be dyed muft be prepared in the following manner.
6. Take half an ounce of red fanders wood, beat or ground to powder, as it is fold at the colour ihups or drugrifts. Having put it into a large gla.s bottle, pour upon it twelve ounces of malt fpinit or common brandy: then cork the bottle, and fet it in a inoderatcly-warm place. In the fpace of 48 hou:s, the fpirit will have extracted all the colouring matter from the red fanders, and thereby acquired a bright red colour. The both':
mould
(A) In a Danif Journal, intitled, The Pbyfical, Medical, and Eronomical Library, Part III. 1709.

Sanders, : Should be often thaken during the digeftion ; and the Sands. tincture, thus prepared, may be ufed for dycing with-
out heat, and without feparating the powdered fanders from the liquor. The articles to be dyed (after the application of the proper mordants, \(11^{\circ} 1,2,3,4,5\) ) are to be fleceed in the tincture for half an hour, or a whole hour: they are then to be taken out, wrung, and dried in the fhade. This tincture does not lofe its dyeing quality by age; but dyes fubftances, after being kept a long time, almoft as well as when it is juft made. Its colouring power is indeed weakened by the frequent immerfion and dyeing of different articles in it ; and when that is the cafe, it mult be again digefted with fome frefh fanders-wood.
7. Mix the fpirituous tincture of fanders, juft deferibed, with from fix to ten tinues as much clean cold water. The mixture was made by our author without any feparation of the colouring particles worth noticing ; and in this diluted tincture, the vai ious articles (having their proper mordants firf applied, \(\mathrm{n}^{\circ}\), \(, 2,3,4,5\) ) were boiled, as before mentioned. Linen and cotton, by being dipped in glue-water, after the application of the mordants, acquire, in this diluted tineiure, a much deeper and richer colour:

If a very fine and bright colour be defired, the above fpirituous tincture of fanders thonld not be too old, nor fhould the digeftion be protracted beyond \(4 \delta\) hours; for, after that period, the fpinit appears to extraci brown and yellow colouring particles from the wood. The powder of fanders need not be feparated from the diluted tincture which is made ufe of by boiling ; nor is it abfolutly neceffary to wath the articles in cold water after they are dyed; as the powder which adheres to them may eafily be taken off by rubbing and Thaking. M. Vogler, lowever, found it advantageous, after the articles were taken out of the dye, and wrung, to fteep them for a few ininutes in a cold folution of half an ounce of common falt, and a quarter of an ounce of alum, in 12 ounces of pure water. In this cale, they thould afterwards be wafhed feveral times in clean cold water, theh wrung and dried in the fhade. By this methot the colours are not only more beautiful, but are alfo more permanent. All the alticles of wol, filk, linen, and cotton, which were dyed as is above mentioned, bore perfectly well the teft of alkaline ley, foap, and acids ; but, by expofure to the open air and the fun, the colours were more eafily difcharged, efpecially from linen and cotton.
N. B. Red fanders, by being ground to a fine powder, anfwers murch better for dyeing by this procefs, than when it is merely cut into fmall pieces; but it mult be remarked, that the powder of red fanders which is fold at the flops is fometimes adulterated, by being mixed with other fubtances, ard moiftened with acids. 'The beft kind is not light, but rather heavy; and is not of a dark red colour, but clear and bright.

Goodwin SANDS, famous fand banks off the coat of Kent, lying between the north and fouth Foreland; and as they run paraliel with the coalt for three leagues together, at about two leagues and a half diftant from it, they add to the fecurity of that capacious read the Downs; for while the land Ghelters hips with the wind from fouth-well to north-weft only, thefe fands break all the force of the fea when the wind is at eaft fouthesf. The moft dangerous wind, when blowing hard
on the Downs, is the fouth-fouth-weit. Thefe fandssarfand occupy the fpace that was formerly a large tract of low ground belonging to Godwyn Earl of Kent, father of King Harold; and which being afterward given to the monaftery of St Auguftin at Canterbury, the abbot neglecting to keep in repair the wall that defended it from the fea, the whole track was drowned, according to Salmon, in the year 1100 , leaving thefe fands, upon which fo many fhips have fince been wrecked.

SANSANDING, a town in Africe, fituated near the banks of the Niger, in Lat. \(14^{\circ} 24^{\prime} \mathrm{N}\). and \(2^{\circ} 23^{\prime}\) W. Long. It is inhabited by Moors and Negroes to the number of from eight to ten thouland. The Negroes are kind, hofpitable, and credulous; the Moors are at Sanfanding, as everywhere elfe in the interior parts of A frica, fanatical, bigotted, and cruel.

SAl', or SAPP, in buildin! 5 , as to fap a wall, \&c. is to dig out the ground from beneath it, fo as to bring it down all at once for want of fupport.

SAPHAN, in zoology. See Mos, Encycl. p. 467.
SAPHIES, a kind of charmis, confifting of fume fcrap of writing, which the credulous Negroes believe capable of protecting them from all evil. The writers of faphies are generally Moors, who fell fcraps of the Koran for this purpofe to a people who believe not either in the Koran or the prophet. Accordingly, any piece of writing may be fold as a faphie; and Mr Park found the Negroes difoofed to place greater confidence in the faphies of a Chriftian than in thofe of a Moor. The manner in which thefe charms are fuppofed to operate, will be learned from the following fory :

Mr Park being at Koolikorro, a coufiderable town near the Niger, and a great market of falt, his landlord, hearing that he was a Chriftian, immediately thought of procuring a faphic. For this purpofe he brought out his qualha, or writing board, affuring me (fays ons anthor) that he would drefs me a fupper of rice if I would write him a faphie to protect him from wicked men. The propofal was of too great confeģuence to me to be refufed; I therefore wrote the board full, from top to bottom, on borh fides; and my landlotd, to be certain of having the whole force of the charm, wafhed the writing from the board into a calabafl with a little water; and having faid a few prayers over it, drank this powerful draught ; after which, left a fingle word fhould efcape, he licked the board until it was quite dry. A faphie writer was a man of too great confequence to be fong concealed: the important inn formation was carried to the Dooty, who fent his fon with half a theet of writing-paper, defiring me to write him a naploula faplie (a charm to procuse wealth). He brought me, as a prefent, fome ineal and milk; and̉ when I had finifhed the fuphie, and read it to him with an audible voice, he feemed highly fatisfied with his bargain, and promifed to bring me in the morning fome milk for my breakfalt. Our author contrived to turn this abfurd fuperftition to his own advantage, by writing faphies for his fubfiftence when his money was exhaufted.

SARACOLETS, a Negro nation occupying the lands fituated between the rivers of Senegal and Gambia. They are a laborious people, cultivate their lands with care, are plentifully fupplied with all the neceffaries of life, and inhabit handfome and well built villages; their houfes, of a circular form, are for the molt part terra-

\section*{S A V [ 4 I \(]\) S A V}
toules, ced; the others are covered with reeds as at Senegal; they are inclofed with a mud wall a foot thick, and the villages are furrounded with one of ftone and earth of donble that folidity. There are feveral gates, which are guarded at night for fear of 'a furprife. This nation is remarkably brave, and it is very uncommon to find a Saracolet flave. They always defend themfelves with advantage againit their allailants. Such Saracolets as are expofed to fale may be fafely purchafed, for (excepting when they are at war with the Poules) none are to be met with but fuch as have been condemned by the laws for fome mildemeanour; in fuch cafe, thefe wretches could not efcape flavery even by taking refuge in their own country; for they would be reftored to their mafters, or would be put to death, if the convoy fhould have failed. The religious principles of this people are nearly allied to Mahometanifm, and fill more to natural religion. They acknowledge one God; and believe that thofe who fteal, or are guilty of any crime, are eternally punifhed. They admit a plnality of wives, and believe their fouls to be immortal like their own. They think lightly of adultery; for as they allow themfelves feveral wives, they are not fo unjult as to punifh women who diltribute their favoars among feveral gallants; a mutual exchange is then permitted, one woman may be bartered for another, nolef3 fhe be free, or a native of the country. In this laft cafe, the French cuftom prevails; it is winked at, although the laws are particularly fevere againtt the violation of the moft facred of all property. This nation lies near that of the Poules. (See that article, Suppl.) Its extent up the country is unknown; all that we know is, that it is governed by four powerful princes, all bearing the name of Fouquet. The leaft confiderable, according to the teftimony of the Sarcolets, is that of 'Tuago, who can affemble thirty thoufand horfe, and whofe fubjects occupy a territory two hundred leagnes in extent, as well on the Senegal as on the track that rcaches beyond the Felou; a rock which, according to the fame report, forms cataracts, from whence proceed the Senegal and the river Gambia, equally conliderable.

SAROS, in chronology, a period of 223 lunar months. The etymology of the word is faid to be Chaldean, Ggnifying reltitution, or return of eclipfes; that is, conjunations of the fun and moon in nearly the fame place of the ecliptic. The Saros was a cycle like to that of Meto.

SARRASIN, or Sarrazin, in fortification, a kind of port-cullis, otherwife called a herfe, which is hung with ropes over the gate of a town or fortrels, to be let fall in cafe of a furprife.

SAVILLE (Sir Henry), a very learned Englifh. man, the fecond fon of Henry Saville, Efq; was born at Bradley, near Halifax, in YorkThire, November the 30th, 1549. He was entered of Merton College, Oxford, in 156 t , where he took the degrees in arts, and was chofen fellow. When he proceeded matter of arts in 1570 , he read for that degree on the Almagett of Ptolemy, which procured him the reputation of a man eminenely fkilled in mathematics and the Greek language; in the former of which he voluntarily read a public lecture in the univerlity for fome time.
In 1578 he travelled into France and other countries; where, diligently improving himfelf in all ufeful learning, in languages, and the knowledge of the world, he

Suppl. Vol. II. Part II.
became a moft accomplifhed gentleman. At his return, he was made tutor in the Greek tongue to Queen Elizabeth, who had a great efteem and liking for him.

In 1585 he was made warden of Merton College, which he governed fix and thity years with great honour, and improved it by all the means in his power.In 1596 he was chofen provolt of Eton College; which he filled with many learned men.- James the Firt, upon his acceffion to the crown of England, expreffed a great regard for him, and would have preferred him either in church or flate; but Saville declined it, and only accepted the ceremony of knighthood from the king at Windfor in :604. His only fon Henry dying: abont that time, he shenceforth devoted his fortnne to the promoting of learning. Among other things, in 16 g , he founded, in the lmiverfity of Oxford, two lectures, or profefforfhips, one in geomecry, the other in alfronomy; which he endowed with a falary of \(16=1\). a year each, befides a lergacy of 6001 . to purchafe more lands for the fame ufe. He alfo thrnighed a libraty with mathematical books, near the nathematical fchool, for the ufe of his profeffors; and gave 1001. to the mathematical chelt of his own appointing : adding afeerwards a legacy of 40 l. a-year to the fame chelt, to the univerfity, and to his profeffors jointly. He likewife gave 12cl, towards the new building of the fehools, befide feveral rare manuferipts and printed books to the Bodleian library: and a good quantity of Greck types to the printing prefs at Oxford.

After a life thus fpent in the encouragement and promotion of fcience and literature in general, he died. at Eion College the 19th of February 1622 , in the 73 d year of his age, and was buricd in the chapel there. On this occafion, the univerfity of Ox ford paid him the greate!t honours, by having, a public fpeech and verfes. made in his praife, which were publifted foon after in 4to, under the title of Ulima Linea Savilii.

As to the character of Saville, the higheft encomiums are befowed on him by all the learned of his? time: by Cafaubon, Mercerus, Meibomius, Jofeph Scaliger, and efpecially the learned Bifhop Montague; who, in his Diatribe upon Selden's Hiftory of Tythes, Atyles him, "that magazine of learning, whofe memory fhall be honourable amongft not only the learned, but the righteous for ever."

Several noble inftances of his munificence to the republic of letters have already been mentioned; in the account of his publications many more, and even greater, will appear. Thefe are,
1. Four Books of the Hiftories of Cornclins Facitus, and the Life of Agrieola; with Notes upon them, in Eolio, dedicated to Queen Elizabeth, 1581.-2. A Vien of certain Military Matters, or Commentaries concerning Roman Warfare, 1598-3 Rerum anglicarum Scriptores poft Bedam, \&c. 1596 . This is a collection of the beft writers of our Englifh hiltory ; to which he added chronological tables at the end, from Julius Cæfar to William the Conqueror.-4. The Works of St Chryfoftom, in Greek, in 8 vols folio, 1613. This is a very fine edition, and compofed with great coft and labour. In the preface he fays, "that having himfelf wifited, about 12 years before, all the public and private libraries in Britain, and copied out. thence whatever he thought ufeful to this defign, he then fent fome learned men into France, Germanys

\section*{S A U}

Sssille, Stultu é

Italy, and the Eaft, to franfcribe fuch parts as he had not already, and to collate the others with the belt manufcripts." At the fame time, he makes his acknowledgments to feveral eminent men for their affiltance; as Thuanus, Velfeus, Schottus, Cafaubon, Ducrens, Cruter, Horfchelius, âc. In the 8 th volume are infented Sir Henry Savilie's own notes, with thofe of other learned men. The whole charge of this edition, including the feveral fums prid to leamed mer, at hone and abroad, employed in finding out, traulcribing, and collating the beft manulcripts, is faid to have amounted to no lefs than 8000 . Several editions of this work were aferwards publifhed at Paris.-5. In \(16: 8\) he publifhed a Latin work, written by Thomas Bradwardin, arclibifhop of Canterbury, againt Pelagius, intitied, De Caufa Dei contra Pelagiunn, et de virtute cnufarum ; to which he prefised the life of Bradwardin. 6. In 162 r he publifhed a collection of his own Ma. thematical Leevires on Euclid's Elements, in -7to.-7. Oratio coran Elizabetba Regina Oxoria balita, anno 1592. Printed at ©xford in 1658 , in 4 to m- 8 . He tranflated into Latin King James's A polegy for the Oath of Allegiance. He alfo left feveral manufcripts behind him, written by order of King James; all which are in the Eodleian library. He wrote notes likewife nipon the margin of many books in his library, partica. larly Eufebius s Ecclefiaftical Fiftory ; which were af. terwards ufed by Valefus, in his edition of that work in 1559.- Four of his letters to Camden are publifined -by Smith, among Camden's Letiers, 1691 , fto.

SAUSSURE (Horace Benedict de) was born at Geneva in \(177 \%\). His father, an intelligent farmer, to whom we are indebted for fome memoirs relating to rural economy, refided at Conches, a place fituared on the banks of the Arve, at the ditance of half a lea jue from Geneva ; and this country life, added to an active education, cxpanded no doubt in young De Sauffure that phyfical ftrength fo neceffary to the naturalift who devotes himfelf to trave!. He repaired daily to town to enjoy the advantage of public inftruction; and as he lived at the bottom of Saleve, a mountain which he has fince rendered celebrated, he amufed himfelf frequently with afcending its feep and rugged fides. Being thus furrounded by the phenomena of nature, and at the fame tine aided by ftuty, he conceived a talte for natural hiftory, and avoided the error both of the learned, who form theories without laving been out of their clofets, and of thofe farmers who, living too near to Nature, are incapable of admiving her beantics.

His earlieit paffion was botany: a variegated foil, abundant in plants of different kinds, invites the inliabi tant of the banks of the Leman to cultivate that agreeable fcience. This tafte produced an intinacy between De Sauffure and the great EIaller. He paid him a vi fit in the year 1764, during lis retreat to Bex; and he relates in his travels how much he admired that aitonithing man, who excelied in every part of the natural fciences. De Sauflure was indnced alfo to ttudy the vegetable kingdom, by his connection with Ch . Bonnet, who had married his aunt, and who foon fet a juft value on the rifing talents of his nephew. Bonnet (See his life in this Suppl.) was then employed on the leaves of plants. De Sauffire ftudied thefe organs of vegetables alro, and he publifhed the refuit of his refearches, ender the title of Obfervations on the Bark of Leavcs.

This finall work, which appeared foon after the yeaz Sallt 1760 , contains new obfervations on the epidermis of leaves, and in particular on the miliary glands by which they are covered.

About that period, the place of profefior of philofoply falling vacant, it was conferred upon De Sauffure, who was then only twenty une years of age. Experience uroves, that if premature rewards extinguif the zeal of thofe who labour merely for themfelves, they, on the contrary, Arergthen it in thofe who labour only for truth. At that time the two profeffors of philofophy at Geneva taught phyfics and logic alternately. De Sauffure elfcharged this double tafk with equal fuc. cefs. He gave to his courfe of logic a practical, and, as one may fay, experimental turn ; and his method of teaching, which began by fludying the fulfes to arrive at the general laws of the underfanding, announced already an able obferver of nature.

Phyfics, however, were the part for which he had the greateft tafte, and which conducted him to the fturly of chemiftry and mineralogy. He then began his travels through the mountains ; not now to examine their vegetable productions, but to ftudy the mountains themfelves, either in the flones of which they are compofed, or the difpofition of their maffes. Geology, a fcience which was then fcarcely in exiftence, added charms to his numerous excurfions through the Alps; and it was then that the talents of the great philofopher were really difplayed. During the firt fifteen or twenty years of his profeflorfhip, he employed himfelf by turns in difcharging the duties of his office, and in traverfing the different mountains in the neighbourhood of Geneva. He even extended his excurfions on one fite as far as the banks of the Rhine, and on the other to Piedmont. At the fame time he undertook a journey to Auvergne to examine there the extinguihed velcances, and another to Paris, England, and IFolland. After that he vifited Italy, and even Sicily. Thefe were not mere journeys for the purpofe of reaching any particular place; he undertook them orly with a view of ttudying nature; never travelled but furrounded by every inftrument that could be of ufe to him, and never fet out until he had drawn up a plan of the experiments and obfervations he intended to make. He often fays in his works that he had found this method exceedingly ufeful.

In the year 1779 he publifned the firft volume of his Travels through the Alps; which contains a minute defcription of the environs of Geneva, and an excurfion as far as Chamouni, a village at the bottom of Mont Blanc. Philofophers will read there with pleafure the defeription of his Magnetometer. The more he examined mountains, the more was he fentible of the importance of miseralogy. T'o ftudy it with advantage, he learmed the Gernm language; and it may be feen, in the laft volumes of his Travels, how much new mineralogicai knowledge he had acquired.

Amidit his numerous excurfions through the Alps, and at the time of the political troubles of Gencva in 1782, he found means to make his beautiful experiments on hy grometry, which he publifhed in 1783 , under the title of Eldyys on Hysrometry. This work, the beft that ever came from his pen, eftablifhed fully his teputation as a philofopher. We are indebted to bim alfo fur the invention of a new hygrometer. Deluc

Thire had already invented his whalchoue hygrometer; and on that account there arofe between him and De Sauf. fure a fort of conteft, which degenerated into a pretty violent difpute.

In the year 1786 De Sauflure refigned the profeffor's chair, which he had filled for about twenty five years, to his pupil and fellow-labourer Pictet, who dif. charged with reputation the duties of an office render. ed arore difficult by fucceeding fo eminent a philo. fopher.

When De Saufure was invited by the flate to take a fhare in the public education, he made it one of the fubjects of his meditations, and prefented the plan of a reforn in the education of Geneva; the tendency of which was, to make young people early acquainted with the natural feiences and mathematics. He even wifhed that their phyfica! education fhould not be negleEted, and with that view propofed gymnaftic exercifes. This plan, which excited much attention in a city where every one is convinced of the importance of education, found admirers and partifans; but the poverty of its pecuriary refources was an obflacle to every important innovation. It was befides feared that, by altering eftablifhed forms, they might lufe the fubitance, and that things might be changed for the worfe. The Gencvefe were attached to their old fyftem of education; and they had reafou to be fo, becaufe it had not only proved the ineans of diffufing knowledge generally amongt them, but had called forth the talents of feveral eminent mathematicians ( A ) and philofophers ( B ).
But De Sauffure's attention was not confined to public education alone. He fuperintended himfelf the education of his two fons and a caughter, who have fhewn themfelves worthy of fuch an inftructor. His daughter to the charms of her fex unites an extenfive knowledge of the natural fciences; and his eldeft fon has already made hinufelf known by his phyfical and chemical labours.
The fecond volume of his Travels was publifhed in 1-S5. It contains a defeription of the Alps around Mont Blanc, which the author confiders as a mineralogitt, a grologif, and a philofopher. He gives alfo Tome interetting experiments on clectricity, and a defcription of his electrometer, one of the moft perfect that we have. We are indebted to him alfo fur feveral inftruments of meafurement, fuch as his cyanometer, itflined to meafure the degree of the blucuefs of the heavens, which varies according to the elevation of the obferver ; his diaphlanomeler' (Sce Photometre, in this Suppl.), and his anemometer, which, by means of a kind of balance, meafures the force of the wind.

Some years after the publication of the fecond vo. lume of his Travels, De Sanfure was admitted as a fo. reign affociate of the Academy of Sciences of Paris; and Creneva could then boatt of having two of its citi. zens in that clafs, which confitted only of feven mem. bers. De Sauffure not only did honour to his country; he loved and ferved it. He was the founder of the Society of Arts, to which Geneva is indebted for the high fate of profperity it has attained within the lalt
th:irty years. He preficed over that focicty till the laft Suffure. moment of his life; and one of his fondeft wifhes was the prefervation of this ufeful eftabliment.

In corfequeace of M. de Souffure's fatiguing labours in the Council of Two Hundred, of which he was a member, and afterwarcis in the Notional Affembly, his hellth began to be deranged, and in 179t he was almoft deprived of the total ufe of his linits by a ftroke of the palfy. However pair ful his condition then might be, his miud fill preferved its activity; and after that acciuent he revifed the two luft volumes of his Travels, which appeated in 1795. They curtain an account of liis cxcurfions to the mountains of Piedmont and Swifterlard, and in particular of his journey to the fummit. of Mont Blanc. Thefe volumes, inftead of exlibiting any marks of his malady, prefent an enormous mafs of rew facts and oifervations of the utmoft importance to phyfics.
Ife rendered alfo an important fervice to that fcience by publifhing the Agenda, which terminate his fourth volume, and in which that great man, furviving limfelf, conducts the young naturalift through the middle of mountaits, and teaches him the method of obferving them with advantage. Thefe Agenda are a proof of his genius, and of the ftrength of mind which he retained amidit his fufferings. It was alfo during his illnefs that he directed the experiments made on the height of the bed of the Arve, and that he publihed Obfervations on the Fufibility of Stones by the Blow-pipe, which were inferted in the Gournal de Plijffegue.

Having gone for the fake of his health to the bathe of Plombiers, he fill obferved the mountains at a diAance, and caufed to be brought to him fpecimens of the frata which he perceived in the feecpeft rocks. He had announced that he would conclude his travels with fome ideas on the primitive flate of the earth ; but the innore he aequired new facts, and the more he mecitatec. oa the fubject, the more uncertain did lis opinions become in regard to thofe grand revolutions which preceded the prefent epoch. In genera! he was a Neptunian; that is to fay, afcribed all the revolutions of our glabe to water. He admisted the polibilizy of the mountains having beea thrown up by eataic fiuids difengaged from the cavities of the carth.

Though the faze of his heaith began grainally to become worfe, he fill entertained hopes of iccovery ; and the French government having appoiuted him frofuffor of philofophy at the Special Schocl of I'aris, tie did not defpair of being one cay aible to fill that cffice: but his ftrength was exhauted, a general languo: fucceeded the vigour he had always rojoyed, his fluiv and embarrafled pronunciation no longer contefponded vith the vivacity of his mind, and founce a melancholy contrall with the pleafantrefs by which he had beea formerly diftinguified. It was a painful fpectacle to fee this great man reduced thus to inibecility at anl age when mectiation is beneficial, and when he might have enjoyed the fruits of his reputation and labours.
In vain did be try, for the re-eftablifament of his health, all the remedies which medicine, enlightened by \({ }_{3}{ }^{1} 2\)

\footnotetext{
(A) Abauzit, Cramer, Lhuilier, J. Tremblev, \&c.
(B) Jalabert, A. Trembley, Boanet, Iffage, Deluc, Senebier, Prévof, Piett, and De Saufure himfufo
}
the phyfical fciences, could afford-all afiffance was ufelefs. The vital power quitted him with flow and painful fteps. Towards the beginning of autumn 1798 his decay became more vifible, his mind loft all its activity, and on the 22 d of March 1799 he terminated his brilliant career, at the age of 59, lamented by a family to whom he was dear-by a country to which he had done honour - and by Europe, the knowledge of which he had extended.

SCAI.E, in architeCture and geography, a line divided into equal parts, placed at the bottom of a map or draught, to ferve as a common meafure to all the parts of the building, or all the ditances and places of the map.

Scales, in mathematics, fee Scales (Encyci.), and litenife Logarifhaic Lines, under which title are n:entioned fome improvements by Mr Nicholfon on Gunter's fcale. Thefe improvements are valuable; and the reader will and a fuller arcount of them in the firt volume of the author's Pbillofoplical Journal.

SCANT'TING, a meafure, fize, or Mandard, by which the dimetfinats. \&c. of things are to be deternined. The term: is particularly applied to the dimenfons of any piuce of timber, with regard to its breadth ard thicknefs.

SCAPFN \(\mathrm{N}_{\mathrm{N}}\), in clock-work, a general term for the manner of communicating the impulfe of the whecls to the pendulnm. The ordinary fcapements confit of the fwing-wheel and pallets orly ; but incdern improvements have added other levers or detents, chielly for the purpofes of diminifing friction, or for detaching the pendulum from the preffure of the wheels during patt of the time of its vibration. See WATCH Making, in this Suppl.
SCARFING, a term in carpentry ; by which is meant the joining of two beans of wood together to increafe the length : the beams in the joint are indented into one another, as in figures 19, 24, and 25 , Plate X. Susplement.

SCA R I, ET, a beautiful bright red colour given to cloth, either by a preparation of kermes (See that article in Sunp \()\) ), or more completely by the American cochineal. Profeffor Beckmann, in the fecond volume of his Hiftory of Inventions, feems to have ettablifhed the following conclufions:
\(1 / f\), Scarlet, or the kermes-dye, was known in the Eatt in the earlieft agez, before Mofes, and was a difcovery of the Phcenicians in Paleftine, but certainly not of the fmall wandering Hebrew thiibes. 2d, Tola was the ancient Phœenician name nfed by the Hebrews, and even by the Syrians; for it is employed by the Syrian tranfator, Ifaiah, chap. 1. ver. 18. Among the Jews, after their captivity, the Aramean word welioni was more common. \(3^{d}\), This dye was known alfo to the Egyptians in the time of Mofes; for the Ifraelites inuft have carried it along with them from Egypt. 4th, The Arabs received the name kermes, with the dye, from Armenia and Perfia, where it was indigenous, and had been long known; and that name banithed the old name in the Eaft, as the name fcarlet has in the Weft. For the firft part of this affertion we mult believe the Arabs. \(5 t h\), Kermes were perhaps not known in Arabia; at leaft they were not indigenous, as the Arabs appear to have bad no name for them. \(6 \%\), Kermes Fignifies al-
ways red dye; and when pronounced thort, it becomes decti, red.

Concerning the origin of the name fcarlet, which was in ufe fo carly as the with century, our author has many conjecturea, which we need not trauferibe, as he feems not quite fatisficd with any of them himfelf. The following reffections upon the comparative excellence of the ancient and modern fcarlet, together with the progrefs of the ait of dyeing that colour, are worthy of notice:
"Of the preparation and goodneis of the ancient fcarlet we certainly know nothing: but as we find in many old pieces of tapeftry of the rith century, and perhads earlier, a red which has continued remarkably beautiful even to the prefent time, it cannot at any rate be denied, that our anceftors extolled their fcatlet rot withont reafon. We can, however, verture to affert, that the fcarlet prepared at prefent is far fuperior, owing principally to the effects of a folution of tin. -This invention may be reckoned amongit the moft important improvemerts of the a.t of dyting, and deferves a particular relation.
"The tincture of cochineal alone yields a purole colour, not very pleafant, which may be heightened to the moft beautiful fcarlet by a Colution of tin in aquaregia (nitro muriatic acid). This difcovery was made as follows: Cornelius Drebbel, who was born at Alkmaar, and died at London in 1634 , having placed in his window an extract of cochineal, made with boiling water, for the purpofe of filling a thermemeter, fome aqua-regia drofoed into it from a phial, broken by accident, which ftrod above it, and converted the purple dye into a moft beautiful dark red. After fome conjectures and experiments, he difcovered that the tin by which the window-frame was civided into frquares had been diffolved by the aqua regia, and was the caufe of this change. He communicated his obfervation to Kuffelar, that excellent dyer at Leyden, who was afterwards his fon-in-law. 't he latter brought the difenvery to berfection, and einployed it fome years alone in his dye houfe, which gave rife to the name of Kuffolar's colour. In the courfe of time the fecret became known to an inhabitant of Menin, called Gulich, and alfo to another perfon of the name of Van der Vecht, who tauglat it to the brothers Gobelins in France. Giles Gobelin, a dyer at Paris, in the time of Francis I. had found out an improvement of the then ufual fearlet dye; and as he had remarked that the water of the rivulet Bievre, in the fuburbs St Marceau, was excellent for his art, he erected on it a large dye-houfe ; which, out of ridicule, was called Folie Gobclins, Gobelin's Folly. About this period, a Flemifh painter, whom fome name Peter Kock, and others Klock, and who had travelled a long time in the Eaft, eftablifned, and continued to his death in 1650 , a manufactory for dyeing farlet cluth by an improved method. '1'hrough the means of Colbert, one of the Gobelins learned the procels ufed for preparing the German fcarlet dye from one Gluck, whom fome confider as the above-mention. ed Gulich, and others as Klock; and the Parifan fcar. let dye foon rofe into fo great repute, that the populace imagined that Gobelin had acquired his art from the devil. It is well known that Louis XIV. by the advice of Colbert, purchafed Gobelin's building from
:me his fueceffors in the year 1667 , and transformed it into a palace, to which he gave the name of Hotel royal chis Golelins, and which he affigned for the ufe of firft-rate artifts, particularly painters, jewellers, weavers of tapeftry, and others. After that time the rivulet was no longer called Bievre, but Gobelins. About the year 1643 , a Fleming, nemed Kepler, eftablifhed the firft dye-houfe for fcarlet in England, at the village of Bow, not far from London: and on that account the colour was called, at firt, by the Englif, the Bow dye. In the year ! 667 , another Fleming, named Brewer, invited to England by King Charles II. with the promife of a large falary, brought this art there to great perfection."

SCHEME, a draught or reprefentation of any geometrical or aftrononical figure, or problem, by lines fenfible to the eye; or of the celeftial budies in their proper places for any moment; otherwife called a diagram.

SCIAGRAPHY, or SCIOGRAPHY, the profle or vertical fection of a building; ufed to fhew the infide of it.

Sciagraphy. in altronmy, \&xc. is a term ufed by fome authors for the art of finding the homr of the day or night, by the fhadow of the fun, moon, ftars, \&c.

SCIOPTIC, or Scioparic Ball, a fphere or glube of wood, with a circular hole or perforation, where a lens is placed. It is fo fitted, that, like the eye of an animal, it may be turned round every way, to be ufed in making experiments of the darkened room.

SCOLYMUS (fee that articie Encycl.) is, by Pliny and Theophraftus, reckoned to belong to the genus of the thittles. The former fays, that, hike mott others of the fame kind, the feeds were covered by a fort of wool (paforous). It had a high flem, furrounded with leaves, which were prickly, but which ceafed to fting when the plant withered. It flowered the whole funmer through, and had often flowers and ripe feed at the fame time; which is the cafe alfo withs our artichoke plants. The calyx of the follynus was not prickly ; the root was thick, black, and fweet, and contained a milky juice. It was eaten both raw and cooked; and Theophraftus obferves, as fomething very remarkable, that when the plant was in flower, or, as others explain the words, when it had finifhed blowing, it was moft palatable. What renders this circumftance fingular is, that inoft milky roots ufed for food lofe their milk, and become unfit to be eaten as foon as they have blown. This is the cafe with the goat's beard, which is eatable only the firft year.

Profeflor Beckmann has, with much labour and erudition, endeavoured to afcertain what is really the plant which was known to the ancients by the name of folymus. He feems to have proved fufficiently, that it was not the cadurs, the carduus, or the cinara; but he has not been able to come to any other conclufion. "Were I appointed or condemned (fays he) to form a new Lain dictionary, I flould explain the article foolymus in the following manner: Plania conipofita, capitata. Caulis longus, obfitus foliis fpingfis. Radix carnofa, lađlefcons, nigra, dulcis, cdulis. Calix fquanis inermibus, difco car. nofo, ante efliorefcentiam eduli. Semina paspofa. Turiones edules. This defcription, fhort as it is, contains every thing that the ancients have faid in order to characterife that plant."

SCONCES, fmall forts, built for the defince of fome pals, river, or othes place. Some funces are made

\author{
Sconces,
} regular, of four, five, or fix baffions; others are of fmaller dimenfions, fit for paffes or rivers; and others for the field.

SCO'L'ALES, were meetings lield formerly in England for the purpofe of drinking ale, of which the expence was defrayed by joint concribution. Thus the tenants of South Malling in Sut \({ }^{\circ} \mathrm{cx}\), which beloriged to the Archbifhop of Canterbury, were, at the keeping- of a court, to entertain the J.ord or his bailiff with a drinking, or an ale; and the flated quotas towards the charge were, that a man mould pay three pence halfpenny for himfelf and his wife, and a widow and a cottager three halfpence. In the manor of Ferring, in the fame connty, and under the fime jurifdiction, it was the cuftom for the tenants namei to make a fcotale of fix. teen pence lialfinenny, and to allow out of cach fixpence three halfpence for the bailiff.

Common Ccotales in taverns, at which the clegy were not to be prefent, are noticed in feveral ecclefiall. cal canons. They were not to be publified in the church by the clergy or slie laity; and a neetirg of more than ten perfons of the fame parifh or vieinage was a fcotale that was gciocrelly prohbited. 'There were alfo common drinkings, which were denominated lectale, lride ale, cloik-ele, and cíurcbal. I'o a lete-ule probably all the relidents in a manorial diftrict were contributors; and the expence of a lride-ale was de. frayed by the relations and friends of a happy pair, who were not in circumfances to bear the charges of a wedding dinner. This cuftom prevails occafionally in fome ditricts of Scotland even at this day, under the denomination of a penny brick-ale, and was very common fifty or fixty years aceo. The clerk's ale was in the Eatter holidays, and was the methorl taken to enable clerks of parifhes to cullect more readily their dues.

Mr Warton, in lis Hittory of Englinh Poetry, has inferted the following extract from an old indcuture, which Thesws clearly the defign of a cburibale. "The parinioners of Elveftoit and Okebronk, in Derbefaire, agree jointly to brew four ales, and tevery ale of one quarter of malt, betwixt this and the fea? of St folm the Baptilt next coming ; and that every inhabitant of the faid town of Okebrook thall be at the feveral ales. And every hufband and his wife thall pay two pence, every cottager one penny ; and all the inhabitants of Elvefton fhall have and rective all the profits and advantages conning of the faid ales, to the ufe and belianf of the faid cluurch of Elvefton."

The give-ales were the legacies of individuals ; and from that circumftance entirely gratuitous. They feem to have been very numerous, and were generally left to the poor; though, from the largenefs of the quantity of ale enjoined to be brewed, it muit have been fometimes interded that others were to partake of them. Thefe bequefts were likewife, not unfrequently, made to the light or altar of a fänt, with directions for finging maffes at the obit, trenthal, or anniver fary of the teftator. Hence, though fontales were generally kept in houfes of public refort, the give-ales were fometimes difpenfed in the clurch, and often in the churchyard; by which means "Godde's houfe (as Sumner fays in his Treatife on Gavelkind) was made a tavern of gluttons." Such certainly would be Chalk church, if in it

\section*{S C Y}

Scowring. was kent the give-ale of William May of that parifh; for he ordered his wife 10 " make in bread fix bufhels of wheat, and in drink ten bufhels of mault, and in cheefe twenty-pence, to give to poor people for the health of his fonll; and he ordered that, after the deceafe of his wife, his executors and feoffees hould contivue the cuftom for evermore."
SCOWRING OE STUFFS, is an art much more ge. nerally practifed than undertood It fuppofes, fays Chaptal, ift, a knowledge of the different fubftances capable of tainitig any kind of cloth; 2 d , of the fubftances to which recourfe mult be had, in order to make thofe depofited on the fuff to difappear; 3 d , a knowledge of the effects produced on colours by thofe reargents, which it nay be neceflary to employ to deflroy ftains: \(4^{\text {th }}\), a knowledge of the manner in which the cloth is affected by thofe re-agents; 5 th, of the art of reftoring a colour changed or faced. Of thofe bodies which occafion Spots on different kinds of cloth, fome are eafily diftinguifhed by their appearance, fuch as greafy fubfances; but others have more complex offects, fuch as acids, alkalies, perfpired matter, fruits, urine, 2cc. Acids redden black, fawn, violet, and pucecolour, and every fhade communicated with orchillaweed, iron, aftringents, and every blue except indigo and pruffian blue. They render the yellows paler, ex. cept that of arnatto, which they change into orange.

Alkalies change to vialet the reds produced by Brarillwood, logwood, and cochineal. They render the dreens on woollen cloth yellowif, make yellow brownith, and change the yellow produced by arnatto to all. 1ora. Perfpired matter produces the fame effects as alkalies.

When the fpots are produced by fimple bodies on fuffs, it is eafy to remove them by the means already known. Greafy fubftances are removed by alkalies, foaps, the yolk of eggrs, fat earths; oxyds of iron, by the nitric and oxalic acids; acids by alkalies, and reciprocally. Stains of fruit on white ftuffs may be remo. ved by the fulphurenus acid, and ftill better liy the oxy. genated nuriatic acid. But when the fpots are of a complex. kind, it will te neceffary to employ feveral means in fucceffion. Thus, to deftroy the flain of coom from carriage-wheels, after the greafe has been diffolved, the oxyd of iron may be removed by the oxalic acid.

As colours are often changed by re-agents, it will be neceffary, in order to reftore them, that the foowrer fhould poffefs a thorough knowledge of the art of dycing, and how to modify the means according to circuinHances. 'I his becomes the more difficult, when it is neceffary to reproduce a colour fimilar to that of the reft of the fluff, to apply that colour only in one place, and often to reltore the mordant by which it was fixed, and which has been deftroyed, or even the firft tint which gave the colour its intenlity. It may be readily conceived, that the means to be employed muft depend on the nature of the colour and the ingredients by which it was produced; for it is known that the fame colour may be obtained from very different bodies. Thus, after au a!kali has been employed to deftroy an acid foot on browns, violets, blues, poppies, \&e the yellow fpot which remains may be made to difappear by a folution of tin; a folution of fulphat of iron reftores the colour to brown fluffs which have been galled; asids reftore to
their former fplendour ycllow's which have been rendered dunky or brown by alkalics; blacks produced by logwood become red by acids; alkalies change thefe red fpots to ycllow, and a little of the aftringent principle makes them again become black. A folution of one part of indigo in four parts of fulphuric acid, diluted with a fufficient quantity of water, may bc employed witl fuccefs to revive the blue colour of cotton or wool which has been changed. Scarlet may be revived by means of cochineal and a folution of the muriat of tin, \&c.

The choice of re-agents is not a matter of indifference. Vergctable acids are preferable; the fulphurcous acid, however, may be employed for ftains occalioned by fruit ; it does not change the blue of filk nor colours produced by aftringents; it does not degrade the yellow of cotton. Ammonia fucceeds better than fixed alkalies in removing fpots produced by acids. It is employed in vapour; its action is fpeedy, and feldom alters the colour.

The means of removing greafy fpots are well known. I'his effect is produced by alkalies, fullers earth, volatile oils difolved in alcohol, a heat proper for volatilizing greafe, \&ic. Sputs occafioned by ink, ruft, or ironmould of any kind, and all thofe produced by the yellow oxyd of iron, are removed by the oxalic acid: the colour inay be reftored by alkalies, or a folution of the muriat of tin. Thefe fpots may be removed alfo by the oxygenated muriatic acid, when they are on white ftuffa or paper.

The action of alkalies, and that of perfpired matter, are the famc : their fpots may be effaced by acids, or even by a weak folution of the muriat of tin. When thefe fpots arife from feveral unknown catifes, in order to deftroy them, recomfe mult be had to polychreft compofitions. The following may be confidered as one of the moft efficacious : Difolve white foap in alcohol, and mix this folution with the yolks of from four to fix eggs ; add gradually effence of turpentine; and incorporate with the whole fome fullers earth, in fuch a manner 23 to form balls of a fuitable confftence. Moiften the foot; and having rubbed it with thefe balls, the fpot will be removed by waßing the ituff. All fpots, except iron mould and ink, may be removed in this manner.

Wafhing deftroys the luftre, and leaves a tarnifhed place difagreeable to the eye ; but the luftre may be rettored by drawing over the wafhed place, and in the direction of the pile, a brufh moiftened in water, impregnated with a little gum. Fou may then apply a fheet of paper, or a piece of cloth, and a confiderable weight, under which the cloth mult be left to dry.

SCYLI.A. Under this title we gave, in the Encyclopradia, an account of Scylla and Charybdis, which, though taken from a work which we thought good authority, appears to be far from correct. Thefe plaees, fo famous in the poems of Homer and Virgil, were examined with minute attention by that accurate oblerver of nature the Abbé Spallanzani ; who thus deferibees Scylla.
"It is a lofty rock, diftant twelve miles from Meffina, which rifes almoft perpendicularly from the fea on the Shore of Calabria, and beyond which is the fmall city of the fame name. Though there was fcarcely any wird, I began to hear, two miles befure I came to the
yi's. rock, a murmur and noife like a confufed barking of dogs, and on a nearer approach readily difcovered the caule. 'This rock, in its lower parts, contains a number of caverns, one of the largett of which is called by the people there Drugura. The waves, when in the lealt agitated, rufhing into the fe caverrs, break, dafh, throw up frothy bubbles, and thus occafor thefe various and multiplied founds. I then perceived with how much truth and refemblance of nature Homer and Virgil, in their perfonifications of Scylla, had pourtrayed this fcene, by defcribing the monfter they drew as lurk. ing in the darknefs of a waft cavern, furrounded by ravenous barking maftiff, together with wolves, to increafe the horror.
"Such is the fituation and appearance of Scylla: let us now confider the danger it occafions to mariners. Though the tide is almoft imperceptible in the open parts of the Mediterranean, it is very Itrong in the itrait of Mefina, in confequence of the narrownefs of the channel, and is regulated, as in other places, by the periodical elevations and depreffion of the water. Where the flow or current is accompanied by a wind blowing the fame way, veffels have nothing to fear, fince they either do not enter the ftrait, both the wind and the ftream oppofing them, but caft anchor at the entrance; or, if both are favourable, enter on full fail, and pafs through with fuch rapidity that they feem to fly over the water. But when the current runs from fouth to north, and the north wind blows hard at the fame time, the fhip which expected eafily to pafs the ftrait with the wind in its fern, on its entering the channel is refitted by the oppofite current, and, impelled by two forces in contrary directions, is at length dafhed on the rock of Scylla, or driven on the neighbouring fands; unlefs the pilot fhall apply for the fuccour neceffary for his prefervation. For, to give affiftance in cafe of fuch accidents, 24 of the flrongeft, boldef, and moit experienced failors, well acquainted with the place, are ftationed night and day along the fare of Miffina; who, at the report of guns fired as fignals of dittrefs from any veffel, haften to its affiftance, and tow it with one of their light boats. 'The current, where it is .trongef, does not extend over the whole Itrait, but winds throl it in intricate meanders, with the courfe of which thefe men are perfectly acquainted, and are thus able to guide the fhip in fuch a manner as to avoid it. Shou!d the pilot, however, confiding in his own fkill, contemn or neglect this affitance, however great his ability or experience, he would run the moft imminent rifk of being thipwrecked. In this agitation and conflict of the waters, forced one way by the current, and driven in a contrary direction by the wind, it is ufelefs to throw the line to difcover the depth of the bottom, the violence of the current frequently carrying the lead almoft on the furface of the water. The firongeit cables, though fome feet in circumference, break like fmall cords. Should two or thrce anchors be thrown out, the bottom is fo rocky that they either take no hold; or, if they fhould, are foon loofened by the violence of the waves. Every expedient afforded by the art of navigation, though it might fucceed in faving a hip in other parts of the Mediterranean, or even the tremendous ocean, is ufelefs here. The only means of avoiding being dafhed againft the rocks, or driven upon the fands in the midit of this furious conteft of the winds
and waves, \(i\) is to have reconrfe to the fkill and courage of thefe Meflinefe feamen."

Charybdis is fituated within the frait, in that part of the fea which lies between a projection of land nus. med Punta Secca, and another projection on which ftands the tower calleet Lanterna, or the lig't-houfe, a light being placed at its tor) to guide veffels which may enter the harbour by night. Every witer, who has hitherto deferibed Cliarybdis, has fuppofed it to be a whirlpool ; but this is a miftake, as Spallanzani has completely proved, by afcertaining what it really is.
"Chary bdis is diftant from the fhore of Meffina about 750 fiet, and is called by the people of the country \(C_{a-}\) lof cro, not from the agitation of the waves, as fome have fuprofed, but from \(x \times r .0\) and \(\$ \times \rho_{0} ;\); that is, the beautiful tower, from the light.houfe erefted near it for the guidance of veffels. The phenomenon of the Calrofaro is obfervable when the current is defcending; for when the current fets in from the north, the pilots call it the defiending rema, or çurrent; and when it runs from the fouth, the afcending rema. The current afcends or defcends at the rifing or fetting of the moon, and continues for fix hours. In the interval between each afeent or defcent, there is a calm which lafts at leaft a quarter of an hour, but not longer than an hour. Afterwards, at the riling or fetting of the moon, the current enters from the north, making various angles of inciderce with the fhore, and at length reaches the Ca Icfaro. This delay fometimes continues two hours; fometimes it immediately falls into the Calofaro; and then experience has taught that it is a certain token of bad weather."

When our author obferved Charybdis from the thore, it appeared like a group of tumultuous waters; which group, as he approached, became more extenfive and more agitated. He was carried to the edge, where he Itopped fome time to inake the requifite oblervations ; and was then convinced, beyond the fladow of a doubt, that what he faw was by no means a vortex or whirlpool.

Hydrologifs teach us, that by a whirlpool in a run. ning water we are to underfland that circular courfe which it takes in certain circumftances; and that this courfe or revolution generates in the middle a hollow inverted cone, of a greater or lefs depth, the iffernal fides of which have a fpiral motion. But Spallanzani perceived nothing of this kind in the Calofaro. Its revol. ving motion was circumfcribed to a circle of at moft 100 feet in diameter; within which limits there was no incurvation of any kind, nor vertiginous motion, but an inceffant undulation of agitated waters, which rofe, fell, beat, and dafhed on each other. Iet thefe irregular motions were fo far placid, that nothing was to be feared in paffing over the fpot, which he did; though their little bark rocked very much from the continual agitation, fo that they were obliged confanty to make ule of their oars to prevent its being driven out of the Calofaro. Our author threw fubitances of different kinds into the flream. Such as were fpecifically heavier than the water funk, and appeared no more; thofe which were lighter remained on the furface, but were foon driven out of the revolving circle by the agitation of the water.

Though from thefe obfervations he was convinced that there was no gulph under the Calofaro, as other-
wife there would have been a whirlpool, which would have carried down into it the floating fubftances; he determined to found the bottom with the plunmet, and found its greateft depth did not exceed 500 feet. He was likewife informed, to his no fmall furprife, that beyond the Calofaro, towards the middle of the ftrait, the depth was double.

When the current and the wind are contrary to each other, and both in their greateft violence, efpecially when the fcilocco, or fouth wind, blows, the fwelling and daning of the waves within the Calofaro is much ftronger, more impetuous, and more extenfive. It then contains three or four fmall whirlpools, or even more, according to the greatnefs of its extent and violence. If at this time fmall veffels are driven into the Calofaro by the current or the wind, they are feen to whirl round, rock, and plunge, but are never drawn down into the vortex. 'They only fink when filled with water, by the waves beating over them. When vefitls of a larger fize are forced into it, whatever wind they have they cannot extricate themfelves; their fails are ufelefs; and after having been for come time toffed about by the waves, if they are not affifted by the pilots of the country, who know how to bring them out of the courfe of the current, they are furioufly driven upon the neighbouning thore of the Laaterna, where they are wrecked, and the greater part of their crews perifh in the waves.

From thefe facts, the claffical reader will perceive, that the ancient defcriptions of Charybdis are by no means fo accurate as thofe of Scylla. The faying, however, which became proverbial among the ancients, viz. that " he who endeavours to avoid Charybdis, dafhes upon Scylla," is, in a great meafure, true. If a fhip be extricated from the fury of Charybdis, and car. ried by a ftrong foutherly wind along the ftrait towards the northern entrance, it will indeed pafs out fafely ; but fhould it meet with a wind in a nearly oppofite disection, it would become the fport of both thefe winds, and, unable to advance or recede, be driven in a middle courfe between their two directions, that is to fay, full upon the rock of Scylla, if it be not immediately affifted by the pilots. It is likewife obferved, that in thele hurricanes a land wind frequently rifes, which defeends From a narrow pafs in Calabria, and increaies the force with which the fhip is impelled towards vie rock.

SEA-SICKNESS is a diforder which las been but little treated of, notwithitanding the frequency of its occurrence, and the irkfomenefs and diftrefs to which the patient is fubjected during its continuance It has been found to be very benefficisl in feveral difeafes, a mong which the principal are atthmatic and pulmonary complaints ; and there are very few inflances of its being attended with fatal confequences. The fea-ficknefs feems to be a fpafmodic affection of the ftomach, produced by the alteruate preflure and recefs of the contents of that vifcus agraint its lower internal firrface, according as the 1 ife and fall of the fhio oppoles or recedes from the action of gravity.

The feas in which this diforder attacks thg paffenger with the greateft violence, are thofe where the waves have long uninterrupted freedom of action ; of courfe, bays, gulphs, and channels, may be navigated with lefs inconvenience, as the waves, meeting with more frequent sefiftance, and the repercuffion being confiderably
ftronger, the veffel does not experience that gentle uniform vacillation which fickens the Itomach, and renders the head giddy. By the fame argument, a perfon feels lefs inconvenience from the diforder on the wide ocean in a finall veffel, on which the dighteft motion of the waves makes a frong impreffion. He is likewife lefs expofed to it in a very large veffel, as in a thip of the line, or a large merchantman deeply laden; as the waves, in this cafe, fearcely affect the veffel. It is in fhips of the middling lize, and which carry but a light cargo, that the paffenger fuffers molt from the fea licknefs. It has been obferved, that this ditorder affects people in years lefs than young perfons; thofe of a dark lefs than thofe of a fair complection, and that it feldom attacks infants. The duation is not limited to any fixed period of teme; with fome it lafts only a few days, with others weeks, montha, and even during the whole courfe of the voyage. The Sooner it takes place after embarkation, the greater probibility is there of its continuance. It does not always ceafe immediately on landing, but has been known, in fome cafes, to corntinue for a confiderable cine. Even the oldelt and molt fkilful feamen have experienced a relapfe, efpecially if they have quitted the fea fervice for a long term of years.

There have been many modes recommended for miligating, if not entirely preventing, this diforder; among which the following feem the molt efficacious:
1. Not to go on board immediately after cating; and, when on board, not to eat in any great quantity 3 any one meal.
2. To take ftrong exercife, with as little intermiffion as conveniently can be done; for intance, to affitt at the pumps, or any other active employment, as indolent and flothful paffengers always fuffer moit from the diforcer.
3. To keep much upon deck, even in ftormy and: rainy weather, as the fea breeze is lefs liable to affect the ftomach than the ftagnated air of the cabin, which is frequently rendered infectious for want of fufficient circulation.
4. Not to watch the motion of the waves, efpecially when ftrongly agitated with tempef.
5. I'o avoid carefally all employments which harafs the mind, as reading, itudy, meditation, and gaming; aid on the other hand, to feek every opportunty of misth and mental relaxation.
6. To drink occationally carbonic acids, as the froth of flrong fermented beer, or wine mixed with Seltzer water, and fermented with pounded fugar, or a glafs of Champaign.
7. It will be found of great fervice to take the acid of fulphur dulcified, dropped upon lamp fugar, or in peppermint-water ; or ten drops of fulphurcous ether.

With regard to eating, it is advifable to be very fparing, at leaf not to eat much at one meal. The proper diet is bread and trefh meat, which fhould be eaten cold with pepper. All fweet favoured food mould be carefully avoided; and the paffenger fhould refrain from fat, but efpecially from all meat that is in the leaft degree tainted. Even the odour of flowers is very pernicious ; for which reafon, it is not expedient to examine marine productions, as thefe generally have a naufeating fmell. The fumes of vinegar may be inhaled with great benefit. The drink fhould confit of

\section*{S E C}
a-Sick.
nefs, nefs,
iector, ;ector, common water. The paffenger would do well to drink little and often. As experience has proved, that an accidental diarrhoca has frequently relieved the patient from the fea-ficknefs, it will be prudent to follow the clue of nature, and take a gentle laxative, or, if circumftances will permit, a clyfter of falt-water and Venice foap, which is the more neceffary, as fea-faring people are liable to obltructions. It will further be found uleful to apply to the pit of the ftomach a tonic anodyne antifpafmodic emplaftrum, fpread upon leather, and covered with linen.

Where the above preventives have not been employed, or have not fucceeded in fecuring the palfenger from the fea-fcknefs, he may, however, experience confiderable relief from the following remedies:

If fymptoms of vomiting appear, they may frequent. ly be remedied by the patient proftrating himfelf in a horizontal pofition, upon the back or belly, and lying perfectly ttill. We would recommend likewife a gentle compreffion of the abdomen. But if the fits of vomiting are too violent to be repreffed, in that cafe, it is bet to promote them by a ftrong dofe of falt-water; an expedient, however, which muft not be too often repeated, as it tends ftill more to weaken the flomach. When the emetic takes effect, let the patient bend his body, advancing his knees towards his breaft, and fupport his head againft a firm and folid refting-place. He mult be particularly careful to untie his garters and cravat, as this precaution will fecure him from the rifk of a rupture, and from the ill effects of the blood rufhing violently towards the head and breaft.

After the vomiting has fubfided. its return may be guarded againft by preferving a ftate of repole, and even keeping the eyes fhut for a confiderable time. Let the patient choofe a cool, ventilated place, remember. ing to keep himfelf wam and well clothed, as perfpira tion is highly falutary. But he mult not indulge in too long fleep during the day-rime, as this induces torpidnefs. In the morning he fhould conftantly take a gargle of fugar diffolved in vinegar. Let him eat often, but fparingly; and if he can content himfelf with a difh of chocolate, coffee, or ftrong tea, he will reap ftill greater benefit. He fhould never drink water in its pure elementary ftate, but mix it with brandy, vinegar, or wine. In the morning, inftead of brandy, he may take a glafs of wine, with an infufion of orange peel, gentian root, or peruvian bark (quinquina). A glafs of punch taken occafionally will prove of very ef. fential fervice, as it promotes perfpiration.

Perfons in the habit of fmoking, will find a p!eafant and falutary companion in the pipe ; but thofe who are not accuftomed to it will be fufferers by taking to the practice.

In conclufion, it is proper to add, that warm clothing, flannel fhirts, trowfers, caps, \&c. are efficacious remedies againft exceffive expectoration, and all other fymptoms of this terrible diforder.

SECTOR of a SPHERE, is the folid generated by the revolution of the fector of a circle about one of its radii ; the other racius defcribing the furface of a cone, and the circular are a circular portion of the furface of the fphere of the fame radius. So that the ipherical fector confifts of a right cone, and of a fegment of the fphere having the fame common bafe with the cone. Suppl. Voz. II. Part II.

\section*{\(489] \quad \mathrm{E}\) G}

And hence the folid content of it will be found by multiplying the bafe or fpherical furface by the radius of the fphere, and taking a third part of the product.

SECTOR of an eliipfe, or of an byperbola, \&c. is a part refembling the circular fector, being contained by three lines, two of which are radii, or lines drawn from the centre of the figure to the curve, and the intercepted arc or part of that curve.

SEEDS, Preservation of, in a tate fit for vegetation, is a matter of great and general importance, becaufe, if it can be accomplifhed, it will enable us to rear many ufeful plants in one country which are there unknown, being indigenous only in others at a great diflance from it. There is a letter on this fubject in the 16 th volume of the Tranfacions of the Society of Arts, \&ic. from which we fhall extract what is fit for our purnofe.
"Many years ago (fays the author), having obferved fome feeds which had got accidentally amongit raifins, and that they were fuch as are generally attended with difficulty to raife in England after coming in the utial way from abroad, I fowed them in pors, within a tro ming; and as all of them grew, I commillioned my fons, who were then abroad, to pack up all forts iff feeds they could procure in abforbent paper, and fenc! fome of them furrounded by raifins, and others by brown moift lugar; concluding that the former. ieeds had been preferved by a peculiarly farourable ftate of moifture thus afforded them. It occurred, likewife, that is many of our common feeds, fuch as clover, charlock, \(\hat{\alpha}\) c. would lie dormant for ages within the eartl, well preferved for vegetation whenever they might happen to be thrown to the furface, and expofed to the atmofphere, fo thefe foreign feeds might be equally preferved, for many months at leaft, by the kiadly covering and genial moiture that either raifns or fingar afforded them : and this conjecture was really fulfilled, as not one in twenty of them failed to vegetate, when thofe of the fame kinds, that I ordered to be fent lapped in common parcels, and forwarded with them, would not grow at all. I obferved, upon exa. mining them all before they were committed to the earth, that there was a prevailing drynefs in the latter, and that the former looked trefh and healthy, and were not in the leaft infefted by infects, as was the cafe with the others. It lias been tried repeatedly to convey feeds (of many plants difficult to raife) clofed \(11 p\) in bottles, but without fuccefs ; fome greater proportion of air, as well as a proper ftate ot moifture, perhaps, being nectfary. I thould alfo obferve, that no difference was made in the package of the feeds, refpecting their being kept in huffs, pods, \&c. fo as to give thofe in raifins or fugar any advantage over the others, all being fent equally guarded by their natural teguments."

SEGALIEN, the name given by Europeans to a. large ifland feparated by a narrow channel from the coaft of Chinefe Tartary, and called by the natives Tchoka, and by the Chinefe Oku- Feffo. It lies between the 46 th and 54 th degrees of north latitude, but its breadth from eaft to weft is not known. Indeed hardly any thing about it was known till the year 1787, that M. La Peroufe penetrated almoft to the bottom of the channel which feparates it from the continent, and which grew fo very fhallow as he advanced northward

Segahen. that, in all probability, the ifland will foon become i peninfula. The French frigates came to anchor in different bays on the coalt of Segalien; and the finelt of thefe bays, to which the Commodore gave the name of Baie d'Eflaing, is fituated in \(48^{\circ} 59^{\prime} \mathrm{N}\). Lat. and \(140^{\circ}\) \(32^{\prime}\) Lon. Eaft from Paris.

La I'eroufe and M. Rollin, the furgeon of his hip , both defcribe the natives of this inland as a worthy and intelligent people. Of the prefents which were made to them, they feemed to fet a value only on fuch as were ufeful. Iron and ftuffs prevailed over every thing; they underfood metals as well as their guefts, and for ornament preferred filver to copper, and copper to iron. 'Thcy make ufe of looms, which, though fmall, are very complete inftruments; and by means of fpindles they prepare thread of the hair of animals, of the bark of the willow, and the great nettle, from which they make their Atuffs. Thcy are of a moderate fize, fquat, and ftrong built, with the mufcles of their bodies very exactly defined : their common height is five feet, and the greateft does not exceed five feet four inches; but nuen of this fize are very uncommon among them. They have all a large head, and a broader and more rounded face than Europeans; their countenance is animated and agrecable, though, upon the whole, it is deftitute of that regularity and grace which we efteem fo effential to heauty: they have large cheeks, a fhort rofe rounded at its extremity, with very broad noftrils: their eyes are lively. of a moderate fize, for the moft part black, though fome have blue ones among them: their cyebrows are bufhy, their mouth of the common fize, their woice is ftrong, their lips are rather thick, and of a dull red : M1. Rollin remarked, that in feveral the upper lip was tattced, and tinged of a blue colour : thefe, as well as their eycs, are capable of every variety of expreffion: their teeth are white, tven, and of the ufual number; their chin is roundet and a little advan. cing; their ears are fmall: they bore and wear in them glafs ornaments or falver rings.

The women are not fo large as the men, and are of a more rounded and delicate figure, though there is but little difference between the features of their faces. Their upper lip is tattoed all over of a blue colour, and they wear their hair long and flowing: their drefs hardly differs from that of the men; the colour of the fkin in both fexes is tawny, and that of their nails, which they fuffer to grow to a great length, is a thade darker than that of Europeans. Thefe iflanders are very hairy, and have long beards, which gives, efpecially to the old men, a grave and venerable air: thefe laft appear to be held in inuch refpect by the younger part of the inhabitants. The hair of their head is black, fmooth, and moderately ftrong; in fome it is of a chefnut colour : they all wear it ound, about fix inches long behind, and cut into a brufh on the top of their head and over the temples.

Their clothing confifts of a kind of furtout which wraps over before, where it is faftened by little buttons, ftrings, and a girdle placed above the haunches. This furtout is made of fkin or quilted nankeen, a kind of ftuff that they make of willow bark: it generally reaches to the calf of the leg, and fometimes even lower; which for the molt part renders the ufe of drawers unneceffary: fome of them wear feal fkin boots, the feet of which, in form and workmanfhip, refembles the Chinefe
fhoe; but the greater number of them go bare-footed and bare-headed: a few indeed wear a bandage of bearfkin round the head; but this is rather as an ornament than a defence agraintt the weather.

Like the lower claffes of the Chinefe, thry all weas a girdle, to which they hang their knife as a defence againft the bears, and fevcral little pockets, into which they put their flint and Ateel, their pipe, and their box of tobacco; for they make a general practice of fmoking.

Their huts are fufficient to defend them againft the rain and other inclemencies of the air, but are very fmall in proportion to the number of the inhabitants which they contain. The roof is formed of two inclim ned planes, which are from ter to twelve feet high at their junction, and three or four on the fides: the breadth of the roof is about fifteen feet, and its length eighteen : thefe cabins are conftructed of frame work, ftrongly put together, the fides being filled up with the bark of trees, and the top thatched with dry grass in the fame manner as our cottages are.

On the infide of thefe houfes is a fquare of earth raifed about fix inches above the ground, and fupported on the fides by frong planking; on this they make the fire: aloing the fides of the apartment are benches twelve or fifteen inches high, which they cover with mats, on which they Incep.

The utenfils that they employ in cooking their food confilt of an iron pot, fhells, veffels made of wood and birch bark, of various fhapes and workmanfhip; and, like the Chinefe, they take up their food with little fticks: they have gencrally two meals in the day, one at noon, and the other in the evening.
'The habitations in the fouth part of the ifland are much better built and furnifhed, having for the moft part plaked floors: our author faw in them fome veffels of Japan porcelain, on which the owners appeared to fet great value, probably becaufe thcy are not to be procured but with great trouble and at confiderable expence. They cultivate no kird of vegetable, living only on dried and finoked fing, and what little game they take by hunting.

Each family has its own canoe, and implements for fifhing and hunting. 'Their arms are bows, javelins, and a kind of fpontoon, which they ufe principally in bear-hunting. By the fide of their heufes are the magazines, in which they lay up the provifion which they have prepared and collected during fummer for their winter fubfiftence. It conlifts of dried firh, and a confiderable quantity of garlic and wild celery, angelica, a bulbous root which they call afè, better known under the name of the yellow lily of Kamtfchatka, and fifa oil, which they preferve in the Itomachs of bears, and other large animals. I'hefe magazines are made of planks, ftrongly and clofely put together, raifed above the ground on ftakcs about four feet high.

Dogs are the only domettic animals belonging to the natives of Tchoka; they are of a middling fize, with fhaggy hair, pricked ears, and a Maip long muzzle: their cry is loud and not favage.
'Thefe people, who are of a very mild and unfufpet. ing difpofition, appear to have commercial intercourfe with the Chinefe by means of the Mantchou Tartars, with the Rufians to the north of their ifland, and the Japanefe to the fouth : but the articles of trade are of
 ~whate oil hnes fill is callgit onty on the fintherm coat of the inand. Their mote by no means economical; they drag the whate on flare on a floping ground, and fuffering it to putify, rective in a trench, at the foot of the flope, the oill, whicl feparates fpontaneounfy.
The illand is well wooded, and mountainous towards the centre, but is Hat and level along the coaft, the foil of which appears admirably adapied to agriculture: vegetation is extremely vigorous here; forelts of pine, willow, oak, and birch, cover nearly the whole furface. The fea abounds with fifh, as weli as the rivers and brooks, which frarm with falmon and trout of an excellent quality. The weather is, in general, foggy and mild. All the inhabitants have an air of health and Arength, which they retain even to extreme old age ; nor did our author oblerve among them any inftance of defective organization, or the leat trace of contagious or eruptive diforders.

SEGMENTS, LINE OF, are two particular lines, fo called on Gunter's fector. They lie between the lines of fines and fuperficies, and are numbered with \(5,6,7\), \(8,9,10\). They reprefent the diancter of a circle, fo divided into 100 parte, as that a right line drawn througl thofe parts, and perpendicular to the diameter, thall cut the circle into two fegments, the greater of which thall have the fame proportion to the whole circle, as the parts cut off bave to 100 .
SECO, the capital of the kingdom of Bambarra in Africa, is fituazted on the banks of the Niger, in \(14^{\circ}\) \(4^{\prime}\) N. Lat. and \(2^{\circ} 1^{\prime}\) Weft Long. It confifits, properly tpeaking. of four dititinet towns; two on the northern bank of the Niger, called Sego Korro, and Sego Boo; and two on the fouthern bank, called Segro Sou Korro, and Scgo See Korro. it hey are all furrounded with tigh mud-walls; the hoilfes are built of clay, of a fquare form, with flat roofs; fome of them lave two flories, and mary of them are whitewaflied. liefides thefe buildings, Mocrifh mofques are feen in every quarter ; and the frreets, though narrow, are broad enough for every uff ful purpofe in a country where wheel carriages are entirely unknown. Mr Park informs us, that from the bef inquiries thiat he could make, he has reafon to believe that Sego cortains altogether about thirty thoufand inhabitants. The King of Bambarra couitantly refides at Sego See Korro; he employs a great many Eaves in conveying people over the iver, and the money they receive (though the fare is only ten kowrie fiellis for each inctividual) furnithes a confderable reverne to the king in the courfe of a year. The canoes are of a fingular coriftruction, each of thent being formed of the truiks of two large trees, rendered concave, and joincd together, not fide by fide, but endwife ; the junction being exaetly acrofs the midule of the canoe : they are :hereffore very long and difproportionably warrow, and have neither decks nor malts ; they are, however, very roomy ; for our author obferved in ore of them four horfes, and feveral people, croffing over the river. The view of hhis extentive city ; the numerous canoes upon the river ; the crowded population, aird the cultivated thate of the furrounding country, formed altogetber a profpect of civilization end magnaficerice which he little expected to ind i . ine bofom of Africa.

He met wot, however, in Sego with that hofpitality
which he had experienced in fome other African towns. The Mloors, who abound in it, and whofe bigotry unders them the implacable enemies of every white man fuppected of being a Chriltian, contrived io perface the king that it was for no good purpote he had coune into the territories of Banbarre. He was therefote ordered to take up his refidence as a village a little d. ftant, without being admitted into the royal prefence. Even thete, fo ttrong was the prejudice that hat been excited againt hisn, no perfon would admit him into his houfe. About funfet, however, as he was preparing to pafs the night in the top of a tree, that he mig:at not be in danger of being torn to pieces by wild beatts, a poor Negro woman conducted him to her hut, dreffed a fine fifh for his fupper, and furnifhed him with a mat to fleep on. She then called to the female part of her family, who had food gazing on him all the while with fixed aftonifhment, to refume their tafk of fpimning cotton; in which they continued to employ themielves great part of the night. 'They lightened their labour by fongs; one of which wae compofed extempore, for our author was himfelf the fubject of it. It was fung by one of the young women, the relt joining in a fort of chorus. The air was fweet and plaintive, and the words, literally tranfated, were thefe - "The winds roared, and the rains fell.- The poor white man, faint and weary, came and fat under our tree.- He has no mother to bring him milk; no wife to grind his corn. Chorus. Let us pity the white man ; no mother has he", \&c. \&c. "Trifing (faya Mr Park) as this recital may appear to the reader, to a perfon in my lituation the circumftance was affecting in the higheft degree."

Having remained thrce days in this village, he was difmiffed on the fourth, after recciving from the king 5000 kownies, to enable him to purchafe provilions in the courle of his jouncy. Though this fum anounted only to one pound tterling, fo cheap are the neceffaties of life in Banbarra, that it was fuficient to purchafc provifions for limiflf, and corn for his horfe, for fifty days.
SLELLL, in building, is of two kinds, viz. Ground Sell, which denotes the loweft piece of timber in a wooden building, and that upon which the whole fuperAtructure is raifid ; and Sell of a Winduze, or of a Door. which is the bottom piece in the frame of them, upon which they reft.
SENN, a kind of itinerant cowkeeper in Switzerland, particulaily in the caiton of Appenzell. Thefe men do nut grow fo much hay themitelves as they require for their cattle during the winter feafon, and fome of them have no grafs lands at all. To fupply this deficiency, they employ agents throughout the calion, who ale to inform them where good hay may be obtained, which farmers made it in favourable weather, \& c. and then the Scnn, or the great cowkeeper, who is in want of fodder, makes his agreements for the winter with the wealthier farmers, to whom he fucceffively drives his cattle as foon as they return from grafs. Thus the itinerant Senn, will his cows, often vifits five different places during the winter feafon. He who fells the hay furnifhes the Senn not ouly with ttabling for his bealts, but boards and lodges him as well as his whole family. In return, the senn, belides paying the ftipulated price for the hay, allows to his hott as much milk, whey, and zieger (a kind of lean cleefe) as may 3 Q 2
be

\section*{S E N}

Senn. be ufed in the houfe, and leaves him alfo the manure of his cows. In the middle of April, when Nature revives, the Senr again iffues forth with his herd to the meadows and fertile Alps, which he rerits for the fummer. Thus the life of thefe men is a conftant migration, affording the moil pleafing variety, and bleffing them with health, content, and cheerfulnels; but they had not been then curfed witl French fraternity.

Fine cattle are the pride of the cowkeeper who inhabits the Alps:-but, not fatisfied with their natural beauty, he will likewife pleafe his vanity. He adorns his beft cows with large bells fufpended from broad thongs; and the expence in fuch bells is carried even to a luxurious excefs. Every Senn has an harmonious fet of at leaft two or three bells, chiming in with the famous ranz des vaches ( 1 ). The inhabitants of the Tyrol bring a number of fuch bells, of all fizes, to every fair kept in the canton of Appenzell. They are fixed to a broad flrap, neatly pinked, cut out, and embroidered; which is faftened round the cow's neck by means of a large buckle. A bell of the largeft fize meafures upwards of a foot in diameter, is of an uniform width at top, fwells out in the middle, and tapers towards the end. It cofts from forty to fifty gilders; and the whole peal of bells, including the thongs, will fometimes be worth between 140 and 150 gilders, while the whole apparel of the Senn himfelf, when beft attired, does not amount to the price of twenty gilders. 'I'he Eneft black cow is adorned with the largeft bell, and thofe next in appearance have two fmaller. Thefe ornaments, however, are not worn on every day, but only on folemn occafions, viz. when, in the fpring, they are driven up the Alps, or removed from one pafture to another; or when they defcend in the autumn, or travel in the winter to the different farns, where their owner has contracted for hay. On fuch days, the Senn, even in the depth of winter, appears dreffed in a fine white fhirt, of which the feeves are rolled up above the elbow ; neatly embroidered red braces keep up his yellow linen trowfers, which reach down to the fhoes; a fmall leather cap, or hat, covers his head; and a new milk bowl, of wood kkilfully carved, hangs acrofs the left fhoulder. Thus arrayed, the Senn precedes finging the ranz des viaches, and followed by three or four fine goats; next comes the handfomelt cow with the great bell ; then the two other cows with fmaller bells; and thefe are fucceeded by the reft of the cattle walking one after another, and having in their rear the bull with a one legged milking ftool hanging on his horns; the proceffion is clofed by a traineau, or nedge, on which are placed the implements for the dairy. It is furprifing to fee how proud and pleafed the cows ftalk forth when ornamented with their bells. Who would imagine that even thefe animals are fenfible of their rank, nay, touched with varity and jealoufy ! If the leading cow, who hitherto bore the largett bell, be deprived of her honours, fhe very plainly manifefts her grief at the difgrace, by lowing inceffantly, abftain-

\section*{\(\left.49^{2}\right] \quad \mathrm{S}\) H Á}
ing from food, and growing lean. The happy rival, Eerriftetho on whom the dittinguifhing badge of fuperiority has devolved, experiences her marked vengeance, and is bntted, wounded, and perfecited by her in the moft furious manner; until the former either recovers her bell, or is entirely remnved from the herd. However fingular this phenomenon may appear, it is piaced beyond all doubt by the concurring teftimony of centuries.

The cows, when difperfed on the Alps, are brought together by the voice of the Senn, who is then faid to allure them (locken). How well the cattle dittinguifh the note of their keeper appears from the circumftance of their haftening to him, though at a great diftance, whenever he begins to hum the ranz des vaches. I-Ie furnifhes that cow which is wont to ftray fartheft with a fmall bell, and knows by her arrival that all the reft are affembled.

SERRISHTEHDAR, in Bengal, keeper of records or accounts.

SEVEN Stars, a common denomination given to the clufter of tars in the neck of the fign Taurus, the bull, properily called the Pleiades. They are fo called from their number Seven which appear to the naked eye, though fome eyes can difcover only fix of them ; but by the help of telefcopes there appears to be a great multitude of them.

SEZAWUL, in Bengel, an officer deputed occa. fionally to enforce the due payment of the revenue.

SHADOWS (COlnured), a curious optical phenomenon, which was oblerved, a confiderable nurber of years ago, by Profeffor Scheiffer of Vienna, and: more lately by Count Rumford. 'The Count made the difcovery when profecuting his experiments upon light; of which the reader will find fome account under the titles Lamp and Photometer in this Supplo "Defirous (fays he) of comparing the intenfity of the light of a clear blue fly by day with that of a common waxcanile, I darkcied my room, and letting the day. light from the north, coming thro' a hole near the top of the window-fhutter, fall at an angle of about \(70^{\circ}\) upoir a fheet of very fine wlite paper, I placed a burning wax-candle in fuch a pofition that its rays fell upon the fame paper, and, as near as 1 could guefs, in the line of reflection of the rays of day-light from without; when, interpofing a cylinder of wood, about hali an it chi in diameter, before the centre of the paper, and at the diftance of abont two inches fiom its fur face, I was mach furprifed to find that the two fhadows projected by the cylinder upon the paper, inttead of being merely thades without colour, as l expected; the one of them, that which, correfpondmg with the bean of cay light, was illuminated by the cancle, was yeliow; while the other, correfponding to the light of the candle, and confequeutly illuminated by the light of the heavens, was of the moft beautiful blue that it is poffible to imagine. This appearance, which was not only unexpected, but was really in itfelf in the higheft degree itiking and beautiful,
(A) This famous paftoral fong is never fung by the cowherds with words to it: all the tones of it are fimple, and mofly formed within the throat. Hence the tune pr duces very little or no motion of the jawbones, and its founds do not refemble thofe which commonly iffue from the human throat, but rather feem to be the tones of fome wind infrument; particularly as fcarcely any breathing is perceived, and as the cowherds fometimes fing for minutes together withour fetching breath.

\section*{S H A}
fowe, beautiful, I found upon repeated trials, and after varying the experiment in every way I could think of, to be fo perfectly permanent, that it is abfulutely impofible to produce two fhadows at the fame tine, from the fame body, the one anfwering to a beam of day-light, and the other to the light of a candle ur lamp, without thefe fhadows being coloured, the one yellow, and the other blue.
" If the candle be brought nearer to the paper, the blue fhadow will become of a deeper hue, and the yellow fhadow will gradually grow fainter; but if it be remioved farther off, the yellow thaduw will becume of a deeper colour, and the blue fhadow will become fainter; and the candle remaining fationary in the fame place, the fame varieties in the thength of the tints of the coloured fhadous may be produced mercly by opening the window-fhutter a little more or lefs, and iendering the illumination of the paper, by the light from without, Atronger or weaker. By either of theie means, the coloured fhadows may be made to pafs through all the gradations of fhade, from the deepeft to the lighteft, and vice verfa; and it is not a little annufng to fee thadows thus giowing with all the brilliancy of the pureft and moft intenfe prifmatic colours, then paffing fuddenly through all the vatieties of fhade, preferving in all the moft perfect purity of tint, growing flronger and fainter, and vanifhing and returning, at command."
With refpect to the caufes of the colours of these fhadows, there is no doubt (fays the Count) But they arife from the diferent qualitics of the light by which they are illuminated; but how they are produced, does not appear to him fo evident. With the utmott deference to this amiable and very ingenious philufopher, we think all the phenomena of coloured fhadows which he enumerates *, have been, or may be accounted for by Profuffor Scherfier's theory, of which the reader will find, we hope, a per!picuous view under Aiccilchital Co. zours, in this Supplcment.

SHAGREEN, or Chagrin, in commerce, a kind of grained leather ; of the procefs of preparing which, we gave the bef account that we could then find in the Encyclopedia. That account, however, as we learn from l'rofeffor Pallas, is very defective. Ile fays, indeed, that 1:o accurate account of it has ever been publifhed in Europe previous to his own; of which we fhall now lay an abridgement before our readers.
" All kinds of horfes or affis fkin, which have been dreffed in fuch a manner as to appear grained, are, by the Tartars, called fauzuer, by the Perfians fogre, and by the Turks Jugri, from which the Europcans have made Bagreen or chagrin. The Tartars who refide at Atracan, with a few of the Armenians of that city, are the only people in the Ruffian empire acquainted with the art of making fhagreen. Thofe who follow this occupation not only gain confiderable profit by the fale of their production to the Tartars of Cuban, Aftracan, and Cafan, who ornament with it their 'Turkey leather boots, flippers, and other articles made of leather, but they derive confiderable advantage from the great fale of horfes hides, which have undergone no other procefs than that of being fcraped clean, and of which feveral thoufandsare annually exported, at the rate of from 75 to 85 roubles per hundred, to Perfia, where there is a fcarcity of fuch hides, and from which the greater part of the fhagreen manufactured in that
country is prepared. 'The hind part only of the hide, St agreen. however, which is cut ont in the form of a crefcent about a Rufian ell and a half in length acrofs the loins, and a thort cll in breadth along the back, can propuly be employed for fhagicen. The remainutg part as is proved by experience, is improper for that purpole, and is therefore rejected.
" The preparation of the fisins, after being cut into the above form, is as follows:-1'hey are depolited in a tub filled with pure water, and fuffered to remain there for feveral days, till they are thorrughly foaked, and the hair haz dropped off. They are then taken from the tub, one by one, extended on boards placed in an oblique direction againft a wall, the corners of them, which reach beyond the edgred of the ouard, being made falt, and the hair with the evidermis is then feraped off with a blunt iron feraper called urak. The firins thus cleaned are again put in pure water to foak. Whesa all the fains have undergone this part of the proeefs, they are taken from the water a fecond time, fpread out one after the other as Lefure, and the fleth fide is Scraped with the fame kind of initrument. They are carefully cleaned alfo on the hair fide, fo that nothing remains but the pure fibrous tiffue, which ficins for making parchenent, confifing of coats of white medullary fibres, and which has a refemblance to a fwinc's bladder fufueted in water.
"After this preparation, the workmen take a certain kind of frames called pütri, made of a fraight and a femicircular piece of wood, having nearly the farre form as the fkins. On thefe the flius are cxtended in as fmooth and even a nanner as puiüble by means of cords; and curing the operation of extending thom, they are feveral times beforinkled with water, that no part of them may be diy, and occation an uneçual tenfion. After they have ieen all extended on the frames, they are again moiltened, and carried into the houre, where the frames are depofited clofe to each other on the floor with the flefh fide of the 1kin next the ground. The ufper fice is thea thickly beftrewed with the black exceedingly fincotit and hard feeds of a kind of goofe foot (cheriopodium alluish ', which the Taitars call. alubuthe, añ' which grows in abundance, to about the height of a man, near the gardcus and farms on the fouth fide of the Volga; and that they may make a ftrong impreffion on the frins, a piece of felt is fpread over them, and the feeds are trod down with the fuct, by which neans they are deeply imprinted into the foft frins. The frames, without fhaking the feeds, ane then carried out into the open air, and placed in a reclining pofition againt a wall to diy, the tide covered with the freds being next the wall, in order that it may be fheltered from the fun. In this flate the fkins muft be left feveral days to dry in the fun, until no appearance of moilture is obferved in them, when they are fit to be taken from the frames. When the intpreffed feeds are beat off from the hair fide, it appears full of indentations or inequalities, and has acquired that impreffion which is to produce the grain of the fhagreen, after the fkins have been fubjected to the latt fmoothing or fcraping, and have been dipped in a ley, which will be mentioned hereafter, before they receive the dye.
"The operation of fmoothing is performed on an inclined bench or board, which is furnifhed with an iron hook, and is covered with thick felt of Theep's wool,

\section*{] S H A}
firagreen, on whicle the dry fkin may gently reft. The nain is fulpended in the middle of the bench or board to its iron hook, by means of one of the holes made in the edge of the fikin for extending it in its faame as before mentioned; and a cord, having at its extremity a fone - or a weight, is attached to each end of the fkin, to keep it in its pofition while under the hands of the workman. It is then fubjected to the operation of - fmoothing and fcraping by means of two different inAruments. The firft ufed for this purpofe, called by the Tartars tokiar, is a piece of fharp iron bent likera hook, with which the furface of the fhagreen is pretty clofely fcraped to remove all the projecting inequalities. "This operation, on account of the corneous hardnefs of the dry \(\Omega \mathrm{kin}\), is attended with fome -difficulty ; and great caution is at the fame time required that too much of the imprefion of the alabuta feed be not deftroyed, which might be the cafe if the iron were kept too fharp. As the iron, however, is pretty blunt, which -occafions inequalities on the fhagreen, this inconvenience mult afterwards be remedied by means of a fharp feraping iron or urak, by which the furface acquires a perfect uniformity, and only faint impreffions of the alabuta feed then remain, and fuch as the workman wifhes. After all thefe operations, the fhagreen is again put into water, partly to make it pliable, and partly to raife the grain. As the feeds occafion indentations in the furface of the fkin, the intermeciate faces, by the operations of fmoothing and feraping, lofe fome part of their projecting fubfarice; but the points which have been depreffed, and which have loft none of their fubflance, now fivell up above the fcraped parts, and thus form the .grain of the fhagreen. 'i'o produce this effeet, the fkins are left to foak in water for 24 hours; after which they are immerfed feveral tines in a ftrong warm ley, ob. tained, by boilung, from a frong alkaline eartl named fibora, which is found in great abundance in the neighbourhood of Afracan. When the flins have been taken from this ley, they are piled up while warm, on each other, and fuffered to remain in that flate feveral hours; by which means they fwell, and become foft. They are then left 24 hours wis a moderately ftrong pickle of common falt, which renders them exceedingly white and beautiful, and ft for receiving any colour. The colour mott ufual for thefe fkins is a fea-green; but old experienced workmen can dye them blue, red, or black, and even make white fhagreen.
"For the green colour noth ing is neceflary but flings of copper and fal ammoniac. Sal ammoniac is diffolved in water till the water is completely fatu ated; and the fhagreen fkins, ftill moif, after being taken from the pickle, are wafhed over with the folution on the ungrained fefn fide, and when well inoiftened a thick layer of copper flings is ftrewed over them: the fling are then folded double, fo that the fide covered with the filings is innermoft. Each fkin is then rolled up in a piece of felt; the rolls are all ranged to agether in proper order, and they are prefied down in an uniform manner by fome heavy bedies placed over them, under which they remain 24 hours. During that period, the Solution of fal ammoniac diffolves a quantity of the cupreous particles fufficient to penetrate the fkin and to give it a fea-green colour. If the firlt application be root fufficient, the procefa is repeated in the lame menwer; after which the Rines are fpread out and dried.
" lior the blue dye, indigo is wfed. About two pounds of it, reduced to a fine powder, are put into a kettle; cold water is poured over it, and the mixime is flirred round till the colour begins to be diffolved. Five pounds of pounded alckar, which is a kind of barilla or crude foda, prepared by the Armenians and Calmucs, is then diffolved in it, with two pounds of lime and a pound of pure honey, and the whole is kept feveral days in the fun, and during that time frequently ftirred round. The frins intended to be dyed blue mult be moinened only in the natrous ley fobora, but not in the falt brine. When flili moitt, they are folded up and fewed together at the edge, the flefh fide being in. nermof, and the fhagreened hair fide outwards; after which they are dipped three times in the remains of an exhaufted kettle of the fame dye, the fuperfucus dye being eacl time expreffed ; and after this procefs they are dipped in the frefh dye prepared as above, which murt not be expreffed. The fkins are then hung up in the fhade to dry; after which they are cleaned and paired at the edges.
"For black fhagreen, gall-nuts and vitriol are employed in the following marner:--The Bkins, moilt from the pickle, are thickly beftrewed with finely pulverifed gall nuts. They are then folded together, and laid over each other for 24 hours. A new ley, of bitter faline earth or fchora, is in the mean time prepared, and poured hot into fmall troughs. In this ley each fkin is feveral tinnes dipoed; after which they are again beftrewed with pounded gall-nuts, and placed in heaps for a certain period, that the galls may thoroughly penetrate them, and they are dried and beat, to free them from the duft of the galls. When this is done, they are rubbed over, on the fhagreen fide, with melted theep's tallow, and expofed a little in the fun, that they may imbibe the greafe. The fhagreen-makers are accuttomed alfo to roll up each fisin teparately, and to prefs or fquecze it with their hands againtt fome hard fubitance, in order to promote the abforption of the tallow. The fuperfiuons particles are removed by means of a blunt wooden feraper (urac); and when this procefs is finifhcd, and the Rkins have lain fome time, a fufficient quan. tity of vitriol of iron is diffolved in water, wich which the fhagreen is moiltened on both fides, and by this operation it acquires a beautiful black dye. It is then dreffed at the edges, and in other places where there are any blcmifhes.
"T'o obtain white fhagreen, the fkins muft firf be moiltened on the fhagreen fide with a ftrong folution of alum. When the fikin has imbibed this liquor, it is daubed over on both fides with a pafte made of flour, which is fuffered to dry. The palte is then wafhed off with alum-water, and the flsin is placed in the fun till it is compluely dry. As foon as it is dry, it is gently befmeared with pure melted fheep's tallow, which it is fuffered to imbibe in the fun; and to promote the effect, it is preffed and worked with the hands. The flins are then fattened in fucceffion to the before mentioned bench, where warin water is poured over them, and the fuperfluouss fat is . Craped off with a blunt nooden inftument. In the laft operation the warni water is of great fervice. In this manner flagreen perfectly white is obtained, and nothing remains but to pare the edges and drefs it.
"But this white fhagreen is not intended fo much
for remaining in that fate, as for receiving a dark red dye; becaufe, by the above previous procefs, the colour becomes much more perfect. The fkins deftined for a red colour mult not be inmerfed firft in ley of bitter falt earth (fchora), and then in pickle, but after they have been whitened, mult be left to foak in the pickle for 24 hours. The dye is prepared from cochineal, which the T'artars call kirmitz. About a pound of the dried herb \(t\) fobagann, which grows in great abundance in the neighbourhood of Aftracan, and is a kind of foda-plant or kali (falfola ericoides ( A ), is boiled a full hour in a kettle containing about four common pailfuls of water; by which means the water acquires a greenifh colour. The herb is then taken out, and about half a pound of pounded cochineal is put into the kettle, and the liquor is left to boil a full hour, care being taken to ftir it that it may not run over. About is or 20 drams of a fubflance which the dyers call litter (orchilla) is added, and when the liquor has been boiled for fome time longer, the kettle is removed from the fire. The fkins taken from the pickle are then placed over each other in troughs, and the dye-liquor is poured over them four different times, and rubbed into them with the hands, that the colour may be equally imbibed and diffufed. The liquor each time is expreffed; after which they are fit for being dried. Skins prepared in this manner are fold at a much dearer rate than any of the other kinds."

SHARP (Abraham), an eminent mathematician, mechanif, and aftronomer, was defcended from an ancient family at Little.Horton, near Bradford, in the Weft Riding of Yorkfhire, where he was born about the year 16 g I. At a proper age he was put apprentice to a merchant at Manchefter; but his genius led him fo ftrongly to the fudy of mathematics, both theoretical and practical, that he foon became uneafy in that fituation of life. By the mutual confent, therefore, of his mafter and himfelf, though not altogether with that of his father, he quitted the bufinefs of a merchant. Upon this he removed to Liverpool, where he gave himfelf up wholly to the fudy of mathenatics, aitıonomy, \&c. ; and where, for a fubfiftence, he opened a fehool, and taught writing and accounts, \(\varepsilon: e\).

He had not been long at Liverpool when he accidentally fell in company with a merchant or tradefman vifiting that town from London, in whofe houfe it feems the aftronomer Mr Flamfleed then lodged. With the view therefore of becoming acquainted with this eminent man, Mr Sharp engaged himfelf with the merchant as a book-keeper. In confequence he foon contracted an intimate acquaintance and friendhip with Mr Flamfleed, by whofe intereft and recommendation he obtained a more profitable employment in the dock. yard at Chatham; where he continued till his friend and patron, knowing his great merit in aftronomy and mechanics, called him to his affiftance, in contriving, adapting, and fitting up the aftronomical apparatus in the Royal Obfervatory at Greenwich, which had been tately built, namely, about the year 1676 . He was
principally employed in the conftruction of the mural arch; which in the compafs of 14 months he finifhed fo greatly to the fatisfaction of Mr Flamfleed, that he fpeaks of him in terms of the higheft praife. According to Mr Smeaton, this was the firft good and valid inftrument of the kind ; and Mr Sharp the firft artift who cut accurate and delicate divifions upon aftronomical inftruments. At the time this inftrument was conflructed, Mr Flamfteed was 30 and Mr Sharp 25 years of age.

Thefe two friends continued together for fome time, making obfervations on the meridional zenith diftancer of the fixed ftars, fun, moon, and planets, with the times of their tranfits over the meridian; alfo the diameters of the fun and moon, and their ecliples, with thofe of Jupiter's fatellites, the variation of the compafs, \&c.
Mr Sharp affited Mr Flarntteed alfo in making a catalogue of near 3000 fixed ftars, with their longitudegand magnitudes, their right afcenfions and polar diftances, with the variations of the fame while they change. their longitude by one degree.

But from the fatigue of continually obferving theftars at night, in a cold thin air, joined to a weakly conflitution, he was reduced to a bad flate of health; for the recovery of which he defired leave to retire to his houfe at Horton; where, as foon as he found himfelf on the recovery, he began to fit up an obfervatory of his own; having firt made an elegant and curious engine for turning all kinds of work in wood or brafs, with a maundril for turning irregular figures, as ovals, rofes, wrearhed pillars, \&c. Befide thefe, he made himfelf moft of the tools ufed by joiners, clockmakers, opticians, mathematical inftrument makers, scc. The limbs or arcs of his large equatorial infrument, fextant, quadrant, \&c. he graduated with the niceft acctracy, by diagonal divifions into degrees and minutes. The telefcopes he made ufe of were all of his own making, and the lenfes ground, figured, and adjufted with his own hands.

It was at this time that he affifted Mr Flamfleed in calculating moft of the tables in the fecond volume of his Hifforia Cal.ghis, ns appears by their letters, to be feen in the hands of Mr Sharp's friends at Horton, Likewife the curions drawings of the charts of all the conftellations vifible in our hemifphere, with the ftill more excellent drawings of the planifpheres both of the northern and fouthern conttellations. And thongh thefe drawings of the coufellations were fent to be engraved at Am?erdam by a malferly hand, yet the originals fire exceeded the engravings is point of beauty and elegance: thefe were publifind by Mr Flamitced, and both copics may be feen at Horton.

The mathematician, fays Dr Hutton, meets with: fomething extraordinary in Sharp's elaborate treatife of Geometry Improved (in \(4 t 0,171^{\prime} 7\), figned A.S. Philomath ): Ift, by a large and accurate table of fegments of circles, its conftruction and various ufes in the folution of feveral difficult problems, with compendious tables.
(A) The beautiful red Turkey leather is dyed with cochineal prepared in the fame manner. Profefor Gmelin junior, in the fecond part of his Travels through Ruffia, explains the herb t/cbagann by artemifia annua, having doubtlefs been deceived by the appearance the plant acquires after it has been dried. Befides, this artemifia is found only in the middle of Siberia, and never on the weft fide of the Irtifch.
for finding a true proportional part ; and their ufe in thefe or any other tables exemplified in making logarithms, or their natural numbers, to 60 places of figures; there being a table of them for all primes to 1100 , true to 61 figures. 2 d , His concife treatife of Polyedra, or folid bodies of many bales, both the regular ones and others: to which are added twelve new ones, with various methods of forming them, and their exaet dimenfions in furds, or fpccies, and in numbers ; illuftrated with a variety of copperplates, neatly engraved by his own hands. Alfo the models of thefe polyedra he cut out in boxwond with amazing neatnefs and accuracy. Indeed few or none of the mathematical infirument makers could exceed him in exa\&lly graduating or neatly engraving any mathematical or aitrono. mical inftument, as may be feen in the equatorial in. frument above mentioned, or in his fextant, quadrants, and dials of various forts; alfo in a curious armillary fphere, which, befide the common properties, has moveable circles, suc. for exhisiting and refolving all fpherical triangles; alfo his double fector, with many other inltruments, all contrived, graduated, and finifhed, in a moft elegant manner, by himfelf. In thort, he poffefled at once a remarkably clear head for contriving, and an extraordinary hand for executing, any thing, not only in mechanics, but likewife in drawing, writing, and making the mof exact and beautiful fchemes or figures in all his calculations and geometrical conftrutions.

The quadrature of the circle was undertaken by him for his own rivate amufement in the year 1699, deduced from two different feries, by which the truth of it was proved to 72 places of figures; as may be feen in the introduction to Sherwin's ' ''ables of Logarithms; that is, if the diameter of a circle be 1 , the circumference will be found equal to \(3.1415926,355979323^{8}\) 462643383279502884197169399375105820974944 \(592307816405, \& c\). In the fame book of Sherwin's may alfo be feen his ingenious improvements on the making of logarithms, and the conftructing of the natural fines, tangents, and fecants.

He alfo calculated the natural and lozarithmic fines, tangents, and fecants, to every fecond in the firt minute of the quad!ant ; the laborious inveltigation of whinh may probably be feen in the archives of the Royal Society, as they were prefented to Mr Patrick Murdoch for that purpofe; exhibiting his very neat and accuratc manner of writing and arranging his figures, not to be equalled perhaps by the bett penman now living.

Mr Sharp kept up a correfpondence by letters with molt of the eminent matherraticians and attonomers of his time, as Mr Flamfteed, Sir Ifaac Newton, Dr Halley, Dr Wallis, Mr Hodgion, Mr Sherwin, \&c. the anfwers to which letters are all writein upon the backs, or empty fpaces, of the letters he received, in a florthand of his own contrivance. From a great variety of letters (of which a large cheltful remain with his friends) from thefe and many other celebrated mathenaticians, it is evident that Mr Sharp fpared neither pains nor time to promote real fcience. Indeed, being one of the inoft accurate and indefatigable computers that ever exifted, he was for many years the common refource for Mr Flamfteed, Sir Jonas Moore, Dr Halley, and ethers, in all forts of troublefome and delicate calculations.

Mr Sharp continued all his life a bachelor, and fpent
his time as reclufe as a hermit. He was of a middle ftature, but very thin, being of a weakly conftitution. He was remarkably feeble the laft three or four years before he died, which was on the 18 th of July 1742, in the gift year of his age.

In his retirement at Little Horton, he employed four or five rooms or apartments in his houfe for different purpofes, into which none of his family could poffibly enter at any time without his permiffion. He was feldom vifited by any perfons, except two gentlemen of Bradford, the one a mathematician, and the other an ingenious apothecary ; thefe were admitted, when he chofe to be feen by them, by the fignal of rubbing ai frone againft a certain part of the outfide wall of the houfe. He duly attended the diffenting chapel at Brad. ford, of which he was a member, every Sunday ; at \({ }^{\text { }}\) which time he took care to be provided with ulenty of halfpence, which he very charitably fuffered to be taken fingly out of his hand, held behind him during his walk to the chapel, by a number of poor people who follow. ed him, without his ever looking back, or afking a fingle queltion.

Mr Sharp was very irregular as to his meals, and remarkably fparing in his diet; which he frequently took in the following manner. A little fquare hole, fomething like a window, made a communication between the room where he was ufually employed in calculations, and another chamber or roons in the houfe where a fervant could enter ; and before this hole he had contrived a niding board: the fervant always placed his victuals in this hole, without fpeaking or making any the leaft noife ; and when he had a little leifure, lie vifited his conpboard to fee what it afforded to fatisfy his hunger or thirl. But it often happened, that the breakfait, dinner, and fupper, have remained untouched by him, when the fervant has gone to remove what was leftfo deeply engaged had he been in calculations.

SHARPS in flour, the finer part of what we have denominated Pollards. See that article, Suppl.

SHASTAH, the fame as Shaster; which fee, Encycl.

SHEA, the name of a tree, from the fruit of which the Nes:oes, in the interior parts of Africa between the tropics, prepare a kind of vegetable butter. There. trees are not planted by the natives, but are found growing naturally in the woods; and in clearing wood land for cultivation, every tree is cut down but the Shea. The trce iifelf very much refembles the American oak; and the fruit, from the kernel of which being firft dried in the fun the buiter is prepared, by boiling the kernel in water, has fomewhat the appearance of a Spanih olive. The kernel is enveloped in a fweet pulp, under a thin green rind; and the butter produced from it, befides the advantage of its keeping the whole year without falt, is whiter, firmer, and, Mr Park fays, to his palate, of a richer flavour than the bett butter which he ever tafted made from cows milk. The growth and preparation of this commodity, feem to be among the firft objects of African induftry in this and the neighbouring ftates; and it conftitutes a main article of their inland commerce. In fome places they dry the fruit in kilns, containing each about half a cart load of fruit, under which is kept up a clear wood fire. Our author, who faw the fruit in one of thefe kilns, was informed, that in three days the fruit would
ave, would be ready for pounding and boiling; and that the beare. butter thus manufactured, is preferable to that which is prepared from fruit dried in the fun; efpecially in the rainy feafon, when the procefs by inflation is al. ways tedious, and oftentimes ineffectual. Might it not be worth while, if pradticable, to cultivate Shea-trees in fome of our Well India inlands?

SHEAVE, in mechanics, a folid cylindrical wheel, fixed in a channel, and moveable about an axis, as being ufed to raife or increafe the mechanical powers applied to remove any body.

SHEBBEARE (John) was born at Bideford, a confiderable fea-port and corporation town in Devonflire, in the year 1709 . Fis father was an attorney ; but having fimall practice and little fortune, he carried on alfn the bufnefs of a corn factor. He had four chilldren, two fons and two daughters. Of the fons, John, the fubject of our prefent memoir, was the eldef. The nther fon was called Richard, and entirely the re. verfe of his brother in difpofition; he was bred to the fea, and died young.

John received the rudiments of his education at the free gran:mar fchook of Exeter, then conducted by the learned Mr Zachary Mudge (author of an Eflay fo: a new Verfion of the Pfaline, and a volume of excellent Sermons), afterwards Rector of St Andrew in Plymonth. It has oftentimes been remarked, that the finture life of a man may be nearly gueffed at from his puerile character. Thus Shebbeare, while a fehoolboy, gave the flrongeft indications of his future eminence in mifanthropy and literature, by the remarkable tenacioufnefs of his memory, and the readinefs of his wir, and no lefs fo by the malignity of his difpofition; being univerfally confidered as a lad of furprifing gevius, white at the fame time he was as generally defpifed for his malicious and ungrateful temper. This may eafily be believed, when it is fais, that he formed not one connection, either at fchool or afterwards, with any perfon in the way of friendhip, except with a young barber of an abandoned character, but whofe foul was perfectly congenial to that of Shebbeare's.

Such is the account of Shebbeare's boyifh years which we have in the 14 th volume of the Europcan Magazine. It is probably much exargerated; for Shebbeare con. tinued through life a ftaunch Tory, if not a Jacolite ; and it is well known that many of our journalifts contider themfelves as at liberty to give what characters they pleafe of fuch men.

In the fifteenth or fixteenth year of his age, young Shebbeare was bound apprentice to a very eminent and worthy furgeon in his native town; in which fittration he acquired a confiderable fhare of medical knowledge. His genins for lampnon appeared at this early period, and he could not foibear from exercifing it on his matter. No one indeed could give him the lighteft offence with inpunity; for which reafón almof every perfon avoided his acquaintance, as we would avoil the carefling of an adder. The chief marks, however, of the arrows of his wit were the gentlemen of the corporation : one or other, and fometimes all of them, were almoft conflantly expofed in a libel upon the public poits and corners of the flreets. But thongh the wifer part of them only laughed at thefe harmlefs trifles, yet fome were more irritable, and many a profecution was commenced againft, but not one could fix itfelf upon him, 2. Suppl. Vol. II. Part II.
fo artfully had he contrived to conceal himfelf. He shebheire. was alfo feveral times fummoned to appear at the fel. \(\quad \mathrm{V}\) fions, for daring to fpeak and write irieverently of the worfhipful magiltrates; but the laugh was alisays on the fide of Shebbeare, nor could they ever come at his back, fo clofely had he fitted on his armonr, with the whip of anthority.

When he was out of his time he fet up trace for himfelf, and then fhewed a tatte for chemiftry; and foon after he married a very agreeable and anniable young wroman, of no fortune, but of a genteel family. Whether his infuperable propenfity to fatire deprived him of friends and of bufincfs, or that lie fpent too much in chemical experiments, we know not; but failing at Bideford, he removed, about the year 1736 , to Britol, where he entered into parverihip with a chemitt, and never afterwards fet his foot in his native town.

In the year 1739 he attracted the attention of the public, by an epitaph to the memory of Thomas Colter, Efq; member fo: Brifol; in which, it has been truly obferved, that he has contived to raife emotions of pity, grief, and indignation, to a very high degree. The next year he publifitied a parmphlet on the Eriftol waters; from which period there is a chafin in our anthor's life we are unable to fill up. In this interval may probably be placed his failure in bufinefs, and his effort to obtain a higher fituation in his profeffion. It is certain that in the year 1752 he was at Paris, and there he obtained the degree, if he obtained it at ail, which gave hinn the addition to his name which accompanied him during the reft of his life, that of Doctor. Until this time he appears to have lived in obfourity; but at an age when vigorous exertion ufually fublices, he feems to have refolved to place himfelf in a confpicuous fituation, whatever hazard might attend it, and commenced a public writer with a degree of celerity atd virulence for which it would be difficult to find a parallel even in the molt intemperate times. 'To read over his works now, when the paffions they then raifed have fubfided, tve feel furprife at the effeet they produced; and it is within the memory of many yet living. that their influence was very confiderable. In the ycar 17i4, he began his career with The Marriage Act, a political novel; in which he treated the leginature with fuch freedom, that it nccafioned his being taken into cuftody, from whence, however, he was foon releafed.
The performances, however, moft celebrated, were a feries of Letters to the People of England, which were written in a ftyle vigorous and energetic, though flovenly and carelefs, well calculated to make an im. preffion on common readers; and were accordingly read with avidity, and circulated with diligence. They had a very confiderable effect on the minds of the people, and galled the miniftry, who feem to have been at firlt too eager to punifh the author. On the puhb. lication of the Third Letter, we find warrants, dated 4th and 8th of March, 1756, iffued by Lord Ho!. derneffe, to take up both Scott the publifher and the author, This profecution, however, feems to have been dropt, and the culprit proceeded for fome time unmolelted, "having declared (fays one of his anfwer. ers) that he would write himfelf intn a pof or into the pillory ; in the laft of which he at length fucceeded." On the 12th of Tanuary 1758, a general warrant was fignued by Lord Holderneffe, to fearch for the author,

Shelbeare. printer, and publifhers of a wicked, a adacious, and trea. fonable libel, entitled, "A Sisth Letter to the People of England, on the progrefs of national ruiu; in which is thewn that the prefent grandeur of France and cala mities of this nation are owing to the influence of Hanover on the councils of England;" and them having found, to feize and apprehend, together with their books and papers.
At this juncture government feem to have been ef. fectually roufed; for having received information that a feventh letter was printing, by virtue of another warrant, dated January 23, all the copics were feized and entirely fuppreffed. In Eatter Term an information was filed againt him by Mr Pratt, then attorney general, after wards Iord Camden ; in which it is now worthy of remark, that the crown officer, in his applieation to the court, in exprefo terms admitted a point, fince much difputed, that of the jury's right to determine both the law and the fact in matters of libel. " What I urge (fays the advocate) to the court, is only to fhew there is reafonable ground for confidering this publication as a libel, and for putting it in a way of trial, and therefore it is I pray to have the rule made abfolute; for I admit, and your lordhip well knows, that the jury in matter of libel are judges of the law as well as the fact, and have an undoubted right to confider whether, upon the whole, the pamphlet in queftion be, or be not, a falfe, malicious, and fcancalous libel." On the irth of June, the information was tried, when our author was fonnd guilty; and on the 28 th Novem. ber, he received fentence, by which he was fined five pounds, ordered to ftand in the pillory December 5, at Charing Crofs, to be confined three years, and to give fecurity for his good behaviour for feven years, himfelf in 5001 . and two others in 2501 . each.

On the diy appointed, that part of the fentence which coomed him to the pillory was put in execution, amidf a prodigions concourfe of people affenbled on the nccafion. The under fheriff, at that time, happened to be Mr Beardmore, who had fometimes been affilted by the Doctor in writing the Monitor, a paper in its principles of the fame tendency with the writings of the culpris, who confequently might expect every indulgence from the officer to whom the execution of his fentence was committed. The mariner in which it was conducted may be learned from the affidavits on which afterwards the under आeriff's conduct became the fub. ject of animadver:ion in the court of King's Bench, and which affert, "that the defendant only flood upon the platform of the pillory, unconfined, and at his eafe, attended by a fervant in livery (which fervant and livery were bined for the occafion only) lolding an umbrella over head all the time : but his head, hands, neck, and arms, were not at all confiued, or put into the holes of the pillory; only that he fometimes put his hands upon the holes of the pillory in order to reft himfelf." For this neglect of duty, Beardmore was fined \(s o l\). and fuffered two months imprifonment.

Some time before he was tried for the obnoxious publication already mentioned, the Duchefs of Qreensbury, as heir of Load Clarendon, obtained an injunction in the Court of Chancery to ftop the publication of the continuation of that nobleman's hiftory; a copy of which had got into the hands of Francis Gwyn. Efq; between whom and the Duetor there had been an
agreement to publifh it and equally divide the profits. The care and expences attending the whering this work into the world were to be wholly 1)r Shebbeare's, who performed his part of the agreement, and caufed it to be handfomely printed in quarto, with a Tory preface, containing frequent reflections on, and allufions to recent events, and to living characte1s, which gave it the appearance rather of a temporary pampllet than of a work calculated for poiterity. On the injunction being obtained, Dr Shebbeare was under the neceflity of applying to the aid of law to recover the money expended by him in printing, amounting to more than 5001 . Of that fum more than half had been walted on his fide in the courts of law and equity. And fome years afterwards, £peaking of the fituation of his affairs, he fays, "It may be eafily imagined, that my circumftances were not improved by three years imprifonment. I had no club of partizans to maintain me during that time, to difcharge my debts, nor even the fine, which I was obliged to pay after a three years confinement for a fingle offence. Notwithftanding the difficulties which inevitably arofe from thefe particulars, and although an infolvent act wes paffed foon after his Majelty's acceffion to the throne, and my circumftances might have anologifed for my taking that opportunity which it offered ; I'neverthelefs declined from availing myfelf of that occafion to evade the paymeat of my debts. I preferred the labour of endeavouring to pay thein, and the rifk of being again imprifoned if I did not fucceed. But, thank Heaven, \(I\) am in no danger of a fecond imprifonment on that account." During his confinement, he declares he never received as prefents more than twenty guineas from all the world.

While he was confined in the King's Bench, he folicited fubferiptions for the firft volume of a Hittory of England, from the Revolution to the then prefent time. But at the perfuafion of his friends he was induced to alter his defign, and receipts were iffued for a firit volume of the Hitory of England, and of the Conllitution thereof from its origin. That volume he wrote, and had tranferibed. "But as it was impracticable (to ufe his own words), whilf I was in confinement, to procure that variety of books, or to apply to manufcript authorities, for all that was requifite to the completing of this firft volume, I found on being releafed from my imprifonnent, and on application to the former only, that the volume which I had written was incorrect, infufficient, and erroneous, in too many particulars, to admit of its being publifhed, without injuftice to my fubferibers, and reprehenfons on my felf. Into this difpleafing fituation I liad been mifled by relying on the authorities of modern hiftorians, who pretend to cite the authors from whence their materials are taken, many of whom appear never to have feen them, but implicitly to have copied oue another, and all of them manifeftly defective ; not only in the authorities they fhould have fought, but in their omiffions and mifreprefeusations of thofe whom they had confulced : more efoccially refpecting thofe parts of the old German codes, on which our couftitution is erefted, and without which it cannot be properly explained or undertood. Such being the real fituation of things, I perceived that more time than I could expeet to live would be neceffarily required for fo extenive a work as
theac the whoce hifory I had propofed ; and that a fingle volume, or eren a few volumes of an hiltory incomplete, would by no ineans arifwer either tire intention of my fulferiters, or my own: I determined therefore to change my plan, and to include in one volume that Which might requine no cthers to complete this new déign.
"In confequence of this alteration, I refolved to exert my belt abilities, not only to trace the conflitution of England from its origin iit the woods of Cermany, as M. de Montefquieu expreffes it, but from the frift principles of human nature, from which the formation of all kinds of government is derived. With this view, 1 have attempted an analyzation of the mental and corporeal faculties, in order to fhew in what man. ser they reciorocally influence each other in the various actions of man, not only as an individual, but as a gregarious being, impelled by nature to affociate in comniurities. From lience I have attempred to delineate in what manner legiflature fprang and proceeded from its fource, through that variety of meanders which it hath formed in its current, both before and fince the introduction of one common lign, wherehy to exprefs the intrinfic value, not only of all the proanctions of nature and of art, but even of the human faculcies, as they are now eftimated; to compare the conflitutions of thofe different ftates which have been, and are the moft celebrated in ancient and modern hiflory, widh each other, and with that of England; and then to derive fome reafonable grounds for the determination of that which feens to be the moft confentaneous with the primogenial inftitutes of nature, ard the happinefs of human kind. In confequence of this intent, the manners that fucceffively arofe and prevailed in fuch Aates, the benefits and mifctiefs which enfured from them, are delineated, in order to explain on what founda. tion the welfare of national commurities may moft probably be eitablifhed."

This plan, thus delineated, he at times employed himfelf in filling up; but on being rudely attacked for not performing his pronife with his fubferibers, he, in \({ }_{1774}\), obferved - " From the inevitable obligation3, not only of fupporting my own family, but thote alfo whom as fon and brother it was my duty to futtain for forty years, and which, refpecting the claims of the latter, Atill continues; it will be eaiily difcerned that many an avocation muft have procteded from thefe circumftances, as well as from a fenfe of gratitude to his majefty, in defence of whofe government I have thought it my duty occafionally to exert my beft abilities." He adds, however, that he did not intend to die until what he had propofed was finifled; a promife which the event has fhe n ne was unable to perform.

In prifon he was detained during the whole time of the fentence, and with fone degree of tigour ; for when his life was in clanger from an ill ftate of health, and he applied to the court of King's Bench for permiffin to be carried into the rules a tew hours in a day, tho' Lord Mansfeld acceded to the petition, yet the prayer of it was denied and defeated by Judge Fofter. At the expiration of the time of his fentence, a new reign had commenced; and f.ortly afterwarcis, curing the adminittration of Mr Grenvillc, a pention was granted him by the crown. This he obtained by the perfonal ap. plication of Sir John Philips to the King, who, on that
otcafion, was pleafed to fpeak of him in very furour. Shebi case. able terms, which he promifed undeviatingly to endeavour to deferve by allegiance aud grat tude.

From the time of that event we find Ir Slecbeare a uniform defender of the meafures of Covernmenc, and the mark againt! whom every oppufer of adminittration confidered himfelf at liberty :o throw out the grofict abufe. Even the friends of power were often adverfe to him. Dr Smollet introduced him in no very refpectful light, under the nave of Ferret, in the novei of Sir Launcelor Greaves, and Mr: Hograrth made him one of the gromp in the third clection pront.
Scarce a perioulical publication was without fome abule of him, which he feems to have in general had the good fenfe to neglect. In the year 1774, how. ever, he departed from his general praftice, and dtfended himfelf from fome attacks at that time made upon hiim. In this pamphlet he reprefented the conduet and charaGter of Kig. William in fuch a light as to excite the indignation of evel Whlig in the kinglom: he treated him in print with as great feverity as Johnfon ufed to do in converfation.

Farly in life he appears to have vritten a comedy, which in 1766 he made an effort to get reprefented at Covent Garden. In 1768 he wrote the Review of Books in the Political Regiter for three months, and was often engaged to write for particular perions, with whom he frequently quarielled when he came to be paid. This was the cate with Sir Robert Fletcher, and we think of others. His pen fiems to liave been conftantly employed, and he wrote with great rapidity, what certainly can now be read with little fatisfaction, and mult foon be forgotten. Though penfioned by government, he can farce be faid to have renounced liis opinions; for in the paimphlet already mentioned, Lis abufe of the Revolution is as grofs as in that for which he fuffered the pillony. His violence defeated his own purpofe, and made thofe who agreed in party with him revolt from the vinulence with which he treated his adverfaries During the latter years of his life he feens to have written but little. He was a ftrenuons fupporter of the minift:y during the American war, having publifhed, in 1775, An Anfiver to the printed Speech of Edmund Burke, Efq; fpoken in the Houfe of Commons, April 19, 1774. In which his knowledge in polity, legiflature, human kind, hifory, commerce, and finance, is candidly examined; his arguments are fairly refuted ; the conduct of adminilitration is fully defended ; and his oratoric talents are clearly expofed to view. - And An Effay on the Origin, Progiefs, and Ellablifment of National Society ; in which the principles of Government, the definitions of phylieal, moial, civil, and religious Liberty contained in Dr Price's Obfervations, \&c. are fairly examined, and fully refuted; together with a juftification of the Legiflature in redu. cing a merica to obedience by force. To which is added, an Appendix on the Excullent and Adminable in Mr Burke's fecond printed speech of the 2.d of March 1775, both 3vo.

His publications, fatirical, political, and mectical, amount to thisty-four, befides a novel, entitled Lidia, or Filial Pitty; in which religious hypocrify and bluttering courage are very properly chaitised. He dieu on the ft of sugult \(1-88\), leaving, among thofe who knew him beft, the character of a benerolent man; a

\section*{S H I}
charaster which, from the manner in which he fpeaks of his connections, he probably deferved.

SHEERS, aboard a hhip, an engine ufed to hoift or difolace the lower mafts of a thip.

SHEIBON, a diftrict in Africa, lying to the foutheaft of the kingdom of Dar-Fur (See Soudan in this volume), where much gold is found both in deft and in finall pieces. The natives, who are idolaters and fa vages, collect the duft in quills of the oftrich and vul. ture, and in that condition fell it to the merchants. They have a ceremony on difcovering a large piece of gold, of killing a fheep on it before they remove it. The people, who are all black, have fome form of marviage, i. e. of an agreemenit between manl and woman to cohabit. Women of full age wear a piece of platted grafs on their parts. The younger and unmarried are quite naked. The flaves, which are brought in great numbers from this qualter, are fome prifoners of war among themfelves (for their wars are frequent), and fome feduced by treachery, and fold. But it is faid to be a common practice for a father in time of farcity to fell bis children.
At Sheiton are fome Mohammedans, who live among the idolaters, and wear clothing: it is not faid whether Arabs or not. Mr Browne, from whofe travels we have taken this account of Sheibon, does not give its latitude or longitude.
SHILLUK, a town in Africa on the banks of the Balr-el-abiad, or true Nile. The houfes are built of clay, and the inhabitants, who are idolaters, have ro other clothing than bands of long grafs, which they pafs round the wait and between the thighs. They are all black; both fexes are accuftomed to fhave their heads. The prople of Shilluk have the dominion of the 1 iver, and take toll of all paffengers, in fuch articles of traffic as pafs among them. The name Shilluk is not Arabic, and its meaning is unknown. - When afked concerning their name or country, the people reply shilluk. When employed in tranfportirg Mohannedans acrofs the ferry, they occafionally exhibit the intpoitance which their fituation gives them. After the Mullim has placed himfelf in the boat, they will afk him, "Who is the mafter of that river?" The other replies, as is ufual, "Ullah or Rubbani" - God is the mafter of it. "No (anfwers the Shilluk), you mult fay that fuch a one (naming his chief) is the matter of it, or you hall not pafs." They are reprefented as thewing hofpitality to fuch as come among them in a peaceable manner, and as never betraying thofe to whom they have once accorded protection. The particulars of their wornhip have not been deferibed. In Mr Browne's map, Shilluck is placed in about J \(3^{\circ} \mathrm{N}\). Lat. and \(32^{\circ} 26^{\prime}\) E. Long.
SHIp. See that article, and Shipbuilding (En. sycl.), and likewife Floating Bodies (Suppl.) In the Tranfagions of the Royal Socicty of London for 1798, Mr Atwood has completed his difquifition on the Stability of Ships; but as the memoir cannot be abridged, we mult refer the fcientific naval architect to the original for much ufeful information.

A fmall work has lately been publifhed by Charles Gore, Efq; of Weimar in Saxony, upon the refpective Velocity of Flouting Bodies varying in Form. It contains merely the refults of two feries of experiments: from the firt of which feries, it feems to appear that
the form beft calculated for velocity is a long parallel body, terminating at each end in a parabolic cuneus, and having the extreme breadth in the centre. Alfo, that making the cunens more obtufe than is neceffary to break with fairnef3 the curve line into the ftraight, creates a confiderable degree of impediment. And Mr Gore is inclined to think, that the length of Gips, which has already been estended with fuccefs, to four times the breadth, is capable, with advantage, of ftill finther extenfion, perhaps to five, and, in fome cafes, event to lix times.

The fecond fet of experiments was infituted to afcertain the refpective degrees of Atability, or power of retifing the preflure of the wind, in carrying fail, on bodies of difterent forms. The bodies ufed in the experiments had their fecific capacities and weights precifely equal, but their forms different; and from the refults, it appears that the form of a midfhip tody, beft adapted for fability only, is a flat bottom, with perpendicnlar fides; and that the next bet! adapted is a fenicircle. But as there (sifts nuch difficulty in confructing the former with fufficient ftrength, befides its being ill adapted to heavy feas, as, by the fudden defcent in pitching, the bottom will frike the water nearly at right angles, and fufain thereby a tremendons fhock. And as the latter feems to be too inclinable to tranf velfe ofcillation, or rolling, and alfo to be defcient in capacity for many fervices, our author is of opinion, that a midhip body, of a compounded form, is molt applicable to general purpofes.

On account of the few documents before us, we are unable to fpeak critically concerning this tract. To. benefit naval architecture, we are of opinion, that the method of experiment is more fure and expeditious than that of cidculation: yet conclufions from experiments. mult be drawn with great caution. It is by no me?ns certain that a refult obrained for a Eody of a given bulk. will obtain for fimilar bodies which differ in dimenfions.

We fhall conclude this thort article with a ftatement of the principles upon which Patrick Miller, Efq; of Delfwititon (Scotland), propoies to conttruct Mips and veffels which cannot founder.

The veffel is to be kept afloat, withont the aid of its fides, fulely by the buoyancy of its bottom, which is flat; the bottom never being fo deeply immerfed as to bring the upper furface thereof on a livel with the water; fuch veffels not being conftructed for the purpofe of carrying cargoes, but tor that of carrying faifugers, with the neceffary fores and provifions; and as thefe veffels are not kept atloat by the aid of their fides, but by the buoyancy of their bottom, as above defcribed, they canmot fink, and therefore pmmps are not required, nor are they in any refpeet neceffary for the prefervation of fuch veffels. The faiu veffel is put in motion, during calms, and againit light winds, by meana of wheels. Thefe wheels project beyond the fides of the veffel, and are wrought by means of capitans: the number and the dimentions of the wheels depend upon the length of the veffel. Thefe wheels are built with eight arms, which confift entirely of plank. Sliders are ufed to work and to keep the veffel to windward when under fail. Thefe fliders are placed in the centre of the veffel, from ftem to Atern; they are made of plank, and the number and dimenfions muft depend on the length of the veffel; and they are raifed and let
down,
down, either by the hand, or by means of a purchafe, according to the fize of the veffel. Veffich of this conftruction draw water, in proportion to their dimenfions, as followe: a veffel of forty feet in length, and from thirteen to nineteen feet in breadth, will draw from thirteen to fixteen inches of water. One of fifty feet in length, and from feventeen to twenty four feet in breadth, will draw from fifteen to eighteen inches of water. One fixty feet long, and from twenty to twentyeight feet broad, will draw from eighteen to twenty. one inches of water. One fereaty feet long, and from twenty-three to thity two feet broad, will draw from twenty-one to twenty.four inches of water. One eighty feet long, and from twenty-feven to thinty-feren feet broad, will draw from twenty four to twe tity-feven inches of water. One ninety feet long, and from thirty to forty two feet broad, will draw from twenty-feven to thirty inches of water. One of one hundred feet in length, and from thirly-three to forty-feven feet in breadth, will drasv from thirty to thirty-three inches of water.

As, from the principle nupon which this veffel is confructed, fhe cannot fank, the invention muft prove a sneans of faving many lives; and as it will give more room and height between the decks than any vefict of the fame dimenfions of another conftruction, it muft add greatly to the comfort and accommodation of perfons at fea of all deferiptions. It is expected that, from thefe ačvantages, a more gencral and friendly intercourfe amonglt nations will take place, which will have the effect to diffufe knowledge, and to remove national prejudices, thereby promoting the general welfare of mankind. At prefent (fays Mr Miller), it would be altogether inproper to give any defeription of fhips of greater dimenfions, le A it fhould be converted to a purpofe very different from that intended by the inventor.
SIIIPTVRECK, a well-known difater, by which numbers of lives are yearly loft. In that valuable mifcellany entitled, The Philofopbical Magazine, we have an account of means for preventing that lofs, when the hip is in danger within two or three hundred fathoms of the fhore; and as the anonymous author (a French\(\operatorname{man}\) ) fays that he has by experiment afcertained the efficacy of thefe means, we fhall fate them to our readers.

The only certain means of faving the cress of a veffel in fuch a flate is, to eitablif, a rope of commanication frum the fhore to the fip. But how is this to be done? The author fays, by fixing the end of the :ope to a boinb or cannon ball, and extending the rope afterwards, in a zirg zag direftion, hefore the morter or cannon, or fufpending it on a picce of wood raifed feveral feet. A rope, fo placed, will not break (he fays) by the greateft velocity which can be given to the bomb or ball; and thus the end of it can be fent afhore by a difcharge of artillery. He prefers the bomb to the caunon ball, for reafons which he does not affign. He propofes, however, other means to effect his benevolent purpofe.
" It ought to be remembered (fays he), that a veffel is never calt away, or perifhes on the coant, but becaufe it is driven thither againft the will of the captain, and by the violence of the waves and the wind, which almoft always blows from the fea towards the fhore, without which there would be no danger to be apprehended: confequently, in thefe circumltanccs, the wind comes always from the fea, either directly or obliquely, and blows towards the fhore.
" \(1 /\), A common paper kite, therefore, launched from the veflet and driven by the wind to the fore, would be fufficiont to fave a cresw confifting of 1500 feamen, if fuch were the number of a nip of war. 'This kite would convey to the fhore, a flong packthrad, to the end of which might be affixed a cord, to be drawn on toand by means of the fring of the hite ; and with this cord a rope, or as many as hould be mecfliary, might be conveyed to the flio.
" \(2 d\), A finall balloon, of fix or feven feet in diameter, and raifed by rarified air, would be alfo an exvellent means for the like purfofe: being driven by the wind from the veffel to the frore, it sould caray thither a ftring capalle of drawing a cord with which Several ropes might be efterwards convered to the vefict. Had not the ditcovery of Montgolfir produced any wher benefit, it would be entitled onl this account to te con. ficered as of great importance.
" 3 d, it fiyy-rocket, of a large diameter, would be of eçual fervice. It would alio carry, from the refol to the tho:e, a fring capable of drawirg a rope after it.
" Lafliy, A fulsth plan for faving the crew of a flis.wrecked vef(c), is that of thicowing from the vefiel into the fea an empty cafls with a curd attached to it. The wind and the waves would drive the cafk to the flome, . and afford the means of eitablin.ing that rope of communication aiready mentioned."
SILLA, a large town on the Niger, which bounded Mr Park's traveis eaftward. He gives no defuription of the place, which lie had not fpirits or health to furvey ; but fills a page of his work with the realons whick determined hint 10 proceed no farther. "When I arrived (fays he), I was fuffered to remain till it was quite dark, under a tree, furrounded by hundreds of people. Eur their language was very differnt from the cther pats of Barrbaria; and I was informed that, in my progrefs eattward, the liambarra tongue was but little underilond, and that when I reached Jennic, I fhould find that the majority of the inhabitants fpoke a different language, called Y̌nné Ḱummo by the Negrocs, and Kalam Sondian by the Moors.
" With a great deal of entreaty, the Dooty allowed me to come into his baloon, to avoid the rain; but the place was very damp, and I had a fmart patoxyfin of fever during the niglit. Worn down by licknefs, exhautled witith hunger and fatigue, half naked, and without any article of value, by which I might procure provifions, clothes, or lodging, I began to reflect feriowly on my lituation. I was now convinced, by painful experience, that the obflacles to niy further progrefs were infur mountable. The tropical rains were already fet in with all their violence; the rice grounds and fwanps were everywhere overflowed; and in a fesw days more, travelling of every kind, unli fs by water, would be conspletely obftrneted. 'The kowries which remained of the king of Bambarra's prefent were not fufficient to enable me to hire a canoe for any great diftance; and I had but little hopes of fubfiling, by charity, in a country where the Moors have fuch influence. But above all, I perceived that 1 was advancing more and more within the power of thofe mercilefe fanatics; and from my reception both at Sego and Sansanding (fee thefe atticles, Suppl.), I was apprehenfive that, in attempting to reach even Jeuné (unlefs under the protection of fome man of confequence amongft them, which I had

Ship sila. \(\xrightarrow{\text { Sila. }}\)

Silton no means of obtaining). I mould facrisce my life to no II \(\underbrace{\text { Suva }}\) purpofe; tor my difooveries would perifh with me. 'I'he profpeet either way was g'vomy. In returring to the Gambia, a journey on foot of many huudred miles prefented itfelf to my conterplation, through regions and countrits unkuown. Neverthelefs, this feemed to be the only alternative; for I faw inevitable deAtruction in attempting to preceed to the ealtward. With th's convietion on my mind, I hope mey readers will acknowledge that I did right in going no farther. 1 had made every effort to execute my miffion in its fulleft extent which pruafence could jultify. Hald there been the moft difant profpeet of a fueceffful termina tion, neither the uriavoidable hardirips of the journey, nor the dangers of a fecond captivity, Bould have forced me to defft. This, however, neceffity compelled me to do; ard whatever may be the cpinion of my general readers on this point, it affords me inexprefible fatis faction, that my honourable employers have been pleafed, frece iny return, to exprefs their fuil approbation of my coudure." He would be a very unreafonable man, indeed, who cothed on this point think differently from Mr Park's employers. Silla is placed in the new map of A frica in about \(14^{\circ} 48^{\prime} \mathrm{N}\). Lat. ald \(1^{\circ} 24^{\prime} \mathrm{W}\). Long.

SILLON, in fortification, an elevation of earth, made in the middle of the moat, to fortify it, when too broad. It is more ufually called the envelope.

SIMANCAS, a village on the eaftern limit of the kingdom of Leou in \(\$_{\text {pain, two leagues below Valla. }}^{\text {and }}\). dolid, on the river Gifuerga. It is mentioned by Dr Robertfon in the introductios to his Hitory of America, and is remarkable for the archives or regitter of. fice of the kingdoms of I eon and Caftile, kept in the cafte there. This collection was begun when the king3 rafided often at Valladolid; in which city to this day is the chancery or civil and oriminal tribunal for almof all Spain to the north of the 'Tagus. It was thought convenient to have thofe papers kept in the neighbourhood of that court ; and this caflle was particularly fit for that purpofe, as it is all built of fone. Some years ago there were two large halls in this office fille 1 with papers relating to the firt fettlement of the Spaniards in South America. There was alfo in the room called the ancient royal patronage a box containing treaties with England, in which are many letters and treaties be tween the kings of England and Spain from about the year 1400 down to 1600 . There was alfo in the fame archives a Atrong box, with five locks, which, it is faid, has not been opened fince the time of Philip II. and it is conjectured that it contains the frocefs againft Philip's fon Prince Charles. But it feems fone of the fate papers have been removed to Madrid.

SI'TUS, in algebra and geometry, denotes the fituation of lines, furfaces, \&c. Wolfius delivers fome things in geometry, which are not deduced fiom the common analy fis, particulariy matters depending on the fitus of lines and figures. Leitnitz has even founded a particular kind of analy fis upon it, called calculus fitus.

SIWA, a town in E.gypt, to the weitward f Alex andria, buit on a fmall fertile fpot or Oats, which is furromided on all fides by defert tand. A large pro portion of this fpace is filled with date trees; but there are alfo pomegranates, fige, and olives, apricis, anid plantains; and the gardens are remarkwly inu thats. - Whey cultirate a confiderable quantity of nee, which,
howeter, is of a reddith hue, and different from that of the Delta. The remainder of the cultivable land furnifhes whent enough for the confumption of the whabitaits. Water, both falt and frefh, abounds; but the fprings which furnifh the latter are moft if them tepid; and fuch is the nature of the water, air. and other circumfances, that ftrangers are often affceted with agues and malignant fevers.

The greatelt curiolity about Siwa is a ruin of undoubted antiquity, which, according to Mr Browne, refembles too exactly thofe of the Upper Egypt, to leave a doubt that it was erected and adorned by the fame intelligent race of men. It he figures of Ifis and Anubis are confpictous amorg the fculptures; and the pro. portions are thofe of the Eigyptian teniples, though in miniature. What of it remains is a fungle apartment, built of mafly fones, of the fame kiud as thofe of winch the pyramids confift; and covered originally with lix large and folid blocks, that reach from one wall to the other. The length is 32 feet in the clear, the height about 18, the width 15: A gate, fituated at one ex. tremity, forms the principal entrance; and two doors, allo near that extremity, open oppofite to each other. I'he other end is quite ruinous; but, jucging from circumfances, it may te imagined that the building has never been much larger than it now is. There is no eppearance of any ot ter edifice having bcen attached to it, and the lefs fo as there are remains of fculpture on the exterior of the walls. In the interior are three rows of emblematical figures, apparently defigned to reprefent a procefion; and the fpace berween them is filled with hieroglyphic characters, properly fo called. The people of Siwa have no tradition concerning this edifice, nor attribnte to it any quality, but that of concealing treafures, and being the haunt of demons. It has, however, been fuppofed, with tome degree of probability, that Siwa is the Siropum of Pliny, and that this building was coeval with the famous temple of Jupiter Ammon, and a dependency on it. This may be fo; but neither the natives of Siwa, nor the various tribes of Arabs who frequent that place, know any thing of the ruins of that temple, about which Ms Browne made every poffible enquiry. "It maky (as he obferves) ftill furvive the laple of ages, yet rentain una known to the Arabs, who trave!fe the wide expanfe of the defert; but fuch a circuinflance is fcarcely probable. It may be completely overwhelned in the fand; tut this is hardly within the compafs of belief."
the complexion of the people of Siwa is generally darker than that of the Egyptians. Their dialect is allo uifferent. Ihey are not in the habitual ufe cither of cofree or tobacen. Their fect is that of Malik. The drefo of the lower clals is very fimple, they being almolt naked: among thofe whofe cottume was difcernible, it approaches nearer to that of the A rabs of the defert than of the Egyptians or ivoors. Their cloth. ing confits of a thire of white cott, \(n\), with large nceves, and reaching to the feet; a red Tunifine cap. whthous a turban; and thoes of the fame colour. In warm weather they conmonly caft on the fhoulder a blue and white cloth, called in: Egypt melayé ; and in winter they are defenced fiom the cold by an ibhram or blanket. The lift of their huufehold furniture is very fhort; fome carthen ware made ty themfeives, an a fow mats, form the chet part of it, none but the nocher order
being noTefect of copper utenfls．They occafionally purchafe a few flaves from the Murzouk caravan．The remainder of their wants is fupplied from Cairo or A． lexandria，whither their dates are tranfunctet，both in a dry Itate and beeten intos man？，which when good in fome degree refembles a fweet meat．They eat no large quantity of animal food；and bread of the kind known to us is uncommon．Flat cakes，without leaven，knead ed，and then half baked，form part of their nourifh－ ment．The renainder collfits of thin theets of palte， fried in the oil of the palm tree，rice，milk，dates，\＆cc． They drink in great quantities the liquor extracted from the date tree，which they term date tree suater， though it have often，in the flate they drink it，the fower of inebriating Their comeftic animals are，the hairy fheep and goat of Egypt，the afj，and a very fmall number of oxen and camels．The women are veiled，as in Egypt．After the rains，the ground in the neighhourliond of Siwa is covered with falt for many weeks．Siwa is fituated in \(29^{\circ} 12^{\prime} \mathrm{N}\) ．Lat．and \(44^{\circ} 54\) E．Long．
SKLRMISH BAY，the name given by Lieutenant Eroughton to a bay in an ifland，which was difcovered by him in latitude \(43^{\circ} 4^{\prime \prime}\) fouth，and in longitude \(183^{\circ}\) eatt．The Chatham armed tender，which Mr Brongho ton commanded，under Captain Vancouver in his voy－ age of difcovery，worked up into the bay，and came to anchor about a mile from the fhore．The Lieutenant， the mafter，and one of the mates，lanced，and found the people fo extremely inhofpitable，that they were obliged to fire uDon them in their own defence：The land，whether ifiand or continent，is of confiderable magnitude；the part which they faw extended nearly 40 miles from eait to wert；and the appearance of the country，according to the defcription given，is very pra－ mifing．In many refpects，the natives refemble thofe of New Zealand；from which country they are diftant about too leagues：but their fkins were deflitute of any mark：，and they liad the appearance of being clean． ly in their perfons．Their drefles were of feal or fea－ bear flkin，and fome had fine woven mats faftened round the waift．＂They feemed a cheerftil race，our con－ verfation（fays Mr Broughton）frequently exciting vio． lent burits of laughter amongt them．On our fin？ lanting，their furprile and exclamations can hardly be imagined：they pointed to the fun，and then to us，as if to afk，whether ne hat come from thence？＂Their arms were fpears，clubs，and a fmall weapon refembling the New Zealand patoo
SLIDING rule（fee that article，as likewife Gav－ ging Rod，Geometry，and Logarifhmic Lites，En－ cycl．）is introduced here，for the fake of a new，and （except in working direct proportions）a more com－ modions method than the cominon，of applying the nider．This neethod，which is propofed by the Rev． W．Pearfon of Linculn，is as follows：

Invert the fider B on any common fliding rule， whereby the numerical figures will afcerd on it，and on the fixed line A ，in contrary directions：：now，as the difance from unity to any multiplier，on Gumiter＇s line， will invariably extend from any muleiplicand to their produet，it follows，that if any particular number on the inverted nider \(B\) be placed oppafite to any other given number on \(A\) ，the product of thofe numbers will fland on the fider \(B\) ，again？unity on \(A\) ；for，in any
pofition of the inverted nider，the diffance from unity to the multiplier on A，inflead of being carried forward on B，as when the flider is in a direct polition，is brought tack thereby to unity assin；fo that unity（or \(\sin\) on fingle lines where the fider is too fhort for the opcra－ tion）is invariably the index for the product of any two coincident numbers throughout the lines．
In divifion，by the fame procefs，if the dividend on \(B\) be put to the index，or unity on \(A\) ，the divifion and quotient will coincite on the two oppofite lines；fo that when one is given，and fought for on either line， the other is feen on its oppofite line at the fame time．

The next operation which offers itfelf here is reci－ procal proportion，which can be effected by no other method than by inverting the nider，but which is ren－ dered as eafy by this application，as direct proportion is in the cominon way；for if any antecedent number on \(B\) inverted be fet to its confequent on \(A\) ，any other autecedent on \(B\) ，in the fame pofition，will fland againft its confequent on \(A\) ，fo as that the terms may be in a reciprocal ratio．In fquaring any number，it will ap－ pear，from what has bcen already faid，that if the num－ ber to be fquared be placed on 13 ，inverted againft the fame on \(A\) ，the fquate will fland on \(B\) ，agzinft unity on A．Therefore，to extract the fquare 1oot of any nunber，let that number on 13 flard againf unity on \(A\) ；and then wherever the coincident nuinbers are both of the fame value，that point indicates the root．If two dividing lines of the fame value do not exactly co－ incide，the coincident point will be at the middle of the fpace contained between thofe two which are nearclt a coincidence ；and as there is only one fucli point，there can be no miftake in readily afeertaining it．The find－ ing of a mean proportional between any tiro numbers is extremely eafy at one operation ；for if one of the numbers on B inverted be fet to the other on \(A\) ，the coincident point of two fimilar trumbers flews citluer of． thufe to be the mean，or fqua：e root of their product， accorving to the preceding procefs．Thus have we a fhort and eafy mechod of mintiplying，dividing，work． ing reciprocal proportion，fularing and extractivg the Iquare ront，at ame pofition of the inverted dider， whereby the cye is directed to only one point of rien－ for the refule，after the fider is fixed：whereas，by the common methed of extractil： and 13 direef，the nider reguires to be moved back－ wards and forwards by adjuitment，the cye moving a！． ternately to two points，till ！milar numbers ftand，one on \(B\) againf urity on \(A\) ，and the other on \(A\) againt the fquare number on \(B\) ；which fquare number，in the cale of finding a mean proprtional，muit tee found by a previous operation．Hence，for more convenience in the extration of roots，and meafuring of fulids，an ach－ ditional line cailed I）has been added to the rule，which residers it more complex，ald confequently fillom un－ derfinod by an arificer．

SNOW．See hat alticle（Encyol．），where we have endcavoured to account for fnow＇s contributing to the prefervation and growth of vegetables．It mult be con－ ferted，however，that if fnow poffeffed nily the proper－ ty of preferving vegetables，and of preventing them from perinurg by the leverity of the cold，it is not at all protable that the ancient ptilofophers would have con－ fidered it as dopufiting on the earth ，itrous falts，as they might have afcertained，by a very fimple expui． ment, that it contains none of that falt ; for they did not afcribe the fame property to rain-water, bui they remarked that fnow burnt the fkin in the manner of acids, as well as other bodies immerficl in it. Eeinc induced to conclude that there was nitre in the air, it was natural that they flould afcribe to this nitre the burning qualities of fnow, and confequently its in fluence on vegetation.

Such reflections induced Morveau, alias Citizen Guyton, to employ J. H. Haflenfratz to inquire into the caufe of the difference of the effects of fnow and rainwater on various fubltances. Haffenfratz found that thefe differences are occafioned by the oxygenation of the fnow; and that thefe effects are to be aicribed to a particular combination of oxygen in this congealed water. He put 1000 grammes of frow in a jar, and 1000 gramines of dillitled water in another. He poured into each of the jars an equal quantity of the fame folution of t :rnfuie. He placed both the jars in a warm temperature; and after the fnow melted, he remarked that the dye was redler in the frow water than in the diffilled water. He repeated this experiment, and with the fame refult. He put into a jar tojo grammes of diftilled water, and into another 1000 grammes of foow. Into each of the jars lie put \(6 \cdot 5\) grammes of very pure and clean fulphat of iron. In the firlt, there was precipitated 0.150 grammes of the oxyd of iron, and 0.010 grammes in the other. As the oxyd of iron was precipiteted from a fol:tion of the fulphat by oxygen, it thence follows, that the fnow contained more oxygen than the diftilled water; and it follows, from the inft experiment, that this quantity of oxygen was conliderable enough to redden the tincture of turnfole.

It is fully demouftrated by thefe two experimente, that fnow is oxygenated water, and that it muft conferquently have on vegetation an action different from that of common ice. The experiments of Dr Ingenhoufs on the germination of feeds have tanght us, that the prefence and contact of oxygen are abfolutely receffary for the plant to expand. They have fiewn alfo, that the more abundant the oxygen is, the more rapidly will the feeds grow. Moit plants fuffered to attain to their perfect maturity fhed on the earth a part of their feed. Thefe feeds, thus abandoned an! expofed to the action of cold, are preferved by the fnow which covers them, at the fane time that they find in the water it produces by melting, a portion of oxygen that has a powerful action on the principle of germination, and determines the feeds that would have perifhed to grow, to expand, and to augment the number of the plants that cover the furface of the ea:th.

A very confiderable number of the plants which are employed in Europe for the nourilhment of men, are fown in the monthe of September, Oetnber, and No. vember. The feeds of feveral of thefe germinate before the cold commences its action upon them, and changes the principle of their life. The fnow which covers the reft, acting on the grem by its oxygenation, obliges them to expand, and to increafe the number of uffel plants which the farmer and gardener commit to the earth, and confequently to multiply their productions.

Here, then, we have thrce effects of fnow upon vegetation, all very different, which contribute each feparately to increafe, every year, the number of our plants;
to give them more vigour, and confequently to multiply our crons. Thefe effects are: 1. To prevent the plants from being attacked by the cold, and from being changed or perining by its force. 2. 'ro furnifh vcgetables with continual inoifture, which helps them to procure thofe fubftances neceffary for their nutrition, and to prelerve them in a ftrong healthy ftate. 3. T'o caufe a greater number of feeds to germinate, and confequently to increafe the number of our plants.

SOAP. Sec Chemistry Index, Suppl.
SOLDERING. Under this title, in the Encyclopedia, we have given directions for foldering filver, brals, and irnn : but there are other metals which muft fonctimes be fcldered; and the following account of different folders, taken from the Pbitofoplbical Magasine, may be ufeful to miany of our readers.
"When lead, tin, and bifmuth, are mixed in a certain proportion, they produce a metal exceedingly fufible, which is known by the name of foft folder: but which, from its lingular properties, may be applied with advantage to many other ufeful purpofes. Newton, and after him Kiaft and Mufchenbrock, obferved, that five parts of bifmuth, three of tin, and two of lead, al. fo five parts of bifmuth, four of tin, and one part of lead, melted with a heat of 220 degrees of Fahrenheit: and they found that various mixtures of this kind were fulible by a heat not much greater than that of boiling witer. At a later periorl, V. Rofe, a German natura* lift, difcovered, that a mixture of four parts of bifmuth, two of tin, and two of lead, as Kunkel recommended for follering tin; and D'Arcet, among the Frencth, that a mixture of eight parts of bifmuth, three of tin, and five of lead; or eight of bifmuth, four of tin, and four of lead; or eight of bifmuth, two of tin; and fix of lead : allo fixteen of bifmuth, feven of tin, and nine of lead-all melted, or at leaft became foft, in boiling water.
"According to the experiments made by Profeffor Gmelin, refpecting the fufion of thefe three metals, a mixture, conlifting of two parts of bifmuth, one part of tin, and one of lead, which is the fame as Rofe propofed, gave a metal that was fufed in boiling water. A mixture of iix or more parts of bifmuth, fix of tin, and three of lead, or one part of bifmuth, two parts of tin, and two of lead, gave, according to Klein, the folder ufed by the tin button makers. The fame workmen ufe alfo for foldering, according to Kilein, a mixture of four parts of bifnuth, three part; of tin, and five parts of lead. Among the many foft folders employed by the tin men, a misture of one part of bifmuch, two parts of tin, and one part of lead, is, according to Klein, very much employed. Refpecting this kind of folder, the experiments of Irofeffor Comelin give the following refult: One part of bifmuth, two part: of till, and one part of lead, melt in boiling water. According to Klein, the tin-men employ for foklering a mixture of one part of bifmuth, iwenty four parts of tin, and four parts of lead. Eight parts of bifmuth, three of tin, and five of lead, gave a metal exceedingly like tin in its colonr and brightnefs, but very brittle; in water beginning to boil, it became not only foft, but was completely fufed. This imitation, however, may be better accomplifhed by the mixture of Profeflor Lightenberg, which confifts of five parts of bifmuth, three
\& dering, three of tin, and two of lead. This metal is very like udan. the former, though not fo brittle; but it feemed to melt in hot water even before it cane to boil."

As this fubject has again come under our notice, it may be proper to lay before our readers what M. Van Braam fays of the Chinefe method of foldering frying. pans and other veffels of calt-iron, when cracked and full of holes. As the author admits that it muft appear impoffible to thofe who have not witneffed the procefs, fuch of our artifts as have not been in China will give to the tale what crecit they think it deferves.
"All the apparatus of the workman confifts in a little box, 16 inches long and 6 wide, and 18 inches in depth, divided into two parts. The upper contains three drawers with the neceffary ingredients; in the lower is a bellowe, which when a fire is wanted is adapted to a furnace eight inches long and four inches wide. The crucibles for melting the fmall pieces of iron intended to ferve as folder are a little larger than the bowl of a common tobacco pipe, and of the fame earth of which they are made in Europe: thus the whole bulinefs of foldering is executed.
"The workman receives the inelted matter out of the crucible upon a piece of zet paper, approaches it to one of the holes or cracks in the frying pan, and applies it there, white his affiftant fmooths it over by fcraping the furface, and afterwards rubs it with a bit of wet linen. The number of crucibles which have been deemed neceffary are thus fucceffively emptied, in order to ftop up all the holes with the melted iron, which confolidates and incorporates itfelf with the broken uttenfil, and which becomes as good as new. The furnace which our author faw was calculated to contain eight crucibles at a time; and while the fufion was going on, was covered with a ftone, by way of increafing the intenfity of the heat." -M. Van Braam affects frequently to correet the miftakes of Sir George sitaunton!

SOUDAN, literally fignifies the country of the ne. groes; but it is likewife ufed as one of the names of an African kingdom, otherwife called Dar-fur. We know not that this kingdom has been vifited by any European befides Mr lirowne, who places it between the 11 th and 16 th degrees of north latitude, and between the 26 th and 30 th degrees of eaft longitude. Thefe numbers are not exact: it does not reach fo far eaft as the 3 orh degree, nor fo far north as the 16 th ; but on his map minutes are not marked. On the north, it is bounded by a defert which feparates it from E. gypt; on the ealt, by Kordofan, which is now fubject to Soudan, and lies between it and Sennaar; and on the fouth and eaft, by countries of which the names are hardly known. Mr Browne was induced to vifit Soudan in lropes of being able to trace the Bahr-el-abiad, or true Nile, to its fource: but he was difappointed; for that river rifes in mountains confiderably farther fouth than the limits of this kingdom; and the Sultan, a cruel and capricious tyrant, detained him a prifoner at large almoft three years.

Soudan, or Dar-fur, abounds with towns or villages, ill built, of clay, and none of them very large. Of thefe it is not worth while to give an account. Its feafons are divided into rainy and dry. The perennial rains, which fall in Dar. Fur from the middle of June till the middle of September in greater or lefs quantity, but Suprl. Vok. II. Part II.
generally botls frequent and violent, fuddenly invert the face of the country, till then dry and fteril, with a delightful verdure. Except where the rocky nature of the foil abfolntely impedes vegetation, wood is found in great quantity; nor are the natives affiduous completely to clear the ground, even where it is defigned for the cultivation of grain. As foon as the rains be. gin, the proprietor, and all the affiftants that he can collect, go out to the field; and having made holes at about two feet diftance from each other, with a kind of hoe, over all the ground he occupies, the dokn, a kind of inillet, is thrown into them, and covered with the foot, for their hubandry requires not many in?trumente. The time for fowing the wheat is nearly the fame. The dokn remains fcarcely two months before it is ripe; the wheat about three.

The animals in Soudan, both wild and tame, are the fame as in other parts of A frica in the fame latitude. 'Though the Furians breed horfes, and purchafe very fine ones in Dongola, and from the Arabs to the cait of the Nile, the afs is more nfed for riding ; and an Egyptian afs (for the affes of Dar- Fur are diminutive and indocile like thofe of Britain) fetches from the value of one to that of three flaves. The villages of this country, like thofe of Abydinia, are infefted with hyenas; and in the unfrequented parts of the country are the elephant, the rhinoceros, the lion, the leopard, and all the other quadrupeds of Africa. The Arabs often eat the flefh of the lion and the leopard; and fometimes they fo completely tame thofe animals, as to carry them loofe into the market place. Our author tamed two lions, of which one acquired moft of the habits of a dag. He fatiated himfelf twice a week with the offa! of the butchers, and then commonly flept for feveral hours fucceffively. When food was given them, they both grew ferocious towards each other, and towards any one who approached thein. Except at that time, though both were males, he never faw them difagree, nor fhew any fign of ferocity towards the human race. Even lambs paffed them unmolelted.

Among the birds, the vuliur perenopterus, or whiteheaded vulture, is moft worthy of notice. It is of furprifing ftrength, and is faid by the natives to be very long.lived, fed futes penes autiores. "I have lodged (fays Mr Browne) a complete charge of large fhot, at about 50 yards diftance, in the body of this bird: it feemed to have no effect on him, as he flew to a confiderable diftance, and continued walking afterwards. I then difcharged the fecond barrel, which was loaded with ball: this broke his wing; but on my advancing to feize him, he fought with great fury with the other. There are many thoufands of them in the inhabited di. ftrict. They divide the field with the hyena: what carrion the latter leaves at night, the former come in crowds to feed on in the day. Near the extremity of each wing is a horny fubftance, not unlike the fpur of an old cock. It is ftrong and fharp, and a formidable inftrument of attack. Some fluid exudes from this bird that fmells like mun; but from what part of him I an uncertain." The ferpents found in Soudan are the fame as in Egypt ; but the natives have not the art of charming them, like the Egyptians. The locuft of Arabia is very common, and is frequently roafted and eaten, particularly by the flaves.

In Dar-Fur there feems to be a fcarcity of metals; 3 S but are to be found. The copper brought by the merchats from the territorics of certain idolatrous tribes bordering on Fur, is of the fine fl quality, in colour refembling that of China, and appears to contain a portion of zinc, being of the fame pale hue. Iron is found in abundance; bist they have not yet learned the art of converting it into fteel. Silver, lead, and tin, our author never leard mentioned in Soudan, but as coming from Egypt ; but of gold, in the countries to the ealt and weft, the fupply is abundant. Alabafter, and various kinds of marble, are found within the limits of Fur, as is foffil falt within a certain diftrict ; and there is a fufficient fupply of nitre, of which, however, no ufe is made.

The reftraint under which Mr Browne was kept in this inhofpitable country, prevented him from making a full catalogue of its vegetable productions. Of the trees which fhade our forefts or adorn our gardens in Europe, very few exitt in Dar. Fur. The characterific marks of thofe fpecies which moft abound there, are their fharp thorns, and the folid and unperimable quality of their fubfance. They feem to be much the fame as thofe which Brace found in Abyffuia. There is a fmall tree calle? enncb, to the fruit of which they have given the name of grapes. It bears leaves of light green hue; and the fruit, which is of a purple colour, is attached, not in bunches, but fingly to the fmaller branches, and interfperfed among the leaves. The internal ftructure of the fruit is not very unlike the grape, which it alfo 1 efembles in fize: but the pulp is of a red hue, and the tafte is ftrongly aftringent. The water. melon (cucurtita citrallus) grows wild over almont all the cultivable lands, and ripens as the corn is removed. In this hate it does not attain a large tize. The in. fide is of a pale hue, and has little flavour. As it ripens, the camels, affee, \&c. are turned to feed on it, and it is faid to fatten them. The feeds, as they grow blackifh, are collected to make a kind of tar, kuiran. Thofe plants of the melon which receive artificial culture grow to a large fize, and are of exquifite Havour. Tobacco is produced in abundance; and our author fpeaks of cochineal as found in Dar-Fur, or fome of the neighbouring countries.

The harveft is conducted in a very fimple manner. The women and flaves of the proprietor are employed to break off the ears with their hands, leaving the ftraw fanding, which is afterwards applied to buildings and various other ufeful purpofes. They then accumulate them in bafkets, and carry them away on their lieads. When thrafhed, which is aukwardly and incompletely performed, they expofe the grain to the fun till it become quite dry; after this a hole in the earth is pre. pared, the bottom and fides of which are covered with chaff to exclude the vermin. This cavity or magazine is filled with grain, which is then covered with chaff, and afterwards with earth. In this way the maize is preferved tolerably well. In ufing it for food, they grind it, and boil it in the form of polenta, which is eaten either with frefh or four milk, or ftill more frequently with a fauce made of dried meat pounded in a mortar, and boiled with onions, \&c. The Furians ufe little butter; with the Egyptians and Arabs it is an article in great requeft. There is alfo another fauce which the poorer people ufe and highly relifh; it is
compofed of an herb called convel or cawel, of a tafte in part acefcent and in part bitter, and generally difagree. able to ftrangers.

The magiftracy of one, which feems tacitly, if it be not exprefsly, favoured by the difpeufation of Moham. med, as in moft other countries profeffing that religion, prevails in Dar.Fur. The monarch indeed can do nothing contrary to the Koran, but he may do more than the laws eftablifhed thereon will authorife; and as there is no council to controul or even to affift him, his power may well be termed defpotic. He fpeaks in public of the foil and its productions as his perfonal property, and of the people as little elfe than his flaves.

His power in the provinces is delegated to officers, who poffers an authority equally arbitrary. In thofe diftricts, which have always, or for a lorg time, formed an integral part of the empire, thefe officers are gene. rally called Meleks. In fuch as have been lately conquered, or, perhaps more properly, have been annexed to the dominion of the Sultan under certain fipulations, the clief is fuffered to retain the title of Sultan, yet is tiibutary to and receives his appointment from the Sultan of Fur.

Defpotic and arbitrary as he is, the Sultan here does not feem uholly inartentive to that important object, agriculture. Neverthelefs, it may be efteemed rather a blind compliance with ancient cuftom, than individual public fpirit, in which has originated a practice adopted by lim, in it felf fufficiently laudable, fince other o his regulations by no means conduce to the faine end At the beginning of the Harif, or wet feafon, which is alfo the moment for fowing the corn, the king goes out with his Meleks and the reft of his train; and while the people are emoloyed in turning up the ground and fowing the feed, he alfo makes feveral holes with hiz own liand. The fame cuftom, it is faid, obtains in Bornou and other countries in this part of A frica: It calls to the mind a practice of the Egyptian kings mentioned by Herodotus.
1) The population of Dar-Fur is nut large. An army of 2000 men was fpoken of, when Mr Browne was in the country, as a great onc; and he does not think that the number of fouls within the empire can much exceed 200,000 . The troops of this country are not famed for fsill, courage, or perfeverance. In their campaigns, much reliance is placed on the Arabs who accompany them, and who are properly tributaries rather than fubjects of the Sultan. One energy of barbarifm they indeed poffefs in common with other favages, that of being able to endure hanger and thirt; but in this particular they have no advantage over their neighbours. In their perfons the Furians are not remark. able for cleanlinefs. Though obferving as Mahommedans all the fupertitious formalities of prayer, their hair is rarely combed, or their bodies completely wafh. ed. The hair of the pubes and axille it is ufual to exterminate ; but they know not the ufe of foap; fo that with them polifhing the fkin with unguents holds the place of perfect ablutions and real purity. A kind of farinaceous patte is lowever prepared, which being aoplied with butter to the fikin, and rubbed continually till it become dry, not only improves its appearance, but removes from it accidental fordes, and ftill more the effect of continued tranfpiration, which, as there are no baths in the country, is a confideration of fome import.

Itan. ance. The female llaves are dexterons in the application of it; and to madergo this operation is one of the refinemento of African feufuality.

Nothing refembling current coin is found in Soudan, unlefs it be certain fn:aill tin rings, the value of which is in fome degree arbitrayy. The Auttrian dollars, and other Elver coins bronght from Egypt, are all fold as ormaments for the woinen.

The difpofition of the Furians is cheerful; and that gravity and referse which the precepts of Mahommedifm infpire, and the practice of the greater number of its profeffors countemances and even requires, feems by no means as yet to fit eafy on them. A goverument perfectly defpotic, and not ill adminittered, as far as relates to the manners of the people, yet forms no adequate reftraint to their violent paffions. Prone to inebriation, but unprovided with materials or ingenuity to prepare any other fermented liquor than buza, with this alune their convivial exceffes are committed. But though the Sultan publifhed an ordnance (March 1795), forbidding the ufe of that liquor under pain of death, the plurality, though lefs públicly than before, Aill in. dulge themfelves in it. A company often fits from funrife to fun fet, drinking and convel fing, till a fingle man fometimes carries off near two gallons of that liquor. The buza has, however, a diuretic and diaphoretic ten. dency, which precludes any danger from the fe exceffee. In this country dancing is pratifed by the men as well as the women, and they often dance promifcuoully.

The vices of thicving, lying, and cheating in bar. gains, with all others nearly or remotely allied to them, as often happen among a people under the fame circumftances, are here almoft univerfal. No property, whether confiderable or trifing, is fafe out of the fight of the owner, nor indced fcarcely in it, unlefs he be fironger than the thief. In buying and felling, the pa\(r e n t\) glories in deceiving the fon, and the fon the parent : and God and the Prophet ate liourly invocated, to give colour to the moft palpable frauds and fallehoods.

The privilege of polygamy, which, as is well known, belongs to their religion, the people of Soudan pufh to the extreme. By their law, they are allowed four free women, and as many flaves as they can maintain ; but the Furiars take both, free womer and flaves without limitation. The Sultan has more than a hundred free women, and many of the Meleks have froin twenty to thirty. In their indulgence with women, they pay little regard to reftraint or decency. The form of the houles fecures no great fecrecy to what is carried on within them; yet even the concealment which is thus offered is not always fought. The fhade of a tree, or long grafs, is the fole temple required for the facrifices to the Cy prian goddefe. In the courfe of licentious indulgence, father and daughter, fon and mother, are fometimes mingled; and the relations of brother and fifter are exchanged for clofer intercourfe.

Previoufly to the efablifiment of Inamifm * and king. thip, the people of Fur feem to liave formed wandering trikes; in which flate many of the neighbouring nations to this day remain. In their perfons they differ from the negroes of the coalt of Guinea. Their hair is generally mort and woolly, though fome are feen with it of the le: gth of eight or ten inches, which they efteem a beauty. Their complexion is for the molt part per.
fectly black. The Arabs, who are numerous within the empire, retain their dißinction of feature, colour, and language. They moft commonly intermarry with each other. The flaves, which are brought from the country they call Fertit (land of idolaters), perfectly referble thofe of Guinea, and Lheir language is pecu. liar to themfelves.

The revenues of the crown conffit of a duty on all merchandife imported, which, in many inftances, a. mounts to near a teuth; of a tax on all llaves exported to Egypt; of all forffitures for mildemeanors; of a tenth on all merchandife, efpecially flaves, brought from every quarter but Iigypt, and when flaves are procured by force, this tenth is raifed to a fifth ; of a tribute paid by the Arabs, who breed oxen, horfes, camels, theep; of a certain quantity of coin paid annually by every village; befides many valuable prefents, which mult be paid by the principal people, both at fated times and on particular occafions. Add to all this, that the king is chief merchant in the country; and not ouly difpatches with every caravan to Egypt a great quantity of his own merchandife, but alfo employs his flaves aud dependents to trade with the goods of Egypt on his own account, in the countries adjacent to Soudan.
The commodities brought by the caravans from E. gypt are, 1. Amber beads. 2. Tin, in fmall bars. 3. Coral beads. 4. Cornelian beads. 5. Falfe cornelian beads. 6. Beads of Venice. 7. A gate. 8. Rings, filver and brafs, for the ancles and wrilts. 9. Carpets, fmall. 1o. Blue cotton cloths of Egyptian fabric. 11. White cotton ditto. 12. Indian mullins and cottons. 13. Blue and white cloths of Egypt, called MTelayes. 14. Siword blades, Atrait (German), from Cairo. 15. Small looking.glaffes. 16. Copper face-pieces, or defenfive armoll for the horfes heads. 17. Fire arms. 18. Kolhel for the eyes. 19. Rhea, a kind of mofs from Europtan Turkey, for fooci and a feent. 20. She, a fpecies of ablynthium, for its odour, and as a renedy : both the latt eell to advantage. 21. Coffee. 22. Mableb, Krumppbille, Symbille, Sandal, nutmegs. 23. Dufr, the fhell of a kird of filh in the Red Sea, ufed for a perfume. \({ }^{24}\). Silk unwreught. 25. Wire, brafs and iton. 26. Coarfe glafo lieads, made at Jerufalem, called ber/b and munjur 27. Cupper culinary utenfils, for which the demand is fnall. 28. Old copper for melting and reworking. 29. Small red caps of Barbary. 30. Thread livens of Egypt-Imall confumpo tion. 31. Light French cloths, made into benilhes. 32. Siliks of Scio, made up. 33. Silk and cotton pieces of Aleppo, Damafcus, \&c. 34. Shoes of red leather. 35. Black pepper. 36. Writing paper (papier des trois lunes), a confiderable anticle. 37 . Soap of Syria.
The goods tranfported to Egy'pt are, 1. Slaves, male and female. 2. Camels. 3. lvory. 4. Horns of the thinoceros 5. Teeth of the hippopotamus. 6. Oftrich feathers. 7. Whips of the hippopotamus's hide. 8. Gum, 9. Pimento. 10. Tamariads, made into round cakes. 11. Leather facks for water (ray) and dry articles (geraub). 12. Peroquets in abundance, and lome monkeys and Guinea fowls. 13 . Copper, white, in fmall quantity.

SOUFFRIERE, a fmall town, fituated at the bottom of a bay, towards the leeward extremity of the ifland of St Lucia. There is nothing in the town itfelf which

\section*{\(\mathrm{S} O \mathrm{U}[508]\) B A}

Souffiere, could have entitled it to notice in this work; but the Sound.
ground about it is very remarkable. It has been de- fcribed by different authors; and our readers will probably not be ill pleafed with the following defeription of this wonderful fpot by Dr Rollo.
"Souff:iere (fays he) is furrounded by hills covered with trees, the declivities of which, and every part capable of produce, are culcivated, and afford good fugarcane. This place has its marhes, but not fo extenfive, or fo much to windward as thofe about Carenage.
" The extremity of the fouth fide of Souffriere Bay suns into two fteep hills of a conical Ggure, which are nearly perpendicular : they are reckoned the higheft on the illand, and are known by the name of the SugarLoaf Hills. From their height and ftraitnefs it is impoffible to afcend them: we were told it was once attempted by two uegroes, but they never returned. They are covered with trees and Mrubs, and are the fhelter of goats, feveral of which fometimes defcend, and are fhot by the natives.
"A fter you pals the hills to windward of Souffriere, a fine clear and level country prefents itfelf. From the back of the Singar Loaf Hills, and all along the feacoaft, to the diftance, we fuppofe, of from fifteen to twenty miles, this flat or level extends: it is all cultivated and divided into rich eftates, affording fugar-cane equal to any in our iflands. This beautiful fpot is interfected by many rivers of very clear water, and thefe are conducted by art to the purpofe of fugar making. The rains in this part are lefs frequent than on any other part of he ifland; however, they have often a proportion more than fufficient. The wind here blows from the fea, or nearly fo.
"We cannot finifh this defcription without taking - notice of a volcano in the neighbourliond of Souffriere. You pafs over one or two fmall hills to the fouthward of the town, and before any mark of the place is perceived you are fenfible of the fmell of fulphur. The firft thing you difcern is a iivulet of black running water, fending forth fteams as if nearly boiling. From the profpect of this you foon open on the volcano, which appears in a hollow, furrounded clofe on every fide by hills. . There are only two openings ; the one we entered, and another almoft oppofite to it on the north fide. In the hollow there are many pits of a black and thick boiling matter, which feems to work with great force. Lava is flowly thrown out ; and in the centre of the hollow there is a large mafs of it, forming a kind of hill. This we afcended; but were foon obliged to return from the exceffive heat. The lava is a fulphur mixed with a calcareous earth and fome faline body. We found fmall quantities of alum in a perfect ftate. In the opening, at the north fide of the hollow, there is a rivulet of very good water. On ftirring the bottom, over which this water runs, we were furprifed with feeling it very hot; and on placing a tumbler filled with fome of the water clofe to the bottom of the rivulet, it foon became fo hot as not to be touched. The liqnid which runs from the pits is ftrongly impregnated with fulphur, and refembles a good deal the preparation fold in the Thops, known by the name of aqua fulphurata, or gas fulphuris."

SOUND-board, the principal part of an organ, and shat which makes the whole machine play. This foundboard, or fummer, is a refervoir into which the wind,
drawn in by the bellows, is conducted by a port-vent, and therce diftributed into the pipes placed over the holes of its upper part. This wind enters them by valves, which open by preffing upon the ftops or keys, after draving the regifters, which prevent the air from going into any of the other pipes befide thofe it is required in.

Sound Board denotes alfo a thin broad board placed over the head of a public fpeaker, to enlarge and extend or ftrengthen his voice.

Sound-boards, in theatres, are found by experience to be of no fervice ; their diftance from the fpeaker being too great to be impreffed with fufficient force. But found boards immediately over a pulpit have often a good effect, when the cafe is made of a juit thicknefs, and according to certain prisciples.

Sound. Poft, is a poft placed withinfide of a violin, \&c. as a prop between the back and the belly of the inftrument, and nearly under the bridge.

SOWAL, in the language of Bengal, a queftion or requeft.
SPALLANZANI (Lazarus), was born at Scandiano, in the dutchy of Modena, on the 1 oth of Ja. nuary 1729. He was fon of Jean Nicholas Spallanzani, an effeemed jurifconfult, and of Lucia Zugliani. He commenced his ftudies in his own cotntry, and at the age of fifteen years went to Reggio de Modena in order to continue them. The Jefuits, who inftructed him in the belles lettres, and the Dominicans, who leard of his progrefs, were each defirous of attaching him to them; but his paffion for extending his knowledge led him to Bologna, where his relation Laura Baffi, a woman juftly celebrated for her genius, her eloquence, and her fikill in natural plilofophy and the mathematics, was one of the moft illuftrious profufors of the Inltitute and of Italy. Under the direction of this eulightened guide, he learned to prefer the ftudy of Nature to that of her commentators, and to judge of the value of the commentary by its refemblance to the original. He infantly availed himfelf of the wifdom of that lady's counfels, and was not long before he experienced the happy effects of it. How agreeable it is to fee him in \({ }_{1} 765\) painting his gratitude for his inftructor, to whom he dedicated a Latin differtation at that time, in which he mentions the applaufes that Laura Baffi received at Modena, when fhe entered the auditory of her pupil, then become profeffor. The tafte of Spallanzani for philofophy was not exclufive; he already thought, like all great men, that the ftudy of antiquity and the belles lettres was requifite to give to ideas that clearnefs, to expreffions that accuracy, and to reafonings that connection, without which the fineft thoughts become barren. He ftudied his own language with care, and perfected himfelf in the Latin tongue; but above all, he attached himfelf to the Greek and the French. Homer, Demofthenes, St Batil, were his favourite authors. Spallanzani applied himfelf to jurifprudence at the inftance of a father whom he tenderly loved: he was upon the point of receiving the degree of doctor of civil law, when Anthony Vallifneri, profeffor of natural hiftory at Padua, perfuadied him to renounce this vocation, by promifing to obtain the confent of his father, who was fenfibly touched by his fon's devotion to his will, and who thereby left him at liberty to follow his own inclinations. From that moment he gave himfelf
lan- up with more ardour than ever to the fudy of mathematics, continuing that alfo of the living and dead languages.

Spallanzani was prefently known all over Italy, and his own country was the firt to do homage to his talents The univerfity of Reggio, in 1754 , chofe him to be profeffor in logic, metaphyfics, and Greek. He taught there for ten years; and during that period confecrated all the time he could fpare from his leffons to the obfervation of Nature. Now and then an accidental difcovery would increafe his paffion for natural hiftory, which always augmented by new fucceffes. His obfervations upon the animalculr of infulions fixed the atten. tion of Haller and of Bonnet ; the latter of whom af. filted him in his glorious career, and thenceforth diftinguifhed hin as one of the learned interpreters of Nature.

In 1760 Spallanzani was called to the univerfity of Modena; and although his intereft would have made him accept the advantageous offers of the univerfity of Coimbra, of Parma, and of Cefena; yet his patriotifm and his attachment to his family confined his fervices to his own country. The fame confiderations engaged him to refufe the propofitions made him by the academy of Peterfburg fome years after. He remained at Modena till the 'year 1768, and he faw raifed by his care a generation of men conftituting at this time the glory of Italy. Among them may be counted Venturi, profeffor of natural philofophy at Modena; Belloni, bifhop of Carpi; Lucchefini, ambaffador of the late king of Pruffia; and the poet Angelo Mazzo of Parma.

During his refidence at Modena, Spallanzani pub. lifhed, in 1765 , Saggio di Offervazioni Microfcopiche concernente it Syflema di Necelsam e Buffon He therein eftablifhes the animality of what had been called, but not generally affented to as, microfcopic animalcule, by the moft ingenious, and at the fame time folid, experiments. He fent this work to Bonnet, who formed his opinion of the author accordingly, and wholived to fee the accompliffment of the prophecy he drew from it. From that moment the moft intimate acquaintance was formed between them, and it lafted during their lives, of which it conftituted the chief happinefs. In the fame year Spallanzani publimed a differtation truly original: De Lapidibus ab Aqua refilientilus. In that woik he proves, by fatisfactory experiments, contrary to the commouly received opinion, that the ducks and drakes (as they are called) are not produced by the elaflicity of the water, but by the natural effect of the change of direction which the flone experiences in its novement, after the water has been ftruck by it, and that it has been carried over the bend or hollow of the cup formed by the concuffion.

In 1768 he prepared the philofophers for the furprifing difcoveries he was about to offer them throughout his life, in publifhing his Prodromo di un Opera da 1 m . primerfi fopra le Riproduzioni Animali. He therein lays down the plan of a work which he was anxious to get up on this important fubject; but this fimple profpectus contains more real knowledge than all the books which had appeared, becaufe it taught the method that ought to be followed in this dark refearch, and contained many unexpected facts; fuch as the pre-exiftence of tadpoles at the fecurdation, in many fpecies of
toads and frogs ; the reproduction of the head cut off Spallanfrom fnails, which he had already communicated to \(2 a n i\). Bonnet in 1766 , and which was difputed for fome time, in Spite of the repeated confirmation of this phenomenon by Heriffant and Lavoilier. He demonftrated it again afterwards in the Memorie della Socicta Italiana; as alfo the renewal of the tail, the limbs, and even the jaws, taken from the aquatic falamander. Thefe facts continue to altonifh even at this day, when they are thought of, notwithllanding every one has had the opportunity of familiariling himfelf with them : and we hardly know which we ought molt to admice, the expertnefs of Spallanzani in affording fuch decifie: proofs, or his boldnefs in fearching after them, and feiaing them. We have to regret, that the project of his great undertaking is not realized; but varions circumftances prevented him from giving way to the folicitations of his friends for its accomplifhment. Perhaps he defpaired of throwing uron every part of it all the light which at firit he thought he might be able; and found it prudent to mature his idcas by new meditations : this may probally have been as powerful a canie as that other calls and occupations, perpetually accumalating, fhould not have allowed him to purfue it as he had intended. He has always laid Nature open to fult view; and the thrinneft veil darkened her till he fucceed. ed in removing it altogether.

The phyfology of Haller that Spallanzani ftudied, fixed his attention upon the circulation of the blood, in which he difcovered feveral remarkable phenomena. He publifhed, in 1768 , a mall tract: Dell' Azione dat Cuore ne'Vafi Sanguicni nuovi Ofirvazioni, and he reprinted it in 1773 , with three new differtations, \(D e^{\circ}\) Fenomeni della Ciicolazione effervata nel' Giro univerfale de' Vast ; De' Fenomeri della Circolazione Lansucnte : De' Noti del Sangue, indererulente del Azione del Cioore e dol Pulfare delle Arterie. 'This work, but little knowns: contains a feries of obfervations and experiments, of the moft ingenious and delicate nature, upon a fubject of which the furface only is known. It merits the attention of thofe who are interetted in the progrefs of phyfiology.

When the univerfity of Padua was re-eftablifhed upon a larger fcale, the Emprefs Maria Therefa directed the Count de Firmian to invite him to fill a chair, as profeffor of natural hiftory; his great reputation rendered him eligible for this ciltinetion, folic ited by many celebrated iren, and he merited it by his fuccefs, and by the crowd of ftudents who thronged to his leffuns. Only great men make excellent mafters, becaufe their ideas are the moft perfpicnous, the moft extenfive, and beft connected.

Spallanzani united a valt extent of knowledge to a fine genius; a method fimple, but rigorous in its nature; and he connected what he knew to principles firmly eftablifhed. His ardent love of truth made him difculs, with the utmoft care, the theories which prevailed; to found their folidity, and difcover their weak fides. The great art which he had acquired, of interpreting Nature by herfelf, diffufed fuch a light over his leffons, as made every thing perfpicuous that was capable of affording inftruction. An eloquence at once plain and lively animated his difcourfe; the purity and elegance of his ftyle charmed all who heard it : in fort, it was known that be always occupied himfelf about pared a year beforehand. They became always new and engaging, by his new obfervations, and by the en larged views that his meditations prefented to him. The learned perfons who attended his lectures were pleafed to become his fcholars, in order to knew better what they already knew, and to leare that which otherwife they would perhape never have known.

In arriving at the univerfity, Spallanzani took the Contempiation de la Nature of Bonnet for the text of his leffons: he filled up the vacancies in it, he unfolded the ideas, and confirmed the theories by his experiments. He believed, with reafon, that the book which infpired him with the love of natural hiftory by reading it, was the moft proper to give birth to it in the minds of his difciples.

He tranflated it into Italian, and enriched it with notes; he added a preface to it, wherein he pointed out the fubjects of the vegetable and animal econony, which in an efoecial manner deferved the attention of his pupils; and fometimes pointing out to them the means of fuccesding in their refearches. It was thus he at firft devoted hiríelf to the pleafing employment of inftruc tor of his countrymen, and that he became the model of thofe who were defirous of inftructing ufefully. He publifhed the firlt volume of his tranflation in 1769. and the fecond in 1770 .

The connection of Spallanzani with Bonnet had an influence upon his genius, which bent to the fevere me. thod of the philofopher of Geneva. He prided himfelf in being his pupil, and he unceaf.ngly meditated? upon his admirable writings; and thus it was that he tiecame defirous of feeking in N -ture for the proofs of Bonnet's opinion upon the generation of organized bodies, and that this charming fubject fixed his attention £or a long time.

He publifhed, in 1776, the two firit volumes of his Opufcoli di Fifica Animale e Vegetabile: they are the explanation of a part of the microfropic obfervations which had already appeared.

If the art to obferve be the mof difficult, it is ne verthelefs the mofl neceffary of all the arts; but it fup pofes every quality, every talent: and further, though each believes himfelf more or lefs confummate therein, yet it is obvious, that only great men have exercifed it in a diftinguifed manner. Genius alone fixes the objects worthy of regard ; that alone directs the fenfes to the obfcurities which it is neceflary to diffipate; it watches over them to prevent error; it animates them to follow by the fcent, as it were, that which they have but a diftant view of: it takes off the veil which covers what we are looking after; it fupports the patience which wairs the moment for gratifying the fight in the midft of obflaclea multiplying one upon another: in fhorf, it is genius that concentrates the attention upon an object, which communicates that energy to him for imagining, that fagacity for dicovering, that promptnefs for perceiving, without which we lie only one lide of truth, when we do not happen to let it efcape alto. gether. But this is not all: for after Nature has been read with precifion, it is neceflary to interpret her with fidelity; to analyfe by the thought the phenomena anatomifed by the fenfes; to conlider of the fpecies by oblerving the individual, and to anticipate the general propofitions by corlidering the unconnected facts. Here
prudence and circumfpection will not always fecure ub againt error, if an ardent love for the truth does not aflay obfervations and their confequences in its crusibie, and thereby reduce every thing to foorie which is inot truth.

Such was Spallanzani in all his refearches; fach we fee lum in all his writings. Occupied by the great phe. nomenon of generation, he exanined the opinion of Needham to demonflrate its want of foundation. The latter, not fatisfie! with the microfcopic oblervations of Spallanzani, which weakened the imagined vegetative force to put the matter in mution, challenged the profeffor of Reggio to a renerufal of what he had written; but he proved to the other, that we in common practice alvays fee that which has been well obforved, but that we never again fee that which we have been contented with imagining we faru.
Spallanzani has received much praife for the politenefs with which he carried on this contr)verfy, and for the fevere logic with which he demon(trates to Needham the canles of his error; and proves, that the animalcula of infufions are produced by germs; that there are fome of them which defy, like certain eggs and feeds, the moft exceffive cold, as well as the heat of boiling water. On this occalion, he treats on the influence of cold upon animals, and proves that the lethargic numbrefs of fome, during winter, toes not depend upon the impreffion the blood may receive from it ; fince a frog, deprived of his blood, becomes lethar:gic when he is reduced to the fame cold fate by an immertion in ice, and fwims as hefore when reftored to warmth. In the fame manner he fhews that odours, various liquors, the vacuum, at upon animalcule as upon other animals; that they are oviparous, viviparous, and hermaphrodite. Thus, in running over thefe diHant regions of Nature with this illultrious traveller, we are al ways meeting with new facts, profound remark \(\varepsilon_{\text {, }}\) precious details, and fome curions anecdotes; in fhort, an univerfal hiltory of thofe beings which are the moft numerous of the globe, although their exiltence is fcarcely fufpected, and whofe organization is in many refpecta different from that of known animals.

The fecond volume of this work is a new voyage into the moft unkriown parts: a fublime pencil had already painted it, but the pieture was not done after Nature. Spallanzani hese gives a hiftory of the fipermatic animalculx, which the eloquent hiltorian above alluded to always confounds with the animalcule of in. fufious. We cannot but admire the modeft diffidence of this new demonfrator, fruggling again? his own opinion and the authority of Buffon; and he appeare to admit, with repugnance, the refults of his multiplied, and in a thoufand ways varied, obfervations, which expofe the feeblenefs of the fyttem of organic moleculx.

Spallanzani afterwards defcribes the volvox and the now moving animalcule (rotifère and tardigrate), thofe coloflufes of the microfcopic world, fo fingular by their figure and organization, hut more fingular ftlll by their faculty of vefuming life, after a total iufpence of all the apparent acts of it during many years.

We will not here feak of the experiments of Spallanzani on the death of animals in clufe veffels, becaufe he took up the fubject again, and enlarged and exemplified it by the new lights of chemiltry; but this col-
leetion he concludes with another on the hillory of vegetable mould growing on the furface of liquors and moift fubltances, the fects of which he fhews to foat in the air ; and he rema:ks, that thefe microfcopic champignons or mufhrooms diftinguifh themfelves from other plants by their tendency to grow in all directions, without conforming to the almott univerfal law of perpendicularity of falk to the ground.

Spallanzani was placed at the head of the univerfity's cabinet of natural hinory, but he was little more than titular depofitary of a tieafure which no longer exifted. He laid the foundations, however, for its renewal, and by his care it is become one of the mott precious and uffful. He enriched it through his repeated travels by land and fea, in Eunone, in A fia, acrofs the Apennines, the Alps, the Krapacks, at the bottom of inines, on the top of volcanoes, at the mouth of craters: fupported by his ardent paffion in the midtt of perils, he preferved the fang.froid of the philofopher to contemplate thefe wonders, and the piercing eye of an obferver to ftudy them. It is thus that he always diffinguifhed the proper objects for improving fcience by favouring infruc. tion; it is thus that he filled this depofitary with trea. fures, that all the gold in the world could not have obtained, becaufe gold never fupplies the genius and the difcernment of the enlightened naturalif.

In 1779 Spallanzani ran over Switzerland and the Grifons; he then went to Ceneva, where he fpent a month with his friends, who admired him the more in his converfations after having admired him in his writings. He then returned to Pavia, and publifhed, in 1780 , two new volumes of lis Diferinzione di Fifica Animale e Vegetatile. He therein reveals the fecrets of the interpretation of two very olfcure phenomena, concerning the vegetabie and animal cconomy.

Some experiments made by Spallarzani upon dige \(f\) tion, for his leffons, engaged him to ftudy this dark operation : he repeated Reaumur's experiments uron the gallinaceous binds; and lee obferved that the trituration, which is in this cafe an aid to digettion, could not, however, be a very powerful means. He faw that the gizzard of thofe birds which pulverife the flones of fruit to pieces, as if cone with needles or other tharppoirted inftruments, did rot digeft the powder fo formed: that it was neceffary it thould endergo a new operation in the ftomach, Lefore it could become fit chyle for afforcing the elements of the blood and other humours. He eitablifned the point, that the digeftion was performed in the flomach of numerous animals by the powerful action of a juice which diffolves the aliments ; and to render his demonftration the more convincing, he had the courage to make feveral experiments on himfelf which might lave proved fatal, and had the adduefs to complete his proufs by artificial digetions, made in glaffes upon the talle, by mixing the chewed aliments with the gaftric juice of animals, which he knew how to extract from their fomachs. But this book, fo original by the multitude of experiments and curious obfervations which it contains, is flill more worthy of attention by the philofophic fpirit which detect. ed it.

This fubject is one of the mof difficult in phyfiulo. gy: the obferver is always compelled to adt and to look with darknefs aronnd him ; he is obliged to manage the animal with care, to avoid the derasgement of
his nperations; and when he has laborioufly completed his experiments, it is neceffary that he fhould well diItinguifh the confequences, fometimes erronenus, which may be drawn from thofe of obfervation, which never deceive when they are immediate. Spallanzani, in this work, is truly a fine focetacle: forupulouny analyfing the fachs in order to difcover their caufes with certainty; inventing happy refources for furmounting the obflacles which renew themfles; comparing Nature with his experiments, to judge of them ; catching hold in his obfervations of every thing that is effential in them; meafuring their folidity by the angmentation or diminution of fuppofed canfes; drawing the beft-founded conclufions, and rejecting the moff plaufible hypothefes; modefly expofing the errors of thofe who have gone before him, and employing analogy with that wife circumpection which infpires corifidence in an inltrument at once fo dangernus and fo ufeful. But let it be known, Spallanzani had a capacity in particular for dif. covering the truth, while the greater part of obfervators fcarcely ever attain it ; and then, after having deforibed around them a circuitnus trace, he runs upon it by a ftraight line, and poffefes himfelf of it fo as that it cannot efcape him.

This work put John Hunter out of humour ; and he pulslifhed, in 1735 , Some Obfervations upon Digtfion, wherein he threw out forne bitter farcalms again! Spallanzani; who took ample revenge by publining this work in Italian, and addreffing to Culdani, in 1788 , Una Lettera Apologetica in Rijpopla alle Offervazione del Signor Giovanni Hunter. He expofes, with moderation, but with an irrefiltible logic, the overfights of the Englifh phyfiologitt, and points out his errors in a manner which left him no hope of a reply.

The fecond volume ireats of the generation of animals and plants. Spallanzani proves, by experiments as fatisfactory as they are furprifing, the pre exittence of germs to fecundation; he fhews the exiftence of tadpoles in the females of five different ipecies of frogs, in tonds, and in falamanders, before their fecundation: he recounts the fuccess of fome artificial fecundaions upon the tadipoles of thofe five fpecies, and cven upon a quadruped. He in the fame manner fiews the leed in the flowers, before the eniffion of their farina; an! by a fubtle anatomy of which nne can hardly form an idea, he exbibits to the eye in the flower of the Cpariium jun:ceum, the filicqua, its ferds, with their lober, and the embryo plane; he parfues them in their expanfion before and after fecundation, and leaves not a doubt but that the feeds and the pericarpia exifted long before the bluffoming of the buds, and confequently a lorg time before they conld lave been fecundated. Ike has repeated thefe obfervation, upon warious fpecies of plants wich the fame refults; in Chort, he has raifed the individuals of plants with female flowers which have borne fecundated feeds, although they were ont of the reach even of fufpicion of a communication with the farina of the male flowers. Such is the feries of firprifing phenomena Spallanzani adds to the hiftory of Nature.

According to cultom, he availed himfelf of the aca. demical vacation of 1781 , to make a journey, the cbject of which was to add to the cabinet of Pavia. He fet ont in the month of July for Marfilles, where he commenced a rew liftory of the fea, which had prefented him with a crowd of novel and curions facis up.

Spallay:zani. (
on numerous genera of the inhabitants of the ocean. He went likewife to Finale, to Cenoa, to Maffa, and to Carrara, to obferve the quarries of marble fo famous with the ftatuaries; he returned to Spezzia, and thence brought to Pavia an imnenfe harveft of fỉhes, cruftace. ous and teftaceous, which he depofited in that cabinet of which his voyages and travels had rendered him fo worthy to be the guardian. He vifited, in the fame view, and with the fame fuccefs, the coafts of Iftria in 1782 ; the Apennine Mountains in 1783, where he noticed the terrible hurricanes, and the furprifing vapours which rendered that year fo famous in mereornlogy. The cabinet of Pavia thus every year faw its riches increafe; and in the fame proportion it became the objeed of Arangers admiration; but every one admired fill more the immenfe labour of Spallanzani, who had colleeted every part of it.
The Emperor Jofeph knew this when he came into Lombardy : lie defired to have a converfation with Spallanzani ; and his majefly expreffed his approbation by prefenting him with his medal in gold.
The univerlity of Padua offered to Spallanzani, in 3785 , the chair of natural hiftory, which the death of Anthony Vallifneri had left vacant, promifing him more confiderable advantages than thofe which he enjoyed at Pavia ; but the archduke doubled his penfion, and allowed him to accompany to Conftantinople the Clievalier Zuliani, who had juft been nominated ambaffador from the republic of Venice.

He left this city the 21ft of Auguft; and during his voyage made feveral obfervations upon the marine productions he met with in thofe climates, as well as upon the meteorolosgical events of every day, among which the had the advantage of beholding a fpecies of waterfpout. Ife tonched at feveral iflands in the Archipelago, which he examined, and went afhore at 'lroy to vifit the places fung by the poct whom he preferred to all others; and in treading upon that ground fo ancient. Iy famous, he made fome geological obfervations truly origina!. One may judge before hand of the intereft wve fhall feel in reading the Voyage of Spallanzani, by fome memoirs which have appeared in the Mfenorie della Societa Italiana upon the water-fpouts at fea, the itroke of the torpedo, divers marine productions, and the ifland of Cytherea, where he difcovered a mountain compofed of varions fpecies of foffils. Spallanzani arrived at Conftantinople the ith of Oetober, and remained there eleven months: he muit have been greatly out of his element in that country of ignorance and fuperfition, if he had not had Nature to lludy, and Zulliani to hear him. The phyfical and molal phenomena of this country, quite new to him, fixed his attention; he flrayed over the borders of the two feas, and climbed up the neighbouring hills; he vifited the ifland of Chalki, where he made known to the Turks a mine of copper, the exittence of which they never fo much as fufpected. He went to the Principi ifland, a few miles diftant from Conftantinople, where he difcovered an iron mine equally unthought of by the 'Turks. He returned to Europe loaded with fpoils from the Eaft, compofed of the creatures of the three kingdoms, peculiar to thofe regions: after having been ufeful to the Orientals, who were incapable of appreciating his merit, or rather of imagining he could have
any, he fet out on his return for ltaly the 16 th of Augut, 1786.

A voyage by fea was in every refpect the moft fafe and the moft commodious; but Spallanzani confidered the dangers and the inconveniences of the road as nothing when employed in any berieficial purfinit; he braved all the perils of thofe defert regions, where there is no police, no fecurity. When he arrived at Buchareft, he was retained there during nine days by the celebrated and unhappy Mauroceni, hofpodar of Wallachia. This prince, the friend of fcience, received him with diftinction, prefented him with many of the rarities of his country, furnifhed him with horfes for travelling, and alfo gave him an efcort of thirty troopers thronghout the whole extent of his dominions. Spallanzani pafied by Hermanftadt in Tranfylvania, and arrived at Vienna the 7th of December, after having viewed the numerous mines of Tranfylvania, of Hungary, and of Germany, which lay in the neighbourhood of his route. Suallanzani remained five days in this capital of Auftria; he had two very long audiences with the Emperor Jofeph II.; was well received by the highef nobility in that metropolis, and vifited by the men of letters. At length arrived at Pavia; the ftudents came to meet him out of the gates of the city, and accompanied him home, manifefting their joy all the way by repeated fhouts. Their great defire to hear him, drew him almont immediately to the auditory, where they forced him to afcend the chair from which he had been accuftomed to deliver lis lectures to them. Spallanzani, affected by this fcene, teflified with eloquence his gratitude and attachment ;-friendly wifhes, cries of joy, clapping of hands, recommenced with more force, and he was obliged to requett them to defift, and allow him to take in his houfe that repofe which was more neceflary than ever. He had in the conrfe of this year above joc ftudents.
Spallanzani had acquired glory enough to merit the attaeks of envy; but his difcoverics were too new, too original, too folid to be difputed ; envy itfelf was therefore forced to admire him: but that unworthy paffion, being tired out by the increafing reputation of that great inan, watched the moment to prove that it had not forgotten him. Envy and malignity then called in queftion his uprightnefs in the adminittration of the cabinet of Pavia; the whole of which was the fruit of his own labours: but the carts aimed at his honour only made it fhine with new luftre. The integrity of Spallanzani appeared even more pure after the juridical examination of the tribunals. But let ns ftop here ; Sipallanzani had the fortitude to forget this event which had torn his heart to pieces; the greater part of his enemics acknowledged their miftake, abjured their hatred, and did not defpair of regaining his friendfhip.

The cabinet of Pavia was always the object of Spallanzani's thoughts; amidf the numerous rarities which he had placed there, he only faw thofe that were wanting. Struck with its deficiency in volcanic matters, which had neither feries nor order, and confequently excited little intereft, being a mute article with refpect to inftruction (alchough Italy was the theatre where the fires of volcanoes had for fo many ages exercifed their defolating powers), he took the refolution, with which his talents, his courage, and his zeal, infpired
lan. him. He was defirous to inftruet his pupils, his nation, himfelf, concerning the phenomena fo ftriking, and yet fo little known, and to collect the documents of their hiftory in the places where they have always been the terror of thofe who furrounded them, and where they have been ufetersly the finbject of the obfervations of the philofopher. He therefore prepared himfelf for this great enterprife by deep ftudies. He fet out for Naples, in the fummer of 1788 , and afcended mount Vefuvius; he looked attentively into its crater, examined and made notes in his booke, and embarked for the Lipar: iflands. He diffeeted, as it were, the unimhatited volcanoes, with the exaatnefs of a naturalift anatamifing a butterfy, and the intrepidity of a warrior defying the molt imminent dangers. It was then that he had the boldnefs to waik over that fulphurous cruft, cleft with chinks, trembling, finoking, burning, and fometimes treacheroufly covering the hearth of the volcano. He palfed into Sicily, where he climbed up to Etna, and coafted its immenfe crater. His curiofity not being exhauited, he would colleet around him, and have in his mind, all the fingular phenomena that Sicily contained ; he examined the ftones and the mountains, and difcovered many new marine animals; he approached Scylla and Charybdis, and in a boat croffed the frothy billows of thofe deadly rocks, celebrated for fo many fhipwreeks, and fo often fung by the poets; but in the very midat of their frightful waves, he difcovered the caufe of their fury (See Scylra, Suppl.) It was thus that, at the age of 60 , he picked np thole numberlefs anecdotes which fill his voyages in the two Sicilies; and that he compared the defcription which Homer, Pindar, Virgil, Diodorus Siculus, and Strabo, have given of thefe ever famous places, with that which he made himfelf. In this manner he fhewed the connection of ancient literature with natural hiftory.

We find in the voyages of Spallanzani a rew volca. nology. He thereia teaches the way to meafire the intenfity of the fire of volcanoes, to glance at the caufes, to touch almoft, in the analy fis which he makes of the lava, that particular gas which, refembling a powerful lever, tears from the bowels of the earth, and raifes up to the top of Etna, thufe torrents of fone in fufion which it difgorges; to furvey the nature of thofe pumice ftones, which he lias fince explained in his artifi. cial pumice-ftones. He concluces this charming work with fome interefting inquiries into the nature of fwal. lows, their mild difpofitions, rapid flight ; fuggefting that an advantage might be drawn from them in the way of aerial poft ; their migrations determined by the temperature of the air, and the birth of infects it occafions: in fhort, he difcuffes the famous problem of their remaining benumbed during winter; and proves, that artificial cold, much greater than that ever naturally felt in our climates, does not render thefe birds lethargic. He next fpeaks of a fpecies of owl, hitherto very ill defcribed; and, lafly, of eels and their generation, which is a problem ftill in fome meafure to be folved ; but he carries it on by his inquiries to that ftep which alone remains to be made for obtaining a complete folution; or to get over it eafily by a fmall number of obfervations in thofe times and places pointed out, but which the academical occupations of Spallanzani forced him to give up to others.
Suppl. Vol. II. Part II.

Spallanzani followed the progrefs of the French chemiftry with much fatisfaction, nor was he long before he adopted it; it was calculated for a jult conception like his, delighting to give an account of every phenomenon he obferved. The fulidity of principles in this new doctrine, the precifon in its way of proceeding, the elegance of its interpretation, the generality of its confequences, prefently replaced in his mind tie hefitations and the obfcuritits of the ancient chemiltry ; and his heart anticipated with pleafure the triumphs that it was about to obtain.
In 1791, Spallanzani publifhed a letter aldreffed to Profeffor Fortis, upon the Pennet Hydrofcope. He the:e relates the experiments which lie had directed to be made for afcertaining the degree of confidence which might te allowed to the fingular talents of this man ; but he ingenuouny confeffes, that he is not decided upon the reality of the phenomenon.

Spallanzani has often difcovered that which might have been deemed impofible. In 1795 he made a difcovery of this nature, which he publihied in his \(J_{\text {ettere }}\) Sopra il fospetto d'lun nuovo fenfo mei Pifighellio. We therein learn that the bats, if blinded, act in every refpect with the fame precifion as thofe which have their eyes; that they in the fame manner ayoid the moft tifling obsfacles, and that they know where to fix themfelves on ceating their flight. Thefe extraordinary experiments were con irned by feveral matural philofophers, and gave occafion to fufpect a new fenfe ill thefe birds, becaufe Spallanzani thought he had evinced by the way of exchufion, that the other fenfes could not fupply the deficiency of that fight which he had deprived then of; but the anatonical details of Profeffor Jurine, npon the organ of hearing in this fingular bird, made him incline afterwards towards the idea, that the feufe of hearing might in this cafe fupply that of fight, as in all thofe where the bats are in the dark.

Spallanzanii concluded his literary carreer for the public, by a letter addreffed to the celebrated Giobert ; Sopra la piante chiufe ne' vafo dentro l'aqua e l'aria, efpole a l' immediàta lume folare e a l'ombra. It is a misfortune for this part of the fcience, that his death has deprived us of the difooveries he was about to make in it.

Thefe numerous works, printed and applanded, did not however contain all the feries of Spallanzani's labours. He had been occupied a conliderable time upon the phenomena of refpiration ; their refemblances and differences in a great number of fpecics of animals; and he was bufily employed in reducing to order his refearches upon this fubject, which will aftonifh by the multitude of unforefeen and unexpected facts. He has left a precious collection of experiments and new obfervations upon animal reproductions, upon fponges, the nature of which he determines, and upon a thou. fand interefting phenomeria which he knew how to draw out of obfcurity. He had almolt finifhed his voyage to Conttantinople, and had amaffed confiderable materiats for a Hiftory of the Sea, when an end was put to his life and his labours.

On the 4 th of February 1799, he was feized with a retention of urine, the fame night was unquiet, and in the morning he loft all powers of reafon, which he never recovered but during very thort intervals. His intimate friends, Tourdes, a French phyfician, and the celebrated Profeffor Scarpa, did every thing which

3 'I' could

Siallan-
zani.

Species could be expected from genius, experience, and friendThip, to Yave him ; but he died the ryth, after having edified thofe around him by his piety. This lamentable
event overwhelmed all his family in forrow, occafioned the tears to flow from all his friends, filled lis difciples with a deep aftiction, and excited the regret of a nation proud of having given him birth.

The reader cannot but have perceived in this fisetch the frain of panegyric, rather than the calm narrative of impartial biography. It is, in fact, an abridged tranflation of an eloge by a citizen philofopher of Geneva, who has adopted the calendar, and probably the principles of republican France. Some abatement therefore will naturally be made by every Briton of the praifes beftowed upon the piety of Spallanzani; but after proper allowance of this kind, truth will proclaim him a very great man. Accordingly, France, Germany, England, all were eager to avail themfelves of his works by means of tranflations. He was admitted into the academies and learned focieties of London, Stockholm, Gottingen, Holland, Lyons, Bologna, Turin, Padua, Mantua, and Geneva. He was a correfpondent of the academy of fciences of Paris and of Montpelier : and reccived from the great Frederic himfelf the diploma of inember of the academy of Berlin.

SPECIES, in algebra, are the letters, fymbols, marks, or characters, which reprefent the quantities in any operation or équation.

Spectes, in optics, the image painted on the retina by the rays of light reflected from the feveral points of the furface of an object, received in by th. pupil, and collected in their paflage through the cryftalune, \&c.

SPECTACLES (See Encycl.) are certainly the mof vahable of all optical inttruments, though there is not the fame fcience and mechanical ingenuity difplayed in the making of them as in the conftruetion of mi crofeopes and telefcopes. A man, efpecially if acculoomed to fpend his time among books, would be much to be pitied, when his fight begins to fail, could he not, in a great meafure, reftore it by the aid of feectacles; but there are fome men whofe fight cannot be aided by the ufe either of convex or concave glaffes. The folfowing method adopted by one of thole to aid his fight is certainly worthy of notice :

When abont fixty years of age, this man had almoft entirely loft his fight, feeing nothing but a kind of thick mift, with little black fpecks which appeared to float in the air. He knew not any of his friends, he could not even diftinguifh a man from a woman, nor could he walk in the ftreets without being led. Glaffes were of no ufe to him; the beft print, feen through the beft feectacles, feemed to him like a daubed paper. Wearied with this melancholy ftate, he thought of the following expedient.

He procured fome fpectacles with very large rings ; and, taking out the glaffes, fubftituted in each circle a conic tube of black Spanih copper. Looking through the large end of the cone he could read the fmalleft print placed at its other extremity. Thefe tubes were of different lengths, and the openings at the end were alfo of different fizez; the fmaller the aperture the better could he diftinguifh the fmalleft letters; the larger the aperture the more words or lines it commanded; and confequently the lefs occafion was there for moving the wead and the hand in reading. Sometimes le ufed one
eye, fometimes the other, alternately relieving each, for the rays of the two eyes could not unite upon the fame object when thus feparated by two opaque tubes. The thinner thefe tuber, the lefs troublefome are they. They muft be totally blackened within fo as to prevent all fhining, and they fhould be made to lengthen or contract, and enlarge or reduce the aperture at pleafure.

When he placed convex glaffes in thefe tubes, the letters indeed appeared larger, but not fo clear and diftinet as through the empty tube: he alfo found the tubes more convenient when not fixed in the \{pectacle rings; for when they hung loofely they could be raifed or lowered with the hand, and one or both might be ufed as occafion required. It is almoft needlefs to add, that the material of the tubes is of no importance, and that they may be made of iron or tin as well as of copper, provided the infides of them be fufficiently blacken. ed. See La Nouvelle Bigarure for February 1754, or Montbly Magazine for April 1799.

SPECTRE of the Broken, a curions phenomenons obferved on the fummit of the Broken, one of the Harz mountains in Hanover. We have the following account of it by M. Haue. "After having been here (fays he) for the thirticth time, and having procured information refpecting the abovementioned atmofpheric phenomenon, I was at length, on the 23 d of May 1797 , fo fortunate as to have the pleafure of feeing it ; and perhaps my defcription may afford fatisfaction to others who vifit the Broken through curiofity. The fun rofe about four o'clock, and, the atmofphere being quite ferene towards the ealt, his rays could pafs without any obftruction over the Heinrichआhöhe. In the fouth-weft, however, towards Achtermannhhöhe, a brifk weft wind carried before it thin traufparent vapours, which were not yet condenfed into thick heavy clouds.
"About a quarter paft four I went towards the inn, and looked round to fee whether the atmofphere would perinit ine to have a free profpect to the fouth-weft ; when 1 obferved, at a very great diftance towards Achtermannthrihe, a human figure of a montrous fize. A violent guil of wind having almoft carried away my: hat, I clapped my hand to it by moving my arm towards my head, and the coloffal figure did the fame.
"The pleafure which I felt on this difcovery can hardly be defcribed; for I had already walked many a weary ftep in the hopes of feeing this ीnadowy image, without being able to gratify my curiofty. I immediately made another movement by bending my body, and the coloffal figure before me repeated it. I was defirous of doing the fame thing once more-but my coloffus had vanifhed. I remained in the fame pofition, waiting to fee whether it would return; and in a few minutes it again made its appearance on the Achter. mannhöhe. I paid my refpects to it a fecond time, and it did the fame to me. I then called the landlord of the Broken; and having both taken the fame pofition which I had taken alone, we looked towards the Achtermannfhöhe, but faw nothing. We had not, bowever, food long, when two fuch coloffal figures were formed over the above eminence, which repeated our compliments by bending their bodies as we did: after which they vanifhed. We retained our pofition: kept our eyes fixed on the fame fpot, and in a little the two figures again flood before us, and were juined by a third. Evely movement that we made by bending our
lum bodies thefe figurcs imitated-bit with this difference, that the phenomenen was fometimes weak and faint, fometimes ftrong and well defined. Having thus had an opportunity of difcovering the whole fecret of this phenomeron, 1 can give the following information to fuch of iny readers as may be dafirons of feeing it themfelves. When the rifmg fun, and according to analogy the cafe will be the fame at the fetting fun, throws his rays over the Broken upon the body of a man ftanding oppofite to tine light clouds floating around or hovering paft him, he needs only fix his eyes ftedfafly upon them, and, in all probability, he will fee the fingular fpectacle of his own fhadow extending to the length of five or fix hundred feet, at the diftance of about two miles before him."

If our memory does not deceive us, there is in one of the volumes of the Mánchefler Tranfations an account of a fimilar phenomenon obferved by Dr Ferrier, on a hill fomewhere in England.
SPECULUM for reflecting telefcopes. Under this title (Encycl.) we have given the compolition of the mixt metal of which it lias been found by experience that the beft fpeculums are made; we have likewife given, under the fame title, fome directions for calting ipeculums: but owing to a circumftance in which the public can take roo interef, we neglected to give directions fur grinding and polihing them, and omitted fome other circumftances, which, though not fo important as thefe, are certainly worthy of notice. Thefe onififions it is the objeCt of this article to fupply.

When the metal is taken out of the flafks (See no 3. of the article referred to), which it fhould be as foon as it has become folid, and while it is yet red-hot, care muft be taken to keep the face downwards to prevent it from finking. Holding it in that pofition by the git, force out the fand from the hole in the middle of the mirror with a piece of wood or iron, and place the fpeculum in an iron pot, with a large quantity of hot afhes or fmell coals, fo as to bury the fueculum in them a fufficient depth. If the fand is not forced out of the hole in the marnner above directed, the metal, by finking as it cools, will embrace the fand in the middle of the fpeculum fo tight, as to canfe it to crack before it becomes entirely cold. And if the metal is not taken out of the fand, and put in a pot with hot afhes or coals to anneal it, the muifture from the fand will al. ways break the metal. Let the fpeculum remain in the afhes till the whole is becone quite cold. The git may be eafily taken off by marking it round with a common fine half round file, and giving it then a gentle blow. The metal is then to be rough ground and figured.

It may be proper, however, before we procted to defcribe that procefs, to give an account of another compofition for the fpeculum of a reflecting telefcope, which has been employed with great fuccefs, by Rochon director of the marine obfervatory at Breft. Of this compofition the principal ingredient is platinum; which, in grains, muft be purified in a ftrong fire by means of nitre and the falt of glafs, or that flux which in the Englif glafs-houfes is called by the workmen fandifer. To the platinum, when purified, add the eighth part of the metal employed in the compofition of common specula ; for tin without red copper would not produce a good effect. This mixture is then to be expofed to the moft violent heat, which mult be ftill excited by
the oxygen gas that difengages itfelf from nitre when Speculumo thrown into the fire. One melting would be infufficient : five or fix are requifite to bring the mixture to perfecion. It is neceflary that the metal fhould be in a flate of complete fufion at the moment when it is poured into the mould. By this procefs I have been enabled (fays our author) to coniftriet a telefcope with platinum, which magnifies the diameters of objects five hundred times, with a degree of clearnefs and dititinetnefs requifite for the sicelf ebfervations. The large fpeculum of platinum weighs forrteen pounds: it is eight inches in diameter, and its focus is fix fect. Though the high price of platinun will, in all probability, for ever prevent it from coning into geneal ufe for the fpeculums of telefcopes, we thought it proper to notice this difcovery, and fhall now proceed to the grinding of the fpeculum.

For the accomplifthing of this object. a very complicated procefs is recommended in Smith's Optics, and one not much more fimpler by Mr Mudge in the 6 ;th volume of the Pbillofophical Tranfuations; but according to Mr Edwards, whofe fpeculums are confefledly the beft, neither of thefe is neceflary. Befides a common griudfione, all the tools that he made ufe of are a rough grinder, which ferves alfo as a polifher, and a bed of hones. When the fpeculum was cold, he ground its furface bright on a common grinditone, previoufly brought to the form of the gage; and then took it to the rough grinder.

This tool is compofed of a mixture of lead and tin, or of pewter, and is made of an elliptical form, of fuch dimentions, that the fhortelt diameter of the ellipfe is equal to the diameter of the mirror or fpeculum, and the longef diameter is to the fhorteft in the proportion of ten to nine. This rough grinder may be fixed upon a block of wood, in order to raife it higher from the bench; and as the metal is ground upon it with fine emery, Mr Mudge, with whom, is this particular, Mr Edwaids agrees, directs a hole or pit to be made in the middle of it as a lodgement for the emery, and deep grooves to be cut out acrofs its furface with a graver for the fame purpofe. By means of a handle, fixed ou the back of the metal with foft cement, the fpeculum can be whirled round upon this grinder for rapidly, that a cominon labourer has been known to give a piece of metal, four inches in diameter, fo good a face and figure as to fit it for the hones in the ipace of two hours. 'I he emery, however fine, will break up the metal very much ; but that is remedied by the fubfequent proceffics of honing and polifhing.
When the metal is brought to a true figure, it mult be taken to a convex tool, formed of fome flones from a place called Edgedon in Shrophire, fituated between Ludlow and Bifhop's Cafte. The common blue hones, ufed by many opticians for this purpofe, will fcarcely touch the metal of Mr Edwards's fpeculuns; but where they muft be employed for want of the others, as little water fhould be ufed as poffible when the metal is put upon them; becaufe it is found by experience that they cut better when but barely wet, than when drenched with water. The ftones, however, from Edgedon are greatly preferable; for they cut the metal more cafily, and having a very fine grain, they bring it to a fmooth face. Thele ftunes are directed by Mr Mudge to be cemented in fmall pieces upon a thick round piece of

Speculum. marble, or of metal nade of tin and lead like the former compofition, in fuch a manner, that the lines between the ftones may run fraight from one fide to the nther; fo that placing the teeth of a very fine faw in each of thele divifions, they may be cleared from one end to the other of the cement which rifes between the fones. As foon as the hones are cemented down, this tool muft be fixed in the lathe, and turned as exactly true to the gage as poffible. It thould be of a circular figure, and but very little larger than the metal intended to be figured upon it. If it be made confiderably larger, it will grind the metal into a larger fphere and a bad figure; and if it be made exactly of the fame fize, it will work the metal indeed into a figure truly fpherical, but will be apt to Thorten its focus, unlefs the metal and tool be worked alternately upwards. On thefe accounts, Mr Edwards recommends it to be made about one twenticth part longer in diameter than the fpeculum, hecaufe he has found that it does not then alter its focus; and he earneftly diffuades the ufe of much water on the hone pavement at the time of ufing it, otherwife, he fays, that the metal in different parts of it will be of different degrees of brightnefs.

When the metal is brought to a very fine face and figure by the bed of fones, it is ready to receive a polifh, which is given to it by the elliptical rough grinder covered with pitch. With refpect to the confiftency of this pitch, Mr Mudge and Mr Edwards give very different directions. Whilft the former fays that it fhould be neither too hard nor too foft, the latter affirms that the harder the pitch is, the better figure it will give to the metal. Pitch may be eafily made of a fufficient hardnefs by adding a proper quantity of rofin; and when it is hardened in this way, it is not fo brittle as pitch alone, which is hardened by boiling. Mr Edswards advifes to make the mixture juft fo hard as to receive, when cold, an impreffion from a moderate preffure of the nail of one's finger. When the elliptical tool is to be covered with this mixture, it muf be made pretty warm, and in that fate have the mixture poured upon it when beginning to cool in the crucible. Our author recommends this coating to be made everywhere of about the thicknefs of half-a-crown; and to give it the proper form, it mult, when fomewhat cool, be preffed upon the face of the mirror, which has firit been dipped in cold watcr, or covered over with very firie writing paper. If it be not found to have taken the exact figure from the firlt preffure, the furface of the pitcli muft be gently warmed, and the operation repeated as before. All the fuperfluous pitch is now to be taken away from the edge of the polifher with a pen knife, and a toole to be made in the middle, accurately round, with a conical piece of wood. This hole fould go quite through the tool, and fhould be made of the fame fize, or fomewhat lefs than the hole in the middle of the fpeculum. Mr Edwards fays, that he has always found that fmall mirrors, though without any hole in the middle, polifh much better, and take a more correct figure, for the polifher's having a hole in the middle of it.

The poliftier being thus formed, it muf be very gently warmed at the fire, and divided into feveral fquares by the edge of a knife. Thefe, by receiving the fmall portion of metal that works off in polifhing, will caufe the figure of the fpeculum to be more correct
than if no fuch fquares had been made. Mr Mudge Epeculum directs the polifher to be ftrewed over with wery fine putty ; but Mr Elwards prefers Colcothar of vitriol. (See that article, Eincvcl.) Putty (fayshe) gives me-
tals a white luftre, or, as workmen call it, a filver hue; but good colcothar of vitriol will polifh with a very fine and high black luftre, fo as to give the metal finifhed with it the complection of polifhed ftel. To know if the colcothar of vitriol is good, put fome of it into your mouth, and if you find it diffolves away it is good; but if you find it hard, and crunch between your teeth, then it is bad, and not well burned. Good colcothar of vitriol is of a deep red, or of a deep purple colour. and is foft and oily when rubbed between the fingers; bad colcothar of vitriol is of a light red colour, and feels harth and gritty. The colcothar of vitriol chould be levigated between two furfaces of polithed fteel, and wrought with a little water; when it is worked dry, you may add a little mare water, to carry it lower down to what degree you pleafe. When the colcothar of vitriel has been wrought dry three or four times, it will acquire a black colour, and will be low enough, or fufficiently fine, to give an exquifite luitre. This levigated culcothar of vitriol mult be put into a fmall phial, and kept with fome water upon it. When it is to be ufed, tvery part of the pitch-polifier muft be first brufh\(\varepsilon d\) over with a fine camel's hair brufh, which has been dipped in pure water, and rubied gently over a piece of dry clean foap. 'The wafhed colcothar of vitriol is then to be put upon the polifer; and Mr Edivards directs a large quantity of it to be put on at once, fo as to faturate the pitch, and form a fine coating. If a fecond or third application of this powder be found neceffary, it mult be ufed very fparingly, or the polifh will be deftroyed which tras been already attained. When the metal is nearly polifhed, there will always appear fome black mud upon its furface, as well as upon the tool. Part of this mult be wiped away with fome very foft wafh leather; but if the whole of it be taken away, the polifhing will not be fo well completed.

With refpeet to the parabolic figure to be given to the mirror, Mr Ecwards alfures us, that a very little experience in thefe matters will enable any one to give it with certainty, by polithine, the fpeculam in the common manner, only with crots Itrokes in every direction, upon an elliptical tool of the proper dimentsons.

SPINDI,E, in geonetry, a folid body generated by the revolution of fome curve line about its bafe or double ordinate ; in oppolition to a conoid, which is generated by the rotation of the curve about its axis or abfcifs, perpendicular to its ordinate. "The fipindle is denominated circular, elliptic, hyperbolic, or parabolic, \&c. according to the figure of its generating curve.

Spindle, in mechanics, fometimes denotes the axis of a wheel, or roller, \&cc. and its ends are the pivots.

SPINNING machine. The ancient Greeks were not, like the modern philofuphers, unwilling to acknowledge their obligations to Providence for all the comforts and enjoyments of life, nor felt pride in deriving every thing from their own talents. They were even difpofed to think that thofe very talents were infpired. Their firf inftructors, the poets, gave to Apollo the honour of that power of invention and imagination by which they inftructed and charmed their admiring hearers. The prophetef8 dictated her oracles,

\section*{S P I [}
ing. the poet fung his enrantured ftrain only when infpired. hine. The hapoy thought of twining a thread, and working it into a blauket, when viewed by that ingenious and acutely fenfible people in all its importance, as the pro tector of the human race from the feverity of the weather, feemed a prefent from heaven, as the infpiration of a divinity; and the diffaff and the loom were Minerva's firf title to a feat among the great grods on Olympus.

We are much inclined to be of the fame opinion. When we obferve, that in all the countries which have been difcovered by the navigators of the three laft centuries, the diftaff and fpindle, and the needle, have been found, we own ourfelves muctr difpofed to think that they are the refults of inftinet. Our inftincts are not all fimple and blind, like that which directs the newborn animal to the bieaft of its mother without knowing why. We have inftincts of intelleet as well as of appetite ; and the logic of common converfation is an example of many fuch. We doubt not but that the noble-minded inhabitants of Pelew would have worhipped as a divinity an Englifh maiden with her fpinning wheel and fly. Surely he who fhould carry them this homely but ingenious machine, and a potter's wherl, would do them more fervice than if he taught them all the fcience of a Newton, with all the philofoplyy of the 18th century into the bargain. We do not know, except perhaps the fteam engine, any mechanical invention that has made fuch amazing addition 10 the activity and induftry and opulence of this highly favoured ifland, as the invention of Mr Arkwright for fpinning by water, where dead matter is made to perform all that the niceft finger can do when directed by the never. cealing attention of the intelligent eye. Minerva has the undifputed honours of the diftaff and fpindle. We know not to what Benefactor we owe the Ay-wheel. Mr Arkwright has the honour of combining them both, and infpiring them with his own fpirit; for we may truly fay of the contrivance which pervades the wonderful machinery of a cotton mill,

\section*{Totufque infufa per artus}

\section*{Mens agitat molem et magno \(\sqrt{e}\) corpore mijcet.}

To give an intelligible and accurate defcription of a cotton mill would be abundant employment for a volume. Our linits admit of nothing like this ; but as we are certain that many of our readers have viewed a cotton mill with wonder, but not with intelligence, nor with leifure to trace the fteps by which the wool from the bag ultimately afumes the form of a very fine thread. Bewildered by fuch a complication of machinery, all in rapid motion, very few, we imagine, are able in recollect with dittinetnefs and intelligence the effential part of the procefs by which the form of the cotton is fo wonderfully changed. Such readers will not think a page or two mifemployed, if they are thereby able to underftand this particular, to which all the reft of the procefs is fubfervient.

We pafs over the operation of carding, by which all the clots and inequalities of the cotton wool are remo. ved, and the whole is reduced to an uniform thin fleece, about 20 inches broad. This is gradually detached from the finifhing card, and, if allowed to hang down from it, would pile up on the floor as long as the mill
continues to work; but it is guided off from the card, very tenderly, in a horizontal direction, by laying its detached end over a roller, which is flowly turned round by the machine. A nother roller lies above the fleece, preffing it down by its weight. By this preffure, a gentle hold is taken of the fleece, and therefore the flow motion of the rollers draws it gently from the card at the fame rate as it is difengaged by the comb; but between the card and the rollers a fet of fmooth piss are placed in two rows, leading from the card to the rollers, and gradually approaching each other as we approach the rollers. By thefe pins the broad ficece is hemmed in on both fodes, and cradually contracted to a thick roll ; and in this frate paffes between the rullers, and is compreffed into a pretty firm flat riband, al:out two inclies broad, which falls off from the rollers, and piles up in deep tinplate cans fet be?

It is upon this flripe or riband of cotion wocl that the operation of fpirining legins. The gencral efficet of the fpinning procefs is to draw out this maffive roll, and to twif it as it is drawn out. But this is not io be done by the fingers, pulling out as mauy cotton fibres at once as are necurary for compofing a thread of the interded finenef, and continuing this manipulation regularly acrofs the whole end of the ribanc, and thus. as it were, nibbling the whole of it away. 'The fngers muft be directed, for this purpofe, by an attentive eye. But in performing this by machinery, the whole riband muft be drawn out together, and twilled as it is drawn. 'This requires great art, and very'delicate management. It cannot be done at unce; that is, the cotton roll cannot firft be ftretched or drawn ont to the length that is ultimately produced from a tenth of an inch of the roll, and then be twifted. There is not cohefion enough for this purpofe: we fhould only break off a bit of the roll, and could make no farther ufe of it. The fibres of cotton are very little implicated among each other in the roll, becanfe the operation of carding has laid them almoft parallel in the roll; and though compreffed a little by its contraction from a fleece of 20 inches to a riband of only 2, and afterwards compreffed between the difcharging rollers of the carding machine, yet they cohere fo fliglitly, that a few fibres may be drawn out without bringing many others along with them. For thefe reafons, the whole thicknefs and breadth of two or three inches of the riband is ftretched to a very minute quantity, and then a very flight degree of twift is given it, viz about three turns in the inch; fo that it thall, now compofe an extremely foft and fpurgy cylinder, which cannot be called a thread or cord, becaufe it has fcarcely any firmefs, and is merely rounder and much flenderer than before, being. fretched to about thrice its former length. It is now called flab, or roove.

Although it be fill extremely tender, and will not carry a weight of two ounces, it is much more cohefive than before, becaufe the twift given to it makes all the longitudinal fibres bind each other together, and comprefs thofe which lie athwart ; therefore it will require more force to pull a fibre from among the reft, but ftll not nearly enough to break it. In drawing out a fingle fibre, others are drawn out along with it; and if we take hold of the whole affemblage, in two places, about an inch or two inches afunder, we fhall find that we may draw it to near twice its length without any

\section*{S P I}

SpimmingNtchuse
rink of its Feparating in any intermediate part, or becoming much fmaller in one part than another. It feems to yield equably over all.

Such is the fate of the nab or roove of the firt formation. It is ufnally called the preparatuon; and the operation of fpinning is confidered as not yet begun. This prepazation is the moft tedious and requires more attendance and hand labour than any fubfequent pait of the procefs. For the Atripes or ribands from which it is made are fo light and bulky, that a few yards only can be piled up in the cars fet to receive them. A perfon mult therefore attend each thread of nab, to join frefn ftripes as they are expended. It is alfo the moft in. portant in the manufacture: for as every inch of the llab meets with precifely the fame drawing and the fane twifting in the fubfequent parts of the procefs, therefore every inequality and fault in the flab (indeed in the fleece as it quits the finiihing card) will continue shrough the whole manufacture. The fpinning of cot. ton yarn now divides into two branches. The firt, performed by what are called jennies, perfectly relembles the ancient Spinning with the diftaff and \{pindle; the other, called jpinning of twift, is an imitation of the fpinning with the fy-wheel. They differ in the fame manner as the fpiming with the old wool or cottonwheel differs from the fpinning with the flax wheel. Mr Arkwight's chief invention, the fubftitution of machinery for the inmecliate work of the human finger, is feen only in the manufacture of twitt. We fhall therefore confine our attention to this.

The reft of the procefs is little more than a repetition of that gone through in making the firft flab or roove. It is formed on bobin3. Thefe are fet on the back part of the drawing frame; and the end of the flab is brought forwards toward the attending work. tnan. As it comes forward, it is ftretched or drăwn to about \(\frac{4}{3}\) of its former length, or lengthened \(\frac{7}{3}\); and is then twifted about, twice as much as before, and in this flate wound up on another bobin. In fome nills two rooves, after having been properly drawn, are brought together through one hole, and twifted-into one; but we believe that, in the greater number of mills, this is deferred to the fecond drawing. It is oniy after the firit drawing that the produce of the operation gets the name of ; before this it is called preparation, or roove, or by fome other name The flab is fill a very feeble, foft, and delicate yarn, and will not carry much more weight than it did before in the form, of roove. . The perfection of the ultimate thread or yarn depends on this extreme foftnefs; for it is this only which makes it fufceptible of an equable ftretching; all the fibres rielding and feparating alike.

The next operation is the fecond drawing, which no way differs from the firt, except in the different proportions of the lengthening, and the proportion between the lengthening and the fublequent twift. On thefe points we cannot give any very diftinct information. It is different in different mills, and with different fpecies of cotton wool, as may be eafily imarined. The immediate inechanifin or manipulation muft be fkilfully accommodated to the nature of that friction which the fibres of cotton exert on each other, enabling one of them to pull others along with it. This is greatly aided by the contorted curled form of a cotfol fibre, and a confiderable degree of elalticity which

\section*{5:8 \(\quad \mathrm{S} P \mathrm{I}\)}
it poifeffes. In this refpect it greatly, refembles woollen spinn ing. fibres, and differs exceedingly from thofe of flax: and Machine, it is for this reafon that it is fcarcely pollible to ipin flax in this way: its fibres become lank, and take any thape by the flightelt compreflion, efpecially when damp in the Nighteft degree. But befider this, the-furtace of a cotton fibre has a harflnefs or roughnefs, which greatly augments their mutual friction. This is probably the reafon why it is fo unfit for tents and other dreflings for wounds, and is refufed by the furgeon even in the meaneft hofpitals. But this harfhnefs and its elafticity fit it admirally for the manufacture of yarn. Even the fhortnefs of the fibre is favourable; and the manufacture would hardly be poffible if the fibre were thrice as long as it generally. is. If it be jult follong that in the finifted thread a fibre will rather break than come ont from among the reft, it is plain that no additional length can make the yarn any ftrong. er with the fame degree of compreffion by twining. A longer fibre will indeed give the fame firmnefs of adherence with a fmaller compreffion. This would be an advantage in any other yarn; but in cotton yarn the compicifion is already as night as can be allowed; were it lefs, it would become woolly and rough by the finalleft ulage, and is already too much difpofed to teazle out. It can hardly be ufed as fewing thread. Now fuppofe the fibres much longer; fome of them may chance to be ftretched along the flab through their whole length. If the fiab is pulled in oppofite directions, by pinchang it at each end of luch fibres, it is plain that it will not fretch till this fibre be broken or drawn out; and that white it is in its extended flate, it 18 acting on the other fibres in a very unequable manner, according to their pofitions, and renders the whole ape to feparate more irregularly. This is one great obltacle to the fpinning of flax by fimilar machinery; and it has hithento prevented (we believe) the working up of any thing but the fborts or tow, which is feparated from the long tine flax in the operation of hatcheling.

A third, and fometines even a fourth, drawing is given to the flab formed on the bobins of this fecond operation. The flab produced is now a flender, but ftill extremely foft cord, fufceptible of contiderable extenfion, without rik of feparation, and without the fimalleft chance of breaking a fingle fibre in the attempt. In one or more of the preparatory drawings now defcribed, two, and fometimes three flabs, of a former drawing, are united before the twift is given them. The practice is different in different mills. It is plain, that unlefs great care be taken to preferve the nab extiemely foft and compreffible during the whole procefs, the fubfequent drawing becomes nore precarious, and we run a rifk of at latt making a bad and loofe thread inftead of a uniform and fimple yarn. Such a thread with have very little lateral connection, and with not bear much handling without leparating into ftrands. The perfection of the yarn depends on having the laft Alab as free of all appearance of ftrands as pofible.

The laft operation is the fpinning this fab. This hardly differs from the fortgoing drawings in any thing but the twift that is given it after the latt ftretching in its length. This is much, greater than any of the preceding, being intended to give the yarn hardnefs and firmnefs, fo that it will sow break rather than ftretch. any more.

\section*{S P I [ 510 1. S P I}

The reader, moderately acquainted with mechanics, cannot but perceive that each of the operations now defcribed, by which the roove is changed into the foft flab, and each of thele into one flenderer and fomewhat firmer, by alternately teazling out and twining the foft cord, is a fubtitute for a fingle pull of the finger and thumb of the finifter, which fhe accommodates precife. ly to the peculiar condition of the lock of wool which fhe touches at the moment. She can follow this thro' all its irregularities; and perhaps no two fucceeding plucks are alike. But when we cannot give this momentary attention to every minute portion, we muft be careful to introduce the roove in a flate of perfect uniformity; and then every inch being treated in the fame manner, the final refult will be equable - the yarn will be uniform.

We are now to defcribe the mechanifm by which all this is effected. But we do not mean to defcribe a cotton mill; we only mean to defcribe what comes into immediate contact with the thread; and in fo doing, to confine ourfelves to what is neceffary for making the reader perceive its ability to perform the required talk. We fee many cafes where individuals can apply this knowledge to ufful purpofes. More than this would, we think, be improper, in a national point of view.
Let \(A B C\) reprefent the fection of a roller, whofe pivot D does not turn in a pivot hole, but in the bottom of a long narrow notch DE, cut in an iron ftandard. \(a b c\) is the feation of another iron roller, whofe pivot \(d\) is in the fame notches at each end, while. the roller itfelf lies or refts on the roller ABC below it. The furfaces of thefe rollers are fluted lengthwife like a column; only the flutings are very fmall and fharp, like deep ftrokes of engraving very clofe together. It is plain, that if the roller \(A B C\) be made to turn fowly round its axis by mach in the direction ABC (as expreffed by the da roughnefs of the flutings will take hold of the fimi. . . roughnefs of the upper roller \(a b c\), and carry it round atfo in the direction of the dart, while its pivots are engaged in the notcines 1 E , which they carnot quit. If therefore we introduce the end \(F\) of the cotton flring or ri. band, formed by the carding machine, it will be pulled in by this motion, and will be delivered out on the other fide at H , confiderably compreffed by the weight of the upper roller, which is of iron, and is alfo preffed down by a lever which refts on its pivots, or other proper places, and is loaded with a weight. There is nothing to hinder this motion of the riband thus compreffed between the rolless, and it will therefore be drawn thro \({ }^{*}\) from the cans. The compreffed part at H would hang down, and be piled up on the floor as it is drawn thro'; but it is not permitted to hang down in this manner, but is brought to another pair of fharp fluted iron rollers K and L. Suppofing this pair of rollers to be of the fame diameter, and to turn round in the fame time, and in the fame direction with the rollers \(\mathrm{ABC}, a b c\); it is plain that K and L drag in the comprefled riband at I , and would deliver it on the other fide at M , ftill more comprefled. But the roller K is made (by the wheelwork) to turn round more fwiftly than ABC . The difference of velocity at the furface of the rollers is, however, very fmall, feldom exceeding one part in 12 or 15 . But the confequence of this difference is, that the Ikein of cotton HI will be lengthened in the
fame proportion; for the upper rollers prefling on the under ones with a confiderable force, their fharp flutings take good hold of the cotton between them ; and fince K and \(L\) take up the cotton fafter than ABC , and \(a b c\) Machine. deliver it ont, it munt either be forcibly pulled through betwcen the firit rollers, or it mult be Itretched a little by the fibres flipping among each other, or it muit break. When the extenfion is fo very moderate as we have juft now faid, the only effect of it is merely to begin to draw the fibres (which at prefent are lying in every poffible direction) into a more favourable polition for the fub. fequent extenfions.

The fibres being this drawn together into a more favourable pofition, the cotton is introduced between a third pair of rollers \(\mathrm{O}, \mathrm{P}\), conftrueted in the fame way; but fo moved by the wheclwork that the fusface of \(O\) moves nearly or fully twice as faft as the furface of K . The roller P being alfo well loaded, they take a firm hold of the cotton, and the part between K and O is nearly or fully doubled in its length, and now requires a little twining to make it roundith, and to confolidate it a little.

It is therefore led floping downwards into a hole or eye in the upper pivot of the firlt fly, called a jack. This turns round an upright axis or fpindle; the lower end of which has a pulley on it to give it motion by means of a band or belt, which paffes round a drum that is turned by the machinery. This jack is of a very ingenious and complicated conftruction. It is a fubflitute for the fly of the common fpinning wheel. If made precifely in the form of that ly, the thread, being fo very bulky and fpongy, and unable to bear clofe packing on the bobin, would fwag out by the whirling of the fly, and would never coil up. The bobin therefore is made to lie horizontally; and this occafions the complication, by the difficulty of giving it a motion round a horizontal axis, in order to coil up the twifted roove. Mr Arkwright has accomplifhed this in a very ingenious manner; the effential circumflances of which we flall \({ }^{-}\) here briefly defcribe. A is a roller of hard wood, having its furface cut into fharp flates longitudinally. On the axis, which projects through the fide of the general frame, there is a pulley \(P\) ', connected by a band with another pulley \(Q_{\text {, turning with the horizontal axis }}\) QR. This axis is made to turn by a contrivance which is different in every different cutton mill. The fimpleft of all is to place above the pulley C (which is turned by the great band of the machinery, and thua gives motion to the jack), a thin circular dife D, loofe upon the axis, fo as to turn round on it without obAtruction. If this dife exceed the pulley in breadth about \({ }^{\prime}\) 'th of an inch, the broad belt which turns the pulley will alfo turn it ; but as its diameter is greater than that of the pulley, it will rurn fomewhat flower, and will therefore have a relative motion with refpect. to the axis QR. This can be employed, in order to give that axis a very flow motion, fuch as one turn of it for 20 or 30 of the jack. This we leave to the ingenuity of the realer. The bobin \(B\), on which the roove is to be coiled ap, lies on this rolier, ito pivots palfing through upright fits in the fides of the general frame. It lies on \(A\), and is moved round by it, in the fame manner as the uppermolt of a pair of drawing rot. lers lies on the under one, and receives motion fom it. It is evident that the fluted furface of \(A_{2}\) by turning
fowly

\section*{3 ion \(A\)}

ShinningMachine Stapelia.
flowly round, and carrying the weight of the bobin, comprefles a little the cotton that is between them; and its futings, being fharp, take a flight hold of it, and caufe it to turn round alfo, and thus coil up the roove, pulling it in through the hole E in the upper pivot (which refembles the fore pivot or eye of a fpinning wheel fly) in fo gentle a manner as to yield whenever the motion of the bobin is too great for the fpeed with which the cotton fleein is difcharged by the rollers O and P. \(-N\). B. The axis QR below, alfo gives motion to a guide within the jack, which leads the roove gradually from one end of the bobin to the other, and back again, fo as to coil it with regularity till the bobin is full. The whole of this internal mechanifm of the jack is commonly fhut up in a tin cylinder. This is particularly neceffary when the whirling motion mult be rapid, as in the fecond and third drawings. If open, the jacks would meet with much refiftance from the air, which would load the mill with a great deal of ure. lefs work.

The reader is defired now to return to the beginning of the procefs, and to confider it attentively in its different flages. We apprehend that the defeription is fufficiently perfpicuous to make him perceive the efficacy of the inechauifim to execute all that is wanted, and prepare a flab that is uniform, foft, and ftill very extenfible; in fhort, fit for undergoing the laft treatment, by which it is mace a fine and firm yarn. .
As this part of the procefs differs from each of the former, merely by the degree of twift that is given to the varn. and as this is given by means of a fly, not materially different from that of the fpiuning wheel for flax, we do not think it at all neeeflary to fay any thing more about it.

The intelligent reader is furely feufible that the yarn produced in this way mult be exceedingly uniform. The uniformity really produced even exeeeds all expectation; for cven although there be fome finall inequatities in the carded fleece, yet if thefe are not matted clots, which the card could not equalife, and only confift of a little more thicknefs of cotton in fome places than in others, when fuch a piece of the fripe comes to the firlt roller, it will be rather more ftretched by the fecond, and again by the bobin, after the firit very fight twining. That thif may be done with greater certainty, the weights of the firlt rooving rollers are made very fmall, fo that the middle part of the fkein can be drawn through, while the outer parts remain faft held.

We are informed that a pound of the fineft Bourbon cotton has been fpun into a yarn extending a few yards beyond 119 milea!

Elater SPRING, in phyfies, denotes a natural faculty, or endeavour, of certain bodies to return to their firft ftate, after having been violently put out of the fame by compreffing, or bending them, or the like. This faeulty is ufually called by philofophers elaflic force, or elaflicity.
T. SQUARE, or Tee SQUARF, an inftrument ufed in drawing, fo called from its refemblance to the capital letter T.

STAPELIA, a gerus of plants belonging to the clafs pentandria, in the Linnxan arrangement, and to the order digynia. The generic characters are the following: The calys is monophyllous, quinquetid, acute, fmall, and permanent. The corolla is monopetalous,
llat, large, and divided, deeper than the middle, into Stepelin five parts, with broad, flat, pointed lacinie. The neda. ruin is fmall, far-fhaped, flat, quinquefid, with linear lacinie; and embracing with its ragged points the feedforming parts. Another fmall ftar, which is alfo flat and quinquefid, covers the feminifcrous parts with its entire acute lacinia. The famina are five in number: the filaments are ereet, flat, and broal ; and the antbere are linear, on each fide united to the fide of the fila. anent. The pifillum has two germina, which are oval and flat on the infide. There are no fyles; and the figmata are obfolete. The feedovelfel confifts of two ohlong, awl-fhaped, urilocular and univatved follieles. The feeds are numerous, imbricated, compreffed, and crowned with a pappus or down.

This fingelar tribe of plants is peculiar to the fandy deferts of Africa and Arabia. They are extremely fucculent. From this peculiarity of Aructure, the power of retaining water to fupport and nourifh them, they are enabled to live during the prevalent droughts of thofe arid regions. On this account the ftapelia has been compared to the camel; and we are told that, by a very apt fimilitude, it has been denominated "the camel of the regetable kingdom." We muit confefs ourfelves quite at a lofs to fee the propriety or aptitude of this comparifon. In many parts of the animal and vegetable economy there is doubtlefs a very obvious and Ariking analogy : but this analogy has been often carried too far; mueh farther, than fair experiment and acenrate obfervation will in any degree fupport. It is perlaps owing to this inaccuracy in obferving the peculizrity of Aructure and diverfity of functions, that a refemblance is fuppofed to exit, as in the prefent cafe, where in reality there is none. The camel is provided with a bag or fiftl: fomach, in ad zition to the four with which ruminant animals are furnithed. This fifth ftonaeh is deftined as a refervoir to contain water ; and it is fufficiently capacious to receive a quantity of that neceflary fluid, equai to the wants of the animal, for many days: and this water, as long as it remains in the fifth flomach, is fand to be perfeetly pure and unchanged. The fapelia, and other fucculent plants, have no fueh refervoir. The water is equally, or nearly fo, diffufed through the whole plant. Every veffel and every cell is fully diftended. But befides, this water, whether it be received by the roots, or abforbed from the atmolphere, has probably undergone a complete change, and become, after it has been a fhort tine within the plant, a fluid poffeffed of very different qualities.

The peculiar ceonomy in the ftapelia, and other fucculent plants, feems to exit in the abforbent and exhalant fyftems. The power of abforption is as much increafed as the power of the exhalant or peripiratory veffels is diminiihed. In thefe plants, a fmall quantity of nourifhment is required. There is no folid part to be formed, no large fruit to be produced. They generally have very fmall leaves, often are entirely naked; \{o that taking the whole plant, a fmall furface only is expofed to the action of light and heat, and confequently a much fmatler proportion of water is decompofed than in plants which are much branched and furnifhed with leaves.
'I'wo fpecies of ftapelia ouly were known at the beginning of the century. The unfortunate Forkâl, the companion

\section*{S T A}
companion of Niebhur, who was fent out by the king of Denmark to explore the interior of Arabia, and who fell a facrifice to the peftilential difeafes of thofe inhor. pitable regions, difcovered two new fpecies. Thunberg, in his Prodromus, has mentioned five more. Forty new fpecies have been difcovered by Mr Maffion of Kew Gardens, who was fent out by his prefent Majelly for the purpofe of colle⿻ting plants round the Cape of Good Fope. Defrriptions of thefe, with ele. gant and highly finihed coloured engravings, lave lately been publifhed. They are chiefly natives of the extenfive deferts called Karro, on the weftern fide of the Cape.

STAR, in fortification, denotes a fmall fort, having five or more points, or faliaut and re-entering angles, flanking one another, and their faces 90 or 100 feet long.

STARCFI (fee Encycl.) is commonly made of wheat, and the very beft farch can perhaps be made of nothing elfe. Wheat, however, is too valuable an article of food to be employed as the material of flarch, when any thing elfe will anfwer the purpofe; and it has long been known that an inferior kind of ftarch may be made of potatoes. Potatoes, however, are themfelves a valuable article of food; and it is therefore an object of importance to try if ftarch may not be made of fomething fill lefs ufeful.

On the 8th of March 1796, a patent was granted to Lord William Murray for his difcovery of a method by which flarch may be extracted from horfe.chefuuts. That method is as follows:

Take the horfe-chefnuts ont of the outward green prickly hufks; and then, either by hand, with a knife or other tool, or elfe with a mill adapted for that purpofe, very carefully pare off the brown rind, being particular not to leave the fmalleft Speck, and to entirely eradicate the fprout or growth. Next take the nuts, and rafp, grate, or grind them fine into water, either by hand, or by a mill adzpted for that parpofe. Wafh the pulp, which is thereby formed in this water, as clean as poffible, through a coarfe horfe-hair fieve; this again wafh through a finer fieve, and then again through a fill finer, conifantly adding clean water, to prevent any ftarch from adhering to the pulp. The laft procefs is, to put it with a large quantity of water (about four gallons to a pound of ftarch) through a fine gauze, muflin, or lawn, fo as entirely to clear it of all bran or other impurities. As foon as it fettles, pour off the water; then mix. it up with clean water, repeating this. operation till it no longer imparts any green, yellow, or other colour to the water. Then drain it off till nearIt dry, and fet it to bake, either in the ufual mode of baking flarch, or elfe fpread out before a brifk fire; being very attentive to flir it frequently to prevent its horning, that is to fay, turning to a pafte or jelly, which, on being dried, turns hard like horn. The whole procels fhould be conducted as quickly as poffible.

Mention is here made of a mill which may be em. pioyed to grind the horfe-chefnuts; but none is defcribed as proper for that purpofe. Perhaps the follow. ing mill, which was invented by M. Baumé for grinding potatoes, with a view to extraet flarch from them, may anfwer for grinding horfe chefnuts.

He had a grater made of plate iren, in a cylindrical form (fig. I.) abont feven inches in diameter, and about § Suppl. Vor. II. Part II.
eight inches high : the bars made by ftamping the foles
Starch. are on the infide. This grater is fupported upon three feet AAA, made of fat iron bars, feven feet hight, ftrongly rivetted to the grater; the bottom of each foot is bent horizontally, and has a hole in it which receives a ferew, as at A, fig. 4. A little below the upper end of the three feet is fixed a crofs piece B (Gg. 1. and 4.), civided into three branches, and rivetted to the feet. This crofs piece not only ferves to keep the feet at a proper difance from each other, and to prevent their bending; but the centre of it having a hole cut in it, ferves to fupport an axis or fpindle of iron, to be prefently defrribed.

The upper end of this cylindrical grater has a diverging border of iron C (fig. 1. 4. and 7.), about ten inches in dianeter at the top, and five inches in height.

Within this cylindrical grater is placed a fecond grater (fig. 2. and 3.), in the form of a cone, the point of which is cut off. The latter is made of thick plate iron, and the burs of the holes are on the outfide; it is fixed, with the broad end at the bottom, as in fig. 4 . At the upper end of the cone is rivetted a fmall triangle, or crofs piece of iron, confilling of three branches D (fig. 2.), in the middle of which is made a 〔quare hole, to receive an axis or fpindle ; to give more refiftance to this part of the cone, it is ftrengthened by means of a cap of iron \(E\), which is fixed to the grater by ineans of rivets, and has alfo a fquare hole made in it, to let the axis pafs through.

Fig. 3. reprefents the fame cone feen in front ; the bafe F has alfo a crofs piece of three branches, rivetted to a hoop of iron, which is fixed to the inner furface of the cone; the centre of this crofs piece has alfo a \&quare hole for the paffage of the axis.

Fig. 5. is a fpinole or axis itfelf; it is a fquare bar of iron about 16 inches long, and more than half an inch thick ; round at the bottom, and alfo towards the top, where it fits into the crofs piece I, fig. 7. and B, fig. 1. and 4.; in thefe pieces it turns round, and by them it is kept in its place. It mult be fquare at its upper extremity, that it may have a handle, about nine inches long, fixed to it, by means of which the conical grater is turned round. At G, (fig. 5.), a fmall hole is made through the axis, to receive a pin H , by means of which the conical grater is kept at its proper height within the cylindrical one.

Fig. 6. is a bird's eye view, in which the mill is reprefented placed in an oval tub, like a bathing-tub. I is the fore-mentioned triangular iron crofs, fixed with fcrews to the fide of the tub; the centre of it has a round hole, for the axis of the mill to move in when it is ufed.

Fig. 7. reprefents the mill in the oval tub; it is placed at one end of it, that the other end may be left free for any operation to be performed in it which may be neceffary. A part of the tub is cut off, that the infide of it, and the manner of fixing the mill, may be feen. That the bottom of the tub may not be worn by the ferews which pafs through the feet of the mill, a deal board, about an inch thick, aud properly fhaped, is placed under the mill.
When we wifh to make ufe of this mill, it is to be fixed by the feet, in the manner already defcribed; it is alfo fixed at the top, by means of the crofs piece I, fig. 6, and 7. The tub is then to have water poured

Staren. into it as high as K , and the top of the mill is to be filled with potatoes, properly wafhed and cut ; the handle L is to be turned round, and the potatoes, after being ground between the two graters, go out gradially at the lower part, being affifted by the motion produced in the water by the action of the mill.

It is not neceffary, in the conftruction of fuch a mill, to be very particular with refpect to its proportions; but, in order to make known thofe which experience has proved to be good ones, a fcale is given with the figures, to which recourfe may be had. With a mill of this fize, 100 pounds of potatoes may be ground in the fpace of two hours.

We are perfuaded that this mill will anfiver perfectly well for grinding horfc chefmuts; and we hope, that where they can be had they will be ufed in preference to potatoes. We fhall, however, give M. Baume's method of extracting ftarch from the ground potatoes, not only becaufe it will be acceptable to thofe who have not horfe-chefnuts, but alfo becaufe thofe who have may, by following it, be able, perhaps, to make flarch of them, without encroaching upon Lord Wilt liam Murray's patent.

In order to prepare ftarch from potatoes, fays M: Baumé, any quantity of thefe roots may be taken, and foaked in a tub of water for about an hour; they are afterwards to have their fibres and fhoots taken off, and then to be rubbed with a pretty flrong brufk, that the earth, which is apt to lodge in the inequalities of their furface, may be entirely removed; as this is done, they are to be wafhed, and thrown into another tub full of clean water. When the quantity which we mean to make ufe of has been thus treated, thofe which are too large are to be cut into pieces about the fize of eggs, and thrown into the mill; that being already fixed in the oval tub, with the proper quantity of water; the handle is then turned round, and as the potatoes are grated they pais out at the bottom of the mill. The pulp which collects about the mill muft be taken off from time to time with a wooden fpoon, and put afide in water.

When all the potatoes are ground, the whole of the pulp is to be collected in a tub, and mixed up with a great quantity of clean water. At the fane time, an other tub, very clean, is to be prepared, on the brim of which are to be placed two wooden rails, to fupport a hair fieve, which mult not be too fine. The pulp and water are to be thrown into the fieve ; the flour palfes. through with the water, and frefh quantities of water are fucceffively to be poured on the remaining pulp, till the water runs through as clear as it is poured in. In this way we are to procecd till all the potatoes that were ground are ufed.
The pulp is commonly thrown away as ufelefs; but it fhould be boiled in water, and ufed as food for animals; for it is very nourifhing, and is about \(\frac{7}{8}\) ths of the whole quantity of potatoes ufed.

To return from this fhort digreffion. The liquor which has paffed through the fieve is turbid, and of a brownifh colour, on account of the extractive matter which is diffolved in it; it depofits, in the fpace of five or fix hours, the flour whicl was fufpended in it. When all the flour is fettled to the bottom, the liquor is to be poured off and thrown away, being ufelefs; a great qquantity of very clean water is then to be pour-
ed upor the flour remaining at the bottom of the tub; which is to be ftirred up in the water, that it may be wafhed, and the whole is to ttand quiet till the day following. The four will then be found to have fettled at the bottom of the tub; the water is again to Be poured off as wifelefs, the flour wained in a frefh quantity of pure water, and che mixture paffed through a filk freve pretty fine, which will retain any fmall quantity of pulp which may have paffed through the hair fieve. 'The whole mult once- more be fuffered to ftand quiet titl the flour is entirely fettied; if the water above it is perfectly clear and colourlefs, the flour has been fufiticiently wafhed; but if the water has any fenfible appearance cither of colour or of talle, the flour mult be again wafhed, as it is anfolitely neceffary that srone of the extractive matter be fuffered to remain.

When the flour is fufficiently wafhed, it may be taw ken out of the tuh with a wooden fpoon; it is to be placed upon wicker frames covered with paper, and dried, properly difended from duft. When it is tho roughly dry, it is tor be pafed through a filk. fieve, that if any clotted lumps fhould have been formed they may bie divided. It is to be kept in. glafs veffels thopped with paper only. See Vegetable Substancks, Suppl.
\(N . B\). Almoft all the flour of potatoes that is to be bought contaies a imall quantity of fand, which is perceived between the teeth; it is owing to the potatocs not having been properly wafhed; for the fand which lodges in the knobs and wrinkles of thefe roots, is not always eafy to get out.

Si'ARIINGS, or Sifrlincs, the name given to the ftrong pieces of timber which were driven into the bed of the river to protect the piles, on the top of which were laid the flat beans upon which were built the bafes of the flone piers that fupport the arches of London bridge. In general, ftarlings are large piles placed on the outfide of the foundation of the piers of bridges, to break the force of the water, and to protect the flone work from injury by floatiag ice. They are outrerwife called Jextes, which fee in this Supplement ; and their place is ofien fupplied by large fones thrown at random round the piers of bridges, as may be feen: at Stirling bridge when the river is low; and as was done by Mr Smeaton's direction romed the piers of the centre arch of London bridge, when it was thought in danger of being undermined by the current. See Smeaton, Encycl.

STATIONARY, in allonomy, the fate of a planet when, to an oblerver on the earth, it appears for. fome time to fland ftill, or remain inmoveable in the fame place in the heavens. For as the planets, to fuch an obferver, have fometimes a ! !rogreflive motion, and fonetimes a retrograde one, there nult be fome pointbetween the two where they muft appear ftationary.
STEAM, Steam-Engine. The few following corrections of thefe articles in the Encycl. were communicated by the author.

Page 745 . col. 1.-It was not at the York Building waterworks in London that the boiler burft, but in the country in an engine erected by Dr Defaguilliers. See his Experimental Pbilofophy, Vol، IF. p. 489 -
Page 746. col. 2. - The condenfation requires more cold water than is here allowed, as will appear by and bye; and we alfo fufpect that the rapidity is overrated with which a great volume of Iteami is condenfed

Fig. 1


S TARCH.

\section*{Fig 1.}


Fig. 6


Fig 3.


cam. by the cold furface of a veffel. We are well informed that Mr Watt was much difappointed in his expectations from a conftruction in which this mode of condenfation was adopted. The condenfer employed by Mr Cartwright (fee Pbil. Mag.) was one of the very firtt thought of and tried for this purpofe, and was gi. ven 4 p , as well as all others on the fame principle; and the immediate contact of cold water was preferred as incomparably more effective. The great fuperiority of the capacity of water for heat is now well known. It is true, that when we employ an extenfive cold furface of the condenfer, this furface is kept cold by the water round it ; and iherefore we ftill avail ourfelves of this great avidity of water for heat. But this water mult act through the intervention of the veffel; and the fub. flance of the veffel does not convey heat to the furrounding water in an inflant.

Page 749. col. 2. - No diftinct experiment thews fo great an expanfion of water, when converted into fteam at the temperature \(212^{\circ}\); and under the preffure of the air Mr Watt never found it more than troo times ra rer than water.

Page 753. col. r.-The heat expended in boiling off a cubic foot of water is atont fix times as much as would bring it to a boiling heat from the medium temperature ( \(55^{\circ}\) ) in this climate.

Page \(758 . \mathrm{col}\). 2. - The quantity of water neceflary for injection may be determined on principle, at lealt for an engine having a feparate condenfer. Every cubic foot of common fteam produces about an inch of water when condenfed, and contains about as much latent heat as would raife 1100 inches of water one degree. This ftean muft not ouly be condenfed, but mult be cooled to the temperature of the hot well; therefore as many inches of cold water mult be employed as will require all this heat to raife it to the temperature of the hot well. Therefore let \(x\) be the cubic feet of Ateam, or capacity of the cylinder, and let \(y\) be the inches of cold water expended in condenfing it. Let \(a\) be the difference between \(212^{\circ}\) and the temperature of the hot well, and \(b\) the difference between the temperature of the well and the injection ciftern. We
have \(y b=x \times \overline{1100+a}\), or \(y \Rightarrow \frac{\overline{1100+a}}{b} \times \infty\).
Thus, if the temperature of the hot well be \(100^{\circ}\) (and it fhould never be higher, if we would have a tolerable vacuum in the cylinder), and that of the injection ciftern be \(50^{\circ}\), we have \(a=112\), and \(b=50\), and \(y=\frac{1212}{50} x,=24,24 x\), or \(24^{\frac{1}{1}} x\); that is, every foot of the capacity of the cylinder, or every inclı of water evaporated from the boiler, requires more than 24 inches of water to condenfe the fteam. A wine pint for every inch of water boiled off, or every cubic foot of capacity of the cylinder, may be kept in mind, as a large allowance. Or, more exactly, if the engine be in good order, and the injection water as low as \(50^{\circ}\), and the hot well not above \(100^{\circ}\), we may allow 25 gallons of injection for one gallon of water boiled off. This greatly exceeds the quantity mentioned in the cafe of a good Newcomen's engine, the cylinder of which contained almoft 30 cubic feet of tteam. And this circumfance fhews the fuperiority of the engine with a fepatate condenfer. The injection of Newcomen's engine
had been adjufted by experience, fo as to make the beft compenfation for the unavoidable wafte in the cylinder. We prefurie that this machine was not loaded above eight pounds per inch, more likely with feven; where. as Watt's engire, working in the condition now deferibed, bears a load not much below twelve, making at leaft twelve itrokes per minute.
Zhis is not a matter of mere curiofity ; it affords a very exact rule for judging of the good working order of the engine. We can meafure with accuracy the water admitted into the boiler curing an hour, withont allowing its funface to rife or fall, and the water employed for injection. If the lalt be below the propo:tion now given (adapted to the temperatures \(5^{\circ}\) and \(100^{\circ}\) ), we are certain that ftam is wafted by leaks, of by condenfation in fome improper place. The rule is not Arictly conformable to the latent heat of fean which balances the atmofphere, \(1100^{\circ}\) being fomewhat too great a value. It is accommodated to the actual performance of Watt's ergines, when in their belt working condition.

It is evident that it is of great importance to have the temperature of the hot well as low as poffible ; becaufe there always remains a iteam in the cylinder, of the fame, or rather liggher temperature, poffeffing an clatticity which balances part of the preffure on the other fide of the pifton, and thus dinunifhes the power of the engine. This is clearly feen by the barometer, which Mr Watt appliea to many of his bett engiues, and is a moft uffful addition for the proprietor. It fhews him, in every moment, the ftate of the vacuil:n, and the real power of his engine, and tells him when there are leaks by which air gets in.

Page 962 . cols. I. 2. -Mr Watt's firft experiment was not exactly as here related, but much more analogous to the prefent form of his erigine. The condenfer was a cylinder of tinplate, fitted with a pifton, which was drawn up frum the botton to the top, before the eduction cock was opened. Without this previous rarefaction in the condenfer, there was no inducement fothe fteam to take this courfe, unlefs it were made much ftronger than that of ordinary boiling water.

The defcription of the firft form of the engine is alfo faulty, by the omiffion of a valve iminediately below the eduction pipe. This valve is ?hut along with the valve I, to prevent the fteam, which fhould then go into the lower part of the cylinder, from alfo groing down into the conderfer. This is not abfolutely neceffary, but its advantage is evident.

Page 765. col. I.-This form of the engine was very early put in practice by Mr Watt-about the year 1775. The fmall engine at Mr Boulton's works at Soho was erected in 1776 ; and the engine at Shadwell waterworks, one of the beft yet erected, had been working fome tinue when we faw it in 1778. We mention this, becaufe we have been told that Mr Hornblower puts in fome claim to priority in this invention. We do not think that Mr Hornblower erected any of his engines before 1782 ; and as Mr Hornblower was, we believe, working with Boulton and Wact before that time, we think it fully more probable that he has in this refpect profited by the inftruction of fuch iutelligent employers. We may alfo obferve, that Mr Watt employed the fame contrivance which we have defcribed with much approbation in p. 772 . Encycl. for keeping

Sterm, the collar round the pifton rods feam and air tight. Stcel. He fund them effectual, but that they required more
attention for keeping them in fit condition than the ufual mode of packing. He made a fimilar packing for the pifton, and with a fimilar refult.

Page 760 . cols. 1. 2. -Mr Bonlton eftimates the performance of the engines in the following manner. Seeing that the great expence of the engine is the confumption of fuel, he makes this the fandard of computation, and cllimales the performance by the work which he engrages to perform by the confumption of one buthel of good Newcaltle coal, London meafure, or containing 84 lbs . without regard to the time in which this bufhel is expended. This depends on the fize of the engine.
The burning one bufhel of coal will,
1. Raife 30 million pounds one foot high.
2. It will grind and drefs it buthels of wheat.
3. It will hit and draw into nail rods 5 cwt . of iron.
4. It will drive 1000 cotton fpindles, with all the preparation machinery, with the proper velocity.
5. It is equivalent to the work of ten horfes.

The general performance of the double Atroke expanfive engines is fomewhat beyond this; and their performance in cotton fpinning, or as compared with horfe work, is much under rated. The firft eftimation is without ambignity. Suppofe the engine of fuch a fize as to confume a buthel of coals per hour. This will be found equivalent to railing 97 wine hogtheads of water ten feet high in a minute, which ten fout draught horfes cannot do for a quarter of an hour together. They can raife 60 in that time, and work at this rate eight or perhaps ten hours from day to day.

Mr Watt finds that, with the moft judiciouny conftructed furnaces, it requires eight feet of furface of the boiler to be expofed to the action of fire and flame to boil off a cubic foot of water in an hour, and that a buftel of coals fo applied will boil off from cight to twelve cubic feet.

Boulton and Watt now make fteam.engines equivalent in power to one or two horfes. The cylinder and whole machinery does not occupy more room than a Ene lady's working table, ftanding in a fquare of about \(2 \frac{1}{2}\) feet, and abont 5 feet high.

STEEL (fee that article Encycl. and Chempstry, no 114. Suppl.) is compofed of iron and carbon. In addition to the old proofs which we had of this fact, it occurred to Morveau, alias Guyton, to attempt to convert foft iron into hecl, by ufing the diamond inftead of charcoal in the procefs of cementation. This expenfive experiment, whicle was fuggened by M. Clouet, was made, by inclofing within a finall crucible of very foft iron a diamond, and fhutting up the crucible by a fopper well adjunted. This crucible of iron, with its contents, was placed, without the addition of any furrounding matter, in a very fmall Heffian crucible, and the latter in a fecoud crucible of the fanie carth; but the fpace between the two latter crucibles was filled with filiceous fand, free from all ferruginous particles. In the laft place, the large crncible was luted with earth arifing fron pounded crucibles and unbaked clay, and the whole was expofed abont an hour to a three blath forge fire. Whicn the whole was cooled, the iron was found in the interior Heffan crucible couverted into a
folid ingot of caft fteel. Thus the diamond difappeared by the affinity which iron exercifed on it by the help of the high temperature to which they were both expofed, in the fame manner as a metal difappears in the alloy of another metal. The dianond therefore furnifhed here the fame principle as carbon, fince the produe of the union has the fame properties.
The converfion into fleel could not be doubred. The ingot having been polifhed on a lapidary's wheel, a drop of weak nitrous acid immediately produced a dark-grey fpot, abfolutely like that exhibited on Englifh catt tteel, and on calt fteel produced by the procefo of C. Cloust. Thofe who have often tried itcel by this kind of proof, long ago pointed out by Riumann, had occafion to remark, that the foot of calt Ateel, tho' very fenfible, is, however, lefs black than that of Atel made by cementation, which depends perlaps on the different degree of oxydation of the carbon which they have taken in.
The procefs of M . Clowet here mentioned, for producing caft fleel, confifts in nothing more than throwing a quantity of glafs into the mafs of iron and charcoal during the formation of the former into flect. The fame chemitt has afcertained that iron, during its convesfion into fteel, abforbs 0.2013 of its weight of carbon; and that the affinity of iron for carloon is fo ftrong, that, at a white hext, it is capable of decompofing carbonic acid gas. This he proved by the following experiment.

If fix parts of iron be mixed with four parts of a mixture compoled of equal quantities of carbonat of lime and clay, and kept in a crucible at a white heat fur an hour or longer, according to the quantity, the iron will be converted into fteel. The decompofition of carbonic acid is evidently the confeqnence of a compound affinity ; part of the iron combining with the carbon, and another part with the oxygen of the caibonic acid gas. Accordingly the commiffioners, who were appointed to examine the procefs, remark, that a quantity of oxyd of iron was always mixed with the melted earthy fubftance, which was feparated from the fteel.
STEEVENS (George), the moot fuccefful of all the editors and commentators of Shakefpeare, was born 1735. Of his parents we know nothing, but that they feem to have been in circumftances which may be deemed affluent. George received the rudiments of his claffical education at Kiuglton-upon-Thames, under the tuition of Dr Woodefon and his affittants; and had for a companion at that fchool Gibbon the hiftorian. From Kington he went to Eton, whence, after fome yeare, he was admitted a fellow-commoner of King's College, Cambridge; but with the courfe of his tludies in the univerfity we are not acquainted. If we might hazard a conjecture, from the manner in which he employed his riper years, we fhould fuppofe that he had little relifh for thofe methematical fpeculations which in Cambridge lead to academical honours. After he left the univer" fity, he accepted a commiffion in the Effex militia on its firf eflablifhnent: and he fpent the latter years of his life at Hamp? iead in almof total feclution from the world; feldom mixing with fociety but in the fhops of bookfellers, i:t the Shakefpeare Gallery, or in the morning converfazions of Sir Jofeph Banks. He died January 1800.

Tris is a very meagre accoant of the incidents which mult have taken place in the life of a man fo confpicuous in the republic of letters: but we have had no opportunity of imoroving \(i t\). His character, as drawn in the Monthly Magarine, betieving it to be jult, we thall adopt, as it will fupply in fome degree the defects of our narrative

Though Mis Steevens is known rather as a commentator chan as an origginal writer ; yet, when the works which he illutt rated, the learning, fagacity, tafte, and general knowledge which he brought to the talk, and the fuccefs which crowned his labours, are confidered, it wrould be an act of injutice to refufe him a place among the firft literary characters of the age. Adorned by a verfatility of talents, he was indeed eminent both by his pen and his pencil. With the one there was nuthing which he could not compofe, and with the other there was nothing which lie could not imitate fo clofely, as to leave a donbt which was the original and which the copy. But his clief excellence lay in his critical knowledge of an anthor's text ; and the beft fpecimen of his great abilities is his edition of Shakefpeare, in which he sias left every competitor far belind hin. He hat, in nort, Itudied the age of Stakefperre, and had employed his perfevering induftry in becoming acquainted with the writings, manners, and laws of that period, as well as the provincial peculiarities, whether of hanguare or cuttom, which prevailed in different parts of the kingdom, but more particulaty in thofe where Shakefpeare paffed the early years of his life. This fore of knowledge he was continully increafirg, by the acquiftion of the rare and obfolete publications of a former age, which he fpared no expence to obtain; while his critical fagacity and acute obfervation were employe! incerfantly in calling forth the hidden meanings of the great dramatic bard, from their covert, and confequently enlarging the difplay of his beauties. This advantarge is evident from his laft edition of Shakefpeare, which contains fo large a portion of new, interefing, and accumulated illutration. In the preparation of it for the prefs, he gave an inftance of editorial activity and perleverance which is without ex ample. To this work he devoted folely, and exclufively of all other attentions, a period of 18 months; and during that time he left his houfe every morning at one o'clock with the Hampttead patrole, and proceeded, without any confideration of the weather or the feafon, to his friend Mr I faac Read's chambers, in Barnard's Inn, where he was allowed to admit himlelf, and found a room prepared to reccive him, with a thect of the Shakefpeare letter prefs rtady for corefrion. I'here was every book which he might with to confuli ; and to Mr Read he could apply, on any doubt or fuさden figgettion, as to a man whofe knowledge of Englifh literature was perhaps equal to his own. This nocturnat teil greatly accelerated the printing of the work; as while the printers flent the editor was a wake; and thus, inlefs than twenty months, he completed his lalt fplendid edition of Shakefpeare, in fifteen large octavo voI:mes; an almoft incredible labour, which proved the aftomifhing energy and perfevering powers of his mind.

That Mr Steevens contenter himfelf with being a commentator, arofe probably from the habits of his life, and his devotion to the name, with which his own will defeend to the lateft polterity. It is probable
that many of his jeux d'efprit might be collected: there is a poem of his in Dodfley's Annual Regifter, under the tizle of The Frantic Lover, which is fuperior ter. to any fimilar production in the Englith languare. Mr Steevens was a claffical fcholar of the firt order. He was equally acquainted with the belles lettres of Europe. He had itudied hiftory, ancient and modern, but particularly that of his own country, He poffeffed a ftrong original genius, and an abuntant wit; his imagination was of every colour, and his fentiments were enlivened with the mof brilliant expreffions. His colloquial powers furpaffed thofe of other men. In argunent he was uncommonly eloquent; and his eloquence was equally logical and animated. His deferiptions were fo true to nature, his figures were fo finely fiketched, of fuch curious lelection, and fo happily grouped, that he might be confidered as a fpeaking Hogarth. He would frequently, in his fportive and almoft boyifh humours, condefcend to a degree of ribaldry but little above O'Keefe-with him, however, it loft all its coarlenefs, and affumed the air of claffical vivacity. He was indeed too apt to eatch the ridiculous, both in characters and things, and indulge an indifcrect animation wherever he found it. He feattered his wit and his humour, his gibes and his jeers, too freely around hinn, and they were not lolt for want of gathering.

Mr Steevens poffeffed a very handiome fortune, which he managed with diferetion, and was enabled by it to gratify lis wifhes, which he did without any regard to expence, in forming his diftinguifhed collectioris of claffical learning, literary autiquity, and the arts connected with it. His generofity alfo was equal to his fortune ; and though he was not feen to give eleemolynary lixpences to thurdy beggars or fweepers of the crolfings, few perfons diltributed banknotes with more liberality; and fome of his afts of pecuniary kindnefs might be named, which could only proceed from a mind adorned with the nobleft fentiments of humanity. He pof: feffed all the grace of exterior accomplifhment, acquired at a perind when civility and politenefs were characteriftics of a gentleman.

He has bequeathed his valuable Shakefpeare, illutrated with near 1500 prints, to Lord Spencer ; his Hogarth perfect, with the exception of one or two pieces, to Mr Windham; ant his corrected copy of Shakefpeare, with 200 guineas, to his friend Mr. Read.

STEREOMEIER, an inftrument lately inverted in France for meafuring the volume of a body, however irregular, without plunging it in any licuid. If the capacity of a veffel, or, which is the fame ching, the volume of air contained in that veffel, be meafured, when the veffel coatzins air only, and alfo when the veffich contains a body whofe volume is requied to be known, the volume of air afcertained by the fint meafurement, deducting the volume afcertaincd by the fecond, will be the volume of the body itfelf. Again, if it be admitted as a law, that the volume of any inafs of air be inverfely as the preffure to which it is Iubjected, the temperature being fuppofed conftant, it witi be eafy to deduce, from the mathematical relations of quantity, the whole bulk, provided the difference between the two bulks under turo known preffures be obtained by experiment.

Let it be fuppofer?, for example, that the firt preffure is double the fecond, or, which follows as a confe.

Etereome- quence, that the fecond volume of the air be clouble the ter.

\(\xrightarrow{-}\)firft, and that the difference be fifty cubic inches, it is evident that the firt volume of the air will likewife be fifty cubic inches. The ftereometer is intended to afcertain this difference at two known preffures.
Plate XLIII.

The inflrument is a kind of funnel AB (fig. 3.), compofed of a capfule \(A\), in which the body is placed,
and a tube B as uniform in the bore as can be proci:red. The upper edge of the capfute is ground with emery, in order that it may be hermetically clofed with a glafs cover M nightly greafed. A double fcale is palted on the tube, having two fets of graduations; one to indicate the length, and the other the capzacicies, as determined by experiment.

When this inftrument is ufed, it muft be plunged in a veffel of mercury with the tube very upright, until the mercury rifes within and without to a point C of the fcale. See fig. 2.

The caplute is then clofed with the cover, which being greafed will prevent all communication between the external air and that contained within the capifule and tube.

In this fituation of the inffruntent, in which the mercury ftands at the fame height within and without the tube, the internal air is comprefled by the weight of the atmofphete, which is known and expreffed by the length of the mercury in the tube of the cormmon barometer.

The inftrument is then to be elevated, taking care to keep the tube conflantly in the vertical pofition. It is reprefented in this fituation, fig. 2. fecond pofition. The mercury defcends in the tube, but not to the level of the external furface, and a column DE of mercury remains fufpended in the tube, the height of which is known by the fcale. The interior air is thereivore lefs compreffed than before, the increafe of its volune being equal to the whole capacity of the tube from C to D , which is indicated by the fecond fcale.

It is known therefore that the preflures are in proportion to the barometrical column, and to the fame column diminified by the fubtraction of DE. And the bulks of the air in thefe two flates are inverfely in the fame proportion; and again the difference between thefe bulks is the abfolute quantity left void in the tube by the fall of the mercury; from which data, by an eafy a malytical procefs, the following rule is deduced: Multiply the nember which exprefies the lefs preffure by that which denotes the augmentation of capacity, and divide the product by the number which denotes the difference of the preflures. The quotient will be the bulk of the air when fubject to the greater preffure.

T'o render this more eafy by an example, fuppofe the height of the mercury in the barometer to be 78 centimetres, and the inflrument being empty to be planged in the mercury to the point \(\mathbf{C}\). It is then co. vered, and raifed until the fmall column of mercury DE is fufpended, for example, at the height of fix centimetres. The internal air, which was at firft compreffed by a force reprefented by 78 centimetres, is now compreffed only by a force reprefented by \(78-6\), or 72 centimetres.

Suppofe it to be obferved, at the fane time, by means of the graduations of the fecond fcale, that the capacity of the part \(C D\) of the tube which the mer-
cury has quitted is two cubic centimetres. Then by Stereome the rule \(\frac{7_{2}}{\delta} \times 2\) give 24 cubical centimetres, which is the volume of the air included in the inftrument when the mercury rofe as hight as C in the tube.
The body of which the volume is to be afcertained muft then be placed in the capfule, and the operation repeated. Suppofe, in this cafe, the column of mercury fufpended to be eight centimetres, when the capacity of the part CD of the tube is equal to two centimetres cube. Then the greateft preffure being denoted by 78 centimetres, as before, the leaft will be 70 centimetres, the difficrence of the preflures being 8 , and the difference of the volumes two cubical centimetres. Hence \(\frac{70}{8} \times 2\) gives the bulk of the included air under the greateft preffine 17,5 cubic centimetres. If therefore 17,5 centimetres be taken from 24 centimetres, or the capacity of the inllrumesi when empty, the difference 6,5 cubic centimetres will exprefs the volume of the body which was introduced. And if the abfolute weight of the body be multiplied by its bulk in centimetres. and divided by the abfolute weight of one cubic centimetre of diftilled water, the quoticnt will exprefs the feceific gravity of the body in the common form of the tables where diftilled water is taken as unity, or the term of comparifon.
After this defcription and explanation of the ufe of his inftrument, the author proceeds with the candour and acutenefs of a philofopher to afcertain the limits of error in the refults; an object feldom fufficiently attended to in the inveftigation of natural phenomena. From his reluls it appears, that with the dimenfions he has affumed, and the method preferibed for operating, the errors may affect the fecond figure. He likewile gives the formulx by means of which the inftrument itfelf may be made to fupply the want of a barometer in afcertaining the greateft preffure. He likewife adverts to the errors which may be produced by change of temperature. To prevent thefe as much as poffible, the actual form of the inftrument and arrangements of its auxiliary parts are fettled, as in fig. 3. by which means the approach of the hand near the veffel and its tube is avoided. In this figure the vertical pofition of the tube is fecured by the fufpention of the veffel, and a perforation in the table through which the tube paffes. The table itfelf fupports the capfule in its firft pofition, namely, that at. which the cover is required to be put on.

Mr Nicholfon, from whofe Journal this abfract is immediatcly taken, fuppofes, with great probability, that the author of the invention had not finifhed his meditations on the fubject, when the memoir giving an account of it was publifhed. If he had, fays the ingenious journalift, it is likely that he would have determined his preffures, as well as the meafures of bulks by weight. For it may be eafily underitood, that if the whole inftrument were fet to its pofitions by fufpending it to one arm of a balance at H (fig. 3.), the quantity of counterpoife, when in equilibrio, might be applied to determine the preflires to a degree of accuracy much greater than can be obtained by linear meafurement.

STEWART:Denham (Sir James) was born at E. dinburgh on the rath of October, O.S. in the year 171. His father was Sir James Stewart of Goodtrees, Bart. Solicitor-general for Scotland; and his mo-
re. ther was Anne, daughter of Sir Mugh Dalrymple of North Berwick, Bart. prefident of the college of juf. tice.

Thie firlt rudiments of his education he received at the grammar-fchool of North-Berwick, which at the time of his father's death he quitted at the age of fourteen, with the reputation of being a good fcholar, but without any extraordinary advancement in knowledge.

It is remarkable, that many men who have been fingularly ufeful to fociety lave not thewn early fymptoms of the greatnefs of their intellectual powers. A grent underftanding mutt be the offspring of happy organization in a healthy body, with co-operation of time, of circumitance, and of infitution, without being forced into prematurity by exceffive cultivation. This holds with refpect to the growth and perfection of every creature ; and the truth appears remarkable with refpect to our own fpecies, becaufe we are apt to miftake the Gimfy attainments of artificial education for the feady and permanent foundations of progreffive knowledge.

From the fchool of North-Berwick Sir Jemes was fent to the univerfity of Edinburgh, where he continued until the year 1735 , when he paffed advocate before the Court of Scfion, and immediately afterwards went abroad to vifit foreign countries. He was then in the \(23 d\) year of his age, had made himfelf well acquainted with the Roman law and hiflory, and the municipal law of Scotland. He had likewife maturely Audied the elements of jurifprudence; was verisd in the general, as well as the particular, politics of Europe; and was bent upon applying his knowledge to the inveftigation of the flate of men and of manners ir other nations, with a view to promote the benefit of his own, and to confirm himfelf in the love of a free conltitution of government, by contemplating the baneful effetts of unlimited monarchy in Germany, Italy, and Spain, and of extravagant attachment to a king and nobility, to war, and to pernicious fplendour in Frarice.

He travelled firft, however, into. Holland, with a view to ftudy the conititution of the empire before he fhould vifit Germany, and to attend fome of the lectures of the moft eminent profeffors at Utrecht and Leyden, ors public law and politics. From thence he paffed into Germany, refided about a year in France, travelled thro \({ }^{*}\) fome part of Spain, where he had a fever, that obliged him, for his perfect recovery from its effects, to go by the advice of his friends to the fea-coaft of the lovely province of Valencia; thence returning, he croffed the Alps, and by Turin made the tour of Italy, where chiefly at Rome and Florence he refided till the beginning of the year 1740; when, having fpent five years on his travels, he returned to Scotland, and married the Lady Frances Wemyfs, eldct daughter of the Earl of Wemyfs, about two years after his return.

A few months after his marriage the reprefontation of the county of Mid-Lothian became vacant, by the member being made a lord of trade and plantation. The candidates were the late member and Sir John Baird of Newbyth. On the day of election Mr Dundas of Arnitton, one of the fenators of the college of juftice, was chofen prefes of the meeting; and fome how or other omitted to caufe the name of Sir James Stewart to be called on the roll of freeholders. For this illegal ufe of his temporary power, Sir James commenced a fuit againft the prefident; and refuming the
gown as an advocate, pleaded his own caufe withi grea: energy and eloquence, and with the applaufe of the bench, the bar, and the public. This called Lord Arnifon from the bench to plead in his own defence at the bar; and Sir James could not have been oppofel to an antagonif better qualified to call forth all hir powers; for that judge is talked of at this day in Edinbuy the profoundet lawyer and the ableft pleader that ever graced the Scottifh bench or the Scottifh bar.

With the iffue of this contelt we are not acquainted; but it drew upon Sir Jamea Stewart very fencral attention, and convinced the publie, thet had lie continued at the bar, he mult have rifen rapidly to the head oof his profeffion. On his travels, lowever, he had contracted friend!nips with Lord Marischal, and other eminerit men, attached to the pretenfions of the ropal fa. mily of Stuart, and had reccived flattering attentions from the Pretender to the Britif :hrone; the impref. fion arifing from which, alded to the irritations of his controverfy with the powerful party in Scotland at: tached to the cout, led him, unadvifedly, into connec. tions with the movers of the rebellion in 1745 .
As he was by far the ablett mon of their party, the Jacobites engaged him to write the Prince R -gent a manifelto, and :o afrit in his councils. Inform?tong having, been given of his particepation in thefe affiirs, he thought it prudent, on the abortion of this mampy attempt, to leave Britain ; ans by the zeal, it is fait. of A ruifton, he was excepted aferwaids from the bill of indemuity, and rendered an exile from his country.

He chofe France for his refidense during the teis irft years of his baniffloment; and was chiefly at \(A x\). goulefme, where he fuperintended the education of hia fon ; from thence he went to Tubingen in Suabia, fothe benefit of its univerfity, in profecution of the fame dutiful and laudable defign; but in the end of the war. 1756 , having been fufpected by the court of Verfailles of communicaring intelligence to the court of Londor, he was feized at. \(\cdot\).pa, and kept fome time in confirement; from whicl being liberated, after the acceffion of the prefent king of Great Eritain, he came, by toleration, to England, and refided at London, where he put the laft hand to his SyItem of Political Ecoumy, the copy right of which he fold to Andrew Millar; and being permitted to dedicate this work to the king, he applied for a noli profequi, which, after fone malicious objections, he obtained, and had the coinfort of returning to his family efate in Scotland:

Having nothing profeffional to do during his long refidence in France, the active mind of Sir James was occupied in Atudy. Ifis book on the Principles of Fo. litical Economy contains molt of the fruits of it. He turned himfelf, in the intervals of leifure, to confiter the refources of France, that he might the better compile that part of his great work which was to treat of revemue and expenditure. It was by ftudying the language of the finances, without which nobody can aff a proper queftion concerning them, fo as to be undertood, that he attained his great purpofe.

As foon as he could afk queftions properly, he applied in familiar converfation to the intendants and their fuhititutes in the provinces where he refided, whom he found extremely defirous to learn the flate of the Britifh finances, under the branches of the land-tax, cufo toms, excife, and other inland duties. This led him to.

\section*{S T E}

Sew ret- compare the fate of the two nations. The information Drnlam. he gave was an equivalent for the information he received ; curiofity balanced curiofity, each was fatisficd and influcted. 'I'he deparment of the intendants in France was confined to the taxes which compofed the recettes senerales, namely, the taille, the capitation, and the treeniietbs, or vigntientes. All the intendants had been Maitres des Requetes, bred at Paris, and could not fail to have much knowledge of the general fermes and other branches of the revenue. He carefilly noted down at all times the anfwers he got; and when he came to refide at Paris, he obtained more ample information, both from the gentlemen of the revenue, and from perfons of the parliamert of Paris, who to the number of 25 had been for 15 months exiled in the province where he had fo long relided at A ngoulefme.

With thefe advantages, with much fludy and attention to arrangement, he was enabled to compofe the fixth chapter of the fourth part of the fourth book of his Syftem of Political Economy; a portion of that great work well worthy the attention of thofe who wifh to know the fate of France in refpect of reverue under the old government.

Although Sir James Stewart's leifire, during the firft ten years of his exile, was chiefly employed in focial intercourfe with the mof learned, elegant, and polifhed characters in France, who delighted in the converfation and friendfhip of a man who poffeffed at once immenfe information, on almoft every fubject, important or agreeable to fociety, and the talent of clearly and beautifully expreffing his fentiments in flowing and animated converfation; yet he did not allow the pleafures of the circle and of the table to blunt the fine feelings of a man of genius and fcience. The labour of collceting materials for his great political work was oppreffive, and he relieved himfelf with various enquiries, fuited to the exalted ambition of his cultivated underfanding, while he turned the charms of converfation to the permanent delight of his affociates and of pofterity. The motto of Apelles, "Nulla dies fine li. nea," was the emblem of his employment; and it is amazing what may be done by daily attention for improvement, without appearing to abftract any extraordinary time from the common offices and rational pleafures of fociety.

In the beginning of the year 1755 , Sir James wrote his Apology, or Defence of Sir Ifaac Newton's Chronology, which at that time he intended to publif, but was prevented by other engagements. It was communicated to feveral perfons of eminence in France and Germany in MS. and produced, in the month of December that year in the "Mercure de France," an anfwer from M. Defhoulieres, to which Sir James foon after replied.
'i'he great' Newton, applying aftronomical and ftatiftical principles to the ancient chronology of Greece, had chaftifed the vanity of nations, and arrefted the progrefs of infidelity in delineating the hillory of the world. Lolt in the confufion of exceffive pretenfions to an antiquity beyond all meafure, and difgulted by the fuperfitious aids that were affumed to fupport thefe pretenfions among ancient nations, the revivers of learning in Europe, during the laft and the preceding century, turmoiled theinfelves with controverfies between the oumparative merits of the ancients and moderns; and

\section*{28 J S T E}
the abettors of the latter, entrenching themfelves behind the falfehoods of the ancients, on the fcope of their remote hiftory, gave the lie to all antiquity, and in defpair planged themfelves into the ocean of fcepticifm.

Happy had it been for fociety if this frepticifm had confined itfelf to the hiftory of ancient nations in general ; but the fame fpirit, taking difguft at the horrors of Chrittian ambition and bigotry, and contemplating with derifon the ridiculous legends of modern miracles, gave the lie to all religious fcripture of the Jews and Chriftians, and attempted to banifh divine intelligence, the fuperintending providence of Deity, and the tulue dignity of the luntan fpecies, from the face of the earth!

It was a noble undertaking, therefore, in Sir James, to attempt to difperfe this mift of error, by difpaffionately and fcientifically explaining and fupporting the chronology of Sir Ifaac Newton. He has done it with great precifion and effect; and it is a book well worth the perufal of thofe who with to read ancient hiftory with improvement, or to prevent themfelves from being bewildered in the mazes of modern conjecture. It was printed in 4 to at Franckfort on the Maine, for John Bernard Eichemberg the Elder, in 1757

In the year 1758 , and the following, the Britih Houfe of Commons took up the confideration of a ttatute to regulate a general uniformity of weights and meafures throughout the united kingdoms, which had been fo often unfuccefsfully attempted.

This called the attention of Sir James, not only to the inveftigation of the particular fubject that engaged that of the Houfe of Commons, but to devife a method of rendering an uniformity of weights and meafures univerfal. He thought the caufe of former difappointments in this ufeful purfuit had been the miftaken nution that one or other of our prefent meafures fhould be adopted for the new fandard. After the plan had been relinquifhed by the parliament of England, he digefted his notes and obfervations on this important difquilition into the form of an epitolary differtation, which he tranfmitted to his friend Lord Barrington, and refolved, if there had been a congrefs affembled, as was once propofed, to adjut the prelimiaries of the general peace in 1763 , to have laid his plan before the minitters of the different nations, who were to prepare that falutary pacification of the contending powers.

This epifolary differtation Sir James afterwards reduced at Coltnefs, in the year 1777 , into a form more proper for the public eye, and fent a corrected copy to a friend, referving another for the prefs, which was printed 17.90 for Stockdale in Piccadilly.

In this tract the author thews, from the ineffe?tual attempts that have been made to alter partially, by innovation, the fandards of meafures or weights, that the effectual plan to be adopted, is to depart entirely from every meafure whatoever now known, and to take, ad libitum, fonve new mals inftead of our p.sund, fome new length inftead of our ehi, fome new fpace inftead of our acre, and fome new folid inftead of our sallon and bufhel.
For this purpofe Sir James propofes as the unit a mafs to be veritied with the greateit poflible accuracy, equal in weight to ten thoufand l'roy grains. The pendulum, as it fiwings at London, to beat feconds of
time, he propofes to be the meafure of length; and af. ter having laid down his fundamental principles, tre propofes an ingenious plan for rendering their adoption univerfal through the whole world

Having obtained his pardon, Sir Janes Stewart retired to Colthefs, in the county of Lanark, the paternal eftate of his family, where he turned his attention to the improvement of his neighbourhood by public works and police, and drew the firft good pian for a turnpike bill, fuited to the circumfances of Scotland, which has been fince generally adopted. He repaired his houfe, planted, improved, and decorated his eftate, and in focial intercorrfe rendered himfelf the delight of his neighbourhood and country.

Never was there a man who, with fo much knowletge, and fo much energy of exprettion in converfation, rendered himfelf more delightful to his company, or was more regretted by his acquaintance when he died. Nor was the active mind of Sir James unemployed for the general bencfit of his country during his retreat. He was engaged by the directors of the Eaft India Company of England to digeft a code for the regulation of the current coin of Bengal; the play for which important regulation he printed, and received from the court of direetors a handfome diamond ring, as a mark of their approbation.

He prepared for the prefs, but never publifhed, an antidote to the Sy/feme do la Nature by Mirabeau, wherein the parallelogifms and foolifh reafoning of that infidel work are examined, detected, and confured. It is written in French; and were the work of Mirabeau worth refutation, might be printed with müch advantage to Sir James's reputation as a controverfial writer.

This great and good man died in November 1780, and was burief at Cambufintilian, in Lanark hire, on the 28 th of the fame month; the Duke of Hamilton and his neighbours performing the laft offices to the remains of their highly valued friend, and bedewing his ahes with their tears.

For this fhort fketch of the principal events in the
life of Sir James Stewart-Denham, we are indebted to his nephew the Earl of Buchan, who, jufly proud of his relation to fuch a man, cannot be fuppofed to view all his projets, or even all his reafonings, with the conl impartiality of ftrangers. His pla:1, tor inftance, of a univerfal ftandard of weights and meafures for the wubole world, though certainly a grand conception, we cannot help confidering as romantic and impracticable. The author indeed was fenfible, that time would be requifite for its exccution; and fo large a portion of time, that, compared with it, a choufard vears are but as one day, when compared with the oreinary life of man : but fchemes of this maguitude are not for creatures fo blind and weak as we are, who, when we wander to a diftance begond the limits of our nar1ow fohere, with the ambitious view of benefiting pofterity, ate almoft certain to injure ourfelves, withont a probaid lity of ferving thofe for whom we dream that we are exerting our abilities. Sir Jumes's Political Econony, however, is a very great work, which has not received half the praifes to which it is entitled, and which, we fufpect, provoled the envy of another great writer on fimilar fubjects, who exerted himifelf privately to leffen its fame. The defence of Newtor's chronology is likewife very valuable, though we certainly do not think that part of the fyltem invulnetable, in which the great altronomer attempts to prove, that \(O /\) iris, Sefyfris, and Sefuc, are three names of the fame Egyptian king. This, however, is a very tritting miftake; and the modern fciolif, who can lay hold of it to reject the whole, has certainly never read, or, if he has read, does not underftand the defence of the fyttem by Sir James Stewart.

SUBCONTRARY POSITION, in geometry, is when two equiangular triangles are fo placed, as to have one common angle at the vertex, and yet their bafes nut parallel; coulequently the angles at the bafes are equal, but on the concrary fides.

SUBDUCTION, in arithmetic, the fame as Sub. tration.

\section*{Animal and Vegetable SUBSTANCES.}

THE reader will recollect, that the article CHemisTRY, in this Supplement, was divided into four parts; of whicl only the firft three, comprehending the elements of the fcience, were given under the word Chemistry. The fourth part, which was entitled an examination of bodies as they are prefented to us by nature in the mineral, vegetable, and animal kingdoms, naturally fubdivides itfelf into three parts, comprehend. ing refpectively, 1. Minerals ; 2. Vegetables ; 3. Animals.
'The firft of thefe fubdivifions, which has been diftinguithed by the name of Mineralogy, we have treated of already in a former part of this Volume. As the other two fubdivifions have not hitherto received any appropriate name, we have fatisfied ourfelves with the word Substance, by which chemifts have agreed to denote the objects which belong to thefe fubdivif:ons. This

Supfl. Vol. II. Part II.
name, it mut be acknowledged, is not unexceptionable; but we did not confider ourlelves as at liberty to invent a new one.

The prefent article, then, feems to divide itfelf into two parts : the firft part comprehending vegetable; the Divifion of fecond animal fubftances. But there are certain ani-it. mal and vegetable lubftances ditinguifhed from all others by being ufed as articles of clothing. It is ufual to tinge thefe of various colours, by combining with them different colouring matters for which they have an affinity. This procefs, well known by the name of dyeing, is purely chemical; and as it belongs exclufively to animal and vegetable fubtances, it comes naturally to be examined here. We fhall therefore add a third part, in which we fhall give a view of the prefent ftate of DYEing, as far, at leaft, as is confiftent with the nature of a fupplementary article.

3 X Part

\section*{Parti. Of Vegetable SubStances.}

Vegetarles, or plants, as they are alfo called, are ton well known to require any definition. 'Their number is prodigious, and their variety, regularity, and beauty, are wonderful. But it is not our intention in this place either to enumerate, to defcribe, or to claffify plants. Thefe tanks belong to the botanift, and have been fuccefsfully accomplifhed by the zeal, the fingular addrefs, and the indefatigable labour of Linnæus and his followers.

It is the bufinefs of the cliemift to analyfe vegetables, to difcover the fubftances of which they are compofed, to examine the nature of thefe fubfances, to inveftigate the inanner in which they are combined, to detect the proceffes by which they are formed, and to afcertain the chemical changes to which plants, after they have ceafed to vegetate, are fubject. Hence it is evident, that a chemical inveftigation of plants comprehends three particulars:
1. An account of the fubftances of which plants are compofect.
2. An account of the vegetation of plants, as far as it can be illuftrated by chemiftry.
3. An account of the abanges which plants undergo after they ceafe to vegetate.

We therefore divide this part into three chapters, affigning a chapter to each of thefe particulars.

Chaf. I. Of the Ingredients of Plants.
The fubftances hitherto found in the vegetable kingdom, all of them at lea!t which have been examined with any degree of accuricy, may be reduced to the following heads:
\begin{tabular}{ll} 
1. Sugar, & 10. Canıphor, \\
2. Starch, & 1I. Refins, \\
3. Gluten, & 12. Caoutchouc, \\
4. Albumen, & 13. Wax, \\
5. Gum, & 14. Wood, \\
6. Jelly, & 15. Acids, \\
7. Extrast, & 16. Alkalis, \\
8. Tan, & 17. Earths, \\
9. Oils, & 18. Metals.
\end{tabular}

Thefe fhall form the fubject of the following fections:

\section*{Sect. I. Of Sugar.}

Sugar, which at prefent forms fo important an article in nur food, feems to have been known at a very early period to the inhabitants of India and China.
Difcovery But Europe probably owfes its acquaintance with is
of fugar. to the conquefts of Alexander the Great, Fror ages after its introduction into the weft, it was ufed orly as a medicine; but its confumption gradually increafed, and during the time of the Crufades, the Venetians, who brought it from the eaft, and diftributed it to the * Sce Falco northern parts of Europe, carried on a lucrative comner's Hyforymerce with fugar. It was not till after the difcovery of Surur, of America, and the extenfive cultivation of fugar in Manchiofice, the Weft Indies, that its ufe in Europe, as an article of Merniers,
iv. \(2 y 1\). food, became general *.
and Moze- Sugar is obtained from the arundo faccharifera, or len's Hiflary fugar cane. The juice of this plant is preffed out and
boiled in as low a temperature as poffible, till the fugar Sugar. precipitates in the form of confufed cryitals. I'hefe cryftals, known by the name of ravu fugar, are againe \({ }^{5}\). diffolved in water, the folution is clarified, and purer tained. cryftals are obtained by a fubfequent evaporation. But for the particulars of the art of manufacturing fugar, we-refer the reader to the article Sugar in the Encyclopadia.

Sugar, after it has been purified, or refined as the its proper. manufacturers term it, is ufually fold in Europe in theties. form of a white opake ma\{s, well known by, the name of loaf fugar. Sometimes also it is cryftallized, and thenit is called Jugar candy.

Sugar has a very ftrong fweet tafte; when pure it. has no fmell ; its colour is white, and when cryftallized it is fomewhat tranfparent. It has often a confiderable degree of hardnefs; but it is always fo brittle shat it can be reduced without difficulty to a very fine powder. It is not altered by expofure to the atmofphere.

It is exceedingly foluble in wate. At the tempera-Solubility ture of \(48^{\circ}\), water, according to Mr Wenzel, diffolves in water. its own weight of fugar. The folvent power of water increafes with it3 temperature; when nearly at the boiling point, it is capable of difolving any quantity of fugar whatever. Water thus faturated with fugar is known by the name of fyrup.

Syrup is thick, ropy, and very adhefive; when fpread thin upon paper, it foon dries, and forms a kind of varnifh, which is eafily removed by water. Its fpecific ealoric, according to the experiments of Dr Crawford, is 1.286 . When fyrup is fufficiently concentra its erytale, ted, the furgr which it contains precioitates in cryftals. The primitive form of thefe cryftals is a four-fided prifm, whofe bafe is a rhomb, the length of which is to its breadth as 10 to 7 ; and whofe height is a meaa proportion between the length and breadth of the bafe. 'the cryltals are ufually four or fix-fided prifins, terminated by two fided, and fometimes by three-fided funmits \(\dagger\).

Sugar is foluble in alcohol, but not in fo large a pro- Annode portion as in water. According to Wenzel, four parts cbin xvií, of boiling alcohol diffolve one of fugar \(\$\). It unites \({ }^{357}\). readily with oits, and renders them mifcible with wa- Solublity 9 zer. A moderate quantity of it prevents, or at leaf in alcohols retards, the coagulation of milk ; but scheele difcovered \(\$\) Enc. that a very large quantity of fugar caufes milk to coagulate \(\|\). Sugar abforbs muriatic acid gas flowly, and affumes a brown colour and very ftrong fmell \(\ddagger\).
Sulphuric acid, when concentrated, readily decompofes fugar; water is formed, and perhaps alfo acetous Enc.
Metb. Cbimo Meth, Cb Schecte iz acid; while clarcoal is evolved in great abundance, and Adtion of gives the mixture a black colour, and a confiderableacids. degree of confitency. The charcoal may be eafily feparated by dilution and filtration. When heat is applied the fulphuric acid is rapially converted into fulplutous acid.

When fugar is mixed with potafs, the nixture ac-of potam quires a bitter and aftringent tafte, and is infoluble in alcohol, though each of the ingredients is very foluble in that liquid. When the alkali is faturated with fulphu-
ric acid, and precipitated by means of alcohol, the fiweet talle of the fugar is refored; a proof that it had undergone no decompofition from the action of the potafs, but had combined with it in the flate of fugar *
lime boiled with fugar proctuces nearly the fame effeet as potafs; whea an alkali is added to the compround, a fuffance precipitates in white flakes. This fubftance is fugar combined with lime \(\dagger_{\text {. }}\). Sugar and chalk compofe, as Leonardi informs us, a kind of cement \(f\).
Sugar, when thrown unon a hot iron, melts, fwells, becomes brownifh black, emits air bubbles, and exhales a peculiar fmell, known in French by the name of caromel. At a red heat it inftantly burfts into flames with a kind of explofion. The colour of the flame is white with blue edges.

When fugar is diffilled in a retort, there comes over a fluid which, at firt, fcarcely differs from pure water; by and bye it is mixed with pyromucous acid, afterwards fome empyreumatic oil makes its appearance; and a bulky charcoat remains in the retort. This charcoal very frequently contains lime, becatife lime is wfed in refining furgar; but if the fugar, beforc being fubmitred to diftillation, be diffolved in water, and made to cryfallize by evaporation in a temperature farcely higher than that of the atmofphere, no lime whatever, nor any thing elfe, except pure charcoal, will be found in the retort. During the diftillation, there comes over a confiderable quantity of carbonic acid, and carbonated hydrogen gas*. Sugar therefore is decompofed by the action of heat; and the following compounds are formed from it: Water, pyromucous acid, oil, charcoal, carhonic acid, carbonated hydrogen gas. The quantity of oil is inconfiderable; by far the moit abundant produef is pyromucous acid. Sugar indeed is very readily converted into pyromucous acid; for it makes its appeararce always whenever fyrup is raifed to the boiling temperature. Hence the finell of caromel, which fyrup at that temperature emits. Hence alfo the reafon that, when we attempt to cryftallize fyrup by heat, there always remains behind a quantity of incryftalliwable matter, known by the name of molafes; whereas if the fyrup be cryftallized without artificial heat, every particle of \(\$\) 'orveau, flugar may be obtained from it in a cryllalline form \(t\). Hence we fee the impnrtance of properly regulating the fire during the cryitallization of fugar, and the immenfe faving that would refult from conducting the operation at á low heat.
It follows from thefe facts, and from various other methods of decompofing fugar, that it is compoled of oxygen, hydrogen, and carbon; for all the fubftances obtained from fugar by diftitlation may be refolved into thefe elements. Lavoifier has mace it probable, by a feries of very delicate experiments, that thefe fubftances enter into the compofition of fugar in the follow. ing proportions: 64 oxygen,

28 carbon,
8 hydrogen.

\section*{100}

Of the way in which thefe ingredients are combined in fugar, we are ftill entirely ignorant. Lavoifier's conclufions can only be confidered as approximations to the truth.

Sugar is confidered as a very nourifing article of
food. It is found molt abundantly in the juice of the fugar carie, but many other plants alfo contain it. 'The juice of the acer faccharinum, or fugar mapie, contains \({ }^{16} 16\) fo much of it, that in North America fugar is oftentaming it. extracted from that tree *. Sugar is alfo found in the \(* R_{u f f}\). roots of carrot, parfnip, bect, \&c. Mr Achard has Toarf Piz. lately pointed out a method of increafing the quan- iud. ini. 04. tity of fugar in beet fo much, that, according to his own account, it is at prefent cultivated in large quarstities in Pruffia, and fugar extracted from it with advantage \(\dagger\). Parmentier has alio afcertained that thet Ann. de grains of wheat, barley, \&c. and all the other timilar Clin. xxxib. feeds which are ufed as food, contain at firlt a larye \({ }^{163}\). quantity of fugar, which gradually difaprears as they approach to a ftate of maturity. This is the cale alfo with peas and beans, and all leguminous feeds, and is one reafon why the flavour of young peas is lo much fuperior to that of old ones.

\section*{Sect. Il. Of Starch.}

WHEN a quantity of wheat flour is formed into a method of pafte, and water poured upon it till it runs off colour-obetaining lefs, this water foon depofits a very fine whitifl pow-flarch. der; which, when properly wafhed and dried, is known by the name of farch. When firft prepared, it is of a grey colour; but the ftarchmakers render it white by fteeping it in water flightly acidulated. The acid feems to diffolve and carry off the impurities.

Starch was weli known to the ancients. Pliny in. forms us, that the method of obtaining it was firt in- Lis ruii. vented by the inhabitants of the ifiand of Chiot. c. 7 . 8

Starch has a fine white colour, and is ufuatly con-Its propercreted in tongifh maffes; it has fcarcely any fmell, andries: very little talte. When kept dry, it continues for a long time uninjured though expofed to the air.

Starch does not diffolve in cold water, but very foon How acied falls to powder. It combines with boiling water, and on by forms with it a thick pafte. Linen dipt into this pafte, water, and afterwards dried fuddenly, acquires, as is well known, a great degree of \(l\) iffnefs. When this palte is left expofed to damp air it foon lofes its confittency, acquires an acid tafte, and its furface is covered with mould.
Starch is fo far from diffolving in alcohol, even when Alcohol, afifted by heat, that it does not even fall to powder.

When farch is thrown into any of the mineral acids, Acids, at firt no apparent change is vifible. But if an attempt is made to break the larger pieces while in acids to powder, they refift it, and feel exceedingly tough and adhefive. Sulphuric acid diffolves it flowly, and at the fame time a fme!l of fulphurous acid is emitted, and fuch a quantity of charcoal is evolved, that the difh containing the mixture may be inverted without fpilling any of it. Indeed if the quantity of flarch be fufficient, the mixture becomes perfectly folid. 'lhe char. coal nay be feparated by dilution and filtration. In muriatic acid flarch diffolves ftill more flowly. The folution refembles mucilage of gum arabic, and ftill retains the peculiar odour of muriatic acid. When allowed to ftand for fome time, the folution gradually leparates into two parts; a perfectly tranfparent ftraw.coloured liquid below, and a thick, muddy, oily, or rather mucilaginou, fubftance, above. When water is poured in, the muriatic fmell inftantly cifappears, and a ftrong finel! is exhaled, precifely fimilar to that which is felt in corn-
mills. Ammonia occafions a flight precipitate, but too fmall to be examined.

Nitric acid diffolves farch more rapidly than the other two acids; it acquires a green colour, and emits nitrous gas. The folution is never complete, nor do any cryftals of oxalic acid appear unlefs heat be applied. In this refpeet farch differs from fugar, which yields oxalic acid with nitric acid, even at the temperature of the atmofphere. When heat is applied to the folution of farch in nitric acid, both oxalic and malic acid is formed, but the undiffolved fublance ftill remains. When feparated by filtration, and afterwards edulcorated, this fubftance has the appearance of a thick oil, not unlike tallow; but it diffolves readily in alcohol. When diffilled, it yields acetous acid, and an oil having * Scbecte, the fmell and the contiftence of tallow *.

Crell's Jour. When ftarch is thrown upon a hot iron, it melts, ii. 14. Eng- blackens, froths, fwells, and burns with a bright flame lim tranfla sion.

22
Heat.
+ Cruik-
Jbank, Rollo an Diubictes.

24
Subftances containing it. like fugar, emitting, at the fame time, a great deal of fmoke ; but it does not explode, nor has it the caromel fmell which diftinguifhes burning fugar. When diftil. led, it yields water impregnated with an acid, fuppofed. to be the pyromucous, and mixed with a little empyreumatic oil. The charcoal which remains is cafily diffipated when fet on fire in the open air; a proof that it contains very little earth.

Barley grain confifts almof entirely of farch, not however in a ftate of perfect purity. In the procefs of malting, which is nothing clfe than caufing the batley to begin to vegetate, a great part of the ftarch is converted into fugar. During this procefs oxygen gas is ab. forbed, and carbonic acid gas is emitted. Water, too, is abfolutely neceffary; hence it is probable, that it is decompofed, and its hydrogen retained \(\dagger\). Starch, then, feems to be converted into fugar by diminifhing the proportion of its carbon, and encreafing that of its hydrogen and oxygen. Its diftillation fhews us that it contains no other ingredients than thefe three.
Starch is contained in a great variety of vegetable fubftances; moft commonly in their feeds or bulbous roots; but fometimes alfo in other parts. Mr Parmentier, whofe experiments have greatly contributed towards an accurate knowledge of farch, has given us the following lift of the plants from the roots of which it may be extracted.

Arctium lappa, Atropa belladonna, Polygonum biftorta, Bryonia alba, Colchicum autumnale, Spiræa filipendula, Ranunculus bulbofus, Scrophularia nodofa, Sambucus ebulus,

\section*{- nigra,}

\section*{Orchis morio,}

Imperatoria oftrutheum,
Hyofcyamus niger,
Rumex obtufifolius, - acutus, aquaticus,
Arum maculatum,
Orchis mafcula, lris pleudacorus,

\section*{-- fætidifima,}

Orobus tuberofus, Bunium bulbocaftanum. It is found alfo nearly pure in the following feeds: \(\begin{array}{lll}\text { Oats, } & \text { Chefnut, } & \text { Acorn, } \\ \text { Rice, } & \text { Horfechefnut, } & \text { And alfo in } \\ \text { Maiz, } & \text { Peas, } & \text { Salop, } \\ \text { Millet, } & \text { Beans, } & \text { Sago. }\end{array}\)

Sect. III. Of Gluten.
When wheat flour is wafhed in the manner de-
fcribed in the laft fection, in order to obtain farch Albumen, from it, the fubftance which remains, after every thing has been wa\{hed away which cold water can feparate, Gluten is called gluten. It was difcovered by Beccaria an Ita-howobsain lian plulofopher, to whom we are indebted for the firited. analy fis of wheat flour \(t\).
+ Coliec.
Gluten, when thus obtained, is of a grey colour, ex. ceedingly tenacious, ductile, and elattic, and may be ex. tended to twenty times its originallength. When very thin, it is of a whitifh colour, and has a good deal of refemblance to animal tendon or membrane. In this Itate it adheres very tenacioufly to other bodies, and has often been ufed to cement together broken pieces of porcelain. Its fmell is agreeable. It has fcarce any tafte, and does not lofe its tenacity in the mouth.

When expofed to the air, it gradually dries; and, AAtion of when completely dry, it is pretty hard, brittle, flightlyair, tranfparent, of a dark brown colour, and has fome refemblance to glue. It breaks like a piece of glafs, and the edges of the fracture refemble in fmoothnefs thofe of broken glafs; that is to fay, it breaks with a vitreous fracture.

When expofed to the air, and kept moift, it foon putrifies ; but when dry, it may be kept any length of time without alteration. It is infoluble in water; tho' \(\mathrm{Water}^{28}\) it imbibes and retains a certain quantity of it with great obftinacy. 'To this water it owes its elafticity and tenacity. When boiled in water, it lofes both thefe properties. It is foluble in alcohol, as \(\mathrm{Mr} V\) auquelin informs us \(\ddagger\); and precipitated again, as Mr Fourcroy \(\ddagger\) Ann. ds has obferved, by pouring into the alcohol two parts of Cbim. vi. water \(\oint\).

Gluten is foluble in the three mineral acids. When \({ }_{135}^{\text {16. }}\). viii nitric acid is poured on it, and heat applied, there is a quantity of azotic gas emitted, as Berthollet difcovered; Acids, \({ }^{29}\) and, by contiuuing the heat, a quantity of oxalic acid is formed II.

Alkalies diffolve gluten when they are affitted by \(16 i d\) vi. heat. The folution is never perfectly tranfparent. A- 30 cids precipitate the gluten from alkalies, but it is defti. Alkalie, tute of its elafticity \({ }^{\text {II }}\).

When moift gluten is fuddenly dried, it fwells amazingly. Dry gluten, when expofed to heat, cracks, fwells, melts, blackens, exhales a fetid odour, and burns precifely like feathers or horn. When diftilled, there comes over water impregnated with ammonia and an empyreumatic oil ; the charcoal which remains is with difficulty reduced to afhes. From thefe phenomena, it \({ }_{\text {Its compos }}^{32}\) is evident that gluten is compofed of carbon, hydro-fition. gen, azot, and oxygen : perhaps alfo it contains a little lime. In what manner thefe fubftances are combined is unknown.

The only yegetable fubftance which has been hither- Subriances to found to contain it abundantly, is wheat flour. Vau-contaning quelin alfo found it in the fruit of the cafla f.fiuloris*, it. and Fourcroy in the bark of a fpecies of quinquina from* \({ }^{\text {* Ibid }}\) St Domingot. It probably exifts in many other plants.

\section*{Sect. IV. Of Albumen.}

If the water in which wheat flour has been wafhed in order to obtain ftarch and gluten, according to the directions laid down in the two laft fections, be filtrated, and afterwards boiled, a fubflance precipitates in white flakes ; to which Mr Fourcroy, who firlt pointed folution of gum in water is tranfparent and glutinous，and can be drawn out into threads；whereas that of mu－ cilage is opake，does not feel glutinous，but 月ippery，and cannot be drawn into threads．Gum may be feparated from mucilage by the following procefs ：

Let the gum which is fuppofed to be mixed with mucilage，previoufly reduced to a dry mafs，be diffolved in \({ }_{28}\) frall a quantity of water as poffible，and into the folution drop at intervals diluted fulphuric acid．The mu－ elage coagulates while the gum remains diffolved．When no more coagulation takes place，let the mixture re－ main at reft for fome time，and the mucilage，will precipitate to the bottom，and affume the confiftence of jelly． Decant off the liquid part，and evaporate the mucilage to drynefs by a gentle heat till it acquires the confiftence of horn．Med．and Phyf．Four：iii 370.
it out，has given the name of albumen（ A ），on account of its refemblance to the zubite of an egg \(\ddagger\) ．
It is evident，from the method of obtaining it，that albumen，in its natural ftate，is \｛oluble in water，and that heat precipitates it from that fluid in a concrete ftate．While diffolved in water，it has fcarcely any tafte；but it has the property of changing vegetable blues，efpecially that which is obtained from che flowers of the mallow（malva fylvefiris），into a green \(\$\) ．When allowed to remain difolved in water，it putrifies with－ out becoming previoufly acid \(H\) ．

After it has been precipitaced from water in a con－ crete ftate by boiling，it is no longer foluble in water as before．Alcohol alfo precipitates it from water pre－ cifely in the fame flate as when it is precipitated by beat．

When concrete albumen is dried it becomes fome－ what tranfparent，and very like glue．In that ftate it is foluble in alkalies，efpecially ammonia＊．

When diftilled it gives out carbonat of ammonia，a red fetid oil，and carbonated lyydrogen gas；and a fpon－ gy charcoal remains behind \(\dagger\) ．From this，it is evident that albumen，like gluten，is compofed of carbon，azot， hydrogen，and oxygen；but the proportions and com－ binations of thefe fubflances are altogether unknown．
watery parts of the fruit，and confequently it is necefs fary to concentrate the liquid by long boiling，the mix－ ture often lofes the property of coagulating，and the jelly，of courfe，is fpoiled §．

Jelly combines readily with alkalies；nitric acid con． verts it into oxalic acid，without feparating any azotic gas I．When dried it becomes tranfparent IT．When diftilled it affords a great deal of pyromucous acid，a fimall quantity of oil，and fearcely any ammonia \(\dagger . \quad 100\).

Jelly exitts in all acid fruits，as oranges，lemons，\({ }^{t}\) Ibid．vis． goofeberries，\＆cc．and no albumen is ever found in thofe \({ }^{2}\) parts of vegetables which contain an acid．This cir－ cumftance has induced Fourcroy to fuppofe that jelly is albumen combined with an acid＊：but this conjec－ ture has not been verified by experiment；nor indeed is it probable that it ever fhall ；as albumen evidenly containe a quantity of azot，and jelly fcarcely any．Thee．

 Acohoj Acohols
\(\qquad\)

\author{
\(\qquad\) \\ 
}
\(\qquad\)

\author{
\(\qquad\)
}
 （－a． 4． 4

Extract. been examined. Acids do not precipitate it from mu-
1) Vauguctin
- It. Ann
de Cbim. vi 4.78.

40
of heas.
(Cruik.
- Fourcrog. cilage \(\ddagger\). The concentrated miveral acids deftroy it. Concentrated fulohuric acid decompofes it; water is formed, and perhaps alfo acetous acid; while charcoal is precipitated. Nitric acid converts it into oxalic acid; oxy-m!riatic acid, on the contrary, into citric acid* .
. When gum is expofed to heat it foftens and fivells, but does not melt ; it emits air bubbles, blackens, and at laft, when nearly reduced to charcoal, emits a low blue flame. This flame appears fooner if a faming fubftance be held juft above the gum. After the gum is confumed; there remains a fmall quantity of white athes, compoled chiefly of the carbonats of lime and potafs.

When gum is diftilled in a retort, the products are water impregnated with a confiderable quantity of pysomucous acid, a little empyreumatic oil, carbonic acid gas, and carbonated hydrogen gas. When the pyromucous acid obtained by this procefs is faturated with lime, a quantity of ammonia is difengaged with which that acid had been combined. The charenal which re. mained in the retort leaves behind it, after incineration, a little lime, and phofphat of lime \(\oint\)

Thefe experiments fnew us that gimm is compofed of hydrogen, carbon, oxygen, azot, lime, and phofphorus; but the proportions and combinations of thefe fubftances are unknown to us. Mr Cruick Mank has rendered it probable that the quantity of carbon is greater, and the quantity of oxygen lefs, in gum than in fugar \(\|\).

Gum, or mucilage, exifts mott abundantly in young plants, and gradually difappears as they arrive at perfection. It forms a great proportion of the leaves and roots of masy eatable plauts.

\section*{Sect. VII. Of Extract.}

The word extract was at firt applied to all thofe fubftances which were extracted from plants by means of water, and confequently included gum, jelly, and feveral other bodies. But of late-it has been confined, by thofe chemifts who have paid attention to the ufe of language, to a fubftance which exifts in many plants, and which may be obtained by infufing faffron in water for fome time, filtrating the infufion, and evaporating it to drynefs. The refiduum, after evaporation, is extrati nearly pure I. It poffefles the following properties:

Water diffulves it in coniderable quantitics, efpecially hot water. Alcohol alfo diffolves it with facility. 'This property of being foluble buth in water and alcohol has induced fome chemits to give extraft the name of foap. It is infoluble in fulphuric ether. Thefe three properties are fufficient to difting wilh it from every other vegetable fubitance *.

When the folution of extract in water is expofed for fome time in the open air, the extract precipitates, and is now no longer foluble in water. 'This change is fuppoied to proceed from the addition of a quantity of oxygen which it imbibes from the atmofphere \(\dagger\).

When oxy-muriatic acid is poured into a watery folution of extract, that fubftance precipitates in yellow flakes. Thefe flakes are infoluble in water ; they are infuluble alfo in alcohol at the emperature of \(97^{\circ}\); but that liquid diffolves them at the temperature of \(120^{\circ}\). They are foluble alfo in alkalies, and in boiling-hot

\footnotetext{
6 Sauraroy. water they melt into. a yellow mafs f.
}

Extract is foluble in acids. Feat foftens but does not melt it \(\$\).

It is found in a great variety of plants ; but as no method of obtaining it perfeetly pure has hitherto been difcovered, the extrats of different plants differ fomewhat from each other both in their colour and fmell.
Sect. ViII. Of Tain.

If'a quantity of nut gall6, coarrely powdered, beprepars. kept for fome time is,fufed in cold water, if the watertion of the be filtered, and a folution of muriat of tin be drop: isto it, a copious white precipitate falls to the bottom. This precipitate is to be carefully wafned and diffused (for it will not diffolve) thro' a large quantity of water, and this water is to be faturated with fulphurated hydrogen gas fo completely that it will not abforb any more. By this treatment the white precipitate will gradually difappear, and a brown precipitate will take its place. This brown precipitate muft be feparated by filtration: and the water, which thas now acquired the colour and the tafte of the infufion of nut galls, muft be evaporated to drynefs. A fubftance remains behind, known by the name of tan or tannine.

It was firft difcovered by Seguin, who pointed out fome of its properties, and the method of detecting it in plants \|| The above method of obcaining it. in a \|| Nisbor flate of purity was contrived by Mr Protitt. "I an exifts fen's form in the folution of nut galls combined with gallic acid. \({ }^{i .278 .}\) The oxyd of tin has a ftrong affinity for it. When muriat of tirs is poured in, the tan combines with the owyd, and the compound, being infoluble, falls to the bottom. Sulphur has a ftronger affinity for the oxyd than tan has. Hence when. fulphurated hydrogen gas is thrown upon this compound, the fulphur leaves the gas and combines with the tin; and the compound, being infuluble, falls to the bottom: The hydrogen gas efcapes, and nothing remains in the water except the tan.

I'an is a brittle fubftance, of a brown coiour. It fts propes. break? with a vitreous fracture, and does not attract ties. moifture from the air. Its cafte is exceedingly aftringent. It is very foluble in water. The folution is of a deep brown colour, a very aftringent and bitter tafte, and has the odour which diftinguifhes a folution of nut galls. It froths, wher agitated, like a folution of foap; but does not feel unctuous. Acids precipitate the tan from this folution.
Tan is fill more foluble in alcohol than in water.
When the folution of \(\tan\) is poured into a folution of the brown fulphat of iron, a deep blue coloured precipitate immediately appears, confiting of the tan conibined with the oxyd. This precipitate, when dried, affumes a black colour. It is decompofed by acids. The green fulphat of iron is not altered by tan.

When too great a proportion of brown fulphat of iron is poured into a folution of tan, the fulphuric acid, fet at liberty by the combination of the iron and tan, is fufficient to rediffolve the precipitate as it appears; but the precipitate may calily be obtained by cautioufly fa. turating this excefs of acid with putafs. When the experiment is performed in this maner, all the red fulphat of iron which remains in the folution undecompofed is converted into green £ulphat. Mr Prouft, to whom we are indebted for almoft every thing yet known concern. ing the properties of tan, fuppofes that this change is
produced by the tan abforbing oxygen. from the iron. This may very poffibly be the cafe; but his experiments are infufficient to prove that it is. The fame change takes place if red oxyd be mixed with a confiderable excefs of fulphuric acid, and diluted with water.

Tan combines readily with oxygen. When oxy muriatic acid is poured upon it, its colour deepens, and it lofes all its peculiar characters *.

Tan exifts in almoft all thofe végetable fubftances which have an aftringent tafte. It is almoit conftantly combined with gallic acid. The following table, drawn up by Mr Biggin \(\dagger\), though the rule which the author followed in making his experiments precluded rigid accuracy, will ferve to give fome idea of the proportions of \(\tan\) which exitt in different plants :
\begin{tabular}{|c|c|}
\hline Prop. of Tan. & Prap of Tan. \\
\hline Elm - - 2,J & Sallow - - 4,6 \\
\hline Oak cut in winter - 2,1 & Mountain af - 4,7 \\
\hline Horfe chefnut - 2,2 & Poplar - - 6,0 \\
\hline Beech - - 2,4 & Hazel - . 6,3 \\
\hline Willow (boughs) 2,4 & Afh - 6,6 \\
\hline Elder - - 3,0 & Spanifí chefnut - 9,0 \\
\hline Plum tree - 4,0 & Smooth oak - 9,2 \\
\hline Willow (trunk) - 4,0 & Oak cut in fpring 9,6 \\
\hline Sycamore - - 4, 1 & Huntingdon or Lei-? \\
\hline Birch - - 4, 1 & cefter willow \(\}\) ro \\
\hline Cherry tree - 4,2 & Sumach - - 16,2 \\
\hline
\end{tabular}

ThERE are two fpecies of oils; namely, fixed and volatile : both of which are found abundantly in plants.
1. Fixed oil is found in the feeds of many plants; efpecially of the olive, beech, flax, almond, rape, \&\&c.
2. Volatile oil is obtained by diftillation from the leaves, flowers, or roots of aromatic plants, as lavender, rofes, rofemary, \&c.

As an account of the properties of oils has been giver already in the article Cifemistry, Suppl. it would be fuperfluous to repeat it here.

\section*{Seet. X. Of Camphor.}

The laurus camphorata is a tree which grows in China, Japan, and feveral parts of India. When the soots of this tree are put into an iron pot furnifhed with a capital, and a fufficient heat is applied, a particular fubftance fublimes into the capital, which is known by the name of camplior. The Dutch afterwards purify this camphor by a fecond fublimation.

Camphor is a white brittle fubftance, having a peculiar aromatic odour and a ftrong taffe.

It is not altered by atmofpharic air; but it is fo volatile, that if it be expoled during warm weather in an open weffel, it evaporates completely. When fublimed in clofe veffels it cryftallifes in hexagonal plates or pyramids*.

It is infoluble in water; Sut it communicates to that liquid a certain portion of its peculiar odour.

It diffolves readily in alcohol, and is precipitated again by water. If the alcohol be diluted with water as much as poffible, without caufing the camphor to precipitate, fmall cryftals of camphor refembling feathers gradually form \(\dagger\)

Camphor is foluble alfo in hot oils, both fixed and 1), P.\&n. volatile; but as the folution cools the camphor preci-
pitates, and affumes the form of plurcofe, or feather-like Camphor. cryftals \(\ddagger\).

Camphor is not acted on by alkalies, either pure or \(\ddagger\) Romien, in the fate of carbonats. Pure akkalies indeed feem 1756, P. 48 . to diffolve a.little camphor; but the quantity is \(\mathbf{t o 0}\) fmall to be perceptible by any other quality than its odour \(\oint\). Neither is it acted upon by any of the neutral falts which have hitherto been tried.

Acids diffolve camphor, but it is precipitated again, unaltered, by alkalies, and even by water. The folution of camphor in Snlphuric acid is red; that in the nitric acid is yellow. This laft folution has obtained the abfurd name of oil of camphor. When nitric acid is ditilled repeatedly off camphor, it converts it into camphoric acid.

Muriatic, fulphurous, and fluoric acids, in the ftate of gas, diffolve camphor. When water is added, the camphor appears unaltered in flakes, which fwin on the furface of the water 9 .

When heat is applied to camphor it is volatilized. If the heat be fudden and ftrong, the camphor melts before it evaporates. It catches flame very readily, and emits a great deal of fmoke as it burns, but it leaves no refiduum. It is fo inflammable that it continues to burn even on the furface of water. When camphor is fet on fire in a large glafs globe filled with oxygen gas, and containing a little water, it burns with a very bright flame, and produces a great deal of heat. The inner furface of the glafs is foon covered with a black powder, which has all the properties of charcoal, a quantity of carbonic acid gas is evolved, the water in the globe acquires a ftrong fmell, and is impregnated with carbonic acid and camphoric acid \(\|\).

If two parts of alumina and one of camphor be form-Its analyfis. ed into a pafte with water, and diftilled in a glafs re- \(\|\|\) Bouillon tort, there comes over into the receiver (which fhould la Grange, contain a litcle water, and communicate with a pneu- \({ }^{\text {ibid, }}\) p. 108 , matic apparatus) a volatile oil of a golden yellow colour, a little camphoric acid which diffolves in the water, and a quantity of carbonic acid gas, and carbonait \(\$\) hydrogen gas, which may be colleeted by means of a poeumatic apparatus. There remains in the retort a fubftance of a deep black colour, compofed of alumina and charcoal. By this procefs, from 122.284 parts of: camphor, Mr Bouithon la Grange, to whom we are indebted for the whole of the analy fis of camphor, obtained \(45.8 j 6\) parts of volatile oil, and 30.571 parts of charcoal. The proportion of the other products was
not afcertained *.
* \(16 i d, \mathrm{p}\).

From this analy fis, Mr Bouillon la Grange concludes, 157 .
that camphor is compofed of volatile oil, and charcoal or carbon, combined together. We learn, from his experiments, that the ultimate ingredients of camphor are carbon and hydrogen ; and that the proportion of carbon is mach greater than in oils.

Camphor exifts in a great many plants. Neumann, plants 49. Geoffroy, and Cartheufer, exthacted it from the roots caining it. of zedoary, thyme, fage, \&c. and rendered it probable that it is contained in almoft all the labiated plants. It has been fuppofed to exit in thefe plants combined with volatile oil. Prouft has fhewn how it may be extracted, in confiderable quantity, from many volatile oils \(f\).

Camphor, which and Romans, was introduced into Europe by the Ara. 17 .
bians.

Refins. bians. Etius is the firt perfon who mentions it. It feems, however, to have been very early known to the eaftern nations.
It is much ufed in medicine. It is a powerful ftimulant; it is confidered as peculiarly efficacious in difeafes of the urinary organs; it is often ferviceable in mania, and procures fleep when every other medicine fails.

50
Propersies of tefin.

\section*{* Hcrm-} sadt.

4 Crell's Annals, i. \#790.

There is a yellowith white coloured fubfance which often exfudes from the Abies Montana, or common Scoth fir, and likewife from other fir trees. It is fomewhat tranfparent, is hare and brittle, of a difagreeable tatte, and may be collected in confiderable quan. tities. This fubtance is known by the name of refin; and the fame name is alfo applied to all fubftances which poffef nearly the fame properties with it. Refin may be diftinguifhed from every other fubflance by the following properties:
It is more or lefs concrete, and has an acrid and hot tafte.

It is totally infoluble in water. By this property it may eafily be feparated from gum, if they happen to be mixed together.

It is foluble in alcohol, and in fulphuric ether *. By the firf of thefe properties we may feparate it from gum, and by the laft from extract ; for extract is infoluble in fulphuric ether. When thefe folutions are evaporated the refin is obtained unaltered. If the folution be fpread thin upon any body, it foon dries by the evaporation of the alcohol; the refin remains behind, and covers the body with a fmooth fhining tranfparent coat, which canuot be wafhed off by water. This procefs is called varnifjing.

Refin is foluble alfo in volatile oils; and thefe folutions are often ufed likewife in varnifhing.

Refin is fcarcely acted upon by acids. Alkalies combine with it, but the combination is not eafily effected.

When refin is heated it readily melts ; and if the heat be increafed it is volatilized, and burns with a white flame and flong fmell. When difilled it yields much volatile oil, but fcarcely any acid.

When volatile oils are expofed for fome time to the action of the atmofphere they acquire confiftency, and aflume the properties of refins. During this change they abforb a quantity of oxygen from the air. Weltrum put 30 grains of oil of turpentine into 40 cubic inches of oxy-muriatic acid gas. Heat was evolved, the oil gradually evaporated, and affumed the form of yellow refint. Thefe facts render it probable that refin is merely volatile oil combined with a quantity of oxygen.

To know whether any vegetable fulfance coutains refin, we have only to pour fome fulphuric ether upon it in powder, and expofe the infufion to the light. If any refin be prefent the ether will affume a brown co. \(\ddagger\) Hermfacth lour \(\ddagger\).

The number of refins is conliderable. They differ fiftency. Whether thefe refins be really and concombinations, or, as is moft likely, owe thefe differences to foreign ingrediente, either combined with the refin, or mechanically mixed with it, is not at pre-
fent known. To defcribe each refin feparately would be to little purpofe, as fcarcely any thing is known of them except their general properties as refins. The following is a lift of the principal. The reader will find an account of the manner of obtaining them, and of their ufes, by confulting the name of each in the Encyclopacilia.
1. Common refin,
2. Turpentine,
3. Pitch,
4. Galipot,
3. Elemi,
7. Sandarac,
6. Mattic,
8. Guaiacum,

There are three vegetable fubftances which have 39 been denominated bulfams by fome of the later French writers. They appear to confift of refin, or volatile oil combined with benzoic acid. Thefe fubftances are, benzoin, balfam of Tolu, and ftorax. For an account of them we refer to the Encyclopedia.

Many vegetable fublances occur in medicine which Guriseo confift chiefly of a mixture of gum and refin. Thefefins. fubitances, of courfe, liave a number of the properties both of gums and refins. For this reaton they have been denominated gum refins. The following are the moft important of thefe fubftances:
\begin{tabular}{ll} 
Olibanum, & Aloes, \\
Galbannm, & Myrrl, \\
Scammony, & Ammoniac, \\
A fafoetida, & Opium.
\end{tabular}

For an account of them we refer to the Encyclopedia.

\section*{Sect. XII. Of Choutchouc.}

About the beginning of the 18 th century a fub Difcoucty ftance, called caoutchouc, was brought as a curiofity of canutfrom America. It was foft, wonderfully elattic, and howe. very combultible. The pieces of it that came to Europe were ufually in the ©hape of bottles, birds, \&c. This fubflance is very much ufed in rubbing out the marks made upon paper by a black lead pencil ; and therefore in this country it is often called Indian rubber. Nothing was known of its production, except that it was obtained from a tree, till the French academicians went to South America in 1735 to meafure a degree of the meridian. Mr de la Condamine fent an account of it to the French Academy in the year 1736. He told them, that there grew in the province of Efineraldas, in Brazil, a tree, called by the natives Hbevé; that from this tree there flowed a milky juice, which, when infpiffated, was caoutchouc. Don Pedro Maldonado, who accompatfied the Erench academicians, found the fame tree on the banks of the Maragnon; but he died foon after, and his papers were never publifhed. Mr Frefinau, after a very laborious fearch, difcovered the fame tree in Cayenne. His account of it was read to the French Academy in 175 r.

It is now known that there are at leaft two trees in South America from which caoutchouc may be obtain- tanining is ed, the Hævea Caoutchouc and the Jatropha Elaftica; and it is exceedingly probable that it is extracted alfo from other fpecies of Hxvea and Jatropha. Several trees likewife which grow in the Eaft Indies yield caoutchouc ; the principal of thefe are, the Ficus Indica, the Artocarpns Integrifolia, and the Urceola Elaftica ; a plant difcovered by Mr Howifon, and firt defcribed and named by Dr Roxburgh *

When any of thefe plants is punctured, there exfudes from it a milky juice, which, when expoled to the air, gradually lets fall a concrete fubttance, which is cauutchouc.

If oxy-muriatic arid be poured into the milky juice, the canutchouc precipitates immediately, and, at the fame time, the acid lofes its peculiar odour. This renders it probable that the formation of the caontchouc is owing to its batis abforbing oxygen *. If the milky juice be confined in a glafs veffel containing comnion air, it gradually abfor bs oxygen, and a pellicle of caoutchouc appears on its furface \(\dagger\).

Caoutchouc was no fooner known than it drew the attention of philofophers. Its fingular properties promifed that it would be exceedingly ufeful in the arts, provided any method could be fallen upon to mould it into the various inftruments for which it feemed peculiarly adapted. Meffrs de la Condimine and Frefnau had mentioned fome of its properties; but Macquer was the firft perfon who undertook to examine it with attention. His experiments were publifhed in the memoirs of the French Academy for the year 1768. They threw a goot deal of light on the fubject ; but Macquer fell into fome miftakes, which were pointed out by Mr lierniard, who pullifhed an admirable paper on caoutchouc in the 17 th volume of the Fournal de Pbyfique. To this paper we are indebted for the greater number of facts at prefent known refpecting caoutchouc. Mr Groflart and Mr Fonrcroy have likewife added confiderably to our knowledge of this fingular fubflance; both of their treatifes have beell publifhed in the 1 th volume of the Annales de Chimie.

Caoutchouc, when pure, is of a white colour ( \(c\) ), and without either tafte or fmell \(\ddagger\). 'The blackifh colour aoucrey, without either tatte or mell. 7 .
\(\therefore .232\). of the caoutchouc of commerce is owing to the method employed in drying it after it has been fpread upon moulds. The ufual way is to fpread a thin coat of the milky juice upon the mould, and then to dry it by expofing it to fmoke; afterwarda another coat is fpread on, which is dried in the fame way. Thus the caoutchouc of commerce confifts of numerous layers of pure caontchouc alternating with as many layers of foot.

Caoutchouc is foft and pliable like leather. It is exceedingly claftic and adhefive; fo that it may be forcibly ftretched out much beyond its ufual length, and inftantly recover its former bulk when the force is withcrawn. It cannot be broken without very conliderable force.
It is not altered by expofure to the air ; it is perfectly infoluble in water: but if boiled for fome time its edges become fomewhat trar fparent, owing undoubtedly to the water carrying off the foot; and fo foft, that when two of them are preffed and kept together for forne time, they achere as clofely as if they formed one piece. By this contrivance pieces of caoutchoue may be foldered together, and thus made to aflume whatever fhape we pleafe \(S\).
Canoutchouc is infuluble in alcolioi. This property was difcovered very early, and fully confirmed by the experiments of Mr Maequer. The alcohol, however, renders it colourlefs.
Caoutchouc is folutle in ether. This property was Suppl. Vol. II. Part II.
firt pointed out by Macquer. Berniard, on the eontrary, found that caoutchouc was fcarcely foluble at all in fulphuric ether, which was the ether ufed by Macquer, and that even nitric ether was but an imperfect folverit. The difference in the refults of thefe two chemitts was very fingular; both were remarkable for their accuracy, and both were too well acquainted with the fubject to be eafily milled. The matter was fir!t cleared up by Mr Cavailo. He found that ether, when newly prepared, feldom or neverdiffolved caoutchoucc completely; but if the precaution was taken to walh the ether previoufy in water, it afterwards diffolved caoutchonc with facility. Mr Groffart tried this experiment, and fourd it accurate \|. It is evident from this that thefe\| Ann, Ie chemifts had employed ether in different flates. The Chim, xi. wafhing of ether has two effects. It deprives it of a 170 little acid with which it is often impregnated, and it adds to it about one-tenth of water, which remains consbined with it.

When the ether is evaporated, the caoutchouc is obtained unaltered. Caoutchouc, therefore, diffolved in ether, may be employed to make inftuments of different kinds, juft as the milky juice of the hxvea; but this method would be a great deal too expenfive for common ufe.

Caoutchouc is foluble in volatile oils * ; but, in general, when thefe oils are evaporated, it remains fomewhat glutinous, and therefore is fcarcely proper for thofe ules to which, before its folution, it was fo a rably adapted.

It is intoluble in alkalies \(\dagger\). The acids act upon it Acids ans with more or lefs violence according to their nature. \({ }^{\text {alkal }}\) es, Sulphuric acid decompofes it completely, charcoal pee +1 d . cipitates, and part of the acid is converted into fulphurous acid. Nitric acid converts it into a yellow fubftance, analogous to fuberic acił. Muriatic acid does not affect it \(\ddagger\). The other acids have not been tried. \(\ddagger\) Id.

Fabroni has difcorered, that rectified pettoleum dif. folves it, and leaves it unaltered when evaporated \%. ITtid. rys. When expofed to heat it readily melts; but it never andxii. is \({ }^{\text {a }}\), afterwards recovers its properties, but continues always of the confiltence of tar: It burns very readily with a bright white flame, and diffufes a fetid odour. In thofe countries where it is produced, it is often ufed by way of candle.

When diftilled, it gives out ammonia \(\varsigma\). It is evi- \(\S\) Foureray, dent from this, and from the effect of fulphuric and \({ }^{n n}{ }^{n \prime} d e\) nitric acid upon it, that it is compofed of carbon, hy . \({ }_{232}\). drogen, azot, and oxygen ; but the manner in which they are combined is unknown.

When treated with nitric acid, there came over azotic gas, carbonic acid gas, pruffic acid gas; and oxalic acid was formed \(\|\).
It feems to exitt in a grear variety of plan's ; but is 63 ufually confounded with the other ingredients. It may How to feo be feparated from refins by means of alcohol. It may frate it be extracted from the different fpecies of milletoe by tron plar:t, water, with which, in the fluid flate in which it exifts in thefe plante, it readily combines. When mixed with gum or extract, it may be feparated by the following procefs: Digett a part of the plant containing it firlt in water and then in alcohol, till all the fub?ances \(f\).
luble
(c) Mr De Fourcroy fays, that blackifh brown is the natural colour of caoutchouc. pieces of it from the Ealt Indies, which had been allowed to infpiffate in the open air: They were white, witis a fight caft of yellow, and had very much the appeazance and feel of white foap.

7 Id. ibid. 373.
\(\ddagger\) Enc, Metb
Forets et

\section*{Bois, i. 100}
\(\sigma_{5}\)
luble in thefe liquids be extracted. Dry the refiduum, and digeft it in five times its weight of rectified petroleum. Exprefs the liquid part by fqueezing the fubftance in a linen cloth. Let this liquid remain feveral days to fettle, then decant off the clear liquid part, mix it with a third part of water and diftil, the caout,chouc remains behind *.

The upper furface of the leaves of many trees is covered with a varnifh of wax. This varnifh may be feparated and obtained in a fate of purity by the following procefs.
Digett the bruifed leaves, firft in water and then in alcohol, till every part of them which is foluble in thefe liquids be extracted. Then mix the refiduum with fix times its weight of a folution of pure ammonia, and, after fufficient maceration, decant off the folution, filter it, and drop into it, while it is inceffantly ftirred, diluted fulphuric acid, till more be added than is fufficiept to faturate the alkali. The wax precipitates in the form of a yellow powder. It fhould be carefully wafh. ed with water, and then melted over a gentle fire + .

Mr Tingry firf difcovered that this varnifh poffeffed all the properties of bees wax \(\ddagger\). Wax then is a vegetable product. The bees extract it unaltered from the leaves of trees and other vegetable fubftances which contain it. They feem, however, to mix it with fome of. the pollen of flowers.

Wax, when pure, is of a whitifh colour, it is defitute of tafte, and has fcarcely any fmell. Bees wax indeed has a pretty ftrong aromatic fmell; but this feems chiefly owing to fome fubftance with which it is mixed; for it difappears almoft completely by expofing the wax, drawn out into thin ribands, for fume time to the atmofphere. By this procefs alfo, which is called bleaching, the yellow colour of the wax difappears, and it becomes very white. Bleached wax is not affected
\(\$\) Senebier, by the air \(\oint\).

Ann. de
Cbime, xii. 60 . and Jour. de Pbys.

\section*{Ixxviii. 56.}

Cbaptal,
iii 104 .
iii. 104.
- Plin.
c. 14 .
\(\dagger\) Jour. de
Pby.Nov.
3785
? Nicbol.
fon's Four-
nats io 71 .

Wax is infoluble in water and in alcohol. It combines readily with alkalies, and forms with them a foap which is foluble in water \(\|\).

Punic wax, which the ancients employed in painting in encau? 0 , is a foap compofed of twenty parts of wax and one of foda*. Its compofition was afcertained by Mr Lorgna \(\dagger\).

Sulphuric and nitric acids decompofe wax complete-
Wax combines readily with oils, and forms with them a fubftance of greater or lefs confiftency accord. ing to the quantity of oil. This compofition, which is known by the name of cerate, is much employed by furgeons.

When heat is applied to wax it becomes foft ; and at the temperature of \(142^{\circ}\), if unbleached, or of \(155^{\circ}\) if bleached \(I\), it melts into a colourlefs tranfparent fluid, which concretes again, and refumes its former appearance as the temperature diminifhes. If the heat be ftill farther increafed, the wax boils and evaporates; and if a red heat be applied to the vapour, it takes fire and burns with a bright flame. It is this property which renders wax fo uleful for making candles.

Mr Lavoifier, by means of the apparatus defcribed in the article Chemistry, Suppl. \(n^{\circ} 353\). contrived to burn wax in oxygen gas. The quantity of wax confumed was 21.9 grains. The oxygen gas employed in
confuming that quantity amounted to 66.55 grains. Confequently the fubflances confumed amounted to 88:45 grains. After the combution, there were found in the glafs veffel 62.58 grains of carbonic acid, and a quantity of water, which was fuppofed to amount to 2,87 grains. Thefe were the only products.

Now \(62.5^{8}\) grains of carbonic acid gas contain
4456 of oxy, and 18.02 of carb; and 2587 gr . of water contain 21.99 of oxy, and 3.88 of hydro.

\section*{\(66.55 \quad 21.90\)}

Confequently 21.9 parts of wax are compofed of 18.02 of carbon, and 3.88 of hydiogen. And 100 parts of wax are compofed of 82.28 carbon, 17.72 hydrogen,
\[
100.00^{*}
\]

If wax be diffilled with a heat greater than \(212^{\circ}\), 千our de . there comes over a little water, fome febacic acid, a Pby. \(x \times x j_{*}\) little very fluid and odorous oil: the oil, as the diftilla- 59. tion advances, becomes thicker and thicker, till at laft it is of the confiftency of butter, and for this reafon has been called butter of wax. There remains in the retort a fmall quantity of coal, which is not eafily reduced to afhes. When the butter of wax is repeatedly diftilled it becomes very fluid, and affumes the properties of volatile oil \(\dagger\).

\section*{Sect. XIV. Of the Woodr Fibre.}

All trecs, and moft other plants, contain a particular fubftance, well known by the name of zoood. If a piece of wood be well dried, and digefted, firft in a fufficient quantity of water, and then of alcohol, to extract from it all the fubttances foluble in thefe liquids, there remains behind only the woody fibre.

This fubftance, which conftitutes the bafis of wood, is compofed of longitudinal fibres, eafily fubdivided into a number of fmaller fibres. It is fomewhat tranfparent ; is perfectly tattelefs; has no fmell; and is not altered by expofure to the atmofphere.

It is infoluble in water and in alcohol; but foluble in alkalies. The mineral acies decompofe it. When diftilled it yields, in all probability, pyrolignous acid. When burnt with a fmothered fire it leaves behind it a confiderable quantity of charcoal.

It is precipitated from alkalies maltered by acids *. *Fourcross
By mitric acid Fourcroy converted the refiduum of \(\begin{gathered}\text { Anim. viii, }\end{gathered}\) quinquina, which does not feem to differ from the \(I_{I}\) woody fibre, into oxalie acid; at the fame time there was a little citric acid formed, and a very fmall quantity of malic and acetous acids. Some azotic gas alfo was difengaged. Hy this procefs he obtained from 100 parts of woody fibre
\[
\begin{aligned}
& 56.250 \text { oxalic acid, } \\
& 3.905 \text { citric acid, } \\
& 0.388 \text { malic acid, } \\
& 0.485 \text { acetous acid, } \\
& 0.867 \text { azotic gas, } \\
& 8.330 \text { carbonat of lime, } \\
& \frac{70.226}{32.031} \text { refiduum, } \\
& 102.257
\end{aligned}
\]

There was likewife a quantity of carbonic acid gas difengaged, the weight of which was unknown. This
cids. increafe of weight in the product was evidently owing to the oxygen derived from the nitric acid *.

When diftilled in a retort, 100 parts yield the fol lowing products :
26.62 of a yellow liquid, containing alcohol, and acid which had the fmell of pyromucous.
6.977 of concrete oil, mofly foluble in alcohol.
22.995 charcoal
3.567 carbonat of lime
\(\}\) in the retort.
60.159
39.841 gas, half carbonic acid, half carbonated hydrogen.

Sid. 152. \(100.000^{*}\) *
Thefe facts fhew us, that the woody fibre is compofed of oxygen, carbon, hydrogen, azot, and lime. Mr Chaptal fuppofes that mucilage differs from woody fibre merely in containing lefs oxygen. We are certain at leaft that mucilage or gum is compofed of the fame ingredients; and Mr Chaptal has fhewn, that the juices of plants are partly converted into woody fibre by oxy-muriatic acid, which imparts to them oxygen \(\dagger\). Thefe juices contain both gum and refin : after the formation of the woody tibre the refin is Itill unaltered. This gives a good deal of probability to his opinion.

\section*{Sect. XV. Of Acids.}

The acids found ready formed in vegetables are the following:
\begin{tabular}{ll} 
1. Oxali, & 5. Gallic, \\
2. 'Tartarous, & 6. Benzoic, \\
3. Citric, & 7. Phofphoric, \\
4. Malic, & .
\end{tabular}

Sometimes alfo the fulphuric, nitric, and muriatic acids occur in vegetables, combined with alkalies or earths, but never except in very minute quantities.
1. Oxalic acid is eafily detected and diftinguifhed by the following properties: It decompofes all calcareous falts, and forms with lime a falt infoluble in water. It readily cryftallizes. Its cryftals are quadrilateral prifms. It is totally deftroyed by heat.

Oxalic acid was firft detected in vegetables by Mr Scheele. It has been difcovered in the following plants:

The leaves of the oxalis actofella \(\dagger\). oxalis corniculata.
The root of rhnbarb \(\ddagger\).
The leaves of the geranium acidum \(\varsigma\).
2. Tartarous acid is known by the following proper-
ties: When a little potafs is cautioufly dropt into a folution containing it, common tartar is formed, and precipitates to the bottom. Tartarous acid does not decompofe the fulphat, nitrat, or muriat of lime. Tartrite of lime is foluble in water. Tartarous acid crytallizes. Its cryftals are long flender prifms. It is deftroyed by heat.
Tartarous acid has been found in the following vege-
table fubftances:
The pulp of the tamarind *.
The juice of grapes.
Mulberries \(\dagger\).
Rumex acetofa, forrel \(\dagger\).
Rhus coriaria, jumach \(\dagger\).
Rheum rhaponticum \|.
Agave Americana 9 .
The roots of triticum repens \(\dagger\).
Leontodon taraxicum \(\dagger\).
3. Citric acid is diftinguihed by the following properties: It does not form tartar when potafs is added to it. With lime it forms a falt infoluble in water, which is decompofed by fulphuric, nitric, and muriatic acids. It readily cryftallizes. It is deftroyed by heat.

Citric acid has been found unmixed with other acids in the following vegetable fubtlances*:

The juice of oranges and lemons.
The berries of vaccinium oxycoccos, cranberry.
* Schec!e. Crell's four. ii. S. Eng. Tran』.

Pu-vitis idxa, red whortle berry.
Prunus padus, birdcherry.
Solanum dulcamara, nigbtbade. Rofa canina, bip.
lt occurs mixed with other acids in many other fruits.
4. Malic acid is known by the following properties: Malic acid, It forms with lime a falt foluble in water, which is decompofed by citric acid. It does not form tartar with potafs. It is incryftallizable. Heat deftroys it.

Malic acid has been found, by Scheele \(\dagger\), in the fruits \(\dagger\) Ibid,
of the following plants, which contain no other acid:
Apples.
Berberis vulgaris, barberry.
Prunua domeftica, plum.
——- fpinofa, foe.
Sambucus nigra, elder.
Sorbus aucuparia, roan or fervice.
In the following fruits he found nearly an equal quan- \({ }^{73}\) tity of malic and citric acids \(\ddagger\). cirric,
Ribes groffularia, goofcterry. \(\ddagger\) Ibid.
——rubrum, currants.
Vaccinium myrtillus, bleaberry.
Crategus aria, beam.
Prunus cerafus, cherry.
Fragaria vefca, ftrawberry.
Rubus chamæmorus, cloudberries, evrochs.
--idæus, rafpberry.
* Malic acid has alfo been found in the agave americana \(\ell\), and in the pulp of tamarinds \(\|\). In the firt of of Woimar thefe it is mixed with tartarous acid; in the fecond with \(\|\|\) Vaumuclin, tartarous and citric acids.
\[
\begin{aligned}
& \text { Ann. de } \\
& \text { Cbim. v. }
\end{aligned}
\]
5. Gallic acid is known by the following properties: Cbim. v.

With the brown oxyd of iron it produces a black co- 92
lour. It is cryftallizable. Heat deftroys it. It has 74 been found in a great number of plants, chiefly in the Gallic acid, bark. - The following table, drawn up by Mr Biggin *, * Nicholwill ferve to fhew the relative proportions of this acidfon's Yourin different plants:

6. Benzoic acid is diftinguifhed by its aromatic odour, Benzcic and its volatility on the application of a very moderate acid, heat. It has been found hitherto only in three vegetable fubftances, to which the French chemifts have confined the term baljam. Thefe three are, benzoin, balfam of tolu, and forax. In thefe fubtances it feems to be combined with a refin, or fomething which has nearly the properties of a refin.

\section*{Vegetable SUBSTANCES.}
+ Ann. de
Cbim. x: 3740

Alkalies.

\(\underbrace{}_{-6}\)
Phofphors \({ }^{76}\) axid. former fix, for it is very fixed, and a violent heat does not deftroy it as it does the others.
Phofphoric acid has been found in different plants, but only in very fmall quantities; it is almoft conftantly combined with lime. Meyer found it in the leaves
- Enc.Metb of many trees*; Thuren found phofphat of lime in the Pbyfol \(V e\)-Aconitus Napellus \(\dagger\); and Bergmann found it in all get. i : 00 kinds of grain \(\ddagger\).
Ann de
Cbim. ii
308.
\$ Bergman,
จ. 96.

\section*{of potafs j .} plants.

\section*{Sect. XVI. Of Alkalies.}

The only alkalies found in plants are potafs and foda. Ammonia may indeed be obtained by diftilling many vegetable fubftances, but it is produced during the operation. One or other of thefe alkalies is found in every plant which has hitherto been examined. The quantity indeed is ufually very fmall.
1. Potafs is found in almoft all plants which grow at a diftance from the fea. It may be extracted by burning the vegetable, walhing the afhes in water, filtrating the water, and evaporating it to drynefs. It is in this manner that all the potaff of commerce is procured.

The following table exhibits the quantity of afhes and potafs which may be extracted from 100 parts of various plants :
\begin{tabular}{|c|c|c|}
\hline Sallow & Aflos.
2.8 & Potafs.
\[
0.285^{*}(c)
\] \\
\hline Elm & 2.36727 & 0.39 * \\
\hline Oak & 1.35185 & 0.15343 \\
\hline Poplar & 1.23476 & 0.07481 \\
\hline Hornbeam & 1.1283 & 0.1254 \\
\hline Beech & -0.58432 & 0.14572 \\
\hline Fir & 0.34133 & \\
\hline Vine branches & 3.379 & 0.55* \\
\hline Common nettle & 10.67586 & 2.503 .3 \\
\hline Common thittle & 4.04265 & 0.53734 \\
\hline Fern & 5.00781 & 0.6259 \\
\hline Cow thifle & 10.5 & 1.96603 \\
\hline Great river rufh & 3.85395 & 0.72234 \\
\hline I'eathered rufh & - 4.33593 & 0.50811 \\
\hline Stalks of turkey wheat & 8.80 & 1.75* \\
\hline Wormwood & - 9.744 & \(7 \cdot 3^{*}\) \\
\hline Fumitory & 21.9 & 7.9* \\
\hline Trifolium pratenfe & & 0.078 * \\
\hline Vetches & - & 2.75 * \\
\hline Beans with their ftalks & & 2.0 * \\
\hline
\end{tabular}

In general, three times as much athes are obtained from fhrubs, and five times as much from herbs, as from trees. Equal weights of the branches of trees produce more afhes than the trunk, and the leaves more than the branches. Herbs arrived at maturity produce more afhes than at any other time. Green vegetables produce more afhes than dry \(\dagger_{\text {. }}\)
'The falt which is obtained from plants does not confift wholly of potafs, there are other falts mixed with it ; thefe ufually are fulphat of potafs, muriat of potafs, fulphat of lime, phofphat of lime, \&c. ; but thefe bear, in general, but a fmall proportion to the potafs. The afhes confift of potafs mixed with earths.

Some judgment may be formed of the quantity of potafs which a plant contains from the quantity of athes which it yields: but the above table is fufficient
to thew us, that were we to truft to that we would often be mifled.
2. Soda is found in almolt all the plants which grow in the fea, and in many of thofe which grow on the fhore. In general, the quantity of foda which plants contain bears a much greater proportion to their weight than the potafs does which is found in inland vegetables. 100 parts, 0 the falfola foda, for inftance, yield 19.921 of afhes; and thefe contain 1.992 parts of foda, fome of which, however, is combined with muriatic acid*. The plants from which the greater part of the "Vauquelin foda, or barilba, as it is called, which is imported from Ann. de Spain, is extracted, are the falfola fativa, and vermicu-Clim, xviii luta.

\section*{Sect. XVII. Of EARths.}

The only earths hitherto found in plants are the four following; lime, filica, magnefia, alumina.
1. Lime is ufually the mott abundant of the earths of plante, and the moft generally diffuled over the vegetable kingdum. Indeed, it is a very uncommon thing to find a plant entirely deftitute of lime : falfola foda is almof the only one in which we know for certain that this earth does not exift.
2. Silica exifts alfo in many plants, particularly graffes and equifetums. Mr Davy has afcertained, that it forms a part of the epidermis, or outermoft bark of thefe plants ; and that in fome of them almolt the whole epicermis is filica.

Parts Silica.
100 parts of the epid. of bonnet-cane yielded 90
\[
\begin{array}{ll} 
& \text { bamboo } \\
\text { (arundo phragm.) common reed } & 71.4 \\
& \text { ftalks of corn }
\end{array} \quad 6.5
\]

The concretions which are fometimes found in the bamboo cane have been afcertained by Mr Macie to be compofed of pure filica.
3. Magnefia does not exit fo generally in the vege-Magnefia table kingdom as the two preceding earths. It has been found, however, in confiderable quantities in feveral fea plants, efpecially fucit. But the falfola foda + Id. ibid. contains a greater proportion of magnefia than any 80 and is plant hitherto examined. Mr Vauquelin found that 94. 100 parts of it contained 17.929 of that earth \(\ddagger\).
\(\ddagger 1\) bid. 780
4. Alumina has only been found in very fmail quantities in plants.

The following table will fhew the quantity of thefe four earths which exift in feverdl vegetables.

100 parts of oak contain of earths 1.03*
 greater in herbs than in trees.

Bergman found all the four earths in every kind of Opary. v. grain which he analyled*. Vauquelin found, that 100 parts of oat grain left 3.1591 of refiduum. This refiduum is compofed of 607 filica,
39.3 phofphat.
\(100.0 t\)
When the whole of the avena fativa, however, falk and feed together, are burnt, they leave a refiduum compofed of
\[
\begin{aligned}
& 55 \text { filica, } \\
& \text { I phofphat of lime, } \\
& 20 \text { potafs, } \\
& 5 \text { carbonat of lime. }
\end{aligned}
\]

95, and a little oxyd of iron \(\ddagger\).
This fhews us that the falk contains feveral fubtances not to be found in the grain.

\section*{Sect. XVIII. Of Metals.}

Several metallic fubfancea have alfo been found in regetables, but their quantity is exceedingly finall; fo fmall, indeed, that without very delicate experiments

The metals hitherto difonvered are iron, which is by far the moft common, manganefe, and gold.

Scheele firft detected manganefe in vegetables*. Prouft found it in the afhes of the pine, catendula, vine, green oak, and fig-treet. M. Sage has fhewn, that gold exits in many plants. Iron exifs in moft plants. The alhes of fome fpecies of falfola contain a contiderable quantity of it.

We have now taken a furvey of all the fubfances which have hitherto been obtained from vegetables: by analyfing each of thefe, we come at laft to thofe bodies which we are at prefent obliged to confider as fimple, becaufe they have nut yet been decompofed, 8s and of which accordingly we muft fuppofe that vege, nple ful. tables are ultimately compofed. Thufe bodies amount cus co:l- ot 16 , namely,
1. Oxygen,
2. Sulphur,
3. Phofphorus
4. Carbon,
5. Hydrogen,
6. Azot,
7. Iron,
8. Manganefe,
9. Gold,
10. I ime,
11. Magnefia,
12. Silica,
13. Alumina,
14. Potafs,
15. Soda,
16. Muriatic acid. But of chefe fubftances there are twelve which compofe but a very fmall proportion indeed of vegetables. Al. moft the whole of vegetable fubitances are compofed of four ingredients, namely,
\[
\begin{aligned}
& \text { Carbon, } \\
& \text { Oxygen, } \\
& \text { Iydrogen, }
\end{aligned}
\]

Of thefe the laft, namely azot, forms but a fmall pro. portion even of thofe vegetable fubftances of which it is a conflituent part, while into many it does not enter at all : So that, upon the whole, by far the greater part of vegetable fubftances is compofed of carbon, hydrogen, and oxygen. We do not mention caloric and light, concerning the nature of which too little is known to
'I he fubllances at prefent known to chemifts, which they lave not becu hitherto able to decompofe, amount (omitting caloric and light) to 4 C . Sixteen of thefe exitt in plants; the other 24 belong exchufvely to the mineral kingdom: for it is a fact, that no fubftance (ive mean fimple fubftance) has been hitherto found in the aninal kingdom which does not exift alfo in vege-
tables.

On the contrary, all the fimple fubftances at prefent known may be found in minerals. This indeed ought not to furprife us, if we recollect, that the fpoils of animals and vegetablen, after they have undergone decompolition, are ulimately confounded with minerals, and confequently arranged under the nineral kingdom. Befides, as vegetables duaw all their food from the minerail kingdom, it would be abfurd to fuppofe that they contain fubftances which they could not have procured from minerals. It muft follow, therefore, of neceffitys that mincrals contain all the fimple fubfances which exit in this globe of our's ; and that plants owe their diverfity merely to different modifications of thofe priaciples which they imbibe from the foil. But it is impoffible to have any precife notions about a fubject fo intricate, without confidering with fome attention the ftructure of vegetables, the food which they imbibe, and the changes which they produce on that food. 'i hefe enquiries thall form the fubject of the next chapter; in which we propofe to take a view of thofe phenomena of vegetation which are connefted with chemifry, or which may be elucidated by the application of the priaciples of that fcience.

\section*{Chap. II. Of Vegetation.}

We have now feen the different fubfances which are contained in plants; but we have ftill to cxamine the manner in which thefe fubflances are produced, and to endeavour to trace the different proceffes which conittitute vegetation. We mult warn our readers not to ex. pect complete information in this chapter. 'The won. ders of the vegetable kingdom are tlill but very imperfeelly explored ; many of the orgaus of plants are too minute for our fenfes; and fcarcely a fingle procefs can be completely traced.

He inultiplicity of operations continually groing on Phenon e. in vegttables at the fame time, and the varicty of diffe- narif vegerent, and even oppofite fubftances, formed out of the taion very fame ingredients, and almoit in the fame place, aftonith humeroat. and confound us. 'The order, ton, and the flaill withwhich every thing is condueted, are no lefa furprifing. No two operations clafi; there is no difcord, no irregu*. larity, no difturbarce; every object is gained, and eve* ry thing is ready for its intended purpofe. 'This is too wonderful to efcape our obfervation, and of too much importance not to claim our attention. Many philofophers, accordingly, diftinguifhed equally by their ina duftry and fagacity, have dedicated a great pant of their lives to the ftudy of vegetation. But hitherto their fuc cefs has not been equal to their exertions. No perfor has been able to deteet this agent, always fo bufy, and performing fuch wonders, or to difoover him at his work; nor have philofophers been much more fortu.

Vegeta- nate in their attempts to afcertain the instruments which ion.

\section*{\(\xrightarrow{-}\)}

Plants anile
from feed.

87 obviously refult from this mutual dependence. he employs in his operations. A great variety, howlect There we thall attempt in this chapter to collect and arrange, to point out their dependence on each other, and perhaps to deduce fuch confequences as 1. Natural from this mutual dependence. plate induction of facts, that all plants arife from feeds. The pretended exceptions have difappeared, one after another, as our knowledge of vegetables increafed: and now there remains fiercely a ingle objection entitled to the fmalleft regard. The late attempt of Girtannet* to revive the doctrine of equivocal generation, are abs no attention whatever ; becaufe his conclutions Senebier upon the very fubitance on which his theory is founded.
A SEFD confifts of three parts; namely, the cotyleclofed in a cover.

If we take a garden bean, we may perceive each of thee three parts with great cafe ; for this feed is of fo large a frize, that all its organs are exceedingly ditinct.
- When we trip off the external coats of the bean, which are two, and of different degrees of thicknefs in different parts, we find that it eafily divides into two lobes, pretty nearly of the fame faze and figure. Each of there lobes is called a cotyledon (fig. s. \(a\) ). The cotyledons of the bean, then, are two in number.
Near that part of the lobes which is contiguous to what is called the eye of the bean, there is a mall round white body \((b)\), which comes out between the two lobes. This body is called the radicle.

Attached to the radicle, there is another fmall round body (c), which lies between the cotyledons and wholly within them, fo that it cannot be fees till they are feparated from each other. This body is called the plumule.

The appearance and chape of there three parts difffer very much in different feeds, but there is no feed which wants them. The figure and frize of the feed depend chiefly upon the cotyledons. This is evidently the cafe with the bean, and it is fo with all other feeds. The number of cotyledons is different in liferent feeds. Some feeds have only one cotyledon, as the feeds of wheat, oats, barley, and the whale tribe of graffes: forme have three; others fix, as the feeds of the garden grails; but molt feeds, like the bean, have two cotyledons.
2. When a reed is placed in a fituation favourable to vegetation, it very foo changes its appearance. The radicle is converted into a root, and finks into the earth; the plumula, on the other hand, rifes above the earth, and becomes the trunk or item. When the fe changes take place, the feed is faid to germinate: the procefs itfelf has been called germination. Seeds do not germinate equally and indifferently in all places and feafons. Germination, therefore, is a procefs which docs not depend upon the feed alone; fomething external mut alfo affect it.
3. It is a well known fact, that feeds will not germinare unlefs moifure have accefs to them; for feeds, if
they are kept perfectly dry, never vegetate at all, and yet their power of vegetating is not deftroyed. There are indeed forme apparent objections to this : potatoes, for inffance, and other bulbous bodies, germinate, tho' kept ever fo dry. But the reafon of this is, that the fe bodies (which are not feeds, though they refemble them in come particulars) have a fufficient quantity of water within themfelyes to give a beginning to germination. We may conclude, then, that no feed will germinate unlefs water has aecefs to it. Water, then, is effential to germination. Too much water, however, is no lefs prejudicial to molt feeds than none at all. The feeds of water plants, indeed, germinate and vegetate extremety well in water; but mort other feeds, if they are kept in water beyond a certain time, are rotted and deftroyed altogether.
4. It is well known alfo, that feeds will not germinate, even though Supplied with water, provided the temperature be below a certain degree. No feed, for inflance, on which the experiment has been tried, can be made to vegetate at or below the freezing point: yet this degree of cold does not injure the vegetating power of feeds; for many feeds will vegetate as well as ever after having been frozen, or after laving been kept in frozen water. We may conclude, then, that a certain degree of heat is neceffary for the germination of feeds. Aud every foecies of plants feems to have a degree peculiar to itfelf, at which its feeds begin to germinate ; for we find that almoft every feed has a pecuLiar feafon at which it begins to germinate, and this fearfor varies always according to the temperature of the air. Mr Adan for found that feeds, when Sown at the fame time in France and in Senegal, always appeared fooner above ground in the latter country, where the climate is hotter, than in France \(\delta\).
5. Seeds, although fupplicd with moifture, and paaced in a proper temperature, will not germinate, prosided atmolpherical air be completely excluded from them. Mr Ray found that grains of lettuce did not germinate in the vacuum of an air-pump, but they began to grow as lon as air was admitted to them \(\dagger\). + phil. Homberg made a number of experiments on the fame Trans. fubject, which were publifhed in the Memoirs of the \(\mathrm{N}^{\circ} 53\). French Academy for the year 1693. He found, that the greater number of feeds which he tried refufed to vegetate in the vacuum of an air-pump. Some, however, did germinate ; but Boyle, Mufchenbroek, and Boerhaave, who made experiments on the fame fubject in fucceffion, proved beyond a doubt that no plant vegetates in the vacuum of an air-pump; and that in thole cafes in which Homberg's feeds germinated, the vacuum was far from perfect, a quantity of air fill remaining in the receiver. It follows, therefore, that no feed will germinate unless atmofpherical air, or fume air having the fame properties, have accefs to it. It is for this reafon that feeds will not germinate at a certain depth below the furface of the earth.

Mr Scheele found that beans would not germinate except oxygen gas were prefent; Mr Achard afterwards proved, that oxygen gas is abfolutely neceffary for the germination of all feeds, and that no feed will germinate in azotic gas, or hydrogen gas, or carbonic acid gas, unlefs thee gates contain a mixture of ox ygen gas. Thee experiments have been confirmed by
 .

\footnotetext{
\footnotetext{
\(\qquad\)
}
}


\(\qquad\)


\begin{abstract}
.
\end{abstract}

\footnotetext{
\%
}

Mr Goughi, Mir Cruickflank, and many other philofophers. It follows, therefore, that it is not the whole atmofpheric air, but merely the oxygen gas which it contains, that is neceffary for the germination of feeds.
6. Seeds do not germinate equally well when they are expofed to the light, and when they are kept in a dark place ; light therefore has fome effect on germination.

Mr Ingenhoufz found, that feeds always germinate fafter in the dark than when expofed to the light ** His experiments were repeated by Mr Senebier with equal fuccefs \(\dagger\); and it was concluded, in confequence of their experiments, that light is injurious to germination. But the Abbé Bertholin, wha diftinguiffed himfelf fo much by his labours to demonftrate the effect of electricity on vegetation, objected to the conclufions of thefe philofophers, and affirmed, that the difference in the germination of feeds in the fhade and in the light was owing, not to the light itfelf, but to the difference of the moifture in the two fituations; the moifture evaporating much fafter froin the feeds in the light than from thofe in the fhade; and he affirmed, that when precautions were taken to keep the feeds equally moift, thofe in the fun germinated fooner than thofe in the fhade \(\ddagger\). But when Mr Senebier repeated his former experiments, and employed every poffible precaution to enfure the equality of moifture in both fituations, he conftantly found the feeds in the fhade germinate fooner than thofe in the light \(\varsigma\). We may conclude, therefore, that light is injurious to germination ; and hence one reafon for covering feeds with the foil in which they are to grow.
7. Thus we have feen that feeds will not germinate unlefs moifure, beat, and oxygen gas, be prefent ; and that they do not germinate well if they are expofed to the action of light. Now, in what manner do thefe fubffances affect the feed? What are the changes which they produce?

We obferved before, that all feeds have one or more cotyledons. Thefe cotyledons contain a quantity of farinaceous matter, laid up on purpofe to fupply the em. bryo plant with food as foon as it begins to require it. This food, however, mint undergo fome previous preparation, before it can be applied by the piant to the formation or completion of its organs. Now all the phenomena of germination which we can perceive confift in the chemical changes which are produced in that food, and the confequent developement of the organs of the plant.
When a feed is placed in favourable circumitances, it gradually imbibes moifture, and very foon after emits a quantity of carbonic acid gas, even though no oxygen gas be prefent *. This feems to prove, as Mr. Cruickfhank has fuppofed, that fome of the water im-
tained in the cotyledon. The firt part of germination, then, confifts in diminifhing the quantity of carbon, and increafing the hydrogen of the farina. If no oxygen gas be prefent, the procefa flops here, and no germination takes place.

But if oxygen gas be prefent, it is gradually abforb. ed and retained by the feed; and at the fame time, the
farina of the cotylecons affumes a fweet tafte refembling fugar: it is therefore converted into fugar, or fome fubflance analogous to it + . Farina, then, is changed into fugar, by climinifhing its carbon, and aug. menting the proportion of its hydrogen and oxygen. This is precifely the procefs of malting, or of converting grain into malt; during which it is well known that there is a confiderable heat evolved; fo much indeed, that in certain circumftances grain improperly kept has even taken fire. We may conclude from this, that during the germination of feeds in the earth there is allo an evohution of a confiderable portion of heat. This indeed might have been expected, as it ufually happens when oxygen gas is abforbed.

So far feems to be the work of chemiftry alone; at leaft we have no right to conelude that any other agent interferes; fince hay, when it happens to imbibe moif. ture, exhibits nearly the lame proceffes. Carbonic acid gas is evolved, oxygen gas is abforbed, heat is produced fo abundantly, that the hay often takes fire : at the fame time a quantity of fugar is formed. It is owing to a partial change of the fame kind that old hay generally taftes much fweeter than new hay. Now we have no reafon to fuppofe that any agents peculiar to the vegetable kingdom refide in hay; as all vegelation; and all power of vegetating, are evidently deftroyed.
But when the farina in the feeds of vegretables is con- Which pats verted into fugar, a number of veffels make their ap- fen intortho pearance in the cotyledon. The reader will have a rad.cle, pretty diftinct notion of their diftributions by infpenting fig. 2 . Thefe veffels may indeed be detected in many feeds before germination cummences, but they become much more diflinet after it has made fome pro. grefs. Branches from them have been demonftrated by Grew, Malpighi, and Hedwig, paffing into the radicle, and diftributed through every part of it.f Thefe evidently carry the nourithment prepared in the cotyledons to the radicle; for if the cotyledons be cut off even after the proceffes above deferibed are completed, germination, as Bonnet and Senebier afcertained by experiment, immediately ftops. The food therefore is And co conveyed from the cotyledons-into the radicle, the ra- verts it inadicle increafes- in fize, aflumes the form of a root, to a rooto finks down into the earth, and foon becomes capable of extracting the nourihment neceffary for the future growth of the plant. Even at this period, after the radicle has becorne a perfect root, the plant, as Senebier afcertained by experiment, ceafes to vegetate if the cotylectons be cut off. They are fill then abfolutely neceffary for the vegetation of the plant.

The cotyledons now aflume the appearance of leaves, and appear above the ground, forming what are called botyledons. the feminal haver of the plant \(A\) gradually increafes in fize, rifes out of the earth, and leaves, expands itfelf into branches and leaves. The feminal leaves, foon after this, decay and drop off, and the plant carries on all the proceffes of vegetation without their affiftance.

Mr Eller attempted to hew, that there is a veffel in feeds which paffes from the cotyledons to the plumula; but later anatomifts have not been able to perceive any fuch veffel. Even Mr Hedwig, one of the moft patient, acute, and fucceffful philofophers that ever turned their attention to the ftructure of vegetables, could:

Vegeta- never difcover any fuch veffel, although he traced the tion.

\section*{scut.}
veftels of the cotyledons even through the radicle. As it does not appear, then, that there is any communication between the cotyledons and the plumula, it muit follow that the nourifiment pares into the plumula from the radicle: and accordingly we fee, that the plumula does not begin to vegetate till the radicle has made fome progrefs. Since the plant ceafes to vegetate, even after the radicle has been converted into a root, if the cotyledons be removed before the plumula is deve. loped, it follows, that the radicle is infufficient of itfelf to carry on the proceffes of vegetation, and that the cotyledons ttill continue to perform a part. Now we
have feen already what that part is: for the nourimment of the plant. The prepare food of itfelf infufficient for this purpofe. When the coty ledons antume the form of feminal leaves, it is evident that the nourifhment which was originally laid up in them for the fupport of the embryo plant is exhautted, yet they fill continue as neceffary as ever. They mult therefore receive the nourifiment which is imbibed by the root ; they muft produce fome changes on it, render it fuitable for the purpofes of vegetation, and then fend it back again to be tranfmitted to the plumula.

After the plumula has acquired a certain fize, which muft be at leaf a line, if the cotyletons be cut off, the - plant, as Mr Bonnet afcertained by a number of experiments, afterwards repeated with equal fuccels by Mr Sencbier, does not ceafe to. vegetate, but it continues always a mere pigmy or its fize, when compared with that-of a plant whofe cotyledons are allowed to remain,
- Fng Mat
being only as 2 to \(7^{*}\).

When the plumula has expanded completely into leaves, the cotyledons may be removed without injuring the plant, and they very foon decay of themfelves. It appear, then, that this new office of the cotyledons is afterwards \(p^{\text {er formed }}\) by that part of the plant which is above ground.
Thus we have traced the phenomena of germination as far as they have been detected. The facts are ob. vious; but the manner in which they are produced is a profound fecret. We can neither explain how the food enters into the veffels, how it is conveyed to the diffe. rent parts of the plant, how it is depofited in every organ, nor how it is employed to increafe the fize of the old parts, or to form new parts. Thefe phenomena are analogous to nothing in meehanics or chemiftry. He that attempts to explain them on the principles of thefe fciences, merely fubftitutes new meanings of words inftead of old ones, and gives us no affiftance whatever in conceiving the procefes themfelves. As the fubfances employed in vegetation are all material, it is evident that they poffefs the properties of matter, and that they are arranged in the plant according to thefe laws. It follows, therefore, that all the changes which take place in the plant are produced according to the knovin laws of mechanics and chemittry. This cannot be difputed: but it explains nothing : for what we want to know is the agenit that brings every particle of matter to its proper place, and enables the laws of chemiftry and mechanics to act onty in order to accomplifh a certain end. Who is the agent that acts accordirg to this end? To fay, that it is chemiftry or mechanics is to pervert the ufe of words. For what are the laws of chemitry and mechanics? Are they not certain fixed
and unalcerable properties of matter? Now, to fay that a property of matter has an end in view, or that it acts in order to accomplifh fume defgn, is a downightt ab. furdity. There mult therefore be fome agrent in all cafes of germination, which regulates and directs the mechanical and chemical proceffes, and which therefore -is neither a mechanical nor chemical property.
8. When the procefs of gerinination is accomplifhed, the plant is complete in all its pats, and capable of vegetating in a proper foil, for a time and with a vigour proportional to its nature.

Plants, as every body knows, are very various, and Plantscom. of courfe the ftructure of each fpecies muft have mary ufed of peculiarities. Trees have principally engaged the at bark, wood, tention of anatomifts, on account of their fize and and pith. the dittinefs which they expeoted find in and the ftructure of plants; readil plants; and we hall do it the more aedy, as the greater number of vegetables are provi-
dith analogous organs, dedicated to fimilar uies.
A TREE is compofed of a root, a trunk, and branches: the ftructure of each of which is fo fimilar, that a general defeription of their component parts will be fufficient. Each of them confifts of three parts, the bark, the quood, and the pith.

The bark is the outermont part of the tree. It covers the whole plant from the extremity of the roots to the extremity of the branches. It is ufually of a green colour: if a branch of a tree be cut acrofs, the bark is eafily diftinguifhed from the reft of the branch by this colour. If we infpect fuch a horizontal fection with attention, we thall perceive that the bark itfelf is compofed of three diftinct bodies, which, with a little care, may be feparated from each other. The outermoft of thefe bodies is called the epidermis, the middlemoft is called the farencliyma, and the innermont, or that next the wood, is called the cortical layers.

The tpidermis is a thin tranfparent membrane, which Cumpafed covers all the outfide of the bark. It is pretty tough. of epiderWhen infpected with a microfcope, it appears to be mis, compofed of a number of nender fibres croffing each other, and forming a kind of network. It feems -even to conlift of different thin retiform membranes, adhering clofely together. This, at lealt, is the cafe with the epidermis of the birch, which Mr Duhamel feparated into fix layers. The epidermis, when rubbed off, is reproduced. In old trees it cracks and decays, and new epidermes are fucceffively formed. This is the reafon that the trunks of many old trees have a rough fuface.

The parenibyma lies immediately below the epider-parenchy mis; it is of a deep green colour, very tender, and fuc-nia, culent. When viewed with a microfcone, it feems to be compofed of fibres which crofs each other in every direction, like the fibres which compofe a hat. Both in it and the epidermis there are numberlefs interftices, which have been compared to fo many finall bladders. 'I'he cortical layers form the innermolt part of the and 10 ort bark, or that which is next to the wood. They con- cal layer fift of Several thin membranes, lying the one above the other; and their number appears to increafe wich the age of the plant. Each of thefe layers is compofed of longitudinal fibres, which feparate and approach each other alternately, fo as to form a kind of network. The nethes of this network correfpond in each of the lay.
ers ; and they become finaller and fmaller in every lay. er as it approaches the wood. Thefe mefhes are filled with a green coloured cellular fubflance, which has been compared by anatomits to a number of bladders adhering together, and communicating with each other.

The wrood lies immediately under the bark, and
ftationants, after they have gorminated, do not remain tree, for inftance, every feafon, adds confiderably to its former bulk. 'The root fends forth new fhoots, and the old ones become larger and thicker. The lame incre. ment takes place in the branches and the trunk. When we examine this increafe more minntely, we find that a new layer of wood, or rather of alburnum, has been addell to the tree in every part, and this addition has been made juft under the bark. We find, too, that a layer of alburnum has affumed the appearance of perfeet wood. Befides this addition of vegetable fibre, a
great number of leaves have been produced; and the Vegetatree puts forth flowers, and forms feeds.

It is evident from all this, that a great deal of new matter is continually making its appearance in plants. Therefore Hence, fince it would be abfurd to fuppofe that they require create new matter, it muft follow that they receive it foul.
by fome channel or other. Ylants, then, require food as well as animals. Now; what is this food, and whence do they derive it? Thefe quettions can only be anfwered by an attentive furvey of the fubstances which are contained in vegetables, and an examination of thofe fubftances which are neceffary for their vegetation. If we conld fucceed completely, it would throw a great deal of light upon the nature of foils and of manures, and on foine of the moft important queftions in agriculture. But we are far indeed at prefent fiom being able to examine the fubject to the bottom.

112
10. In the firlt place, it is certain that plants will water ne. not vegetate without water; for whenever they are de. ceffury. prived of it, they wither and die. Hence the well known ufe of rains and dews, and the artificial watering of ground. We may conclude, then, that water is at lealt an effential part of the food of plants.

But many plants grow in pure water ; and therefore it may be queftioned whether water is not the only food of plants. This opinion was adopted very long ago, and numerous experiments have been made in order to demonitrate it. Indeed, it was the general opinion of the \(17^{\text {th }}\) century; and fome of the moft fuccefiful improvers of the phyfiology of plants, in the I 8 th century, have embraced it. The molt zealous advocatcs for it were, Van Helmont, Boyle, Bonnet, Du-
hamel, and 'Tillet.

\section*{113}

Van Helmont planted a wiliow which wcighed five \(3_{1}\) pered pounds, in an earthen veffel filled with foil previounly the whole dried in an oven, and moiltened with rain water. This fond of veffel he funk into the earth, and he watercd his willow plants; fometimes with rain, and fometimes with diltilled water. After five years it weighed \(169 \frac{1}{\frac{1}{2}} \mathrm{lbs}\). and the earth in which it was planted, when again dried, was found to have loft only two onnces of its original weight. Here, it has been faid, was an increafe of \(16+\mathrm{lb}\). and yet the only food of the willow was pure water ; therefore it follows that pure water is fufficient to afford nourifiment to plants. The infufficiency of this experiment co decide the queftion was firt pointed out by Bergman in \(1773^{*}\). He flewed, from the ex-* Opufi. \(\nabla_{0}\) periments of Margraff, that the rain water employed by 92 . Van Helmont contained in it as much eartl as could exift in the willow at the end of five years. For, according to the experiments of Margraff, I lb. of rain water contains 1 gr . of earth \(\dagger\). The growth of the willow, therefore, by no means proves that the earth \(\dagger\) Opu/a.ii. which plants contain has been formed out of water. Befides, as Mr Kirwan has remarked \(\ddagger\), the earthen \(\ddagger\) lrib veffel muft have often abforbed moifture, from the fur- Tranf. v. rounding earth, impregnated with whatever fubftance 150. that earth contained; for unglazed earthen veffets, as Hales * and Tillet \(\dagger\) have fhewn, readily tranimit moif-* \(V^{r}\) eget. ture.

Hence it is evident that no conclufion whatever can \(+M\) Mem. be drawn from this experiment; for all the fubftances \({ }^{1}\) dro \(1777^{\circ}\) which the willow contained, except water, may have been \({ }^{2 y 8}\). derived from the rain water, the earth in the pot, and 1314 the moiture imbibed from the furrounding foil.

Vegetation.
* Ann. de

The experiments of Duhamel and Tillet are equally inconclufive; fo that it is impoffible from them to decide the queftion, Whether water he the fole nourimment of plants or not? We owe the folution of this difficulty to the experiments of Mr Haffenfratz, who pointed out the fallacy of thofe jult mentioned.

He analyfed the bulbous roots of hyacinths, in order to difcover the quantity of water, carbon, and hydrogen, which they contained; and by repeating the analyfis on a number of bulbs, he difcovered how much of thefe ingredients was contained in a given weight of the bulb. He analyfed alfo kidney beans and crefs feeds in the fame manner. Then he made a nurrber of each of thefe vegetate in pure water, taking the precaution to weigh them beforehand, in order to afcertain the precife quantity of carbon which they contained. The plants being then placed, fome within doors, and others in the open air, grew and flowered, but produced no feed. He afterwards dried them, collecting with care all their leaves and every other part which had dropt off during the courfe of the vegetation. On fubmitting each plant to a chemical analy fis, he found that the quantity of carbon, which it contained, was fomewhat lefs than the quantity which exitted in the bulb or the feed from which the plant had fprung \({ }^{*}\).

Hence it follows irrefiftitly, that plants growing in pure water do rot receive any increafe of carlon; that the water merely ferves as a vehicle for the carbonaceous matter already prefent, and diffufes it thro' the plant. Water, then, is not the fole food of plants; for all plants during vegetation receive an increafe of carbonaceons matter, without which they cannot produce perfect feeds, nor even continue to vegetate beyond a certein time ; and that time feems to be limiced by the quantity of carbonaceous matter contained in the bulb or the feed from which they grow. For 1)uhamel found, that an oak which he had raifed by water from an acorn, made lefs and lefs progrefs every year. We fee, too, that thufe bulbous reots, fuch as hyacinths, tulipa, \&c. which are made to grow in water, unlefs they be planted in the carth every other year, refufe at latt to flower, and even to vegetate; cipecially if they produce new bultous roots anmually, and the old ones decay.

So far, indeed, is water from being the fule food of plants, that in general only a certain proportion of it is ferviceable, too much being equally prejudicial to them as too little. Some plants, it is true, grow conflantly in water, and will not vegetate in any other fituation ; but the reft are entirely deftroyed when kept immerfed in that fluid beyond a certain time. Moit plants require a certain degree of moifture, in order to vegetate well. This is ore reafon why different foils are required for different plants. Rice, for inftance, requires a very wet foil: were we to fow it in the ground on which wheat grows huxuriouly, it would not fucceed; and wheat, on the contrary, would rot in the rice ground.
We fhould, therefore, in choofing a foil proper for
the plants which we mean to raife, confider the quantity of moifture which is beft adapted for them, and choofe our foil accordingly. Now, the drynefs or moifture of a foil depends upon two things; the nature and proportions of the earths which compofe it, and the quantity of rain which falls upon it. Every foil contains at leaft three earths, filica, lime, and alumina, and fornetimes alfo magnefia. The filica is always in the ftate of fand. Now foils retain moifture longer or Thorter according to the proporcions of thefe earths. Thofe which contain the greateft quantity of fand retain it the Chorten, and thofe which contain the greatelt quantity of ahmina retain it longef. The firlt is a dry, the fecond a wet foil. Lime' and magnefia are intermediate between thefe two extremes: they render a fandy foil more retentive of moifture, and diminifh the wetnefs of a clayey foil. It is evident, therefore, that, by mixing together proper proputions of thefe four eartlis, we may form a foil of any digree of dryncfs and moifture that we pleafe.

But whatever be the nature of the foil, its moilture muft depend in general upon the quantity of rain which falls. If no rain at all fell, a foil, however retentive of moifture it be, mult remain dry ; and if rain were very frequendy falling, the foil mult be open indeed, if it be not coriftantly wet. The proportion of the different earths in a foil, therefore, minf depend upon the quantity of rain which falls. In a rainy country, the foil ought to be open; in a dry country, it ought to be retentive of moilfure. In the firft, there onght to be a greaier proportion of fand; in the fecond, of clay.
11. Almoit all plants grow in the earth, and every Earth ne foil contains at leaft fllica, lime, alumina, and often ceffary; magnefia. We have feen already, that one ufe of thefe earths is to adminifter the profer quantity of water to the vegetables which grow in the foil. But as all plants contain earths as a part of their ingredients, is it not probable that earths aifo ferve as a food for plants? It has not yet indeed been hewn, that thofe plants which vegctate in pure water do not contain the ufual quantity of earth ; but as earths are abfolutely neceflary for the perfcet vegetation of plauts, as they are contained in alt phants, and are even found in their juices, we can fcarcely doubt that they are aftually imbibec, though only in fmall quantities ( x ).
12. We have feen in the laft chapter, that all plants And dats contain various faline fubfances; and if we ana!yle the moft fertile foils, and the richeft manures, we never find them defitute of thefe fubltances. Hence it is probable that different falts enter as ingredients into the food of plants. It is probable alfo, that every plant ablosbs particular kinds of falts. Thus fea plants yiel.d foda by analy fis, while inland plants furnifh potafs. The potafs containied in plants has indeed been fuppofed to be the produce of vegetation; but this has not been proved in a fatisfactory manner. We find potafs in the very juices of plants, even more abundantly than in the vegetable fibres themfelves. But this fubject is, flill buried in obfeurity; and indeed it is extremely dif.
ficult
(D) Mr Tenrant havafcertainec, that magnefia, when uncombined with carboaic acid gas, is injurious to corn when employed as a manure; and that lime, which contains a mixture of magnefia, likewife injures corn. See Phil. Tranf. 1799, p. 2. This important fact demontrates, that earths are not mere vehicles for conveging water to plants.
'egeta- ficult to make decifive experiments, on account of the tivn. very fmall quantity of pota\{3 which moft plants contain.

The phofphorus, too, and the iron, and other metals which are found in plants, are no doubt abforbed by them as a part of their food. We may fuppofe alfo, that the fulphuric and nuriatic asids, and perhaps even the nitric acid, when found in plants, are imbibed by them along with the reft of their aliment.

Nothing is at prefent known concerning thofe faline fubftances which form an effential part of the food of plants; though it has been long remarked that certain falts are ufeful as manures.
\({ }_{1} 3\) Water, then, and earths, and perhaps alfo falts, form a part of the food of plants. But plants contain carbon, which cannot be derived from any of thefe fubflances; confequently fome fubftance or other befides, which contains carbon, rnuft conflitute a part of the food of plants.

Mr Giobert mixed together the fonr carths, filica, alumina, lime, magnefia, in the proper proportions, to con?itute a fertile foil; and after moiftening them with water, planted feveral vergetables in them; but norre of his plants grew well, till he moifencd his artificial foil with water from a dunghill *. Now it is certain, from -the experiments of Haffenfratz, that this water contains carbon; for when evaporated, it conftantly left bethind it a refaduum of charcoal \(\dagger\) We know likewife, from a great variety of experiments, that all fertile foils contain a conliderable quantity of carbonaceons matter; for all of them, when expofed to lieat, are fufceptible of partial combuftion, during which a quantity of carbonic acid gas efcapes. Thus Fourcroy and Hafenfratz found, that \(9^{2,6}\) parts of fertile foil contained 305 parts of carbon, befides 279 parts of oil ; which, from the analyfis of Lavoifier, we may fuppofe to contain about 220 parts of carbon. It follows, therefore,
from the experinents of thefe chemifts \(\ddagger\), that 9216 parts of foil contain 525 parts of carbon. But thefe
9216 parts of foil contained So6 parts of roots of vegetables which were excluded from the analy fis; confequently a fertile foil contains (exclufive of the roots of vegetables) about one-fixtcenth of its weight of carbon.

Byt the carbon mult exift in the foil in a particular flate of combination, otherwife it docs not anfwer as with earths, is not found to act, at leaft immediately, as a manure ; yet pitcoal contains a very great quantity of carbon. Farther, it appeare, from the experiments of Mr Haffenfratz, that fubliances employed as manures produce effects in times proportioned to their degree of putrefaction ; thofe fubflances which are moft putrid producing the molt fpeedy effects, and of courfe fooneft lofing their efficacy. Having manured two pieces of the fame kind of foil, the one with a mixture of dung and Araw highly putrefied, the other with the fame mixture newly made, and the ttraw almoit frefh, he obferved that, during the firft year, the plants which grew on the land manures with the putrefied dung produced a much better crop than the other: but the fecond year (no new dung being added), the ground which had been manured with the unputrified dung produced the beft crop; the fame thing took place thee third year ; after which, both feemed to be equally
exhaufted *. Here it is evident that the putrifisd dung acted fooneft, and was fooneft exhaufied. It follows from this, that carbon only acts as a manure when in a particular flate of combination; and this ftate, whatever it may be, is evidently produced by putrefaction. A nother experiment of the fame chemift renders this truth ftill more evident. He allowed fhavings of wood to remain for about ten months in a moit place till they began to putrefy, and then fread them over a piece of ground by way of manure. The firt two years this piece of ground produced nothing more than others which had not been manured at all ; the third year it was better, the fourth year flill better, the fifth year it reached its maximum of fertility; after which it declined conftantly till the ninth, when it was quite exhaufled \(t\). Here the effect of the manure; evidently depended upon its progrefs in putrefaction.

Now what is the particular flate into which carbon ind folumuft be reduced before it be fit for the food of plants? ?le in This fubject has never been exanined with attention; \({ }^{\text {water. }}\) the different combinations of carbon laving been in a great meafure overlooked. And yet it is evident, that it is only by an accurate examination of thefe combinations, and a thorough analyfis of manures, in order to difcover what particular cornbinations of calbon exitt in them, and in what the moft efficacious manures differ from clie reft, that we can expect to throw complete light upon the nature and me of manures, one of the nof important fu.jects to which the farmer can direct his attention. We know, from the experiments of Mr Haftenfiat\%, that all thofe manures which act with efficacy and celerity contain carbon in fuch a flate of combination, that it is foluble in water; and that the efficacy of the manure is proportional to the quantity of carbon fo foluble. He found that all effeacious manures gave a brown colour to water, and that the water fo coloured, when evaporated, left a refidnum, which confifted in a great meafure of carbon**. Ite obferved, * Ilid. p. too, that the foil which gives he deepeft colour to wa- 56 . ter, or which contains the greateft quancity of carbon Ioluble in water, is, other things being the fame, the mof fertile.

This is not, however, to be underfood without limitation; for it is well known that if we employ exceffive quantities of manure, we injure vegetation inftead of promoting it. This is the reafon that plants will not, as Mr Duhamel found by experiment, vegetate in faturated folutions of dung \(\dagger\).

One of the combinations of carbon which is foluble Par. 174 S. in water, and with which we are belt acquainted, is car- This flate bonic acid gas. It has been fuppofed by many philo- not cartbo fophers, particularly by Mr Senebier, that this gas, dif- nic aci. folved iu water, fupplies plants with a great part of gas 3 their carbon. But Nir Haffenfratz, on making the experiment, found, that the plants which he raifed in water, impregnated with carbonic acid gas, differed in no refpect from thofe which grew in pure water, and did not contain a particle of ca:ben which had not exitted \(f\) Ans de in the feeds from which they fprung \(\ddagger\). This experi- chim, siil. ment proves, that carbonic acid gas, diffolved in water, 320. does not ferve as food fur plants. It appears, however, from the experiments of Ruckert, that when plants growing in foil are watered daily with water impregra122 ted with carbonic acid gas, they vegetate faiter than Though 4 when this watering is omitted. He planted two beans is is uielus.
+Crell's
Ansals,
1788. ii.
399.
* 1bid. have the proverty of decompofing carbonic acid gas *.
2.791. i. 53 . Indeed almoft all foils contain iron, either in the fate of the brown or the green oxyd; and Beaumé las fhewn, that oils convert the brown oxyd of iron into
+ Kirwan,
Iribs Tranf. fubttance; and this is the cafe alfo with rich foils. One v. 150 . ufe of manures, therefore, may be, to reduce the brown oxyd of inon to the green, that it may be capable of decompofing carbonic acid gas; and the carbon, thus precipitated, doubtlefs enters into fome new combination, in which ftate it ferves as food for plants.

Mr Humbolt has lately proved, that foils have the property of abforbing oxygen. It can farcely be doubted that this abforption has an influence on vegetation, efpecially as watering plants with weak folutions
* Ingen-
boufz.
123
Food ab.
forbed by the roots. of oxy-muriatic acid accelerates vegetation *. But we know too little of the fubject at prefent to be able to fpecify precifely what that influence is.
14. Since the only part of plants which is contiguous to the foil is the root, and fince the plant perifhes when the root is pulled out of the ground, it is evident that the food of plants muft be imbibed by the roots.

When we examine the roots, we do not find them to contain any large opening. The paffages by which the food enters are too fmall for the naked eye. This fhews us, that the food can enter plants only in a fluid tate ; and that confequently every thing which can be rendered ufeful as food for plants muft be previounly in a tate of folution.

It feems moft probable, that the whole, or the greateff part of the food, enters at the cxtremities of the roots; for Duhamel obferved, that the portion of the foil which is foonet exhaufted, is preciely that part in which the greateft number of the extremities of roots
\$ Plyfique lies \(\ddagger\). This thews us the reafon why the roots of plants are continually increafing in length. By this means they are enabled, in fome meafure, to go in quef of nourifhment. The extremities of the ronts feem to have a peculiar ftructure adapted for the imbibing of moifture. If we cut off the extremity of a rout, it never increafes any more in length: therefore its ufe as a root has been in a great meafure deftroyed. But it fends out fibres from its fides which act the part of roots, and imbibc food by their extremity. Nay, in fome cafes, whert the extremity of a root is cut off, the whole decays, and a new one is formed in its place. This, as Dr Bell informs us, is the cafe
- Mancb. Mem. ii. 120

Since the food of plants mutt be in a fluid tate, and fince no plant will live if it be deprived of moifture, we may conclude that all its food is previoufly diffolved in water. As for the carbon, we know, that in all active manures it is in fuch a llate of combination, that it is water. fohble in water. We know, too, that all the falts which we can fuppofe to make a part of the food of plants, are more or lefs foluble in water. lime alfo is foluble in water, whether it be pure or in the state of a falt; magnefia and alumina may be rendered fo by means of carbonic acid gas ; and Bergman, Macie, and Klaproth, have fhewn, that even filica may be diffolved in water. We can fee, thesefore, in general, though we have no precife notions of the very combinations which are immediately imbibed by plants, that all the fubfiances which form effential parts of that food may be diffolved in water.
15. Since the food of plarits is imbibed by their roots Therefore in a fluid ftate, it muft exilt in plants in a fluid flate; fluid. and unlefs it undergoes alterations in its compofition jult when imbibed, we may expect to find it in the plant unaltered. If there were any method of obtaining this fluid food from plants before it has been altered by thein, we might analyfe it, and obtain by that means a much more accurate knowledge of the food of plants than we can by any other method. This plan indeed muit fail, provided the food undergoes alteration juft when it is abforbed by the roots: but if we confider, that when one fpecies of tree is grafted upon another, each bears its own peeculiar fruit, and produces its own peculiar fubftances, we can fearccly avo:d thinking that the great changes, at leat which the food undergoes after abforption, are producect, not in the roots, but in other parts of the plant.

If this conctufion be jult, the food of plants, after \({ }_{12}{ }^{1} 6\) being imbibed by the roots, mult go direttly to thofe plants. organs where it is to receive new modifications, and to be rendered fit for being affimilated to the different parts of the plant. 'There ought therefore to be certain juices continually afcending from the roots of plants; and thefe juices, if we could get them pure and ummixed with the other juices or Huids which the plant mult contair, and which have been fecreted and formed from thefe primary jnices, would be, very nearly at leaft, the food as it was imbibed by the plant. Now during the vegetation of plants, there actually is a juice continually afcending from their roots. This juice has been called the fap, the fuccus conmumis, the lympls of plants. We fhall adopt the firtt of thefe nanies, becaute it has been molt generally received.

The firit ftep towards an accurate knowledge of the food, and of the changes which take place diming vegetation, is an analy lis of the fap. The fap is mott abundant during the fpring. At that feafon, if a cut be made through the bark and part of the wood of fome trees, the fap flows out very profufely. The trees are then faid to bleed. By this contrivance any quantity of fap we think proper may be collected. It is not probable, indeed, that by this method we obtair the afcending fap in all its purity : it is no doubr mixed with the peculiar juices of the plant; but the lefs progrefs vegetation has made, the purer we may expect to find it; both becaufe the peculiar juices mult be in much smaller quantity, and becaufe its quantity
may be fuppofed to be greater. We fhould therefore examine the fap as carly in the feafon as poffible, and at all events before the leaves have expanded.

For the moft complete fet of experiments hitherto made upon the fap, we are indebted to Mr Vauquelin. An account of his experiments has been publifhed in the 31 it volume of the Annales de Cbinie. He has neglected to inform us of the flate of the tree when the fap which he analyfed was taken from it; fo that we are left in a fate of uncertainty with refpeet to the purity of the fap: but from the comparifon which he has put it in our power to draw between the flate of the fap at different fucceflive periods, we may in fome meafure obviate this uncertainty.

He found that 1039 parts of the fap of the ulmus campeftris, or common clm, were compoied of
\[
1027.567 \text { water and volatile matter, }
\]

9553 acctite of potafs,
1.062 vegetable matter,
0.818 carbonat of lime,

Befides fome flight tiaces of fulphuric and muriatic acids.

On anelyfing the fame fap fomewhat later in the feafon, Mr Vauquelin found the quantity of vegetable matter a little increafed, and that of the carbonat of lime and acetite of potafs diminifhed. Still later in the feafon the vegetable matter was farther increafed, and the other two ingrediente farther diminithed. The acetite of potafs, in 1039 parts of this third fap, amounted to 8.615 parts *.

If thefe experiments warrant any confequence to be drawn from them, they would induce us to fuppofe that the carbonat of lime and acetite of potafs were contained in the pure afcen ding fap, and that part at lealt of the vegetable matter was derived from the peculiar juices altered by the fecreting organs of the plant; for the two falts diminifhed in quantity, and the vegetable matter in. creafed as the vegetation of the tree advanced. Now this is precifely what ought to lave taken place, on the fuppofition that the fap became more and more mixed with the peculiar juices of the tree, as we are fuppofing it to do. If thefe conclufions have any folidity, it follows from them, that carbonat of lime and acetite of potafs are abforbed by plants as a part of their food. Now thefe falts, before they are abforbed, muft be diffolved in water. But the carbonat of lime may be diffolved in water by the help of carbonic acid. This fhews us how water faturated with carbonic acid may be ufeful to plants vegetating in a proper foil, while it is ufelefs to thofe that vegetate in pure water. In the pure water there is no carbonat of lime to be diffolved; and therefore carbonic acid gas cannot enter into a combination which renders it proper for becoming the food of plants. Part of the vegetable matter was precipitated from the fap by alcohol. This part feems to have been gummy. Now gums we know are produced by vegetation.

The fap of the fagus fylvatica, or beech, contained the following ingredients.

> Water,
> Acetite of lime with excefs of acid,
> Acetite of potafs,
> Gallic acid,
> Tan,
> A mucous and extractive matter,
> Acetite of alumina.

Althongh Mr Vauquelin made two different analyfes Veqeraof this fap at different feafons, it is impoffible to draw any fitisfactory conclufions from them, as he has not given us the proportions of the ingredients. It feems clear that the gallic acid and tan were combined toge. ther; for the fap talted like the infufion of oak bark. The quantity of each of thefe ingredients increafed as vegetation advanced; for the colour of the fecond fap collected later was miech deeper than that of the finft. This thews us that thefe ingredients were produced by vegetation, and that they did not form a part of the afcencing fap. Probably they were derive \(\$\) from the bark of the tree. The prefence of alumina, and the abfence of carbonis acid gas, would feem to irdicate that ail plants do not imbibe the very fame food.

The fap of the carpinns fylveftris contains water, acetite of potafs, acetite of lime, fugar, mucilaze, vegetable extrack. It cannot be doubted that the fugar and the mucilage are the produce of vegetation.

The fap of the betula aiba, or cummon birch, contains water, fugar, vegetable extract, acetite of lime, acetite of aiumina, and acetite of potafs.
'Thefe experiments are curicus, and certainly ade' to the precifion of our notions concerning the food of plants; but they are not decifive enough to entitle us to draw conclufious. They would feem to fhew, either that acetite of potafs and lime are a part of the food of plants, or at leaft fome fubftances which have the prum perty of affuming thefe combinations.
16. Thefe experiments lead to the conclufion that whether acetous acid forms a conponent part of the fap. Now the food is it is not eafy to fuppofe that this fubtance is actually altered by abforbed by the roots in the ftate of acetous acid. The thing might be determined by examining the mould in which plants grow. This examination indeed has been performed; but no chemift has ever found acetous acid, at leaft in any fenfible quantity. Is it not probable, then, that the food, after it is imbibed, is Gomewhat: modified and altered by the roots? In what manner this is done we cannot fay, as we know very littleabout the vafcular flructure of the roots. We may conclude, however, that this modification is nearly the. fame in molt plants: for one plant may be engrafted on another, and each continue to produce its own peculiar products ; which could not be, unlefs the properfubftances were conveyed to the digeftive organs of all. There are feveral circumftances, however, which render the modifying power of the roots fomewhat probable. The flrongeft of thefe is the nature of the ingrediente. found in the fap. It is even pollible that the roots. may, by fome means or other, throw out again fome pait of the food which they have imbibed as excrementitious. This has been fufpected by feveral phyfiologitts; and there are feveral circumftances which render it probable. It is well known that fome plants will: not vegetate well after others; and that feare again vegetate unufually well when planted in ground where certain plants had been growing. Thefe facts, without doubt, may be accounted for on other principles. If there be any excrementitious matter emitted by the roots, it is much more probable that this happens in the laft fage of vegetation. That is to fay, when the: food, after digeftion, is applied to the purpofes which the root requires. But the fact ought to be fupported by experiments, otherwife it cannot be admitted.
* V'cg. Stat.

\section*{i. 105 .}
\(12932^{\frac{7}{2}}\) inches hight \(^{*}\).
\(S_{a p}{ }^{2}\) afcends \({ }^{3}\) Now what is the particular channel through which the fap afcends, and what is the caufe of the force with which it moves? 'Thefe are quetlions which have excited a great deal of the attention of thofe philofophers who have made the phyffology of vegetables their particular ftudy ; but the examination of them is attended avith fo many difficulties that they are very far from being decided.

It is certain that the fap flows from the roots towards the fummit of the tree. For if in the bleeding feafon a number of openings be made in the tree, the fap begins firft to flow from the lowett opening, then from the lowelt but one, and fo on fucceffively, till at laft it makes its appearance at the highett of all. And when Duhamel and Bornet made plants vegetate in coloured liquora, the colouring matter, which was depofited in the wood, appeared firft in the loweft part of the tree, and gradually afcen 3ed highter and ligher, till at lat it reached the top of the tree, and tinged the

13 I Not by the pareachy-- Dna; very leaves.

It feems certain, too, that the fap afcends through the wood, and not through the bark of the tree : for a plant continues to grow even when Atript of a great part of its bark; which could not happen if the fap afcended through the bark. When an incifion, deep enough to penetrate the bark, and even part of the wood, is carried quite round a branch, provided the wound be covered up from the external air, the branch continues to yegetate as if nothing had happened; which could not be the cafe if the fap afcenced between the bark and the wood. It is weil known, too, that in the bleeding feafon little or no fap can be got from a tree unlefs our incifion penetrate deeper than the bark. as fome phyfiologits have communication between every part of that organ, it is evident that the tree ought to bleed whenever any part of the parenchyma is wounded But this is mot the cafe. Confequently the fap does not afcend through the parenchyma. Befides, if the fuppofition were trie, the fap, from the very ftructure of the parenchyma, muft afcend in the fame manner as water through a fponge: and in that cale could not porfibly polfe is the force with which we know that it afcends. But if the fap is not found in the parenchyma, as is now well known to be the cafe, it muft, of neceffity, be confined in particular veffels; for if it were not, it would tindoubtedly make its appearance there. Now what are the veffels through which the fap afcencis?

Grew and Malpighi, the firft philofophers who examined the bucture of plants, took it for granted that the woody tibres were tubes, and that the lap afcended throngh them. For this reafon they gave thefe fibres the naine of lymphatic veffels. But they were unable, even when affilted by the beft microfcopes, to detect any thing in thefe fibres which had the appearance of a tube; and fucceeding oblenvers have been equally unfuccefsful. The conjecture therefore of Malpighi and Crew, about the nature and ufe of thefe fibres, remains rotally unfupported by any. proof. Dubamel has even
gone far to overturn it altogether. For he found that Vegeta. thefe woody fibres are divifible into finaller fibres, and thefe again into ftill fmaller; and even, by the affittance of the beft microfonpes, he could find no end of this fubdivifion*. Now granting thefe fibres to be veflels, * Phyfiru it is farcely poffible, after this, to fuppofe that the fap des Arbies really moves through tubes, whofe diametcrs are almoft \({ }^{i}\) infinitely fmall. There are, however, veffels in plants which may eafily be diftinguihed by the help of a fmall microfcope, and even, in many cafes, by the naked cye. Thefe were feen, and difinctly defcribed, by Grew and Malpighi. They confift of a fibre twifted round like a corkfcrew. If we take a fmall cylinder of wood, and wrap round it a flender brafs wire, fo clofely that all the rings of the wire tonch each other, and if, after this, we pull cut the wooden cylinder altogether, the brafs wire thus twitted will give us a very good reprefentation of thefe veffels. If we take hold of the two ends of the brafs wire thus twined, and pull them, we can eafily draw out the wire to a confiderable length. In the fame manner, when we lay hold of the two extremities of thefe veffels, we can draw them out to a great length. Malpighi and Grew finding them always empty, concluded that they were intended for the circu. lation of the air through the plant, and therefore gave them the name of tracbee; which word is ufed to denote the windpipe of animals. Thefe trachee are not found in the bark; but Hedwig has fhewn that they are much more numerous in the wood than was fuppoled; and that they are of very different diameters; and Reichel has demonttrated that they go to the minutelt branches, and foread through every leaf. He has faewn, too, that they contain fap; and Hedwiry has proved that the notion which generally prevailed of their containing nothing but air, arofe from this circumftance, that the larger tracher, which alone were attended to, lofe their fap as foon as they are cut ; and, ef courfe, unlefs they are infpected the infant they are divided, they appear empty \(\dagger\). Is it not probable, then, or rather is it + Furdu not certant; from the difcoveries of that very ingenious ment. H phyfiologit, that the trachex are, in reality, the fap Nat M1 veffels of plants? Indeed it feems eftablifhed by the experiments both of Reichel and Hedwig, that all, or almoft all the veffela of plants may, if we attend only to their it ructure, be denominated trachea.

But by what-powers is the fap made to afcend in Why it thefe veffels? And not only to afcend, but to moveafcends with very confiderable force; a force, as Hales has Thewn, fufficient to overcome the preffure of 43 feet perpendictalar of water \(\ddagger\) ?

Grew aferibed this phenomenon to the levity of the fap; which, according to him, entered the plant in the Hyput ftate of a very light vapour. But this opinion will not bear tl:e Aightett examination. Malpighi fuppofed that the fap was made to afcend by the contraction and and De dilation of the ari contained in the air veffls. But even were we to grant that the tracheæ are air veflels, the fap, according to this by pothefis, could only afcend when a change of temperature takes place; which is contrary to fact. And even if we were to wave every oljection of that kind, the hypothels would not account for the circulation of the fap, eniefs the fap veffels be provided with valves. Now the experiments of Hales and Duhamel fhew that no valves can poffibly exift in them. For branches imbibe moifture nearly
equall y by either end; and confequently the fap moves with e qual facility both upwards and downwards, which it could nut do were there valves in the veffels. Befides, it is known, from many experiments, that we may convert the roots of a tree into the branches, and the branches into the roots, by covering the branches with earth, and exponing the roots to the air. Now this would be impoffible if the fap veffels were provided with valves. The fame rematks overturn the hypothefis of Mr de la Hire, which is merely that of Malpighi, exprefled with greater precifion, and with a greater parade of mechanical knowledge. Like Borelli, he placed the afcending power of the fap in the parenchyina. But his very experiments, had he attended to them with care, would have been fufficient to fhew the in. perfection of his theory.

The greater number of philofophers (for it is needlefs to mention thofe who, like Pcrrault, had recourde to fermentation, nor thofe who introduced the weight of the atmofphere) have afcribed the motion of the fap to capillary attradion.
bodics and liquids; in coníquence of which, if the fe folid bodies be formed into fmall tubes, the liquid enters them, and rifes in them to a certain height. But this is perceptible only when the diameter of the tube is very fmall. Hence the attraction has been denominated capillary. We know that there is fuch an attraction between vegctable fibres and watery liquids. For fuch liquids will afcend through dead vegetable matter. It is highly probable, therefore, that the food of plants enters the roots, in confequence of the capillary attraction which fubfifts between the fap veffels and the liquid imbited. This fpecies of attraction then, will account perfectly well for the entrance of moitture into the mouths of the fap veffels. But will it account alfo, as fome have fuppofed, for the afcent of the lap, and for the great force with which it afcends?

The nature and laws of capillary attraction have been very much overlooked by philofnphers. But we frnow enough concerning it to enable us to decide the prefent queftion. It confifs in a certain attraction between the particles of the liquid and of the tube. It has beeni demo: ftrated, that it does not ex. : end, or at leaft that it produces no fenfible effec, at greater diftances than ชठठס part of an inch. It haz been demonftrated, that the water afeends, not by the capiliary attrastion of the whole tube, but of a flender film of it ; and Clairaut has fhewn that this film is fituated at the lowermof extremity of the tube (c). This film attraces the liquid with a certain force; and if this force be greater than the cohefion between the particles of the liquid, part enters the tube, and conrinues to enter, till the gquantity above the attracting film of the tube juft equals, by its weight, the excels of the capillary attraction between the tube and the liquid, above the cohefion of the liquid. The quantity of water therefore in the tube is pietty nearly the meafure of this excefs; for the attracting film is probably very minute.

It has been demonfratce, that the heights to which liquids rife in capillary tubes, are inverffly as the diameter of the tule. Confequently the fmaller the diameter of the tube, the greater is the height to which the liquid will rife. But the particles of water are not infinitely fmall ; therefore whenever the diameter of the tube is diminifhed beyond a certain lize, water cannot afcend in it, becaufe its particles are now larger than the bore of the tube. Confeguently the rife of water in capillary tubes mult have a limit: if they exceed a certain length, how fmall foever their bore may be, water will cither not rife to the tup of them, or it will not enter them at all. We have no method of afcertaining: the precife height to which water would rife in a capillary tube, whofe bore is juft large enough to admit a ingle particle of water. 'Therefore we do not know. the limit of the heighe to which water may be raifed. by capillary attraction. But whenever the bore is diminifhed beyond a certain fize, the quantity of water which rifes in it is too fmall to be fenlible. We car eafily afcertain the height which water cannot exceed. in capillary tubes betore this happens; and if any perfor calculate, he will find that this height is nut ncarly equal to the lergth of the fap veffels of many plantso But befides all this, we fee in many plants very lons, fap veffels, of a diameter too large for a liquid to rife in them a fingle foot by capillary attraction, and yet the: fap rifes in them to very great heights.
- If any perfon fays that the lap veffels of plants gradually diminith in diameter as they afcend; and that, in confequence of this contrivance, they aft precifely as an indefinite number of capillary tubes, one flanding upon another, the inferior lerving as a refervuir for the fuperior: we anfwer, that the fap may afcend by that means to a confiderable height ; but certainly not. in any greater çuantity than if the whole fap veffel had. been precifely of the Lore of its upper extuemity. For the quantity of fap raifed mu? deperd upon the bore. of the upper extremity, becau\{e it mult all pafs through that extremity. The quantity of fap, too, on that fuppofition, muft dininifh the farther we go from the rout, becaufe the bore of the fap veffels is conftant-. ly diminifhing; the afcending force muit alfo diminif, becaufe it is, in all cafes, proportional to the quantity of water raifed. Now neither of thefe, as Dr Hales has demonllrated, is true.

But farther, if the fan moved on \(\mathrm{y}^{\prime}\) in ...eft of \({ }^{1}: 7\) plants by capillary attaction, it would be fo far from ted. flowing out at the extremty of a branch, with a force fufficient to overcome the preffure of a column of water 43 fret high, that it could not flow:out at all. It. would be impoffible in that cafe for any fuch thing as the bleeding of trees ever to happen.

If we take a capillary tube, of fuch a bore that a liquid will rife in it fix inches, and after the liquid hay rifen to its greateft height, break it f.ort three inches from the bottom, none of the liquid in the under half flows over. The tube, thus fhortened, continues i.hdeed full, but not a fingle particle of liquid ever cicapes. from it. And how is it poffible for it to efcape? The
filin,
(c) The action of ail the other films, of which the tube is compofed, on the water, as far as it is meafired by its effect, is nothing at all. For every particle of water in the tube (except thofe attraeted by the undermo:t film) is attracted upwards and downwards by the fame number of films : it is the:efore precifely in the farse tato. as if it were not attracted at all.

Vegeta- film, at the upper extremity of the tube, muft certainly tion have as ftrong an attraction for the liquid as the film at the lower extremity. As part of the liquid is within its attracting diftance, and as there is no part of the tube above to counterbalance this attraction, it muft of neceffity attract the liquid neareft it, and with a force fufficient to counterbalance the attraction of the urdermolt film, how great foever we may fuppofe it. Of courfe no liquid can be forced up, and confequently none can flow out of the tube. Since then the fap flows out at the upner extremity of the fap veffels of plants, we are abfolutely certain that it does not afcend in them merely by its capillary attraction, but that there is foune other caufe.
It is impoffible therefore to accnunt for the motion of the fap in plants by any mechanical or chemical principles whatever; and he who afcribes it to thefe principles has not formed to himfelf any clear or accurate conception of the fubjear. We know indeed that heat is an agent ; for Dr Walker found that the afcent of the fap is much promoted by heat, and that after it had begun to flow from feveral incilione, culd made it give over flowing from the higher orifices while it continued to flow at the lower*. But this cannot be owing to the dilating power of heat ; for unlefs the fa? veffels of plants were furnifhed with valves (and they have no valves), dilatation would rather retard than promote the afcent of the fap. Confequently the effect of heat can give us no affitance in explaining the afcent of the fap upon mechanical and chemical principles.
We muft therefore afcibe it to fome other caufe : the veffels themfelves mult certainly act. Many philofophers have feen the neceffity of this, and have accordingly afrribed the afcent of the fap to irritability. Tunt the firtt perfon who gave a precife view of the manner in which the veffels probably aft was Sauffure. He fuppofes that the fap enters the open mouths of the veffels, at the extremity of the roots ; that thefe mouths then contract, and by that contraction propel the fap upwards ; that this contraction gradually follows the fap, puhniug it up from the extremity of the root to the furnmit of the plant. In the mean time the mouths are receiving new fao, which in the fame manner is pufhed upwards \(\dagger\). Whether we fuppofe the contracLion to take slace precifely in this manner or not, we can fearcely deny that it muit take place; but by what means it is impolitible to lay. The agents cannot pre- cifely reiemble the mufcles of animats; becaufe the whole tube, however cut or maimed, ttill retains its contracting power, and becaufe the contraction is performed with equal readineis in every direstion. It is evident, however, that they mult be the fame in kind. Perhaps the particular itruture of the veffels may fit then for their office. Does ring after ring contract its diameter? The contracting agents, whatever they are, feem to be excited to act by fome ftimulus communicated to them by the fap. This capacity of being excited to action is known in phyfiology by the name of irrituljilitv; and there are not wanting proofs that plants are poifeffed of it. It is well known that different parts of plants move when certain fubftances act upon them. Thus the flowers of many plants open at firnrife, and clofe again at night. Linnæus has given us a lit of thefe plants. Des Fontaines has fhewn that the zamina and anthere of many plauts exhibit dittinct mo-
tions \(\ddagger\). Dr Smith has obferved, that the flamina of Vegeta. the barberies are thrown into motions when touched \(\delta\). Roth has afcertained that the leaves of the drofera longifolia and rotundifolia have the fame property. Mr Coulon, too, who has adopted the opinion that the Sp.i. 188 motion of the fap in plants is produced by the contrac- Trans. tion of veffels, has even made a number of experinents in order to thew this contraction. But the fact is, that every one has it in his power to make a decifive experiment. Simply cutting a plant, the euphorbia peplis For inftance, in two places, fo as to feparate a portion of the ftem from the reft, is a complete demonftration that the veffiels actually do contrae. For whoever makes the experiment, will fnd that the milky juice of that plant flows out at both ends fo completely, that if afterwards we cut the portion of the ttem in the middle, no juice whatever appears. Now it is impuffible that thefe phenomena could take place without a contraction of the veffels; for the vefiels in that part of the ftem which has been detached cannot have been more than full ; and their diameter is fo fmall, that if it were to continue maltered, the capillary attraction would be more than fufficient to retain their contents, and confequently not a drop could flow out. Since, therefore, the whole liquid efcapes, it mult be driven out forcibly, and confequently the vefels muft contract.

It feems prefty plain, too, that the veffels are excited In 139 to contract by various Atimuli; the experiments of quence of Coulon and Sauflure render this probable, and an ob- ीimuli. fervation of Dr Smith Barton makes it pretty certain. He found that plants growing in water vegetated with much greater vigour, provided a little camphor was thrown into the water *.
18. Befides the fap which afeends upwards towards China the leaves, they contain alfo another fluid, known by xxuii \(6_{3}\) the name of fucus proprius, or peculiar juice. This \({ }^{\text {I }} 40\) juice differs very confiderably in different plants. I \(\mathrm{I}_{\mathrm{j} u}\) ice fort feenis to be the fap altered by fome procefs or other, ed from 1 and fitted for the various purpofes of vegetation. That fap; it flows from the leaves of the plant cowards the routs, appears from this circumitance, that when we make an incifion into a plant, into whatever pofition we put it, much more of the fuccus proprius flows from that fide of the wound which is next the leaves and branches, than from the other fide: and this happens even though the leaves and branches be held undernolt \(\dagger\). Wher a ligature is tied about a plant, a fiwelling appears above, but not below the ligature.
'i'he veffels containing the peculiar juice are found in all the parts of the plant. Hedwig, who has examined the veffels of plants with very great care, feems to conlider them as of the fame ftructure with the trachex. 'The peculiar juice is eafily known by its colour and its confiftence. In fome plants it is green, in fonie red, in many milky. It cannot be doubted that its motion in the veffels is performed in the fame way as that of the fap.
19. It appears, then, that the fap afcends to the \({ }^{\text {In }}\) the leaves, that there it undergoes certain alterations, and leaves. blood in animals, are afterwards employed in forming the various fubftances found in plants. Now the changes which the fap undergoes in the leaves, provided we can trace them, muft throw a great deal of light upon the nature of vegetation.

No fooner has the fap arrived at the leaves, than a great part of it is thrown off by evaporation. The quantity thus perfpired bears a very great proportion to the moiture imbibed. Mr Woodward found that a fprig of mint in 77 days imbibed 2558 grains of water, and yet its weight was only increafed 15 grains *; therefore it mult have given out 2543 g grains. Another branch, which weighed 127 grains, increafed in weight 128 , and it had imbibed 14190 grains. Another fprig, weighing 76 grains, growing in water mixed with earth, increafed in weight 168 grains, and had im. bibed 107.31 grains of water. Thefe experiments demonftrate the great quantity of matter which is conftantly leaving the plant. Dr Hales found that a cabbage tranfmitted daily a quantity of moifure equal to about half its weight; and that a fun flower, three feet high, tranfmitted in a day 1 lb .14 oz . avoirdupois \(\dagger\). He fhewed, that the quantity of tranfpiration in the fame plant was proportional to the furface of the leaves, and that when the leaves were taken off, the tranfipiation nearly ceafed \(\ddagger\). By thefe obfervations, he demonftrated that the leaves are the organs of tranfpira. tion. He found, too, that the tranfpiration was ncarly confined to the day, very little taking place during the night \(\$\); that it was much promoted by heat, and flopped by rain and frof \(\|\). And Millar r, Guettard *, and Senebier, have fhewn that the tranfiration is alfo very much promoted by fun.hinc.
The quantity of moifture imbibed by plants depends very much upon what they tranfpire: the reafon is evident: when the veffels are once filled with fap, if none be carried off, no more can enter; and, of courfe, the quantity which enters mult depend upon the quantity emitted.

In order to difcover the nature of the tranfpired matter, Hales placed plants in large glafs veffels, and by that means collected a quantity of it + . He found that it refembled pure water in every particular, excepting only that it fometimes had the odour of the plant. He remarked, too, as Guettard and \(\mathrm{D}_{\| 1}\) Hamel did after him, that when kept for fome time it putrefied, or at leaft acquired a ftinking fmell. Serebier fubjected a quantity of this liquid to a chemical analyfis.
He collected 130,30 grains of it from a vine during the months of May and June. After filtration he gradually evaporated the whole to drynels. There remained behind two grairs of refiduum. Thefe two grains confifted of nearly \(\frac{1}{4}\) grain of carbonat of lime, \(\frac{s}{\frac{1}{2}}\) grain of fulphat of lime, \(\frac{s}{2}\) grain of matter foluble in water, and having the appearance of gum, and \(\frac{1}{\frac{1}{2}}\) grairt of matter which was foluble in alcohol, and apparently refinous. He analyzed 60768 grains of the fame liquid, collected from the vine during the months of July and Auguff. On evaporation he obtained \(2 \frac{3}{8}\) grains of refiduum, compofed of \(\frac{3}{4}\) grain of carbonat of lime, \(\frac{3}{5}\) grain of fulphat of lime, \(\frac{1}{2}\) grain of mucilage, and \(\frac{\frac{1}{2}}{2}\) grain of refin. The liquid tranfpired by the afer nove Anglia afforded precifely the fame ingredients \(\ddagger\).

Senebier attempted to afcertain the proportion which the liquid tranfpired bore to the quantity of moifture imbibed by the plant. But it is eafy to fee that fuch experiments are liable to too great uncertainties to be depended on. His method was az follows: He plunged the thick end of the branch on which he made the
experiment into a bottle of water, while the other end, containing all its leaves, was thruft into a very large glafs globe. The apparatus was then expofed to the funfhine. The quantity imbibed was known exactly by the water which difappeared from the bottle, and the quantity tranfpired was judged of by the liquid which condenfed and trickled down the fides of the glafs globe. The following table exhibits the refult of his experiments :
\begin{tabular}{|c|c|c|c|}
\hline Plants. & Imbibed. & Perjpired. & Time. \\
\hline Peach & 100 gr . & 35 gr . & \\
\hline Ditto & 210 & 90 & \\
\hline Ditto & 220 & 120 & \\
\hline Mint & - 200. & 90 & 2 da \\
\hline Ditto & 575 & 120 & 10 \\
\hline Rafp & 725 & 560 & 2 \\
\hline 1 Dito & 1232 & 765 & 2 \\
\hline Peach & 710 & 295 & \\
\hline Apricot & - 210 & 180 & I \\
\hline
\end{tabular}

In fome of his experiments no liquid at all was condenfed. Hence it is evident that the quantity of matter tranfpired cannot be deduced from thefe experiments. The mouth of the glafs giobe does not feem to have been accurately clofed; the air within it communicated with the external air: confequently the q"antity condenfed muft have depended entirely upon the flate of the external air, the heat, \&cc.

The firit great change, then, which takes place upon the fap after it arrives at the leaves, is the cvaporation of a great part of it; confequently what remains muft be very different in its proportions from the fap. The leaves feem to have particular organs adapted for throwing off part of the lap by tranfpiration. For the experiments of Guertard *, Duhainel \(\dagger\), and Bonnet \(\ddagger\), \({ }_{P}{ }^{\text {Menth}}\).
 of leaves, and may be nearly flopped altogether by varnifhing the upper furface.
+ Pby figue
des \(A\) frbues,
fit fere gradually lefs and lefs fit for this tranfpiration; for Senebier found, that when all other things are equal, the tranfpiration is much greater in May than in September *. Hence the reafon that the leaves are renewed annually. Their Why the organs become gradually unfit for performing their off. functions, and therefore it is neceflary to renew them Thofe trees which retain their leaves during the wint * Enc. Meo were found by Hales and fucceeding phytiologits to to 285 . Vegeto tranfpire lefs than others. It is now well known that thefe trees alfo renew their leaves.
20. Leaves have alfo the property of abforbing carboric acid gas from the atmorphere.

146
We are indebted for this very fingular difcovery to Leaves ab. the experiments of Dr Priefley, though he himfelf forb cardid not difoner the truth, and though he even refufed banic acid to acknowledge it when it was pointed out by others. It \({ }^{\text {gas }}\) has been long known, that when a candle has been allowed to burn out in any quantity of air, no candle can afterwards be made to burn in it. In the year 1771 Dr Priefley made a fprig of mint vegetate for ten days in contact with a quantity of fuch air; after which he found that a candle would burn in it perfeetly well T . F . On Airs This experiment he repeated frequently, and found that iii. 2 \(£ 1\). it was always attended with the fame refult. According to the opinion at that time univerfally received, that

Vegeta \(\underbrace{\text { tiol. }}\)
* On Air,
i. 100 .

4 ii. \(\frac{3}{3} 4\) r.
\(\ddagger\) Ann. de
Cbinn xxiv
145. 148 .

147
Decompofe
it a) de-
II. On Air,
ini 284.
the burning of candles rendered air impure by communicating phlogifton to it , he concluded from it, that plants, while they vegetate, abforb phlogiton.
Carbonic acid gas was at that time fuppofed to contain phlogifton. It was metural, therefore, to fuppofe that it would afford nouriflment to plants, fince they had the property of abforbing phlogitton from the atmofphere. Dr Percival had publifhed a fet of experiments ; by which he endeavoured to fhew that this was actually the cafe.

Thefe experiments induced Dr Priefley, in 1776, to confider the fubject with more attention. But as, in all the experiments which he made, the plants confined in carbonic acid gas very foon died, he concluded, that carbonic acid gas was not a food, but a poifon to plants *. Mr Henry of Manchefter was led, in 1784, probably by the contrariety of thefe refults, to examine the fubjec. His experiments, which were publihed in the Manchefter Tranfactionst, perfectly coincided with thofe of Dr Percival. For he found, that carbonic acid gas, fo far from killing plants, conttantly promoted their growth and vigour. Meanwhile Mr Senebier was occupied at Geneva with the fame fubject; and he publifhed the refult of his refearches in his Memoires Pbyfico-chymiquc about the year 1780. His experiments thewed, in the cleareft manner, that carbonic acid gas is ufed by plants as food. The fame thing was fupported by Ingenhoufz in his fecond volume. The experiments of Sauflure the Son, publifhed in 3797, have at latt put the fubject beyond the reach of difpute. From a careful comparifon of the experiments of thefe philofophers, it will not be dificult for us to difcover the various phenomena, and to reconcile all the feeming contradictions which occur in them. The facts are as follows :

Mr Saufure has fhewn, that plants will not vegetate when totally deprived of carbonic acid gas. They ve. getate indeed well enough in air which has been pre. vioufly deprived of carbonic acid gas; but when a quantity of lime was put into the glafs veffel which contained them, they no longer contimed to grow, and the leaves in a few days fell off \(\ddagger\). The air, when examined, was found to contain no carbonic acid gas. The reafon of this phenomenon is, that plants (as we fhall fee afterwards) have the power of forming and giving out carbonic acid in certain circumflances; and this quantity is fufficient to continue their vegetation for a certain time. But if this new formed gas be alfo withdrawn, by quicklime, for inftance, which abforbs it the inflant it appears, the leaves droop, and refufe to perform their functions. Carbonic acid gas, then, applied to the leaves of plants, is effential to vegetation.
Dr Priettley, to whom we are indebted for many of the moft important fachs relative to vegetation, obferved, in the year 1778, that plants, in certain circum. fatices, emitted oxygen gas \(\|\); and Ingenhoufz very foon after difoovered that this gas is emitted by the leaves of plants, and only when they are expofed to the bright light of day. His method was to plunge the leaves of different plants into veffels foll of water, and then expofe them to the \(\mathrm{f}: \mathrm{n}\), as Bonnet, who had obferved the fame phenomenon, though he had given a wrong explanation of it, had done before him. Bubbles of oxygen gas very foon detached themfelves from the leaves, and were collected in an inverted glafs vef-
fel *. He obferved, too, that it was not a matter of Veectaindifference what kind of water was ufed. If the water, for inftance, had been previoully boiled, little or no oxygen gas efcaped from the leaves; river water af forded but little gas; but pump water was the moft productive of all \(t\).
Senebier proved, that if the water be previoully deprived of all its air by boiling, the leaves do not emit a particle of air; that thofe kinds of water which yield mont air, contain in them the greatelt quantity of carbonic acid gas ; that leaves do not yield any oxygen when plunged in water totally deflitute of carbonic acid gas ; that they emit it abundantly when the water, rendered unproductive by boiling, is impregnated with carbonic acid gas ; that the quancity of oxygen emitted, and even its purity, is proportional to the quantity of carbonic acid gas which the water contains ; that water impregnated with carbonic acid gas gradually lofes the property of affording oxygen gas with leaves; and that whenever this happens, all the carbonic acid gas has difappeared; and on adding more carbonic acid gas the property is renewed \(\ddagger\). Thefe experiments prove, in a \(\ddagger\) Enc. Mr mof fatisfactory manner, that the oxygen gas which thod. Phy. the leaves of plants emit depends nipon the prefence of Vegef. \(18 t\) carbonic acid gas ; that the leaves abforb carbonic acid gas, decompole it, give out the oxygen, and retain the carbon.

We now fee why plants will not vegetate without But during carbonic acid gas. They abforb it and decompofe it t the day on but this piocefs goes on only when the plants are expofed to the light of day. Therefore we may conclude, that the abforption and decompofition of carbonc acid gas is comfined to the day, and that light is an effential a ent in the decompofition. Probably it is by its agency, or by its entering into combination with the oxygen, that this fubflance is enabled to affume the gafeous form, and to feparate from the carbon.

If we reafon from analogy, we fhall conclude, that during this procefs a quantity of caloric is nectflary ; and that therefore no increafe of temperature takes place, but rather the contrary. This may be one reafon why the operation takes place only during the day.

It is extremely probable that plants by this procefs to this \(w\) acquire the greateft part of the carbonacecus matter plants ma which they cortain; for if we compare the quantity of arquire carbon contained in plants vegetating in the dark, bon. where this procefs cannot go on, with the quantity which thofe plants contain which vegetate in the ufual manner, we fhall perceive a very conipicuous difference. Chaptal found that a byflus, which was vegetating in the dark, contained only \(\frac{1}{85}\) of its weight of carbonaceous matter; but the fame plant, after being made to vegetate in the light for 30 days, contained \(\frac{3}{2}_{5}\) th of its weight of carbonaceous matter *. Haffienfratz afcer- * Mem. tained, that plants growing in the dark contain much Par. \(17^{8}\) more water, and much lefs carbon and hydrogen, than plants growing in the light. Senebier analy fed both with the fame refult. Plants growing in the dark yielded lefs hydrogen gas and oil: their refinous matter was to that of plants growing in the light as 2 to 5,5 . and their moifure as 13 to 6 ; they contain even one-half lefs of fixed matters.

It is evident, however, that this abforption and decompofition of carbonic acid gas does not depend upor
the light aione. The nature of the fap has alfo its infuence; for Haflenfratz found, that the quantity of carbon did not increale when plants vegetated in pure water. Here the fap feems to have wanted that part which combines with and retains the carbon; and which therefore is by far the moft important part of the frod of plants. Upon the difcovery and mode of applying this fubftance, whatever it is, the improvements in agriculture muft in a great meafure depend.

If we confider the difference in the proportion of carbonaceous matter in plants vegetating in the dark and in the ufual mauner, we can fearcely avoid concluding that the cuantity of carbonic acid gas abforbed by plants is conliderable. To form an eltimate of it, would require a fet of experiments performed in a very different mauner from any liitherto made. The fterr.s and branches of plants vegetating in a rich foil fhould be - confined within a large glafs globe, the infide of which ought to have no communication with the external air. A very fimall fream of carbonic acid gas fhould he made occationally to flow into this globe, fo as to fupply the quantity that inay appear neceffary ; and there thould be a contrivance to carry off and examine the air within the globe when it increafes beyond a certain quantity. Experiments conducted in this manner would probably throw a great deal of light upon this part of vegetation, and enable us to calculate the quantity of carbonic acid decompofed, and the quantity of oxygen emitted by plants; to compare thefe with the wafte of oxygen by the refpiration of anumals and combulion, and to fee whether or not they balance each other.

Senebier has afcertained, that the decompolition of the carbonic acid takes place in the parenchyma. He found, that the epidermis of a leaf would, when feparated, give out no air, neither would the nerves in the fame circumftances ; but upon trying the parenchyma, thus feparated fom its epidermis and part of its nerves, Enc. Me it continued to give out oxygen as before \(\dagger\). He remarked alfo, that every thing clfe being equal, the quantity of oxygen emitted, and confequently of carbonic acid decompofed, is proportional to the thicknefs of the leaf; and this thicknefs depends upon the quantity of parenchyma.

That the decompofition is performed by peculiar organs, is evident from an experiment of Ingenhoufz. Leaves cut into fmall pieces continued to give out oxygen as before; but leaves pounded in a mortar loft the property entirely. In the firft fate, the peculiar ftructure remained ; in the other, it was deftroyed. Certain experiments of Count Rumford, indeed, are totally incompatible with this conclufion; and they will naturelly occur to the reader as an unfurmountable objection. He found, that dried leaves, black poplar, fibres of raw filk, and even glafs, when plurged into water, gave out oxygen gas by the light of the fur. But when Senebier repeated thefe experiments, not one of them would lucceed \(\ddagger\); and we have attempted them with the fame bad fuccefs. 'The Count mult have been mined by fumething which he has not mentioned.

Thus we have feen, that when the fap arrives at the leaves, great part is thrown off by evaporation, and that the nature of the remainder is confiderably altered by the addition of a quantity of caibon: but thefe are
by no means all the alterations produced 1 pon the fap Vegees. i: the leaves.

2r. Plants will not vegetate unlefs atmofpheric air or 2 r . Plants wili not vegetate unlefs atmolpheric air or 151
oxygen gats have acceff to their leaves. This, was ren Leaves ab. dered probable by thefe philofophers who, athout the f, bosy. end of the 17 th \(^{\text {century, }}\) turned their attention parti. gen, cularly towards the phytical properties of the air: But Mr Ingenhoulz was peiliaps the firit of the modern chemifts who put it beyond doubt. He found that carbonic acid gas, azot, and hydrogen gas, deftroyed plants altogether, unlefs they were mixed with atmofpheric air or oxygen gas. He found alfo, that plants grew very well in oxygen gas and in atmofpheric air *. Thefe experiments are fufficient to flew, that oxygen gas is neceffary to vegetation. The leaves of plants feem to abforb it ; and moft probably this abforption takes place only in the night. We know, at leaft, that in germination light is injurious to the abforption of oxygen gas; and therefore it is probable that this is the cafe alfo in vegetation.
22. The leaves of plants not only abforb carbonic A:15 waser, acid gras and oxygen gas, but water aifo. This had been fufpected in all ages: the great effect which dew, fight fhowers, and even wetting the leaves of plants, have in recruiting their ftrength, and making them vegetate with vigour, are fo many proofs that the leaves imbibe moiture from the atmofphere. Hales rendered this ftill more probable, by oblerving, that plants increafe confiderably in weight when the atmofphere is moilt ; and Mr Bonnct put the matter beyond doubt in hiis Refearches concerning the Uje of the Lentres. He fhewed, that leaves continue to live for weeks when one of their furfaces is applied to water ; and that they not orily vegetate thenfelves, but even imbibe enough of water to fupport the vegetation of a whole bianch, and the leaves bclonging to it. He difcovered alfo, that the two furfaces of leaves differ very confiderably in their power of imbibing moilture ; that in trees and fhrubs, the under furface poffeffes almort the whole of the property, while the contrary holds in many of the other plants; the kidney bean for initance.

Thefe facts prove, not only that the leaves of plants have the power of abforbing moillure, but alfo that the ablorption is performed by very different organs from thofe which emit moilture ; for thcfe organs lie on different fides of the leaf. If we conlider that it is oaly during the night that the leaves of plants are moittened with dew, we can fcarcely avoid concluding, that, except in particular cafes, it is during the night that plants imbibe almoft all the moiture which they do imbibe.
23. During the night the leaves of plants emit carbonic acid gzs. This fact was firt demortltrated by Mr Ingenhoufz \(\dagger\), and it has been fince confirmed by every philofopher who has attended to the fubject.

Thus we have feen that the leaves of plants perform very different operations at different times. During the day they are giving out moifure, abforbing carbonic acid gas, and emitting oxygen gas ; curing the night, on the contrary, they are abforbing moifture, giving out carbonic acid gas, and abforbing oxygen gas.

The emiffion of the carbonic acid gas feems to be the confequence of the decompofition of water; either of the water which is already contained in the fap, or

Vegeta- of that which the leaves imbibe during the night; but tion. which of the two, it is impofible to determine, nor is it of much confequence. We may conclude that this is the cafe, becanfe it takes place during the germination of the feed, where all the circumitances feem to be perfectly analogous. The water is decompofed, it oxygen is combined with part of the carbon which had been atforbed during the cay, and the hydrogen enters into new combinations in the fap. It appeare, alfo, that this decompofition of water depends in a good meafure upon the quantity of oxygen gas abforbed; for Dr Ingenhoufz found, that when plants are confined in oxygen gas, they emit more carbonic acid gas than \(\dagger 1\) rgenborfz when they are confined in common air \(\dagger\).
ii.

To defcribe in what manner thefe decompofitions

154
Sap con.
verted by
thefe pro-
ceffes into the peculiar juice. take place, is impoffible: becaufe we neeither know precifely the fubltances into which the fap has been converted by the operations performed daring the day, nor the new fubflances formed by the onerations of the night. We only fee the elementary lubftances which are added and fubtracted; which is far from being fufficient to give us precife notions concerning the chemical clanges and the affinities by which thefe changes are produced. We have reafon, however, to conclude, that during the day the carbon of the fap is increafed, and that during the night the hydrogen and oxygen are increafed; but the precife new fubftances formed are unknown to us. Nor let any one fuppofe that the increafe of the hy drogen, and of the oxygen of the fap, is the fame thing as the addition of a quantity of water. Far from it. The fubtances into which the fap is converted have been enumerated in the laft chapter; almott all of them corifin chiesy of carbon, hydrogen, and oxygen, and yet none of them has the fmalleft refemblance to water. In water, oxygen and hydrogen are already combined together in a certain proportion ; and this combination muft be broken before thefe elementary bodies can enter into thofe triple compounds with carbon, of which a great part of the vegetable products confift. We have not the fmalleft conception of the manner in which thefe triple combinations are formed, and as little of the manner in which the bodies which compofe vegetable fubftances are combined together. The combination may, for any thing we know to the contrary, be very complicated, though it confifs only of three ingredients; and analogy leads ns to fup. pofe, that it actually is very complicated: for in chemi. ftry it may be confidered as a truth, to which at prefent few or no exceptions are known, that bodies are deconpofed with a facility inverfely as the fimplicity of their compofition; that is to \(f_{\mathrm{a}}^{\mathrm{y}}\), that thofe bodies which confift of the feweft ingredients are moft difficulty decompofed, and that thofe which are formed of many ingredients are decompofed with the greatelt facility.

Neither let any one fuppofe, that the abforption of carbonic acid gas, during the day, is balanced by the quantity emitted during the night, and that therefore there is no increale of carbon? for Ingenhoufz has fhewn, that the quautity of oxygen gas emitted during the day is much greater than the carboric acid gas emitted during the night; and that in favourable circumflances, the quantity of oxygen gas in the air furrounding plants is very much increafed, and the carbonic acid gas dininiihed ; fo much fo, that both Dr Prieftley and Dr Ingenhoufz found, that air which had been
fpoiled by a lighted cancle, or by animais, was rencered as good as ever by plants. Now we know, that combuntion and relpiration diminifh the oxygen gas, and add carbonic acid gas to air ; therefore vegetation, which reftores the purity of air altered by thefe proceffes, muft increafe the oxygen, and diminith the carbonic acid gas of that air ; confequently the quantity of carbonic acid gas abforted by plants during the day is greater than the quantity emitted by them anring the night, and of courfe the carbon of the fap is increafed in the leaves.

It is true, that when plants are macie to vegetate for a number of days in a given quantity of air, its ingredients are not found to be altered. Thus Hafentratz afcertained, that the air in which young chefnuts vegetated for a number of clays together, was not altered in its properties, whether the chefnuts were vegetating in water or in earth *. And Saufure the Younger pioved, that peafe growing for ten days in water did not Clim. aini. alter the furrounding air \(\dagger\). But this is precifely what 325 ought to te the cafe, and what inuft take place, pro + titid sxii vided the conclufions which we have drawn be juit. \({ }^{139 \text {. }}\) For if plants only emit oxygen gas, by abforbing and decompofing carbonic acid gas, it is evident, that mulefs carbonic acid gas be prefent, they can emit no oxyget gas ; and whenever they have decompofed all the carbonic acid gas contained in a given quantity of air, we have no longer any reafon to lonk for their emitting any more oxygen gas; and if the quantity of carbonic acid gas emitted during the vight be fmaller than that abforbed during the day, it is evident, that duing the day the plant will conitantly decompofe all the acid which had been formed during the night. By thefe procef?es, the mutual changes of day and night comperfate each other; and they are prevented from more than compentating each other by the forced flate of the plant. It is probable, that when only part of a plant is made to vegetate in this forced fate, fome carbonated fap (if we may be allowed the exyreflion) is fupplied by the reft of the plant; and that thercfore the quantity of carbonic acid gas einitted during the night may bear a nearer proportion to that emitted in a date of nature, than that of the abforption of fixed air can poffibly do. And probably, even when the whole plant is thus confined, the mightly procifs groes on for a certain time at the expence of the carbon already in the fap; for Hafinfratz found, that in thefe cafes the quantity of carbou in the plant, after it had vegetated for fome time in the dark, was lefs than it had been when it began to vegectate *. This is the rea-* Ann ee fon that plants growing in the dark, when confined, Clim. xim abforb all the oxygen gaf, and emit an equal quantity of casbonic acid gas : and whenever this has happened, they die; becaule then neither the daily nor nightly proceffes can go on.
24. Certain changes are alfo produced on the fap in the leaves by the action of light; and thefe changes feem to be in tome meafure independent, or at leaft different from the abforption and decompofition of carbonic acid gas, in which light, as we have feen, acts an important part.

155
The green colour of plants is owing entirely to their Green co vegetating in the light; for when they vegetate in the lour of dark they are white; and when expoied to the light, panced pr they acquire a green colour in a very thort time, in light. what-
whatfoever fituation they are placed, even though plunged in water, provided always that oxygen be prefent; for Mr Gough has fhewn, that light without oxygen has not the power of producing the green colour *. In what manner this change is operated, cannot, in the prefent limited ftate of our knowlecge, be afcertained. We know too little about the properties of light to be able even to conjecture with any plaufibility. We know indeed, that part of the light is abforbed by green plants; but this will not account for the phenomenon. When dilated, it amounts to no more than this, that plants which lave growis in the dark reflect all the rays of light ; while thofe which vegetate in the light reHect the green and abforb the others. The very mention of this phenomenon is enough to fhevy us, that we have not advanced far enough to be able to explain it.

Eticlated ( E ) plants want fomething, or poffefs fomething peculiar; and it is on this formething that the phenomenon depends. But what is this fonmething? The fudden appearance of the green colour is rather againtt the fuppofition, that it is owing to any feecific change in the qualities of the fap.

Senebier has obferved, that when plants are made to vegetate in the dark, their etiolation is much diminimed by mixing a little hydrogen gas with the air that furrounds them *. Ingenhoufz had already remarked, that when a little hydrogen gas is added to the air in which plants vegetate, even in the light, it renders their verdure deeper \(\dagger\) : and he feems to think alio, that he has proved by experiments, that plants abforb hydrogen gas in thefe circuinflances \(\ddagger\). Mr Humbolt has obferved, that the poa ennua and compreffa, plantago lanceolata, trifolium arvenfe, cheiranthus cheiri, lichen verticillatus, and feveral other plants which grow in the galleries of mines, retain their green colour even in the dark, and that in thefe cafes the zir around them contains a quantity of hydrogen gas. Thefe facts are fufficient to hew that there is fome connection between the green colour of plants and the action of hydrogen gas on them; but what that connection is, it is impoffible at prefent to fay.
25. By thefe different changes which go on in the leaves, the nature of the fap is altogether changed. It is now converted into what is called the peculiar juice, and is fit for being affimilated to the different parts of the plant, and for being emploved in the formation of thote fecretions which are neceflary for the purpofes of the vegetable economy.

The leaves, therefore, may be confidered as the digefling organs of plauts, and as equivalent in fome meafure to the ftomach and lungs of animale. The leaves confequently are not mere ornaments; they are the moft
important parts of the plart. Accordingly we find, that whe:ever we ftrip a plant of its leaves, we ftip ic entirely of its vegetating puwers tiil new leaves are formed. It is well knowill, that when the leaves of plants are deftroyed by infeeds, they getate no ionger, and that their fruit never makes any farther progrefs in ripening, but decays and drics up. Even in germination no progrefs is made in the growth of the item till the feed leaves appear. As much food inileed is laid up in the cotglecons as adrances the plant 10 a certain flate, the root is prepared, and made icady to perform its fanctions; but the lap which it imbibes malt be firit carriced to the feed leaves, and digetted there, before it be proper for forming the plumula into a them. Accordingly if the feed leaves are cut off, the fla:t refufes to vegetate.
It will be very natmel to afk, If this be true, how How they come the leaves themfelves to be produced? Fiven i: no are prodeo anfwer could be given to this queflion, it conld not over. " turn a fingle fact which has iseen formerly nentioned, nor affect a finge conclufion as fas as it has been fairly deduced from theie facts. We know that the leaves exit long betore they apptar; they lave been traced even five years back. 'jhey are completely formed in the bud, and fairly rolled up for crolution, many monthis before that fpring in which they expard. We know, too, that if we take a bund, and plant it properly, is vegetates, forms to itfelf a root, and becorecs a complete plane. It will not be faida furely, that in thi: care the bad imbibes nourimment from the earth; for it has to form a root before it can ubtain nourifhment in that manner; and this root cannot be formed without nourifhment. Is not this a demonffration that the bind contains, already laid up in itfelf, a fufficient quantity of nourimment, not ouly to develope its own organs, but alfo to form new ones. This we confider as a luftit. cient anfwer to the objection. Diring the fummer, the plant lays up a fufficiert quantity of nowrifhment in eacha bid, and this nourifhment is afterwards employed in developing the leaves. 'this is the reafon that the leaves make their appearance, and that they grow during the winter, when the plant is deprived of its organs of digeftion.
Hence we fee why the branch of a vine, if it be introduced into a hothoufe chring the winter, puts forth leaves and vegetates with vigour, while Every other pait of the plant gives no figns of life. Hence alfo the rafon that the inoculation of plants fucceeds ( E ).

If a tree be deprived of its leaves, new leaves make their appearance, becaufe they are alleady prepared for that purpofe: but what would be the corlequerice if a tree were deprived of its leaves and of all its buds for five
(E) Piants of a white colour, from vegetating in the dark, are calied ctiolated, from a lyench word which fignifies a far, as if they grew by far lights.
(F) Hence alfo the caule of another well known phenomenon. The fap fows out of trees very readily in fpring before the leaves appear, but after that the bleceding ceafes altogether. It is evident that there can be fcarcely any circulation of fap before the leaves appear; for as there is no outlet, when the veffels are once full, they can admit no more. It appears, however, from the bleeding, that the roots are capable of imbibing, and the veffiels of circulating, the fap with vigour. Accordingly, whenever there is an outlet, they perform their functions as ufual, and the tree bleeds; that is, they fend up a quantity of fap to be digefted as ufual : but as there are no digefting organs, it flows out, and the tree receives no injury, becaufe the fap that flows out would ot have been imbibed at all, had it not been for the artificial opening. But when the digeftive organs appear, the tree will oot bleed; becaufe thefe organs require all the fap, and it is conflantly flowing to them.

Verret3. tion.

158
- Nature of
the fect.
Lar juices.
five years back? That plants do not vegetate without leaves, is evident from an experiment of Duhaniel. ITe ftript the bark off a tree in ringitets, fo as to leave five or fix rings of it at fome diftance from each other, with no bark in the intervals. Some of thefe rings had buds and leaves ; thefe increafed confiderably in fize ; but one ring which had none of thefe remained for years unaltered.
26. 'The peculiar juice thits formed in the leaves is carried by veffels intended for that ufe to all the parts of the p!ant, in order to be employed for the purpofes of vegetation;-to increafe the wood, the bark, the roots; to prepare the feeds, iay up nourifment for the buds, and to repair the decayed parts of the fy?em, or form new ones.

If we had any method of obtaining this peculiar juice in a fate of purity, the analy fis of it would throw a great deal of light upon vegetation; but this is fcarce pofible, as we carnot extract it without dividing at the fame time the vefels which contain the fap. In many cafes, however, the peculiar juice may be known by its colour; and then its analylis may be performed with an arproach towards accuracy. The experiments made on fuch juices have proved, as might have been expecied, that they differ very confiderably from each other, and that every plant has a juice peculiar to itfelf. Hence it follows, that the proceffes which go on in the leaves of plants muit differ at leall in degree, and that we have no right to'transfer the conclufions deduced from experiments on one fpecies of plants to thole of another fpecies. It is even probable, that the proceffes in diffefent plants are not the fame in kind ; for it is not reafonable to fuppofe, that the phenomena of vegetation in 211 agaric or a boletus are precifely the fame as thole which take place in trees and in larger vegetables, on which alone experiments have litherto bern made.
To attempt any general account of the ingredients of the peculiar juice of plants, is at prefent impoffible. We may conclude, however, from the experiments of Chaptal, that it contains the vecgetalle fire of wood, either ready formed, or very nearly fo; jut as the blood in animals contains a fubflance which bears a floong refemblance to the mufcular fibres.
When oxy-muriatic acid was poured into the peculiar juice of the euphorbia, which in all the fpecies of that fingular genus is of a milky colour and confittency, a very copinus white precipitate fell down. 'This powder, when wafhed and Cried, had the appearance of fine farch, and was not altered by keeping. It was neither affected by water nor alkalies. Alcohol, affifted by heat, diffolved two thirds of it ; which were again precipitated by water, and had all the properties of refn. The remaining third part poffeffed the propertics of the avoody flure. Mr Chaptal tried the lame experiment on the juices of a great number of other plants, and he confantly found that oxy-muriatic acid precipitated from them zwoody fibre. The feeds of plants exhibited exactly the fame phenomenon; and a greater qquantity of woody fibre was obtained from them than from all equal portion of the juices of plants *. Thede experi ments, are fufficient to flew, that the proper juicers of plants contain their nourinment ready prepared, nearly in the flate which it exifts in the feed for the ufe of the young embryo.

The peculiar juices of plants, then, eontain more carbon, hydrogen, and oxygen, and lefs water, and probably lime alfo, than the tap. They are conveyed to every part of the plant; and all the fubflances which we find in plants, and even the organs themfelves, by which they perform their functions, are formed from them. But the thickeft veil covers the whole of thefe proceffes; and fo far have philofophers hitherto been from removing this veil, that they lave not even been able to approach it. All thefe operations, indeed, are evidently chemical decompofitions and combinations; but we neificr know what thefe decompofitions and combinations are, nor the inftruments in which they take place, nor the agents by which they are reguiated.
27. Such, as far as we are acquainted with them, Plants are the clanges produced by vegetation. But plants cay and do not continue to vegetate for ever ; fooner or later \({ }^{\text {die. }}\) they decay, and wither, and rot, and are totally decompofed. This change indeed does not happen to all plants at the end of the fame time. Some live only for a fingle feafon, or even for a fhorter period; others live two leafons, others three, others a hundied or more; and there are fome plants which continue to vegetate for a thoufand years. But fooner or later they all ceafe to live ; and then thofe very chemical and mechanical powers which had promoted vegetation combine to dethoy the remains of the plant. Now, What is the caule of this clange? Why do plants die?

This queftion can ouly be anfwered by examining with fome care what it is which conflitutes the life of plants ; for it is evident, that if we can difcover what that is which conflitutes the life of a plant, it cannot be difficult to difcover what conftitutes its death.

Now the phenomera of vegetable life are in general phenome zegetation. As long as a plant- continues to vegetate, na of veg we fay that it lives; when it ceafes to vegetate, we table life conclude that it is dead.

The life of vegetables, however, is not fo intimately connected with the phenomena of vegetation that they cannot be feparated. Mariy feeds may be kept for years without givind any fymptom of vegetation ; yet if they vegetate when put into the earth, wee fay that they pofficis life: and if we would fpeak accurately, we mult fay alfo, that they poffeffed life even before they were put into the earth; for it would be abfurd to fuppole that the feed obtained life merely by being put into the earth. In like manner, many plants decay, and give no fymptoms of vegetation during winter; yet if they vegetate when the mild temperature of fpring affects them, we confider them as having lived all winter. The life of plants, then, and the plenomena of vegetation, are not precifely the fame thing; for the one may be feparated from the other, and we can even fuppofe the one to exift without the other. Nay, what is more, we can, in many cafes, decide, without hefitation, that a vegetable is not dead, even when mo vegetation appears; and the proof which we have for its life is, that it remains unallered; for we know that when a vegetable is dead, it foon changes its appearance; and falls into decay.

Thus it appears that the iife of a vegetable conf:fts in two things. I. In remaining unaltered, when circumitances are unfavourable to vegetation; 2 . In ex-
rit- hibiting the phennmena of weration when circum-
on. ftances are favourable. When neither of thefe two ftances are favourable. When reither of thef
things happens, we fay that a vegetable is dead.
The phenomena of vegetation have been culumerated above. They confilt in the formation or expanfion of the organs of the plant, in the taking in of nourifhment, in carrying it to the leaves, in digetting it, in diftributing it through the plant, in augmenting the bulk of the plant, in repairing decayed parts, in forming new organs when they are neceflary, in producing feeds capable of being converted into plants fimilar to the parent. The coulfe of thefe phenomena, whatever it inay be, is the caufe alfo of vegelable life.

All the fubftances which have been enumerated in the feft part of the article Chemistry, Suppl. to rether with their compounds and componerit parts, poffefs certain qualities in common ; in confequence of which, a term has been invented which includes them all This term is matter. Now thefe cormon qualities may all ultimately be refolved into certain attractions and repulfions which thefe fubtances exert. Thefe qualities may be faid, without any impropriety, to be effential to matter: becaufe every body to which we give the name of matier pofeffes them; aud if any body were to be deprived of thefe qualities, it could no longer be included under the denomination mutter. In frort, the word matter comprehends under it certain qualities; cvery fubftance which poffefes thefe qualities is called natter; and no other fubtance except thefe can receive the name of matter without altering the nearing of the word.

The attractions and repulfions of matter have been examined with care; and the changes which they prodace have bcen afcertained with confiderable accuracy. They have even teen reduced to general priaciples under the name of mechanica! and chemical lazes. Whenever any change is obferved, if that change be a cafe of a inechanical or chemical law, we fay that the agent is matter; but if the change cannot be rechuced under thefe laws, of if it be incompatible with thefe laws, we mult fay, unlefs we would pervert the meaning of words alto gether, that the agent is not muatter.

Now it cannot be difputed that feveral of the pheno. mena of life in vegetables are incompatible with the Yaws of mechanics and chemiftry. Thie motion of the fap, for infance, muft be produced by the contrastion of the veffls: and the colitraction of veffels, on the ap. plication of fimuli, is incompatible with the laws of chemiftry, becaufe no decompofition takes place; and of mechanics, becaufe a much greater force is genera. ted than the gencrating body itfelf poffeffed. The evo. lution of the organ 3 of vegetables, the reparation of decayed organs, the formation of new ones to fupply the place of the old, the production of feeds capabla of producing new plants, the conflant fimilarity of individuals of the farne fpecies ;-thefe, and many other well known phenomena, cannot be reduced under mechanical and chemical laws. The caufe of life, then, in plants, is a fubflance (for we can form no conception of an agent which is not a fubttance) which does not act according to the laws of mechanics and chemilty,
and which confequently is not mater. We Thall therefore, till a better name be chofen, denominate it the vegatative princitle ( G ).
The naturc of the vegetative principle can only be deduced from the phenomenà of vegetation. It evidently follows a fixed plan, an I its actions are cirected to pro- cative prin. mote the grod of the plant. It has a power over mat- cipie. ter, and is capable of dirceting its attractions and repulfrons, in fuch a manner as to render them the inltruments of the formation, and improvement, and prefervation of the plant. It is capable alfo of generating fublances endowed with powers fimilar to itfelf. The plan according to which it acts, difplays the molt con fummate wifdom and forefight, and a knowledge of the properties of matter infinitely bejond what nan can boait.

Metaphyficians have thought proper to divide all Wherher fubfances into two claffes, matter and mind. If we fol-endowed low this divifion, the vegetative principle, as it is rot with conmutterial, mi:ft undoubtedly be ranked under mind. But if con/cioufnefs and intelligence be confidered as effential to mind, which is the cafe according to thein definition, we cannot give the vege:ative principle the nare of mind, hecaufe it has not been proved that it pofferes confcioufnefs and intelligence. It acts indeed according to a fixed plan, which difplays the highett degrce of intclligence; but this plan nray belong, not to the vegetative principle itiflf, but to the Being who form2ed that principle We can conceive it to have been endowed ly the Author of Nature wich peculiar powers, which it mult always exeit according to certain fixed laws; and the phenomena of vegetation may be the refnlt of this mode of acting. This, as far as we can fee, is not impolfible. It muit be flewn to be impofible by every perfon who wihes to prove that plants puffers confcioufnef3 and irtelligence ; for the proofs of this confcioufnefs can only be deduced from the defiga which the actiona of plants manifet. Thofe philofophers who have afcribed confcioufnefs and intelligence to plants, have founded their belief principally wa certain actions which plants perform on the application of flimuli. But thefe actions prove nothing more thanwhat cannot be denied, that there exills a vegctative principle, which is not material, and which has certaia. propertics in common with the living principles of ani:mals; but whether or not this vegttative princiole poffeffes confcioulnefs and intelligence, is a very different queftion, and mutt be decided by very different proofs. We do not fay that the heart of an animal is conifcious, becaufe it continues to beat on the application of proner ftimuli for fome time after it has been feparated from the reft of the body.
The death of plants, if we can judge from the phe-Death of noriena, is owing, not to the vegetative principle lea.flants. ving them, but to the organs becoming at laft altogether unfit for performing their function*, and incapable of being repaired by any of the fowers which that principle poffefics. The changes which vegetable fubftances undergo after death come now to be examined. They thall form the fubject of the enfuing chapter.

Chap.
(G) Phyfiologifts have ufually given it the name of living frincip? We would have adopted that name, if it had not been too general for our purpofe.

\section*{Chap. III. Of the Decomposition of Vegetable Substances.}

Not only entire plants undergo decompofition after reath, but certain vegetable fubitances alfo, whenever they are mixed together, and placed in proper circumfances, mutually decompofe each other, and new compound fubftances are produced. Thefe mutual decompoittions, indeed, are naturally to be expected: for as ail vegetable fubftances are compofed of feveral ingredients, differing in the ftrength of their affinity for each other, it is to be fuppofed that, when two fuch fubftances are mixed together, the divellent affinities will, in many cafes, prove flronger than the quiefcent; and therefore decompofition, and the formation of new compounds, mutt take place: juit as happen3 when the actite of lead and fulphat of potafs are mixed together.

Thefe mutual decompofitions of vegetable fubftances are by no means fo cafily traced, or fo readily explained, as the mutual decompofitions of neutral falts; part. ly on account of the number of fubllances, whofe affinities for each other are brought into action, and partly becaufe we are ignorant of the manner in which the ingredicnts of vegetable fubftances are mutually com168 bined.
Called rer. Chemits have agreed to give thefe mutual decompoMENTA. fitions which take place in vegetable fubtlances the name TION. of fermentation; a word firt introduced into chemiftry * Stabl, by Van Helmont *; and the new fubitances produced Fundament, they have called the products of fermentation. All the Cbem . :. phenomena of fermentation lay for many years conceal. 324.

169 Divifion of them. ed in the completeft darknefs, and no chenift was bold enough to hazard even an attempt to explain them. They were employed, however, and without hefitation too, in the explanation of other phenomena; as if giving to one procefs, the name of another of which we are equally ignorant, could, in reality, add any thing to our knowledge. The darknefs which enveloped thefe phenomena, has lately begun to difperfe; but they are ftill furrounded with a very thick mitt; and we muft be much better acquainted with the compofition of vegetable fubftances, and the mutual affinities of their ingredients, than we are at prefent, before we can explain them in a fatisfactory manner.
The vegetable fermentations or decompofitions may be arranged under five heads; namely, that which pro- duces bread, that which produces wine, that which produces beer, that which produces acetous acid or vinegar, and the putrefacive fermentation, or that which produces the fpontaneous decumpofition of decayed vegetables. Thefe thall be the fubject of the five following fections. In order to avoid long titles, we fhall give to the firlt three fections the name of the new fubitances produced by the fermentation.

\section*{Sect. I. Of Bread.}

170

Simple as the manufacture of bread may appear to us who have been always accuftomed to confider it as a common procefs, its difcovery was probably the work of ages, and the refult of the united efforts of men, whofe fagacity, had they lived in a more fortunate pe-
riod of fociety, would have rendered them the rivals of Ariftotle or of Newton.
'The method of making bread fimilar to curs was known in the Eaft at a very early period; but neither the precife time of the difcovery, nor the name of the perfon who publiffed it to the world, has been preferved. We are certain that the Jews were acquainted with it in the time of Mofes: for in Exodus* we find a prohibition to ufe leavened bread duning the celebration of the paffover. It does not appear, however, to have been known to Abraham ; for we hear in his hiflory of cakes frequently, but nothing of leaven. Egypt, both from the nature of the foil and the early pe. riod at which it was civilized, bids faireft for the difcovery of making bread. It can fcarcely be doubted, that the Jews learned the art from the Egyptians The Greeks affure us, that they were taught the art of making bread by the god Pan. We learn from Homer that it was known during the Trojan war \(\dagger\). The Ro- + Iliad, is mans were ignorant of the method of making bread till \({ }^{216}\). the year 580 , after the building of Rome, or 200 years before the commencement of the Chrilian era \(\ddagger\). Since \(\ddagger\) Plia. L. 1 that period the art has never been unknown in the fouth cap 11. of Europe; but it made its way to the north very flowly, and even at prefent ix many northern courtries ferकnented bread is but very feldom uied.

The only fubftance well adapted for making bread, Subflanic we mean loaf lread, is wheat flour, which is compofed which of four ingredients; namely, ghlıten, ftarch, albumen, make \(b\) ead. and a fweet mucous matter, which poffeffes nearly the properties of fugar, and which is probably a mixture of fugar and mucilage. It is to the gluten that wheat flour owes its fuperiority to every other as the batis of bread. Indeed, there are only two other fubftances at prefent known of which good loaf bread can be made; thefe are rye and potatoes. The rye loaf is by no means fo well raifed as the wheat loaf; and potatoes will not make bread at all without particular management. Potatoes, previoully boiled and reduced to a very fine tough pafte by a roliing pin, muft be mixed with an equal weight of potato farch. 'This mixture, baked in the ufual way, makes a very white, well raifed, pleafant bread. We are indebted for the procefs to Mr Permentier. Barley-meal perhaps might be fubftituted for ftarch.
 with water, and forming it into a pafte. The average bread. proportion of thefe is two parts of water to three of. flour. But this proportion varies confiderably, according to the age and the quality of the flour. In general, the older and the better the flour is, the greater is the quantity of water required. If the pafte, after being thus formed, be allowed to remain for fome time, its ingredients gradually act upon each other, and the pafte acquires new properties. It gets a difagreeable four tafte, and a quantity of gas (probably carbonic acid gas) is evolved. In fhort, the pafte ferments ( H ). Thefe changes do not take place without water; that liquid, therefore, is a neceffary agent. Poffibly it is decompofeed by the action of the ftarch upon it; for when farch is diluted with water, it gradually becomes four. The gliten, too, is altered, either by the action of the water on it, or of the farch; for if we examine the pafte
(H) It was from this procefs that Van Helmont transferred the word fermentation into chemiftry.
after it has undergone fermentation, the gluten is no longer to be found. If pafte, after ftanding for a fufficient time to ferment, be baked in the ufual way, it forms a loaf full of eycs like our bread, but of a tafte fo four and unpleafant that it cannot be eaten. If a Imall quantity of this old pafte, or leaven as it is called, be mixed with new made pafte, the whole begins to ferment in a fhort time ; a quantity of gas is evolved; but the glutinous part of the flour renders the pafte fo tough, that the gas cannot efcape ; it therefore caufes the pafte to fwell in every direction : and if it be now baked into loaves, the immenfe number of air bubbles imprifoned in every part renders the bread quite full of eyes, and very light. If the precife quantity of leaven neceffary to produce the fermentation, and no more, has been ufed, the bread is fufficiently light, and has no unpleafant tafte; but if too much leaven be employed, the bread has a bad tafte; if too little, the fermentation does not come on, and the bread is too com. pact and heavy. To make good bread with leaven, therefore, is very difficult.

The ancient Gauls had another method of ferment. ing bread. They formed their pafte in the ufual way; and inftead of leaven, mixed with it a little of the barm which collects on the furface of fermenting beer*. This mixture produced as complete and as fpeedy a fermentation as leaven ; and it had the great advantage of not being apt to fpoil the tafte of the bread. About the end of the 17 th century, the bakers in Paris began to introduce this practice into their proceffes. The praetice was difcovered, and exclaimed againt ; the faculty of medicine, in 1688, declared it prejudicial to health; and it was not till after a long time that the bakers fucceeded in convincing the public that bread baked with barm is fuperior to bread baked with leaven. In this country the bread has for thefe many years been fermented with barm.
What is this barm which produces thefe effects? The queltion is curioue and important; but we are not able to anfwer it completely. Mr Henry of Manchefter has concluded, from a number of very interefting experimente, that the only ufeful part of barm is carbonic acid gas, and that this gas therefore is the real fermenter of pafte \(\dagger\).
That the barm of beer, in its ufual ftate, contains carbonic acid gas, cannot be doubted; and that carbonic acid gas aets as a ferment, the experiments of Mr Henry prove decifively. But that the only active part of barm is carbonic acid gas, and nothing but carbonic gas, is extremely doubtful, or rather we are certain that it is not true. It has been cuftomary with the bakers of Paris to bring their barm from Flanders and Pi cardy in a ftate of drynefs. When fkimmed off the beer, it is put into facks, and the moitture allowed to drop out; then thefe facks are fubjected to a ftrong preffure, and when the barm is dry it is made up into Mett. balls \(\dagger\). Now, in this flate, it is not to be fuppofed 249. that bubbles of carbonic acid can remain entangled in the barm; they muft have been fqueezed out by the prefs, \(d\) by the fublequent formation of the barm into balls : yet this barm, when moiftened with water, ferments the bread as well as new barm.

Suppl. Vol. II. Part II.

After the bread has fermented, and is properly raifed, it is put into the oven previouly heated, and allowed to remain till it be baked. The mean heat of an oven, to remain till it be baked. The mean heat of an oven, Heet of the
as afcertained by Mr Tillet, is \(448^{\circ}\). The bakers do oven not ufe a thermometer; but they judge that the oven is \({ }^{\circ}\) Enc. Metb. arrived at the proper heat when flour thrown on the art. i. 275 . floor of it becomes black very foon without taking fire. We fee, from Tillet's experiment, that this happens at the heat of \(44^{\circ}\).

When the bread is taken out of the oven, it is found Lers \({ }^{175}\) to be lighter than when put in ; as might naturally have weight been expected, from the evaporation of moiture, which futained in muft have taken place at that temperature. Mr Tillet, \({ }^{\text {it. }}\) and the other commiffioners who were appointed to examine this fubject in confequence of a petition from the bakers of Paris, found that a loaf, which weighed before it was put into the oven 4.625 lbs . after being taken out baked, weighed, at an average, only 3.8 r 3 lbs . or 0.812 lb . lefs than the pafte. Confequently 100 parts of paite lofe, at an average, 19.34 parts, or fomewhat more than \(\frac{7}{5}\) th by baking *. They found, how- * 1bi4. 275 . ever, that this lots of weight was by no means uniform, even with refpect to thofe loaves which were in the oven at the fame time, of the fame form, and in the fame place, and which were put in and taken ont at the fame inftant. The greatelt difference in thefe circumftances amounted to 2889 , or 7.5 parts in the hundred, which is about \(\frac{1}{3}^{\frac{2}{3}}\) th of the whole. This difference is very confiderable, and it is not eafy to fay to what it is owing. It is evident, that if the pafte has not all the fame degree of moilture, and if the barm be not accurately mixed through the whole, if the fermentation of the whole be not precifely the fame, that thefe differences muft take place. Now it is needlefs to obferve how difficult it is to perform all this completely. The French commiffioners found, as might indeed have heen expected, that other things being equal, the lofs of weight fuftained is proportional to the extent of furface of the loaf, and to the length of time that it remains in the oven; that is to fay, the fmaller the extent of the external furface, or, which is the fame thing, the nearer the loaf approaches to a globular figure, the fmaller is the lofs of weight which it fuftains; and the longer it continues in the oven, the greater is the lofs of weight which it fuftains. Thus a loaf which weighed exactly 4 lbs . when newly taken out of the oven, being replaced as foon as weighed, loft, in ten minates, . 125 lb . of its weight, and in ten minutes more it again loft \(.0625 \mathrm{lb}+\).

Loaves are heavieft when juft taken out of the oven; \({ }^{270}\). they gradually lofe part of their weight, at leaft if not kept in a damp place, or wrapt round with a wet cloth ( x ). Thus Mr Tillet found that a loaf of 4 lbs . after being kept for a week, wanted 3125 , or nearly \(\dot{r}^{\text {s th }}\) of itz original weight \(\ddagger\).

When bread is newly taken out of the oven, it has a \({ }_{176}\). peculiar, and rather pleafant fmell, which it lofes by Propertics keeping; as it does alfo the peculiar tafte by which of bread. new bread is diftinguifhed. This fhews us, that the bread undergoes chemical changes; but what thefe changes are, or what the peculiar fubftance is to which the odour of bread is owing, is not known.
( x ) This is an excellent method of preferving bread frefh, and free from mould, for a long time.
§ Fabrani,
Ann. de
Clim. xxxi. 302.
\(\qquad\)
For which water,
\| \(S_{t a b l}\), i.

Bread diffefs very completely from the flour of which it is made, for none of the ingredients of the flour can now be difcovered in it. The only chemitt who has attempted an analyfis of bread is Mr Geoffroy. He found that 100 parts of bread contained the following ingredients :
24.735 water.
32.030 gelatinous matter, extracted by boiling water. 39.843 refiduum infoluble in water.

> 96.608
> 3.392 lofs.

\section*{100.}

But this analyfis, which was publifhed in the Memoirs of the French Academy for the year 1732, was made at a time when the infant ftate of the fcience of chemittry did not admit of any thing like accuracy.

\section*{Sect. II. Of WINE.}

There is a confiderable number of ripe fruits from which a fweet liquor may be expreffed, having at the fame time a certain degree of acidity. Of fuch fruits we have in this country the apple, the cherry, the goofeberry, the currant, \&c. but by far the molt valuable of thefe fruits is the grape, which grows luxuriantly in the fouthern parts of Europe. From grapes, fully ripe, may be expreffed a liquid of a fweet talte, to which the name of \(m u / \ell\) has been given. This li quid is compofed almoft entirely of five ingredients ; namely, water, fugar, jelly, mucilage, and tartarous acid partly faturated with potafs. The quantity of fugar which grapes fully ripe contain is very couliderable; it may be obtained in cryftals by evaporating muft to the confifence of fyrup, feparating the tartar which precipitates during the evaporation, and then fetting the muft afide for fome \(m\) inths. The cryttals of fugar are gradually formed.

When mal is put into the temperature of about \(70^{\circ}\), the different ingredients begin to at upon each other, and what is called vinous fermentation commences. The phenomena of this fermentation are an inteftine motion in the liquid, its becoming thick and muddy, a temperature equal to \(72.5^{\circ}\), and an evolution of carbonic acid gas. In a few days the fermentation ceafes, the thick part fubfides to the bottom, the liquid becomes clear, it has loft much of its faccharine tatte, and afumed a new one, its fpecific gravity is diminifhed; and, in fhort, it has become the liquid well known under the name of wine.

Now what is the caufe of this fermentation ; what are the fubftances which mutually decompofe each other ; and what is the nature of the new fubitance formed ?

Thefe changes are produced altogether by the mutual action of the fub?lances contained in muft; for they take place equally well, and wine is formed equally well in clofe veffels as in the open air \(\$\).

If the muft be evaporated to the confiftency of a thick fyrup, or to a rob, as the elder chemifts termed it, the fermentation will not commence, though the proper temperature, and every thing elfe neceffary to produce fermentation, be prefent \(\|\). But if this fyrup be again diluted with water, and placed in favourable circumflances, it will ferment. Therefore the prefence of
water is abfolutely neceffary for the exiftence of vinous fermentation.
If the juice of thofe fruits which contain but little fugar, as currants, be put into a faronrable Gituation, fermentation indeed takes place, but fo flowly, that the product is not ruine, but vinegar: but if a fufficient quantity of fugar be added to thefe very juices, wine is readily produced. No fubftance whatever can be made to undergo vinous fermentation, and to produce wine, unkefs fugar be prefent. Sugar therefore is abfolutely neceffary for the exiftence of vinous fermentation ; and we are certain that it is decompofed during the procefs; for no fugar can be obtained from properly fermented wine.

All thofe juices of fruits which undergo the vinous \(A_{n}\) acid \(d_{2}\) fermentation, either with or without the addition of fugar, contain an acid. We have feen already in the firft chapter that the vegetable acids are obtained chicfly from fruits. The apple, for inflance, contains malic acid; the lemon, citric acid; the grape, tartarous acid. The Marquis de Bullion has afcertained, that mujf will not ferment if all the tartarous acid which it contains be feparated from it*. We may conclude from * Cbupta this, that the prefence of a vegetable acid is abfolutely neceffary for the commencement of the vinous fermentation. This renders it probable that the effential part of barm is a vegetable acid, or fomething equivalent; for if fugar be diffolved in four times its weight of water, mixed with the yealt of beer, and placed in a proper temperature, it undergoes the vinous fermentation \(\dagger\).

All the juices of fruits which undergo the vinous fermentation contain a quantity of jelly, or mucilage, or of both. Thefe two fubitances refemble each other fary. in fo many particulars, and it is fo difficult to feparate them, that we fhall fuppofe they have the fame effect in the misture. The prefence of thefe fubftances renders it probable that they alfo are neceflary for the vinous fermentation. Perhaps they act chiefly by their tendency to become acid.

Thus we fee, that for the production of wine a certain temperature, a certain portion of water, fugar, a vegetable acid, and, in all probability, jelly alfo, is neceffary. Mr Lavoifier found that fagar would not ferment unlefs diffolved in at lealt four times its weight of water. This feems to indicate that the particles of fugar muft be removed to a certain diftance from each other before the other ingredients can decumpofe them. The evolution and feparation of carbonic acid gas in fuch quantity, fhews us that the proportion of the carbon and the oxygen of the fugar is diminifhed. It is not certain that the mucilage of the wine is decompofed fo completely as the fugar; for it has been obferved, that when the mut abounds in mucilage, the wine is ant to become four.

When wine is diftilled by means of a low heat, there Deco 183 comes over a quantity of alcolol, and the remainder is fition of a folution of acctous acid. From this fact, it has been winc. concluded that wine is compofed of acetous acid and alcohol. But that the diftillation occafions a chemical change in the ingredients of wine is evident froa this, that if we again mix the alcohol and acetous acid, we do not reproduce the wine.

Fourcroy has attempted to fhew that alcohol exifted ready formed; but his proofs are not conclufive. Fab.
roni has thewn, that alcohol cannot be obtained from new made wive by any other method than diftillation. When wine is fatured with very dry carbonat of potafs, no alcoho! makes its appearance on the furface of the mixture, yet a very fmall quantity of alcohol, artificially mixed with wine, may be detected by this method. It is certain, however, that alcohol exits ready formed in old wine.

\section*{Sect. III. Of Beer.}
'I'He method of making beer was known in the moft remote ages; we are ignorant to whom the world is in debted for the difcovery of it. Beer is ufually made from barley.

T'he barley is fteeped in water for about fixty hours, in order to fatmate it with that liquid. It ought then to be removed as (peedily as poffible, otherwife the water diffolves, and carries off the moft valuable part of the grain. The barley is then to be laid in a heap for twenty-four hours; heat is evolved, oxygen gas abforbed, carbonic acid gas emitted, and germiration commences with the fhooting forth of the radicle. It is then fpread upon a cool floor, dried nowly, and is afterwards known by the riame of \(\mathrm{ma} / \mathrm{t}\) *.

Malt, previouly ground to a coarfe powder, is to be infuled in a fufficient quantity of pure water, of the temperature of \(160^{\circ}\), for an hour. The infufion is then to he drawn off, and more water may be added, at a higher temperature, till all the foluble part of the malt is extracted. This infufion is known by the name of wort. It has a fweet tafte, and contains a quantity of faccharine, and doubtlefs alfo of gelatinous matter.

When woort is placed in the temperature of about \(60^{\circ}\), fermentation gradually takes place in it, and the very fame phenomena anpear which diftinguith the production of wine. The fermentation of wort, then, is nothing but a particular cafe of the vinous fermentation. But wort does not ferment fo well, nor fo foon, nor does it produce nearly fn great a quantity of good fermented liquor, as when yeafl is added to it. The reafon of which is, probably, that the fermentation does not commence till an acid is generated in the wort, and before that happens part of the faccharine contents are decompoled; whereas the yealt adds an acid, or, at lealt, fomething equivalent to it, at once.

Wort ferments in clofe veffels, as Mr Collier afcer: tained by experiment, equally well as in the open air. Therefore the decompofition is produced entirely by the fubftances contained in the wort, without the addi. tion of any thing from the air. The quantity of beer produced in elofe veffels is much greater than when the procefs takes place in the open air. The reafon of which is, that in the open air the beer gradually evaporates during the fermentation. Thus Mr Collier found that 11 quarts, \(3 \frac{1}{2} \mathrm{oz}\). fermented in open veffels, loft, in 12 days, 40 oz .; whereas an equal weight, fer mented in clofe veffels, loft ouly 8 oz . in the fame time. Yet the quality of the beer was the fame in each; for equal quantities of both, when diftilled, yielded precifely the fame portion of alcohol \(t\).

During the fermentation, a quantity of carbonic acid gas is contantly difengaged, not in a fate of purity, but containing, combined with it, a portion of the wort; and if this gas be made to pafs through water, it will depofite wort, which may be fermented in the ufual manner*.

When beer is cliftilled, alcohol is obtained, and the refiduum is an acid liquor \(\dagger\). The theory of beer is fo obviny the fame wing obvonly the fame with that of wase that it requires Mancb. no additional explanation.

\section*{Sect. IV. Of the Acetous Fermentation.}

IF wine or beer be kept at a temperature between Subfances \(70^{\circ}\) and 90 , it gradually lofes its properties, and is con- which unverted into acctous acid.
dergo the
During this change, a quantity of oxygen gas is acctousferabforbed, and the whole of the fpisituons part of the wine or beer difappears. Confequently its ingredients have mutually decompofed each other.

Neither pure alcohol, nor alcohol diluted with water, are capable of undergoing thio change, neither do they abforb any oxygen. '1 his ablorption, then, is made by the mucilaginous matter which always exifts in thefe liquids. No acctous acid is ever produced, unlefs fome acid be prefent in the liquid. We may conelude, then, that the mucilage acquires the properties of an acid before it begins to act upors the fprituous pant of the beer or the wine.

As the aectons acid has been already treated of in the article Chemistry, Suppl. it is unneceflary to dwell any longer on this fubject herc.

All vegetable fubftances, both complete plants and Nature of their component parts feparately, when left eutirely to putrefacthemfelves, are gradually decompofed and deftroyed, tion. provided moifture be profent, and the temperature be: denly all the moifture. This decompofition has obtained the name of putrefaction.
It proceeds with moft rapidity in the open air; but is, in all cales, effential to the procefs, and therefore is
odour, owing to the emiffion of certain gafeous matters, which differ according to the putrefying fubftance. Some vegetable fubitances, as gluten, and cruciform
plants, emit ammonia; others, as onions, feem to emit phofphorated hydrogen gas. Carbonic acid gas, and hydrogen gas, impregnated with unknown vegetable
matters, are almoft conftantly emitted in abundance. hydrogen gas, impregnated with unknown vegetable
matters, are almoft conftantly emitted in abundance. When the whole procefs is finifhed, fcarcely any thing
remains but the earths, the falts, and the metals, which When the whole procefs is finifhed, fcarcely any thing
remains but the earths, the falts, and the metals, which chemical knowledge of vegetable compounds is by Jar too limited to enable us to follow this very complicated
\(\qquad\) * (iolions
yif
\[
\sqrt{2}
\]

\section*{Sect. V. Of Putreeaction.} not much uncer \(45^{\circ}\), nor too high to evaporate fudthe contact of air is not abfolutely neceffary. Water moft probably decompofed.

Putrefaction is conftantly attended with a fetid Some vegetable fubftances, as gluten, and cruciform formed a conftituent part of the vegetable. But our proce \(\int_{3}\) with any chance of fuccefs. the name of putrefaction.

\footnotetext{


}
\(\qquad\)
\(\qquad\)


\footnotetext{

}

\section*{Part II. Of Animal SUBSTANCES.}

Ingredients \(W H E E N\) we compare animals and vegetables toof Arimals, gether, each in their molt perfect flate, nothing Fibrna. can be eafier than to diftinguifh them. The plant is

Claffes of animals and trary, canfers or intelligence; the animal, on the convegetables is poffefed remove at pleafure from one place 10 another, telligence of confcioufnefs, and a high degree of inmities of the animal and vegetable kingdom, thefe ftriking differences gradually difappear, the objects acquire a greater degree of refemblance, and at laft approach each other fo nearly, that it is fcarcely poffible to decide whether fome of thofe fituated on the very boundary belong to the animal or vegetable kingdom.

To draw a line of dittinction, then, between animals and vegetables, would be a very difficult tank; but it is not neceffary for us, in this place at leaft, to attenipt it; for almof the only animals whofe bodies have been hitherto examined with any degree of chemical accuracy, belong to the moft perfect claffes, and confequently are in no danger of being confounced with plants. Indeed the greater number of facts which we have to relate, apply only to the human body, and to thofe of a few domeftic animals. The tafk of analyfing all animal bodies is immenfe, and muft be the work of ages of indefatigable induftry

\section*{191 Divition of} shis part.

We thall divide this part of the article into four chapters. In the firf chapter, we fhall give an account
of the different ingredients hitherto found in animals, fuch of them at leaft as have been examined with any degree of accuracy: in the fecond, we fhall treat of the different nembers of which animal bodies are compofed; which muft confift each of various combinations of the ingredients defcribed in the firf chapter: in the thind, we fall treat of thofe animal functions which may be elucidated by chemiftry : and, in the fourth, of the changes which animal bodies undergo after death.

\section*{Chap. I. Of the Ingredients of Anlmals.}

The fubftances which have been hitherto detecied in the animal kingdom, and of which the different parts of animals, as far as thefe parts have teen analyfed, are found to be compofed, may be arranged under the following heads :
1. Fibrina,
2. Albumen,
3. Gelatine,
4. Mucilage,
5. Bafis of bile,
6. Urea,
8. Sulphur,
9. Oils,
10. Acids,
11. Alkalies,
12. Earths,
13. Metals.

Thefe fhall form the fubject of the following fections:

\section*{Sect. I. Of Fibrina.}

If a quantity of blood, newly drawn from an animal,
be allowed to remain at reft for fome tine, a thick red Alhumen, elot gradually forms in it, and fublides. Separate this clot from the reft of the blood, walh it repeatedly in Fibrina water \(1 l l\) it ceafes to give out any colunr or tafte to how obe the liquid; the fubftance which remairs after thistained, procefs is denominated fibrina. It has been long known to phyficians under the name of the fibrous part of the blood, but has not till lately been accurately defcribed.

Fibrina is of a white colour, has no tafte, and is in-Is propero foluble in water and in alcohol. It is foft and ductile, ties. has a confiderable degree of elaficity, and refermbles very much the gluten of vegetables.

Pure fixed alkalies do not aft upon it, unlefs they be very much concentiated, and then they decompofe it. All the acids combine with it readily, and difiolve it. Water and alkalies feparate it again ; hut it has lof entirely its former properties. With muriatic acid it forms a green coloured jelly.

When nitric acid is poured upon fibrina, azotic gas is difengaged, as Berthollet firt difcovered. 'I he quantity of this gas is greater than can be obtained from the fame quantity of other animal fubitances by the fame procefs *". After this, pruffic acid and carbonic * Fourcroy acid gas are extraled. By the affitance of heat the in-Cbim. i. 41 brina is diffulved; much nitrous gas is difengaged; the liquid, when concentrated, yields oxalic and malic acids; and white flakes are depofited, confiting of an oily fubftance, and of phofphat of lime \(\dagger\).

Fourcros
When fibriua is diftilled, it yields a very large quantity of ammonia \(\ddagger\).
\(\ddagger\) Fourcrey
Thefe properties are fufficient to fhew us that this Ann. de fubltance is compofec? of azot, hydrogen, and carbon; Chim. i. 4: but neither the precife proportion of thefe ingredients, nor the manner of their combination, are at prefent known.

\section*{Sect. II. Of Albluen.}

The eggs of fowls contain two very different fub. 104 ftances: a yellow oily. like matter, called the yo \(k\); and contanel a colourlefs gloffy vifcid liquid, diftinguifhed by the \({ }^{\mathrm{in}} \mathrm{egg}\). name of white. This laft is the fubtance which chemilts have agreed to denominate aliumen ( L ). The white of an egg, however, is not pure albumen. It contains, mixed with it, fome carbonat of foda, and fome fulphur ; but the quantity of thefe fubftances is fo fmall that they do not much irfluence its properties. We fhall therefore confider it as allumen.

On the application of a heat of 165 g it congulates, \(\$\) Cullen, as is well known, into a white folid mals; the confft- \({ }^{195}\) ency of which, when other things are tqual, depends, by heast in fome meafure, on the time curing which the heat was applied. The coagulated mafs has precifely the fame weight that it bad while fluid.

The tafte of coagulated albumen is quite different from that of liquid albumen: its appearance, too, and
(L) This is merely the Latin term for the white of an egg. It was firf introduced into chemiftry by the phyfiologits.
its properties, are entirely changed; for it is no longer foluble, as before, either in hot or in cold water.

The coagulation of albumen takes place even though air be completely excluded; and even when air is prefent there is no abforption of it, nor does albumen in coagulating change its volume *. Acids have the property of cuagulating albumen, as Scheele afcertained \(\dagger\). Alcohol alfo produces, in fome meafure, the fame effect. Heat, then, acids and alcobol, are the agents which inay be employed to coagulate alburen.

It is remarkable, that if albumen be diluted with a fufficient quantity of water, it can no longer be coagulated by any of thefe agents. Scheele mixed the white of an egg with ten times its weight of water, and then, though he even boiled the liquid, no coagulum appear. ed. Acids indeed, and alcohol, even then coagulated it ; but they alfo lofe their power, if the albumen be diluted with a much greater quantity of water, as has been afcertained by nany experiments. Now we know, that when water is poutred into atbumen, not only a mechanical mixture takes place, but a chemical combination ; for the abbunen is equally diftributed through every part of the liquid. Confequently its integrant particles mult be farther feparated from each other, and their diftaoce mult increafe with the quantity of water with which they are diluted. We fee, therefore, that albumen ceafes to coagulate whenever its particles are feparated from each other beyond a certain difitance. That no other change is produced, appears evident from this circumftance, that whenever the watery folution of albumen is fufficiently concentrated by evaporation, coagulation takes place, upon the application of the proper agents, precifely as formerly.

It does not appear that the diflance of the particles of albumen is changed by coagulation; for coagulated albumen occupies precifely the fame fenfible fpace as liquid albumen *:

Thus two things feem certain refpecting the coagulation of albumen : I. That its particles mutt not be beyond a certain diffance; 2 . That the coagulation does not produce any fenfible change in their diftance. To what, then, is the coagulation of albumen owirg? We can corceive no change to take place frơn a ftate of li. quidity to that of folidity, without fome change in the figure of the particles of the bedy which has undergone that change: for if the figure and the diffance of the particles of bodics continue the fame, it is impoffible to conceive any change at all to take place. Sinice, then, the diffance of the particles of albumen does not, as far at leaft as we can perceive, change, we muft conclude, that the tigure of the particles actually does charge. Now fuch a change may take place three ways: s. The figure may be changed by the addition of fome new molecules to each of the molecules of the body. 2 . Some molecules may be abftracted from every integrant particle of the body. 3. Or the molecules, of which the integrant particles are compofed, may enter into new combinations, and form new integrant particles, whofe form is different from that of the old integrant particles. Some one or other of thefe thrte things mult take place during the coagulation of albumen.
1. Scheele and Fourcroy have afcribed the coagulation of albumen to the firft of thefe caufes, namely, to the addition of a new fubltance. According to Scheele,
caloric is the fubfance which is added. Fourctor, on
A.bunier. the contrary, affirms that it is axygen.
Echeele fupported his opinion with that wonderful ingenuity which foone fo eminently in every ching which he did. He mixed together une part of white of egro and four parts of water, added a hittle pure alkali, and then dropt in as much muriatic acid as was fufficient to fatmate the alkali. 'The albumen coargulated : but when he repeated the experiment, and uie? carbonat of atkali inttead of pure alkali, no coagulation elfiued. In the firt cale, lays he, thete was a double decompofition: the muriatic acid feparated from a quantity of caloric with which it was con bined, and united with the alkali; while, at the fame inflarit, the caloric of the acid united with thealburen, and caufed it to coagulate. The fame combinatio:s could not take place when the alkaline carbonat was ufed, becaufe the carbonic acid gas carried off the caloris, for which it has a firong affinity *.

This explanation is plaufble; but it is contrary to ii s..: every other known fact in chemifry, to fuppofe that caloric can combine with a fubftance witlout oceate: ing any alteration in its bulk, and cannot therefore he admitted without the molt rigis pronf.

Fourcroy cbferves, in fupport of his opiaion, that the white of an eggy is not at firft capable of forming a bard coagulun, aud that it only acquires that properity by expofure to the atmufphere. It is well known that the white of a new laid eggy is riilky after bolling; and that if the fhell be covered over with greafe, to exchedo the external air, it continues long in that flate; whereas the white of an old egg, which has not been preferred in that manuer, forms a very hard tough coagulum. Thefe facts are undoubted; and they render it exceedingly probable, that albumen acquires the property of forming a hard coagulum only by abforbing oxygen: but they by uo means prove that coazulation itfelf is owing to fuch an abforption. And fince coagulation takes place without the prefence of air, and fince t:o air, even when it is prefeat, is at forbed, this opinion cannot be maintzined without inconfiftency.
2. The only fubtlance which can be fuppofed to leave atbumen during coagralation, fince it does not lofe weight, is caluric. We know that in moft cafes where a fluid is converted into a folid, caloric is actually difer gुaged. It is extremety probable, then, that the fame difengagement takes place here. But the opinion hass not been confrmed by any proof. Fourcroy indeed fays, that in an experiment made by him, the thernometer rofe a great number of degrees. But as no other perfon has ever been able to obferve any fuch thing, it cannot be doubted that this philfofopher has been milled by fome circumflance or other to which he did not attend + . It is ulual, in many cafes, for bodies to lofe bulk when they give out caloric ; but that there are exceptions to this rule, is well known. eptions to this rule, is well known. iii. 272.
3. Even if the second opinion were true, it is fearcely poffible to conceive the coagulation of albumen to take place without fome change in its integrant particles. We can fee how all the fubftances which coagulate albumen might prodnce fuch a change; and the infolubility of coagulated albumen in water, and its other different properties, render it more than probable that fome fuch change aetually takes place. But what that change is, cannot even be conjectured.
colatine.

193

\section*{Jroperlics} of abbunten
\({ }^{4}\). Sclicele,
ii. 97.
+ Vauguelin, Ann. de Chim. xxix. 15. isibid.

\section*{Sect. III. Of Gelatine.}

199 Gelatile how obtained.

If a piece of the freh frin of an animal, an ox for infance, after the hair and every impurity is carefully feparated, be wafhed repeatedly in cold water, till the liquid ceales to be coloured, or to abitract any thing; if the flin, thus purified, be put into a quantity of pure water, and boiled for fome time, part of it will be diffol. ved. Let the decoction be flowly evaporated till it is reduced to a fmall quantity, and then put afide to cool. When cold, it will be found to have afumed a folid form, and to refemble precifely that tremulous fubflance well known to every body under the name of gelly. This is the fubftance called in chemiftry gelatine. If the evaporation be ftill tarther continued, by expofing the gelly to dry air, it becomes hard, femitraniparent, breaks with a glenfy fracture, and is in fhort the fub. Pance fo much cmployed in difitient arts uider the name of s/ue. Gelatine, then, is precifely the fame with glue ; oniy that it mult be fuppefed always free from thofe impluities with which glue is fo oteen contated *. Alkalies, however, do not precipitate it from its folution in acids \(\dagger\). But if a folution of \(\tan\) be poured into the acid folution of albumen, a very copious prccipitate appears \(\ddagger\).

If the folution of tan be poured into an aqueous folution of uncoagulated albumen, it forms with it awery copions precipitate, which is infoluble in water. This precipitate is a combination of tan and albumen. This property which albumen has of precipitating with tan, was difcovered by Seguin f: it furnifhes us with a method of deteeting the prefence of albumen in any liquid in which we furpect it.
Pure alkalies and lime water alfo diffolve albumen ; at the fame time ammonia is difengaged, owing to the decompofition of part of the albuniel!. Acids frecipitate the albumen from alkalies, but its propurties are chinged *.

Nitric acid, when affifted by heat, difengages azotic gas from albumen \(\dagger\); but the quantity is net fo great as may be obtained from fibrina \(\ddagger\). The alburen is gradually diffolved, nitrous gas is emitted, oxalic and malic acids are formed, and a thick oily matter makes its appearance on the furface \(\$\). When difilled, it furnifhes the fame products as fibiina, ouly the quantity of ammonia is not fo great ||.

Herce it. follows, that albumen is compofed of azot, hydrogen, and carbon, as well as fibrina ; but the proportion of arot is not fo great in the firft fubfiance as taminated.

Gelatine is tranfparent and colourlefs; when thrown into water, it very foon fwells, and affimes a gelatii.ous

The coagulation of alcumert is intimately connected with ore of the mof important yroblems in chemillry, namely, the caufe of fluidity and folidity. But this problem can only be refolved, with any profpect of fuccefs, by a geometrical invefligation of the phenomena of heat.
Coagulated albumen is diffolved by the mineral acids, greatly diluted with water; and if a concentrated acid be added to the folution, the albumen is again precipiform, and gradually diffolves completely. By evapura tirg the water, it may be obtained again unaltered in the form of gelly.

When an infufion of tan is dropt into a folution of gelatine in water, there is inftantly formed a copious white precipitate, which has all the properties of leather. This precipitate is compofed of \({ }^{\text {tan }}\) and gelatine. Thafe two fubfiances, therefore, when combined, form leather. Altumen and gelatine are the only animal fublances known which have the property of combining with tan, and forming with it an infolutle compound. They may be always eafily detected, therefore, by means of tan ; and they may be readily dillinguifhed from each other, as albumen alone cuagulates by hear, and gftlatine alone concretes into a gelly.

Gelatine is infoluble in alcolol, and is even precipitated from water by it; but both acids and alkalies diffolve it. Nituic acid difengages from it a finall quantity of azotic gas ; diffolves it, when affifted by heat, excepting an cily matter, which appears on the furface of the folution ; and converts it, partly into ozalic and malic acids *.
When diffilled, there comes over firt water, contain-Crells shan ing fome animal matter; the gelatine then fwells, be ii. 17. Eng, comes black, emits a fetid odour, accompanied with acrid fumes: Some ennpyreumatic oil then comes over, and a very fmall quantity of carbonat of ammonia : its coaly refiduum remains behind. Thefe phenomena fhew, that gelatine is compofed of carbon, hydrogen, and azot; but the proportion of azot is evidently much fmaller than in either fibrina or albumen \(\dagger\).

\section*{Sect. IV. Of Animeal Mucilage.}

No word in chemiftry is ufed with lefs accuracy than mucilage. It ferves as a common name for almoft every animal fubllance which cannot be referied to any other clafs.

None of the fubflances to which the name of cuimal mucilage has been given, bave been examined with care; of courfe it is unknown whether thefe fubflances be the fame or diffiernt.

Whenever an animal fubflance poffeffes the following Finperties propeties, it is at prefent denominated an animal muci-ef mucilage by cliemifts
1. Soluble in water.
2. Infolutle in alcuhol.
3. Neither coagulable by heat, nor concreting into a gelly by craporation.
4. Not precipitated by the folution of \(\tan\).

Molt of the fubitances called nuucilage have alfo the propetty of ablorbing oxyge:, and of becoming by that ineans infoluble in water

The mucilaginous fublances fhall be pointed out in the next chapter. In the prefent Hate of our know: ledge, any account of them liere would merely be a repetition of the properties fuil mentioned.

\section*{Sect. V. Of the Basis of Bile.}

Into 32 parts of frefh ox bile pour one part of con- Bativo of b centrated muriatic acid. After the mixture has itood how obe for fore hours, pats it through a filter, in order to fe-tained. parate a white coagulated fubitance. Pour the filt "ated liçuor, which has a fine green colour, into a glafs veffel, and evaporate it by a moderate hicat. When it has arrived at a certain degree of concentration, a green coloured fubflance precipitates. Decant off the clear liquid, and wafh the precipitate in a fmall quancity of
pure water. This precipitate is the bafis of bile, or the refin of tile, as it is fometimes called *.

The bafis of bile is of a black colour ; but when fpread out upon naper or on wood, it is green: its tafte is intenfely bitter \(\dagger\).

Wien heated to :bout \(122^{\circ}\), it melts; and if the heat be Aill farther increafed, it takes fire, an! burns with rapidity. It is foluble in water, both cold and hor, ard fill more foluble in alcohol; but water precipitates it from that liqued \(\ddagger\) :

It is foluble alfo in alkalies, and forms with them a componnd which has been compare: to a foap. Acids, when fufficiently diluted, precipitate it both from water and alkalies without any change; but if they be concentrated, the precipitare is rediffolved \(\oint\)

When dititled, it furnifhes fome febacic acid \(\|\).
From thefe properties. it is clear that the bafis of bile has a confiderable refemblance to oils; but it differs from thementirely in feveral of its properties. The addition of oxygen, with which it combines reatily, al. ters it fomewhat, and brings it fill ncater to the clafs of nils.

In this altered flate, the batis of bile may be obtained by the following procefs. Ponr oxy-muriatic acid cautioufly into bile till that liquid lofes its green colour; then \(p\) afs it through a filter to feparate fome albumen which coagulates. Pour more oxy muriatic acid into the filtered liquid, and allow the mixture to repofe for fome time. The oxy-muriatic acid is gradually converted intn common muriatic acid; and in the meằn time the bafis of bile abforbs oxygen, and acquires new properties. Pour into the liquid, after it has remained a fufficient time, a little common muriatic acid, a white precipitate immediately appears, which may be feparated from the fuid. This precipitate is the bafis of bile combined with oxygen.

It has the colour and the confiftence of tailow, but fill retains its bitter tafte. It melts at the tempera. ture of \(107^{\circ}\). It diffolves readily in alcohol, and even in water, provided it be affilted by heat. Acids precipitate it from thefe folutions f .

\section*{Sect. VI. Of UREA.}

Evaporate, by a gentle heat, a quantity of human urine voided fix or eight hours after a meal, till it be reduced to the coniftence of a thick fyrup. In this flate, when put by tn cool, it concretes into a cry ftalline mafe. Pour, at different times, upon this mafs four times its weight of alcohol, and apply a gentle heat; a. great part of the mafs will be diffolved, and there will remain only a number of faline futfances. Pour the alcohol folution into a retort, and ditill by the heat of a fand bath till the liquid, after boiling fome time, is reduced to the confitlence of a thick fyrup. The whole of the alcohol is now feparated, and what remaine in the retort cryftallizes as it cools. Thefe ciyflals confift of the fubitance known by the name of urea *.
This fubfance was firt deferibed by Rouelle the Younger in 1773, under the name of the faponaccous extract of urine. He mentioned feveral of ics pro. perties ; but very little was known concerning its nature till Fourcroy and Vauquelin publifhed their experiments on it in 1799. Thefe celebrated chemilts have given it the name of urea, which we have adopted.

Urea, obtained in this menner, has the form of cryftalline plates croffing each other in diff rent directions.
 Its colour is yellowith whise; it has a feted inell, fome- 206 what refembling that of grarlic or arfenic; its tate is lices. Arong and acrid, refunblinig that of amoniacal falts; it is very vifcid and cilficult to cut, and has a grood deal of relemblance to thick lioney \(t\). When expofed + Fourcry to the open air, it very fon attracts moiture, and is und Vauconverted into a thick brown liquid. It is extremely quelin, anno. foluble in water; and during its foluti n , a conuiderable ce whimp degree of cold is produced \(\ddagger\). Ailcohol diffolves it with \(+14 i d, \mathrm{p} 87\). facility, but fcarcely in fo large a proportion as water. 88.
The alcohol folution yields cryitals much more readily on evaporation than the folution in water.
When nitric acid is dropt into a concentrated folution of urea in water, a great number of bright pearl coloured cryitals are deposited, compofed of urea and nitric acid. No other acid produces this fingular effect. Theconcentrated folution of urea in water is brown, but it becomes yellow when diluted with a hrge quantity of water. The irfulion of raut galls gives it a yellowih brown colour, but caufes ro precipitate. Neither does the infulion of tan produce any precipitate \(\|\). .

When heat is applied to urea, it very foon melts, IVid. fwells up, and evaporates, with an infuppoitably fetid lis compnodour. When ditilled, there comes over firft benzoic ne.t partz. acid, then ca: Lonat of anmonia in cryitals, fome carbonated hydrogen gas, with traces of pruffic acid and oil ; and there remains behind a large reliduum, compofed of charcoa!, muriat of ammonia, and muriat of foda. The dillillation is accompanied with an almoft infupportably fetid alliaceous odour. Two hundred and eighty eight parts of urea yield by ditkillation 200 parts of carbonat of ammonia, 10 parts of carbonated hydrogen gas, 7 parts of charcoal, and 68 parts of benzoic acid, muriat of foda, and muriat of amenonia. Thefe three latt ingredients Fourcroy and Vauquelin confider as foreign fubttancer, feparated from the urine by the alcohol at the fame time with the urea. Hence it follows, that 100 parts of urea, when dithlled, yield
92.027 carbonet of ammonia, \(46<3\) carbonated hydrogen gas, 3.225 clarcual.

\subsection*{99.850}

Now 200 parts of cartonat of ammonia are comoofed of 86 ammonia, 90 carbonic acid gas, and 24 water. Hence it follows, that 100 parts of urea are compofed of 395 oxygen, 32.5 zzot,
\({ }^{1}+7.7\) carbon,
13.3 hydrogen.
100.0

But it can fearcely \(\mathrm{b}=\) doubted, that the water which was found in the carbonat of ammonia exitted real'y formed in the urea before the diftillation \(9 /\).

When the folution of urea in water is kept in a buil \(16 i d\). ing heat, an! new water is added as it evaporates, the urea is gradually decompofed, a very great quartity of carbonat of aminonia is difengarged, and at the fame time acetous acid is formed, and fo:ne charcoal precipi - * Ibild, p. tates *.
When a folution of urea in water is left to itfelf for spoitaneero fome time, it is gradually decompofed. A froth col-wusdectrize
and Vuts. An. When the folution of urea is mixed with one-fourth
quelin, Ann.
de Chim. of its weight of diluted fulphuric acid, no effervefcence xxxii. p. 96 takes place; but, on the application of heat, a quantity 209 Action of acids.
leets on its furface ; air bubbles are emitted which have a ftrong difagreeable fmell, in which ammonia and acetous acid are diftingnifhable. The liquid contains a quantity of acetous acid. The decompofition is much more rapid if a little gelatine be added to the folution. In that cafe more ammonia is difengaged, and the proportion of acetous acid is not fo great* of oil appears on the furface, which eoncretes upon cooling ; the liquid, which comes over into the receiver, contains acetous acid, and a quantity of fulphat of ammonia remained in the retort diffolved in the undifilled mals. By repeated diftillations, the whole of the urea is converted into acetous acid and ammonia \(\uparrow\).

When nitric acid is poured upon cryftallized urea, a violent effervefcence takes place, the misture frothes, affumes the form of a dark red liquid, great quantities of nitrous gas, azotic. gas, and carbonic acid gas, are difengaged. When the effervefcence is over, there re-- mains only a concrete white matter, with fome drops of reddifh liquid. When heat is applied to this refiduum, it detonates like nitrat of ammonia. Into a folution of urea, formed by its attracting moifture from the atmofphere, an equal quantity of nitric acid, of the fpecific gravity 1.460 , diluted with twice its weight of water, was added; a gentle effervefcerice enfued: very gentle heat was applied, which fupported the effervefcence for two days. There was difengaged the firlt day a great quantity of azotic gas and carbonic acid gas; the fecond day, carbonic acid gas, and at laft nitrous gas. At the fame time with the nitrous gas an odour was perceivable of the oxygenated pruffic acid of Berthollet. At the end of the fecond day, the matter in the retort, which was become thick, took fire, and burnt with a violent explofion. The refiduum contained traces of pruffic acid and ammonia. The receiver contained a yellowifh acid liquor, on the furface of which fome
\(\ddagger\) Tbid, p.
© 07. drops of oil fwam \(\ddagger\).
Muriatic acid difolves urea, but does not alter it. Oxy-muriatic acid gas is abforbed very rapidly by a diluted folution of urea; fmall whitifh flakes appear, which foon become brown, and adhere to the fides of the veffel like a concrete oil. After a confiderable quantity of oxy-muriatic acid had been abforbed, the folution, left to itfelf, continued to effervefce exceeding flowly, and to emit carbonic acid and azotic gas. After this effervefcence was over, the liquid contained muriat and carbonat of ammonia.
Urea is diffolved very rapidly by a folution of potafs or foda; and at the fame time a quantity of ammonia is difengaged, the fame fubftance is difengaged when urea is treated with barytes, lime, or even magnef.a. Hence it is evident, that this appearance muft be afcribed to the muriat of ammonia, with which it is conftantly mixed. When pure folid potafs is triturated with urea, heat is produced, a great quantity of ammonia is difengaged. The mixture becomes brown, and a fubtance is depofited, having the appearance of an empyreumatic oil. One part of urea and two of putafs, diffolved in four times its weight of water, when diftilled give out a great quantity of ammoniacal water; the reficuum con5.26 id tained acetite and carbonat of potafs. 11 .

When muriat of foda is diffolved in a folution of urea
in water, it is obtained by evaporation, not in cubic Sugar, cryftals, its ufual form, but in regular octohedrons. Muriat of ammonia, on the contrary, which cryftallizes naturally in octohedroms, is converted into cubes, by diffolving and crytallizing it in the folution of urea.

Such are the properties of this fingular fubftance, as far as they have been afcertained by the experiments of Fourctoy and Vauquelin. It differs from all animal fubflances hitherto examined, in the great proportion of azot which enters into its compofition, and in the facility with which it is decompofed, even by the heat of boiling water.

\section*{Sect. VII. of Sugar.}

Sugar has been already defrribed in the former part of this article as a vegetable fubflance; nothing therefore is neceffary here but to point out the different ftates in which it is found in animals. It has never indeed been found in animals in every refpect fimilar to the fugar of vegetables; but there are certain animal fubtances which have fo many properties in common with fugar, that they can. fcarcely be arranged under any other name. Thefe fubftances are,
1. Sugar of milk,
2. Honey,
3. Sugar of diabetic nrine.
1. The method of obtaining fugar of milk has been Sugar of already detailed in the article Chemistry, \(\mathrm{n}^{\circ} 488\). tomilk. which we refer the reader. For an account of its properties, we are indebted to the obfervations of Mr Lichtenfein.

When pure, it has a white colour, a fweetifh tafte, and no fmell. Its cryftals are femitranfparent regular parallelopipeds, terminated by four-fided pyramids. Its feecific gravity, at the temperature of \(55^{\circ}\), is 1.54 .3 . At that temperature, it is foluble in feven times its weight of water; but is perfectly infoluble in alcohol. When burnt, it emits the odour of caromel, and exhibits precifely the appearance of burning fugar. When diftilled, it yields the fame products as fugar, only the empyreumatic oil obtained has the odour of benzoic acid 5 .
2. Honey is prepared by bees, and perhaps rather 212 belongs to the vegetable than the animal kingdom. It has a white or yellowifh colour, a foft and grained confiftence, a faccharine and aromatic fmell ; by means of alcohol, and even by water, with peculiar management, a true fugar is obtained; by diftillation it affords an acid phlegm and an oil, and its coal is light and fpongy like that of the mucilages of plants. Nitric acid extracts the oxalic acid, which is entirely fimilar to that of fugar ; it is very foluble in water, with which it forms a fyrup, and like fugar paffes to the vinous fermentation *.
3. The urine of perfons labouring under the difeafe known to phyficians by the name of diabetes, yields, when evaporated, a confiderable quantity of matter, which poffeffes the properties of fugar.

\section*{Sect. VIII. Of Oils.}

The oily fubftances found in animals may be arran ged under three heads: 1. Fixed oils; 2. Fat ; 3. Spermaceti.
1. The fixed oils are obtained chiefly from different kinds of fifh, as the whale, \&c. ; and they are diftin-
guifhed by the name of the animal from which they are obtained, as whbale oil, \&c. Thefe oils agree in their properties with other fixed oils; which have been already deferibed in the article Chemistay, Part II, Chap. iii. Suppl.
2. Fat, or rather tallow, is a well. known animal fubftance, much employed in the manufacture of candles and foap.

It has a white colour, often with a fhade of yellow. When frefh, it has no fmell, and but little tafte. While cold, it is liard and brittle; but when expofed to the heat of \(92^{\circ}\), it melts, and affumes the appearance of oil. The fat, however, which is extracted from flefh by boiling, does not melt till it reach the temperature of \(127^{\circ}\). Tallow and fat, in other refpecss, have the properties of fixed oils. They feem to be compofed of a fixed oil combined with febacic acid. When ftrongly heated, with contact of air, it emits a fmoke of a penetrating fmell, which excites tears and coughing, and takes fire when fufficiently heated to be volatilized: the charcoal it affords is not abundant. If fat be diftilled on a wa-ter-bath, an infipid water, of a flight animal fmell, is obtained, which is neither acid nor alkaline, but which foon acquires a putrid fmell, and depofites filaments of a mucilaginous nature. This phenomenon, which takes place with the water obtained by diftillation on the wa. ter bath from any animal fublance, proves, that this fluid carries up with it a mucilaginous principle, which is the caufe of its alteration. Fat, diftilled in a retort, affords phlegm, at firft aqueons, and afterwards ftrongly acid; an oil, partly liquid, and partly concrete; and a very fmall quantity of charcoal, exceedingly difficult to incinerate, in which Crell found a fmall quantity of phofphat of lime. Thefe products have an acid and penetrating fmell, as ftrong as that of fulphurous acid. The acid is the febacic.
3. Spermaceti, is an oily, concrete, cryftalline, femitranfparent matter, of a peculiar fmell, which is taken out of the cavity of the cranium of the cachalot; it is purified by liquefaction, and the feparation of another fluid and inconcrefcible oil, with which it is mixed. This fubftance exhibits very fingular chemical properties; for it refembles fixed oils in fome refpects, and volatile oils in others.
When heated to the temperature of \(133^{\circ} \dagger\), it melts; and if the heat be increafed, it evaporates without much alteration. When repeatedly diftilled, however, it lofes its folid form, and becomes like oil. When heated in contact with air, it takes fire, and burns uniformly without any difagreeable odour: hence its ufe in making candles.
By long expofure in hot air it becomes yellow and rancid. Pure alkali combines with it, and forms a foap. Nitric and muriatic acids do not affeet it, but fulphuric acid diffolves it and alters its colour.

\section*{Sect. IX. Of Acids.}

The acids hitherto difcovered in the animal kingdom are the nine following.

Suppl. Vol. II. Part II.
1. Sulphuric,
2. Muriatic,
4. Carbonic,
3. Phofphoric, 5. Benzoic,
7. Formic,
6. Sebacic, 9. Uric.

Acids.

The firt eight of thefe have been already defcribed in the article Chemistry, Suppl. it is unneceflary therefore to defribe them here.
Few perfons are ignorant that concretions fometimes Difovery form in the human urinary bladder, and produce that "f uric very formidable difeafe known by the names of the acid. Aone and the gravel. Thefe concretions are often extracted by a furgical operation : they are called urinary calculi.
The moft common of thefe calculi is of a brown colour, and very foluble in pure potafs or foda ley.

If into an alkaline folution of one of thefe calculi a quantity of acctous acid be poured, a copious brown coloured precipitate immediately appears, which may be feparated and edulcorated in a fmall quantity of water. This fubftance is uric acid**.

French chemits afterwards called it lithic acid: but this name, in confequence chiefly of fome remarkz of Dr Pearfon on its impropriety, has been lately given up, and that of uric ( b ) acid fubftituted in its place. We have adopted the new name, becaufe we think it preferable to the old; which indeed conveyed a kind of inconfiftency to thofe who attended to the etymological meaning of the word.

Uric acid poffeffes the following properties: it cry-Its proper. ftallizes in thin plates; has a brown colour, and fcarce. ties. ly any tafte. Cold water fcarcely diffolves any part of it ; but it is foluble in 960 parts of boiling water. The folution reddens vegetable blues, efpecially the tincture of turnfol. A great part of the acid precipitates again as the water cools. It combines readily with alkalies and earths; but the compound is decompofed by every other acid. Sulphuric acid, when concentrated, decompofes it entirely *. Nitric acid diffolves it readily: *Scbecte, i. the folution is of a pink colour, and has the property 200. of tinging animal fubflances, the fkin for inftance, of the fame colourt. When this folution is boiled, a *Ibid and quantity of azotic gas, carbonic acid gas, and of pruf Pearfon. fic acid, is difengaged \(\ddagger\). Oxy-muriatic acid converts \(\$\) Fourcroy, it in a few minutes into oxalic acid \(\delta\).

When diftilled, about a fourth of the acid paffes over bim. xxvtio lite altered \({ }^{2}\) for 267. a. prystalized § Rrugnao in plates; a few drops of thick oil make their appear- iclli, ibid. ance; \(\frac{1}{8}\) th of the acid of concrete carbonat of ammo-xxxii. 8840 nia, fome pruffiat of ammunia, fome water, and carbonic acid; and there remains in the retort charcoal, amounting to about \(\frac{8}{50}\) th of the weight of the acid diftilled \|.

Thefe fatte are fufficient to fhew us, that uric acid is compofed of carbon, azot, hydrogen, and oxygen; and that the proportion of the two latt ingredients is much fmaller than of the other two.
The different falts which uric acid forms with alkaline and earthy bafes have not been examined with attention ; but urat of potafs, of foda, and of lime, have been formed both by Scheele and Fourcroy ; and urat

Alkalies, of ammonia is not unfrequently found cryfallized in Earths, and
Merals.
urinary calculi.
Metals.

218
Subftances found in animals.

The order of the affinities of the different bales for uric acids is entirely unknown; but it has been afcertained, that its affinity for thefe bafes is much weaker than that of any other acid. Its falts are decompofed even by pruffic and carbonic acid.

\section*{-Sect. X. Of Alkalies, Liarths, and Metals.}
1. A LL the three alkalies have been found in the ani-. mal kingdom, as we fhall thew in the next chapter:
2. The orily earths which have been found in animals
are,
\[
\begin{aligned}
& \text { 1. Sime, } \\
& \text { 2. Magnefia, } \\
& \text { 3. Silica. }
\end{aligned}
\]

The firf in great abundance, almoft in every large animal ; the other two very rarely, and only as it were by accident.
3. The metals hitherto found in animals are,
\[
\begin{aligned}
& \text { 1. Iron, } \\
& \text { 2. Manganefe. }
\end{aligned}
\]

The firf exifts in all the larger animals in fome confiderable quantity ; the fecond has fcarce ever been found in any quantity fo great as to admit of being weigh. ed.

Such are the fubftances hitherto found in animals. The fimple bodies of which ail of them confilt are the following :
\begin{tabular}{lll} 
1. Azot, & 6. Phofphorus, & 11. Magnefia, \\
2. Carbon, & 7. Muriatic acid, & 12. Silica, \\
3. Hydrogen, & 8. Potafs, & 13. Iron, \\
4. Oxygen, & 9. Soda, & 14. Manganefe. \\
5. Lime, & 12. Sulphur, &
\end{tabular} be thefe, magnefla and filica may in a great meafure be confidered as foreign bodies; for they are only ound in cales of difeafe. The principal elementary ingredients are the firft fix: animal fubftances may be confdered as in a great meafure compoled of them. The firft four conftitute almoft entirely the foft parts, and the other two form the bafis of the hard yarts. But we will be able to judge of this much better, after we have taken a view of the warious parts of animals as they exif ready formed in the body. This fhall be the fubject of the next chapter.

\section*{Chap. II. Of the Parts of Animals.}

The different fubftances which compofe the bodies of animals have been defcribed with fufficient minutenefs in the article Anaromy, Encysl. to which we beg leave to refer the reader. Any repetition in this plaze would be improper. Thefe fubftances are the following:
\begin{tabular}{ll} 
1. Bones and fhells, & 6. Cartilages, \\
2. Mufcles, & 7. Skin, \\
3. Tendons, & 8. Brain and nerves, \\
4. Ligaments, & 9. Horns and nails, \\
3. Membranes, & 10. Hair and feathers. \\
Befides thefe fubftances which conflitute the folid \\
part of the bodies of animals, there are a number of
\end{tabular}
fluids, the moft important of which is the blood, which pervades every part of the fyftem in all the larger animals: The reft are known by the name of fecretions, becaufe they are formed or fecreled, as the anatomits term it, from the blood. The principal animal fecretions are the following:
12. Milk, ". "o sh
2. Saliva,
3. Pancreatic juice,
4. Bile and biliary cal-
culi,
5. T'ears,
6. Mucus of the nofe,
7. Sinovia,
8. Semen,
9. Liqnor of the amnios,
10. Urine and urinary calculi.
Thefe fubftances flall form the fubject of the following fections.

\section*{Sect. I. Of Bones.}

By bones, we mean thofe hard, folid, well known fubitances, to which the firmnefs, fhape, and Itrength of animal bodies, are owing; which, in the larger animals, form, as it were, the ground-work upon which all the reft is built. In man, in quadrupeds, and many other animals, the bones are fituated below the other parts, and fcarcely any of them are expofed to view ; but Thell-fifh and fnails have a hard covering on the outfide of their budies, evidently intended for defence. As thefe coverings, though known by the nanie of Joells, are undoubtedly of a bony uature, we thall include them alfo in this fection. For the very fame reafons, it would be inproper to exclude egg-foells, and thofe coverings of certain animals, the tortoife for inftance, known by the naine of crufls.

It had been long known, that bones may be rendered foft and cartilaginous by keeping them in diluted acid folutions, and that fome acids even diffolve them altogether ; that when expofed to a violent heat, they become white, oyaque, and brittle; and Dr Lewis had obferved, that a fudden and violent heat rendered them hard, femitranfparent, and fonorous. But their component pats remained unknown till Scheele mentioned, in bis differtation on Fluor Spar, publithed in the Stock. holm Tranfactions for 1771 , that the earthy part of bones is phofphot of lime \((\mathrm{m})\). Since that time conliderable additions have been made to the chemical analy lis of thefe fubitances by Berniard, Bunillon, and Roliz elle. Mr Hatchett has publifhed a very valuable paper on the fubject in the Philofophical Tranfactions for 1799 ; and in the 34 th volume of the Amules de Chimie, Mr Merat-Guillot has given us a table of the component parts of the bones of a confiderable number of animals.

The bony parts of animals may be divided into three claffes; namely, lones, crufts, and foells.
1. Bones have a confiderable degree of hardnefs; Properries when recent, they contain a quantity of marrow, which of bones. may be partly feparated from them. When the water in which bones have been for fome rime boiled is evaporated to a proper conffitence, it affumes the form of a gelly; bones therefore contain gelatine.
If a piece of bone be kept for fome time in diluted rheir cort muriatic, or even acetous acid, it gradually lofes a con- ponent fiderable part of its weight, becomes foft, and acquires pa:t:。
( m ) The difcoverer of this has not been completely afcertained: Scheele does not claim it in that paper ; Bergman gives it to Gahn; but Crell affims that it was made by Scheele.

\section*{\(\xrightarrow{\sim}\)} a certain éegrec of tran farency; and, in fhor, accquires all the properties of carlilane. Bone the efore confifts of caritage, combined with fome fubfance which thefe acids are capable of diffolving and carrying off.

If pure ainmonia be dropt into the àcid which has reduced the bone to this fate, a quantity of white powder precipitater, which ooffefles all the properties of plofploat of lime. The fubftance, then, which was combined with the cartilage is phofplot of lime.

After the phofpliat of lime has precipitated, the addition of carbonat of ammonia occafions a farther precipitate, which confifts of carbonat of lime: but the Haidet:, quantity of this precipitate is incorfiderable *. When il. Trar. concentrated acids are poured on bones, whether recent \({ }_{i .}, \mathrm{p}\). or calcined, an effervefcence is perceptible; the gas which efcapes renders lime water turbid, and is therefore carbonic acid. Now fince bones contain carbonic acid, and fince they contain lime alfo uncombined with any acid ftronger than carbonic-it is evident that they contain a little carbonat of lime. Mr Hatchett found this fubtance in all the bones of quadrupeds and of fifh which he examined \(\dagger\).

When bores are calcined, and the reftuum is diffolved in nitric acid, nitrat of barytes caufes a fmall precipitate, which is infoluble in muriatic acid, and is therefore fulphat of barytes \(\ddagger\). Confequently bones contain fulphuric acid. It has been afcertained, that this acid is combined with lime. The proportion of fulphat of lime in bones is very inconfiderable.

Thus we have fcen, that bones are compofed of cartilage, which confitts almoft entirely of gelatine, of phofphat of lime, carbonat of lime, and fulphat of lime. The following table, drawn up by Merat-Guil-
Ann. ie lot \(\|_{\text {. }}\), exhibits a comparative view of the relative proportion of thefe ingredients in a varicty of bones. The fulpiat of lime, which occurs only in a very fnall quantity, has been confounded with plofphat of lime.
\begin{tabular}{|c|c|c|c|c|}
\hline One hundred parts contain & \begin{tabular}{l}
Gela- \\
rinc.
\end{tabular} & Phof \({ }^{\text {P }}\), & Carb. & Lofs. \\
\hline \(\left.\begin{array}{l}\text { Human bones from a } \\ \text { burying ground, }\end{array}\right\}\) & 16 & 67 & 1.5 & 15.5 \\
\hline \(\left.\begin{array}{l}\text { Do. dry, but not from } \\ \text { under the earth, }\end{array}\right\}\) & 23 & 63 & 2 & 2 \\
\hline Bone of ox, - - & 3 & 93 & 2 & 2 \\
\hline calf, & 25 & 54 & trace & 21 \\
\hline hoife, & 9 & 67.5 & 1.25 & 22.25 \\
\hline fheep, & 16 & 70 & 0.5 & 13.5 \\
\hline clk, & 1.5 & \(9^{0}\) & I & \(7 \cdot 5\) \\
\hline hog, & 17 & 52 & I & 30 \\
\hline hare, & 9 & 85 & 1 & 5 \\
\hline pullet, & 6 & 72 & 1.5 & 20.5 \\
\hline pike, & 12 & 64 & 1.5 & 23 \\
\hline carp, - & , & 45 & 0.5 & 48.5 \\
\hline Horfe tooth, - & 12 & 85.5 & 0.25 & 2.25 \\
\hline Ivory, - - - & 24 & 64 & 0.1 & 11.15 \\
\hline Hartfhorn, - - & 27 & 57.5 & 1. & 14.5 \\
\hline
\end{tabular}

The enamel of the teeth is compofed of the fame Fiactelt, earihy ingredients as other bones; but it is totally def-
3il. Trutr 3il. Trurff titute of cartilege *.
\({ }_{8}^{99, ~ p . ~ 2 . ~ T h e ~ c r u f t a c t o u s ~ c o v e r i n g s ~ o f ~ a n i m a l s, ~ a s ~ o f ~ e c h i-~}\) 22 ni ni, crabas, lobfters, prawns, and cray-fifh, and alfo the impment fiells of eggs, are compofed of the fame ingredients as
rts of res of
afts. -. 1
bones; but in them the proportion of carbonat of lime ' B nes. far exceeds that of phofphat *.

60 carbonat of lime, 14 phofphat,

 One hundred parte of crawfifh cruft contain \(\begin{gathered}\text { Guillot, Anmo } \\ \text { ds Chim. }\end{gathered}\) 60 carbonat of lime,
12 phofphat of lime,


One hundred parts of hens egg-fhells contain tsmi 89.6 carbonat of lime, 5.7 phofphat of lime, \(\quad\)... \(3.1+m\) 4.7 animal matter.
 the thells of fnails.
3. The fhells of fca animals may be divided into two Con ponent claftes: The firt has the appearance of porcelain; their parts of furface is enamelled, and their texture is often flightly thells. fibrons. Mr Hatchett has given them the name of porcellancous fhells. The fecond kind of fhell is known by the name of motber of pearl. It is covered with a flrong epidermis, and below it lies the fhelly matter in layers *. The fhell of the fiefh water mufcle, mother * Herifant, of pearl, heliotis iris, and turbo olearius, are inflances of Mcm. Par. thefe fhells.

Porcellaneous Thells are compofed of carbonat of Hatchett, lime cemented together by a very fmall quantity of animal matter \(\dagger\).
layers of carbonat of lime and a thin membranace. ous or cartilaginous fubitance. This cartilage ftill retains the figure of the thell, after all the carbonat of lime has been feparated by acids \(\ddagger\).
\(\ddagger\) Ybid 3 rs.
Mother of pearl contains 66 carbonat of lime, 34 cartilage.
\(100 \|\).
H Merat-
Guillot, ibid,
Coral, which is a bony fubttance formed by certain fea infects, has a nearer relation to mother of pearl thells in its ftructure than to any other bony fubitance, as the following table of will fhew.
- Merat-

Articulated Guilloi, ibis.
Carbonat of lime,
White coral. Red coral.
Animal matter,
\begin{tabular}{lr}
50 & 53.5 \\
50 & \(\frac{46.5}{100}\)
\end{tabular} coraline.

\section*{Sect. II. Of the MIUsgees of Animals.}

The mufcular parts of animals are known in common language by the name of flefo. They conlitute a confiderable proportion of the food of man.

Mufcular flefh is compofed of a great number of fibres or threads, commonly of a reddifh or whitith colour ; but its appearance is too wcll krown to require any defcription. Hitherto it has not been fubjected to any accuratc chemical analyfis. Mr Thouvenel, indeed, has publifhed a very valuable differtation on the
\({ }_{4} \mathrm{C}_{2}\)
fubject ; the ufual chemical methods. When the water is evaporated flowly, it at laft coagulates, and the coagulum may be feparated by means of a filter. It poffefies the properties of albumen.
2. The water is then to be evaporated gently to drynefs, and alcohol poured upon the dry mafs : part of it is diffolved by digettion, and there remains a faline fubflance, which has not been examined ; but which Fourcroy conjectures to be a pho/pbat.
3. When the alcohol is evaporated to drynefs, it leaves a peculiar mucous fubftance, foluble both in water and alcohol ; and when its watery folution is very much concentrated, it affumes an acid and bitter tafte. It fwells upon hot coals, and melts, emitting an acid and penetrating fmell. It attracts moilture from the air, and forms a faline efflorefcence. In a hot atmofphere it becomes four and putrefies. All thefe properties render it probable that this fubltance of Mr T'houvenel is that which is converted into zoonic acid during the roafting of ineat.
4. The mufcle is now to be boiled in water for fome time. A quantity of fat appears on its furface in the form of oil, which may be taken off.
5. The water, when evaporated fufficieutly, affumes the form of a jelly on cooling, and therefore contains a portion of gelatine. It contains alfo a little of the faline fubflance, and of the mucous fubftance mentioned above.
6. The refiduum of the mufcle is now white and inGpid, of a fibrous ftructure, and infoluble in water, and bas all the properties of fibrina.

Thus it appears that mufcle is compofed of
Albumen,
Mucous matter,
Gelatine, Fibrina, A falt.
The French chemifts have difcovered, that when a piece of mufcle is allowed to remain a fufficient time in diluted fulphuric acid, it is converted into a fubflance refembling tallow: weak nitric acid. on the other hand,
- Humbolt n Galvi\(n i / m, 170\).

Mufcics of fubject; but his analy fis was made before, the method
Animals. of examining animal fubftances was fo well undertood from other fubfances.
Analyfis of I. When a mufcle is well wafhed in cold water, fe-
Duncles. veral of its parts are diffolved, and may be obtained by of examining animal fubftances was fo well underftood as it is at prefent. It is to him, however, that we are indebted for almoft all the facts known concerning the compofition of mufcle.

It is fcarcely poffible to feparate the mufcle from all the other fubttances with which it is mixed. A quanlity of fat often adheres to it clofely; blood pervades the whole of it; and every fibre is enveloped in a particular thin membranous matter, which anatomifta diflinguith by the name of cellular fubflunce. The analy fis of the mufcle, then, cannot be fuppofed to exhibit an accurate view of the compofition of pure mufcular fibres, but only of mufcular fibre not perfectly feparated
only that they are compofed, in a great meafure, of gelatine ; for it is partly from them that glue is made; which does not differ from gelatine, except in not being perfectly pure.

Mr Hatchett has afcertained that they contain no phofphat of lime as a conftituent part, and fcarcely any faline ingıedients; for when calcined they leave but a very inconfiderable refiduum. Thus 250 grains of hog's bladder left only 0.02 grain of \(x \in f i d u u m ~ t\).

\author{
Sect. IV. Of the Sain.
}

\author{
\begin{tabular}{l} 
Tranf.1799s \\
\\
\hline
\end{tabular} \\ P. \(333^{\circ}\)
}

The fkin is that ftrong thick covering which envelopes the whole external furface of animals. It is compofed chiefly of two parts : a thin white elattic layer on the outlide, which is called epidermis, or cuticle; and a much thicker layer, compofed of a great many fibres, clofely interwoven, and difpofed in different directions; this is called the cutis, or truc Jkin. The epidermis is that part of the \(\mathfrak{k i n}\) which is raifed in blifters.
1. The cpidermis is eafily feparated from the cutis Epider. by maceration in hot water. It poffeffes a very great mis. degree of elafticity.

It is totally infoluble in water and in alcohol. Pure its proper. fixed alkalies diffolve it completely, as does lime like-ties. wife, though nowly \(\ddagger\). Sulphuric and muriatic acids \(\ddagger\) Chaptat, do not diffolve it, at leaft they have no fenlible action Ann, de on it for a confiderable time; but nitric acid foon de- Chim. axii, prives it of its elafticity, calfes it to fall to pieces, and \({ }^{221}\) probably foon decompofes it \(\oint\).
§ Cruiljbant
It is well known that the living epidermis is tinged on \(I_{n / e n f f b l e}\) yellow almoft inftantaneoufly by uitric acid; but this effect does not take place, at leaft fo fpeedily, when the dead cuticle is plunged in nitric acid altogether \|. \|Ibid.
2. When a portion of cuti6 is macerated for fome 226 hours in water, and agritation and preffure is employed Cutis. to accelerate the effect, the blood, and all the extraneous matter with which it was loaded, are feparated from it, but its texture remains waltered. On evaporating the water employed, a fimall quantity of gelatine may be ubtained. No fubfequent maceration in cold water has any farther effect ; the weight of the cutis is not diminifhed, and its texture is not altered : but if it be boiled in a fufficient quantity of water, it may be comnpletely diffolved, and the whole of it, by evaporating the water, obtained in the ftate of gelatine *.
* Seguir,

Seguin informs us that he has afcertained, by a great Nicholjon's variety of experiments, that the cutis differs from ge. Fourn:t, io latime merely in containing an additional quantity of \({ }^{271}\). oxygen. Hot water (he lays) expels this oxysen, and Compofed thus converts cutis into gelatine \(\dagger\). As thefe experi-of gelatine ments have not been publithed, it is inpofible to form \(\dagger 16 i d .277\) any judgment of their weight.

It is the fkin or cutis of animals of which leather is Nature of formed. The procefs of converting ikin into leather is tanning, called taining. This procefs, though practifed in the earliest ages, was merely empyrical, till the happy ingenuity of Mr Seguin led him to difcover its real nature. After the epidermis and all the impurities of the \(\{\) kin have been feparated, and its pores have been fo far opened as to admit of being completely penetrated, it is fteeped in an infufion of oak-bark, which confifts of gallic acid and tan. The gallic acid (if we believe Seguin) deprives the fkin gradually of oxygen, and thus converts it into gelatine, and the tan combines with this gelatine the inftant it is formed; and this procefs
and goes on fo flowly that the texture of the flkin is not al. tered. I.eather, therefore, is merely a combination of gelatine and \(\tan \ddagger\).

\section*{Sect. V. Of the Brain and Nervfs.}

The brain and nerves are the inftruments of fenfation, and even of motion; for an aninal lofes the power of moving a part the infant that the nerves which enter it are cut.

The brain and nerves have a flrong refemblance to each other ; and it is probable that they agree alfo ins their compofition. But hitherto no attempt has been made to analy fe the nerves. The only chemitts who have examined the nature of bruin are Mr Thouret * and Mr Fuurcroy \(\ddagger\).

The brain confitts of two fubftances, which differ xvi. from each other fomewhat in colour, but which, in other refpects, feem to be of the fame nature. 'The outermoft matter, having fome frnall refen:blance in cohour to wond-afhes, has been called the cineritious part ; the innermoft part has been called the medullary part.

Braius has a ioft feel, not unlike that of foap; its texture appears to be veiy clofe; its fpecific gravity is greater than that of water.

When brain is kept in clofe veffels fo that the external air is excluded, it remains for a long time unaltered. Fourcroy filled a glafs veffel almoft completely with pieces of brain, and attached it to a pneumatic apparatus; a few bubbles of carbonic acid gas appeared at firlt, but it remained above a year without undergoing 29\%- any farther change \(\ddagger\).

This is very far from being the cafe with brain expofed to the atmofphere. In a few days (at the temperature of \(60^{\circ}\) ) it cxhales a mof deteltible odour, becomes acid, affumes a green colour, and very foon a great quantity of ammonia makes iss appearance in it.

Cold water does not diffolve any part of the brain; but by trituration in a mortar, it forms, with water, a whitifh coloured emulfion, which appears homogencous, may be paffed through a filter, and the brain does not precipitate by reft. When this emulfion is heated to \(145^{\circ}\), a white coagulum is formed. The addition of a great quantity of water alfo caufes a coagulum to appear, which fwims on the furface, but the water fill retains a milky colour. When fulphuric acid is dropt into the watery emulfion of brain, white flakes feparate and fwim on the furface, and the liquid becomes red. Nitric acid produces the fame effects, only the liquid becones yellow. Alcohol alfo fepanates a white coagulum from the emulfion, after it has been mixed with it for fome hours. When nitric acid is added to the emulfion till it becomes flightly acid, a coagulum is alfo feparated. This coagulum is of a white colour; it is infoluble in water and in alcohol. Heat foftens, but cies not melt it. When dried, it becomes tranfparent, and breaks with a glaffy fracture. It has therefore 1.283. fome refemblance to albumen \(\oint\).

When brain is triturated in a mortar with diluted fulphuric acid, part is diffolvce, the reft may be feparated, by filtration, in the form of a coagnlum. The acid liquor is colourlefs. By evaporation, the liquid becomes black, fulphurous acid is exhaled, and crytals appear ; and when evaporated to drynefs, a black mafs remains behind. When this mafs is diluted with water, a quantity of charcoal feparates, and the water remains
clear. The brain is completely decompofed, a qumer Bain and tity of ammonia combines with the acid and forms ful- Nerve. phat of ammonia, while charcoal is precipitated. The water, by evaporation and treatment with alcohol, yields fulphats of ammonia and lime, phofphoris acid, and phofohats of fode and ammonia. Brain therefüre lt's aivaly fiso comtains
\[
\begin{aligned}
& \text { Phofphat of lime, } \\
& \text { - foda, } \\
& \hline
\end{aligned}
\]

Traces alfo of fulphat of lime can be difosverel in it. The quantity of thefe falts is very fnall ; altoguther they do not amount to \(\frac{1}{3} \delta\) th part \(\|\).

Dilnted nitric acid, when triturated with brain, like-Gbim. xvi, wife diffilves a part, and coagulates the relt. 'I'lie for \({ }^{283}\). lution is tranfparent. When evaporated till the acid becomes cwncentrated, carbonic acid gras and niitous gas are difengaged; an effervefeence takes place, white fumes appear, an immenfe quantity of ammonia is difengaged, a bulky charcoal semains mixed with a cenfiderable quantity of oxalic acid *. \({ }^{*}\). Ibid 307

When brain is gradually evaporated to dryncfs ty the heat of a water bath, a portion of tranfpa:ent liquid feparates at firft from the reft, and the refidum?, when nearly dry, acquires a brown coluur; its weiglit. amounts to about ore-fourth of the frefh brain. It may ftill be formed into an emulfon with water, but very foon feparates ayain fontancouny.

When akohol is repeated!y boiled upon this dried? refiduum till it ceafes to have any more action, it dif. folves about five.eighths of the whole. When this al. cohol cools, it depofits a yellowifh white fubRance, compofed of brilliant plates. When kneaded together by the fingers, it afiumes the appearance of a ductile pafte: at the temperature of boiling water it becomes. Goft, and when the heat is increafed it blackens, exhales. empyreumatic and ammoniacal fumes, and leaves behind it a charry matter \(\dagger\). When the alcohol is evaporated, \(f\) Ibid. 3 r 3 . it depofites a ycllowifh black matter, which redrens paper tinged with turnfol, and readily diffufes itfelf through water \(\ddagger\).

Pure concentrated potafs diffulves, brain, difengarging a great quantity of ammonia.
Thefe facts are fufficient to frew ns, that, exclufive of the fmall proportion of faline ingredients, brain is compofed of a peculiar matter, differing in many particulars from all other aniinal fubitances, but having a confiderable refemblance in many of its properties to albumen. Brain has been compared to a foap; but it is plain that the refemblance is very faint, as fcarcely any oily matter could be extricated from brain by Fourcroy, though he attempted it by all the centrivances which the prefent ftate of chemiltry. fuggefted; and the alkaline proportion of it is a great deal too fmall to merit any attention.

\section*{Sect. Vi. Of Nails, Horns, Haik, Feathers.}

These fubflances have not hitherto been analyfed. We know only that they have a great refemblance to each other. They give ont the fame fmell, and exhibit the fame phenomena when burnt, and they yield the fame products when dillilled.

Pure fixed alkali has the property of decompofing, thefe fubftances, and of converting them into ammonia and oil. The ammonia is difengaged in great abundance, and the oil combines with the alkali, and forms.

Biond. a fpecies of foap. When muriatic acid is poured into the folution of thefe fubfances in pure foda, a quantity of fulpharated hydrogen gas is difengaged, and a black fubftance, doubtle \({ }^{\prime}\) s charcoal, precipitates. Hence it follows that thefe fubtances contain in their compofi tion a quantity of fulphur. Accordingly, if a bit of filver is put into the folution, it inftantly affumes a black colour §.

Thefe fubftances fcarcely contain any earthy ingre-
|| Hatchett, tion, left only 0.04 grain of refiduum, half of which was phofphat of lime. Seventy.eight grains of chamois horn left five grains of refiduum \(\|\).
- Such is a very imperfect account of the folids which compofe animal bodies. We proceed next to the fluid which circulates through living bodies, namely blood; and to the various fecretions formed from the blood, either in order to anfwer fome important purpofe to the animal, or to be evacuated as ufelefs, that the blood thus purified may be more proper for anfwering the ends for which it is deftined. Many of thefe fubftances have been examined with more care by chemitts than the animal folids.

\section*{Sect. VII. Of Blood.}

231
Properties of blood.
* Haller's

Pbyfiology,
ii. 41 .
+ Ann. de
Ebin, vii. 4.4.

232 Compored of red glo-
-bules,
Bloon is a well known fluid, which circulates in the veins and arteries of the more perfect animals. It is of a red colour, has a confiderable degree of confiftency, and an unctuous feel, as if it contaired a quantity of foap. Its tafte is flightly faline, und it has a peculiar fmell.

The fpecific gravity of human blood is, at a medium, 10527 . Mr Fourcroy found the fpecific gravity of builock's blood, at the temperature of \(60^{\circ}\), to be \(1.056+\). 'The blood does not uniformly retain the fame confiftence-in the fame animal, and its confiftence in different animals is very various. It is eafy to fee that its fpecific gravity mult be equally various.

When the blood is viewed through a microfcope, a great many, globules, of a red colour, are feen floating in it. It is to thele globules that the red colour of the blood is owing. They were firlt examined with attention by Leuwenhoeck. Their form, their proportion, and the changes which they undergo from the addition of various fubftances, have been examined with the greateft care; but hitherto without adding much to our knowledge. We neither know the ingredients of which the red globules are compofed, nor the changes to which they are fubjected, nor the ufeful purpofes which they ferve; nor has any accurate method Leen difcovered of feparating them from the reft of the blood, and of obtaining them in a fate of purity.
When blood, after being drawn from an animal, is allowed to remain for fome time at reft, it very foon coagulates into a folid mafs, of the confiftence of curdled milk. This mafs gradually feparates into two parts: one of which is fuid, and is called ferum; the other, the coagulim, has been called cruor, becaufe it alone retains the red colour which diftinguifhes blood. This feparation is very fimilar to the feparation of curdled milk into curds and whey. The cruor ufially finks to the bottom of the veffel, and, of courfe, is co-

The cruor, or clot as it is fometimes called, is of a *ed colour, and poffeffes confiderable confittence. It
miean fpecific gravity" is about \(x .245 \ddagger\). "If we wafn the cruor in a fifficient quantity of water, it gradually lofes its red colour, and affumes the appeatance of a whitih, Gbrous, elaftic mafs, which pofleffes all the pro- Pableyrology perties of filina. The cruor therefore is compofedii. \(\$ 1\). chiefly of fibrina. The water in which it has been wafhed affumes a red colour, but continues tranfparent. It is evident from this that it contains, diffolved in it, the red globules; not, however, in a ftate of purity, for it is impoffible to fep?rate the cruor completely from the ferum: confequently the water muft contain both ferum and red globules. We know, however, from this, that the red globules are foluble in water. The cruor of the blood, then, is compofed of red globules and fibrina.

If the cruor of the blood be expofed to a gentle heat, it becomes gradually dry and brittle. If this dry mais be fubmitted to diftillation, it yrelds water, ammonia, a thick empyreumatic oil, and much carbonat of ammonia: there remains a fpongy coal of a brilliant appearance, from which fulphuric acid extracts foda and iron; there remains behind a mixture of phofphat of lime and charcoal ||.

When the fibrina is diftilled, it yields precifely the \({ }^{i i} .26 \%\). fame products; but the refiduum contains neither iron nor foda. The red water, on the contrary, which had been employed to wafh the cruor, contains both of thefe fubftances, efpecially iron; which may be obtained in the ftate of oxyd by evaporating this water to drynefs, and calcining the refiduum If. Thefe facts are fuffir Itid. cient to demonftrate that the red globules contain iron; confequently the opinion that their colour depends upon that metal is at leaft poffible. It is probably owing to the foda which it contains, that the prelence of iron eannot be afcertained in the folution of thefe globules by the ufual telts. The pruffian alkali caufes no precipitate ; the infufion of nut galls gives it no blue or purplif tinge*.

The ferum is of a light greenifh yellow colour; it has the tafte, fmell, and feel of the blood, but its confiflence is not fo great. Its mean fpecific gravity is \({ }^{2}{ }^{234}\) about \(1.0287 \%\). It converts fyrup of violets to a a rum green, and therefore contains an alkali., Oit examina + ymint tion, it is found that ie owes this property to a portion Hallef's of foda. When heated to the temperature of \(156^{\circ} \varphi, P b y / 50\) ond the ferum coagulates, as Harvey firter difcovered \(\dagger\). It It Cithlum coagulates allo when boiling water is mixed with it ; \(\uparrow\) D C Go but if ferum be mixed with fix parts of cold water, it Arime p. does not coagulate by heat \(\ddagger\). Whien thus coagulated, it has a greyih white colour, and is not unlike the fand farn boiled white of an egg f. If the coagulum be cut into \({ }^{\mathrm{Ammin}}\) ( C fmall pieces, a muddy fluid may be fqueezed from it;iss which has been termed the ferfily. After the fepara-\& 16.6 .1 tion of this fluid, if the retidnum be carefully wafted in boiling water and examined, it will be found to porfeff all the properties of allumen. The ferum, therefore, contains a confiderable proportion of albumen. Hence its ceagulation by heat, and the other phenomena which albumen ufually exlibits.
If the ferofity be gently evaporated till it becomes concentrated, and then be allowed to cool; it affumes the form of a jelly, as was firft obferved by De Haen II. Confequently it contains gelatine.
- If ferum be mixed with twice its weight of water, and, after coagculation by heat, the albumen be fepara-
ted by filtration, and the liquid be flowly evaporated till it is confiderably concentrated, a number of cryftals are depofited when the liquid is left ftanding in a cool place. Thefe cryttals conlitt of muriat of foda and carbonat of foda 9 .
Thus it appears that the ferum of the blood contains albumen, gelatine, foda, muriat of foda, and carbonat of foda, befides a portion of water.

Gelatine may be precipitated from the ferofity by the three mineral acids. Mr Hunter obferved, that Gonlard's extraet, or, which is the fame thing, acetite of lead diffolved in acetous acid, produces with gelatine a copious precipitate \(\boldsymbol{q}\). When nittic acid is ditilled off ferum, it converts it partly into pruffic acid *. Acids, alcohol, and tan, precipitate the albumen in different ftates; but this, after what has been faid in the latt chapter, fection ii. requires no farther explanation.
The proportion between the cruor and ferum of the blood varies much in different animals, and even in the fame animal in different circumftances. The moft common proportion is about one part of cruor to three parts of ferum ; but in many cafes the cruor exceeds and falls fhot of this quantity: the limits of the ratios of thele fubflances to each other appear, from a comparifon of the conclufions of moft of thofe who have written aocurately on the fubject, to be \(1: 1\) and \(1: 4\); but the firlt cafe mult be very rare indeed *.

When new-drawn blood is firred brikly round with a ftick, or the frand, the whole of the fibrina collecीs together upon the fliek, and in this manner may be feparated altogether from the reft of the hlood. The red globules, in this cafe, remair behind in the ferum. It is in this manner that the blood is prepared for the different purpofes to which it is put : as clarifying fugar, making piddings, \&c. After the fibrina is thus feparated, the blood no longer coagulates when allowed to remain at reft, but a fpongy flaky matter feparates from it and fwims on the furface + .

When blood is dired by a gentle heat, water exhales from it, retaining a very finall quantity of animal matter in folution, and confequently having the odour of blood. Blood dried in this manner being introduced into a retort and diftilled, there comes over, frit a clear watery liquor, then carbonic acid gas, and carbonat of ammonia, which cryftallizes in the neck of the retort; after thefe products there comes over a fluid oil, carbonated hydrogen gas, and an oily fubftance of the confiltence of butter. The watery liquor poffeffes the property of precipitating from fulphat of iron a green powder: muriatic acid diffolves part of this powder, and there remains behind a little pruffian blue. Confequently this watery liquor contains both an alkali and pruffic acid \(\ddagger\).
22.6 grains of dried blood being put into a large crucible, and gradually heated, at firt became nearly fluid, and fwelled up confiderably, emitted a great many fetid fumes of a yellowifh colour, and at latt took fire and burned with a white flame, evidently owing to the prefence of oil. After the flame and the fumes had difappeared, a light finoke was emitted, which affected the eyes and the nofe, which had the oidour of pruffic acid, and reddened moit papers fained with vegetable blues. At the end of fix hourt, when the matter had loit five-fixths of its fubftance, it melted anew, exhibit-
ed a purple flame on its furface, and emitted a thick fmoke. This fmoke affected the eyes and noftrils, and reddened blue paper, but it had not the finell of pruffic acid. When a quantity of it was collected and examined, it was found to poffer's the properties of phof. phoric acid. The refidudim amounted to 181 grains; it had a deep. black colour, and a metallic brilliancy, and its particles were attracted by the magnet. It contained no nncombined foda, though the blood itfelf, before combuftion, contzins it abundantly ; but water extracted from it muriat of foda, part of the reft was diffolved by muriatic acid, and, of courfe, was lime; there was befides a little filica, which had evidently been feparated from the crucible. 'The it on had been reduced during the combuftion \(\ddagger\).
Such are the properties of blood, as far as they have been hitherto afcertained by experiment. We have feen that it contains the following ingredients :
1. Water,
2. Fibrina,
s. Iron,
3. Albumen,
6. Soda,
4. Gelatine, 8. Phofphat of lime.
7. Muriat of foda,

But our knowledge of this fingular fluid is by no means fo complete as it ought to be; a more accurate analy fis would probably difcover the prefence of other fubitances, and enable us to account for many of the properties of blood which at prefent are inexplicable.
It would be of great confequence alfo to compare together the blood of different animals, and of the fame animal at different ages, and to afcertain in what particulars they differ fiom each ather. This would probably throw light on fome of the obfcureft parts of the animal economy. Very little progrefs has hitherto been -made in thefe refearches: if we except the labours of Rouelle, who obtained nearly the fame ingredients, though in different proporcions, from the blood of a great variety of animals, the experiments: of Fourcroy on the blood of the human feetus are almoft the only ones of that kind with which we are acquainted. 236

He found that it differs from the blood of the adult Blood of in three things: \(1 / 2\), Its-colouring matter is darker, the fotus, and feems to be more abundant; \(2 d\), It contains no fibrina, but probably a greater proportion of gelatine than blood of adults; 3 d, It contains no phofphoric acid \(\rho . j\) Ibid 162.
The examination of difeafed blood, too, would be of great confequence ; becaufe the difference of its proper. Difaical ties from the blood of people in health might throw bood. much light on the nature of the difeafe. It is well known, that when a perfon labours under inflammation, his blood is not fufceptible of coagulating fo foon as healthy blood. This longer time allows the red globules to fink to the bottom, and the coagulated fibrina appears at the top, of ita natural whitilh colour. Hence the appearance of the buffy coat, as it is called, which characterizes blood during inflammation.
During that difeafe which is known by the name of diabctes, in which the urine is exceffive in quantity, and contains fugar, the ferum of blood often, as appeara from the experiments of Dr Dobfon and Dr Rollo, al fumes the appearance of whey; and, like it, feeme in contain fugar, or, at leaft, it has loft its ufual falt tafte.

Fourcroy mentions a cafe of extreme feeblenefs, in which all the parts of the body were in an unufual relaxed flate. In that patient a quantity of blood oozed
| Fourcrays Ann. de Cbim. vii. 151.

235 Componene: parts of blood.

\section*{\(\mathrm{O}_{2} \mathrm{~h}\)} ing ; but the fame variation takes place in the boil very far from the boiling point of water. Milk is fees cifically heavier than water, and lighter than blood, but the precife degree cannot be alcertained, becaufe almoft every particular milk has a fpecific gravity peculiar to it \(\int\) elf.

When milk is allowed to remain for fome time at reft, there collects on its furface a thick unctuous yel. lowifh coloured fubitance, known by the name of cream. 'I'he cream appears fooner in milk in fummer than in winter, evidently owing to the difference of temperature. In fummer, about four days of repofe are neceffary before the whole of the cream collects on the furface of the liquid; but in winter it requires at leaft - Fourcroy, double the time \(\dagger\).

Ann, de After the cream is feparated, the milk which rewhite colour. If it be heated to the temperature of \(100^{\circ}\), and a little rennet, which is water digetted with the inner coat of a calf's ftomach, and preferved with falt, be poured into it, coagulation enfues; and if the coagulum be broken, the milk very foon feparates into two fubitances: a folid whire part, known by the name of curd; and a fluid part, called whey.

Thus we fee that milk may be eafily feparated into
Creass is of a yellow colour, and its contiftence in- creafes gradually by expofure to the atmofphere. In three or four days, it becomes fo thick that the veffel which contains it may be inverted without rikking any iofs. In eight or ten days more its furface is covered
over with mucors and byff, and it has no longer the flavour of cream, but of very fat cheefe *. This is the procefs for making what in this country is called a cream elieefe.

Cream poffeffes many of the properties of an oil. It \(A\) eyneux, is fecifically lighter than water, it has an unctuous Cb.m. vi, feel, flains clothes precifely in the manner of oil; and \({ }^{372}\). if it be kept fluid, it contracts at laft a tafte which is very analogous to the rancidity of oils \(\dagger\). When kept + Ibid, 32 boiling for fome trne, a little oil makes its appearance, and noats upon its furface \(\ddagger\). Cream is neither foluble \(\ddagger\) Ibid. 3 ? in alcohol nor vils 5 . Thefe properties are fufficient to \$ Loid, fiew us that it contains a quantity of oil; but this oil is combined with a part of the curd, and mixed with Tome ferum. Cream, then, is compofed of a peculiar oil, curd, and ferum. The oil may be eafily obtained feparate by agitating the cream for a confiderable time. This procefo, known to every body, is called churning. After a certain time, the cream feparates into two portions : one fluid, and refembling creamed milk; the other folid, and called butter.

Butter is of a yellow colour, pofferfes the properties convertu of an oil, and mixes readily with other oily bodies. into bur When heated to the temperature of \(96^{\circ}\), it melts, and becomes tranfparent ; if it be kept for fome time melted, fome curd and water or whey feparate from it, and it affumes exactly the appearance of oill. But this \(\|\) Fatrert procefs deprives it in a great meafure of its peculiar \(\begin{gathered}\text { Ann de } \\ \text { Chim, } \mathrm{vi}\end{gathered}\) davour.

When butter is kept for a certain time, it becomes \({ }^{3}\) 170 . rancid, owing in a good meafure to the prefence of thefe foreign ingredients ; for if butter be well wafhed, and a great portion of thefe matters feparated, it does not become rancid nearly fo foon as when it is not treated in this manner. It was formerly fuppofed that this rancidity was owing to the developement of a peculiar acid; but Parmentier and Deyeux bave fhewn, that no acid is prefent in rancid butter *. When butter is di- *Toid: filled, there comes nver water, febacic acid, and oil, at firlt fluid, but afterwards concrete. The carbonaceous refiduum is but fmall

Butter may be obtained by agitating cream newly and he taken from milk, or even by agitating milk newly drawn from the cow. But it is ufual to allow cream to remain for fome time before it is churned. Now cream, by flanding, acquires a four talte; butter therefore is commonly made from four cream. Frefh cream requires at leaft four times as much churning before it yields its butter as four cream does \(\dagger\); confequently cream ac- \(\uparrow\) Fwurd quires, by being kept for fome time, new properties, in itid. 10 confequence of which it is more eafily converted into butter. When very four cream is churned, every one who has paid the finalleft attention mult have perceived, that the butter-milk, after the churning, is not nearly fo four as the cream had been. The butter, in all cafes, is perfectly fweet; confequently the acid which had becu evolved has in a great meafure difappeared during the procefs of churning. It has been afcertained, that creaim may be churned, and butter ubtained, though the contact of atmofpheric air be excluded \(\ddagger\). We have \(\dagger\) rome no doubt, that in all cafes where fuch an experiment Laith, fucceeded, the cream un which it was made had previoully become four. On the other hand, it has been afcertained, that when cream is churned in contact with air, it abforbs a confiderable quantity of it \(\$\); and it
ilk. cannot be duubted, that the portion abforbed is oxy. gen.

Thefe facts are fufficient to afford us a key to explain what takes place during the procefs of chuming. 'i'here is a pleculiar oil in milk, which has fo Atrong an affinity for the other ingredients, that it will not feparate from them fpont?neoully; but it has an affinity for oxygen, and when combined with it, forms the concrete body called butter. Agitation produces this combination of the oil with oxygen ; either by cauling it to abforb oxygen from the air, or, if that be impoffible, by feparating it from the acid which exifts in four cream. Hence the abforption of air during churning; hence alfo the increafe of temperature of the cream, whiclı Dr Young found to amount confantly to \(4^{\circ}\); and hence the fweetnefs of the butter milk compared with the cream from which it was obtained.

The affinity of the oil of cream for the other ingredients is fluch, that it never feparates completely from them. Not only is curd and whey always foun? in the cream, but fome of this oil is conftantly found in creamed milk and even in whey: for it has been afceltained by aetual experiment, that butter may be oftained by churning whey ; 27 Scotch pints of whey yield at an average about a pound of butter \(\|\). This accounts for a fact well known to thofe who feperintend dairies, that a good deal more butter may be nttained from the fane quantity of milk, provided it be clurned as drawn from the cow, than when the cream alone is collected and churned.

The butter-milk, as Parmentier and Deyenx afcertained by experiment, poffefles precifely the properties of milk deprived of crean 9 .

Curd, which may be feparated from creamed milk by rennet, has all the properties of coagulated albnmen. It is white and folid; and when all the moilture is fqueezed out, it has a good deal of brittlenefs. It is infoluble in water ; but pure alkalies and lime diffolve it readily, enpecially when affified by heat; and when fixed alkali is ufed, a great quantity of ammonia is emitted during the folution. The folution of curd in foda is of a red colour, at leaft if heat be employed; owing probably to the feparation of charcoal from the curd by the action of the alkali \({ }^{*}\). Indeed, when a Arong heat has been nfed, charcual orecipitates as the folution cools \(\dagger\). The matter diffolved by the alkali P 1 ijs may be feparated from it by means of any acid; but it has loft all the properties of curd. It is of a black colour, melts like tallow by the application of heat, leaves oily ftains on paper, and never acquires the confiffence of curd \(\ddagger\). Hence it appears that curd, by the action of a fixed alkali, is decompofed, and converted into two new fubftances, ammonia, and oil or rather fat.
Curd is foluble alfo in acids. If, over cuid newly precipitated from milk, and not dried, there be poured eight parts of water, coutaining as much of any of the mineral acids as gives it a fenfibly acid tafte, the whole is diffolved after a little boiling \(\wp\). Acetous acid and lactic acid do not diffolve curd when very much diluted \(\|\). But chefe acids, when concentrated, diffolve it readily, and in confiderable quantity 4 . It is remarkable enourh, that concentrated vegetable acids diffolve curd readily, but have very little action on it when they are very nuch diluted: whereas the mineral diffolve it when much diluted; but when concentrated, have Suppl. Vol. II. Part II.
either very little effeet on it, as fulphnric acid * or decompofe it, as nitric acid. By means of this laft acid, as Berthollet difiovered, a quantity of azotic gas may "Farmen. be obtained from curd.

Curd, as is well known, is ufed in making cbrefe; of cheere. and the cheefe is the better the more it contains of cream, or of that oily matter which conftitutes cream. It is well known to cheefemakers, that the goodnefs of it depends in a great meafure on the mamer of feparating the whey from the curd. If the milk be much heated, the coagulum broken in pieces, and the whey furcibly feparated, as is the practice in many parts of Scotland, the cheefe is fcarce good for any thing; but the whey is delicious, efpecially the laft fqueezed-out whey, and butter may be obtained from it in comfiderable quantity. A full proof that nearly the whole creamy part of the milk las been feparated with the whey. Whereas if the milk be not too much heated (about \(100^{\circ}\) is fufficient), if the coagulum be allowed to remain unbroken, and the whey be feparated by very flow and gentle preffure, the cheefe is excellent; but the whey is almoll tranlparent, and nearly colourlefs.

Good checfe melts at a moderate heat; but bad cheefe, when heated, dries, curls, and exhibits all the phenomena of burning horn. Hence it is cvident, that all the properties in which curd differs from albumen are owing to its containing combined with it a quantity of the peculiar oil which conltitutes the diftinguihing: characterittic of cream; hence its flavour and fmell; and hence alfo the white colour of milk.

This famenefs of curd and albumen fhews us, 274 the coagulation of milk and of albumen depend upont on of the fame caufe. Heat, iudeed, does not coagulate milk, mi.s. becaufe the aboumen in it is diluted with too targe il quantity of water. But if milk be boiled in contact with air, a pellicle foon forms on its furface, which 1.... the properties of coarsulated albumen : if this pellicle removed, another fucceeds; and by continning the boiling, the whole of the albuminous or curdy matter may be feparated from milk *. When this pellicle is allow. * Parmen ed to remain, it falls at laft to the bottom of the veffel, tier, ibid. po where, being expofed to a greater heat, it becomes \({ }^{415}\). browr, and communicates to milk that difugreeable tafte which, in this country is called a finged talte. It happens nore readily when milk is boiled along with rice, flour, \&x.

If to boiling milk there be added as much of any neutral falt as it is capable of diffolving, or of fugar, or of gum arabic, the milk coagulates, and the curd feparates \(\dagger\). \(\dagger\) S.scele, ii. Alcohol alfo coarculates milk \(\ddagger\); as do all acids, rennet, \({ }^{52}\). and the infufion of the flowers of artichoke, and of the \(\ddagger\) Parmen thiftle \(\|\). If milk be diluted with ten times its weight tier, ivid po of water, it cannot be made to coagulate at all \(\mathbb{I}_{\text {. }} \quad \| I l i d_{0}\)

Whisy, after being filtered, to feparate a quantity of "souscle, ii. curd which ftill continues to float through it, is a thin 54 . pellucid fluid, of a yellowifh green colour and pleafant \({ }^{2} 75\) fweetifh tafte, in which the flavour of milk may be di- of whey. ftingnifhed. It always contains fome curd; but nearly the whole may be feparated by keeping the whey for fome time boiling; a thick white foum gathers on the furface, which in Scotland is known by the name of flout whey. When this foum, which conlits of the curdy part, is carefully feparated, the whey, after being allowed to remain at reft for fome hours, to give the
remainder

\section*{\(\ddagger\) Reuell.}
- Parmen
tier, ibid p.
343.

276
Vinegar
obtained
from milk.
+ Scleele, ii.
68.

277
Milk un-
dergoce fer mentation
\(\ddagger\) Parmepticr, ivid. p. 305.

\section*{|| Scbecle, ii.} 66.
remainder of the curd time to precipitate, is decanted off, almoft as colourlefs às water, and fcarcely any of the peculiar tafte of milk can be diftinguifhed in it. If it be now flowly evaporated, it depolites at laft a number of white coloured crytals, which are fugar of milk. Towatds the end of the evaporation, fome cryftals of muriat of potafs and of muriat of lime make their appearance *. According to Scheele, it contains alfo a little phofphat of limet.
After the falts have been obtained from whey, what remains concretes into a jelly on cooling \(f\). Hence it follows, that whey alfo contains gelatime. Whey, then, is compofed of water, fugar of milk, gelatine, muriat of potafe, and muriat of lime. The other falts, which are fometimes found in it, are only accidentally prefent.

If whey he allowed to remain for fome time, it becomes four, owing to the formation of a peculiar acid known by the name of tadic acid. It is to this property of whey that we are to afcribe the acidity which milk contracts; for neither curd nor cream, perfectly freed from ferum, feem fufceptible of acquiring acid properties. Hence the reafon, alfo, that milk, after it becomes four, always coagulates. Boiled milk has the property of continuing longer fweet; but it is frngular chough, that it runs fooner to putrefaction than ordinary milk *.
The acid of milk differs confiderably from the ace tolls; yet vinegar may be obtained from milk by a very fimple procefs. If to fomewhat more than 8 lbs. troy of milk, fix fpoonfuls of alcohol be added, and the mixture well corked be expofed to a heat fufficient to fupport fermentation (provided attention be puid to allow the carbonic acid ga- to efcape from time to time), the whey, in about a month, will be found converted into vincgar \(t\).

Milk is almof the only animal fubftance which may be made to undergo the vinous fermentation, and to af ford a liquor refembling wine or beer, from which alcohol may be feparated by diftillation. This fingular fact feems to have been firlt difovered by the Tartars; they obtain all their fpirituons liquors from mares milk. It has been afeertained, that milk is incapable of being converted into wine till it has become four ; after this, nothing is neceflary but to place it in the proper tem perature, the fermentation begins of its own accord, and contirues till the formation of wine be completed \(\ddagger\). Scheele had obferved, that milk was capable of fermenting, and that a great quantity of carbonic acid gas was did not fufpect, that the refult of this fermentation he the formation of an intoxicating liquor fimilar to wine

When mik is diftilled by the heat of a water bath, there comes over water, having the peculiar odour of milk ; which putrifies, and confequently contains, befides mere water, fome of the othrer conltitnent parts of
I Barquet. milk. A fter fome time, the milk coagulates If, as always happens when hot albumen acquires a certain degree of concentration. There remains behind a thick nnctuous yellowifh white fubftance, to which Hoffman gave the name of francbipann. This fubttance, when the fire is increafed, yield's at firf a tranfparent liquid, which becomes gradually more coloured; fome very fuid oil comes over, then ammonia, an acid, and at lait a very thick black oil. Towards the end of the pro.
cefs carbonated hydrogen gas is difengaged *. There remains in the retort a coal which contains carbonat of potafs, muriat of potafs, and phofphat of lime, and fometimes magnefia, iron, and muriat of foda \(f\),
5 Thus we fee, that cows mulk is compofed of the fol- + Mem. lowing ingredients.

\author{
yot 1. Water, \\ 2. Oil, \\ 1 \\  \\ 5. Sugar of milk, \\ 6. Muriat of lime, \\ 7 Muriat of potafs, \\ 4. Gelatine, \\ 9 \\ 8. Sulphur.
}

The milk of all other animals, as far as it has hitherto been examined, confifts nearly of the fame ingredients ; but there is a very great difference in their pro. portion.

Woman's milk has a much fweeter tafte than cows Woman't milk. When allowed to remi in at reft for a fufficient milk. time, a cream gathers on its fuface. This cream is more abundant than in cows milk, and its colour is ufually much whiter. After it is feparated, the milk is exceedingly thin, and has the appearance rather of whey, with a bluifh white colour, than of creamed milk. None of the methods by which cows milk is coagulated fueceed in pioducing the coagulation of woman's milk *. * Chark, It is cercain, however, that it contains curd; for if it Irise Tranf: be boiled, pellicles form on its furface, which have all \({ }^{\text {ii }} 175\). the properties of curd \(t\). Its not coagulating, there- \(\dagger \mu_{2 r m i e n-}\) fore, mult be attributed to the great quantity of water tier, ibid p . with which the cutd is diluted.

Though the cream be churned ever fo long, no butter can be obrained from it ; but if, after being agitated for fome hours, it be allowed to remain at reft for a day or two, it leparates into two parts; a fluid which occupies the inferior part of the veffl, pellucid, and colourlefs, like water and a thick white unctuous fluid, which fivims on the furface. The lowermoft fluid contains fugar of milk and fome curd; the uppermoft does not differ from cream except in confifence. The oily part of the cream, then, canrot be feparated by agitation from the curd \(\ddagger\). This cleam contains a greater \(\ddagger\) Ibid. Fortion of curd than the cream of cows milk *.

When this milk, after the curd is funarated from it, is flowly evaporated, it yirlds cryltals of fugar of milk, and of inuriat of foda. The quantity of fugar is rather greater than in cow's milk. According to Haller, the fugar obtained from cow's milk is to that obtained from an equal quantity of woman's milk as \(35: j 8\), and fometimes as \(37: 67\), and in all the intermediate ratios.

Thus it appears, that woman's milik differs from that of cows in three particulars.
1. It contains a much fmaller quantity of curd. \(\mathrm{r}+\mathrm{s} \cdot \mathrm{cu}\) 2. Its oil is fo intinately combined with its curd, liarities. that it does not yield butter.
3. It contains rather more fugar of milk.

Parmentier and Deyeux afcertained, that the quantity of curd in woman's milk increafes in proportion to the time after delivery H. Nearly the fame thing has | T\% \% P. been obferved with refpect to cow's milk.
ASSES Milk has a very ftrong refemblance to human milk: it has nearly the fame colour, fmell, and confiftence. When left at reit for a fufficient time, a: cream forms upon its furface, but by no ineans in fuch abundance as in woman's milk. This cream, by very long agitation, yitlas a butter, which is always foft, white, and tattelefs; and, what is fingular, very readily mixes agrain with the butter.milk; but it may be again fepa-
rated by ?git tion, white the veffel, which contains it, is phuged in culd water. Cleamed affics milk is thin, and has an agreeable fweetint tafe. Atcoliol and acids feparate from it a little curd, which has hut a fmall degree of confittence. Thie ferum yields fugar of :nilk and murizt of lime*.

Affes milk therefore difers from cows milk in three particulars.
I. Its cream is lefs abmudant and more infpid.
2. It contains lefs curd.
3. It contains more fugar of milk: the rroportion is \(35: 80\).
Goats milk, if we except its confiftence, which is greater, does not differ much from cows milk. Like that milk, it throws up abundance of cream, from which butter is eafily obtained. The creamed milk coazulates juft as cows milk, and yields a greater quantity of curd. Its whey contains fugar of milk, muriat of lime, and muriat of foda \(\dagger\).
- Eivfs mile refenbles alinof precifely that of the cow. Its cream is rather more abundant, and yields a butter which never acquires the confifence of butter from cowe milk. Its curd has a fat and vicicid appearance, and is mot without difficulty made to affume the confitence of the curd of cowe milk. It makes excel. tent cheefe \(\ddagger\).

Marfs mile is thinner than that of the cow, but fcarcely fo thin as human milk. Its cream cannot be converted into butter by agitation. The creamed milk congulates precifely as cows milk, but the curd is not fo abundant. 'The ferum contains fugar of mulk, fulphat of lime, and muriat of lime \(\%\).

\section*{Sect IX. Of Saliva.}

The fuid fecreted in the mouth, which fows in confiderable quantity during a repaft, is known by the name of fuiira. No accurate analyfis has hitherto been made of it, tlough it poffeffes fome very fingular propertics.

It is a limpic fluid like water, but much more vifcid: it has neither Imell nor talle.
Its fecific gravity, according to Hamberger, is \(1.0167{ }^{*}\). When agitated it frothes like all other afhefive liquids; indeed it is ufually mixed with air, and has the appearance of froth.

It nether mixes readily with water nor oil \(\uparrow\); but by trituration in a mortar, it may be mixed fo with water as to pars through a filter \(\ddagger\) It lias a. great affinity for oxygen, abforbs it readily from the air, and gives it ont again to other todies \$. Hence the reafon why gold or filver, triturated with faliva in a mortar. is oxydated, as Dutenuer has obferved; and why the killing of mercury by oils is much faciluated ly fpitting into the mixture II Ilerice alfo, in all probability, the reafon that Saliva is a ufeful afplication to fores of the flin. Dogs, and feveral other animals, have conttantly recourfe to this eemedy, and with much advantage.
Saliva is coagulated by oxy muriat of nicicury, by alcol:ol, and by nitre *. Therefore, in all probability, it contains albunien and grelatine, or fume analogous fub 'ances.
When ico parts of faliva are difilled, there come over 8. paris of water nearly pure, then a little carbonat of an monia, fome oil, and an acic', which perhaps is he prufic. The refiduum amomint to about 1.56 parts,
and is compofed of muriat of foxda and phofplat of limet.

The tortar of the tecth, which is a cruft depofited from faliva. confitts, as Pourcony has afectained, of phof fohat of lime.
The pancratic juce has never been examined with much attention ; but it does not appear, from the experiments that hare been made, to difier much from faliva.
\[
\text { Sect. X. of } B_{I L E} \text {. }
\]

BILE is a lictnid of a yellowifh greeu colour, an unctuous feel, and bitter talte, is fecreted by the liver; and in molt animals confiderable quantities of it are ufually found collected in the gall bladder.

Great attention has been paid to this liquid by phyficians; becaufe the ancients were accuftomed to afcribe a very great number of difeafes, and even affections of the minid, to its agency. The moft accurate chemical analy fis of it which has hitherto appeared is that of Mr Cadet, which was publifhed in the Memoirs of the French A cademy of nciences for the year 1767 . Several important obfervations had been previounly mate on it by Boyle, Boerliaave, Verheyen, Ramfay, and Baglivi: and fome facts have fince been added to ous: chemical knowledige of bile by Maclurg and Fourcioy. The experiments have chiefly been confined to the bile of oxen, known in this country by the name of gall ; becaufe it is inold calily procured in large quamtitics.

The fpecific gravity of bile feems to vary, like that of all other arimal fluids. According to 1 lartmann, it is \(1.027^{*}\). When ftoongly agitated, it lathers like foap; and for this reafon, as well as from a medical theory concerning its ufe, it has been often called an sad animal foap.

It mixes reacily with water in any proportion, and affiumes a yellow colour: but it refufes to unite with oil when the (wo fluids are agitated together; the inItant that they are left at reft, the oil feparates and fwims on the furface \(t\).
When muriatic acid is poured upon bile, let it be ceer fo frefh, an odour of fulphurated hydrogen gas is confantly exhaled \(\ddagger\). When on 100 parts of ox-bile four Maclurg, prits of itrong muriatic acid are poured, the whole in-p 10. Itently coagulates; but in forme heurs the greater part becomes agaiu fluid; and when paifed throngh the fleer it leaves 0.26 of a white rratter, which has all the properties of albunem 5 . This matter was detected by Ram!ay ; who fonnd that it could be precipiated fiom bile by alcohol, acetons acid, fulphat of putafs, and mul. riat of foda*. Cadet alcertained, that 100 parts of ox bile contain abont 0.52 of albumen. It is precipitated in a flate of purity by oxy muriat c acid, provided that acid be not employed in ezcefs \(\dagger\).
The muriatic acid folltion, after the feparation of the albumen, has a fine grafs green colour. When concentrated by fome hours evaporation in a glafis cacur. bit on hot coals, it depofite a very copious precipitate, and lofes almott the whole of its grein colour. By longer evaporation, a new precipitate, f.milar to the firtt, appears, and the remaining liquid affumes the colour of beer. This mecipitate poflefies all the properties of the refin of life. In its noilt thate it amounts to 10.8 farts \(\ddagger\). The fame fuliftances may be ob- + Cased, ibid tained from bile by nitric acid; but the refin in that

\section*{13 l.} 207 rat:al of he "rethi." 235
\(\qquad\)

290
cit+ C...tet,
M:m. Pur,
\(.117 \cdot 1\)340.3 1bid.
fidin. iiain. 11 .
400.
\(\dagger\) Finarevoy's
Ann de
ifim. vii.
176.

Bile, cafe has a yellow colour, and its properties are fomeBiliary Cal- what altered *.
culi.

\section*{* Cadet,}

36id. P. 343

If 100 parts of bile be gently evaporated to drynefs by a very moderate heat, the dry mafs only weighs 10 parts, and has a brownifh black colour. When expoled to a ftrong heat in a crucible, this matter fwells up, takes fire, and emits very thick fumes. The refiduun amounts to 1.09. By lixiviation with water, 1.87
* Ibid. p.
342.
\(\$\) Maclurg,
18. 56.

Ramfay, of cryftallized foda may be obtained \(\dagger\); confequently 100 parts of bile contain, according to Mr Kirwan's table, 0.403 .546 of pure foda. But it is evident that, by this method, part of the foda muft have been evaporated; therefore 100 parts of bile contain more than 0.403546 of foda. Befides the foda, there is found alfo a fmall portion of muriat of foda \(\ddagger\).

Cadet found the reficuum, after the feparation of the falts, of a black colour: it gave fome traces of iron. He alfo obtained a calcareous falt from bile, which he confidered as a fulphat ; but it is more than probable that it was phofpliat of lime.

Cadet allo obtained from bile, by cvaporating the muriatic acid folution after the feparation of the refin, a falt which cryfallized in trapeziums; it had a fweetifh tafte, and was confidered by him as analogous to fugar of milk *.

Thus we fee that bile contains the following ingredients:
\[
\begin{array}{ll}
\text { 1. Water, } & \text { 5. A fwectifh falt, } \\
\text { 2. Refin, } & \text { 6. Muriat of foda, } \\
\text { 3. Albumen, } & \text { 7. Phofphat of lime, } \\
\text { 4. Soda, } & \text { 8. Iron. }
\end{array}
\]

The proportion of thefe ingredients has by no means been afcertained. The prefence of iron has been de. nied in bile, becaure it gives no blne precipitate with pruffic alkati, and becaufe tincture of nut-galls does not give it a black colour \(\dagger\). But thefe reafons are infuffi. cient to overturn the experiment of Cadet , who actually found it in bilc.

When four parts of vinegar and five of bile are mixed together, the mixture hes a fweet tafte, and does not coagulate milk. The lactic acid has precifely the fame 7 effect as vinegar \(\ddagger\).
boid. p. 462. When bile is difilled in a water bath, it affords a tranfparent watery liquor, which contracts a pretty ftrong odour, not unhke that of muik or amber, efpecially if the bile has been kept for fome days before it is fubmitted to diftilation \(\rho\). The refiduum is of a deep brownifh green ; it attracts moifture from the air, and diffolves readily in water. When ditilled in a rew tort, it affords a watery liquor of a yellowifh colour, and impregnated with alkali, oil, carbonat of ammonia, carbonic acid, and hydrogen gas. 'The coaly refiduum is eaf!ly incinerated *. Bile, expofed to a temperature between \(65^{\circ}\) and \(85^{\circ}\), foon lofes its colour and vifcidity, acquires a naufeous fmell, and depolites whitith mucilaginous flakes. After the putrefaction has made conf:derable progrefs, its fmell becomes fweet, and refembles
- Ibid.
\$Vauquelin. amber \(\dagger\). If bile be heated, and flightly concentrated by evaporation, it may be kept for many months without alteration \(\ddagger\).

\section*{Sect. XI. Df Bifiary Calculf.}

Hard lodies forretimes form in the gall bladder, or in the duct through which the bile fafles into the in .
teftinal canal, and fop up the paflage altogether. Thefe Biliary Cal, concretions have got the name of biliary calculi or gall. fones. As they are formed in the midft of bile, and as the fubtances of which they are compofed muft be derived from the bile, it is proper to give an account of them here, becanfe their properties cannot fail to throw fome additiopal light on the nature of bile itfelf.

Biliary calculi, all of them at leat which have been Biliary cale hitherto examined with attention, may be divided into three claffes.
1. The firft kind comprehends thofe which have a white colour, and a cryftallized, Ahining, lamellated \&ructure.
2. The fecond is dark coloured, and has precifely the appearance of infpiffated bile. Both thefe kinds are combultible,
3. The third kind comprehends thofe gall ftones which do not flame, but gradually wafte away at a red heat.

We frall take a view of each of thele kinds of biliary calculi in their order. For the greater part of the chemical knowledge which has been hitherto acquired of them, the world is chiefly indebted to Mr Fourcroy.
1. The firt species of biliary calculi was pointed wit Properties for the fint time by Haller, in a difertation publifned of the fint, in 1749 . Walther afterwards added feveral new facts; and at laft it was accurately ceferibed by Vieq d'Azyr*. It is almolt always of an oval fhape, fometines as large as a pigreon's egg, but cominonly about the fize of a fparrow's; and for the mont part only one calculns (when of this fpecies) is found in the gall bladder at a time. It has a white colonr; and when broken, mefents cryftalline plates or ttrix, brilliant and white like mica, and having a foft greafy feel. Sometines its colour is yellow or greeniih; and it has conttantly a nucleus of infpiffated bile \(\dagger\).

Its foecific gravity is lower than that of water: Gren found the fpecilic gravity of one \(0.803 \ddagger\).

When expofed to a heat confiderably greater than : that of boiling water, this crytallized calculus foftens and melts, and cryitallizes agrain when the temperature is lowerd \(\oint\). Iz is altogether infoluble in water ; but \& Fourcope, hot alcohol diffolves it with facility. Alcolnol, of theibid. No 123 temperature of \(167^{\circ}\), diffolves \(2^{\circ} \%\) of its weight of this fubfance; but alcohol, at the temperature of \(60^{\circ}\). fcarccly diffolves any uf it *. As the alcoliol conls, * Ibid. p. the matter is depolited in brilliant plates refembling \({ }_{+} 5\) talc or horacic acid \(t\). It is foluble in oil of turper. \(+16 . \mathrm{in}^{2} \mathrm{ii}\). tine \(f\). When melted, it has the appearance of onl, \({ }_{1}^{250}\) vien, and exhales the odonr of melted wax : when fudde: ly ibid, v, 157 heated, it evaporates altogether in a thick imoke. It is foluble in pure alkalies, and the folution has all the properties of a foap. Nitsic acid alfo diffolves it ; but it is precipitated unaltered by water \(\ddagger\).

This matter, which is evidently the fame with the ibidi iij. cryftals which Cadet obtained fiom bile, and which he \({ }^{24}\) confidered as analogous to fingar of milk, has a ftrong refomblance to fpermaceti. Like that fubllance, it is of an oily nature, and irflammable; but it differs from it in a varicty of particulars.

Since it is contaned in bile, it is not difficult to fee how it may cry fallize in the gall. bledder if it happens to be more aburdant than ufual; and the contequence muft

Cal-muft be a gall.fone of this fpecies. Fonrcroy found a quantity of the fame fubflance in the dried human liver *.
2. The fecond fpeces of tiliary calculus is of a rourd or polygonal flape, of a grey colour exteriorly, and brown within. It is furmed of concentic layers of a matter which feenis to be infpiffated bile; and there is ufually a nucleus of the white cryftalline matter at the centre. For the noft part there are many of this fpecies of calcelus in the grall-bladder together: indeed it is fiequently filled with them. Their fize is ufually much fmaller than that of the laft fpecies.
This is the moft common kind of gall Itone. It may be confidered as a mixture of infoiffated bile, and of the cryftalline matter which forms the firtt fpecies: and the appearance of calculi of this kind muft vary confiderably, according to the proportion of thefe ingredients.
3. Concerning the third fpecies of gall. flone, very little is known wihh accuracy. Dr Saunders tells us, that he has met with fone gall-ftones infoluble both in alcohol and oil of turpentine; fome which do not flame, but become red, and confume to an afh like a char. coal \(\dagger\) Haller quotes feveral examples of finilar calculi \(\ddagger\).
Gall-fones often occur in the inferior animals, particularly in cows and hogs ; but the biliary concretions of thefe animals have not litherto been examined with attention.

\section*{Sect. XII. Of Tears.}

That peculiar fluid which is employed in lubricating the eye, and which is emitted in confiderable quantities when we exprefs grief by weeping, is known by the name of tears. For an accurate analyfis of this fluid, chemittry is indebted to Meffrs Fourcroy and Vanque. lin. Before their differtation, which was publifted in 1791, appeared, fcarcely any thing was kuown about the nature of tears.

The liquid called tears is tranfparent and colourlefs like water ; it has fcarcely any fmell, but its tafte is always perceptibly falt. Its fpecific gravity is fomewhat greater than that of diffilled water. It gives to paper, Itained with the juice of the petals of mallows or viclet, a permanently green colour, and thertfore contains a fixed alkali \({ }^{*}\). It unites with water, whether cold or hot, in all proportions. Alkalies unite with it readily, . and render it more fluid. The mineral acids produce no apparent change upon it \(\dagger\). Expofed to the air, this liquid gradually evaporates, and becomes thicker. When nearly reduced to a. ttate of drynefs, a number of cubic crytals form in the midft of a kind of mucilage. Thefe cryftals poffefs the properties of muriat of foda; only they tinge vegtable blues green, and therefore contain an excefs of foda. The mucilaginous matter acquires a yellowifh colour as it dries \(\ddagger\).

This liquid boils like water, excepting that a confiderable froth collects on its furface. If it be kept a fufficient time at the boiling temperature, \({ }^{960}\) parts of it evaporate in water; and there remain about 04 parts of a yellowinh matter, which by diftillation in a frong heat yield water and a little oil : the refiduum confifts of different faline matters \(\$\).

When alcolol is poured into this liquid, a mucilaginous matter is precipitated in the form of large white flakes. The alcohol leaves behind it, when evaporated,
traees of muriat of foda and fodd. The refiduam which remains behind, when infpiffated tears are burnt in the open air, exhibits fome traces of phofphat of lime and phofphat of foda \(\|\).
Thins it appears that tears are compofed of the fol lowing ingredients:
and Vous
'Tears, Binovis. Fozrcray and Vois qutin, four.
1. Ẅater,
4. Soda,
2. Mucilage,
5. Porphat of lime,
3. Muriat of foda, 6. Phofplat of foda, 259. \(2 y 0\) C. mp nent part:-

The faine parts amoint only to about 0.01 of the whole, or probably not fo much.

The mucilage contained in the tears has the property of abforbing oxygen gradually from the atmof phete, and of becoming thick and vifcid, and of a yellow culour. It is then infcluble in water, and remain lorge fuipended in it withnut alecation. When a fufficiont quantity of exy muriatic acid is poured imto tears, a yellow flaky precipitate appears abfolutely fimilar to this infpiffated mucilage The oxy muriatic acid lofis its peculiar odour ; hence it is evident that it has given. out oxygen to the macilage. The property which this mucilage has of abforbing oxygen, and of acquirings new qualities, explains the clanges which take place in tears which are expofed for a long time to the actien
of the atmofiphere, as is the cafe in thofe perfons who labour under a fiftula lachrymalis *.
The mucus of the nofe has alfo been examined by Fourcroy and Vauquelin. They found it compofed of 15 chis oif precifely the fame ingredients with the tears. As this he nofe. fluid is more expofed to the action of the air then the tears, in moft cafes its macilage has undergone lefs or more of that change which is the confequence of the abforption of exygen. Hence the reafon of the greater vifcidity and confiftence of the mucus of the nefe; hence alfo the great confiftence which it acquires during colds, where the action of the atmofyhere is affit. ed by the inoreafed action of the parts \(t\).
Sect. XIII. Of Sinorid.

Witgita the capfular ligament of the different joints of the boty, there is contained a peculiar liquid, intended evidently to lubricate the parts, and to facilitate their motion. This liquid is known among anatomitts by the name of finceria.

Whether it be the farre in different animals, or even in all the different joints of the tame animal, has not been determined; as nn accurzte analy fis of the finovia of different animals has been attempted. The ouly analy fis of finovia which has hitherto appeared is that by Mr Margueron, which was publified in the Ith volume of the Annales de Climime. He made ufe of finovia obtained from the joints of the luwer extremities of oxen.
'The finovia of the ox, when it has juit flowed from Sinovia of \({ }^{298}\) the joint, is a vifcid femi.tranfparent fluid, of a grecuif the (x. white colour, and a finell not unlike frog fpawn. It very foon acquires the confiftence of jelly; and this happens equally whether it be kept in a cold or a hot temperature, whether it be expofed to the air or excluded from it. This confiftence docs not continue long ; the finovia foon recovers again its fluidity, and at the fame * Martime depofites a thready like matter *. gueron, Ann;
 that liquid a great deal of vifcidity. The mixture 299 frothes when agitated; becomes milky when boiled, fres propesa

Sinovia, and depofites fome pellicles on the fides of the difh ; but Semen.

\section*{\(+2 \mathrm{Mirr}^{-}\)} gueron, An d. Clim.
xiv. \(1: 6\).

300
Its comar.
nent parts
+ 13id. p
126-130. its vifcidity is not diminifhed + .

When alcohol is poured into finovia, a white fubflance precipitates, which has all the properties of albumen. One hurdred parts of finovia contain 4.52 of albumen. 'The liquid fill continues as vifcid as ever ; but if acctous acid be poured into it, the vifcidity dif. appears altogether, the liquid becomes tranfparent, and depolites a quantity of ratter in white threads, which puffeffes the following properties:
1. It has the colour, fmell, tafte, and elaflicity of vegetable ghtuten.
2. It is folubie in concentrated acids and pure alkalics.
3. It is foluble in cold water, the folution frothes ; acids and alcohol precipitate the fibrous matter in flakes One hundred parts of finovia contain 11.86 of this matter \(\ddagger\).

When the liquid, after thefe fubftances have been fe- parated from it, is concentrated by evaporation, it depofites cryltals of acctite of fola Sirovia, therffore, contains foda. Margueron found that 100 parts of finovia contained about 0.71 of forda.

When ीrong fulphuric, muriatic, nitric, acetic, or fulohurous acid is poured into finovia, a number of white flakes precipitate at firl, but they are foon rediffolved, and the vifcidity of the liquist continues. When thefe acids are diluted with five times their weight of water, they diminifh the tranfparency of finovia, but not its vifcidity; but when they are fo much diluted that their acid tafte is juft perceptibie, they precipitate the peculiar thready matter, and the vifcidity of the finovia difappears \(\oint\).

When finovia is expofed to a dry atroofphere it gra dually evaporates, and a faly refidunm remains, in which cubic cryftals, and a white faline eflorefcence, are apparent. The cubic cryflals are muriat of f.da. One hundred parts of finovia contain about 1.75 of this
IIbid. 123 falt. The faline eff refcence is carbonat of foda \(\|\).

Sinovia foon putrefies in a moift atnofphere, and during the putrefaction ammonia is exhaled When fino via is difilled in a retort there comes over, lifft water, which foon putrefies; then water containing ammonia; then empyreumatic oil and carbonat of anmonia. From the refiduum imuriat and carlrorat of foda may be extracted by lixiviation. The coal contains forne phofphat of lime 9 .

From the analyfis of Mr Margueron it appears that finovia is compofed of the following ingredients:
\[
\begin{aligned}
& 11.86 \text { fibrous matter, } \\
& 4.52 \text { albumen, } \\
& 1.75 \text { muriat of foda, } \\
& .71 \text { foda, } \\
& .70 \text { phofphat of lime }(\mathrm{N}), \\
& \frac{80.57 \text { water, }}{\text { 1c0.00. }} \\
& \text { SECT. XIV. Of SEMEN. }
\end{aligned}
\]

The peculiar liquid fecreted in the telles of malec, and deftined for the impregration of femalis, is known

and dentine for the inpreg.ation or fenne is kown
by the name of femon. The human fermen alone has litherto been fubjected to chemical analylis. Notirg is known concerning the femina! fluid of uther animals. Vauquelin prblifhed an anal-glis of the human femen in 1791.

Semen, when newly ejected, is evidently a mixture of two different fuofances: the one, fluid and milky, of femen which is fuppofed to be fecreted by the proftate gland; the other, which is conf?ered as the true fecretion of the teftes, is a thick mucilaginous fubftance, in which numerous white Thining filaments may be difonvered *. * VauIt has a night difagreeable odour, an acrid irritating \(q u /\) in \(A_{n n}\) tafte, and its foecific gravity is greater than that of water. When rubled in a mortar it becomes frothy, and of the confiltence of pomatum, in confequence of its enveloping a great number of air bubhles. It converts paper ftained with the bluffoms of mallows or violets to a green colour, and confequently contains an alkal! \(\dagger\)

As the liquid cools, the mucilaginous part becomes tranfparent, and acquires greater confifency; but in about twenty minutes after its emiffion, the whole becor es perfectly liquid. This liquefaction is not owing to the abfordion of moifure from the air, for it lofer inftead of acquiring weight during its expofure to the atmolphere: nor is it owing to the action of the air, for it takes place equally in clofe veffels \(\ddagger\).

Semen is in foluble in water before this fpontaneous 60 liquefaction, but afterwards it-diffolves readily in it. When alcohol or oxy muriatic acid is poured into this folition, a number of white flakes are precipitated \(\rho\). \(\rho\) Ibid. po Concentrated alkalies facilitate its combination with 70. water. Acids readily difiolve the femen, and the folution is not decompoted by alkalies; neither indeed is the alkaline folution decompofed by acids \|

Lime difengeges no ammonia from fre? femen; but 7 r . after that fllid has remained for fome time in a moilt and warm atmefphere, lime feparates a great quantity from it. Confequently ammonia is formed duing the expofure of femen to air ना.

When oxy-murjatic acid is poured into femen, af number of white flakes precipitate, and the acid I fea its peculiar odour. Thefe flakes are inioluble in water, and even in acids. If the qu?ntity of acid be fufficient, the temen acquires a yellow colour. 'Tyus it appcars that femen contains a mucilaginous fubitance, analugous to that of the tears, which coagulates by abfurbing uxygen. Mr Vauquelin obtained from 100 parts of femen fix parts of this mucilage.

When femen is expoled to the air about the temperature of \(60^{\circ}\), it becomes : gradually covered with a tranfparent pellicle, and in three or four days depolites fnall trauparent crytals, often croffing each other in fuch a manner as to reprefent the fpukes of a wheel. 'Thefe cuyfals, when viewed through a inicrofcope, appear to be four ficed prifms, terminated by very long fonr-fided pyramids. Shey may be feparated by diluting the liquil with water, and decanting it off. They have all the properties of phofphat of lime *. If, after the appearance of thele cry:tals, the femen be ftill allowed to remain expoled to the atmofplere, the pellicle


\(\qquad\)

(v) Mr Hatchett found 0 ly \(0.2 \times 8\) nf phofphtre of lime in the finovia which he examined. He found, however, traces of fome other phofphat ; probably phofphat of foda. Phail. Tranf. 1799, p. 246.
on its furface gradually thickens, and a number of white round bodies appent on different parts of it. Thefe bo.lies alfo are phofplat of lime, prevented from cryft llizing remplarly by the too rapid ab?raction of moillure. Mr Vauquelin found that soo parts of fe . men contain three parts of phofphat of lime + . If at this period of the evaporation the air becomes moilk, other cryftals appear in the femen, which have the pro. perties of carbonat of fodz. The evaporation docs not go on to complete exficcation, unlefs at the temperature of \(\boldsymbol{7 \prime}\), and when the air is very dry. When all the moifture is evaporated, the femen has loft 0.9 of its weight, the refiduum is femi.tranfparent like horn, and brittle \(\ddagger\).
When femen is kept in very moift air, at the temperature of ajout \(77^{\prime \prime}\), it acquires a yellow colour. like that of the yolk of an egr; ; its tafle becomes acid, it exhales the odour of putrid fill, and its furface is co vered with abundence of the byffus feptica §
When dried femen is expofed to heat in a crucible, it melts, acquires a brown colour, and exhales a yellow funne, having the odour of burnt horn. When the heat is raifed, the matter fwells, becoines black, and gives out a frong odour of ammonia. Whell the odour of ammonia difappears, if the matter be lixiviated with water, an alkaline folution may be obtained, which, by evaporation, yields cryftels of carbonat of foda. Mr Vaucuelin found that 100 parts of femen contain one part of foda \(\frac{\sigma}{}\). If the relicuum be incinerated, there will remain ouly a quantity of white aftes, conlitling of phofphat of lime.
Thus it apoears that femen is compsied of the fullowing ingrediente:
```

90 water,
6 mucilage,
3 phifphat of lime,
I foda,
100

```

\section*{Sect. XV. Liguor of the Amntos.}

Thef fictus in the uterus is enveloped in a peculiar memlranous covering, to which anatomils have given the name of cimnios. Within this amnios there is a liquid, ditinguifed by the mame of the liquor of the am. nione, which furrounds the fuetus on every patt. This liquid, as might have been expected, is very different in different animals, at leaft the liquor amnii in women and in cows, which alone have hitherto beels analy fed, heve not the fmalleft refemblance to each other. Thefe two liquids have been lately analyfed by Vauquelin and Buniva, and the refult of their analy fis has been publii?ed in the 33 d volume of the Annales de Cbisimic.
1. The liquor of the amnios of women is a fluid of a
 matter fulpended in it, for it may be traufparent by filtration *.

Its fpecific gravity is re05. It gives a green colour to the tincture of violets and yet it reddens very deciderly the tiacture of turnfol. Thefe two propertics would indicate at once the prefence of an acid and of an alkali. It foothes confederably when argitaied. On the application of heat it becomes opague. and has thon a great refemblance to milk diluted with a large
quantity of water. At the fame time it cxhales the odour of boiled white of egg \(\dagger\).

Acids render it more tranfparent. Alkalies preci- nios pitate an animal inatter in fimall flakes. Alcohol like- + . \(4 n n\). de wife produces a flaky precipitate, which, when col Chim.xxx:iio lested and dried, becomies tranfparent, and very like \({ }^{2,5}\). glue 'The infufion of nit galls produces a very copions brown celoured precipitate. Nitrat of lilver occafons a white precipitate, which is infoluble in nitric acid, and confequently is snuriat of filver \(\dagger\).
When flowly evaporated it brcomes dlightly milky, a tranfparent pellicle forms on its furface, and it leaves a refidnum which does not exceed 0.012 of the whole. By lixiviating this refictum, and evaporating the ley, cry!tals or muriat and car onat of fodd, may be obtained. The remainder, when incincrated, exhales a fetid and ammoniacal odour, refembli.: g that of burning horn; the afhes confilt of a fmall quantity of carbo:sat of foda, and of phofphat and carbonat of liine \(\ddagger\). \(\ddagger\) Ibid, p. \(\omega^{-}\)

Thins we fee that the liquor of the human amnios is \({ }^{2} 72\). compofed of about
\[
\begin{aligned}
& 98.8 \text { water, } \\
& \mathbf{1 . 2}\left\{\begin{array}{l}
\text { albumea, } \\
\text { muriat of foda, foda, } \\
\text { pliofphat of lime, lime, }
\end{array}\right. \\
& 100.0
\end{aligned}
\]

While the foctus is in the uterns, a curdy-like matter is devofited on the furface of its fkin, and in particular parts of its body. This matter is often found collected in confiderable quaritities. It is cvidently depolited from the liguor of the amnios; and confequently the knowledge of its peculiar nature mult throw confiderable light upon the properties and ufe of that liquor. For an analy yis of this fubftance we are alfo incebted to Vantquelin and 13 univa.

Its colour is white and brilliant; it has a foft feel, and very much refembles newly prepared loap. It is infolutle in water, alcehol, and oils. Pure alkalies diffolve part of it, and form with it a kind of foap. On burning coals it decieptates like a falt, becomes dry and black, exhales vapours which have the odour of empyreumatic oil, and leaves a reliduun which is very difficultly reduced to athes. When heated in a platinum crucible it decerpitates, lets an oil exfude, enils up like horn, and leaves a refidum, conlifting chiefly of carbonat of lime \(\ddagger\).

Thefe properties Mow that this matter is different from every one of the component parts of the liquor of the amrios, and that it has a great refemblance to the fat. It is probable, as Vauquelin and Buniva have conjeetured, that it is formed from the albu wen of that liquid, which has undergone fome unknown changes. It has been long known, that the parts of a focius which has lain for fome time after it has been deprived of life in the uterus, are fometines converted into a kind of fatty matter. It is evident that this fubilance, after it is depofited upon the fkin of the foetus, mult preferve it in a great meafure irum being aeted noon by the liquor of the amnios.
2. The liquor of the amnios of the cow has a vici- Li cqu r if dity femilar to mucilage of gum arabic, a brownilh red me ammi * colour, an acid and bitter tate, and a peculiar od ur, not unlike that of fome vessetable extracts. Its finecific gravity is 1.028. It seddens the tincure of tumfol,
30.4

Liquar of and therefore contains an acid. Muriat of barytes the Am- canfes a very abundant precipitate, which renders it pronics.
and the uric acids; but tha fachlactic acid does not furnifh ammonia by diftillation like the amniotic. The uric acid is not fo foluble in hot water as the amniotic, it does not cryfallize in white brilliant needles, and it is, infoluble in boiling alcohol; in both which refpeets it differs completely from amniotic acid *.

\section*{Sect. XVI. Of Urine.}

No animal fubftance has attracted more attention 309 than urine, both on account of its fuppofed connection with various difeafes, and on account of the very fingular produsts which have been obtained from it. Mr Boyle, and the other chemifts who were his contemporaries, were induced to attend particularly to this liquid, by the difcovery of a method of obtaining phofphorus from it. Boerhazve, Haller, Hanpt, Mar. graf, Pott, Rouelle, Prouft, and Klaproth, fucceffively improved the method of obtaining the phofphoric falts from urine, or added fomething to our knowledge of the component parts of thefe falts. Schecle added greatly to our knowledge of urine by detecting feveial new fubflances in it which had not been fufpeeted. Crückfhank has given us a very valuable paper on urine in the fecond edition of Rallo's Dialuetes; and Fourcroy and Vauquelin have lately publifhed the moft complete analyfis of it which has hitherto appeared.

Freth urine is a liquid of a peculiar aromatic odour, an orange colour, of greater or lefs intenfity, and an acrid faline tafte.

Its fuecific gravity varies from 1.005 to \(1.033^{*}\). * Cruick-
1. It reddens paper ftained with turnfol and with \(\beta\) baxk, \(P\) phin the juice of radifhes, and therefore contains an acid.
2. If a folution of ammonia be poured into frefh \({ }^{2}\) urine, a white powder precipitates, which has the pro- \({ }_{3} 10\) urine, a white powder precipitates, which has the pro- C intains
perties of phofphat of lime. The prefence of this fub-phofphat ol Hance in uine was firf difcovered by Scheele \(\uparrow\). Ifof hine, lime water be poured into urine, phofphat of lime pre \({ }_{20}+\) Sbece cipitates in greater abundance than when ammonia is ufed; confequently the acid which urine contains is the phofphoric. Thus we fee that the phofphat of lime is kept diffolved in urine by an excefs of acid. This alfo was firft difcovered by Scheele \(\ddagger\). This fubftance is \(\ddagger 16 i{ }^{2}\). moft abundaat in the urine of the fick. Berthollet has obferved, that the urine of gouty people is lefs acid than that of people in perfect health. The average quantity of phofohat of lime in healtly urine \(\mathrm{i}^{3}\), as Cruickfhank lias afertained, about \(\frac{1}{5} \frac{1}{5}\) of the weight of the urine \(\rho\).
3. It the phofphat of lime precipitated from urine be Mas \(_{5}\) ii examinted, a little magnetia will be found mixed with it. \({ }^{2+1}{ }_{31}\) Fourcroy and Vauquelin have afcertained that this is Phoffhat owing to a little pho!phat of magnetia which urine con- of naga. tains, and which is jecompoled by the alkali or lime nefia, employed to precipitate the phofphat of lime -
4. When freth urine cools, it of len lets fail a brick coloured precip tate, which Scheele firf aicertained to \(3^{12}\) be cryltals of uric acid. All urine contains this acid, Uric did, even when no fentible precipitate appears when it cools. For if a fufficient quantity of clear and fre!h urine be evaporated to \(\frac{1}{\top}\) of its weight, a fuble powder precipitates to the bottom, and attaches itfelf in part very firmly to the veffel. This part may be diffolved in pure alkali, and precipitated again by acetous acid. It exlibits all the properties of uric acid *. The quantity of uric acid in urine is very various. During in-

Urine. \(\xrightarrow{\text { nen }}\)

termittent fevers it is depofited very copiounf, and has been long known to phyficians under the name of lateritious fediment. This fedinent alway's makes its appearance st the crifis of fevers. In gouty people, the fame fediment appears in equal abundance to wards the end of a paroxyfm of the difeafe ( p ). Ard if this fediment fuddeuly difappears afier it has begun to be depofited, a freh attack may be expected *.
5. If frefh urine be evaporated to the confiftence of a fyrup, and muriatic acid be then poured into it, a prec:pitate appears which polfefles the properties of benzoic acid. Scheele firft difcovered the prefence of benzoic acid in urine. He evaporated it to drynefs, feparated the faline part, and applied lieat to the refiduum. The benzoic acid was fublimed, and found cryttallized in the receiver. The method which we have given is much eafier; it was firft propofed by Fourcroy and Vanquelint. By it very confiderable quantities of benzoic acid may be obtained from the urine of horles and cows, where it is much more abundant than in luman urise. In human urine it varies from rot to rotes of the whole \(\delta\).
6. When an infufion of tan is dropt into urine, a white precipitate appears, having the properries of the combination of tan and albumen, or gelatine. Urine, therefore, contains albumen and gelatine. Thefe fubflances had been fufpected to be in urine, hut their prefence was firft demontrated by Seguin, who difcovered the above method of detecting them. Their quantity in heallhy urine is very finall. Cruikfhank found that the precipitate afforded by tan in healthy urine amounted to ris th part of the weight of the urine \(\ddagger\). It is to thefe fubflances that the appearance of the cloud, as it is called, or the mucilaginous matter, which is fometimes depofited as the urine cools, is owing. It is probable that healthy urine contains only gelatine and not albumen, though the quantity is too fmall to adinit of accurate examination; but in many difeafes the quantity of thefe matters is very much increafed. The urine of dropfical people often contains fo much albumen, that it coagulates not only on the addition of acid, , but ceven on the application of heat §. In all cafes of impaired digeftion, the albuminous and getatinous part of urine is much increafed. This forms one of the mof confpicuous and important dittinctions between the urine of thofe who enjoy good and bad health \(\|\).
7. If urine be evaporated by a flow fire to the confiftence of a thick fyrup, it aflumes a deep brown colour, and exhales a fetid ammoniacal odour. When allowed to cool, it concretes into a mafs of cryftals, compofed of all the component parts of urine. If four times its weight of alcohol be poured upon this mals, at intervals, and a flight heat be applied, the greateft part of it is diffolved. The alcohol, which has acquired a brown colour, is to be decanted off, and diftilled in a crucible in a fand heat, till the mixture has boiled for fome time, and acquired the confiftence of a fyrup.
Suppl. Vol. II. Part II.

By this time the whole of the alcohol has pafted off, and the matter, on cooling, cryttallizes in quadrangular plates which interfect each other. This fubftance is urea, which compofes \(\frac{1}{2} \frac{3}{0}\) of the urine, provided the watery part be excluded. To this fubflance the tafte, fmell, and colour of urine are owing. It is a fubflance which characterizes urine, and comftitutes it what it is, and to which the greater part of the very fingular pleno. mena of urine are to be afcribed.

The colour of urine depends upon the urea; the greater the quantity, the deeper is the colour. It may be detected by evaporating urine to the confiftence of a fyrup, and pouring into it concentrated nitric acid. Immediately a great number of white ©hining cryflals appear in the form of plates, very much refenbling cryftallized boracic acid. Thefe cry ftals are urea combined with nitric acid.

The quantity of urea varies exceedingly in different urines. In the urine voided foom af:er a meal, very little of it is to be found, and fcarccly any at all in that which hy fterical patients void during a paroxy fm .
8. If urine be flowly evaporated to the confiltence of Muriat of a fyrup, a number of cryftals make their appearance in foda, it. Two of thefe are remarkable by their form : one of them confits of fmall regular octahedrons; which, when examined, are found to poffefs the proverties of muriat of foda. Urine, theretore, contains inuriat of foda. It is well known that muriat of foda cryltallizes in cubes ; the lingular modification of its fornt in urine is owing to the action of urea. It has been long known that urine fatuated with muriat of foda depolites that falt in regular octahedrons.
9. Another of the falts which appear during the eva- Muriat of poration of urine has the form of regular cubea. This ammionia, falt has the properties of muriat of ammonia. Now the ufual form of the cryftals of muriat of ammonia is the octahedron. The change of its form in urine is produced alfo by urea.
10. The faline retiduum which renains after the fe-Prififhat of paration of urea from cryftallized urine by ineans of al. ammonia colol, has been long known under the names of fufble and of toda, falt of urine and microcofmic falt. Various methods of obtaining it have been giyen by chemifts from Boerligave, who firft publithed a procefs, to Rouetle and Chaulnes, who gave the method juft mentioned. If this faline mals be diffolved in a fuffecient quantity of hot water, and allowed to cryltallize fpontaneoufly in a clofe veffel, two fets of cryitals are gradually depolited. The lowermolt fet has the figure of flat rhomboidal prifms ; Whe uppermoft, on the contrary, has the form of rectangular tables. Thefe two may be eafly feparated by expofing them for fome time to a dry atmofphere. The rectangular tables eflorefce and fall to powder, but the rhomboidal prifms remain unaltered.
When thefe falts are examined, they are found to have the properties of phofphats. The rhomboidal prifms confift of phof phat of ammonia united to a little phofphat of foda; the rectangular tables, on the con4 E trary,
(P) The concretions which fometimes make their appearance in gouty joints have been found to confift chiefly of uric acid. This fingular coincidence deferves the attention of phyfiologits: it cannot fail, foomer or later to throw light, not only upon gout, but upon fome of the animal functions.
* Cruik. Abank, Pbil.
Mag. ii, 241.

320 Putrefaction ot urinc.
\(\dagger\) Fourcroy,
Ann. de
Cbim. vii. 183.
* Ann de

Climexxai
61. trary, are phofphat of foda united to a fmall quantity of phofphat of ammonia. Urine, then, contains phofphat of foda and phofphat of ammonia.

Thus we have found that urine contains the twelve following fubitances:
1. Water,
2. Phofphoric acid,
3. Phofphat of lime,
4. Phofphat of magnefia,
5. Uric acid,
6. Benzoic acid,

Thefe are the only fubftances which are conftantly found in healthy urine *; but it contains alfo occafonally other fubftances. Very often muriat of potafs may be diftinguifned among the cryftals which form during its evaporation. 'i he prefence of this falt may always be detected by dropping cautioully fome tartayous acid into urine. If it contains muriat of potals, there will precipitate a little tartar, which may eafily be recognifed by its properties*.

Urine fometimes alfo contains fulphat of foda, and even fulphat of lime. The prefence of thefe falts may be afcertained by pouring into urine a folution of muriat of barytes, a copious white precipitate appears, confifting of the barytes combined with phofphoric acid, and with fulphuric acid, if any be prefent. This precipitate muft be treated with a fufficient quantity of muriatic acid. The phofphat of barytes is diffolved, but the fulphat of barytes remains unaltered \(\dagger\).

No fubftance putrefies fooner, or exhales a more deteftable odour during its fpontaneous decompofition, than urine; but there is a very great difference in this refpect in different urines. In fome, putrefaction takes place almoft inftantaneoufly as foon as it is voided; in others, fcarctly any change appears for a number of days. Fourcroy and Vauquelin have afcertained that this difference depends on the quantity of gelatine and albumen which urine contains. When there is very little of thefe fubftances prefent, urine remains long unchanged ; on the contrary, the greater the quantity of gelatine or albumen, the fooner does putrefaction commence. The putrefaction of urine, therefore, is, in fome degree, the teft of the health of the perfon who has voided it ; for a fuperabundance of gelatine in urine always indicates fome defect in the power of digeftion *.

The rapid putrefaction of urine, then, is owing to the action of gelatine on urea. We have feen already the facility with which that fingular fubftance is decompofed, and that the new products into which it is changed are, ammonia, carbonic acid, and acetous acid. Accordingly, the purrefaction of unine is announced by an ammoniacal fmell. Mucilaginous flakez are depofited, confifting of part of the gelatinous matter. The phofphoric acid is faturated with ammonia, and the phofphat of lime, in confequence, is precipitated. Ammonia combines with the phofphat of magnefia, forms with it a triple falt, which cryftallizes upon the fides of the veffel in the form of white cryftals, compofed of fix-fided prifms, terminated by fix fided pyramids. The uric and benzoic acids are faturated with ammonia; the acetous acid, and the carbonic acid, which are the products of the decompofition of the urea, are alfo faturated with ammonia, and notwithftanding the quantity which exhales, the production of this fubltance is fo abundant, that there is a quantity of unfaturated alkali
in the liquid. Putrefied urine, therefore, contains chiefly the following fubftances, moft of which are the products of putrefaction:

Ammonia,
Carbonat of ammonia,
Phofphat of ammonia,
Phofphat of magnefia and ammonia,
Urat of ammonia,
Acetite of ammonia,
Benzoat of ammonia,
Muriat of foda,
Muriat of ammonia;
Befides the precipitated gelatine and phofphat of lime*.* Ann, \&
The difitilation of urine produces almoft the fame 70 . changes; §or the heat of boiling water is fufficient to decompofe urea, and to convert it into ammonia, carbonic and acetous acids. Accordingly, when urine is difilled, there comes over water, containing ammonia diffolved in it, and carbonat of ammonia in cryftals. The acids contained in urine are faturated with ammonia, and the gelatine and phofphat of lime precipitate \(\dagger\).

Such are the properties of the human urine. The urine of othér animals has not hitherto been examined with equal care; but it is certain that it differs very confiderably from that of men. The urine of cows and horfes, and of aill ruminating animals, for inttance, contains carbonat of lime, without any mixture of phofphat of lime \(\ddagger\). It contains alfo a much greater pro- \(\ddagger\) portion of benzoic acid than that of man.

\section*{Sect. XVII. Of the Urinart Calculus.}

IT is well known that concretions not unfrequently form in the bladder, or the other urinary organs, and occation one of the moft difmal difeafes to which the human fpecies is liable.

Thefe concretions were diftinguifhed by the name of Urinary calculi, from a fuppofition that they are of a flony na- caiculi ture. They have long attracted the attention of phyficians. Chemiltry had no fooner made its way into medicine than it began to exercife its ingenuity upon the urinary calculus; and various theories were given of their nature and origin. According to Paracelfus, who gave them the sidiculous name of duelech, urinary calculi were intermediate between tartar and ftone, and compofed of an animal refin. Van Helmont pronounced them anomalous coagulations, the offspring of the falts of urine, and of a volatile earthy fpirit, produced at once, and deftitute of any vifcid matter \(\oint\). Boyle \(\$\) De Litibi extracted from them, by dittillation, oil, and a great \(a f_{f}, c_{3} .3\). quantity of volatile falt. Boerhaave fuppofed them compounds of oil and volatile falts. Hales extracted from them a prodigious quantity of air. He gave them the name of animal tartar, pointed out feveral circumflances in which they refemble common tartar, and made many experiments to find a folvent of them *. \({ }^{*}\) Vegat Dis Whytt and Alfon pointed out alkalies as folvents Stat . is. of calculi. It was an attempt to difcover a more perfect folvent that induced Dr Black to make thofe experiments which terminated in the difcovery of the nature of the alkaline carbonats.
Such was the ftate of the chemical analyfis of cal-Analyced culus, when, in 1776, Scheele publifhed a differtationby jchecil on the fubject in the Stockbolm Tranjagions; which was fucceeded by fome remarks of Mr Bergmann. Thefe illuftrious

ANIMALSUBSTANCES.
illuftrions chemins completely remored the uncertainty which had hitherto liung over the fubject, and afcertained the nature of the calculi which they examined. Since that time conliderable additional light has been thrown upon the nature of thefe concretions by the labours of AuAtin, Pearfon, and, above all, of Fourcroy and Vauquelin, who have lately analyfed above 300 caiculi, and afcertained the prefence of feveral new fubflances which had not been fufpected. The fubfances hitherto difcovered in urinary calculi are the followhig: 1. Uric acid,
2. Urat of ammonia,
3. Phofphat of lime (e),
4. Phofphat of magnefia-and-ammonia,
5. Oxalat of lime,
6. Silica,
7. An animal matter.
r. The greater number of calculi confift of uric acid. All thofe analyfed by Scheele were compofed of it entirely. Of aco calculi analyfed by Dr Pearfon, fcarcely one was found which did not contain a confiderable quantity of it, and the greater number manifeitly were formed chicfly of it. Fourcroy and Vauquelin found it alfo in the greater number of the 300 calculi which they analyfec.
The prefence of this acid may eafily be afcertained by the following properties: A folution of potafs or foda diffolves it readily, and it is precipitated by the weakeft acids. The precipitate is foluble in nitric acid, the folution is of a pink colour, and tinges the fkin red *.
2. Urat of ammonia is eafily detected by its rapid fo. lubility in fixed alkaline leys, and the odour of ammonia which is perceived during the folution. It is not . fo often prefent in urinary calculi as the laft mentioned fubftance. No calculus has hitherto been found compofed of it alone, except the very fmall polygonal calculi, feveral of which fometimes exitt in the bladder together.

It is inof ufually in thin layers, alternating with fome other fubfance, very eafily reduced to powder, and of the colour of ground coffee \(\dagger\).

3 Phofphat of lime is white, without luftre, fiery, friable, ftains the liands, paper, and cloth. It has very much the appearance of chalk, breaks under the forceps, is inlipid, and infoluble in water. It is foluble in nitric, muriatic, and acetous acids, and is again precipitated by ammonia, fixed alkalies, and oxalic acid.

It is never alone in calculi. It is intinately mixed with a gelatinous matter, which remains urder the form of a nembrane when the earthy patt is diffolved by very diluted acids \(\ddagger\).
4: Phofphat of magnefia-and-ammonia occurs in white, femitranfparent, lameller layers; fornetimes it is cry-- fallized on the furface of the calculi in prifms, or what are called dog tooth cryftals. It has a wcak fweetifh tafte, it is fomenhat foluble in water, and very foluble in acids, though greatly ciluted. Fixed alkalies decompofe it.

It never forms entire calculi. Sometimes it is mixed with phofplat of lime, and fometimes layers of it
cover uric acid or oxalat of lime. It is mixed with the fanse gelatinous matter as phofphat of line \(\ddagger\).
5. Oxalat of lime is found in certain calculi, which, from the inequality of their furface, have rot the name Fourcroy, of moriforma or mulberry Japed calculi. It is never alone, Clim. xxaiio but combined with a peculiar animal matter, and form- 219. ing with it a very hard calculus, of a grey colour, difficulc to faw afinder, admitting a polith like ivory, ex. Oxalat of haling, when fawed, an odour like that of femen. In of hine. foluble and indecompofible by alkalies; foluble in very diluted nitric acid, but flowly, and with difficulty. It may be decompofed by the carbonats of potafs and foda. When burut, it leaves behind a quantity of pure lime, which may be eafily recognifed by its properties *.
6. Silica has only been found in two inflances by Fourcroy and Vauquelin, though they analyfed 300 calculi. No other chemift has obferved it. It muft therefore be confidered as a very uncommon ingredient of thefe concretions. In the two inflances in which it occurred, it was mixed with uric acid and the two phofplats above mentioned \(\dagger\).
7. Animal matter appears to compofe the cement \(: 30\) which binds the different particles of the calculus toge. Anmal ther, and in all probability it is the caufe which influ- matters. ences its formation. It is different in different calculi. Sometimes it has the appearance of gelatine or albumen, at other times it refembles urca. It deferves a more accurate invefligation \(\ddagger\).

No general defcription of the different calculi has hitherto appeared; but lourcroy and Vauquelin are at prefent occupied with that fubject. 'They propofe to clatify them according to their compofition; to point out their different fpecies and varieties; to give a method of detecting them by their appearance ; to analy fe the animal matter by which they are cemented; and to apply all the prefent cliemical knowledge of the fubject in the inveftigation of the caufe, the fymptoms, and the cure, of that dreadful difeafe which the urinary calculi produce. As their labour is already very far advanced, it would be unneceffiry for us to attempt any claffification of calculi. Indeed every attempt of that kind, by any perfon who has not had an opportunity of analyfing a very great number of calculi, mutt be fo exceedingly imperfect as fcarcely to be of any ufe.

We fhall fatisfy ourfelves with the following remarks, deduced almoft entirely from the obfervations which thefe celcbrated chemifts have already publifhed.

Many calculi confift entire! y, or almioft entircly, of uric acid. The animal matter, which ferves as a cement to thefe calculi, appears to be urea. Calculi of this kind may be diffolved by injecting into the bladder folutions of pure potafs or foda, fo much diluted as not to act upon the bladder itfelf. The gritty fubftance, which many perfons threatened with the ftone difcharge along with thitir erine, which has been called grazed, confilts almoft conftantly of uric acid. It may there. fore ferve as an indication that the fubfequent tone, if any fuch form, is probably compofed of uric acid.

The two phofplats, mixed together, fometimes com. pofe calculi. Thefe calculi are very brittle, and gene. \(4 \mathrm{E}_{2}\)
rally

Urinary rally break in pieces during the extraction. Such calCalculus culi may be diffolved by injecting into the bladder mu-
riatic acid, fo much diluted as fcarcely to have any tafte of acid.

The phofphats never form the nuclens of a calculus. They have never been found covered with a layer of uric acid, but they often cover that acid. Hence it would feem that the exiftece of any extrancous matter in the bladder difpofes thefe phofphats to cryftallize. When extranenus bodies are accidentally introduced into the bladder, and allowed to lodge there, they are conftantly covered with a coat of phofphat of ammonia and magnefia, or of the two phofphats mixed.

As the phofphat of ammonia and magnefia is not an ingredient of frefh urine, but formed during its putre. faction, when it exifs in calculi, it would feem to indicate a commencement of putrefacion during the time that the urine lodges in the bladder. But putrefaction does not take place fpeedily in urine, unlef8 where there is an excefs of albumen and gelatine; confequently we lave reafon to fuppofe, that thefe fubftances are morbidly abundant in the urine of thofe patients who are aflicted with calculi confifting of the phofphats: hence alfo we may conclude, that their digeltion is imperfect. It will no douht be objected, that dropfical people are not peculiarly fubject to calculi; but their urine is only morbidly albuminous when the difeafe is beginning to difappear, and then there feems to be a deficiency of urea; at leaf their urine has not been obferved to putrefy with uncommon rapidity. Befides, there feems to be fome animal matter prefent, which ferves as a cement to the phofphat in all cafes where calculi form.

Urat of ammonia is only found alone in the very fmall polygomous calculi which exift, feveral together, in the bladder. In other cafes it is mixed with uric acid. It fometimes alternates with uric acid or with the phofphats. It is diffolved by the fame fubftance that acts as a folvent of uric acid.

Oxalat of lime often forms the nucleus of calculi compofed of layers of uric acid or of the phofphats. It forms thofe irregular calculi which are called moriform. Thefe calculi are the lardeft and the moft difficult of folution. A very much diluted nitric acid diffolves them but very flowly. As oxalic acid does not exift in urine, fome morbid change muft take place in the urine when fuch calculi are depoftec. Brugnatelli's difcovery of the inftantaneous converfion of uric acid into oxalic acid by oxy-muriatic acid, which has been confirmed by the experiments of Fourcroy and Vauquelin, throws confiderable light upon the formation of oxalic acid in urine, by fhewing us that uric acid is probably the bafis of it; but in what manner the change is acfually produced, it is not fo eafy to fay.

The calculi found in the bladder of other animala
have not been examined with the fame care. Some of them, however, have been fubjected to an accurate ana. lyfis. No uric acid has ever been found in any of them. Fourcroy found a calculus extracted from the kidney of Calculi a horfe compofed of three parts of carbonat of lime, inferior and one part phofphat of lime *. Dr Pearfon exanii animals. ned a urinary calculus of a lonre; it was compofed of \({ }^{*}\) Ann, de phofphat of lime and plofphat of ammonia. Brugnatel. \({ }^{\text {obim. Xvi, }}\) li found a calculus extracted from the bladder of a fow, which was exceedingly hard, compofed of pure carbo. nat of lime, inclofing a foft nucleus of a foctid and urinous odour \(\dagger\). 13artholdi examined another calculus of \(\dagger\) Ibid. a pig, the fpecific gravity of which was 1.9200 . It \({ }^{\text {xxxii. } 184 *}\) conlifted of phofulhat of lime \(\ddagger\). Dr Pearfon found a \(\ddagger\) ILil, 185 . calculus taken from the bladder of a dog, compofed of phofphat of lime, phofphat of ammonia, and an animal matter. He found the urinary calculus of a rabbit, of the fpecific gravity 2 , compofed of carbonat of lime ard fome animal matter \|.
The compofition of the different animal concretions \({ }^{\text {1.134. }}\)
hitherto examined may be feen in the following table.
Horfe. \(\left\{\begin{array}{l}\text { 1. Carbonat of lime and phofphat of lime } \\ \text { 2. Dhefph. of lime and phoffh. of aminonia } \dagger .\end{array}\right.\)
* Fourcros.
2. Carph. of lime and phoiph. of amino
Sow. \(\{\) 1. Carbon. of lime and an animal nucleus \(\ddagger\). 2. Phofphat of limes.
\(\dagger\) Pearfon.
\(\ddagger\) Brugnatellit

Dog. Phofphat of lime, and of ammonia, and animal matter \(\dagger\).
\(\dagger\) Pearjor.
Rabbit. Carbonat of lime and animal matter \(\dagger\).
\(W_{\text {e }}\) have now given an account of all thofe fecretions which have been attentively examined by chemitts. The remainder lave been hitlerto neglected; partly uwing to the difficulty of procuring them, and partly on account of the multiplicity of other objects which occupied the attention of chemical philofophers ( R ). It remains for 11 now to examine by what proceffes thefe different fecretions are formed, how the conftant wafte of living bodies is repaired, and how the organs themfelves are nourifled and preferved. This Shall form the fubject of the following chapter.

Chap. III. Of the Functions of Animals.
The intention of the two laft chapters was to exhibit a view of the different fubflances which enter into the compofition of animals, as far as the prefent limited fate of our knowledge puts it in our power. But were our enquiries concerning animals confined to the mere ingredients of which their bodies are compofed, even fuppofing the analyfis as complete as poffible, orr knowledge of the wature and properties of animals would be imperfect indeed.

How me thefe fubftances arranged? How are they produced?
(R) The chief of thefe fecretions are the fullowing:
1. Cerumen, or ear-wax, is at firft nearly liquid, and of a whitifh colour. It gradually acquires conffitence. Its tafte is very bitter. Said to be infoluble in alcohol; but foluble in hot water. Does not become rancid by f keetping.
2. The humours of the eye.
3. The milky liquor, fecreted by the thyroid gland.
4. Mucus of the lungs, intcftinal canal, \&c.
5. Smegma of the areola of the breafts, glans peris, vagina, fubcutaneous glands, \&xc.
6. Marrow.
prodisced? What purpofes do they ferve? What are the diftinguifhing properties of animals, and the laws by which they are regulated?

A nimals refemble vegetables in the complexnefs of their ftructure. Like them, they are machines nicely adapted for particular purpofes, conltituting one whole, and continually performing an infinite number of the moft delicate procefles. But neither an account of the ftructure of animals, nor of the properties which diftinguifh them from other beings, will be expected here. Thefe have been already treated of fufficiently in the articles Anatmiy and Physiology (Eincycl.), to which we beg leave to refer the reader. We mean only, in the prefent chapter, to take a view of thofe proceffes which are concerned in the produdion of animal fubftances, which alone properly belong to chemiltry. The other functions are regulated by laws of a very different nature, which have no refemblance or analogy to the laws of chemiftry or mechanics.
1. Every body knows that animals reçuire food, and that they die fooner or later if food be withheld from them. There is indeed a very great difference in different animals, with regard to the quantity of food which they require, and the time which they can pais without it. In general, this difference depends upon the activity of the animal. Thole which are moft active require moft, and thofe which move leaft require leaft food.

The caufe of this is alfo well known ; the bodies of animals do not remain ftationary, they are conftantly walting; and the walte is generally proportional to the activity of the animal. It is evident, then, that the body muft receive, from time to tinae, new fupplies, in place of what has been carried off. Hence the ufe of food, which anfwers this purpofe.
2. We are much better acquainted with the food of animals than of vegetables. It confilts of almoft all the animal and vegetable fubftances which have been treated of in the former part of this article; for there are but very few of them which fome animal or other does not ufe as food. Man ufes as food chienly the mufcles of animals, the feeds of certain graffes, and a variety of vegretable fruits. Almoft all the inferior animals liave particular fubftances on which they feed exclufively. Some of them feed on animals, others on vegetables. Man has a greater range; he can feed on a very great number of fubftances. To enurnerate thefe fubftances would be ufelefs; as we are not able to point out with accuracy what it is which renders one fubtance more sourifhing than another.

Many fubftances do not ferve as nourihment at all; and not a few, inftead of nourifing, dettroy life. Thefe laft are called poifons. Some poifons act chemically, by decompofing the animal body. The action of others is not fo well underftood.
3. The food is introduced into the body by the mouth, and almoft all animals reduce it to a kind of pulpy confiftence. In inan and many other animals this is done in the mouth by means of teeth, and the faliva with which it is there mixed; but many other animals grind their food in a different manner. See Physiology, (Encycl.) After the food has been thus ground, it is introduced into the flomach, where it is fubjected to new changes. The ftomach is a ftrong foft bag, of different forms in different animals: in man it has fome
refemblance to the bag of a bag-pipe. In this organ the functions food is converted into a foft pap, which has no refem. of Atimalso blance to the food when firf intioduced. This pap lias been called clyme.
4. Since chyme poffeftes new troperties, it is evident that the food has undergone fome changes in the fonnach, and that the ingredients of which it was compofed have entered into new combinations. Now, in What manner have thefe changes been produced?

At firft they were aferihed to the nechanica! attion of the flomach. The fooch, it was faid, was nill farther triturated in that organ; and being long agitated back. wa:ds and forwards in it, was at lafl reduced to a pulp. But this opirion, upon examinatiun, was found not to be true. 'The experiments of Sterens, Reaumur, and Spallanzani, demonftrated, that the formation of chyme is not owing to trituration; for on inclofing dfferent kinds of fuod in metallic tubes atid balls full of holes, in fuch a manner as to fereen them froin the mechanical action of the fomacl, they found, that thefe fubftances, after having remaineci a fufficier:t ime in. the flomach, were converted into chyme, juft as if they had not been inclofed in fuch tubes. Indeed, the ofinion was untenable, even indeperdent of thefe decifee experiments, the moment it was perceived that chyme differed entirely from the fond which had been taken: that is to fay, that if the fame foon were criturated niechanically out of the body, and reduced to pap of precifely the fame confatence with chyme, it would not poffefs the fame properties with chyme; for wheneverthis fact was known, it could not but be evident that the food had undergone changes in its compofition.
'The change of food into chyme, therefore, was afcribed by many to fermentation. This opinion is indeed very ancient, and it has had many zealous fupporters among the moderns. When the word fermientatien was applied to the clange produced on the food in the formach, the nature of the procefs catled fermentations was altogether unknown. The appearances, inderci, which take place during that procefs, had been defcribeth, and the progrefs and the refult of it were known. Chemifts had even divided fermentations into different claffes; but no attempt hat been made to explain the cause of fermentation, or to trace the changes which take place during its continuance. All that could be meant, then, by faying that the converfion of food into chyme in the fomacl was owing to fermentation, was mierely, that the unkiown caufe which adted during. the converfion of vegetable fubftances into wine or acid, or during their putrefaction, acted alfo during the converfion ot the food into chyme, and that the reluit in borh cafes was precifely the fame. Accordingly, the advocates for this opinion attempted to prove, that air was confantly generated in the fomach, and that ata acid was conftantly produced: for it was the vinous. and acetous fermentations which were affigned by the greater number of phyfiologits as the caufe of the formation of chyme. Some indeed attempted to prove, that it was produced by the putrefactive fermentation : but their number was inconfiderable, compared with thofe who adopted the other opinion.

Our ideas refpecting fermentation are now fomewhat more precife. It fignifies a now decompofition, which takes place when certain animal or vegetable fubftances are mixed together at a given temperature; and the
funcions confequent production of particular compounds. If

337
By the ac-
tion of the
gaftric guice.
therefore the converfion of the food into chyme be owing to fermentation, it is evident that it is totally independent of the ftomach any farther than as it fupplies temperature ; and that the food would be converted into chyme exactly in the fame manner, if it were reduced to the fame confiftence, and placed in the fame temperature out of the body. But this is by no means the cafe; fubftances are reduced to the fate of chyme in a fhort time in the fomach, which would remain unaltered for weeks in the fame temperature out of the body. This is the cafe with bones; which the experiments of Stevens and Spallanzani have fhewn to be foon digetted in the ftomach of the dog. Further, if the converfion of food into chyme were owing to fermentation, it ought to go on equally well in the fomach and ofophagus. Now, it was cbferved long ago by Ray and Boyle, that when voracious fifh had fwallowed animals too large to be contained in the ftomach, that part only which was in the ftomach was converted into chyme, while what was in the œophagus remained entire; and this has been fully confirmed by fubfequent obfervations.

Still farther, if the converfion were owing to fermen. tation, it ought always to take place equally well, provided the temperature be the fame, whether the fomach be in a healthy fate or not. But it is well known, that this is not the cafe. The formation of chyme depends very much on the flate of the ftomach. When that organ is difeafed, digeftion is conftantly ill perform ed. In thefe cafes, indeed, fermentation fometimes appears, and produces flatulence, acid eruetations, \&c. which are the well-known fymptoms of indigeftion. Thefe facts bave been long known; they are totally incompatible with the fuppofition, that the formation of chyme is owing to fermentation Accordingly that opirion has been for fome time abandoned, by all thofe at leaft who have taken the trouble to examine the fubject.

The formation of chyme, then, is owing to the fomach ; and it has been concluded, from the experiments of Stevens, Reaumur, Spallanzani, Scopoli, Brugnatelli, Carimini, \&c. that its formation is brought about by the action of a particular liquid fecreted by the tomach, and for that reafon called gaftric juice.

That it is owing to the action of a liquid, is evident; becaufe if pieces of food be inclofed in clofe tubes, they pafs through the Itomach without any far ther alteration than would have takeu place at the fame temperature out of the body: but if the tubes be perforated with Imall holes, the food is converted into chyme.

This liquid does not act indifcriminately upon all fubftances: For if grains of corn be put into a perforated tube, and a granivorous bird be made to fwallow it, the corn will remain the ufual time in the ftomach with. out alteration; whereas if the hunk of the grain be previounly taken off, the whole of it will be converted into chyme. It is well known, too, that many fubftances pafs unaltered through the inteftines of animals, and confequently are not aeted upon by the gaftric juice. This is the cafe frequently with grairs of oats when they have been fwallowed by horfes entire with their hufks on. This is the cafe alfo with the feeds of apples, \&c. when fwallowed entire by men; yet thefe ve ay fubftances, if they have been previouny ground fuf-
ficiently by the teeth, are digefled. It appears, there- Functum fore, that it is chiefly the lunfe or outfice of thefe fub- of Ammats ftances which refifts the action of the gaftric juice. We fee alfo, that trituration greatly facilitates the converfion of food into chyme

The gaftric juice is not the fame in all animals; for Nalure of \({ }^{338}\) many animals cannot digeft the food on which othersginfric live. The conium maculatum (hemlock), for inftance, \({ }^{\text {juice. }}\) is a poifon to man inflead of food, yet the goat often feeds upon it. Many animals, as fheep, live wholly upon vegetables; and if they are made to feed on animals, their ftomachs will not digeft them: others, again, as the eagle, feed wholly on animal fubftances, and cannot digeft vegetables.

The gaftric juice does not continue always of the fame nature, even in the fame animal: it changes gradually, according to circumitances. Graminivorous animals may be brought to live on animal food; and aftet they have been accuftomed to this for fome time, their ftomachs become incapable of digefting vegetables. On the other hand, thofe animals which naturally digeft nothing but animal food may be brought to digeft ve. getables.

What is the nature of the gaftric juice, which poffeffes thele fingular properties? It is evidently different in different animals; but it is a very difficult tafk, if not an impoffible one, to obtain it in a fate of purity. Various attempts have indeed been made by very ingenious philofophers to procure it ; but their analyfis of it is fufficient to fhew us, that they have never obtained it in a ftate of purity.

The methods which have been ufed to procure gaf. tric juice are, firf, to kill the animal whofe gaftric juice is to be examined after it has fafted for fome time. By this method, Spallanzani collected 37 fpoonfuls from the two firft ftomachs of a fheep. It was of a green colour, undoubtedly owing to the grafs which the animal had eaten. He found alfo half a fpoonful in the ftomach of fome young crows which he killed before they had left their neit.

Sinall tubes of metal, pierced with holes, and containing a dry fponge, have been fwallowed by animals ; and when vomited up, the liquid imbibed by the foonge is fqueezed out. By this method, Spallanzani collect. ed \(4^{81}\) grains of gaftric juice from the ftomachs of five crows.

A third method confifts in exciting vomiting in the morning, when the ftomach is without food. Spallanzani tried this method twice upon himfelf, and collected one of the times \(10 \mathrm{oz} .3^{2} \mathrm{gr}\). of liquid; but the pain was fo great, that he did not think proper to try the experiment a third time. Mr Croffe, however, who could excite vomiting whenever he thought proper by fwallowing air, las employed that method to collect gattric juice.
Spalianzani has obferved, that eagles throw up every morning a quantity of liquid, which he confiders as gaftric juice; and he has availed himfelf of this to collect it in confiderable quantities.

It is almot unneceflary to remark how imperfect thefe different methods are, and how far every conclufion drawn from the examination of fuch jnices mult deviate from the truth, It is impoflible that the ga?ric juice, obtained by any one of thefe proceffis, can be pure ; becaufe in the fomach it muft be conftantly
mixed
mixed with iarge quantitics of faliva, mucus, bile, food, \&c. It may be queltioned, indeed, whether any gaftric juice at all can be obtained by thefe methods: for as the intention of the gaftric juice is to convert the food into chyme, in all probability it is only fecreted, or at lealt thrown into the fomach when food is prefent.

We need not be furprifed, then, at the contradictory accounts concerning its nature, given us by thofe philo. fophere who have attempted to examine it; as thefe relate not fo much to the gaftric juice, as to the different fubftances found in the ftomach. The idea that the grafric juice can be obtained by vomiting, or that it is thrown up foontaneounly by fome animals, is, to fay the leait of it, very far from being probable.

According to Brugnatelli, the gattric juice of carnivorous animals, as hawks, kites, \&c. has an acid and re. fmous odour, is very bitter, and not at all watery ; and is compofed of an uncombined acid, a relin, an animal fubitance, and a fmall quantity of muriat of foda*. The gallric juice of herbivorous animals, on the contrary, as goats, theep, \&c. is very watery, a little muddy, has a bitier faltifh tafte, and contains aminonia, an animal extract, and a pretty large quantity of muriat of foda \(\dagger\). Mr Carninat \(i\) found the fame ingredients; but he fuppofes that the ammonia had been lormed by the putrefaction of a part of their food, and that in reality the gallric juice of thefe animals is of an acid nature \(\ddagger\) :

The accounts which have been given of the gaftric juice of man are fo various, that it is not worth while to tranfcribe them. Sometimes it has been found of an acid nature, at other times not. The experiments of Spallanzari are fifficient to fhew, that this acidity is not owing to the gafric juice, but to the food. He never found any acidity in the gaftric juice of birds of prey, nor of ferpents, frogs, and litties. Crows gave an acidulous gatric juiee ouly when fed on grain; and he found that the fame obfervation holds with refpect to dogs, herhiverouts animals, and domeftic fowls. Carnivorous birds threw up pieces of fhells and coral without alteration : but thefe fubfances were fenfibly diminifhed in the fomachs of hens, evell when inclofed in perforated tubes. Spallanzani himfelf fwallowed calcareous fubstances inclofed in tubes; and when he fed on vegetables and fruita, they were fometimes altered and a little diminithed in weight, juit as if they lad been put into weak vinegar; but when he ufed only animal food, they came out untouched. According to this philofopher, whofe experiments have been by far the moft numerous, the gaftric juice is naturally neither acid nor alkaline. When poured on the carbonat of potafs, it caufes ro eflervefcence.

Such are the refults of the experimentiz on the juices taken from the fomach of animils. No conclution can be drawn from them refpecting the nature of the gain tric juice. But from the experiments which have been made on the digeftion of the fomach, efpecially by Spallanzani, the following facts are eflablifhed.

The ga? ric juice attacks the furfaces of bodies, unites to the particles of them which it carries off, and cannot be feparated from them by filtration. It operates with more energy and rapidity the more the food in divided, and its action is increafed by a warm tempreature. "ilhe food is not merely reduced to very minute parts; its tate and finell are quite changed; its fenfible proper. ties are deitroyed, and it acquires new and very diffe
rent ones. This juice does not act as a ferment; fo far from ir, that it is a powerful antifeptic, and even refores flefh already putrefied. 'There is not the fmalleft appearance of fuch a procefs; indeed, when the juice is renewed frequently, as in the fomacl, fubfances diffolve in it with a rapidity which excludes all idea of fermentation. Only a few air bubbles make their efcape, which adhere to the alimentary matter, and buoy it up to the top, and whicl are probably extricated by the lieat of the folution.

With refpect to the fubfances contained in the ftomach, only two facts have been perfectly afcertained: The firl is, that the juice contained in the ftomach of oxert, calves, fheep, invariably contains uncombined phofphoric acid, as Macquart and Vauquelin have demonitrated: The fecond, that the juice contained in the flomach, and even the inner coat of the flomach itfelf, has the property of coagulating inilk and the ferum of blood. Dr Young found, that feven grains of the inner coat of a calf's !omach, infufed in water, gave a liquid which coagulated more than 100 ounces of milk; that is to fay, more than 6857 times its own weight ; and yet, in all probability, its weight was nce much diminifhed.

What the fubftance is which poffeffes this coagulas ting property, has not yet been afcertained; but it is evidently not very foluble in water: for the infide of a calf's ftomach, after being fteeded in water for fix hours, and chen well wafhed with water, itill furnifhes a liquor on infufion which coagulates milk *: And Dr Young found, that a piece of the inner coat of the ftomach; after being previoufly wafhed with water, and then with a diluted folution of carbunat of potafs, ftill afforded a liquid which coagulated milk and ferum.

It is evident, from thele facts, that this coagulating fubftance, whatever it is, acts very powerfully; and that it is fearcely poflible to feparate it completely from the fomach. But we know at prefent too little of the na. ture of coagulation to be able to draw any infercnce from thefe fafts. An almof imperceptible quantity of fome fubftances feems to be fufficient to coagulate milh. For Mr Vaillant mentions in his Travels in Africa, that a porcelain difh which he procured, and which had lairs for fome years at the kottom of the fea, poffelled, it? confequence, the property of coagulatiug milk when put into it; yet it communicated no tatte to the milk, and did not differ in appearance from other cups.

It is probable that the faliva is of fervice in the cone verfion of food into chyme as well as the galtric juice. It evidently ferves to dilute the food; and probably it may be ferviceable alfo, by communicaring oxygen.
5. The chyme, thus formed, paffes from the flomach Cliyme into the inteftines, where it is fubjected to new chançea, convertu? and at laf converted into two very different fubstances; into chyse chyle and excrementitious matter.
6. The cloyde is a white coloured liquid, very much refembling milk. It is exceedingly difficult to collect it in any confiderable quantity, and for that seafon it has never been accurately analyfed. We know orly in general that it refembles milk ; containing, like it, an aluminous part capable of being coagulated, a ferum, and globules which have a refemblance to cieam + . It conte: is affo cifferent falts; and, according to furne, a fubitance fearccly differing from the fugar of milk. It is probable alfo that it contains iron; but if fo, it mutt

Fundiurs be in the fate of a white oxyd; for an infufion of nut of Animals. galls does not alter the colour of chyle \(\ddagger\).
6. Concerning the procefs by which chyle is formed from chyme, fcalcely any thing is known. It does not appear that the chyme is precifely the fame in all ani- mals; for thofe which are herbivorous have a greater length of inteltine than thofe which are carnivorous. It is certain that the formation of the chyle is brought about by a chemical change, although we cannot fay precifely what that change is, or what the agents are by which it is produced. But that the clange is chemical, is evident, becaufe the chyle is entirely different, loth in its properties and appearance, from the chyme. The chyme, by the action of the inteftines, is feparated into two parts, chyle and excrement : the firit of which is abforbed by a number of fmall veffels called lacteals; the fecond is pufhed along the inteftinal canal, and at laf thrown out of the boly alnogether.

After the chyme hax been converted into chyle and excrement, although thefe two fubftances remain mixed logether, it does not appear that they are able to decompofe each other; for perfons have been known feldom or bever to emit any excrementitious matter per anum for years. In thefe, not only the chyle, but the excrementitious matter alfo, was abforbed by the lacteals; and the excrement was afterwards thrown out of the body by other outets, particularly by the fkin: in confequence of which, thofe perfons have conftantly that particular odour about them which difinguines excrement. Now in thefe perfons, it is evident that the chyle and excrement, though mixed together, and even abforbed tugether, did not act on each other ; becaufe thefe perfons have been known to enjoy good health for years, which conld not have been the cafe had the chyle been deftroyed.
7. It has been fuppofed by fome that the decompofition of the chyme, and the formation of chyle, is produced by the agency of the bile, which is poured out abundantly, and mised with the chyme, foon after its entrance into the intellines. If this theory were true, no chyle could be formed, whenever any accident prevented the bile from paffing imto the inteftinal canal: but this is obvioufly not true; for frequent inftances have occurred of perfons labouring under janndice from the bile ducts being ftopped, either by gallitones or fome other caufe, fo completely, that no bile could pafs into the inteftines; yct thefe perfons have lived for a confliderable time in that flate. Confequently digeftion, and therefore the formation of chyle, mult be poffible, independent of bile.

The principal ufe of the bile feems to be to feparate the excrement from the chyle, after both have been - formed, and to produce the evacuation of the excrement out of the body. It is probable that thefe fi:bflances would remain mixed together, and that they would perhaps even be partly abforbed together, were it not for the bile, which feems to combine with the excrement, and by this combination to facilitate its feparation from the chyle, and thus to prevent its abforp. tion. It alfo ftimulates the inteftinal canal, and caufes it to evacuate its contents fooner than it otherwife
would do ; for when there is a deficiency of bile, the body is conftantly coftive.
8. T'he excrement, then, which is evacuated per anum, confifts of all that part of the food and chyme
which was not converted into chyle, entirely altered Fundions however from its original flate, partly by the decompo- of An mals, fition which it underwent in the ftomach and inteltines, and partly by its combination with bile. Accordingly we find in it many fubflances which did not exift at all in the food. Thus in the dung of cows and horfes there is found a very confiderable quantity of benzoic acid. The excrements of animals have 1:ot yet been fubjected to an accurate analytis, though fuch an analyfis would throw much light upon the nature of digeftion. For if we knew accurately the fubitances which were taken isto the body as food, and all the new fubAlances which were formed by digettion ; that is to fay, the component parts of chyle and of excrement, and the variation which different kinds of food procuce in the excrement, it would be a very confiderable ftep towarda afcertaining precifely the changes produced on food by digettion, or, which is the farne thing, towards afcertaining exasily the phenomena of digettion. The only analyfis which has hitherto been made on human ex. crement is that of Homberg; and as it confifted merely in fubjecting it to diftillation, it is needlefs to give an account of it. Of late, as Mr Fourcroy informs us, the fubject has been refiuned in France, and we may foon expect fome very curious and important additions to our knowledge.
Mr Vauquelin has already publifhed an analyfis of \(\mathrm{Excrements}_{342}^{3}\) the fixed parts of the excrements of fowls, and a com. of fowls parifon of them with the fixed parts of the food; from which fome very curious confequences may be deduced.

He found that a hen devoured in teri days 11111.843 grains troy of oats. Thefe contained
\[
\text { I } 36 . ; 09 \text { gr. of phofphat of lime, }
\]
219.548 tilica,
356.057.
1)uring thefe ten clays fhe layed four eggs; the thells of which contained \(9^{8.776 ~ g r}\). phofphat of lime, and 453.417 gr . carbonat of lime. The excrements emitted during thefe ten day: contained 175.529 gr . phofphat of lime, \(58.49+\) gr. of carbouate of line, and 185.266 gr . of filica. Confequently the fixed parts thrown out of the fyitem during thefe ten days amounted to Grains.
\(27+3>5\) pholphat of lime,
511.911 carbonat of line,
185.266 filica,

Given out 971.482
Taken in 356.057
\[
615.425
\]

Confequently the quanitity of fixed matter given ont of the fyitem in ten days exceeded the quanticy taken in by 615.425 grains.

The filica taken in amounted to 219.548 gr .
That given out was only \(\quad 185.266 \mathrm{gr}\).

\section*{Remains \\ 34.282}

Confequently there difappeared 34.282 grains of filica.

The phofphat of lime taken in was 136.509 gr .
That given out was
274.305 gr.
\(137.79^{6}\)
Confequently

Confequently there mult have been formed, by digeftion in this fowl, no tefs than 137.796 grains of phofohat of lime, befides 51 t .911 grains of carbonat. Confequently lime (and perhaps alfo phofphorus) is not a fimple fubitance, but a compound, and formed of ingredients which exift if oat-feed, water, or air, the onIy fubftance to which the fowl had accefs. Silica may enter into its compofition, as a part of the filica had difappeared ; but if fo, it muft be combined with a great quantity of fome other fubitance*.

Thefe confequences are too important to be admitted without a very rigorous examination. The experiment muft be repeated frequently, and we muft be abfolutely certain that the hen has no accefs to any calcareous earth, and that the has not diminififed in weight; beczufe in that cafe fome of the calcareous earth, of which part of her body is compofed, may have been employed. This rigour is the more neceflary, as it feems pretty evident, from experiments made long ago, that fome birds at lean, cannot produce eggs unlefs they have accefs to calcareous earth. Dr Fordyce found, that if the canary bird was not fupplied with lime at the time of her laying, fhe frequently died, from her eggs not coming forward properly \(\dagger\). He divided a number of thefe birds at the time of their laying eggs into two parties: th the one he gave a piece of old mortar, which the little animals fwallowed greedily ; they laid their eggs as ufual, and all of them lived: whereas many of the other party, which were fupplied with no lime, died \(\ddagger\).
9. The inteftines feldom or never are deflitute of gafes, which feem to be evolved during the procefs of digeftion ; and may therefore, in part, be conlidered as excrementitious matter. The only perfon who has examined thefe gafes with care, is Mr Jurine of Geneva. The refult of his analyfis is as follows. He found in the fomach and inteftines of a man who had been frozen to death, carbonic acid gas, oxygen gas, hydrogen gas, and azotic gas. The quantity of carbonic acid was greateft in the ftomach, and it diminifhed gradually as the canal receded from the fomach; the proportion of oxygen gas was confiderable in the flomach, fmaller in the fmall inteftiues, and fill fmaller in the great inteftines ; the hydrogen and azotic gafes, on the contrary, were leaft abundant in the ftomach, more abundant in the fmall inteftines, and moft abundant in the larger inteftines; the hydrogen gas was moft abundant in the fmall inteftines. It is well known that the flatus difcharged per anum is commonly carbonated hydrogen gas; fometimes alfo it feems to hold fulphur, or even phofphorus in folution \(\$\).
ctb. Med. 10. The chyle, after it has been abforbed by the lac-
s16. teals, is carried by them into a pretty large veffel,
343
ysle in \(\mathrm{known}^{2}\) by the name of thoracic duct. Into the fame
thoracic
at ed by a fet of yeffels a tranfparent fluid, convey the body. T'hefe veffels are called lymphatics, and the fluid which they convey is called lympb. In the thoracic duet, then, the chyle and the lymph are mixed together.
ixed with Very little is known concerning the nature of the : lymph, \(/\) lymph, as it is fearcely pofible to collect it in any quantity. It is colourlefs, has fome vifcidity, and is faid to be fpecifically heavier than water. It is faid to be coagulable by heat ; if fo, it contains albumen ; and, from Suppl. Vor. II. Part II.
its appearance, it probably contains gelatine. Its quan. Functions tity is certainly confiderable, for the lymphatics are very of Animals. numerous.
11. The chyle and lymph being thus mixed together, And conare conveyed directly into the blood veffets. The ef-vesed to fect produced by their union in the thoracic duct is not the heart known, but neither the colour nor external properties and lungs. of the chyle is altered. In man, and many other animals, the thoracic duet enters at the junction of the left fubclavian and carotid veins, and the chyle is conveyed directly to the heart, mixed with the blood, which already exifts in the blood veffels. From the heart, the blood and chyle thus mixed together are propelled into the lungs, where they undergo farther changes.
12. The abfolute neceffity of refpiration, or of fome Refpirathing analogous, is known to every one; and few aretion ignorant that in man, and hot blooded animals, the organ by which refpiration is performed is the lungs. For a defcription of the refpiratory organs, we refer to the article Anatomy, Encycl. and the reader will End an account of the manner in which that function is performed in the article Physiology, Encycl. But what are the changes produced upon the blood and the chyle by refpiration? What purpofes does it ferve to the animal? How comes it to be fo indifpenfably neceffary for it exillence? Thefe are queftions which can only be anfwered by a careful examination of the phenomena of refpiration.

It has been long known that an animal can only Requires breathe a certain quantity of air for a limited time, nxygen gaso after which it becomes the moft deadly poifon, and produces fuffocation as effectually as the moft noxious gas, or a total abfence of air. It was fufpected long ago that this change is owing to the abforption of a part of the air ; and Mayow made a number of very ingenions experiments in order to prove the fact. Dr Prieftley and Mr Scheele demonftrated, that the quantity of oxygen gas in atmofpheric air is diminifhed; and Lavoifier demonftrated, in 1776 , that a quantity of carbonic acid gas, which did not previoufly exift in it, was found in air after it had been for fome time refpired. It was afterwards proved by Lavoifier, and many other philofophers, who confirmed and extended his facts, that no animal can live in air totally deftitute of oxygen. Even fifh, which do not fenfibly refpire, die very foon, if the water in which they live be deprived of oxygen gas. Frogs which can fufpend their refpiration at pleafure, die in about forty minutes, if the water in which they have been confined be covered over with oil *. Infects and worms, as Vauquelin has proved, *Corradori, exhibit precifely the fame phenomena. They require Ann. \(^{\text {arrad }}\) oxygen gas as well as other animals, and die like them if Chim, xxix. they be deprived of it. They diminifh the quantity of 17 I . the oxygen gas in which they live, and give out, by refpiration, the very fame products as other animals. Worms, which are more retentive of life than moft other animals, or at leaft not fo much affected by poifonous gafes, abforb every particle of the oxygen gas contained in the air in which they are confined before they die. Mr Vauquelin's experiments were made on the gryllus viridiffimus, the limax flavus, and helix poma- + Ann. de tiat. Cbim, xii。 The changes which take place during refpiration are \({ }^{278}{ }_{34}{ }_{34}\) the following:
1. Part of the oxygen gas refpired difappears. \(\begin{gathered}\text { Changes } \\ \text { protuced }\end{gathered}\) \(45 \quad\) 2. Carbonic by it.
2. Carbonic acid gas is emitted
3. Water is emitted in the fate of vapour.

The finf point is to afcertain exactly the amount of thefe changes. Though a great many experiments have been made on this fubjeet by ciffereut philofophers, the greateft confidence ought to be put in thofe of Lavoilier, both on account of his uncommon accuracy, and (1) account of the very complete apparatus which he always employed.

He put a gruinea-pig into 708.989 grains troy of oxygen, and after the animal had breathed the gas for an hour, he took it out. He found that the oxygen gas now amounted only to Confequently there had difappeared
\(59^{2.253} \mathrm{gr}\). The carbonic acid gas formed was 116.736 This was compofed of about 130.472 94.2.34 oxygerı, and \(3^{6.238}\) of carbon. Confequently fuppofing, as Mr Lavoifier did, that the oxygen abforbed had been employed in the formation of the carbonic acid gas, there ftill remained to be accounted for 22.502 grains of oxygen which had difappeared. He fuppofed that this had been employed in the formation of water, a quantity of which had appeared. If fo, the water formed mult have amourtcd to 26.429 grains; which was compofed of 3.927 hydrogen, the reft oxygen \({ }^{*}\).

Since the water emitted was not actually afcertained, this experiment can only be confidered as an approximation to the truth. Accordingly that very ingenious philofopher contrived an apparatus to afceriain the quantity of oxygen gas abforbed by man, and the quantity of carbonic acid gas and water emitted by hin during- refpiration. This apparatus he had conftructed at an expence at leaft equal to L. 500 fterling. The experiments were completed, and he was prepazing them for publication, when, on the 8th of May 1794 , he was beheaded by order of Robefpierre, after having in vain requefled a fortnight's delay to put his papers in order for the pref3. Thus perifhed, in the 5 Ift year of his age, the man who, if he had lived a few years longer, promifed fair to become the rival of Newton himfelf. Chemiftry, as a fcience, is deeply indebted to him. He faved it from that confufion into which the thoughtlefs ardour of many of his contemporaries were plunging it headlong : he arranged and connected and fimplified and explained the multitude of infulated facts, which had been accumulating with unexampled celerity ; and which, had it not been for his happy arranging genius, might have retarded, inttead of advanced, the progrefs of the fcience. He reduced all the facts under a few fimple heads, and thus. made them eafily remembered and eafly claffified. In a few years more, pellaps, he would have traced thefe general principles to their fources, eftablifhed the fcience on the completeft induction, and paved for his fucceffors a road as unerring as that which Sir Iface Newton formed in mechanical philofophy.

Mr Lavoilier's experiments have never been publifhed, but fortunately Mr de la Place has given us the
\(\dagger\) LaPlace's refult of them \(\dagger\). He informs us that it was as fol-
refoiration, in the fame time, 15.930 oz troy of carbonic \#unctions acid gas, and 28.55 of water in the ftate of Animils.
of vapour.
\[
\text { Total } 44.28 \text { Oxygen. }
\]

The carbonic acid gas is compofed of
10.486
and 5.243 carbon. The water of
24.2675 and 4.2825 hydrogen.
Total of the oxygen emitted.
34.75416

Total abforbed
32.48437

So that there is 2.3697916 ounces of oxygen emitted more than is abforbed by refpiration. Thus it appears that, by refpiration, the abfolute quantity of oxygen in the blood is diminifhed.

Dr Menzies found that a man, at a medium, draws in at every refpiration 43.77 cubic inches of air, and that \(\frac{{ }^{2}}{2}\) th of that quantity difappears. Confequently, according to him, at every refpiration 2.188 ; cubic inches of oxygen gas are confumed. Now 2.188 , cubic inches of that gas amount to 0.68669 gr . troy. Suppofing, with Hales, that a man makes 1200 refpirations in an hour, the quantity of oxygen gas confumed in an hour, will amount to 824.028 grains, and in 24 hours to 19776.672 grains, or 41.2014 ounces troy. 'This quantity exceeds that found by lavoilier confiderably; but the sllowance of oxygen for every refpiration is rather too great. Indeed, from the nature of Dr Menzies's apparatus, it was fcarce poffible to meafure it accurately.

The quantity of water given out by refpiration, as determined by Hales, amounts in a day to 20.4 oz . * ; "Veqefo but his method was not fufceptible of great accuracy. Stat. it We may therefore, on the whole, conficier I avoifier's \({ }^{32}\) determination as by far the nearef to the truth of any that has been given.

There is, however, a very fingular anomaly, which becomes apparent when we compare his experiments on the refpiration of the guinea-pig with thofe on che refpiration of man.

The guinea•pig confumed in 24 hours 5.8368 oz . troy of oxygen gas, and emitted \(\quad 6.5236 \mathrm{oz}\). of carbonic acid gas. Man, on the other hand, confumes in the fame time \(3^{2.48437 ~ o z . ~}\) of oxygen gas, and emits only \(\quad 15.73 \mathrm{oz}\). of carbonic acid gas. The oxygen gas confumed by the pig is to the carbonic gas emitted as \(100: 1.12\); whereas in man it is as \(1.000: 0.484\). If we could depend 14pon the accuracy of each of thefe experiments, they would prove, beyond a doubt, that the changes produced by the refpiration of the pig are different, at leaft in degree, from thofe produced in man; but it is more than probable that fome mifake has crept into one or uther of the experiments. We have mure reafon to fufpect the firft, as it was made before 1778 , at a time when a great many circumitances, neceffary to infure accuracy, were unknown to Lavoifier.

Such are the fubftances imbibed and emitted during refpiration. It ttill remains for us to determine what are the changes which it produces on the blood.

It has been long known that the blood which flows in the veins is of a dark reddifh purple colour, whereas the anterial blond is of a florid farlet colour. Lower obferved that the colour of the veinous blood was converted into that of arterial during its paffage through
the lungs. No chyle cau be diltinguifhed by its white colour in the blood after it has paffed through the lungs. The changes, then, which take place upon tie appearauce of the blood are two: \(1 /\), It acquires a florid red colour ; \(2 d\), The chyle totally difappears. Now to what are thefe changes owing ?

Lower himfelf knew that the change was produced by the air, and Mayow attempted to prove that it was by abforbing a part of the air. But it was not till Dr Priefley difcovered that veinous blood acquires a fcarlet colour when put in contact with oxygen gas, and arterial blood a dark red colour when put in contact with hydrogen gas, or, which is the fame thing, that oxygen gas inftantly gives veinous blood the colour of arterial ; and hydrogen, on the contrary, gives arterial blood the colour of veinous blood: it was not till then that philofophers began to attempt any thing like an explanation of the phenomena of refpiration. Two explanations have been given ; one or other of which mult be true.

The firf is, that the oxygen of the air, which difap. pears, combines with a quantity of carbon and hy drogen given out by the blood in the lungs, and forms with it carbonic acid gas and water in vapour, which are thrown out along with the air expired.

The fecond is, that the oxygen gas, which difappears, combines with the blood as it paffes thro' the lungs; and that, at the inftant of this combination, there is fet free from the blood a quantity of carbonic acid gas and of water, which are thrown out along with the air expired.

The firt of thefe theories was originally formed by Lavoifier, and it was embraced by La Place, Crawford, Gren, and Girtanner, with a fmall variation. Indeed it does not differ, except in detail, from the original hypothefis of Dr Prieftley, that the ufe of refpiration is to rid the blood of phlogitton; for if we fubftitute carbon and hydrogen for phlogifton, the two theories precifely agree. Mr Lavoifier attempted not to prove its truth; he only tried to frew that the oxygen abforbed correfponds exactly with the quantity of oxygen contained in the carbonic acid and the water emitted. This coincidence his own experiments have fhewn not to hold; confequently the theory is entirely deflitute of proof, as far as the proot depends upon this coincidence.
The other hypothefis was propofed by Mr de la Grange, and afterwards fupported and illuftrated by Mr Haffenfratz.

In order to diffover what the real effects of refpiration are, let us endeavour to ftate accurately the phenomena as far as poffible.

In the fir \(l\) place, we are certain, from the experiments of Y'rieliley, Girtanner, and Haffenfratz, that when veinous blood is expofed to oxygen gas confined over it, the blood inftantly affumes a fcarlet colour, and the gas is diminithed in bulk ; therefore part of the gas has been abforbed. We may confider it as certain. then, that when the colour of veinous blood is changed into arterial, rome oxygen gas is abforbed \(\dagger\).
In the fecond place, no chyle can be difcovered in the blood after it lias palfed through the lungs. Therefore the rwhite colour of the chyle at leaft, is deftroyed by refpiration, and it affiumes a red colour. Now if the red colour of the blood be owing to iron, as nany have fuppofed, this change of colour is a demonftration that
oxygen has combined with the iron; for we have feen fungim.s already, that iron, if it exifts in chyle, as it probably of An in mis. does, is in the ftate of a white oxyd. Confequentif, when converted into a red oxyd, it muft abforb nxygen. Even though iron be not the colonring matter of tire blood, it wulld fill be probabie that the change of colour of the chyle depends on the fixation of oxygen : for Berthollet and Fourcroy have fhewn that in feveral infances fubftances acquire a red colour by that procefs.

We may confider it as proved, then, that oxygen enters the blood as it pafes through the lungs.
In the third place, when arterial blood is pi:t in contact with azotic gas, or carbonic acid gas, it gradually aflumes the dark colour of veinons blood, as Dr Prieftley found *. The fame philofopher alfo obferved that * Priefley, arterial blood acquired the colour of veinous bloodiii. 303 when placed in vacuo + . Conferquently this alteration + Ilid, and of colour is owing to fome change which takes place Ann de in the blood iifelf, independent of any external agent. Chim, ix.

The arterial blood becomes nuch more rapidly and \({ }^{265}\) deeply dark coloured when it is left in contaet with hydrogen gas placed above it \(\ddagger\). We mull fuppofe there- \(\dagger\) Fourcroy, fore that the prefence of this gas accelerates and in- Ann de creafes the change, which would have taken place upon \({ }_{149}\) CLim. vii. the blood without any externel agent.

If arterial blond be left in contact with oxygen gas, it graduatly effinmes the fame dark colour which it would have acquired in vacuo, or in contact with hydrogen ; and after this change oxygen can no longer reftore its fearlet colour \(\oint\). Therefore it is only upon a \(\$\) Jlid ix. part of the blood that the oxygen acts; and after this 268. part has undergone the change which occafions the dar \(k\) colour, the blood lofes the power of being affected by oxygen.
Mr I Faffenfratz poured into veinous blood a quantity of oxy-muriatic acie; the bluod was inflantly de. compofed, and affumed a deep and alnolt black colour. When he poured common muriatic acid into blood, the colour was not altered \|. Now oxy muriatic acid has \|IVid, the property of giving out its oxycen readly ; conlequently the black colour was owing to the in!tant combination of a part of the blood with oxygen.
The facts therefore lead us to conclude, with La G:ange and 1Iaffenfratz, that during refpiration the oxygen, which difappears, enters the blood; that during the circulation this oxyren combines with a certain part of the blood; and that the veinous colour is owing to this new combination. We muft conclude, too, that the fubftance which caufes this dark colour leaves the blood during its circulation thro' the lungs, otherwife it could not be capable of afluming the florid colour. Now we know what the fubftances are which are emitted during rcfpiration; they are water and carbonic acid gas. It muft be to the gradual comlination of oxygen, then, during the circulation, with hydrogen and carbon, that the colour of veinous blood is owing. And lince the fame combination takes place every time thac the blood paffes throught the lungs, we muft conclude, that it is only a part of the hycrogen and carbon which is acted upon each tine. Let us now attempt, with thefe data, to form fome notion of the decompolition which goes on during the circulation of the blood.

It is probable that, duing a confiderable part of the Contribites day, there is a contlant infux of chyle into the blood ; mation of and we are certain that lymph is conftantly flowing in-biood,

Funstions to it. Now it appears, from the moft accurate obferof Animalss vations hitherto made, that neither chyle nor lymph \(\xrightarrow{+\rightarrow-r}\) contain fibrina, which forms a very confpicuous part of the blood. This fibrina is employed to fupply the wafte of the mufcles, the molt active parts of the body, and therefore, in all probability, requiring the moft frequent fupply. Nor can it be doubced that it is employed for other ufeful purpofes. The quantity of fibrina in the blood, then, mult be conftantly diminifh. ing, and therefore new fibrina muft be conftantly formed. But the only fubftances out of which it can be formed are the chyle and lymph, neither of which contain it. There muft therefore be a continual decompofition of the chyle and lymph going on in the bloodveffels, and a continual new formation of fibrina. Other fubftances alfo may be formed; but we are certain that this \(m u f\) be formed there, becaufe it does not exift previoufly. Now, one great end of refpiration muft undoubtedly be to affift this decompofition of chyle and complete formation of blood.

It follows, from the experiments of Fourcroy formerly enumerated, that fibrina contains more azot, and lefs hydrogen and carbon, than any of the other ingredients of the blood, and confequently alfo than any of the ingredients of the chyle. In what manner the chyle, or a part of it, is converted into fibrina, it is impoffible to fay: we are not fufficiently acquainted with the fubject to be able to explain the procefs. But we can fee at leaft, that carbon and hydrogen mult be abftracted from that part of the chyle which is to be converted into fibrina: And we know, that thefe fubftances are actually thrown out by refpiration. We may concluce, then, that one ufe of the oxygen abforbed is, to abAtract a quantity of carton and hydro. gen from a part of the chyle by compound affinity, in fuch proportions, that the remainder becomes fibrina : therefore one end of refpiration is to form fibrina. Doubtlefs the other ingredients of the blood are alio new modified, though we know too little of the fub.
infpired becomes fenfible; and of courfe, the tempera. Fundion, ture of the lungs, and the blood that paffes through of Aninnat them, mult be raifed ; and the blood, thus heated, communicates its heat to the whole body. This opinion was ingenious, but it was liable to an unaniwerable objection: for if it were true, the temperature of the body ought to be greateft in the lungs, and to diminifh gra-: dualty as the dirtance. from the lungs increafes; which is not true. The theory, in confequence, was abandoned even by Dr Black hinfelf; at leaft he made no attempt to fupport it.

Lavoifier and Crawford, who confidered all the changes operated by refpiration as taking place in the lungs, accounted for the origin of the animal heat almott precifely in the fame manner with Dr Black. According to them, the oxygen gas of the air combines in the lungs with the hydrogen and carbon emitted by the blood. During this combination, the oxygen gives out a great quantity of caloric, with which it had been combined; and this caloric is not only fufficient to fupport the temperature of the body, but alfo to carry off the new formed water in the flate of vapour, and to raife confiderably the temperature of the air infpired. According to thefe philofophers, then, the whole of the caloric which fupports the temperature of the body is evolved in the lungs. Their theory accordingly was liable to the fame objection with 1)r Black's; but they obviated it in the following mamier: Dr Crawford found, that the fpecific caloric of atterial blood was 1.0300 , while that of veinons blood was only 0.8928 . Hence he concluded, that the inftant veinons blood is changed into arterial blood, ite fpecific caloric increafes; conlequently it requires an additional quantity of caloric to keep its temperature as high as it had been while veinous blood. 'I his adclition is fo great, that the whole new caloric evolved is employed: therefore the temperature of the lungs muft neceffarily remain the fame. as that of the rett of the body. During the circulation, arterial hlood is gradually converted into veinous; confequently its Specific caloric diminifhes, and it nult give. out heat. This is the reafon that the temperature of the extreme parts of the body does nst diminifh.

This explanation is certainly ingenions; but it is not quite fatiofactory ; for the difierence in the fiecife caloric, granting it to be accurate, is too fmall to account for the great quantity of heat which mult be evolved. It is evident that it mult fall to the ground altogether, provided, as we have feen reaton to luppofe, the carbonic acid gas and water be not formed in the lungs, but. during the circulation.

Since the oxygen enters the blood, and combines with it in the flate of gas, it is evident that it will only part at firft with fome of its caloric; and this portion is chiefly employed in carrying off the carbonic acid gas and the water. For the reafon that the carbonic acid leaves the blood at the inftant that the oxygen gas enters it, feems to be this: The oxy gen gas combines with the blood, and part of its caloric unites at the fame inflant to the carbonic acid, and converts it into gas : another portion converts the water into vapour. The reft of the caloric is evolved during the circulation when the oxygen combines with hydrugen and carbon, and forms water and carboinic acid gas. The quantity of caloric evolved in the lunga feems not only fufficient to carry off the carbonic acid and water, which the dimi-

Nions mation of the fpeoifie ealoric (if it really take place) .oinala mult facilitate; but it feems alfo to raife the temperature of the blood a little higher than it was before. For Mr John Hunter conftantly found, that the heat of the heart in animals was a degree liigher than any other part of the body which be examined. Now this could fcarcely lappeth, unlefs the temperature of the blond were fomewhat raifed during refpiration.
Thus we have feen two ufes which refpiration feems to ferve. The firft is the completion of blood by the formation of fibrina ; the fecond is the maintaining of the temperature of the body at a particular flandard, notwithflanding the heat which it is continually giving out to the colder furrounding bodies. But there is a third purpofe, which explains why the animal is killed fo fuddenly when refpiration is Aopped. The circulation of the hlood is abfolutely neceflary for the contisuance of life. Now the blond is circulated in a great infafure by the alternate contractions of the heart. It is neceffary that the heart foould contract regularly, otherwife the citculation could not go on. But the heart is ftimulated to contract by the blood: and unIefs blood be made to undergo the change proluced by refpiration, it ceafes almoft inftantancoully to ftimulate. As the blood receives oxygen in the lunga, we may conclude that the prefence of oxygen is neceffary to its Itimulating power *.
14. 'I hus we have reafon to fuppofe, that chyle and
lymph are converted into blood during the circulation ; and that the oxygen gas tupplied by refpiration is one of the principal agents in this change. But befides the lungs and arteries, there is another organ, the fole ufe of which is alfo to produce fome change or other in the blood, which renders it more complete, and more proper for the various purpofes to which it is applicd. This organ is the kiducy.

For the fructure of the kidneys, which in man and quadrupeds are two in number, we refer to Anatomy, Encycl." A very great proportion of blood paffes thro' them; indeed, we have every reafon to conclule, that the whole of the blood pafles through then very frequertly.

Thefe organs feparate the urine from the blood, to be afterwards evacuated without being applied to any purpofe uffful to the animal.

The kidneys are abfolutely neceflary for the continuance of the life of the animal ; for it dics very freadily when they become by difeafe unfit to perform their functions : therefore the change which they produce in the blood is a change neceflary for ciualifying it to anfwer the purpofes for which it is istended.

As the urine is immediately excreted, it is evident that the change which the kidneys perform is intended folely for the fake of the blood. It is not merely the abftraction of a quantity of water and of falts, accumulated in the blood, which the kidney performs. A chemical change is certainly produced, either upon the whole blood, or at leaft on fome important part of it; for there are two fubftances found in the urine which do not exift in the blood. Thefe two fubflances are urea and uric acid. They are formed, therefore, in the kidneys; and as they are thrown out, after being formed, without being applied to any ufeful purpofe, they are certainly not formed in the kidneys for their own fake. Some part of the blood, then, mult be de-
compofed in the kidney, and a new fublance, of new Functions fubitances, mutt be formed; and the urea and uric acid of Anima's. mur? be formed at the fame time, in confequence of the combined action of the affinities which procuce the change on the blood; and being ufelefs, they are thrown out, together with a quantity of water and falts, which, in all probablity, were uieful in bsinging about the changes which take place in the arteries and in the kidneys, but which are to longer of any fervice after thefe changes are brought about.

The changes operated upon the thoot in the kidneys are hitherto alrogether unknowin; but they nult be importmit.

Provided the method of analy fing animal fubltances Cutancous were fo far peifected as to admit of accurate conclu-veffels fions, confiderable light might be thrown uoun this fubject, by analyfing with cave a portion of bioud fron the emulgent vein ard artery feparate!y, and a.certaining precility in what partizulars they differ fiom each other.
15. Thews we have feen that the principal changes which the bicoud undergoes, as far at leatl as we are at prefent açusin:ted with the:n, take place in the lungs, in the kidneys, aid in the alterics. In the lungs, a quantity of vater and carbonic acid gas is emitted trom the blood, and in the kidney the urine is formed and feparated from it. There fectes alfo to be fomething thrown out from the blood caring its circulation in the: arteries, at leaft throagh thofe veffels which are near the furface of the body : For is is a fact, that ceptais iuofances are conitantly cmitted fiom: the fites of animals. 'Thefe fubttances are known in \(⺊\) general by the name of perfipirable mather, or perffiratio:. 'I hey have a great refemblance to what is emitted in the lungs ; whicb rende1s it probable, that they are both owing to the fare caufe; namely, to the decomporition produced in the blood by the effecte of refpiration. 'They conffit chiefly of water in a tlate of vapour, carbon, and oil

The quantity of aqueous vapour differs very confi. Emit aquor derably, according to circumfances. It has ticen fhewn ous valuurs to be greate? in hot weather, and in hot clurates, and after great excre:fe; and its relation to the quantity of urine has been long known. When the aquents vapour peifpired is grcat, the quantity of urine is iniall, and vice verfa.
I he moft accurate experiments on this matter that we have feen are thofe of Mr Cruikfhank. He put his hand into a glafs veffel, an: luted its mouth at his wrift by means of a bladder. The interior furface of the vifel became gracually din, and drops of water trickled down. By keepinfy lis hand in this manner for an hour, he collected 30 grair s of a liquid, which poffeffed all the properties of pure water*. On repeating the \(* O_{n} I_{n}\) end fame cxper:ment at nine in the evening (ther mometer fible Perfpio \(6 z^{\circ}\) ), he collected only 12 grains. The mean of thefe ration, p. \(68_{6}\) is 21 grains. But as the hand is more expofed than the trunk of the body, it is reafonable to fuppofe that the perfpiration from it is greater than that from the hand. Let us therefore take 30 grains per lour as the mean ; and let us fuppofe, with Mr Cruikfhark, that the hand is \(\frac{\pi^{2}}{6}\) th of the furface of the body. The perfpiration in an hour would amount to 1800 grains, and in 24 hours to 43200 grains, or 7 pounds 6 ounces troy.

598
ANIMAZ SUBSTANCES.

Iunctio"s (f) Anima:-
- On Trirn
fibie Perfpi ration,
1. 70.
+ 1bid p \(\$ 2\).

He repeated the cxperiment again after hard exercife, and collected in an hour \(4^{8}\) grains of water *. He found alfo, that this aquenus vipour pervaded his flocking without difficulty; and that it mate its way thro' a fhamoy leather glove, and even throngh a leather boot, though in much fmaller quantity than when the \(\operatorname{leg}\) wanted that covering \(\dagger\).

It is not difficult to fee why the quantity of watery rapour diminifhes with cold. When the lurface of the hody is expoled to a cold temperature, the capacity of the cutaneous veffels diminifhes, and confequently the quantity which flows through them muit decreafe

When the temperature, on the other liand, is much increafed, either by being expofed to a hot atmofphere, or by violent exercife, the perfpired vapour not only increafes in quantity, but even appears in a liquid form. This is known by the name of freat. In what manner fweat is produced, is not at prefent known; but we can fee a very important fervice which it performs to the animal.
No fooner is it thrown upon the furface of the fkin than it begins to evaporate. But the change into vapour requires heat ; accordingly a quantity of heat is abforted, and the temperature of the animal is lowered. This is the reafon that animals can endure to remain for fome time in a much higher temperature without injury than could have been fuppofed.

The experiments of Fillet, and the fill more decifive experiments of Fordyce and his afociates. are well known. Thefe gentlemen remained a couffiderable time in a temperature exceeding the boiling point of water.

Befides water, it cannot be doubted that carbon is alfu emited from the \(\AA\) kin; but in what ftate, the experiments hitherto made do not enable us to decide. Mr Cruikfhank found, that the air of the glafs veffel in which his hand and foot had been confined for an hour, contained carbonic acid gas; for a candle burned dimly in it, and it rendered lime.water turbid*. And Mr Jurine fould, that air which had remained for fome \(\ddagger\) Enc. Metb. time in contact with the flin, confifted almoft entirely Med, i. p. of carbonic acid gas \(\dagger\). The fame conclufion may be
515.
* Ibid. p.

70 and 81 .

357
Caibon, drawn from the experiments of Ingenhoufz and wiil. ly \(\ddagger\).

Now it is evident, that the carbonic acid g?s which appeared during Mr Cruikhank's experiment, did not previoufly exift in the glafs veffel ; coniequently it mult have either been tranfinitted ready formed through the flkin, or formed during the experiment by the abforp tion of oxygen gas, and the coufequent eniffion of carbonic acid gas. The experiments of Mr Jurine do not allow us to fuppofe the firt of thefe to be true ; for he found, that the quantity of air ailowed to remain in contact with the fkin did not increafe. Confequently the appearance of the carbonic acid gas mult be owing. either to the emiffion of carbon, which forms carbonic acid gas by combining with the oxygen gas of the air, or to the abforption of ouygen gas, and the fubfecquent emiffion of carbonic acid gas ; preeifely in the fame manner, and for the fame reafon, that thefe fubftances are emitted by the lungs. The laft is the more probable opinion; but the experiments hitherto made do not enable us to decide.
Andano:ly Befides water and carbon, or carbonic acis gas, the , matter. Ikin emits alfo a particular odorous fubflance. That
every animal has a peculiar imell, is well known : the kacion dog can difcover his mafter, and even trace him to a of Alimand diltance by the feent. A dog, chained fome hours after his mather had fet out on a journey of fome hundred miles, followed his foot? eps by the fmell, and found him on the third day in the midA of a crowd *. But it is need-* Cruik. Jefs to multiply inftances of this fact; they are too well jaunt, ibidid, known to every one. Now this fmell muft be owing i. 93 . to fore peculiar matter which is conftantly emitted; and this matter muft differ fomewhat either in quantity or fome other property, as we fee that the dog eafly diftinguifhes the individual by means of it. Mr Cruik. fhank has made it probable that this matter is an oily fubflance; or at leaft that there is an oily fubftance emitted by the \(\mathfrak{I k i n}\). He wore repeatedly, night and day for a month, the fame veft of fleecy hofiery during the hotteft part of the fummer. At the end of this time he always found an nily fubftance accumulated in confiderable maffes on the nap of the inner furface of the veft, in the form of black tears. When rubbed on paper, it makes it tranfparent, and hardens on it like greafe. It bums with a white flame, and leaves behind it a charry refiduum \(\dagger\).

It has been fuppofed that the fkin has the property 92. of abjorling moifure from the air ; but this opinion has not been confirmed by experiments, but rather the contrary.
The chief arguments in favour of the abforption of whether the fkin, have been drawn from the quantity of moifture the fkin al difcharged by urine being, in fome cafes, not only great-forbs noil er than the whole drink of the patient, but even than flure, the whole of his drink and food. But it ought to be remembered that, in diabetes, the difeafe here alluded to, the weight of the body is continually diminifhing, and therefore part of it mult be comiltantly thrown off. Befides, it is fearcely poffible in that difeafe to get an accurate account of the food fivallowed by the patiente; and in thofe cafes where very accurate accounts have been kept, and where deception was not fo much practifed, the urine was found not to exceed the quant ity of drink *. In a cafe of diabetes, related with much accuracy by Dr Gerard, the patient was bathed regularly * See Pow during the early part of the difeafe in warm water, and \({ }^{\circ}\) afterwards in cold water: he was weighed before and after bathing, and no fenfible difference was ever found in his weight \(\dagger\). Conlequently, in that cafe, the quantity abforted, if any, mult have been very fmall.

It is well known. that thirft is nuch alleviated by cold bathing. J3y this plan, Captain Bligh kept his men cool and in good health during their very extraordinary voyage acrofs the South Sea. This has been confidered as owing to the abforption of water by the fkin. But Dr Cur:ie had a patient who was wafting faft for want of nourifhment, a tumor in the cefophagnis preventing the poffibility of taking tood, and whofe thirft was always alleviated by bathing; yet no fenfible increale of weight, but rather the contrary, was perceived aiter bathing. It does not appear, then, that ia either of thefe cafes water was abforbed.

Farther, Seguin lias hewis that the fkin dnes not abforb water during bathing, by a fill more complete experiment: He diffolvod fome mercurial falt in water, and found that the mercury produced no effect upon a perfon that bathed in the water, proxided no part of
the cuticle was injured; but upon rubbing off a portion of the cuticle, the mercurial folution was abforbed, and the effe:ts of the inercury became evident upon the hodv. Herice it follows irrefiftihly, that water, at leaft in the ftate of water, is not abforbed by the fkin when the body is plunged into it, unlefs the cuticle be firlt removed.

This may perhaps \({ }^{1}\) be confidered as a complete proof that no furth thing as abforption is performed by the f:in; and that therefore the appearance of carbonic acid gas, which takes place when air is confined around the fikin, muif be owing to the emiffion of carbon But it ought to be confidered, that although the fkin cannot abforb water, this is no pronf that it cannot abforb other fub?ances; particularly, that it cannot abforb oxygen gas, which is very different from water. It is well known, that water will not pafs throngh bladders, at leatt for fome time; yet Dr l'riefley found that veinous blood acquired the colour of arterial blood from oxygen gas, as readity when thefe fubfances were leparated by a bladder as when they were in actual contact. He found, too, that when gafes were confined in bladAers, they gradually loft their properties. It is clear from thefe facts, that oxygen gas can pervade bledderà; and if it can pervade them, why may it not alfo pervade the cuticle? Nay. farther, we know from the exjecriments of Cruik fhank, that the vapour perfpired paffes throulgh leather, even when propared fo as to keep ont moifue, at leaft for a certain time. It is pofible, then, that water, when in the ftate of vapour, or when difsolved in air, may be abforbed, althongh water, while in the fate of water, may be incapable of pervading the cuticle. The experiments, then, which have hitherto at leaft been made upon the alsforption of the fkin, are altogether infufficient to prove that airr and vapour callnot pervade the cuticle; provided at leaft there be any facts to render the contrary fuppofition probable.

Now that there are fuch facts cannot be denied. We fhall not indeed produce the experiment of Van Mons as a fact of that kind, becaufe it is liable to objections, end at beft is very undecifive. Having a patient under his care who, from a wound in the throat, was incapable for feveral days of taking any nourifhenent, he kept him alive during that time, by applying to the \(f\) fin in dfferent parts of the body, feveral times a day, a fponge dipt in wise or ftrong foup *. A fact mentioned by Dr Watfon is much more important, and much more decifive. A lad at Newmarket, who had been almoft flarved in order to bring him down to fuch a weight as would qualify him for running a horfe race, was weigled in the morning of the race day; he was weighed again ju.t before the race began, and was found to have grined 30 ounces of weight lince the morning: yet in the interval he had only taken a fingle glafs of wine. Here abforption mull have taken place, either by the fkin, or lunirs, or both. The difficulties in cither cafe are the fame; and whatever renders abforption ty one probable, will equally ffrensthen the probability that abforption takes place by the other ( \(R\) ).
16. We have now feen the procefs of digettion, and
the formation of blood, as far at leaft as we are ac- Functions quainted with it. But to what purpofes is this blood of 4 nimais. employed, which is formed with fo much care, and for \({ }_{36 \mathrm{I}}\) the formation of which fo great an apparatus has been blood fup. provided? It anfwers two purpofes. The parts of plies the which the body is compofed, bones, muicle3, ligaments, wafte of membranes, \&c. are continually changing. In youth the fy fem. they are increafing in fize and ftrength, and in mature age they are continually acting, and confequently continually liable to watte and decay. They are often expofed to accidents, which render them unfit for performing their various functions; and even when no fueh accident happens, it feems neceffary for the health of the fyitem that they fhould be every now and then renewed. Materials therefore mult be provided for repairing, increafirg, or renewing all the various organs ot the body. Pholphat of lime and gelatine for the bones, fitr:ina for the mufcles, albumen for the cartilages and membranes, \&ce. Accordingly all thefe fubftances are laid up in the blood; and they are drawn from that fluid as from a florehoufe whenever they are required. The procefo by which the different parts of the blood are made part of the various organs of the body is called affinilutaion.
Over the nature of affimilation the thicke? darknefs an \({ }^{362}\) ftill hangs; there is no key to explain it, nothing to tion. lead us to the knowledge of the inttruments employed. Facts, however, have been accumulated in fufficient numbers to put the exiltence of the procefs beyond the reach of doubt. The healing, indeed, of every fractured bone, and every wound of the body, is a proof of its exiftence, and an inflance of its action.

IEvery organ employed in effimilation has a peculiar Every affioffice; and it always performs this office whenterer it milating has materials to act upon, even when the performance organ proof it is contrary to the intereft of the arimal. 'Thus culiar a pcthe ftomath aluays converts food into chyme, evenchapge, when the fond is of fuch a nature that the procefs of digeflion will be retarded rather than promoted by the changc- If warm milk, for inftance, or warm blood, be thrown into the fomach, they are always decompo. fed by that organ, and converted into chyme ; yet thefe fubfancer are much more neally affimilated to the animal before the action of the fomach than after it. 'The fame thing happens when we eat animal food.
On the other hand, a fubtance introduced into an organ in \({ }^{364}\). 40 employed in affimilation, if it has undergone precifely wher the change which that organ is fitted to produce, is not cia gc. acted upun by that organ, but paffed on unaltered to the next affimilating organ. 'Thus it is the office of the inteftines to convert chyme into chyle. A ccordingly, whenever chyme is introduced into the intellines, they perform the ir office, and produce the ufual changre; but if chyle iffelf be introduced into the inteftines, it is abforbed by the lacteals without alteration. The expe. riment, indeed, has not been tried with true chyle, becaufe it is farce poffble to procure it in fulficien: ruantity; but when milk, which relembles chyle pretty. accuratily, is thrown into the jejunum, it is abforbed nnchanged by the lactealo*.
* Frojeon

Again, Digeflian, p.
(R) 'The Abbé Fontana alfo found', that after walking in moit air for an hour or two, he returned home forme ounces heavier than he went out, notwithtanding he had fiffered conliderable evacuation from a hiffe purge purpofely taken for the experiment. This increafe, indete, might be partly accounted for by the alforptiun of sucifture by his clothes.

Functions ' Again, the office of the blood veffels, as affimilating \(\underbrace{\text { of Animalt: }}\) organs, is to convert chyle into blood. Chyle, accordingly, cannot be introduced into the arteries without undergoing that change ; but blood may be introduced from another animal without any injury, and confequently without undergoing any change. 'This experiment was firf made by Lower, and it has fince been very often repeated.

Alfo, if a piece of fre?h mufcular flefh be applied to the mufcle of an animal, they adhere and incorporate without any change, as has been fufficiently eftablifhed by the experiments of Mr J . Hunter. And Buvina has afcertained, that frefh bone may, in the fame man. ner, be engrafted on the bones of animals of the fame or of different fpccies \(t\).

In fhort, it feems to hold, at leaf as far as experiments have hitherto been made, that foreign fubftances may be incorporated with thofe of the body, provided they be precifely of the fame kind with thofe to which they are added, whether fluid or folid. Thus chyle may be mixed with chyle, blood with blood, mufcle with mufcle, and bone with bone. The experiment has not been extended to the ohher animal fubtances, the nerves, for infance; but it is extremely probable that it would hold with refpect to them alio.

On the other hand, when fubttances are introduced into any part of the body which are not the fare with that part, nor the fame with the fubftance upon which that part acts; provided they cannot be thrown out readily, they deftroy the part, and perhaps even the animal. Thus foreign fubtlances introduced into the blood very foon prove fatal ; and intioduced into wounds of the flefh or bones, they prevent thefe parts from healing.

Althourh the different affimilating organs have the power of changing certain fubflances into others, and of throwing out the ufelefs ingredients, yet this power
is not abfolute, even when the fubftances on which they aft are proper for undergoing the change which the organs produce. Thus the fomach converts food into chyme, the intefines chy:ne into chyle, and the fuoftances which have not been converted into chyle are thrown out of the body. If there happen to be prefent in the fomach and inteftincs any fubftance which, though incapable of undergoing the changes, at leaft, by the action of the fomach and intellines, yet has a ftrong affuity, either for the whole chyme and chyle, or for fome particular part of it, and no affinity fur the fubitances which are thrown out, that fubltance paffis along with the chyle, and in many cafes continues to remain chemically combined with the fubtance to which it is united in the fomach, even after that fubftance has been completely affimilated, and made a part of the body of the animal. Thus there is a ftrong affinity between the colouring matter of madder and phofphat of lime. Accordingly, when macher is taken into the Anmach, it combines with the phorphat of lime of the food, pafes with it through the lacteals and blood veffels, an! is depofited with it in the bones, as was proved by the experiments of Duhamcl. In the fame manner muft, indigo, \&cc. when taken into the ftomach, make their way into many of the fecretions.

Ihefe facts hew us, that ammilation is a chemical procefs from beginning to end; that all the changes are produced according to the laws of chemiltry; and that we can even derange the regularity of the process by
introducing fubftances whofe mutual affinities are too Functions ftrong for the organs to overcome.
It cannot be denied, then, that the alfimilation of \(\underbrace{\text { Animat }}\) food confifts merely in a certain number of chemical \(A\) fimila decompofitions which that fooc undergoes, and thetiona che. confequent fomation of certain new compound. But mical pro. are the agents employed in affimilation inerely chemical cer agents? We cannot produce any thing like thefe But 397 changes on the food nut of the body, and therefore weagent no: muft allow that they are the confquence of the aftionchemical. of the animal organs. But this action, it may be faid, is merely the fecretion of particular juices, which have the property of inducing the wifhed for change upon the food; and this very change would be produced out of the body, provided we could procure thefe fubftances, and apply thetn in proper quantity to the food. If this froppofition be true, the fpecific action of the veffels conbifts in the fecretion of certain fubftances; confequently the caufe of this fecretion is the real agent in aflimilation. Now, can the caife of this fecretion be thewn to he merely a chemical agent? Certainly not. For in the fomach, where only this fecretion can be fhewn to exif, it is not always the fame, but varies according to circumftances. Thus eagles at filt cannot digeft grain, but they may be brought to do it by perfifing in making them ufe it as tood. On the contrary, a lamb cannor at fite digeft animal fond, but habit will alfo give it this power. In this cafe, it is evident that the gaftric juice changes according to circumftances. Now this is fo far from being a cafe of a chemical law, that it is abfolutely incompatible with every fuch law. The agent in affimilation, then, is not a chemical agent, but one which acts upon different principles. It is true, in. deed, that every ftep in the procefs is chemical; but the agent which regulates thefe chemical proceffes, which prevents then from acting, except in particular circumHances and ou particular fubftances, and modifies "this action according to circumitances, is not a mere chemicel agrent, but endowed with very different properties.

The prefence and power of this agent will be fill more evident, if we confider the immunity of the fomach of the living animal duning the procefs of digeftion. The fomach of animals is as fit for food as any other fubftance. The grattric juice, therefore, muft have the fame power of acting on it, and of decompofing it, that it has of acting on other fuhftances; yet it is well known that the llumach is not affected by digeftion while the animal retains life; though, as Mr Hunter afcertained, the very gaftric juice which the living flomach fecrets often diffolves the ltomach itfelf after death. Now what is the power which prevents the gaftric juice from asting on the -ftomach during life? Certainly neither a chemical nor mechanical agent, for thefe agents mult itill retain the fame power after death. We muft, then, of neceffity conclude, that there exifts in the animal an agent very different from chemical and inechanical powers, fince it controuls thefe powers according to its pleafure. 'Thefe powers therefore in the living body are merely the fervants of this fuperior agent, which directs them fo as to accomplifh always one particular end. This agent feems to regulate the chemical powers, chiefly by bringing only certain fubitances together which are to be decompofed, and by kecping at a diftance thofe fubftances which would intertere with, or dininifh, or fpoil the prodnct, or
imbure.
dions injure the organ. And we fee that this feparation is alnimals, ways attended to cven when the fubitances are apparently mixed together. For the very fame products are not obtained which would be obtained by mixing the fame fubftances together out of the body that are produced by mixing them in the body; confequently all the fubftances are not left at full liberty to obey the laws of their mutual affinities. The fuperior agent, however, is not able to exercife an unlimited authority over the chemical powers ; fometimes they are too ftrong for it: fome fubitances accordingly, as madder, make their way into the fyItem; while others, as arfenic, decompofe and deftroy the organs of the berly themfelves.

But it is not in digefion alone that this fuperior agent makes the moft wonderful difplay of it power ; it is in the lat part of affmilation that our admiration is molt powerfully excited. How comes it that the precife fubflances wanted are always carried to every organ of the body? How comes it that fibrina is always regularly depolited in the mufcles, and phofphat of lime in the hones? And what is fall more unaccountable, how comes it that prodigious quantities of fome oue particular fubflance are formed and carried to a particular place in ooder to fupply new wants which did not before exitt? A bone, for example, becomes difeafed and unfit for the ufe of the animal; a new bone therefore is formed in its place, and the old one is carried off by the abforbents. In order to form this new bone, large-quantities of phofplat of lime are depolited in a place where the fame quantity was not before necefliary. Now, who informs this agent that an unufual quantity of phofphat of lime is neceffary, and that it mu? be carried to that particular place? Or granting, as is moot probable, that the phofphat of time of the old bone is partly employed for this purpofe, who taught this agent that the old bone mult be carried off, new modelled, and depofited, and affimilated anew ? The fame wonders take place during the healing of every wound, and the renewing of every difeafed part.

Thefe operations are incompatible with the fuppofition that the body of animals is a mere cherrical and mechanical macline; and demonftrate the prefence of fone agent befides, which afts according to very different laws.

But neither in this cafe is the power of this agent over the chemical agents, which are employed, abfolute. We may prevent a fractured bone from healing by giving the patient large quantities of acids. And unlefs the materials for the new wanted fubftances be fupplied by the food, they camnot, in many cafes, be formed at all. Thus the canary bird cannot complete her egys unlefs the be furnifhed with lime.

It is evident that the fupreme agent of the animal body, whatever that agent may be, acts according to fixed laws; and that when thefe lawz are oppofed by thofe which are more powerful, it cannot overcome them. Thefe laws clearly indicate defign; and the agent has the power of modifying them fomewhat according to circumftances. Thus more phofphat of line is fent to a limb which requires a new bone, and more lime than ufual ia taken into the fytem when the hen is laying eggs. Defign and contingency are confidered by us as infallible marks of confcioufnefs and intelligence. That they are infallible marks of the agency of mind is certain; but that they are in all cafes the proofs of immediate confcioufnefs and intelligence, as
Suppl. Vol. II. Part II.
the Stahlians fuppofed, cannot be afirmed without run. Functions ning into inconliftencies. For we ourfelves are not \(\underbrace{\text { of Animals. }}\) confcious of thofe operations which take place during affinilation.
To fay that a being can aft with defign without intelligence, we allow to be a flat contradiction, becaufe defign always implies intelligence. There inut therefore be intelligence fomewhere. But may not this intelligence exilt, not in the agent, but in the being who formed the agent? And may not the whol, of the delign belong in reality to that being?

May not this agent, then, be material, and may not N r mate. the whole of affirilation be pefformed by mere mat- iial. ter, acting according to laws given it by its maker? We anfwer, that what is called multer, or the fubftances enumerated in the firf part of Ch:mistry (Suppl.) act always according to certain attractions and repulfions, which are known by the name of mechanical and chemical laws.
The plienomena of affimitation are fo far from being cafes of thefe laws, that they are ablohutely inconfiltent with them, and contrary to them; confequently the agent which pretides over afimilation is not malter. Concerning the nature of this fubflance it is not the bufmefs of this article to ingurire; but as it pofficfles properties different fromı matter, and acts according to very different laws, it would be an abufe of terms to call it matter.
We woukd give it the name of mind, were it not that Arinal \(\frac{3^{\text {K }} 9}{}\) metaphyficians have chofen to coulfider intelligence as princip ls the effence of mind; whereas this fubftance may be conceived to act, and really docs act, without intelligence. There is no reafon, however, to linpuofe, with fome, that there are two fubitances in animals: one poffeffed of confcioufnefs as its efferce, and therefore called mind or foul in man ; another, deflitute of concioufnefs, called the living principle, \&c. employed in performing the different functions of affimilation, abforption, \(\& e\). It is much more reaforiable to fuppofe, that in every animal and vegetable there is a peculiar fubltance, different from inatter, to which their peculiar properties are owing; that this fubtance is different in every fpecies of animal and vegetable; that it is capable of acting according to certain fixed laws which have been impofed upon it hy its Creatur, and that thefe laws are of finch a nature that it acts in fubfervience to a particular end ; that this fubftance in plants is probably defitute of intelligence; that in man and other animals it poffeffes intelligence to a certain extent, but that this intelligence is not effential to its cxittence nor to its activity; that it may be deprived of intelligence altogether, and afterwards recover it without altering its nature. Plyy fiologifts have given it the name of living principle, becaufe its prefence conftitutes life. Perhaps it would be proper to diftinguifh that of animals by the name of animal principle. Upon what the intelligence of the animal principle depends, it is impoflible to fay; but it is evidently connected with the fate of the brain. During a trance, or an apoplectic fit, it has often been loft for a time, and afterwards recovered.
17. Befides affimilation, the blood is alifo employed Secretion. in forming all the different fecretions which are neceffa. ry for the purpofes of the animal economy. Thefe have been enumerated in the lait chapter. The procefs is fimilar to that of affinilation, and undoubtedly the agents in both cafes are the fame; but we are 4 G equally

Deconpoti equally ignorant of the precife manner in which fecretiun of sin mal Subftances.

\section*{378} Animals at length die, and why. tion is performed as we are of affimilation.
18. After thefe functions have gone on for a certain lime, which is longer or florter according to the nature of the animal, the body gradually decays, at laft all its funftions ceafe completely, and the animal dies. The caule of this mult appear very eytraordinary, when we confider the power which the animal has of renewing decayed parts; for it carnot be doubted that death proceeds, is moft cates at leaft, from the body becoming incapable of performing its funetion. But if we confider that this power is limited, and that it mult ceafe altogether, when thofe paits of the fyftem begin to decay which are employed in preparing materials for fusurc affimilation, orm furprife will, in fome meafure, ceafe. It is in thefe parts, in the organs of digeftion and affmilation accordingly, that this decay ufually proves fatal. The decay in other parts deftroys life only when the wafte is fo rapid that it dues not admit of repair.

What the reafon is that the decay of the organs caufes death, or, which is the fame thing, caufes the living principle either to ceafe to act, or to leave the body altogether, it is perfectly impoffible to fay, becaufe we know too little of the nature of the living principle, and of the manner in which it is commected with the bcdy. The laft is evidently above the humain undertanding, but many of the properties of the living principle have been difcovered; and were the facts already known properly arranged, and fuch general conclufions drawn from them as their con:ection with each other fully warrant, a degree of light would be thrown upon the animal cconomy which thofe, who have not attended to the fubject, are not aware of.

No founer is the animal dead, than the chemical and mechanical agents, which were-formerly fervants, ufurp the fupreme power, and foou decompole and deftroy that very body which had been in a great meafure reared by their means. But the changes which take place upon animal bodies after death, are too important, and too intimately connected with the fubject of this article to be paffed over flightly. They thall therefore form the fubject of the next chapter.

\section*{Char. IV. Of the Decomposition of A-} nimal. Substances.

All the foft and the liquid parts of animals, when expofed to a moderate temperature of fixty-five degrees or more, pafs with more or lefs rapidity through the following changes. Their colour becomes paler, and their confftence diminihes; if it be a folid part, fuch as flefh, it foftens, and a ferons matter fiveats out, whofe colour quickly changes; the texture of the part becomes relaxed, and its organzation deftroyed; it acyuires a faint difagreeable fmell; the fubtance gradually links down, and is diminifsed in bulk; its fmell becomes fronger and ammoniacal. If the fubject be contained in a clofe veffel, the progrefs of putrefaction, at this ftage, feems to flacken; no other fmell but that of a pungent alkali is perceived; the matter effervefces with acids, and converts fyrup of violets to a green. Hut if the cominumieation with the air be admitted, the urinous exhalation is diffipated, and a peculiar putrid fmell is fpread around with a kind of impetuofity; a fmell of the moft infupportable kinc, which !afts a long time, and pervades
every place, affeeting the bodies of living animals after D the manner of a ferment, capable of altering the fluids: this fmell is corrected, and as it were confined by am monia. When the latter is volatilized, the putrefactive procefs becomes active a fecond time, and the fubftance fuddenly fwells up, becomes filled with bubtles of air, and foon after fubfides again. Its colour changes, the fibrous texture of the flelli being then fcarcely diftinguifable ; and the whole is changed into a foft, brown, or greenifh matter, of the confiftence of a poultice, whofe fmell is faint, naufeous, and very active on the bodies of animals. The odorant principlc gradually lofes its force; the fluid portion of the flefh affumes a kind of con:fiftence, its colour becomes deeper, and it is finally reduced into a frizble matter, rather deliquef. cent, which being rubbed between the fingers, breaks into a coarfe powder like earth. This is the laft ftate obferved in the putrefaction of animal fubftances; they do not arrive at this term but at the end of a confider. able time \(\dagger\).

In carcafes buried in the earth, putrefaction takes place much more flowly ; but it is icarcely polfible to oblerve its progrefs with accuracy. The abdonmen Buriel in gradually dilated with elaffic fluids which make their appearance in it, and at laft it burfts and difcharges a horribly fetid and noxious gas; at the fame time a dark coloured liquid flows out. If the carth be very cry, and the heat confiderable, the moifure is often abforbed fo rapidly, that the carcafe, initead of putrefying, dries, and is transformed into what is called a mummy.

Such are the phenomena when dead bodies are left When a to putrefy feparately. But when great numbers of cumulate carcafes are crowded together in one place, and are fo together abundant as to exclude the action of external air, and other foreign agents, their decompofition is entirely the confequence of the reciprocal action of their ingredients themfelves upon each other, and the refult is very different. The body is not entirely diffipated or converted into mould, but all the foft parts are found diminifhed remarkably in fize, and converted into a peculiar faponaceous matter. This fingular change was firlt accurately obferved in the year 1786 .

The burial ground of the Innocents in Paris having \(C\) become noxious to thofe who lived in its neighbourhood, on account of the difagreeable and hurtful ndour which it exhaled, it was found neceffary to remove the carcafes to another place. It had been ufual to dig very large pits in that burial ground, and to fill them with the carcafes of the poorer fort of people, each in its proper bier; and when they were quite full, to cover them with about a foot depth of earth, and to dig another fimilar pit, and fill it in the fame manner. Each pit held between 1000 and 1500 dead bodies. It was in removing the bodies from thefe pits that this faponaceous fubftance was found. The grave-diggers had afcertained, by long experience, that about thirty years were required before all the bodies had undergone this change in its full extent *. Every part of the body accurred the properties of this fubftance. The in- Ann.d teftines and vifcera of the thorax had completely difappeared; but what is fingular enough, rhe brain had lott but litule of its fize or appearance, though it was alfo converted into the fame fubitance.

This laponaceous matter was of a white colour, foft tss pr and unctuous to the touch, and melted, when heated, ti
mpofi like tallow. It exhibited all the properties of a foup, containing, however, an excefs of fatty matter. Fourcroy, who analy fed it, found that it was corrpofed of a fatty matter combined with ammonia, and that it contained alfo fome phofphat of lime and ammonia. 1)iluted acids decompofed it, and feparated the fa:ty matter: alkalies and lime, on the other hand, drove off t:e ammonia. When expofed to the air, it gradually loft its white colour; the ammonia, in a great meafure, evaporated, and what remained had fomething of the appearance of wax. It abforbed water with great avidity, and did not part with it readily. Its white colour was owing to the prefence of that liquid. The oily matter, when feparated by means of a diluted acid, was concrete, and of a white colour, owing to the mixture of a quantity of water. When dried, it acquires a greyif brown colour, a lamellar and cryftalline texture, like that of fpermaceti ; but if it has been rapidly dried it affumes the appeararice of wax It melts, when heatcd, to 1260 ; when properly purified, by paffing it through a finen cloth while fluid, it has fcarcely any fmell. Alcohol does not act upon it while cold, but at the temperature of \(120^{\circ}\) it diffolves it : when the folution cools, the fatty matter precipitates, and forms a gritty mafs. With alkalies it forms a foap ; and when fet onf fire it burns precifely like oil or fat, only that it exhales a more uripleafant odour \(t\).

Mr Smith Gibbes found the fame fubftance in the pit into which animal matters are thrown at Osford af-
 paffes through this pit; a circumflance which inducell minat subio him to \(11 y\) whether animal mufcle expofed to the action faices. of a running ftream underwent the fame charge. The experiment fueceeded completely: he attempzed, in confequence, to render this fubftance, to which he gave the name of fipermacoti, uffeful in thone manufagures which required tallow; but the fetid odour which it conftantiy exhales was an infurmountable oljection. Attempts were indeed made to get over it; but as we do not hear that Mr Emith Gibbes's foermaceti has been introduced into any mannfadure, we have reafon to conclude that none of thefe attempts fucceeded \(\ddagger\).

Such are the phenomena of putrefaction, as far as they are at prefent known to chenifts. Any attempt and 1595. to explain the manner in which thefe changes take Tlieory of place, would be exceedingly imperfect in teed; not only putiefacbecaufe we are ignorant of the ftrength of the affinities of the different clumentary parts of animal bodies for each other, but becaufe we do not even know the manner in which thefe elements are combined, and confequently we cannot know by what particular forces thefe compounds are defroyed. Tije know only that a certain degree of heat, and the prefence of moifture, are in all cafer neceffary for the putrefactive procefs; for animal budies may be kept ahnol, any length of time, without decompofition, at the freezing temperature; and when dried quiekly, and kept in that flate, they undergo no farther change.

\section*{Part III. Of DYEING.}

MANkind have in all periods of fociety manifetted a fondnefs for beautiful and gandy colours Naked favages at firft applied them to their fkin. This was the cafe with the Brions, and with the Gauls, ton, in the time of Cæfar; it is even ftill the practice in the South Sea iflands, and many parts of \(A\) merica. When mankind had advanced fo far towards civilization as to wear garments, they naturally transferred to them the colours which they admired. Hence the origin of dyeing ; which is of fuch antiquity, that it precedes the earlitft records left us by profane authors. Whe fee from the bock of Genefis the great progrefs which it had made in the time of the patriarchs.
Dyeing feems to have originated in Incia, and to have fpread gracually from that country to the weft. The Indians were the inventors of the method of dyeing cotton and linen, which was not underfood in Europe before the conquefts of Alexander the Great. The Phenicians excelled in the art at a very early period. It was from them that the Jews purchafed all the dyed ftuffs defcribed in Exodus. The Plenician dyers feem to have confined their art to wool: filk was unknown to them, and linen was ufually worn white. From them the art of dyeing paffed to the Greeks and Ro. mans.

During the fifth century, the Weftern Empire was overturned by the northerri nations, and with it the arts and fciences, which bad flourihed under the protection of the Rumans, difappeared. A few of the arts, indeed, were prefersed in Italy, but they were otfcured and degrader. By degrees, however, a fpirit of indeflry began to revive in that country. Florence, Ge .
noa, and Venice, becoming rich commercizl cities, carried on a confiderable intercourfe with the Grecian empire, where many of the arts had been preferved. T'this intercourfe was much incleafed by the crufades. The Italian cities became rich and powerful : the arts which diltinguifh civilized nations were cultivated with emulation, aud dyeing, aınong otherè, was rapidly improved.

In the year 1429, the firlt treatife on dyeing madertespogrefs its appearance at Venice, under the name of Moricgolain modern diel'arte de tentori. Giovanne Ventura Rofetta collect- Europe. ed, with great induftry, all the proceflies employed by the dyers of his time, and publifhed them in is \(\ddagger 8\), under the title of Plictho*. For many years dyeing. Bertborlics was almoft exclufively confined to Italy; but it gradual on Dyeing, Iy made its way to France, the Low Countries, and to Britain. The minifter Colbert, who employed his talents in extending the commerce and manufactures of France, paid particular attention to the art of dyeing. In the year 1672, he publifhed a table of inftructions, by which thofe who practifed the art were laid under feveral very inproper rellrictions. But the bad effects of thefe were in a good meafure obviated by the jndicious appointment of men of fcience to fuperintend the art. This plan, begun by Colbe1t, was continued by the Freach government. A ccordingly, Dufay, Hellot, Macquer, and Berthollet, fucceffively filled the office. It is to this eftablifment, and to exertions of the celebrated chemits who have filled it, that France is indebted for the improvements the has madt in the art of dyeing during the courfe of the 18 th cemtury. Under the direftion of Dufay, a neew table of regulations was publifhed in 1737, which fuperfeded that of Colbert.
\({ }_{4} \mathrm{G}_{2}\) Hellot,
subfances Hellot, his fucceffor, publifhed, in 1740 , an excellent ufed for \(\underbrace{\text { Cluthing. }}\) fyftem of dyeing wool; and Macquer in 1763 publifhed his treatife on dyeing filk.

In Britain, though dyeing has been carried on for many years with great fuccefs, very little progrefs was made in inveftigating the theory of the arr. "The Royal Society, indeed, \(\mathrm{f}_{\mathrm{t}}\) 力n after its inftitution, recommended it to fome of its members; but as no treatife made its appearance in confequence of this, it feems very foon to have loft their attention. Lewis, many years after, publinhed fome very important remarks on djeing; but they were confined to a few procefles. The Britifh dyers fatisfied themfelves with a tranllation of Hellot. Such was the fate of the art when the article Dyeing in the Lincyclopedia was drawn up. It confifts chiefly of an abftract of Hellot's treatife. But within the laft 30 years, the attention of men of fcience has been very much turned to complicated art. In Sweden has appca.ed the treatile of Scheffer, and Bergman's notes on it ; in Cermany, the experimerts of Beckmanin, Yoerner, and Vogler, and the differtation of Francheville ; in France, the treatifes of 1)'A mbournay, D'Apligny, Haufmann, Chaptal, and, above alt, of Berthollet ; in this country, the ingenious remarks of Delaval, of Flenry, and the valuable treatife of Dr l3ancroft; befides many other important effays. Thefe, together with the progrefs of the fcience of chemifry, on which the theory of dyeing depends, have thrown fo much new light upon the art, that we find ourfelves under the nectflity of tracing the whole over again. We fhall pals over, lowever, very fightly thofe parts of the art which have been flifficiently explained in the article Dyeing, Enced.

To underftand the art of dyeing, we muft be acquainted with the fulffances on which it is practifed, with the nature of colour, and with the method of permanently changing the colour of bodies. Thefe three things we fhall confder in the three following chapters. In the firft, we fhall give an account of the fubftasces of which garments are ufually made, with whicls alone the art of dyeing is concerned; in the fecond, we nall inquire into the nature of colour ; and in the third, ex. plain the theory of dyeing, as far as it is at prefent underftood. In fome fubfequent chapters, we fhatl give a general view of the proceffes by which the different colours are given to fuffs.

\section*{Chap. I. Of the Substances usedfor Clothing.}

Tue fubftances commonly employed for clothing may be reduced to four; namely wool, filk, cotton, linen. As there is no name in the Euglifh language which includes all thefe fubftances, we flall take the liberty, in the remainder of this article, to ufe the word cloth for that purpofe. They are all made into cloth, of fome kind or other, before they can be ufeful as articles of
clothing.
1. Wool, as is well known, is the hair which covers the bodies of fheep; it differs from common bair merely in finenefs and foftnefs. Its filaments poffefs a confiderable degree of elafticity; they may be drawn out beyond their ufual length, and afterwards recover their form when the external force is removed. The furface of wool ard hair is by no means fmonth: No inequality, indeed, can be perceived by a microfcope;
nor is any refiffance fett when a hair is laid hold of in Subfancer one hand, and drawn between the fingers of the other, from the root towards the point; but if it be drawn ufed for
Clothing from the point towards the root, a refiftance is felt which did not take place before, a tiemuluus motion is perceived, and a noife may be diftinguifhed by the ear. If, after laying hold of a hair between the thumb and fore finger, we rub them againft each other in the lon. gitudinal direction of the hair, it acquires a progreffive motion towards the root ; the point gradually approarhes the fingers, while the root recedes from them; fo that the whole hair very foon pafies through between the fingers.
Thefe obfervations, firf made by Mr Monge, demon. flrate that the furface of hair and wool is compofed, either of fmall laminæ, placed over each other in a flant.ing direction from the root towards the point, like the feales of a fiff-or of zones, placed one above another, as takes place in the horns of animals *.
On this Atructure of the filaments uf hair and wool depend the eficets of felting and fuling. In both of \({ }^{30}\) thefe operations, the tilaruents are inade, by an external force, to tub againit each other ; the polition of their afperities prevents thenn from moving, except in one direction : they are mutually entangled, and obliged to approach nearer each other. Hence the thicknefs which cloth acquires in the fulling mill. The flaments have undergone a certain degree of felting, and are interwoven like the fibres of a hat. The cloth is contracted both in length and becadtl1: it may be cut without being fubject to ravel; nor is there any neceffity for hem. ming the different pieces employed to make a garment. See Felting and Fulling, in this Suppl.

Wool is naturaily covered with a kind of greafe, which preferves it from moths. This is always removed before the woot is dyed; becaufe its prelence is very prejudicial to the fuccefs of that operation. The afperities of the furface of woolly fibres would impede the convelting of it into thread by fpinning; but they are in a great meafure covered, previons to that operation, by foaking the wool with ail. 'The oil muft alfo be removed betore the wool be dyed. This procefs is called Scouring, which fee in this Suppl.

We have already, in the fecond part of this article, given an account of what is at prefent known concerning the compof:cion of wool and hair. It would be foreign to the fubject of this çhapter, to defribe the method of Spinning and quarajeg wool.

Wool is of different colours ; but that which is white is preferred for making cloth; becaufe it aniwers better for the purpofes of cying than any other kiud.
2. Silk is a fubttance fpun in tine threads by the filk woorn. Its fibres are not fealy like thofe of. wool ; neither have they the fame elallicity: but filk, in its natural flate, before it has undergone any preparation, has a contiderable degree of itifneis andelalticity. In this flate it is known by the name of razu filk. It is covered with a kind of gummy varnifh, which may be removed by foouring with foap. The fouring deprives it of its ftiffnefs and elalticity. Raw filk is of a yetlow colour, owing to yellow refinous matter with which it is naturally combined. We have given the method of feparating this matter, and alfo the gum, in the article Bleaching, Supplement.

Silk, before it is dyed, is always freed from its gums and gencrally alfo from its refin. It may be dyed with-
inces out the application of neat ; which is not the cafe with wool.
3. Cotton is a fine downy fub? ance, contained in the pods of different fpecies of goflypium. The fpecies from which the greater part of the cotton brought to this country is taken is the berbaceum. The quantity imported annually into Britain is very great; in
croft, 1786 it amounted to 20 millions of pounds \(\ddagger\). Cotton varies greatly, according to the plant on which it grows, and the climate where it is cultivated. ' 1 'he chief differences are in colour, and in the length, finenefs, and Atrength of the flaments.
No afperities can be difcovered on the furface of thefe flaments; but Lewenhoeck obferved, by means of a microfcope, that they are triangular, and have three fharp edges. This is probably the reafon of a well known fact, that cotton cloth, when applied by way of dreffing, always irritates a fore.
Some cottons are naturally white; others a fine light yellow, as thofe of which nankeen is made; but moft commonly cotton is of a dirty brownifh yellow colour, which muft be removed before the ftuff call be dyed. This is done by the procefs of bleaching. The fibres of cotton, even after being bleached, retain almoft atways fome time and oxyd of iron, which mult be removed before we attempt to dye the cotton ; becaufe their prefence would fpoil the colour. This is done by fleeping the cotton for fome time in water acidulated with fuiphuric acid.
Cotion, like filk, may be dyed without the affiftance of heat. It is not neariy fo ealy to dye cotton any particular colour as it is to dye wool or filk. If woul and cotton be put into the fame dyeing veffel, the wool frequently acquires the wifhed-for colour before the cotton has loft any of its original whitenefis.
4. Lint, from which linen is made, is the inneabark of the linum uffitatilfimum, or fax; a plant too well known in this country to require any defcription.

The flax, when ripe, is pulled and fteeped for fome days in water, in order to feparate the green coloured glutinous matter which adheres to the inner bark. This matter undergoes a degree of putrefaction ; carbonic acid gas and hydrogen gas, are difengaged *: it is decompofed, and carried off by the water. If the water, in which the flax is fleeped, be completely ftagnant, the putrefaction is apt to go too far, and to injure the fibres of the lint; but in a running Itream, it does not go far enough, fo that the green natter ftill continues to adhere to the lint. Flax, therefore, fhould be fleeped in water neither completely ftaguant, nor flowing too freely, like a running ftream.

The flax is afterwards fpread upon the grafs, and expofed for fome time to the air and fun: this improves the colour of the lint, and renders the woody part fo brittle, that it is eafily feparated by the action of the lint mill. The fubfequent operatious, of drefing, fpinning, weaving, and bleaching, do not belong to this article.

The fibres of lint have very little elafticity. They appear to be quite fmooth; for no afperities can be perceived by the microfcope, nor detected by the feel; nor does linen irritate fores, as is the cafe with cotton. -

Linen may be dyed without the affiftance of heat; but it is more difficult to give it permanent colours than even cotton.

Thus we have given a fhort defcription of wool, filk,
cotton, and linen. The firt two are animal fubitances; the two talt vegetable. The a nimal contain much azor Coloure and hydrogen; the vegutable mich carbon: The anit mal are readily deftroyed by acids and alkalies; the vegetable withftand the action of thefe fubftances better: even nitric acid does not readily deftroy the texture of cotton. The animal fuinflances a:e more eafily dsed than the vergetable, and the colours which they receive are more permanent than thufe given to cotoon and li. nen ty the fame proceffes.
Such are the properties of the cloths on which the aut of dyeing is exercited. But what is the nature of thefe caliurs which it is the ubject of that art to communicate? We fhall exarrine this fubject in the followirg chapter.

\section*{Chaf. II. Of Cohours.}

All vifible objests, as has been long amo fufficiently entablifhed, are feen by means of rays of light \(p\). firing off from them in all directions, and partly entering the eye of the fpectator.
r. For the theory of light and wifion we are indebt- Collour pros ed to Sir Ifaac Newton. He firft demonftrated, that iced by: light is compofed of feven rays, differing from eacho o ligt.t. ther in refrangibility, and other properties. Each of thefe rays is dittingui?hed by its particular colour. Hence their nanies, red, orange, yellow, gieen, blue, indigo, violet. By mixing together thefe different raya, in various proportions, all the colours known may be obtained. Thus red and yellow conftitute orange ; yellow and blue conflitute gricen ; blue and sed corltitute purple, violate, aurnna, \&c. according to theit proportions. When all the rays are mised together, they form a white.
2. Bodies differ very much from each other in their Bodice re \({ }^{357}\) power of yefiecting light. Some reflect it in vaft quas- flear diftity, as metals ; orhers reflect lout little, as ciarcoal. ferentragas In general, the foroother the furface of a body is, the greater is the quantity of lighlit which it refects. Hence the effect of polißhing in increating the brightuefs of bodies. But it is not in the quantity of the lightr refiected alone that bodies differ from each other; they differ alfo in the quality of the light which they refle:. Some bodies reflect one or more particular fpecies of ray to the exclufion of the reft. This is the reafon that they appear to us of different colours. Thofe bodies which reflect only red rays are red; thofe that reflect yellow raya are yellow; thofe that reflect all the rays equally are white ; thofe that reflect too little to affect the eye are black. It is to the different combinations of rays reflected from the furface of bodies that all the different fhades of colour are owing.

Colour, then, in opaque bodies, is owing to their dife Hencetheis pofition to reffec certain rays of light, and to abjorb the differene reft; in tranfparent bodies, to their difpofition to tranf. colours. mit certain rays, and to alforb the others. But this fubjeet has been cifcuffed, at fufficient length, in the article Oprics, Encycl. ; to which, therefore, we beg leave to refer the reader. Here we mean only to inquire into the caurfe of this difpofition of the particies of bodies.
3. Sir Ifaac Newton, to whom we are indebred for \({ }^{389}\) the exiftence of optics as a fcience, made a fet of exue- theory to riments to afcertain the changes of colour which thin explain this plates of matter affume in confequence of an increafe or difference
- Nizufon's
diminution of their thicknefs. Thefe experiments were of a very delicate nature ; but Newton conduted them with fo much addrefs, and varied and repeate? them with fo much induftry, that he was enabled to render thenı furprifingly accuratc

Upon a large double convex lens of a 50 feet focus, hie placed the plane furface of a planoconvex lens, and preffed the le:fes flowly together. A circle, of a particular colour, appeared in the centre, where the 1 wo glaftes touched each other. This circle gradually increafed in diameter as the preffiure was augmented; and at laft a new circle, of another colour, occupied the centre, while the firft colour affumed the form of a circular ring. 13 y increafing the preflure, a new coloured circle appeared in the centre, and the diameter of the other two increafed. In this manner he proceeded, till he produced no lefs than 25 different coloured circular rings. Thefe he divided into feven orders, on account of the repetition of the fame colour. They were as fullows, reckoning from the central colour, which was always black *.
1. Black, blue, white, yellow, red.
2. Violet, blue, green, yellow, red.
3. Purple, blue, grcen, ycllow, red
4. Green, red.
5. Greenifh blue, red.
6. Greenilh blue, pale red.
7. Greenifh blne, reddifh white.

Thefe different colours were occafioned by the thin film of air between the two glaffes. Now this film varies in thicknefg from the centre of the lens towards the circumference; that part of it which caufes the black colour is thinneft, and the other coloused circles are occafioned by air: gradually increafing in thicknefs. Newton meafured the relative thicknefs of the air which produced each of thefe coloured circles;


The abjolute thicknefs of thefe films cannot be afcertained, unlefs the diffance between the two glaffes, at that part where the black fpot appears, were known. - Now there is no method of meafuring this dittance; - but it certainly is not greater than the thoufandth part of an inch.

He repeated thefe experiments with films of water, and even of glafs, inftead of air; and he found, that in thefe cafes the thicknefs of the films, reflecting any particular colour, was diminifhed, and that this diminution was proportional to the denfity of the reflecting film.

From thefe experiments Sir Ifrac Newton concluded, that the difpofition of the particles of bodies to reflect or tranfmit particular rays depented upon their fize and their denfity: and he even attempted to afcertain the fize, or at leaft the thicknefs, of the particles of bodies from their colours. Thus a particle of matter, whofe denfity is the fame with that of glefs which reflects a grcen of the third order, is of the thicknefs of \(\frac{16 \frac{1}{2}}{3000000}\) of an inch *.
In the year 1765 , Mr Delaval publifhed, in the Philofophical Tranfactions, a very ingenious paper on the fame fubject. In this paper, he endeavours to prove, by experiment, that the colours of metallic bodies depend upon their denfity. He takes it for granted, at the fame time, that the fize of the particles of bodies is inverfely as the denfity of bodies. The denfeft bodies, accolding to him, are red ; the next in denfity. orange ; the next, yellow; and foon, in the order of the refrangibility of the different rays. Some time after, the fame ingenious gentleman, in his Experimental InJ quiry into the Caufe of the Permanent Colours of Opaque Bodies, extender his views to animal and vegetable fubftances, and endeavoured to prove the truth of Newton's theory by a very great number of experiments.

Such is a view of the opinion of Newton and Delaval refpecting the caufe of bodies reflecting or tranfmitting particular rays of light, as far, at leaft, as that theory relates to colour. They afcribed this caufe folely to the fize and the denfity of the particles of bodies.
By particies, it is evident that nothing elfe can be meant than the integrant particles of bodies. Newton, indeed, docs not exprefs himfelf precifely in this language; but it is plain that nothing elfe could be his meaning. Mr Delaval undoubtedly is of that opinion.

According to the Newtonian theory of colour, then, it deperds folely epon the \(\sqrt[j i z e]{ }\) of the integrant particles of bocies whofe denfity is the fame; and upon the fize and the derifity jointly of all bodies ( T ).

It is evident that the tuath of the Newtonian theory Examin muft depend upon its coincidence with what actually takee place in nature, and that therefore it can only be determined by experiment. Newton himfelf produced but very few experiments in fupport of it; and though this deficiency was amply fupplied by Mr Delaval, it is needlefs for us to adduce any of thefe here; becaufe, from the prodigious accumulation of chemical facts fince thefe experiments we:e made, the very balis upon which they ftood has been ceftroyed, and co:fequently all the evidence refulting from them has been annihilated. They proceeded on the fuppofition, that acids render the particles of bodies finaller, and alkalies larger than they were before, without producing any other change whatever in the bodies on which they act. To attempt a refutation of this opinion at prefent would be unneceffary, as it is well known not to be true.

Let us therefore compare the Newtonian theory of colour with thofe chemical changes which we know for certain to alter the fize of the particles of bodies, in order to fee whether they coincide with it. If the theory be true, the two following confequences mult
(T) Newton, however, pointed ont an exception to this law, concerning which Mr Delaval lias been more explicit. Combuftible bodies do not follow that law, but fome other. Mr Delaval has fuppofed, that this deviation is owing to the prefence of phlogiton. DYEing SUBSTANCES.
hold in all cafes : r . Every alteration in the fize of the integrant particles of bodies mult caufe thefe particles to alfune a different colour. 2. Every fuch alteration mult correfpond precifely with the theory; that is to fay, the new colour mut be the very colour, and no. other, which the theory makes to refult from an increafe or diminution of fire.
Now weither of thefe confeguences holds in fact. We have no method indeed of aicertaining the fizes of the integrant particles of bodies, nor of mealuring the precife degree of augmentation or diminution whicls they fuffer; but we can in many cales afcertain, whether any new matter has been added to a particle, or any matter abitracted from it ; and confequently whether it has been augmented or diminifaed; which is fufficient for our piefent purvofe.

For infance, whatever be the fize of an integrant particle of gold, it cannot be denied that an integiant particle of oxyd of gold is greater; becaure it contains an integrant particle of gold combined with at leat one integrant particle of oxygen. Now the colour both of gold and of its oxyd is yellow, which ought not to be the cafe, according to the Newtonian theory. In like manner, the amalgom of filver is white, precifely the colour of filver and of mercury ; yet an integrant particle of the amalgam mult be larger than an integrant particte either of filver or of mercury. Many other infances befides thefe will occur to every one, of changes in the fize of the particles taking place wrthout any clange of colour. All thefe are incompatible with the Newtonizn theory.
It may be faid, perlaps, in aufwer to this objecrion, that there are different orders of colours; that the fame colour is reflected by particles of different fizes; and that the incereafed particles, in the in Aances above alluded to, retain their- former colour, becaufe the increment has been p reeiffly fueh as tn emable them to reflect the fane colour in the next higher order.

This very anfwer is a complete proof that the Newtonian theory is not fufficient to account for the colours of bodies; for if particles of different fizes reflect the fame colour, fize certainly is not the only caufe of this reflection *. There mult be fome other caufe very different from fize. Nor is this all; the moft com, mon colour which remains after an increafe of the fize of the integrant particles of bodies is avhite; yet white does not appear in any of the orders except the firtt, and thercfure is permanence cannot be accounted for by any fuppofition compatible with the Newtonian theory.

Even when alterations in the colour of bodies accompany the increafe or diminution of the fize of their particles, thefe alterations fellom or hever follow an or der which correfponds with the theory. As for me. tals, it is fufe evident that their colour does not depend upon their eenfity. Patinum is the denfelt body known, and yet it is not red, as it ought to be, but white like tin; a metsl which lias little inore than one third of the deufity of platinum.
The green oxyd of iron, when combined with pruffic acid, becomes white; yet the fize of its particles muft be increafed. Now this change of colour is incompatible with the theory; for, according to it, every change from green to white ought to be accompanied by a di. mination izfead of an increafe of fize. A particle of
indigo, which is naturally green, becomes blue by the addition of oxygen, which mult increafe its fize. This charge is alfo incompatible with the theory. But it is unneceffary to accumulate inftances, as they will naturally occur in fufficient number to every one.
It follows irrelitibly from thefe facts, that the Newtonian theory is not fufficient to explain the caulfe of colour ; or what caufes bodies to reflect or tranfinit certain 1 ays, and to abforb the re?.
4. We have endeavoured, in the article Chemistry, Sutphl. to thew, that bodies have a particular affinity for the rays of light; and that the phenomena of light depend entircly upon thefe affinities. Inceed this confe- light quence follows from the properties of light eftablifhed by Newton himfelf. We flall not repeat here the proofs upon which the exiltence of thefe affinities is founded: the reader may eafily fatisfy hinfelf by confulting the article above referred to.

Every coloured bociy, then, has a certain afinity for fome of the rays of light. Thofe rays for which it has a lliong affinity are abforbed by it and retainec, and the other rays for which it has no affinity are either reflected or tranfinitted, according to the nature of the body and the direction of the incident ray. Thus a red body has an affinity for all the rays except the red; it abforbs therefore the other fix, and reflects only the red: a green body abforbs all but the green rays, or perhaps the red and yellow: a black body has a flones affinity for all the rays, and therefore abforbs them all: while a white body, having no ftrong affinity for any of the rays, reflects or tranfinits them all.

If affinity, as we have endeavoured to fhew in the article Chemistry, Suppl. be an attraction of the fame nature with gravitation, and increafing as the diftance diminifhes, it inult depend upon the nature of the attracting particles. Now the only differences which we can conceive to exift between the particles of bodies, are differences in fize, in denf.ty, and in figure. Changes in thefe three things will account for all the varicties of afinity. Now if affinity depends upon thefe three things, and if colour depends upon the affinity between the particles of bodies and the different rays of light as cannot be denied, it is clear that the caule of the colour of bodies may be ultimately refulved into the fize, denfity, and figure, of their particles. Newtun's thicory, then, was defee:ive, becaufe he omitted the figuri of the particles, and afcribed the whole to variations in fize and derfity.

When we fay, then, that colour is owing to afinity, we do not contradict the opinion of Newton, as fome philofophers have huppofed, but merely extend it: Newton was not miflaken in faying, that colour depends up wh the fize and the denlity of the particles of bodisa; his niiftake lay in fuppoling that it depends upon thefe alone.
5. Since the colour of bodies depends upon their af why \({ }^{323} \mathrm{o}\) finity for light, and fince every body has a certain co-dio charge lour, becaule it abforbs and retains particular rays white floir cuit travfmits or reflects the reft, it is evident that every borly mult continue of its firft colour till one of two things happen ; either till it be faturated with the rays which it abforbs, and of courfe ceafe to abfosb any more, or till its particles change their nature, by leing either decompoled or combined with fome new fubltance. We have no politive proof that the firlt

-\(\square\)
\(\square\)
 \(\square\) importance. Of what value is the beauty of a colour, of great im-provided that colour be fugitive or liable to change in-
portance in
to fome other. In all cafes, therefore, it is of confeportance in dyeing.
caufe of change ever occurs, as many fubftances have been expofed to the action of light for a very long time without any change of colour. The abforbed light feems to make its efcape, tither in its own form, or in fome unknown or unfufpected one. The fecond caufe of change is very common: indeed its action may be detected in almon every cafe of alteration in the colour of bodies. The green oxyd of iron, by combining with oxygen, becomes red; and this red oxyd, when combined with pruffic acid, aftumes a blue colour, and with gallic acid a black colour. The caure of this change of colour, when the compofition of a body changes, is obvious: every change of compofition mult alter the affinity, becaufe it mult of neceffity pro. duce clanges in the fize, denfity, or figure of the particles, or perhaos in all of thefe. Now if the affinity of a body for other bodies be altered, it is natural to fuppofe that it will be altered alfo for light. Accordingly this happens in moft inftances. It does not, however, take place contantly, for very obvions reafons. It ma; happen that the new denfity, fize, or figure of the altered body is fuch, as to render it ftill proper for attracting the very fame rays of light which it furmerly attracted. Juft as iron, after being combined with a certain dofe of oxygen, is converted inti) green exyd, which till retains an affinity for oxvgen.

It is evident from all this, that in molt cafes the permanence of colour in bodies will depend upon the permanence of their compofition, or on the degree of facility with which they are acted npon by thofe bodies, to the agency of which they are expofed.
In dyeing, the permanence of colour is of very great quence to attend to the fubflances to which dyed cloth is expofed, and to afcertain their action upon every particular dyeing ingredient. Now the bodies to which dyed cloth is aimoft contlantly expofed are cir and light; the combined action of which has fo much influence, that very few dyes can refift it.

It is evident that thofe fubflances which have a ftrong aftiaity for oxygen cannot retain their colour, provided they be able to take it from atmofipheric air. Thus the green colour of green oxyd of iron and of indigo is not permanent, becaufe thefe fubttances readily abforb oxygen from air. In order, then, that a colour can have any permanence, the coloured body mult not have fo great an afmity for oxygen as to be able to take it from air. 'lhofe bodies have in general the moft permanent colours which are already faturated with oxygen, and therefore not liable to abforb more. Such is the cafe with red oxyd of iron.

All coloured bodies are compcun's ; fome of thofe only excepted which ftill retain an affinity for oxygen. Coloured bodies, theiefore, are compofed of feveral ingredients; and in every coloured body, at lealt fome of the ingredients have a ftrong affinity for oxygen. Now, before the colour of a body can be permanent, its ingredients mult be combined together by fo ltrong affinities, that oxygen gas is unable to decompofe it by combining with one or more of its ingredients and carrying it off. If this decompofition take place at once, it is impofible for the colour of a body to have any permanence. If it takes place flowly, the colour of the
body gradnally decays. The action of oxygen gas up. Colour on bodies is much increafed in particular cireumitances. Almoft all coloured bodies are decompofed oy oxygen gas by the affiltance of heat. Thus if whest fiour be expofed to the heat of \(44^{\circ}\), it lofes its white colour, and becomes firft brown and tien black. At this temperature it is decompofed, and a part, or even the whole of its hydrogen, combini!g with oxygen, flies off. Cloth is fcarcely cver expofed to fo high a temperature ; but there are other circumftances in which it may be placed which may have a fimilar effect. Thus the action of light feens in fome fubilances to be fimilar to that of heat, and to facilitate the decompofition of the coloured matter by the combination of fome of its ingredients with oxygen *.

Coloured Lodies, in order to have permanent colours, muift not be liable to be decompofed by other fubitances more than by oxygen. For inftance, if they contain oxygen and hydirogen, thefe two bodies muft not be liable to combine togethor and form water, nor mult oxygen and carbon be liable to combine and form carbonic acid gas. Light feems to have a tendency to decompofe many bodies in this manner, and even to carry off oxygen from them in the form of oxygen gas. Thus it renders the nitrat of tilver black by carrying off part of its oxygen, and it reduces oxy•muriatic acid to common muriatic acid by the fame means.

Thefe are the caufes which induce a change in the colour of coloured bodies, as far as they have been traced ; namely, the addition of oxygen, the abltraction of oxygen, partial decompofition by fome one of their ingredients combining with oxygen, complete or partial decompofition by the ingredients entering into new combinations with each other. The coloured matters ufed in dyeing are very liable to thefe changes, becaufe they are in general animal or vegetable fubitances of a very compound nature. Of courfe their ingredients have often no very ftrong afinity for each other, and therefore are very liable to decompofition; and every one of the ingredients has in general a very ftrong affirity for oxygen. This renders the choice of proper colouring matters for dyeing a very important point. In order to have fermanency, they muft not be liable to the above changes, not to mention their being able alfo to withtand the action of foap, acids, alkaties, and every other fubftance to which dyed cloth may be cxpofed.

It becomes therefore a point of fome confequence to Miethen be able to afcertain whether cloth dyed of any particu- alcertal lar colour be permanently dyed or not. The proper method of afcertaining this is by actually expofing fuch cloth to the fun and air; becaufe as thefe are the agents to which it is to be expofed, and which liave the moit powerful action, it is clear, that if it with hand them, the colour mult be conficiered as permanent. But this is a tedions procefs. Berthollet propofed expofing fuch cloth to the ation of oxy-muriatic acid ; thofe colours that withftard it being confidered as permanent. This method anfwers in many cafes : but it is not always to be depended on : for it deftroys fome permanent colours very fpeedily, and does not alter others which are very fading \({ }^{*}\). But we fhall have occafion to refume this fubject afterwards.

Dyers divide colours into two claffes; namely, fimple and compound. The fimple colours are thofe which coi.out cannot
ig cannot be prosuced by the mixture of: other colours: They are in number four.
\[
\begin{aligned}
& \text { 1. Plue, } \\
& \text { 2. Sedtow, } \\
& \text { 2. Bed } \\
& \text { 4. }
\end{aligned}
\]

Some add a fifth, lrown; but it may be produced by combining two others

The compound colours are thofe which are proin. ced by mixing together any two fimple colonrs in ya: rious proportions. They conflitute all the colcurs excent the four fimple and their various fhades.

Thus we have examined the nature of colours ; but we have ftill to explain the method of giving permanent colours to cloth. This fhall be the fubject of the next chapter.

\section*{Chap. III. Of Dreing in Generaty.}

From the theory of colour laid down in the laft chapter, it follows, that permanent alterations in the co Juur of cloth can only be induced two ways; either by producing a chemical change in the cloth, or by covering its fibres with fome fubtance which pofiefles the wifhed for colour. Recourfe can feldom or never be had to the firlt method, becaufe it is liardly pomble to produce a chemical change in the fibres of cloth without fpoiling its texture and rendering it ufelefs. The dyer, therufore, when he wifhes to give a new colour to cloth, has always recourfe to the fecond method.
1. The fubtances employed for this purpofe are called colouring matters, or dye fuffs. They are for the moft part extracted from animal and vegetable fulffances, and have ufually the colour which they are intetided to give to the cloth. Thus a blue colonr is given to cloth by covering its fibres with indigo, a blue powder extracted from a hhrub; a red colour, by the colouring matter extracted by water from an infect called coclineal, or from the root of a plant called maddir.
2. Mr Delaval has publifhed a very interefting fet of experiments on colouring matters in the fecond volume of the Manchefter Memoirs. He has proved, by a very numerous fet of experiments, that they are all tranfparen:, and that they do not refled any light, but only tranfmit it : For every colouring matter which he tried, even when diffolved in a liquid, and forming a tranfparent coloured folution, when feen merely by reflected light, was black, whatever was the colour of the matter; but when feell by tranfmitted light, it appeated of its natural colour *. This dicovery, which Mr Delaval has eftablifed very completely, and to which, as far at leaft as dye fluffs are concerned, there are but few exceptions, is of very great importance to the art of dyeing, and explains feveral particulars which would other ife be unintelligible.
Since the particles of the colouring matter with , which cloth, when dyed, is covered, are tranfparent, it follows, that all the light reflected from dyed cloth muft be reAteeed, not by the dye flufl itfelf, but by the fibres of the cluth below the dye fluff. The colour therefore does not depend upon the dye alone, but alfo upon the rperious colour of the cloth. If the cloth be bluck, it

Supfl. Vol. II. Part II.
is clear that we cannot dye it any colsur matever; be. caufe as no light in that cafe is refleeted, rone can be tranfmitted, whatever dye ftuff we employ. If the cloik were red, o: blue, or ychlow, we could not dye it any colour except black ; becaufe as o:ly red, or blur, or ycilow rays were refected, no other comll be tranf. mitted ( \(x\) ). Yence the import?nce of a fine white codlour when cloth is tos receive bright dyes: It then reflects all the rays in abundarice; and therefore any colour may be given, by covering it with a dje fluff which tranfmits only fome particular rays.
3. If the colonring matters were merely fpread over Thev man the furface of the fibre of ctoth by the dyer, the colours produced might be very bright, but they could not be permanent ; becaufe the colouning matter would be very foon rubbed off, and would totally difappear whenever the cloth was wafhed, or even barely expufed to the weather. The colouring matter, then, however perfect a colour it poffeffes, is of no value, unlefs it alfo adheres fo firmly to the cloth, that none of the fubItances ufually applied to cloth in order to clean it, Sce. can difplace it. Now this can only happen when there is a ftrong !finit'y between the colouring matter and the cloth, and when they are actually combined togrether in conferuence of that affuity.
4. Dyeing, then, is mertly a chemical procefs, and confifts in combining a certain colouring matter with the fibres of thoth. This procef: can in no inftance be performed, milefs the dye ftnff be firft reduced to its integrant particles; for the attraction of aggregation between the particles of dye ?!uff's is too great to be overcome ly the affinity between them and cloth, unlefs they could be brought within much fmaller dilances than is poffible, white they both remain in a folid form. It is neceffary, therefore, previounly to difolve the colouring matter in fome liquid or other, which bias a weaker affinity for it than the cloth has. When the cloth is dipped isto this folution, the colonring matter, reduced by this contrivance to a liquid fate, is brought within the attra Ging diftance; the cloth therefore acts upon it, and by its tironger affunty takes it foom the fulvent, and fixes it upon itfelf. By this contrivance, too, the equality of the colour is in fome meafure fecu. red, as every part of the cloth has an opportunity of attracting to itfelf the proper proportion of colouring particles.

The facility with which cloth imbibes a dye, depends upon two things, na mely, the afinity between the cloth and the dye ftuff, and the affinity bet ween the dye It uff and its folvent. It is directly as the former, and inverfely as the latter. It is of importance to preferve a due propration between thefe two affinties, as upon that proportion much of the accuracy of dyeing depends. If the affinity between the colouriag matter and the cloth be too gleat, compared with the affuity between the colonring matter and the folvent, the cloth will take the dye too rapidly, and it will be farce poffible to prevent its colour from beintr unequal. On the other liand, if the affinity between the colouring matter and the fulvent be too great, compared with 4 H that
(x) Thefe remarks hold only on the fuppoficion, that the wibole of the furface is of the given colour, which in many inflances is not the cafe.

Dyeing in that between the colouring matter and the cloth, the General. cloth will either not take the colour at all, or it will \(\xrightarrow[\text { take it very flowly and very faintly. }]{\sim}\)

Wool has the frongeft affinity for almoft all colour. ing matters, filk the next ferongef, cotton a confiderably weaker affinity, and linen the weakeft afinity of all. Therefore, in order to dye cotton or linen, the dye fuff foould in many cafes be diffolved in a fubitance. for which it has a weaker affinity than for the folvent employed in the dyeing of wool or tilk. Thus we may ufe oxyd of iron diffoived in fulphuric acis, in order to dye wool; but for cotton and linen, it is better to dif. folve it in acetous acid.
5. Were it pofible to procure a fufficient number of colouring matters having a Atrong afinity for cloth, to anfwer ali the purpofes of dyeing, that art would be. exceedingly fimple and eafy. But this is by no means the cafe: if we except indigo, the dyer is fearcely poffeffed of a dye ftuff which yields of itfelf a good colour iufficiently permanent to deferve the name of a dye.

This difficulty, which at firlt fight appears infurmountable, has been obviated by a very ingenious contrivance. Some fublance is pitched upon which has a frong affinity both for the cloth and the colouring matter. This fubftance is previonfy combined with the cloth, which is then dipped into the folution containing the dye fuff. The dye fuff combines with the intermediate fubftance; which, being firmly combined with the cloth, fecures the permanence of the dye. Subfances employed for this purpofe are denominated mordants (y).

The moft important part of dyeing is undoubtedly the proper choice and the proper application of mordants, as upon them the permanency of almoft every dye depends. Every thing which has been faid refpecting the application of colouring matters, applies equally in the application of mordants. They mult be previ. ouny diffolved in fome liquid, which has a weaker affinity for them than the cloth has to which they are to be applied; and the cloth mutt be dipped, or even Iteeped, in this folution, in order to faturate itfelf with the mordant.

Almoft the only fubftances ufed as mordants are, earths, metallic oxyds, tan, and oil.
6. Of earthy mordants, by far the molf important and moft generally ufed is alumina. It was ufed as a mordant in very early ages, and feems indeed to have been the very firf fubitance employed for that purpofe. Alumina has a very ftrong afinity for wool and for filk ; but its affinity for cotton and linen is a good deal weaker.

It is ufed as a mordant in two ftates; either in the fate of alum, in which it is combined with fulphuric acid and a little potafs; or in the ftate of acetite of alumina, in which it is combined with acetous acid.

Alum was employed as a mordant very early. The ancients, indeed, do not feem to have been generally acquainted with pure alum; they ufed it in that fate of impurity in which it is found native ; of courfe it was
ufed in dycing long before the nature of its ingredients Dyeing i was underitood, and therefore long before the part General which it afts was fufpected. Indeed, it is but a very fhort time fince the office which mordants perform was furpected: the firlt perfon that hit upon it was Mr Keir; he gave an account of the real ufe of mordants in his tranlation of Macquer's Dictionary, publifted in 1771*.

Alum, when ufed as a mordant, is difolved in water, p. a a is . and very frequently a quantity of tartar is diffolved along with it. Into this folution the cloth is put and kept in it till it has abforbed as much alumina as is neceffary. It is then taken nut, and for the moft part wafhed and dried. It is now a good deal heavier than it was before, owiag to the alumina which has combined with it. The tartar ferves two purpofes: the potafs which it contains combines with the fulpluric acid of the alum, and thus prevents that very corrofive fubfance from injuring sle texture of the cloth, which otherwife might lianpen; the tartarous acid, on the other hand, combines with part of the alumina, and forms a tartrite of alumina, which is more eafily decompofed by the cloth than alnm.

Acetite of alumina has been introduced into dyeing fince the conmencement of the 18 th century ; and, like many other very importaut improvements, we are indebted for it to the ignorance of the calico printers, who firft introdaced it. As they did not undertand the nature nor ufe of the mordants which they employed, they were accultomed to mix with their alum an immenfe farrago of fubftances, a great proportion of which were iniarions inftead of being of fervice. Some one or othet had mixed with alum acetite of lead: the good effects of this-misture would be foon perceived; the quantity of acetite was gradnally increafed, and the other ingredients omitted *: Thiis mordant is now * Bant prepared, by pouring acetite of lead into a folution of b alum : a double decompofition takes place, the fulphuric acid combines with the lead, and the compound precipitates in the form of an infoluble powder; while the alumina combines with the acctous acid, and remains diffolved in the liquid. This mordant is employed for cotton and linen, which lave a weaker affinity than wool for alumina. It anfwers much better than alum, the cloth is more eafily faturated with alumina, and takes, in confeguence, both a richer and a more permanent colour.

Befides alumina, lime is fometimes ufed as a mordant. Cloth has a ftrong enough afinity for it ; but in general it does not anfiver to well, as it does not give fo good a colour. When ufed, it is either in the flate of lime-water or of fulphat of lime diffolved in water.
7. Almoft all the metallic oxyds have an affinity for Metall cloth; but only two of them are extenfively ufed as morda mordants, namely, the oxyds of tia and of iron.

I'he oxyd of tin was firt introduced into dyeing by Kufter (z), a German chemift, who brought the fecret to London in 1543 . This period forms an era in the hiftory of dyeing. The oxyd of tirn has enabled the moderns
(y) This term, impofed by the French dyers-before the action of mordarts was underfood, fignifies biters or sorroders. Thefe bodies were fuppofed to aet merely by corroding the cloth). Mr Henry of Manchefter has propofed to fubfitute the word bafis for mordant; but that word is too general to anfwer the purpofe well. (z) Mr Delaval has fuppofed, that the Tyrians were acquainted with the ufe of tin in dyeing, and Mr Heri-
of lead and nitro muriat of tin. This mordant is pre. Dyeing in ferable for thefe fuffs ; becaufe it is much more eafily
\(D\) ng in moderns greatly to furpals the ancients in the finenefs of their colours: by means of it alone, fearlet, the brightelt of all colours, is produced. The method of producing the celebrated purple dye of the ancients is underftood at prefent, and the fhell fifh which yich the dye fuff are found abundantly on the coatis of Britain and France; but no perfon thinks now of putting the ancient mode in practice, becaufe infinitely more beautiful colours can be produced at a fmaller price. Much of this fuperiority is owing to the employment of the oxyd of tin.

Tin, as Prouft has proved, is capable of two degrees of oxyclation : The firft oxyd is compoied of 0.70 parts of tin, and 0.30 of oxygen ; the fecond, or white oxyd, of 0.60 parts of tin , and 0.40 of oxygen*. The firit oxyd abforbs oxygen with very great facility even from the air, and is rapidly converted into white oxyd. This fact makes it certain, that it is the white oxyd of tin alone which is the real mordant : even if the other oxyd were applied to cloth, as it probably often is, it mutt foon be converted into white oxyd, by abforbing oxygen from the atmofphere.

Tin is ufed as a mordant in three flates; difolved in nitro-muriatic acid, in acetous acid, and in a mixture of fulphuric and muriatic acide. Nitromuriat of tin is the common mordant employed by dyers. They prepare it by diffolving tin in diluted nitric acid, to which a certain proportion of muriat of foda, or of ammonia, is added. Part of the nitric acid decompofes thefe falts, corm ines with their bafe, and fets the muriatic acid at liberty. They prepared it at frrft with nitric acid alone; but that mode was very defective; becaufe the nitric acid very readily converts tin to white oxyd, and then is incapable of diffolving it. The confequence of which was, the precipitation of the whole of the tin. To remedy this defect, common Salt, or fal ammoniac, was very foon added; muriatic acid having the property of diffolving white oxyd of tin very readily. A confiderable faving of nitric acid might be obtained, by employing as much fulphuric acid as is jult fifficient to faturate the bafe of the common falt, or fal ammo. niac, employed.

When the nitro muriat of \(t\) in is to be ufed as a mordant, it is diffolved in a large quantity of water, and the cloth is dipped in the folution, and allowed to remain till fufficiently faturated. It is then taken out, and wathed and dried. Tartar is ufually diffolved in the water along with the nitro-muriat. The confequence of this is a double decompofition ; the nitro-muriatic acid combines with the potafs of the tartar, while the tartarous acid diffolves the oxyd of tin. When tartar is ufed, therefore, in any confiderable quantity, the mordant is not a nitro-muriat, but a tartrite of tin.

Mr Hauffman, to whom the art of dyeing lies under numerous obligations, has propofed to fubftitute acetite of tin for nitro-muriat as a mordant for cotton and linen. It may be prepared by mixing together acetite
decompored than the nitro muriat \(\dagger\).

Dr Bancroft has propnicd to fubftitute a folution of Cbim. xxx. tin in a mixture of fulphuric and muriatic acid, inflead 15 . of nitromuriat of tin, as a mordant for wonl. 'I'his mordant, he informis us, is much ch eaper, and equally efficacious. It may be prenared by difolving fomewhat lefs than one part of tin in two parts of fuiphuric and three of muriatic acid, at the degree of concentration at which they are commonly foid in this country \(\ddagger\). \(\ddagger\) Bancrefts This mordant, like the others, nuit be diffolved in a p. 2900 fufficient quantity of water, in order to be ufed.

Iron, like tin, is capable of two dicgrees of oxydation; but the green oxyd abforbs oxygen fo readily from the atmoffere, that it is very foon convented into the red oxyd. It is only this latt oxyd which is really ufed as a mordant in dyeing. The green oxyd is indeed fonetimes applied to cloth; but it very foon ab. forbs oxygen, and is converted into the red oxyd. This oxyd has a very ftrong affinity for all kinds of cloth. The permanency of the iron fpots on linen and cotton is a fufficient proof of this. As a mordant, it is ufed in two flates; in that of fulphat of iron, and acetite of iron. The firt is commonly ufed for wool. The falt is diffolved in water, and the clotlo dipped in it. It may be ufed alfo for cotton; but in moft cafes acetite of iron is preferred. It is prepared by aiffolving iron, or its oxyd, in vinegar, four beer, \&c. and the longer it is kept, the more is it preferred. The reafon is, that thia mordant fucceeds beit when the iron is in the ftate of red oxyd. It wonld be better then to oxydate the iron, or convert it into ruft, before ufing it; which might eafily be done, by keeping it for fome time in a moift place, and fprinkling it occafonally with water. Of late, pyrolignous acid has been introduced inftead of acetous. It is obtained by diftilling wood or tar.
8. Tan, which has been already deferibed in the firf Tan. part of this article, lias a very ftrong affinity for cloth, and for feveral colouring matters. It is therefore very frequently employed as a mordant. An infufion of nut galls, or of fumach (A), or any other fubftance containing tan, is made in water, and the cloth is dipped in this infufion, and allowed to remair till it has abforbed a fufficient quantity of tan. Silk is capable of abforbing a very greas proportion of tan, and by that means acquires a very great increafe of weight. Manufacturers fometimes employ this method of increafing the weight of filk *. fill employed arthol.
'T'an is often employed alfo, along with other mordants, lis, ii. 10. in order to produce a compound mordant. Oil is alfo ufed for the fame purpole in the dyeing of cotton and linen. The mordants, with which tan inoft frequently is combined, are alumina and oxyd of iron. 406

Befides thefe mordants, there are feveral other fub- Other noorfances frequently ufed as auxiliaries, cither to facilitate dants. the combination of the mordant with the cloth, or to \({ }_{4} \mathrm{HI}_{2}\)
alter
ry has declared himfelf of the fame opinion. But his reafoning, as Dr Bancroft has thewn, proceeds upon a miftake. He fuppofes that tin is neceffary for the production of red colours.
(A) Sumach is the rhus coriaria; a fhrub which is cultivated in the fouthern parts of Europe. Its floots are dried, and afterwards ground to powder ; in which fate they are fold to the dyer and tanner.

Dyseng in alter the flare of collour. The chief of thefe are, tarGeneral.

407
Murdanes affed the colour. tar, acctite of lead, common falt, fal ammoniac, fulphat or acetite of copper, \&ic. but have alfo conliderable iufluence on the colour produced. The fame colouring matter produces very different dyes, according as the mordant is changed. Suppofe, for inftance, that the colouring matter be cocliineal; if we ufe the aluminous mordant, the cloth wit? acquire a crimfor colour; but the oxyd of iron produces with it a black. Wliefe changes, indeed, might natnally have been expeeted: for fince the coluur of a dye ttuff derends upon its affinity for light, every new combination into which it erters, having a tendency to alter thefe affinities, will naturitly give it a new colour. Now, in all cafes, the colouring matter and mordant combine together: the colour of the cluth, then, mult be that which the paticles of the dye and of the mordant, when thus conbined together, exhibit. Indeed fome mordants may be confidered in the light of colouring matters alfo, as they always communicate a particular colour to cloth. Thus, irnn communicates a brown colour, and iron and tan together conftitute a black dye.

In dyeing, then, it is not only neceffary to procure a mordant, which has a fufficiently ftrong affinity for the colouring matter and the cloth, and a colouring matter which poffeffes the wiffed-for colour in perfection, we muft procme a mordant and a colouring mat ter of fuch a nature, that when combined logeiber they fhall poffefs the wifhed-for colour in perfection. It is evident, Loo, that a great variety of colours may be prodnced with a lingle dye fluff, provided we can change the mordant fufficiently.

408
10. - Every thing which tends to weaken the affnity between the noordant and the cloth, or between the mordant and the colouring matter, and every thing which tends in any way to alter the nature of the mordant, muft injure the permanency of the dye : becaufe, whenever the mordant is deffroyed, there is no longer any thing to caufe the dye fluff to adhere; and when its nature is aitered, the colour of the dye muft alter at the fame time. All the obfervations, then, which were made in the laft chapter, concerning the nature of colouring matters, and the changes to which they atie fubject, apply equally to mordaits. Thefe fubtances, indeed, are fcarcely liable thenofelves to any alteration. They are of a nuch more fimple nature, in general, than dye fluffs; and therefore not nearly fo liable to decompofition. But when the colauring matter itfelf - is altered, it comes to the rame thing. Its affinity for the morcant being row deftrojed, there, io nothing to retain it.

As the permanency of a dye depends upon the degrree of affuity between the mordent and the colouring dimatter, it is clear, that a.cje may want permanency, even though it relift the oxy muriatic acid, and all the other faline telfs propoled by chemifts. Thefe fubitances may happen to have very little action on the dye fuff, and therefore may not affect it ; yet it may foon difappear, in confequence of its want of affinity for. *-the mordant.
11. The colouring matter with which chth is dyd does not cover every porion of its furface ; ifs particks attach therefelves to the cloth at certain difances from
each other: for cloth many be dyed different fhades of \(D\) eving in the fame colour, lighter or darker, merely by varying Genera.' the quantity of colouring matter. With a fmal! quan. \(4=9\) tity, the thace is light ; and it becomes deeper as the Dye-fuffs quartity increales. Now this would be imnioflible, if do not
the dye fuff covered the whole of the cloth. Newton over the has demonffrated, that colonis are rendered faint when whce furthe rays of light which occafion them are mised with cicto of th white rays. Conlequertly, from cloth dyed of a light fhade, a confiderable quantity of white ray paffes off unchanged : but this could not be the cafe if the nuff were covered with coloured matter; becaufe all the white rays would te decompofed as they pats through the ecloured matter. 'Therefore, in liglit Mades, the colcuring inateer does not cover the cloth; its particles adhere to it, at a certain diltance from each other, and from every part of the cloth which is nncovered, the white rays pals off unchanged. Even when the thate of colour is as deep as poffible, the colourng particles do not cover the whole of the cloth, but are at a certain diffance from each other. This dillance, undoultectly, is diminifhed in proportion to the deepnefs of the flade: for the deeper the thade, the fmaller is the number of white rays which elcape undecompofed; the more, therefore, of the furface is corered, and, confequently, the finaller is the diflance at which each of them is placed. A fhade may be even conceived fo very deep, that not a particle of white light elcapes the action of the colouring matter; in which cafe, the diflance between the particles of colouring matter could not exceed double that diffance at which a particle of matter is able to act upon light.

That the particles of colouring matter, even when the \({ }_{C}{ }^{410}\) Mide is deep, are at fome diffance, is evident from this c:lours. well-k nown fact, that choth may be dyed twe colours at the fame time. All thofe colours, to which the dyers give the name ofrompound, are in fact two different colours applied to the cloth at once. Thus cloth gets a green colour, by being firft dyed blue and then yellow. The rays of light that pafs from green cloth thus dyed are blue and yellow'; by the mixture of which it is well known that gree:a is produced. In this cafe, it is clear, that each , of the colouring matters performs the very fame office as if it wire alone; and that the new colour is not pro. duced by the combination of the two colouring matters. That part of the white light, refected from the cloth, which paffes through the blue colouring matter, is decompofed, and the blue rays only trairfmitted; and that part of the white light which paffes through the yellow colouring matter is alfo decompoled, and only thie yellow rays tran?mitted. It is clear, therefore, that both of the coloning matters equally "cover the naked Gibies of the cloth; conlequently the one mult be placed in the intervals of the otber: wherefore the particles of each of the colouing matters are at fome diHance. Now the fame eftect happens how deep focrer the thade be; and it makes no difference which of the two dyes be firft given. Nay, if one of the dyes have a-Atromer affinity for the cloth, and the other ouly a weak affinity, the latter will foon dilappear, and leave the coth of the colout which the firt dye gives it. :The differerce, thien, in the faade of colurr, and alfo the compound coldurs which etoth may recifie, depen 1 citirifly Apon the ditance between the particles of the colouring inatters attached to the cloth, and the pofibi-
lue. lity of partly flling up the intervals, either with the fame colouring matter, or with a different one.

Thins we have taken a view of the theory of dyeing, as fa", at leath, as it is at prefent underflood. It remains for us till to give an account of the particular manner by which each of the colours is imparted to cloth. This thall be the fubject of the three following chapters. In the firf we thall treat of the manner of dyeing the fimple colours; in the fecond, of dyeing the compound colours; and in the third, of dyeing cloth partizlly feveral different colours at the fame time, or of that branch of the art of dyeing which is known in this country by the name of calico printing.

\section*{Chap. IV. Of Dyeing Simple Coiours.}

The colours denominated by dyers fimple, becaufe they are the foundation of all their other proceffes, are four; namely, \(1 / 2\), blue :- \(2 d\), jellow;-3d, red:\(4 t b\), black. To thefe they ufvally add a fifith, under the name of root, or brown colour. Thefe fhall form the fobject of the following fections.

E

\section*{Sect. I. Of Blue.}

THE only colouring matters employed in dyeing blue are woad and indigo: attempts, indeed, have been made to dye with pruffiat of iron ; but thefe attempts have hitherto failed.
1. The fatis tingoria, or woad, is a plant commonly emonth cultivated in this kingdom, and even found wild in fome parts of Ingland. It is of a yel. lowifh colour. Some perfons think that it was this plant with which the ancient Britons 1tained their bodies, to make them appear terrible to their enemies. When arrived at maturity, this plant is cut down, wathed, dried battily in the fun, ground in a mill, placed in heaps, and allowed to ferment for a fortnight; then well mixed together, formed into balls, which are piled upon each other, and expofed to the wind and fun. In this flate they gradually become hot, and exhale a putrid ammoniacal fmell. The fermentation is promotcd, if necuffary, by fprinkling the balls with water. When it has continued for a fufficient time, the woad is allowed to fall to a coarle powder. In this flate it is fold to the dyers.

2 Indigo, is a blue coloured powder extracted from the indigofora tindoria, and fromi teveral other fpecies of the fame genus of plants, which are cultivated for that purpofe both in the Eaft and Weft Indies.

When the indigofera has arrived at maturity, it is cut a few inches above ground, placed in frata in a large veffel, and covered with water. The plants foon acquire heat, ferment, and difcharge abundance of carbo nic acid gas. When the fermientation is far enough advanced, which is judged of by the palenefs of the leaves, the liquid, now of a green colour, is decanted into large flat vefols, where it is conflantly agitated till blue focculx begin to make their appearance. Lime water is now poured in, which caufes the blue flocks to precimta The coluurl fo liquid is decanted off, and the blue fedinient bured into linen bags. When the water has drained from it fufficiently, it is formed into fmall lumps. and dried in the fhade. In this flate it is fold to the dyer under the name of indigo.

Dr Roxbourgh, who firft drew the attention of manufacturers to the nerium tindorium, a tree very common in Indoftan, from the leaves of which indigo may be extracted with much advantage, has given a much fhorter method of obtaining that pigment. The leaves are kept iu a copper full of water, fupported at the temperatue of \(160^{\circ}\), till they affume a yellowifh hue, and the liquid acquire a deep green colomr. 'i'he liquid is then to be drawn off, agitated in the ufual manner, till the blue flocenlx appear ; and then the indigo is be precipitated with lime water *.
This procefs, which fucceeds equally well with the \({ }^{i}\) indignfera, fhews us that the plants, from which indigo may be extracted, contain a peculiar green pollen, loluble in water. The intention, both of the fermentation of the common method, and of the fcalding, according to 1 r Roxbourgh's method, is merely to exthact this pollen: Mr Hauffman firt fhewed, that this green bafis of incligo has a ftrong affinity for oxygen; and the fubfequent experiments of Drs Roxbourgh and Baincroft have confirmed his obfervations, and put them beyond the reach of coubt. It gradually attracts oxygen from the air; in confequence of which, it acquires a blue colour, and becomes infoluble in water. The agitation is intended to facilitate this abforption, by expofing a greater furface to the action of the air. The lime water, by abforbing a quantity of carbonic acid, with which the green pollen feems to be combined, greatly facilitates the feparation of the indigo.

The method of preparing indigo, and of applying it to the purpofes of dyeing, feems to have been sery early known in India. But in Europe, thongh it had been occafionally ufed as a paint *, its importance as-a * Plinit, dye fluff was not underftood before the middle of thel. 35. c. 6. 16 th century. It is not even mentioned in the Pfictho, which was publifhed in 1548. At that period, then, the ufe of indigo muft have been unknown to the Italian dyers. The Dutch were the people who tirt imported it from India, and made its importance ksown in Europe. It was afterwards cultivated in Mexico and the Weft Indies with fuch fuccefs, that the indigo from thefe countries was preferred to every other. In confequence of this preference, they fupplied almort the whole of the European market. But within thefe few years, the Eaft Indian indigo, owing entirely to the enlightened exertions of fome of our own countrymen, has recovered its character, and is now imported, in very conliderable quantities, into Britain.

The indigo of commerce has different flades of colour, according to the manner in which it has been prepared, and the proportion of foreign fubflances with which it is mixed. The principal thades are copper colour, violet, and blue. That indigo, which has the fmaileft fpecific gravity, is always moft etteemed, becaufe it is molt free from impurities. Bergman \(\dagger+\) Berg. \(v\). found the pureft indigo of commerce which he could 36 . p:ocure, compofed of
\[
\begin{aligned}
& 47 \text { pure indigo, } \\
& 12 \text { gum, } \\
& 6 \text { retin, } \\
& 22 \text { earth, } \\
& 13 \text { oxyd of iron. } \\
& \hline 100 \text { (is). }
\end{aligned}
\]

Blue. 415 Its ptopertics.
- Berg. v. 3.
+ Hanf
mann.
\(\ddagger 1\).
* Bancreft, i. 130 .

Pure indigo is inoluble in water, alcohol, æther, and oils : neither alkalies nor earths have any action on it ; none of the acids hitherro tried have any effeet on it, except the nitric and fulphuric. Nitric acid very foon converts it into a dirty white colour, and at laft decompofes it completely *. When the acid is concentrated, it even fets fire to the indigo ( c ) ; when it is diluted, the indigo becomes brown, cryftals make their appearance, refembling thofe of oxalic and tartarous acids; and there remains behind, after the acid and the cryitals are wafhed off, a vifcid fubftance, of a very bitter tatte, and poffefing many of the properties of a refint.

Concentrated fulpluric acid diffolves indigo readily, and much heat is evolved. The faturated folution is opaque, and confequently black; but it aflumes a deep blue colour when diluted with water. This folution is well known in commerce under the name of liquid biue. Bafcroft has given it the name of fuliphat of indigo. During the folution of the indigo, forae fulphurous acid, and fome hydrogen gas, are evolved \(\ddagger\), and the blue colour of the indigo is much beightened. Thefe facts have led Bancroft to fuppofe, that the indigo, during its folution, combines with an additional quantity of oxygen *. This may poffibly be the cafe, but the phenomena ate not fufficient to eftablifh it : for the hydrogen gas and fulphurous acid evolved may owe their formation, not to the action of the fulphuric acid on indigo, but upon the impurities with which it is always mixed; and the improvement of the colour may be owing to the abfence of thefe impurities. The carbonats of fixed alkalies precipitate flowly from fulphat of indigo a blue coloured powder, which poffeffes the pro. perties of indigo; but it is fuluble in moft acids and in alkalies. Pure alkalies deftroy the colour and properties of fulphat of indigo: they deftroy alfo precipitated indigo s. Thefe facts give fome probability to Bancroft's opinion ; but they do not eftablifh it : becaufe the differences between common and precipitated indigo may depend merely on the flate of greater minute nefs to which it is reduced, which prevents the attraction of aggregation from obtruating the action of other bodies. Even filica, when newly precipitated, is foluble in many mentrua.
3. Indigo has a very ftrong affinity for wool, filk, cotton, and linen. Every kind of cloth, therefore, niay be dyed with it, withont the affiftance of any mordant whatever. 'The colour thurs induced is very permanent ; becaufe the indigo is already faturated with oxygen, and becaufe it is not liable to be decompofed by thofe fubflances, to the aetion of which the cloth is expofed. But it can only be applided to cloth in a ftate of folu. tion ; and the only folvent known being fulphuric acid, it would feem at firit fight that the fulphuric acid folution is the only fate in which indigo can be employed as a dye.

The fulphat of indigo is indeed often ufed to dye wool and filk blue; but it can fearcely be applied to cotton and linen, becaufe the affrity of thefe fubflances for indigo is not great enough to enable them readily
to decompofe the fulphat. The colour given by fulphat of indigo is exceedingly beautiful : it is known by \(\underbrace{\text { Buc. }}\) the name of Saxon blue ; becaufe the procefs, which was difcovered by councellor Barth in i 740 , was firft carried on at Grofienhayn in Saxony. The method of the original inventor was very complicated, from the great number of ufelefs ingredients which were mixed with the fulphat. But thefe ingredients were gradually laid afide, and the compofition fimplified by others, atter the nature of \(i t\), which was for fome time kept fecret, became known to the public. The beft procels is that of Mr Poerner *.

One part of indigo is to be diffolved in four parts of \({ }^{*}\) Iurel Ifrutim concentrated fulphuric acid; to the folution oue partla Teinture, of dry carbonat of potafs is to be added, and then it is p .183. to be diluted with eight tinees its weight of water. The cloth mult be boiled for an hour in a folution, containing five parts of alum and three of tartar for every 32 parts of cloth. It is then to be thrown into a water bath, containing a greater or fmaller proportion of the diluted fulphat of indigo, according to the flade which the cloth is intended to receive. In this bath it mult be boiled till it has acquired the wifhed for colour. The alum and tartar are not intended to act as mordants, but to facilitate the decompofition of the fulphat of indigo. Bergman afcertained that alum puffeffes this property. The alkali added to the fulphat anfwers the fame purpofe. Thefe fubtances, alfo, by faturating part of the fulphuric acid, ferve, in fome meafure, to prevent the texture of the cloth from being injured by the action of the acid, which is very apt to happen in this procefs.
4. But fulphat of indigo is by no means the only fo- Method of lution of that pigment employed in dyeing. By fardyeing by the molt common method, and indeed the only method known before 1740 , is to deprive indigo of the oxygen to which it owes its blue colour, and thus to reduce it to the ftate of green pollen; and then to diffolve it in water by means of alkalies, or alkaline eartlis, which in that ftate act upon it very readily. Indigo is precifely in the fate of green pollen when it is firit extracted from the plant in the fcalding procefs defcribed by Dr Roxbourgh. If, therefore, there were any meethod of ftopping thort here, and of feparating the pigment while it retains its green colour, it would be precifely in the ftate beft adapted for dyeing. Nothing more would be neceffary but to diffolve it in water by means of an alkali, and to dip the cloth into the folution \(\dagger\).

But as indigo is not brought home to us in that fate, the dyer is under the neceffity of undoing the laft part of the indige maker's procefs, by feparating again the oxygen, and reforing it to its original green colour. Iwo different methods are employed for this purpofe. The firtt of thefe methods is to mix with indigo a folution of fome fubfance which has a ftronger affinity for oxygen than the green bafis of indigo. Green oxyd of iron, for inftance, and different metallic fulphurets. If, therefore, indigo, lime, and green fulphat of iron, be mixed together in water, the indigo gradually
(c) The combuftion of indigo by nitric acid, of the denfity \(1.52^{\circ}\), was firft publifhed by Mr Sage; but Woulfe appears to have obferved the fact before him, and to have pointed it out to Rouelle, who fhewed it in ris lectures. Prouf, Nicholfon's Four. III. 325.

Blue gradually lofes its blue colour, becomes green, and is diffolved, while the green oxyd of iron is converted into the red oxyd. The manner in which thefe changes take place is obvious. Part of the lime decompories the fulphat of iron; the green oxyd, the inflant that it is fet at liberty, attraets oxygen from the indigo, decompores it, and reduces it to the flate of green pollen. This green pollen is immediately diffolved by the action of the reft of the lime. In like mamner, indigo is diffolved, when mixed in water, with pure antimony and potafs, or with fulphuret of arfenic and potafs. For thefe interefling facts we are indebted to Mr Hauff. man.
The fecond method is to mix the indigo in water with certain vegetable fubflances which readily undergo fermentation. During this fermentation, the indigo is deprived of its oxygen, and diffolved by means of quickline or alkali, which is added to the folution. The fritt of thefe methods is ufually followed in dyeing cotton and linen ; the fecond, in dycing wool and filk. res sure monly employed as vegetabe fond
our on folvent of the green bafe of the indigo. Woad conwol, tains iffelf a colouring matter precificly, fimilar to indigo; by following the common procefs, indigo may be extrated from it. In the ufual flate of woad, when purchafed by the dyer, the indigo which it contains is probably not far from the flate of green pollen. Its quantity in woad is but fmall, and it is mixed with a great proportion of other vegetable inatter. Before the introdution of indigo into Europe, woad alone was employed as a Hlue dye; and even as late as the 17 th century, the ufe of indigo was reftriAted in different countries, and dyers obliged to employ a certain quantity of woad ( n ). But thefe abfurd refrictions were at laft removed, and woad is now fcarcely ufed in dyeing, except as a ferment to indigo. The blue co. louring matter, however, which it contains, muft, in alk cafes, contribute confiderably to the dye.
A fufficient quantity of woad, mixed with bran, is put into a wooden veffiel filled with warm water, whofe temperature is kept up fufficiently to enfure fermentation. Afterwards quickline and indigo are added. The indigo is deprived of its oxygen, and diffolved by the lime. When the folution is complete, the liquid has a green colour, except at the furface, where it is copper coloured, or blue, becaufe the indigo at the Iurface abforbs oxygen from the air, and affumes its natural. colour. The woollen cloth is.dipped in, and paffed thro? the liquid as equably as poffible, piece after piece; thefe pieces being firt dyed which are to affome the deceeft fhade. No part of the cloth frould come in contact with the fediment, which would fpoil the colour. When the cloth is firt taken out of the vat, it is of a green colour; but it foon becomes blue, by attrating oxygen. from the air. It ought to be carefully wafhed, to carry off the uncombined particles. This folution of indigo is liable to two inconveniences: \(\mathbf{1}\). It is apt fometimes to run toa faft into the putrid fermentation : this
may be known by the putrid vapoure which it exhales, and by the difappearing of the green colour. In this ftate it would foon deftroy the indigo altogether. 'The inconvenience is remedied by adding more lime, which has the property of moderating the putrefcent tendency. 2. Sometimes the fermentation goes on ton languidly. This defect is remedied by adding more bran or woad, in order to diminiff the proportion of quick. lime.
6. Silk is ufualty dyed blue by the following pro. silli, \({ }^{41,}\) cefs : Six parts of bren, and fix of indigo, with nearly one part of madder, are flirred into a fufficient quantity of water, in which fix parts of common polath of commerce is diffolved. The liquid is kept at a temperature proper for fermentation. When the indigo, deprived of its oxygen by the fermentation, is diffolved. by the potafs, the liquid aflimes a green colonr. The fi:k, prccioufly well fcoured, is put into the folution in. fmall quantities at a time; then wrung out of the dye, and hung up in the oper air, till the green colour which it has at firt is changed into tlue. By this method, filk can only be nuate to rective a light blue colour. In order to give filk a dark blue, it muit previoufly re. ceive wlat is called a ground colour; that is, be prev ouf. ly dyed fome other colour. A particular kind of red dye-fuff, called archil ( E ), is commonly employed ior this purpofe.
The madder employed in the above procefs may, at firt fight, appear fuperfinous; it feems, however, to contribute fomething to the colour.
7. Cotton and linen are dyed blue by the following Cotom, and procefs : One part of indigo, one part of green fulphat liven: of iron, and two parts of quicklime, are ilirred into a fufficient quantity of watcr. The folution is at fir it green, but it gradualfy afumes a yellow colour, and its furface is covered with a finining copper coloured pelficle. The cloth is to be allowed to remain in the folution for five or fix minutes. When taken out, it has a yellow colour-; but on expofure to the atmofphere, it foon becomes green, and then blue, in confequence of the abforption of oxygen. The indigo, in this procefo, feems. to be deprived of a greater quantity of oxygen than is necefiary to reduce it to the flate of green pollen. Mr Hauffman has obferved, that the cloth acquires a much deeper colour, provided it be plunged, the inflant it is talken out of the dyeing vat, into water acidulated with fulphurie acid: It is ufual to dip the cloth into a fucceffion of vats, varioully charged with colouring mat. ter; beginning with the vat which contains leaft colouring matter, and paffing gradually to thofe which contain moft: By this contrivance the cloth is dyed more equally, than it probahly would be, if it were planged all at once into a faturated folution of colouning : matter.

\section*{Sect. II. Of Tellow.} yellow are weld, fuffic, and quercitron bark.
(b) The employment of indigo was frietly prohibited in England in the reign of Queen Elizabeth; nor was the prohibition taken off till the reign of Charles II. It was prohibited alro in Saxony. In the edie it is fnoken of as a corrofive fubftance, and called food for the devil. Colbert reftricted the French dyers to a certain quantity of it.
(E) This will be defribed in a fubfequent fection.

Yellw.

\section*{-}
\({ }^{422}\)
Wend.
* Bertiol-

Lett, ii 200.
423
Fuftic.


4 Id. ii. .
269.

424
Quer
- citroll.
of ouch, is a plant which grows wilh very com nomly in Scotland; and in mo!t European countries. Cultivated welt has a more flender ftem than the wild kind, but it is more valuable, becaufe it is much more rich in colouring matter. It is an annual plant, of a yellowih green colour, furnithed with a grear number of fmall leaves. When ripe it is pulled, dried, tied up in parcels, and in that ftate fold to the dyer.

Weld readily yields its colouring matter to water. The faturated decoction of it is brown ; but when fufficiently diluted with water it becomes yellow. Acids render its colour fomewhat paler, but alkalies give it a deeser thade. When alum is added to it, a yellow coloured precipitate falls down, confíting of alumina combined with the colouring matter of weld. The affinity therefore of this colouring matter for alumina is fo great, that it is able to ab'tract it from fulphuric acid. Its efinity for oxyd of tin is at leaft equally great; for meriat of tin caufes a copious bright yellow precipitate, compoied of the colouring matter and the oxyd com. bined. Moft of the metallic falts occafion fimilar precipitates, but varying in colour according to the metal employed. With iron, for inftance, the precipitate is daik grey, and with copper brownifh green *.
2. The morus tindoria is a large tree which grows in the Weft India iflands. The wood of this tree is of a yellow colour, with orange veins. The French call it yellore zoond (bois jaune); but the Englifh dyers have given it the abfurd name of old fuffic (F). This wood has been introduced into dyeing fince the difoovery of America. The precife time is not known ; but that it was ufed in Englatid foon after the middle of the I 7 th century, is evident from Sir William Petty's paper on 1) yeing, read to the Royal Society foon after its inftitution. In that paper particular mention is made of old fufic.

Fuftic gives out its colouring matter with great facility to water. The faturated decoction of it is of a deep rejdifh yellow colour; when fufficiently diluted it becomes orange yellow. Acids render it turbid, give it a pale yellow colour, and occafion a flight greenifh precipitate, which alkalies rediffolve. Jilkalies give the decoction a very deep colour, inclining to red; fome time after they have been added, a yellow matter feparates from the liquid, and cither fwims on the furface, or adheres to the fides of the veffel. Alum, fulphat of iron, of copper, and of zinc, producé precipitates compofed of the colouring matter combined refpectively with the bafes of thefe different falts; and the colour varies according to the fubftance with which this colouring matter is combined. With alumina it is yel. low ; with iron, yellowifh brown; with copper, brown ifh yellow ; and with zinc, greenifh brown \(\uparrow\).
3. The quercus nigra, to which Dr Bancroft has given the name of quercitron, is a large tree which grows naturdly in North America. Dr'Bancroft difcovered, about the. year 1784 , that the bark of this tree contains
a great quantity of yellow colouring matter, and fince that time it has been introduced into dyeing with much advantage. To prepare it for the dier, the epidermis is fhaved off, and then it is grond in a mill. It feparates partly into Atringy flaments, and partly into a fine Light powder. Both of thefe contain chiouring matter, and therefore are to be employed; but as they contain sunequal quantities, they fhould be ufed in their natural proportions.
Qucrcition bark readily gives out its colouring matter to water at the temperature of \(100^{\circ}\). The infufion thas a yellowina brown colour, which is rendered lighteer by acids, and darker by alkalies. Alum occafions a fcanty precipirate of a deep yellow colour ; muriat of tin, a copious bright yellow precipitate: fulphat of tin, a dark olive precipitate; and fulphat of copper, a precipitate of a yellow colour inclining to olive \(\ddagger\).
4. Befides thefe dye ftuffs there are others occafionally ufed by dyers. The following are the nolt remark. able:

Geniffa tinderia, or dyers broom. This plant yields a very inferior yellow; it is only ufed for cuarfe woollen Auffs.

Serratula tindoriz, or faw wort. 'This plant yields a yellow nearly of the fame nature with zeveld; for which, therefore, it is a good fubltitute

Fuglans alba, or American liccory. The berk of this tree yields a colouring matter exactly fimilar to that of quercitron bark, but much fmaller in quantity.

Anotta is a name given to a red patte formed of the berries of the bixa orellana, a tree which is a native of America. This pafte yields its colouring matter to a fulution of alkali in water. The folution affurds an exceedingly beautiful yellow dye, but very fading, and in capable of being fixed by any known mordant.

Turmeric is the root of the curcunar longa, a plant which grows both in the Eaft and Welt Indies. It is richer in colouring matter than any other ycllow dye ftuff. It yields very beautiful yellows, but too fading to be of inuch ufe, and no mordant lias any iufluence in contributing to their permanence.
5. Yellow colouring matters have too weak all affi- Y \({ }^{4166}\) re. nity for cloth to produce permanent colours without quires a the ufe of mordants. Cloth, therefore, before it be mordant. dyed yellow, is always prepared by combining fome mordant or other with it. The mordant noit commonly employed for this purpofe is alumina. Oxyd of tin is fometimes uled when very fule yellows are wanted. Tan is often employed as a fubfidiary to alumina, in order to fix it more copioufly on cotion and linen. T'artar is alfo ufed as an auxiliary to brighten the colour ; and muriat. of foda, fulphat of lime, and even tulphat of iron, in order to render the fhade deeper.
6. The yellow dyed by means of fultic is more per. manent, but not fo beautiful as that given by weld or quercition. As it is permanent, and not much injured by acids, it is often ufed in dyeing compound colours

How. where a yellow is required. The mordant is alumina. When the mordant is oxyd of iron, fuftic dyes a good permanent drab colour.

Weld and quercitron bark yield nearly the fame kind of colour; but as the bark yields colouring matter in much greater abundance, it is much more convenient, and, upon the whole, cheaper than weld. It is pro bable, therefore, that it will gradually fuperfede the ufe of that plant. The method of ufing each of thefe dye ftuffs is nearly the fame. 27.
1 hod of 7 . Wool may be dyed yellow by the following pro-
ling a cefs: Let it be boiled for an hour, or more, with about \(\frac{{ }^{3}}{6}\) th of its weight of alum, diffolved in a fufficient quantity of water. It is then to be plunged, without being rinced, into a bath of warm water, containing in it as much quercitron bark as equals the weight of the alum employed as a mordant. The cloth is to be turned through the boiling liquid till it has acquired the intended colour. Then a quantity of clean powdered chalk, equal to the hundredth part of the weight of the cloth, is to be ttirred in, and the operation of dyeing continued for eight or ten minutes longer. By this method a pretty deep and lively yellow may be given Bancrof, ;fuliy as perinanent as weld yellow *.

For very bright orange, or golden yellorus, it is neceffary to have recourfe to the oxyd of tin as a mordant. A fine orange yellow may be given to woollen cloth, by putting, for every ten parts of cloth, one part of bark into a lufficient quantity of hot water; after a few minutes, an equal weight of murio. fulphat of \(t\) in is to be added, and the mixture well firred. The cloth acquires the wifhed for colour in a few minutes when bid. 329. brikkly turned in this bath \(\dagger\).

The fame procefs will ferve for producing bright golden yellows, only fome alum muft be added along with the tin. For the brighteft golden yellow, the proportions fufficient for dycing 100 parts of cloth are, 10 parts of bark, 7 parts of murio-fulphat of tin, and 5 parts of alum. All the poffible fhades of golden yellow may be given to cloth merely by varying the proporbid. 330 . tion of the ingredients according to the fhade \(\ddagger\).

In order to give the yellow that delicate green fhade fo much admired for certain purpofer, the fame procefs may be followed, only tartar muft be added in different proportions according to the thade. Thus to dye 100 parts of cloth a full bright yellorv, delicately inclining to green, 8 parts of bark, 6 of murio-fulphat, 6 of alum, and 4 of tartar, are to be employed. The tartar is to be added at the fame time with the other mordants. If the proportion of alum and tartar be increafed, the green fhade is more lively : to render it as lively as poftible, all the four ingredients ought to be employed in equal proportions. As thefe fine lemon-yellows are generally required only pale, 10 parts of each of the ingredients will be fufficient to dye about 300 parts of cloth \(\wp\).

By adding a fmall proportion of cochireal, the co1bid. 335 . lour may be railed to a fine orange, or even an aurora \(|\mid\).
8. Silk may be dyed different fhades of yellow, either by weld or quercitron bark, but the laft is the cheapeft of the two. The proportion fhould be from 1 to 2 parts of bark to 12 parts of filk, according to the fhade. The bark, tied up in a bag, fhould be put into the dyeing veffel while the water which it contains is cold, and when it has acquired the heat of about \(100^{\circ}\), the filk,

Suppl. Voz. II. Part II.
previoufly alumed, fhould be dipped in, and continued till
Yellow. it affumes the wifhed for colour. When the fhade required is deep, a little chalk or pearlafh fhould be added towards the end of the operation. When a very lively yellow is wanted, a little murio-fulphat of tin fhould be added, but not too much, becanfe tin always injures the gloffinefs of filk. The pioportions may be 4 parts of hark, 3 of alum, and 2 of murio fulphat of tin \(\%\).
Silk is dyed fine orange and aurora col urs by annot- \({ }^{\text {i }}\) ta. The procefs is merely dipping the filk into an alkaline folution of annotta. To produce the orange fhade the alkali is faturated with lemon juice. The colours thus produced are exceediagly beautiful, but they want permarrency.
9. The common method of dyeir.g cotton and linen curtom, vellow, has been clefribed in the article DyEing in the and linen, Encyclopedia. The cloth is firlt fraked in a folution of alum, and then dyed in a decoction of weld. After this it is foaked for an hour in a folution of fulphat of copper, and, lafly, it is boiled for an hour in a folution of hatd foay. 'This procefs, belides the expence of it, is defective; becaufe the yellow is neither fo beautiful nor fo permanent as it might be if the mordant were ufed in a different form.
The method recommended by Dr Bancroft is mech more advantageous, yielding more permanent and bealltiful colours at a finaller expence. The mordant hould be acetite of alumina, prepared by diffolving I part of acetite of lead, and 3 parts of alun, in a fufficient quantity of water. This folution thould be heated to the temperature of \(100^{\circ}\), the cloth flould be foaked in it for two hours, then wrung out and dried. The foaking inay be repeated, and the cloth again dried as before. It is then to be barely wetted with lime water, and afterwards dried. The foaking in the acetite of alumina may be again repeated; and if the fhade of yellow is required to be very bright and durable, the alternate wetting with lime water, and foaking in the mordant, may be repeated three or four limes. By this contrivance a fufficient quantity of alumina is combined with the cloth, and the combination is rendered more permanent by the addition of fome lime. 'the dyeing bath is prepared by putting 12 or 18 parts of quercitron bark (according to the lepth of the fhade required), tied up in a bag, into a fufficient quantity of cold water. Into this bath the cloth is to be put, and turned round in it for an hour, while its temperature is gradually raifed to about \(120^{\circ}\). It is then to be brought to a boiling heat, and the cloth allowed to remain in it after that only a few minutes. If it be kept long at a boiling heat the yellow acquires a fhade of brown*. * Ibid. 35 r .

Another way of dyeing cotton and linen very permanent yellows, would be to imitate the method adopted for dyeing cotton in the Eaft. That method is indeed exceedingly tedious, but it might be very much fhortened by carefully attending to the ufes of the ingredients. The effential part of the procefs is to caufe the alumina to combine in fufficient quantity with the cloch, and to adhere with fufficient firmnefs to enfure a permanent colour. This is accomplifhed by ufing three mordants; firlt oil, then tan, and lattly alum. The combination of thefe three fubtances produces a mordant which enfures a very permanent colour.

The cotton is frit foaked in a bath compofed of a fufficient quantity of oil, and mixed with a weak folu-
\(\dagger\) Cbaptal, Ann de Cbim. xxvi 251.

430
Chaptal's procefs for cotton.

431
Red dyes.

432
Kermes,

Ibid. a 20 . exceedingly cheap \(\$\).
\[
\text { Sect. III. of } R_{E D .}
\] Sect. III. Of \(R_{E D}\).
tion of foda. Animal oil feems to anfwer beft for the purpofe. Vogler found that glue anfwered extremely well. The foda thould be cauftic: In that flate it combines with the oil, and enables the cloth to abforb it equally. It is then, after being wafhed, put into an infution of nut galls (the whiter the better). The tan combines with the oil, while the gallic acid carries off the alkali that may remain attached to the cloth. The infufion ought to be hot ; and the cotton, after coming out of it, fhould be dried as quickly as poffible. Care fhould be taken that the quantity of galls do not ex. ceed a juft proportion compared with the oil, otherwife the colour will be darkened. The cotton, thus prepared, is to be put into a folution of alum. There is a ftrong affinity between tan and alumina; in confequence of which, the alum is oecompofed, and the alumina combines with the tan in fufficient abundance \(\uparrow\). The cotton, thus prepared, is to be dyed, as above defcribed, with quercitron bark.
Mr Chaptal, whofe ingenions labours have contributed exceedingly to elucidate the theory of dyeing, has propofed an exceedingly fimple and cheap method of dyeing cotton a fine permanent nankeen yellow. His procefs is as follows ( G ).
Cotton has fo Atrong an affinity for oxyd of iron, that if put into a folution of that oxyd in any acid whatever, it decompofes the falt, abforbs the iron, and acquires a yellow colour. The cotton to be dyed is to be put into a cold folution of fulphat of iron, of the \(f_{p}\). gr. 1.020 ; it is then wrung out, and put directly into a ley of potafs, of the fp. gr. r.o10, into which a folution of alum has been poured till it was faturated with it. After the cotton has remained in this bath four or five hours, it may be taken out, wafhed, and dried. By this procefs cotton may be dyed all the different fhades of uankeen, by varying the proportion of the fulphat of iron. This colour has the advantage of not being injured by wafhing, and of being

The principal colouring matters employed in dyeing red are, kermes, cochineal, archil, nadder, cartbamus, and Brazil wood.
1. In different parts of A fia and the fouth of Europe, there grows a fmall fpecies of oak, to which Lin. næus gives the name of quercus coccifera. On this oak refides a fmall infeet, of a reddifh brown colour; in commerce it is known by the name of kermes. This infect is a fpecies of coccus : Linnæus called it coccus ilicis. Thefe infects are gathered in the month of June, when the female, which alone is ufeful, is fwelled with eggs. They are fteeped for ten or twelve hours in vinegar to kill the young infects contained in the eggs, and afterwards dried on a linen cloth. In this ttate they are fold to the dyer.

Kermes readily gives out its colouring matter to water or alcohol. It was much ufed by the ancients in dyeing; the colours which it produced were highly efteemed, being inferior in price only to their celebrated purple. They gave it the name of coccus.

The colour which it communicates to cloth is exceedingly permanent, but being far inferior in beauty to thofe which may be obtained from cochineal, it has been but little employed by dyers fince that fplendid piginent came into common ufe.
2. Cochineal is likewife an infect, a fpecies of coccus. Linnæus diftinguifhes it by the name coccus caili. It inhabits different fpecies of cacti, but the molt perfect variety is confined to the catus coccinillifer. The cochineal infect was firf difcovered in Mexico ; the natives had employed it in their red dyes before the arrival of the Spaniards. It became known in Europe foon after the conqueft of Mexico; and the beauty of the colour which it conmunicates to cloth very foon attracted general attention. For many years it was miftaken for a vegetable production, as had been the cale alfo with the kermes. Different accounts of its real nature had in. deed appeared very early in the Philofophical Tranf, actions; but the opinion of Pomet, who infifted that it was the feed of a particular plant, gained fo much credit, that it was not entirely deftroyed till the publication of Mr Ellis's paper in the 52 d volume of the Philofophical Tranfactions, which eftablifhed the contrary beyond the poffibility of doubt.

The female cochineal infeet remains like the kermes, during her whole life adhering to a particular fpot of the tree on which it feeds. After fecundation, her body ferves merely as a nidus for her numenous egga, and gradually fwells as thefe advance towards maturity. In this ftate the iufects are gathered, put into a linen bag, which is dipt into hot water to deftroy the life of the young animals contained in the eggs, and then dried. In this flate they are fent to Europe and fold to the dyer.

The quantity of cochineal difpofed of in Europe is very great. Bancroft informs us, that the Spaniards annually bring to market about \(600,000 \mathrm{lbs}\). of it. Hitherto the rearing of the infects has belonged almoft exclufively to that nation. Other nations have indeed attempted to fhare it with them, but without any remarkable fuccefs; as the-Spaniards ufe every precaution to confine the true cochineal, and even the fpecies of cactus on which it feeds, to Mexico. Mr Thiery de Menonville was fortunate enough to procure fome fpecimens of both, and to transfer them in fafety to St Domingo; but after his death, the infects were allowed to perifh. 'The wild cochineal infect, which differs from the cultivated kind merely in being fmaller, and containing lefs colouring matter, was produced in St Domingo, in confiderable quantitics, before the commencenient of the prefent war. Several fpirited Britifh gentlemen have lately contrived to procure the in. fect ; and vigorous efforts are making to rear it in the Eaft Indies. We have not yet learned the fuccefs of thefc attempts; but we have reafon to hope every thing from the zeal and abilitics of thofe gentlemen who have taken an active part in the enterprize.

Cochineal readily gives out its colouring matter to water. The decoction is of a crimfon colour, inclining to violet : It may be kept for a long time witlout putrifying or lofing its tran(parency. Sulphuric acid
(G) We ought to mention, that this procefs, or at leaft one very fimilar, has been long well known to the calicoe printers of this country. Moft of their brown yellows, or drabs, are dyed with iron.

Res. gives it a red colonr, inclining to yellow, and occaffons a fmall fine red precipitate Tartar gives it a yellowifh red colonr, which becomes yellow after a fniall quantity of red powder lias fubfided. Alun brightens the colour of the decoction, and occafions a crimfon pitcipitate. Muriat of tin gives a copious fine red precipitate ; fulphat of iron, a brownifh violet precipitate; futphat of zinc, a deep violate precipitate; acetite of lead, ertblht, and fulphat of copper, violet precipitates \(\dagger\).

Water is not capable of extracting the whole of the colouring matter of cochineal; but the addition of a little alkali or tartar enables the water to extract the \({ }_{\text {il }}^{17} 175\). whole of it *
Ran.
i. 27 1. . 3. A rchil ( H ) is a pafte formed of the lichen roccella, pounded and kept moift for fome time with flale urine. It gives out its colouring natter to water, to alcoliol (1), and to a folution of ammonia in water.

The lichen roccella grows abundantly in the Canary inands, from which it is imported and fold to the dyers. Other lichens are likewife ufed to dye red, efpecially the parellus, from which the pigment called litmus, and by chemitts turfole, is prepared; the omphalodes and tartareus, which are often employed in this country to dye coarle cloths. To thefe many other. might be added; but the reader may confult the treatifes of Hoffman and Weftring on the lubject.
4. The rubia tincorum is a fmall well known plant, cultivated in different parts of Europe for the fake of its roots, which are known by the name of madder. They are about the thicknefs of a goofe quill, fomewhat tranfparent, of a reddifh colour, and a ftrong fnell. They are dried, cleaned, ground in a mill, and in that ftate ufed by dyers.

Madder gives out its colouring matter to water. The infufion is of a brownih orange colour ; alum produces in it a deep brownifh red precipitate; alkaline carbonats, a blood red precipitate, which is rediffolved on add. ing more alkali. The precipitate occafioned by acetite of lead is brownifh red ; by nitrat of mercury, purplifh brown ; by fulphat of iron, a fine bright brown. After the red colouring matter has been extracted from madder by water, it is ftill capable of yielding a bown crtbollict, colour \(\ddagger\)
5. Carthamus tinctorius is an annual plant, cultivated in Spain, Egypt, and the Lcvant, for the fake of its flowers, which alone are ufed in dyeing. After the juice has been fqueezed out of thefe flowers, they are wahed repeatedly with fait water, preffed between the hands, and fpread on mats to dry. Care is taken to cover them from the fun during the day, and to expofe them to the evening dews, in order to prevent them
from drying too faft. Such is the seethod followed is Lgyot.
R.f.

The flowers of carthamus contain two colouring matters ; a yellow, which is foluble in waier, and a reit, infoluble in water, but foluble in alkaline carbonats. The method of preparing them above deicribed, is intended to carry off the yellow colouring matter, which is of no ufe, and to leave only the red. Afier the flowers are thus prepared, they are of a red colour, and have loft nearly one half of their weight. An alkaline ley readily extracts their colouring matter, which may be precipitated by faturating the alkali with an acid. Lemon juice is commonly ufed for this purpofe, becaufe it does not injure the colour of the dje. Next to citric, fulphuric acid is to be preferred, provided too great a quantity be not ufed. The red colouring matter of carthanus, extracted by carbonat of foda, and precipitated by lemon juice, conltitutes the rouge employed by the ladies as a paint. It is afterwards ground with a certain quantity of talc. The finenefo of the talc, and the proportion of it mixed with the carthamus, occafion the difference between the cheaper and dearer kinds of rouge.
6. Brazil zoood, or fernamlouc, as it is called by the Brazil French, is the wood of the cafalpinia crifla, a tree wood. which grows naturally in Ainerica and the Weft Indian inands. It is very hard; its fpecific gravity is greater than that of water; its tafte is fweetifh: its colour, when frefl cut, is pale; but after expofure to the atmorphere, it becones red difh.

Brazil wood yields its colouing matter to alcohol, and likewife to boiling water. The decoction is of a , fiue red colur. The mineral acids make it yellow, and occafion a reddith brown precipitate. Oxalic acid caufes an orange red precipitate. Fixed alkali gives the decoation a crimfon colour, inclining to brown ; ammonia, bright purple. Alum occalions a copious crimfon precipitate, efpecially if alkali is added at the fame time. Sulphat of iron renders the decoction black. The precipitate produced by inuriat of tin is rofe coloured; that by acetite of lead of a fine deep red *. * Bertbollet,

The decoction of Brazil wood is fitter for dyeing ii 240. after it lias ftood fome time, and undergone a kind of fermentation.
7. None of the red colouring inatters has fo Atrong Re \({ }_{c}^{433}\) an affinity for cloth as to produce a permanent red, quires a without the affiftance of mordants. The inordants em-nordant. ployed are alumina and oxyd of tin ; oil and tan, in certain proceffes, are alfo ufed; and tartar and muriat of foda are frequently called in as auxiliaries.
8. Coarfe woollen ftuffs are dyed red with madder 4 I 2
(H) If we believe Tournefort, this dye fuff was known to the ancients. They employed it to dye the colour known by the name of purple of A morgos, one of the Cyclades iflands. If this account be accurate, the knowledge of it had been lolt during the dark ages. It was accidentally difcovered by a llorentine merclant about the year 1300, who obferved, that urine gave a very fine colour to the lichen roccella. Mr Dufsy difcovered, that archil poffeffes the property of tinging indelibly white marble, of forming veins, and giving it the appearance of jarper. See Mem. Par. 1732.
(1) The tincture of archil is ufed for making. Piritit of zuine thermometers. It is a fingular faet, that this tincture becones gradually colourlefs when excluded from the contact of air, and that it aygain recovers its colour when expofed to the atmofphere. The phenomenon was firlt obferved by the Abhé Nollet, and defribed by him in an ellay, publifhed among the memoirs of the Academy of Sciences for \(17+2\).

Red. or archil ; but fine cloth is almoft exclufively dyed with
4.39 Wool how dyed crim. fun,

440 And fearlet.
cochineal; though the colour which it receives from kermes is much more durable. Brazil wood is fcarcely ufed, except as an auxiliary ; becaufe the colour which it imparts to wool is not permanent.
Wool is dyed crimfon, by firf impregnating it with alumina by means of an alum bath, and then boiling it in a decoction of cochineal till it has acquired the wifhed-for colour. The crimfor will be finer if the tin mordant be fubtituted for alum : indeed it is ufual with dyers to add a little nitro-muriat of tin when they want fine crimfons. The addition of archil and potafs to the cochineal, both renders the crimfon darker and gives it more bloom; but the bloom very foon vanifhes. For paler crimfons, one half of the cochineal is withdrawn, and madder fublituted in its place.
Wool may be dyed farlet, the moft fplendid of all colours, by firft boiling it in a folution of murio fulphat of \(t\); then dyeing it pale yellow with quercitron bark, and afterwards crimfon with cochineal : For fcarlet is a compound colour, confifting of crimfon mixed with a little yellow. This method was fuggetted by Dr Bancroft, who firit explained the nature of the common method. The proportions which he gives are eight parts of murio-fulphat of tin for 100 parts of cloth. After the cloth has been boiled in this folution for a quaiter of an hour, it is to be taken out, and about four parts of cochineal, and two and a half parts of quercitron bark, are to be thrown into the bath. After thefe are well mixed, the cloth is to be returned again to the bath, and boiled in it, till it has acquired * Bancroft, the proper colour *.
i. 291.

The common procefs for dyeing fcarlet is as follows: Twelve parts of tartar are diffolved in warm water; then one part of cochineal is added, and foon after ten parts of nitro muriar of tin. When the bath boils, 100 parts of cloth are put in, turned brifkly through the bath, boiled in it for two hours; then taken out, aired, wafhed, and dried. Into another bath eleven parts of cochineal are put ; and after its colouring matter is fufficiently extracted, 28 parts of nitro-muriat of tin are added. In this bath the cloth is boiled for an hour, and then wafhed and dried.

Every preceding writer on dyeing took it for granted, that the yellow tinge necefliary for fcarlet was produced by the nitro muriat of in , or rather by the nitric acid of that compound, and that the tartar was only ufeful in enlivening the colour. But Dr Bancroft adcertained, by actual experiment, that nitro-muriat of tin has no fuch effect ; that cloth, impregnated with this or any other tin mordant, and afterwards dyed with cochineal, acquires only a crimfon colour, unlefs fartar be added; that the tartar has the property of converting part of the cochineal to yellow; and therefore is the real agent in producing the fearlet colour. Good fcarlet, indeed, cannot be made without tin ; becaufe every other mordant fullies the colour, and ren\(\dagger\) Joid. 288. ders it dull \(\dagger\).

441
Red dyes
empluyed
for fill,
9. Silk is ufually dyed red with cochineal or carthamus, and fometimes with Brazil wood. Kermes does not anfwer for filk; madder is fcarcely ever ufed for that purpofe, becaufe it does not yield a bright enough colour. Archil is employed to give filk a bloom ; but it is fcarcely ufed by itfelf, unlefs when the colour wanted is lilac.

Silk may be dyed crimfon by fteeping it in a folution of alum, and then dyeing it in the ufual way in a cochineal bath. But the common procefs is to plunge In dyeing the filk, after it has been alumed, into a bath formed crimpon, of the following ingredients: Two parts of white galls, three parts of cochineal, three-fixteenths of tartar, and three-fixteenths of nitro-muriat of tin , for every fixteen parts of filk. The ingredients are to be put into boiling water in the order they have been enumerated; the bath is then to be filled up with cold water; the filk put into it, and boiled for two hours. After the bath has cooled, the filk is ufually allowed to remain in it for three hours longer.

The colours known by the names of poppy, cherry, \({ }^{443}\) Popy, rofe, and flefh colour, are given to filk by means of carthamus. The procefs confifts merely in keeping the filk, as long as it extracts any colour, in an alkaline folution of carthamus, into which as much lemon juice as gives it a fine cherry colour has been pourcd. 'To produce a deep poppy red, the filk muft be put fucceffively into a number of fimilar baths, and allowed to drain them. When the filk is dyed, the colour is brightened by plunging it into hot water acidulated with lemon juice. The filk ought to be previoufly dyed yellow with anotta.

Cherry red is produced the fame way, only the anot- \({ }^{444}\) herry, ta ground is omitted, and lefs colouring matter is nece flary. When a feefh colour is required, a little foap flefh red Phould be put into the bath, which foftens the colour, and prevento it from taking too quickly.
To leffen the expence, fome archil is often mixed with carthamus for dark fhades.

The fame fhades may be dyed by means of brazil wood, but they do not fland.

Silk cannot be dyed a full fcarlet, but a colour ap. 446 proaching to fcarlet may be given it, by firt impregnating the fluff with murio fulphat of tin, and afterwards dyeing it in a bath compofed of four parts of cochineal and four parts of quercitron bark. To give the colour mere body, both the mordant and the dye may be repeated *. A colour approaching fearlet may be alfo * Bancry given to filk, by firft dyeing it crimfon, then dyeng it it \({ }^{\mathrm{i}}\). with carthamus, and laftly y cllow without heat. \(\dagger\).
10. Cotton and linen are dyed red with madder The procefs was borrowed from the Eaft; hence the colour is often called Adrianople or Turkey red. The cloth is firf impregnated with oil, then with galls, and laftly with alum, in the manner deferibed in the laft fection. It is then boiled for an hour in a decoction of madder, which is commonly mixed with a quantity of blood. After the cloth is dyed, it is plunged into a foda ley, in order to brighten the colour. The red given by this procefo is very permanent, and when properly condocted it is exceedingly beautiful. The whole difficulty confilts in the application of the mo:dant, which is by far the moft complicated employed in the whole art of dyeing.

Cotton may be dyed fcarlet by means of murio-ful. phat of tin, cochineal, and quercitron bark, ufed as for filk; but the colour is too fading to be of any value *.

Sect. IV. Of Black.
ftances have a ftrong affnity for each other; and when combined, affume a deep black colour, not liable to be deftroyed by the action of air and light. The affinity which each of them has for the different kinds of cloth has been already mentioned.
2. Logwood is ufually enployed as an auxiliary, becaufe it communicates luftre, and adds confiderably to the fulnefs of the black. It is the wood of the tree called by Linnæus bematoxylum campechianum, which is a native of feveral of the Weft India iffands, and of that part of Mexico which furrounds the Bay of Honduras. It yields its colouring matter to water. The decoction is at firft a fine red bordering on violet, but if left to itfelf it gradually affumes a black colour. A. cids give it a deep red colour ; alkalies a decp violet, inclining to brown. Sulphat of iron renders it as black as ink, and occations a precipitate of the fame colour. The precipitate produced by alum is dark red; the fuembollet, pernatent liquid becomes yellowihh red *
3. Cloth, before it receive a black colour, is ufually dyed blue. This renders the colour inuch fuller and finer than it otherwife would be. If the cloth be coarfe, the blue dye may be too expenfive ; in that cafe a brown colour is given by means of walnut peels.
4. Wool is dyed black by the following procefs. It is boiled for two hours in a decoction of nut galls, and afterwards kept for two hours more in a bath compoled of logwood and fulphat of iron, kept during the whole time at a fcalding heat, but not boiled. During the operation it muft be frequently expofed to the air; be. caufe the green oxyd of iron, of which the fulphat is compofed, muft be converted into red oxyd by abforbing oxygen, before the cloth can acquire a proper colour. The common proportions are five parts of galis, five of fulphat of iron, and 30 of logwood for every 100 of cloth. A little acetite of copper is commonly added to the fulphat of iron, becaufe it is thought to improve the colour.
5. Silk is dyed nearly in the fame manner. It is capable of combining with a very great deal of tan; the quantity given is varied at the pleafure of the artitt, by allowing the filk to remain a longer or fhorter time in the decoction. After the galling, the filk is put into a folution of fulphat of iron, which is ufually mixed with a certain quantity of iron filings and of guin. It is occafionally wrung out of the bath, expofed for fome time to the air, and again immerfed. When it has acquired a fufficiently full colour, it is wafhed in cold water, and afterwards fteeped in a decoetion of foap to take off the harfhnefs, which filk always has after being dyed black.
6. It is by no means fo eafy to give a full black to. linen and cotton. The cloth, previoufly dyed blue, is fteeped for 24 hours in a decoetion of nut galls. A bath is prepared, containing acetite of iron, formed by faturating acetous acid with brown oxyd of iron. Into this bath the cloth is put in fmall quantities at a time, wrought with the hand for a quarter of an hour, then wrung out and aired, again wrought in a frefh quantity of the bath, and afterwards aired. Thefe alternate proceffes are repeated till the colour wanted is given. A decoction of alder bark is ufually mixed with the liquor containing the nut galls.

It would probably contribute to the goodnefs and permanence of the colour, if the cloth, before being
galled, were impregnated with oil, by being feeted in B:ow:. a mixture of alkaline ley and oil combined, as is practifed for dyeing cotton red.

Sect. V. Of Brown.
That particular brown colonr, with a call of yellozu, which the French call fauve, and to which the Englifh writers on dyeing have appropriated the word fawn, though in fact a compound, is commuly ranked among fimple colours; becaufe it is applied to cloth by a fingle procefs. The fubttances employed to produce this coLour are numerous; but we fhall fatisfy ourfelves with enumerating the following:

Walnut peels are the green covering of the wal- Brows nut. When firft feparated, thity are white internally ; dyes. but foon affume a brown, or even a black colour, on ex. pofure to the air. They readily yield their colouring matter to water. 'Tlicy are ufually kept in large cafks, covered with water, for above a year, before they are ufed. 'To dye wool brown with them, nothing more is neceffary tha:i to fleep the cloth in a decoction of them till it has acquired the wifhedfor colour. The depth of the fhade is proportional to the frengtli of the decoetom. The root, as well as the petl of the walnut tree, contains the fame colouring matter, but in fmaller quantits. The balk of the birch, alfo, andmany other trees, may be nifed for the fame purpofe.
It is very probzble, that the brown colouring matter is in thefe vegetable filbfances combined with tan. This is certainly the cafe in fumach, which is often employ. ed to produce a brown. This combination explains the reafon why no mordant is neceflary; the tan has a Atrong affinity for the cloth; and the colouring matter for the tan. The dye fuff and the mordant are al. ready, in fact, combined together.

\section*{Chap. V. Of Compound Colours.}

Compound colours are produced by mixing toge. ther two fimple onea; or, which is the fame thing. by dyeing cloth filf one fimple colour, and then anotherThe refult is a compound colour, varying in fhade according to the proportions of each of the fimple co. lours employed.

Compound colours are exceedingly numerous, vary. Divition or? ing almoft to infinity, according to the proportions of compounid the ingredients employed. They may be all arranged colluurs. under the four following claffes :

Mixtures of I. blue and yellow,
2. blue and red,
3. yellow and red,
4. black and other colours.

To deferibe all the different fhades which belong to each of thefe cleffes, would be impoffible; and cven if it were poffible, it would be unneceflary; becaufe all the proceffer depend upon the principles laid down in the preceding chapters, and may eafily be conceived and varied by thofe who underitand thefe principles. In the following fections, therefore, it will be fufficient to mention the principal compound colours produced by the mixture of fimple colours, and to exhibit a fpecimen or two of the mode of producing them.

\section*{Sect. I. Of Miatures of Blue and rellow.}

The colour produced by mixtures of blue and yellow

Mixcure is green; which is ditinguiked by dyers by a great of But and variety of names, according to the depth of the fhade, Yellow. 4.4

How 0 in dice green 435 or the prevalence of either of the component parts. Thus we have fea green, meadoru or grafs green, pea

Wool is ufually dyed green by giving it fitft a blue colour, and afterwards dyeing it yellow; becaufe, when the yellow is firf given, feveral inconveniences follow: the yellow partly feparates again in the blue vat, and communicates a green colour to it ; and thus renders it ufelefs for every other purpofe, except dyeing green. Any of the proceffes for dyeing blue, delcribed in the laft chapter, may be followed; care being taken always to proportion the depth of the blue to the fhade of green which is required. The cloth thus dyed blue may receive a yellow colour, by following the proceffes deferibed in the laft chapter for that purpofe. When the fulphat of indigo is emplnyed, it is ufual to mix all the ingredients together, and to dye the cloth at once : the colour produced is known by the name of Saxon, or Englijh green. One of the moft convenient methods of conducting this procefs is the following:

Six or eight parts of quercitron bark, tied up in a bag, are to be put into the dyeing veffel, which fhould contain only a fmall quantity of warm water. When the water boils, fix parts of murio fulphat of tin, and four parts of alum, are to be added. In a few minutes, the dyeing veffel fhould be filled up with cold water, till the temperature is reduced to about \(130^{\circ}\). After this, as much fulphat of indigo is to be poured in as is fufficient to produce the intended fhade of green. When the whole has been fufficiently ftirred, a hundred parts of cloth are to be put in, and turned brifkly for about
* Bancroft ,
i. 336. By this method, a much more beautiful colour is obtained than is given by the ufual procefs, in which fuftic is employed to give the yellow fhade.
456
siik,
silk, intended to receive a grees colour, is ufnally dyed yellow firft, by means of weld, according to the procefs deferibed in the laft chapter; afterwards, it is dipped into the blue vat, and dyed in the ufual manner. To deep. en the Shade, or to vary the tint, decoctions of logwood, anotta, fuftic, \&c. are added to the yellow bath. Or filk may be dyed at once green, by adding fuitable proportions of fulphat of indigo to the common quercitron bark bath, compofed of four parts of bark, three
+ 7bid. 346 . parts of alum, and two parts of murio fulphat of tin \(\dagger\).
457 Cotton and linen mult be firft dyed blue, and then chapter. It is needlefs to add, that the depth of each of thefe colours mult be proportioned to the fhade of green colour which it is the intention of the dyer to give.

\section*{Sect. II. Of Mixtures of Blue and Red.}
\({ }^{458}\)
Violet,
purple, Hilac,

THE mixture of blue and red produces violet, purple, and lilac, of various flades, and known by various names, according to the proportion of the ingredients employed. When the colour is deep, and inclines molt to blue, it. is called wiolet; but when the red is prevalent, it gets the name of purple. When the fhade is light, the colour is ufually called lilac. For violet, therefore, the cloth muit receive a deeper blwe; for purple, a deeper red; and for lilac, both of thefe colours muft be light.

Wool is ufually dyed firf llue; the fhade, even for
violet, ought not to be deeper than that called Jey blue; Mix res afterwards it is dyed fcatlet, in the ufual manner. The f Blue ant violets and purples are dyed firft; and when the vat is fomewhat exhauited, the cloth is cipped in which is to receive the lilac, and the other lighter fhades. By How in. means of fulphat of indigo, the whole procefs may be duced on performed at once. The cloth is firft alumed, and then wool, dyed in a veffel, containing cochineal, tartar, and fulphat of indigo, in proportions fuited to the depth of the colour required *. A violet colour may alfo be gi. * Poerner, ven to wool, by impregnating it with a mordant compofed of tin diffolved in a mixture of fulphuric and muriatic acids, formed by diffolving muriat of foda in fulphuric acid: to which folution a quantity of tartar and fulphat of copper is added. The wool is then boiled in a decoction of logwood till it has acquired the wifhed for colour \(\dagger\).

Silk is firt dyed crimfon, by means of cochineal, in sille, Berthe ufual way, excepting only that no tartar, nor folution of tin, is employed: It is then dipped into the indigo vat till it has acquired the wifhed-for fhade. The cloth is often afterwards paffed through arr archil bath, which greatly improves the beauty of the colour. Archil is often employed as a fubflitute for cochineal : The filk finft receives a red colour, in the ufual way, by being dyed in an archil bath; afterwards it receives the proper fhade of blue. The violet, or purple, given by this procefs is very beautiful, but not very lafting \(\ddagger\).

Silk may be dyed violet or purple at once, by firt \({ }^{\text {ii. }} 327\). treating it with a mordant, compofed of equal parts of nitro-muriat of tin and alum, and then dipping it into a cochineal bath, into which a proper quantity of fulphat of indigo has been poured. But this dye is fading; the blue colour foon decays, and the filk becomes red *.

Cotton and linen are firt dyed blue, then galled, Bertbolict, then foaked in a decoction of logwood; fome alum and \({ }^{\text {ii. }} 329\). acetite of copper are added to the decoction, and the cloth is foaked again. This procefs is repeated till the proper colour is obtained + . The colour produced by this method is not nearly equal in permanency to that defcribed in this Supplement under the word Iron; to which we beg leave to refer the reader. The procefs there deferibed has been long known ; but Mr Chaptal has fimplified it fomewhat.

\section*{Sect. III. Of Mixtures of \(T_{\text {ELLOW }}\) and Red.}

The colour produced by the mixture of red and yel. Orarge \({ }^{462}\) low is orange; but almolt an infinity of thades refults and olive, from the different proportions of the ingredients, and from the peculiar nature of the yellow employed. Sometimes blue is cumbined with red and yellow on cloth: the refulting colour is called olive.

W ool may be dyed orange by precifely the fame pro \(4^{463}\) cefs which is ufed for fcarlet, only the proportion of red duced on mult be diminifhed, and that of yellow increafed. When wool, wool is firft dyed red with madder, and then ycllow with weld, the refulting colour is called cinnamon colour. The mordant, in this cafe, is a mixture of alum and tartar. I he flade may be varied exceedingly, by ufing other yellow dye ftuffs inftead of weld, and by varying the proportions, according to circumitances. Thus a reddifh yellow may be given to cloth, by firt dyeing it yellow, and then pafling it through a madder bath.

Silk is dyed orange by means of carthamus: the method
rtures method hias been defcribed in the laft chapter. Cinna-
Black Black mon colour is given to it by dyeing it, previonfy alnm. ed, in a bath compofed of the decoctions of logwood, Brazil wood, and fuftic, mixed together.

Cotton' and linen receive a citnamon colour by means of weld and madder. The procefs is complicated. The cloth is firlt dyed with weld and acetite of copper, then dipped in a folution of iulphat of iron, then gall. ed, then alumeci, and then dyed in the ufual way with \(t\), madder *.

For olive, the cloth is firt dyed blue, then yellow, and laftly paffed through a madder bath. The flade depends upon the proportion of each of thefe colours. For very deep fhades the cloth is alfo dipped into a folution of fulphat of iron. Cotton and linen may be dyed olive ty dipping them into a bath, compofed of the decoction of four parts of weld and one of potafs, mixed with the decoction of Brazil wood and a little acetite of coppert.
SECT. IV. Of Mixtures of BLACR with other Colours.
Strictly fpeaking, the mixtures belonging to this fection are not mixtures of black colours with other colours, but combinations of the black dye with other colours; the ingredients of which, galls and brown oxyd of iron, being both mordants, varioufly modify other colouring matters by combining with them. Thus if cloth be previoufly combined with brown oxyd of iron, and afterwards dyed jullow with quercitron bark, the refult will be a drab of different fhades, according to the proportion of mordant employed. When the proportion is fmall, the colour inclines to olive or yellow ; on the contrary, the crab may be deepened or fadden. ed, as the dyers fpeak, by mixing a little fumach with ancr-ft, the balk*. The precautions formerly mentioned in applying the oxyd mult be obferved.

It is very common to dip cloth already dyed fome particular colour into a folution of fulphat of iron, and galls or fome other fubflance containing tan, called the Black bath, in order to alter the fhade, and to give the colour greater permanency. We fhall give a few inflances : greater minutenefs would be inconfiftent with the nature of this article.

Cloth dyed blue, by being dipped into the black bath, becomes biuijo grey. Cloth dyed yellow, by the fame procefs, becomes blackif/ grey, drab, or yellowif/s brown. Cloth previoufly alumed, and dyed in a decoction of cochineal and acetite of iron, acquires a permanent violet colour inclining to brown, or a lilac, if the dyeing veffel be fomewhat exhaufted*. Cloth theeped in a mordant, compofed of alum and acetite of iron diffclued in water, and afterwards dyed in a bath conpofed of the decoction of galls and madder mixed together, acquires a fine deep brown. The method of varying the thades of linen and cotton will be readily conceived, after we have given an account of calico printing, which forms the lubject of the next chapter.

\section*{Chap. Vi. Of Calico Printing.}

Calico printing is the art of communicating different colours to particular fpots or figutes on the furface of cotton or linen cloth, while the reft of the ftuff setains its original whitenefs.

This ingenious art feems to have originated in India, where we know it has been practifed for more than 2000 years. Pliny indeed inform us, that the Egyp. tiane were acquaned \(4: 7\) tians were acquainted with calico printing; but a va- 0 igin of riety of circumiltances combine to render it more than calico probable that they borrowed it from India. The art printing. has but lately been cultivated in Europe; but the enlightened induftry of our manufacturers has already improved prodigioufly upon the tedious proceffes of their Indian mafters. No art has rifen to perfection with greater celenity: a hundred years ago it was fcarcely known in Europe ; at prefent, the elegance of the patterns, the beanty and permanency of the colours, and the expedition with which the different operations are carried on, are really admirable.
A minute detail of the proceffes of calico printing would not only be foreign to the plan of this article, but of very little utility. To the artift the procefics are already known; an account of them therefore could give him no new information; while it would fatigue and difappoint thofe readers who wifh to undertand the principles of the art. We fhall content curfelves, therefore, with a fhort view of thefe principles.
Calico printing confifts in impregnating thofe parts It confifts of the cloth which are to receive a colour with a mor- \({ }^{-11}\) applydant, and then dyeing it as ufual with fome dye ftuff dang mor- paror other. The dye ftuff attaches it felf firmly only to tially to that part of the cloth which has received the mordant. cotion, The whole furface of the cotton is indeed more or tefs tinged ; but by walhing it, and bleaching it for fome days on the grafs with the wrong fide uppermoft, all the unmordanted parts refume their original colour, while thofe which have received the mordant retain it. Let us fuppofe, that a piece of white cotton cloth is to receive red ftripes; all the parts where the ftripes are to appear are penciled over with a folution of acetite of alumina. After this, the cloth is dyed in the ufual manner with madder. When taken dut of the which is veffel, it is all of a red colour; but by wahing and dyed and bleaching, the madder leaves every part of the cloth bleached. white except the Aripes impregnated of alumina, which remain red. In the fame manner may yellow ftripes, or any other wifhed for figure, be given to cloth, by fubflituting quercitron bark, weld, \&c. for madder.

When different colours are to be given to different parts of the cloth at the fame time, it is done by impregrating it with various mordants. 'Thus if tripes be drawn upon a cotton cloth with acetite of alumina, and other ftripes with acetite of iron, and the cloth be afterwards dyed in the ufual way with madder and then wathed and bleached, it will be ftriped red and brown. The fame mordants with quercitron baik give yellow, and olive or drab.

The mordants employed in calico printing are ace. Mo \({ }^{470}\) tite of alumina and acetite of ion, prepared in the man- tmployed. ner defcribed in the third chapter of this part. Thefe mordants are applied to the cloth, either with a pencil or by means of blocks, on which the pattern, according to which the cotton is to be printed, is cut. As they are applied only to particular parts of the cloth, care muft ie taken that none of them fpread to the part of the cloth which is to be left white, and that they do not interfere with one another when more than one are applied.

Calico applied. If thefe precautions be not attended to, all Yinting ed It is neceffary, therefore, that the mordants thould be of fuch a degree of confiftence that they will not spread beyond thofe parts of the cloth on which they are applied. This is done by thickening them with four or ftarch when the are to be applied by the block, and with gum arabic when they are to be put on with a pencil. The thickening fhould never be greater than is fufficient to prevent the fpreading of the mordants; when carried too far, the cotton is apt not to be fufficieutly faturated with the mordant; of courfe the dye takes but imperfectly.

How ap.
plied.

In order that the parts of the cloth impregnated with mordants may be difinguifhed by their colour, it is ufial to tinge the mordants with fome colouring matter or ather. The printers commonly ufe the decoction of Brazil wood for this purpofe; but Bancroft has objected to this method, becaufe he thinks that the Brazil wood colouring matter impedes the fubfequent procefs of dyeing. It is certain, that the colouring matter of the Brazil wood is difplaced during that operation by the fuperior affinity of the dye fluff for the mordant. Were it not for this fuperior affinity, the
colour would not take at all. Dr Baicroft * advifes
* bencreft
4. 373 . to colour the mordant with fome of the dye ftuff afterwards to be applied; and he cautions the ufing of more for that purpofe than is fufficient to make the mordant diftinguithable when applied to the cloth. The reafon of this precaution is obvious. If too much dye be mixed with the mordant, a great proportion of the mordant will be combined with colouring matter; which muft weaken its affinity for the cloth, and of courfe prevent it from combining with it in fufficient quantity to enfure a permanent dye.

Sometimes thefe two mordants are mixed together in different proportions; and fometimes one or both is mixed with an infulion of fumach or of nut galls. By thefe contrivances, a great variety of colours are produced by the fame dye ftuff.
.472

\section*{Sublequent} ereatment ofthe cloth

After the mordants have been applied, the cloth mult be completely dried. It is proper for this purpofe to employ artificial heat; which will contribute fomething towards the feparation of the acetous acid from its bafe, and towards its evaporation; by which the mordant will combine in a greater proportion, and more iutimately with the cloth.

When the cloth is fuffciently dried, it is to be wafhed with warm water and cow dung, till all the flour or
gum employed to thicken the mordants, and all thofe parts of the mordants which are uncombined with the cloth, are removed. The cow dung ferves to entangle thefe loofe particles of mordants, and to prevent them from combining with thofe parts of the cloth which are to remain white. After this the cloth is thoroughly rinfed in clean water.

Almoft the only dye ftuffs employed by calico prin. D e fuufi ters are, indigo, madder, and quercitron bark or weld. This laft fubftance, however, is now but little ufed by the printers of this country, except for delicate greenifh yellows. The quercitron bark has almof fuperfeded it; becaufe it gives colours equally good, and is much cheaper, and more corivenient, not requiring fo great a heat io fix it. Indigo, not requiring any mordant, is commonly applied at once either with the block or a pencil. It is prepared by boiling together indigo, potafs made cautic by quicklime, and orpiment : the folution is afterwards thickened with gum ( x ). It muft be carefully fecluded from the air, otherwife the indigo would foon be regenerated, which would render the folution ufelefs. Dr Bancroft has propofed to fubttitute coarfe brown fugar for orpiment. It is equally efficacious in decompofing the indigo and rendering it foluble; while it likewife ferves all the purpofes of gum *.

When the cloth, after being impregnated with the mordant, is fufficiently cleanfed, it is dyed in the ufuat manner. The whole of it is more or lefs tinged with the dye ftuff. It is well wafhed, and then fpread out for fome days on the grafs, and bleached with the wiong fide uppermoft. This carries the colour off completely from all the parts of the cotton which has not imbibed the mordant, and leaves them of their original whitenefs, white the mordanted fpots retain the dye as flrongly as ever.

Let us now give an example or two of the manner in which the printers give particular colours to calicoes. Some calicoes are only printed of one colour, others have two, others three, or more, even to the number of eight, ten, or twelve. The finaller the number of colours, the fewer in gencral are the proceffes.
1. One of the moft common colours on cotton prints \(\mathrm{Me}^{4 \mathrm{c}^{44} \text { ded }}\) is a kind of nankeen yellow, of various fhades, down to printung a deep yellowifh brown or drab. It is ufually in ftripes draiks, or fpors. To produce it, the printers befmear a block, cut out into the figure of the print, with acetite of iron thickened with gum or flour; apply it to the cotton; which, after being dried and cleaned in the ufual marner, is plunged
(k) Different proportions are ufed by different perfons. Mr Hauffman mixes 25 gallons of water with in pounds of indigo well gromind (or a greater or fmaller quantity, according to the quality of the indigo and the depth of colour wanted) ; to which he adds 30 pounds of good carbonat of potafs, placing the whole over a fiie ; and as foon as the mixture begins to boil, he adds, by a little at a time, 12 pounds of quick lime, to rence: the alkali cauftic, by abforbing its carbonic acid. This being done, 12 pounds of red orpiment are alfo adcud to the mixture; which is then ftirred, and left to boil for fome little time, that the indigo may be peifcetly diffolved; which may be known by its giving a yellow colour immediately upon being applied to a piece of white tran\{parent glafs. M. Oberkampf, proprietor of the celebrated manufactory at Jouy near Verfailles, infes a third more of indigo ; and others ufe different proportions, not only of indigo, but of lime, potafs, and orpiment; which all feem to anfwer with nearly equal fuccefs: but with the beft copper-coloured Guatamala indigo, it is certain that a good blue may be obtained from only half the quantity preferibed by Mr Hauffman, ly ufing as much fone, or oyfter thell lime, as of indigo, nearly twice as much potals, and a fourth part defs of orpiment than of indigo. See Bancroff, I. 113.
plunged into a potafs ley. The quantity of acetite of iron is always proportioned to the depth of the intended fhade.
2. For yellow, the block is befmeared with acetite of alumina. The cloth, after receiving this mordant, is dyed with quercitron bark, and then bleached.
3. Red is communicated by the fame plocefs, only madder is fubftituted for the bark.
4. The fine light blues, which appear fo often on printed cottons, are produced, by applying to the cloth a block befineared with a compofition, confifting partly of wax, which covers all thofe parts of the cloth which are to remain white. The cloth is then dyed in a cold indigo vat ; and after it is dry, the wax compofition is removed by means of hot water.
5. Lilac, fiea brown, and blackifh brown, are given by means of acetite of iron; the quantity of which is always proportioned to the depth of the fhade. For very deep colours, a little funach is added. The cotton is afterwards dyed in the ufual manner with madder, and then bleached.
6. Dove colour and drab, by acetite of iron and quercitron bark.

When different colours are to appear in the fame print, a greater number of operations are neceffary. Two or more blocks are employed, upon each of which that part of the print only is cut which is to be of fome particular colour. Thefe are befmeared with differeut mordants, and applied to the cloth, which is afterwards dyed as ufual. Let us fuppofe, for inftance, that three blocks are applied to cotton ; one with acetite of alumina, another with acetite of iron, a third with a mixture of thefe two mordants, and that the cotton is then dyed with quercitron bark, and bleached. The parts impregnated with the mordants would have the following colours.
Acetite of alumina, . . Yellow,
iron,
The mixture, . . . Olive, drab, dove ( L ),

If part of the yellow be covered over with the indigo liquor, applied with a pencil, it will be convented into green: By the fame liquid, blue may be given to fuch parts of the print as require it.

If the cotton be dyed with madder inftead of quercitron bark, the print will exhibit the following colours:
Acetite of alumina, iron, \(\ldots\) Red,
The mixture,... Brown, black,
. Purple.

When a greater number of colours are to appear ; for inftance, when thofe communicated by bark and thofe by madder are wanted at the fame time, mordants for part of the pattern are to be applied; the cotton is then to be dyed in the madder bath and bleached; then the refl of the mordants, to fill up the pattern, are added, and the cloth is again dyed with quercitron bark and bleached. This fecond dyeing does not much affect the madder colours ; becaufe the mordants, which render them permanent, are already faturated. The Supfl. Vol. II. Part II.
yellow tinge is eatify removed by the fubfequent bleaching. Sometimes a new mordant is alfo applied to fome of the madder colours; in confequence of which they receive a new permanent colour from the bark. After the laft bleaching, new colours may be added by means of the indigo liquor. The following table will give an idea of the colours which may be given to cotton by thele complicated procefles.
\begin{tabular}{|c|c|}
\hline I. Madd & Colours. \\
\hline cetite of alumina, & \\
\hline Ditto diluted, & Lila \\
\hline Both mixed, & Purple \\
\hline
\end{tabular}
\begin{tabular}{ll} 
II. Bark dye. & \begin{tabular}{ll} 
Acetite of alumina, \\
iron, & Yellow, \\
Lilac and acetite of alumina, & Dove, drab, \\
Red and acetite of alumina, & Oive, \\
\end{tabular}
\end{tabular}
III. Indigo dye.
Indigo,
Indigo and yelliow \(\quad=\quad\) Green.

Thus no lefs than 12 colours may be made to appear together in the fame print by thefe different proceffes.

Thefe inltances will ferve to give the reader an idea of the nature of calico printing, and at the fame time afford an excellent illuftration of the importance of mordants in dyeing.

If it were poffible to procure colours fufficiently permanent, by polying them at once to the colours for blocle or the pencil, as is the cafe with the mordants, the art of calico printing would be brought to the greateft poffible fimplicity: but at prefent this can only be done in one cafe, that of indigo; every other colour requires dyeing. Compofitions indeed may be made by previoufly combining the dye ftuff and the mordants. Thus yellow may be applied at once by employing a mixture of the infufion of quercitron bark and acctite of alumina; red, by mixing the fame mordant with the decoction of alumina, and fo on. Unfortunately the colours applied in this way are far inferior in permanency to thofe produced when the mordant is previounly combined with the cloth, and the dye ftuff afterwards applied feparately. In this way are applied almoft ald the fugitive colours of calicoes which wafhing or even expofure to the air deftroys.

As the application of colours in this way cannot always be avoided by calico printers, every method of rendering them more permanent is an object of importance. We fhall therefore conclude this chapter with a defcription of ieveral colours of this kind propofed by Dr Bancioft, which have a confiderable degree of permanence.

A yellow printing colour may be formed by the following method: Let three pounds of alum, and three ounces of clean chalk, be firft diffolved in a galion of hot water, and then add two pounds of fugar of lead; ftir this mixture occafionally during the fpace of 24 or 36 hours, then let it remain 12 hours at reft, and afterwards decant and preferve the clear liquor; this be--4 K
ing

Calico ing done, pour io much more warm water upon the rePrinting. maining fediment, as after ftirring and leaving the mixture to fettle will afford clear liquor enough to make, when mixed with the former, three quarts of this aluminous mordant or acetite of alumine. Then take not lefs than fix, nor more than eight, pounds of quercitron bark properly ground; put this into a tinned copper veffel, with four or five gallons of clean foft water, and make it boil for the face of one hour at ledf, adding a little more water, if at any time the quantity of liquor fhould not be fufficient to cover the furface of the bark: the liquor having boiled fufficiently, fhould be taken from the fire, and left unditurbed for half an lour, and then the clear decoction fhould be poured off through a fine fieve or canvas ftrainer. This being done, let fix quarte more of clear water be poured upon the fame bark, and made to boil ten or fifteen minutes, both having been firt well ftirred; and being afterwards left a fufficient rime to fettle, the clean decoction may then be ftrained off, and put with the former into a fhallow wide veffel to be evaporated by boiling, until what remains, being joined to the three quarts of aluminous mordant before mentioned, and to a fufficient quantity of gum or pafte for thickening, will barely fuffice to make three gallons of liquor in the whole. It will be proper, however, not to add the aluminous mordant, until the decoction is fo far cooled as to be but little more than blood warm; and thefe being thorough. ly mixed by ftirring; may afterwards be thickened by the gum of Senegal or by gum arabic, if the mixture is
intended for penciling ; or by a pafte made with ftarch or flour, if it be intended for printing.

By fubftituting a pound of murio-fulphat of tin for the aluminous mordant in the above compofition, a mixture may be formed which affords a very bright and full yellow, of confiderable durability.

Sulphat of tin, mixed with a decoction of quercitron bark, communicates to cotton a cinnamon colour, which is fufficiently permanent *

When the decoctions of quercitron bark and log-i i anoref wood are boiled together, and fuitable proportions of fulphat of copper and of verdigris are added to them, with a little carbonat of potafs, a compound is formed, which gives a green colour to cotton. Bancroft has made trial of this; and though it has not fully anfwer. ed his expectation, his attempts were attended with fufo ficient fuccefs to determine him to perfevere in his experiments \(\dagger\).

If acetite of iron be mixed with a decoction of quer. citron bark, and the mixture be properly thickened, the compound will communicate to cotton a drab colour of fome durability. This compound, mixed with the olive colouring liquor above defcribed, will produce an olive. If a folution of iron, by a diluted muriatic acid, or by a diluted nitric acid, be employed for this purpofe inftead of iron liquor, it will produce colours a little more lafting; but thefe folutions fhould be em. ployed fparingly, that they may not hurt the texture of the linen or cotton to which they are intended to be applied.

\section*{S U L}

SUBTRIPLE, is when one quantity is the 3 d part of another; as 2 is fubtriple of 6. And Subtriple Ratio is the ratio of I to 3 .

SUBTRIPLICATE ratio, is the ratio of the cube roots. So the fubtriplicate ratio of \(a\) to \(b\), is the ratio of \(\sqrt[3]{ } a\) to \(\sqrt[3]{b}\), or of \(a^{\frac{1}{3}}\) to \(b^{\frac{1}{5}}\).

SUCCESSION of signs, in aftronomy, is the order in which they are reckoned, or follow one another, and according to which the fun enters them; called alfo confequentia. As Aries, Taurus, Gemini, Cancer, sic. SULPHURET of Lime liaving lately been recom* W. Hig- mended by an eminent chemift * as a fubltitnte for potgins, M. R. a/b in the new method of bleaching, which, if it anfwer, T. \(A\).
may certainly be afforded at leis expence, we fhall here give the method of preparing the fulphuret.

Take of fulphur, or brimftone in fine powder, four pounds; lime, well flaked and fifted, twenty pounds; water, fixteen gallons:- thefe are all to be well mixed and boiled for about half an hour in an iron veffel, ttirring them brifkly from time to time. Soon after the agitation of boiling is over, the folution of the fulphuret of lime clears, and may be drawn off free from the infoluble matter, which is confiderable, and which refts upon the bottom of the boiler (A). The liquor in this
ftate is pretty nearly of the colour of fmall beer, but Sulphuret, not quite fo tranfparent.

Sixteen gallons of frefh water are afterwards to be poured upon the infoluble dregs in the boiler, in order to feparate the whole of the fulphuret from them. When this clears (being previoully well agitated), it is alfo to be drawn off and mixed with the firft liquor; to thefe again thirty-three gallons more of water may be added, which will reduce the liquor to a proper ftandard for fteeping the cloth.

Here we have (an allowance being made for evaporation, and for the quantity retained in the dregs) fixty gallons of liquor from four pounds of brimftone.

Although fulphur by itfelf is not in any fenfible degree foluble in water, and lime but very faringly fo, water difolving but about one feven hundredth part of its weight of lime; yet the fulphuret of lime is highly foluble.

When the above proportion of lime and fulphur is boiled with only twelve gallons of water, the fulphuret partly cryfallizes upon cooling; and when once crytallized it is not eafy of folution.

SUN (fee Astronomy-Index, Encycl.) is certainly that celeftial body which, of all others, fhould moft attract our attention. It bas according'y employed much
(A) Although lime is one of the conflituent principles of the fulphuret, yet being fo intimately united to the fulphur, it has no longer the property of lime; upon the fame principle that fulphuric acid in fulphat of potafh bas not the property of that acid.

\section*{S U N}
of the time and meditation, not only of the aftrononer, but allo of the fpeculative philofopher, in all ages of the world; and many lyypothefes have been formed, and fome difooverics made, refeecting the nature and the ufes of this valt luminary.

Sir Ifaac Newton has hewn, that the fun, by its attraktive power, retains the planets of our fy flem in their orbits: he has alfo pointed out the method whereby the quantity of matter which it contains may be accurately determined. Dr Bradley has affigned the velocity of the folar light with a degree of precifion exceeding our utmoft expectation̂. Gallileo, Scheiner, Hevelius, Caffini, and others, have afcertained the rotation of the fun upon its axis, and determined the pofition of its equator. By means of the tranfit of Venus over the difk of the fin, our mathematicians have calculated its diftance from the earth, its real diameter and maguitude, the denfity of the matter of which it is compofed, and the fall of heavy bodies on its furface. We have therffore a very clear notion of the vaft importance and powerful influence of the fun on its planetary fyftem ; but with regard to its internal conftruction, we are yet extremely ignorant. Many ingenious conjectures have indeed been formed on the fubject; a few of which we fhall mention as an introduction to Dr Herfchel's, of which, as it is the lateft, and perhaps the moft plaufible, we fhall give a pretty full account nearly in his own words.

The dark fpots in the fun, for inftance, have been fuppofed to be folid bodies revolving very near its furface. They have been conjectured to be the finoke of volcanoes, or the fcum floating upon an ocean of fluid matter. They have alfo been taken for clouds. They were explained to be opaque maffes fwimming on the fluid matter of the fun, dipping down occafionally. It has been fuppofed that a fiery liquid furrounded the fun, and that by its ebbing and flowing the higheft parts of it were occafionally uncovered, and appeared under the fape of dark fpots; and that by the return of the fiery liquid, they were again covered, and in that manner fincceffively affumed different phafes. The fun itfelf has been called a globe of fire, though perhaps metaphorically. The waite it would undergo by a graCual confumption, on the fuppofition of its being ig. nited, has been ingenioufy calculated; and in the fame point of view its immenfe power of heating the bodies of fuch comets as draw very near to it has been affigned.

In the year 1779 there was a fpot on the fun which was large enough to be feen with the naked eye. By a view of it with a feven feet reflector, charged with a very high power, it appeared to be divided into two parts. The largeft of the two, on the 19th of April, meafured \(1^{\prime} 8^{\prime \prime} .06\) in diameter, which is equal in length to more than 31,000 miles. Both together mult certainly have extended above 50,000 . The idea of its being occafioned by a volcanic explofion violently driving away a fiery fluid, ought to be rejected (fays Dr Herichel) on many accounts. "To mention only one, the great extent of the fpot is very unfavourable to fuch a fuppolition. Indeed a much lefs violent and lefs pernicious caufe may account for all the appearances of the fpot. When we fee a dark belt near the equator of the planet Jupiter, we do not recur to earthquakes and vol. canoes for its origin. An atmofphere, with its natural
changes, will expiain fuch belts. Our fpot on the fun may be accounted for on the fame principles. The earth is furrounded by an atmofohere compofed of various elaftic fluids. The fun alfo has its atmofphere; and if fome of the fluids which enter into its compolytion fould be of a hining brilliancy, in the manner that will be explained hereafter, while others are merely tranfparent, any temporary caufe which may remove the lucid fluid will permir us to fee the body of the fun through the tranfparent ones. If an obferver were piaced on the moon, he would fee the folid body of the earth only in thofe places where the tranfparent fluids of our atmofphere would permit him. In others, the opaque vapours would reflect the light of the fun without permitting his view to penetrate to the furface of our globe. He would probably alfo find, that our planet had occafionally fome fhining fluids in its atmofphere; as, not unlikely, fome of our northern lights might not efcape his notice, if they happened in the unenlightened pait of the earth, and were feen by him in his long dark night. Nay, we have pretty good reafon to believe, that probably all the planets emit light in fome degree; for the illumination which remains on the moon in a total eclipfe cannot be entirely afcribed to the light which may reach it by the refraction of the earth's atmofphere. For inftance, in the cclipfe of the moon OCtober 22. 1790 , the rays of the fun refracted by the atmofphere of the earth towards the moon, admitting the mean horizontal refraction to be \(30^{\prime} 50^{\prime \prime} .8\), would meet in a focus 189,000 miles beyond the moon; fo that confequently there could be no illumination from rays refracted by our atmofphere. It is, however, not improbable, that about the polar regions of the earth there may be refraction enough to bring fome of the folar rays to a fhorter focus. The diftance of the moon at the time of the eclipfe would require a refraction of \(54^{\prime} 6^{\prime \prime}\), equal to its horizontal parallax at that time, to bring them to a focus fo as to throw light on the moon.

The unenlightened part of the planet Venus has alfo been feen by different perfons; and not having a fatellite, thofe regions that are turned from the fun cannot poffibly fhine by a borrowed light; fo that this faint illumination mult denote fome phofphoric quality of the atmofphere of Venus.

In the inftance of the large fpot on the fun already mentioned, Dr Herfchel concludes, from appearances, that he viewed the real body of the fun itfelf, of which we rarely fee more than its Thining atmofphere. In the year \(I_{7} 83\) he obferved a fine large fpot, and follow. ed it up to the edge of the fun's limb. Here he took notice that the fpot was plainly depreffed below the furface of the fun, and that it had very broad thelving fides. He alfo fufpected fome part, at leaft, of the Thelving fides to be elevated above the furface of the fun ; and obferved that, contrary to what ufually happens, the inargin of that fide of the fpot which was fartheft from the limb was the broadeit.

The luminous thelving fide of a fpot may be explained by a gentle and gradual removal of the fhining fluid, which permits us to fee the globe of the fun. As to the uncommon appearance of the broadelt margin being on that fide of the fpot which was fartheft from the limb when the fpot came near the edge of it, we may furmife that the fun has inequalities on its furface, which

\section*{\(S \quad \mathrm{~N}\)}

Sun. may poffibly be the caufe of it. For when mountainous countries are expofed, if it fhould chance that the higheft parts of the landfcape are fituated fo as to be near that fice of the margin or penumbra of the fpot which is towards the limb, they may partly intercept our view of it when the foot is feen very obliquely. This would require elevations at leaft five or fix hundred miles high ; but confidering the great attraction eserted by the fun upon bodies at its furface, and the how revolution it has upon its axis, we may readily admit inequalities to that amount. From the centrifufral force at the fun's equator, and the weight of bodies at it firface, he computes, that the power of throwing down a mountain by the exertion of the former, balaned by the fuperior force of keeping it in its place of the latter, is near \(6 \frac{1}{2}\) times lefs on the fun than on our equatorial regions; and as an elevation fimilar to one of three miles on the earth would not be lefs than 334 miles on the fun, there can be no doubt but that a mountain much higher would fand very firmly. The little denfity of the folar body feems alfo to be in favour of the height of its mountains; for, cateris paribus, denfe bodies will fooner come to their level than rare ones. The difference in the vanifhing of the fhetving fide, inftead of explaining it by mountains, may allo, and perhaps more fatisfactorily, be accounted for from the real difference of the extent, the arrangement, the height, and the intenfity of the flining fluid, added to the orcafional changes thit may happen in thefe partienlars during the time in which the fpot approaches to the edge of the cifk. However, by admitting large mountains on the face of the fun, we fhall account for the different opinions of two eminent aftronomers; one of whom believed the fpots depreffed below the furface of the fun, white the other believed them elevated above it. For it is not impoffible that fome of the folar mountains may be high enough occafionally to project above the ßising elaftic fluid, when, by fome agitation or other caufe, it is not of the ufual height; and this opinion is much Arengtliened by the return of fome remarkable fots which ferved Caffini to afcertain the period of the fun's totation. A very high country, or chain of mountains, may oftener become vifible, by the removal of the ob. fructing fluid, than the lower regions, on account of its not being fo deeply covered with it.

In 1791 the Doctor examined a large foot on the fun, and found it evidently depreffed below the level of the furface. In 1792 he examined the fun with feveral powers from 90 to 500 , when it appeared evidently, that the black fpots are the opaque ground, or body of the fin; and that the huminous part is an atmofphere, which, being interrupted or broken, gives us a tranfient glimpfe of the fun itfelf. Iie perceived likewife, that the fhining furface of the fun is unequal, many parts of it being elevated and others depreffed; and that the clevations, to which Hevelins gave the name of facule, fo far from refembling torches, were rather like the fhrivelled elevations upon a dried apple, extended in length, and moft of them joined together, making waves or waving lines. The faculæ being elevations, very fatisfactorily exptains the reafon why they difappear towards the middle of the fun, and reappear on the other margin ; for about the place where we lofe them, they begin to be edgewife to our view; and if between the faculx fhould lie dark fpots, they will moft frequently
break out in the middle of the fun, becaufe they are no longer covered by the fide-views of thefe faculx.

The Doctor gives a very particular account of alt his obfervations, which feem to have been accurately made, and we need fcarcely add with excellient telefcopes. For that account, however, we mult refer to the memoir itfelf, and haften to lay before our readers the refult of his obfervations. "That the fun (fays he) has a very extenfive atmofphere, cannot be doubted; and that this atmofphere confilts of various elaftic fluids, that are more or tefe theid and tranfparent, and of which she lucid one is that which funnifhes us with light, feems alfo to be fully eftablifhed by :ll the phenomena of its fpots, of the faculx, and of the lucid furface itfelf. There is no kind of variety in thefe appearances but what may be accounted for with the greatefl facility, from the continual agitation which, we may eafily conceive, muft take place in the regions of fuch exte.five elaftic fluids.
" It will be neceffary, however, to be a little more particular as to the manner in which I fuppofe the lucid fluid of the fun to be generated in its atmofphere. An analogy that may be drawn from the generation of clouds in our owh atmofphere, feens to be a very proper one, and full of inftruction. Our clouds are probably decompofitions of fome of the elaftic fluids of the atmolphere itfelf, when fuch natural caufes, as in this grand chemical laboratory are generally at work, act upon them : we may therefore admit, that in the very extenfive atmofphere of the fun, from caules of the fame nature, fimilar phenomena will take place; but with this difference, that the continual and very extenfive decompofitions of the elaftic fluids of the fun are of a phofphoric nature, and attended with lucid appearances, by giving out light.
"If it flould be objected, that fuch violent and unremitting decompofitions would exhault the fun, we may recur again to our analogy, which will furnifh us with the following reflections. The extent of our own atmofphere, we fee, is ftill preferved, notwithftanding the copious decompofitions of its fluids in clouds and falling rain ; in flafhes of lightning, in meteors, and other luminous phenomena; becaufe there are frefh fupplies of elaftic vapours continually afcending to make gond the wafte occafioned by thofe decompotitions. But it may be urged, that the cale with the decompofition of the elaftic fluids in the folar atmofphere would be very different, fince light is emitted, and does not return to the fun, as clouds do to the earth when they defeend in fhowers of rain. To which I anfwer, that, in the decompofition of phofphoric fluids, every other ingredient but light may akio return to the body of the fun. And that the emiffion of light mult walte the fun, is not a difficulty that can be oppofed to our hypothefis: for as it is an evident fact that the fun does emit light, the fame objection, if it could be one, would equally militate againft every other affignable way to account for the phenomenon.
"There are, moreover, confiderations that may leffen the preffure of this alleged difficulty. We know the exceeding fubtilty of light to be fuch, that in ages of time its emanation from the fun cannot very fenfibly leffen the fize of this great body. To this may be added, that very poffibly there may always be ways of reftoration to compenfate for what is. loft by the emif-
firn of light, though the manner in which this can be brought about Should not appear to us. Many of the operations of Nature are carried on in her great laboratory which we cannot comprehend, but now and then we fee forme of the tools with which file is at work. We need not wonder that their conflruction Should be fo fingular as to induce us to confefs our i i norance of the method of employing them; but we may reft affured that they are not a mere luffs nature." Here he alludes to the great number of fall telescopic comets; which he fuppofes, as others had done before him, may be employed to reflore to the fun what had been lott by the emiffion of light. "My hypothefis, however, (continues he) does not lay me under any obligation to explain how the fun can fuftain the watt of light, nor to thew that it will fuftain it for ever; and I mould alfo remark that, as in the analogy of generating clouds, I merely allude to their production as owing to a decomposition of forme of the elastic fluids of our atmfphere, that analogy, which firmly tets upon the fast, will not be left to my purpose, to whatever cause the fe clouds may owe their origin. It is the fame with the lucid clouds, if I may fo call the in, of the fun. They plainly exit t, because we fee them; the manner of their being generated may remain an hypothelis-and mine, till a better can be proofed, may ftand good; but whether it does or not, the confequences I am going to draw from what has been fail will not be affected by it."

Before he proceeds to draw thee confequences, he informs us that, according to the above theory, a dank foot in the fun is a place in its atmofphere, which happens to be free from luminous decompositions; that faculm are, on the contrary, more copious mixtures of fuck fluids as deconpofe each other; and that the regions, in which the luminous folar clouds are formed, adding thereto the elevation of the facula, cannot be leis than 1843 , roo much more than 2765 miles in depth. It is true, continues he, that in our atmofphere the extent of the clouds is limited to a very narrow compass; but we ought rather to compare the filar ones to the luminous decompofitions which take place in our aurora borcalis, or luminous arches, which extend much farther than the cloudy regions. The denfity of the luminous folar clouds, though very great, may not be exceedingly more fo than that of our aurora borealis. For if we confider what would be the brilliancy of a face two or three thousand miles deep, filled with fuch corrufcations as we fee now and then in our atmofphere, their apparent intenfity, when viewed at the diftance of the fun, might not be much inferior to that of the lu. cid filar fid.

From the luminous atmosphere of the fun, he proseeds to its opaque body; which, by calculation from the power it exerts upon the planets, we know to be of great folidity ; and from the phenomena of the dark foots, many of which, probably on account of their high fituations, have been repeatedly feen, and otherwife denote inequalities in their level, we furmife that its furface is diverfified with mountains and valleys.
What has been fid, enables us to come to forme very important conclufions, by remarking, that this way of confidering the fun and its atmofphere removes the great diffimilarity we have hitherto been ufed to find between
its condition and that of the ret of the great bodies of the foliar fyltem.

The fun, viewed in this light, appears to be nothing elfe than a very eminent, large, and lucid planet, vidently the furl, or, in ftristnefs of freaking, the only primary one of our fyltem, all others being truly fecon. diary to it. Its fimilanity to the other globes of the 10. lar iyftem with regear to its felicity, its atmofphere, and its diverfitied furface, the rotation upon its axis, and the fall of heavy todies, leads us on to fuppofe that it is mot provably alfo inhabited, like the reft of the planets, by beings whole o tyne are adapted to the peculiar circurf fences of that vat globe.

It may, however, not be anife to remove a certain. difficulty, which aries from the effect of the fun's rays upon our globe. The heat which is here, at the difrance of of millions of miles, produced by thee rays, is fo conficeraile, that it ray he objected, that the furface of the globe of the fun itfurf man be footled u? beyond all conception.

Thus :may be very fubitantially answered ty many proofs drawn from natural philojephy, which flew that heat is produced by the fun's rays only when they act upon a calorific medium; they are the cause of the pros diction of heat, by uniting with the matter of fire which is contained in the fut? andes that are heated; as the collifion of flat and feel will inflame a magazine of: gennoweler, by putting all the latent fire it contains into action. But an intlance or two of the manner in which the Polar rays produce their effect, will bring this home to our molt common experience.

On the tops of mountains of a fufficient height, at an altitude where clouds can very fildom reach to helter them from the dire :by's of the fun, we away find regions of ice and frow. Now if the folar rays themfelves conveyed all the l. cat we find on this gillie, it ought to be hotted where their course is leaf inter1upted. Again, our aeronauts all confirm the coldness of the upper regions of the atmofphere; and fine, therefore, even oil our earth, the heat of any fituation depends upon the aptness of the medium to yield to the impreffion of the solar rays, we have unis to admit, the on the fun itself, the elalic fluids composing its atoneSphere, and the matter on its fur: ace, are of fuck a ma. tire as not to be capable of any exceflive affection from its own rays: and indeed this fears to be proved by the copious emiffion of them ; for if the clattic fluids of the atmosphere, or the matter contained on the lir. face of the fun, were of foch a nature as to admit of an early chemical combination with its rays, their emifforn would le much impeded.
Our author then proceeds to fupport his theory by analogical reafonings; bat as there will occur to fuchi of our readers as are converfant with the feceulations of aftronomers, we pals on to his reflections upon the confequences of this theory. "That the flats are fums can hardly admit of a doubt. Their immenfe distance would perfectly exclude them from our view, if the light they fend us were not of the folar kind. Befides, the analogy may be traced much farther. The fun turns on its axis; fo does the far Algol; fo do the fare called B Lyre, \& Cephei, , Antinoi, © Ceti, and many more; mot probably all. From what other cause can we fo probably account for their periodical changes? Again,
\(\qquad\)

 1
\(\square\) h 5 d. - our fun has fpots on ite furface ; fo has the far \(\Lambda\) Igol, and fo have the flars already named, and probably every far in the heaveas. On our fun thefe foots are changeable; fo they are on the far Ceti, as evidently appeass from the irregularity of its changeable luftre, which is olten broken in upon by accidental clanges white the general period continues unaltered. The fame little deviations have been obfersed in other periodical flars, and ought to be afcribed to the fame caufe. But if ftars are funs, and funs are intabitable, we fee at once what an exterlive field for animation opens itfelf to our view.
"It is true, that analogy may incuce us to conclude, that fince ftars appear to be funs, and funs, according to the common opinion, are bodies that ferve to enlighten, warm, and fuftain a fyftem of planets, we may have an idea of numberlefs globes that ferve for the habitation of living creatures. But if thefe funs themfelves are primary planets, we may fee fome thoufands of them with our own eyes, and millions by the help of teicfopes, when at the fame time the fame analogical reafoning fill remains in full force with regard to the plancts which thefe funs may fupport."
The Doctor then obicives, that from other confiderations, the idea of funs or ftars being merely the fupporters of fyftems of planets, is not abfolutely to be ad. nitted as a general one. "Among the great number of very compreffed clufters of ftars I have given (fays he) in \(m y\) catalogues, there are fome which open a dif. ferent view of the heavens to us. The ftars in them are fo very clofe togrether, that, notwithfanding the great difance at which we may fuppofe the clufter itfelf to be, it will hardly be poffible to affign any fufficient múiual diftance to the fars compofing the clufter, to leave room for crowding in thofe planets, for whofe fupport thefe ftars have been, or might be, fuppofed to exilt. It fhould feem, therefore, highly probable, that they exilt for themfelves; and are, in fact, only very capital, lucid, primary planets, connected together in one great fyltem of mutual fupport.
"' The fame remark may be made with regard to the number of very clofe double ftars, whofe apparent dia. meters being alike, and not very fmall, do not indicate any very great mutual diftance: from which, however, muft be deducted all thofe where the different diftances may be compenfated by the real difference in their refpective magnitudes.
"To what has been faid may be added, that, in fome parts of the milky way, where yet the ftars are not vezy frall, they are fo crowled, that in the year \(179^{2}\), Aug. 22. J found by the gauges that, in 41 minutes of time, no lefs than 258,000 of them had paffed through the field of view of my telefcope.
- "It feems, therefore, upon the whole, not improbable, that in many cafes flars are united in fuch clofe fyftems as not to leave mitch room for the orbits of planets or comets; and that confeguently, upon this account alfo, many fars, unlefs we would make them mere ufclefs brilliant points, may themfelves be lucid planets, perhaps unatiended by fatcllites."

What a magnificent idea does this theory give of the :niverfe, and of the goodiefs, as well as power, of its Author? And how cold muft be that heart, andiclouded that undenfanding, who, after the conteinplation of it, can for one moment lifen to the atheiftical dowines
of thofe men who prefime to account for all the phenomena of nature by chemical affinities an 1 mechanieal attraction? The man who, even in his heart, can fay, that fuch an immenfe fyftem, differing fo widely in the ftructure of the different parts of it, but everywhere crowced with life, is the effect of unintelligent agency, is indeed, to ufe the emplatic language of an ancient aftronomer-a fool.

SUNDA, STRAITS OF, are formed by the approach of the foutl-eaft extremity of the ifland of SUmatra to the north.weft extremity of the illand of Java (See thefe iffands, Encycl.). The ftraits are interfperfed with a number of fmall ifles; the whole difplaying a fcenery fcarcely to be exceeded in the foftnefs, richnefs, and gaiety of its appearance. The two great iflands, which are low, and in fome places marfhy near the fhore, rife afterwards, in a gradual flope, towards the interior of the country, admitting in their afcent every variety of fituation, and all the different tints of verdure. Of the fmaller iflands, a few have ftefp and naked dides, fuch as one in the middle of the ftrait, which the Englifh navigators have ciftinguithed, on that account, by the name of 'Thwart-the way, and two very finall round ones, called, from their figures, the Cap and Burton (fee thefe iflands, Suppl.) ; but moft of the others are entirely level, founded upon beds of coral, and covered with trees. Some of thefe iflands are furrounded with a white fandy beach, vilited frequently by turtle; but moft of them are adorned with thick fhrubbery to the water's edge, the roots being wafhed by the fea, or the branches dipping into it ; and on the outfide are floals, in which a multitude of little aquatic animals are bufied in framing calcarcous habitations for their refidence and protection. Thofe fabrics gradually emerge above the furface of the water, and at length, by the adventitious adhefion of vegetable matter, giving birth to plants and trees, become new inands, or add to the fize of thofe already produced by the fame means. It is impoffible not to be ttruck with the diverfified aperations of Nature for obtaining the fane end, whether employed in originally fixing the granite foundation of the Brazils, or in throwing up, by fome fudden and fuble. quent convulion, the inand of Amfterdam, or in continuing to this hour, through the means of animated beings, the formation of new lands in the Straits of Sunda. - Sir George Staunion's Account of the Britilh Embafly to China.

SUNNUD, a grant, patent, or charter, in Bengal.
SUPERPARTICUI,AR Proportion, or RaT10, is that in which the greater term exceeds the lefs by unit or 1 . As the 1 atio of 1 to 2 , or 2 to 3 , or 3 to 4, Exc.

SUPERPARTIENT Proportion, or Ratio, is when the greater term contains the lefs term once, and leaves fome number greater than 1 remaining. As the ratio
of 3 to 5 , which is equal to that of \(x\) to \(1 \frac{3}{3}\);
of 7 to 10 , which is equal to that of 1 to \(1 \frac{3}{7} ; \& c\). SLPPPLEMENT, of an Arch or Angle, in geometry or trigonometry, is what it wants of a femicircle, or of \(180^{\prime \prime}\); as the complement is what it wants of a quadrant, or of \(90^{\circ}\). So, the fupplement of \(50^{\circ}\) is \(130^{\circ}\); as the complement of it is \(40^{\circ}\).

SUTTON (Thomas, Eiq;), founder of the charterhouke, was born at Knath in Lincolnhire, in 1532 , of
an ancient and genteel family. He was educated at Eiton fchool, and probably at Cambridge, and ftudied the haw in Lincoln's Inn; but this profeffion not fuiting his difpofition, he travelled into foreign countries, anil made folong a flay in Holland, France, Spain, and Italy, as to açuire the languagres of thofe various nations. During his ablence, his father died, and loft him a confiderable fortune. On his return home, being a very accomplifined gentleman, he becane fecretary to the earl of Warwich and kis brother the earl of Leicetter. By the former of thefe noblemen, in \(15 \% \mathrm{~g}\), he was appointed mafter of the ordnance at Berwick; and diftinguifhing himfelf greatly in that fituation, on the rebellion which at that time Lroke ont in the north, he obtained a patent for the office of mafter general of the ordnance for that dititrict for life. He is named as one of the chiefs of thole 1500 mell who marched into Scotland, by the order of Queen Elizabeth, to the alfiltance of the regent, the cail of Morton, in 1573; and he commanded one of the five batterics which obliged the ftrong cafte of Ediuburgh to furrender to the Englift. He purctiafed of the bifion of Durham the manors of Gatefhead and Wickhain ; which, producing coal-mines, became to him a fource of extraordinary wcalth. In 1580, he was ieputed to be worth 1.. 50,000

Soon ater this, he married a rich widow, who brought him a confiderable eitate; and taking up the bufincts of a merchant, richics flowed in to him with every tide. He is faid to have had no lefs than thirty agents abroad. He was likewile one of the chief victualiers of the navy; and feems to have been mafter of the barque called Sutton, in the lilt of volunteers attending the Englifh ficet againtt the Spanifh armada. It is probable, allo, that he was a principal inftruinent in the defeat of it, by draining the bank of Genoa of that money with which Philip intended to equip his flect, and thereby hindering the invafion for a whole year. Fie is likewife faid to have been a commiffioner for prizes under Lord Charles Howard, High Admiral of Eingloud; and going to fea with letters of marque, he took a Spanifh fhip worth L. 20,000 . His whole fortune, at his death, appears to have been in land L. 5,000 per annum; in money, upiwards of L. 60,000 ; the greatelt eflate in the pofieflion of any private gentheman till much later times. He lived with great munificence and loofnitality; but lofing his lady in 1602 , he retired fro'n the word, leffened his family, and lived in a private frugal manner; and, having no iffue, refol. ved to dininguifh his nane by fone important charity. Accordingly, he purchafed of the Earl of Suffolk 1 1o. ward Houfe, or the late diffolsed charter-houfe, near Smithfield, fur the fum of L. 13,000, where he founded the prefert hofpital, in 1611 , for the retief of poor men and children. Before he had fixed upon this defign, the court endeavoured to divert him from his purpofe, and to engage him to make Charles I. then Duke of York, lis heir, by conferring on him a peerage; but being trce from ambition, and now near his grave, the luttre of the coronet could not tempt him to change
his plan. He dies the rith of December, IGIf, at Sumnow. Hackney, aged 79. His body was conveyed, with the mof fotemn proceflon, to Chrit.church in Londori, and there depofited, till 1614 , when it was removed to the charter-houfe, and interred in a vault on the north fide of the chapel, under a magnificent tomb.
- SUNOROW (a) Rimnisskr (Count Alexander), was a man fo eminent in his profeffion, that, if war be an art founded on fcience, it would be improper not to give fome account of his life in a Work of this nature. Various accounts of hiin, indeed, are already in the hands of the public: but they differ fo much from one another in the picures which they prefent of the man, that it is not eary, if it be always poffible, to ciflinguifh truth from falfehood. With refpect to the talents of the General, there is not room for the fame difference of reprcfentation ; becaufe a train of military fucceffes, almoft uarivalled, has rendered thefe confpicuous to all Europe. In the fhort detail that our limits permit us to give of the life of this fingular man, we thall avail ourfelves of all the information, fublic and private, which we have becn able to obtain, and belicve to be authentic ; and we hope to make our readers acquainted with fome particulars refpeeting his perfon and domeftic habits which are not yet generally known.

The family of Suworow is faid to have been from Sweden, and of a noble defcent. The firtt of this name fettled in Ruffia about the latter end of the laft century; and having engaged in the wars againt the Tartars and the l'oles, were rewarded by the Czars of that period with lands and peafants. 13afil, the father of our hero, is faid to have been the godion of Peter the Great ; to have been held in high eitimation for his political knowledge and extenfive erudition; and to lrave enjoyed, at his death, the two.fold rank of Geleeral and senator *.
As this account is given by a man who profeffes to have formed an intimate acquaintance with Suworow, hin,felf, it ought to be correet ; and ret we cannot helpp,imus entertainisg lome doubts of its truth, or at lealt of its ounter Aicxaccuracy. It is well known, that extenfixe erudition ander su- by was in no efteem in Rufiia at the period when Bafil Frder:ch Suworow is hcre faid to have been fo learned; and it Anting. is likevile known, that if, by erudition, be meant a knowledge of ancient literature, it was even defpifed, at a much later feriod, by all who were at once noble, and poffeffed of lands and peafants (Sce Russia, En(gcl.). The truth is, as we have learned from unquef. tionable authority, that the family of Suworew was arıciert and refpectable; but being far from afluent, and their little property lying at the very extremity of the empire, we have itafon io believe, that the fubject of thic memoir was the firft of the family that ever was at court. Bafil, however, if his anceftors were from Sweden, may have been free from the Ruffian prejudices againlt Greek and Latin; and this is the more probable, that he certainly gave a learned education to his fon.

That fon, Alexander Baflowitch Suworow, was, according to the author already quoted, born in the year

1730;
(a) This name is fpelled fometimes as we have foulled it, fometimes Su:war ow, and fometimes Suvorofr. This laft is according to the pronunciation ; but we lave adopted the orthagraphy of the Gencral hinfeli, in biz letter to Charette, the hero of Vendee.
\(\underbrace{\text { survorown } 1730 \text { : we have fome reafon to believe, that he was not }}\) bo:n before 1732. His father had deftined hiin, we are told, for the robe ; but his early inclinations impelled him to the profeffion of a ioldier; and in 174.2 he was enrolled as a fuflier in the guards of Seimonow. He was afterwards a corporal, then a ferjeant, and, in 1754, he quitted the guards with the brevet of Lieutenant in the army. He made his firft campzign in the feven years war againtt the Pruffians, in the year 1759, entering upon a\&ual fervice under Prince Wolgonfki. As fenior officer on daty, he attended on the commander in chief Count Fermor, who, admiring the confummate refolution which he appeared to poffers, favoured him with his particular confidence. In 17 71 , he was ardered on fervice in the light troous under Ge neral Ferg; and with the rank of a field officer (we think that of I,ieutenant-colonel) he performed prodigies of valour, and exhihited much of that character which was afterwards fo fully developed and difplayed. Even then he feems to have formed the refolution of dying on the field of hattle rather than fuffer himfelf to be taken prifoner; for when, with a handful of troops, he was once furrounded by a large detachment of Pruffiane, he determined to cut his way through them, or petioh in the attempt. In this daring enterprife he was not only fucceffful, but contrived to carry off with him twenty prifoners, thougb he was obligat to abandon two field-pieces, which he had a little before taken from a fraller detachment.

At the peace of 1762, he received from the Em. prefs a colonel's commiffion, written with her own hand: and being advanced, in 1768 , to the rank of brigadier, he was, in the month of November, ordered to rephir, with all poffible fpeed, to the frontiers of l'oland. At that unfayourable feafon, he crofled rivers and moraffes, whofe paffage was rendered more difficult by fight frofts: and, in the courfe of a month, traverfed 500 Englifh miles, with the lofs of only a few men in the environs of Smolenfiko.

The object of the Emprefs, at this time, was to fubdue the Polifh confederates, and to poffefs herfelf of certain provinces of that ill.fated kingdom. How completely the and her two allies, the Emperor of Germany and the King of IPruflia, fucceeded in their enterprife, has been rclated elfewhere (fee Poland, Encycl.). It is fufficient, in this memoir, to obferve, that the fucceffes of the Ruffians were chiefly owing to the military fkill and intrepidity of Suworow, who was their orly active General, and was indeed, for four years, almott conflantly employed in offenfive operations againft the confederates. Not to mention the numerous actions and fkirmifhes of an inferior kind, in which his conduet and courage were always dipplayed, the victory at Staloviz, over a fuperior force, ably com. manded, and the capture of Cracow, were alone fuff. cient to intitle him to the character which he ever afterwards fo well fupported. The former of thefe drew the higheft encomiums from the great Frederick of Pruffia; and the latter decided the fate of Poland. It is proper to add, that Suworow, on the fe occafions, did not tarnifh his laurels by unneceffary cructty. When a French officer, who furrendered at Cracow, offered him his fword, according to the cuftom of war, he refufed it, faying, that he would not take the fword of a brave man, whofe mafter was not at war with-his fo.
vereign ; and, even to the leaders of the confederates, Surarom, he granted better terms of capitulation than they had the prefumption to afk.

In the year 1770, he had been promoted to the rank of Major general; and for his exploits in the Polifh war, the Emprefs conferred upon him, at different times, the orders of St Ann, St Greorge, and Alexander Newfry.

After performing fome important fervices on the frontiers of Sweden, Suworow received orders, in the begrinning of \(\mathrm{I}_{773}\), to join the army in Moldavia, under the comnand of Field-marflal Romanzow; and there he began that giorious carcer, which foon made his name a terror to the 'ruiks. His firft exploit was the taking of Turtukey; of which he wrote the following lacoulic account to the commander in chicf:
" Honour and gtory to God! Gloyy to you, Romanzow ! We are in poffeffion of 'turtukey, and I am in it 1
"Suworow."
Duriny the remainder of the war, which was of fhort continuance, Suworow was conftantly enzaged, and conftantly fuccefaful. In the beginning of the year 1774, he was promoted to the rank of Lietenant-general; and on the rith of June of the fame year, he defeated the Turks in a great battle, in which they lof 3000 men killed, fome hundreces of prifoncrs, 40 pieces of artillery, and 80 ftandards, with their fuperb camp. Soon after this vietory, peace was concluded between the two courts; and Licutenant.general Suworow was ordered to proceed with all poffible hafte to Mofcow, to affift in appeafing the interior troubles of that part of the empire.

Thefe troubles were occafioned by a Coffac rebel, of the name of Pusatcherw, or Pusatcheif, who, at the head of a party of his difcontented countrymen, had long eluded the virgilance of Count Panin, the commander in chief in Mufcovy, and frequently cut off detachments of the army which were fent out in queft of him. The chace of Pugatcheff, for fuch it may be called, was now wholly entrufted to the well-known activity of Suworow; and that General, after purfuing the rebel with inconceivathe rapidity, through woods and deferts, came up with him at a place called Urlafk, and carried hin prifoner to Count Panin, who fent him to Mofcow, where he fuffered the punifhment due to his crimes. T'his infurgent, it is faid, had at one time collected fuch a force, and was followed with fuch enthufiafin, that, if his underltanding had beein equal to his conrage, and his moderation had kept pace with his power, he night have poffeffed himfelf of Mofcow, and made the Imperial Catharine tremble on her throne.

For feveral years after the taking of Pugatcheff, Suworow was employed in the Crimea, on the Cuban, and againt the Nogay T'artars, in a kind of fervice which, though it was of the utmon importance to the Eimprefs, and required all the addrefs of the Lieutenantgeneral, furnithed no opporturities for that wonderful difplay of promptitude and refource which had characterifed his more active campaigns. One incident, however, muft be mentioned, even in this fhort memoir, becaufe it flews the matural difpofition of the man. During the winter that Snworow paffed among the Tartars, he was frequently vifited by the chiefs of that nation; and at one of thefe vifits, Mechned Bay, the chief of the Gediffens, often joked with Mufla Bay, another chicf, on his inclination to marry. Mufa Bay
worow. was fo extremely old, that Suworow thought the converfation ridiculous; and one day afked him, What ground Mechmed could have for fuch idle talk? Muf. fa replied, that Mechmed Bey was right ; that he wihed to marry; and that he hoped the General would make hiin a prefent of a beautiful Tartar girl of fixteen! Suworow immediately bought a young Tartar תave of a Coffac for 100 rubles, and fent her to Muffa Bey; who married her, lived with her a very few years, and died at the agge of ore hundred and eight! regretted, we are told, by the Lieutenant-general, who regarded him with great efteem and attachment.

In the end of the year 1786, Suworow was promoted to the rank of General in Chief; and, at the breaking out of the war witl the Turks in 1797, he fhewed how well he was intitled to that rank, by his mafterly defence of Kinburn ; a place of no flrength, but of great importance, as it is fituated at the mouth of the Dneiper, oppofite to Oczakow. For the zeal and abili. tits which he difplayed on this occafion, the Emprefs decorated him with the order of St Andrew ; gave him fix croffes of the order of St George, to be diftributed, according to his jndgment, among fuch of his ufficers as had moft diftinguihed themfelves; and, in a very flattering letter, regretted the wounds which he had received in defending the place.

At the fiege of Oczakow, Snworow, who commanded the left wing of the army under Prince Potemkin, received a dangerous wound in the nape of the neck, which was followed by fo fmart a fever, that, for fome time, his life was defpaired of; but he perfevered in his long accultomed practice of preferring regimen to medicine, and his health was gradually re-eftablifhed. In the year 1789, he was appointed to the command of the army which was to co-operate with the Prince of Saxe Cobourg in Walachia; and, by marches of inconceivable rapidity, he twice, in the fpace of two months, preferved the army of that Prince from inevitable deffruction. Putting himfelf at the head of 8000 Ruffians, and literally running to the aid of his ally, he came up with the Turks in time to change the fate of the day at the battle of Forhani, which was fought on the 21 ft of July; and again at Rymnik, which, with 7000 men, he had reached with equal celerity, he gained, on the 22 d of September, in conjunction with the Prince, one of the greatef vietories that have ever been atchieved. According to the leaft exaggerated account, the Turkifh army, commanded by the Grand Vifier in perfon, amounted to 90,000 or 100,000 men ; of which 70,050 were chofen troops: whillt the army of the allies exceeded not 25,000 . At the commencement of the attack, Suworow, who had reconnoitered the country, and formed the plan of the battle, called out to his Ruffians, "My friends, look not at the eyes of your enemies, but at their breafts; it is there that you mutt thruft your bayonets." No quarter was given to the Turks; and on this account the Ruffian General has been charged with favage ferocity : but the charge, if not groundlefs, muft be fhared equally between him and the Prince of Cobourg. The commanders of the allied army, aware of the immenfe fuperiority of their enemies, had refolved, before the engagement, not to encumber themfelves with prifoners, whom they could not fecure without more than hazarding the fate of the day: And where is the man, who Surpl. Vol. II. Part II.
admits the lawfulnefs of war, that will condemn fuch Snworown conduct in fuch critical circumftances?

The taking of Bender and Belgrade were the immediate confequences of the vietory of Rymnik ; and fo fenfible was the Emperor Jofeph how much the rapid movements and military fkill of Suworow had coutributed to that vietory, that he immediately created him a Count of the Roman empire, and accompanied the diploma with a very flattering letter. Similar honours were conferred upon him by his own fovereign, who fent him the diplo:na of Count of the empire of Rufia, with the title of Rymnikiki, and the order of St Andrew of the firft clafs.

In the autumn of 1790 , Prince Potemkin w:ote to Count Suworow, requetting a particular conference. The General, who conjectured the object of it, fent him the following anfiwer: "The flotilla of row-bnats will get poffeffion of the mouthe of the Danube; Tulcia and lfaccia will fall into our power; our troope, fupported by the veffels, will take Ifnailow and Brahilow, and make Tchiltow tremble." He was perfeelly right in his conjecture: it was to concert with him meafures for the taking of Ifmailow that the Prince had requefled the conference. He did not, however, receive orders to undertake that defperate enterprife till the beginning of November, when he rapidly approached towards that fortrefs. His army, by fea and land, confitted of 23,000 men ; of whom one-half were Coffacs, and of thefe many were fick. The trnops of the garrifon, which were under the orders of feven Sultans, amounted to 43,000 men, of whom nearly one half were Janiffaries ; the fortrefs was by much the Atrongelt of any on the Turkifh frontier: it was under the command of an old warrior, who lad twice refufed the dignity of Grand Vifier, and had difplayed againlt the Auftrians confiderable abilities, as well as the moft in. trepid courage ; and the Grand Seignior liad publifhed a firman, forbidding the garrifon, on pain of death without trial, to furrender on any terins whatever.

Potemkin, knowing that Suworow had with him no battering cannon, and dreading the confequences of a repulfe, wrote to the General, that if he was not certain of fuccefe, he woukd do well not to rifk an affault. The laconic reply was ; "My plan is fixed. The Ruffian army has already been twice at the gates of Ifmailow ; and it would be fhameful to retreat from them the third time without entering the place." To fpare the effufion of blood, however, if poffible, he fent a note to the Serafkier who commanded in Ifmailow, to affure him, upon Count Suworow's word of honour, that if he did not hang out a white flag that very day, the place would be taken by affault, and all the garrifon put to the fword. 'The Serafkier returned no anfwer to the note; but another commander was pleafed to fay, that "The Danube would ceafe to flow, or the heavens bow down to the earth, before Ifmailow would furrender to the Ruffians !"

Having concerted with the Admiral proper meafures for the aflault, Suworow paffed the night, with fome officers of his fnite, in impatient vigilance for the apppointed hour when the fignals were to be given. Thefe were the firing of a mufket at three, four, and five in the morning, when the army rufhed upon the place: and notwithftanding the defperate oppofition of the Turke, the depth of the moat, and the height of the

\section*{S U W [ 634 ].}

Surwonow. ramparts, they were completely mafters of Ifmailow by \(\underbrace{}_{\text {four o'clock P. M. In this one dreadful day the Ot- }}\) tomans loft 33,000 men killed or dangernufly wounded; re,000 who were taken prifoners; helides 6000 women and children, and 200 , Chrittians of Moldavia, who fell in the general maffacre. 'The place was given up to phander for three diys, according to agreement with the army be ore the affault; but we have authority to fay, that no perfon was murdered in cold blood, who did not prefer his property to his life.

The Ruffians fonnd in Ifmailow 232 pieces of cannon, many large and fmall maçazines of gunpowder, an immenfe quantity of bombs and balls, 34 , ftandards almoft all fained with blood, provifions for the Turkith army for fix months, and about 10,050 horfes, of which many were extremely beantiful. Suworow, who was inacceffible to any views of private intereft, did not appropriate to himfelf a fingle article, not fo much as a horfe; but having, according to his cuftom, rendered folemn thanks to God for his vi\&tory, wrote to Prince Fotemkin the following Spartan letter: "The Ruffian colours wave on the ramparts of Ifmailow."

Peace being concluded with the Turks in December 1791, no political events occurred from that period to call forth the military talents of Suworow till 1794. In the beginning of that year mutinies having broken out among the "olinh troops in the fervice of Ruffia, and the Emprefs, with her two potent allies, having digefted the plan for the partition of Poland, Count Suworow received orders, in the month of May, to proceed, by forced marches, into Red Ruflia, with a corps of 15,000 men, and to difarm all the Polifh troops in that province. This fervice he performed without the effulion of blood, difarming in lefs than a fortnight 8000 men, difperfed over a country of 150 miles in circuit. Soon afterwards he was ordered to march into the interior of Poland; the King of Pruffia having been obliged to raife the fiege of Warfaw, and the Emprefs perceiving that more vigorous meafures than had hitherto been purfued, were neceffary to accomplifh her defigns.

To give a detailed account of his route to Warfaw, would be to write the hifory of the Polith war, and not the memoirs of Count Suworow. It has been rafhly fuppofed, that he had to contend only with raw troops, commanded by inexperienced leaders, who were not cordially united anoong themfelves; but the fact is otherwife, and Suworow never difplayed greater refource in the day of danger, than in the numerous battles and fkirmifhes in which he was engaged on tris march to the capital of Poland. At laft, after furmounting every obftacle, he fat down, on the 22 d of O\&tober, before Praga, a firongly fortified fuburb of Warfaw, defended by a formidable artillery, and a garrifon of 30,000 men, rendered defperate by their fituacion. The Ruffian army exceeded not 22,000 ; and with that comparatively fmall force he refolved to form Praga, as he had ftormed Ifmail. Having erected fome batteries to deceive the garrifon into a belief that they were to be regularly befieged, he concerted with the other Generals the mode of affault; and when every thing was ready, he gave his orders in thefe words: "Storm, and take the batteries, and cut down all who refift ; but fpare the inhabitants, unarmed perfons, and all whn hall alk for quarter."

There are but few examples of a military operation Suwnow fo bollly conceived, fo fillfully performed, or fo important in its confequences, as the taking of \(P_{1 a g a . ~ T h e ~}^{\text {a }}\) affault was made at once in feven different places at five in the morning; and at nine the Ruffians were matters of the place, having penetrated by pure force a triple entrenchment. Of the Poles 13,000 lay dead on the field of battle, one third of whom were the flower of the youth of Warfaw ; above 2000 were drowned in the Viftula; and 14,680 were taken prifoners, of whom 8000 were difarmed and immediately fet at liberty, and the remainder the next day. We mention thele circumfances, becaufe they completely refute the tales of thofe Jacobin feribblers, who have fo ftrenoufly endeavoured to tarnifh the laurels of the Ruffian hero, by reprefenting him as having ordered a general inaffacre of men, women, and children. 'The artillery taken from the enemy confifted of 104 pieces of cannon and mortars, chiefly of large calibre. The Ruffians had 580 men killed, of whom eight were fuperior and ftaff-officers, and 900 wounded, of whom 23 were officers.

Soon after the ftorming of Praga, Warfaw capitula. ted, and Suworow was received into the city by the magiftrates in a body, and in their ceremonial habits. When the prefident prefented to him the keys of the city, he preffed them to lis lips, and then; holding them up towards heaven, he faid, "Almighty God, I render thee thanks, that I liave not been compelled to pur. chafe the keys of this place as dear as . ...." 'Turning his face towards Praga, his voice failed him, and his cheeks were inttantly bathed with tears. As he rode through the Itreets, the windowa were filled with fpectators, who were delighted with the return of order, and the affurance of peace; and the air refounded with the exulcing exclamations of "Long live Catha. rine! Long live Suworow !"
Thus did Count Suworow, in the courfe of a very few months, overturn the kingdom and republic of Poland. It is not our bufinefs, in this article, to decide on the juitice of the caufe in which lie was embarked. Of the Polifh revolution, which gave rife to the war that fubverted the republic, and fwept it from the num. ber of fovereign flates, the reader will find fome account under the title Poland in the Encyclopudia; but it is here proper to acknowledge, that we do not now think fo favourably, as when we wrote that article, of the views and principles of thofe who framed the conftitu. tion, which brought upon them the Ruftian and Prufo fian arms. Subfequent events feem to have proved completely, that if Poland had not been conquered by the allied powers, it would foon have been involved, under Kofkiufko and his Jacobinical adherente, in all the horrors of revolutionary France; and the urhappy king. inftead of being carried captive into Ruffia, would probably have finithed his courfe on a fcaffold. Suworow, who never concerned himfelf with the intrignes of courts, and expreffed on all occafions the moit fovereign contempt of thole Generals who affected to poffels the fecrets of ftatefmen, probably never enquired into the final object of the war, but thought it his dus ty to execute, in his own fphere, the orders of his Imperial miftrefs. So fenfible was Catharine of the propriety of this condnct, and of the zeal and abilities which he had difplayed in the Polifh campaign, that unmediately on receiving accounts of the itorining of

\section*{S U W} Praga and the fubmiffion of Warfaw, the announced to lim, in a letter written with her own hand, his wellearned advancement to the rauk of Field marmal Genetal. Nor did her munilicence flop there: She loaded him with jewels, and prefented him with an entate of \(7=00\) peafants, in the diftrict of Kubin, which had been the feene of his firit battle in the courfe of the campaign.

From the fubjugation of Poland we hear little more of Field marnal Suworow till he entered upon his glo ricus career in Italy. He is faid, indeed, to have given offcrice to the prefent Emperor foon after his acceffion to the throne, by affording protection to fome meritorious cfficers, whom his Majefty had in an arbitrary manner difmiffed from the fervice; but that offence was overlooked, and Suworow called again into action, when Paul joined the coalition againft I rance.

Of the exploits of the lield marihal in Italy, where, to ufe his own woids, he deftroyed armies and overturned ftates, we have given a full account under the title Revolution in this Supplement. In his former cam-
\(35]\)
S U W
paigns, the wifdom of his meafures, the diftribution of Suwernes his forces, the undaunted character of bis oneratiome, and the progreffive continuance of his incecties, turnifh proofs of the fupuriority of his talents hardly to tee paralleled in the aninaly of modern war ; but, animated by the noblenefo of his caule, and conficing, as he faid, is the God of battes, he feens in his lait campaiga tu have furpafied himifelt (B). It would apperar, hewever, that his own Sovercign thonght otherwie; and if he did, he was certainly as fingular in that opinion as he is faid to be in many others. Confidering the Ficldmarthal as the conqueror of Itals, he had indeed created him a Prince by the ftyle and title of Prince Su-worow-Italifhe; but how did he receive him, when he returned into the Ruffian dominions at the head of his vcteran and victorious bands?

Though the old warrior thought himfelf almon betrayed at the end of the campaign by the crooked policy of the court of Vienna, he doubtlefs hoped to be received at the court of St Peterfburgh, if not with triunphal arches, at leaft with the moft public teftinio\(+\mathrm{L}_{2}\)
nies
(в) Were any other proof than a fimple narrative of his fuccefs neceflary to evince the abilities difflayed by . .- arfhll Suworow in the laft campaign, that proof might be fonnd in the fad ieverfes of the prefent. At the opening of the campaign of 1800 , the allies poffifed infinitely greater advantages over the enemy than at the beginning of the campaign of 1709 ; and we ventured to fay, towards the end of the article Revo. lution, in this Supplement, that the affairs of the French feemed in Italy to be defperate. But how egregioufly have we been miltaken? By the moof unaccountable infatuation, the Aultrian commander in Italy would not believe that the French army of referve, which was advancing upon lim with the ufual celerity of the Firft Conful's movements, cortifted of more than fix thoufind men! Inflead therefore of marching rapidly to meet thein before they could be wholly difentangled from the paffes over the Alps, he waited patienty for them in the plains of Marengo. If we may judge of the future by the paft, we may furely fay that fuch would not have been the condict of Suworow. Even after the two hoftile armies met, and fought, on the 1 cth of July, one of the bloodieft battles of the prefent war, the fuccefs of the French was not fuch as to intitle them to the acquifitions which were the confequence of their dear-bought victory. The fate of the day was long doubtful; and it was at laft decided, not by any extranrdinary exertions of the Conful, but partly by the provident conduct of Gencral Deflaix, who, with the aid of frefh troops crected a new battery at a critical point, and at a citical period; and fill more by the fituation of General Mclas, whofe faculties, though fiequently fupported by wine and fpirits, are faid to have wholly forfaken him in the latter part of the day. When he was in this fate, one falfe movement, which weakened his centre, afforded an opportunity to Deflaix to make a vigorous and fuccefsful charge with a body of cavalry that had not yet been engaged.
But even after this defeat, what was the ftate of the two almies? The Auftrians had luft yoos men, and the French from \(\mathrm{t} 2,000\) to 14,000 : the former, enraged at having had the victory fo wrefted out of their hands, were eager to renew the contef on the following day ; and the latter had obtained ouly the barren advantage of keeping poffetion of the ficld of battle. In fuch a fituation, Suworow would certainly liave encouraged the ardour of his men; but the Auftrian commander, who complained laft year of the Field-marfhal for being too little sparing of blood, inftead of following the example which he had fet him at the battle of Trebia, concluded a capitulation unparalleled, we believe, in the annals of war; a capitulation by which he voluntarily furrendercd into the hands of the enemy nearly all the fruits of one of the mof glorions campaigns recorded in hiftory. We wifh not to throw any undue afperfion upon the character of General Melas: We believe hiin to be a brave man, and fuch he has been reprefented to us in vaious accounts which we have had dircctly from Germany; but all thefe accounts agree in reprefenting him likewife as fit, not to have the fupreme conınand of a great army, but only to execute the orders of a fuperior mind.

In Germany, the gallant Kray has been obliged to retreat before the equally gallant Moreau; tut he has wifely not hazarded the confequences of a general action. We fay wiffely; becaufe we have learned from authority which we cannot queftion, that his army is in a Aate litule better than that of mutiny. 'To his officers he is i:1 a great meafure a franger, and therefore thefe gertemen think themfetves at liberty to difobey his orders! What the confequence of all this will be, it becomes not us to conjecture. An almiftice has in the mean time * seprenttaken place both in Italy and in Germany; and it is not inpofible that the Aulic Comucil, aided ty the mobler the \({ }^{\text {th }}\) of Vienna, may induce the Kimperor to make a feparate peace. - We need hardly make an apology for the length \({ }^{1800}\). of this note, which our readers will confider as a continuation, the lateft that we fhall have an opportunity to give, of the progrefs of the Frencl revolution, which we orce fittered ourfelves weuld, by this time, have taken a very different turn ; and a different turn it would have taken it another Suworuw had commandel in Italy.
suvorow. nies of his Sovereign's approbation. It is faid, that he expected to be fent back at the head of a large army, with full powers to aet as he fhould judge proper for bringing the war to a happy termination, and reftoring peace and order to Europe; and he certainly expreffed, in letters to different correfpondents, his earneft wifh to conclude his military career with contributing to the accomplifhment of fo defirable an object. What then mult have been his difappointment, when the Ruflian Eimperor would not fee him, and pofitively forbad his appearance at court ? 'Io the meffenger who brought the order, the Field-marfhal gave a purfe of money, tuined his carriage another way, and drove to a wooden houfe, at a diffance from the court, and from his former friends, "where burt his mighty heart ;" and the conqueror of the Turks, the Poles, and the French republicans, died, almoft unattended, on the 18 th of May 1800. The fovereign, who thus difgractd him at the end of his life, gave him a magnificent funeral!

In his perfon Suworow was tall, confiderably exceedz ing fix feet, and full chefted. His countenance wasftern ; but among his friends his manners were pleafant, and his difpofitions were kind. His temper was naturally violent; but that violence he conf antly laboured to moderate, though he was never able completely. to extinguiih it. According to M. Anthing, an effervefcent fpirit of impatience predominated in his character; and it perhaps never happened (fays that author) that the execution of his orders equalled the rapidity of his wiftes. Though he difiked all public entertainments, yet when circumftances led him to any of them, he appeared to partake, and endeavoured to promote, the general pleafure. Sometimes he condefcended even to dance and play at cards, though very rarely, and merely that he might not interrupt the etiquette of public manners, to which, when not in the field, he was very attentive. In the field he may be faid to have fpent the whole of his life from the period at which he firft joined the army in the feven years war; for during the time that he was not engaged in actual warfare, and that time, taken altogether, did not exceed twelve years, he was always placed at the head of armies ftationed on the frontier of fome enemy's country. He was therefore a mere warrior, and as fuch had no fixed habitation. With refpect to his table and lodging, he contented himfelf with whatever he found, requiing nothing but what abfolute neceffity demands, and what might be tranfported with eafe from one place to ataother. His couch contifted of a heap of frefh hay fuf. ficiently elevated, and fcattered into confiderable breadth, with a white fheet fpread over it, with a cufhion for his pillow, and with a cloak for his coverlid. He has been reprefented as dirty (c) ; but the reprefentation is falle. M. Anthing affures, that he was clean in his perfon, and that, when not on actual fervice, he wafted himfelf frequently during the courfe of the day. It is among the fingular, though unimportant circumftances of his life (fays the fame author), that, for the laft swenty years, he had not made ufe of a looking-glafs, or incurnbered his perfon with either watch or money.

He was fincerely religious; took every opportunity of attending the offices of public devotion; and has
been known, on. Sundays and feftivals, to deliver lec- Suwnom, tures on piety to thofe whom duty called to attend on him. We are told by an anonymous writer, in a mifcellany not very forward to praife fuch men as Suworow, or indeed to praife piety in men of any defcription, that chancing one evening, to overhear a captain abridge the prayer which his duty required him to repeat at the guard, the Field-marfhal called out to him, "Thou unconfcionable, atomińable, impious man, thou worldilt cheat IIeaven! Thou wouldft, no donbt, cheat likewife the Emprefs and me! I fhall difnifs thee." His regard for facred things is indeed very apparent in the elegant letter which, on the it of October 179 ; , he wrote to Charette, the hero of Vendee, whom he congratulates upon taking up arins to reftore the temples of the God of his fathers: Alluding to this trait of his character, and to his deteftation of Jacolinifm under every form, a late writer in a inoft refipectable mifcel. lany has well charaterized him as the
> "Fee to religion's foe; of Ruffia's throne The prop, th' avenger, and the pride in one ; Whofe conquering arms, in bold deflance hurl'd,
> Crufhed the rude monfter of the weftern world."

We have already, when we thought not that we fhould fo foon be called upon to wite his life, obferved, that he was a fcholar, a man of fcience, and a poes. M. Anthing affures us, that from his earlieft years he was enamoured of the fciences, and improved himfelf in. them; but that as the military feience was the fole object of his regard, thofe authors of every nation who iaveltigate, illuftrate, or improve it, engroffed his lite. rary leifure. Hence Cornelius Nepos was with him a favourite claffic; and he read, with great avidity and attention, the hiftrrics of Montecuculi and Turenne. Cæfar, however, and Charles XII. (fays the fane author) were the heroes whom he moft admired, and whofe activity and courage became the favourite objects of his imitation.

With refpect to his moral character, we have every reafon to believe that he was a man of the moil incorruptible probity, immoveable in lis purpofes, and inviolable in his promifes; that the cruelties of which he has been accufed were the cruelties of Yotemkin, and that by thofe who knew him he was connfideed as a man of unqueftionable humanity. The love of his country, and the ambition to contend in arms for its glory, were the predominant paffions of his active life ; and to them, like the ancierit Romans, he facrificed every inferior fentiment, and confecrated, withont referve, all the powers of his body and mind. His military career was one long and uniform courfe of fuccefs and triumph, produced by his enterprifing courage and extraordinary prefence of mind ; by his perfonel intrepidity and promptitude of execution; by the rapid and. unparalleled movements of his arries; and by their perfect affurance of victory when fighting under his banners. Such was Alexander Befilovitch Connt Suworow. In the year 1774 he married a daughter of the General Prince Iwan Proforow \(\& k i\), by whom he had two children, now living : Natalia, married to General Count Nicolai Zubow; and Arcadius Count Suworow,
(c) By the anonymous author of the life of Catharine II,

Sin a youth of great promife, who accompanicd his father
in his unparalleled march from Italy to Switzerland.
SW.ALLOW's.'TatL, in fortification, is a fingle tenaille, which is narrower towards the place than ta. ward the country.
SWAN (See Anas, Encycl.). It is now afcertained, beyond the poffibility of doubt, that there are black fwans, of equal fize, and the fame habitudes, with the common white fwan of this ifland. Thefe fowls have been feen chiefly in New Holland; and Captain Van. couver, when there, faw feveral of them in very flately attitudes, fwimming on the water; and, when flying. difcovering the under part of their wings and breatis to be white. Black fwans were likewife feen in New Holland by Governor Philips, Captain White, and by a Dutch navigator, fo long ago as in 1697 . Governor Philips defribes the black fwan as a very noble bird, larger than the common fwan, and equally beautiful in form. Mr White indeed fays, that its fize is not quite equal to that of the European fwan ; but both thefe authors agree with Captain Vancouver in mentioning fome white feathers in its wings.

SWINTON (John), a very celebrated Englifh antiquary, was a native of the county of Chefter, the fon of John Swintoa of Bexton in that county, gent. He was born in 1703. The circumftances of his parents were probably not aflluent, as he was entered at Ox ford in the rank of a fervitor at Wadham college. This was in Oetober 1719 . It may be prefumed, that he recommended himfelf in that fociety by his talents and hehaviour, as on June 30.1723, he was elected a fcholar on a Chefhire foundation in the college. In the December following, he took his firf degree in arts. Before he became mafter of arts (which was on December 1. 1 726 ), he had chofen the church for his profeffion, and was ordained deacon by the bifhop of Uxford, May 30.1725 ; and was afterwards admitted to prieft's orders on May 28: 1727. He was not long without fome preferment, being admitted to the rectory of St Peter le Baiky in Oxford (a living in the gift of the crown), under a fequeftration, and inflituted to it in February 1728. In June, the fame year, he was elected a fellow of his college ; but, defirous probably to take a wider view of the world, he accepted, not long after, the appointment of chaplain to the Englift factory at Leghorn, to which he had been chofen. In this fituation he did not long enjoy his health; and leaving it on that account, he was at Florence in April 1733, where he attended Mr Coleman, the Englifh envoy, in his laft moments. Mr Swinton returned thro' Venice and Vienna; and, in company with fome Eng: lifh gentlemen of fortune, vifited Prefburgh in Hunga:y, and was prefent at one of their affemblies.

It is poffible that he had not quitted Eugland in the fummer of 1730, for he was clected a Fellow of the Royal Society in June that year, and admitted about three months later. It was probably while he was abroad that he was admitted into fome foreign focieties; namely, the academy \(\operatorname{deg} / i\) Apatifli at Florence, and the Etrufcan Academy of Cortona. On his return, he feems to have taken up his abode at Oxford, where he refided all the latter part of his life, and was for many years chaplain to the gaol in that city. It may be prefumed that he married in 1743 ; it was then, at leaft, that he gave up his fellowfhip. In 1759 he became bachelor
of divinity : in 1707, he was elected Cufos Archivorum, Swinton. or keeper of the univerfity records: and, on April 4. 1777, he died; leaving no children. His wife furvived till 1784 , and both were buriec!, with a vely Mort and plain infcription, in the chapel of Wadham college.
It remains to take notice of the roof important monuments of a literary man's life, his publications. Thefe were numerous and learied, but not of great magnitude. He puhlified, 1. "De Linguse Erruriz Regaiis vernacula Differtatio," 4to, 19 pages, Oxon, 1738. 2. "A critical effay concerning the words \(\Delta a / \mu \omega v\) and \(\Delta x\) maver, vecafioned 1 y two late inquiries in. to the meaning of the demoniacs in the New Teftament," 8vo, London, 1739. 3. "De prifcis Romanoum literis differtatio," 4to, 20 pages, Oxon, 1745. 4. "De Pimogenio Fitrufcorum Alphabeto, difiertatio," Oxon, \({ }^{17446.5 . " \text { Infcriptiones Citieer: : tive ins }}\) binas Inferiptiones Phacnicias, inter rudera Citii nuper repertas, conjecturx. Accedit de nummis quibuldam Sımaitanis et Plceniciis, vel infolitam proe fé literaturam ferentibes, vel in lucem hacie:us non editis, differtatio," 4to, 87 pages, Oxon, 1750. 6. " 1 Iferip. tiones Cititie: five in binas alias Infcriptiones PF cenicias, inter rucera Citio nuper repertas, conjectuar,", 4to, 19 pages. 7. "De nummis quibuidam Samaritanis et Phocniciis, vel infolitam præ le literaturam feren. tibus, vel in lucem hactenus non editis, difertatio fecunda," 4 to, 36 pages. 8. "Metilia : five de quinario. Gentis Metiliæ, e nummis vetutlis cateroquin numinum notx, differtatio," fto, 22 pagȩ, Oxon, 1750 . 9. Ste veral difertations publifhed in the Philofoplucal 'Iramiactions of the Royal Society. As, "A difertation upon a Parthian Coin; with characters on the reverfe refembling thofe of the Palmy renes," vol. xlix. P. 593. "Some remarks on a Parthian Coin, with a Greck and Parthian legend, never before publiihed," vol. 1. p 16. "A differtation upon the Proenician numeral charazters anciently ufed at Sidon," vol. 1. p. 791. "in nummum Parthicum hactenus ineditum conjectur," vol. li p. 683 . "A differtation upon a Samnite Denarius, never before publifhed," vol. lii. p. 28. "An account of a fubrerated Denarius of the Platorian family, adorned with an Etrufcan infcription on the reverfe, never before publifhed or explained," vol. Ixii. p. 60. "Obfervations upon five ancient Perfian Coins, itruck in Paleftine or Phenicia before the diffolution of the Perfian empire," vol. Ixii. P. 345. Other papers by him may be found in the general index to the Philolophical Tranfactions. 10. A part of the Aucient Univerfal Hifory, contained in the fixth and feventh volumes of that great work. The particulans of this piece of literary hiflory were communicated by Dr Johnfon to Mr Nichols, in a paper printed in the Centleman's Magazine for December 1784, p. 892. The original of that paper, which affords a ttrong proof of the fteady attachment of Johnfon to the interelts of literature, has been, according to his defire, depofited in the Britih Mufeum. The letter is as follows :

\section*{" To Mr Nichols.}
"The late learned Mr Swinton of Oxford having one day remarked, that one man, meaning, I fuppofe, no man but himfelf, could affign all the parts of the Univerfal Hiftory to their proper authors, at the requeft of Sfr Robert Chambers, or of myfelf, gave the account which I now tranfnit to you in his own hand, beinf
being willing, that of fo great a work the hifory mould be known, and that each writer monld receive his due proportion of praife from pofterity. I recommend to you to preferve this fcrap of literary intelligence, in Mr Swinton's own hand, or to depofite it in the Mufeum, that the veracity of the account may never be doubted. - I am, Sir, your moft humble fervant,

Dec. 6, 1784
Sam. Joinson."
The paper alluded to, befides fpecifying fome parts -written by other perfons, affigns the following divifions of the hiftory to Mr Swinton himéelf. "I he hiftory of the Carthaginians, Numidians, Mauritanians, Gratulians, Garamantes, Melano Gxtulians, Nigrite, Cyre naica, Marmarica, the Regio Syrtica, Turks, Tartars, and Moguls, Indians, and Chinefe, a differtation on the peopling of America, and one on the independency of the A rabs.
In the year 1740, Mr Swinton was involved in a law fuit, in confequence of a letter he had publifhed.
*Tbe Cbam- It appears from a paper of the time *, that a letter
pions, ir from the Rev. Mr Swinton, highly refeeting on Mr George Baker, having fallen into the hands of the latter, the court of King's Bench made the rule abiolute for an information againft Mr-Swinton. Thefe two

Alverifer,
June 17ch 2740. gentlemen were alfo engaged for fome time in a con-
troverify at Oxford; which took its rife from a matter relative to Dr Thiflethwaite, fome time warden of Wadham, which then atttacted much attention. Mr Swinton had the manners, and fome of the peculiarities, often feen in very reclefe feholars, which gave rife to many whimfical fories. A mong the reft, there is one mentioned by. Mr. Bofwell, in the Life of Johnfon, as having happened in the year 1754 . Iohnfon was then on a vifit in the univerfity of Oxford. "A Abut this time (he fays) there had been an execution of two or three criminals at Oxford, on a Monday. Soon after wards, one day at dimer, I was faying that Mr Swinton, the chaplain of the gaol, and allo a frequent preacher before the univerfity, a learned man, but often thoughtlefs and abient, preached the condemnation fermon on repentance before the convicts, on the preceding day, Sunday; and that, in the clofe, he told his audience, that he fhould give them the remainder of what he had to fay on the fubject the next. Lord's day. Upon which, one of our company, a doctor of divinity, and a plain matter of fact man, by way of offering an apology for Mr Swinton, gravely remarked, that he had probably preached the fame fermon before the univerfity Yes, Sir (fays Johnfon) ; but the univerfity were not to be hanged the next morning !"

\section*{T.}

TTacquet TACQUET (Andrew), a Jefuit of Antwerp, who died in 1660 . He was a moft laborious and voluminous writer in mathematics. His works were collected, and printed at Antwerp, in one large volume in folio, 1669.

TALLOW-Tree. See Croton (Encycl.), where, - however, we have fallen into a miftake, which it is here our duty to correct. We learn from Sir George Staun. ton, that the candles made of the vegetable tallow are firmer than thofe made of animal tallow, and free from all offenfive fmell, contrary to what was rathly faid in the article referred to. They are not, however, equal to thofe of wax or fpermaceti; but the latter of thefe fubflances is not within the reach of the Chinefe, and the art of blanching the former is little known to them. The tallow tree is faid to have been tranfplanted to Carolina, and to flourifh there as well as in China

TALOOK, an Arabic word, which fignifies literally attachment, connection, dependence. In Bergal, however, where it occurs perpettully in the enumeration of the diftricts and fubdivifions of that province contained in the inflitutes of \(A k b e r\), it fignifies a tenure of land. Hence the talook of Cafhinat, the talook. of Meheys the headman, the talook of Alimed Khan, \&c. See A Differtation concerning the Landed Property of Bengal, by Sir Charles Roufe Boughton.

TALOOKDAR, the poffeffor of a talook.
TALOOKDARY, tenure of a talookdar.
TALUS, or Talud, in architecure, the inclination -or flope of a work; as of the outfide of a wall, when its *thicknefs is diminifhed by degrees, as it rifes in height, to make it the firmer.

Talus, in fortification, means alfo the flope of a work, whether of earth or mafonry.

TAMA \(\triangle C A L\), the name given in California to a kind of fand bath employed by the uatives in the cure of the venereal difeafe. It is prepared by fcooping a trench in the fand, two feet wide, one foot deep, and of a length proportioned to the fize of the patient; a fire is then made through the whole extent of it, as well as upon the fand which was dug out of the hollow. When the whole is thoroughly heated, the fire is removed, and the fand ftirred about, that the warmth may be equally diffufed. The fick perfon is then ftripped, laid down in the trench, and covered up to his chirn with heated fand. In this pofition a very profufe fweat foon breaks out, which gradually diminithes according as the fand cools. The patient then rifes and bathes in the fea, or the neareft river. This procefs is repeated till a complete cure is obtained. While the patient is undergoing the operation of the tamafcal, he drinks a confiderable quantity of a warm fudorific, prepared by the decoction of certain herbs, chiefly of the fhrub called by the Spaniards Gouvbrnante, which fee in this Supplement.

TAN is a fubliance found in moft vegetables, which, rot having hitherto been refolved into component parts, is therefore confidered as fimple. See. Vegetable and Animal Substances in this Suppl.

TANNING is an art, of which a full account, according to the general practice in Loidon and its vicinity, has beell given under the proper title in the Encyclopedia. But fince that article was written, the fuperior knowledge which has been obtained of the tan-

\section*{TA N}
"g. ning principle, as well as of the compofition of the
frins of animals (See Vegetulle and Animal Sungrem Su力pl.), has fuggette egetude and Animal Substanc Rs, thods of footening the fcientific artiff various me cufacturec. M. Segui procrs by which leather is malight upon the art of the tanver as it is practifed in France; and in 1795 Mr William Defmond obtained a patent for pracififg Stguin's method in England. İe obtains the taning principle by dige fing oak bark, or other pooper material, io cold water, in an apparatns rearlv invilar to that ufed in the faltectre works. That is to fiy, the water which has remained upon the pow: dered bark for a certain tivie, in one veffel, is drawn off by a cock, and poured upon fredt tan. This is again to be drawn off, and poured upon other fre? tan; and in this way the procefs is to be continued to the fifth veftel. The licuor is then highly coluured, and marks, as Mr Defnond fays, frnm fix to eight degrees on the hydrometer for falts. Ife calls this the tanning lixivium. 'the criterion to diltinguifh its prefence is, that it precipitates.glue from its aqueous folution, and is allo ufefnil to examine how far other vegetable fubfances, as well as oak bark, may be finitable to the purpofe of tanning. The ftrong tanning liquor is to be liept by itfelf. It is found by trials with the glue, that the tanning principle of the frit digelter which receives the clear water, is, of courfe, frit exhaufted. But the fame \(\tan\) will Aill give a certain portion of the aftringent principle, or gallic lixivium, to water. The prefence of this principle is afcertained by its ftriking a black colour when added to a fmall quartity of the folution of vitriol of iron or green copperas. As foon as the water from the digefter ceafes to exhibit this fign, the tan is exhaufted, and mult be replaced with new. The gallic lixivium is referved for the purpofe of taking the hair off from hides.
Strong hides, after wahhing, cleaning, and flefhing, in the ulual way, are to be immerfed for two or three days in a mixture of gallic lixivium and one thoufandth part by meafure of denfe vitriolic acid. By this means the hair is detached from the hides, fo that it may be fcraped of with a round knife. When fwelling or raifing is required, the liides are to be immerfed for ten or twelve hours in another vat filled with water and one five-hundredth part of the fame vitriulic acid. The hilis being then repeatedly wafhed and drefied, are ready for tanning; for which purpofe they are to be immerfed for fome hours in a weak tanning lixivium of only one or two degrees; to obtain which, the latter portions of the infulions are fet apart; or elfe fome of that which has been partly exhauted by ufe in tamuing. The lides are then to be put in:to a fronger lixivium, where in a few days they will be brought to the lame degree of fatmation with the liquor in which they are immerfed. The ftrength of the liquor will by this means be confiderably dininifhed, and mult therefore be renewed. When the hiles are by this means completely faturated, that is to fay, perfectly tanned, they are to be removed, and frowly dried in the thade

Calf finins, goat fkins, and the like, are to be fteeped in lime-water after the ufual flefhing and wafhing. Thete are to remain in the lime water, which contains more lime than it can diffolve, and requires to be fierred feveral times a day. After two or three daya, the flkins are to be removed, and perfectly cleared of their lime by wafhing
and preffing in water. The tanning procefs is then to Tannirg, be accomplifined in the fame manner as for the frong hides, but the lixivium mut be confiderably weaker. Mr Definond remarks, that line is ufed initead of the gallic lixivium for fuch hides as are required to have a clofe grain ; becaufe the acid mixed with that lixivium al. ways fwells the 隹ins more or lefs; but that it cannot with the fame convenience be uled with thick fkillo, on account of the confiderable labour required to clear them of the lime: any vart of which, if left, would render them harfh and liable to crack. He recom. mends, likewife, as the beft method to bring the whole furface of the hides in contact with the lixivium, that they fhould be fufpended vertically in the fluid by means of tranfverfe rods or bars, at fuch a ditance as not to touch each other. By this practice much of the labour of turning and handling may be faved.

Mr Defmond concludes his fpecification, by obferving, that in fome cafes it will be expedient to mix frefh tan with the lixivium ; and that various modifications of frength, and other circum?ances, will prefent themfelves to the operator. He affirms that, in addition to the great faving of time and labour in this method, the leather, being more completely tanned, will weigh heavier, wear better, and be lefs fufceptible of moifture than leather tanned in the ufual way; that cords, ropes, and cables, made of hemp or fpeartery, impregnated with the tanning principle, will fupport much greater weights withont breaking, be lefs liable to be worn out by friction, and will run more fmoothly on pulleys ; ine fomuch that, in his opinion, it will render the ufe of tar in may cafes, particularly in the rigging of fips, unnectflary; and, laftly, that it may be fubttituted for the prefervation of animal food inflead of falt.

Mr Nicholfon, from whofe Philofophical Journal we have taken this account of Mr Defmond's method of ranning, made fome very proper enquiries at one of the firft manufacturing houfes in the borough of Southwark, concerning its value. He was told by one of the partners, that the principle upon which the new procefs is founded had been long known to them; but that they preferred the old and flower method, becaule the hides are found to feed and improve in their quality by remaining in the pit. He could gain no latisfactory information of what is meant by this feeding and im. proving: and, without taking upon us to decide between the advantages peculiar to Defmond's methoal and thofe of the common practice, we canan: help fay. ing that this objection of the tanner at Southwark appears to us to be that of a man who either underitands not the principles of his nwn art, or has fome reafon for oppofing the progrefs of improvement, if it do not originate in his own houfe.

TASSIE (James) modeller, whofe hiftory is intimately conneeted with a branch of the finc aits in Bri= rain, was born in the neighbourhood of Clafgow of obfcure parents ; and began his life as a country fone mafon, without the expectation of ever rifing higher. Going to Glafgow on a fair day, to enjoy himfelf with his companions, at the time when the Foulis's were attempting to eftablih an acasemy for the fine arts in that city, he faw their collection of paintings, and felt an irreffitible impulfe to become a painter. He removed to Glafgow ; and in the acadomy acquired a knowledge of drawing, which unfolded and

\section*{TA S [ 640 ] T E L}

Tantie. improved his natural tafte. He was frugal, indurtrious, and perfevering; but he was poor, and was under the neceffity of devoting himfelf to fone-cutting for his fupport: not without the hopes that he might one day be a flatuary if he could not be a painter. Reforting to Dublin for employment, he became known to Dr Quin, who was anufing himfelf in his leifure hours with endeavouring to imitate the precions fones in coloured paftes, and take accurate impreffions of the engravings that were on them.

That art was known to the ancients; and many fpecimens froin them are now in the cabinets of the curious. It feems to have been loft in the middle ages; was revived in Italy under Leo X. and the Medici family at Florence ; became more perfect in France under the regency of the Duke of Orleans, by his labours and thofe of Homberg. By thofe whom they inftructed as affiffants in the laboratory it continued to be practifed in Paris, and was carried to Rome. Their art was kept a fecret, and their collections were fmall. It is owing to Quin and to Taffie that it has been carried to fuch high perfection in Britain, and attraced the attention of Europe.

Dr Quin, in looking out for an affiftant, foon difcovered Tallie to be one in whom he could place perfect confdence. He was endowed with fine talle: he was modeft and unaffuming: he was patient ; and poffeffed the higheft integrity. The Doctor committed his kaboratory and experiments to his care. The affociates were fully fuccefsful; and found themfelves able to imitate all the gems, and take accurate impreffions of the engravings.

As the Doetor had followed the fubjeet only for his amufement, when the difcovery was completed, he encouraged Mr Taffie to repair to London, and to devote himfelf to the preparation and fale of thofe paftcs as his profeffion.

In 1766 he arrived in the Capital. But he was diffident and modeft to excefs; very unfit to introduce himfelf to the attention of perfons of rank and of affluence : befides, the number of engraved gems in Britain was fmall ; and thofe few were little noticed. He long fruggled under difficulties which would have difcouraged any one who was not poffeffed of the greatelt patience, and the warmeft attachment to the fubject. He gradually emerged from obfcurity, obtained competence ; aud what to him was much more, he was able to increafe his collection, and add higher degrees of perfection to his art. His name foon became reipected, and the firft cabincts in Europe were open for his ufe; and he uniformly preferved the greatef attention to the exactuefs of the imitation and accuracy of the engraving, fo that many of his paftes were fold on the Continent by the frauculent for real gems. His fine tafte led him to be peculiarly carcful of the impreffion ; and he uniformly deftroyed thofe with which lhe was in the leaft diffatisfied. The art has been practifed of late by others; and many thoufands of paftes have been fold as 'Taffie's, which he would have confidered as injurious to his fame. Of the fame of others he was not envious; for be uniformly fpake with franknefs in praife of thofe who executed them well, though they were endeavouring to rival himfelf.

To the ancient engravings he added a numerous colleetion of the moft eminent modern ones; many of
which approach in excellence of workmanhip, if not in f:mplicity of defign and chatity of exprefion, to the moft celebrated of the ancient. Many years before he died he executed-a commiffion for the late Emprefs of Ruffia, confifting of about 15,000 different engravings (See Gem, Encycl.). At his death, in 1799, they amounted to near 20,000; a collection of elgravings unequalled in the world. Every lover of the tine arts muft be feafible of the advantage of it for improvement in knowledge and in taitc. The collection of Feloix at Paris confifted of 1800 articles; and that of Debn at Rome of 2500.

For a number of years, Mr Tafie practifed the modelling of portraits in wax, which he afterwards moulded and caft in pafte. By this, the exact likenefs of many eminent men of the prefent age will be tranfmit. ted to potterity as accuately as thofe of the philofo. phers and great men have been by the ancient ttatiaries. In taking likeneffes he was, in general, uncommonly happy : and it is remarkable, that he believed there was a certain kind of infpiration (like that mentioned by the poets) neceffary to give him full fuccefs. The writer of this article, in converfing with him repeatedly on the fubject, always found lim fully perfuaded of it. He mentioned many inflances in which he had been directed by it ; and even fome, in which, after he had laboured in vain to realize his ideas on the wax, he had been able, by a fudden flath of imagination, to pleafe himfelf in the likenefs feveral days after he had laft feen the original.

He poffeffed alfo an uncommonly fine tafte in architecture, and would have been eminent in that branch if he had followed it.

In private life Mr Taffie was univerfally efteemed for his unifom piety, and for the fimplicity, the modetty, and benevolence, that fhone in the whole of his character.

TASTELESS EARTH (agufl erde), the name given by Profeffor 'Thommfdorff to a new fimple earth, which he difcovered in the Saxon beryl. It is diftinguilhed (he fays) from other earths by the following properties: It is white, and totally infoluble in water. In a frefh flate, when moittened with water, it is fomewhat ductile. In the fire it becomes tranfparent and very hard, fo as to fcratch glafs, but remains infipid and infoluble in water. The burnt earth dıfolves very eafly in acids, and produces with them peculiar faits, which are entirely devoid of tafle; and hence he gave it thic name of tafelefs earth. Fixed alkalies do not diffolve this earth either in the dry or in the wet way; and it is equally infolnble with the carbonic acid and with cauftic ammonia. It has a greater affinity to the oxelic than to other acils. Proffflor Trommfdorff informs us, that a full account of this earth, accompanied with an accurate defcription, by Dr Bernhardi, of the foffil in which it is found, will appear in the firt part of the eight volume of his Fournal of Pbarmacy.

TEETH, of various forts of machines, as of mill wheels, \&c. Thefe are often called cogs by the workmen ; and by working in the pinions, rounds, or trundles, the wheels are made to turn one another. Mr Emerfon (in his Mechanics, prop. 25.) treats of the theory of teeth, and fhews that they ought to have the figure of epicycloids, for properly working in one another.

TEKAWY, in Bengal, money advanced by government

\section*{T E M} ment to the proprietors or cultivators of land to affit them under circumftances of diftrefs.

TELESCOPE, is an inftrument which has been fo completely defcribed in the Encyclopredia, that it is introduced into this place merely to notice an ingenious fuggetion of Mr Nisholfon's for improving the achromatic telefcope, by adding an artificial iris to the object glats. Suppofe (fays he) a brafs ring to furround the object end of the telefcope, and upon this let cight or more triangular flips of brafs be fixed, fo as to revolve on equi-diftent pins paffing through each triangle near one of its corners. If the triangles be flided inwards upon each other, it may readily be apprehended that they will clofe the aperture; and if they be all made to revolve or fide backwards alike, it is clear that their cdges will leave an octagonel aperture, greater or lefs according to circumftances. I he equable motion of all the triangles inay be produced cither by pinions and one concave tonthed whel, or by what is celled finil. work. Another kind of iris. more compact, may be made, by caufing thin elaftic nips of brafs to flide along parallel to the tube, and be conducted each through a flit in a brafs cap which Rall lead them acrofs the aperture in a radial direction. It is probable alfo that the artift, who fhall carry thefe hints into effeet, may alfo think of feveral other methods.

This thought occurred to the author, from contemplating the contraction and dilatation of the iris of the eye, according as we look at an object more or lefs luminous. Thefe variations are fo great, that in the obfervable variations of the human cye, the aperture is thirty times as large at one time as at another, whill in the cat the proportion is greater than a hundred to one.

TEMPERAMENT of the scale of music. When the confiderate reader reflects on the luge and almoft numberlefs differtations on this fubject. by the moft eminent philofophers, mathematicians, and artifts, both of ancient and modern times, and the important points which divided, and ftill divide, their opinions, he will not furely expect, in a Work like our's, the decifion of a queftion which has hitherto eluded their refearches. He will rather be difpoied, perhaps, to wonder how a fubject of this nature ever acquired fuch importance in the minds of perfons of acknowledged talents (for furely no perfon will refufe this claim to Py thagoras, to Ariftotle, Euclid, Ptolemy, Galileo, Wallis, Euler, and many others, who have written elaborate treatifes on the fubjee.) ; and his furprife will incereafe, when he knows that the treatifes on the fcale of mufic are as numerous and voluminous in China, without any appearance of their being borrowed from the ingenious and fpeculative Greeks.

The ingenious, in all cultivated nations, have 1 emarked the great influence of mulic; and they found no difficulty in perfuading the nations that it was a gifi of the gods. A pollo and his facred choir are perhaps the moft refpectable inhabitants of the mythological heavens of the Greeks. Therefore all nations have confidered mufic as a proper part of their religious worfhip. We doubt not but that they found it fit for exciting or fupporting thofe emotions and fentiments which were fuited to adoration, tharks, or petition. Nor would the Greeks have admitted mufic into their ferious dramas, if they had not perceived that it heightened the effect. The fane experience made them employ it as an and to

Suppr. Vol. II. Part II.
military enthufiafu; and it is recorded as one of the Tempera. refpectable accomplifhments of Expaminondas, that ire nent of the had the mufical inftructions of the firft mafters, and was Mcale of eminent as a performer.

Thus was the itudy of mufic ennoblec', and recommended to the attention of the greateft phitofophers. Its cultivation was held an object of national concern, and its profeffors were not allowed to corrupt it in order to gratify the fafticious tafte of the luxurious or the fenfualift, who fought from it nothing but anufement. But its influence was rot confined to thefe public purpofes; and, while the men of fpeculation found in mutic an inexhaufible fund of employment for their genius and penctation, and their poets felt its aid in their compofitions, it was lailed by perfons of all ranks as the foother of the cares and anxieties, and fweetener of the labours of life. O Ploleli decus !laborum dulce lenimen. I'oor Ovid, the victim of what resained of good in the cold heart of Octavius, foulid its baln.
Exul eram (fays he) : requiefque mibi, non fama pectita of. Mens intenta fuis ne foret ufque malis.
Hoc eft cur cantet vindus quoque compede fofor,
Indocili numero cunn griave moliit ojius.
Cuntet et innitens limafie pronus arince
Adverfo tardam qui trolit umpe ratem,
\(\frown^{\perp}\) uique ferens pariter lentos ad peciora remos,
In numerum pu'sả bracbia qerfat aquâ.
Fef his ut incubuit buculo, Saxove refedit
Pafor; arundinco caimine mulcet oves.
Cantantis pariter, pariter data penf.a trabentis
Fallitur ancilla, decipiturque libor.
It is chiefly in this humble department of mufical in. scale of fluence that we propofe at prefent to lend our aid. mufie. Is What has been faid in the article Music, Encycl. is requires fufficient for informing the reader of what is received menper. as the fcale of mulic, and the inequality of its different fleps, the tones major and ininor, femitone, comma;-\&ic. We flall only obferve, that what is there delivered on temperament by M. d'Alembert, after Rainceu, bears the evident mark of uncertainty or want of coifidence in the principle adopted as the rule of temperanient ; and we have learned, fince the printing of that article, that the inflructions there delivered liave not that perspicuity and precifion that are nece? Tary for enabling a perfon to execute the temperament recommended by Rameau ; that is, to tune a keyed inftrument with certainty, according to that fy ftem or contruction of the fcale.
If fuch be the cafe, we are in fome meafure difappointed; becaufe we felected that treatife of D'Alen. bert as the performance of a man of great eminence as a mathematician and plikofopher, aining at public inftruction more than his own fame, by this elenentary abflract of the great work of the moft eminent muficiais in France.

To be able to tune a harpfichord witli certainty and Few cano accuracy, feems an indifpenfable qualification of any per- ture a fon worthy of the name of a mufician. It would cer- harpfitainly be thought an unpardonable deficiency in a violin chord performer if he could not tune his inftrument; yet we are well informed, that many profeffional performers on the harpfichord cannot do it, or cannot do it any other way than by uncertain and painful trial, and, as it were,

Temp era men if itte sisale of Mulic.
groping in the dark; and that the tuning of harpficrords and organs is committed entircly to tuners by piofeffion. This is a great inconvenience to perfuns refiding in the country; and therefore many take leffons from the profeffed hauplichord tuners, who alfo profets to teach this art. We have been prefent during fome of thefe leffons; but it did not appear to us that the in?rudtons were fuch as coald enable the feholar to tune an inftrument when alone, unlefs the leffons had been fo frequent as to form the ear to an inflantaneous judgment of tune by the fame habit that had influcted the teacher. There feemed to be little principle that could be treafured up and recollected when wanted.

Yet we cannot he!p thinking that there are phenomena or facts in mific, fufficiently precife to furnifh principles of abfolute certainty for enabling us to produce temperaments of the fale which thall have determined characters, and among which we may choofe fuch a one as fhall be preferable to the others, according to the purpofes we have in view; and we think that thefe principles are of fuch eafy application, that any perfon, of a moderate fenfibility to juft intonation, may, without much knowledge or practice in mufic, tune his harpfichord with all defirable accuracy. We propofe to lay thefe before the reader. We might content ourfelves with fimply giving the practical rules deduced from the principles ; but it is furely more de. firable to perceive the validity of the principles. This will give us confidence in the deduced rules of practice. In the employment of facred mufic, an infpired writer counfels us to fing, not only " with the heait, but with she underftanding alfo." We may, without irreverence, recommend the fame thing here. Let us therefore attend a little to the dictate of untutored Nature, and fee how the teaches all mankind to form the fcale of melody.

It is a moft remarkable fact, that, in all nations, however they may differ in the Aructure of that chaunt which we call the accent, or tone, or twang, in the colloquial language of a paticular nation, or in the favourite phrafes or paffages which are moll frequent in their fongs, all men make ufe of the fame rifes and falls, or inflexions of voice, in their mufical language or airs. We have heard the fongs of the Iroquois, the Cherokce, and the Efquimaux, of the Carib, and the inhabitant of Para. guay; of the African of Negroland and of the Cape, and of the Hindoo, the Malay, and the native of Ota-heite-and we found none that made ufe of a different fcale from our own, although feveral feemed to be very forry performers by any fcale. There mult be fome natural foundation for this uniformity. We may never difcover this; but we may be fortunate enough to difcover facts in the phenomena of found which invariably accompany certain modifications of mufical fentiment. If we fucceed, we are intitled to fuppofe that fuch in. feparable companions are naturally connected; and to conclude, that if we can infure the appearance of thofe facts in found, we fhall alfo give occalion to thofe mulfcal fentiments or impreffions.

There is a quality in lengthened or continued found which we call its pitch or note, by which it may be accounted fhrill or hoarfe. It may be very hoarfe in the beginning, and curing its continuance it may grow more and more hrill by imperceptible gradations. In this cafe we are fenfible of a kind of progrefo from the
one fate of found to the other. Thus, while vie gently draw the bow acrois the ftring of a bals vinl, if we at the fame time flide the finger flowly along the ftring, from the nut toward the bridge, the found, from being hoarle, becomes gradually acute or fhrill. Hoarfe and Ahrill therefore are not \(d\) fferent qualities, although they have different names, but are different ftates or degrees of the fame quality, like cold and heat, near and far, early and late, or, what is common to all thefe, little and great. A cestain fate of the air is accounted weither hot nor cold. All ftates on one fide of this are called warm, or hot; and all on the other are cold. In like manner, a certain found is the boundary between thofe that are called hoarfe and thofe called fhrill. The chemift. is accultomed to fay, that the temperature of a boty is higher when it is warmer, and lower when colder. In like manner, we are accuftomed to fay, that a perfon raifes or depreffes the pitch of his voice when it becomes more fhill or more hoarfe. The ancient Greeks, however, called the fhriller founds low, and the hoarfer founds bigh; probably becaufe the hoarfer founds are generally ftronger or louder, which we are alfo accuf. tomed to confider as higher. In common language, a low pitch of voice nieans a faint found, but in mulical language it means a hoarfer found. The fornd that is neither hoarfe nor fhrill is fome ordinary pitch of voice, but without any precife criterion.

T'he change obferved in the pitch of a violin Aring, when the finger is carried along the finger-board with a continued motion, is alfo continuous ; that is, not by ftarts : we call it gradual, for want of a better term, al. though gradual properly means gradatim, by degrets, fteps, or flarts, which are not to be diftinguifhed in this experiment. But we may make the experiment in another way. After founding the open ftring, and while the bow is yet moving acrofs it, we may put down the finger about \(1 \frac{2}{3}\) inches from the nut. This will change the found into one which is fenfibly flriller than the former, and there is a manifeft flart from the one to the other. Or we may put down the finger \(2 \frac{x}{2}\) inches from the nut ; the found of the open ftring will change to a fhriller found, and we are fenfible that this change or ftep is greater than the former. Moreover, we may, while drawing the bow acrofs the fring, put down one finger at \(1 \frac{2}{3}\) inches, and, immediately after, put down another finger at \(2 \frac{1}{2}\) inches from the nut. We fhall have three founds in fucceffion, each more fhrill than the preceding, with two manifeft fteps, or fubfultory changes of pitch.

Now fince the laft found is the fame as if the fecond had not been founded, we muft conceive the fum of the two fucceffive changes as equivalent or equal to the change from the firlt to the third. This change feems fomehow to include the other two, and to be made up. of them, as a whole is made up of its parts, or as \(2 \frac{7}{8}\) inches are made up of \(1 \frac{2}{3}\) and \(\frac{5}{6}\) of an inch, or as the fum 15 is made up of 10 and 5.

Thus it lappens that thinking perfons conceive fome- We hav thing like or analogous to a diftance, or interval, be-nutione tween thefe founds. It is plain, however, that there fomethi can be no real difance or fpace interpofed between terval b them ; and it is not eafy to acquire a ditinct notion of tweent the bulk or magnitude of thefe intervals. This concep tion is purely figurative and analogical ; but the ana\(\log y\) is very goud, and the obfervation of \(i t\), or con-

\section*{T E M}
jecture about it, has been of great fervice in the fcience of mufic, by making us fearch for fome precife mieafure of thofe manifett intervals of mulical founds.

It muft now be remarked, that it is in this refpect alone that founds are fufceptible of mufic. Nor are all founds poffefled of this quality. The fmack of a whip, the explofion of a mufket, the rufhing of water or wind, the fereann of fome animals, and many other founds, both momentary and continuous, are mere noifes; and can neither be called hoarfe nor fhrill. But, on the other hand, many founds, which differ in a thoufand circumftances of loudnefs, finoothnefs, mellownefs, \&c. which make them pleafant or difagreeable, have this quality of mufical pitch, and may thus be compared. The voice of a man or woman, the found of a pipe, a bell, a ftring, the voice of an animal, nay, the fingle blow on an empty cafk - may all have one pitch, or we may be fenfible of the interval between them. We can, in all cafes, tighten or flacken the flring of a violin, till the mott uninformed hearer can pronounce with certainty that the pitch is the fame. We are indebted to the celebrated Galileo for the difcovery of that phylical circumfance in all thofe founds which communicates this remarkable quality to thein, and even enables us to induce it on any noife whatever, and to determine, with the utmont precifion, the mufical pitch of the found, and the interval between any two fuch founds. Of this we fhall fpeak fully hereafter; and at prefent we only obferve, that two founds, having the fame pitch, are called Unisons by mufficians, or are faid to be in unifon to one another.

When two untaught men attempt to fing the fame air together, they always fing in unifon, unlefs they exprefsly mean to Ing in different pitches of voice. Nay, it is an extremely difficult thing to do otherwife, except in a few very peculiar cafes. Alfo, when a man and woman, wholly uninftructed in mufic, attempt to fing the fame air, they alfo mean to fing the fame mufical notes through the whole air ; and they generally imagine that they do fo. But there is a manifeft difference in the founds which they utter, and the woman is faid to fing more shrill, and the man more hoarse. A very plain experiment, however, will convince them that they are mittaken. N.B. We are now fuppofing that the performers have fo much of a mufical ear, and flexible voice, as to be able to fing a common ballad, or a pfalm tune, with tolerable exactuefs, and that they can prolong or dwell upon any particular note when defired.

Let them fing the common pralm tune called St David's, in the fame way that they practife at church; and when they have done it two of three times, in order to fix their voices in tune, and to feel the general impreffion of the tune, let the woman hold on in the firft note of the tune, which we fuppofe to be \(g\), while the man fings the firft three in filcceffion, namely \(g, d, \bar{g}\). He will now perceive, that the laft note fung by himfelf is the fame with that fung by the woman, and which fhe thinks that the is fill holding on in the firft note of the tune. Let this be repeated till the perforinance becomes eafy. They will then perceive the perfect famenefs, in refpect of inufical pitch, of the woman's firli note of this tune and the man's third note. Sonse difference, however, will fill be perceived; but it will not be in the pitch, but in the imoothuefs, or cleanuef3, or other agreeable quality of the woman's note.

\section*{643 T F M}

When this is plaiely perceived, let the man try by Tomers. what continued feps he mull raife his pitel, in order mont of the to arrive at the woman's note from lis uwn. If he is accuftomed to common ballad finging, he will have no great difficulty in doing this; and will find that, beginning with his own note, and finging gradually up, There are his eighth note will be the woman's note. In fort, iffeven Iftps two tutes be taken, one of which is twice as in the ma. two flutes be taken, one of which is twice as long as tu al fcale, the other, and if the man fing in unifon with the large and eight flute, the woman, while finging, as fhe thinks, the fame notes: ...s notes with the man, will be found to be finging in unifon with the fmaller flute.

This is a remarkable and mot important fact in the octave. phenomena of mufic. This interval, comprehending and made up of feven fmaller intervals, and requiring eight founds to mark its fteps, is therefore called an octaye. Now, fince the female performer follows the fame dictates of natural ear in finging her tune that the man follows in finging his, and all hearers are fenfible that they are finging the fame tune, it neceffarily follows, that the two feriefes of notes are perfectly limilar, though not the fame: For there mult be the fame interval of an octave between any ftep of the lower octave and the fame ftep of the upper one. In whatever way, therefore, we conceive one of thefe octaves to be parcelled out by the different Ateps, the partition of both mult be fimilar. If we reprefent both by lines, thefe lines muft be fimilarly divided. Each partial interval of the one mult bear the fame relation to the whole, or to any other interval, as its fimilar interval in the other octave bears to the whole of that octave, or to the other correfponding interval in it.

Farther, we muft now obferve, that although this fi-All nctaves milarity of the ocfaves was firtt obferved or difcovered are finilar. by means of the ordinary voices of man and woman, and is a legitimate inference from the perfert fatisfaction that each feels in finging what they think the fame notes, this is not the only foundation or proof of the fimilarity. Having acquired the knowledge of that phyfical circumfance, on which the pitch of mufical founds depends, we can demonftate, with all the rigour of geometiy, that the feveral notes in the man and woman's octave \(m u / \beta\) have the fame relation to their refpective commencements, and that thefe two great intervals are fimilarly divided. But farther ftill, we can demonftrate that this fimilarity is not confined to thefe two octaves. This may even be proved, to a certain extent, by the fame original experiment. Many men can fing two octaves in fucceffion, and there are fome rare examples of perfons who can fing three. This is more common in the female voice. This being the cafe, it is plain that there will be two octaves common to both voices; and therefore four octaves in fucceffion, all fimilar to each other. The fame fimilarity may be obferve? in the founds of inftruments which differ only ty an octave. And thus we demonftate that all octaves are fimilar to each other. 'This limilarity does not confift merely in the fimilarity of its divifion. The found of a note and its octave ase fo like each ocher, that if the ftrength or londnels be properly adjufted, and there be no difference in kind, or other circumfances of clearnefs, fmoothnefs, Eic. the two notes, when founded together, are indiftinguifable, and appear only like a more brilliant note. 'They coalefee into one fonnd. Nay, nofl clear mellow notes, fuch as the fe of a fine human

\section*{T E M}

\section*{T E M}

Tempera voice, really contain each two notes, one of which is ocmel t of the tave to the other.
sicale of
Mufic
14 All mafic contained in the ne. tave; her ce sal'ed das pason.

We faid that this refemblance of octaves is an important fact in the fcience of mufic. We now fee why it is fo. The whole fcale of mufic is contained in one octave, and all the reft are only repetitions of this fcale. And thus is the doctrine of the fcale of melody brought within a very moderate compafs, and the problem is reduced to that of the repartition of a fingle octave, and the attention to the junction with the fimilar fcales of the adjoining octaves. This partition is now to be the fubject of difcuffion.

In the is.fancy of focicty and cultivation, it is probable that the melodies or tunes, which delighted the fimple inhatitants, were equally fimple. Being the fpontaneous effufions of individuals, perhaps only occa fional, and never repeated, they would pcrifh as fatt as produced. T'he airs were probably connected with fome of the rude rhimes, or gingles of words, which were bandied about at their feftivals; or they were affociated with dancing. In all thefe cafes they muit have been very fhort, confifting of a few fayourite paf. fages or mufical plirafes. This is the cafe with the common airs of a!l fimple people to this day. They feldom extend beyond a fhort Itanza of poetry, or a fhort movement of dancing. The artift who could compofe and keep in mind a piece of confiderable length, mult liave been a great 1 arity, and a minfrel fit for the entertainment of princes ; and therefore much admired, and highly rewanded: his excellencies were almoft incommunicable, and could not be preferved in any other way but by repeated performance to an attentive hearer, who muft alfo be an artift, and muft patiently liften, and try to imitate; or, in fhort, to get the tune by heart. It mut have been a long time before any diflinct notion was formed of the relation of the notea to each other. It was perhaps impoffible to recollect today the precife notes of yefterday. There was nothing in which they were fixed till inftrumental mufic was invented. This has been found in all nations; but it appears that long continued cultivation is necuffary for raifing this from a very fimple and imperfeet ftate. 'The moft refined inftrument of the Greek muficians was very far below our very ordinary inftruments. And, till fome method of notation was invented, we can farcely conceive how any determined partition of the

Ker-note Accordingly, we find that it was not till after a long or Funda- while, and by very rude and awkward fteps, that the anental. Greeks perceived that the whole of mufic was comprifed in the oftave. The firft improved lyre had but four ftrings, and was thereforc called a TETRACHORD; and the firf flutes had but three lioles, and four rotes; and when more were added to the fcale, it was done by joining two lyres and two flutes torether. Eyen this is an inftructive itep in the hiftory of mufical fcience: For the four foun.ls of the inftrument have a natural fyftem, and the awkward and groping attempts to extend the mufic, by joining two inftruments, the fale of the one following, or being a continuation of that of the other, pointed out the mapason or totality of the oftave, and the relation of the whole to a principal found, which we now call the fundamental or key, it being the lowelt wote of our fcale, and the one to which the other notes bear a continual reference. It would far exceed the limits of this Work to narrate the fucceffive changes
ditions made by the Greeks in their lyre; yet Temper would this be a very fure way of learning the natural ment oftl formation of our mufical fcale. We muit refer our readers to Dr Wallis's A ppendix to his edition of the Commentary of Porphyrius in Ptolemy's Harmonics, as by far the moft perfpicuous account that is extant of the Greek mufic. We fhall pick out from among their different at. tempts fuch plain obfervations as will be obvious to the feelings of any perfon who can fing a common tune.

Let fuch a perfon firf fing over fome plain and The netav cheerful, or at leaft not mournful, tune, fevcral times, is naturall fo as to retain a lafting impreffon of the chief note of divided in the tune, which is generally the laft. Then let him tetra. begin, on the fane note, to fing in fucceffion the rifing chords, fteps of the fcale, pronouncing the fyllables do, re, mi, fis, ful, la, ft, do. He will perhaps obferve, that this chaune naturally divides itfelf into two parts or phrafes, as the muficians term it. If he does not, of himfelf, make this remark, let him fing it, however, in that manner, pauling a little after the note \(f a\). 'Thus, do, re, mi, fa; fol, la, fi. do.-Do, re, mi, fa; fol, la, \(\sqrt{2}\), do.

Having done this feveral times, and then repeated it without a paufe, he will become very fentible of the propriety of the paufe, and of this natural divifion of the octave. He will even obferve a conliderable fimila. rity between thefe two mufical phrafes, without being able, at firf, to fay in what it confifts.

Let him now ftudy each phrafe apart, and try to The ftep. compare the magnitude of the changes of found; or tleps of the foo which he makes in riling from do to re, from re to \(m i\), are uneand from mi to fi. We apprehend that he will have qual, and no difficulty in peceiving, after a few trials, that the trachords Heps do re, and re mi, are fenfibly greater than the ftepare fim: mi fa. We feel the laft Itep as a fort of fide; as an lar. attempt to make as little change of pitch as we carn. Once this is perceived, it will never be forgotten. This will be ftill more clearly perceived, if, inftcad of thefe fyllables, he ufe only the vowel \(a\), pronounced as in the word ball, and if he fing the fteps, fliding or flurring from the one to the other. 'laking this method, he. cannot fail to notice the imollnefs of the third fep.
let the linger farther confider, whether he dues not feel this phrafe mufical or agrceable, making a fort of tune or chaunt, and ending or clofing agretably after this flide of a fmalt, or, as it were, half ftep. It is grcnerally thought \(f 0\); and is therefure called a ClOSE, a CADENCE, when we end with a half ftep afcending.

Let the finger new refume the whole fcale, haging the four lat notes fol, la, \(f\), , do, louder than the other four, and calling off his attention from the low phrafe, and fixing it on the upper one. He will now be able to perceive that this, like the other, las two confiderable fteps; namely, fol lu and la fi, and then a fmaller ftep, ficlo. A few repetitions will make this clear, and he will then be fenfible of tine nature of the fmilarity between thefe two phrafes, and the propriety of this great divifion of the fcale into the intervals \(d o, f a\), and jol, do, with an interval fa, fol between them.

This was the foundation of the tetrachords, or lyres of four ftrings, of the Greeks. Their earlieft mufic or modulation feems to have extended no farther than this phrafe. It pleafed them, as a ring of four bells pleafes many country parifhes.

The finger will perceive the fame fatisfaction with Ccoss the clofe of this fecond phrafe as with, that of the CADEN former: and if he now fing them both, in immediate fucceffion,

\section*{T E M}

\(-\)ot of the
cale of cale of
liufic. -
fuceffion, with a night paufe between, we imagine that he will think the clofe or cadence on the upper do even more fatisfactory than that on the fa. It feems to us to complete a tune. And this impreffion will be greatly heightened, if another perfon, or an inftrument, fhould found the lower do, while he clofes on the upper do its oćtave \(D_{0}\) feems to be expected, or looked for, or fought after. We take \(J_{1}\) as a Aep to do, and there we reft.

Thus does the octave appear to be naturally compofifth, and fixth, are more confiderable, and the third and feventh very fenfibly imaller. Having no direct mealures of their quantity, nor even a very diltinet notion of what we mean by their quantity, magnitude, or bulk, we cannot pronounce, with any certainty, whe' ther the greater Ateps are equal or unequal ; and we prefume them to be equal. Nor have we any diftinct notion of the proportion between the larger and fmeller lleps. In a loofe way we call them half notes, or fuppofe the rife from \(m i\) to \(f a\), or from \(\sqrt{2}\) to \(d o\), to be onehalf of that from do to re, or from re to mi .

Accordingly, this feems to have been all the mufical feience attained by the Greck artifts, or thofe who did not profefs to fpeak philofophically on the fubject. And even after Pythagoras publifhed the difcovery which he had made, or more probably had picked up among the Chaldeans or Egyptians, by which it appeared, that accurate meafures of founds, in refpect to gravity and acutenefs, were attainable, it was affirmed by Aiftoxenus, a fcholar of Arifotle, and other eminent philofo. phers, that thefe meafures were altogether artificial, had no connection with mufic, and that the ear alone was the judge of mufical intervals. The artift had no other guide in tuning his inftrument ; becaufe the ratios, which were faid to be inherent in the founds (though no perfon could fay how), were never percejved by the car. The juftice of this opinion is abundantly confirmed by the awkward attempt of the Greeks to improve the lyre by means of thefe boafted ratios. Inftead of iliuftrating the fubject, they feem rather to have brought an additional obfcurity upon it, and threw it into fuch confufion, that although many voluminous differtations were written on it, and on the compofition of their mufical fcale, the acconnt is fo pernlexed and confufed, that the firl mathematicians and artints of Eurupe acknowledge, that the whole is an impenetrable myftery. Had the philofophers never meddled with it, had they allowed the practical muficians to conftruct and tune their inftruments in their own way, fo as to pleafe their ear, it is fcarcely poffible that they should not have hit on what they wanted, without all the embarraffment of the chromatic and enharmonic fcales of the lyre. It is fcarcely poffible to contrive a more cumberfome method of extending the fimple fcale of Nature to every cafe that could occur in their mufi. cal compofitions, than what arofe from the employment of the mufical ratios. This feems a bold aftertion ; but we apprehend that it will appear to be juft as we pro. ceed. le tranf. The practical muficians could not be long of finding
fition of the want of fomething more than the mere diatonic fition of the want of fomething more than the mere diatonic
licemade fcale of their inftruments. As they were always ac-
ercalary ercalary
tes necer. companied by the voice, it would often happen that a y in the lyre or flute, perfectly tuned, was too low or too high
for the voice that was to accompany it. A finger can pitch histune on any found as a key; and if this be ment of the roo high for the finger who is to accompany him, he Scale of can take it on a lower note. But a lyrift cannot do Mufic. this. Suppofe his inftrument two nores ton low, and that his accompanyilt can only fing it on the key which is the \(f_{i}\) of the lyre. Should the lyritt begin it on that key, his very firft Atep is wrong, being but a half Atep, whereas it fhould be a whole one. In fhort, all the fteps but one will be found wrong, and the lyrill arid finger will be perpetually jarring. This is an evidert confequence of the inequality of the fonrth and feventh fteps to the relt. And if the other Heps, which we imagine to be equal, be not exactly \(f(0\), the difeordance will be flill greater.

The method of temedying this is very obvious. If Difputes of the intervals mi \(f_{a}\) and \(f_{t} \hat{d}_{0}\), are half notes, we need the t'y ha only to interpofe other founds in the middle between goreansand each of the whole notes; and then, in place of feven un-1 eavs a'sous equal fleps, we fall have twelve equal ones, or twelve mufical rat intervals, each of them equal to a femitone. The lyretius.
thus conitwucted will now fuit any voice whatever. It will perfectly refemble our key ed infruments, the harpfichord, or organ, which have twelve feemingly squal in tervals in the oftave. Accortingly, it appears that fuch additions were practifed by the muficians of Greece. and approved of by A riftoxenus, and by all thofe who referred every thing to the judgment of the ear. And we are confident that this metlod would have been adopted, if the philofoyhers had had leis influence, and? if the Grecks had mot borrowed their religious certmo. nies along with their mufical fcience. Both of thefe came from the fame quarter; they came united; and it was facrilegions to attempt innovations. The doctrine of mufical ratios was an occupation only for the refined, the philofophers ; and by fubjecting mufic to this mylterious fcience, it became mytterious alfo, and fo much the more vencrable. The philofophers faw, that there was in Nature a ce:tain inferutable connection between mathematical ratios and thofe intervals which the ear relifhed and required in melody: but they were ignorant of the nature and satent of this connection.

What is this connegtion, or what is meent when we Ratios of fpeak of the ratios of founds? Simuly this:- Pytha. goras is fand to have found, that if two mufical cords be ftrained by equal weights, and one of them be twice the length of the other, the Chort one will found the octave to the mote of the other. If it be two-thirds of the length of the long tlring, it will found the fifuli to it. If the long ftring found \(a 0\), the fort ope will found fol. If it be three-fourths of the length, it will found the fourth or \(f a\). Thus the ratio of \(2: 1\) was called the ratio of the diapason; that of \(3: 2\) was called the diapente; and that of \(4: 3\) the diatessaron. Moreover, if we now take all the four ftrings, and make that which founds the graveft note, and is the longeft, twelve inches in length ; the fhort or octave fring muft be fix inches long, or one-half of twelve; the diapente mutt be eight inches, or two thirds of twelve; and the diateffaron muft be nine inches, which is three-fourtlis of twelve. If we now compare the diapente, not with the graveft ftring, but with the oftave of fix inches, we fee that they are in the ratio of 4 to 3 , or the ratio of diatefaron. And if we compare the diateffaron with

\section*{T E M}

Temac a- the ofave, we fee that their ratio is that of \(9: 6\), or - smen ent the scille of Mufic. \(\underbrace{\text { Mufic. }}\)

\section*{25}

The difio-
This is all that was known of the connection of mu-
fic with mathematical ratios. It is indeed faid by Tam-
hagora is cither a
fable, or
faifely uar
sated.
of \(3: 2\), or the ratio of diapente. 'Jhus is the ofave diviled into a fifth and a fourth, do fol, and fol 10 , in fucceffion. Alfo the fourth do \(f a\), and the fifth \(f a\) do, make up the octave. 'The note which Itands as a fifth to one of the extreme founds of the octave, ftands as a fourth to the other. And, laftly, the two fourthe do \(f a\), and fol do, leave an interval \(f a f o l\) between them ; which is alfo determined by nature, and the ratio correfponding to it is evidently that of 9 to 8 . lichus, that Pythagoras did not make this difcovery by mears of firings, but by the founds made by the hammers on the arivil in a fmith's fhop. He obferved the \{ounds to be the key, the diateffaron, and the diapente of mufic; and lie found, that the weights of the hemmers were in this proportion; and as foon as he went home, he tried the founds made by cords, when weighta, in the proportions above-mentioned, were ap pended to them. But the whole ftory has the air of a fable, and of ignorance. The founds given by a fmith's anvil have little or no dependence or the weight of the hammers; and the weights which are in the proportions of the numbers mentioned above will by no means produce the founds alleged. It requires four times the weight to make a itring found the octave, and twice and a quarter will produce the diapente, and one and feven. ninths will produce the diateffaron. It is plain, therefore, that they knew not of what they were feeaking: yet, on this light foundation, they erected a vaft fabric of fecculation; and in the courfe of their refearches, thefe ratios were found to contain all that was excellent. The attributes of the Divinity, the fymmetry of the univerle, and the principles of morality, were all refolvable into the harmonic ratios.

In the attempts to explain, by means of the myfte-

Conjoined
and dicjoin ed tetra-
-thords. properties of the ratios \(2: 1,3: 2,4: 3\), and \(9: 8\), which were thus defined by Nature, it was obferved, that their favourite lyres of four ftrings could be combined in two principal mavners, fo as to produce an extenfive fcale. One lyre may contain the notes do, \(r e, m i, f a\); and the acuter lyre may contain the notes fol, la, \(f\), , do ; and, being \(f \in t\) in fucceffion, having the interval fa fol between the higheft note of the one and the lowett of the other, they make a complete octave. Thefe were called disjoined tetrachords. A gain, a third tetrachord may be joined with the upper tetrachord laft mentioned, in fuch fort, that the lowef note of the third tetrachord may be the fame with the higheit of the fecond. Thefe were called conjoined tetrachords (A).
37 By thus confidering the fale as made up of tetrawere tuned chords, the tuning of the lyre was reduced to great entirely by fimplicity. 'Ihe mufician had only to make himfelf the ear,
commodations, thew diffinctly that they did not tune Tempers. as we do, founding the two ftrings together, except in mintifeth the cafe of the diapafon or oftave. It was all done by the judgment of the ear in melody. The moft valuable circumftance in the difenvery of Pythagoras was the determination of the interval between the \(f\) urth and the fifth, by which the tetrachords were feparated. The filling \({ }^{11} \mathrm{p}\) of each tetrachord was left entircly to the ear; and when the doefrine of the mathematical ra. tios fhewed that the large intervals do re, re mi, fa fol, fol la, la \(\sqrt{2}\), fhould not be precifely equal, Arifoxenus refufed the authority of the reafons alleged for this inequality, becaufe the ear perceived none of the ratios as ratios, and could judge only of founds He farther afferted, that the inequalities which the Pythagoreans enjoined, were fo trifing, that no ear could poffibly perceive them. And accordingly, the theorifts difputed abont the refpective fituations of the greater and fmaller tones (fo they named the great fteps) fo much fpoken of, and had different fyttems on the fubject.

But the frongelt proot of the indittinet notion that And by the theorifts entertained about the influence of thefe melody a ratios in mutic is, that they would admit no more but thofe introduced by Pythagoras; and their reafons for the rejection of the ratio of 5 to 4 , and of 6 to 5 , were cither the mof whimfical fancies abont the perfections of the facred ratios, or affumptions exprefsly founded on the fuppofition, that the car perceives and judges of the ratios as ratios: than which nothing can be more falfe. Had they admitted the ratio of 5 to 4, they would have obtained the third note of the fale, and would at once have gotten the whole fcale of our inufic. The ratios of \(6: 5\), and \(16: 15\), follow of courfe ; and every found of the tetrachords would have been determined. For 5:4 being the ratio of the major third, which is perfectly pleafing to the ear, as the \(m i\) to the note do, and \(3: 2\) being the ratio of the fifth do fol, there is another interwal mi fol determines: ; and this ratio, being the difference between do fol and do mi, or between \(3: 2\) and \(5: 4\), is evidently \(6: 5\). In like manner, the interval ini \(f a\) is determined, and its ratio, being \(4: 3-5: 4\), is \(16: 15\).

But farther; we fhall find, upontrial, that if we put in a found above fol, having the relation \(5: 4\) to \(f a\), it will be perfectly fatisfactory to the ear if fung as the note la. And if, in like manner, we put in a note above la, having the relation \(5: 4\) to fol, we find it fatisfactory to the ear when ufed as \(\sqrt{2}\). If we now examine the ratios of thefe artificial notes, we fhall find the ratio of the notes folla to be 10:9, and that fla \(f i\) to be \(9: 8\), the fame with that \(f a\) fol; alfo \(\sqrt{i}\) do will appear to be \(16: 15\), like that of mi fa.

We have no remains of the mufic of the Greeks, by which we can learn what were their favounite paffages or mufiral plirafea; and we cannot fee what cauled them to orefer the fouth to the major third. Few muticians of our times think the fourth in any degree comparable with the major thind for melodioufnefs, and fill tewer for harmonioufnefs. The piece or tunc publifhed by Kircher from Alypius is very fufpicious, as
(A) This is the principle, but not the precife form, of the disjoined and conjunf tetrachorls. The Greeks did not begin the tetrachord with what we nake the tirlt note of our chaunt of four notes, but began one of them with \(m i\), and the other with \(\sqrt{2}\); to which they afterwards added a note below. This beginning feems to have been directed by fome of their ravouite cadences; but it would be tedious to explain it.

\section*{T E M}
nera- no
t f the too lute a date, to give us any folid help. In all probatulity, the common melodies of the Greeks abounded in taly leaps un and down on the third and fifth, and on the fourth and fixth, juit as we obferve in the airs for darcing among all fimple people. 'Tlicir accomplifhed performers had certainly great powers both of invention and execution ; and the chromatic and erharmonic divifions of the fale were certainly practifed by them, and not merely the fpeculations of inathematicians. 'To us, the enharmonic feale appears the moft jarring difcord; tut this is certainly owing to our not feeng any pieces of the mufic fo compofed, and becaufe we cannot in the lealt judge by harmony what the effect of enharmonic melody would be. But we have fufficient evidence. from the writings of the ancient Greeks, that the enharmonic mufic fell into difufe even before the time of Ptolemy, and was totally and irrecoverably loft kefore the 5 th century. Even the chromatic was little practifed, and was chiefly employed for extensing the commion teale to keys which were feldom ufed. The uncertaintits refpectirg even the corimon feale remained the fame as ever; and although Piolemy gives (among others) the very fame thac is now admitted as the only perfert one, namely, his diatonicum intenfum, his realons of preference, though good, are not urged with Atrong marks of his confidence in them, nor do they feem to have prevailed.

Thefe obfervations thew clearly, that the perception of melody alone is not fufficiertly precife for enabling us to acquire exact conceptions of the fcale of mufic. It he whole of thre practicable fcience of the ancients fecms to amnunt to no more than this, that the octave contained five greater and two fmaller intervals, which the voice employed, and the ear relifhed. The greater intervals feemed all of one magnitude; and the fmaller intervals appeared allo equal, but the car cannot judge what proportion they bear to the larger ones. The muficians thought them larger than one-half of the great intervals (and inceed the ratio \(16: 15\) of the artificial mi fa and \(\sqrt{2} d 0\), is greater than the half of \(9: 8\) or \(10: 9\) ). Therefore they allowed the theorifts to call them limmas inflead of hemitones; but they, as well as the theorits, differed exceedingly in the magnitudes which they affigned them.

Ihe beft way that we can think of for expreffing the a circle in the points \(\mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{L}, \mathrm{G}, \mathrm{A}\), and B (fig. 1.), in the proportion we think mof fuitable to the natural fcale of melody. According to the practical notion now under our confideration, the arches CD , DE, FG, GA, and A13, are equal, containing nearly \(59^{\circ}\); and the arches EF and BC are alfo equal, but fmaller than the othe-s, containing about \(33^{\frac{1}{2}}\). Now, fuppofe another circle, on a picce of card paper, divided in the fame manner, to move round their common centre, but inftead of having its points of divifion marked C, D, E. \&c. let them be marked do, re, mi, fa, fol, \(l a, \sqrt{2}\). It is plain, that to whatever point of the outer circle we fet the point do of the inner one, the other points of the outcr circle will frew the common notes
which are fit for thofe fteps of the fcale. The fimilario a \(r\) all oftaves makes this fimple and equivalent to a rectilineal fcale funilarly divided, and repeated as often as we pleafe. Fig. 1. reprefents this inftrment, and will be often referred to. A fort of fymmetry may be obferved in it. The point \(D\) feems to occupy the middie of the fcale, and re feems to be the middle note. of the octave. The oppolite arch GA, and the correfponding interval fol la, fcems to be the middle interval of the octave. The other notes and intervals are fimilarly difpofed on each fide of thefe. This circumftances feenis to have been obferved by the Greeks, by the in. habitants of India, by the Chinefe, and even by the Mexicans. The note \(r e\), and the interval fol la, have gotten diftinguifhed fituations in their inftruments and fcales of mulic.

With refpect to the divifion of the circles, we hall only oblerve at prefent, that the dotted lines are conformable to the piinciples of Ariftoxenus, the whole, octave being portioned out into five larger and cqual tones and intervals, and two fmaller, alfo equal. The larger are called mean or medium tones; and the fmaller are called limmas or femitones. 'I he full lines, to which the letters and names are affixed, divide the octave into the artificial portions, determined by means of the mufical ratios, the arches being made proportional to the meafures of thofe ratios. Thus the arches CD, FG, AB, are proportional to the meafure or logarithm of the ratio \(9: 8 ;\) GA and DE are proportional to the loga. rithm of \(10: 9\); and the arches EF and BC are propoitional to the logarithm of \(16: 15\). We have already mentioned the way in which thofe ratios were applied, and the authority on which they were felected. We fhall have occafion to return to this again. The only farther remark that is to be made with propriety in this place is, that the divifion on the Arifoxenean principles, which is expreffed in this figure, is one of an indelinite number of the fame kind. The only principle adopted in it is, that there fhall be five mean tones, and two fmall equal femitones; but the magnitude of thefe is arbitrary. We have chofen fuch, that two mean tones are exactly equal to the arch CE, determined by the ratio \(5: 4\). The reafons for this preference will appear as we proceed (B).

By this little inftrument (the invention, we belicve, of a Mr D'Ormiffen, about the beginning of laft century), we fee clearly the infufficiency of the feven notes of the oftave for performing mulic on different keys. Set the flower de luce at the Ariftoxenean B, and we fhall fee that E is the only note of our lyre which will do for one of the fteps of the octave in which we intend to fing and accompany. We have no founds in the lyre for re, mi, fol, la, fi. The remedy is as clear; ly pointed out. Let a fet of frings be made, laving the fame relation to \(\sqrt{1}\) which thofe of the prefent lyre have to do, and infert them in the places pointed ont. by the Ariftoxenean divifions of the moveable octave. We need only five of them, becanfe the \(\sqrt{i}\) and \(f a\) of the prefent lyre will antwer. Thefe new founds are marked by a \(f\).

But it was foon found, that thefe new notes gave but fount im. indifferent melody, and that cither the ear could not perfect, ant deternime ranied deternume temprana ment.
(B) We fhall be abundantly exact, if we make \(C D=6 x^{\circ}, 72 ; C E=115^{\circ}, 9 ; C F=149^{\circ}, 4^{2} ; C G=210^{\circ}, 58\); \(C A=26,{ }^{\circ}, 3\); and \(C B=326,4^{8}\).

Tempera- determine the equality of the tones and femitones exaemient of the ly enough, or that no fuch partition of the oftave would
Scale of Scale of Mufic. anfiwer. The l'ythagoreans, or partifans of the inuti. cal ratios, had told them this before. But they were
in no better condition themielves; for they found, that if a feries of founds, in perfect relation to the oftave, be inferted in the manner propofed, the melody will be no better. They put the matter to a very fair trial. It is eafy to fee, that no fyttem of mean tones and limmas will give the fame mufic on every key, unlefs the zones be increafed, and the limmas diminifhed, till the linuna becoines juit half a tone. Then all the intervals will be perfectly equal. The mathematicians computed the ratios which would produce this equality, and defired the Arifoxeneans to pronounce on the mufic. It is faid, that they allowed it to be very bad in all their moft favourite paflages. Nothing now remained to the Ariftoxeneans but to attempt occational methods of tuning. They faw clearly, that they were making the notes unequal which Nature made equal. The Pythagoreans, in like manner, pointed out many alterations or corrections of intervals which fuited one tetrachord, or one part of the ottave, but did not fuit another. Both parties faw that they were obliged to deviate from what they thought natural and perfect : therefore they called thefe alterations of the natural or perfect fcale a temperament.
The accomplimed performers were the beft judrres of the whole matter, and they derived very little affittance from the mathematicians: For although the rigid rules delivered by them be acknowledged to be perfectly exaet, the execution of thofe rules is not fufceptible of the fame exadtnefs. Their lyres are tuned, not by mathematical operations, but by the ear. It does no appear that they had mufical infruments with divided finger boards, like our bafs viols and guitars; and even on there, it is well known that the preffure and tonch of the finger may vary fo much, that the moft exact placing of the frets will not infure the nice degrees of the founds. The flutes are the only inflruments of the ancients that are capable of accurate founds. But flutemakers know very well, that they cannot be tuned by mathernatical operations, but by the ear alone. This accounts for the great prices paid for a well tuned flute. Some have coft L. 700 , and 1.. 50 was a veiy common

The Greeks Such feems to have been the flate of the ancient mudid not cul fic. There was little or no feience in it. There was, tivate the indeed, a moft abitrufe and refined fcience cont led with harmony of indec, a by a very flight connection: and it feems to ous founds have been nothirg more than an amufement for the ingenious and fpeculative Greeks. Nor could it, in our opinion, be better, fo long as they had no guide in tuning but the judgment of the ear in melocly. Many writers infift that the Greeks hat a knowledge of what
 ufed by them : but it does not mean what we call harmony, the pleafant coalefcence of fimultaneous founds. It comes from \(\dot{\alpha}_{f} \mu{ }^{\prime \prime} s\), or from \(\dot{\alpha}_{f} \mu \dot{j}_{j}^{\prime} \omega\), and fignises \(u p\).
titude, fitmefs, and wouid, in general, be better tranflated Tempera. by fymmerry. But we cannot conceive that they paid mente ot he any marked attention to the effect of fimultaneous founds, fo as to enjoy the pleafure of certain confonan. ces, and employ them in their compofitions. We judge in this way from the rank which they gave them in their fcate. To prefer the fourth to the major third feems to us to be impoffible, if it be meant of fimultaneous founds. And the realon which is affigned for the preference can have no value in the opinion of a mufician. It is becaufe the ratio of \(4: 3\) is fimpler than that of \(5: 4\). For the fame reafon, the fifth is preferred to both, and the ofave to all the three, and unifon to every other confonance. They would not allow the major third \(5: 4\) to be a concord at all. We have made numberlefs tials of the different concords with perfons altogether ignorant of mulic. We never faw, an in:fance of one who thought that mere unifon gave any pofitive pleafure. None of all whom we examined had much pleafure from an octave. All, without ex. ception, were delighted with a fifth, and with a major third; and many of them preferred the latter. All of them agreed in calling the pleafure from the fifth a fweetnefs, and that from the major third a cheerfulnefs, or \(\int\) martnefs. or by names of fimilar import. The greater part preferred even the major fixth to the fourth, and fome felt no pleafure at all from the fourth. Few Had mich pleafure from the mil:or third or minor fixth. N. B. Care was taken to found thefe concords without any preparation - - merely as founds - but not as making part of any mutical paffage. This circumftance has a great effect on the mind. When the minor third and fixth were heard as making part of the minor mocue, all were delighted with it, and called it fweet and mournful. In like manner, the chord \({ }_{\ddagger}^{\sigma}\) never failetl to give pleafure. Nothing can be aftronger proof of the ignorance of the ancients of the pleafures of harmony.

We do not profefs to know when this was difcover. ed. We thirk it not unlikely that the Greeks and Ita. lians got it from fome of the northern nations whom they called Barlarians. We cannot otherwife accounten to ba for its prevalence through the whole of the Rufliartem-dificovery pire-the ancient Slavi had little comnerce with the empire of Rome or of Conftantimple; yet they fung in parts in the molt remote periods of their hiftory of which we have any account ; and to this day, the mont uncultivated boor in the Ruflian empire would be afhamed to fing in unifon. He liftens a little while to a new tune, holding his chin to his brealt ; and as foon as he has got a notion of it, he burlits out in concert, throwing in the harmonic notes by a certain rule which he feels, but cannot explain. Hio harmonics are generally alternate major and minor thirds. and he feldom miffes the proper cadences on the fifth and key. Perhaps the invention of the organ procuced the difcovery. We know that this was as early as the fecond century (c). It was hardly poffible to make much ufe of that inflrument without perceiving the pleafure of concordant founds.

The
(c) It is faid that the Chinefe had an inftrument of this kind long before the Europeans: Caufeus fays, that it was brought from China by a native, and was fo fmall as to be carried in the hand. It is certain that the Emperor Conftantine Coprosymus fent one to Pepin king of France in 757, and that his fon Charlemagne got another from the Emperor Michael Paleologus. But they appear to have been known in the Englifh churches before that time.

The difovery of the pleafures of harmony occafioned a total change in the fcience of mufic During the dark ages of Europe, it was cultivated chielly by the monks: the organ was foon introduced into the churches, and the choral fervice was their chief and almot their only occupation. The very conftruction of this inftrument mutt have contributed to the improvement of mufic, and inflructed mem in the nature of the fcale. The pipes are all tuned by their lengths; and thefe lengths are in the ratios of the ftrings which give the fame notes, when all are equally ftretched. ©his muft have tevived the ftudy of the mufical ratios. The tuning of the organ was performed by conforiance, and no longer depended on the nice judgment of founds in fucceffion. The dulleft ear, even with total ignorance of mufic, can judge, without the finalleft error, of an exact octave, ffth, third, or other concore; and a very mean mufician could now tane an organ more acclirately than Timotheus could tune his lyre. Other keyed inftruments, refenibling our harpfichord, were invented, and inftruments with fretted finger boards. Thefe foon fupplanted the lyres and harps, being much more compendious, and allowing a much greater variety and rapidity of modulation. All thefe inttruments were the fruits of harmony, in the modern fenfe of that word. The deficiences of the old diatonic fcale were now more apparent, and the neceffity of a number of intercalary notes. The finger-board of an organ or harpfichord, running through a feries of octaves, and admitting much more than the accompanyment of one note, pointed out new fources of mufical pleafure ariting trom the fulnefs of the harmoy; and, above all, the practice of choral finging fuggetted the poffibility of a pleafure altogether new. While a certai! number of the choir performed the Cantus or Air of the mulic, it was irkfome to the othera to utter mere founds, fupporting or compofing the harmony of the Castus, without any melody or air in their own parts. It was thought pro bable that the harmonic notes might be fo portioned out among the reft of the choir, that the fucceffion of founds uttered by each individual might alfo conltitute a melody not unpleafant, and perhaps highly grateful. On trial, it was found very practicable. Canons, motets, fugues, and other harmonies, were compofed, where the airs performed by the different parts were not infe rior in beauty to the principal. The notes which conhd not be thrown into this agreeable fucceffion, were left to the organitt, and by him thrown into the bafs.

By all thefe practices, the imperfections of the fcale of fixed founds became every day more fenf:ble, efpe clally in full harmony. Scientific mufic, or the properties of the ratios, now recovered the high eftimation in which they were held by the ancient the orifts; and as the muficians were now very frequently men of letters, chiefly monks, of fober characters and decent manners, mufic again became a refpectable ftuly. The organif was generally a man of fcience, as well as a performer. At the firft revival of learning in Europe, we find mufic ftudied and honoured with degrees in the univerfities, and very foon we have learned and excellent differcations on the principles of the fcience. The inventions of Guido, and the differtations of Salinas, Za:lino, and Xoni, are among the molt valuable publications that are extant on mutic. The inprovements introduced by Guido are founded on a very refined

Suppl. Vol. II. Part II.
examination of the feale; and the temperaments propufed by the other two liave fcarcely been improved by any labours of modern date. Both thefe authors had fludied the Greek writers with great care, and their improvements proceed on a complete knowlelge of the doctrines of Pythagoras and Ptolemy

At latt the celebrated Galileo Galilet put the finifh. Galileodifing hand to the doftrines of thofe arcient phill fophers, vered by he difonvery of the connection which fub'ilts in na- \({ }^{\text {that mufi- }}\) ture between the ratios of numbers and the mufical in canfited tervato of founds. İe difcovered, that thefe numbers ene freexpreis the frequency of the recurring pulfes or un- पinercy of drilations of air which excite in us the fenfation of found. the aëreal He demonftrated that if two ftrings, of the fame mat. in dyater and thickoefs, be ftretched by equal weights, and be tisanged or pinched to as to vibrate, the times of their vibrations will be as their le egths, and the frequeacy or number of ofillations made in a given time will be inverfely as their lengths. The frequancy of the fonorous undulations of the air is therefure inverfely as the length of the thing. When therefore we fay that \(2: 1\) is the ratio of the octave, we mean, that the undulations which produce the upper found of this interval are twice as frequent as thofe which produce its fundamental found. And the ratio \(3: 2\) of the diapente or fifith, indicates, that in the fame time that the ear receives three undulations from the upper found, it receives only two from the lower. Here we have a natural connection, not peculiar to the founds produced by ftrings ; for we are now able to demonfrate, that the form!s proclucel by bells are regulated by the fame law. Nuy, the improvements which have betn made in the feience of motion fince the days of Galileo, fhew us that the undulations of the air in pipes, where the air is the only fubitance moved, is regulated by the fame law. It feems to be the general property of founds which renders them fuiceptible of mufical pitch, of acutencfs, or gravity; and that a certain frequency of the fonorous undulations gives a deterinined and unalterable mufical note. The writer of this article has verified this by many experiments. He finds, that any noife wobatever, if repeated 270 times in a fecond, at equal intervals, produces the note C fol fa ut of the Gindonian gamut. If it be repeated 360 times, it produces the G fol re \(u t\), \&ce. It was imagined, that only certain'regular agi:ations of the air, fuch as are produced by the tremor or vibration of elaftic bodies, are fitted for exciting in us the fenfation of a mufical note. But he found, by the moft diftinct experiments, that any noife whatever will have the fame effect, if repeated with due frequency, uot lefs, than 30 or 40 times in a fecond. Nothing furely can have lefs pretenfion to the name of a mufical fomud than the follitary fuap which a quill makes when drawn from one tooth of a comb to another: but when: the quill is held to the tecth of a wheel, whilling at fuch a rate, that 720 teeth pais under it in a fecond, the found of \(g\) in alt. is heard moft diftinctly; and if the rate of the wheel's motion be va. ried in any proportion, the noife made by the quill is mixed in the moft diftinet manner with the inufical note correfpouding to the frequency of the fraps. Thi Lind? of the original noife determines the kind of the continuous found produced by it, making it har.h and fretful, or finooth and mellow, according as the original noife is abrupt or gradual : but evtu the molt abrupt
noife

Tempera- noife produces a tolerably fmooth found when fufficient. ment of the ly frequent. Nothing can be more abrupt than the
Scale of Mufic. Mulc. fnap juft now mentioned; yet the \(g\) produced by it has the fmoothnefs of a bird's chirrup. An experiment was made, which was lefs promifing of a found than any that can be thought of. A ftop cock was ro conftructed, that it opened and fhut the paffage through a pipe 720 times in a fecond. This apparatus was fitted to the pipe of a conduit leading from the bellows to the wind cheft of an organ. The air was fimply allowed to pals gen. tly along this pipe by the opening of the cock. When this was repented 720 times in a fecond, the found \(g\) in cilt. was moft fmoothly uttered, equal in fweetnefs to a stear female voice. When the frequency was reduced to 360 , the found was that of a clear but rather harfn man's voice. The cock was now altered in fuch a manner, that it never thut the hole entirely, but left about one third of it open. When this was repeated 720 times in a fecond, the found was uncommonly finooth and fivect. When reduced to 3 too, the found was more mellow than any man's voice at the fame pitch. Various changes were made in the form of the cock, with the intention of rendering the primitive noife more atalogous to that prodnced by a vibrating ftring. Sounds were produced which were pleafant in the ex. treme. 'The intelligent reader will fee here an opening made to great additions to practical mulic, and the means of prodncing mufical founds, of which we have at prefent fcarcely any conception; and this manner of producing them is attended with the peculiar advan. tage, that an inftrument fo conftructed can never go out of tune in the fmalleft degree. But of this enough a: prefent.

This difcovery of Galileo's completed the l'ythagorean theories, by fupplying the only thing wanted for procuring confidence in them. We now fee that the mufic of founds depends on principles as certain and as plain as the elements of Euclid, and that every thing relating to the fcale of mufic is attainable by mathematics. It is very true that we do not perceive the ratio \(3: 2\) in the diapente. as having any relation to the numbers 3 and 2. But we perceive the fwectnefs of found which characterifes this concord. This is uncoubtedly the perception of a certain phyfical fact involving this ratio, as much as the fweetnefs on our tongue is the perception of a certain manner of acting of the particles of fugar during their diffolntion in the faliva.

The pleafure arifing from certain confonances, fuch as do fol, is not more diftinctly perceived than is the difagreeable feeling which other confonancts produce, fuch as do re; and it was a fair field of difyuiftion to difcover why the one pleafed and the other difpleafed. We cannot fay that this queftion has been completely decided. It has been afcribed to the coincidence of vibrations. In the oftave, every fecond vibration of the treble note may be made to coincide with cvery vibra. tion of the bafs. But the pleafure arifing from the different conforlances does by no means follow the proportions of thofe coincidences of vibrations; for when two notes are infinitely near to the fate which would produce a complete coincidence, the afual coincidence is then exceedingly rare; and yet we know that fuch found yield very fine harmony. In tuniug any concord, when the two notes are very difcordaut, the coinciding vibrations recur very frequently; and as we ap-
proach nearer and nearer to perfect concord, thefe coin. Tempera. cidences become rarer and rarer; and if it be infinitely \({ }^{\mathrm{ns}}\) enc of th near to perfect concord, the coincidences of vibration will be infinitely diftant fiom each other. This, and many orher irrefiagable arguments, demonftrate that coalefcence of found, which makes the pleafing harmony of a fifth, frir example, does not arife from the coincidence of vibrations; and the only thing which we can demonftrate to obtain in all the cales where we enjoy this pleafure, is a certain arrangement of the component pulfes, and a certain law of fucceffion of the diflocations or intervals between the non-comeiding pulfes. We are perfectly able to demonftrate that when, by continualiy ferewing up one of, the notes of a confonance, we render the real coincidence of pulfes lefs frequent; the diflocations, or deviations from perfeet coincidence, approach nearer and nearer to a certain defincable law of fucceffion ; and that this law ob. tains completely, when the perfect ratio of the duration of the pulle is attained, although perhaps at that time not one pulfe of the one found coincides with a pulfe of the other. Suppofe two organ pipes, fonnding the note C fol fa ut, at the difance of ten feet from each other, and that their pulfes begin and end at the fame inftants, making the mot perfect coincidence of pulfes-there is no doubt but that there will be the molt perfect harmony; and we learn by experience that this harmony is perfectly the fame, from whatever part of the room we hear it. This is an unqueftionable fact. A perion fituated exactly in the middle between them will receive coincideut pullies. But let him approach one foot nearer to one of the pipes, it is now demonftrable that the pulfes, at their arrival at his ear, will be the moft diftant from coincidence that is pof. fible; for every pulfe of one pipe will bifect the pulfe from the other: but the law of fucceffion of the deviations from coincidence will then obtain in the mof perfect manner. A mufical found is the fenfation of a certain form of the aerial undulation which agitates the auditory organ. The perception of larmonious found is the fenfation produced by another definite form of the agitation. This is the compofition of two other agitations; but it is the compound axitation only that affects the ear, and it is its form or kind which determines the fenfation, making it pleafanc or unpleafant.

Our knowledge of mechanics enables is to deferibe Ience a. this form, and every circumblance in which one agita-rafes the tion can differ from another, and to difeover genetal great ufed features or circum tances of refemblance, which, in fact, mathemaaccompany all perceptions of tharmony. We are furely \({ }^{t}\) intitled to fay that thefe circumflanees are fure tefts of hamony; and that when we have enfured their pre. fence, we have enfured the hearitig of harmony in the adjufted founds. ive can even go tarther in tome cafes: We can explain fome appearances which accompany imporfeet harmony, and plerceive the connection between certain dittinct refults of imperfect coincidences, and the magnitude of the deviations from perfect harmony which are then heard. Thus, we can make nfe of thefe phemomena, in order to afcertain and meafure thofe deviations; and if any rules of temperament fhould require a certain determinate deviation trom perfeet harmony in the tuning of an inftrument, we can fecure the appearance of that phenomenon which correfponds to the deviation, and thus can produce the precife tempe-
rament fucgeited by our rules. We can, for example, defroy the perfect harntony of the fifth Cg , and flatten the note \(g\) till it deviates from a perfect fifth in the exact ratio of 320 to 32 I , which the muficians call the one-fourth of a comma. The moft exquifite ear for melody is almof infentible of a deviation four times greater than this; and yet a perion who has uo mulfcal ear at all, can execute this temperament by the rules of harmony without the error of the fortieth part of a comma.

For this moit valuable piece of knowledge we are indebred to the late Dr Robert Smith of Cambridje, a very eminent geometer and philofopher, and a grod judge of mulic, and very pleafing pertormer on the organ and harpfichord. This gentleman, ili lis Differtation on the Prirciples of Harmonica, publifhed for the firf tire in 1740 , has paid particular attention to a phenomenon in coexiftent founds, called a beating. This is an alternate enforcement and diminution of the ltrengti? of found, fomething like what is called a clofe fiake, but differing from it in havirg no variation in the pitch of the founds. It is a fort of undulation of the found, in which it becomes alternately louder and fainter. It may be often perceived in the fonnd of bells and mufical glafies, and alfo in the founds of particular firings. It is prodaced in this way: Suppofe two milfons quite perfect ; the vibrations of each are either pelfectly coincident, or each pulfe of one fomend is interpofed in the fame fituation between each pulle of the other. In either cale they fucceed each other with fuch rapidity, that we cannot perceive them, and the whole appears an uniform found. But fuppofe that one of the iounds has 240 pulfes in a fecond, which is the undulation that is produced in a pipe of 24 inches long ; fuppofe that the other pipe is only 23 inches and \(\frac{7}{\text { rot ths long. It }}\) will give 243 pulfes in a fecond. Therefore the 1 f, the 8oth, the \(160 t h\), and the 24 cth pulfe of the firft pipe will coincide with the 1 ft , the 811 t, the 162 d , and the 243 d pulfe of the other. In the inftants of coincidence, the agitation produced by one pulfe is increafed by that produced by the other. The commencement of the next two pulfes is fenarated a little, and that of the next is feparated itill more, and fo on continually: the diflocations of the pulfes, or their deviations from perfect coincidence, continually increafing, till we come to the 40th pulie of the one pipe, which will commence in the midale of the 41 lt pulfe of the other pipe ; and the pulfes will now bifect each other, fo that the agitations of the one will counteract or weaken thofe of the other. Thus the compounded found will be ftronger at the coincidences of the pulfes, and fainter when they bifect each other. 'This reinforcement of found will therefore recur thrice in every fecond. The frequency of the pulfes are in the ratio of a comma, or 81:80. Therefore this conftitutes an unifon imperfect by a conma. If therefore any circumftance fhould require that thefe two pulfes fhould form an unifon imperfect by a comma, we have only to alter one of the pipes, till the two, when founded together, beat thrice in a fecond. Nothing can be plainer than this. Now let us fuppofe a third pipe tuned an exact fifth to the firft of thefe two. There will be no beating oblervable; becaufe the recurrence of coincident pulfes is fo rapid as to appear a continued found. They recur at every fecond vibration of the bafs, or 120 times in a fecond.

But now, inftead of founding the third pipe along with the firft, let it found along with the fecond. Dr Smith demonftrates, that they will beat in the fame manner as the unifons did, but thrice as often, or nine times in a fecond. When therefore the fifth \(\mathrm{C}_{3}\) bears nine rimes in a fecond, we know that it is too fharp or too flat (very nearly) by a comma.

Dr smith thew, in tike manner, what number of beats are made in any given time by any concord, im- apllies perfect or tempered in any figut dearee lV humet he perfect or tempered, in any afigned cegree. TVe hum- he icience
bly think that the moft inattontive peifon mutt be fen- and pracfible of the very great value of tinis difoovery. TVe are fice with obliged to call it bis difcovery. Merfennus, indeed, had great effect. taken particular notice of this urdulation of imperfect pulies wE confonances, and had offered conjecturea as to their caufe; conjectnres not unworthy of his great inge. nuity. Mr Sanveur alfo takes a ftill more particular notice of this phenomenon*, and makes a moft ingenions ufe of it for the folution of a very important mulu cad. Par. fical prob!'tm ; namely, to dotermine the precife num-170i,1702, ber of pulfes which produce any given note of the ga. 1707 , and imut. His method is indeed operofe and delicate, even \({ }^{1713 .}\) as fimplified and in!proved by Dr Sinith. The following may be fubstituted for it, funnded on the mechanifm of founding cords. Let a violin, guitar, or any fuch inftrument, be fixed up againft a wall, with the fingerboard downward, and in luch a inanner, that a viohin ftring, ftrained by a weight, may prefs on the bridge, but hanger free of the lower end of the finger-board. Let another ftring be ftrained by one of the tuning pins till it be in unifon with fome note (fuppole C) of the hard. fichord. Then hang weights on the other ftring, till, upon drawing the bow acrofs both frings, at a finall diftance betow the bridge, they are perfect unifons, withour the imalleft beating or undulation, and taking care that the preflure of the bow on that fring which is tuned by the pin be fo moderate as not to affect its tenfion Cenlibly. Note cxactly the weight that is now appended to it. Now increafe this weight in the proportion of the fquare of 80 to the fquare of 81 ; that is, add to it its ath part vary niarly. Nuw draw the bow again acrofs the ftrings with the fame caution as before. The fonnds will now beat remakably; for the vibrations of the loaded ftring are now accelerated in the proportion of 80 to 8 s . Count the number of undulations made in fome finall number (fuppofe io) of feconds. This will give the number of beats in a fecond; 80 times this number are the ingle pulfes of the loweft found; and 8 i times the fame number gives the pulfes of the highett of thefe imperfect unifons.

If this experiment be tried for the C in the niddale of our harpfichords, it will be found to contain 240 pulfes very nearly; for the ftrings will beat thrice in a fecond. The beats are belt counted by means of a little ball hung to a thread, and made to ketp time with the beats.

Here, then, is a phenomenon of the moft eafy ob-They af. fervation, and requiring no fkill in mufic, by which the ard exaof pitch of any found, and the imperfection of any con meafures cord, may be difcovered with the utmolt precifion; and of the tenby this method may concordant founds be produced, peranent which are abfolutely perfcet in their harmony, or ha-cords, ving any degree of imperfection or temperament that we pleafe. An inftrument may generally be tuned to perfect harmony, in fume of its notes, without any dif-

\section*{T E M}

Tenipera. ficulty, as we fee done by every blind Cronder. But i ment of the Scale of Mufic. a certain determinate degree of imperfection, different perhaps in the different concords, be neceffary for the proper performance of mufical compofitions on inftul- ments of fixed founds, fuch as thofe of the organ or harpfichord kind, we do not fee how it can be dilputed, that Dr Smith' \(\varepsilon\) theory of the beating of imperfect confonances is one of the moft inportant difcoveries, both for the practice and the fcience of mufic, that have been offered to the public. We are inclined to confider it as the mo!t important that has been made fince the days of Galileo. The only rivals are Dr Brook Taylor's mechanical demonftration of the vibrations of an elaftic cord, and its companion, and of the unctulations of the air in an organ pipe, and the beautiful invetigations of Daniel Bernoulli of the harmonic founds which frequently accompany the fundamental note. The mulical theory of Rameau we confider as a mere whin, not founded in any natural law; and the theory of the grave harmonics by Tartini or Romien is included in D1 Smith's theory of the beating of imperfect confonances. This theory enables us to execute any harmonic fyftem of \(t \in m p e r a m e n t\) with precilion, and certainty, and eafe, and to decide on its merit when done.

We are thelefore furprifed to fee this work of Dr Smith greatly undervalued, by a moft ingenious gentleman in the Philofophical Tranfactions for 1800 , and called a large and oblcure volume, which leaves the matter juft as it was, and its refults ufclefs and impracticable. We are forry to fee this; becaufe we have great expectations from the future labours of this gentleman in the field of harmonics, and lis late work is rich in refined and valuable matter. We prefume humbly to recommend to him attention to his own admonitions to a very young and ingenious gentleman, who, he thiuks, proceeded too far in animadverting on the writings of Newton, Barrow, and other eminent mathematicians. We alfo beg his leave to obferve, that Dr Smith's application of his theory may be very erroneous (we do not fay that it is perfect), in confequence of his notion of the proportional effects produced on the general harmony by equal temperaments of the different concords. But the theory is untouched by this improper ufe, and ftands as firmly as iny propofition in Euclid's Elements. We are bound to add to thefe remarks, that we have oftener than once heard mufic performed on the harpfichord defcribed in the fecond edition of Dr Smith's Harmonics, both before it was fent liome by the inaker (the firtt in his profetion), and afterwards by the author hinifelf, who was a very pleafing performer, and we thought its harmony the fineft we ever leard. Mr Watt, the celebrated engineer, and not lefs eminent philofopher, bult a liandfome organ for a public fociety, and, wirhout the leaft ear or relith for mufic, tuned three octavis of the open diapafon by one of \(12 r\) Smith's tables of beats, with the help of a variable pendulum. Signior Doria, leader of the Ediuburgli concert, tried it in prefence of the writer of this article, and frie, " Belliffima - fopra rodo belliffima!" Signior Doria attempted to fing along with it, but would not continue, declaning it impoffible, becaufe the organ was ill tuned. 'Tlie tinth was, that, on the major key of E \(b\), the tuning was excetdingly different from what ine was accuftomed to, and the would not try another tey. We mention this particular, to thew how accu-
rately Mr Watt h
ment he intended.

This theory is valuable, therefore, by giving us the managenient of a phenomenon intimately connected with harmony, and affording us precife and practicable meafures of all deviations from it. It bids fair, for this reafon, to give us a method of executing any fyftem of temoerament which we may find reafon to piefer. ry. By its affiffance, we are able to afcertain with certainty and precifion the true mempered fcale of mufic, which eluded all the attempts of the ingenious Greeks; and we determine it in a way fuited to the favourite mufic of indern times, of which almoft all the exceltuncies and pleafures are derived from harmony. We do not fay that this total irnovation in the principle of mufical pleafure is unexceptionable; we rather think it very defective, believing that the thrilling pleafures of mufic depend more upon the melody or air. We appeal even to inftructed muficians, whether the heart and affections are not more affected (and with much more difinet variety of emotion) by a fine melody, fupported, but not obferved, by harmonies judicioully choien? It appears to us that the effect of harmony, always filled up, is more uniformly the fame, and lefs touching to the foul, than fome fimple air fung or played by a performer of fenfibility and powers of utterance. We do not wonder, then, that the ingenious Greeks deduced all their rules from this department of mufic, nor at their being fo fatisfied with the pleafures which it yielded, that they were not folicitons of the additional fupport of harmony. We fee that melody has fuffered by the change in every country. There is no Scotchman, Inifhman, Pole, or Ruflian, who does not lament that the fkill in compofing heart-tonching airs is degenerated in his refpective nation ; and all admire the productions of their mufe of "the days that are patt." They are "pleafant and mournful to the foul."

But we fill prefer the larmorical method of forming the fcale, on account of its precifion and facility : and we prefer the theory of beate, lecaufe it alfo gives us the moft fatisfaciory fcale of melody; and this, not by repeated corrections and recorrections, but by a direct procefs. By a table of beats, every note may be fixed at once, and we have no occafion to return to it and try new combinations; for the beatings of the different concords to oure bafs being once determined, every beating of any one note with any other is alfo fixed.

We therefore requeft the reader's patient attention to the experiment which we have now to propufe. This tal exie experinent is beft made with two organ pipes equally ment. voiced, and pitched to the note C in the middle of our harpfichords. Let one of them at leaft be a ftopped pipe, its pifton being made extremely accurate, and at the fame time eafily moved along the pipe. Let the Mank of it be divided into 240 equal parts. The advantage of this form of the experiment is, that the founds can be continued, with perfect uniformity, for any length of time, if the bellows be properly conltruczed. In default of this apparatus, the experiment may be made with two harplichord wires in perfect unifon, and touched by a wheel rubbed with rofin intlead of a bow, in the way the founds of the vielle or hurdjgurdy are produced. This contrivance allo will continue the founds uniformly at pleafure. A fcale of \(2 \neq 0\) parts
muft

\(\qquad\) 1


ipera. mut be adapted to one ftring, and numbered from that of the end of the thing where the whicel or bow is applied to it. Great care mult be taken that the fifting of the moveable bridge do not alter the flain on the wire. iWe may even do pretty well with a bow in place of the whet; but the found cannor be long held on in any pirch. In deferiting the phenomena, we flall 12 ther ab) de by the Atring, becaufe the numbers of the feale, or leneth of the founding part of the wire, correifund, in fact, much more exactly with the founds. The deviations of the feale of the pipe do not in the leaft affect the conclufions we mean to draw, but would require to be mientioned in every inflance, which wonld greatly complicate the procefs.
Having brought the two open ftrings into perfect unifon, fo that no beating whatever is obferved in the confonance, flide the moveable bricge flowly along the fring while the whet is turning, begirning the mution from the end moft remote f:om the bow. All the notes of the octare, and all \(\%\) inds of concords and difcords, will be heard; each of the concords being preceded and followed ly a rufliniz beating, and that fucceeded by 2 grating difoord. After this general view of the whole, let the particular harmonious flations of the bridge be more carefully examined as fullows.
I. Shift the moveable bridge to the divifion 120 . If gently fhifuing the bridge to either fide, this beating becomes more or lefs rapid; and when we have found in which direction the brijge mult be mored, we can then nide it along till the beating ceafe entirely, and the founds coalefce into one found. We can fcarcely hear the treble or octave note as difinguifhable from the bafs or fundamental afforded by the othes fring. If the notes are duly proportioned in loudnefs, we cannot hear the two as dititinct founds, but a note feemingly the fame with the fundamental, only more brilliant. ( \(N \mathrm{~B}\). It would be a great improvement of the apparatus to have a micrometer ferew for producing thofe fmall motions of the bridge.)

Having thus produced a fine oftave, we can now perceive that, as we continue to fhift the bridge from its proper place, in either direction, the beating becomes more and more rapid, changes to a violent ratthing flutter, and then degenerates into a moft difagreeable jar. This plenomenon is obferved in the deviation of every concord whatever from perfect harmony, and muft be carefulty kept in remembrance.
l'efore we quit this concord, the octave, produced by the bifection of the pipe or ftring, we muft obferve, that, with refyect to ourfelves, the octave \(c \bar{c}\) mult beat almoft twice in a fecond, before we can obferve clearly any mis tune in it, ty founding the notes in fucce?on, or as fteps in the fcale of melody. We never knew any ear fo nice as to cifcover a mis-tuning 'when it beats but once in three feconds. We think ourfelves iutitled therefore to fay, that we are infenfible of a temperament in melody amounting to one third of a comma; and we never knew a perfon fenfible of a temperament half this bulk

When the imperfection of the retave is clearly fen. fible by founding the notes in fueceffion, it is extremely difagreeable, feeling like a ftruggle or endeavour to at-
tain a certain note, and a failure in the attempt. This Temperafeems owing to the familiar fimilarity of octaves, in the ment of the. habitual talking and finging of men and women together. 13ut when the notes are founded together, although we are not much more fenfible of the imperfection of the laarmony di:cctly, as a failure in the fiveetnets of the concord, we are very fenfible of this phennmenon of beating; and any perfon who can diftinguith a weak found from a tronger one, can eafily perceive, in thio indirect manier, any fraction of a comma, however minute. This makes the tuning by harmony much more exact than by melody alone. It is alfo much more accommodated to the genius of modern mufic. The ancients had favourite palfages, which were frequently introduced into their airs, and they were folicitous to have thefe in good tune. It appears from paffages in the writings of Galen, that different performers excelled chiefly in their fkill in making thofe occafional temperaments which their musc required. Our mufic is much more itrict, by reafon of our harmonic accompany inents, which are an abominable noife when mis-tuned in a degree, which would liave paffed with the ancients for very good melody. A rittoxenus fays, that the ear carnot difcover the error of a comma. This would now be intolerable.

But another advantage attends our method. Welt gives the obtain, by its affitance, the moft perfect fcale of melo. beft fcale dy ; perfect in a degite attainable only by chance by for melocy, the Greeks. This is now to be our bufinefs to unfold.

1I. Set the moveable bridge at 158 , and found the 48 two ftrings. They will beat very difagrecably, being tion of (hoplainly out of tune. Slide it gradually toward 165 , Vin. and the beats will grow flower and fower; will change to a gentle and not unpleafart undulation; and at latt, when the bridge is at 160 , will vanifh entirely, and the two founds will coalefce into one fweet concord, in which neither of the component founds can be diflinguifhed. If the found given by the fhort ftring be now examined as a ftep in the fcale of melody, it will be found a fifth to the found of the long flring or fundamental note, perfectly fatisfactory to the niceft ear. Thus one ftep of the feale has becn afcertained.
III. Slide the bridge fowly along the ftring. The beating will recommence, will become a flutter, and then a jarring noife; and will again change to an angıy flutter, beating about cight times in a fecond, when the bridge flands at 169 nearly. Purking it tilll on, but very flowly, the futter will become aı indiftine jarri: g noife; which, by continuing the motion, will again become a flutter, or beat about fix in the fecond. The bridge is now about 171 .
IV. Still contiruing the mation, the flutter becomes \(D=40\) erninaa jarring noife, which continues till the bridge is neartuw of the to) 180, when the rapid futter will again te heard, \(4^{\mathrm{h}} \mathrm{h}\). This will become flower and flower as we appronich to 180; and when the bridge reaches that point, all beating vanifhes, and we liavt a toft and agıetable concord, but far infenor to the foemer concord in that cheering fweetnefs which charafenifes the fifith. When this mure is compared with that of the fundanental Atring as a flep in the tcale of inclody, it is found to correfpond to the note fa, or the fowth itep in che fcale, and in that employnient to give complete fatisfaction to the car.
V. Still advancing the moveable bridge roward tixe

Tempera- nut, we fhall hear the beatings return again; and after ment of the fluttering and degererating to a jarring noife, by a very Scale if Mufic.

50 Determina. tion of the Hid.

5 r.
hear again the fame beatings, which, in the immediat vicinity to \(19^{2}\), have a petvifh fretful expreftion, inflead of the argry wafpifh expreflion before mentioned. When the bridge has paffed that liturtion which produces only grating difcordance, we licar the beatings again, and they become fiower, and ceafe altogether when the bridge arrives at \(2 c 0\). Here we have another confonance, which muft be called a concord, becaufe it is rather agreeable than otherw:fe, but ftrongly marked by a mournful melancholy in the expriffion. In the feale of melody, it forms the third ftep in thofe airs which exprefs lantentation or grief. It is called the minor third, to diftinguifh it from the laft enlivening concord, which, being a larger interval, is called the major lbird.
32. Deternina.
tiol2 of the 3 d . - It is well known, that thefe two thirds give the difinguifhing characters to the only two modes of melodious compofition that are admitted into moriern mulic.
53. The feries containing the major third is called the major, and that containing the minor third is called the minor mode. It is worthy of remark, that the faratical preachers, in their conventicles and field fermons, affeca this mode in their harangues, which are often diftinctly mufical, modulating entirely by mufical intervals, and keeping the whole of their chaunt in fubordination to a fundamental or key note. This is not unnatural, when we conficer the general forpe of their difcourfes, namely, to infpire melancholy and humiliating thoughts, awakening forrow, and the like. It is not foc caly to account tor the ufual whine of a beggar, who generally craves charity in the major third: This is the cafe, at leaft, in the northern parte of this iffand.

If we continue to flift the bridge thill nearer to the end of the Atring, we fhall hear nothing but a fucceffion of vile difeordant noifes, fomewhat lefs offenfive when the bridge is about the divifions 213 and 216 , but even there very unpleafant.
54. Determina. zion of the edi, Let thereore change onr manner of pro eth. which will give us the plealing concord of the fifth. Inftead of pulthing it from that place toward the nut, let it be moved toward the wheel or bow. Without repeating what we have faid of the reanpearance of the beatings, their acceleration, atid their degenerating into a jarring difcord, to be afterwards fucceeded by another beating, \&c. \&c. we flall only obferve, that when we place the bridge at 150 , we have no beatings, and we hear a confonance, which is in a flight degree pleafant, and may therefore be called a concord. It has the other marks of a concord which we have been making fo much ufe of ; for the beatings recommence when we fhift the bridge to either fide of 150 . This note makes the fixth ftep in the defeending teale of mournful me-
lody; that is, when we are paffing from the acute to Tempers. the graver notes, with the intention of putting an em- menn of the phafis on the third and the fundamental. Although sale of not eminent as a concord with the fundamental alone, Muric, it has a moft pleafing effect when liftened to in fubordination to the whole feries, or when founded along with other proper accompanyments of the fundamental.

V1II. Placing the bridge at 144 , we obtain another Deteiminas. very pleafing concord, difering in ite expreffion fromtion of the any of the foregoing. We find it difficult to exprefs Vith. its character. It is greatly inferior to the lifth in fweetnefs, and to the major third in gziety, but feems to pof \({ }^{\text {rcfer}}\), in a lowet degree, both of thofe qualities. In the fcale of cheerful metody, it is the fixth note, which we have dıllinguifhed by the tyllable la. It is alfo ufed evell in nonurntul meloty, when we are afcending, with the intention of clofing with the octave.

In fhifting the bridge from \(14+\) to 120 , we obtain jcale of the nothing but difcordant, or at leatt difagreeable coufo-upper ocnances. And, latlly, if we move the bridge beyond tave. 120, to divifions which are refpectively the halves of thofe numbers which produced the concords already treated of, we obtain the fame fteps in the fcale of the upper octave. Thus if the bridge be at 80 , we have the fifth to the octave note, or twelfth to the fundamental. If it be at 60 , we obtain the double octave, \&c. \&c. \& \(\varepsilon\).

We have perhaps been rafh in affixing certain moral haratero or fentimental characters to certain concords ; for we f fhe difhave feen inflances of perfons who gave them different eient condenominations; but thefe were never contradictory to \({ }^{\text {cord. }}\) ours, but always expreffed fome fentiment allhed to that which we have affigned. We never met with an inflance of a perfon capable of a little difcrininating reflection, who did not acknowledge a manifelt fentimental diffinction among the different concords which could not be confounded. We doukt not but that the Gieeks, a people of exquifite ferfibility to all the beauties of tatte and fentiment, paid much attention to thefe claracters, and availed themfelves of them in their compofitions. W'e do not think it at all unlikely, that greater effects have been produced by their mufic, which was Itudied with this exprefs view, than have ever been produced by the modern mufic, with all the addation of harmony. We have allowed too great a flare of our attention to mere harmony. Our great authors are much lefs folicitous to compofe an enchanting air, than to conftruct a full fcore of rich and well conducted harmony. We do rot profer's to be nice judges in inulical compofition, but we may tell what we ourfelves experience. We find our minds worked up by a continuance of fine harmuny into a general fenfibility ; into a trame of mind which would prepare and fit us for receiving ftrong impreffions of moral fentiment, if thefe were diftinctly made. But we have feldom felt any diftinct emotions excited by mere infrumental mufic. And when the harmonies have been merely to fupport the performance of a voice, the words have been cither fo frittered by mulical divifions, as to become in fome meafure ludicrous - or have been fo indiltinet, and nade fo trifling a part of the mulic, that there was nothing done to give a particular flape to the moral impreffion on our mind. We have gencrally been itrongly affected by fome of the anthems which were in vogue in former times ; and we think that we perceived the caufe of this difference: There was a great fimplicity in the voice parts: the fyllables were not drawled out into long nuufical phrafes, but pronounced nearly according to their proper quantities; fo that the fentiment of the fpeaker was expreffed with all the force of good declamation, and the harmony of the accompanyment then ftrengthened the appropriate effect of the melody. We mean not to offer thefe obfervations as of much authority, but merely to mention fome faets, and toraffign what we felt to be their caufes, in order to promote, in fome degree, however infiguificant, the cultivation of mufical fcience. With this view, we venture to fay, that fome of the beft compofitions of Knapp of York uniformly affeet us more than the more admired anthems of Bird and Tallis. A cadence, which Knapp gives almont entirely to the melody, is laboused by Bird or Tallis with all the rules of art ; and you have its claa. racters of perfect or imperfect, full or difappointed, cadences, and fuch an apparatus of preparation and refo. lution of difcords, that you forefee it at the diftance of feveral bars, and then the part affigned to the voice feems a very trifle, and merely to fill up a blank in the harmony. Such compofitions fmell of the lamp, and fail of their purpofe, that of charming the learned ear. But enongh of this digreffion.
'Thus have we found a natura! relation between certain founds ftrongly inarked by very precife characters. The concordance of found is marked by the abfence of all undulation, and the deviatione from this harmony are Shewn to be ineafurable by the frequency of thofe undulations. We have alfo found, that the notes, which are thus hatmonious along with the fundanental, are fteps in the fcalc of natural mufic (for we muft acknowledge melody to be the primitive mulic, dictated by nature). We have got the notes do-mi, fu, fol, la-clo, afcertained in a way that can no longer be mif. taken.

Let ns now examine what phyfical or mechanical rclations thefe founds ftand into each other. Our monochord gives us the lengths of the ftings; and the difcovery of Galileo fhews us, that thefe are alio the dulations of the ä̈real pulfes which produce the fenfations of mufical notes. Their ratios may therefore be truly called the ratios of the founds. Now we fee that the ftrings which produce the founds do fol are 240 and 160 . Thefe are in the ratio of 3 to 2 . In this man. ner we may ftate all the ratios obferved in our expeniment, riz.
Do: mi have the ratio of 240 to 192 , orof 5 to 4
Do:fa 240:180 4:3
\(D_{0}: \int_{01} \quad 240: 160 \quad 3: 2\)
\(D_{0}: l a \quad 240: 144 \quad 5: 3\)
\(M_{i}:\) fol \(\quad 192: 160 \quad 6: 5,=d_{0}: m i^{3}\)
\(F_{t a}:\) fol
180: 160 9:8
Sol:la \(\quad 160: 144 \quad 10: 9\)
Mi:fa 192:180 16:15
Here we get the fight of all the ratios which the in genious and unwearied Speculations of the Greek mathematicians enlifted into the fervice of mufic, without being able to give a good reafon why. The ratio \(5: 4\), which their faftidious metaphyficians rejeted, and which others wifhed to introduce from motives of mere neceffity to fill up a blank, is pointed out to us by one of the fineft concords. The interval between the fourth and the fifth is, very forlunately, a ftep of the fcale.

The next ftep fol la is more important. For the ear
for melody would have been very well fatisfied with an Tempera.: interval equal to fa fol. or \(9: 8\); but if the innveable mor of th tridge be fet at the divifion \(142 \frac{2}{\frac{2}{6}}\), correfponding to S.alc of fuch a ftep, we fould lave a very uffenfive flutter. ing. It is reaforiable therefore to conclude, from ana- 60 logy, that the interval fol la does not correfpond on Obfervathe ratio \(9: 8\); and that \(10: 9\), which is, at leaft, the fep , is equally fatifactory to the ear, is the proper ftep, even /a. ia the fale of melody. If we confider what may be caliced the fuale of harmony, there is no room left fur doubt. T'o enjoy the greatef poffible pleafure of harmony, we unt not only t-ke each note as it is rclated to the furdamental, but alfo as it is related to other notes of the fcale. It may chance to be convenient to afiume, for the fundamental of our occalional feale if modulation, the fring of the lyre which is tunted as \(f_{z}\) to its proper fundamental ; ot it may increafe the harmony (and we know that it does), if we accompany the note do with both of the notes \(f_{a}\) and \(/ a\). 'To have the fine concord of the major third, it is seceffary that the interval \(f_{2}\) la be equivalent to the ratio \(5: 4\). Now \(f_{2}\) is 180 , and \(5: 4=180: 144\). Therefore, by making the flep fol la equal to \(9: 8\), we thould lofe this agree. able concord, and get difcord in its place.

And thus is evinced, in oppofition to Arilloxelus, the propricty of having both a major and a minor in"e. the firt! exprefled by \(9: 8\), and the latt by \(10: 5\). The difference between thefe fleps is the ratio \(\$ 1_{1}: 80\), called a comma by the Greck theoritts.

We fill want two feps of the fale, and two fourds Detominaor notes correfpendirg to them, namely re and \(\sqrt{t}\); and in of the we with to ellablith then on the fame authority with Vllth. the reth. We fee that this cannut be dune by a conscordance with the fundamenta! do. The car fufficicntly informs us that the fiens do re and !a fi muit be tones, and not femitones, like ria fa. The fenfible fimilarity of the two terrachords do re mi fa and foll hid \(f\) d , alfo teaches us that the ftep \(f_{2}\) do fhould be a Cemitone like ini fu. This feems to be all that mere melody can teach us. But we have little information whether we Chall make la f: a major or a minor tone. If we cupy the tetrachord do re mi fa cisactly, we fhall make the Aep \(\sqrt{i}\) do like mi ja, and ecuivalent to the ratio \(16: 15\) This requires tlie moveable bridge to be placed at \(12 x\). The found produced by this divifion is perfecly fatisfactory to the car as a tep of the fcale of melody. Moreover, our fatisfaction is not confined to the comparifon of it with the note do, into which we flide by this gentle flep. It nakes agreable melody when ufed as the third to the note fol. If we examise it mathe. matically, we find it a perfect major third to fo!'; for fil requires the 1 Coth divition. Now \(106: 120=5: 4\), which is the ratio of the pulfes of a major third. All thefe reafons feem cnough to make us adopt this determination of the mote \(\int 1\).

It remains to confider how we fall divide the inter. Determinsa val \(d o \rightarrow m i\). It is a perfect majol third. So is fa la, tion of the and \(f o\) is folfi. But in the firft of thefe two, we havelld. feen that it muft be compofed of a major tone with a minor tonc above it; and in the fecond we have a minor tone followed by a inajor tone above. We are left uncertain therefore whether do re thall refemble fa la or \(\int 01 f_{8}\) in the pofition of its two parts. Ariftoxenus and his followers declared the ear to be equally pleafed with both. Ptolemy's Syfema Diatonicum Intenfum makes do re a major tone, and other fyftems make it a minor. E.

\section*{T E M}
.Fempera - ven in modern times it has been confidered as uncertain; ment if the and the only reafon which we have to ffier for a preferScale of Mufic. of the thediference is a mealure of the ratio between them. mufical in. Therefore 30103 is the meafure of the mufical interval eervals. ence of the major tone for the firf Atep is, that, fo far 2 s we can judge by our onn feelings, the founds in the relation of \(9: 8\) are lefs difcordant than founds in the relation of \(10: 9\), and becaufe all the other fteps have been determined by mears of concords with the key. We refer, for a more particular examination of the principles on which thefe arrangements are valued, to Dr Smith's Harmonics, Prop. I where he fhews how one is preferable to another, in proportion as it affords a greater number of perfect concords among the neighbouring notes, which is the favourite objeet in all modern mufic. Upon this principle our arrangement is by far the beft, becaufe it admits five more concords in the octave than the other. But we have confidered the fubjeet in a different manner, merely to avail ourfelves of the phenomenon by which all the feps, except one, feem to be naturally afcertained, and by which the connection between harmony and melody feems to be pointed out to us.

It will be convenient to reprefent the tones major and minor and the hemitone, by the fymbols I, \(t\), and H. Alfo to mark the notes by the Roman numerals, or by cyphers, according as they are the extremes of major or minor intervals. By this notation the octave may be reprefented thus:


The reader will remark, that the primary divifions which we affigned to the reprefentation of an octave in fig. ' 1 . by the circumference of a circle, are in conformity to this Ptolemaic partition of the octave. He will alfo be fenfible, that the divifion into five equal mean tones and two equal hemitones, which is expreffed by the dotted lines, agreeing with the Ptolemaic divifion only at C and E, is effected by bifecting the arch CE; and therefore the deviation of the found fubftituted for the Ptolemaic \(D\) is half the difference of \(C D\) and 1\() E\), that is, half a comma. The deviations therefore at \(F\), \(G, A\), and \(B\), are each a quarter of a comma.

It is well known, that if the logarithm of the length of one ftring be fubtracted from that of another, the called the octave, and then the meafures of the


This is a very convenient circumftance. If we take ouly the four firft figures as integers, and make the
octave confift of 3010 parts, we have a fiale more exact Temperathan the niceft harmony requires. The circumference ment f the of a circle may be fo divided into 30 r degrees, and the moveable circle have a nonius, fubdividing each into 10. Or it may be divided into 55,8 degrees, each of which will be a comma. Either of thefe divifions will make it a moft convenient inftrument for expeditioully examining all temperaments of the fcale that can be propofed. Or a ftraight line may be fo divided, and repeated thrice. Then a fliding ruler, divided in the fame manner, and applied to it, will anfwer the fame purpofe. We thall fee many ufeful employments of thefe inftruments by and by.

Having thus endeavoured to communicate fome plain notion of the formation and fingular nature of that gradation of founds which produces all the pleafures of mufic, and of the manner of obtaining the fteps of this gradation with certainty and precifion, we proceed to confider how thofe mufical paffages may be performed on fuch keyed inftruments as the organs and harpfichords, as they are now conftructed. Thefe inftruments have twelve founds and intervals in every octave, in order that an air may be performed in any pitch; that is, taking any one of the founds as a key note. It is plain that this cannot be done with accuracy; for we have now feen that the interval \(m i f a\) is bigger than half of do re or re mi, \&c. and therefore the intercalary found formerly mentioned to be inferted between C and \(\mathrm{D}, \mathrm{D}\) and E, \&c. will not do indifcriminately for the fharp of the found below and the flat of the found above it. When the tones are reduced to a mean fize, the ear is fcarcely fenfible of the change in melody, and the harmony of the fifths and fourths is not greatly hurt. But when the half notes are inferted, and employed to make up hatmonious intervals, as recommended by Zarlino, the harmony is very coarfe indeed.

But we muft make the reader fenfible of the neceffity of fome temperament, even independent of thofe artificial notes. 'T'herefore

Let the fcholar tune upwards the four Vths \(c g, g \bar{d}\), \(\bar{d} a,-\overline{\bar{e}}\), all perfect, admitting no beating whatever. This is eafily done, either with the organ or the wheel monochord already defcribed. Then tune downwards
the perfect octaves \(\bar{e} \bar{e}, \bar{e} e\). Now examine the IIId \(c e\) which refults from this procefs. If the inftrument be of the pitch hitherto fuppofed (c making 240 pulfes in a fecond), this IIId will be heard beating 15 times in a fecond, which is a difcordance altogether intolerable, the note \(e\) being too harp in the ratio of 81 to 80 , which makes a comma. It is eafily found, by calculation, that \(e\) makes \(303 \frac{3}{4}\) pulfes, inltead of 300 , required for the IIId to \(c\).
\(N\). B. It may not be amifs to inform our readers, that if any concord, whofe perfect ratio is \(\frac{\mathrm{m}}{\mathrm{n}}\) ( m being the greateft term of the fmalleit integers expreffing that ratio), be tempered tharp by the fraction. \(\frac{p}{q}\) of a com ma, and if \(M\) and \(N\) be the pulies made by the acute and grave notes of the concord during any number of feconds, the number \(b\) of beats made in the fame time
by this concord will be \(=\frac{2 q m}{161 p-q}\), or \(\frac{2 q n M}{151 p+q}\);
npera. and if it be tempered flat, then \(b=2 q \frac{m \mathrm{~N}}{}\) ale of \begin{tabular}{l} 
ate of \\
lufic. \\
\hline
\end{tabular} \(\frac{2 q n \mathrm{M}}{161 p-q}\) (Smith's Hirm. 2d edit. p. 82, Scc.)

It is impoffible, therefore, to have perfect Vths and perfect IIlds at the fame time. And it will be found, that the \(3 \mathrm{~d} e \mathrm{~g}\) refulting from this procefs, and the VIth \(c \bar{a}\), are ftill more difcordant, rattling at an intolerable rate. Now the major and minor thirds, alternately fuc eeding each other, form the greateft part of our harmonies ; and the VIth is allo a very frequent accompanyment. It is neceffary therefore to facrifice fomewhat of the perfect harmony of the Vths, in order that we may not be difgufted with the difcord of thofe other harmonies : and it is this mutual accommodation, and not the changes made neceffary by the introduction of intercalary notes, which is properiy called TEmperament. It will greatly affift us in underftanding the effects of the temperaments of the different concords, if we examine all the divifions of the circular reprefentation of the octave and mufical fcale given in fig. I. by placing the index of the moveablecircle on that note of the outer circlc for which we want the proper harmo. nies, or accompanyments, which are either the IIId and Vth, or the 4th and VIth. We fhall thus learn, in the fir \(f\)-place, the deviations of the different perfect notes of the fale from the notes required for this new fundamental; and we muft then ftudy what effect the fame temperament produces on the agreeablenefs of the harmony of different concords having the fame bafs or the fame treble, taking it for granted that the hurt to the harmony of any individual concord is proportional to its temperament.

It is in this delicate department of mufical fcience that we think the great merit of Dr Smith's work confifts. We fee that the deviation from perfeet harmony is always accompanicd with beats, and increafes when they increafe in frequency - whether it increafes in the fame proportion may be a queltion. We think that Dr Smith's determination of the equality of imperfect harmony in his 13 th propofition includes every mathematical or phyfical circumflance that appears to have any concern in it. What relates immediately to our fenfations is, as \(y \in t\), an impenetrable fecret. The theory of beats, as delivered by this author, affords very ealy, thoughl fometimes tedious, methods of meafuring and of enfuring all the varieties which can obtain in the beating of imperfect confonances. It appears to us therefore very unjuft to fay, with the late writer in the Philofophical Tranfactions, that this obfcure volume has left the matter where it found it. The author has given us effeclive principles, although he may have been miftaken in the application; which however we are far from affirming. Our limits will not allow us to give any account of that theory; and indeed our chicf aim in the prefent article is \(t n\) give a method of temperament which requires no fcientific knowledge of the fubject. But we could not think of lofing the opportunity of communicating, by the way, to unlearned perfons, fome more diftinct notions of the fcale of mufical founds, and of its foundation in rature, than fcholars ufually receive from the greater number of mere mufic mafters. The acknowledged connection of the mufical ratios with the pleafures of

Sufpl. Vol. II. Part II.
harmony and melody, has (wc lope) heen employed in Terreeran eafy and not oblcure manner; and the ohenomeua nuent oi the which we have faithfully narrate?, fhew plainly that, by Mufic. diminifhing the rattling undulations of tempered con. \(\underbrace{\text { Numen }}\) cords, we are certain of improving the harmony of our inftruments. We fhall proceed therefore on this prisciple for the ufe of the mere performer, but at the fame time introducing fome very finple deductions from Smith's theory, for which we expect the thanks of ail fuch readers as wifh to fee a little of the reafons on whicls they are to proceed.

The experiment, of which we have juft now given an Method in account, fhews that four confecutive fifths compofe a frastice. greater interval than two octaves and a major third. Yet, in the conftruction of our mufical inftruments of fixed founds, they muft be confidered as of equal extent; fince we have 7 half intervals in the Vth, and 12 in the octave, and four in the IIId, four Vths contain 28, and two octaves contain 24; atd thefe, with the four which compofe a IIId, make alfo 28. It is plain, therefore, that whatever we do with the IIIds, we mult leffen the Vths. If therefore we keep the IIId perfect, we mult leffen each of the Vths by th of a comma; for we learned, by the beating of the imperfect IIId ce, that the wholc excefs of the four Vths was a comma. Thercfore the Vth eg mult be flattened \(\frac{1}{4}\) th of a comma. But low is this to be done with accuracy? Recollect the formula given a little ago, where the number of beats 6 in any number of feconds is \(=\frac{2 q m \mathrm{~N}}{161 \times p+q}\). In the prefent cafe \(q=1, m=3\), \(\mathrm{N}=240\) per fecond, and \(p=4\). Therefore the for. mula is \(=\frac{2 \times 3 \times 240}{161 \times 4+1}=\frac{1440}{645}=2,25\) in a fecond, or 9 beats in four feconds very nearly.

In like manner, the next Vth \(g \bar{d}\) muft be flattened \(\frac{1}{4}\) th of a comma, by making it beat half as falt again, or \(13^{\frac{1}{2}}\) beats in four feconds (becaufe in this Vth \(\mathrm{N}=360\) ). But as this beating is rather too quick to be eafily counted, it will be better to tune downwards the perfect octave \(g \mathrm{G}\), which will reduce N to 180 for the Vth \(G d\). This will give us 1,68 per fecond, or 10 beats in 6 feconds very nearly.

There is another way of avoiding the employment of too quick beats. Intead of tuning the octave \(g \mathrm{G}_{\text {, }}\) make \(c \mathrm{G}\) beat as often as \(c g\). This is even more exactly an octave to \(g\) than can be eftimated by a gond ear. Dr Smith lias demonftrated, that when a note makes a minor concord with another note below it, and therefore a major concord with the octave to that note, it beats equally with both; but if the major concord be below, it beats twice as falt with the oftave abovc. Now, in the prefent cafe, \(c g\) is a Vth, and \(c \mathrm{G}\) a 4 th. For the fame reafon of would beat twice as falt as c.F.

In the next place, the Vth \(d \bar{a}\) muft be made to beat flat 15 times in 6 fecouds.

In like manner, iriftead of tuning upward the \(V\) th \(\bar{a} \bar{e}\), tune downward the octave \(\bar{a} a\), and then tune upward the Vth a e, and flatten it till it beat 15 times in 8 feconds.

If we take is fecon?s for the common period of all
thefe beats, we fhall have sional va． riations of tempera． pent．

The beats of \(c g=34\) ．
G \(d=25\) ．
\(d \bar{a}=37^{\frac{7}{2}}\) ．
\(a e=28\).
We fhall now find \(c e\) to be a fine IIId，without any fenfible beating；and then we proceed in the fame way， always tuning upward a perfect Vth；and when this would lead us too high，and therefore produce too quick beating，we fhould tune downward an octave． Do this till we reach \(b\) 淡，which fould be the fame with \(\bar{c}\) ，or a perfect octave above \(c\) ．This will be a full proof of our accurate performance．But the beft procefs of tuning is to fop when we get to \(g\) 淡．Then we tune Vthe downward from \(c\) ，and oftaves upward when the Vths would lead us too low．Thus we get \(c \mathrm{~F}, \mathrm{~F} f\) ， \(f b^{b}, b^{b} \overrightarrow{b^{b}}, \overrightarrow{b^{b}} e^{b}\) ，and thus complete the tuning of an octave．We take this method，inftead of proceeding． upwards to \(\bar{b}\) 淡；becaufe thofe notes marked fharp or flat are，when tuned in this way，in the beft relation to thofe with which they are moft frequently ufed as IIIds．

This procefs of temperament will be greatly expe－ dited by employing a little pendulum，made of a ball of about two ounces weight，fliding on a light deal rod， having at one end a pin hole through it．To prepare this rod，hang it up on a pin fluck into the wainfcoat－ ing，and 月ide the ball downward，till it makes 20 vi－ brations in 15＂，by comparing it with a houfe clock． In this condition mark the rod at the upper edge of the ball．In like manner，adjult it for \(24,23,32,36\) ， \(40,44,4^{8}\) ，vibrations，making marks for each，and di viding the fpaces between them by the eye，noticing． their gradual diminution．Then，having calculated the beats of the different Vths，fet the ball at the mark fuit－ ed to the particular concord，and temper the found till the beata keep pace cxactly with the pendulum．

But，previous to all this，we mult know the number of pulfes made in a fecond by the C of our inflrument． For this purpufe we muft learn the pulfes of our tuning fork．To lcarn this，a harpfichord wire muft be ftretcli－ ed by a weight till it be unifon or octave below our fork：then，by adding \(\frac{1}{10}\) th of the weight to what is now appended，it will be tempered by a comma，and will beat，when it is founded along with the fork；and we mult multiply the beats by 80：The produet is the number of pulfes required．And hence we calculate the pulfes of the C of our intrument when it is tured in perfect concord with the fork．

The ufial concert pitch and the tuning forks are fo nearly confonant to 240 pulfes for C ，that this procefs is fcarcely necefiary，a quarter of a tone never occafion－ ing the change of an entire beat in any of our numbers．

The intelligent reader cannot hut obferve，that this fylterm of tuning with perfect IIIds，which is preferred to all others by many grear maters，is the one repre－ ferted by our circular figure of the octave．The IIId is there perfect，and the Vth CG is deficient by a quar－ ter of a comma．We cannot here omit taking notice of a molt valuable obfervation of Dr Snith＇s on this temperament，and，in general，on any divifion of the oetave into mean tones and equal limmas．

The octave being made up of five mean tones and two limmas，it is plain that，by enlarging the tones， we diminif the limmas，and that the increment of the tone is two fifths of the contemporancous diminution of
the linma．If，therefore，we employ the fymbol \(v\) to ex－Tempean， prefs any minute variation of this temperament，and inake \(\frac{\text { nenn of thas }}{\text { Scale of }}\) the increment of a mean tone \(=z v\) ，the contempora． neons variation which this induces on a limma will be \(=-5 v\) ；and if the tone be diminifhed by the fame quan－ tity \(-2 v\) ，the limma will incresfe by the quantity \(5 \%\) ．Let us fee what are the contemporaneons chan－ ges made on all the intervals of the octave when the tone is diminithed by 2 v ．

1．A Vth is made up of three tones and a limma． Therefore the variation of its temperament is \(=-60\) \(+5 v\) ，or is \(=-v\) ．That is，the Vth is flattened from its former temperament，whatever that may hage been， by the quantity－\(v\) ．Confequently the 4 th，which is always the complement of the Vth to the octave，has its． temperamene fharpened by the quantity \(v\) ．

2．A IId，being a tone diftant from the fundamen－ tal，has its temperament changed by \(-2 v\) ．

Therefore a minor 7 th is raifed by \(2 \%\) ．
3．A minor 3 d is made up of a tone and a limma： therefore its variation is \(=-2 v+5 \%\) ，or \(=3 v\) ． Therefore a major VIth（its complement））lofes \(-3 v\) v． 4．A maj．IIId，or two tones，has its variation \(=-4 \%\) ． Therefore a minor 6th has its variation \(=4^{v}\) ． 5．A maj．VIIth，the complement of a limma has－ \(5 v\) ． 6．A tritone，or IVth．muft have the variation \(=-6 v\) ． Therefore the falle 5 th mult have
From this oblervation，Ir Smith deduces the follow． ffx parallel linies \(g(\mathcal{B}, d \mathrm{D}\) ，\＆c．Let thefe lines repre－ fent fo many fcales of the octave，fo placed that the points \(\mathrm{C}, \mathrm{g}, d\), \＆c．may reprefent the points C，\(g, d\) ， \＆c．of the circular feale in fig．1．where it is cut by the dotted lines reprefenting the fyftem of mean tones． and limmas．Then， \(1 / f\) ，take a certain length \(d \mathrm{G}\) on the firt lise，to the right hand of the line CE，to reprefent a quarter of a comma．\(G\) will mark the place of the eer－ fect \(V\) th，while \(g\) reprefents that of the mean or tempere．\({ }^{f}\) Vth． \(2 d l y\) ，Set off \(d D\) ，double of \(g\) ，in like \(m \cdot n-\) ner，to the right hand on the fecond parallel．This will be the place of the perfect IId to the key note C ． 3 dly，Alfo fet off \(a \mathrm{~A}\) ，on the third parallel，to the left hand，equal to \({ }_{5} \mathrm{G}\) ．This will mark the place of I ， the VIth to the key note C．4thly，Place E on the point \(e\) ，becaufe，in the fyltem of mean tonies repiefent－ ed in fig．I．the IIILs were kept perfect． \(5^{\text {th }}\) ly，Make \(b \mathrm{~B}\) ，to the right hand on the fitt h line，equal to \(g \mathrm{G}\) ， to mark the place of the perfect VIIth to the key note C．And，Gothly，make \(t\)＇ ，to the right hand on the fixth line，equal to twice \(o G\) ．This will ferve for hew－ ing the contemporaneous tempcrament of the tritone， or IVth，contained between F and D ，as alio of its com－ plement，the falfe 5 th in tig． 1.

It is evident that the temperament of all the notes of the oizave，according to the above inentioned fyitem， are properly reprefented in this figure．The Vth is tempered flat by the quarter comma \(\mathrm{G} g\) ；the IId is tempered flat by the half comma \(\mathrm{D} d\) ；the Vlth is tempered fharp by a quarter coinma \(\mathrm{A} a\) ；the IIId is perfect ；the VIIth is flat by a quarter comma \(\bar{B} b\) ；and the 4 th is Rarp by a quarter comina \(\mathrm{G} g\) ．
Now，let any other ffraight line \(\mathrm{C} t\) t be drawn from The \({ }^{75}\) EMS C acrofs thefe parallels．＇this will mark，by the inter－perer．
- npera. vals \(s^{\prime} \mathrm{G}, d^{\prime} \mathrm{D}\), \&c. the temperaments of another fytem of mean tones and limmas. For it is evident, that the contemporaneous variations \(g g^{\prime}, d d^{\prime}, \& c\). from the former temperament, are in the juft proportions to each other; \(g g^{\prime}\) being \(=-v\), the variation proper for the Vth, and the oppofite temperament for its complement or 4 th. In like manner, \(a a^{\prime}\) is \(=3 \mathrm{v}\), the variation competent to the Vith; and E \(e\) is \(=4 v\), the proper variation for the IIId.
In like manner, \(b b^{\prime}\) is \(=5 \mathrm{v}\), the variation of the VIIth and 2d. And, laftly, \(t t^{\prime}\) is the variation \(6 v\) of the tritone, and its complement, the falfe fifth.
For all thefe reafons, any ttraight line \(\mathrm{C} e^{\prime}\) or \(\mathrm{C} e^{\prime \prime}\), drawn from C acrofs the parallels, may jufly be called the TEMPERER.
'This is a very ufeful conftruction: For it is plain, that the founds which can be placed in our organs and harpfichords, which have only twelve keys for an octave, mult approach to a fyttem of mean tones. The divifion of the octave into tweive equal intervals is fuch a fyltem of mean tones exactly. Now, in fuch fyltems, when a line is drawn from C acrofs the parallels, we fee, at one glance, int only all the temperaments of the notes with the key note, but alfo the temperaments of thofe concords which the notes employed in full harmony make with each other. Thus, in the harmony of K - III - V, the III and V make a minor 3 d with each other ; and in the harmony of \(\mathrm{K}-4-\cdots\) VI, the 4 and VI make a major 3 d with each other. Now the reader will eafily fee, that the firt of thefe concord3 has i:s interval diminifite on both fices, when the III is tempered fharp, but only on one fide when it is tempered flat. The mathematical reader will alfo eafily fee, that the contemporaneous temperament \(\mathrm{A} a^{\prime}\) of the Vith is always equal to the fum \(g^{\prime} \mathrm{G}\) and \(\mathrm{E} e^{\prime}\), and that \(\mathrm{A} a^{\prime}\) is equal to the difference of \(g^{\prime \prime} \mathrm{G}\) and \(\mathrm{E} e^{\prime \prime}\). Therefore the cemperament of this fubordinate concord, in the full harmony \(\mathrm{K}-\mathrm{III}-\mathrm{V}\), is, in all cafes, the fame with the contemporaneous temperament of the VIth.
In like manner, he will perceive that the temperament of the fubordinate IIId, in the harmony of \(\mathrm{K}-4\)-Vf, is equal to the contemporaneous tempetament of the III.
We alfo fee, in general, that the whole harmony is more hurt when the temperer lies in the angle ECK, with the IIId tempered fharp, than when it is in the angle ACE, when the IIId is flat; and that the fum of all the temperanents of the concords with the key is the fmalleft when the IIIds are perfect. This fyftem of méan tones, with perfect IIIds, would therefore be the beff, if the harmony of different concords were equally hurt by the fame temperament.

We do not know any thing that has been publifhed on the fcience of mufic that gives more general and fpeedy inftruation than this fimple figure. If it be drawn of frich a fize as to allow the comma EK to be divided into a number of equal parts, fufficiently fenfible, all trouble of calculation will be faved.

We would therefore propofe to accompany this figure with proper fcales.
The firfl fcale fhould have \(\mathrm{G} g\) divided into \(3^{\frac{x}{2}}\) parts. This will exprefs the logarithmic meafures of the temperaments mentioned in \(n^{\circ} 63\). a comma being \(=54\).
The fecond fcale fhould have \(g\) \(G\) divided into 36 parts.

This gives the beats made in 16 feconds by the notes Tempera\(c, g\), when tempered by any quantity \(\mathrm{G} g^{\prime}\).

The third fale fhould have \(g \mathrm{G}\) divided into 60 parts, for the beats made by the notes \(c, e\), or the notes \(c, \bar{a}\). ment of the Scale of The fourtl, fcale fhould have \({ }_{g} \mathrm{G}\) divided into 72 parts. 'This gives the beats made by the key note C, with its minor third \(e^{b}\).

The fifth fcale fhould have \(g \mathrm{C}\) divided into \(4^{8}\) parts, for the beats inade by the notes \(c, f\).

The fixth fcale fhould have \(g\) G divided into 89 parts, on which \(\mathrm{A} a^{\prime}\) is meafured, to get the beats of the fubordinate concord formed by \(g\) and \(e\) in the harmony of K - III - V.

And, laflly, g \(G\), divided into 3o parts, will give the beats made by \(j\) and \(\bar{a}\) in the thamony of \(\mathrm{K}-4-\mathrm{VI}\).

We ate ignorant of the immediate efficient ca:fes of Hermoni the pleafure we seccive from certain confonances, and oufocfs, foould therefore receive, with fatisfacion, any thing what? that can help us to approxinate to a meafure of its degrees. We know that, in fact, the pleafantnefs of any individual concord increafes as the undulations called beats diminifi in frequency. It is probable that we fhall not deviate very far from the truth, if we fuppofe the harmonioufnefs of an individual temptred concord to be proportional to the flownefs of thefe undulations. But it by no means follows, that a tempered Vth and a IlId are equably pleafant, each in its kind, when they beat equally flow. ' Ch here is a difference in kind in the pleafures of thefe concords : and this mutt arife from the peculiar manner in which the component pulfes of each concord divide each other. We are certain that this is all the difference that obtains between them in Na ture. But the harmoniouftefs here fpoken of is the arrangement which produces this pleafure. We are intitled to fay, that this is equal in two given initatices, when the arrangements are precifely fimular ; and when the things arranged are the fame, nothing feems to 1 e main in which the inttances can differ.

At any rate, it is of confequence to be able to proportion and diftribute thefe undulations at pleature. They are nripleafant; and when reinforced by uniting, mult be more fo. The theony puts it in our power to prevent this union: perhaps by making them very unequal ; or, if this fhould give a chance of periodical accumulation, we may lind it better to make them all equal. Surely to have all this in our power is very defirable; and this is obtained by the theory of the beats of imperfect confonances.

But we are forgetting the procefs of tuning, and have only tuned three or four i:otes of our octave. We Temperainuft tune the reft by confidering their relation to notes whole wealready tuned. Thus, if \(g c\) makes 36 beats in 16 fe- ave by conds, F \(c\) fhould make one third leis, or about 24 in beats. the fame time ; becaufe N in the formula is now 160 inftead of 240 . Proceeding in this way, we thall tune the octave \(\mathrm{C} \overline{\bar{c}}\) moft accurately as a fyftem of mean tones with perfect IIIds, by making the notes beat as follows. A point is put over the note that is to be tuned from the other, and \(a+\), or \(a-\), means that the concord is to be tempered fharp or flat. Thus \(g\) is tuned from \(c\),

Make
\begin{tabular}{lll}
\(c \dot{g}\) beat & & \\
\(\dot{\mathrm{G}} c\) & + & \\
\(\mathrm{G} \dot{d}\) & - & \\
\(c \dot{f}\) & - \\
& & \(4 \mathrm{O}_{2}\)
\end{tabular}

36 times in 16 feconds
36
27 , i. e. \(\frac{3}{4}\) ths of \(g c\)
48
"empera. whent of the Scale of Mulic.

Make \(c \dot{\bar{a}}\) beat +60 times in \(\mathrm{I} \delta\) feconds
\(c \dot{e}\) o, i. e. a perfect IIId
\[
\dot{b} \cup f \text { downward - 24, i. c. } \frac{8}{8} \text { ths of } c g
\]
\[
b^{6} \dot{\bar{b}}^{b} \quad \text {, i. e. a perfect octave }
\]
\[
\bar{b}^{b} e^{b} \text { downward-43, i.e. } \frac{6}{5} \text { this of } c g
\]
\[
\mathrm{C} \dot{\bar{c}} \quad \text { o an octave. }
\]

Other proceffes may be followed, and perhaps fome of them better than the procefs here propofed. Thus, \(b^{b}\) and \(e^{b}\) may be tuned as perfect IIIds to \(d\) and \(g\) downwards. Alfo, as we proceed in tuning, we can prove the notes, by comparing them with other notes already tuned, \&c. \&c. \&c.

We have directed to tune the two notes \(b^{b}\) and \(e^{b}\) by taking the leading Vth downwards. We fhould have come at the fame pipes in the character of \(a *\) and \(d\) 淡 in the procefs of tuning upwards by Vths. But this would not have produced precifely the fame founds, although, in our imperfect inftruments, one key muft ferve for \(a *\) and \(b^{b}\). By tuning them as here directed, they are better fitted for the places in which they will be moft frequently employed in our ufual modulations.
It may reatonably be akked, Why to much is facrifi-
fit for our infiruments. allowed to retain fome part of the fharp temperament that is neceffary fur preferving the Vths perfect, we thould perlaps improve the harmony. And fince enlarging the Vth makes the tone greater, and therefore the limma \(m i f a\) much fmaller, it will bring it nearer to the magnitude of a half tone; and this will be better fuited for its double fervice of the fharp of the note below, and the flat of the note above. Accordiugly, fuch a temperament is in great repute, and indeed is gene. rally practifed, although the VIths and the fubordinate chords of full harmony are evidently hurt by it. Even Dr Smith recommends it as well fuited to our defective inftruments, and gives an extremely eafy method of executing it by means of the beats. His method is to make the Vth and IIId beat equally faft, along with the key, the Vth flat, and the IIId fharp. He demonftrates (on another occafion), that concords beat equally faft with the fame bafs when their temperaments are inverfely as the major terms of their perfect ratios. Therefore draw EG, and divide it in \(p\), fo that \(\mathrm{E} p\) may be to \(p \mathrm{G}\) as 3 to 5 . Then draw \(\mathrm{C} p\), cutting \(g\) G in \(g^{\prime}\), and EK in \(e^{\prime}\); and this temperer will produce the temperament we want. It will be found, that \(\mathrm{E} d^{\prime}\) and \(\mathrm{G} g^{t}\) are each of them 32 of their reipective fcales.
'itherefore make \(c g\) beat 32 times in 16 feconds
\begin{tabular}{ll}
\(G c\) & 32 \\
\(G d\) & 24 \\
\(\mathrm{G} b\) & 24, and tune \(b \bar{b}\) \\
\(d \bar{a}\) & 36, and tune \(a \bar{a}\) \\
\(d f\) & 36 \\
\(a e\) & 27 \\
\(a c \mathbb{X}\) & 27 \\
\(\varepsilon \bar{b}\) & \(40 \frac{\pi}{\frac{1}{2}}\), proving \(b \bar{b}\) \\
\(e g\) & \(40 \frac{2}{2}\) \\
\(F c\) & \(2 \mathrm{I} \frac{1}{3}\), and tune Ff
\end{tabular}


It may be proper to add to all thefe inftrucions a caution about the manner of counting the clock while the tuner is counting the beats. If this is to continue for 16 feconds, let the peifon who counts the clock fay one at the beat he begins with, and then telling them over to limfelf, let him fay done inftead of 17 . Thus 16 intervais will elapfe while the tuner is counting the beats. Were he to begin to count at one, and flop when he hears fixteen, he would get the number of beats in 15 feconds only.

We do not hefitate to fay, that this method of tuning by beats is incomparably more exace than by the mere judgment of the ear. We cannot miltake more than one beat. This miftake in the concord of the Vth amounts to no more than ro \({ }^{2}\) th of a comma; and in the IIId it is only \(\frac{1}{T_{8}^{2}}\).
It may be objected that it is fit only for the organ \(\mathrm{P}_{\text {ractical }}^{82}\) and infruments of continued founds, but will not do for it frucuthe quickly perifhing founds of the harpfichord. True, tions. it is the only method worthy of that noble inftrument, and this alone is a title to high regard. But farther; the accuracy attainable by it, renders it the only method fit for the examination of fyltems of temperament. Even for the harpfichord it is much more exact, and more certain in its procefs, than any other. It does not proceed, by a random trial of a flattened feries of Vths, and a comparifon with the refulting IIId, and a fecond trial, if the firft be unfatisfactory. It fays at once, let the Vth beat fo many times in 16 feconds. Even in the fecond method, without counting, and merely by the equality of the beats of the Vth and IIId, the progrefs is eafy. Both are tuned perfect. The Vth is then flattened a little, and the IIId flarpened;-if the Vth beat fatter than the IIId, alter it firft.

All difficulty is obviated by the fimple contrivance of a variable pendulum, already defcribed. This may be made exact by any perfon that will take a little pains; and when once made, will ferve for every trial. When the ball is fet to the proper number, and the pendulum fet a fwinging, we can come very near the truth by a very few trials.
\(N . B\). In tuning a piano forte, which has always two ftrings to a key, we muft never attempt tuning them both at once; the back unifon of both notes of the concord muit be damped, by flicking in a bit of foft paper behind it.

We hope that the inftructions now given, and the application of them to two very refpectable fyftems of temperament, are fufficient for enabling the attentive reader to put this method of tuning fuccefsfully in practice, and that he perceives the efficiency of it for attaining the defired end. But before we take leave of it, we beg leave to mention another circumflance, which evinces the juft value of the general theory of the beats of imperfét confonances as delivered by Dr Smith.

Thefe reinforcements of found, which are called beat- Origin of ings, are noifes. If any noife whatever be repeated, the Tari with fufficient frequency, at equal intervals, it becomes nana foume a mufical note, of a certain determinate pitch. If it recur 60 times in a fecond, it becomes the note \(\mathrm{C} f a\) \(u t\), or the double octave below the middle C of nur
mpera- harpfichorcs, or the note of an open pipe eight feet long. Now there is a fimilar (we may call it the very fame) reinforcement of found in every concord. Where the pulfe of one found of the concord bifects the pulfe of the other, the two founds are more uniformly fpread: but where they coincide, or almof coincide, the condenfation of one undulation combines with that of the other, and there comes on the ear a ftronger condenfation, and a louder found. This may be called a noife; and the equable and fiequent recurrence of this noife flould produce a mufical note. If, for inflance, \(c\) and \(a\) are founded together: There is this noife at every third pulfe of \(c\), and every fifth pulfe of \(a\); that is, 80 times in a fecond. This fhould produce a note which is a 12 th below \(c\), and a 17 th major below \(a\); that is, the double octave below \(f\), which makes 320 vibrations in a fecond. That is to fay, along with the two notes \(c\) and \(a\) of the concord, and the compound found, which we call the concord of the VIth, we fhould hear a third note FF in the bafs. Now this is known to be a fact, and it is the grave harmonic obferved by Romieu and Tartini about the year 1754, and verified by all muficians fince that time. Tartini prized this obfervation as a moft important difcovery, and confidered it as affording a foundation for the whole fcience of mufic. We fee that it is all included in the theory of beats publifhed five years before, namely, in 1.749 ; and every one of thefe grave harmonics, or Tartinian founds, as they have been called, are immediate confequences of this theory. The fyltem of harmonious compofition which Tartini has, with wonderful labour and addrefs, founded on it, has therefore no folidity. It is, however, preferable to Ramean's, becaufe it proceeds on a fact founded on the nature of mufical founds; whereas Rameau's is a mere whim, proceeding on a falfe affumption ; namely, "that a mufical found is effentially accompanied by its octave, \({ }^{12}\) th, and 17 th in alto." This is not true, though fuch accompanyment be very frequent, and it be very difficult to prevent it. Mr Ra meau ought to have feen this. Are thefe acute harmonics mufical founds or not? He furely will not deny this. Therefore they, too, are effentially accompanied by their harmonics, and this abfolutely and neceffarily ad infinitum; which is certainly abfurd. We fhall have a better occafion for confidering this point when we defribe the TRUMPET-Marigni in a future article.
Smith's We have taken notice of only two fyftems of tempe-
rament ; both of them are fyftems of mean tones, and are in good repute as praeticable methods. It would be almoft an endlefs tafk to mention all the fyttems of temperament which have been propofed. Dr Smith, after having, with great ingenuity, appreciated the changes of harmonioufnefs that are induced on the different concords by the fame temperament, and having affigned that proportion of temperament which renders them equally harmonious, each in its kind, gives a fyflem of temperament, which he calls equal harmony. Each concord (excepting the octave) is tempered in the inverfe proportion of the product of the terms of its perfect ratio. It is very nearly equivalent to a divifion of the octave into 50 equal parts. We do not give any farther account of it here, although we think its harmony preferable to any thing that we have ever heard. We heard it, as executed for him, and under his infpection, by the celebrated harpfichord-maker Kirk-
mann, both when the infrument was yet in the hands Tempersof the maker, and afterwards by the ingenious author. ment of the We have alfo heard fome excellent muticians declare, that the organ of Trinity college chapel at Cambridge cale of Mufic. was greatly improved in its harmony by the change made on its temperament under the infpection of Dr Smith. When we name Stanley, we prefume that the authority will not be difputed. We mention this, becaufe the writer in the Philofophical Tranfactions fpeaks of this fyftem, with flattened major thirds, as of no value. But we do not give any farther account of it, becaufe it is not fuited to our inftruments, which have but twelve founds in the octave.

The reader will pleafe to recolleet, that the great object of temperament is twofold. Firft, to enable us to tranipofe mufic from one pitch to another, fo that we may make any note of the organ the fundamental of the piece. This undoubtedly requires a fyftem approaching to one of mean tones, becaufe the harmony muft be the fame in every key. This requires temperament, becaufe a found mutt be occafionally confidered, either as the fharp of the note below it, or the flat of the one above. This cannot produce perfect harmony, becaufe the limma of the perfect diatonic fcale is greater than a half tone. Thus a temperament is neceffary merely for the fake of the melody. But, fecondly, the nature of modern mufic requires every note to be accompanied, or confidered as accompanied, with full harmony. This is, in fact, the fame thing with modulating on every different note as a fundamental; but it requires a much clofer attention to the perfection of the intervals, becaufe a defect or excefs in an interval that would fcarcely offend the ear, if the notes were heard in fucceffion, is quite intolerable when they are founded together. Here the difference between the major and minor tone is of almoft as great moment as the difference of the limma from a femitone. The fecond object, therefore, is to obtain, in the compafs of three octaves, as many good concords of full harmony ; that is, confifting of a fundamental with its major third and its fifth, ereet or inverted, as poffible. There is no other harmony, although our notes have frequently a different fituation and appearance.

It is no wonder that, in a fubjeet where we are yet Maxime of to feek for a principle, the attempts to attain this ob-cemperajeet have been very various, and very gratuitous. The ment very mathematicians, even in modern times, have allowed gratuitous. themfelves to be led away by fancies about the fimplicity and confequent perfection of ratios; and having no cear principle, it is no wonder that fome of their deductions are contrary to experience. According to Euler, thofe ratios which are moft perfect, that is, moit fimple, admit of lealt temperament. The octave is therefore infinitely perfect; for it is allowed by all, that it mult not have the fmalleft temperament. A Vth muft be lefs tempered than a IIId. Even the practical mufician thinks that he has tempered thefe two concords equally, when the offenfive quality of each is made equally fo; but in this cafe it is demonftrable, that the \(V\) th has been much more tempered than the IIId. But this could not be difcovered till we got the theory of beats.

Mof of the mathematical muficians adhered to fy. Atems of mean tones ; or, which are equivalent to fueh fyftems, giving fimilar harmonies on every key of the

Tenpera. harpfichord. This is furely the mott natural, and is ment of the peculiarly fuggetted by the tranfoofing of mufic from Scale of Mufic. one pitch to another : but they differ exceedingly, and without giving any convincing arguments, in their eftimation of the effects of the fame temperament on different concords. Much of this, we apprehend, arifes from difpofition. Perfons of a gay difporition relifh the harmony of the IIId, and prefer a fhapp to a flat temperament of this concord. Perfons of a more penfive difpofition, prefer fuch temperaments as allow the minor thirds to be more perfect.
But there are many, eminent both as performers and as theorifts, who reject any fytem which gives the fame harmonies on every note of the oetave. They obferve, that in the progrels of the cultivation of mufic in Europe, the melodies of all nations have gradually approached to a certain uniformity. Certain cadences, clofes, frains, and phrafes, are becoming every day more common; and even in the conduct of a confider. able piece of mufic, and the gradual but flow paffage of the modulation from one key into another, there is a certain regularity. Nay, they add, that this cannot be greatly deviated from without becoming very offenfive. We may remain ignorant of the caufe of this uniformity ; but its exiltence feems to prove that it arifes from fone natural principle; and therefore it ought to be complied with, and our temperainents fhould be accommodated to it. The refult of this unifurmity in the mufic of our times is, that the modulation on fome keys is much lefs frequent than on others, and this frequency decreafes in a certain order. Suppofing that we begin on C . A piece of plain mufic feldom goes farther than G and F . A little inore fancy and refinement leads the compofer into D , or into \(\mathrm{B}^{b}\), \&cc. \&c. It would therefore be defirable to adjuf our temperaments fo, that the harmonies in C mall be the beft polfible, and gradually lefs perfect in the order of modulation. Thus we fall, in our general practice, have finer harmony than if it were made equal throughout the octave; becaufe the unavoidable impcrfections are thrown into the leaft frequented places of the fcale. The practical muficiaris add to this, that by fuch a temperament the different keys acquire characters, which fit each of them more particularly for the expreffon of different fentiments, and for exciting different emations. This is very perceptible in our larpfichords as they are generally tuned. The major key of A is remarkably brilliant ; that of F is as remarkably fimple, \&cc.

We cannot fay that we are altogether convinced by thefe arguments. The violin is unqueftionably the inftrument of the greateft powers. A concert of inftruments of this kind, une mibarraffed by the harpfichord, or any inftruments incarable of occational temperament, is the finett mufic we have. The performers make no fuch degradations of harmony, but keep it as perfect as poffible throughout; and a violin performer is fenfible of violence and conftraint when he accompanies a keyed inftrument iuto thefe unfrequented paths. Let him play the fame mufic alone, and he will play it quite differently, and much more to his own fatisfaction. We e imagine, tod, that much of the uniformity fpoken of is the refult of imitation and fafhion, and even of the temperaments that we have preferred. There is an evident diflinetion in the native mufic of different nations. An experienced mufician will know, from a few bars, whe-
ther an air is Irill, Scotch, or Polifh. This ciflinction Tempen. is in the modulation; which, in thofe nations, follows mel. of tho different courfes, and fhould therefore, on the fame sicale of principie, Iead to difierent temperaments.

With refpect to the variety of characters given to the different keys, we muft acknowledge the fact. We have tuned a piano forte in the nfual manner; but inftead of begiming the procefs with C , we began it with D. An excellent performer of voluntaries fat down to the infrument, and began to indulge his rich fancy; but he was confounded at every ftep: he thought the inflrument quite ont of tune. But when he was in. fo:med how it had been tuned, and then tried a known plain air on it, he declared it to be perfectly in tune. It is fill very doubtinl, however, whether we fhould not have much tiner mufic, by equalifing the harmony in the different keys, and trulting for the different expreflion fo much fpoken of to a judicious mixture of other wotes called dijcords.

After all, the great uncertainty about the moft pro- Caute of per temperament has remained fo long undetermined, this uncerbecaufe we had no method of executing with certainty tainty any temperament that was offered to the public. What now re- \({ }^{\text {now }}\) fignifies it on what principle it may be proper to flat- D: Smidur ten a Vth one fifth of a comma, and tharpen a V Ith cheors. one-feventh of a comma, unlet's we are able to do both the one and the other? Till Dr Smith publiked the theory of beats, the moriochord was the only affiltance we had : but however nicely it may be divided, it is fcarcely poffinle to make the moveable bridge fo theady and fo accurate in its motion, that it will not fenfibly derange the tenfion of the fring. We have feen fome very nice and coftly monochords; but not one of them could be depended on to one cighth of a comma. Ever if perfect, they give but momentary founds by pinching. The bow caunot be trulted, becaufe its freflare changes the tenfion. Mr Watt's experiments with his monochord of coutinned found thewed this eviaently. A pitch-pipe with a fliding pifton promifes the greatert accuracy ; but we are fadly dilappointed, becaufe the graduation of the piiton cannot be performed by any mathematical rule. It muft be pufhed more than half way down to produce the octave, more than one-third to produce the Vth, \&c. and this without any rule yet. difcovered. Thanks to Dr Smith we can now produce an inftrument tuned exactly, according to any propofed fyitem, and then fubmit it to the far examination of muticians. Even the fpeculatilt may now form a pretty jult opinion of the merits of a fyftem, by calculating, or ineafuring by fuch fcales as we have propofed, the beats produced by the tempered concords in all parts of the octave. No one who has littened with attention to the rattling beats of a full organ, with its twelfth and fefquialter ftops all founding, will deny that they are holtile to all harmony or good mufic. We cannot be inuch miftaken in preferring any temperament in proportion as it diminifhes the number of thofe beats. We Thould therefore exanine them on this principle alone; attending more particularly to the beats of the third major, becanfe thefe are in fact the loudeft and moft difagreeable : and we mult not content ourfelvea with the beats of each concord with the fundamental of the full harmony, whether \(\mathrm{K}-\mathrm{III}-\mathrm{V}\), or \(\mathrm{K}-4-\mathrm{VI}\), or \(\mathrm{K}-3-\mathrm{V}\), or \(\mathrm{K}-4-6\), which fometimes occurs. We muft attend equally to the beats of the two notes
pera. of accompanyment with each other: thefe are geneof th
le of
lic.

This examination is neither difficult nor tedious. I. Write down, in one column, the lengths of the flrings or divifions of the monochod; in another write their logarithms ; in a third the remainders, after fubtracting each from the logarithm of the furdamental. 3. Have at hand a fimilar table for the perfect diatonic fcale. 4. Compare thefe, one by one, and note the difference, + or - , in a th \(^{2}\) column. Thefe are the temperaments of each note of the fcale. 5 . Compare every couple of notes which will compofe a major or minor third, or a fifth, by fubtracting the logarithm of the one note from that of the other. The differences are the intervals tempered. 6. Compare thefe with the perfect intervals of the diatonic fcale, and note the differences, + or - , and fet them down in a fifth coJumn. Thefe are all the temperaments in the fyftem. 7. If we have ufed logarithms confifting of five decimal pleces, which is even more than fufficient, confider thefe numeral temperaments as the \(q\) of the formula given in \(\mathrm{n}^{\circ} 6_{5}\). for calculating the beats, and then \(p\) is always \(=540\). Or we may make another column, in which the temperaments are reduced to fome cafy fraction of a comma.

We fhall content ourfelves with giving one example ; fophical Tianfactions for 1800 . It is contained in the following table.


The firt column of the above table contains the ordinary defignations of the notes. The fecond contains the correfponding lengths of the monochord. The third contains the logarithms of column fecond. The fourth contains the difference of each logarithm from the firf. The next column contains, firf, the temperaments of all the major thirds, having for their loweft note the found correfponding to the letter. Thus 494, or \(\frac{494}{540}\) of a
comma, is the temperament of the IIId, \(\mathrm{B}-\mathrm{D}\), and remperaCW. -F. Secondly, it contains all the minor thirds mentof the formed on the notes reprefented by the letters. The Scale uf column below contains the temperaments of the Vehs. Templare. N. B3. Thefe temperaments are calculated by the anthar. We have found fome of thém a little different. Thus we make the temperament of \(\mathrm{C}-\mathrm{G}\) only 108. Below this we have fet down the mealures of the perfeet intervals, which are to be compared with the differences of the logarithms in cohmu third.
We prefume not to decide on the merits of this tem. Sy fem of perament : Only we think that the temperaments of ki:n merleveral thirde, which occur very :requently, are much ger. too great ; and many inflances of the foth, which is frequent in the flat key, are ttill more ftoongly tempered. A temperament, however, which very nearly concides wich Dr Young's, has great reputation on the contirent. This is the temperament by Mr Kirnberghic, publifhed at Berlin in 1771, in his book called Die Kumft des reinen Satzes in der Muffé, The eminent mathematician Major Templehoff has made fonse inpurtant obervations on this tempera nent, and oil thit fubject in general, in an eflay publifhed in 1775 , ier. lin. Dr l'oung's is certainly preferable.
The monochord is thus divided by Kirmbergher :


We conclude this article (perhans too long) by earnefly recommending to perfons who are not matheniztically difpofed, the fliding feales, either circular or rec: tilineal, containing the octave divided into 301 parts ; and a drawing of fig. 2. on card paper, of proper fize, having the quarter comma about two inches, and a feries of feales correfpunding to it . This will fave almoft the whole of the calculation that is requived tor calculating the beats, and for examining temperaments by this telt. To readers of more information, we earnefly recommend a careful perufal of Smith's Hariturics, fecond edition. We acknowledge a great partiality for this work, having got more mformation from it than from all our patient ftudy of the moft celebrated writings of Ptolemy, Huyghens, Euker, \&c. It is on: diuty alfo to fay, that we lave got more information concerning the mufic of the Greeks from Dr Wallis's appendix to his cdition of Porphyrius's Commentary on P'tolemy's Harmonics, than from any other work

TEMP'LARS. In the account of this order, which is publithed in the Encyclopedia, we have; with marry others, fuppofed that the guilt of which they were ac. cufed at the fuppreflion of the order was lefs enormous than their enemies alleged. Fo: the honour of human nature, we are ftill unwilling to believe that this was not the cafe. Juftice, however, compels us to admit, that the Abbé Barruel has brought together fuch a choud of witneffes againtt the Templars, that we know not how to refift their evidence; and that he has completely proved, that Pbilip le Bel was not influenced by avarice when he fuppreffed that order in France. "It has been faid, that he and Clement V. had concerted between them the diffolution of the Templars. The. falfity of fuch an affertion is evident on the infpection of their letters. Clement \(V\). at firf will give no cre-

\section*{T E M [ 664 ] T E M}

Iemplare dit to the accufations againt the Templars; and even when he receives inconieftable proofs from Philip le Bel, lee had till fo litule concerted the plan with that Prince, that every fep taken by the one or the other occafions difputes on the rights of the church or of the throne.
"It was alfo faid, that the king wifhed to feize on the great riches of thefe knights: but at the very comnencement of his proceedings againt the order, he folemnly renounced all Thare in their riches; and perhaps no Prince in Chriftendom was truer to his engagement. Not a fingle efate was annexed to his domain; and all hiftory bears teftimony to the fact.
" We next hear of a fpirit of revenge which actuated this Prince; and during the whole courfe of this long trial, we do not hear of a fingle perfonal offence that he had to revenge on the Templars. In their defence, not the moft diftant hint, either at the revengeful fpirit, or at any perfonal offence againft the king, is given ; fo far from it, until the period of this great ca. taitrophe, the grand mafter of the order had been a particular friend of the king's, who had made him godfacher to one of his children.
"In fine, the rack and torture is fuppoled to have forced confeftions from them which otherwife they ne ver would have made; and in the minutes, we find the avowal of at leaft 200 knights all made with the greateft freedom, and without any coercion. Compulfion is mentioned but in the cale of one perfon; and he makes exactly the fame avowal as 12 other knights, his companions, freely made (A). Many of thefe avowals were made in councils where the bifhops begin by declaring, that all who had confeffed through fear of the torture fhould be looked upon as innocent, and that no Kmight Templar fhould be fubjected to it (B). The Pope Clement \(V\). was fo far from favouring the king's profecutions, that he began by declaring them all to be void and null. He fufpended the archbihops, bifhops, and prelates, who had acted as inquilitors in France. The king accufes the Pope in vain of favouring the Templars; and Clement is only convinced after having been prefent at the interrogatories of 72 knights at Poictiers, in prefence of many bifhops, cardinals, and legates. He - interrogated them, not like a judge who lought for criminals, but like one who wifhed to find innocent men, and thus exculpate himfelf from the charge of having favoured them. He hears them repeat the fame avowals, and they are freely confirmed. He defired that thefe avowals fhould be read to them after an interval of fome days, to fee if they would ftill freely perfevere in their depofitions. He hears them all confirmed. Qui perfeverantes in illis, eas exprefle et fponte prout recitatre fuesant approbürunt. He wifhed ttill further to interrogate the grand mafter and the principal fuperiors, preseptores majores, of the divers provinces of France, Normandy, Poitou, and of the Tranfmarine countries. He fent the mof venerable perfons to interrogate thofe of the fuperiors, whofe age or intimities hindered them from appearing before him. He ordered the depofisions of their brethren to be read to them, to know if whey acknowledged the truth of them. He required no
other oath from them than to anfwer freely and without Templas, compulfion; and both the grand malter and the fape. riors of thefe divers provinces depofe and confefs the fame things, confirm them fome days after, and approve of the minutes of their depoftions taken down by public notarics. Nothing lefs than fuch precautions could convince him of his error : it was then ouly that he revoked his menaces and his fufpenfion of the French bifhops, and that he allows the king to proceed in the trials of the 'l'emplars.
"Let fuch pretexts be forgotten, and let us only dwell on the avowals which truth alone forced from thefe criminal knights.
" Their depofitions declare, that the Knights Templars, on their reception, denied Chrit, trampled on the crofs, and fpit upon it; that Good Friday was a day which was particularly coufecrated to fuch outra= ges; that they promited to proftitute themfelves to each other for the moft unnatural crimes; that every child begotten by a Templar was calt into the fire; that they bound themfelves by oath to obey, without exception, every order coming from the grand matter; to fpare neither facred nor prophane; to look upon every thing as lawful when the good of the order was in queftion; and, above all, never to violate the horrible fecrets of their nocturnal mytteries, under pain of the molt terrible chaitifements (c).
"In making their depofitions, many of them declared they had only been forced into thefe horrors by imprifonment and the molt cruel ufage; that they wifhed, after the exainple of many of their brethren, to pais into other orders, but that they did not dare, fearing the power and vergeance of their order; that they had fecretly confeffed their crimes, and had craved abfolution. In this public declaration, they teflified, by their tears, the molt ardent defire of being reconciled to the church.
" All repeat the fame depofition, except three, who declare they have no knowledge of the crimes imputed to their order. 'The Popw, not content with this information taken by men of religious orders and by French noblemen, requires that a new trial fhould take place in loitou before cardinals and others whom he himfelf nominates: Again, with the fame freedom, and for the third time, the grand mafter and other chiefs, in prefence of Clement \(V\). repeat their depofitions. Molay even requefted, that one of the lay brothers, who was about his perfon, fhould be heard, and this brother confirms the declaration. During many years thefe infornations were continued and renewed at Paris, in Champagne, in Normandy, in Quercy, in Languedoc, in Provence. In. France alone, above 200 avowals of the fame nature are to be found: nor did they vary in England, where, at the fynod of London held in 33 II, 78 Englifh knights were heard, and two whole montho wele fpent in taking informations and in verifying their decharations. Fifty-four Irih were allo heard, and many Scotch, in their refpective countrics. It was in confequence of thete declarations that the ordur of the Templars was abolithed 111 thofe kingdoms, and that the parlianeret
(A) Layette, N 20. Interrog. made at Caen.
(A) Layette, N 20. Interrog. made at Caen.
(B) See the Council of Ravena. Rubeus Hif. Raven. lib. vi.
(c) See the Vouchers brought by Dupuy, and Extraat of the Regijers.
mplars, parliament difpofed of their goods ( D ). The fame declarations were taken and proved in Italy, at Ravenna, at Bologna, at Pifa, and at Florence, though in all thele councils the prelaten were very ready to abfolve all thofe knights who could fucceed in their juftifications.
"I would willingly affert (continues the Abbé), that it was the fmaller part of the 'T'emplars who fuffered themfelves to be carried away by fuch abominations. Some even at Paris were declared innocent. In Italy a ftill greater number were abfolved; of all thofe who were judged at the councils of Mayence and Salamanca, none were condemned: and hence we may conclude, that of the 9000 houfes belonging to the order, many had not been tainted, and that whole provinces were to be excepted from the general ftain of infamy. But the condennations, the juridical depofitions, the method of initiating the knights, almof become general ; the fecrecy of their receptions, where neither prince, nor king, nor any perfon whatever, could be prefent during the laft half century, are fo many teftimonies which corroborate the divers accufations contained in the articles fent to the judges; that is to fay, that at leaft two. thirds of the order knew of the abominations practifed without taking any fteps to extirpate them. Vuod omnes, vel quifi due partes ordinis fiemtes dilios errores corrigere neglexerint.
"This certainly cannot mean that two thirds of the knights had equally partaken of thefe abominations. It is evident, on the contrary, that many detefted them as foon as they were acquainted with them; and that others only fubmitted to them, though initiated, after the hartheit treatment and moft terrible threats. Neverthelefs, this proves, that the greateft part of thefe knights were criminal, fome through corruption, others through weaknefs or connivance; and hence the diffo. lution of the order became neceffary."
-Dia. TEMPLEMAN (Peter), M. D. the fon of an eminent attorney at Dorcliefter in the county of Dorfet, by Mary daughter of Robert Haynes, was born March 17, 711 , and was educated at the Charter-houfe (not on the foundation), whence he proceeded to Trinitycollege, Cambridge, and there took his degree of B. A. with diftinguifhed reputation. During his refidence at Cambridge, by his own inclination, in conformity with that of his parents, he applied himfelf to the fudy of divinity, with a defign to enter into holy orcers ; but after fome time, from what caufe we know not, he altered his plan, and applied himfelf to the ftudy of phyfic. In the year 1736, he went to Leyden, where he attended the lectures of Boerhazve, and the profeffors of the other branches of medicine in that celebrated univerfity, for the fpace of two years or more. About the beginning of 1739 , he returned to Loulon, with a view to enter on the practice of his profeffion, fupported by a handfome allowance from his father. Why he did not fucceed in that line was eafy to be accounted for by thofe who knew him. He was a manl of a very liberal turn of mind, of general erudition, with a large acquaintance among the learned of different profeffions, but of an indolent, inactive dilpofition; he could not enter into juntos with people that were not to his liking;

Suprl. Vol. II. Part II.
nor cultivate the acquaintance to be met with at teatables; but rather chofe to employ his time at home in the perufal of an ingenious author, or to fpend an attic evening in a felect company of mea of fenfe and learning. In this he refenbled Dr Armfrong, whofe limited practice in his profelfion was owing to the fame caufe. In the latter end of the year 1750 he was introduced to Dr Fothergill by Dr Cuming, with a view of inltituting a Medical Society, in order to procure the earlieft intelligence of every improvement in phyfic from every part of Europe. At the fame period he tells his friend, "Dr Mead has very generounfy offered to affift me with all his interelt for fucceeding Dr Hall at the Charter-houfe, whofe death has been for fome time expected. Infpired wilh gratitude, I have ventured out of my element (as you will plainly perceive), and fent him an ode." Dr Templeman's epitaph on Lady Lucy Meyrick (the only Englifh copy of verfes of his writing that we know of ), is printed in the eighth volume of the "Select Collection of Mifcellany Poems, 178 f ." In 1753 he publifhed the firf volume of "Curious Remarks and Obfervations in Phylic, Anatomy, Chirurgery, Chemiltry, Botany, and Medicine; extracted from the Hifory and Memoirs of the Royal Academy of Sciences at Paris;" and the fecond volume in the fucceeding year. A third was promifed, but we believe never printed. It appears, indeed, that if he had met with proper encouragement from the public, it was his intention to have extended the work to twelve volumes, with an additional one of index, and that he was prepared to publifh two fuch volumes every year. His tranflation of "Norden's T'ravels" appeared in the beginning of the year 1757 ; and in that year he was editor of "Select Cafes and Confultations in Fhyffic, by Dr Woodward," 8 vo. On the eflablithment of the Britifh Mufeum, in 1753, he was appointed to the office of keeper of the reading-room, which he refigned on being chofen, in 1760 , fecretary to the then newly inflituted Society of Arts, Manufactures, and Commerce. In 1762, he was elected a correfponding member of the Royal Academy of Science of Paris, and alfo of the Economical Suciety at Berne. Very early in life Dr Templeman was aflicted with fevere paroxy fms of an afthma, which eluiled the force of all that cither his own fkill, or that of the mof eminent phyficians then living, could fugge? to him ; and it continued to harafs him till his death, which happened September 23, 1769. He was efteemed a man of great learning, particularly with refpect to languages; Spoke French with great fluency, and left the character of a humane, generous, and polite member of fociety.
TERANE', a town in Egypt, fituated on what Mr Browne calls the left of the molt weftern mouth of the Wile, at a very fmall diftance from the river. Its latitude is \(30^{\circ} 24^{\prime}\). The buildings are chiefly unburned brick, though there are alfo fome of itone. The town and dittrict, containing feveral villages, belonged, before the French invalion, to Murad Bey, who ufually entrufted its government, and the collection of its revenue, to one of his Cafhefs. That revenue arifes principally from natrôn (See Natrum, Encycl.), found 4 P

Tempreman, Teranć.
(D) Vide Valfinger in Edvardum II. et Ypodigma Neuffria apud Dupuy.—Efai de Fred. Nicolai.

Teranc, in great quantities in certain lakes about thirty five Teretra- miles from Teranć; and it is on account of thefe tulx. work; for though there are many columns in its neighbourhood, which indicate the fite of ancient ftructures, none of them have infcriptions afcertaining their antiquity.
The eaftern extremity of the moft weftern lake Mr Browne found to be \(30^{\circ} 31^{\prime \prime}\) North. No vegetation appears, except reeds, on the margin of the lake, which is very irregular in its form; fo that it is not eafy to fay what may be the quantity of ground covered with water. It is higher in winter than in fummer ; and when it was vifited by our author, its breadth did not exceed a mile, though its length was nearly four. Towards the end of the fummer, it is faid, thefe lakes are almoft dry; and the fpace that the water has retired from is then occupied by a thick depofition of falt. Not far removed from the caftern extremity, a fpring rifes with fome force, which much agitates the reft of the water. Clofe to that fpring the depth was far greater than Mr Browne's height ; in other parts it was obfervable that it did not generally exceed three feet. The thermometer near this fpring flood at \(\xi^{6}\), while in the open air it was 87 . The more wettern lake differs not materially from the eaftern in fize, form, or productions. The colour of the water in both is an imperfect red; and where the bottom is vifible, it appears almoft as if covered with blood. Salt, to the thicknefs of five or fix inches, lies conftantly in the more fhallow parts. The furface of the earth, near the lake, partakes more or lefs generally of the character of natrôn, and, in the parts fartheft removed, offers to the foot the flight refiftance of ploughed ground after a flight froft. The foil is coarfe fand. The water of the lake, on the flighteft evaporation, immediately depofits falt. There is a mountain not far from the lakes, where natrôn is found in infulated bodies, near the furface, of a much lighter colour than that produced in the lake, and containing a greater portion of alkali. How thick the fubftance of natrôn commonly is in the lake, our anthor did not accurately determine ; but thofe employed to collect it report, that it never exceeds a cubit, or common pike; but it appears to be regenerated as it is carried away. If ever it thould be brought to fuperfede the ufe of barilla, the quantity obtainable feems likely to anfwer every pofible demand.

TEREBRATUL厌 (Anomis, Lin. fee that article Encycl.) have been fuppofed not to exilt now but as petrified fhells. This, however, is a miftake. The anomia is an inhabitant of every region, and lias exited in every age. As many terebratulx were caught by Peroufe's people during his voyage of difcovery, and as Lamanion the naturalit thought they fhould be confidered as a genus by themfelves, he has given us the following delicription of the anomia, or, as he calls it, terebratula, on the coaft of. Tartary :

The length of the fhell varies from fix to twenty lines, and its breadth from five to eighteen ; there are, however, confiderable varieties of proportion between different individuals, befides thofe arifing from the different ages of the animal. It would be improper, therefore, to dittinguifh the various fpecies of anomix by the proportion of their fhells. The waving lines on the edges of the thell are equally cefective, as di-
ftinctive characters; for our anthor obferved in the fame Terebra. fpecies the fhell approaching or receding indifferently from the circular form, and, in fome, the edges of the valves are on the fame plane ; whereas in others, one of the valves forms a falient angle in the middle of its curve, and the other a re-entering angle.

The thell is of a moderate thicknefs, about that of a common mufcle ; it is fomewhat tranfparent, convex like the cockle : neither of the fhells is more fenfibly arched than the other; that, however, which has the fpur, is rather the moft fo, efpecially in the fuperior part.

On the furface of the fhell are feen a number of night tranfverfe depreffions, of a femicircular waved form, which reach the part where the fhell ceafes to be circular, in order to form the angle which fupports the fummit.
Thefe ftrix are covered with a very thin and flightlyadhering periofteum ; in fome fpecimens there are from one to three flallow broad depreffions, radiating infenfibly from the centre of the fhell, and becoming more marked as they approach the edges, where they form, with the correfponding parts of the other fhell, thofe falient and re-entering angles which have been mentioned. The periofteum is rather more firmly fixed on the latter angles than on the former.

The fhells are equal in the rounded part of thei: edge, and clofe very exactly; however, towards the fummit, the fpur of one of the fhells reaches confiderably beyond the other fhell, confequently they are unequal, as in oyfters.

The fpur, or fummit, is formed by the folding from within of the edge of the fhell, and the elongation of its upper part. The folded edges form an oval aperture of a moderate fize, through which the animal extends the mulcle, by means of which it attaches itfelf to other fubftances. This fhell is not, therefore, perforated, as its name of terebratula would feem to imply, the opening not being worked in one of the fhells, but formed by the elongation of one fhell, the folding in of its edges, and the approach of the other fhell. T'he funmit is not pointed, but round.

The ligament, as in the oyfter, is placed between the fummits, and does not appear on the outfide; it adapts itfelf to the pedicle of the animal. As the fummit takes up a confiderable part of the fhell, the valves are only capable of opening a very little without running the rifk of being broken. It is very firm, though flender, and not eafily to be difcovered, being fixed in a fmall groove, which is filled up when the fhell is fhut by the correfponding part of the oppofite fhell. This ligament preferves its texture, even for a confiderable time after the thell is emptied and become dry.

Oyfters are without a hinge, the teeth which form it in many other thells not exitting in them. The anomia has been confidered as an oytter, becaufe its hinge or teeth have not been examined: they are not vifible indeed in the foffile fpecimens; but in opening them when alive, the teeth compofing the hinge are fufficiently vilible, being even much larger than in the greater part of bivalve fhells. The foffil terebratulx are almolt always found with their fhells clofed; whereas the other bivalves have ufually theirs either open or feparated: the reafon of this feems to arife from the nature of the linge, that of the anomia not allowing it

\section*{T 1 R}
res) ra. to feparate, and the ligament, which is very tight, contributing to keep the two Mells united. The tecth which form the hinge of the anomia approach very near to thofe of the Jpondyle, deferibed by M. Adanfun. In this lail they are formed by two rounded projections, and in the anomia by the fame a little clorgated. It is above thefe teeth that the ligament is pliced in the larger fhell : there are between it and the teeth two cavities, one on cach lide, which ferve to receive the teeth of the other valve. The teeth of the larger fhell have, befides, a fight projection, which fits into a longitudinal furrow in the other fhell in front of the teeth.

The fubftance which covers the infide of the fhell holds, as in oyfters, a middle place between nacre and the interior fubtance of flells, which are deflitute of it. The degree of its luftre, polifh, and thicknefs, varies wi:h the age and circumftances of individuals.

The colour of the teeth is always white; that of the ointer furface of the fhell verges more or lefs to the ochry red, efpecially on the border. The infide has alfo a very fight tint of this colour, on a varying greyift. white ground.

Theie is vifible on each fide of the fhell the impreffion of two very diftinst tendons; a circumflance which forms a very effential difference between this genus and that of the oyfter: this latter having only one tendon arifing from the middle of the body. The impreflions of the tendon in the largeft fhell are oblong, fituate near the fummit, and hollowed; each of thern has curved tranfverfe ridges, divided into two parts by a longitudinal furrow, reprefenting the wings of certain infects. In the other valve the infertions have a different form ; their fituation is the fame, but they are very irregularly rounded and encompaffed by two fulcations, \(w\) lich are feparated from each other by an intervening ridge, and then are continued in a right line towards the opening of the fhell as far as about two thirds of its length. That part of the fummit of the fhell along which the pedicle of the animal paffes, is longitudinally ftiated in the larger fhell, of which the middle ftria is the deepeft: the longitendinal ftrix are divided into equal parts by a tranfverfe depreffion. There are no fimilar marks on the other fhell.

Our author diffected thic animal itfelf, and found what he calls the manteau of the anomia, formed of a very fine membrane, lining the infide of both fhells, and contain. ing the body of the animal. Its origin is of the fame breadth as the hinge of the fhell, whence it divides into two lobes, lining both the fiells: it forms, therefore, only a fingle aperture, terminating at each end of the hinge, and of the fame breadth with the interior furface of the fhell : it appcars to have only one trachea, which is formed by the two lobes of the mantean.

Our naturalift having opened the fhell, divided the ligament as delicately as poffible, unfixed the hinge, and detaching from the larger thell the lobe of the manteau, turned over the body of the animal. This operation expofed to view the large mufcles which adhered to the fhell ; they are foft, membranous, and, as it were, flefhy on the infide, being covered with Small fanguiferous glands. From the lower part of each inufcle there procetds a pretty ftrong tendon, which reaches to the extremity of the manteau; they run parallel to the edge of the fhell, and at a confiderable ciftance from each other; and are each enclofed in a fort of flatted fac, of
the fhape of a ribbon, which is filled with a red vifcid matter. It appears that the place of iufertion of the mufcles, as well as the muicks themielve?, which extend along the lobe of the mantean, furnith real blond, which is contained in three fmall fetlyy red glandular bodies of unequal fize, which are virible after having taken off the mufcles; perhaps thefe constitute the heart of the animal.

The mufcles which are inferted into the other fhell. are alfo divided into feveral parts: fome are feen extending along the correfponding lobe of the manteau; many others rife up in a kind of tuft, which is fixed into the fhell above: fome again fubdivide into fucl. minute ramifications as not to allow of tracing their courfe, even with the affittance of a microfcope; bnt others, more apparent, contribute to the formation of the pedicle which paffes through the opening left between the two fhells, is connected to each of them by feveral fibres, and fixes itfelf to fome external body, principally to other bivalves. The mufcles of the anomia have therefore three attachments, namely, to the inner furface of each fhell, and to fome external body.

The form of the pedicle is cylindrical, being enclofed in a mufcular fubtlance, which contains feveral fibres ; it is from a line to a line and a half long, and two thirds in cliameter. It adheres fo forcibly to different fub? ances, as that the animal, and all the mufcles which contribute to the formation of the pedicle, may more ealily be torn through than the pecicle detached from the place of its adhefion. The glatinous fubflance which connects them to each other, refifts even the heat of boiling water. It is by means of this pedicle that the animal raifes its fhell \(f(0)\) as to be, while in the water, in a pofition inclined to the horizon. The fmalleft valve is always the loweft, bcing that upon which the animal relts ; the fuperior one being the larger, and ferving as a covering. Our author thinks the animal has the power of loco-motion.

After railing the lobe of the manteau he obferved the ears. They are large, compofed of two membranaceous laminz on each fide, of which the fuperior is. the narrower. Thefe laminx are connected to each other by a thin membranc, fo as to form only a lingle pouch. They have on their edges long fringes, which hang loofe upon the manteau; but a very remarkable circunftance is, that their cars ane fupported by little iones like thofe of tifh. The form of the ears is that of an arch ; they are feparated from each other on their lower part, where the fringes are the longeft; fo that the two ears on one fide are perfectly dittinet from thofe on the other fide. 'The commencement of the ears is at the teeth of the linge.

Between the ears are fituate the fomach, cefephagus, and mouth ; the whole forming a triangle, of which the mouth is the bafe. It is placed at the lide of the hinge, and confifts of a large tranfverfe opening without lips or jaw-bone. The œfophagus is very fhort, but is capable of elongation when the animal opens its month. The flomach, which is of the thape of a pointed fac, is connected by a membiane to the bones of the ear. On opening the fomach, he found a fmall fhrimp half digefted.

At the bottom of the flomach is feen the intefline, of which it is, as it were, a continuation. It is extremely fhert, not excceding half a line in a fhell fifteen

Terebra- lines acrofs, and is compofed of a very flender memtulx, brane. The excrements are difcharged upon the lobes Ternai. of the manteau, but they are eafily thrown out by the motions of the two lobes.

The little bones of the ears, already mentioned, had not formerly been obferved in any of the teftaceous animals; whence the terebratulæ approach nearer to fifh than the inhabitants of any other fhell. In the anomiæ which are preferved in cabinets, there is found only a very fmall portion of thefe bones, whence they have obtained the improper appellations of tongue or fork, which indicate only the form of the fragments, and not their ufe.

The fmall bones of the ears are compofed of feveral pieces, the principal of which is of an oval form ; it fprings from the fide of the hinge, of which it appears to be a continuation; thence it extends about two-thirds of the breadth of the Chell, where it is reflected, and refts againft the upper part of the fork, to the branches of which it is united by a fimple fuperpofition; a kind of articulation very common among the numerous fmall bones that compofe the heads of fifh. The fork extends from the fammit a little more than one-third of the breadth of the fhell : it is formed by a pivot which divides into two long and pointed branches; thefe are remarkably brittle, and fupport the extremities of the bones of the larger eare. The lamina, which compofes a fecond fet of ears, refts upon a curved bone, which on one fide is attached to the inferior internal part of the bone of the larger ears, and on the other reaches to the fide of the mouth of the animal, where it is united to another flat little bone, which is applied to a fimilar bone on the other fide. Thefe laft little bones are exactly below the membrane which forms the mouth. All thefe bones are flat, very brittle, and furrounded with fibres and memibranes. By their articulations the ears are enabled to move; they alfo fupport the body of the animal, which touches neither of the fhells, but remains between them as upon treffels. The fpace between the branches of the bones of the ears is filled up with a tranfparent firm membrane ; at the bafe of the fork is a fimilar one, and a perpendicular partition dividing the fpace occupied by the body of the animal from the relt of the fhell. There are two orifices in this membrane communicating with the fpace between the two lobes of the manteau, and which ferves as a trachea; for we have remarked, in the defeription of the manteau, that the two lobes are entirely feparated from each other, and therefore do not form a real trachea.

From this defcription, it follows that the anomia ought to be feparated from the genus oyfter, fince it has a toothed hinge, feveral ligaments, and an interior organization wholly different; neither ought it to be confounded with the cockle, the thells of which are both equal, and are deftitute of any fenfible periofteum, without reckoning other differences. It has ftill lefs analogy with the other bivalves, and therefore ought to conftitute a peculiar genus; the fpecies of which, both foffil and living, are very numerous.

See Plate XLIII. where fig. 1 , is a front view of a terebratula of middle fize. Fig. 2, is a view of the in. ternal ftructure. - A A, laminæ of the fuperior ears\(B \mathrm{~B}\), laminæ of the inferior- C , the fomach -D , the anus - E E , the manteau- F , the cefophagus.

TERNAI, the name given by Peroule to a very
fine bay which he difcovered on the coaft of "Iartary, in Lat. \(45^{\circ} 13^{\prime}\) North, and in Long. \(135^{\circ} 9^{\prime}\) Ealt from Paris. The bottom is fandy, and diminifhes gradually to fix fathoms within a cable's length of the fhore. The tide rifes five feet; it is high water at \(8^{\mathrm{th}} 15^{\mathrm{m}}\) at full and change; and the flux and reflux do not alter the direction of the current at half a league from the fhore.
"Five fmall creeks (fays La Peroufe), fimilar to the fides of a regular polygon, form the outline of thisroadftead; thefe are feparated from each other by hills, which are covered to the fummit with trees. Never did France, in the frefheft fpring, offer gradations of colour of fo varied and ftrong a green; and though we had not feen, fince we began to run along the coaft, either a fingle fire or canoe, we could not imagine that: a country fo near to China, and which appeared fo fertile, fhould be entirely uninhabited. Before our boats had landed, our glaffes were turned towards the fore, but we faw only bears and ftegs, which paffed very: quietly along the fea fide. The fame plants which grow in our climates carpeted the whole foil, but they were ftronger, and of a deeper green ; the greater part were in flower. Rofes, red and yellow lilies, lilies of the valley, and all our meadow fowers in general, were met with at every ftep. Pine trees covered the tops of the mountains ; oaks began only half way down, and diminifhed in ftrength and fize in proportion as they came nearer the fea; the banks of the rivers and rivulets were bordered with willow, birch, and maple trees, and on the fkirts of the forefts we faw apple and medlar trees in flower, with clumps of hazle nut trees, the fruit of which already made its appearance. Our furprife was redoubled, when we reflected on the population which overburdens the extenfive empire of China, fo that the laws do not punifh fathers barbarous enough: to drown and deftroy their children, and that this people, whofe polity is fo highly boafted of, dares not extend itfelf beyond its wall, to draw its fubfiftence from a land, the vegetation of which it would be ne. ceffary rather to check than to encourage. At every flep after we had landed, we perceived traces of men by the deftruction they had made; feveral trees, cut: with fharp-edged inftruments; the remains of ravages by fire were to be feen in feveral places, and we oblerved fome theds, which had been erected by hunters in a conner of the woods. We alfo found fome fmall bafkets, made of the bark of birch treea, fewed with tirread, and fimilar to thofe of the Canadian Indians: rackets for walking on the fnow; in a ward, every thing induced us to think that the Jartars approach the borders of the fea in the feafon for hunting and fifhing; that they affemble in colonies at that period along. the rivers; and that the bulk of the nation live in the interior of the oountry on a foil perhaps better calculated for the multiplication of their immenfe flocks and herds."

Our navigators caught in the bay vaft quantities of: fine fifh, fuch as cod, harp-fifh, trout, falmon, herrings, and plaice; but though garne was plenty on fhore, they had no fuccefs in hunting. The meadows, fo delightful to the fight, could fcarce be croffed; the thick grafs was three or four feet high, fo that they found themfelves in a manner buried in it, and they were under the perpetual dread of being bitten by ferpents, of which

\section*{THEE [660]}
which they faw a great number on the banks of the rivulets. They found, however, immenfe quantities of fmall orions, forrel, and celery ; which, together with the frefh fifh, ferved as antidotes again!t the fcurvy.

Terre. Plen, or Terre.plain, in fortification, the top, platform, or horizontal furface of the rampart, upon which the cannon are placed, and where the defenders perform their office. It is fo called becaufe it lies level, having only a little flope outwardly to coun reract the recoil of the cannon. Its breadth is from 24 to 30 feet; being terminated by the parapet on the outer fide, and inwardly by the inner talus.

TERRELIA, or little earth, is a magnet turned of a fpherical figure, and placed fo as that its poles, equator, \&c. do exaaly correfpond with thofe of the would. It was fo firtt called by Gilbert, as being a juf reprefentation of the great magnetic globe we in. habit. Such a terrella, it was fuppofed, if nicely poifed, and hung in a meridian like a glube, would be turn. ed ronnd like the earth in 24 hours by the magnetic particles pervading it; but experience has thewn that this is a mittake.

TETRAEDRON, or Tetrahedron, in geornetry, is one of the five Platonic or regular bodies or folids, comprehended under four equilateral and equal triangles. Or it is a triangular pyramid of four equal and equilateral faces.

TETRAGON, in geometry, a quadrangle, or a figure having four angles. Such as a fquare, a parallelogram, a thombus, and a trapezium. It fumetimes alfo ne eans peculiarly a fquare.
Tetracor, in altrology, denotes an afpect of two planets with regard to the earth, when they are diftant from each other a fourth part of a circle, or 90 degrees. The tetragon is expreffed by the character \(\square\), and is otherwife called a fquare or quartile afpect.

THEBES, in Egypt. Having in the Encyclepadia given Mr Bruce's account of this ancient city, which reprefents it as having been a paltry place, fo contrary to the defcription of Humer, jutice to the father of poetry requires that we here notice what has been faid of it by a fubfequent traveller, who remained three days among its ruins. According to Mr Browne, "the maffy and magnificent forms of the ruins that remain of ancient Thebes, the capital of Egypt, the city of Jove, the city with 100 gates, mult infpire every inteliggent fpectator with awe and admiration. Diffufed on both fides of the Nile, their extent confirms the clafical obServations, and Homer's animated defcription rufhes into the memory :
- Egyptian Thebes, in whofe palaces vaft wealth is fored ; from each of whofe hundred gates iffue two hundred warriors, with their horles and chariots.'
"Thefe venerable ruins, probably the moft ancient in the world, extend for about three leagues in length along the Nile. Eaft and wett they reach to the mountains, a breadth of aboit two leagues and a half. The river is here about three hundred yards broad. The circumference of the ancient city mult therefore have been about twenty. feven miles.
" In failng up the Nile, the firft village you come to within the precincts is Kourna, on the weft, where there are few houfes, the people living mofly in the caverns. Next is Abuhadjadj, a village, and Karnac, a fmall diltrict, both on the eall. Far the largett portion
of the city flood on the eaftern fide of the river. On 'Thelees, the fouth-welt Medinet- \(A\) bu marks the extremity of \(\Gamma\) lieudofines. the ruins ; for Arment, which is about two leagues to the fouth, cannot be conlidered as a part.
"In defcribing the ruine, we flall hegin with the mof confiderable, which are on the eaft of the Nile. The chief is the Great f'emple, an oblong fquare building of valt extent, with a double colonnade, one at each extremity. The maffy columns and walls are covered with hicroglyphics; a labour truly flupendous. 1. The Great Temple ftands in the diftrict called Karnac. 2. Nest in importance is the temple at Abubadjactj. 3. Nu. merous ruins, avenues marked with remains of fiphinxes, \&c. On the weft fide of the Nile appear, I. Two coloffal figures, apparently of a man and worman, formed of a calcareous tlone like the reft of the ruins. 2. Remains of a large temple, with caverns excavated in the rock. 3. The magnificent edifice flyled the palaue of Miminon. Some of the columns are about forty feet high, and about nine and a haif in diameter. The columns and walls are cuvered with hieroglyplics. This ttards at Kourna. 4. Bethi:d the falace is the pallage Ayled Biban-el. Moluk, leading up the mountain At the extrcmity of this ¢ृiiage, in the fides of the rock, are the celtbrated caverns known as the fepulchers of the ancient kings."
Though Mr Browne agrees with Pooncke and Bruce, that the paflace in Homer refers not to the gates of the city, he is jet of opinion, conitrary to them, that Thebes had been a walled town. He fays, indeed, that fome faint remains of its furrounding wall are virible at this day ; and he thinks that he difcovered the ruins of three of its gates, though he does not affirm this with. abfolute conlidence.

THEODOSIUS, a celebrated mathematician, flonrifhed in the tines of Cicero and Pompey; but the time and place of his death are unknown. This Theo- Riog. Diem dofius, the Tripolite, as mentioned by Suidas, is probably the fame with 'Theodofin:s the philufopher of \(\mathrm{By}_{y}\) thinia, whho, Strabo fays, exculled in the mathematical fciences, as alfo his fons; for the fame perfou might have travelled from the one of thole places to the other, and fpent part of his life in each of them; like as Hipparchus was called by Stiabo the Bythinian, but by Poolemy and others the Rhodian.

Theolofius chielly cultivated that part of geometry which relates to the doctrine of the fphere, concerning which he publifhed three bouks. The lirft of thite coutains 22 propofitions; the fecond, 2.3: and the third, 14; all demontiated in the pure geonetnical manner of the ancients Ptolemy nade great ufe of thefe propolitions, as well as all fucceeding writers. Thefe broks were tranlated by the Arabiaus, out of the original Greek, into their uwn larguage. From the Arabic the work was again tranflated into Latin, and printed at Venice. But the Arabic verfion being very defective, a more complete edition was publifhed, in Greek and Latin, at Paris 1558, by John Pena, Regius Profeflor of a!!ronomy. And Vitello acquired reputation by tranfating Theodolius into Latin. 'This author's works were alfo commented on and illuttrated by Clavius, Heleganius, and Guarinus, and laftly by De Chales, in his Curfus Mathematicus. But that edition of Theodoflus s Spherics, which is now moft in ufe, was tranflated and publifted by our countryman the learned Dr Barsow.
row, in the year 167 , illuftrate and demontrated in a new and concife method. By this author's account, Theodolius appears, net only to be a great mafter in this more difficult part of geometry, but the tirlt confideable author of antiquity who lias written on that futjuct.

Theodofius, ton, wrote concerning the Celeftial Houfes ; alfo of Days and Nights ; copies of which, in Gruck, were in the King's library at. Paris. Ot which there was a I atin edition, publimed by Peter Dafypody, in the year 1572 .

HIILON, of Alexandria, a celebrated Greek philo. fopher and mathematician, who flourifhed in the 4th century, about the year 380 , in the time of Theodofius the Great ; but the time and manner of his death are unknown. His genius and Xifpofition for the fludy of thilofophy were very early improved by clofe application to all its branches; fo that he acquired fuch a proficiency in the feiences as to render his name venerable in hif. lory, and to procure him the honour of being prefident of the famous Alexandrian fchool. One of his pupil; was the admirable Hypatia, his danghter, who finceceded him in the prefidency of the fchool; a truft which, like himfelf, the difcharged with the greateft lonour and uffulnefs. See her life, Encycl.

The ftudy of Nature led i heon to many juft concep. tions concerning God, and to many ufeful reflections in the feience of moral philofophy. Hence, it is faid, he 1. rote with great accuracy on Divine Providence. And he feems to have made it his ftanding rule, to judge the truth of certain principles, or fentiments, from their satural or neceffary tendency. Thus, he fays, that a full perfuafion that the Deity fees every thing we do, is the ftrongelt incentive to virtue; for he infifts, that the moft profligate have power to refrain their hands, and hold their tongues, when they think they are obferved, or overheard, by fome perfon whom they fear or refpect. With how much more reafon then, fays he, thould the apprehenfion and belief, that God fees all things, reftrain men from fin, and conftantly excite them to their duty? He alfo reprefents this belief concerning the Deity as productive of the greateft pleafure inaginable, cfecially to the vittuous, who might depend with greater confidence on the favour and protec tion of Providence. For this reafon, he recommends nothing fo much as meditation on the prefence of God: and he recommended it to the civil magiftrate as a reftraint on fuch as were profane and wicked, to have the following infcription written, in large characters, at the corner of every ftrect-God sees thee, O Sinner.

Theon wrote notes and conmentaries on fome of the ancient mathematicians. He compofed alfo a book, in. titled Progymnafmata, a rhetorical work, written with great judgment and elegance ; in which he criticifed on the writings of fome illuftrions orators and hiftorians; pointing out, with great propriety and judgment, their beauties and imperfections; and laying down proper sules for propriety of Atyle. He recommends concife. nefs of expreffion, and perfpicuity, as the principal ornaments. 'I'his book was printed at Bafle in the year 1541 ; but the beft edition is that of Leyden, in \(16_{2} 6\), in 8 vo .

THEOPHILANTHROPISTS, a fect of deift, who, in September 1796 , publifhed at Paris a fort of catechifm or directory for focial worflip, under the
title of Manuel des Theantliropbiles. This religious bre- Thenpti viary found favour: the cosgregation becanie numerous ; and in the fecond edition of their manual they affumed the lefs harth denomination of Theopbilantlorofes, i. e. lovers of God and man. A book of hymns, a liturgy for every decade of the French year, and an homiletical felection of moral leffons, are announced, or publifhed, by their unknown fynod. Thus they poflefs a fyitem of pious fervices adapted to all occafions, which frome one of the individuals who attend reads aloud; for they object to the employment of a regular lecturer, in confequence of their hoftility to priefts. This novel fect was countenanced by Larcweillere Leepaux, one of the Directory, and, foon after its formation, opened temples of its own in Dijon, and in other provincial towns. They had declamations, in the fpirit of fermens, which abounded with fuch phrafes as l'eternal geomelre, and the like, and which have long fince been familiar to thofe who frequent the lodges of free mafonry. Whether the feet now exifts, or fell at the laft revolution which annihilated the directory, we have not learned; but a tranflation of its Manuel into Englifh, for the ufe, we fuppofe, of our Jacobins, was made fo early as the year 1797. From this contemptible performance, we learn that the creed of the Theo. philanthropifts is comprifed in the four following propofitions:
'I'he 'Theophilanthropifts believe in the exiftence of God, and the immortality of the foul.

The fpectacle of the univerfe attelts the exiftence of the Firft Being.

The faculty which we poffefs of thinking, affures us, that we have, within ourfelves, a principle which is fuperior to matter, and which furvives the diffolution of the body.

The exiftence of God, and the immortality of the foul, do not nced long demonftrations; they are fentimental truths, which every one may find written in his heart, if he confult it with fincerity.
'I'hus a fort of religious inttinet is fet up as the fole foundation of piety, which every one has as much right to difavow as another to affert ; and the obligations of which, therefore, can in no way be fhewn to be incumbent on thofe to whom rhis rovel illumination is not vouchfafed. Society, under fuch a fyftem, gains no means of influencing the conduet of refractory members.

The morality of the Theophilanthropits is founded on one fingle precept: Worfip God, cherifs your kind, render your Jelves ufiful to your country!

Among the duties comprehended under the denomination of cheriming our kind, we find that of not lending for ufury: the others are chiefly extracted from the gofpels, and do not interfere with the province of the civil magiftrate. The queftion of monogamy is not dif. cuffed.

Among the duties to our country are placed thofe of fighting in its defence, and of paying the taxes. It was certaimly prudent in the fatefman to flide thefe duties into the catalogne of his eftablifhed maxims of morality: and he ran thercby little rifk of provoking heretical nnimadverfions on his creed in France.

The following inferiptions are ordered to be placed above the altars in the feveral temples or fynagogues of the Therophilanthropitts; but for what reafon altars are dinmitted into luch fy magogues we are not informed:


S TEREOMETER



Fig. 1.
Fig. 2.


Yig. 2.



Firyl infcription, "We believe in the Exitence of God, in the immortality of the foul."

Second infcription, "Worfhip God, cherifh your kind, render yourfelves ufeful to the country."

Third infeription, " (Good is every thing which tencls to the prefervation or the perfection of man, - Evil is every thing which tends to deftroy or to deteriorate him."

Fourth infcription, "Children, honour your fathers and mothers. Obey them with affection. Comfort their old age. - Fathers and mothers, inftruct your children."

Fifth infcription, "Wives, regard in your hufbands the chiefs of your houfes. - Hufbands, love your wives, and render yourfetves reciprocally happy."

This pentalogue is chiefly objectionable on account of the vague dritt of the fifth commandinent: the whole has too general a turn for obvious praftical application. The introduction of ceremonies, of fculpture, of painting, and of engraving, is forbidden. If poetry and mufic may concur to render the worfhip impreffive, why not the other fine arts? The fine arts have never illu1trated a country which excluded them from the public temples. Are they to be extinguifhed in France by Theophitanthropic iconoclafts?

At p. 28. of the Manuel, this furprifing maxim occurs: Avoid innoriations! A fect fifteen months old grown as tefty as the church of Rome! They acknowledge, that perhaps better infcriptions may be found; yet they forbid the exchange. They prefer mumpfimus to the fumpfimus of genuine Chriftianity!
'THEOPHILUS, a writer and bifhop of the primitive church, was educated a Heathen, and afterwards converted to Chrittianity. Some have imagined that he is the perfon to whom St Luke dedicates the Acts of the Apoftles; but they are grofsly miftaken; for this Theophitus was fo far from being contemporary with St Luke and the apoltles, that he was not ordain. ed bifhop of Antioch till anno 170; and he governed this church twelve or thirteen years. He was a vigorous oppofer of certain herttics of his time, and compofed a great number of works ; all of which are loft, except three books to Autolycus, a learned Heathen of his acquaintance, who had undertaken to vindicate his own retigion againft that of the Chriftians. The firlt book is properly a difcourfe between him and Autolycus, in anfiver to what this Heathen had faid againft Chritianity. The fecond is to convince him of the falfehood of his own, and the truth of the Chrittian religion. In the third, after having proved that the writings of the Heathens are full of abfurdities and contradictions, he vindicates the doctrine and the tives of the Chriftians from thofe falle and fcandalous imputations which were then brought againft them. Laftly, at the end of his work, he adds an hitlorical chronology from the beginning of the world to his own time, to prove that the hiftory of Mofes is at once the moft ancient and the trueft; and it appears from this little epitome, low well this author wis acquainted with profane hiftory. Thefe three booko are filled with a great variety of curious difquifitions concerning the opinions of the poets and philofophers, and there are but few things in them relating immediately to the doctrines of the Chriftian religion. Not that Theophilus was ignorant of thefe doctrines, but, having compofed his works for
the converfion of a Pagan, he infifted rather on the ex. Therapeu. ternal evidence or pronfs from without, as better adapted, in his opinion, to the purpofe. His tyle is elegant, ard the turn of his thoughts very agreeable; and this little fpecimen is fufficient to fhew that he was indeed a very eloquent man.

The piece is intitled, in the Greek manufcripts, "The books of Theopliilus to Autotycus, concerning the Faith of the Chriftians, againft the mahicious detractors of their religion." They were publifhed, with a Latin verfion, by Conradus Gefner, at Zurich, in 1546. They were afterwards fubjoined to Juftin Martyr's works, printed at Paris in 1615 and 16,36 ; then publifhed at Oxford, 1684 , in 12 mo , under the infpection of Dr Fell ; and, laftly, by Jo. Chrift. Wolfius, at Hamburgh, 1723 , in 8vo.

It is remarkable, that this patriarch of Antioch was the firft who applied the term Trinity to exprefs the Three Perfons in the Godhead.

THERAPEUTAE, fo called from the extraordinary purity of their religious worfhip, were a Jewifh fect, who, with a kind of religious phrenzy, placed their whole felicity in the contemplation of the Divine nature. Detaching themfelves wholly from fecular affairs, they transferred their property to their relations or friends, and withdrew into folitary places, where they devoted themfelves to a holy life. The principal fo. ciety of this kind was formed near Alexandria, where they lived, not far from each other, in feparate cottages, each of which had its own facred apartment, to which the inhabitant retired for the purpofes of devotion. After their morning prayers, they fpent the day in ftudying the law and the prophets, endeavouring, by the help of the commentaries of their anceftors, to difcover fome allegorical meaning in every part. Jefides this, they entertairred themfelves with compofing facred hymns in various kinds of metre. Six days of the week were, in this manier, paffed in folitude. On the feventh day they met, clothed in a decent habit, in a public affembly; where, taking their places accurding, to their age, they fat, with the righ hand between the breaft and the chin, and the left at the fide. The: fome one of the clders, ftepping forth into the middle of the affembly, difcourfed, with a grave countenance and a calm of tone voice, on the doctrines of the fe\&; the audience, in the mean time, remaining in perfect \(f_{1}\) lence, and occafionally exprefling their attention and approbation by a nod. The chapel where they met was divided into two apartments; one for thee men, the other for the womeli. So ftrict a regard was paid to filence in thefe affemblies, that no one was permitted to whifper, or even 10 breathe aloud; but when the dif. courle was finithed, if the queftion which had been propofed for folution had been treated to the fatisfaction of the audience, they expreffed their approbation by a murmur of applaufe. Then the fpeaker, rifing, fung: a hymn of praife to Crod, in the latt verfe of which the whor: affembly joined. On great feftivals, the mectirg was clofed with a vigil, in which facred mufic was performed, accompanyed with folemn dancing: and thefe vigils were continued till morning, when the affinbly, alter a morning prajer, in which their faces we:e directed towards the rifing fun, was broken up. So abftemious were thele alcutics, that they commonly are nothing before the fetting fun, and often fafted two on
thice

\section*{THE [672] T H E}

The emo- three days. They abftained from wine, and their ordimetric. nary food was bread and herbz.

Much difpute has arifen among the learned concerning this fect. Some have imagined them to have been Judaizing Gentilez; but Philo fuppofes them to be Jews, by fpeaking of them as a branch of the fect of Effenes, and exprefsly claffes them among the followers of Mofes. Others have maintained, that the Therapeu\(t x\) were an Alexandrian fect of Jewifh converts to the Chriftian faith, who devoted themfelves to a monaftic life. But is is impoffible ; for Philo, who wrote before Chriftanity appeared in Egypt, fpeaks of this as an eftablifhed fect. From comparing Philo's account of this feet with the fate of philofophy in the country where it flourifhed, we conclude, that the 'Therapeutre were a body of Jewih fanatic3, who fuffered themfftves to be drawn afide from the fimplicity of their arcient religion by the example of the Egyptians and Pythagoreans. How long this fect continued is uncertain : but it is not improbable that, after the appearance of Clriftianity in Egypt, it foon became extinct.

THERMOMETRIC spectrum, is a name given to the fpace in which a thermometer may be placed, fo that it fhall be affected by the fun's rays refrafted by a prifm. It is, in part, the fame with the Prismatic Spectrum, which exhibits the different colours produced by the folar light.

The philofophical inftrument now called a thermometer, was firft nained THERMOSCOPE; and was prized by the naturalift, becaufe it gave him indications of the prefence and agency of fire in many cafts where our fenfation of warmth or heat was unable to difcover it. It was not long before it was obferved that it alfo affords us meafures of the changes which take place either in the quantity or the activity of the caule of heat, and of many other important phenomena ufually accompanied by heat. They were then called thermometers. But in both of thefe offices, it is ftill a doubt whether it indicates and meafures any real fubftance, a being fili gencris, to which we may give the name fire, phlogifon, caloric, beat, or any other; or only indicates and meafures certain fatcs or conditions, in which all bodies may be found, without the addition or abltraction of any material fubttance.

We think that this queftion has a greater chance now of being decided than in any former time, in coufequence of a recent and very important difcovery made by that unwearied obferver of the works of God, the celebrated Dr Herichel. Being greatly inconmoded when looking at the fun, by the great heats produced in the eye-pieces of his telefcopes, he thought that the laws of refraction enabled him to diminifh them by a proper conttruction of his eye-pieces. He began his attempts like a philofopher, by examining the heat produced in the various parts of the prifnatic fpectrum. Comparing the gradation of hat with that of illumination, he found that they did not, by any means, follow the fame law. The illumination increafed gradually from the violet end of the fpectrum, where it was exceedingly faint, to the boundary of the green and yellow, where it was the moft remarkable; and after this, it decreafed as the illuminated object approached the red extremity of the fpe\&trum. But the calorific power of the refracted light increafed all the way from the extreme violet to the extreme red; and its laft augmen.
tations were confiderable, and therefore unlike the ufual Thermio approaches of a quantity to its maximum flate. This made him think of placing the thermometer a little way beyond the extremity of the vifible fpeetrum. 'To his great aftonifhment, he found that the thermometer was more affected there than in the hotteft part of the illuminated fpectrum. Expofing the thermometer at various diftances beyond the extreme red, but in the plane of refraction, he found that it was moft ftrongly affected when placed beyond that extremity, about onefifth of the whole length of the fpectrum ; from thence the calorific influence of the fun gradually diminifhed, but was fill very confiderable, at a diftance from the extreme red equal to three-fifths of the length of the lnminous fpectrum. Thefe firft-fuggeRed modes of triat a ppeared to Dr Herfchel to be too rude to intitle him to fay that the warming influence did not extend ftill farther. Indeed the inftrument fcarcely performed the part of a thermometer, but merely that of an indicator of heat, or a thermofcope.

Fere is a very new, and wonderful, and important, piece of information. We apprehend that all the philofophers of Europe, as well as the unlearned of all nations, believe that the warming influence of the fun, and of other lnminous bodies, is conjoined with their power of illumination. Moft of the philofophers admitted the emiffion of a matter called light, projected from the fhining body, and moving with afonifhing velocity, in thofe lines which the mathematicians called rays, becaufe they diverged from the fhining point, as the radiz or fpokes of a wheel diverge from the nave. This notion feems to be the fimple fuggeftion of Nature; and it alfo feems to be the opinion entertained by Sir Ifaac Newton. His demonftration of the laws of reflection and refraction proceeds on this fuppofition alone, and the particles of light are held by lim to be affected by accelerating and deflecting forces, in the fame way as a ftone thrown from the hand is affected by gravity. Huyghens, indeed, Dr Hooke, and Euler, imagined that vifion and illumination were effected in the fame way that hearing, and refonance, and echo, are effect-ed-that there is no matter projected from the fhining body; but that we are furrounded by an elaltic fluid, which is thrown into vibrations by certain tremors of the vifible obje \(\mathcal{E}\)-and that thofe vibrations of this fluid affect our eye in the fame way as the undulation of elaftic air, produced by the tremors of a ftring or a bell, affect our ear. According to thefe philofophers, a ray of vifion is merely the line which paffes through all thefe undulations at right angles.

Thefe two opinions ttill divide the mathematical philofophers of Europe ; but the majority, and particularly the moft eminent for mathematical and mechanical fcience, are (with the exception of Huyghens and Euler) on the fide of the vulgar. This opinion has been greatly Arengthened of late years by the difcoveries in chemiftry. The influence of light on the growth of plants, the total want of aromatic oils in fuch as grow in the dark, and their formation and appearance in the very fame plant, along with the green colour, as foon as the plant is placed in the light (even that of open day without funfhine, or in the light of a candle), is a ftrong indication of fome fubflance being obtained from the light, abforbed by the plant, and combined with its other ingredients. The fame conclufion is drawn from
the effects of the fun's light on vegetable colours, on the nitric and nitrous acids, on manganefe, on the calces or oxyds of metals, and numiberlefs other inftances, which all concur in rendering it almoft unqueftionable that the fun's rays, and thole of other fhining bodies, may be, and daily are, combined with the other fubfances of which bodies are compofed, and may be again feparated from them. And, thould any doubts remain, it would feem that the theory of combuftion, finft conceived and imperfectly publifhed by Dr Hooke in his Micrography, p. 103. and in his Lampas, p. I. \&c. adopted by Mayow (fee Hoore and Mayow in this Suppl.), forgotten, and lately revived and confirmed by Mr Lavoifier, removes them entirely. In the beautiful and well-contrived experiments of the laft gentleman, the light, accompanied by its heat, which had been abforbed in the procefs of growth or other natural operations, re:appeared in their primitive form, and might again be abforbed and made to undergo the fame round of changes.

Schecle, not inferior to Newton in caution, patience, and accuracy, and attentive to every thing that occurred in his experiments, difcovered the feparability of the illuminating and the warming influences of fhining bodies. He remarked, that a plate of glafs, the molt colourlefs and pellucid that can be procured, when fuddenly interpofed between a glowing fire and the face, intantly cuts off the warming power of the fire, without caufing any ferfible diminution of its brilliancy. He followed this difcovery into many obvious confequences, and found them all fully confirmed by obfervation and experiment. The writer of this article, immediately on hearing of Schecle's experiments, repeated them with complete fucce?s: but he found, that when the glafs plate had acquired the higheft temperature which it could acquire in that fituation, it did not any longer intercept the heat, or at leaft in a very fmall and almof infenfible degree. It feemed to abforb the heat, till faturated, without abforbing any confiderable pur. tion of the light.

This feparability of heat from light does not feem to have met with the attention it deferved. Dr Scheele's untenable theories on thefe fubjects turned away the attention of the chemifts from this difcovery, and the mathematical philofophers feem not to have heard of it at all. The late Dr Hutton of Edinburgh was more fenfible of its importance ; and in his laft endeavours to fupport the falling caufe of phlogiton, makes frequent allufions to it. But in his attempts to explain the curious obfervations of Meffrs Sauffure and Pictet, in which there are unqueftionable appearances of radiated heat, he reafons fo unconfequentially, that few readers proceed farther, fo as to notice feveral obfervations of facts where the illuminating and warming influerces are plainly feparated. In all thefe inftances, however, Dr Hutton confiders the invifible rays as light, but not as heat; maintaining that they are invifible, or do not render bodies vifible, only becaufe our eyes are infenfible to their feeble action.

It was referved for Dr Herfchel to put this matter beyond difpute by thefe valuable experiments. For did the invifibility of any of the light beyond the extreme red of the prifmatic fpectrum arife from the infenfibility of our organs, the fpectrum would gradually fade away beyond the red; but it ceafes abruptly. Thefe thoughts Suppi. Voz. II. Part II.
could not cfeape this attentive obferver. He therefore examined more particularly thofe invifible rays, caufing them to be reflected by mirrors, and refracted through lenfes; and, in Mort, he lubjected them to all the fubfequent treatments which Newton applied to the colonring rays. He found them retain their fpecific refrangibilities and reflexibilities with as much uniformity and obftinacy as Newton had obferved in the colour-making rays. They were made to pafs through lenfes while the illuminating rays were intercepted by an opaque body, and the invifible rays were then cillected into a focus. They were reflected, both by thicanterior and pofterior furfaces of tranfparent bodies. In all thefe trials they retained their power of expunding the liquor of a thermometer, and exciting the fenlation of heat.

Thefe trials were not confined to the folar light or the folar rays: They were allo made on the emanations from a candle, from an open fire, and from red hot iron; then they were made with bodies not hot enough to Thine; with the heat of a common ftove, and the heat from iron which was not vifible in the dark. The event was the fame in all ; and it was clearly proved that lieat, or the caufe of heat, is as fulceptible of radiation as light is ; and that this radiation is performed in both according to the fame laws.

We look with impatience for the fubfequent experiments of this celebrated philofopher on this fubject ; for we confider them as of the greate? and moft extenfive importance for explaining the operations of Na ture. We fee, with indifputable evidence, that there are rays from the fun, and other bodies, which do not illuminate. It does not follow, however, that there are rays which do not warm ; for the thermometer was affected in every part of the coloured fpectrum. Dr Herfchel feems to think that the power of affecting the organ of fight depends on the particular degrees of mechanical momentum which are indicated by the different degrees of refrangibility. We confefs that we think it unlikely that fuch a power fould terminate abruptly. We do not obferve this in analogous phe. nomena: the evanefcence of our fenfations of found, of mufical pitch, of heat, \&cc. are all gıadual. We think it more likely that illuminating and warming are fpecific effects of different things. We fhould have enter. tained this opinion independent of all other experience; and we think ic ftrongly confirmed by the experinients of Dr Scheele already mentioned. We are difpofed therefore to believe that there are rays which illuminate, but which do not warm ; and rays which warm without illuminating. We have experiments in profpeet, by which we hope to put this to the teft.

Thefe experiments of Dr Herlchel afford another gond argument for the common opinion concerning light, namely, that it is a matter emilted from the Jioning body, and not merely the undulations of an elaftic medium; for if it were undulation, then, fince there is heat in the yellow light, it would follow that a certain frequency of undulation produces both the fenfation of heat and the fenfation of a yellow colour. In this cafe they fhould be infeparable.

This follows, in the ftrictef manner, from the principles or aflumptions adopted by Euler in his mechanical theory of undulations. The chromatic differences in the rays of light are affirmed to arife entirely from
\[
4 Q
\]
the

Thermo.
metric.

Therm- the different freçuencies of the xthereal undulations; netric. and he endeavours to fhew that there differences in fre- guency produce a difference in refrangibility. It is evident that this reafoning \(i\), equally conclufive with refpe? to the calorific or heation power of the rays. The light and the heat are both undulations: the fe differ only in frequency; and this frequency is indicated (according to Euler) by the refrangibility. There is a certain frequency therefore which excites the fenfation of yellow. The fame frequency, indicated by the fame refrangibility, \(p\) oduces heat; therefore the frequency which produces this degree of heat alfo produces the fenfation of yellow. We muft not fay that the momentum of the undulation may produce heat, but is infufficient fo" the production of light, as a ftring may vibrate too feebly fur being heard; for we fee, by Dr Herfchel's experiments, that, with a momentum fufficient for making the moft brilliant fpectrum, there are rays (and thofe which have the greate? momentum) which produce heat, and yet are invifible.

It does not follow, from any of 1)r Herfchel's expeximente, that the rays emitted by iron, which is not hot enough to mine in a dark room, have all the different degrees of refrangibility obferved by him. Perhaps none of them would fall on the chromatic fpectrum. We think, however, that this is not probabie. It may be tried by collecting them to a focus by a lenfe, intercepting, however, all thofe which are lefs refrangible than the red making rays. We trult that the thermometer in the focus will ftill be affected.

This is but a very imperfect account of this important difcovery; but we thought that it would be highly interefing to our readers. 'I'he prefs was employed on this very theet when we received the information from a friend, who had feen Dr IIerfchel's Differtation, which will appear in the firft volume publifhed by the Royal Society. We truft that the ingenious author will foon follow it up with the inveftigation of the fub. ject in all its confequences.

We hope that he will examine what will refult from mixing fome of the invilible rays with fome of the coloured ones. We know that the yellow and the blue, when mixed, produce the fenfation of green. Ferhaps the invifible rays may allo change the appearance. We do not, however, expect this.

We alfo hope that Dr Herichel will examine whether the invifible rays of the fun produce any effect on vegetable colours; whether they blacken the calces of filver and bifmuth, luna cornea, and decompofe the nitrous and the oxygenated muriatic acid, \&c. \&c. We fhould thus get more infight into the nature of caloric and of combuftion. Combuftion may perhaps be reftored to its rank in the phenomena of Narure, and no longer be funk in the general gulph of oxygenation, and thus obliterated from the menory of chemitts. It is perhaps the molt remarkable phenomenon of material Nature; and fire and burning will never go out of the language of plain men. Fire, and all its conconitants, have, in all times, been confidered as even the cbief objects of chemical attention; and an unlearned perion will ftare, when a chemif. tells him that there is no fuch thing, and that what he calls the burning of a piece of coal is only the making it four. He will perhaps fmile; but it will not be a fritile of affent.

It was one darling object of the Revolutionary Committee of Clemifs, affembled at Paris in 1787 , to ba-

Nifh from our minds, by means of a new language, all remembrance of any thing which we did not derive from the phitofophers of Erance. We think ourfelves in a condition to prove this by letters to this country from the fceree of action; in which the expected victory is fpoken of in terms of exultation, and with fo little reftraint, that the waiter forgets that it is Dr Black whom he is informing that l'air fixe and la pauvre plologifique will foon be forgotten; and yet the writer was a gentleman of uncommon modefty and worth, and fincerely attached to Dr Black. We give this as a remarkable inftance of the efprit de corps, and of the nature and towering ambition of that nation. From this they have not fwerved; and they hope to gain this fummit of fcientific dominion in the fame way as the fame philofopbers hope to baninh Chriftianity by means of their new kalendar. It may, however, turn out that both Dr Flooke and Mr Lavoifier are miftaken, when they make the oxygen gas the fole fource of both the light and the heat which accompany combution. One of them may perhaps be furnifhed by the body which all, except the new philofophers, call combuttible.

The objections which may be made to the theory of Huyghens and Euler, on the acknowledged principles of mechanics, appear to us unanfwerable. Euler has never attempted to anfwer thofe taken from the different difperfing powers of different fubftances. The objections made to the Newtonian, or vulgar theory of emiffion, are not fuch as imply abfurdity; they are only difficulties. The chief of them, vir. the famenefs of velocity in all lights whatever, is of this kind. It is merely an improbability. But the objections to the theory of undulation, deduced from the chemical effects of light, are not lefs ftrong than thofe deduced from mechanical principles. It is quite inconceivable that the undulation of a medium, which pervades all bodies, fhall produce aromatic oils in fome, a green frocula in others, fhall change fulphuric acid into fulphur, \&c. \&c. No effects are produced by the nndulations of air, or the tremors of elaftic bodies, which have the moft ditant analogy or refemblance to thefe.

That the fun and other fhining bodies emit the matter of light and heai, feems therefore to merit the general reception which it meets with from the philofo. phers. But even of this clafs there are differences in opinion. Some imagine that light only is emitted, and that the heat which wc feel is occafoned by the action of the luminous rays on our atmofphere, or on the ground. Were the fun's calorific rays as denfe at the furface of the fun as liis luminous rays are, the heat there mult exceed (fay they) all that we can form any corception of. Yct we fee, that when the mucleus of the fun is laid bare by fome natural operation. which, like a volcanic explofion, throws afide the luminous ocean which covers it to a prodigious depth, the naked parts of this nucleus are black. Therefore the intenfe. heat in that place is not able to make it hining. hot, as it coes in all our experiments with intenfe heats, giving a dazzling glare. This is thought highly im. probable ; and it is therefore fuppofed that there is, primitively, no heat in the fun's rays, but that they aet on our air, or other terreftrial matter, combining with it, and difengaging heat from it, or producing that particular itate and condition which we call beat.

We think that Dr Herfchel's difcovery militates frongly and irrefitibly againft this opinion; and thews,
(herm) - that whatever reafon we have for faying that the fun's rity for faying, that they bring heat, fire, caloric, phlo-
giton, or by whatever other name we choofe to diftinguifh the caufe of warinth, expantion, liquefaction, cbullition, \&c.
We muft either fay that light and heat are not fubftances of a peculiar kind, fufceptible of mion with the other ingredients of bodies, but merely a fate of undulation of an elaftic medium, as found is the undulation of air; or we mult fay that the fun's raya contain light and heat, in a detached ttate, fit for appcarieg in their timpleft form, producing illumination and expanfion, and for uniting chemically with other mat. ter. Whichever of thefe opinions we adopt, it is pretiv clear that all attempts to difoover a difference in the weight of hot and cold bodies may be given over. In the firft cafe, it is felf-evident ; in the fecond, we have abundant evidence, that if light and heat, being gravi tating matter, like all other bodies, were added to, or abitracted from bocies, in fufficient quantity to be fenfibly heavy, the rays of the fun, or cven the light of a cand!e, would occafion inflant dellruecion by its mere momentum ; fince every particle of radiated light and heat moves at the rate of 200,000 miles in a fecond.

This difcovery of Dr Herfchel's adds greatly to the probability of the opinion which we expreffed on another occafion, that the forces or powers of natural fubilances, which are the immediate caufes of the chemical phenomena, are no way different from the mechani cal fonces which render bodies heavy, coherent, elattic, expanfive, \(\& c\).; in thort, that they are what we call accelerating forces. We deduced this from the fact, that mechanical force can be oppofed to them, fo as to prevent their action in circumftances where it would otherwife certainly take place. Thus, by external preffure, we can prevent that union of water and caloric which would convert it into elaftic fleam. We can even difunite them again, when fteam is already produced, by forcibly condenfing it into a fmaller fpace. Now, the refraction and reflection of heat are performed according to the fame precife laws which we obferve in the refraction and reflection of light; and Sir Ifaac Newton has demonflrated that thofe phenomena arife from the action of accelereting forces, whofe direction is perpendicular to the afting furfaces. The matter of heat, therefore, is like other matter in its mechanical properties; and, in the motion of refrastion, it is acted on and deflected, juf as a projectile is acted on and deflected by gravity. It continues in motion till its velocity and direction are changed by deflecting forces, exerted by the particles of the traniparent medium or the refleeting furface. It would take up too much room, but it is a vcry cafy procefs, to demonftrate that this regular refraction of heat is altogether incompatible with the ufually fuppofed notion of caloric ; ramely, that it is an expantive fluid like air, but incomparably more elaftic: from which property very plaufible explanations have been given of the elafticity of gafes, fteams, and fuch like fuids. E. very intelligent mechanician will be fenfible, that all this fort of chemical fcience falls to the ground, when it is proved, by exbibition of the fact, that radiated heat is refracted in the fame way with radiated light. We muft lock for the explanation of the immenfe ex. plofive force of fulminating filver, gold, \&c. in fume
very different primiciples from thofe which are now in vr gue. We appichend, too, that the very phenomenon of this refraction gives indication of furces which are fufficiently powenful for this explanation: For when we reflect on the attonithing elocity of the ray of heat : on the minute fpace along which it is defleted, and confequently the time of this action, minute beyond al! inagination: and when we compare thefe circumfances with the diffection produced by gravity in the motion of a projectile - it is evident that the defeeting force of refraction mut exceed the greateft force that we have any knowledge of, in a greater proportion than the weight of Mount Ritna excecds that of a particle of fand. We would defire Mr de la llace to fufpend his hopes of efablifhing univerfal fatalifm, till he can reconcile thefe phenomena with his furdamental prisciple, "that all forces which are difufell from: a fingle point, neceffarily and efentially diminijb in the inverje duplicate ratho of the dijlances." Till he can do chis, he had better f:ll allow, with Newton, that the felection of the duplicate ratio for the action of gravity (by which alone the folar fyttern can be rendered permanent and orderly) is a mark of wifdom and benevolence. We would advife him to reconcile his mind to this; and perhapo, like the modelt and admiring Newton, he may, in good time, find comfort in the thought.

It is alfo lighly worthy of remark, that this refracting force, alniot iminenfe, which is fo plainly exerted between the particles of bodies and light, when confidered as of the fame kind with thofe that produce chemical union, appears abui!dantly fufficient for explaining fome of the mort wonderful phenomena of chemiltry; fuch as the prodigions clafticity of !lean, of gunpowder, and the fill more aftorifhing explofion of fulminating gold and flver. Some of the phenomena of defected light are produced by thefe optical forces acting at diflances fufficiently great to admit of meafurement ; as in the Newtonian oblervations on thic paffage of light near the edges of opaque bodics. Thefe defeetions cuable us to compare the deflecting forces with gravity. The refraaing force, however, is valtly greater than even this, as may be feen by the greater deflection which is produced by it : and, being exerted along a fpace incomparably fmaller, it muit be greater fill. Here, then, are forces fully adequate to the phenomena of fulmination. And we would again defire Mr De la Place to remark that, although thefe exploding forces are irrefiltible, their action feems to vanih entircly beyonu the limits of mathematical contact. This is plain from the fact, that thofe explofions do not project the fragmente to great diftances. This is remarkably the cafe in all the moft eminent of them. Common or nitric gunpowder is perhaps the ouly great exception. This particular circumfance will furely fuggeit to this eminent analyft the inverfe triplicale ratio of the diftance as more likely to explain the phenomena than liis favourite law.

We trunt that our readers will not be cifpleafed with this fhort fectech of Dr Herfet:l's difcovery, and the few rellections which it meturally fuggefted to our minds. We flall not be greatly furprited, although it thould produce a fort of counter revolution in chemical fcience, in confequence of new conceptions which it may give us of the union of bodics with light and heat. The phenomena of the regetable and animal tconomy fhew

Thevenot, that they are fufceptible of combination with other fub. Thomas. ftances befides the bafis of vital air. Whatever changes this may produce in the great revolution which has already taken place in chemical fcience, they will (in our. opinion) be favourable to true phitofophy ; becaufe Dr Herfchel's difcovery co operates with other arguments of found mathematical realoning, to overturn that principle on which De la Place hopes to found his atheiftical doctrine of fate and neceffity. It contributes therefore to refore to the face of Nature that finiling feature of providential wisdom which Newton had the honcur of exhibiting to the view of rational men. The fun is the fource of light and genial warmth to a vaft fyltem, which is held together, in almoft eternal order and beanty, by a law of attraction felected by Infinite Wiftom, as the only one adequate to this magnificent purpofe,
'i'HEVENOT (Melchifedec), librarian to the king of France, and a celebrated witer of travels, was born at Paris in 1621, and had fearcely gone through his academical ftucies, when he difcovered a ftrong paffion for vifiting foreign countries. At firft he faw only part of Europe: but then he took great care to procure very particular informations and memoirs fiom thofe who had travelled over oiher parts of the globe, and out of thofe compofed his "Voyages and Travels." He laid down, among other things, fome 1 ules, together with the invention of an initrument, for the better find. ing out of the longitude, and the declination of the needle; and fome have thonght that thefe are the belt things in his works, fince travels, related at fecond hanc, can never be thonght of any great authurity or moment ; not but Thevenot travelled enough to relate fome things upon his own knowledge. Another paftion in him, equally frong with that tor travelling, was to collect fcarce books in all fciences, efpecially in plitofophy, mathematics, and hittory; and in this he may be faid to have fpent his whole life. When he had the care of the King's library, though it was one of the beft furnifhed in Europe, he found 2000 volumes wanting in it which he had in his own. Befides printed books; he bonght a great nany manufcripts in French, Eng: lifh, Suanifh, Italian, Latin, Greck, Hebrew, syriac, Arabic, 'Iurkif, and Perlic. The inarbles prefented to him by Mr Nointel, at his return from his embaify to Conflantinnple, upou which there a:e bas-reliefs and infcriptions almolt 2000 years old, may be reckoned among the curiofities of his library. He foent mote of his time among his books, without aiming at any po!t of figure or profit : he had, however, two honowable employments; for he affitted at a conclave held after the death of Pope Innocent X. and was the French king's envoy at Genoa. He was attacked with what is called a how fever in 1692, and died Oetober the fame year, at the age of 71. According to the account given, he managed himfelf very improperly in this illnefs; for he diminifhed his ftrength by abttinence, while he fould have increafed it with hearty food and generous wines, which were yet the more necellary on account of his great age.- Thevenot's 'Travels into the Levant, \&c. were publimed in Englifh in the year 1687, folio; they had been publifhed in French at Paris 1662 , folio. He wrote alfo "I'Art de Nager," the Art of Swimming, \(12 \mathrm{mo}, 1696\).

THOMAS (Chriftian) was born at Leipfic 1655 ,
and was well educated, firlt under his father, and after. Thomas, wards in the Leipfic univerfity. At firtt he acquiefced in the eftablifhed coctrines of the fchools; but upon readingr Puffendorf's "A pology for rejecting the Scholaftic Principles of Morals and Law," light fucdenly burft upon his mind, and he determined to renonnce all implicit deference to ancient dogrnas. He read lectures upon the fubject of Natural Law, firft from the text of Grotius, and afterwards froin that of Puffenciorf, frecly exercifing his own judgment, and, where he faw reafon, advancing new opinions. Whillt his father was living, paternal prudence and moderation reftrained the natural vehemence and acrimony of the young man's temper, which was ton apt to break out, ever in his public lectures. But when he was left to himfelf, the boldnefs with which he advanced unpopular tenets, and the feverity with which he dealt out his fatirical cenfurcs \({ }_{3}\). foon brought upon him the violent refentment of theologians and profeffors.

An "Introduction to Puffendorf," which Thomas publifhed in the year 1687, wherein he deduced the obligation of inorality from natiral princioles, occafioned great offence. The following year he becance ttill more unpopular, by opening a mosthly litenary journal, which he intitled "Free Thoughte, or Monthly Dialogues on various Books, chiefly new ;" in which he attacked many of his contemporarics with great feverity. The taillery of this fatirical work was too provoking to be endured: complaints were lor! red before the ecclefiattical court of Drefden ; the bookfeller was called upon to give up the author; and it was only through the intereft of the Marefchal that Thomas efcaped punifhment. 'The title of the work was now chauged ; but its fpirit remained. A humorous and facirical life of Aritote, and Ceveral other farcaltic papers, kept alive the flune, of refentment, till at lenģth it agrais burft torth, o:1 a charge brought againt him before the tane court by the clergy of Leipfic, for contempt of religion: but he defended himfelf with fuch ability, that none of his adverfaries chofe to reply, and the matter was diwp.d.

A fatirical review, which he wrote, of a treate ". Un the Divine Right of Kings," publibed by a Dawith di. vine ; "A Defence of the Sect of the Pictifts," "ind other eccentric and fatirical publications, at la!t infla-nei the refentment of the clergy againlt T'nomas to fucis a degree, that he was threatened with imprioument. To efcape the ftorm which thickened about him, he entreated permiffiun from the Elector of Brandeub:as, in whofe court he had feveral friends, that he migth red private lectures in the city of Hall. This indulsmee, being obtained, 'Thomas became a voluntary exile fi in Iefiplic. Atter a fhort interval, he was appointed puba lic profeflor of jurifprudence, firlt in Berlin, and after. wards at Hall. In thefe fituations, he found hionlelf at. full liberty to indulge his fatirical humour, and to engage in the controverfies of the times: and as long as he lived, he continued to make ufe of this liberty in a manuer which fubjected him to much odium. At the fame time, he perfevered in. his enteavours to correct and fubdue the prejuctices of mankind, and to improve the fate of philofophy. He died at Hall in the year 1728.

Befides the fatirical jnurnal already mentioned, Thomas wrote feveral treatifes on logic, morals, and jurifprudence; in which be advanced many dogaas contra.
an apothecary; and being educated at WYeftminfler T orntor. fchool, was eleated to Chritt Clurcl, Oxford, in the \(\longrightarrow\) year 1743. He was thus eight years fenior to Col. man, who was elected off in 1751 . The firt publication in which he was concerned was, "The Student, or Oxford and Cambridge Mifcellany," which appeared in mouthly nuurbers; and was collected in two volumes 8 vo , in \(17+8\). Smart was the chief conduenor of the work ; tut Thornton, and other wits of both univerfities, effitted in it. He took his degree of matter of arts in 1750; and as his father wifhed him to make phyfic his profeffion, he took the diegree of bachelor of that faculty in 1754. In the fame year he undertook the periodical paper called The Connoi Trur, in conjunction with Colmen, which they continned weekIy to the 3 cth of Seprember 1756. In the concluding paper, the different ages end purfuits of the two authors are thus joculariy pointed out, in the defciption of the double author, Mr Town. "Mr Town is a fair, black, middle fized, very thort man. Ite wears his own hair: and a periwig. He is about thity years of age (lite. rally thity two), and not more than four and twenty. He is a flutens of the law and a bachelor of pi.yti. He was bred at the univertety of Oxford, where, h?ving taken no lefs than thee degret, le looks down ort many leanced pinfe? been there bit little louger than to take the firft degree of bachelor of arts, it has more than once happened that: the eenfor.general of all England las been reprimanded by the cenfor of his college, for neglecting to furn: \(f_{h}\) the ufual cllay, or, in the collegiate phrafe, the thene of the week." Engeged in purfuits of this kind, Bon. nel Thornton did not very clefly follow the profeffion to which his father deftined lim, but lived rather a literary life, empluying his pen on varicus fubjects. To the daily paper called the Public Advertijir, then in high repitation, he was a frecuent contributor: and he once bad it in contemplation to treat with Mr Rich for the parent of Covent Garden theatre. In 1704, Nir Thornton married Mifs Sylvia Brathwaite, younget daughter of Celorel Brathwaite, who had been governor of a furt in Atrica. In 1766, encouraged, as the fays himlelf, by the fuccefs of his friend Colman's The renee, he nublifed two volumes of a tranAation of Plautus in blaik verfe; propofing to complete the whicle if that fpecimen flould be auproved. Thefe volunits contained feven plays, of which the Captive was tratif. lated by Mir Warner, who afterwards completed att that Thornton had left unfinithed; and the Merculur by Mr Culman. The remaining five are, the Auphitryen, Miles Gloriofus, Trinummus, Aulularia, R'w.ens. Some parts of the remaining playb which Thornton had tranflated are preferved by his continuator. There can be no doubt that this is the be!! way of tranflating the old comedies, and that Thornton was well qualıfied for the tafk; but the work has never been in high favour with the public. Yet Warburton faid of it, that "s he never read fo juft a tranflation, in fo pure and elegant a flyle." Thornton publifhed in 1767, The Battle of the Wigs, as an additional canto to Garth's Difpenfary ; the fubject of which was the difputes then fubfifting between the fellow; and licentiates.
\(T\) he life of Thornton was not deftined to attain any great extenfion: in the prime of his days, while he was furrounded by domeftic felicity, the comforts of for-

Whannm, tuise, and the refpect of fociety, ill health came upon din inder. him; and inedical aid proving inefficient, he died, of the gont in his ftomach, May 9 1768, at only 44 years of age. His wife, a daughter, and two fons, furvived him. Befites the productions already mentioned, he wrote the papers in the Adventurer marked A; "An Ode to St Cecilia's day, adapted to the ancient Britifh Mufce," a buricfque performance; "The Oxford Barber ;" with many detached clays in the pubiic papers. A few letters addeeffed to his \(S_{y}\) lvia before they were 11arricd, difplay great tendernefs, expref.ed with frank. I:Cfs and eafe. A fmall edition of his works might, with much propriety, be prefented to thie public, before it thall be too late to afcertain them ail. His character may be taken from his epitaph, written in Latin by his friend Dr Warton, and placed on his monument in Weftminfter Abbey. It is to this effect: "His genius, cultivated moft happily by every kind of polite literature, was accompanied and recommended by manners open, fircere, and candid. In his writings and converfation he hat a worderful livelinefe, with a vein of pleafantry peculiarly his own. In ridiculing the failings of men, without biternefs, and with much humour, he was fingulariy happy; as a companion, he was delightful."

THUNDER. Tliere is not one of the appearances of nature which has fo much engaged the attention of mankind as thunder. The favage, the citizen, and the philofopher, have obferved it with dread, with anxiety, and with curiofity ; and the philofopher of our times treats the others with a finile of condefcenfion, white he here enjoys the fulleft triumph of his fuperiority.

> Felix qui potuit rerum cognofcere caufas, Atque metus omnes et incvitabile fulmen Sukjecit pedibus.

But though this grand plenomenon has long engaged the curious attention of philofophers, it is bnt very lately that they have been able to explain it ; that is, to point out the more general law of nature of which it is a particular inftance. Inflammable vapours had long furnifhed them with a fort of explanation. The difcovery of gunpowder, and fill more that of itfflammable air, gave fome probability to the exiftence of extenfive Irata of inflammable vapours in the upper regions of the atmofphere, which, being fet on fire at one end, might burn away in rapid fucceffion, like a train of gunpowder. But the fmalleft inveftigation would fhew fuch a difimilarity in the phenomena, and in the general effects, that this explantatiou can have no value in the eyes of a true naturalitt. Horric explofion, and a blaft which would fweep every thing from the furface of the earth, mult be the effects of fuch inflanmation. The very limited and capricions nature of the ravages made by thunder, rencer them altogether unlike explo. fions of elaftic fluids.

No fooner were the wonderful effcets of the charged electrical phial obferved, than naturalifts began to think of this as exlibiting fome refemblance to a thunderftroke (fee Electricity, Encycl. n \({ }^{\circ}\) 12.) ; but it was not till toward the year 1750 that this refemblance was viewed in a proper light by the celcbrated Franklin. In a differtation witten that year, he delivers his opinion at large, and notices particularly the following zircumiltances of fimilarity.
1. The colour and crooked forn of lightning, per- Thunder. fectly fimilar to that of a vivid electrical fpark between diftant bodies, and uulike every other appearance of light. This anguler, defiltory capricious form of aut renarkably electrical faark, and of forked lightning, is very fiugular. No two fucceffive fpa:ks have the fame form, Their fharp angles are unilike every appearance of motion through unrefifing air: Such motions are always curvilineal. The fpark is like the fimultaneous exiltence of the light in all its parts; and the fât is, that no perfon can politively fay in which direction it moves.
2. Lighning, like eleerricity, always frikes the moft advanced objects-hills, trees, fteeples.
3. Lightning affects to take the beft condufors of elcetricity. Bell wires are very frequently deftroyed by it. It Lever houfe in Fifethire, in 1732 , it ran along a gilded moulding from one end of the houfe to the other, exploding it all the way, as alfo the tinfoil on the backs of feveral inirrors, and the gilding of fereens and leather hangings.
4. It burns, explocles, and deftroys thefe conductors precifely as electricity does. It diffolves metals; melts wires; it explodes and tears to pieces bodies which contain moifture. When a perfon is killed by lightning, his thoes are commonly burlt. When it falls on a wet furface, it fpreads along it. The Royal William, in Louifourgh harbour, in 1758 , received a thunderAroke, which diffipated the maintop.gallant maft in duft, and came dows: on the wet decks in one fpark, which fpread over the whole deck as a fpout of water would have done. This is quite according to eleetrical laws.
5. It has fometimes ftruck a perfon blind. Elec.ricity has done the fame to a clicken which it did not kill.
6. It affects the nervous fyftem in a way refembling fome of the known effects of electricity. The following is a moft remarkable inftance: Campbell, Eiq; of Succoth, in Dunbartonfhire, had been blind for feveral years. The diforder was a gutra ferena. He was led one evening along the ftreets of Glafgow by his fervant Alexander Dick, during a terrible thender ftorm. The lightning fometimes fluttered along the flreets for a quarter of a minute without ceafing. While this fluttering latted, Mr Cainpbell faw the ftreet diAtinctly, and the changes which had been made in that part by taking down one of the city gates. When the form was over, his entire blindnefs returned. -We have from a friend another inftance, no lefs remarkable. One evening in autumn he was fitting with a gentleman who had the fame diforder, and he obferved feveral lambent flafues of lightning. Their faces were turned to the parluur window; and inmediately after a flaht, the gentleman faid to his wife "Go, my dear. make theth flut the white gate; it is open, you fee." 'The lady did fo, and returned ; and, after a little, faid, "But how did you know that the gate was open ?" He exclaimed, "My God! I faw it open, and two men look in, and go away again," (which our friend alio had obferved). The gentleman, on being clofe quettioned, could not recollect having had another glance, nor why it had not furprifed him ; but of the glimpfe it\(t=1 f\) he was certain, and defcribed the appearanice very exactly.
7. Lightning kills; and the appearances perfeetly reiemble refemble thole of a mortal ftroke of elcetricity. 'The mu?cles are all in ? tate of perfect relaxation, even in thofe fituations where it is ufually otherwife.
8. Lightning is well known to deftoy and to change the polarity of the mariner's needle.

Dr Franklin was not contented with the bare obfervation of thefe important refemblances. He availed himfelf of many curious difcoverics which he had made of electrical laws. In particular, having obferved that eleftricity was drawn off at a great diftance, and without the leaft violence of action, by a fharp metallic point, he propofed to philofophers to erect a tall maft or pole on the higheft part of a building, and to furnifh the top of it with a fine metalline point, properly infulated, with a wire leading to an infulated apparatus for exhibiting the common electrical appcarances. To the whole of this contrivance be gave the name of thunderrod, which it fill retains. IIe had not a proper opportunity of coing this himfelf at the time of writing his differtation in a letter fiom Philadelplia to the Royal Society of London; but the contents were fo fcientific, and fo interefting, that in a few weeks time they were known over all Europe. His dircetions were followed in many places. In particular, the French academicians, encouraged by the prefence of their monarch, and the great fatisfaction which he expreffed at the repetition of Dr Franklin's mot inftructive experi. ments, which difcovered and eftablifhed the theory of pofitive and negative electricity, as it is fill received, were eager to txecute his orders, making his grand experiment, which promifed fo fairly to bring this tremendous operation of nature not orly within the pale of feience, but within the management of human power.

But, in the mean time, Dr Franklin, impatient of delay, and perhaps incited by the honourable defire of wall-deferved fame, put his own fcheme in practice. His inventive mind fuggefted to him a moft ingenious method of prefenting a point to a thunder cloud sat a very great diftance from the ground. This was by fixing his point on the head of a paper kite, which the wind fhould raife to the clouds, while the wet ftring that held it Mould ferve for a condustor of the electricity. We prefume that ic was with a palpitating heart that Dr Franklin, unknown to the neighbours, and accompanied only by his fon, went into the ficlds, and fent up his meffenger that was to bring him fuch news from the heavens. He told a perfon, who repeated it in the hearing of the prefent writer, that when he faw the fibees of the cord raife themfelves up like hogs brillles, he uttered a decp figh, and would have wifhed that moment of joy to have been his lafl. He obtain. ed but a few faint ffarke from his apparatus that day; but returned to his houfe in a flate of perfect happinefo, now fecling that his name was never to die. Thns did the foap bubble, and the paper kite, from being the playthings of children, becone, in the hands of New. ton, and of Franklin, the means of acquiring immortal honour, and of doing the moit important fervice to fociety.

We may juftly confider this as one of the greateft of philofophical dilcoveries, and as doing the bughen honour to the inventor; for it was not a fuggeftion from an accidental obfervation, but arofe from a fcientific comparifon of facts, and a fagacious application of the
dostrine of politive and negative electricity; a doctrine Thuncer. wholly Dr Franklin's, and the refult of the moft acute and difcriminating obfervation. It was this alone that fuggefled the whole; and by explaining to lis fatisfaction the curious property of Tharp points, gave lim the courage to handle the thunderbolt of Jove.

It is then a point fully afcertained, that thunder and lightning are the elcetric fnap and fpark, as much fuperior to our puny imitations as we can conceive from the immenfe extcut of the influments in the hands of Nature. If, fays Dr Fianklin, a conductor one foot thick and five feet long will produce fuch fnaps as agitate the whole human Irame, what may we not expeet from a furface of 10,000 acres of electrified clouds? How loud muft be the explofion? how terrible the effects?

This difcovery immediately directed the attention of Elecirical philofophers to the fate of the atmofphere with re- fates of the ipect to electricity ; and in this alfo Dr Franklin led atmef. the way. He immediately erected his thunder rods phere. and they have been imitated all over the world, with many alterations or improvements, according to the different views and fkill of their authors. It is need. lefs to infift here on their conftruetion. They have been defcribed in the article Electricity (Encycl.) ; and any perfon well acquainted with its theory, as laid down in the Supplementury article Electricity, will be at no lofs to accommodate his own confruétion to his fituation and purpofes.
D) Eranklin took the lead, as we have already obferved, in this examination of the electrical flate of the atmofphere. He feldom found it without giving figns of clectricity, and this was generally negative. Sec Phil. Tranf. Vol. XI,VIII. p. 358. and 785.

Mr Canton repeated thofe experiments, anci found the fame refults; both, however, found that the clectricity would frequently change from pofitive to nega. tive, and from negative to pofitive, in very fiort fpaces of time, as different portions of clouds ar air paffed the thunder-rod.

We muft here remark, that our acquaintarce with Cautios or the laws of clectricity fufficiently informs us, that the he ubferved electricity of our thunder rod may frequently be of a in this ex.sdifferent kind from that of the cloud which excites the minarion appearances at our apparatus. We know that air, like by a ti, \(n-\) glafs, is a non-conductor, and that when it is broumptinto 1 r suj any fate of electricity, either ty commer mere induction, it will remain in that flate for fome time, and that it always changes its clectricity per fira. tum. A pofitive clond, in the higher regions of the atmofphere, will render the air inunediately below it negative, and a ftratum below that pofitive. If the thander rod be in this pofitive fratum, it will exhibit pofitive electricity ; but if the cloud be confiderably nearer, the rod, by being in the adjoining negative fratum, may fhow a negative electricity, which will exceed the pofitive clectricity which the diftant pofitive clond would have induced on its lower end by mere pofrtion, had the intervening air been away. 'This excefs of regative clectricity mult depend on the digree in which the fitrtounding ftratum of air has been rendered negative. If this has been the almoft inftantancons offect of the pro. fence of the pofitive cloud, it cannot be rendered folnegative as to produce negative cleciricity in thic lower

Minunde". end of the thunder rod. But if the fratum of air has 6.- for fonie confiderable time accompanied the pofitive cloud, its negative eiectricity has been increafing, and fome would remain, even if the choud were removed. We muft, at all times, confider the thunder rod as af fected by all the electricity in its neighbourhond. The diftant pofitive cloud would at any rate render the lower end of the rod pofitive, without communication, by merely difplacing the electricity in the rod itfelf, juft as the north pole of a loadtone would make the remote end of a foft iron rod a north pole. In like manner, the negative flratum of air immediately adjoining to the pofitive cloud would make the lower end of the rod negative, without communication. A pofitive flratum of air below this would have the contrary cffect. The ap. pearances, then, at the end of the rod, muft be the refult of the prevalence of one of thefe above the others; and many intervening ciccumitances muft be underfood, before we can infer with certainty the fate of a cloud from the appearances at the lower end of the apparatus. It would, therefore, be a noof inftructive addition to a thunder rod to have an electrofcope at hoch ends. If they flew the fane kind of electricity, we may be affured that it is by communication, and is the fame with that of the furrounding flracum of air: But if they Thew oppofite elect ricities (which is generally the cafe), then we learn that it is by pofition or induction. We recommend this to the careful attention of the philofopher.

In this way we perfeelly explain an appearance which puzaled both of the above-mentioned obfervers. When a fingle low cloud approached the rod, the electrofcope would thew pofitive electricity, but negative when the clond was in the renith, and politive again when it lad paffed by. We alfo learn from this the caufe of Dr Franklin's difappointment in his expectations of very remarkable phenomena by means of his kite. He imegined that it would be vafly fuperior to the apparatus which he had recommended to the philofophers of Europe. But the ftring of the kite, traverling feveral frata in different ftates of eleEtricity, ferved as a conductor between them, and he could only obtain the fuperplus; which might be nothing, even when the clouds were ftrongly electrified.

The moft copious and curious obfervations on the tlectrical flate of the atmofphere are thofe by Profeffor Beccaria of I'urin. He had connected the tops of feveral fleeples of the city by iufulated wires. He did the fame thing at a monattery on a high hill in the neigh. bourhood. Each of thefe collected the electricity of a feparate ftratum of confiderable extent. He frequently found thefe two ftrata in oppofite flates of floong electricity.

The following general obfervations are made out from a comparifon of a vaft variety of more particular ones made in different places:
1. The air is almoft always electrical, efpecially in the day time and dry weather; and the electricity is generally pofitive. It does not become negative, unlefs by winds from places where it rains, fnows, or is foggy.
2. The moifture of the air is the conftant conduetor of its electricity in clear weather.
3. When dark or wet weather clears up, the electricity is always negative. If it has been very moilt, and Hries very faf, the electricity is very intenfe, and dimi-
nifhes when the sir attains its greatef drynefs ; and Thurice may continue long flationary, by a fupply of air in a drying flate from diftant places.
4. If, while the fky overcafts in the zenith, only a high cloud is formed, without any fecondary clouds under it, and if this cloud is not the extenfion of another which rains in fome remote place, the electricity (if any) is always pofitive.
5. If the clouds, while gathering, are fhaped like locks of wool, and are in a ftate of motion among each other; or if the general cloud is forming far aloft, and ftretches down like defcending fmoke, a frequent pofitive eleGricity prevails, more intenfe as the changes in the atmofphere are quicker; and its intenfity predicts the great quantity of flnow or rain which is to follow
6. When an extenfive, thin, level cloud forms, and derkens the \cline { 3 - 3 } , we have ftrong pofitive electricity.
7. Low thick fogs, rifing into dry air, carry up fo much electricity as to produce fparks at the apparatus. If the fog continues round the apparatus without rifing, the electricity fails.
8. When, in clear weather, a cloud paffes over the apparatus, low and tardy in its progrefs, and far from any other, the pofitive eleftricity gradmally diminifhes, and returns when the cloud has gone over.

9 When many white clouds gather over head, continually uniting with and parting from each other, and thus form a body of great extent, the pofitive electricity increafes.
10. In the morning, when the hygrometer indicates drynefs equal to that of the preceding day, pofitive clectricity obtains, even before funrife.
11. As the fun gets up, this electricity increafes ; more remarkably if the drynefs increafes. It diminithez in the evening.
12. The mid day electricity, of days equally dry, is proportional to the heat.
13. Winds always leffen the electricity of a clear day, efpecially if damp; therefore they do not electrify the air by friction ori folid bodies.
14. In cold feafons, with a clear fky and little wind, a conliderable electricity arifes after funfet, at dew falling.

The fame happens in temperate and warm weather.
If, in the fame circumftances, the general drynefs of the air is lefs, the electricity is alfo leis.
1.5. The electricity of dew, like that of rain, depends on its quantity. This electricity of dew may be imitated by electrifying the air of a clofe room (not too dry), and filling a bottle with very cold water, and fetting it in the upper part of the room. As the damp condenfes on its fides, an electrometer will fhew very vivid electricity.

Such a collection of obfervations, to be fit for inference, requires very nice difcrimination. It is frequently difficult to difcover electricity in damp air, though it is then generally ftrongeft ; becaufe the infulation of the apparatus is hurt by the dampnefs. To make the obfervation with accuracy, requires a portable apparatus, whofe infulation can be made good at all times. With fuch apparatus we fhall never mifs obferving electricity in fogs, or during fnow.

There is a very curious phenomenon, which may be Curiou frequently obferved in Edinburgh, and no doubt in o- Phenor ther towns fimilarly fituated. In a clear day of the nonkling
month fog.

\section*{T H U}

Thunder.

7

8
month of May, an eafterly wind frequently bring a fog with it, which advances from the fea in a denfe body; and when it comes up the High-Atreet, it chills the body exceedingly, while it does not greatly afiect the thermometer. Inmediately before its gaining the freet, one feels like a tickling on the face, as if a cobweb had fallen on it, and naturally puts up his hand, and rubs the face. We have never found this to fail, and have often been amufed with feeing every perfon rubbing his face in his turn. The writer of this article has obferved the fame thing at St Peterfburgh, in a fummer's evening, when a low fog came on about ten o'clock.

The gene al appearances of a thunder form are nearly as follow :

For the inoft part the wind is gentle, or it is calm. A low denfe cloud begins in a place previoufly clear: this increales faft in fize; but this is only upwards, and in an arched form, like great bags of cotton. 'The lo wer furface of the clond is comnonly tevel, as if it retted on a glafs plane.

Soon after appear numberlefs finatl ragged cloucs, like flakes of cotton teazled out. Thefe are moving atont in various uncertain directions, and continually changing their ragged fhape. This change, however, is generally by augmentation. Whatever occafions the precipitstion of the diffotved water feens to gain ground. As thefe clouds move about, they approach each other, and then ftretch out their ragged arms toward each other. This is not by an augmentation, but by a real bending of theie tatcers towards the other cloud. 'They feldom come into contact ; but after coming very near in fome parts, they as plainly recede, either in whole, or by bending their arms away from each other.

But during this confufed motion, the whole mafs of fmall clouds approaches the great one above it: and when near it, the clouds of the lower mafs frequently coalefce with each other before they finally coalefce with the upper clond: But as frequently the upper cloud increafes without them. Its lower furface, from being levet and fmooth, now becomes ragged, and its tatters ftretch down towards the others, and long arms are extended towards the ground. The heavens now darkell apace, the whole mafis fenks down; wind arifes, and frequently fhifts in fqualls; fmatl clouds are now moving fwiftly in various directions ; lightsing now darts from cloud to cloud. A fpark is fometimes feen co-exiftent through a vaft horizontal extent, of a crooked fhape, and of different brillian. cy in its different parts. Iightning ftrikes between the clouds and the earth-frequently in two places at once. A continuation of thefe fnaps rarifies the cloud; and in time it diffipates. This is accompanied by heavy rain or hail; and then the upper part of the clouds is high and thin.
During this progrefs of the form, the thunder rod is Atrongly electrified ; chiefly when the principal clond is over head. The ftate of the electricity frequently changes from pofitive to negative-almoft every flafh, however diftant, occalions a fudden ftart of the electro. fcope, and then a change of the electricity. When the cloud is more uniform, the clectricity is fo too.

The queftion now is, In what manner docs the air acquire this ele\{ricity? How come its different parts to be in different ftates, and to retain this difference for a length of time? and how is the electric equilibrium Supez. Vol. II. Part II.
reflored with that rapidity, and to that extent, that we Thunder. obferve in a thunder ftorm? For we know that air is a very imperfect conductor, and tranfmits eleatricity to fmatl diftances only, and very flowly. We fhall mention feveral circumftances, which are known facts in electricity, and muft freçumely concur, at leaft, with the other caufes of this grand phenomenon.

Air is rendered electrical in a great variety of ways.
1. All operations which excite clectricity in other bodies have the fame effect on air. It is electrified by friction. When blown on any body, fuch as glafo, \&c. that body exhibits clectricity by a fenfible electrofcope. We therefore conclude that the air has acquired the oppofite electricity from this rubber. A glafs veffel, exhaufted of air, and broken in the dark, gives a loud crack, and a very ferilible flafh of light. An air-gun, difcharged (witholt a ball) in the dark, does the fame. Blowing on an electric with a pair of bellows never fails to excite it. In fhort, the facts to this purpore are numberlefs.
2. Eleetricity is produced by a number of chemical operations, which are continually going on. The melting and freezing of electric bodies in contact with each other, fuch as chocolate in its moulds, wax-candles in their moulds, fealing-wax, \&c. Nay, it is highly probable that any body, ill paffing from its fluid io its fo. lid form, or the contrary, is clectrical. This is the cafo when a folution of Clanber's falt, or of nitre, in water, is made to cryltallize atl at once by agitation.

The folution of bodies in their merffrua is, in like manner, productive of eleetricity in many cafes Thus iron or chalk, while diffolving in the fulphuric acid, produce negative electricity in the mixture, and politive in the electric vapours which arife from them.

A moft copions fource of electricity is the converfion of water into clatic fteam by violent heats. When this is done in a proper apparatus, the electricity of the liquid is negative, and the vapour is pofitive. But if this be accompanied by a decompofition of the water, the liquid is fometimes Afrougly negative. Thus, when water evaporates fuddenly from a red hot filver cup, the cup is ttrongly negative; but if from clean ted hot iron, fo that the iron is calcined, and inflanmable air produced, the iron is pofitive. If the decompofition of the water is fufficiently copions to do nore than compenfate for the negative electricity proluced by the mere expanfio:1 of the water into flean, the electricity is pofitive : but not otherwife. Water expanded from a piece of red hot coal always gives negative electricity, and this frequently very Atrong. Thefe experiments fhould atways be made in metalline veffils. If made in giafs vefels, the glafs takes a charge, which expends the produced electricity, and remains nearly neutral, fo that the production of electricity is not obferved. Thefe facts are to be found among many experiments of Mr Sauffure. But there is here a very wide field of new inquiry, which cannot fail of being very inltruetive, and particularly in the prefent queftion. We fee fome of the effeets very dittinctly in feverat phenomena of thunder and lightning. Thus, the great eruptious of Netna and Vefuvius are always accompanied by forked lightnings, which are feen darting among the volumes of emitted fmoke and fteam. Here is a very copions converfion of water into elaltic fteam; and here alfo it is mott reafonable to expect a copious decompofition of
water.

Thunder. water, by the iion and coally matters, which are expofed to the joint action of fire and water. Thefe two elearicities will be oppofite ; or when 1.ort oppofite, will not be equal : in either of which cafes, we have valt maffes of team is itates fot for flafhing into each other.

A fact more to our purp fe is, that if a filk or linen cloth, of a downy texture, be moiftened or damped, and hung hefore a clear fire to dry, the fibres brifte up, and on bringing the finger, or a metal knob, near them, they are plainly attracted by it. We found them ne gatively electric. This thews that the fimple folution of water in air produces electricity. And this is the chief operation in Nature conneeted with the fate of the atmofphere. It is thits that the watery vapours from all bodies, and particularly the copious exfudation of plants, difappear in our atmofphere. There can be no doubt but that the oppofite eleciricity will be produced by the precipitation of this vapour ; that is, by the formation of clouds in clear air. When damp, but clear air in one veffel expands into an adjoining veffel, from which the air has been exhaulted, a cloud appears in both, and a delicate electrometer is affected in both veffels; but our apparatus was not fitted for afcertaining the kind of eleetricity produced. Here then is another unexplored field of experiment. We got two veffels made, having diaphragms of thin filk. Thefe were damped, and fet into two tubs of water, of very different temperatures. Dry air was then blown thro them, and came from their fpouts faturated with water. The fpouts were turned toward each other. Being of very different temperatures, the Areams produced a cloud upon mixing together, and a frong negative electricity was produced. We even found that an electrometer, placed in a veffel filled with condenfed air, was affected when this air was allowed to rufh out by a large hole.
Lafly, we know that the tourmaline, and many of the columnar cryftals, are rendered electrical by merely heating and cooling. Nay, Mr Cantun found that dry air became negative by heating, and pofitive by cooling, even when it was not permitted to expand or contract.

When water is precipitated, and forms a cloud, it is reafonable to expect that it will have the electricity of the air from which it is precipitated. This may be various, but in general negative: For the heat by which the air was enabled to diffolve the water made it negative; and much more the friction on the furface of the earth. But as heat caufed it to diffolve the water, cold will make it precipitate it ; and we fhould therefore expect that the air will be in the fate in which it was when it took up the water. But if it be cooled fo falt as to precipitate it in the form of rain, or fnow, or hail, we may expect pofitive electricity. Accordingly, in fummer, hail thowers always thew Arong pofitive electricity; fo does frow when falling dry.

Here, then, are cupious fources of atmofpheric electricity. The mere expanfion and condenfation of the air, and fill more the folution and precipitation of watery vapours in it, are perhaps fufficient to account for all the inequality of electric tlate that we obferve in the atmofphere.

The maffes of air thus differently conflituted are evidertly difpufed in trata The clouds are feen to be fo. Thefe clouds are not the ftrata, but the boundaries of
ftrata; which, from the very nature of thinga, are in Thunder. different ftates with refpect to the fufception or precipitation of water. When two fuch ftrata are thus ad- Stra:a joining, thev will Mowly act on each other's tempera- he heatmoture, and by mixing will form a thin ftratum of cloud 'phereare along their mutual confines. If the one flratum has in d fferens any motion relative to the other, and be in the fmalleff eleetriisty, degree difturbed, they will mix to a greater depth in and are each; and this mixture will not be perfectly uniform. tray fapa The extreme mobility of air will gुreatly increafe this rent. jumble of the adjoining parts of the two Atrata, and will give the cloud a greater thicknef. If the jumble has been very great, fo as to puth one of them through the other, we thall have great towering clouds, perhaps pervading the whole thicknefs of the ftratum of air. We take thefe cloud's to be like great foggy bladders, fuperficially opaque where they have come into contact with the furrounding ftratum of air, but cranfparent within.

When the wind, or fratum in motion, does not pufh all the quiefcent air before it, it generally gets over it, and then flows along its upper fide, and, by a partial mixing, produces a fleccy cloud, as already defcribed. We may obferve here, by the way, that the motion of thore fleecy clouds is by no means a juft indication of the motion of the Aratum ; it is nearly the motion compofed of the half of the motions of the two.

This is in all probability the ftate of the atmofphere, Thefe ftro confifting of Atrata of clear air many hundred yards ta have thick, feparated from each other by thin fleeces of frata of clouds, which have been produced by the mixture of terpofed. the two adjoining flrata. This is no fancy ; for we actually fee the fky feparated by frata of clouds at a great diftance from each other. And we fee that thefe itrata maintain their fituations, without farther admixture, for a long time, the bounding clouds continuing all the while to move in different directions. In the year 1759, curing the frege of Quebec, a hard gale blew one day from the weftward, which made it almoft impracticable to fend a number of provifion boats to our troops ftationed above the town. While the men were tugging hard at the oars againft the wind, and hardly advancing, though the tide of flood favoured them, the French threw fome bombs to deftroy the boats. One of thefe burft in the air, near the top of its flight, which was about a quarter of a mile high. The round ball of fmoke produced by the explofion remained in the fame fot for above feven minutes, and difappeared by gradual diffufion. The lower air was moving to the eaftward at leaft 30 feet per fecond.

In 1783 , when a great fleet rendezvoufed in Leith Roads, the fhips were detained by an eaterly wind, which had blown for fix weeks without intermiffion. 'Ihe flky was generally clear; fometimes there was a thin fleece of clouds at a great height, moving much more flowly in the fame direction with the wind below. During the lait eight days, the upper cirrent was from the well ward, as appeared by the motion of the upper clouds. High towering clouds came down the river, with a little rain; the ftrata were juinbled, and the whole atmofphere grew hazy and uniform; then came thunder, and heavy rain, and the wind below fhifted to the weffward.

Thus it is fufficiently evinced, that the atmofphere frequently confifts of fuch Arata, well difinguifhed from
each other: their appearance and progrefs leave us tho roon to doubt but that they come from direrent quarters, and had been taken up or formed at different places, and in different circumftances, and thereforediffer. ing in refpect of their electrical ftates.
The confequence of their continuing long together would be a gradual but now progrefs of their electricity to a tate of equilibrium. The air is perhaps never in a perfectly dry flate, and its moilure will caule the electricity to diffufe itfelf gradually. It is not beyond the power of our mathematics to afcertain the progrefs of this approximation to the electic equilibrium. We fee fomething very like it in the curious experiments of Peccaria with mirror plates laid tegether, and charged by means of a coating on the outer plates. Thefe plates were found to confilt of alternate ftrata of pofitive and negative electricity, which gradually penetrated through the plates, and coalefced till they were reduced to two ftrata; perhaps in time the electricity would have difappeared entirely by thefe two alfo coalefing. In the fame manner there would be a flow transfulion of fenfible eleftricity through thefe ftrata without any fenfible appearances. If any collateral caufes fhould make a part more damp than the reft, there would be a more brik transference through it, accompanied with faint fiathes of lambent lightning.

But thunder requires a rapid communication, and a reftoration of clectric equilibrium in an inftant, and to a valt extent. The means for this are at hand, furnifhed by Naturc. The frata of charged air are furnifhed with a coating of cloud. The lower ftratum is coated on the underfide by the earth.
When a jumble is made in any of the ftrata, a precipitation of vapour muft generally follow. Thus a conductor is brought between the electrical coatings. This will quickly enlarge, as we fee that in our little imitations the knobs of our conductors inftantaneoufly arrange any particles of duft which chance to lie in the way, in fuch a manner as to complete the line of conduct, and occafion a fpark to fly to a much greater diffance than it would have leaped if no duft had been interpofed. We have often procured a difcharge between two knobs which were too far afunder, by merely breathing the damp air between them. In this manner the interpofed cloud immediately attracts other clouds, grows ragged by the paffige of electricity through clear air, where it caufes a precipitation by altering the natural equilibrium of its electricity; for a certain quantity of elecीricity may be neceffary for air's holding a certain quantity of vapour. Accordingly we fee in a thunder florm that fmall clouds continually and fuddenly form in parts formerly clear. Whatever caufes thunder, does in fact promote this precipitation.
'Thefe clonds have the electricity of the furrourding air, and muft communicate it to others in an oppofite flate, and within reach. They muft approach them, and mult afterwards recede from them, or from any that are in the fame ftate of electricity with chemiflves. Hence their ragged forms, and the fimilar form of the under furface of the great cloud ; hence their continual and capricious flifting from place to place: they are carriers, which give and take between the other clouds, and they may become flepping fones for the genesal difcharge.
If a fmall cloud form a communication with the
ground, and the great cloud be pofitive or necative, we rhanter. mun have a complete difcharge, and all the electrical phienumena, with great violence; for this coating of vapour io abundantly complete for the puipofe. It confifts of fmall vefictes, which are futicicinily near each other for difcharging the whole air that is in their interfices. A phial coated with amalgam is by no means fally coated. If we hold it between the eye and tie light, we fhall fee that it is only covered with a number of detached points of amalgam, which looks like a cobweb. Yet this glafs i, almoft completely difcharged by a fingle fpark, the reliduum being hardly perceptible.
The general. feene of thunder is the heavens; and it The \(\mathrm{d} . \mathrm{f}\) is by no means a frequent cafe that a difcharge is made charge is into the earth. The air intervening between the earth betwein and the lowert coating is commonly very much confu-the cluyds fed in confequence of the hills and dales, which, by altering the currents of the winds, tofs up the inferior parts, and mix them with thofe above. 'This generally keeps the earth pretty much in the fame electical flate as the loweft ftratum of clouds.

Nor are the great thunder forms in general inflances wi.ich are of the reftoration of equilibrium between two ftrata im-horizonmediately incumbent on each other. They feem, for the talily dif. moft part, to be ftrokes between two parcels of air which \({ }^{\text {tant. }}\) are horizontally diftant. This, however, we do not affirm with great confidence. Our chief reafon for thinking fo is, that in thefe great florms the fpark or fhatt of furked lightming is cirected horizontally, and fometimes is feen at once through an extent o! feveral miles.

The nature of this fpark has not, we think, been particular properly confidered. It is fimply c mpared to a long accourit of electical fpark, which we conceive to be drawn thro'forke! pure air, and is confidered as marking the aetual trans-lightning. ference of electricity from one end to the other. But nation of this we doubt very much. We are certain of having the lous obferved thafts of lightening at one and the fame inftant oi timued Aretching horizontally, though with many capricious and rumzigzags and lateral fputterings, at leaff five miles. We of chunder, cannot conceive this to have been the friking diftance, becanfe the greateft vertical diftance of the ltrata is not the half of this. We rather think that it is a fimultaneous range of difcharges, each accompanied with light, differently bright, according to the electrical capacity of the cloud into which it is made; and if there is a real transference of electric matter on this occalion (which we do not affirm), it is only of a hinall quantity from one cloud to the next adjoining. This we think confirmed by the found of thunder. It is not a fuap, incomparably louder than our loudeff fruap from coated glafs; but a long continued, sumbling, and very unequable noife. There is no doubt but that this tinap was almoft fimultaneous through the whole extent of the fpark; but its different parts are conveyed to our ear in time, and are therefore heard by us in fueceffion; and it is not an uniform roar, but a rumbling noife, unequally loud, according as the different parts of the fnap are indeed differently loud. We fould hear a noiife of the fame kind if we flood at one end of a long line of foldiers, who difclarged the ir muffuets (differently loaded) in the fame inftant. When any part of the fipark is very near us, and is not very diffule, the fnap begins with great fmartnefs, and continucs for fone tinue, not unlike the violent tearing of a piece of flrong filk; after which it becumes more and mere mel-

\section*{T H U \\ [ 684 ] T H U}

Thunder. low as it comes from a greater diflance. We do not, however, affirm, that the whole extenfive fpark and fnap are co-exiftent or fimmlaneous. The cloud is, in all probability, but an indifferent conductor, and even a fenfible time may elapfe curing the propagation of the fpark to a great diffance. Beccaria obferved this in a line of 250 feet of chain, lying loofely on the ground, and confifing of near 6000 links. He thought that it employed a full fecond; but when the chaill was gently fretclied, the communication feemed infantaneous.

37
Obfervations on the fnap between two metal knobs is of the fame kind electric fpark.

We cannot help thinking that even the electrical Not a quantity of luminous matter which iffues from the one and goes to the other, but a light that is ex- cited or procuced in dificient material interjacent particles of air or other interpofed matter. The angular and fputtering form is quite incompatible with the motion of a fimple luminous point. Nay, our chenical knowledge here comes in aid, and obliges us to \{peculate about the manner in which this light is produced. Whence does it come? It may be produced by two knobs of ice. We know that water confift of vital and inflammable air, which have already emitted the light which made an ingredient of their connpcfition. The fpark therefore does not come from the ice. Is it then from the air? If fo, perhaps water is produeed, or rather fomething elfe, for thete is not always inflammable air at hand to compofe water. Yet the traneference of electricity has decompofed the air, or las rebbed it of part of its light. The remainder may not be water; but it is no longer air. Is not thais confirned by the peculiar fmell which always accompanies teeीric fparks? and the peculiar tafte, not unlike the tafte felt on the tongue when it is touched by the zinc in the experiments on Galvanism? Even the fine pencil of light which flows from a point pofitively electrified, appears through a magnifying glafs to confift, not of luminnus lines, but of lines of luminous points. And thefe points are of different brilliancy and different colour, both of which are inceffaitly changing. And be it farther obferved, that thefe lines are curves, diverging from each other, and convex to the axis. This circumftance indicates a mutual repulfion, arifing, in all probability, from the expantion of the eir. And, lattly, no fpark nor light of any kind can be obtained in a fpace perfectly void of air.

All thefe circumfances corcur in explaining the nature of the fhaft of forkeci lightuing. It is a feries of appearances excited in the intenvening medium, and which produce fome chemical change in it. Thunder, when it ftrikes a houfe, always leaves a peculiar imell. Infammable air has alfo a psculiar and very difagreeable fmell. The fmell produced by eleciricity greatly refembles the fmell produced by friking two pieces of
quartz together.

Mr Deiuc fuppofes that the electrical 〔park, as it is exlibited in thunder, is always accompanied by the der compofition of air now fo fenilialy known, and that this is the origin of the deluge of rain which commonly finiftes the form. But this is not in the fralleft degree probable. The elecen folition exterds furely no tarther than where the light is leparated; and we fliould no more expet a delnge of rain, even if we had infians. mable air ready at hand, than we oxpect droph of water in our electrical exfuimethts. Scracthing cifferent fiom
water follows this decompofition, total or partial, of Trunder. the vital air; and the water which we do obferve to accompany thunder, is no more than what we flould expect from the copious precipitation of water in a cloudy form. Mr Sauflure's obfervations a Nure us, that the particles of a cloud are veficles. Indeed no perfon who has looked narrowly at a fog, or has obferved how large the particles are of the clond which forms in a receiver when we fuddenly diminifh the denfity of the air, and who obferves how flawly thefe particles defcend, can doubt of their being hollow veficles. We cannot perhaps explain their formation; but there they are. We ean hardly conceive them receiving the commotion which accompanied the frap without collapfing by the agitation. l'erlaps the sery ceflation of their clectuicity may produce this effect. 'I hey will therefore no longer float in the air, but fall, and unite, and come to the ground in rain. We may expect this rain to he copious, for it is the produce of two ftrata of clouds. It greatly contributes to the putting an end to the ftorm, hy paffing through the ftrata, and helping to refore the equilibrium.

One may at fint expect that a fingle clap of thunder Why and will reftore the equilibrium of any extent of clouds, and how thunwe require an explanation of their frequent repetition der nay before this is accomplifhed. This is not difficult, and fomene tmine. the fact is a confirmation of the above theory, which is confiderably diffierent trom the generally teceived notions of the fubject. We confider the flratum of clar air as the charged eleflic; pofitive on one fide, and negative on the other, and coated witli conducting clouds. When the difclarge is made, the flate of electricity is indeed changed through the whole ftratum, but the equilibrium is by no means comuleted. The ftratum is perhaps a quarter of a nile in thicknefs. The difcharge does not inimediately affect all this; but does it fuperficially, leaving the reft unbalanced. It is like the refidumen which is left in a Leyden phial when the difcharge has been made by means of a fpark drawn at a diffance. It is ftill more like the refiduun of the difcharge of a Leyden pluial that is coated only in patches on one fide. Liach of thele patches difcharge what is immediately under it and round it to a certain imall diftance, but leaves a part keyond this itill charged: This rechandant electricity gradualiy diflufes iffeif men the ipaces juft now difcharged ; and, after teme cumiderable time has elapfed, another ditcharse nay be made. In like manner, the electricity remaining ni the interior of the fratum diffitus itfelf, comes wihhin the action of the coating, ans may be again difchaiged thy a clap of thunder. We lave a till better paralicl to this in Beccari?'s experinients with two or more plates of glafs laid together. After the firt difelaange, the internal furfaces will exhibit centain eleciricity. Lay the plates together, and, aiter fome time the electucity of the immer furfaces will be different, and another difclarge may be obtained.

Magnetifm affords the beft illuftration of this. If a magner be brought near a piece of fott iron, lying below a paper on which iron filings are lightly ftrewed, it will inftantly induce a norith pole on one end and a fouth pole on the other; and this will be diftinctly obfelved by the way in which thefe filings will arrange th.cr.flues Jut if, infead of loft iron, we place a bar of haid tempered fieel, the touth pole will be but a
fmall tained in a negative flate at \(a\), and a politive fate mainIf the difcharge be now made between the clouds A and B , the electricity mult inflantly ruft up through a conductor at \(a\), and down though one at \(b\). and each place will have a ftroke. The fame thing will happen if the negative cloud \(B\) is above the politive cloud \(A\), but not in fo great a degree; for the negative electricity at \(a\) will now be much lefs than in the other cafe, becaufe it is induced only by the prevalence of the pofitive cloud A over the more remote negative cloud B .

This returning Atroke explans, mech better than we can by any direct ft oke, the capricions effects of thumder. A perforn at Vienna received a terrible fhock by having his hand on a thunder-rod during a violent explofion which he faw abuve three miles diffant. Sparks are obferved at thunder rods at every the moft diltant Hafh of lightning.
Deccaria has a different theory of thunder. He imagines that the different parts of the earth are in different ftates of electricity, and that the clonds are the reforing conductors. But this does not accord wilh what we know of electricity. The earth is fo guod a conductor, that Dr Watfon could nor oblerve any time lof in communicating the clectricity to the ditance of more than four milts. It is very true, that the earth is : lmoft always in a flate of very unequal, and even oppofite, electricity in its different parts; but this arifes from the variety of clouds ftrongly electrified in the oppofite way. This induces electicity, or difturbs the natural uniform diffurion of electricity, juf as the bringing magnets or iondifones into the neighbourhond of a piece of iron, without touching it, renders it niagnetical in its different parts. While they continue in their places, the piece of iron will be magnetical, and differently fo in its different parts.
Such are the thoughts which occur to us on this fubject. But we by no means afirm that we have given a full account of the procedure of Nature; we have only pointed out feveral necefiary confequenecs of the known laws of electricity, and of its production in the atmofphere by mear.s of netural operations which are continually going on. Thefe muff operate, and produce an electrical ftate of the atmofphere gready relembling what we obferve: and we have fhewn, from the acknowledged doctrines of electricity, how this want of equilibrium may be removed, and muft be removed, by the fame operations of Nature. The equilibrium mult be reflored by means of the conducting coating furnith. ed by the clouds. Bit thefe may be the ltant confiderable of Nature's refources; and the fubject is fill an
unexplored feld, in the examination of which we may linundet. hope to make daily increafing knowledge of the cliemical ftate of the atmofohere.

22
Knowledge is valuable chiefly as it is ufeful. N.O Dr Fraukman ever faw the propricty of this apothegm more lit's inven. ftrongly than Dr Franklin, or more afiduoufly adhered tion of a to it in the courfe of a long and ftudious life. How- a, ainft ever greatly we may aclinire his \{agacity, penetration, thumien. and logical diferimination, in the dicoveries he has made in the feience of electricity, and his difeovery of the identity of elcetricity and thurder, we mult acknowledge infinitely greater obligations to him for putting it in our power to vard off the fatal, and forme! ! insutable ftroke, of this awful agent in the hands of Nature.

Dr Franklin confiders the earth as performing the office of a conductor in reitoring the electric eçulibrium of the atmofplete, which has been diturbed by the inceffant action of the in: V aried powers of Na ture.

He obferves that the ufual prefererce will be gisen to the beft conductors. In this refpect, a metal rod far furpaftes the brick, fone, timber, and other misterals which compofe our buildiness, (fpecially when thicy are dry, as is ufually the cafe in the thundery feafon. Ite therefore advifes us to place metalline conductors in the way of the atmofplicrical eleetricity, in thofe Ilaces where it is moll likely to frike, and to continue them down to the r.oilt earth, at fome cepth under the turface. Nay, as it has been found that thunder has nut in every intarice flruck the bigheeft parts of buildings, he advifes to raife the metellire condufors to fome comfiderable height above the building, the more certainly to invite che electricity to take this courfe.

To enfure fuccifs, he obferves that the clectrical pisections fhock diffipates water, and even metalline conducters, for conwhen too fmall. He therefore adsifes to make thictucting itaconductor at leait half an inch fquare, none of that fize having ever been deftroyed, thongh fmaller have, by the thunder: yet cven thefe had conducted the thnnder to the ground with paricet fufery to the building.

No part of a conductor muft terminate in the building; for the electricits accumulates exceedingly at the remote extromities of all long rods, and telids to fly off wihl great force, efpecially it another concuctor is hear. This aids the accumulation, by acquiring at its upper end an electricity oppofite to that of the lower end of the other: and this effect, produced by the influenice of a pofitive cloud, inakes the upper and negative en ! of the lower portion of a divided conductor draw mure electricity ta the lower end of the upper fortion. This redundant electricity, ftrorgly attracied by the negative lower portion, flies off with great violence through the air; or if furrounded with any matter capable of converfion into elattic vapour by heat, burfts it with irrefiftible force 'Thus the thunder, acting on the vane fpindle of St lride's ftecple in London, Sprung from its lower end to the upper end of an iron window bar, and burft the fone in which it was fixed, by expanding the moifture into fteam. In like manner it burft the itone at the lower end of this bar, to make its way to an iron cramp which connceted the oppofite fides of the fteeple; from this it ftruck to another cramp; and fo from
cramp cramp to cramp, till it reached the gutter leacis of the church, burting and throwing off the fonework in many places.

All interruptions muft therfore be carefully avoided, and the whole mult be made as much as poffible one continued metal rod.

Fariher, Dr Franklin, obierving the Engular property which tharp points poffefs of drawing off the eleetricity inflence, ajvifes us to finifh our conductor with a fine point of gilt copper, which cannot be clunted by ruit.

24
Is the thander rud an effectual and fate contrivance?

But as thus raifng the conductor, and pointing it, are fo many invitations to the thunder to take this cowre ; and as we cannct be certain that the quantity thus invited may not be more than what the rod can conduct with fafety-it has appeared to Dr Wilfon, and other able electricians, that it will be fafer to give abundance of conduct to what may unavoidably vifit us, without inviting what might otherwife have gone harmle \(\int\) sly by.

This was attentively confidered by Dr Franklin, Dr Watfon, Mr Canton, Dr Wilfon, and others, met as a committee of the Royal Socicty, at the defire of the Buard of Ordnance, to contrive a conductor for the powcier magazine at Purflect.

We think that the theory of induced electricity, founced on Dr Franklin's difcoveries, and confirmed byy all the later inventions of the elestrophorus, condenfer, \&c. will decide this queflion in the moft fatisfactory manner.

When a cloud pofitively electrified comes over a building, it renders it negatively electrical in all its parts, if of conducting materials, and even the ground on which it fands. This effect is more remarkably produced if the ftructure is of a tall and Alender fhape, like a fteeple or a rod. 'Therefore the external electrical fluid is attracted by the building with greater force than if it had confifted of materials lefs conductive. A difcharge will therefore be made through it in preference to any neighbouring building, becaufe it is more eminently negative. For the fame reafon, if there are two buildings equal and fimilar, one of them being a good conductor, and the other being a lefs perfect one, the perfeet conductor, becoming more powerfully negative, the cloud will become more ftrongly pofitive over this houfe than over the other, and the ftroke will be made through it.

The fame thing muft obtain in a perfect conductor continued from the top to the foundation of a houfe, built of worfe condueting materials. The conductor becoming more eminently negative than any other part of the building, the electric fluid will be more ftrongly attracted by it, accumulated in its neighbourhood, and will all be difcharged through it, fo long as it is able to conduct.

If the building is of great cxtent, the proximity of one part of the building to the thunder cloud may produce an accumulation of electrical fluid in its neighbourliood, in preference to a more perfect, but remote, conductor. But when the diftances from the cloudare not very unequal, the accumulation will aiways be in the neightomhood of the perfect conductor; and this will determine the difcharge that way. The accumulation in the neighbourhood of the rod will be fmall in. deed, when the rod is fmall ; but then it is denfe, and tine whole of electric plenomena fhew that it is the
denity, and not the quantity, of accumulation which Thunder; produces the violent tendency to fly off : it is this alone which makes it impoffible to confine electricity in a bcdy which terminates in a tharp point.

For the fame reafon, bodies of the fame matcrials and flape will increafe the accumulation in the adjoining part of the clond in picportion as they are nearer to it, or more advanced beyond the reft of the building.

And bodies of nender fhape, and pointed, will produce this accumulation in their neighboushood in a tillt more remarkable degree, and determine the courfe of the difcharge with fill greater certainty.

But it is cvident that a metallic rod, no higher than the reft of the building, may occalion an accumulatios in the adjoinirg part of a near thunder cloud fufficient to produce a difcharge, when the building itfelf, confifting of imperfect conductors, would not have proveked the difcharge at all. It may therefore be doubted whether we have derived any advantage from the conductor.

To judge properly of this, we muft confider houfes Effect of ail as they really are, conlifting of different materials, in interrupvery different fhapes and fituations; and particularly as conductore having many large pieces of metal in their conftruction, in various politions with regard to the clond, the ground, and to each other. Suppofe all the reft of the build. ing to be of non-conducting materials. When a pofi. tive thunder cloud comes overhead, every piece of metal in the building becomes electrical, without having received any thing as yet from the cloud; that end of each which is neareft the cloud becoming negative, and the remote end pofitive. But, moreover, the electricity of one increafes the eleftricity of its neighbour. Then the moft elevated becomes more flrongly attractive at its upper end than it would have been had the others been away ; and therefore produces a greater accumulation in the nearer part of the thunder cloud than it "would otherwife have done, and it will receive a fpark. By this its lower end becomes more overcharged, and this makes the upper end of the next more undercharged, and the fpark is communicated to it, and fo on to the ground; which would not have happened with. out this fucceffion of conductors. Thus it is eafy to conceive, that the accumulation in the cloud is juit in fuflicient to produce a difcharge - While things are in this ftate, juft ready to fnap, fhould a man chance to pafs under a bell wire, or under a luttre hanging by a chain, his body will immediately angment the politive electricity of the lower end of the conductor above him, and thus will augment the negative electricity of its upper end. This atgain will produce the fame effect ir the conductor above it : and thus each conductor be. comes more overcharged at its lower end, and more un. dercharged at the upper end. Before this, evely thing wa juit ready to fnap. All will now ftrike at once. The cloud will be difcharged through the houfe, and the man will be the facrifice, the whole difcharge being made through lis body. "This needs no demonftration for any well-infurmed electrician. 'Thole who have onlysfuch a knowledge of the theory as can be gathered from the writings of Prieftley, Cavallo, and other popular authors, may convince themfelves of the truth of what is here delivered in the following inanner.

In dry weather, and the moft favourable circumftances for good electrical experiments, let a very large

\section*{T H U}

All thefe accidents will be prevented by giving a fuf. Thunder. ficient uninterrupted condnct; and it is proper to make ufe of fuch a conductor, although it may invite many difcharges which would not otherwife happen. So long as the conductor is fuffcient for the purpofe, there foems to be no doubt of the propriety of this maxim.

But the mof ferious ohjection remains. As we are A chundes certain that thefe conductors, whether raifed above the rod will building or not, will prodnce difcharges through them protect which otherwife wonld not have happened, and as we it is when are quite uncertain whether the quantity contained in a able to dif. thunder cloud may not greatly excecd what the thun. charge thedir rod can conduct without being diffipated in fmoke, whole it feems very dangerous thus to invite a ftroke which our conductor may not be able to difclarge. In particular, it is reafonable to believe that the ftrata of electrified clouds which onme near the earth lofe much of their clectricity by paffing over the fharp points of trees, \&c. while thofe which are much higher may retain their clectricity undiminifbed, and pafs on. May it not thercfore happen, that our conductor will invite a fatal ftroke, which would have gone harmlefsly by?

The doubt is natural, and it is important.
Let us fuppofe a very extenfive and highly electrified cloud, in a politive ftate, to come within fuch a diftance from a building as juft not to frike it, if unprovided with a conductor, but which will moft certainly itrike the fame building furnifhed with a conductor; and let the electricity be fo great that the conductor thall be diffipated in fmolse before even a fnall part of it is difcharged - What will be the fate of the building? We believe that it will be perfeetly fafe.

However rapid we may fuppofe that motion by which electricity is communicated, it is fill motion, and time elapfes during the propagation. The clond is difcharged, not in a very inftant, but in a very fhort time. Part of the clond is thercfore difcharged, while it ex. plodes the conductor, and the electricity of the remait: der is now too weak (by our fuppofition) to frike the bnilding no longer furnithed with a conductor. This mult be the cafe, however large and powerful the cloud may be, and however fmall the condueqor.

But fuppofe that the cloud has come fo near as to ftrike the building unprovided with a conductor. Ther. as much will be difcharged through the building as it can conduct; and if the quantity be too great, the building will be deftroyed: but let a conductor (tho' infufficient) be added. The difcharge will be made through it as long as it lafts, and the remainder only will be difcharged through the haufe, furely with much lefs danger than before.

The truth of thefe conclufions from theory is fully verifited by fact. When the church of Newbury in New England was ftruck by lightning in 1755, a bell wire, no bigger than a knitting needle, conducted the thun der with perfect fafety to the building as far down the Aeeple as the wire reached, though the Itroke was fo great that the wire had been exploded, and no part of ir remained, but only a mark along the wall occalionct by its fmoke. From the termination of the wire to the ground the fteeple was exceedingly hattered, and ftones of great weight were thrown out from the foundations (where they were probably moifter) to the diflance of 20 and 30 feet.

Another .

Thinider: Another remarkable inflance happened in the fummer palace at St Peteriburg. A Heyduk and a foldier of a foot regiment were flanding centincls at the door of the jewel-chamber: the Heyduk, with his fcimitar refting on his arm, was carelefsly leaning on the foldier, who had his mufket fhouldered. Both were flruck down with lightning; and the foldier was killed, his left leg foorched, and his fhoes burft. The Heyduk had received no damage, but felt himfelf tripped up, as if a great dog had run againft him. A narrow flip of gold lace, which was fewed along the feam of his jacket and pantaloon breeches, reaching to his fhoes, had been exploded on the left fide. This feems to have been his protection. In all probability, the ftroke came to both along the mulket (or perhaps to the Heyduk along the fcimitar). The Heyduk had a complete, though infufficient, condu\&or, and was fafe. The foldier had not, and was killed. The pufh felt by the former probably arofe from the explofion of the lace.

It feems therefore plain that metalline conduetors are always a protection ; that advancing them above the building, increafes their proteetion; and that pointing them may fometimes enable them to diminifh a ftroke, by difcharging part of the electricity filently.

Dr Franklin having formed all his notions of thunder from his pree eftablifhed theory, and having feen the principal pheromena fo conformable to it, was naturally led to expeet this conformity in cafes which he could not eafly examine precifely by experiment. Accordingly, in his firlt differtation, he affirmed that a fine point always difcharges a thunder cloud filently, and at a great diffance. The analogous experiments in artificial electricity are fo beautiful and fo perfpicnous, that this confidence in the protecting power of fine points is not furprifing: and this confidence was rendered almoft complete by a moft fingular cafe which fell under his own obfervation He was awakened one night by loud cracks in his ftair cafe, as if foine perfon had been lafhing the wainfcoating with a great horfewhip. He thought it fo, and got up in anger to chide the idle fool. On looking out at his chamber door, he faw that the difturbance proceeded from electric explofions at fome interruptions of his conductor. He faw the electricity pafs, fometimes in bright fparks, producing thofe loud thwacks, and fometimes in a long continued ftream of denfe white dazzling light as big as his finger, illuminating the fair cafe like lun hine, and making a loud noife like a cutler's wheel. Hat the cloud (fays he) retained all this till it came within ftriking diftance, the confequences would have been inconceivably dreadful. Yet not long after this he found that he had been in a mittake; for the houfe of Mr Watt in Philadelphia, furnifhed with a finely pointed conductor, was truck by a terrible clap of thunder, and the point of the conductor was melted down about two inches. This is perhaps the only inftance on record of a finely-pointed condutior being ftruck. The board room at the powder magazine at Purfleet was indeed Atruck, though provided with a conductor ; but the froke was through another part of the building. St Peter's chiureh, Cornhill, has been eight times ftruck between \(177^{2}\) and \({ }^{1} 787\); white St Michael's, in its neighbourhood, and much higher, has never had a ftroke fince 1772, when it was furnifhed with an excellent pointed conduetor by Mr Nairne.

Dr Franklin having feen the above exception to his Thunder: rule, and refected on it, acknowledges that there are cafes where a pointed conductor may be ffruck, viz, A pointed when it ferves as a flepping fone, to complete a canal of condurucor conveyance already near completed. A frall cloud may fomer may fometimes ferve as a ttepping flone (like the man itres be coming under a luftre) for the eleçricity to come out of a great cloud, and difcharge through the pointed conductor. Whenever it comes to the friking diftance from the conductor, it will explode at once ; whereas the great cloud itfelf mult have come nearer, and had its force gradually diminifhed. It is remarkable that a point, employed in this way in artificial elefricity, muft be brought nearer to another body than a ball need be, before it can receive a ftroke. The difference is about one third of the whole. Nairne found, that a ball one nine-tenths inches in diameter, exploded at the diflance of nine inches, and a point at fix inclies diftance.

We muft alfo obferve that a pointed conductor can have no advantage over a blunt one in the cafe of a returning ftroke; which is perliaps the moft common of any. This depends on another difcharge, which is made perhaps at a great dittance. This was moft diftinctly the cafe in the inflance mentioned fome time ago, of the perfon at Vienna who liad a fhock from a thunder rod by an explofion fà dittant. This thunder rod was a very fine one, furnihed with five gilt points.

Still, however, this property of fharp points was greatly over-rated by Dr Franklin, and thofe who took all their notions of electricity from the fimple difcoveries of his fagacioua mind. Unfortunately Dŕr Franklin had not cultivated mathematical knowledge : and, ever eager after difcovery, and ardent in all his purfuits, his wonderful penetration carried him through, and feldom allowed him to reft long on falfe conclutions. He was certainly one of the greatet philofopbers; and a little erudition would perlaps have brought him fide by fide with Newton. It was referved, however, for Lord C. Cavendifh and for \(\nsubseteq\) epinus, to fubjeer the invelt igations of Franklin to number and meafure. By fludying what they have written on the fubject, or even the view which we have given of theis theory in the article ElectriciTy (Suppl.), the reader will be fully convinced, that a point has little or no advantage over a ball, with reIpeet to a thunder cloud which is brought to the thunder rod by a brifk wind ; although, when it comes flowly up during an almoft perfect calm, it may difcharge all that can be difcharged without a friap. The conltipation in a point is indeed very greaa, but the quantity conltipated is moderate; and therefore its action, at any confiderable diftance, is but trifing. All this is fully veriiied by Dr Wilfon's judicious experiments in the Pantheon. He had a prodigious quantity of elearified furface furpended there, and made a pointed apparatus come to its ftriking diffance with a motion which he could regulate and meafure. And he found that with the very moderate velocity of twelve feet in a fecond, he never failed of procuring a very fmart froke. The experiments made in the ufual way by the partifans of fharp points (for it became a matter of indecent party) were numberlefs, and decidedly in their favour. The great and jutt authority of Dr Franklin, who was one of the committee, procured them ftill more confideration, or at leaft hindered people from feeing the force of Dr Wilfori's reafoning. It is . Somewhat fure
prifing,
inder. priing, that Dr Wilfon, a lover of mothenatical learning, and a goord judge, as appears from his publication of the papers of Mr Robins, did not himfelf fee the full force of his own experiments. He had not furely tudied either \(A\) :pinus or Cevendifh. He iudeed frequently fays, that the flate of the electricity in a thunder clond, and in coated glafs, is exceedingly different; and that the firf extendo its fenfible infucnce much farther than the lait, when both have the fame quantity of electricity. But he feems not to lave formed to himfelf any adequate notion of the difference. Had he done this, he would have fien that he has difpofed his great electriried furface very improperly. It fhould have been collected much nearer his pointed apparatns, that this might, if poffible, lave been within the fphere of attraction of cvery part of his artificial cloud. He would then have found refults, fone of which wonld have been much more favourable to his own general opinion, while others would have exhibited the peculiarities of the fharp point in a more fhowy manner than any thing we have feen.
Reaforing from the true theory of coated glafs, we thall learn that, when the glafs is exceediugly thin, gla.f; the accumulation of electricity, or the charge, will be exccedingly great ; while the external appearance, or apparent energy, of the electricity may be hardly fenfible, and will extend to a very fmall diftance. Thus, a circular plate of coated glafs, fix inches in diameter and one-twentieth thick, when clectrified fo as to make an electrometer diverge 50 degrees, contains about 60 times as much electricity as a brafs plate, of the fame ziameter, electrified to the fame degree; and thefe two will have the fame influence on an clectrometer placed et a diflance from them, and will give a fpark nearly at the fame diftance. The fpark from the coated glafs will be bright, and will give a fhock; while that from the brafs plate will be trifling. The caure of the equality of influence is, that the pofitive electricity of the one fide of the coated glafs is almoft balanced by the negative electricity of the other fide, and the unbalanced part is about \({ }^{\prime}\) th \({ }^{\prime}\) th the whole. If we now take a brafs plate of \(46 \frac{1}{2}\) inches in diameter, and electrify it to the fame degree with the coated glafs, we thall find that it will require the fame number of turns of the machine to bring it to this flate, or to charge the coated glafs. They contain the fame quantity of electricity, and the Spark of both will give the fame fhock. But this large plate will have a much wider influence: a perfon coming within ten feet of it will fee his hair bend towards it, and feel like a cobweb on his face.

It may be farther demonftrated that the power of
And the
nfluence of It \(_{\text {point }}\) to abflract the electricity to a given degree from harp points a phe large plate, is vafly fmaller than its power to ab-
strifing strifing. firract it to the fame degree from the coated plate. This fifract it to the fame degree fr
Suppl. Vol. II. Part II.
is different in the different degrees of the abflaction, and cannot be expreffed by any one number.

All thefe conliderations taken together, fhew us that the pointed conductor has little advantage over the ball in the circumitance above-mentioned. It has, however, an alvantagre, and therefore foould be employed ; and in the cafe of a calm, or very gentle progrefs of the thunder clou ? , the advantage may be very great.
'Thus we think the aneition decided; and the only An extenremaining confideration is the quantity of metallic coll-five an ! duet that fould be given. Prudence ceaches us not to u'itantial fpare, efpecially in very lofty buildings 'I'lee conduc. metalline tor on the dome of St Paul's in London coufints of four \(\mathrm{i} *\) the cluef iron ftraps, each four inches broad and one half an inch fecurity. thick. This conductor was once made red hot by a thunder Itroke. No inftance has been found of a rod one half an inch fquare being exploded. 'T'he accident at Mr Watt's houfe in Philadelphia is curious. The brafs wire which terminated the roc! had been ten inches long and one fouth thick at the bafe, and two one-lalf inches were melted It was mable, therefore, to conduct that ftroke when its diameter was lefs than onefixteenth of an inch.

We recommend lead or copper in preference to iron. Iron waftes by ruft, and by exfoliating retains water, which may be darigerous by its expanfion. A frap of lead, two inches broad and one fourth thick, ttapled down to the roof or wall with brafs ftaples, fecures 13 from all rifks from neglect. An iron rod, or one faftened with iron cramps, requises frequent infpection, to fee that nothing has failed or walted by ruft. 'The point or points fhould furely be copper. It would be very proper to conncet all the leads of the ridges, gutters, and fpouts, with the concuctor, by fraps of lead. This will greatly extend its protection.

A great extent of building is not fufficiently fecured by one conductor. And a powder magazine thould have fome erected round it at a diftance on malts.

\section*{Maxims in a Thunder Storm.}

Avoin being under trees - but be near them : do not avoid rain. When in a foom, avoid the fire-fide, which would bring you into the neighbourhood of the higheft part of the houfe, viz. the ttack of chimneys. The bellwire, the grate, the fire irons - are bad neighbours Nay, the foot of the chimney is not a good one, efpecially if it has ever caked together by burning (A). Go to the middle of the roum, and fit down, if not near a luftre, or any thing hanging from the ceiling. Avoid mirrors, or gilded mouldings.

THUNDER Clouds, in phyfiology, are thofe clouds which are in a ftate fit for producing lightning and thunder. See the preceding article.

45
THUS,
(A) In the terrible thunder froke on Leven Houfe in Scotland, the two great ftreams of electricity had ta"ken the courfe of the vents which had been moft in ufe, but not to get at the iron work, for it had branched off from the vents, at a great diftance from the bottom. The chief conductors through the building had been various gilded mouldings, gilded leather hangings, gilded fikreens, picture frames, and the foil of mirrors. In this progrefo the ttcpus have been fo many, and fo capricious, that no line of progrefs can be traced, according to any principle. The thunder feems to have electrified at once the whole of the leaden roof, and, befides the two main tracks along the vents, to have afterwards darted at every metal thing in its way. The lowef point of the track was a leaden water ciltern; which, however, received no damage; but a thick fone wall was burft 2hrough to get at it.

\section*{T I E}

THUS, in fea langurge, a word ufed by the pilot in directing the helmiman or Aleerfman to keep the thip in her prefent fituation when failing with a fcant wind, fo that fhe may not approach too near the direction of
the wind, which would fhiver her fails, nor fall to leeward, and run farther out of her courfe.

TIBERIAS (anc geog.), the laft town of Galiliee, fituated on the fouth fide of the lake Tiberias; built by Herod the 'Tetrarclh, and called Tiberias in honour of the Emperor Titerius ; ditant 30 ftadia from Hippus, So from Gadara, and 120 from Scythopolis: whence it appears to have been at no great diftance from where the Jordan runs out of the lake. It is a number of times mentioned by St John the Evangeliat. Pliny places it on the weft extremity of the lake, commending the falubrity of its hot waters. Jerome fays, the alicient name was Cberneret); which, if true, will account for the name of the lake.

TIERRA del Fuego, feveral iffands at the fouthern extremity of America. They take their name from a volcano on the largeft of them. They are all very harren and mountainous; but from what Mr Forfter fays, in his Voyage to the South Sea, the climate does not appear to be fo rigorous and tempetuous as it is repreferted in Anfon's Voyage. Upon the lower grounds and iflands, that were fheltered by the high mountains, Mr Forfter found feveral forts of trees and plants, and a variety of birds. Among the trees was Winter's barktree, and a fpecies of arbulus, loaded with red fruit of the tize of fmall cherries, which were very well tafted. In fome places there is alfo pienty of celery. Among the birds was a fpecies of duck, of the fize of a goofe, which ran along the fea with amazing velocity, beating the water with its wings and feet. It had a grey plumage, with a yellow bill and feet, and a few white quill feathers. At the Falkiand iflands it is called a loggerbeadduck. Among the birds are alfo plenty of geefe and falcons. The rocks of fome of the iflands are covered with large mufcle fhells, the fifh of which is well favoured. The natives of this country are fort in their perfons, not exceeding five feet \(f_{\text {IX }}\) inches at moft, their heads large, their faces broad, their cheek bones prominent, and their nofes flat. "Lhey have little brown eyes, without life; their hair is black and lank, hanging about their heads in diforder, and befmeared with trainoil. On the chin they have a few flraggling thort hairs inflead of a beard. The whole afferblaye of their features forms the moft loathfome picturc of mifery to which luman nature can poffibly be reduced. Thofe which Mr Forfer faw had no other clothing than a fmall piece of feal Akin , which hung from their ihoulders to the middle of their back, being faftened round the neck with a ftring : the reft of their body was perfeetly naked. Their natural colour feems to be an olive brown, with a kind of glofs, refembling that of copper ; but many of them difguife themielves with ftreaks of red paint, and fometimes, though feldom, with white. Their whole charaetcr is a ftrange compound of ftupidity, indifference, and inactivity. They have no other arnis than bows and arrows ; and their inftruments for fining are a kind of fifh gigs. They live chiefly on feals flefh, and like the fat cily part mof. Therc is no appearance of any fubordination among them; and their mode of life approaches nearer to that of brutes than that of any other nation.
\(690 \quad \mathrm{~T}\) I N
TILLANDSIA, the large barren wild pine of Tillandfire the Weft Indies; a genes of the monogynia order, belonging to the hexandria clafs of plants. It is called \(\underbrace{\text { Tinning. }}\) Caragatua by Father Plumier, and is a parafitic plant, and ought perhaps, in frict prepriety, to be denominated an aquatic : for although it is futpended in the air among the branches of lofty trees, to whofe boughs it is faftened by its numerous ronts; yet it is not indebted to thofe boughs, like the mifetoe and other parafitic plants, for nourifhment, but merely for fupport; provident Nature having, in a very extraordinary manuer, fupplied this with other means to preferve its exiflence: For the leaves, which much refernble thofe of the pineapple, but are larger, furround this plant in a circular manner ; each leaf being terminated near the falk with a hollow bucket, which contains abont half a pint of water. It is by thefe numerous fmall refervoirs of water that the roots, as well as every other part of this plant, are fupplied with nourifhment without the hclp of any earth. The flomilhing condition of this plant, as well as the great growth of fig-trees, upon barren rocks, Thews that water is of greater ufe to vegetation than earth.

One contrivance of Nature in this vegetable, fays Dr Sloane, is truly admirable. The feed is crowned with many long downy threads, not only that it may be carried everywhere by the wind, but that by thofe threads, when driven through the boughs, it may be held falt, and Atick to the arms and prominent parts of the barks of trees. So foon as it \{prouts or germinates, although it be on the under part of a bourgh, its leavea and falks rife perpendicular or erect : if they affumed any other direction, the ciftern or refervoir juft men. tioned, made of the hollow leaves, could not hold water, which is neceffary to the life and nourifhment of the plant. In fcarcity of water this refervoir is ufeful, not to the plant only, but to men, and even to birds and all forts of infects, which come thither in troops, and feldom go away without refrefhment.

To the fame purpofe, Dampier, in his Voyage to Campeachy, relates, "that the wild pine has leaves that will hold a pint and a half or quart of rain-water, which: refrefhes the leaves, and nourifhes the roots. When wefind thefe pines, we ftick our knives into the leaves, juft above the root; and the water guhing out, we catch it in our hats, as I myfulf have frequently dione, to my great relief."

TIM EUS, a Greek hiftorian, the fon of Androsicus, who was eminent for his riches and excelient qualities, was born at Tauromeniuun in Sicily, and: Hourilhed in the time of A gathocles. He wrote feveral books, and among the reft an liiftory of his own country; but they are all loft.

Timisus, a famous Pythagorean philofopher, was born at Locres in Italy, and lived before Plato. There is fill extant a fmall treatife of his on Nature and the Soul of the World, written in the Doric dialect. This treatife, which is to be found in the works of Plato, furnifhed that great philofopher with the fubject of his treatife intitled Timaus.

TINNING, the covering or lining of any thing with melted \(\operatorname{tin}\), or with tin reduced to a very fine leaf. Looking-glaffes are foliated or tinned with thin plates of beaten tin, by a procefs defcribed under the title FoLhating, Encycl.

Kettles,

\section*{T I N}

Kettles, fauce-pans, and other kitchen utenfils, which are ufually made of copper, are tinned by the following procefs: The furface to be tinned, if of new copper, fhould firt be cleaned or fcoured with falt and fulphuric acid (vitriolic acid) diluted with water. This, how. ever, is not always done; fome workmen contenting themfelves with fcouring it with fand perfectly dry, or with fcales of iron. Powdered rofin is then ftrewed over it ; and when the veffel or utenfil is confiderably heated, melted tin is poured into it, and rubbed with flax coiled hard over the furface to be coated. This tin may be either pure, fuch as that known by the name of grain-tin; or a compofition confifting of two parts of tin and one of lead. For very obvious reafons, we Should certainly prefer the pure tin; but the generality of workmen give the preference to the compolition, becaufe the furface coated with it appears more brilliant. The tin is not always put into the veffel in a liquid ftate; for fome workmen Arew it in fmall pieces over the furface to be coated, and then heat the veffiel till the tin melt, when they rub it as formerly.

In tinning old veffels which have been tinned before, the procefs is fomewhat difierent. In thefe cafes, the furface is firt feraped with an inftrument proper for the purpofe, or fcoured with the fcales of iron, which may be always found in a blackfmith's fop: it is then ftrewed over with fal ammoniac in powder, inftead of rof:n, or an infufion of fal ammoniac in ftale urine is boiled in it till the urine be evaporated, and it is then tinved with pure tin ; the compofition of tin and lead be. ing in this cafe never ufed. The tin, while liquid, is rubbed into the furface with a piece of fal ammoniac, inftead of a bundle of flax. When iron veffets are to be tinned, they are firft cleaned with muriatic acid, after which the procefs is the fame as in the timning of old copper.

In the year \(1785, \mathrm{Mr}\) John Poulain of Mortlake, Surrey, obtained a patent for the difcovery of a new compofition for tinning veffels, efpecially fuch as are ufed for culinary purpofes. This compofition confifts of grain tin one pound, good malleable iron one ounce and a half, platinum one drachm, filver one pennyweight, gold three grains : the whole muft be well fufed together in a crucible, with one ounce of pounded borax, and two ounces of pounded glafs, and then calt in fmall ingots. 'i he compofition, to be fit for ufe, mult be heated and put in a metal mortar, allo heated over a fire, and well pounded with a heated metal pefle; when it is well pounded, make an ingot of it, by putting it on the fire in a mould made of iron plate, in which mould the compofition muft be well firred and let to cool; then it is fit for ufe. To apply the compofition, firf tin the utenfil or veffel with grain-tin and fal ammoniac, as is ufually done in the common way of tinning; clean well the tinned part of the metal utenfil or veffel, and then apply a coat of the compofition with fal ammoniac, as is ufually done in the common way of tinning; and when the compofition is well fpread, let it cool; then make it a little red hot in all its parts, to neal it, and plunge the metal utenfil or veffel, while yet hot, in cold water ; then, with a fharp fcraper, fcrape and rub off the rough or grumous particles of the compofition applied on the metal utenfil or veffel, and fcour it well with fand. The fame operation mult be re-
peated for every coat of the compofition that is applied; two coats of the compofition are quite fufficient for culinary utenfils or veffels, and a thin coat of grain tin may be applied over the laft coat of the compofition, to fmooth it. The author adds, that his compofition may be employed for covering or plating the furfaces of all materials made of copper, brafe, iron, and other metals or mixtures of metals, and that it fhould be applied with a charcoal fire in preference to any other fire. All this may be true, and it may be a very valuable coating to copper ; but the fcarcity, high price, and infufibility of platinum, muft for ever prevent it from coming into very general ufe. - We think that even the EnAmeliing of Veflels for the Kilchen mult be more common. See that article in this Supplement.

The following procefs is lefs expentive, whillt the coating given by it is exceedingly durable, adds ftrength to the copper veffel, and fecures it much longer than the common tinning from the action of acids:

When the veffel has been prepated and cleaned in the ufual manner, it mult be roughened on the infide by tbeing beat on a rough anvil, in order that the tiuning may hold better, and be more intimately connected with the copper. The procefs of tinning muft then be begun with perfectly pure grained tin, having an addition of fal ammoniac inftead of the common colophonium or refin. Over this tinning, which muft cover the copper in an even and uniform manner throughout, a fecond harder coat muft be applied, as the firit forms only a kind of medium for connecting the fecond with the copper. For this fecond tinning you employ pure grained tin mixed with zinc in the proportion of two to three, which muft be applied alfo with fal ammoniac fmooth and even, fo that the lower ftratum may be entirely covered with it. This coating, which, by the addition of the zinc, becomes pretty hard and folid, is then to be hammered with a fmoothing hammer, after it has been properly rubbed and fcoured with chalk and water; by which means it becomes more folid, and acquires a fmooth compact furface.

Veffels and utenfils may be tinned in this manner on both fides. In this cafe, after being expofed to a fufficient heat, they mulk be dipped in the fluid tin, by which means both fides will be tinned at the fame time.

As this tinning is exceedingly durable, and has a beautiful colour, which it always retains, it may be employed for various kinds of metal inftruments and veffels which it may be neceffary to fecure from ruat.

TINPLATE, called in Scotland \(W\) hite iron, is a thin plate of iron covered with \(t i n\), to which it is united by chemical affinity. See Chemistry, in 122 . Suppl.

TIPRA, the name of certain mountainous diftricts to the eaftward of Bengal, inhabited by a prople of very fingular manners. As every thing which contributes a fingle fact to the hiftory of human nature is interefting to the philofopher, the reader will be pleafed with the following account of the religion, laws, and man. ners of thefe people, taken from the 2 d volume of the Afiatic Refearches.

Though they acknowledge one Creator of the urriverfe, to whom they give the name of \(\mathrm{Pa}^{\prime}\) tiyan , they believe that a deity exifts in every tree, that the fun and moon are gods, and that whenever they worfhip thofe

Tip:a. fubordinate divinities Pátiyán is pleafed. This is very fimilar to the religions creed of ancient Greece and Rome, differing only with refpect to creation, which, in the proper fenfe of the word, the Greeks and Ro. mans feem not to have admitted.

If any one of thefe mountaineers, called in the memoir CuC1s, put another to death, the chief of the tribe, or other perfons who bear no relation to the deceafed, have no concern in punifhing the murderer; but if the murdered perfon have a brother or other heir, he may take blood for blood; nor has any man whatever a right to prevent or oppofe fuch retaliation.

When a man is detected in the commiffion of theft or other atrocions offence, the chieftain caufes a recompenfe to be given to the complainant, and reconciles both parties ; but the chief himfelf réceives a cuftomary fine, and each party gives a feaft of pork or other meat to the people of his refpective tribe.

In ancient times, it was not a cuftom among them to cut off the heads of the women whom they found in the habitations of their enemies ; but it happened once that a woman affeed another, why the came fo tate to her bufinefs of fowing grain? The anfwered, that her hulband was gone to battle, and that the neceffity of preparing food and other things for him had occafioned her delay. This anfwer was overheard by a man at enmity with her hufband; and he was filled with refentment againft her, confidering, that as fhe had prepared food for her huband for the purpofe of fending him to battle againft his tribe, fo in general, if women were not to remain at home, their hufbands could not be fupplied with provifion, and confequently could not make war with advantage. From that time it became a conflant practice to cut off the heads of the enemy's women, efpecially if they happen to be pregnant, and therefore confined to their houfes; and this barbarity is carried \(\mathrm{fo} \mathrm{far}^{2}\), that if a Cuci affail the houfe of an enemy, and kill a woman with child, fo that he may bring two heads, he acquires honour and celebrity in his tribe, as the deftroyer of two foes at once.

As to the marriages of this wild nation, when a rich man has made a contract of marriage, he gives four or five head of gayals (the cattle of the mountains) to the father and mother of the bride, whom he carries to his own houfe : Her parents then kill the gayáls; and having prepared fermented liquors. and boiled rice with other eatables, invite the father, mother, brethren, and kindred of the bridegroom to a nuptial entertainment. When a man of fmall property is inclined to mariy, and a mutual agreement is made, a fimilar method is followed in a lower degree; and a man may marry any woman except his own mother. If a married couple live cordially together, and have a fon, the wife is fixed and irremoveable ; but if they have no fon, and efpecially if they live together on bad terms, the hufband may divorce his wife, and marry another woman.

They have no idea of heaven or hell, the reward of good, or the punifhment of bad, actions; but they profefs a belief, that when a perfon dies, a certain fpirit comes and feizes his foul, which he carries away; and that whatever the firit promifes to give at the inftant when the body dies, will be found and enjoyed by the dead; but that if any one fhould take up the corfe and carry it off, he would not find the treafure.

The food of this people confifts of elephants, hogs,
deer, and other animals; of which if they find the carcafes or limbs in the forefts, they dry them, and eat them occafionally.

When they have refolved on war, they fend fpies, before hoftilities are begun, to learn the Ations and ftrength of the enemy; and the condition of the roads; after which they march in the night, and two or three hours before daylight make a fudden :ffault with fwords, lances, and arrows: if their enemies are compelled to abandon their fation, the affailants inftantly put to deathe all the males and females, who are left behind, and ftrip the houfes of all their furniture ; but fhould their adverfaries, having gained intelligence of the intended affault, be refolute enough to meet them in battle, and fhould they find themfelves overmatched, they fpeedily retreat and quietly returu to their own habitations. If at any time they fee a ftar very near the moon, they fay, "to-night we fhall undoubtedly be attacked by fome enemy ;" and they pais that night under arms with extreme vigilance. They often lie in ambufh in a foreft near the path, where their foes are ufed to pals and repals, waiting for the enemy with different forts of weapons, and killing every man or woman who hap. pens to pafs by : in this fituation, if a leech, or a worm, or a fnake, fhould bite one of them, he bears the pain in perfect filence; and whoever can bring home the head of an enemy, which he has cut off, is fure to be diftinguifhed and exalted in his nation. When two hoflite tribes appear to have equal force in battle, and neither has hopes of putting the other to flight, they make a fignal of pacific intentions, and, fending agents reciprocally, foon conclude a treaty ; after which they kill feveral head of gayáls, and fealt on their flefh, calling on the fun and moon to bear witnefs of the pacification : but if one fide, unable to refift the enemy, be thrown into diforder, the vanquifhed tribe is confidered as tributary to the victors; who every year receive from them a certain number of gayals, woeden difhes, weapons, and other acknowledgments of vaffalage. Before they go to battle, they put a quantity of roafted álus (efculent roots like potatoes), and pafte of rices flour, into the hollow of bamboos, and add to them a provifion of dry rice with fome leathern bags full of liquor : then they affemble, and march with fuch celerity, that in one cay they perform a journey ordinarily made by letter-carriers in three or four days, fince they have not the trouble and delay of dreffing vietuals. When they reach the place to be attacked, they furround it in the night, and at early dawn enter it, putting to death both young and old, women and children, except fuch as they choole to bring away cautive : they put the heads, which they cut off, into leathern bags; and if the blood of their enemies be on their hands, they take care not to wafh it off When after this flaughter they take their own food, they thrult a pare of what they eat into the mouths of the heads which they have brought away, faying to each of them, "Eat, quench thy thirf, and fatisfy thy appetite; as thour halt been flain by my hand, fo may thy kinfmen be flain by my kinfmen!"' During their journey, they have ufually two fuch meals; and every watch, or two watches, they fend intelligence of their proceedings to their families. When any one of them fends word that he has cut off the head of an enemy, the people of his fao mily, whatever be their age or fex, exprefs great delight 2
light, making caps and or:!aments of red and black ropes; then filling fome large veficls with fermented liquors, and decking themfelves with all the trinkets they poffefs, they go forth to meet the conqueror, blowing large mells, and flriking plates of metal, with other rude inftruments of mufic. When both parties are met, they fhow extravagant joy, men and women dancing and finging together; and if a married man has brought an enemy's head, his wife wears a head-drefs with gay ornaments, the hufband and wife alternately pour fermented licuor into each other's inouths, and fhe wa?hes his bloody hands with the fame liquor which they are drinking. Thus they go revelling, with exceffive merriment, to their place of abode; and having piled up the heads of their enemies in the court yard of their chieftain's houfe, they fing and dance round the pile; after which they kill fome gayáls and hogs with their fpears; and having boiled the flefh, make a featt on it, and drink the fermented liquor. The richer men of this race faften the heads of their foes on a bamboo, and fix it on the graves of their parents, by which act they acquire great reputation. He who brings back the head of a flaughtered enemy, receives prefents from the wealthy of cattle and foirituous liquor; and if any captives are brought alive, it is the prerogative of thofe chieftains, wha were not in the campaign, to ftrike off the heads of the captives. Their weapons are made by particular tribes; for fome of them are unable to fabricate inltruments of war.

In regard to their civil infitutions; the whole management of their houfehold affairs belongs to the wo. men; while the men are employed in clearing forefts, building huts, cultivating land, making war, or hunting game and wild beafta. Five days (they never reckon by months or years) after the birth of a male child, and three days after that of a female, they entersain their family and kinfmen with boiled rice and termented liquor; and the parents of the cliild partake of the feaft. They begin the ceremony with fixing a pole in the court yard; and then killing a gayal or a hog with a lance, they confecrate it to their deity; after which all the party eat the fefh and drink liquor, clofing the day with a dance and with forge. If any one among them be fo deformed, by nature or by accident, as to be unfit for the propagation of his feecies, he gives up all thought of keeping houfe, and begs for his fubliftence, like a religious mendicant, from door to door, continually dancing and finging. When fuch a perfon goes to the houte of a rich and literal man, the owner of th:e boufe ufually fring- together a number of red and white ftones, and fixes one end of the ttring on a long cane, fo that the other end may hang dowir to the ground; then, paying a kind of fupertitious homage to the nebbles, he gives alms to the beggar; after which he kills a gaya. and a hog, and fome other quacrupeds, and invites his tribe to a feaft : the giver of fach an entertaiument acquires extraordinay fame in the nation, and all unite in applauding him with eveny token of honsur and reverence.

When a Clúci dies, all his kinfmen join in killing a hog and a gayil; ald, having boiled the meat, pour fome liquor into the month of the deceafed, round whofe body they twift a piece of cloth by way of fhroud : all of them tafte the fame liquor as an offering to his foul; and this ceremony they repeat at intervals for feveral
days. Then they lay the body on a fage, and kindling a fire under it, pierce it with a fpit and dry it ; when it is perfectly dried, they cover it with two or three folds of cloth, an.!, enclofing it in a little cafe within a cheft, bury it under ground. All the fruits and flowers that they gather within a year after the burial they fcatter on the grave of the deceafed: but forne bury their dead in a different manner; covering them firt with a fhroud, then with a mat of woven reeds, and hanging them on a high tree. Some, when the flefh is decayed, wafh the boles, and keep them dry in a bowl, which they open on every fudden emergence; and, fancying themfelves at a confultation with the bones, purfue whatever meafures they think propes; alleging that they act by the commiand of their departed parents and kinfmen. A widow is obliged to remain a whole year near the grave of her hufband; where her family bring her food: if fhe die with, in the year, they mourn for her; if fhe live, they carry her back to her houfe, where all her relations are entertained with the ufual feaft of the Cuicis.

If the deceafed leave three fons, the eldeft and the youngett thare all his property; but the middle fon takes nothing: if he have no fons, his eftate goes to his brothers; and if he have no brothers, it efcheats to the chief of the tribe.
TIIRESIAS, a famous foothfayer of antiquity, was the fon of Everes and the nymph Chariclo. Pherecydes fays, that Minerva being accidentally feen by Tirefias, as fhe was bathing with Chariclo in the fountain of Hippociene, the goddefs was enraged, and dechared that he fhould fee nothing more : on which he infanitly loft his fight ; but afterwards received from the goodefs fuperior cndowments. Others fay, that Juno ftruck him tone-blind for deciding a cafe between Jupiter and her, to her diffatisfaction ; for which Jupiter gave him the faculty of divination: He was the inoft ceiebrated prophet in the Grecian annals. Ulyffes is ordered by Circe to confult him in the flades.
'There feek the Theban bard depriv'd of fight, . Within irradiate with prophetic light.
But, befides the honour done to him by Homer, Sophocles makes him aही a venerable and capital part in his tragedy of Ocdipus. Callimachus afcribes to Minerva the gift of his fuperior endowments ; the preeminence of his knowledge is likewife mentioned by Tully in his firft book of Divination. And not only Tirefias is celebrated by Diodorus Siculus, but his daughter Daphne, who, like her father, was gifted with a prophetic fpirit, and was appointed prieftefs at Delphos. She wrote many oracles in verfe, from whence Homer was reported to have takent teveral lines, which Le interwove in his poems As fine was often feized with a divine fury, fhe acçaired the title of fibyl, which fignifies "enthuliaft" She is the firlt on whom it was beltowed: in aftertimes this denomination was given to teveral other females that were fuppoted to lie infpired, and who uttered and wrote their predictions in veife; which verfe being fung, their function may be juftly faid to unite the prefthood with prophecy, poctry, and mufic.
I'ISRI, or T'izR1, in chrnology, the firft FIebrew month of the civil ye?r. and the gth of the eccletraltical or facred year. It anfwered to part of our September and Octaber.

TI'THING-mEn,

TuhiosMen II

TITHING.Men, are now a kind of petty conftables, elected by parifhes, and fworn in their offices in the court leet, and fometimes by jufices of the peace, \&c. There is frequently a tithing man in the fame town with a conflable, who is, as it were, a deputy to execute the office in the conflable's abfence; but there are fome things which a conflable has power to do, that tithing men and head-boroughs cannot intermeddle with. When there is no conflable of a parifh, his office and the authority of a tithing man feems to be all one under another name.

TITHONUS, in fabulous hiftory, the fon of Laomedon king of Troy, and the brother of Priamus; was beloved by Aurora, who carried him to Delos, thence to Ethiopia, and at laft to heeven, where fhe prevailed on the Deftinies to befow upon him the gift of immortality : but forgot to add that of youth, which could only render the prefent valuable. At length Ti'thonus grew fo old that he was obliged to be rocked to fleep like an infant; when Ansora, not being able to put an end to his mifery by death, transformed him into a grafshorper ; which renews its youth by cafting his \(\mathbb{k} \mathrm{in}\), and in its chirping retains the loquacity of old age.

TITLE for nrders, in the church of England, is an affurance of being employed and maintained as an officiatiug clergyman in fome cathed al or parochial church, or other place of Divine worthip. And, by thie 3 3d Cichon, " no one is to be ordained but in order to be a curate or incumbent, or to have fome ininifter's place in fome church, or except he be fellow, conduct, or chaplain, in fome college in one of the univerfitief, or be mafier of arts of five years flancing, and live there at his own coft." By the fame canon, the bimop who ordains a clerk without title, is bound to keep him till he prefer him to fome coclefiaftical living.

TOD OF wool, is mentioned in the ftatute 12 Ca rol. II. c. 32. as a weight containing 2 Rone, or 28 pounds.

TOMBUCTOO, a large city in North Africa, and capital of a kingdom of the lame name. It has for fome years paft been the great object of European refearch, being one of the priucipal marts for that extentive commerce which the Moors carry on with the Negroes. The hopes of acquiring wealth in this purfuit, and zeal for propagating their religion, have filled this extenfive city with Moors and Mahomedan converts; the king himfelf, and all the chief officers of ftate are Moors; and they are faid to be more levere and intolerant in their principles than any other of the Moorith tribes in this part of Africa. Mr Park was informed, by a venerable old Negro, that when he firft vifited Tombuctoo, he took up his lodging at a fort of public inn, the landlord of which, when he conducted him into his hut, fpread a nat on the floor, and laid a rope upon it; faying, "if you are a Muffulman, you are my friend, fit down ; but if you are a Kafir, you are my flave; and with this rope I will lead you to market." The reigning fovereign of Tombustoo, when Mr Yark was in Africa, was named \(A^{\prime} b u\) Abrabina. He was repo:ted to ponefs immenfe riches, and bis wives and concubines were faid to be clothed in filk, and the chief officers of ftate live in confiderable fplendour. The whole expence of his go. vernment is defrayed by a tax upon merchandize, which is collefted at the gates of the city.

694 I \(\mathrm{I} \quad \mathrm{O} \quad \mathrm{O}\)
Of that city very little is known with accuracy, as Tomfonk, it has never been vifited by any European. It is the Fonth achin largeft on the Niger, Houffa only excented ; and probably contains from 60,000 to 80,000 iuhabitants In fome of the Gazetteers, its houfes are faid to be built in the form of bells; but they are probably fuch buildings as thofe of SEGo, which fee in this Supplement. Tombuctoo, according to Major Rennel, is in \(1^{\prime} 30^{\prime}\) N Lat. and \(\mathrm{r}^{\circ} 33^{\text {E. Long. from Greenwich. }}\)

TOMSOOK, in the language of Bengal, a bond.
TOOTH ache, a well known-excruciating pain (fee Encycl ), for the alleviation, a id even the cure of which, many fpecifics have been offered to the public. Of one of the inoft extraordinary of thefe, there is an account, in a fmall work publifhed at Florence in 1794, by profeffor Gerbi, who gives the defcription of an infe t, a kind of curculio, which, from its property of allaying the tooth-ache, has received the epithet of antiodontalgicus, and which is found on a 'pecies of chille, cardius Jpineiffimus. The flowers of this thiftle, when analyfed, gave the acid of galls, the muriatic acid, oxalat of lime, extraive matter, and a very little refin. On the bottom of the calyx, which fupports the fioweris there are often found excrefcences like the gall nut, which are at firt fpheroidal, afterwards cylindric, and at length aflume the figure of two hemifphercs: they confit of the like component parts with the flowers, but contain more relin, and far more oxalat of lime; as the gail apple of the oak, according to the experiments of M. Branclii, which are here mentioned, contaius inore of the acid of galls than the bark and other parts of the oak, in which he could difcover no fulphuric acid. 'The infect, according to the author's obfervations, eats not only the parenclyma, but alfo the vef. fels and fibres of the leaves. The egg, before the worms makes its appearance, is nourithed by the fap of the plant, and of the above excrefcencts, in which it refides, by means of the attractive power that the egg poffefies for certain vegetable juices and fubftauces. The excrefcences arile by the accumulation of a folid fubflance, which is precipitated from the nourihing juices of the thifte, diminifhed by nourifhing the egg and the worm. This infect, the eggs of which are depolited in thefe excrefcences, is, together with the curculio of the centaury, a new fpecies. It is of a longifh figure : covered below with short yellow hair, and above with golden yellow velvety foots. Its cornet is variegated with fpecks; and the covering of its wings with fpecks and ftripes. It has a fhort probofcis, and fhews fome likenefs to the curculio villofus of Geoffroy. Its larva reprefents a fort of ichneumon. By chemical analyfis it exhibits fome traces of common falt; by diflillation with a ftrong dry heat, fome volatile lixivious falts; and it contains, befides thefe, fome grelatinous, and a little febaceous and flimy extractive matter. If about a dozen or fifteen of thefe infees, when in the flate of larva, or even when come to perfection, be bruifed and rubbed flowly between the fore-finger and the thumb, until they have loft their moifture, and if the painful tooth, where it is hollow, be touched with that finger, the pain ceafes, fometimes inftantaneoufly. This power or property the finger will retain for a year, even though it be often wathed and ufed. A piece of fhamoy leather will ferve equally well with the finger. Of 629 experiments, 401 were attended with complete fuccefs. In

\section*{T O R}
whbrache tivo of thefe cafes, the hollow teetn arofe from fome Cordli, fault in the juices: in the reft they were merely local. If the gums are inflamed, the remedy is of no avail.
To the truth of this tale the reader will give what credit he pleafes ; but it is furely very difficult to believe, that a living finger, continually perfpiring, can retain for a year the moifure imbibed from this infeet. But it feems there are other infeefs which have the property of curing the tooth ache; fucl as the carabus chrry focephadus of Ruffi; the carabus ferrugineus of Fabricius; the coccinella feptem pungata (the lady bird); the chryjomela populi, and the chryfomela Sangruinolenta. It would appear, therefore, that this property belongs to various kinds of the coleoptera.
The idea of theie infects being endowed with the property of cu ing the tooth-ache is not confined to Italy ; for Dr Hirfch, dentitt to the court of Weimar, afferts ( Verkundiger, September 24, 1798) that he employed them with the lappieft effert, except in fome cafes where his patients were females. He fays, that he took that fmall infest, found commonly among corn, coccinclla feptem punifata, and bruifed it. between his fingers. He then rubbed the fuggers with which he had bruifed it, till they became warn at the points, and touched with them the unfound parts of the gums, as well as the difeafed tooth. Dr Hirfch adds, that he made the fame experiment a few days after with equal fuccefs, though he had not bruifed a new infeet with his fingers. He feems to think that, to infure the efficacy of the procefs, the infect fhould be alive ; becaurie, when dead, its internal parts, in which he prefunes the virtue chiefly refides, become dried up, leaving only the wings and an empty fhell ; and therefore propofes to phyficians to turn their attention to the finding out of fome method for preferving the virtue of the infect, fo that its efficacy may be in full vigour throughout the year.

Befides thefe beetles, charcoal has been recommend. ed as an anodyne in the tooth ache ; but whether it o. perates merely by filling the hollow of the tooth, and thereby preventing the accefs of atmofpheric air to the nerve, or by any of its fingular and hitherto unknown qualities, feems not to have been well afcertained.
TOR, a town of Afia, in A rabia Petrea, feated on the Red Sea, with a grood harbour, defended by a cafle. There is a handfome Greek convent, in whofe gad den are fountains of bitter water, which they pretend are thofe rendered fweet by Mofes, by throwing a piece of wood into them. Some think that this town is the ancient Elana. E. Long. 31. 25. N. Lat. 28. 0.
TORELLI (Jofeph), was born at Verona on the Ath of November 1721. His father Lucas Torelli, who was a merchant, dying while young Torelli was but an infant, he was lett entirely to the care of his mother Antonia Albertini, a Venetian lady of an excellent character. After receiving the firt rudiments of learning, he was placed under the Ballerini, who, obferving the genius of the boy, prevailed upon his mother to fend him to complete his education at Patavia. Here he fpent four years entirely devoted to ftudy, all his other paffions being abforbed by his thirf for knowledge.
The unfullied innocence of his life, and the prudence and gravity of his conduct, foon attracting the attention of his mafters, they not only commended him with
eagernefs, but performed to lim the part of parents, converfed with him familiarly about their refpective converfed with him familiarly about their refpective fciences, and read over to hiin privately the lectures which they had to deliver. 'This was the cafe particnlarly with Hercules I ondinus, under whom Torelli ftudied jurifprudence. But he by no means confined himfelf to that fcience alone. 'The knowledge which he acquired was fo gencral, that upon whatever fubject the converfation happened to turn, he delivered his fentiments upon it in fuch a manner that one would have thought he had beftowed upon it his whole attention.

After receiving the degree of Doctor, he returned home to the enjoyment of a confiderable fortune; which putting it into lis oowtr to choofe his own mode of living, he determined to devote himfelf entirely to lizerary purfuits. He refolved, however, not to cultivate one particular branch to the exciufion of every otlier, but to make himfelf mafter of one thing after another, as his humour incliised him; and lie was particularly attentive to lay an accurate and fulid foundation. Tho' he declined practiling as a lawyer, he did not, on that account, relinquith the Andy of law. The Hebrew, Greek, Iarin, and Italian languages, nccupied much of his time. I-lis object was to underftand accurately the two firf, and to be able to write and fpeak the two laft with propricty and clegance. Belides thefe languagrea, he learned French, Spanif, and Einglif. Or the latt, in particular, lie befowed uncommon pains; for he was peculiarly attached to the Britifin ration, and to Britifh writers, whom he perufed with the greateft atiention; not merely to acquire the language, but to imbibe alfo that force and loftinefs of fentiment for which they are fo remarkable. Nay, he even began an Italian tranflation of Paradife Loft.

He likewife made himfelf acrquainted with ethics, metaphyfics, and polemical divinity; to which la? fubject he was induced to pay attention by the cuftom of his country. With ancient hiftory he was very famiv liarly acquainted, ca!ling in to his affiftance, while engaged in that ftudy, the aids of chronology, geography, and criticifm. This laft art, indeed, by means ot which what is connterfeit may be ditinguithed from what is genuine, what is interpolated from what is uncorrupted, and what is excellent from what is faulty, he carrie? about with him as his counfellor and his guide upon all occafions.

The theory of mufe he fudied with attention, preferring thofe powerful airs which make their way inte the fo:tl, and roufe the paffions at the pleafure of the mufician. His knowledge of fictures was held in high effimation by the artifts themfelvea, who were accultonaed to afk his opinion concerning the fidelity of the defign, the harmony of colours, the value of the pieture, and the name of the painter. He himfelf had a collec. tion, not remarkably fplendid indeed, but exceedingly well chofen. Architeflure he ftudied with ftill greater attention, becaufe he confidered it as of more real utility. Nor did he neglect the purfuits of the antiquarian, but made himfelf familiarly acquainted with coins, gems, medals, engravings, antique veffels, and monuments. Indeed fcarce any monumental infcriptions were engra. ved at Verona which he had not either compofed or corrected. With the antiquities of his own country lie was fo intimately acquainted, that every perfon of emi.
nence,

Tretli. neace, who vilited Verona, took care to have him in their company when they examined the curiofities of the city.

But thefe purfuits he conficered mercly as amufements : mathematics and the belles lettres werw his ferions ftudies. Thefe fudies ale, in general, confidered 23 incompatible; but Torelli was one of the few who could combine the gravity of the mathematician with the amenity of the nufes and graces, and who handle the compafs and the plectrum with equal fkill. Of his progrefs in mathematics, feveral of his treatifes, and efpecially his edition of Archimedes, publifhed Ence his deatls by the univerfity of Oxford, are fufficient proofs. Nor was his progrefs in the more pleafing parts of literature lefs diftinguifhed. In both thefe ftudies he was partial to the ancients, and was particularly hoftile to the poutry and the literary innovations of the Erench.

Nothing could be purer or more elegant than his Latin ftyle, which he had acquired at the expence of much time and labour. His L, atin tramlation of Archimedes is a fufficient proof of this, and is indeed really wonderful, if we confider that the Romans, being far inferior to the Greeks in mathematical knowledge, their language was of neceffity defitute of many neceffary words and phrafes. Ife wrote the Italian language with the claffic elegance of the 14 th and 15 th centuries. Witnefs his different works in that language, both in profe and verfe. : He tranflated the whole of \(\mathbb{E} f\) f's fables into Iatin, and Theocritus, the Epithalamium of Catullus, and the comedy of Plautus, called Peudolus, into Italian veife. 'The two firft books of the Eneid were alfo tranflated by him with fuch exactnefs, and fo much. in the ftyle of the original, that they may well pafs, for the work of Virgil himfelf.
His life, like his ftudies, was drawn after the model of the ancient fages. Frugal, temperate, modelt, he exhibited a ftriking contraft to the luxurious manuers of his age. In religion he adhered ftrictly, though not fuperftitioully, to the opinions of his anceltors. He was firm to his refolutions, but not foolithly obflinate; and fo ftrict an obferver of equity, that his probity would have remained inviolate, even tlough there had been no law to bind him to juftice. He never married, that he might have leifure to devote himfelf, with lefs interruption, to his favourite Atudies. Every one readily found admiffion to him, and no man left him without being both pleafed and inftructed; fuch was the fweetnefs of his temper, and the readinefs with which he communicated information. He adhered with great conftancy to his friendfhips. This was particularly exemplified in the cafe of Clemens Sibiliatus, who has favoured the world with the life of Torelli. With him he kept up the clofeft cornection from a fchool boy till the day of his death. He was peculiarly attached likewife to many men of diftinction, both in Italy and Britain. He died in Auguft 1781, in the 70th year of his age.

The following is a complete lift of his works, his edition of Archimedes excepted, which was not publifhed till after his death :
1. "Lucubratio Academica, fivi Somniun Jacobi Pindemontii, \&c." Patavii, 1742.-2. "A nimadverfiones in Hebraicum Exudi Librum et in Græcum lxx Interpretationem ;" Veronæ, 1744.-3. "De principe

Gulx incommodo, ejufque remedio, Libri duo;" Colo. nix Agrippinx, 1744.-4." De Probabili Vitæ Morumque Regula ;" Colonire, 1747. - 5. "Lii due primi Canti dell' lliade (di Scipione Maffei) e li due primi dell' Encide di Giufsppe T'orelli tradotti in verfi Italiani ;" Verona, 1749.- 6. "Gli fteffi due canti dell" Eneide riftampati fuli lo tteffo anno per lo Itefu Ramanzini"."-7. "Scala de Mertti a caro d'anno Trattato Geometrico ;" Verona, \(1751 .-8\)."1)e Nihilo Geometrico, lib. 2.;" Veronx, 1758.-9. "Lettera intornn a due paffi del Purgatorı di Dante Alighiero;" ib. 1760.-10. "Della Denominazione del corrente anno vilgarmente detto 1700 in Bologna per Lelio della Volpe." - 11 . "Il pfeudolo. Comedia, \&ic. e li aggiunge la tradu. zione d'alcuni Idilli di Teocrito e di Mofco ;" Firenze, 1765 - I a. " Inno a Maria Virgine neila Feßivita cel. la fua Concezione ;" Verona, 1766.-13. "Lettera a Miladi Vaing- Reit premeffa al libro che ha per titalo xii. lettere Inglefi, con altia lettera all'autore della fuddetta;" Verona, 170́7-14. "Elegia di 'lommafo Gray, Poeta Inglefe, in un Cimetero Campettre in verfi Italiani rimati ;" Verona, 1767.-15. "creometrica;" Veronæ, \(1769 .-16\). "Demonftiatio antiqui Theorematis de motuum comnixtione ;' Veronx, \(1774 \cdots \cdots 17\). "Lettera fupra Dante contro il Signor di Voltaire;" Verona, I781.- I8." Pormetto dı Catullo du ke Nozze di Peleo e 'Tetite, ed un Epitalamio dellu fteffo;'0 1781.-19. "CEfopi l'abulæ."-20. "Teocrito tra. dotto, in verfi Tofcani." -21. "Elementi d'Euclide tradotti nell idioma Italiano." - 22. "Elementorum Irofpectivæ, libri duo."

TORPEDO, or Cramp.fish, has been delcribed under the generic title Raja; and an attempt made to explain its electrical phenomena in the article ElecTRICITY, \(n^{2} 258\), \& \(c\). (130th thefe articles are in the Encyclopadia). From fume late difcoverics, however, of Volta and otliers, the thock given by the torpedo appears much mure analogous to the hock of Galva nism than to that of common electricity ; and even the electrical organs of the lith feem to refemble the apparatus with which thofe difcoveries in galvanifm were made.

In the 63 d volume of the Philofophical Tranfactions, Mr Hunter defcribes the electric organ of the torpedo as conlfiting of a number of columns, varying in their length from an inch and a half to a quarter of an inch, with diameters about two tenths of an inch. The number of columns in each organ of the torpedo which he prefented to the Royal Suciety was about 470 ; but in a very large torpedo which he diffeted, the number of columns in one organ was 1182 . Thefe columns were compoled of films parallel to the bafe of each; and the diftance between each partition of the columns was \(x_{3}^{x} 0^{\text {th }}\) th of an incli. From thefe facts, the reader will find the anomalies of torpedinal electricity (fuppofing it the fame with common electricity) accounted for in a very ingenious and plilofophical manner by Mr Nicholfon, at p. 35 x of thie firt volume of his valuable Journal. We pafs on, however, to peint out the relemblance between it and the lately difcovered. phenomena in galvanifm.
' 1 ake any number of plates of copper, or, which is better, of filver, and an equal number of tin, or, which is much better, of zinc, and a like number of dilcs, or pieces

\section*{\(T O R\)}

Torpedo. \(-\) pieces of card, or leather, or cloth (A), or any porous fubftance capable of retaining moifture. Let thefe latt be foaked in pure water, or, which is better, falt and water, or alkaline leys. The filver or copper may be pieces of money. Build up a pile of there pieces; namely, a piece of filver, a piece of zinc, and a piece of wet card: then another piece of filver, a piece of zinc, and a piece of wet card: and fo forth, in the fame order (or any other order, provided the pieces fucceed each other in their turn), till the whole number intended to be made ufe of is builded up. The inftrument is then completed.

In this flate it will afford a perpetual current of the galvanic influence through any conductor communicating between its upper and lower plates; and if this conductor be an animal, it will receive an electrical fhock as often as the touch is made, by which the circuit is completed. 'I'hus if one hand be applied to the lower plate, and the other to the upper, the operator will receive a fhock, and that as often as he pleafes to lift his finger and put it down again.
ihhis thock refenbles the weak charge of a battery of immenfe furface ; and its intenfity is fo low that it cannot make its way through the dry flin. It is there fore neceffary that a large furface of each liand fhould be well wetted, and a piece of metal be grafped in each, in order to nake the touch; or elfe that the two extremities of the pile fhould communicate with feparate vef. fels of water, in which the hands may be plunged.

The commotion is ftronger the more numerous the pieces. Twenty pieces will give a fhock in the arms, if the above precautions be attended to. One hundred pieces may be felt to the fhoulders. The current acts on the animal fyftem while the circuit is complete, as well as during the inftant of commotion, and the action is abominably painful at any place where the fkin is broken.

That this influence, whatever it may be, has a friking refemblance to the repeated fhocks given by the zorpedo, is obvious ; but what it really is in itfelf muft be afcertained, if it can be alcertained at all, by future experiments. Mr Nicholfon indeed, from whofe Journal we have taken this account of Volta's apparatus and its effects, feems confident that thefe effects proceed from an electrical ftream or current ; but this mode of operation is quite foreign from all the laws of electricity known to us. The galvanic influence in this apparatue appears to move perpetually in a circle; to which we are acquainted with no fact in electricity that is at all fimilar. Galvanifm, too, feems capable of accumulation, even while furrounded by conducting fubflances, which is quite inconfiftent with all that we difinctly know of eleerricity and its laws.

That the energy of the apparatuz, however, is the effect of an electric ftream or current, our ingenious zuthor thinks proved by the condenfer with which Sig. Volta afcertained the kind of the electricity, and obtained its fpark. He finds the action ftrongeft, or moft pungent, on wounds on the minus fide of the apparatus, or where the wounds give out electricity; a fact alfo obfervable in the common electric fpark.

Suppl. Vol. II. Part II.
'Ille theory of the learned inventor feems to be, that Torpedo. it is a property of fuch bodies as differ in their power of conducting electricity, that when they are brought into contact they will occafion a Itream of the electric matter. So that if zinc and filver be made to communicate immedately by contact, there will be a place of good conducting energy ; and if they be made to communicate mediately by means of water, there will be a place of inferior condacting energy: and wherever this happens, there will be a ftremm or current produced in the general ftock of electricity. This is not deduced as the confequence of other more fimple facts; but is laid down as a general or fimole princiole grounded on the phenomena. If fo , is it not a petitio principii?? That fuch bodies as zinc and filver, when properly difpofed, produce a ftream or current, or fomething analogous to a ftream or current, in the galvanic fluid, follows indeed indifputably from the phenomena; but it by no means follows from the fame phenomena that galvanifm is electricity; for electricity feems fuhject to different law. Sce Electricity and Thunder, both in this Supo plement.

It muft be acknowledged that the difcovery of the galvanic fhock and fpark, and of the apparent exittence of two oppofite fates of galvanifm correfponding to pofitive and negative eleetricity, confiderably increafe the analogy ; which, in the article Galvanism, Suppl, we have admitted to be very ftriking: but luppofing no fallacy in any of Volta's experiments, we do not think that thefe difcoveries amount to any thing like a demonftration of the conclufions which have been drawn from them. It is by no means certain that light is effentially connected with the electric fluid; for we know that it is not effentially connected will heat : (See Thermometrical Spedrum, in this Suppl.) The flafh, for example, of lightning may be merely an extrication of light, in confequence of the action of electricity upon the atmofphere in its paffage, or on the bodies upon which it impinges; and there are many inAtances of a fimilar extrication, as in the collifion of two pieces of fint, where neither electricity nor galvaniim were ever fufpected to have any thare in producing the phenomenon. Why may not the progrets of the galvanic fluid have a fimilar effect in this inflance with that of eleCtricity, though the two fluids be effen. tially different between themlelves? But we have more to fay on this fubject.

Melfrs Nicholfon and Carlife conftrueted an apparatus finilar to that of Volta, which gave them a flock as before defrribed, and a very acute denfation wherever the fkin was broken. 'Their firft refearch was directed to afcertain that the flock they felt was really an electrical phenomenon. For this purpofe the pile was placed upon Bennett's gold leaf electrometer, and a wire was then made to communicate from the top of the pile to the metallic ftand or foot of the inftrumint ; fo that the circuit of the fheck would have been thro' the leaves, if they had diverged; but no figns of clectricity appeared. Recourfe was then had to the revolving doubler; of which the reader will find an account in our Supplementary article Electricity, 4 T \(\mathrm{n}^{9} 203\)

\footnotetext{
B:
(A) Woollen or linen cloth appear to be more durable, and more fpeedily foaked, that card.
}

\section*{T O R}

Torped. \(n^{0} 203\). The doubler had been previoufly cleared of electricity by twenty turns in connection with the earth The negative divergence was produced in the electro meter. Repeated experiments of this kind fhewed that the filver end was in the minus, and the zinc end in the plus flate.

Here a pile of 17 half crowns, with a like number of pieces of zinc, and of pafteboard foaked in falt water, thongh it gave a fevere fhock, extibited no fymptoms of electricity till affitted by the doubler. Will it be faid that this arofe from want of intenfiy in the galvanic foreck? We can only reply, that a much lefs intenfe fhock of electricity would have produced a fenfible divergence in the inftrument without the doubler. What was the caufe of this differencc? We have, however, no doubt but that electricity was concerned in this phenomenon; for we have fhewn eifewhere (fee Thunder, Suppl.), that either elearicity is produced, or the equilibrium of the electrical fluid dilturbed, by every chemical folution; and we thall fee immediately that chemical folutions are perpetually going on in Volta's apparatus.

Very early in the courfe of this experiment, the conracts being made fure by placing a drop of water upon the upper plate, Mr Carlifle obferved a difengagement of gas round the touching wire. This gas, though very minute in quantity, evidently feemed to have the fmell afforded by hydrogen when the wire of communication was fteel. This, with fome other facts, led Mr Nicholfon to propofe to break the circuit by the fubftitution of a tube of water between two wires. They therefore inferted a brafs wire through each of two corks inferted in a glafs tube of half an inch internal diameter. The tube was filled with New Kiver water, and the diffance between the points of the wires in the water was one inch and three equarters. This compound difcharger was applied fo that the external ends of its wire were in contagt with the two extreme plates of a pile of 36 half crowns, with the correfpondent pieces of zinc and pafteboard. A fine ftream of minute bubbles immediately began to flow fiom the point of the lower wire in the tube which communicated with the filver, and the oppofite point of the upper wire became tarnifhed, firft deep orange, and then black. On reverfing the tube, the gas came from the other point, which was now loweft ; while the upper, in its turn, became tarnifhed and black. Reverfing the tube again, the phenomena again changed their order. In this fate the whole was left for two hours and a half. The upper wire gradually erritted whitifh filmy clouds, which, towards the end of the procefs, became of a peargreen colour, and hung in perpendicular threads from the extreme half inch of the wire, the water being rendered femiopaque by what fell off, and in a great part lay, of a pale green, on the lower furface of the tube, which, in this difpofition of the apparatus, was inclined about forty degrees to the horizon. The lower wire, of three quarters of an inch long, conftantly emitted gas, except when another circuit, or complete wire, was applied to the apparatus; during which time the emiffion of gas was fufpended. When this laft mentioned wire was removed, the gas re-appeared as before, not inftantly, but after the laple of four beats of a half fecond clock ftanding in the room. The product of gas, during the whole two hours and a half, was two-thirtieths of a cubic
inch. It was then mixed with an equal quantity of Torpedo common air, and exploded by the application of a light ed waxed thread.

Meffrs Nicholfon and Carlife had been led, by their reafoning on the firtt appearance of hydrogen, to expect a decompofition of the water; but it was with no little furprize that they found the hydrogen extricated at the contact with one wire, while the oxysen fixed itfelf, in combination with the other wire, at the diftance of almoft two inches. This new fact ftill remains to be explained, and feems, fays Mr Nicholfon, to point at fome general law of the agency of electricity in chemical operations. Does it not as naturally fuggeft a fufpicion that galvanifm is not electricity; efpecially as we are informed, by Mr Cruick fhank of Woolwich, that Meffrs Nicholfon and Carline difcovered, that "galvanifm decompofes water with much greater facility than electricity, and with phenomena fomewhat different ?'" What the particular differences are, he does not fay; but we learn from Mr Nichollon himfelf, that from the general tenor of his experiments, it appears to be eftablifhed, that the decompofition of water by galvanifm is more effectual the lefs the diftance is between the wires, but that it ceafes altogether when the wires are in contact.

Mr Nicholfon concludes his memoir with mentioning concifely the effects of a pile of 100 half coowns, and a chemical incident, which appears to be the mott remarkable of thofe which he has yet obferved.

The pile was fet up with pieces of green woollen cloth foaked in falt water. It gave fevere fhocks, which were felt as high as the fhoulders. The tranfition was much lefs forcible through a number of perfons, but it was very perceptible through nine. The fpark was frequently vifible when the difcharge was made in the dark, and a gleam of light was alfo, in fome infances, feen about the middle of the column at the itftant of the explofion. The affiftants were of opinios that they heard the fnap.

The extrication of the gafes was rapid and plentiful by means of this apparatus. When copper wires were ufed for the broken circuit, with muriatic acid dilured with 100 parts of water in the tube, no gas, nor the lealt cicculation of the fluid was perceived, when the diftance of the wires was two inches. A fhort tube, with two copper wires very near each other in commonwater, was made part of the circuit, and fhewed, by the ufual phenomena, that the ftream of electricity was rapidly paffing. The wires in the muriatic acid were then flided within the third of an inch of each other. For the fake of brevity he avoids enumerating the effeets which took place during feveral hours, and fimply ftates, that the minus wire gave out fome hydrogen durring an hour; while the plus wire was corroded, and exhibited no oxyd ; but a depofition of copper was formed round the minus, or lower wire, which began at its lower end : that no gas whatever appeared in this tube during two hours, though the depofition was going on, and the fmall tube thewed the continuance of the electric ftream ; and that the depofition, at the end of four hours, formed a ramified metallic vegetation, nine or ten times the bulk of the wire it furrounded.

In this experiment, it appeared that the influence of electricity increafing the oxydability of the upper wire, and affording nafcent hydrogen from the lower, caufed

\section*{\(T O R\)}

Forperfo. the latter to act as the precipitant of a folution of one and the fame metal.

Mr Nichulfon, we fee, continues to call it eledricity with the ntmo't confidence, as if it could not poffibly be any thing elfe; and yet he fays that the galvanic fhock is much lefs forcible when paffed through a number of perfons than when paffed only through one. This, we believe, does not hol \(\ddagger\) in the thocks of common electricity ; and the difference probably arifes from the cuticle obitruesing the paffage of the one and not of the other. Volta limfelf fays, that this eleetricity, for he ton is defirous to prove it electricity, does not diffufe itfelf through the air. It is fo univerfally known that -very dry air is no conduttor of electricity, that he muft mean, on this occafion, air not uncommonly dry; otherwife the non-diffufion of this electricity through air would not diftinguifh it, as he feems to admit it does, from common electricity. But what occafions this diftinetion, if the two clectricities be the fame?

Lieutenant-colonel Haldane, well known in the fcientific world, made experiments with Volta's pillar, both in a horizontal and in a vertical pofition. With a large pillar, placed vertically, he obtained very weak figns of eleEtricity. He connected the apparatus with the conductor of an electrical machine, and found the effeet rather impeded than affifted by the common electric ftream. He placed the plate of Bennet's electrometer in the circuit, without produciug electric figns. He found that the galvanic apparatus, placed between the outfide and infide of a jar, prevented its charging, and that it is alfo capable of conducting the charge, though not rapidly : and, on the whole, from the very minute exhibition of the attractive and repellent powers, while the caufticity, the fhock, and the oxyclation, are fo very powerful, he cannot be perfuaded that eleetricity is the principal agent, though fome might be generated, or difengaged, during the operation of the apparatus.

This is exaelly our own opinion, which is ftrongly corroborated by the refults of fome very curious expesiments made by Mr Cruickfhank of Woolwich. Thefe experiments our limits permit us not to detail. They were made with a view to afcertain the nature and relazive proportions of the gafes obtai:ed from water and other fluids by this influence; and the author thinks himfelf authorifed to conclude from them :
1. That hydrogen gas , mixed with a very fmall proportion of oxygen and ammonia, is fumehow difengaged at the wire connected with the filver extremity of the machine; and that this effect is equally produced, whatever the nature of the metallic wire may be, provided the fluid operated upon be pure water.
2. That where metallic folutions are employed inthead of water, the fame wire which feparates the hydrogen revives the metallic calx, and depolits it at the extremity of the wire in its pure metallic flate; in this cafe no hydrogen gas is difengaged. The wire employed for this purpote may be of any metal.
3. That of the earthy folutions, thofe of magnefia and argil only are decompofed by the filver wire; a circumftance which ftrongly favours the production of am. monia.
4. Ihat when the wire conneeted with the zinc extremity of the pile confifts either of gold or platinum, a quantity of oxygen gas, mixed with a little azote and
nitrous acid, is difengaged; and the quantity of gas thus Torpecis. obtained is a little better than \(\frac{1}{\top} d\) of the hydrogen gas feparated by the filver wire at the fame time.
5. That when the wire connected with the zine is filver, or any of the imperfect metals, a fmall portion of oxygenous gas is likewife given out ; but the wire itfelf is either oxydated or diff lued, or partly oxydated and partly diffoived: indeed, the effect in this cafe productd upon the metal is very fimilar to that of the concentrated nitrous acid, where a great deal of the metal is oxydated, and but a fmall quantity held in fo. lution.
6. That when the gafes obtained by gold or platinum wires are collected together and exploced over mercury, the whole nearly difappears and forms water, with probably a little nitrous acid; for there was always a thick white vapour perceived for fome time after the explo fion. The refiduary gas, in this cafe, appeared to be azote.
In reffecting on thefe experiments, it would appear that in fome of them the water mult be decompofed: but how this can be effected is by no means fo eafily explained. For example, it feems extremely my fterious how the oxygen fhould pafs filently from the extremity of the filver wire to that of the zinc wire, and there make its appearance in the form of gas. It is to be obferved, likewife, that this effect takes place which ever way the wires are placed, and whatever bends may be interpofed between their extremitics, provided the diftance be not too great. On confidering thefe facte more minutcly, it appeared to Mr Cruickfhank that the eafieft and fimpleft mode of explanation would be, to fuppofe that the galvanic intruence (whatever it may be) is capable of exitting in two ftates, that is, in an oxygenated and deoxygenated flate; that when it paffes from metals to fluids containing oxygen, it feizes their oxygen, and becomes oxygenated; but when it paffes from the fluid to the metal again, it affumes its former ftate, and becomes deoxygenated. Now when water is the fluid interpofed, and the influence enters it from the filver fide deoxygenated (and we fuppofe that ic always paffes from the deoxygenated to the oxygenated fide), it feizes the oxygen of the water, and difengages the hydrogen, which accordingly appears in the form of gas'; but when the influence enters the zinc wire, it parts with the oxygen, with which it had formerly united; and this either efcapes in the form of gas, unites with the metal to form an oxyd, or, combined with a certain portion of water, \&c. may, according to the German chemiffe, form nitrous acid. When a metallic folution is the interpofed fluid, the effect produced may be explained in two ways; but the fimpleft is to fuppofe that the influence, in paffing from the filver wire, feizes the oxygen of the metallic calx, and afterwards depafits it on entering the zinc one. In this cafe no gas fhould appear at the filver wire; but when a perfect metal is cmployed, oxygen hould be dilengaged from the zinc wire : and this, as has been already mentioted, is exactly what takes place.

What our author confiders as the itrongeft argument in favour of this hypotheflis, and what we contider as an argument equally Atrong to prove that galvauf in differs effentially from elektricity, is, that ali fl uds which do not contain oxygen, are incapable of tranfmitting the galvanic fluid, fuch as alcohol, xther, the fat, and

\section*{\(\mathrm{T} O \mathrm{R}\)}

Torpedo. effential oils, as he has proved by direet experiment ; but on the contrary, that all thofe which do contain exrgen conduet it more or lefs readily, as all aqueous fluids, metallic folutions, and acids, more efpecially the concentrated fulphuric acid; which it decompofes. In this laft inflance, the oxygen produced can hardly be afrriber to the decompofition of water; for this acid, when properly concentrated, does not contain any fenfible quantity. By this theory alfo we can readily ex. plain the oxydation of the zinc plates in the machine; where the fluid in paffing from the different pairs of plates appears to be alternately oxygenated and deoxygenated. Although I am not (Says Mr Cruikfhank) by any means entirely fatisfied with this hypothefis, yet as it is the only one by which I can explain the dif. ferent phenomena, it was thought advifable to throw it out, merely with a view to ineluce others to reafon upon the fubject, and to incite them to make experimente, by which alone truth can be afcertained.

We approve heartily of his conduct. It is for the fame reafon, and not to maintain at all hazards any preconceived opinion of our own, that we have urged every objection that occurs to us againt the hypothefis of the identity of galvariifm and electricity. Thefe fluids or influences appear to us to differ effentially; but ftill we admit that future experiments and future reafonings may remove our objections, which, however, ought never to be loft fight of till they be removed. If ingenious men. adopting implicitly the hypothefis of Volta and Mr Nicholfon, fhall inftitute a fet of experiments to afcertain the laws of the galvanic influence, they will be very apt to make their experiments fupport their hypothefis, inftead of employing them as guides to the temple of truth. Mr Nicholfon fays, that in all the experiments made by him and Mr Carlife, the action of the inftrument was frecly tranfmitted through the ufual conduetors of electricity (meaning, we fuppofe, metals and watery fluids), but that it was fopped by glafs and other non-conductors. We have experienced the fame thing, and fo far we acknowledge a ftriking refemblance between galvanifm and eleçricity; but, on the other hand, we have never been able to make any accumulation of galvanifm by means of coated electrics, whilft Mr Cruick fhank found that the galvanic infuence cannot be tranfmitted through alcohlol, ether, or effential oils. In thefe inftances, the difference between galvanifm and eleetricity feems to be as ftriking as the refemblance is in the others. Indeed thefe differences between the one and the other are fo many and fog great, that M. Fabbroni attributes the phenomena of galvanifm not to eleEtricity, but to a chemical operation; to the tranfition of oxygen into a combination, and to the formation of a new compound. He had oblerved, in repeating the common experiment, that if he wiped his tongue as accurately as poffible, the fenfation of tafte excited by the two metals was fo diminifhed as to be hardly diftinguifhed. The faliva, or fome other moifture, mult therefore be of fome importance in this phenomenon. He afterwards inftituted a fet of very proper experiments; from which it appeared to him that an evident chemical action takes place in the operation of galvanifm, and that it is unneceffary to feek farther for the nature of the new ftimulus. Galvanifm (he fays) is manifefly a combultion or oxydation of the metals; and the ftimulating principle may be either the caloric which is difengaged, or the oxygen which
paffes into new combinations; or the new metallic falt; To:pedo. but which of thefe he has not afcertained.

Without adopting or rejecting thefe conclufions, we recomirend them to the attention of our chemical rea. ders; for it is only by expert and fcientific chemifts that we expect the nature and properties of galvanifm to be afcertained. In the mean time, it is proper to obferve, that the pile of Volta continues in order for about three days, and fcarcely three; and that on account of the corrofion of the freces of the zinc, it is neceffary to renew them previous to each contruction of the pile. This may be done by fcraping or grinding, or by clean. ing them with diluted muriatic acid.

To a void the trouble of conftantly repiling the pieces of filver and zinc, Mr Cruickfhank conttructed a kind of trough of baked wood, 26 inches in length, 1.7 inches deep, and 1.5 inches wide ; in the fides of this tiough grooves were made oppofite to each other, about the tenth of an inch in depth, and fufficiently wide to admit one of the plates of zinc and filver when foldered together ; three of thefe grooves were made in the fpace of one inch and three tenths, fo that the whole machine contained 60 pair of plates. A plate of zinc and filve1, each 1.6 inches fquare, well cemented together, were introduced into each of thefe grooves or notches, and afterwards cemented into the trough by a compolition of rofin and wax, fo perfectly that no water could. pafs from one cell to the other, nor between the plates of zinc and filver. This circumitance muft be ftriely attended to, elfe the machine will be extremely imperfect. When all the plates were thus fecured in the trough, the interftices or cells formed by the different pairs of plates were filled with a folution of the muriat of ammonia, which here fupplied the place of the moittened papers in the pile, but anfwered the purpofe much better. It is hardly neceffary to obferve, that in fixingy the zinc and filver plates, they mutt be placed regulatly, as in the pile, viz. alternately zinc and filver, the filver plate being always on the fame fide. When a communication swas made between the firft and laft cell, a ftrong fhock was felt in the arms, but fornewhat different from that given by the pile, being quicker, leis tremulous, and bearing a greater refemblance to the common electrical fhock. Ife conftructed two of thefe machines, which contained in all 100 pair of plates : thele when joined together gave a very ftrong fhock, and the fpark could be taken in the day time at pleafure; but what furprifed him not a little, was the very flender power which they poffefled in decompofing wa. ter: in this refpeet they were certainly iuferior to a pile of 30 pair, althongh fuch a pile would not give a fhock of one third the ftrength.

This apparatus retained its power for many days, and would in all probability have retained it much longer, had not the fluid got between the dry furfaces of the metals. 'To remedy this defect, he foldered the zine and filver plates together, and found that this method anfwers very well. The zinc plates may be cleaned at any time, by filling the different cells for a few minutes with the dilute muriatic acid. Although this apparatus may not entirely fuperfede the pile, efpecially if it fhould be found to decompofe water, \&c. but flowly, yet in other refpects it will no doubt be found very convenient and portable.

If this article be thought long, and if we appear to have loft fight of our original fubject, the Torpedo, we
roucan have only to plead in excufe for our conduct, that whilft tatem we could not avoid pointing out the refemblance between the fhock given by the torpedo and that by

Volta's apparatus, we felt it a kind of duty to embrace the only opportunity that we fhall have of laying before our readers the additional information refpecting the phenomena of Galvanism which we have reccived fince the publication of that article. Thefe phenomena are yet new, and they are unqueftionably im. portant ; indeed fo very important, that to us it appears neither impoffible, nor even improbable, that to the galvanic agency of metals and minerals may be attributed volcanoes and earthquakes.
toucan, or American Goose, is one of the modern conftellations of the fouthern hemifphere, confifting of nine fmall ftars.

Tractors, Metallic. See Perkinism in this Suppl.

TRACTRIX, in geometry, a curve line, called alfo Catenaria; which fee, Encycl. and Arch, Suppl.

TRADESCAN P (John), an ingenious naturalift and antiquary, was, according to Anthony Wood, a Fleming or a Dutchman. We are informed by Parkinfon, that he had travelled into moft parts of Europe, and into Barbary; and from fome emblems remaining upon his monument in Lambeth church yard, it plainly appears that he had vifited Greece, Egypt, and other ealtern countries. In his travels, he is fuppofed to have colleted, not only plants and feeds, but moft of thofe curiofities of every fort which, after his death, were fold by his fon to the famous Elias A frmole, and depofited in his mufeum at Oxford. When he firt fettled is this kingdom cannot, at this diftance of time, be afcertained. Perhaps it was at the latter end of the reign of Queen Elizabeth, or the beginning of that of King James I. His print, engraven by Hollar before the year 1656 , which reprefents him as a perfon very far aivanced in years, feems to countenance this opinion. He lived in a great houfe at South Lambeth, where his mufeum was fiequently vifited by perfons of rank, who became benefactors thereto: among thefe were King Charles I. (to whom he was gardener), Henrietta Maria his Queen, Archbifhop Laud, George Duke of Buckingham, Ro. bert and William Cecil, Earls of Salifbury, and many other perfons of diftinction. John Tradefcant may therefore be juftly confidered as the earlieft collector (in this kingdom) of every thing that was curious in natural hiftory, viz. minerals, birds, fifhes, infects, \&c. He had alfo a good collection of coins and medals of all forts, befides a great variety of uncommon rarities. A catalogue of thefe, publifhed by his fon, contains an enumeration of the many plants, fhrubs, trees, \&c. growing in his garden, which was pretty extenfive. Some of thefe plants are, if not totally extinct, at lealt become very uncommon, even at this time: though this able man, by his great induftry, made it manifett, in the very infancy of botany, that there is icarce any plant extant in the known world that will not, with proper care, thrive in this kingdom.

When his houfe at South Lambeth, then called Tradefcant's Ark, came into Afhmole's poffeffion, he added a noble room to it, and adorned the chimney with his arms, impaling thofe of Sir William Dugdale, whofe daughter was his third wife; where they remain to this day.

It were much to be wifhed, that the lovers of bota- Traje Qory ny had vifited this once famous garden before, or at leaft in the hegiuning of the prefent century. But this feems to have been totally meglected till the year 1749,

Tranflation. when \(\operatorname{Dr}\) Watfon and the late 1 r Mitchell favoured the Royal Society with the only account now extant of the remains of Tradefcant's garden.

When the death of John Tradefcant happened is not known; no mention being made thereof in the regifterbook of Lambeth church.
TRAJECTORY, a term often ufed, generally for the path of any body, moving either in a void, or in a medium that refifts its motion ; or even for any curve paffing through a given number of points. Thus Newton, Princip. lib. 1. prop. 22. propofes to defcribe a trajectory that fhall pafs through five given points.
TRAITOR's Island, one of the Archipelago called Navigntor's Iflands, in the South Sea (See that article, Suppl.). It is low and Plat, with only a hill of fome height in the middle; and is divided into two parts by a channel, of which the mouth is about 150 toites wide. It abounds with bannanas, yams, and the fineft cocoa nuts, which Peroufe fays he ever faw. A. bout twenty cauoes approached the French Thips without dread, traded with a good deal of honefty, and never refufed, like the natives of the archipelago of Navigators, to give their fruit before they were paid for it ; nor, like them, did they give a preference to beads over nails and pieces of iron. They fpoke, however, the fame language, and had the fame ferocious look: their drefs, their manner of tatowing, and the form of their canoes, were the fame; nor could we (fays the author) doubt that they were one and the fame people : they differed, indeed, in having univerfally two joints cut off from the little finger of the left hand ; whereas, in the iflands of Navigatore, 1 only perceived two individuals who had fuffered that operation. They were alfo of much lower Itature, and far lefo gigantic make; a difference proceeding, no doubt, from the foil of thefe iflands, which being lefs fertile, is confequently lefs favonrable to the expantion of the human fiame.

TRAMMELS, in mechanics, an inftrument ufed by artificers for drawing ovals upon boards, \&cc. One part of it confitts of a crofs with two grooves at right angles; the other is a beam carrying two pins, which fide in thofe grooves, and alfo the defribing pencil. All the engines for turning ovals are conftructed on the fame principles with the trammels: the only difference is, that in the trammels the board is at relt, and the pencil moves upon it ; in the turning engine, the tool, which fupplies the place of the pencil, is at reft, and. the board moves againit it. See a demonitration of the chief properties of thefe inftruments by Mr Ludlam, in the Phil. Tranf. vol. 1xx. p. 378, \&c.

TRANSFORMATION, in geometry, is the changing or reducing of a figure, or of a body, into another of the fame area, or the fame folidity, but of a different form. As, to transform or reduce a triangle to a fquare, or a pyramid to a parallelopipedon.

TRANSFORMATION of Equations, in. algebra, is the: changing equations into others of a different form, but of equal value. This operation is often neceffary, to prepare equations for a more eafy folution.

TRANSLATION, in literature, is a matter of fo. much importance, that no other apology can be made for.

\section*{\(T R A\)}
\({ }^{-T}\) anila- for the very imperfect manner in which it is treated in tion. the Encyclopedia, than a candid declaration that it was
impofible to enter at all upon the fubject within the narrow limits to which we were then reftricted hy the proprietors of the work. The fundamental laws of tranflation, which we gave from Dr Campbell of Aberdeen, we belitve indeed to be unexceptionable; but the queftion is, how are thefe laws to be obeyed?

In order that a tranfator may be enabled to give a eomplete tranicript of the ideas of the original work, it is almo't needlefs to obferve, that he muft poffefs a perfe + knowledge of both languages, viz. that of his author, and that into which he is to tranflate; and that he muft have a competent acquaintance with the fubject of which his authortreats. Thefe propofitions we confider as felf evident; but if any of our readers fhall be of a different op'nion, we refer them to an Efay on the Principles of Tranflation, publifhed 1797 by Cadell and I) avies, London, where they will find our doctrine very clearly illuftrated. It may be proper to add, that fuch a knowledge of the Greek and Latin languages as merely enables a man to read them with eafe and entertainm \(\in\) nt to himfelf, is by no means fufficient to qualify him for tranflating every Greek and I atin book, even though it treats of a fubject with which he has a general acquaintance. The religious rites and ceremonies of the Greeks and Romans, as well as the radical words of their language, were derived from the Eaft ; and he who is an abfolute ffranger to oriental literature, will be very liable to miftake occafionally the fenfe of Greek and Roman authors who treat of religious fubjects. We could illuftrate the truth of this pofition by quotations from fome of the moft admired modern tranflations of the Greek Seriptures, which we have no hefitation to fay fall very thort of the authorifed verfion in accuracy as well as in elegance. The divines employed by King James to tranीate the Old and New Teftaments were profoundly killed in the learning, as well as in the languages, of the Eaft ; whillt tome of thofe who have prefumed to improve their verfion feem rot to have poffeffed a critical knowledge of the Greek tongue, to have known fill lefs of the Hebrew, and to have been abfolute Arangers to the dialect fpoken in Judea in the days of our Saviour, as well as to the manners, cuftoms, and peculiar opinions of the Jews feets. Neither meraphyfical acutenefs, nor the moft perfect knowledge of -the principles of tranflation in general, will enable a man who is ignorant of thefe things to improve the authorifed verfion either of the Gofpels or the Epiffles; for fucl a man knows not accurately, and therefore cannot give a complete tranfcript of the ideas of the original work.

But fuppofing the tranflator completely qualified with refpect to knowledge, it becomes a queftion, whether he may, in any cafe, add to or retrench the ideas of his author? We are flrongly inclined to think, that, in no cafe, it is allowable to take fuch liberties; but the ingenious and elegant effayilt, whofe work on the prin ciples of tranflation we mult always quote with refpect, is of a different opinion. "To give a general anfwer (fays he) to this queftion, I would fay, that this liberty may be ufed, but with the greateft caution. It mult be further obferved, that the fuperadded idea thall have the moft neceffary connection.with the original thought, and aetually increafe ite force... And, on the other hand,
that whenever an idea is cut off by the tranllator, it Tranfa= muft be only fuch as is an acceffory, and not a prin. ciple, in the claufe or fentence. It mult likewife be confeffedly redundant, fo that its retrenchment fhall not impair or weaken the original thought. Under thefe limitations, a traufator may exercife his judgnent, and aflume to himfelf, in fo far, the character ot an original writer"

Of the judicious ufe, as he thinks it, of this liberty, the author quotes many examples, of which we fhall feleet three, as well calculated to illuftrate our own ideas of the fubject.

In the firft book of the Iliad, Achilles, having refolved, though indignantly, to give up Brifeis, defires Petroclus to deliver her to the heralds of Agamemnon:
```

' }\mp@subsup{\Omega}{\Omega}{~

```



``` Hilis, A. 345 .
```

Patroclus now th' unwilling beauty brought ; She in foft forrowz, and in penfive thought, Paft filent, as the heralds held her hand, And oft look'd back, llow moving o'er the ftrand. Pope.

Our author thinks, and we heartily agree with him, that the amplification in the three latt liner of this verfion highly improves the effect of the pieture; but we cannot. confider this amplification as a new idea fuperadded. It was the object of Homer to inform his countrymen, that Brifeis went with the heralds unwilo lingly. This he does by the words 'in' axe va' ' $\mu \mu \alpha$ тoiss ruinxur and it is by no means improbable, that the rhythmical movesent of the verfe may have prefented to the ancient Grecks the image of the lady walking nowly and reluctantly along. This image, we are fure, is not produced by a literal tran§ation of the Greek words into Englifh ; and therefore it was Pope's duty, not to add to the ideas of the original, but, by amplification, to piefent to his own countrymen the picture which Homer, by the fuperiority of the Gieek language and rhythn, had prefented to his.
In the ninth book of the lliad, where Phoenix reminds Achilles of the care he had taken of him while an iufant, one ciccumflance, extremely mean, and ever difguiting, is found in the original :





The literal verfion of thefe lines is indeed very grofs: "When I placed you before my.knees, I crammed you with mat, and give you wine, which you often vomited upon my bofom, and fained my clothes, in your troublefome infancy :" but we cannot agree with our author, that the Englifh reader is obliged to Pope for having altogether funk this naufeous image. What is, or ought to be, our object in reading Homer? If it be merely to delight our car with fonorous lines, and pleafe pour fancy with grand or fplendid images, the tranflator certainly did right in keeping out of view this difgufo ing picture of favage 1 fe ; hut when he did fo, he cannot be faid to have given a complete tranfcript of his author's ideas. To pieafe oullelves, however, with fplendid images, is nut our only object when ttudying
the works of the ancient poets. Another, and in our opinion a more important object, is to acquire a lively notion of ancient manners ; and if fo, Fope grolsly mineads the mere Englifh reader, when, inftead of the beaftly image of Homer, he prefents him with the following feene, which he may daily meet with in his own family, or in the farnilies of his friends:

Thy infant breatt a like affection Thow'd, Still in my arms, an ever pleafing load;
Or at my knee, by Phœnix would'lt thou ftand, No food was grateful but from Phœenix hand: I pafs my watchings o'er thy helplefs years, The tender labours, the compliant cares.
This is a picture of the domeftic manners of Great Britain in the 18th century, and not of Greece in the heroic ages.

In the beginning of the eighth book of the Iliad, Homer puts into the mouth of Jove a very ftrarge feech, fuffed with braggart vannting and ludicrous images. This, as our author obferves, is far beneath the dignity of the thunderer ; but it is only beneath the dignity of the thunderer as our habits and modes of thinking compel $u s$ to conctive fuch a being. The thunderer of the Greeks was a notorious adulterer and fodomite, whofe moral charafter finks bencath that of the meaneft of our bravos; and as he had dethroned his father, and waged for fome time a doubtful war with certain earthly giants, it does not appear to us that the boafting fpeech which Homer puts into his mouth is at all unfuitable to his acknowledged attributes. But whether it be or not, was not the tranflator's concern. Homer, when he compofed it, certainly thought it not unworthy of the thunderer ; and whatever Pope's opinion might be, he had no riglit to fubftitute his own liotions of propriety for thofe of his autho:: The inythological tales of the poets, and more efpecially of Homer and Hefiod, con. fituted, as every one knows, the religious creed of the vulgar Greeks (fee Poly theism, nio 3.3. Encycl.) ; and this circumflance makes it douibly the duty of a tranflator to give, on fuch fubjects, a fair tranfeript of his author's ideas, that the mere Englifh reader, for whom he writes, may know what the ancients really thought of the objects of their idolatrous worfhip. This Pope has not done in the feeech under confideration; and has therefore, in our opinion, deviated widely from the firft and moft important of the three general laws of tranflation. Johnfon has apologized, we think fufficiently, for many of Pope's embellifhments of his autbor; but he has not attempted to make an apology for fuch em. bellifments as alter the fenfe. We cannot indeed con. ceive a pretence upon which it can ever be allowable in a tranflator to add to the ideas of his author, to re. trench, or to vary them. If he be tranflating hiltory, and find his author advancing what he believes to be falfe, he may correct him in a note; buc he has no right to make one man utter, as his own, the belief or the fentiments of another, when that belief, and thofe fen. timents, are not his own. If he be tranflating a work of fcience, he may likewife correct the errors of his au. thor in notes, as Dr Clerke corrected thofe of Rohault; but no man has a right to give to a Ruliault the fcience of a Newton. The tranflator of a poem may certainly employ amplification to place in a ftriking light the images or the fentiments of the original work;
but he muft not alter thofe images or fentiments fo as to make that appear grand or elegant in the verfion, which is mean or difgufting in the original. On every accafion on which he takes fuch liberties as thefe, he ceafes to be a tranflator, and becomes a faithlefs paraphraft.

The fecond general law of tranflation, though certainly lefs important, is perhaps more difficult to be obferved than the firf. We have ftated it in thefe words: (See Translation, Encycl.) "The ftyle and manner of the original fhould be preferved in the tranflation;" but it is obvious, that this cannot be done by him who poffeffes not fufficient tafte and judgment to afcertain with precifion to what clafs the ftyle of the original belongs. "If a tranflator fail in this difcernment, and want this capacity, let him be ever fo thoroughly mafter of the fenfe of his author, he will prefent him through a diftorting medium, or exhibit him in a garb that is unfuitable to his character." It would obviou@y be very improper to tranflate the elegantly fimple language of Cæfar into rounded periods like thofe of The Rum. bler, or the Orations of Cicero into the language of Swift.

The chief characteriftic of the hittorical ftyie of the facred Scriptures is its fimplicity ; and that fimplicity is, for the moft part, well preferved in the authorifed verfion. It is, however, loft in many of the modern verfions. Caftalio's, for inftance, though intitled to thepraife of elegant latinity, and though, in general, faith. ful to the fenfe of the original, yet exhibits numberlefs tranfgreffions of the law which is now under confidera. tion. Its fentences are formed in long and intricate periods, in which many feparate membersare artfully combined ; and we oblerve a conftant endeavour at claffical phrafeology and ornamented diction, inftead of the beautiful fimplicity of the original.

The verfion of the Scriptures by Arias Montanue is, in fome refpects, a contraft to that of Caftalio. $13 y$ adopting the literal mode of tranflation, Arias undoubtedly intended to give as faithful a picture as he could, both of the fenfe and of the manner of the original. Not attending to the peculiar idioms of the Hebrew, Greek, and Latin tongues, which, in fome refpects, are very different from each other, he has, by giving to his Latin the combination and idioms of the cwo tirft of thefe languages, fometimes inade the facred writers talk abfurdly. In Latin, as every fchool-boy knows, two negatives make an affirmative, whilf in Greek they add force to the negation. X asts imov ou duva $\mathrm{g}_{6}$ oudiv fignifies, "Without me ye can do nothing," or, "Ye cannot poljibly do any thing;" but Arias has tranflated the words fine me non poteflis facere nibil, i. e. "o without me ye cannot do nothing," or, "ye muft do fomething," which is directly contrary to the meaning of our Lord. It is not therefore by tranflating literally or verbally that we can hope to preferve the ftyle and manner of the original.

To exprefs in florid or elevated langnage the ideas of an author who writes himfelf in a fimple ftyle, is not to give in the verfion a juft picture of the original; but to attempt, for the fake of verbal accuracy, to introduce into one language the peculiar idions or conftric. tion of another, is fill worfe, as in this mode of tranfation the fenfe, as well as the manner of the original, is loft. The rule obviounly is to ufe, in the verfion, the'

Tranfa. tion. $\rightarrow$. . $=$ : -


$\qquad$



## [704] T R A

Tranila- words and phrafeology which we have reafon to betion. lieve that the author would himfelf have ufed, had he
been mafter of the language into which we are tranflating his ideas. Thus, if we are to tranflate into Englifh a piece of elegantly fimple Greek or Latin, we mult make ourfelves completely matter of the author's meaning, and, neglecting the Greek or Latin idioms, exprefs that meaning in elegantly fimple Englifh. We need not add, that when the language of the original is florid or grand, if that fyle be fuited to the fubject, the language of the tranflation fhould be forid or grand likewife; but care mult always be taken that perfpicuity be not facrificed to ambitious ornaments of any kind; for ornainents which obfcure the fenfe are worfe than ufe lefs.

If thefe reflections be juft, it is obvious that a poem cannot be properly tranflated into profe. The mere fenfe may doubtlefs be thus transferred from one language into another, as has generally been done by Macplerfon in his hobbling verfion of the 1liad, and per. haps more completely by a late tranflator of Anacreon; but in fuch a verfion, the fyle and manner of the original muft receffroily be loft. Of this the following accurate profe tranflation of A dacreon's ninth ode (on a dove) ie a ftriking inftance:
"O lovely Pigeon! whence, whence do you fly? Whence, fpeeding through the air, do you breathe, and dittil fo many peifumes? Who is your mafter? For it concerns me to know. 'A nacreon fent me to a youth, -to Bathyllus, at prefent the prince, and difpofing of all things Venus fold me, receiving a little hymn in return. And I ferve Anacreon in fuch tranfactions as thefe: and now I carry his letters, fuch asi you fee : and he affirms, that he will immediately make me free. But I will remain a fervant with him although he inay difmifs me: For wherefore does it behove me to fly, both over mountains, and fields, and to perch on trees, devouring fome 1 uftic food? Now indeed I eat bread, fnatching it from the hands of A nacreon himfelf; and he gives to me the wine to drink which he drinks before me; and having drunk, I perhaps may dance, and cover my mafter with my wings: then going to reft, I neep upon the lute itfelf. You have it all ;-begone: you have made me more talkative, O mortal! than even * Tbe Odes a jay *"."
of .Anacreon, How inferior is the general effect of this piece of tranlated profe to that of the well-known poetical verfions of into Englijp Addifon and Johnfon? and yet the mere ideas of the a;96.
od at Tork, original are perhaps more faithfully tranfcribed by this anonymous writer than by either of thofe elegant tranfators. The emotions indeed excited by the original are not here brought into view.

The third general law of trauffation is fo nearly allied to the fecond, that we have very few directions to give for the obfervation of it. He who, in his verfion, preferves the ftyle and manner of the original, as we have endeavoured to thew that they ought to be preferved, will, of courfe, give to the tranflation the eafe of original compofition. 'The principal difficulty that he has to encounter in this part of his talk, will occur in the tranflating of idiomatical and proverbial phrafes. Hardly any two languages are conftructed precifely in the fame way; and when the ttructure of the Englifh language is compared with that of the Greek and Lasin, a remarkable difference between the ancient and
modern tongues is found to pervade the whole. This nuft occafion very confiderable difficulty ; but it is a difficulty which will be removed by a due obfervance of the former law, which directs the tranflator to make Iris author fpeak Englifh in fuch a flyle to Englifmen as he fpoke his own tongue to his own countrymen, and of courfe to ufe the Linglifh idiom with Englift words. But what is to be done with thofe proverbial phrafes of which every language has a large collection, and which allude to local cuftoms and manners?

The ingenious author of the Effay fo often quoted, very properly obferves, in aufiwer to this queftion, that the tranfation is perfect when the tranfator employs, in his nwu language, an idiomatic phrafe correfponding to that of the original. "It is not (fays he) poffible perhaps to profuce a hoopier inflance of tranflation by correfponding idioms, than Sterne has given* in the * Trifroms tranflation of Slawkenbergius's tale. Nibil me penitet Stand. hujus nafi, quoth Pamphagus; that is, "My nofe has been the making of me." Nec eft cur paniteal ; that is, "How the dence fhould fuch a nofe fail?" Miles peregrini in faciem fufpexil! "The centinel looked into the Atranger's face. Never faw fuch a nofe in his life!"
" As there is nothing (continues our author) which fo much conduces both to the eafe and firit of compofition as a happy ufe of idiomatic phrafes, there is nothing which a tranflator, who has a moderate command of his own language, is fo apt to carry to an extreme." Of this he gives many friking examples from Echard's tranflations of Terence and Ylautus, for which we muft refer the reader to the Elfay itfelf. IIe obferves, likewife, that in the ufe of idiomatic plirafes, a tranfator frequently forgets both the country of his original author, and the age in which he wrote; and while he makes a Greek or Roman fpeak French or Englifh, he unwittiagly puts into his mouth allulions to the man. ners of modern France or England. This, to ufe a phrafe borrowed from painting, may be termed an offence againf the coffume. Ihe proverbial expreffion ©xigax $\omega$ isus, in Theocritus, is of fimilar import with the Englifh proverb, to carry coarls to Nerwaftle; and the Scutch, to drive falt to $D_{y}$ fart; but it would be a grofs impropriety to ufe either of thefe expreffions in the tranflation of an ancient claffic. Of fuch improprieties our author points out many inflances both in French and Englifh tranfations of the claffics; and he might have increafed the number by quotations from Blackwell's Memoirs of the Court of Augutus, where, inftead of Roman fenators and their wives, we meet with modern gentlemen and ladies, with Secreturies at war, paymafers, commifary generals, and lord high admirals. It is true the memoirs of the court of Auguifus is no tranflation ; but with refpect to coflume, it is neceffarily fubject to the laws of tranीation.

Offences againft coftume are often committed by the ufe of improper words as well as of improper phrafes. To introduce into dignified and folemn compofition words affociated with mean and ludicrous fubjects, is equally a fault in an original author and in a tranflator: and it is obvioufly improper, in the tranflation of works of very high antiquity, to make ufe of words which have but lately been admitted into the language of the tranflator. Faults of this kind are very frequent in Dr Geddes's tranflation of the Bible, as when the paflover is called the fkipover ; the tabernacle of the congrega-

Tranfla- tion, the convention-tent; and a burnt-offering, a boocaulf. The firft of thefe expreffions prefents to the imagination an image profanely ludicrous ; the fecond, brings into our view the French Convention, which, we fufpect, occupied no fmall portion of the Dostor's thoughts, when they fhould have been wholly employed on the facred text ; and the word holocaul, which mult be unintelligible to the mere Englifh reader, is, in the mind of every man of letters, clofely afluciated with the abominable rites performed at the facrifices of the ancient heathens. But it is needlefs to point out faults of this kind in a work which is open to more ferious objeCtions, and which, we truf, thall never be generally read. We are forry that truth compels us to fay, that the novel expreffions introduced by Dr Camphell into his verfion of the gofpels-fuch as confuence for multitude, and rign for kingtom-are, to fay the beft of them, no improvements of the authorifed verfion. We will not rank them with Dr Geddes's innovations, becaufe we will not clafs the great author of the Differtation on Miracles with a paradoxical Chriftian of no communion; hut we do not think that Dr Campbell's laurels were frefhened onthis brow by the tranflation of the Gofpels.

We thall conclude this article with the following reflections, taken from the Eflay which has been fo often quoted:
" If the orler in which we have claffed the three general laws of tranflation be their juft and natural ar. rangement, which, we prefume, will hardly be denied, it follows, that, in every cafe where it is neceflary to make a facrifice of one of thefe laws to another, a due regard ought to be paid to their rank and compalative importance. When the genius of the original language differs much from that of the tranflation, it is often neceffery to depart from the author's manner in order to convey a faithful picture of his fenfe; but it would be highly prepofterous to depart, in any cafe, from the fenfe, for the fake of imirating the manner. Equally improper would it be, to facrifice either the fenfe or manner of the original, if thefe can be preferved confirtently with purity of expreffion, to a fancied eafe or fuperior gracefulnefs of compofition ; and it is certain that the fenfe may always be preferved, though to purity of expreffion the manner of the original muft formetimes be facrificed."
TRAPEZOID, fometimes denotes a trapeziun that has two of its fides parallel to each other; and fometimes an irregular folid figure, having four fides not parallel to each other.

TRAVERSE, in gunnery, is the turning a piece of ordnance aboit, as upon a centre, to make it point in any particular direction.

Traverse, in fortification, denotes a trench with a little parapet, fometimes two, one on each fide, to ferve as a coverfrom the enemy that might come in flank.
'Traverse, in a wet fofs, is a fort of gallery, made by throwing fauciffons, joilts, fafcines, flones, earth, \&e. into the fofs, oppofite the place where the miner is to be put, in order to fill up the ditch, and make a paffage over it.

Traverse alfo denotes a wall of earth, or flone, raifed acrofs a work, to flop the fhot from rolling along it.

Traverse alfo fometimes fignifies any retrenchment, or line fortified with fafcines, barrels, or bags of earth, or grabions.

TRAVESTY, or burleqque tranlation, is a fpeciea
Suppl. Voz. II. Part II.
of writing which, as it partakes, in a great degree, of original compofition, is not to be ineafured by the laws of ferious tranfation. It conveys neither a juft pi\&ure of the fentiments, nor a faithful reprefentation of the fyle and manner of the original; but pleafes itfelf in exhibiting a ludicrous caricatura of both. It difplays an overcharged and grotefque refemblance, and excites our rifible ernotions by the incongruous affociation of dignity and meant fs, wifdom and abfurdity. This affociation forms equally the bafis of trawefty and of lutdicrous parody, from which it is no otherwife diftin. guifled than by its affuming a different language from the original. In order that the minnickry may be underfood, it is neceflary that the writer choofe, fur the exercife of his talents, a work that is well known, and of great reputation. Whether that reputation is deServed or unjult, the work may be equally the fubject of burlefque imitation. If it has been the fubject of general, but undeferved praife, a parody or a travefty is then a fair fatire on the falfe talle of rhe original anthor and his admirers, and we are pleafed to fee both become the objeets of a juft caffigation. The Rebecurfal, Tom Thumb, and Crononkotonthologos, which exhibit ludicrous parodies of paffages from the favourite dramatic writers of the times, convey a great deal of jult and ufeful criticifm. If the original is a work of real excellence, the travefty or paroly detraass nothing from its merit, nor robs the author of the fmallelt portion of his juft praife. We laugh at the affociation of dignity and meannefs; but the former remains the exclufive property of the original, the latter belongs folely to the copy. We give due praife to the mimical powers of the imitstor, and are delighted to fee how ingeniounty he can elicit fubjects of mirth and ridicule from what is grave, dignified, pathetic, or fublime.

But this fpecies of compofition pleafes only in a fhort fpecimen. We cannot bear a lengthened work in travefty. The incongrunus affociation of dignity and meannefs excites rilibility chicfly from its being muexpected. Cotton's and Scarron's Virgil entertain but for a few pages: the compolition foon becomes tedions, and at length difgulting. We laugh at a fhort exhibition of buffoonery; but we cannot endure a man who, with good talents, is conftantly play ing the foot.

TKEACLE (fee Enycl.) or Melasses, is a fub. ftance very wholefome, but of a tatte difigreeably fweet. Methods have accordingly been propofed for ourifying it, fo as that it may, on many occafions, fupply the place of refined fugar, which has long been at a price which a great number of poor perfons cannot afford to pay for what mult now be confidered as a neceffary of life. The following is the proce!s for purifying treacle, given by the M. Cadet (Devaux) in the Feuille du Cultivaterur, founded upon experiments made by Mr Lowity of Peterfhurgh :

Take of treacle 24 lbs . of water 24 lbs . of charcoal, thoroughly burnt, 6 lbs . Bruife the charcoal grofly, mix the three fubftances in a caldron, and let the mixture boil gently upon a clear wood fire. After it has boiled for lalf an hour, pour the liquor througla a ftrain. ing-bag, and then replace it upon the fire, that the fuperfluous water may be evaporated, and that the treaclc may be brought to its original confiftence. There is little or no lofs by this operation, as 24 lbs . of tracle give nearly the fame quantity of fyrup.
This procefs has been repeated in the large way, and has fucceeded: the treacle is fenfibly ameliorated, fo

## T R I

Trebifond. that it may be ufed for many difhes; neverthelefs, thofe with milk, and the fine or aromatic liqucurs, are not near fo good as with lugar.

TREBISOND, a large, populous, and ftrong town of Turkey in Afia, in the province of Jenich, with a Greek archbihop's fee, a harbour, and a cafle. It is feated at the foot of a very fteep hill. The walls are fquare and high, with battlements; and are built with the ruins of ancient Atructures, on which are infcriptions not legible. The town is not populons; for there are more woods and gardens in it than houfes, and thefe but one fory high The caftle is feated on a flat rock, with ditchee cut therein. The harbour is at the eaft end of the town, and the mole built by the Geneofe is almoft deftroyed. It fands on the Black Sea, 104 miles nosth weft of Erzerum, and 440 eaft of Conftanftinople. E. Lon. $40^{\circ} 25^{\prime}$. N. lat. $40^{\circ} 45^{\prime}$.

TREE. Under this title (Encycl.) we gave an account of the method recommended by Meffrs Forfyth and Hitt for curing injurics and defects in trees. The actual cautery is employed in Cevernes, and in the department de l'Allier, in France, for Atopping the progrefs of rottennefs in large trees. When they perccive that this very common and deftructive difeafe begins to make fome progrefs in the chefnut-tree, by excavating its trunk, they collect heath, and other combuftible vegetables, and burn them in the very cavity, till the furface is completely converted into a coal. It feldom happens that the tree perithes by the effect of this operation, and it is always found that this remedy fufpends the progrefs of the decay. It is practifed in the fame manner, and with fimilar fuccefs, on the white oak. When we compare the effects of the actual cautery on the animal fyftem, in fimilar difeafes, a new refemblance is feen between the difeafes which affect the organic beings of both kingdume, as well as between the remedies by which they may be oppofed. - Nicholfon's Journal.

TRIANGLE, Arithmetical, a kind of numesal triangle, or triangle of numbers, being a table of certain numbers difpofed in form of a triangle. It was fo called by Pafcal; but he was not the inventor of this table, as fome writers have imagined, its properties having been treated of by other authors fome centuries before him, as is Mewn in Dr Hutton's Mathematical ${ }^{2}$ Iract:, vol. i. p. 6g. \&c.

The form of the triangle is as follows:


And it is constructed by adding always the latt two numbers of the next two preceding columns together, to give the next fucceeding column of numbers.

The firft vertical column confifts of units; the fecond, a feries of the natural numbers $1,2,3,4,5$, sec. ; the third, a ferits of triangular numbers $1,3,6,10,8 c$. the fourth, a feries of pyramidal numbers, \&c. The oblique diagonal rows, defcending from left to right, are alfo the fame as the vertical columns. And the numbers taken on the horizontal lines are the co.effi-
cients of the different powers of a binomial. Many Triangulas other properties and ufes of thefe numbers have been delivered by various authors, as may be feen in the Introduction to Hutton's Mathematical Tables, pages 7, $8,75,76,77,89$, fecond edition.

I'RIANGULAK Compasses, are fuch as have three legs or feet, by which any triangle, or three points, may be taken off at once. Thefe are very ufeful in the conftruction of maps, globes, \&c.

Triangular Numbers, are a kind of polygonal num. bers; being the fums of arithmetical progreffions, which have I for the common difference of their terms.

Thus, from thefe arithmeticals $12 \begin{array}{lllll} & 3 & 4 & 5 & 6,\end{array}$ are formed the triangular numbers 136101521 , or the third column of the arithmetical triangle abovementioned.

The fum of any number $n$ of the terms of the triangular numbers, $1,3,6,10, \& \mathrm{c}$. is $=$

$$
\frac{n^{3}}{6}+\frac{n^{2}}{2}+\frac{n}{3}, \text { or } \frac{n}{1} \times \frac{n+1}{2} \times \frac{n+2}{3}
$$

which is alfo equal to the number of fhot in a triangular pile of balls, the number of rows, or the number in each fide of the bafe, being $n$.

The fum of the reciprocals of the triangular feries, infinitely continued, is equal to 2 ; viz.

$$
1+\frac{8}{3}+\frac{x}{6}+\frac{1}{15}+\frac{1}{15}, \& c .=2
$$

For the rationale and management of thefe numbers, fee Malcolm's Arith. book 5. ch. 2. ; and Simpfon's Algeb. Cec. 15.

TRIESTE, a fmall, but ftrong and ancient feaport of Italy, in Ifria, on the gulph of Venice, with a bifhop's fee. It is beautifully fituated on the fide of a hill, about which the vineyards form a femicircle. 'The ftrects are narrow; but there is a large fquare, where they keep the annual fair. The harbour is fpacious, but not good ; becaufe it is open to the W. and S. W. winds. I'he inhabitants have a good trade in falt, oil, almonds, iron, \&xc. brought from Laubach; and they make good wines. The cathedral, and the late Jefuits church, are the two beft buildings. It belongs to the Houfe of Auftria, and is eight miles north of Caoo d'liftria, and 8 ว north-ealt of Venice. E. Long. I4. $4^{\circ}$ N Lat. 45.56

TRINITARIANS (Order of), was inftituted at Rome in the year 1198 , under the pontificate of Innocent III. the founders whereof were John de Matha and Felix de Valois. His Holinefs gave them permiffron to eftablifh this order for the deliverance of captives, who groaned under the tyranny of the infidels: he gave them as a habit a white gown, ornamented with a red and blue crofs. After the death of the two founder: Fope Ho::orious III. continued the order ; and their rule was approved by his fuceeffor Clement IV. in 1367 . At firft they were not permitted to eat flef; and when they travelled, were to ride only uoon affes. But their rule was corrected and mitigated by the bishop of Paris, and the abbots of St Victor and St Genevieve, who allowed them to eat any kind of food, and to ufe horfes. This order poffeffed, at one time, about 250 convents in 13 different provinces: fix of which were in France; namely, France, Normandy, Picardy, Champaine, Languedoc, and Provence; three in Spain, viz. New Caftile, Old Caftile, and Arragon; one in Italy, and one in Portugal. There was formerly the province of England, where this order had 43 houfes; that of Scotland, where it had nine; and that
that of Ireland, where it had 52 ; befides a great num. ber of monafteries in Saxony, Hungary, Bohemia, and other countries. The convent of Cerfioy in France was head of the order. It is impoffible for us to fay what is now the flate of the order, which can have no vifible exittence in France, and is probably fuppreffed even in Italy.

TRIONES, in aftronomy, a fort of conftellation, or affemblage of feven flars in the Urfa Major, popularly called Charles's Wain.-From the fepteen triones the north pole takes the denomination foptentrio.

TRIPOLI of Syria is, according to Mr Browne, by no means fo populous a place as we were led to reprefent it in the Encyclopedia. It is indeed, he fays, a city of fome extent, fituated about a mile and a half from the fea; but inftead of fixty, he eftimates its population at about fixteen thoufand. The air is rendered unwholefome by much ftagnant water. The town is placed on a flight elevation, the length confiderably exceeding the breadth. On the higheft ground, to the fouth, is the cafle, formerly poffefled by the earls of Tripoli ; it is large and itrong. Hence is vifible a part of mount Libanus, the fummit of which is covered with fnow. The gardens in the vicinity are rich in mulberry and other fruit trees. The city is well built, and moft of the ftreets are paved.

Here is found a number of Mohammedan merchants, fome of the richeft and moft refpectable in the empire. Silk is the chief article of commerce.

The miri, or fixed public revenue paid by Tripoli to Conftantinople, is only about L. 1000 Sterling, 20 purfes, a.year. Syria at prefent contains only four Pafhaliks, Damafcuas, Aleppo, Acré, and Tripoli; the laft of which is the fmalleft in territory and power. Our author obferved no antiquities at Tripoli; but the country round it is noted for producing the beft tobacco in Syria.

TRISECTION, the dividing a thing into three equal parts. The term is chiefly ufed in geometry, for the divifion of an angle into three equal parts. The trifection of an angle geometrically, is one of thofe great problems, whofe folution has been fo much fought for by mathematicians for 2000 years paft; being, in this refpect, on a footing with the famous quadrature of the circle, and the duplicature of the cube.

TRISTAN D'AcUNHA, the largeft of three iflands which were vifited by Lourd Macartney and his fuite on the 31 if of December 1792. The other two are diflinguifhed by the names of Inacceffible and Nightingale iflands. "Inacceffible (as Sir Erafmus Gower obferved) feems to deferve that name, being a high, bluff, as well as apparently barren plain, about nine miles in circumference, and has a very forbidding appearance. There is a high rock detached from-it at the fouth end. Its latitude is $37^{\circ} 19^{\prime}$ fouth; its longitude $11^{\circ} 50^{\prime}$ weft from Greenwich. This rude looking fpot may be feen at 12 or 14 leagues diftance. Nightingale ifland is irregular in its form, with a hollow in the middle, and is about feven or eight miles in circumference, with fmall rocky ifes at its fouthern extremity. It is defcribed as having anchorage on the north-eaff fide. Its lati tude is $37^{\circ} 29^{\prime}$ fouth ; and longitude $1^{\circ} 48^{\prime}$ weft fiom Greenwich. It may be feen at feven or eight leagues diftance. The targeft of thefe three iflands. which comparatively may be called the great infe of Triflan d' $A$. cunha, is very high, and may be feen at 25 leagues diflance. It feemis not to exceed in circumterence 15 ziles. A part of the ifland towards the north rifes
perpendicularly from the fea to a lueight apparently of a thoufand feet or more. A level then commences, forming what among feamen is terined table land, and extending towards the centre of the iflend; from whence a conical mountain rifes, nict unlike in appearance to the Peak of Teneriffe, as feen from the bay of Santa Cruz. Buats were fent to found and to examine the Thore for a convenient place to land and water. In confequence of their report, the Iion (a fuip of 64 guns) ftood in, and caine to anchor in the evening on the north fide, in 30 fathoms water, one mile from the fhore; the bottom black fard with nime; a fmall rock, off the weft point, bearing fouth weft by fouth, ju:t open with the weftern extremity of the inand; a cafcade, or fall of water, emptying iifelf upon the beach, fouth by eaft. All the flore, from the fouthern point to the eaftern extremity, appears to be clear of danger, and fteep, except the weft poiut, where there are breakers about two cables length, or near 500 yards from the fhore. The fhip, when anchored, was overfhadowed by the dark mafs of that portion of the ifland whofe fides feemed to rife, like a mofs grown wall, immediately from the ocean. On the right the elevation was lefs rapid, and between the rifing part and the Ica was left a flat, of fome extent, covered with fedge.grafs, interfperfed with fmall fhrubs, which, being perfectly green, looked from the fhip like a pleafant meadow, watered by a fleam that fell, afterwards, from its banks upon the beach. The officcrs, who went afhore, reported, that the cafks might be filled with frefh water by means of a long hofe, without moving them from the boats. The landing place thereabouts was alfo deferibed as being fafe, and fuperior to any other that had been examined. From the plain, the land rofe gradually towards the central mountain, in ridges covered with trees of a moderate fize and height. The coalt abounded with fea lions and feals, penguins and albatroffes. One of the latter was brought on board, his wings meafuring ten feet from tip to tip; but others are faid to have been found much larger. The coaft was covered with a broad fea-weed, feveral fathoms long, and defervedly by naturalifts termed gigantic fucus. Some good fifh was caught with the hook and line.
"The accident of a fudden guft, by which the anchor was in a few hours driven from its hold, and the fhip forced out to fea, prevented the ifland from being explored, as was intended. It is probable that had the Lion anchored in $2 \varepsilon$, inftead of 30 fathoms water, the anchor would have held firmly. Some advantage was obtained, however, from coming to this place. The juft pofition of thofe iflands, in refpect to their longitude, was afcertained, by the mean of feveral timepieces, to be about two degrees to the caftward of the place where they are laid down in charts, taken from obfervations made at a period when the inftruments for this purpole were lefs accurate than at prefent. The fpot where the Lion anchored was determined, by good meridional obfervations, and by accurate time-pitces, to be $37^{\circ} 6^{\prime}$ fouth latitude, and $11^{\circ} 43^{\prime}$ weft longitude from Greenwich. The compafs had fevin degrees of variation weftward from the pole. Fahrenheit's thermometer flood at 67 degrets. It was ukfful alfo to have afcertzined, that a fate anchorage, and plenty of good water, were to be fulund here. thete ifinds are certainly worthy of a noore partucular inquiry; for they are not 50 le.gucs from the geneaal thack if vefo

## T R O

Triftan fels bound to China, and to the coaft of Coromandel,
Il by the outer paffage. Til war time, an excellent ren. dezvous might be fettled there, for fhips that wanted no other fupply but that of water. When circuinftances require particular difpatch, it is practicable to come from England to Triftan d'Acunla without ftopping in the way, and afterwards to the end of the voyage to India or China."

Thefe inlands are feparated by a fpace of about fifteen hundred miles from any land to the weft ward or northward of them. They are fituated in that part of the fouthern hemifphere, in the neighbourhood of which a continent, to balance the quantity of land in the northern hemifphere, was once expected to be found, but where it has been fince difcovered that there is norie. Of what extent, however, the bafes of thefe inands are under the furface of the fea, cannot be afcertained; or whether they may, or may not,' be fufficient to make up for the defect of land appearing above water. Navigators report, that to the eaftward of them are other Imall iflands, differing not much in latitude, fuch as Gough and Alvarez inlands, and the Marfouines; as well as extenfive fhoals, lying due fouth of the mott foutherly point of Africa, and extending eafterly fiveral degrees. That all thefe together form a chain, fome of fubaqueous, and fome of fuperaqueous mountains, but all connected by their roots, is perhaps a conje cure lefs improbable, than that they fhould feparately arife, like tall columns, from the vaft abyfs.

A fettlement in 'Triftan d'Acunha is known to have been twice in the contemplation of adventurers, but not as yet to have been carried into execution. One had the project of rendering it a mart for the change of the light manufactures of Hindoltan, fuited to hot climes, for the filver of the Spanifh fettlements in South America; in the route between which places it is conveniently fituated. The other plan meant is only as a fuitable fpot for drying and preparing the furs of fea lions and feals, and for extracting the fpermaceti of the white or long-nofed whale, and the whale-bone and oil of the black fpecies. Whales of every kind were feen fporting about 'Triftan d'Acunha, particularly near the fetting of the fun; and the fword. fifh likewife made its appearance occafionally.-Sir George Staunton's Account of the Embafly to Chinal.

TRITON, in zoology, a genus belonging to the order of vermes mollufea. 'The body is oblong; the tongue is fpiral ; it has twelve tentacula, fix on cach fide, the hindmott ones having claws like a crab. There is but one fpecies, found in holes of rocks about the thore.

TROTIER (Mrs Catharine), was the daughter of Captain David 'T'iotter, a scotch gentleman. He was a commander in the royal navy in the reign of Charles II. and at his death left two dauglters, the youngelt of whom, Catharine, our celebrated author, was born in London, Auguft 1679. She gave early marks of her genius; and learned to write, and alfo made herielf miftrefs of the French language, by her own application and diligence, without any inftructor ; but fhe had fome affiftance in the fludy of the Latin grammar and logic, of which latter fhe drew up an abltact for her own ufe. The mof ferious and important fubjects, and efpecially religion, foon engaged her attention. But notwithitanding her education, her intimacy with feveral families of diftinction of the Romifh perfuation, expofed ber, while very young, to impreffions in favour
of that church; which not being removed by her con- Trotters ferences with fome eminent and learned menibers of the church of England, The embraced the Romifh communion, in which flic continued till the year 1707 . In 1695, the produced a tragedy called Agnes de Caflro, which was acted at the theatre-royal when the was only in her 17 th year. The reputation of this performance, and the verfes ${ }^{1}$ which fhe addrefled to Mr Congreve upon his Mourning Bride, in 1697, were probably the foundation of her acquaintance with that celebrated writer. Her fecond tragedy, Fatal Friend/his, was acted in 1698, at the new theatre in Lincoln's-InnFields. This tragedy met with great applaufe, and is ftill thought the moft perfect of her dramaric performances. Her dramatic talente not being confined to tragedy, the brought upon the ftage, in 1701, a comedy called Love at a lofs, or Mof votes carry it. In the fame year the gave the public her third tragedy, enttled the Unbappy Penitent, acted at the theatre royal in Drury-lane. But poetry and diamatic writing did not fo far engrofs the thoughts of cur author but that the fometimes turned them to fubjects of a very different nature ; and dittinguifhed herielf in an extraorditary manner in defence of Mr Locke's writings; a female metaphyfician being a rernarkable phenomenon in the republic of letters.

She returned to the exercife of her dramatic genius in 1703, and fixed upon the revolution of Sweden, under Guitavus Exickfon, for the fubject of a tragedy. This tragedy was acted, in 1706 , at the Queen's theatre in the Hay-Market. In 1707, her doubts concerning. the Romifh religion, which fhe had fo many years profeffed, having led her to a thorough examination of the grounds of it, by confulting the belt books on both. fides of the queftion, and adviling with men of the beit judgment, the refult was a conviction of the fallenefs of the pretenfions of that church, and a return to that. of England, to which fhe adhered during the remainder of her life. In 1708, the was married to the Rev. Mr Cockburn, then curate of St Dunllan's in Fleetftreet, but he afterwards obtained the living of LongHorfely, near Morpeth in Northumberland. IFe was a man of confiderable abilities; and, among feveral other thiugs, wrote an account of the Molaic Deluge, which was mueh approved by the learned.

Mrs Cockburn's remarks uppon fome writers iu the controverfy concerning the fommatiou of moral duty and moral obligation, wele introduced to the world, in Augult 1743. in the Literary Journal, intiled Tias Hifhry of the W'orks of the Learned. 'The itrength, clearnefs, and vivacity fhewa in ter remarks upon the: moft abitract and perplexed queftions, inmediately raifed the curiofity of all good judges about the concealed writer; and their admisation was greatly increafed. when her fex and advanced age were known. Dr Rutherforth's Effay on the Nature and Obligations of Virtue, publifhed in May 1744, foon engaged her thoughts; and notwithflanding the althmatic diforder which had feized her many years before, and now left her finall intervals of eafe, the applied herfelf to the confutation of that claborate difcourfe, and finifhed it with a fpirit, elegance, and perfpicuity equal, if not fuperior, to all her former writings.

The lofs of her hufband in 1748 , in the 71 ft year of his age, was a fevere flock to her; and the did not long furvive him, dying on the suth of May 1749, in her

## $T \quad R \quad U$

ampet 7 Iit year, after having long fupported a painful diforder with a refignation to the Divine will, which had been the governing principle of her whole life, and her fupport under the various trials of it.

Her works are collected into two large volumes 8vo, by Dr Birch; who has prefixed to them an account of her life and writings.

Trumpet Marine, or Marigny. This is a ftringed inftrument, invented in the 16 th century by an Italian artift Marino or Marigni, and called a trumpet, becaufe it takes only the notes of the trumpet, with all its omiffions and imperfections, and can therefore execute only frach metodies as are fitted for that inftrument. It is a very curious inftrument, though of fmall mufical powers, becaufe its mode of performance is totally unlike that of other ftringed inltruments; and it deferves our very particular attention, becaufe it lays onen the mechanifm of mufical founds more than any thing we are acquainted with; and we fhalt therefore make ufe of it in order to communicatc to our readers a philofo. phical theory of mufic, which we have already treated in detail as a liberal or fcientific art.
The trunipet marine is commonly made in the form of a long triangutar pyramid, $A B C 1$ ), fig. A. on which a fingle tring EFG is itrained over a bridge $F$ by means of the finger pin L . $\mathrm{Ac}_{\mathrm{c}}$ the nar row end are feveral frets 1, 2, 3, 4, 5, 2c. between E and K , which divide the tength EF into aliquot parts. Thus E 1 is $\frac{1}{T}{ }^{\frac{1}{2}}$ of EF, E 2 is $\frac{3}{3}^{\frac{1}{2}}$, and fo on. The bow is drawn lightly acrofs the cord at H , and the ftring is fopped by preffing it with the finger irmediately above the frets, but not fo hard as to make it touck the fret. When the open ffring is founded, it gives the fundamental note. If it be flopped, in the way now defcribed, at $\frac{1}{3} d$ of its length from $E$, it yields the 12 th of the fundamental ; if fiopped at $\frac{1}{2}$ th, it gives the double ofave ; if at $\frac{1}{5}$ th, it gives the 17 th major, \&cc. In hort, it always gives the note correfponding to the length of the patt between the fret and the nut $E$. The founds refemble thofe of a pipe, and are indeed the fame with thofe known by the name harnionics, and now executed by every performer on inftruments of the viol or viotin fpecies. But in order to increafe the noife, the bridge If is conftructed in a very particular manner. It does not reft on the found board of the inftrument through its whole breadth, but only at the corner $a$, where it is firmly fixed. The other extremity is detached about ${ }^{\frac{1}{3}-5}$ of an inch from the found board; and thus the bridge, being made to tuemble by the ftrong vibration of the thick cord, rattles on the found-board, or on a bit of ivory glued to it. 'I he ufual way in which this motion is procured, is to have another ftring paffing under the middle of the bridge in fuch a namner that, by ftraining it tight, we raife the corner $b$ from the found-board to the proper height. This contrivance increafes prodigioufly the noife of the inftrunent, and gives it fomewhat of the frart found of the trumpet, tho' very harfh and coarfe. But it merits the attention of every perfon who withes to know any thing of the philofophy of mufical founds, and we fhall therefore fay as much on the fubject as will conduce to this effect.

Galileo, as we have obferved in the article Temperament, Suppl. was the firt who difcovered the real connection between mathematics and mufic, by demonfrating that the times of the vibrations of elaftic corco
of the fame matter and fize, and Aretched by equal Trumpee weights, are proportional to the lengths of the ftringe. Marine. He inferred from this that the mufical pitch of the found produced by a ftretched cord depended folely on the frequency of the vibrations. Moreover, not being able to difcover any other circumfance in which thofe founds phyfically refembled each other, and reflecting that all founds are iminediately produced by agitations of air acting on the ear, he concluced that each vibration of the cord produced a fonorous pulfe in the air, and therefore that the picch of any found whatever depended on the frequancy of the aerial pulfes. In this way alone the found of a Aring, of a beil, of an organ pipe, and the bellow of a bull, may have the fame pitch. He could not, however, demonitrate this in any cale but the one above mentioned. But he was encouraged to hope that mathematicians would be able so demonItrate it in all cafes, by his having obfersed that the farme proportions obtained in organ pipes as in Atringh Atretched by equal weights. But it required a great progrefs in mechanical philofophy, fron1 the ftate in which Gatileo found it, before men conld \{peculate and reafon concerning the pulfes of air, and difeover any analogy between them and the vibrations of a itring. This analogy, however, was difcovered, and its demonAtration completed, as we Thall fee by and by. In the mean time, Gatileo's demontration of the vibrations of elaftic cords became the foundation of all mulical phitofophy. It muft be thoroughtly underitood before we can explain the performance of the trumpet marine.

Ihe demonflration of (jatileo is renurkable for that beautiful fimplicity and per [picuity which diftinguifh al! the writings of that great mechanician, and it is the etementary propofition in all mechanical treatifes of mufic. Few of them indeed contain any thing more; but it is extremely imperfect, and is jult only on the fuppofition that all the matter of the itring is collected at its middle point, and that the rett of it has elafticity without ineria. This did not fuit the accurate knowledge of the lait century, after Huyghens and Newton had given the world a tafte of what might be done by profecuting the Galilean mechanics. Whear a mulical cord has its middle point drawn alide, and it is itrained into the fhape of two ftrait lines, if it be let go, it will be obferved not to vibrate in this form. It may eafily be feen in the extremity of its excurfions, where it retts, before it return by its elafticitiy. The reafon is this (fee fig. B.) When the middle point C of the cord is drawn afide, and the cord has the form of two Atraight lives $\mathrm{AC}, \mathrm{CB}$, this point C , being pulted in the directions $\mathrm{CA}, \mathrm{CB}$, at once, is really accetcrate in the direction CD , whicl bifects the angle ACB ; and if it were then detached from the relt of the material cord, it would move in that direction. But any other point $f$ between $C$ and $B$ lias no accelerating force whatever acting on it. It is equally pulled in the directions $f \mathrm{C}$ and $f \mathrm{~B}$. The particle C therefore is ubliged to drag along with it the inert matter of the reft of the cord; and when it has come to any intermediate fituation $c$, the cord cannot have the form of two ftraight lines $\mathrm{A} c, c \mathrm{~B}$, with the particle $f$ fituated in ' $f$. This. particle will be left fomewhat behind, as in 4 , and the cord will have a curved form $\mathrm{A} \varphi \phi \mathrm{B}$; and in this form it will vibrate, going to the other fide, and affuming, not the rectilineal form $A D B$, but the curved form
A. B.

A/B. That every particle of the curve $A$ ec' $f B$ is now accelerated toward the 2xis AB is evident, becaufe every part is curved, and the whole is ftrained toward A and B , which tends to ftraighten every part of it. But in order that the whole may arrive at the axis in one moment, and conflitute a fraight line $A B$, it is evidently neceffary that the aceelerating force on every particle be as the diftance of the particle from that point of the axis at which it arrives. It is well known to the mathematician that the accelerating force by which any particle is urged towards a rectilineal pofition, withrefpect to the acljoining particles, is proportional to thecurvature. Our readers who are not familiar with fuch difcuffions, nay fee the truth of this fundamental propofition by confidering the whole of $\mathrm{A} c \mathrm{~B}$ as only a particle or minute portion of a curve, magnified by a microfcope. The force which ftrains the curve may be reprefented by cA or AE. Now it is well known (and is the foundation of Galileo's demonftration) that the ftraining force is to the force with which $c$ is accelerated in the direction $c \mathrm{E}$ as $\mathrm{A}_{c}$ to $c \mathrm{D}$, or as AE to $c \mathrm{D}$, or as AE to twice $c \mathrm{E}$. Now $c \mathrm{E}$ is the meafure of the curvature of $\mathrm{A} \subset \mathrm{B}$, being its deflection from a right line. Therefore swhen the fraining force is the fame all over the curve, the accelerating force, by which any portion of it tends to become fraight, is proportional to the curvature of that portion. And if $r$ be the radius of a circle paffing through $A, c$, and $B$, and coinciding with this element of a curve, it is plain that $c \mathrm{D}: c \mathrm{~A}=$ $c \mathrm{~A}: r$, or that the radius of curvature is to the element CA as the extending force to the accelerating force; and $c \mathrm{D}=\frac{c \mathrm{~A}^{2}}{r}$; and is inverfely as $r$, or directly as the -curvature.

Hence we fee the nature of that curve which a mufical chord muft have, in order that all its parts may arrive at the axis at once. The curvature at $c$ muft be to the curvature at $f$ as $\mathrm{E} c$ to $g f$. But this may not be enough. It is farther neceffary that when $c$ has got half way to $\mathbf{E}$, the curvature in the different point of the new curve into which the cord has now arranged itfelf, be alfo, in every point, proportional to the diftance from the axis. Now this ruill be the cafe if the extreme curve has been fuch. For, taking the cord in any other fucceffive fhape, the diftance which each point has gone in the fame moment mult be proportional to the force which impelled it ; therefore the remaining diftances of all the points from the axis will have the fame proportions as before. And the geometrical and evident confequence of this is, that the curvatures will alfo be in the fame proportion.

Therefore a cord that is once arranged in this form will always preferve it, and will vibrate like a cycloidal pendulum, performing its ofcillations in equal times, whether they be wide or narrow. Therefore fince this perfect ifochronifm of vibrations is all that is wanted for preferving the fame mufical pitch or tone, this cord will always have the fame note.
This propofition was the difcovery of Dr Bronke publifhed in his celebrated work Methodus Incremento- rum. 'The inveftigation, however, and the demonftra tion in that work, are fo obfcure and fo tedious that ferw had patience to perufe them. It was more elegantly treated afterwards by the Bernoullis and others. The

## 101 T R U

curve got the name of the Taylorean curve; and is con- Trumpet fidered by many eminent mathematicians as a truchoid, viz. the curve defcribed by a point in the nave or fpoke of a wheel while the wheel rolls along a ttraight line. But this is a miftake, althongh it is allied to the trochoid in the fame manner that the figure of fines is allied to the cycloid. Its phyfical property intitles it to the name of the harmonical curpe. As this curve is not only the foundation of all our knowledge of the vibration of elattic cords, but alfo furnifhes an equation which will lead the mathematician through the whole labyrinth of aereal undulations, and be of ufe on many other occafions; and as the firft mathematicians have, through inattention, or through enmity to Dr Taylor, affected to confider it as the trochoid already well known to themfelves - we fhall give a fhort account of its conftruction and chief properties, fimplified from the elegant defcription given by Dr Smith in his IIarmonics.

Let SDTV, QERP (fig. C.), be circles defcribed round the centre C. Draw the diameters QCR, ECP, cutting each other at right angles. From any point G in the exterior circle draw the radius GC, cutting the interior circle in F , draw KHFI parallel to $(\mathrm{QCK}$, and make HI, HK, each equal to the arch EG. Let this be done for every point of the quadrantal arch EGR. The points I, K, are in the harmonic curve; that is, the curve AKDIB pafing through the points K and 1 , determined by this conitruction, has its curvature in every point K proportional to the ditance KN from the bafe $A B$.

To demonflrate this, draw FL perpendicular to the axis, and join EL. Take another point $g$ in the outer circle indefinitely near to G. Draw $g c$, cutting the inner circle in $f$, and $f b$ and $f l$ perpendicular to DC , CT , and join E \%. Then fuppofe two lines $\mathrm{K} \mathrm{m}^{\prime}, \mathrm{K} \mathrm{m}^{\prime}$ perpendicular to the curve in K and $k$. They murt meet in $m$, the centre of the equicurve circle. Draw KN $n^{\prime}$ per pendicular to the bafe, and $m^{\prime} n^{\prime}$ parallel to it, and join $k n$ Laftly, draw XLı $x$ perpendicular to EL.

It is plain that $k \mathrm{O}$, the difference of HK and $b k$, is equal to $\mathrm{G} g$, the difference of GE and $g \mathrm{E}$, and that KO is equal to Fr , and $\mathrm{L} /$ to $r f$. Alfo, becaufe $E L X$ is a right angle, $E X=\frac{E L^{3}}{E C}$.

We have $\mathrm{F} r: \mathrm{F} f=\mathrm{CL}: \mathrm{CF},=\mathrm{CL}: \mathrm{CD}$. $\mathrm{Ff}: \mathrm{Gg}=\mathrm{CL}: \mathrm{CF}, \mathrm{CD}: \mathrm{CE}$.
Therefore Fr: $\mathrm{G} g$, or $\mathrm{KO}: \mathrm{O} k=\mathrm{CL}: \mathrm{CE}$.
The triangles ECL and $k \mathrm{OK}$ are therefore fimilar, as are alio $k \mathrm{OK}$ and $\mathrm{K} n m$, and confequently ECL and $\mathrm{K} n m$; and becaure EC is paratlel to $\mathrm{K} n, \mathrm{EL}$ is parallel to $\mathrm{K} m$. For the fame reafon $k m$ is parallel to $\mathrm{E} /$, and the triangles $\mathrm{E} / x$ and $m \mathrm{~K} k$ are finmiar, and

$$
\mathrm{L} x: \mathrm{K} k=\mathrm{LE}: \mathrm{K} m,
$$

and $\mathrm{L} x: \mathrm{K} k=\mathrm{EC}: \mathrm{K} n$. But farther, $\mathrm{L} x: \mathrm{L} l=\mathrm{CE}: \mathrm{C} L$ L l: $\mathrm{F} f=\mathrm{KN}: \mathrm{CD}$, being $=\mathrm{FL}: \mathrm{FC}$ $\mathrm{F} f: \mathrm{G} g=\mathrm{CD}: \mathrm{CE}$, being $=\mathrm{F} f: k \mathrm{O}$ $\mathrm{G} g: \mathrm{K} k=\mathrm{CE}: \mathrm{CL}$, bcing $=\mathrm{KO}: \mathrm{K} k$.
Therefore $\mathrm{L} x: \mathrm{K} k=\mathrm{KN} \times \mathrm{CE}: \mathrm{EL}^{2},=\mathrm{KN}: \mathrm{EX}$.
Therefore $\mathrm{KN}: E X=L E: \mathrm{K} n$, and $\mathrm{K} m=\frac{\mathrm{EX} \cdot \mathrm{LE}^{\prime}}{\mathrm{KN}}$
and $\mathrm{KN}: \mathrm{EX}=\mathrm{CE}: \mathrm{K} n$, and $\mathrm{K} n=\frac{\mathrm{EX} \cdot \mathrm{E}}{\mathrm{KN}}$.

## $T R U$

In the very narrow vibrations of mufical cords, $C D$ is exceedingly fmall in compariforn with CE , fo that EX•EL, or EXFCE, may, without fenfible error, be taken for $\mathrm{CE}^{2}$, and then we obtain $\mathrm{K} m$ or $\mathrm{K} n$ (which bardly differ) $=\frac{\mathrm{CE}^{2}}{\mathrm{KN}}$, and therefore the curvature is proportional to KN. The fmall deviation from this ratio would feem to fhew that this confruction does not give the harmonic, curve with accuracy. But it is not fo. For it will be found that although the curvature is not as KN , it is ftill proportional to the fpace which any particle K muft really defcribé in order to arrive at the axis. Thefe paths are lines whofe curvatures diminifh as they approach to DC .

We fee, $1 \Omega$, that the hafe ACB of the curve is equal to the fernicircular arch QER.
$2 d$, Alfo that the tangent KZ in any point K is perpendicular to EL.
3d. We learn that the curvature at A and B is nothing, for in thefe two poir.ts KN is nothing.
$4 t h$, The radius of curvature at $D$ is precifely $=\frac{C E^{3}}{C D}$.
Therefore, as the ftring approaches the axis, and CD diminifhes, the curvature diminifhes in the fame proportion. The vibrations therefore are perforined like thofe of a pendulum in a cycloid, and are ifochronous, whether wide or narrow, and therefore the mufical pitch is conftant.
This is not frictly true, becaufe in the wide vibrations the extenfion or extending force is fomewhat greater. Hence it is that a ftring when violently twanged found 3 a little fharper at the beginning. Dr Long made a harpfichord whofe ftrings were ftretched by weights, by which this imperfection was removed.

It is proper to exhibit the curvature at D in terms of the length AB , and of the greateft excurfion $c \mathrm{D}$. Therefore let $c$ be the circumference of a circle whofe diameter is 1 . Let AB the length of the cord be $=\mathrm{L}$, and let CD the $\frac{1}{\frac{1}{2}}$ breadth of the vibration be B .
We had a little ago $\mathrm{D} m=\frac{\mathrm{CE}^{2}}{\mathrm{CD}}$, but $c: 1=\mathrm{AB}$ : $C E$, and $C E=\frac{A B}{c}$, and $c E^{2}=\frac{A B c}{c^{2}}$. Therefore $D m$ $=\frac{A B^{2}}{c^{2} \times C D},=\frac{L^{2}}{9,87 \mathrm{CD}}$ nearly.
We can now tell the number of vibrations made in a fecond by a fring. This we obtai:1 by comparing its motion, when impelled by the accelerating force which acts on it, with its motion when acted on by its weight only. 'Therefore let L be the lengtir of a ftring, and W its weight, and let $E$ be the training weight, or extending torce. Let $f$ be the force which accelerates the particle $\mathrm{D} d$ of the cord, and $w$ the weight of that particle, while $\bar{w}$ is the weight of the whole cord. Let $\approx$ be the fpace which the particle $\mathrm{D} d$ would defcribe luring the time of one vibration by the miform action of the force $f$, and let $S$ be the fpace which it would defcribe in the fame time by its weight $w$ alone. Then (Dynamics, Suppl. n? ro3. cor. 6 ) the time in which $f$ would impel the particle $\mathrm{D} d$ along $\frac{1}{2} \mathrm{DC}$, is to the time of one vibration as $\mathrm{I}: c$. And $\frac{1}{2} \mathrm{DC}$ is to $z$ as the fquare of the time of defcribing $\frac{T}{\tau} D C$, is to the fquare of the time of defcribing $z$; that is, $1: c^{2}=$ $\frac{2}{2} \mathrm{DC}: 2 z$, and $c^{2} \cdot \mathrm{DC}=2 z$ 。 defribes a fpace S , which is to the length of the cord as its weighr is to twice the extending force.
Now let $g$ be the fpace through which a heavy body falls in one fecond, and let the time of a vibration (eftimated in parts of a fecond) be T. We have

$$
A B: S=2 E: W
$$

$$
S: g=T_{2}: I^{2}
$$

Therefore AB: $g=2 \mathrm{E} \cdot \mathrm{T}^{2}: \mathrm{W}$

$$
\text { And } A B \times W=T^{2} \times 2 E \times g
$$

Therefore $T_{2}=\frac{A B \times W}{2 g \cdot E}$, and $T=\sqrt{\frac{A \bar{B} \times W}{2 g \cdot E}}$.
Let $n$ be the number of vibrations made in a fecond,

$$
n=\frac{1}{\mathrm{~T}},=\sqrt{\frac{2 g \cdot \mathrm{E}}{\mathrm{AB} \cdot \mathrm{~W}}}=\sqrt{\frac{2 g \mathrm{E}}{\mathrm{~L} \cdot \mathrm{~W}} .}
$$

If the length of the cord be meafured in feet, 2 g is very nearly 32 . If in inches, $2 g$ is 386 , more nearly. Therefore $n=\sqrt{\frac{3^{2 E}}{L \cdot W}}$ or $\sqrt{\frac{3^{86 \mathrm{E}}}{\mathrm{L} \cdot \mathrm{W}}}$. This may eafily be compared with obfervation. Dr Smith hung a weight of 7 pounds, or 49,000 grains, on a brafs wire fufpended from a finger pin, and fhortened it till it was in perfect unifon with the double oetave below the opet fring D of a violin. In this fate the wire was 35,55 inchts long, and it weighed $3^{1}$ grains.

$$
\text { Now } \sqrt{\frac{38+\times 49000}{35,55 \times 31}}=130,7=\text { \%. This wire. }
$$

therefore, ought to make 130, $\frac{1}{}$ vibrations in a fecond. Dr Smith proceeded to afcertain the number of aereal pulfes made by this found, availing himfelf of the theory: of the beats of tempered confonances invented by himfelf. On his fine chamber organ he turied upwards the perfect tifths DA, Ar,eb, and then tuned downward the perfect 6thed. Thuis he obtained an netave to D), which was too fharp hy a comma, and he found that it beat 65 times in 20 feconds. Therefore the number of vibrations was $\frac{65}{20} 8 \mathrm{f}$, or 263,25 . Thefe were complete pulfes or motions from D to V and back again, and therefore contained $526 \frac{1}{2}$ fuch vibrations as we have now been conlidering. The double octave below flould make the of this, or 131,6 , which is not a complete vibration more than the above theory requires: more accurate coincidence is needlefs.
This theory is therefore very completely eftablif.ed, and it may be confidered as one of the fineft mechanical problems which has been folved in this century. We mention it with the greatcr minutenefs, becaule the merit of $\mathrm{Dr}_{\mathrm{r}}$ Taylor is not fufficiently attended to. Mr Ramean, and the other great theoritls in mufic, make no mention of him ; and fuch as have occafion to fprak: of the abfolute number of vibrations made by any inus. fical note, always quote Mr Sauveur of the Fiench aca-

## T R U

J'rumpet deniy. This gentleman has written fome very excellent ton in his Principia often quotes liis authority. He
has given the actual determination of the number of yibrations of the note C , obtained in a manner fimilar to that practifed by Dr Smith on his chamber organ, and which agrees extremely well with that meafure. But Mr Sauverr has alfo given a mechanical inveftigation of the problem, which gives the fame number of vibrations that he obferved. We prefume that Rameau and others took the demonftration for good; and thus Mr Sauveur paffes on the Continent for the difcoverer of this theorem. But it was not publifhed till 1716 , though read in 1713 ; whereas Dr Taylor's demonftration was read to the Royal Society in May 1714. But this demonftration of Mr Sauveur is a mere paralogifm, where errors compenfate errors; and the affumption on which he proceeds is quite gratuitous, and has nothing to do with the fubject. Yet John Bernoulli, from enmity to T'aylor and the Englifh mathematicizns, takes not the leaft notice of this fophifticated demonitration, accom nodated to the experiment, and fo devoid of any pretenfions to argument that this fevere critic could not but fee its falfity.

Sauveur was one of the firft who ohferved diftinetly that remarkable fact which Mr Ramean made the foundation of his nunfical theory, viz. that a full mufical note is accompanied by its octave, its twelfth, and its feventeenth major. It had been cafually obferved before, ty Marfenmins, by Perrault, and others; but Sauveur tells diftinctly how to make the obfervation, and affirms it to be true in all deep notes. Rameau afferts it to be univerfally and neceffarily true in all notes, and the foundation of all mufical pleafure.

It had been difcovered before this time, that not only a full note caufed its unifon to refound, but alfo that a 12 th, being founded near any open Aring, the fring refounded to this 12 th. It does the fame to a 15 th , a ${ }_{17}$ th major, a 22 d , \&c.

Dr Wallis added a very curious circumflance to this obfervation. Two of his pupils, Mr Noble and Mr Pigott, in 167.3 , amufing themfelves with thefe refonnances, obferved, that if a fmall bit of paper be laid on the ffring of a violin which is made to refound to its unifon, the paper is thrown off: a proof that the ftring refounded by really vibrating, and that it is thrown into thefe vibrations by the pulfes of the air produced by the other ftring. In like manner the paper is thrown off when the flring refounds to its oc. tave. But the young gentlemen obferved, that when the paper was laid on the middle point of the fring, it remained without agitation, although the flring till refounded. They found the fame thing when they made the fring refound to its r 2 th : papers laid on the two points of divition tay ftill, but were thrown off when laid on any other place. In fhort, they found it a general rule, that papers laid on any points of divition correfponding to the note which was refounded, were not agitated.

Dr Wallis (the greateft theorift in mufic of the laft century) juntly concluded that thefe points of the refounding ftring were at reft, and that the intermediate parts were vibrating, and producing the notes corresponding to their lengths.

From this Mr Sauveur, with great propriety, deduced
$712] \quad \mathrm{T} \quad \mathrm{R}$
the theory of the performance of the trumpet marine, Trumper the vielle, the clavichord, and fome other intruments.

When the ftring of the trumpet marine is gently ftopped at $\frac{1}{2}$, and the bow drawn lightly acrofs it at II (fig. A), the full vibration at the finger is flopped; but the flring is thrown into vibrations of fome kind, which will either be deftroyed or may go on. It is of importance to fee what circumftance will permit their continuance.

Suppofe an elaftic cord put into the fituation AIBCDE (fig. D), fuch that $A B, B C, C D, D E$, are all equal, and that BCD is a ftraight line. Let the point C be made faft, and the two points 13 and D be let go at once. It is evident that the two parts will immediately vibrate in two harmonical curves $\mathrm{A} b \mathrm{C}$ and CDE , which will change to ABC and $\mathrm{C} d \mathrm{E}$, and fo on alternately. It is alfo evident that if a line FCG be drawn touching the curve $A B C$, it will alfo touch the curve CDE; and the line which touches the curve A 6 C in C, will alfo touch the curve C $d$ E. In every inflant the two halves of the cord will be curves which have a common taggent in the point $C$. The undonbted confequence of this is, that the point C will not be affec:ed by thefe vibrations, and its fixure may be taken away. The cord will contime to vibrate, and will give the found of the octave to its fundamental note.

The condition, then, which nuft be implemented, in order that a firing may refound io its octave, or take the found of its octave, is fimply this, that its two parts may vibrate equally in oppolite directions. This is evidently poffible; and when the bow is drawn acrofe the ftring of the trumpet marine at H , and irregular vibrations are produced in the whole fring, thofe which happen to be in one direction ou both fides of the middle point, where it is gently ftopped by the finger, will deftroy each other, and the confoiring ones will be inflantly produced, and then every fucceeding action of the bow will increafe them.

The fame thing muft happen if a ftring is gently Aopped at one-third of its length ; for there will be the farme equilibium of forces at the two points of divifion, fo that the fixures of thefe points may be removed, and the itring will vibrate in three parts, founding the 12 th of the fundamental.

We may obferve, by the way, that if the bow be drawn acrofs the ftring at one of the points of divifion, correfponding to the ftopping at the other end of the fring, it will hardly give any ditinet note. It rattles, and is intolerably larfh. The reafon is plain: The bow takes fome hold of the point C , and drags it along with it. The enrd on each fide of C is left behind, and therefore the two curves cannot have a common tangent at C. The vibrations into which it is thus jogged by the bo:v deftroy each other.

We now fee why the trumpet marine will not found every note. It will found none but fuch as correfpond to a divifion of the fring into a number of equal parts, and its note will be in unifon with a ftring equal to one of thofe parts. Therefore it will frrf of all fonnd the fundamental, by its whole length;
2. Its octave, correfponding to
3. The 12 thl,
4. The 15 th, or double octave,
5. The 17th,
6. The 19th,
${ }_{\frac{7}{7}}$ its length
$\frac{1}{2}$
$\frac{1}{3}$
$\frac{3}{3}$
$\frac{1}{5}$
$\frac{1}{3}$
$\frac{3}{8}$
$\because$ The 2 Ih, which is not in the diso tonic [cale of our mufie, - ${ }^{3}$ its length.
8. The triple oftave, or 22 d , 9. The 233 , or 2 L in the fale of the triple oc:ave
10. The 24 th, or 3 d in this fcale, $\frac{8}{5}$
$\frac{5}{5}$
3
:1. The 2 ith, a falfe 4 th of this fcale, $\mathrm{i}^{\mathrm{t}}$
2. The 2 sth, a perfeet $;$ th of this fcale, $x^{2}$
13. The 27 th, a falfe Gith of ditto, $\frac{1}{3}^{2}=\frac{3}{8}$ or $\frac{3}{4}^{3}$,
14. The 28 th, a falfe 7 th minor,
15. The 2 Sth, a perfect 7 th major,
15. The quadruple octave,

Thus we fee that this inftrument will not execute all mufic, and indeed wial not complete any octave, hecaufe it will neither give a perfeet 4 th nor 6 th. We fhall prefently fee that thefe are the very defects of the trumpet.

This fingular ftringed inftrument has been deferibed in this detail, chiefy with the view of preparing us for .underfanding the real trumpet. The Vielze, Ss. FOYARDE, or HURDYGURDY, performs in the fane manner. While the wheel rubs one part of the ftring like a bow, the keys gently prefs the frings, in points of aliquot divifion, and produce the harmonic notes.

It is to prevent finch notes that the part of liarpfichord wires, lying between the bridge and the pins, are wrapped round with lift. Thefe notes would frequentij diturb the mufic.

Lafly on this head, the Rolian harp derives its vaft variety of fine founds from this mode of vibration. Seldom do the cords perform their fundamental or himple vibrations. They are generally founding fome of the tarmonies of their fundamentals, and give us all this varitty from itrings tuned in unifon.

TRLMFEq, Mufical, is a wind inftrument which founds by prefing the cloied lips to the fmall end, and forcing the wind through a very narrow aperture between the lips. This is one of the moft ancient of mufical inftruments, and has appeared in all nations in a vaft variety of forms. The conch of the favage, the horn of the cowtierd and of the pottman, the bugle born, the lituus and suba of the Romans, the military trumpet, and the trombone, the cor de chafe or French hom-are all initruments winded in the fame manner, producing their variety of tones by varying the manner and force of blowing. 'The ferpent is another inftrument of the fame kind, but producing part of its notes by means of hules in the fides.

Althugh the trampet is the fimntef of all mufical mitrumente, being nothing but a long tube, narrow at one end and wide at the ocher, it is the moit difficult so be explained. Lo underitand how fonorous and recrulated undthations can teexcited in a lube without any previous vibration of reeds to form the waves at the entry, or ef hules to vary the noted, requires a ve:y nice atiention to the mechanifin of acreal undulafons, and we are by 120 means centain that we have as yet hit on the inve explanation. We are certain, however, that these acecal undulations do not difer from thofe productd by the vibration of ftrings; for they make firings refound in the fame mariner as vibrating cords do. Galileo, however, did not know this argurent for his afiertion that the mafical putch of a pipe, like thit of a cord, depended on the frequency alone of the atreal undulations; but he thought it higlily probable, from his obforvations on the flruczurc of organs,
that the notes of pipea were related to their lengthe in the fame manner as thofe of wires, and he exprefaly makes this remark. Newton, having dircovered that found moved at the sate of about geo fit per fecond, ubferved that, according to the experiments of Mr Satuveur, the length of an open pipe is half the length of an aereai pulfe. This he could catily afcertain by diviling the foace deferibed by found in a fecond by the nourber of pulfes.

Daniel Bernoulli, the celebrated promoter of the Nextomian mecharies, difeovered, o: at leaf was the firf who attentively marked, fome other circumparces of refemblance between the undulations of the air in pipes and the vibrations of wires. A.s a wire can be made, not only to vibrate in its full length, foanding its fundamental note, but can alfo be made ti) fibblivide itfelf, and vibrate like a portion of the whole, with points of reft between the vibrating portions, when it gives one of its harmonic neres; fo a pipe cannot only hove fuch undulations of air ging on within it as are competent to the produetion of its fundamental note, but alfo thore which produce one of its harmonic notes. Every one knows that when we force a flute, by blowing too ftrongly, it quits its proper note, and gives the oftave above. Forcing ftill more, produces the: 2 th. Then we can produce the double octave or 15 th, and the 1 th major, \&ec. In €ort, by attending to feveral circumftances in the manner of blowing, all the notes may be produced from one very long pipe that we produce from the trampet marine, an -1 in frecitcly the fame order, and with the fame oniffions and imperfections. 'I his alone is atmont equivalent to a proof that the mechanifm of the undulations of air in a pipe are analogous to that of the vibrations of an elaltic cord. Having with io great fucecis in veftigated the mechanifn of the partial vibrations of wires, and alfo another kind of vibrations which we thall mention afterwarls, incomparably move curious and nore important in the phitofonhy of mutical founds, Mr Bernoulli undertook the inveatigation of thofe more myfteriou: motions of air which are produced in pipes: and in a very ingenious differtation, publitned in the Memoirs of the Academy of Paris for 1762 , \&ic. he gives a theory of them, which tallice in a wonderfu? manner with the chief phenomena which we obferve in the wind inftruments of the flute and trumpet kind. We are not, however, fo weil fatisfied with the trut's of his afumptions refpecting the ttate of the pir, and the precife form of the undulations which he affinn to it ; but we fee that, notwitlitanding a probatility of his being mittaken in thefe circunattances (it is with great deference that we prefume to fuppofe him miftaken), the chief propulitions a:c till true; and that the chan. ges from note to atote muit be plodaced in the orders tho' perhaps not in the precite manner, affigned by him.
It is by no means eafy to conccive, with cicarnefs, the way in which mufical undulations a:e excited in the various kinds of trumpets. Many who have reputation as mechanicians, fuppofe that it is by means of vibra. tions of the lips, in the fame manner as in thre hautboy, clarionete, and reed pipes of the or the where the air, fay they, is put in motion by the trembling reed. But this explanation is wrong in all iu parts; cven in the reed pipes of an urgan, the air is noi put in mution by t.e reeds They ate indeed the oca, fonis of 11 s mus fical undulawon, but they do nut inniaciataly $\mathrm{im}_{f^{\text {sid }} \text { ! it }}$

M1..7al Trumpe.

## T R U

Mufical into thofe waves. This method (and indeed all me. Trumpet thods but the vibrations of wires, bells, \&*c.) of producing found is little underfood, though it is highly worthy of notice, being the origin of animal voice, and becaufe a knowledge of it would enable the artilts to entertain us with founds hitherto unknown, and thus add confiderably to this gift of our Bountiful Father, who has fhewn, in the ftructure of the larynx of the human fpecies, that he intended that we fhonld enjoy the pleafures of mufic as a laborum dulce lenimen. He has there placed a micrometer apparatus, by which. after the other mutcles have done their part in bringing the glottis nearly to the tenfion which the intended note requires, we can eafily, and inftantly, adjuft it with the ntmot nicety.

We truft, therefore, that our readers will indulge us while we give a very curfory view of the manner in which the tremulous motion of the glottis, or of a reed in an organ pipe, produces the fonorous undulations with a conftant or uniform frequency, fo as to yield a mufical note.

If we blow through a fmall pipe or quill, we produce only a whizzing or hiffing noife. If, in blowing, we fhut the entry with our tongue, we hear fomething like a folid blow or tap, and it is accompanied with fome faint perception of a mufical pitch, jult as when we tap with the finger on one of the holes of a flute when all the reft are fhut. We are then fenfible of a difference of pitch according to the length of the pipe; a longer pipe or quill giving a graver found. Here, then, is like the beginning of a fonorous undulation. Let us confider the ttate of the air in the pipe: It was filled by a column of air, which was moving forward, and would have been fucceeded by other air in the fame flate. This air was therefore nearly in its ftate of narural denfity. When the entiy is fuddenly fopped by the tongue, the included air, already in motion, conti nues its motion. This it cannot do without growing rarer, and then it is no longer a balance for the preffure of the atmofphere. It is therefore retarded in its ino. tion, totally flopped (being in a rarefied ftate), and is then preffed back again. It comes back with an accelerated motion, and recovers its matural denfity, while the flate of rarefaction goes forward through the open air like any other aereal pulle. Its motions are foinewhat, but not altogether, like that of a firiral wire, which las been in like manner moving unitormly along the pipe, and has been nopped by fomething catching hold of its hindermof extremity. This fpring, when thus catched behind, ftretches itfelf a little, then contracts beyond its natural Itate, anid then expands again, suivering feveral times. It can be demontrated that the column of air will make but one quiver. Suppofe this accomplifhed in the hundredth part of a fecond, and that at that inflant the tongue is removed for the hundredth part of a fecond, and again applied to the entry of the pipe. It is plain that this will produce fuch another pulfe, which will join to the forner one, and force it out into the air, and the two pulfes together will be like two pulfes produced by the vibration. of a cord. If, inftead of the tongue, we fuppofe the flat plate of an organ-reed to be thus alternately applied to the hole and removed, at the exact moments that the renewals of air are wanted, it is plain that we fhall have fonorous undulations of uniform frequency, and therefore a mufical note. This is the way in which reeds pro
duce their effect, not by impelling the air into alternate ftates of motion to and fro, and alternate ftrata of rarefied and condenfed air, but by giving them time to acquire this flate by the combination of the air's elafticity with its progreflive motion.

The adjultment of the fucceeding puff of air to the pulfe which precedes $i t$, fo that they may make one fmooth and regular pulfe, is more exact than we have yet remarked; for the itoppage of the hole not only occafions a rarefaction before it, but by checking the air which was juft going to enter, makes a condenfation bebind the door (fo to fpeak); fo that, when the paffage is again opened, the two parcels of air are fitted for fupporting each other, and forming one pulfe.
Suppoif, in the next place, that the reed, inftead of completely fhutting the hole each time, only half fhuts it. The fame thing muft ftill happen, although not in fo remarkable a degree. When the paffage is contract. ed, the fupply is diminifted, and the ail now in the pipe mult rarefy, by advancing with its former velocity. It mult therefore retard; by retarding, regain its former denfity ; and the air, not yet got into the pipe, mult condenfe, \&cc. And if the palfagre be again opened or enlarged in the proper time, we fhall have a connplete pulfe of condenfed and rarefied air ; and this nuit be accompanied by the begiming of a mulical note, which may be continned like the former.

This will be a fofter or more mellow note than the other; for the condenfed and rarefied air will not be fo fuddenly clanged in their denfities. The difference wilt be like the difference of the notes produced by drawing a quill along the teeth of a comb, and that produced by the equally rapid vibrations of a wire. For let it be remarked here, that mufical notes are by no means confined, as theoritts cominonly fuppofe, to the regular cy cloidal agitations of zir, fuch as are produced by the vibrations of an elaltic cord ; but that any crack, tinap, or noife whatever, when repeated with fufficient frequency, becomes i$i \rho f 0$ fato a mufical found, of which we cantell the pitch or note. What can be lefa mulical than the folitary cracks or fuaps made by a ftiff door when very flowly opened? 1)o this brikkly, and the creak. clianges to a chirp, of which we can tell the note. The founds will be harth or frooth, according as the fnaps of which they are compoled are abrupt or gradual.
'ihis diftinction of founds is mott fatisfa ? orily confirmed by exper iment. If the tongue of the organ reed is quite flat, and if, in its vibrations, it apply iffelf to the whole margin of the hole at once, fo as completely to Shut it (as is the cafe in the oldfafhioned regal ftop of the organ), the note is clear, fnart, and harlh or hard : but if the lips of the reed are curved, or the tongue properly bent backward, fo that it applies itfelf to the edges of the hole gradatim, and never completely fhuts the paffage, the note may have any degree of inellow fweetnefs. This remark is worth the attention of the inftrument-makers or organ builders, and enables them to vary the voice of the organ at pleafure. We only mention it here as introductory to the explanation of the founds of the trumpet.

We truft that the reader now perceives how the air, proceeding along a pipe, may be put in the ftate of alternate flrata of condenfed and rarefied air, the particles, in the mean time, proceeding along the pipe with a very moderate velocity; while the fate of undulation is propagated at the rate of eleven or twelve hundred

2hurical feet in a fecond; juft as we may fometimes fee a flream Trumper. of water gliding gently down a canal, whilc a wave runs along its furface with much greater rapidity.

It will greatly affit the imagination, if we compare thefe aërcal undulations with the undulations of water in an open canal. While the water is flowing fmooth ly along, fuppofe a fluice to be thruft up from the bottom quite to the furface, or beyond it. This will immediately caufe a depreffion on the lower fide of the fluice, by the water's going along the canal, and a heaping up of the water on the other fide. By properly timing the motior of this nuice up and down, we can produce a feries of connected waves. If the fluice be not pufhed up to the furface but only one.half way, there will be the fame fucceffion of waves, but much fmoother, \&cc. \&c.

It is in this ftate, though not by fuch means, that the air is contained in a founding trumpct. It is not brought into this flate by any tremor of the lips. The trumpeter fometines feels fuch a tremor ; but whenever he feels it, he can no longer found his note. His 1 lps are painfully tickled, and he muft change his manner of winding.

When blowing with great delicacy and care, the deepeft notes of a Frencl horn, or trombone, we fometimes can feel the undulations of the air ia the pipe diffinctly fluttering and beating againft the lips; and it is difficult to hinder the lips from being affected by it : but we feel plainly that it is not the lips which are fluttering, but the air before them. We feel a curious inflance of this when we attenipt to whifle in concert. If our accompanier intonates with a certain degree of incorrectnefs, we feel fomecthing at our own lips which makes it impofitible to utter the intended note. This happens very frequently to the perfon who is whiftling the upper note of a greater third. In like manner, the undulations in a pipe react on the reed, and check its vibrations. For if the dimenfions of a pipe are fuch that the undulations formed by the reed cannot be kept up in the pipe, or do not fuit the length of the pipe, the recd will either nor play at all, or will vibrate only in farts. This is finely illuftrated by a beautiful and inftructive experiment. Take a fmall reed of the vox bumana fop of an organ, and fet it in a glafs foot, adapted to the windorox of the organ. Inttead of the com. men pipe above it, fix on it the fliding tube of a imall telefcope. When all the joints are thruft down, touch the key, and look attentively to the play of the reed. While it is founding, draw out the joints, making the pipe continually longer. We fhall obferve the reed thrown into frange fite of quivering, and fometimes guite motionlefs, and then thrown into wide fonorous vibrations, according as the maintainable pulfe is commenfurate or not with the vibrations of the reed. This plainly fhews that the air is not impelled into its mudulations by the reed, but that the reed accommodates itfelf to the undulations in the pipe.

We acknowledge that we cannot explain with diftinctncfs in what manner the air in a trumpet is firlt put into mufical undulations. We fee that it is orily in very long and flender tubes that this can be done. In fhort tubes, of confiderable diameter, like the cowherd's horn, we obtain only one or two very indiftinct notes, of which it is difficult to name the pitch; and this requires great force of blaft; whereas, to bring
out the deep notes of the French horn, a very gentle Mufical and well regulated blaft is neceffary. The form of the lips, combined with the force of the blaft, form all the notes. But this is in a way that cannot be taught by any defcription. The performer learns it by habit, and fouls that the inftrumenc leaps into its note without him, when he gradually varies his blaft, and continues founding the fame note; although he, in the mean time, makes fome fmall change is his manner of blowing. 'I'his is owing to what Mir Bernoulli obferved The tube is fuited only to fuch pulfes, and can only maintain fuch pulfes as correfpond to aliquot parts of its length; and when the cmbouchure is very nearly, but not accurately, fuited to a particular note, that note forms itjelf in the tube, and, reacting on the lips, brings them into the form which can maintain it with cafe. We liave a proof of this when we attempt to found the note correfponding to one feventh of the length. Nout having a diftinet notion of this note, which nakes no part of our fcale of melody, we cannot cafils prepare for it in the way that hahit teaches us to prepare for the others: whereas, from what we fhall fee prefently, the notes one-fixth an! one cighbtb are both familiar to the mind, and eafily produced. When, therefure, we attempt to produce the note one-fiventh, we ficte, againt our will, into the one fixth or one-eigbth.

Nor can we completely illuftrate the formation of mufical pulfes by waves in water. A canal is equally fufceptible of every height and length of prog.effive waves ; whereas we fee that a certain length of tube will maintain only certain determined pulfes of air.

We muft therefore content ourfelves for the preferit with having learned, by means of the reed pipes, how the air may exilt progreflively in a tube, in an alternate ftate of condenfation and rarefaction ; and we fhall now proceed to confider how this flate of the air is related to the length of the tube. And here we can do no more than give an outline of Mr Bernonlli's beautiful theory of flutes and trumpets, but without a mathematical examination of the particular motions. We can, however, fhew, with fufficient evidence, how the different notes are produced from the fame tube. It requires, however, a very fteady attention from the reader to enable him to peaceive how the different portions of this air act on cach other. We trult that this will now be given.

The conditions which muft be implemented, in order to maintain a mulical pulfe, are two: 1. That the vibrations of the different plates of air be performed in equal times, otherwife they would all mix and confound each other. 2. That they move all tongether, all beginning and all ending at the fame inftant. It does not appear that any other ftate of vibration can exift and be maintained.

The column of air in a tube may be confdered as a material fpring (having weight and inertia). This fpring is comprefled and coiled up by the preflure of the atmofphere. But in this coiled ftate it can vibrate in its different parts, as a long fpiral wire may do, though preffed a little together at the ends. It is evident that the air within a pipe, fhut at both ends, may be placed in fuch a fituation, in a variety of ways, that it will vibrate in every part, in the fame manner as a chord of the fame length and weight, ftrained by a force equal to the preffure of the atmofphere. Thus, in the fhut pipe AB (fig. 1.), fuppofe a harmonic curve $A C B$, or ${ }_{4} \mathrm{X}_{2}$ a wire

Murical Tiun, et v-
into the form of this carve. The force which impels the point $\mathbb{C}$ to the axis is to that which impels the Foint cas CE to ce. Now, fuppofe the air in this pipe diviced into parallel frata or plates, croffing the tube like ciaptragms. In order that thefe may vibrate in the fame manner (not acrofs the tube, but in the direction of its axis), all that is neceffary for the moment is, that the excefs of the preflure of the fratnon $d d$ above that of the fratum $f f$ may he to the excefs of the preflure of DD abuve that of $1 \mathrm{~F}^{\mathrm{F}}$ as ce to CE. In this cafe, the ftratum ce will be acceleratect in the direction ef, and the ftratum EE is accelerated in the fane direction, and in the dne proportion. Now this may be done in an infinite variety of wage for a fingle moment. It depends, not on the abfolute denfity, but on the variation of denfity; becaufe the preflure by which a particle of air is urged in any direction arifce from the differense of the diflances of the adjuining particles on each frile of it. But in order to continute this vibration, or in order that it may obtain at once in the whole pipe, this variation of derfify muf continue, and le accorcing to fome conneeted law. This circumfance greatly limits the ways in which the vibration may be kept up. Mr Bernoulli finds that the ifochronifm and fynchronifm can be maintained in the following manner, and iu no other that he could think of:

Let AB (5. 2.) be a cylindrical pipe, fhut at A , and cren at 13. Then, in whatever manner the found is produced in the pipe, the undulations of the contain. ed air mult be performed as follows: Let $a a$ be a plate of air. This plate will approach to, and recede from, the hut end $A$, vibrating between the fituations $l b$ and $c c$, the whole vibration being $b c$, and the plate will vibrate like a pendulum in a cycloid. The greater we fuppofe the excurlions $a b, a c$, the louder will the found be; hat the duration of them all mult be the fame, to agree with the fact that the tone remains the fame. The motion will be accelerated in approaching to a a from cither fide, and retarded in the recefs from it. Let us sicxt confider a plate a $\alpha$, more remote from A . It inuft make finiliar vibrations frem the fituation $\beta$ is to the fi. quation? 2 . Sut thefe vibrations mult be greater in proportion as the plate is farther from $A$. It cannot be conceived ctherwift: For fuppofe the plate $\alpha_{\alpha}$ to make the fame excurfions with a $a$, and that the reft do the fame. Illen they wiil all retain the fame diftances from each other; and thus there will be no force whatever acting on any panticles to make them vibrate. But if every particle make excurtions proportional to its diflance from $A$, the variation of dentity will, in any inftant, be the fane through the whole pipe, and each particle in the vitrating plate $\beta$ is will be acceleated or retarded in proportion to ita ciffance from A; while the accelerations and retardations over all will, in any inRant, be proportional to the diffance of each particle from its place of rell. All this will appear to the mathematician, who attentively confiders any momentary fituation of the particks. In this manner all the particles will fupport tach other in their vibrations.

It follows from this deicription that the air in the tube is aliernately 1 arefied and condenfed. But thefe changes are very different in different parto of the tube. They mutt be greateft of all at $A$; becaule, while all the plates approach to $A$, they concur in condenfing the air immediately adjoining to $A$; while the air in
$a a$ and $\alpha a$ is lefs condenfed by tire action of the piates Mufical beyond it. The air at $B$ is always of its natural denfity, being in equilibrio with the furroundingr air. At 1 , therfore, cherc is a fmall parcel of air, of its na. tural denfity, which is alternately going in and out.

This account is confirmed by many facts. If the bottom of the pipe be fhut by a fine membrane, ftretched acrofs it like a drumhead, with a wirt fretched over it, cither externally or internally, in the fame manner as the catgnt is frecthed acrofs the bottom of a drum, it will be thrown iuto ftrong vibrations, making a very loud noife, hy rattling againit the crofs wire. The fame thing happens if the membrane be pafted over a hole clofe to the bottom, leaving a fma!l fpace round the edge of the hole withont paite, fo that the membrane may play out and in, and rattle on the margin of the hole. This alfo makes a prodigious noife. Now, if the membrane be palled on a hole far from the bottom, the agitations will be nuch fainter; and when the hole is near the mouth of the pipe, there will be noneWhen a pipe has its air agitated in this manner, it is giving the loweft note of which it is fufceptible.

Let us next confider a pipe open at butin ends. Let CB (fig. 3.) be this pipe. It is plain that, if there be a partition $A$ in the middle, we आall have two pipes $A B, A C$, each of which may undulate in the manlits now deferibed, if the undulations in each be in oppofice directions. It is evidently poffible, alfo, that thefe undulations may be tlie fame in point of ftrength in buth, and that they may begin in the fame inflant. In this cafe, the air on each ficle of the partition will be in the fame ftate, whether of condenfation oi rarefackion, and the partition A itfeif will always be in equilibrio. It will perfeetly refemble the point C of the mutical cord BFCGH (fig. G.), which is in equilibrin between the vibrating forces of its two parts. In the pipe, the plates of air on each fide are either both approaching it, or both receding from it, and the partition is either equally fancezzed from both fidee, or equally drawn out wards. Confequently this partition may be removed, and the parcels of air on each fide will, in any initant, fupport each other. There feems no other way of conceiving thefe vibrations in open fipes which will admit of an explanation by mechanical laws. The vibrations of all the plates mult be obtained without any mutual hindemance, in order to produce the tone which we really hear; and therefore fuch vibrations are imprefled by Nature on each plate of air.
Jut if this explanation be juf, it is plain that this pipe CB muft give the fame note with the pipe AB (fig. 2.) of half the length, ftut at one end. But the found, being doubled, with perfect confonance, muft be clear, trong, and nellow. Now this is pufectly agreealle to obfervation; and this fact is an unequivocal confirmation of the juftnefo of the theory. If we take a fender pine, about fix inches long and one half of an inch wide, flut at one end, and foutud it by blowing actofs its mouth, as we whiltle on the pipe of a key, or acrofs a hole that is clofe to the mouth, and formed with an edge like the found hole of a German flite, we fhall get a very ditinet and clear tone from it. If we now take a pipe of double the lergth, open at both ends, and how acrols its moath, we obtain the fame note, but nore clear and ftrong. And the note produced by blowing acrofs the mouth is not changed by a hole made exactly in the midule, in refpect of its mufical
ufiral piect.. altineugh it is greatiy hurt in point of clearnefs and trength. Alfo a membrane at this hole is frong. jy agitated. All this is in perfet couformity to this mechanifm.

Thus we have, in a grcat meafure, explained the effegt of an open and a thut pipe. The Mat pipe is always an oftave, graver than an open pipe of the fame length; becaufe the open pipe is in uriton with a fhut pipe of hall the le:gth.

Let AC (fig. 4.) be a pipe thut at both ends. We may confider it as compofed of two pipes $A B, \perp C$, ftopped at $A$ and $C$, and open at B. Uridulations may be performed in each half, precifely as is the pipe A B of fig. 2.; and hey will not, in the fmalleft cergree, obfrvict each other, if we owly fippofe that the plates in each half are vibrating at once in the fame direation. The condenfation in AB will correfpond with the raselaction in 13 C , and the middle parcel 13 will maintain its natual denfty, vibrating to, and again acrofs the middle: and two plates $a a, \alpha \alpha$, which are equally difant from $B$, will make equal excurfions in the fame ditection.

We may produce found in this pipe by making an opening at B . Its note will be found to be the faine with that of $B C$ of fig. 2 . or of $A B$ of lig. 2.

In the rext plice, let a pipe, Thui at one end, be confidered as caivided into any odd number of equal parts, and let them be taken in paire, beginning at the Aopped end, fo that there may be an odd one left at the open end. It is plain that each of theie pairs may be confidered as a pipe forped at both ends, a. in fig. 4.

For the partitions will, of thenfeires, be in equilibrie, and may te removed, and vib ations mav be main. taired in the whole, contitent with the vibration of the odd part at the open end; and thefe vibrations will :inf fuppout each other, and the plates of air which are it the points of divition will remain at reft. Conceive the pipe $A B$ of fig. 2. to be added to the pipe $A C$ of f.a - 4. the part $A$ of the firt being joined to $A$ of the other. Now, fuppote the vibrations to be performed in both, in fuch a manner that the fienultaneous undulations oll each fde of the junction may be in oppolite directions. It is plain that the partition will be in equilibrio, and nay be removed; and the plate of air will perform the fame office, being alterratily the middle plate of a condenfed and of a rarefied parcel of air. 'Ile two pipes $C A, A B$ will together give the Lame note that $A \mathrm{~B}$ would have giver alone, but louder.

In like manner may another-pipe, equal to AC , be joined to the thut end of this compround pipe, as in frg. 5 . and the three will till give the fame iote that $A B$ wuild have done alone.

And in the fame manner may any number of pipes, each equal to AC, be added, and the whole will give

Mufical $\underbrace{\text { Trumpet. }}$ fill the fame note that A.3 would have given alune.

Hence it legitimately follows, that if the undulations can be once begun in this manner in a pipe, it may give either the found competent to it, as a fingle pipe A 13 (fig. 2.) ; or it may give the found competent to a pipe of $\frac{7}{3} \mathrm{~d}$, $\frac{3}{3}$ th, $\frac{1}{7}$ th, sic. of its length; the undulations in eacla part $A B, B C, C D$, , maintaining themfelves in the manner already defcribed. This feenis the only way in which they can be preferved, both ifochronous and fynchronous.

It is known that the graveft tones of pipes are as the lengths of the pipes, or the frequency of the undulations are invelfely as their lengths. (This will be deo monffrated prefently ). Therefore thefe acceffory tones fhould be as the odd numbers $3,5,7,8 c$. and the whole tones, including the fuadamerital, fhould form the progreffion of the old numbers $1,3,5,7$, \&cc.

This is alundantly confirmed by experiment. Take a German flute, and ftop all the finger holes. The flute, by gradually forcing the blaft, will give the fundaniental, the 12 th, the 17 th, the 21 ft , \&e. (A).

Again, let.AD) (fig.5.) reprefent the length of a pipe. Conftruct on $A D$ anl harmonic curve $A E B F C G H D$, in fuch a manner that HD may be $\frac{7}{2} \mathrm{AB},=\frac{1}{2} \mathrm{BC}$, $=\frac{1}{2}$ CH. The fmall ordinates $m n$ will exprefs the total excurfion of the plates of air at the poin ts $m, m$, sec. anil thofe ordinates which are above the axis will expref3 excurtions on one tide of the place of reft, and the ordinates below will mark the excurfions in the oppofite directions, in the fame manacr as if this harmonic curve were really a viluating cord. Thefe excurfions are 10thing in the points $A, B, C, H$, and are gealell a: the points $\mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{U}$, where the little maifs of air setains its natural denfity, and travels to and araie, comderfing the air at $\overline{3}$, or racefying it, according as th: parcels E and F are approaching to or yecedhag from tach other. The points $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{H}$, niay be wailed Nones, and the parts I, F, G, I), may be villed $\mathrm{B}_{1 \text { chts }}$ or loops. This seprefents very well to the eye the motion of the plates of air. The deminy ant velocity need not be minutely confidered at meicit. If is enough that we fee that when the denfity is in creafing at $A$, by the approach of the parcel $E$, it is diminilling at $B$ by the recefo of $E$ and $k$; and increaturg at $C$, by the appronch of $F$ and $G$, and dininifhing at It, by the neefs of $G$. In the nex: vibra. tion it will be cinimither at A and $C$, and increatheg at B and H . And thus the alter.iate nodes will be 13 the fame frate, and ulie aljoining nodes in of pouite ftates.

The reader murt carefully diftirguilh tilis motion fruas.
(A) A little reflcetion wiil teach us that thefe tones will not be peefectly in the fcale. A certain proportion between the clameter and length of the pipe produces a certain tone. Makig the pipe wider or fnaller tlateres or thappens this tone a litte, and alfo gitatly, clanges its clearnefs. (agin bincers, who have tried every pion.
 'I herefore, when we caufe the fame pipe to found different notes, we reglate this proportion; and the rewis are talie, and even very coarfe, when we produce one contefonding to a veiy imull portion of the pipe. For a finis, lar reafon, Mr Lambert found that, in order to make his pirch pipe found the wiave :o any of its notes; it was not fufficient to thorten its capacity one half by puring down the piltou ; he fornd that the part remaining muft be lefs than the part taken off by a fixed quantity 1 is $^{3}$ inches. Or, the kength which gave any nuwe being $x$, the length for its oetave mult be $\frac{x-11_{1}^{5}}{2}$.

Mirfical from the undulatory motion of a pulfe, inveftigated by Srumpet. Newton, and defcribed in the article Acoustics, En-
cycl. That undulation is going on at the fame time, and is a refult of what we are now confidering, and the caufe of our hearing this undulation. The undulation we are now confiderin; ; the original agitation, or rather it is the sounding bony, as much as a vibrating ftring or bell is ; for it is not the trumpet that we hear, but the air trembling in the trumpet. The trumpet is performing the office, not of the Itring, but of the pin and bridge on which the fring is ftrained. This is an important remark in the philofophy of mufical founds.

There is yet another fet of notes producible from a pipe befides thnfe which follow in the order of frequency $1,3,5,7, \& c$.

Suppofe a pipe open at both ends, founding by hlowing acrofs the end, and undulating, as already defcribed, with a tode in the micdle A. (fig. 3.) If we fill exprefs the fundamental note of the pipe AD of fire. 2 . by 1 , it is plain that the fundamental of an open pipe of the fame length will have the frequency of its undulations expreffed by 2 : becaufe an open pipe of twice the length of $A B$ (tig 2.) will be I , the two pipes $A B$ (fig. 2.), and Cis (fig. 3.), being in urifon.

But this open pipe may be made to undulate in another manner; for we have feen that A i) of fig. 2. joined to CA of fig. 4. may found altogether when the jartition $A$ is removed, ftill giving the note of $A B$ (fig. 2.) I.et fuch another as A. B' (fig. 2.) be ad fod to the end C , and let the partition be removed. The whole may fill undulate, and fill produce the fame Hote; that is, a pipe open at both einds may found a note which is the fundamental of a pipe like $A B$ (fig. 2.), but only one-fourth of its length. The pipe CB of fig. 3. may thus be fuppofed to be divided into four equal parts, $\mathrm{CE}, \mathrm{EA}, \mathrm{AF}, \mathrm{FB}$, of which the extreme parts EC and FB contain undulations fimilar to thofe in AB (fir. 2.); and the two middle parts contain undulations like thofe in CA (fig. 4.) The partitions at E and F may be removed, becaufe the undulations in EC and EA will fupport each other, if they are in oppolite directions ; and thofe in FB and FA may fupport each other in the fame manner.

It mult here be remarked, that in this flate of undu. lation the direction of the agitations at the two extremities is the fame; for in the mildle piece EF the particles are moving one way, condenfint: the air at E, while they rarefy it at F. The:efore, while the middle parcel is moving from E towards F , the air at B muft be moving towards F , and the air at C muf be moving from E. In fhort, the air at the two extremities mult, in every inftant, be moving in the eppolite direction to that of the air in the micdle.

In like manner, if the pipe CB of fir. 3. be divided into fix parts, the two extreme parts may undulate like ABB of fig. 2. and the four inner parts may undulate like two pipes, fuch as CA of fir. 4. and the whole will give the found which makes the fundanental of a pipe of one-fixth of the length, or having the frequency 0 .

We may remark here, that the fimultancous motion of the air at the extremities is in oppofite directions, whereas in the laft cafe it was in the fane direction. This is eafily feen; for as the partition which is between the two middle pieces muft always be in equilibrio, the air mufl be coming in or going out at the ex-
tremities together. This circumftance muft give fome Muflat fenfible difference of character to the founds 4 and 6 . Trumpet In the one, the agitations at cach end of the tube are in the fame direction, and in the other they are in the oppofite. Both produce pulfes of found which are conveyed to the ear. Thus we fec that the air in a pipe open at both ends may undulate in two ways. It may undulate with a node in the middle, giving the note of AB (6g. 2.), or of its $3 \mathrm{~d}, 5 \mathrm{th}, 7 \mathrm{th}, \& \mathrm{c}$. paft ; and it may undulate with a loop or bight in the middle, founding like $\frac{1}{2}, \frac{1}{\frac{1}{4}}, \frac{1}{6}, \& \mathrm{c}$ of AB , fig. 2 。

In like manner may this pipc produce founds whefe frequency are expreffed by 8,10, \&ic. and proceed as the even numbers

This ftate of agritation may be reprefented in the fame way that we repreferited the founds $1,3,5, \&<$. by conflructing on AM (fig. 7.) an harmonic curve, with any number of nodes and loops. Divide the parts AF, F1), DE, EM, equally in C, O, P, B. CB with correfpond to the pipe, and the ordinates to the curve GFHDLEN will exprefs the excurfions of the plates of air.

If the pipe gives its fundamental note, its length murt be reprefented by CO , and the undulations in it will refemble the vibrations of part CO of a cord, whofe length Al ) is equal to 2 CO , and which has a node in F.

If the pipe is founding its netave, it will be reprefented by CP, and its undulations will refemble the wibrations of a cord $C P$, whofe length $A E$ is $\frac{3}{2}$ of $C P$, having nodes at F and D, \& c. \&c.

We can now fee the poffibility of fuch undulations cxitting in a pipc as will be permanent, and produce all the variety of notes by a mere change in the manner of blowing, and why thefe notes are in the order of the natural numbers, precifely as we obferve to hapoen in windirg the trumpet or lirench hom. We have, $1 / f$, the fundamental exprefled by 1 ; then the octave 2 ; then the 12 th, 3 ; the double octave 4 ; then the third major of that octave 5 , or 17 th of the fundamental ; then the octave of the 12 th, or the 5 th of this double octave, $=6$. We then jump to the triple octave 8 , withont producing the intermediate found correfponding to th of the pipe. With much attention we can hit it ; and it is a fact that a perfon void of mufical ear ftumbles on it as eafily as on any other. Bat the muficien, finding this found begin with hum, and his ear being grated with it, perhaps thinks that he is miftaking his embouchure, and he flides into the octave. After the triple octave, we eafly hit the founds correfronding to $\frac{1}{8}$ and $\frac{2}{2}$, which are the 2 d and 3 d of this octave. The next note $\frac{1}{1 T}$ is fharper than a juft 4 th. We tafily produce the note 12 , which is a juit 5 th ; 13 is a falie 6 th ; 14 is a found of no ufe in our mulic, but ealily hit; 15 and 16 give the exaed 7 th and 8 th of this octave.
Thus, as we afcend, we introduce more notes into every oftave, till at latt we can nearly complete a very high octave ; but in order to do this with fuccefs, and tolerable readinefs, we muft take an inftrument of a very low pitch, that we may be able nearly to fill up the fteps of the octave in which our melody lies. Few players can make the French horn or trombone found its real fundamental, and the octave is generally miftaken for it. The proof of this is, that moft players can

## TR U

give the 5 th of the loweft note that they are able to produce; whereas the 5 th of the real fundamental cannot be uttered. Therefore that lowelt note is not the fundamental, but the octave to the fundamental.
Few performers can found even this fecond octave on a fhort inftrument, fuch as the ordinary military trumpet; and what they imagine to be the fundamental found of this inftrument is the double octave above it. This appears very ftrange; and it may be afked, how we know what is really the fundamental note of a trumpet? The anfwer to this is to be obzained only by demonfratiug, on mechanical principles, what is the frequency of undulation correfponding to a given length of pipe. This is a propof:tion equally fundamental with its correfponding one in the theory of mulical cords; but we have referved it till now, becaufe many readers would fop fhort at fuch an inveftigation, who are able to under?and completely what we have now delivered concerning the mufic of the trumpet.

Suppofe therefore a pipe fhut at both ends, and that the whole weight of the contained air is concentrated in its middle point, the reft retaining its elafticity without inertia: or (which is a more accurate conception), let the middle point be conceived as extending its elafticity to the two extremitics of the pipe, being repeiled from each by a force inverfely as the diftance. Let the length of this pipe be L. This may alfo exprefs the weight of the middle plate of air, which will always be proportional to the length of the pipe, becaufe all is fuppofed to be concentrated there. Let $E$ be the claflicity of the air. This mull be meafured by the preffure of the atmofphere, or by the weight of the column of mercury in the barometer. Perhaps the rationale of this will be better conceived by fome readers by confidering $E$ as the height of a homogeneous atmofphere. Then it is plain that E is to L as the weight of this atmofpheric column to the weight of the column of the fame air which fillis the pipe whofe length is I.. Thena it is alfo plain that E is to L as the external preffire; and confequently, as the elatticity which fupports that preffure is to the weight or inertia of the matter to be moved. Let this middle plate or diaphragm be withdrawis from its place of reft to the very finall dittance a. The elafticity or repulfion wiil be angmented on one fide and diminihed on the other; and the difference between them is the only force which impels the diaphragm toward the middle point, and caules it to vibrate, or produces the undulation. It is plain that the repultion on one fide is $\frac{\frac{1}{2} \mathrm{~L}}{\frac{1}{2} \mathrm{~L}-a} \times \mathrm{E}$, or $\frac{\mathrm{L}}{\mathrm{L}-2 a} \mathrm{E}$ (for $\frac{1}{2} \mathrm{~L}-a: \frac{1}{5} \mathrm{~L}=\mathrm{E}: \frac{\frac{1}{2} \mathrm{I}-\mathrm{E}}{\frac{\mathrm{r}}{2} \mathrm{~L}-a}$ ), and the repullion on the other fide is $\frac{\frac{1}{2} \mathrm{~L}}{\frac{1}{2} \mathrm{~L}+a} \times \mathrm{E}$, or $\frac{\mathrm{L}}{\mathrm{L}+2 a} \mathrm{E}$. The difference of thefe repullions is $\mathrm{E} \times \mathrm{L} \times \frac{4 \pi}{\mathrm{~L}^{2}-4 a^{2}}$. But as we fuppole $a$ exceedingly fmall in comparifon with L , this difference, or the accelerating force, may fafely be expreffed by $\mathrm{E} \frac{4 a}{\mathrm{~L}}$, or $4 a \frac{\mathrm{E}}{\mathrm{L}}$.

Hence we deduce, in the firft place, that the undulations will be ifochronous, whether wide or narrow; becaufe the accelerating force is always proportional to the diftance $a$ from the middle point.

Now, let a pendulum, whofe quantity of matter is I., and length $a$, be fuupofed to vibrate in a cycloid by the force $\frac{4 \pi}{1} \mathrm{E}$, or $\frac{4 \mathrm{i}}{\mathrm{L}} a$. It muft perform its vibrations in the lame time with the plate of air; becaufe the inoving force, the inatter to be moved, and the fpace along which they are to be femilarly impellecd, are the fance in hoth cafes. I cet another pendulum, having the fame quantity of matter $L$, vibrate by its weight L alone. In order that thefe two pendulums may vibrate in equal times, their lengths muft be as thie accelerating forces. Therefore we muft have $\frac{4 \mathrm{E}}{\mathrm{L}} a: \mathrm{L}$ $=a: \frac{a \mathrm{~L}^{2}}{4 \mathrm{E} a^{2}},=\frac{\mathrm{L}^{2}}{4 \mathrm{E}}$, which is therefore the length of the fynch:onons pendulum.

Now, a cord without weight and inertia, but loaded with the weight L at its middle point, and Arained by a weight $E$, and drawn from the ax is to the diflance $a$, is precifely fimlar in its motion to the diaphragm we are now confidering, and mutt make its ofcillations in the fanme time.
This is applicable to any number of plates of air, by fubflituting in the cord a loaded point for each of the plates; for when the cafe is thus clanged, both in the pipe and the corc, the fpace to be paffed over by the plate of air bears the fame proportion to $a$, which is paffed over by the whole air concentrated in the middle point, which the fpace to be paffed over by the correfponding lozded point of the cord bears to that puffed over by the whole matter of the cord concentrated in the middle point; and the fame equality of ratios obtains in the accelerating forces of the plate of air and the correfponding loaded point of the cord. Suppure, then, a pipe divided into $2,3,4$, \&c. equal parts, by 1,2,3, diaphragms, each of which contains the air of the intervening portion of the pipe, the whole weight L. being equally divided among them. If there te but one diaphragin, its weight mult be L. ; if two, thie weight of each mult be $\frac{x}{2} \mathrm{~L}$ : if thice, the weight of each mult be $\frac{1}{+} \mathrm{L}$; and fo on for any number.
By confidering this attentively, we may infer, without farther inveftigation, what will be the undulations of all the different plates of air in a pipe fopped at both ends. We have only to compare it with a cord fimilarly divided and loaded. Increafe the number of loaded points, and diminith the load on each, continual-ly-it is evident that this terminates in the cafe of a fimple cord, with its matter uniformly diffufed ; and a fimple pipe, with its air allo uniformly diffufed over its $w$ hole length.
Therefore, if we take an claflic cord, and ftretch it by fuch a weight that the extending weight may bear the fame proportion to the accelerating force acting on the whole matter concentrated in its middle point, which the elafticity of the air bears to its accelerating force acting on the whole matter concentrated at the moutlh of an open pipe, founding its fundamental note, the cord and the air will vibrate in the fame time. More. over, fince the proportion between the vibrations of a cord fo conftituted, and thofe of a cord having its matter uniformly diffufed, is the fame with the proportion between the undulations in a pipe fo conflituted, and thofe of a pipe in which the air is uniformly diffufed it is plain that the vibrations of the cord and of the pipe

Minical Trumpes.
pipe in their natural fate will alio be performed in equal tinses.

We look on this as the ealieft way of obtaining a diftinet perception of the authority on which we reft our knowledge of the abfolute number of undulations of the air in a pipe of given length. It iney be obtained directly ; and Daniel Bernoulli, Euler, and others, have given very elegant folutions of this problem, without having recourle to the analogy of the vibrations of cords and undulations of a column of air. But it requires more mathematical knowledge than many readers are poffefed of who are fully able to follow out this analogical inveftigation.

Let us therefore compare this theory with experiment. What we call an open pipe of an organ is the fame which we, in this theory, have confidered as a pine open at both ends; for the opening at the foot, which the organ builders call the volce of the pipe, is equivalelt to a complete opening. The aperture, and the tharp edge which divides the wind, may be continued all round, and the wind admitted by a circular flit, as is reprefented in 6g. 10. We have tried this, and it gives the moft brilliant and clear tones we ever heard, far exceeding the tones of the organ. An open organ pine, therefore, when founding its fundamental note, undulates with one node in ito middle, and its undulations are analogous, in refpect of their mechanifm, with the vibrations of a wire of the fame length, and the fame weight, with the column of air in the pipe, and tiretched by a weight equal to that of a column of the fame air, reaching to the top of a homogeneous atmofphere, or equal to the weight of a column of mercury as high as that it the barometer.

Dr Smith (fee Harmonics, 2d edit. p. 193.) found that a brafs wire, whole length was 35,55 inches, and weight $3^{1}$ troy grains, and ftretched by 7 pounds avoirdupois, or 49000 grains, was in perfect unifon with an open organ pipe whofe length was 86,4 inches.

Now 86,4 inches of this wire weighs 75,34 grains. When the barometer ftands at 30 inches, and the thermometer at $55^{\circ}$ (the temperature at the time of the experiment), the height of a homogeneous atmofphere is 332640 inches. This has the fame proportion to the length of the pipe which the preffure of the atmofphere has to the weight of the column of air contained in the pipe.

Now $86,4: 332640=75,34: 290060$. This wire, therefore, fhould be ftretched (if the theory be juft) by 290060 grains, in order to be unifon with the other wire, and we fhould have $35,55^{2}: 86,4^{2}=49000: 290060$ But, in truth, $\quad 35,55^{2}: 86,4^{2}=49000: 289430$ The difference is 630 The error fcarcely exceeds $\frac{5}{\circ} \delta$, and does not amount -to an er ror of one vibration in a fecond.

We muft therefore account this theory as accurate, feeing that it agrees with experiment with all defirable exacinefs.

We may alfo dedace from it a very compendious rule for determining the abfolute number of aereal pulfes made by an open pipe of any given length. When confidering the vibrations of cords, we found that the numDer of vibrations made in a fecond is $\sqrt{\frac{386 \mathrm{E}}{\text { LW }}}$, where E is the extending weight, $W$ the weight of the cord, and L its length. Lei H be the keight of a homoge-
neous atmofphere We have its weight $=\frac{I T W}{L},=E$. Therefore fubflituting $\frac{H W}{l}$ for $E$ in the above formu1a, we have the number of aereal pulfes made per fecond $=\sqrt{\frac{386 \mathrm{H}}{L^{2}}}$, or $=\frac{\sqrt{386 \mathrm{H}}}{\mathrm{L}}$. Now $\sqrt{386 \mathrm{II}}$, come puted in inches, is 1133 5 . Therefore, if we alfo meafure the length of the pipe $L$ in inches, the pulfes ir a fecond are $=\frac{11328}{L}$. Thus, in the cafe before us, $\frac{11331}{85,4}=131,12$, or this pipe produces 131 pulfes is a fecond. Dr Sinith found by experiment that it pro. duced 130,9 , differing only about $\frac{7}{8}$ th of a pulfe.

We fee that the pitch of a pipe depends on the height of the homogeneous atmofphere. This may vary by a change of temperature. When the air is warmer it expands, and the weight of the induced column is leffened, while it ftill carries the fame preffure. Therefore the pitch muft rife. Dr Smith found his orgin a full quarter tone higher in fummer than in win. ter. The effect of this is often felt in concerts of wind inftruments with ftringed inftruments. The heat which Tharpens the tone of the firft flattens the laft. The harpfichord foon gets out of tune with the horns and fiutes.

Sir Ifaac Newton, comparing the velocity of found with the number of pulfes made by a pipe of given length, obferved that the length of a pulfe was twice the leagth of the open pipe which produced it. Diwide the fpace paffed over in a fecond by the number of pulfes, and we obtain the length of each pulfe. Now it was found that a pipe of 21,9 inches produced 262 pulfes. The velocity of found (as computed by the theory on which our inveftigation of the undulations is piper proceeds) is 960 feet. Now $\frac{960 \times 12}{262}=44$ inches very nearly, the half of which is 22 , which hardly differs from 21,9. The difference of this theoretical velocity of found, and its real velocity 1142 feet per fecond, remains ftill to be accounted for. We may juft obferve here, that when a pipe is meafured, and ite length called 21,9 , we do really allow it too little. The voice lhole is equivalent to a portion, not inconfiderable of its length, as appears very clearly from the experiments of Mr Lambert on a variable pitch pipe, and on the German Ante, recorded in the Berlin Memoirs for 1775. He found it equivalent to $\frac{3}{6}$ th; and this is fufficient for reconciling thefe meafures of a pulfe with the real velocity of found.

The determination which we have given of the undulations of air in an organ pipe is indirect, and is but a feetch of the beautiful theory of Daniel Bernoulli in which he ftates with accuracy the precife undulation of each plate of air, both in refpect of pofition, denfity, yelocity, and direction of its motion. It is a pleafure to obferve how the different equations coincice with thofe which exprefs the vibrations of an elaftic cord. But this would have taken up much room, and would rot have been fuited to the information of many curious readers, who can calily follow the train of reafoning which we have emoloyed.

Mr. Bernoulli applies the fame theory to the expla.

## $T R U$

Aufial mation of the undulations in flutes, or intruments whofe founds are modified by holes in the fides of the pipe. But this is foreign to our purpofe of explaining the mufic of the trumpet. We fhall only obferve, that a hole made in that. part of a pipe where a node fhould form itfelf, in order to render practicable the undulations competent to a particular note, prevents its formation, and in its place we only get fuch undulations (and their correfponding founds) as have a loop in that place. The intelligent reader will perceive that this fingle circumfance will explain almof every phenomenon of flutes with holes; and alfo the effects of holes in infruments with a reed voice, fuch as the hautboy or clariontte.

We now fee that the found or mufical pitch of a pipe is inverfely as its length, in the fame manner as in ftrings. And we learn, by comparing them, that the found of a trumpet has the fame pitch with an open argan pipe of the fame length. A French horn, 16 feet long, has the found C fa ut, which is alfo the found of an open flute-pipe of that length.

The Trombonf, great trumpei, or Sackbut, is an old inftrument defribed by Meifennus and other authors of the lafl century. It has a part which flides (airtight) within the other. By this contrivance the pitch can be altered by the performer as he plays. This is a great improvement when in good hands; becaufe we can thus correct all the falfe rotes of the trumpet, which are very offenfive, when they occur in an enphatical or holding note of a piece of mufic. We can even employ this contrivance for flling up the blaiks in the lower octaves.

We mult not take leave of this fubjuct without taking notice of another difcovery of Mr Bernoulli's, which is exceedingly curious, and of the greateft importance in the philoforhy of mufic.

Artilts had long ago obferved that the deep notes of mufical inftruments are fometines accompanied by their harmoxic founds. 'This is mott clearly perceived in bells, fome of which give thefe harmonics, particularly the 12 th, almoft as itrong as the fundamental. Muficians, by attending more carefully to the thing, feem now to think that this accompaniment is univerfal. If one of the fine? founding Atrings of the bafes of a harpfichord be ftruck, we can hear the I 2 th very plainly as the found is dying away, and the 1 -th major is the Jaft found that dies away on the ear This will be rendered much more fenfible, if we divide the wire into five parts, and at the points of divifion tie round it a threed with a falt knot, and cut the ends off very fhort. This makes the fring falfe indeca by the unequal loading ; but, by rendering thofe parts fomewhat lefs moveable by this additional matter, the portions of the wire \}etween thefe points are thus jogged, as it were, into fecondary vibrations, which have a more fenfible proportion to the fundamental vibration. This is fill more fenfible in the found of the Arings of a violincello when fo loaded; hut we muft be careful not to load them too much, becaufe this would fo much retard the fundamental vibration, without retarding the fecondary wibrations, that both carnot be maintained together. ( $N . B$. This experiment always produces a beat in the found). - Liftening to a fine founding flute pipe of the organ, we can alfo very often peiceive the lame thing. Mr Ramean, and moft other theorits in mufic, now af.

Suppl. Vor. II. Part II.
fert that this is the effence of a mufical fourd, and no Mrecti ceffurily exifts in all of them, ditlinguifing them from Timupeto, haifh noifes. Rameau has made this the foundation of his fyften of mufic, affuting that the pleafure of harmony refults from the fuccelfful imitation of this harmony of Nature. (fee Meste, Encyel.). But a little logic fhould convince thefe theorifts that they muft be miltaken. If a note is mufical becaule it has thefe accomaniments, and by this compotition alone is a ruulical note, what are thefe harmonics? Are they mufical notes ? This is granted. Therefore they have the fame compofition : and a mufical note muft confift at ouce of every poffible found ; yet we know that this would be a jaring noife. A little mathematice, too, or mechanics, would have convinced them. A timple vibration is furely a moft poffible thing, and therefore a fimple found. No, fay the theorifts; for though the vibration of the cord may be fimple, it produces fuch urdulations in the air as excite in us the perception of the larmonic3. But this is a mere affertion, and leaves the queltion undecided. Is not a fimple undulation of the air as pofible as the firmple vibration of a co त?

It is, however, a very curious thing, that almon all mufical founds really have this accompaniment of the oftave, I2th, double octave, and 1 17th major; for thefe are the harmonics that we hear.

The jealouly of Leibnitz, and of John Bernoulli, and their unfriendly thoughts refpecting all the Britifh mathematicians, made Joln Bernoull do every thing in his power to leflen the value of Dr 'laylor's inveltigation of the vibration of a mufical cord. Taylor gave him a good opportunity. Perlaps a little vain of his inveftigation of this abifrufe matter, he thought too much of it. He affirned that the harinon ic curve was the effential form of a ftring giving a mufical note. This was denied, without knowing at firt whether it was true or falie. But as the analy tic mathematics innproved, it was at length found that there are an infinity of forms into which an elaltic cord can be thrown, which are contiftent both with ifochronous vibrations, whether wide or narrow, and alfo with the condition of the whole cord becoming a ftraight line at once. Euler, D'Alembert, and De la Grange, have profecu. ted this matter with great ingenuity, and it is one of the fineft problems of the prelent day.
Danicl hernoulli, of a very different caft of mind from his illuftrious frients, admied both Newton and Taylor; and fo far from wifhing to eclipfe Dr Taylor by the additions he had made to his theory, tried whether he could not extend Taylor's doctrine as far as the author liad faid. When he took a review of what he had done while explaining the partial vibrations of mufical cords, he thought it very poffible that while a cord is vibrating in three portions, with two nodes or points of reft, and founding the 12 th to its fundamental, it might at the fame time be alfo vibrating as a fimple cord, and founding its fundamental note. It was poffible, he thought, that the three portions inight be vibrating between the four points with a triple fiequency, while the two middle noles were viorating acrofs the ytraight line between the two pins; and thus the vibrating cord might be a.moveable axis, to which the rapid vibrations of the three parts might al:ways be referred. This was very fpecions; and when : litte more attentivsly confidered, became more probable: for if

Mufical the cord $\mathrm{Ap} \mathrm{B}_{q} \mathrm{CrD}$ (fig. 8.) be vibrating as a 12 th to Trumpet. its fundamental AD , the points B and C are in equili-
brio. If therefore thefe two points be laid hold of by hooks, and be drawn afide to $\beta$ and $\gamma$, while the ftring is yet vibrating, this fhould not hinder the vibrations. If the hooks be annihilated in an inftant, the whole fhould vibrate between A and D ; and this fhould be in a way very different from the fimple vibration. The queftion now is, will the cord continue to vibrate with the loops $\beta s \gamma, \beta q \gamma$, \&c. in the gooth part of a fecond (for inflance), while the whole ftring vibrates from $\mathrm{A} \beta \gamma \mathrm{D}$ to $\mathrm{A} \beta^{\prime} \gamma^{\prime} \mathrm{D}$ in the 300 th part of a fecond? or will it at once acquire the form of the fimple harmonic curve? The cafe in which it is moft likely to take the latter mode of vibration is when the points $\beta$ and $\gamma$ are let go at the inftant that each portion of the ftring is in the middle of its vibration, and therefore forms the line $\mathrm{A}^{\beta} \gamma \mathrm{D}$. But a moment's confideration will fhew us that it cannot do this; for at that inftant the point $v$, for inftance, which had come from $q$, is moving outwards with a moft rapid motion, and therefore will continue to go outward, while $\beta$ and $\gamma$ are approaching the asis. The point $w$, on the contrary, is at this moment approaching the axis with a motion equally rapid. 'They carnot therefore all come to the axis at once, and the vibration muft differ greatly from a fimple one. On the other hand, let it be fuppofed that both fpecies of vibrations can be preferved, and that, at the moment of letting go the points $\beta$ and $\gamma$, the cord has the form $\mathrm{A} m^{\beta} \beta q \gamma n \mathrm{D}$. Then, when $\beta$ and $\gamma$ have come to $B$ and $C$, having made $\frac{t}{2}$ a vibration, the point $m$ will be in the axis, having made a vibration downward, and a half vibration upwards. $q$, in like manner, is in the axis, having made a whole vibration upwards, and half a vibration downwards. $n$ is like $m$. Thus the whole comes to the axis at once ; and in fuch a manner, that if the points I3 and C were inllantly ftopped, the three portions would continue their partial vibrations without any new effort. The refult of this compound vibration muft be a compound pulfe of air, which will excite in us the perception of the fundamental found and of its 12 th. The confequence will be the fame if the points $\beta$ and $\gamma$ are Atopped any where fhort of the axis ; and therefore (faid Bernoulli) the ftring will really vibrate fo if not ftopped at all.

But this was refufed by Euler, who obferved that in the points $\beta$ and $\gamma$ of contrary flexure, having no curvature, there can be no accelerating force. This caufed Bernoulli to attempt a direct invelligation, examining minutely the curvatures and accelerating forces in the different points.

He had the pleafure of finding that the accelerating forces arifing from the curvature in every point, were precifely fuch as would produce the accelerations neceffary in thofe points for performing the motion that was required. And he exhibited the equations expreffive of the flate of the cord in all thele points. And, on the faith of thefe equations, he reftored the Tay. lorean curve to the rank which its inventor had given it ; and he afferted that in every mufical vibration the cord was difpofed in a harmonical curve either fimple or compound. He farther fhewed that the equations which Euler and D'Alembert had given for the mufical cord (at leaft in the cafes which they had publifh.
ed) were included in his equations, and that their equa. tions only exhibited its momentary ftates, while his own equations fhewed the phyfical connection of them all ; which is, that the whole cord forms a harmonic curve between the two fixed pins, while its different portions form fubordinate harmonic curves on the firft as an axis. Biuler and D'Alembert, although they acknow. ledge this in the particular cafes which they had taken as examples, on account of their fimplicity, ftill infilt that no fubordinate harmonic vibrations can correfond to all the ftates of an elaflic cord which their equations exhibit as ifochronous and permanent. Mr Bernoulli's death put an end to the controverfy, and the queftion (confidered as a general theory) is perhaps ftill undecided. It may very probably be true, that as a fimple vibration may be permanent which never has the form of the fimple harmonic deferibed by Dr Taylor, fo a vibration may exift compounded of fuch vibrations, and therefore not expreflible by ary equation deduced from the Taylorean curve.

But, in the mean time, Mr Bernoulli has made the moft beautiful difcovery in mechanics which has appeared in the courfe of the prefent century, and has explained the moft curious phenomenon of continued founds, viz. the almofl univerfal accompaniment of the harmonic notes of any fundamental found. For this fufceplibility of compounded variation is not confined to a 12 th, but is equally demonitrable of every ocher harmonic. Nay, it is evident that the fame fimple vibration of a cord may furnifh a moveable axis to more than one harmonic. For as the fimple vibration can have a fubordinate harmonic vibration fuperinduced upon it, fo may this compounded vibration have another fuperinduced on it, and fo on to any degree of compolition: And farther, as Mr Bernoulli has thewn the complete analogy between the accelerations of the different points of an claftic cord and of the correfponding plates of a column of air, it legitimately follows that all the confequences which we can eafily deduce, refperting the vibrations of an elaftic cord, may be affirmed refpecting the undulations of a column of air in a pipe. Therefore this accompaniment of the harmonics mut not be confined to the mufic of flrings and bells, but equally obtains in the mufic of wind inftruments. And thus the doctrine becomes univerfal.

Mr Eernoulli did not think it enough to fhew that thefe compound vibrations are poflible. He endeavours to fhew that this accompaniment mult be frequent. He illuftrates this very prettily, by imppofing that a toothed wheel is turned round, and rubs with its teeth on an elaftic cord. If the fucceffive dropping of the teeth keep exachly pace with fuch vibrations as the cord can take and maintain by its elafticity, thele will certainly be formed on it. If the intervals do not exaatly correfpond, a little reflection will fhew that the agitation which the cord acquires will approximate to thofe which it can maintain; and, if when they are exactly fo in any place of it, and the wheel be in that inftant removed, this vibration will remain and diffufe itfelf throught he reft of the cord; fo that the very laft dying quiver (fo to fpeak) will be a harmonic. Every barmonic agitation tends, by the very nature of the thing, to continue, while thofe that are incompatible really do deftroy each other; and the very laft muft be the remainder or fuperplus of fuch as could continue,

Plate XLV.
Fig. 3.


Fig. 8.


Fig: 10.


Fig:B.
$\operatorname{Fig} \mathrm{D}$


Mufical over thofe which deftroyed each other. Accordingly, the harmonic notes of wires are alwayo mof difininelly heard as the found is dying away.
There is no occafion now to fay any thing about the fallacy of Rameau's Generation Hiarmonique as a theory of mufical pleafure. Our harmonies pleafe us, not be caufe a found is accompanied by its harmonics, but be. caufe harmonics pleafe. His prineiple is therefore a tautology, and gives no inftruction whatever. His theory is a very forcel accommodation of this principle to the practice of muficians, and tale of the Publie. He is exceedingly puzzled in the cafe of the forsdominante, or 4 th of the feate, and the 6 th where there is no refon nance. He fays that thefe notes, " fremiffent, quoiqu' ethes ne refonnent pas." But this miffeads us. They do not refound; becaule a 4 th and a 6 th cannot be pioduced at all by dividing the cord. They temble; becaufe the falle 4 th and falle 6th are very near the true ones, and the true $4^{\text {th }}$ and 6 th would both tremble and refound if they were made falfe. A fling will both tremble and relound, if very nearly trie, as any nue ob. ferves the 1 ith and 17 th un a haipfichord tremble and refourd very ftrousty, though they are tempered notes. The whote theory is overturned at once by tuning the th falfe, fo as to correfpond to an aliquot divifion of the cord. It will then refound ; and if this had hap. pened to be agreeable, it would have been catehed at as the foufdominant.

The phy fical caufe of the pleafure of harmonic founds is yet to feek, as much as our choiee of thofe notes for melody which give us the bett harmony (fee temperament, Suppl.). We have no helitation in faying that, with refpect to our choice, the two are quite independent. Thoufands eujoy the lighef pleafure from melody who never heard a liarmonious found. All the untaught fungers, and all fimple nations, are examples. They not ouly fix on certain intervals as the fleps of their tunes, but are difgufted when other fteps are taken. Nor do we hefitate, for the very fame reafons, to fay that the rules of accompaniment are dependent on the cantus or air, and by no means on the funda. mental bafs of Rameau. 'i he dependence aflumed by him, as the rule of accompaniment, would, if properly achered to, according to his own notions of the comparative vahues of the harmonicz, lead to the molt fantaltic airs imaginable, always jumping by large inter vals, and altogether ineompatible with graceful mufic. The rules of modulation which he has fqueezed out of his principle, are nothing but forced, very forced, accommodations of a very vague principle to the current prastice of his contemporaries. They do not fuit the primitive melodies of inany nations, and they have callfed thefe national mufics to degenerate. Ihis is ac knowledged by all who are not perverted by the prevailing habits. We have heard, and could write down, fome mult enchanting lullabies of fimple peafant wo men, poffefled of mufical fenfibility, but far removed, in the cool fequeftered vale of life, from alt opportunities of ftealing from our great compofers. Some of thefe lullabies never fail to charm, even the moft erudite mufician, when fung by a fine flexible voice: but it would puzzle Mr Rameau to accompany them fecundum artem.
We conclude this fubject by defcribing a moft beautiful and inftructive experiment.
Mr Watt, the ceiebrated engineer, was amufing him-
felf (about the year 1765 ) with organ building, and invented a monochord of continued found, by which he could tune an organ with mathennatieal precifion, according to any propofed fyttem of temperament. It confited of a covered Itring of a violineetlo, founding by the friction of an ivory wheel. The in?trument did not anfwer Mr Watt's purpnfe, by rcafon of the ciead harthnefs of its tone, and a flutter in the flring by the unequal aftion of the wheel. But Mr Watt was amuled by obierving the Atring frequently taking, of its own aceord, points of divifion, which remained fixed, while the reft was in a flate of frong vibration. The inftrument came into the poffeffion of the writer of this ary ticle. H!e foon faw that it gave him an opportunity of making all the experiments which Bernoulli couht only relate. When the tring was kept in a fate of fimple vibration, by a very uniform and geatle motion of the wheel, if its middle point was then gently touched with a quill, this point immediately ftopped, but the' Aring contimued to vibrate in two parts. fomuling the oftave: And this, it contimued to do, howerer ltrong the vibrations were rendered afterwards by irccealing the preffure and velocity of the wheel. The fane thing happened if the At:ing was gently tonclied at oxe third. It intlantly divided iffelf into three parts, will two nodes, and found the 12 th . In the lame namer the double octave, the 17 th, and all other harmonics, were produced and insintained.

But the pretticll experiment was to put fumething foft, fuch as a lock of cuttoin, in the way of the wide vibrations of the cord, at one third and two thirds of its length, fo as to difturb them when they became very wide. When this was done, the ftring inflantly put im the appearance of fig. 8. performing at once the full vibration competent to its whole length, and the thre fubordinate vibrations, correfponding to one-third of its length, and founding the funcamental and the 12 the with equal ftrength. In this manner all the different aecompaniments were produced at pleafure, and could l.e continued, even with ftrong founds. And it was anufing to obferve, when the wheel was ftrongly prefled to the ftring, and the motion violent, the noles would form themielves on various parts of the Atring, running from one part to another. This was always accompmied with all the jarring founds which correfponded to them.

When the ftring was making very gentle, firp ple vibrations, and the wheel hardly touching ir, if a violincetlo was made to found the 12 th very itrongly in its neighbourhood, the itring inftantly divided itfelf, and vibrated in uniton, frequently retaining its fimple vibration and fundamental tone. We recommend this experiment to every perfon who wilhes to make himielf well acquainted with the mechanifim of mufieal founds. Ite will fee, in a moll fenfible and convincing inanreer, how a fingle It ing of the AEolian harp gives us all the changes of harnony, niding from one tound to another, according as it is affected in its different parts by an insegular breeze of wind. The writer of this article has attempted to regulate thefe fweet harmonic notes, and to in. troduce them into the organ. His fuccefs has been very eneouraging, and the founds far exceed in pathetic fiveetnels any that have yet been produced by that noble inftrument. But he lias not yet brought them fully under command, nor made then ftrong enough for any thing but the fofteft chamber mufic. Other
neceffary

Mufical Trumpet.

Mufieal neceflary occupations prevent him fram giving the attenTrimje, tion to this futbect that it defervea. He recommends ITchir:Raus. it thercfore to the mufical in.?rumert makers as richly deferving their notice. 1His general method was this:

A wooden pipe is made, whofe fection is a double fquare. A partition in the middle divides it into two pipes, along fide of each other. One of them conmunicates with the foot and wind cheft, and is fhut at the upper end. The other is open at the upper, and fhut at the lower end. In the patition there is a fit almoft the whole length, and the fides of this nit are brought to a very fmooth chamfered or fcather edge. A fine eatgut is ftrained in this flit, fo as almof to touch the fides. It is evident that when the wind enters one pipe by the font, it paffes through the fit into the other, ard efcapes at the top, which is open. In its paffage it forces the catgut into motion, and produces a muiical note, having all the fweetnefs of the Æolian harp. "Ahe ftrength of found may be increafed by inereafing the body of air which is made to undulate. This was done by ufing, inftead of catgut, very narrow filk tape or iibband varnifhed: but the unavoidable raggednefs of the edges made the founds coarfe and wheefing. Flat filver wire was not fufficiently elaftic; flat wine, ufed for watch balance fprings, was better, but fill very weak founded. Other methods were tried, which promifed better. A thin round plate of metal, properly fupported by a fpring, was fet in a rcund hole, made in another plate not fo thin, fo as juit not to touch the fides. The air forced through this hole made the fpring plate tremble, dancing in and out, and produced a very bold and mellow found. - T'his, and fimilar experime , are richly worth attention, and promife great additions to our inftrumental mufic.

TSCHIRNI-AUS (Ehrenfred Walther Von), a name well known in the republic of letters, and one of the ornaments of the laft century, was born April 10. 1651, at Kiflingfwald near Gorlitz in Upper Lura. tia. His father was Erneft Chritopher Von Tfchirn. haus, Baron Killingfwald and Stol:zberg, and Oberufchoufeld, privy counfellor, and in various offices of rank under the Elcctors George I. and II. of Saxony, the frit of whom honoured him with the diflinction of the gold clain and portrait, as a mark of his fenfe of his merits and fervices. The mother of the young Von 'I'fchirnhaus was Maria Stirling, daughter of Baro a Stirling et Acbil, Stirling of Achil, or Achyle, in scotland, an old and refpee:able family, as appears by an epitaph which the Duke Chriftian, brother of the Elettor Ceorge II. infcribed on the tomb of Johan Alkert Stirling of Achil, in the cathedral of Marckfourg. This gentleman had been prefitent of the fenate of the clec:orate, privy counfellor, director of the impofts, and mafter of horfe to the Prince, and had, by his faithful and uleful fervices, acquired his higheft efteem.
E. W. Von Tílhirnhaus was born, as has been ob. ferved, at Killingtwald, the ufual relidence of the fami1 f , and pofiffed by it during more than 300 years. The family came originally from Bohemia, and sppears 10 have been couffideratle, feeing that, from the earlieft accounts of it in Lufatia, the Barons of Kinlinglwald are general $y$ found in the noat refpectable civil offices.
'i'he figure which Baron Von Tfchirnhaus, the fub. ject of this relation, has made in the fcientific and political world, makes it fuperfluous to fay that his early
years were well employed. Quick apprehenfion, a clear perception of the fubject of his thoughts, and the mon ardunt and infotiable thirft for knowledge, diltinguihed him duning his academical education. When 17 years of age, he was fent to Leyden. In 1672 all fludy was interrupted in Holland by the din of war; and Mr Von Tichirulaus left the uriverfity for the camp. His knowledge in mathematics, mechanics, and all phyfical fcience, found ample room in the military fervice for thewing the importance of thofe fciencer; and Trchirnhaus fo diftinguifhed himfe' $£$ by his fervice in this way, that Baron Nieuland, a general officer of great merit, and at the fame time an accomplifhed fcholar, took delight in puhing him into every fervice where he could fhew himfelf and his talents.

After two years fervice, he returned to his father's ; but finding little to interef him in the life of a mere country gentleman, and fill burning with the fame thir!t of knowledge, he prevailed on his father to allow him to travel. His younger brother George Albrecht Von Tfchirnhaus, Baron Obernfchonfeld, which he intherited from his grandfather Stirling, loved him with the warmelt affection, and fupplied hin liberally with what was required for his appearance everywhere in a manner becoming his rank, and for fully gratifying his curiofity. He uled often to fay, "Surry was I to lofe the company of my dear brather, and I fometimes wilhed to accompany him ; but not having his thirIt for knowledge, I knew that his love for me would debar hiin of much happinefs, which i fhonld thus have obftructed." Felices anima! He went to Holland, from thence into England, France, Italy, Sicily, Malta, Greect-Returning through the Ty:ol, he met liis brother at Vienna, where both were in great favour at the court of Leopold Wherever he went, he made himfelf acquainted with the molt eminent in all departments of fcience, living with them all in the mutual exchange of difcoveries and of kind offices. In Holiand he was in. timate with Heyghens ant Hudde ; in England, with Newton, Wallis, Halley, and Oldenburgh ; in France, among a people who more fpeedily contract acquaint. ance, there was not a man of note with whom he did not cultivate an active acquaintance-2nd, fortunately, Leibnitz then lived at Paris: in Italy, he was particular careffed by Michacli, foon after Cardinal; and was in the clofeft correfpondence with Kircher. His enjoyments, however, were derived folely from the communications of the moft eminent; his curiofity wa3 directed to every thing, and wherever he faw an ingenious artifan, he was cager to learn from him fometning ufeful. In 1682 , when at Paris for the thitd time, he communicated to his friends his celebrated thenry of the cauttic curves, which marked him out as a valuable acquifition, and he was elected a member of the Royal Academy of Sciences, which was then reformed by the great ininifter Colbert, and the noof illutrious in all nations were picked out for its ornainents. There he found himfelf feated with Leibuitz, Fiuyghens, John Bernoulli, ¿e.

After twelve years employed in viliting Europe, he returned home: but after a fhort ftay, went to Flanders, and prepared to publifh his work, intitled Medicina ATentis ; of which the fubject may alinot be gueffed, from the way in which he had exercifed his own mind. Having the moft exalted notions of the intellectual and
moral nature of man, he thought that the continual has deprived the world of thefe, and other beneficent fupply of information was as neceffry as the continual fupply of food. And his great principle was to enLIGHIFN. This work was committed to the care of fome friends, a!d did not appcar till I687, at Amferdain. A fecond edition appeared at Lcipfic in 1695.

Finding now that his moderate fortune was infufficient for the great pullic projects he had in view, he fought for affiftance, and endeavoured to make friends by frequenting the court of the Elector at Drefden. He foon became a favourite of his Princes, George the II. and III. and was appointed to activc offices of great refpontibility. By the orders and encouragement of the Elector, then king of Poland, he introduced into his native country the filt manufacture of glafs; and his project focn throve to fuch a degree, that not only Saxony was fupplied, but they even began to export the finer kinds of white ghlais for windows ; in which inanufacture Saxony ftill excels. It wás in the courfe of experiinents for improving this manufacture that Tfchirnhaus n:ade the celebrated great burning glaffes which Aill bear his name. He made two of thefe lenfes, and gave ove to the Emperor, and the other to the Acadeniy of Paris. He was eager to improve the art of forming and polifhing optical glaffes; and in the profeeution of the theory on which their performance depends, he made fome beautiful difcoveries in the department of pure geometry. It is well known that all the fciences are allied, and of a family, and that eminence in one is feldom attainable without the affiftance of others. His prefent purfuits led him to the Gudy of chemiftry, which he profecuted with the fame ardour which he exhibited in every thing he undertook. But a!l the while, mathematics, and efpecially geometry, was his favourite ftudy; and he was anxious to make the fame advances in the general paths of mathematical invefligation which he thought he had made in the general laws of material uature. He apprehended that only bye paths were yet known, and that many things were yet inacceflible; becaufe we had not yet found out the great roads from which thofe branches were derived. He was of Des Cartes's opinion, that the true road in mathematics mult be an caly one, except in cafes which were, in their own nature, complicatcd. Very tarly, therefore, he began writing on mathematical fubjects,



 thefe his epifodical thadies in mathematics deferves the name of a department of the fcience. This is the cafe with his theory of cantic curves, with his method of targents, and his attempt to free Leibnitz's calculus fr m all comfideration of infintefmal quantitice. Mr Tfchirrihaus foldom gave hirrfalf any trouble with a particular problem. In all his mathematical perfurmances, there is an evident connection with fomething which he confadered as the great whole of the Icience; and the manner of tueating the different queftions is phainly accommodated to a ! ftem in his thonghts. This he intended as the third part of the Medicina Mentis; and, having nearly- completed the fecond, he had propo. fed thefe as the occupation of the enfuing winter ( 1708 . 9). But his death, which may be called promaturc,



 and ufeful labours.

Mr Von Tfchirnhaus was of the nof mild and gentle difpofition, as was well known to all who enjoyed his acçuaintance. This difoofition was fo eminent in him, that fearcely any perfon ever faw him angry, or even much ruffled in his temper. He forave injuries frank. ly and heartily, and often food the triend (unknown) of thole who had wronged him. By fuch conduet, he changed fome enmities into the moft feady and affectionate friendifips. As an inquirer and an inventor, he had contentions with other claimalits, and fome difputes about the legitimacy of his methods; as, for example, with Nicholas Fatio Duiller, who attacked Tfchirnhaus's method of tangents; and Preftet and Rulle, who found fault with his expreffion of equations of the third degree. But thefe were all friendly debates, and never carried him beyond the limits of gentlemanly behavionr. He began to difpute with Ozanam about a quadratrix; but on being merely told that he was mitaken, by $P$. Souciet, he immediately acknowledged his error, and corrected it.
Many original and important mathematical perforinarces of Mr Von Thfchirnhaus are to be feen in the Lcipfic Acts, in the Memoirs of the Academy of Scien. cts at Paris, and other literary journals. His happy generalifation of IDr Barrow's theorcm for the fucus of a fender pencil of rajsafter reflection or refraction, and the theory of cauftic curves, in which this terminates, both conftitutes one of the moft elegant branches of optical fcience, and affurds a rich harveft of very surions and unexpected geometrical truths. The mamee in which he notices the rough way in which his trit and fole niftake in this theory was poinsed out, is per:hap incomparatle as an example of gentlemanlike reprehenfion, and is a leflon for literati of all defrriptions. highly valuable on account of the foft way in which it falls, while it is convincing as a mathematical theorem.
Tichirnhaus was the difeoverer of the fubita:ice of which the celebrated Saxon porcelain is made, and of the manner of working it up; by which he eftablifined a manufacture highly profitable to his country, and lias given us the fincit potters in the world. He never wearied in fpreading ufeful kiowledge; and the flope of our artifans of almolt ail kinds were fuppled with the arts were enabled, through the encouragunent of himfelf and his friends, and often by his pecuniary affifance, to bring their talents before the public ese. In fiort, be feenied at all times to profer the public gical to his own ; and never felt fo much pleature as when he could promute fcience or the ufful arts. He was as it were ttimulated to this by an innate propene fity. And as he was more defirous of beirg tha: of af pearing the accomplithed man, lit was in no conctan. what notice otherb tonk of lis fervices to the public. He even reprefents thie dedire of tame as hofile to the inprovement cither of fcience or morality, in his MIt.dicima Mentis; a work which is acknouledged by al! who knew him to be a picture of his owir amathle mind. He lightly eftecmed riches ; and knew not what
halis. $\mathrm{rl}^{-}$























$\times$
$\qquad$





 -



118

Thirn- ufe they were of, except for provieing the neceffaries of
hans. life, and the means of acquiring knowledge. In perfect conformity to this maxim, he modefly, and with elegant refpect, refufed the ample prefents made him by his affectionate fovereign; and when he was added to his cabinet council, he received the diploma, but begged and obtained to be free from the title. And when he prefented his great burning glafs to the Emperor, and got from him the dignity and infignia of Baron of the Empire, he pleaded for leave to decline it, requefting to keep the chain and portrait, which he always wore under his veft. He expended a very great portion of the ample revenue left him by his father in the fervice of his country, by promoting the ufeful arts and foiences.
Mr Von Tfchirnhaus venerated truth above all things; faying, that thofe who thought any thing comparable with it were not the fons of God, but Rep-children, and that the lose of truth is the ruling affection in every man of a worthy heart. In a letter to an intimate friend, he faid that, by the age of five and-twenty, he had completely fubdued the love of glory, of riches, and of worldly pleafures; and that at no time he had found it difficult to reprefs vanity, becaufe be was every day. confcious of having acted worfe than he was certain that he might and fhould have done. He felt himfelf humbled in the fight of the All perfect Judge.

Nor was all this the vain boaft of a man averfe to bufinefs, and poffeffed of an ample fortune, which permitted him, without inconvenience, to pleafe his fancy in ftudy, and in helping others with what to himfelf was fuperfuons. Such a charagler, though rare, may exift, without being the object of much refpect. No : Mr Tfchirnhans was really a philofopher of the true ftoic feet, in refpect of fortitude of mind, while a good Chrittian in modefty and diffidence. In the laft five years of his life he bore un under troubles, and embarraffments, and misfortunes in his family, which would have tried the mind of Cato himfelf. But in the midft of thefe forms he was unhaken, and preferved his ferenity of mind. He was even fenfible of this being a rare gift of Providence, and ufed frequently to exprefs his thankfulnefs for a treafure fo precious. He felt deeply his relation to the Author of Nature, and rejoiced in thinking himfelf fubject to the providence of God. He faid that he was fully perfuaded that he would meet with perfect juftice, and would therefore frive to perform his own part to the utmolt of his power, that his future condition might be the more happy, and that he might in the mean time enjoy more fatisfaction on reflecting on his own conduct. His lot, he faid, was peculiarly fortunate: having fuch thirft for novelty, he would have been unhappy without an affluent fortune; and his own enjoyments encouraged neither vice nor idlenefs in himfelf or in the miniters to his pleafures.

This amiable perfon was of a confitution not puny, bat not robuft, and he had hurt it by too conftant ftudy. He feared no difeafe; thinking that he had a cure or an alleviation for all but one, namely, the ftone and gravel. He had a dread of this, and laboured to find a preventative or a remedy. He thougl. hat he had alfo done a great deal here; and defcribes in his Medicina Corporis a preparation of whey, whi ch he faid
he ufed with gre2t advantage to his health. But his Techirn. precautions were in vain: He was attacked with the gravel, which, after three months fuffering, brought on a fupprefion of urine. The phyficians faw that his end approached; and finding him difregard their prefcriptions, they quitted him. He treated himfelf (it is faid judiciouny) for fome time, and with fome appearance of fuccefs ; but at laft he faw death not far off. He dictated a letter to his Sovereign, thanking him for all his favours and kindnefs, and recommended his children to his protection. He never fretted nor complained; but frequently, with gliftening eyes, expreffed his warm-. eft thanks to Providence for the wonderful track of good fortune and of happinefs that he bad enjoyed; and faid that he alfo felt fome fatisfaction in the confcioufnefs that fome of this was owing to his own prudent condua. He poffiffed his entire faculties to the laft moment; and when he felt his fpirit juft about to depart, his laft words were, " 7 "̈ triumphe-ViZoria!"" No longer able to fpeak, he made figus for what he wanted; and a little after, fhutting lis eyes, as if to neep, he gently, and without a groan, yielded up his fpirit, about four o'clock in the morning of the 11th of October 1708 , aged 56.

His funeral was penformed in a manner becoming his rank, and the body conveyed to the family vault. The Elector (King of Poland) defrayed the expence; for he would not allow his family to have any thing to do with the funeral of a man of fo public a character, and fo univerfally beloved.

The account of fuch a life as that of Baron Von Trchirnhaus would, at all times, make a pleafant and ufeful impreffion. In thefe our times, in the end of the 18 th century, after fociety has availed itfelf of all the acquilitions in fcience and art, furnifhed by that ardent age of the world which this gentleman contributed to adorn; in an age when we boaft of illumination unparalleled in hiftory, and of improvements almoft amounting to perfection; and in particular, of an emancipation from the prejudices which had obfcured our vicw of the chief good, and ftifled public fpirit-now, when we are fo full of knowledge that it is running over on all hands, in volumes of inftruction, how to make the world one happy family ; in thefe bright days of philanthropifin, can the public records of Europe exhbit a fuperior character to that of Mr Von Tfchirnhaus, either in refpect of wifdom or of difpofition? Was he not a philanthropitt, a fincere lover of mankind? Was he not wife, in employing his great acquired knowledge as the means of direct and active beneficence, by limiting his exertions to the extent of thofe circles where his own effiorts would be effcctive? He did not write books, teaching others how to do good: he taught it by example; being determined that his own withes to fee men happier fould not fail by the want of fuch wihes in others, even after he fhould inftruct them. He never allowed his infatiable curiofity for frefh difcoveries to interfere with the immediate turning to the good of his own country the knowledge he had already acquired. He probably never thought of improving the fituation of the Chinefe or the Mexicans, finding that it required all his ample fortune, and all the intereft and influence he could acquire, to do the good he wifhed in Saxony. We doubt not but that he was equally attentive to the could hardly be without his alfo being a loving brother and a dutiful fon. The nature of the diftreffes which he experienced in his family, and the manner in which he behaved under them, fhew him to have been an eminent Chriftian moralift. With a modefty that is unmatched by any one of the thoufands who have poured out inftructions uponus during the laft ten years, and a gracefulnefs which characterifes the gentleman, his $M_{e}$. dicina Mentis is offered to public notice, merely as an experimental proof that a certain way of thinking and acting is productive of internal quiet of mind; of great mental enjoyment, both moral and intellectual ; and of peace, and the good will of thofe around us: and that it did, in fact, produce a dutiful and comfortable refignation to the unavoidable trials of human life. He pretends not to be grearly fuperior in wifdom to his neighbours, but merely tells how things fucceeded with himfelf. He did not fcruple, however, to publifh to the world difcoveries in fcience, in which he had got the ftart of others during that bufy period of fcientific occupation: and thefe difcoveries in mathematics were highly prized by the firf men of the age ; nor will the name of Tfchirnhaus, or his cauftic curves, ever be forgotten.

We felt ourfelves obliged to the friend who took notice of the omiffion of this gentleman's name, fo eminent in the mathematical world, in the courfe of our alphabet; but when we looked into the Memoirs of the Academy of Paris for 1709 for fome account of him, what wc there faw appeared fuch a continual panegyric, that we could not take it as a fair picture of any real character. Looking about for more impartial information, we found in the ABa Eruditorum, Leipf. 1709, the account of which the foregoing is an abttract, except a particular or two which we have copied from an account in the Literary Journal of Breflaw, by Count Herberttein, whom we can fcarcely fufpect of undue partiality, becaufe he had fome difputes with Mr Von Tfchirnhaus on mathematical fubjects. May we not fay, "the memory of this man is fweet!"

TSHAMIE, the Indian name of a tree in the Northern Circars of Hindoftan. It grows, \{ays I)r Roxburgh, to be a pretty large tree, is a rative of molt parts of the coaft, chiefly of low lands at a confiderable diftance from the fea, and may be only a varicty of profopis Jpicigera, for the thorns are in this fometimes wanting; Howers during the cold and beginning of the hot feaions. Trunk tolerably erect, bark deeply cracked, dirty afth colour. Branches irregular, very numerous, forming a pretty large fhady head. Prickles fcattered over the fmall branches; in fome trees wanting. Leaves alternate, generally bipinnate, from two to three inches long ; pinnæ from one to four, when in pairs oppofite, and have a gland between their infertions. Leaf. lets oppofite, from feven to ten pair, obliquely lanced, fmooth, entire, about half an inch long, and one-fixth broad. Stiputes none. Spikes feveral, axillary, filiform, nearly erect. Bracts minute, one-flowered, falling. Flozvers numerous, fmall, yellow, fingle, approximated. Calyx below, five-toothed. Filaments united at the bafe. Anthers incumbent, a white gland on the apex of each, which falls off foon after the flower expands. Style
crooked. Stigma fimple. Legume long, pendulous, not Twaken. inflated. Seeds many, lodged in a brown meally fub. ftance.

The pod of this tree is the only part ufed. It is about an inch in circumference, and from fix to twelve long; when ripe, brown, fmooth, and contains, befides the fceds, a large quantity of a brown meally fubftance, which the natives eat ; its tafte is fweetifh and agreeable ; it may therefore be compared to the Spanifin algaroba, or locuft tree. (Ceratonia filiqua, Linn.)

In compliance with Dr Kœnig's opinion, Dr Roxburgh calls this tree a profopis; but as he thinks the antheral glands give it a claim to the genus adenanthera, we have retained the Indian name till its botanical claffification fall be afcertained by thofe who have greater authority in the fcience than we lay claim to.

TUCKER (Abraham), Efq; a curions and original thinker, was a gentleman of affluent fortune, and anthor of "The Light of Nature purfued," 9 vols 8vo ; of which the five firft volumes were publifhed by himfelf in 1768 , under 1 he affumed name of "Edward Search, Efq;" and the four laft after his death, in $177 \%$ as "The pothumous Work of A braham Tucker, Efe; publifhed from his manufcript as jntended for the prefs by the author." Mr Tucker lived at Betchworthcaftle, near Dorking, in Surrey; an eftate which he purchafed in the early part of his life. He married the danghter of Edward Barker, Efq; by whom he had two daughters; one of whom married Sir Henry St John, and died in his lifetime; the other furvived, and now lives at Betchworth-caftle. - He loft his eyefight a few years before his death, which happened in 1775 . To defcribe him as a neigbbour, landlord, father, and maginrate, it would be neceffary to mention the molt amiable qualities in each. It is unneceffary to add, that he was very fincerely regretted by all who had the pleafure of his acquaintance, and who food connected with him in any of thofe relations.

Tucker (Jofiah, D.D.), well known as a political and commercial writer, was born at Langhorn, in Caermarthenfhire, in the year 1712 . His father was a farmer, and having a fmall eftate left him at or near $A$. beryftwith, in Cardiganflire, he removed chither; and perceiving that his fon lad a turn for learning, he fent him to liuthin fchool, in Denbighfhire, where he made fo refpectable a progrefs in the claffics, that he obtained an exhibition at Jefus College, Oxford. It is generally undertood that feveral of his journeys to and from Ox. ford were performed on foot, with a flick on his Thoulder, and bundle at the end of it. Thus it might be faid by him, as by Simonides, "Oinnia mea, mecuric porto."

At the age of 23 he entered into holy orders, and ferved a curacy for fome time in Gloucefterfhire. About I 737 he became curate of St Stephen's church in Brif. tol, and was appointed minor-canon in the cathedral of that city. Here he attracted the notice of Dr Jofeph Butler, then Bifhop of Briftol, and afterwards of Dur. ham, who appointed Mr Tucker his domeftic chaplain. By the intereft of this prelate Mr Tucker obtained a probendal ftall in the cathedral of Briftol ; and on the death' of Mr Catcott, well known by his treatife on the Deluge, and a volume of excellent fermons, he became rector of St Stephen. The inhabitants of that parift confirt confitt chicily of merchants and tradefnen ; a circum. flance which greatly aided his natural inclination for commercial and political fudies.

When the famous bill was bronght in'o the Honfe of Commons for the naturalization of the jews, Mr I'ucker. confidering the meafure rather as a merchant no politician than as a Chribion divine, wrote in defence of it with a degree of $2 . e l$ which, to fay no more, was at leat indecent in a man of his profefrion. As fuch it was viewed by his bretloen of the clergy, and by his patinioners; for, while the forner attacked him in bamplilets, newfpapers, and magazines, the latter burnt his effigy dreffed in canonicals, together with the letters which he had written in deferce of the naturalization.

In the year 1753 he publinhed an able pamphlet on the "Turkey Trade;" in which he demonflrates the evils that refult to trade in general from chartered companies. At this period Lord Clare (afterward Earl Nugent) was returned to Parliament for Britol; which honour he obtained chiefly through the ftremnous exertions of Mr . Tucker, whofe influence in his large and wealthy parifh was almoft decifive on fuch an occafion. in return for this favour, the Earl procured for him the dearery of Gloucefter, in 1758, at which time he took His degree of doctor in divinity. So great was his reputation for commercial kunwledye, that Dr Thomas Heayter, afterwards Bifhop of London, who was then tutor to his prefent majefly, applied to Dr Tucker to draw up a differtation on this fuhject for the perufal of his royal pupil. It was accordingly done, and gave great fatiofaction. This work, under the title of "The Elements of Connmerce," was printed in quarto, but never publifhed.

Dr Warburton, who became Bifhop of Gloucefter in the year 1760 , thinking very differently from 1 Dr Tucker of the proper ftudies of a clergyman, as well as of the projeet for naturalizing the Jews, faid once to a perfon who was praifing the Elements of Commerce, that "his Dean's trade was religion, and religion his trade." This farcafin, though not perhaps groundlefs, was certainly too fevere; for fome of the Dean's puhlications evirce him to have devoted part of his time at leaft to the fludy of theology, and to have been a man of genuine benevolence.

In the year 1771, when a frong attempt was made to procure an abolition of fubfeription to the 39 articles, Dr Tucker came forward as an able and moderate advocate of the church of England. About this time he publifhed "Directions for Travellers;" in which he lays down excellent rules, by which gentlemen who vifit foreign countries may not only improve their own minds, but turn their obfervations to the benefit of their native country.

The Dean was an attentive obferver of the American conteft. He examined the affair with a very different eye from that of a party man, or an interefted merchant ; and he difcovered, as he conceived, that both fides would be better off by an abfolute feparation. Mr Burke's language in the Houfe of Commons, in confequence of his publifhing this opinion, was harth, if not illiberal. In his famous fpeech on the American taxation bill, April the 13 th, 1774 , he called the Dean of Gloucefter the advocate of the court fadion, though it ic. well known that the sourt difapproved of the propo-
fal as much as the oppofition. This attack roufed the Tucker: Dean to refentment; and he publimed a letter to Mr Burke; in which he not only vindicates the purity of his own primciples, but retorts upon his adverfary in very forcible and farcaltic terms. He afterwards fuppotted I.ord Nugent's intereft in Brifol againf that of Mr B rrke, and was certainly very inftrumental in making the latter lofe his election.

When the terrors of an invalion were very prevalent in ${ }^{7799}$, Dr Tucker circulated, in a variety of periodical publications, fome of the moit fenfible obfervations that were ever made on the fubject, in order to quiet the fears of the people. In 1781 he publifhed, what he had printed long before, "A Treatife on Ci vil Government," in which his principal defign is to counteract the doctrines of Locke and his fullowers. The book made a confiderable noife, and was very fharply attacked by feveral writers on the democratic fide of the queftion, particularly by Dr Towers and Dr Dunbar of Aberdeen. This laft gentleman acted a part which, if not difhonourable, was at leaft uncommo:1. The Dean had thrown off thirty copies of his work long before he publifhed it; and thefe he fent to different men of eminence, that he might avail himfelf of their animadverfions before he fhould fubinit it to the public at large. Principal Campbell of $A$ berdeen received one copy for this purpofe; and Dr Dunbar having by him been favoured with a perufal of it, inftead of fending his objections privately to the author, publifthed fevere remarks on it in a work which he had then in the prefs. Thus was the anfwer to the Dean of Gloucefter's Treatife on Government publifhed before that treatife itfelf; but $\operatorname{Dr}$ Dunbar was no match for Dr Tucker,

In the year 1782 our author clofed his political career with a pamphlet intitled "Cui Bono?") in whick he balances the profit and lofs of each of the belligerent powers, and recapitulates all his former pofitions on the fubje? of war and colonial poffefions. His publications fince that period confilted of fume tracts on the commercial regulations of leland, on the exportation of woollens, and on the iron trade. In $1777^{\circ}$ he publifhed feventeen practical fermons, in one volume octavo. In the year 1778 , one of his parifhioners, Mifs Pelloquin, a maiden lady of large fortune and moft exemplary pie. ty, bequeathed to the Dean her dwelling houfe in Queen Square, Brittol, with a very handfome legacy, as a tellimony of her great efteem for his worth and talents. In the year 1781 the Dean married a lady of the name of Crowe, who relided at Gloucelter.

It frould be recorded to his praile, that though enjoying but very-moderate preferinent (for to a man of no paternal efate, or other ecclefialtical dignity, the Deanery of Gloucefter is no very advantageous fituation), he was notwithfanding a liberal benefactor to feveral public inftitutions, and a diffinguifhed patren of merit. The celebsated John Henderfon of Pembrokecollege, Oxford, was fent to the univerlity, and fupported there, at the Dean's expence, when he had no means what ver of gratifying his ardent defire for ftady. We flall mention another inftance of generofity in this place, which reflects the greateft honour upon the Deano About the year 1793 he thought of refigning his reetory in Bait jl, and without communicating his defign to any other perfon, he appled to the Chancelor, in
whole

Thatrer. Whofe giff it is, for leave to quit it in favour of his cuculiconas rate, a mofl deferving man, with a large family. His niz. Lordhip was willing enough that he fhould give up the living, but he refufed him the liberty of nominating his fuceeffor: On this the Dean refolved to liold the living himfelf till he could find a fit opportunity to fueceed in his object. After weighing the matter more deliberately, he communicated his wifh to his parifhioners, and a dvifed them to draw up a petition to the Chancellor in favour of the curate. 'This was accordingly done, and figned by all of them, without any exception, either on the part of the diffenters or others. The Chancellor being touched with this teftimony of love between a clergyman and his people, yielded at latt to the applieation; in confequence of which the Dean cheerfully refigned the living to a fucceffor well qualified to tread in his fteps. Since that time he refided chiefly at Gloucefter, viewing his approaching diffolution with the pla. cid mind of a Chriftian, confcious of having done his ruty both to God and man. He died in Norember 1799. The following we believe to be a tolerably correet lift of his works.
Theological and Controverfial.-r. A Sermon, preach. ed before the Governors of the Infirmary of Brittol, 5745.2 . Letters in behalf of the Naturalization of the Jews. 3. Apology for the Church of England, 1772.4 . Six Sermong, 12 mo , 177.3. 5. Letter to 1)r Kippis on his Vindication of the Proteflant Dif. fenting Minifters. 6. Two Sermons and Four I'racts. 7. View of the Difficulties of the Trinitarian, Asian, and Socinian Syftems, and Seventeen Sermons, $177 \%$.

Political and Commercial.-8. A pamphlet on the Turkey Trade. 9. A brief View of the Advantages and Difadvantages which attend a Trade with France. 10. Refections on the Expediency of Naturalizing fo. reign Proteftants, and a Letter to a Friend on the fame Subjeet. 11. The Pleas and Arguments of the Mother Comintry and the Colonics flated. 12. A Letter to Mr Burke. 13. Quere, Whether a Connection with, or Separation from, America, would be for national Advantage? I4. Anfwers to Objections againft the Sieparation from America, 15. A Treatife on Civil Government. 16. Cui Bono? 17. Four Leetters on national Subjects, 18, Sequet to Sir William Jones on Government. 19. On the Difpute between Great Britain and Irelnd. 20. Several Papers under the Signature of Caffandra, \&c. on the Difficulties attendant on an Invafion. 21. A Treatife on Commerce (Mr Coxe, in his Life of Sir Robert Walpole, fays that this was printed, hut never publifhed.).

Mifcellaneous.-22. Directions for Travellers. 23. Cautions againft the Ufe of Spirituous Liquors. 24. A Tract again? the Diverfions of Cock-fighting, \&c.

TULIPOMANIA, the very proper name given to a kind of gambling traffic in tulip roots, which prevailed in Holland and the Netherlands during fome part of the 17 th century. It was carried on to the greateft extent in Amfterdam, Haerlem, Utrecht, Alkmaar, Iceden, Rotterdan, Hoorn, Cnkhuyfen, and Meeden bliek: and rofe to the greateft beight in the years 163, 16 25, 1636 , and 1637 . Munting, who, in 16. 6, , wrote a book of 000 pages folio on the fulject, has given a few of the moft extravagant prices, of which we thell werent the reater with the following For a soot of that fpecies called the Vicerey, the after-menSuprl. Vol. H. Part II.


Thefe tulips afterwards were fold according to the weight of the roots. Four hundred perits* of Admiral Lief. "A porit is ken coft 4400 florins; 446 ditto of Admiral Von der weinhe Eyk, 1620 © ©orius; 106 pervis Schilder coft 1615 flo whan a rins; 200 ditto Semper Augn'tus, 5500 forins: 410 grain. ditto Viceroy, 3 วco florins, \& c. The fpecies Semper Augultus has been often fold for 2500 florins ; and it once happened that there were only two roots of it to be had, the one at Amfterdam and the other at Haerlem. For a root of this (pecies, one agreed to give 4600 florins, together with a new carriage, two grey horfes, and a complete harnef6. A nother agreed to give twelve acres of land for a root : for thofe who had not ready money, promifed their moveable and immoveable goods, houfe and lands, cattle and clothes. A m?n, whofe name Munting once knew, but could not recolleet, won by this trade more than 60,000 florins in the courfe of four months. It was followed not only by mercantile people, but alfo by the firlt noblemen, citizeus of every defciption, mechanics, feamen, farmers, tmf-diggers, climney-fiwceps, footmen, maid-fervants, and old clothes. women, \&c. At firf, every one won and no one loft. Some of the poorefl people gained in a few months houfes, coaches, and horfes, and figured away like the firft characters in the land. In every town fome tavern was felected which ferved as a change, where high and low trated in flowers, and confirmed their bargains with the moff fumptuous entertainments. They formed laws for themfelves, and had their notaries and clerks.

To get poffeftion of fine flowers was by no means the real object of this trade, though many lave faid that it was, and though we lave known fome individuats in Scolland, who, led away by whet they thought the faftion, have given ten guineas for a tulip rout. Dnring the time of the tulipomania, a fpeculator often offered and paid large fums for a root which he never received, and never wifhed to receive. Another fold ronts which he never poffefled or delivered. Oft did a nobleman purchafe of a chimney-fweep tulips to the amount of 2000 florins, and fold them at the fame time to a farmer; and neither the nobleman, chimney fweep. or tarmer, had roots in their puffefion, or wifhed to puffefo them Before the tulip feafon was over, more roots were lolf and purchafed. befpoke, and pronifed to be delivered, than in all probability were to be found in the gardens of Holland; and when Semper Auguflus 4 Z

## T U I

Tulipnnas was not to be had, which happened twice, no fpecies nia. of three years, lions were expended in this trade in only ore town of Holland.
To underftand this gambling traffc, it may be neceffary to make the following fuppofition. A nobleman befpoke of a merchant a tulip roont, to be delivered in fix months, at the price of 1000 florins. During thefe fix montlis the price of that fpecies of tulip mult have rifen or fallen, or remained as it was. We hall fuppofe that, at the expiration of that tine, the price was 1500 florins; in that cafe, the moblemnin did not wilh to have the tulip, and the merchant paid him 500 florins, which the latter loft and the former won. If the price was fallen when the fix montis were expired, fo that a root could be purchafed for 800 florins, the nobleman then paid to the merchant 200 florins, which he received as fo much gain; but if the price continued the fame, that is, 1000 florins, neither party gained or loft. In all thefe circumftances, however, no one ever thought of delivering the roots or of receiving them. Henry Munting, in $\sigma_{3} \sigma$, fold to a merchant at A.lkmaar, a tulip root for 7000 florins, to be delivered in fix months ; but as the frice during that time liad fallen, the merchant paid, according to agreement, orly 10 per cent. "So that my father (fays the fon) received 700 florins for nothing; but he wonld much rather have delivered the root itfelf for 7000 ." The term of thefe contratis was often much fhorter, and on that account the trade became brifker. In proportion as more gained by this traffe, more engaged in it ; and thofe who liad money to pay to one, had foon money to receive of another; as at faro, one lofes upon one card, and at the fame time wins on another. The tulip dealers often difcounted fums aifo, and transferred their debts to one another ; fo that large fums were paid without calh, without bills, and without goods, as by the Virements at Lyons. 'The whole of this trade was a game at hazard, a: the Miffiffippi trade was afterwards, and as R.ceck jubbing is at prefent. The only difference between the tulip trade and tock jobbing is, that at the end of the contrat the price in the later is deternined by the Stock Exchange; whereas in the former it was determined by that at which mott bargains were made. High and low priced kinds of tulips were procured, in order that both the rich and the poor michit gamble with them ; and the roots were weighed by perits, that an imagined whole might be divided, and that people might not only hove whole, but half and quarter lots. Whoever is furprifed that fuch a traffic fhould become general, needs only to reflect upon what is done where lotteries are eftablifher, by which trades are often neglected, and even abandoned, becaufe a fpeedier mode of getting fortunes is pointed out to the lower claffes.
At length, however, this trade fell all of a fudden. Among fuch a number of contracts many were broken; many lad engaged to pay more than they were able; the whole flock of the adventurers was confumed by the extravagance of the winners; new adventurers no more engared in it; and many becoming fenfible of the odions traffic in which they had been concerned, returned to their former occupations. By thefe means, as the value of tulips fitl fell, and never rofe, the fellers
wifhed to celiver the roots in natura to the purchafers Tulifomao at the prices agreed on; but as the latter had no defire mia for tulips at even fuch a low rate, they refufed to take then or to pay for them. To end this difpute, the tulip-dealers of Alk naar funt, in the year 1637 . ceputies to Amferdam; and a refolution was paffed on the 2Ath of February, that all contracts made prior to the laft of November 1636 fhould be null and wid; and that, in thofe make after that date, purchafers thould be free on paying ten per cent, to the vender.

- The more dirguAled people became with this trade, the more did complaints increafe to the nagiffrates of the different towns; but ao the cou:ts there woold take no cognizance of it, the complainants applied to the States of Holland and Weft Friefiand. Thefe referred the buisuefs to the determination of the provincial council at the Hague ; which, on the 27 th of $A$ pril 1637 , dicelared that it would not deliver its opinion on this traffic until it had received more information on the fubject; that in the nean time every verder fhould offer his tulips to the purclafer; and, in cafe he refufed to receive them, the vender fhould either keep them, or fell them to another, and have recourle on the purchafer for any lofs he misht fuftain. It was ordered allo, that al contracts thould remain in force till farther enquiry was made. But as no one could forefee what judgmient would be given refpecting the validity of each contraet, the buyers were more obłtinate in refufing payment than before ; and venders, thinking it much fafer to acecommodate matters amicably, were at length \{atisficd with a fmall profit inftead of exorbitant gdin: and thus ended this extraordinary traffic, or rather gambling. Beckmann's Hijpory of Inventions, vol. i.
TUMAR, in Bencral, rent-roll or affefment.
r'UMBREL, is a kind of carriage with two wheels, ufed either in hufbandiy for dung, or in artillery to carry the tools of the pionetrs, \&e. and fometines likewife the monty of an army.

TUNGSTEN ( Sutpl.) when weil furfed, is, according to (ington alizas Morvean, of no higher ferecific gravity than s.auch. This is very different from the ipecific gravity which had hitherto been affigned to it. The fame eminent chemit concludes, from its extreme brittienefs and difficulty of fution, that it affords little promife of utility in the arts, except in netallic alloys, or by virtue of the properiy which its oxyd pofictics, of afording fixed colours, or giving fixity to the colours of ve. getables.

TURNSOL, a dyeffuff manfactured in Holland, the preparation of which was long kept a profomed fecret. In order to miflead foreigners, the Dusch pretended that turnfol was made from rags dyed with the juice of the finn-llower (Hclianthus), from which it obtaincd its name. Since the late revolution, lowever, in Holland, the true method employed by the Dutch for preparing this colour has been difcovered, and the proceis is as follows:-That kind of lichen called orchil (LiCHEN-Rocella. See that article in this Suppl.), or, when that cannot be procured, the large oak-mols, after being dried and cieaned, is reduced to powder, and by means of a kind of oil-prefs the powder is forced thro' a brafs fieve, the holes of which are finall. 'I'he fifted powder is then thrown into a trough and mixed with an alkali called vetas, which is nothing elfe than the
afhes

Firnsul, afhes of wine lees, in the proportion of half a pound of aflies to one pourd of powder. This mixture is moiftcred with a little human urine, for that of other animais contains lef3 ammonia, by which a fermentation is produced; and the moiftnefs is ftill kept up by the addition of more urine. As foon as the mixture affumes a red colour, it is poured into another trough; is again moiftened with urine, and than ftirred round in order that the fermentation may be renewed. In the courfe of a few days it acquites a bluifh colour, and is then carefully mixed with a third part of very pure pulverifed pota?h; after which the mixture is put into wooden pails, three feet in height, and about half a foot broad. When the third fermentation takes place, and the pafte has acquired a confiderably dark blue colour, it is mixed with chatk or puiverifed mable, and thired well round that the whole may be completely united. This latt fubllauce gives the colour no higher quality, and is intended mercly to add to the weight. The blue, prepated in this manner, is poured into nblong fuare iron moulds ; and the cakes, when formed, ale phaced upon fir boards on an airy floor in order to dry, atter which they are packed un for fale.

TURPENTIINE, a well known fubfance extracted from the pine. Unider the atticle Pinus (Fncyd.), we have given an account of one procefs by which this extract is made; but the following, which is takell from the $3^{\text {ift }}$ volume of the Journal de Ihnifique, is very different, and probality better. 'The pine from which turpentine is extracted, is never fit for this operation till it be thirty years of age. The extraction is begim in February and continmed to the end of Oetober. Incifions are made with an hatchet, beginning at the foot of the tree on ore fide, and rifing fuccefively : they are repeated once or twice a weck, the fize abont one finger 8 breadih acrofs, and three or four inches long. During the four years in which it is continued, the incifions have rifen to about eight or nine feet. Then the incifions are begun on the other fide; and during this time the otd ones fill up, and may be again aperied after fome years, fo that a tree on a good forl, and we!! managed, may yield turpentine for a century. At the botom of the tree, under the incition, a hole is dug in the ground to receive the refin which flows from the tree. 'This refin is called zerebtnthine brut, is of a milky colour, and is that which flows during the three fummer months ; it requires further puification.

The winter crop is ca!ted burras galipot, or white refin: it fticks to the bark of the tree, when the heat has not been ftrong enough to let it flow into the trongh in the ground. It is feraped off with iron kuives. IWo methods are prastifed for purifying thefe refins. That which is followed at Bayonne is to lave a copper cauldron which will hold 300 lb . of materials fixed over a fire, and the flame circulating at the bottom of the copper. The turpentine is put in, melted with a gentle heat, and, when licquid, it is ferained through a fraw. bafket made for the purpose, and ftretclied over a barrel, which receives the ltrained turpentine. 'This purification gives it a golden colour, and nay be perfurmed at all times of the year.

The fecond manner, which is practifed only in the mountain of De Buch, near Bourdeanx, coufitts in having a large tub, feven or eight feet fquare, and pierced with fmall holes at the bottom; fet upon another tub to
catch the liquor. This is expofed to the hotteft fun for the whole day, filled two thideds with turpentine, which as it melts falls through the holes, and leaves the impurities behind. This pure turpentine is lefs goldencolonred, and is much more efteemed than the ocher. Thlis procefs can only be done in the fummer.

To make oil of turpentine, an alembic, with a worm like what is ufed by the diftillers, is employed here. It generally contains 250 lb . of turpentine, which is boiled gently, and kept at the boiling point till no more oil paffes, when the fire is damped This generally gives 6olb. of oil, and the oneration lafts one day.

The boiling turpentine, when it will give no more vil, is tapped off from the ftill and flows into a tub, and from thence into a mold of fand, which it fills, and is fuffured to cool for at leaft two days without difturbing it. I'his refidue is known under the name of colophonjIt is of a brown coloar, and very diy. It may be made clearer and nearer in colour to that of the refin, by adding loot water to it hefore it is tapped oft the itill, and ftill boiling and ftirrigg the water well with it, which is cone with a befom of wet flaw; and it is :hen fold for rofin, but is little cllcemed, as it contains no cffential oil.

TUSCUTANUM, a villa helonging to Cicero, near Trufculnm, where he wrote his Quafliones Tufculane, fo nemed from the place; thas become famous as well for the productiona of gemins as of nature. Formerly the villa of Ey!l!a: now called Grotha Ferrata.-A. nother Tufcuidium (infeription), a town of the Tranfpadana, lituated on the wett fide of the Lacus Benatus. Now faid to be called Tojcoluno, in the territory of Brefcia, fubject to Venice. Here many monuments of antiquity are dur up.

IUSCULUM (anc. geog.), a town of Latium, to the north of Alba; fituatcd on an eminence, and there. fore called sti, ermum (Horace, Sitrabo). In light of Rome, at ahout the diflance of 100 ftadia, or 12 miles. Adorned with plantations and princely editices: The Spot remarkable for the goodnels of the foit, and its plenty of water. Built by 'Ielegrgus, whon fow his father Ulyfies (Ovid, Horact); called the giandion of Ulyfies in Silius Italicns. A municipium (Cicero); the birth place of the elder Cato (Nepos, Cicero). Nuw Frefouti, in the Campania of Rome.
'I'UTENA $(x$, according to Sir George Stannton, is, properly fpeaking, zine extracted from a rich ore, or calamine. The ore is powdered and mixed with char-coal-dutt, and placed in carchen jars over a fow firs, by means of which the metal rifes in the form of vapour, in a common dittilling apparatus, and afterwards is condenfed in water. - 'The calamine trom which tute. nag is thus extractec, contains very litule iron, and no lad or arfenic, fu common in the calamine of Eurepe (See Calamine, Encyclo) Hence it is that tutenar is more beautiful than our zinc, and that the white copper of the Chincfe takes fo tme a-polith. See Whate Copper, in this Sutplement.
TYERS (Thomas), an author both in poetry and profe, the friend of Johnfon, and well known to moit of the eminent characters of the prefent timic, was a fudent of the Temple in 1753. His father interded him for the law, but the young man it leems pemed a fonnet when he fhould engrots. He was an accomplifhed, but not a profound man; and had talte and ele-

## T Y P [ 732 ] T Y P

Typagra. gance of mind, figlity tinged with gleams of genius. fh: He mrote fome p florals and politica! tracts, which probably will not furvive the partialit) of his particular friends.

TYOOCRAPHY, as the word importe, is the art of printing by types; tut it is likewife ufed to fignify the multiplying of copies by any mechanical contri vance. Of the art of printing by types, and the many improvements from time to time either made or attempted in it, a pretty full account will be found in the Encyclopadia, under the titles Letter, Logography, and $P_{\text {rin ring }}$; and in this Suppitment under the word Printing. Of typograpliy, in the other and larger fenfe, fome account may likewife be found in the Encyclopedia under the title Method of Copying $W_{\text {RItings; }}$ but to ahnoft all thefe articles there is ample room for fome additions here.

The Acrestype printing of Didot and Herban, being confidered in France as a great improvement, muft not be paffed over wholly without notice. The term fereotype is derived from the Greek words sisos and rvoos, becaufe in this method the types are fixed and immove. able in the form, fo that none of them can be pulled or difplaced by the preffman. We need hardly obferve, to thofe who are at all acceuanted with the hiltory of printing, that the project of foldering a whole form together, or of cafting a folid form from an impreffion made by a general fy tem of types, or page ready compofed, is not new. It was realifed 70 years ago by Willam Ged, a goldfmith in Edinburzh; for an account of whofe melliod we refer the reader to his life in the Encyloparia. Didot now follows nearly the fame proceff as Ged. He does not indeed caft his types in a mafs, but after the form is compofed and carefulty corrected, he cements or folders the types together fo firmly that none of them is liable to be loofened by the action of the prefs or the adhefion of the balls. How far this method of printing is of value with regard to books which are altered and improved in every fublequent edition, may, perhaps, be quefliuned; but on a loofe confideration of the fubject, it feems as if it would, in every cafe, be advantageous to a bookfeller to print a few copies of a wook, and keep the types flanding to print cthers as thicy may be wanted; -we fay it would be advantageous, if it were not for the innmenfe value in types, which wonld, by that means, be locked up. To form fome jndyment of this, it may be flated, that the works of Virgil, printed by Didot. in 18 mo , form a beautiful volume of 418 pages, of 35 tines each. The characier ranges line for line with that called burgeois, $\mathrm{N}^{\circ} 2$. in Caflon's book of fpecimens, the face of the letter being rather finaller; and we are told * that the price of the platea of this

* $L_{a} \mathrm{D}_{\mathrm{c}}$
cade Plitlof, phique. work is twelve hundred franks, or 501 . ferling. From this fact fome judgment may be formed of the commercial queltion. We lave cafually looked at different books printed by Didut, but can fay nothing of their correctnefs: the page is very pretty.

For multiplying copics of any writing, or of a book of ordinary lize, Rochon, of the French National Inflitute, and now Disector of the Marine Obfervatory at the port of Breft, invented, about the year 1781, a macline for engraving, with great celerity and correctnefs, the pages of the book or manufcript on fo many plates of copper. It was fibbaitted to the examination
of a conmittee of the Royal Academy of Sciences, Typogra. whofe report of its utility was given in the following ply. wo ds :
" This machine appears to us to unite feveral advan. tages. $1 / \ell$, Engraved editions of books may be executed, by this means, fuperior to thofe which can be made by the hand of the engraver, however fiilful; and thefe engraved originals will be made with much more fpeed, and much lefs expence. 2d, As this machine is portable, and of no confiderable bulk, it may become very ufeful in armics, flects, and public-offices, for the impreffion of orders, inttructions, \&c. $3^{d}$, It poffeffes the advantage which, in a variety of circunffances, is highly valuabie, of being capable of being ufed by any man of intelligence an:d nkill, without reqniring the affitance of any profeflional workman. And, laftly, It affords the facility of waiting for the entire compofition and engravings of a work before any of the copies are pulled off; the expence of plates, even for a work of confiderable magnitude, being an object of little chargc ; and this liberty it affords to authors, may prove liggtly beneficial in works of which the chief merit confitts in thic order, method, and connection of ideas."

Rochon's machine confifts of two brafs wheels*, pla- * Sce Plate ced on the fame axis above each other, and feparated YLVI. by a number of pillars, each two inches in length. Thefe two wheels, with the interval which feparates them, are equivalent to a fingle $x$ hecl about three inches thick. In order therefore to fimplify the defcription, they are confidered as a fingle wheel which moves freely on its axis.

This wheel is perforated near its circumference with a number of fquare holes, which are the fheaths or fockets through which a like number of fteel purches, of the fame fhape, are inferted, and are capable of moving up and down. They are very well fitted; and from this circumftance, as well as the thicknefs of the double whicel, they have no fhake, or fide motion, independent of the motion of the wheel itfelf. Every punch is urged upwards by a feparate fpring, in fuch a manuer, that the wheel armed with its characters, or fteel types (the lower faces of the punches being cut into the figures of the feveral letters), may turn freely on its axis; and if it be moved, the feveral punches will pafs in tuceesfion beneath an upright fcrew, for preffure. The fcrew is fixed in a very firm and folid frame, attached to the fupports of the machine; and by this arrangement a copperplate, difpofed on the table, or bed of the apparatus, will receive the impreflion of all the punches in fucceffion, as they may be brought beneath the vertical preffing ferew, and fubjected to its action.

But as the prefs is fixed, it wonld neceffarily follow that cach fucceffive inpreffion would, in pait, deftroy ar matilate the previous impieffions, unlefs the plate itfelf were moveable. It therefore becomes neceffary that the plate fhould be moveable in two directions: the firtt, to determine the interval between the letters and words, and form the lines; and the orlier motion, which is more fimple, becaufe its quantity may remain the fame through the whole of a book, ferves to give the interval between line and line, and to form the pages.

It will eafily be conceived that it would be a tejious operation to feek, upon the circumference of the whed, each feveral character, as it might be required to cone
bencath

## T Y P'

Typograz beneath the prefs, becaufe it is neceilary to repeat this operation as many times as there are characters in a work. The anthor has confiderably diminithed the time and trouble of this operation, by fixing upon the axis of the great wheel, which carries the punches, another fmall whect, about four inches in diameter, the teeth of which act upon a rack, which carries a rule moving between two fliders. T'his rule, or firaight line, will therefore reprefent the developenent, or unfolding of the circuinference of the wheel which caufes it to move, and will flew the pofition of the great wheel, which carries the punches. For thefe two whetls being concentric, the developement of the fmall toothed wheel, of about two inches radius, will exhibit, in a fmall fpace (for example, that of a foot), an accurate regifer of the relative pofitions of the punches with regard to the preffing-fcrew. To obtain this effect, nothing more is neceffary than to place a fixed inciex oppofite to the moveable rule, which laft is divided in the following manner:

The punch on which the firft letter of the alphabet is engraved, muft be brought under the centre of the preffing-ferew ; and a line of divifion then drawn upon the moveable sule, to which the letter itfelf muft be added to diftinguifh it. The index, already mentioned, being placed oppofite, and upon this firtt divifion, will ferve to place immediately beneath the preffing-forew the punch, or rather the charafter, correfponding witl the divifion upon the rule, without its being afterwards neceffary to infpect the place either of the punch or the forew, with regard to each other. Confequently, as foon as the divifions which correfpond with all the punches inferted in the whed are engraved upon the fraight rule, the fixed index will inumediately determine the poficion into which that wheel muft be brought, in order to place the punches under the preffing.forew in the order which the work may require.

This regifter, for this name diftinguifhes the rule and its index, has no other function in the machine than io guide the hand of the optrator, and to thew when the punch is very near its prover pofition beneath the preffing-fcrew. When this is the cate, the required pofition is accurately obtaincd by means of a detent or cateh.
'ilhe detent which be ufes for this operation is a lever with two talls, one of which is urged toward the circuniference of the wheel by a fpring. To this extremity of the lever is fixed a piece of hardened Ateel, of the figure of a wedge, which, by means of a fpring, is preffed towards the axis of the great wheel, but may be relieved, or drawn back, by preffure on the oppofite tail of the lever, fo as to permit the great wheel to revolve at liberty.

In the next place, it muft be explained how this de tent takes hold of the wheel, fo as to retain it precifely in the fituation neceffary to caufe any one of the pusches, at pleafure, to give its impreffion to the plate. For this purpofe there are number of notches cut in the cireunference of the whecl, for the purpofe of receiving the detent. Thefe notches may be ahout half an inch decp, wiser towads the circumference than elfewhere, and it will be of advantage that this outer width Mould be as great as the circumference of the whtel can conveuiently allow. By this contrivance, the wedge will not fail to prefent itfelf oppofite to one of the nutches
into which it will fall, and draw the wheel exactly to Tyrograits due fituation, even though the index of the regifter fhould not be brought precifely to the line of divifion appropriated to any particular letter. For if this laft degree of precifion were required in working the machine, it would be very prejudicial to the requifite fpeed which, above all things, is required in its ufe. When the wedge is therefore left at liberty, it nut only enters inmediately into its place, and mover the wheel till its two fides apply fairly to the interior furfaces of the notch, but retains the wheel in this fate with the neceffary degree of ftability.

The method of giving the proper figure to thefe notches is very eafy. For this purpofe it is neceflary, in the firft place, to imprefs all the characters contamed in the wheel on a plate of copper or pewter. 'I he fupport on which the plate is fixed mult be moved in a right line, after each ftroke of the punch, through fuch a fpace that the characters may be arranged one after the other without touching. Now, as the perfect linear arrangement (fuppofing every other part to te true) mult depend on the notches, it might feem iuflicient to cut thefe according to the method ufed for the wheels of clock-work : but as it is very difficult to avoid fome obliquity on the face of the punch, and perhangin the liole through which it paffes, it is in almolt every cafe neceflary to retouch the notch itfeif. 'l'he requifite degree of precifion may be eafily obtained, when, uport examining with attention the print of the characters engraved upon the plate, the inequalities Mall under the afcertained by a very fine line pating exactly of comp bale of iwo dimular letters, affumed as objects may, by this means, be cetermined with gre:t pown nefs, and icmedied to the molt extreme nicety operation, the worksian muft file away per In thie furlace of the noteh which is oppofite to part of that of the motion the character requires. Great care nult be taken to file only a fmall that the inftant may be feized at which time, in order entering into the notch, brings the character wedge, by fituation.

Thefe details, refpecting the right-lined arsangenent on the characters, nuft not divert our attemion from the very great celerity with which any letter is brought to its place under the pirts by means of the argiter and detent. This ctlerity is an object of to much im. portarce in the engraving of a great work, that every mutans ought to be purfusd which may tend to incleale it. For this reafon it is, that inftead of following the alphabetic order in the arrangenent of punches on the furface of the wheel, we ought to prefer that in which the fum of the different motions to be given to the wheel, for engraving an chite work, fall be the leait poffible. 'I his tedious cnquiry nay well be difpenied with, by obleiving the orcer in which primets difule their cafes of chalaciers, that the letters of the noit trequent recurrence may be inof immediately under the hand of the workman.

If all the characters afforded an equal refiftance tos impreffion in a plate of metal, a coultant ferce would never fail to drive the punches to thit fance defth. but the faces of the letters are very unecqual, and conde. quently it will be neeffary to ufe a variable to.ce. Moft workmen ufe the hammer, and not a forew, as 1 ,

Tgpargra- thiis machine, for flamping. If the hammer had been
it to have fallen from the fame height upon every one of the punches, the force of the ftroke could be rendered variable according to the nature of the claracters, by placing a capital, or head, upon each, of an height properly adjufted to receive the hammer after paffing through a greater or lefs fpace. Bet the heads of our punches are variable at pleafure, becaufe they are fcrewed on ; and thus it is that, by experimentally adjulting the heads of all the punches, a fet of impreffions are ob. t tined of equal depths from every one of them. When, for example, the letter $i$ is placed nnder the hammer, the upper part of its head is at a finall diflance from the hend of the hamner, in order that its fall, which begias always at the farme place, may ftrike this letter weakly; but when the letter M is brought mader the hanmer, the upper part of its head being much lefs elevated than that of the letter $i$, will receive a much ftronger blow. 'i hee impreffions of the letters M and $i$ will therefore al. ways be equally deep, if the heads of the punches be once properly fixed by experiment.

- Inftrad of the itroke of a hammer, however, our author makes ufe of the preflure of a ferew, of which the threads are fo irclined that it runs through its female focket, and would fall out merely by its own weight. This conftruction affords the doutle advantagre of P :eferving the impreffous from the effects of the circular motion, and of affording a fall in the ferew of near! y nine lines for each revolution. The head of this ferew is folidly fixed in the centre of a brafs wheel, of which the pofition is horizontal. The diamater of this whecl muft be fufficiently large, that its motion may not be perceptibly affected by the irregularities of friction in the fcrew. This confiderable diameter is alfo requifite, becaufe the preffure of the fercw depends, not only upon the force which is applied, but the diftance of the place of applicatio: fionn the centre of movement.

It is effential that this wheel fhonld have very little Thake; for which reafon it is advifcable that the axis of the fe:ew fhould be prolonged above the wheel iifelf, that it may fide in a focket firmly fixed to the frame of the machine. In this fituation, the wheel, which is fixed on the prolongation of the fcrew, will have its plane corflantly pieferved in a titnstion parallit io itfelf, without any libration, totwithllanding the rife and fall of rear rine lines, or three quarters of an inch, which it undergees for eicil revohntion on its axis.

It has been itared, as a requifite condition, that the forew thould conitanty fall foom thic fame fixed point, or clevation, upon the heads of every one of the punches. To accomplifh this effential purpofe, a lever is firn ly fixed to the fupport of the ferciv; which lever reiembles the beam of a balance, having one of its extremities armed with a claw, in! the other fervingto give
it motion throngh a finall vertical face. it motion throngh a fimali vertieal ppace. The claw falls into a notch in the upper furface of the wheel attached to the ferew, as foon as that wheel has rifen to the defired elevation; and the lever itelf is fo for limit. $\mathrm{c}!$ in its nution, that it cannot take hold of the whetl, excepting when it has reached that height. The wheel, therefore, remains confined and immoveable, by reans of this detent, and canncit defcend mutil it is delivered by 1 thlfure upon the oppolite tall of the lever. In this suachine, the whect which has the prefling forew for its
axis does not perform an entire revolurion. It was with a view that there might never be any fall capable of 解king and difturbing the machine that the author determined to ufe only two thirds of a revolution to frike thofe punches, which afford the ftrongeft refift. ance. The forew confequently fatls only through fix lines upon thofe hoads which are leaft elevated, and about tivo lines upon thore which ftand higheft. Whence the difference between the extreme heights does not exceed four lines.

It is obvious, that fo fmall a difference is not fufficient to Itrike all the characters from M to the letter $i$, when the wheel which governs the fercew is put in motion by a conftant weight, of which the impulfe, like that of a hammer, is increaled only by the accelcration of its fall. It is cvident that this requifite variation of force might be had by changing the weight ; but it is equally clear, that the mombericis and incuflant changes which the engraving of an entire work would demand, would be inconpatible with that degree of fpeed which forms one of the firft requilites. He was therefore obliged to render the furce of the weight, which turns the forcw, variable, by caufing it to act upon levers of greater or lefs lengths, according to the different quantities of impulfe required by the feveral punches. For this purpole he adopted the following conltruction: He connected by a fteel chain to the wheel, which moves the forew, another wheel, having its axis horizontal, fo that the two wheels refpectively command each other. They are of equal diameter, and the chain is no longer than to inake an entire turn round cach wheel. This fecond wheel, or leading pulley, is intended to afford the requilite variations of force, which it does by means of a fnail lixed mpon its axis. The fnail is acted upon by a cord pafing over its firal ciscumference, on groove, and bearing a weight which is only to be changed when a new fet of punches for characters of a dif* ferent lize are put into the great whech. The piral is fo formed, that when the weight defeends only through a fmall ipace, the pait of the cord, which is unwound, acts at a very thort ciftance from the contre of the pulley ; but when the fall is grtater, the pait of the finail upon which it acts is to far enlarged as to afford a much longer lever, and, confequentiy, to give a proportional. Iy greater offcet to the itroke. 'I'his conftructior, therefore, by giving the advantage of a longer lever to a greater fall of the lerew, iffu:ds all the power which the natme of the work, and the different $t_{\text {paces }}$ of the letters demand.

The linport on which the plate is fixed mult, as has before been renarked; inove io as to form ftrait lines. 'This motion, which ferves to fpace the diflerent cha. ractus with precition, is cobtained by means of a fcrew, the axis of which remains fixced, and carres al female forew or nut. The nut itfelf is attached to the lupport of the metallic plate, which reccives the letters, and canries it in the right lined direction without any deviation ; becaufe it is coniffued in a groove formed between two pieces of metal. The forew is moved by a lever, which can turn it in one direction only, becaufe it acts by a click upon a ratchet-wheel, which is fixed to the liead of the forew. The action of this lever always begins from a fixed fop; kut the face through which it moves is variable, according to the refpective breadths of the letters. This new confideration induced M. Rochon to fix upon the rule or plate of the regitter, a number


DI: nass Sculp

Typopta number of pins, correfponding with the differen: diviFons which antwer to each punch: thefe pins determine the diftance to which the lever can move. It therefore becomes a condition, that its poition in the machine fhould be oppofite to the fixed index which determines the character at any time beneath the rere?ingfcrew. The lever and its pin are ther fore the fule agents empioyed to fpace the characters. If the plate were not moved by the lever, the impreffoms would fatl unon each other: and thur, for example, the letter $i$ woind be totally obliterated by the impreffion of the leter $/$. - Whenever, therefore, it is required to difpofe the letters $i$ and / hefide each other, the plate mun be moved after ftriking the letter $i$ through a fpace equal to the quantity of the defired operation. Suppofe this to be one fo:rth of a line, and that the lever fould run through an alc of ten degrees to move the plate thro' tiis quantity ; as foon as the pin of the letter $/ \cap$ and be adinated to the neceffary lengith to emable the lever to deicribe an are of ten de arees, the operation of fpacing the two letier; $i$ and ! will be recinced to that of plaeing the lalt letter beneath the fixed index, and moving the plate till the lever fill be floppe? be the pin belouging to the letreer ? All the other letens will be equally fozced, if the cifnofition of the punches in the wheel be feeh. that the laft flroke of any lotter fall confound itflf with any letter of a fingle ftroke, fuppoing them to be imprefled one after the other, without mexing the lever between troke and ftroke. This arrangement deferves to be very ferinuly attended to, becaufe the procefs conld not be performed without it

Many well-informed perfons are of epinion, that the perfert equality which this machine for engraving af. fords in the formation of letters and figns the moft difficult to be imitated, may afiord a means of ie.nedying the dangers of furgery. It is certain that the perform. ance exhibits a timple and ftrikng charaser of precifion, which is fuch, that the leaft experienced eyes might flatter themfelves, in certain cafes. to difinguin conrterfeits from originals. Lavoifier, whom the friends of fcience and the arts will not ceafe to regret, made fome experiments of this kind for the cailfe de'fompte, which were attended with perfect fuccefs. Artits ap. pointed for that pmonfe endeavoured in rain to irnitate a vignette, formed by the fuscefiive and equal motion of a chara Rer of ornament.

TYRTISUS, an Athenian general and mutician, is celebrated by all antiquity for the compofition of militery fongs and airs, as well as the performance of them. He was cattect to the atiflance of the Lacedenomizns in the fecond war with the Mefienians, about 68 ; 13. C. : and a memorable viftory which they obtzined over that people is atributed by the ancient feholialls upon Horace to the animating found of a new nilitary flute or clarion, invented and played upon by Tyrtsus. Plutarch tells us that ther gave him the ficedom of their city; and that his military airs were confantly furg and played in the Spartan army to the laft hour of the republic. And Lycurgus the orator, in his oration againf Leocrates, fays, "The Spartans made a law, that whenever they were in arms, and going out upon any military expedition, they fhould all be firlt fuminoned to the king'e tent to hear the fongs of Tyrtreus;" thinking it the beft means of fending them forth in a difpofition to die with pleafure for their country. Frag-
ments of his poctry, in elegiae verfe, are preferved in Stobæas, Lycurgुu Orat. in Fulvins UFfinus, at the end of Poems br illuftrions Women : and in the ()xford edition of Eleg \& L,yric. Frog \& Scholia print-

TYTILER (William, lifqi) fo well known in the literary wolld as one of the ablet, ard centainly the moit gentemanly, of the defenders of the fane of Mary Queen of Scots, was born at Edinburgh, Oetnber 12. 1711. He was the fon of Mr Alexander Tytler, writer (or attormey) in Edinburgh, by Jane, daughiter of Mir William Leflie, merchant in Aberdeen, and granddaughter of Sir Patrick Leffie of Ican, provo!? of that city. He received his education at the grammar fuhool (or, as it is there callec, the High School) and the miverfty of his mative city, and difli:guinet himfelf by an early proficiency in thofe clafical Atulites, which. to the latelt period of his life, were the occupaiton of his leilure hours, and a primcipal fource of his mental enjoyments.

- In the year 1731, he a'tended the academical lectures of Mr :lexander Bayne, Profefor of municinal Law in the univerfity of Edinburgh, a geneleman difin. guifhed alike for lis profeffional knowledge, his literary accomplifhments, and the elegance of his talle. The Profeflor found in his punil a congenial fpirit; and their connection, notwithitanding the difparity of their years, was foon ripened into all the intimacy of the flricteft friendili?. So ftrong indeed became at length that tie of affection, that the worthy I'rofefor, in his latter years, not only made him the companion of his fludies, but when at length the victim of a lingering difeafe, chofe him as the comforter of thofe many patuful and melancholy hours which preceded his death.

At the age of 31, Mr 'Tytler was admitted into the Society of Writers to his Majefy's Signet, and continued the practice of that profeffion with very good fuccefs, and with equal refpect from his clients and the public, till his death. Which happened on the 12 th of September 1792. He married, in Septeriber 1745, Anne Craig, daughter of Mr James Craig of Dalnair, writer to the fignet, by whom he has left two fons, Alexarder Frafir Tytler, his Mejefty's Judge advocate for Scotland, and l'tofefor of civil hiftory in the univerfity of Edinburgh; and Patrick Tytler, Lieutenant colonel of a regiment of fencible infantry, and Fort major of the catle of Stirling; together with one danghter, Mifs Chritina Tytler. His wife died about nine years before him ; and, pleviounly to that period, he had loll a fon and a danghter, beth grown to maturity.

The ninit semarkable feature of Mr T'ytlei's charac. ter was an ardour and activity of mind, prompted always by a ftrong fenfe of rectitude and honour. He folt with equal warmelh the love of virtue and the hatred of vice; he was not apt to difguife cither feeling, nor to conpromife, as fonie men mo:e complying with the world might have done, with the fafhicni of the time, or the difpofition of thofe around him. He feldom, waved an argument on any topic of hiftory, of politics, or literature; he never retreated from one on any fubject that touched thofe more important points on which he liad formed a decided opinion. Decided opinions he always formed on fubjects of importance ; for on fuch fubjects he formed no opinions raflly ; and what he firmly believed he avowed with corfidence, and fornctimes with warmtho

Tyler. Nor whas it in opinion or argument only that this warmth an:i ardour of mind were confpicuous. They prompted him equally in action and conduct. His affection to his family, his attachment to his friends and companions, his compafion for the unfortunate, were alike warm and active. He was in fentiment alfo what fohnfon (who felt it frongly in himfelf, and mentions it as the encomium of one of his friends) calls a grod hater; but his hatred or refentment went no futher than oninion or words, his better affections only rofe into action. In his opirions, or in his expreffion of them, there was fometimes a vehemence, an appearance of acrimony, which his friends might regret, and which flrangers might cenfure; but he had no afnerity in his mind to influence his actual conduct in life. He indulired oppofition, not enmity : and the world was jult to him in return. He had opponents ; but two of his bincruphers, who knew him well, as well as the people with whom he moft affociared. declare their belief that he had not a angle enemy. His contefts were on opimens, not on things ; his difoutes were hiftorical and linerary, in conserfation, he carried on thefe with uncommons intereft and vivaciey; and the fame kind of impulfe which prompted his cunverfation (as is juftly olfiferved by an author, who publihed fome notices of his life and character in the periodical work intitled Thbe Bee) induced him to become an author. He wrote sot from vanity or vain-glory, which Rouffeau holds to be the only inducement to writing; he wrote to open his mind upon paper; to fpeak to the public thofe opizions which he had often fooken in private; opinions on the truth of which he had firmly made up his own conviction, and was fometimes furprifed when lie could tiot convince others : it was fair to try, if, by a fuller expofition of his arguments, he could convince the world.

With this view, he publined, in 1759, his "Iuquirr, hiltorical and critical, into the Evidence agaiuft Mary Queen of Scots, and an Examination of the Hifories of Dr Robertfon and Mr Hunie with refpect to that Evidence;" in which he warnuly efpoufed the canfe of that unfortunate Princefs, antacked with feve rity the conduct of her enemies, and expoied the fallacy, in many parts the fabrication, of thofe proofs on which the charges againft her had been foundid.

This was a caufe worthy of an advocate who loved truth better than popular applaufe; aud Mr Tytler e virced himfelf to be fuch an advocate. The problem of Mary's guilt or innocence, if confidered me rely аз a detached hiftorical fact, would appear an object which, at this diftance of time, feems lardly to merit that laborious and earneft inveftigation to which it has given rife; though, even in this point of view, the mind is naturally ttim ulated to fearch out the truth of a dark my fterious event, difgraceful to human nature; and our feelings of juftice and moral rectitude are interefted to fix the guilt upon its true authors. But when we confider that this quettion involves a difculfion of the politics of both England and Scotiand during one of the moft interefting periods of their hiftory, and touches the characters, not only of the two fovereigns, but of their minifters and ftatefmen, it mult then be regarded in the light of a molt important hiltorical inquiry, with out which our knowledge of the hiftory of our now country muft be obfcure, confufed, and unfatistactory. In addition to thefe motives of inquiry, this quettion
has exercifed forne of the ablett heads both of earlier and of latter times; and it is no men pleafure to engage in a conteft of genius and of talents, and to try our ftrength in the decifion of a controverfy which has been maintained on both fides with confummate ability.

As we have elfewhere (fee Mary, Encycl.) given an ab/tract of the arguments on both fides of this difputed quettion, it would be altogether improper to repeat them here ; but jultice to the fubject of this memoir re. quires us to fay, that by his manner of difcuffing it he acquired high reputation in the republic of letters. Before the appearance of the Inquiry, fays an ingenious writer, it was the fathion for literary difputants to ato tack each other like mifcreants and banditti. The perfon was never feparated from the caule; and whatever attached the one, was confidered as equally affecto ing the otber: fo that fcurrility and abufe bloated the pages even of a Bentley and a Ruddinan. The Hifto rical Inquiry was free from every thing of that fort: and though the higheft name produced not a mitiga. tion of the force of any argument, the meanef never fuffered the fmalleft abufe. He confidered it as being greatly beneath the dignity of a man contending for truth, to overftretch even an argument in the fmalleft degree, far more to pervert a fact to anfwer his purpote on any occafion. In the courfe of his argument, be had too often occafion to Shew that this had been done by others; but he difdained to imitate them. His reafoning was forcible and elegant ; impartially fevere, but alo ways polite, and becorning the gentleman and the §cholar.

When this book appeared, it was univerfally read in Britain, and very well 'tran\{ated into French, under the title of "Recherches Hiftoriques et Critiques fur les Principales Preuves d l'Accufation intentée contre Ma• rie Reine d'Ecoffe." The intercft it excited among literary men may be judged of from the character of thofe by whom it was reviewed on its publication, in the periodical works of the time. Dr Douglas, now bifhop of Salifbury, Dr Samuci Johnfon, Dr John Camphell, and Dr Smoller-all wrote reviews of Mr Tytler's book, containing very particular accounts of its merits, and elaborate analy jes of the chain of its arguments. As an argument on evideuce, no fuffrage could perhaps be more decifive of its merit than that of one of the greateft lawyers, and indeed one of the ableft men that ever fat on the woolfack of England, the late Lord Chancellor Hardwicke, who deelared Mr i'ytler's Ing̨uiry to be the beft concatenation of circum?tantiate proofs b:ought to bear upon one point that he had ever perufed. What effect that body of evidence, or the arguments deduced from it, ought to have upon the minds of thote to whom the fubject may become matter of inveftigation, we do not prefume to determine. the opiuion of the late D F Fenry, author of the Hitory of Grear Britain on a New Plan, may perhaps be thought neither partial nor confident. He fays in a letter to Mr 'Sytler, publifhed in the firt volume of Tranfactions of the A atiquarian Society of Scotland. That the would be a bold man who fhould now. publifh an hill ny of Quen Mary in the fame ftrain with the two hiftoritns (Mr Hume and Dr Ruberefon). whofe opinans on the fubject the Iaquiry thad exa ined and contrevecited.

The moft exceptionitle part of Mary's condue, which, thougis it may timut of an apology, cannot he vindicated,

## T Y T

vindicated, is her marriage to Bothwell; and for that marriage Mr Ty tler made an apology, founded on facts, which he would be a daring or very bigotted man who would attempt to controvert. See the article already referred to.
Befades the Hiforical Inquiry, and the Differtation on the Alarriage of Queen BTary with the Earl of Both. ewell, our zuthor publithed feveral other works on hithorical and literary fubjecis; of which the firt was, the Poctical remains of fames I Kiug of Scolland, contifting of the King's Queir, in fix cantos, and Chrift's Kirk on the Green; to which is prefised a differtation on the I.ife and Writings of King James, in one volume 8 vo, printed at Elinburgh in 1783 . This dificration fonns a valuabile morfel ot the literary liitony of Eumope; for Janes ranke? dill highter in thie literary wort? as a port, than is the political world as a prince (A). Great juf. tice is done to his memory in toth refoects in this dif. fertation: and the two morfels of poctry bere refued from oblivina witl he efternid by netn of tal.e as leng as the language in which they are written cen be under!tood.
2. "A Differtation on Ecotin, Mufic," firf fub. joined in A r:oct's hittory of Edinburgh. The fimple melodites of Sootland have been long the deliglit of the natives, many of which, to them, convey an ille2 of pathes that ean be eqnalled by none other; and are much admied lyy every itranger of muffical talents who has vilited thits coumtry. They tave a powerful effect, in. cleed, when properly introduced, аз a relief, intu a mufical compofition of complicaied harmony. Thefe ane of two kinds, pathetic ant humorous. Thicfe who wih to reccive information concensing this curicus fubject, wih derive muck fatisfaction f:om the perufal of this differtation. ?here is vet another kiid of imufic peculizr to the Hirghlands of Scotland, of a more wild, irreguler, and animating Itain, which is but fliplt!y tre:ted berc, and requires to be ft!! more fully elucidated.
3. "Obfervations on the Vifion, a poem," firf pub. lifled in Ram!e,'s Evergreen, now alfo pinted in the Trae fastions of the Socity of Autiquaries of Scotland. Tlitis may be comfidered as a part of the literary hinfory of Scotland.
4. "Oa the Fanionatie Amufements in Ediuburgh during the lof century," ilid. It is unneceflary to dweth on the light that fuch difertations as thete, when judicionfy executed, thow upon the hiftory of civil fociety ard the progrefs of mantiers. Mr Tytler was 1ikewife the author of $\mathrm{N}^{0} \mathrm{i}$. of the Lnunger, a week Iy paper, publifhed at Edinburgh in the year 1786 . His futject is the Defeets of Niodern Female Education in teaching the Duties of a Wife; and he treats that fubject like a mafter.
$\mathrm{O}_{\mathrm{n}}$ all Mr r Tytler's compofitions the character of the man is ftrongly imprefled, which never, as in fome o. ther inttances, is in the fmallef degree contradicted by, or at variance with, the character of the author. He wrote what le felt, on futbjesea which he felt, on fub. jects relatirg to his native country, to the ats which he loved, to the times which he revered. His heart, indeed, was in every thing which he wrote, or faid, or did. He had, as his fanily and fiends could warmly Vol. II. 'Suppl. Part.JI.
too, all the kindnefs of bencvolence: he had its anger Tytier. too ; fur henevolence is often the parent of anger. There was nothing neutral or indifferent about DIr Tytler. In philofopliy and in hiftory, he could not bear the culinefs, or what fome might call the temperance of fcepticifm; and what he firmly believed, it was his difpoftion kecaly to urge.

His inind was ftrongly impreffed by fentiments of icligion. His piety was fervent and habitual. He believed in the doctrine of a particnlar Providence, fuperintending all the aetions of individuals as well as the great operations of Nature: lie had a conttant inioreftion of the power, the wiftiom, and the benevolence of the supreme Being; and he embraced, with thorongit conviction, the truths of Chrittianis.

His reading was various and extenfive. There was farcely a fubject of literature or talle, and few even of feinice, that had not at times engegret his attentioti. In hiilory te was deeply verfed; and what he had read his throng retentive memory enablel hime cafly to recal. Anciuat as well as modern thory was fumiliar to him ; and, in particular, the Britifa hitlory, wlish lee Sad read with the molt minute and critical attention. Of this, befides what he ha* given thtic public, a rreat number of notes, which he left in MS. touching many controverted points in Englith and bcoutilh lii?:ory, af. ford the mot? amole proot.

In im:fic as a foierce he was uncommonly ficiled. It was liis favourite amufument ; and wihh that "etural partiality which : il entertain for their favomite objecte, he was apt to affign to it a degrec of moral importance which foine might edeen a little whimical. LTe has often been heard to fay, that he never knew a good tate in nufic affociated witis a matevolent heart: : And being afsed, What piefeription he would recommend for attaining an old age as healthfol and happy as his own ? " My prefeription (faid he) is fimole-- thart but cheerful intais, mulic, and a good confcience."

I: domellic lie, Mr ' 'jutler's character was particulatly amiathe and praile worthy. He was one of the kidett hufbands and molt affectionste tathers. At the beginning of this accomet, we nemtioned h: , having bit, at an advancel period of life, an excelluit wift, and a fon and a danghter both grown to maturity, who merited and pofeffec hi, warme it affictions The temper of mind with whath he bore thefe loficu, he lias himtelf expreffed in a MS. mote, written not long befire his death ; with which, as it convers a feniment equally important in the confideration of this lifes, and in the contemplation of that which is to come, we flad comclude the prefent memoir: " the lenient hand of tume (fays he, atter mentioning the dath of his wifo and chillen), the lenient hand of time, the affeitionate care of iny renaining children, ard the duty which calls o:s my exertions for them. liave by degrees uftured ine to inyfelf. The memory ot thofe dear objecis gane before me, and the fontiing tope that we thall foon meet a. gain, i. tow the fonce of extreme pleafare to ine. In my retived walk in the country I am never alone; thole dear thates are my contlant companions! Thens what I looked upon as a bitter calamity, is now become to me the chief pleafure in life."

U, V .
(1) There is a beautiful hiforical picture of this prince playing on the harp, with his queen ard a circle of his courtiers liftening to the muffr, by Graham, in London; one of the moft emment artifts of the age.

Vacuum JACUUM Boyleanum, is the approach to a real II Vandá. air-pump

Torricelian $V$ acuum , is the moft complete vacuum which we can make by means of the torricellian tube. See Barometer, and Pneumatics, Encycl.

VADE mecum, the title given to fuch books as men of particular profeffons, having frequent occafion to confult, may eafily carry about with them. Thus a fmall volume, publimed in the beginning of the 18 th century, giving an account of the ancient and prefent church of England, and of the duties, rights, privileges, ald hardfhips of the clergy, is known by the title of the Ctergyman's Vade-mecum.

VAKEEL, a minifter. agent, or ambaffador.
VALGUS, Bow or Bandy Legged. Some children are bow-legged from their birth ; others become fo from fetti:ng them on their feet too early. The tibia of fome is crooked; the knees of others are diftorted; from a fault in the ankle, the feet of fome are turned inwards, thefe are called vari; and in others they turn outwards, thefe are called valgi. The beft method of preventing thefe diforders in weakly children, is to exerrife them dnly, but not violently; by clancing or toffing them a. bout in one's arms, and not fetting them much on their feet, at leaft not without proverly fupporting them: if the diforder attends at the birth, or increafes after it is begun, apply emollients, then apply boots of ftrong leaiher, wood, \&c. as required to difpofe the crooked legs gradually to a proper form: or other inftruments may be uled intead of boots, which, when not too coflly, are ufually to he preferred. Slighter infances of thefe diforders yield to careful nurfing without inttruments.

VAND. $\mathrm{A}^{\prime}$, the Indian name of a plant of the genus Epidendrum; which fee, Encycl. The vandis is thus deferibed by Sir William Jones.
"Cat.. Spather minute, Atraggling. Cor. Petalsfive, diverging, oval obleng, obtufe, wavy; the two lowelt Jarger ; the thiee lighict cqual, bent towards the nectary. Nectary central, rigid: Mouth gaping, oblique: Epper lip footer, thece parted, with a polifned honey. cup; under lip concave in the midile, keeled abuve, with two fmaller cavities below, two proceffes at the bafe, incurved, hollow, oval pointed, converging, honeybe:ring. Stam. Filamerits very fhort. Anthers round, flatiih, margined, covered with a lid, eafily deciduous from the upper lip of the nectary. Pist. Germ. beneath long, ribbed, contorted with curves of oppofite flexure. Style very nort, adthering to the upper lip. Stigma fimple. Per. Caffule oblong.conic, wreathed, fix-keeled, each with two fmaller keels, three-celled, crowned with the dry corol. Seeds innumerable, like fine duft affixed to the receptacle with extremely fine hairs, which become thick wool. Scafes incurved, folitary, from the cavity of the leaf, at moft feven-flowered; pedicles alternate. Petals milk white externally, tranfparent; brown with. in, yellow-fpotted. Upper lip of the ne ctary fnow. white; wader lip rich purple, or light crimfon, ftriated at the bafe, with a bright ycllow gland, as it feems, on each
procefs. The flowers gratefully fragrant, and exqui- Vandalia, fitely beaneiful, looking as if cumpofed of heils, or made Vander. of enamel; crifpelaftic, vifcid internally. Leaves fheathing, oppofite, equally curved, rather flefhy, fword-form, retufe in two ways at the fuminit, with one acute point. Roois fibrous, finooth, flexible; fhooting even from the top of the leaves."

This lovely plant attaches itfelf chiefly to the higheft Amras and Bilvas (the Mangifera and Cratera of I.n.) ; but it is an air-plant, and lives (fays the Pref1de. t) in a pot without earth or water: its leaves are excavated upwards, to catch and retain dew.

VAN1)ALIA, a duchy of Farther Pomerania, fubject to the king of Pruffia. Stolpen is the capital.

Vandalia, a countiy in Germany, in the circle of Lower Saxony and duchy of Mecklenburg. It lies between the bifhopric and duchy of Schwerin, the lordThips of Stocrock and Stargard, Pomemania, and the marquifate of Brandeuburg; and is 75 miles in length and 7 in breadth. It contains feveral fmall lakes, and the principal town is Gultrow.

VANDERMONDE, member of the National In. fitute of Sciences and Arts, was born at Paris in the year 1735. He devoted his youth to felf-inftruction; and even at the age of thirty was far enough from fuf. pecting that he was deftined to iuftruct others in his turn. Chance brought him near to the celebrated Fontaine. That fexagenary geometrician eafily divined the progrefs which Vandermonde would one diy make in the mathematics; in him he anticipated, as it were, a fucceflor to himfelf; he patronifed and careffed him, let him into the fecret of his refearches, calculations, inventions, of that lively enjoyment which profound fpeculation gives to ain elevated attentive mind; and which, blended with the fweets of tranquillity, the charms of retreat, and the confcioufnefs of fuccefs, becomes often a fort of paffion, as felicitous as durable. All that time Fontaine, whofe attencion was again directed to the refearches which he had added to thole of Jean Bernoulli, rclative to the then famous queltion of the tovtocrones, hat the gitory to be vanquibed only by D'. Nlembert and La Crange. Vandermonde, a witnefs to this combat, nectharily illunrous, animated by the honour which he faw annexed to that glorious defeat. enchanted with the fight of Fontaine, as happy, in foite of his age, from his love of geonnetry, as a youth of twenty could be with a fentiment lefs tranquil, thought he fhould infure his happinefs for ever, by yielding to a paffion which the ice of age could not extinguift ; in a word, he devoted himfelf to geometry.

His labours, however, were for tome time fecret ; and perhaps the public would never have enjoyed the bentit of any of his works, if another geometrician (whofe name, fays Lacepede, cannot be pronounced, in this place, without a mixture of intereft and regret) had not infpired him with a confcioufnefs of his own itrength, and coutage to difplay it. Fontaine had already devoted him to geometry; Dufejour exhorted him to penetrate cven into its fanctuary. In brief, he prefented

Vander bimidf to the Academy of Sciences, into which he was monde. ran acmitted in 5771 ; and in that very year jultified the fuffrages of his alfociates, by a paper which he publif. ed relative to the refolution of equations.

From the 1 fith century the method of refolving equations of the four firft degrees has been known, and fince that time the general theory of equations has received great improvements. In filie, however, of the recent labours of many great geometricians, the folutions of equations of the fifth degree had in vain been attempt ed. Vandermonde withed to confolidate his labours with thofe of other illuftrious analy lts; and he propofed a new theory of equations, in which he feems to have made it particularly his bufinefs to fimplify the methods of calculation, and to contract the length of the formule, which he confidered as one of the greatelt difficulties of the fubject.

This work was quickly followed by another on the problems called by genmetriciaus problems of fituation. It feerns to have been the deftiny of Vandermonde, as well as of Fontaine, who firlt initiated him into the my: fleries of mathematical fcience, to labour frequenily up. on fuljezis already hancled by the greateft mafter. In his firt memoir he had ftarted, fo to \{peak, in compe. rition with La Grange and Euler; in his fecond, with Euler and Leibnitz. This laft was of opinion that the analyfis made ufe of in his time, by the geometricians, was not applicable to all queftions in the phyfical fcien. ces; and that a new geometry mould be invented, to calculate the relations of politions of different bodies, in fpace : this he called gremetry of fituation*. Excepting,
ters, difcorering, by learned analytical refarches, itrational quantities of a new fpecies, fiewing the fequels of which thefe irrationals are the terms o- the fum, and pointing out a diref and general method of making in them all the poffible reduetions.
In the fame year appeared his work on the Elimination of unknown Quantities in Algebra. This elimisation is the art of bringing back thofe equations which include many unknown quantities, to equations which oaly contain one. The perfection of refearches in this art would confift in obtaining a general and particular formula of elimination in a form the moft concife and convenient, in which the number of equations and their degrees thould be defigned by indeterminate letters. Vandermonde, while he conficered the geometer' as ve1y diftant from this point, had fome glimple of a pofibility of reaching it, and propofed fome new methods of approaching nearer it.
In $177^{8,}$, he prefented, in one of the public littings of the Academy, a new fyftem of harmony, which he detailed more fully in another public fituing of 1780. In this fyttem, Vandermonde reduces the modes of proceeding adopted until his time, to two principal rules, which thus become eftablifhed on effects admitted by all muficians. Thefe two gencral roles, one on the fucceffion of according founds, the other on the arrangement of the parts, depend themfelves on a law more elevated, which, according to Vandermonde, onght to rule the whole fcience of harmony.

By the publication of this work, he fatigfactorily at. tained the end he liad propofed to himfelf, and oltained the fuffrages of three great men, reprefentatives, fo to fpeak, of the three great fchools of Germany, France, and Italy ; Gluck, Philidor, and Piccini.

With thefe labours, intermingled with frequent refearches on the meehanic arts, as well as on objects of political economy, the attention of Vandermonde was taken up: when, July 14-1789, the voice of liberty refounded over the whole furface of France, and fudden. ly all the thoughts, as well as all the affections, of Vandermonde, were engaged on the fide of what he called liberty.

He became fo furious a democrate, fo outrageous an enemy to every thing eftablifhed, that he concurred in the abolition of the Royal Academy, of which he had been fo ambitious of becoming a member, and affociated himfelf clolely with Robefpierie, Marat, and the reft of that atrocious gang of villains, who covered France with ruins, with fcaffolds, and with blood. This part of Vandermonde's hiftory is fupprefled by his culogit Lacepede, becaufe, forfooth, difcuffions on political opinions ought not, in lis opinion, to be admitted into the fanctuary of the fciences.

In that fanctuary he did not long remain. Soon after his atrocities, he was attacked by a diforder in his lungs, which almoft taking away his breath, manifetted itfeli by alarming fymptoms, and conducted him by ra. pid Ateps to the tomb. He died in the end of the year 1795; a ftriking inflance of the wayward violence of the human mind, which even the love of fcience could no keep at a difance from tumult and uproar.

VARENIUS (Bernard), a learned Dutch geographer and phyfician of the 17 th century, who was author of the belt mathematical treatile on geography, intitied, Geographia Univerfalis, in qua ajictiones generalis Tollu. 5 A 2

Variable ris explicantur. This excellent work has been trannate!

Variula Vaccinx. into all languages, and was honoured by an edition, with improvernents, by Sir Ifaac Newton, for the nfe of his academical Atudents at Cambridge.

VARIABLE, in geometry and analytics, is a term applied by mathematicians to fuch quantities as are confidered in a variable or changeable itate, cither increafing or decreafing. Thus the abfilies and ordinates of an clliplis, or other curve line, are variable quantities; becaufe thefe vary or change their magnitude together, the one at the fame time with the other. liut fome quantities may be variable by themfelves alone, or while thofe connected with them are con?lant: as the abfciffez of a parallelogram, whofe ordinates may be confidered as all equal, and therefore conftant ; alfo the ciameter of a circle, and the parameter of a conic fection, are confant, while their abfciffes are variable. See F"luxions, Encycl.
V.aRI is Tion of Curvature, in geot ctry, is ufed? for that inequality or change which tales place in the curvature of all curve except the circle, by which their curvature is more or lefs in different parts of them; and this variation conflitutes the quality of the curvature of any line.
VARIOLAB VACCINA, or Coze-pnx, is the name commonly, though, as forte people think, improperly, given to a very fingular difeafe, which, for two or three years pat, has occupied a great thare of the attention of medical men. It lias been many years prevalent in forne of the freat dairy counties in England, particularly Gtoucefterftire; and it has been long undertood by the farmers and others in thefe counties, that it for ever exempts all perfons who have been infeeted with it from the contarrion of fmall pox.

It is very furprifing thet, though they knew this fact, and although no perfon had ever been known to die of the cow-pox, they never thought of having recourfe to a voluntary infection of this kind, in order to free themfelves and their families from the poffibility of being infected with the variolots poifon, which fo often proves mortal. In one cafe, indeed, communieated to Dr Pearfon by $M 1$ Downe of Prifport, the experiment was long aro tried by a farmer rpon his own perfon, and with complete fucerfs: Dut this only makes it ilie more vondeful that his example frould not have becu followed.

And in the duchy of Holltein.

Vaccine inoculation introduce: by Dr Jellner. to him.

In the town of Kiel, lowever, in the dachy of Holfein, where the difeafe is faid to be well linown, as frequtntly affecting cows, we are told that children are fomttine isoculated with cow-pox (Die Finnen), whith a viow io preferve their be?uty; but that the peophe in the country do not like this inoculation, becaufe they pretend that it leaves behind it feveral diforders.

With thefe exceptions, Dr Jenner was the firft perfon who introduced the vaccine iroculation; and to him the public are alfo incobted for the firit careful and accurate invefigation of this interefthy fubject. The following is his account of the origin and hittory of the ditcafe, and of its characteriftic fymptoms.
". Ihere is a difeale to which the horfe, from his f:ate of domeltication, is frectrently lebject. The farriters have termed it the graje. It is an infmmation and fwelling in the heel, from which infues matter polfeffing prope:ties of a very peculiar kind. which feems capable of generating a difcufe in the human body (af-
ter it has undergone the modification which I chall prefently fpeak of), which bears fo ftrong a refemblance to the fmall pox, that I think it lighly probable that it may be the fource of that difeafe.
"In this dairy connty (Gloucefterthire), a great number of cows are kept, and the office of milking is performed indifcriminately by men and maid fervants. One of the former luaving been appointed to apply dreffings to the heels of a horfe affected with the greafe, and not paying due attention io cleanline $f$ s, incautiouly bears his part in milking the cows with fome particles of the infectious matte: adhering to his fingers. When this is the cale, it cummonly happens that a difeafe is commonicated to the cows, and from the cows to the dairy maids, which fpreads through the farm until moft of the cattle and domestics feel its unpleafant confequences. This difeafe has obtained the name of the cows fox. It appears on the nipples of the cows in the form of irregrular puftules. At their fist appearance they are commonly of a palifh blue, or rather of a con lour lomewhat approachirg to livid, and are farrounded by an eryfroflatous infiammation. Thefe pufules, her whlefs a timely remedy be applied, freçuently degenerate into phagedenic ulcers, which prove extrentely troublefome. Ithe animals become indifpofect, and the fecretion of milk is mach leffeced. Inflamed fpots now hegin to appear on different parts of the hands of the domentics employed in milking, and fometimes on the wrifts, which cuickly run on to lippouration, firt affuming the appearance of the fmall velications produced by a burn. Moft commonly they zppear about the joints of the fingers, and at their extremities; $b: \%$ whatever parts are affected, if the lituatioe will admic, thefe fuperficial fuppmations put on a circular form, with their edges more elevated than their centue, and of a colour difantly approaching to blue Abloption takes place, and tumors abpear in each asilla. The fyttem becomes affected, the pulfe is quickened, and hiverimes, with general lafitude, and pains about the luins and limbs, with vomiting, corne on, 'ilhe head is painful, and the patient is now and then even affected with delernm. 'Thefe frmptoms, varying in their degrees of vialence, generally continue from one day to thece or four, lea. ving u!cerated fores about the hands. which, from the fentability of the pats, are very tronblatome, ans commonly heal flowly, frequently beconning phacsedsuic, like thofe from whence they fprung. The lips, nowtrils, eyelids, and other pats of the ho v, ate fonctimes affecte? with fores; but thefe evidently arne from their being needlefsly rubbed or seratched with the patient's infected fingers. No cruptions of the Rin have followed the decline of the feverifh fymptoms in any intance that las come under my infpection, one only excepted; and in this cafe a very few appeared on the atms: they were very minnte, of a vivic red colour, and foon dicd away without advancing to maturation : fo that I cannot determine whether they had any connection with the preceding fymptoms.
"Thus the dileate makes its progrefs from the horfe to the nipple of the cow, and from the cow to the human fubject.
" Morbid matter of various kinds, when abforbed in- fec fingulas. to the fyllem, may produce effects in fome degree fimi- rity, lar ; but what rencers the cow-pox virus fo extremely fingular is, that the perfon who has been thus affected

## V A R

firn is for ever afier fecure from the infection of the fimall. pox; neither expofiure to the variolous cfluvia, nor the irfertion of the matier into the fkin, producing this diftemper.
"It is neceffary to obferve, that puRulons fores frequently appear feontaneorify on the nipples of cows; and initances have occurred, though very rarely, of the hands of the fervants employed in milking being affected with fores in confequence, and even of their feeling an indifpofition from abforption. Thefe puftules are of a much milder nature than thofe which arife from that contagion which conftitutes the true cow-pox. They are always free from the bluifh or livid tint fo confpieuous in that difeale. No eryfipclas attends them, nor do they fhew any phagedenic difpoftion, as in the other cafe, but quickly terminate in a feab, without creating any apparent diforder in the cow. This complaint appears at various fealons in the year, but moit commonJy in the foring, when the cows are firlt taken from their winter food and fed with grafs. It is very apt to appear alfo when they are fuckling their young. But this difeafe is not to be confidered as fimilar in any refpeet to that of which 1 am treating, as it is incapable of producing any fpecific effects on the human conititution. Ifowever, it is of the greate!t confequence to point it out here, left the want of diferimination fhould occafion an idea of fecurity from the infection of the fmail.pox, which might prove delufive."

Dr Jenner adds, that the active quality of the virus from the horfe's heels is greatly increated afser it has acted on the nipples of the cow, as it rarely happens that the horfe affects his deffer with fores, and as rarely that a milk naid cfcapes the infection when the milks infected cows. It is moft active n.t the commeneement of the difeafe, even before it has acquired a pus-like ap. pearance. Indeed the Doctor is rather induced to thinik that the matter lofes this property entirely as foon as it is fecreted in the form of pus, and that it is the thin darkif looking fluid only, oozing from the newly formed cracks in the heels, fimilar to what fometimes ex. udes from ery fipelatous bliters, which gives the difeafe. He is led to th is opimion, from having often inferted pustaken from otd fores in the heels of trorfes, ivto foratches made with a lancet, on the fqund nipples of cows, which has produced no other effect than fimple inflammation.

ITe is uncertain if the nipples of the cow are at 211 times fafeeptible of being acted upon by the virus from the horle, but rather fufpects that they mult be in a flate of predifuofition, in order to enfure the effect. But he thinks it is clear that when the con plox vitus is once generated, the cows, when milked with a hand really infeefed, cannot refiet the contagion, in whatever flate their nipples may chance to be. He is alfo doubtful whether the matter, either from the cow or the horle, will affeet the found fkin of the human body; but thinks it probable that it will not, except on thofe parts where the cuticle is very thin, as on the lips,

At what period the cow pox was firt noticed in Gloucenterfhire is not upon record. The oldeit farmers were not unacquainted with it in their earlieft days when it appeared upon their farms, without any deviation from the phenomena which it now exhibits. Its connection with the fmal! pox feems to have been unknown to them. Probably the general introduction of
inoculation firt ocenfioned the difcovery. Dr Jerner conjeđtures that its rife in that neighbourhood may not have been of very remote date, as the practice of milk. ing cows might formerly have been in the hands of women only; and confequently the cows might not in former times have been expoled to the contagious matter brought by the men fervants from the heels of horfes. He adds, that a knowledge of the fource of the infection is new in the minds of moft of the farmers, but has at length produced good confequences; and that it feems pmbable, from the precautions they are now difpoled to adopt, that the appearance of the cowpox in that quarter inay either be entirely extinguifhed or become extremely rare.
"With refpect to the opinion adduced (Dr Jenner obferves), that the fource of the infection is a peculiar morbid matter arifing in the hoife; ahthough i have not (fays he) been able to prove it from actual experiments coniueted immediately under my own eye, yet the evidence I have adduced appears to etlablifh it.
"They who are not in the babit of conducting experimente, may not be aware of the coincidence of circumfances, neceffary for their being managed fo as to prove perfeefly decifive ; nor how often men engaged in profefional purfuits are liable to interruptions, which difappoint them almolt at the inftant of their being accomplifhed; however, I fect no room for hefitation refpecting the eommon origin of the difeafe, being well. convinced that it never appears among the cows, except it can be traced to a cow introduced among the general herd which has been previoully infected, or to an infected fervant, uniefs they have been milked by fome one who, at the fame time, has the care of a horle affeeted with cileafed heels."
The foliowing cafe, which we alfo quote from Dr Jenner, would feem to thew that not only the heels of the horfe, but other parts of the body of that animal, are capable of generating the virus which produces the cow pox.
"An extenfive inflammation of the, eryfipelatous kind appeared, without any apparent caufe, upon the upper part of the thigh of a fricking colt, the property of Mr Millet, a farmer at Rockhampton, a village near Berkeley, The inflammation contiaued feveral weeks, and at length terminated in the formation of three or four fmall abfeeffes. The indlamed parte were fomented, and dreflings were applied by fome of the fame perfons who were emologed in milking the cows. The number of cows milked was twenty-four, and the whole of them had the cow-pox. The milkers, confiting of the farmer's wife, a man, and a maid fervant, were infected by the cows. The man-fervant had previoufly gone through the fmall pox, and felt but little of the cow pox. The fervant manid had fome years before been infected with the cow pox, and fhe alfo felt it now in a Пight degree: but the farmer's wife, who never bad gone through either of thefe difeafes, fett its effects very feverely. I'hat the difeafe produced upon the cows by the colt, and from them conveyed to thofe who milked them, was the Irue and not the fpurious cow-pox, there can be fcarcely any room for fufpicion; yet it would have been more completely fatisfaetory had the effects of variolous matter been afcertained on the farmer's wife; but there was a peculiarity in her fituation which prevented my making the experiment."

सari' ' $x$
Vucuine.
-
s Dr Jenner's of intasion H.e orgein of the d ? care ca troverted.

Sufecuart suthors have not leen all difinfed to adope lir Jenner's oplinion that this difeafe derives its origin from the greafe in holfes. We have feen the Dector himfelf allow that he has not been able to prove it decifively by aetnal experimests; and to eftablifh a fact fo contrary to all analogy, perhavs no weaker evidenice nught to be admitted. The only other heftial diforder with which we are acquainted, which is ca pable of leing communicated by contagion to the human fpecies, is hydrophobia: but here the diforder is the fame in man as in the animal from which he derives it ; and the analogy holds good in the propagation of the vaccine difeafe from the cow to her milker. But that the difllarge from a local difeafe in the heel of a horie thould be capable of producing a general diforder in tle conllitution of a cow, with fymptoms totally dif. feeren, and that this new difeafe once prodnced hould be capable of maintaining an minform character in the cow and in man. Scems a mod? greater ceparture from the ordirary proceeding of Nature. We are very far fiom faying that this is impofible; for little irdeed co we know of what Nature can or cannot do. All we srean to fay is, that a face fo very extraordinary ought not to be haftily admitted.

In Holftin, we are told that the farmers do not know of any relation ewiting between the greafe and the cow pox, at lealt a perfor: who refiried three years in that country never heard of any. This, however, is certair! y no proof. 'lhe fame communication which contains this remark (a letter from 1)r l)e Carro of Vínna to Dr G. Pearfon) adde, " that in great farms men do not milk cowa, but that in the fnialter ones that happens very often; that a difeafe of hoifte, called miukie (true German name for greafe), is known by all thofe who take care of them ; that old horfes patticulaly, attacked with the mauke, are always put in cow's Aables, and there are attended by women; and that it is particularly in harveft that men in fmall farms milk cows." It mult be allowed, then, thint in this fitua. -tion, fuppofing Doctor Jenuer's opinion well fou:ded, the cov-pox was naturally to be looked for, and here accordingly we find it. The quettion is certainly of no real utility, and therefore it has very properly been lefs attended to than other points uefeching this diforder which lead to important practical conclufions

Of all the queltions which have arifen relative to the cow-pox, there is none fo interefling, and luckily there is none which has received to full 1 difctifion, or fo fa tisfactory an anfwer, as the one we are now about to confider. Are thofe perfons who have ouce had the cow-pox effectually and for ever fecurtd againfe the va. riolous contagion?

Dr Jenner, in his firft publication, waz decidedly of opinion that a previous attack of this diforder reendered the liuman body for ever untufceptible of the variolous virus; and belides the un:verfal popular belief in the countries where cow-pox is known, he brought forward a number of cafes in fupport of his affertion. By fome of the fe it appeared that perfons who had been affected with the cow pox above twemty or thinty years before, continned fecure againlt infection, cither by the eflluvia from patients under finall pox. or hy inowliation. But along with this opinion he entertained other two, which, to many pcople, appeared to furpiling id to take away all credit from the former. The firft
was, that a previous attack of fmall-pox did not pic. vent a fubfequent attrek of cow pox ; and the fecond was perbans fill more wonderfut, that the cow pos virus, although it rendered the conftution unlufecpti ble of the fmall pox, fhould neverthelers leave it une exitilie changed with refpect io its own action, for that the fame perfon is fufceptible of repeated attacks of the cow-pox.

Thefe opinions have been fubmitted to the teft of very extenfive experience by a variety of intelligent practitioners; and we think there can now be little doubt that the two laft are crroneous, while the truth of the firt has been eftablifhed by an immenfe body of incon. trovertible evidence.

The opinions that a perfor who has had the fmall. pox may afterwards have the cow-pox, and that the fame perfon may have the cow-pox more than once, probably arofe from the diftinction between the local effects of the vaccine virus, and the general diforder of the conftitution not having been fufficiently attended to. It is generally admitted, that in the inoculated fmall-pox the local affection may go fo far as that a puftule thall arife on the part, containing matter capable of communicating the true fmall pox to others, and yet, if no general affection of the conftitution takes place, the patient is not fecure from the diforder. In like manner, there are cafes upon record which prove that a perfon may, after having had the finall pox, have a local affection produced by inoculation, in which true varis. lous matter fhall be formed capable of communicating both the local and conltitutional fymptoms of fmall. pox to others ; and murfes, when much expofed to variolous contagion, often have an eruption refenbling fmall-pox upon fuch parts of their fkin as have been expofed to the action of the virus, though they have fore merly undergone the diftatc. Jet there is probably no perfon at this day who will go fo far as to affert that the fame perfon can have the fpecific variolous fever more than once.

I'he cafe feems in be precifely the fame with refpeet to cow pox. Doctor Pearfon and others have inoculated a number of perfons after they have had the fmall pox with the vaccine vilus, and have produced only the local affection; and by the fame ter it is afcertained that the fame perfon camnot more than once have the conftitutional fymptoms of the cow-pos. Dr Wond. ville indeed tells us that he has feen one cafe of genuine cow-pos pultule and fpecilic fever in a conititu. tion which had previoufly fuffered the finall-pox. 'There can be no higher authority on this furbject than that of Dr Woodvile; and if he had actually feen hís patient in the fimall pox as well as the cow pox, we thould have atmitted this fingle cafe as completely decitive of the queftion. But the only evidence of this perfon having had the fmall pox, is the affertion of the patient that he had it ruben a chitd. This we can by no means futtain as conch:five in oppofitio:s to the Doctor's own experience, as well as the experience of 1 )r $P_{t}$ arfon.
That the nilkers ate tubjers to epeated attacks of the local fynytomis of cow wox, whether they have had the fmall fex or not, is centain. In the cafe of the farnien's fervants at Rockhan pron, which we have clioted above fom 1)r J.uner, one of whom had pleviouny 1 vidergene the thall pox, and the other the cow-pox, and buth of whom were afterwards itisected

## V A R

Dy the cow pox in a fight thegree, it feems reafonable to conchucle that the local fymptoms only were prefent in the laft attack. We may at the fame time oblerve, that in a cafe of this kind, where a very painful ulcer is pro. duced in a very fenfible oart, this may probably be attended by an increafed fiequency of pulfe; yet if this has not the fpeciinc marks of the cow.pox fever, we thould not fay that fuch a perfon has the diforder con. fliutionally.
With refpeet to the principal propofition, that the Speciic fever of cow foux renders the contlitution un. furceptible of the variolous fever, we think no doubt now remains. Above 1000 perfions who have undergone the vaccine inoculation have been pfterwards inoculated with variolous matter, which has produced, no oti.cr than local effects. Befides thefe, there have been a vaft number inoculated by private practitioners in dif. ferent parts of the kingdom, the refult of which has not been reported. But we may fafly fuppofe, that if any one of tlem had afferied a conclution oppofite to the one now generally admitted, it would have been comnunicated to the cuiblic.
We invift not, fiowever, conceal one feemingly well authenticated cafe which has lately occurrec', and which, fo far as it groes, certainly nilitates againt this conclufion, and which, we doult not, will be eagetly caught at ty the opponents of the new prectice. We quote it fiom the Miedical ar.d Chirurgical Review fo: September 1800 .
een ing. "Mr Malim, furgeon of Carey Strcet, London, inowell ati- culated a child, two years and an balf old, with vaccine niticard
epriact, mater procured from Dr Jenner. On the thitd day cption. there were fufficient niarks of the action of the virus, and from this time to the end of the cifeafe the local affiction proceeded regularly and without interruption. On the eighth day the clilld complained of headache and ficknef-; had a quick pulfe, white tongue, and in. creafed heat, with an enlargement and tendernefs in tlie axills. Thefe fymptoms fabided in the courfe of the next day, and the chith remained well till the twelfth, when it had a very fevere attack of fever, fucceeded, the following cay, by an irruption; the appearance, progreis, and termination of which, left no doubt in the minds of feveral enninent practitioners of its being the finall-pex. That it was really fo, has been fince clearly proved by inoculation. There was a chitd ill of frnall-pox in the he ufe at the time the above incoulation for cow.pox was performed."

The Reviewerò julty remaik, that the hifory is defective, in not deforbing no:e minutely the appearances of the inoculated parts at the different ftages, as we!l as in not mentionirg the length of time that the matter had been taken previous to being ufes. Both thefe points are the more important, as a fufpicion naturally arifes, that the local affection which fucceeded the vaccine inoculation was not the genume cow pax puftule, but one of the fpurious kind, which had not the power of deflroying variolous fufceptibility. The matter having been funnitied by Dr Jenner, no doubt, renders this fuppofition the lefs probable; but if it was either long or improperly kept after it came out of his hanls, it may have undergone a inaterial clange, by putrefaction or otherwife. Dr Jenner mentions an inflance of a practitioner, who had been accultomed to preferve vaniolous matter in a warm pocket ; a filuation favour.
able for producing putrefaction in it. This matter, when inferted, was found to produce inflammation, fwell. ings of the axillary glands, fever, and fometimes eruptions ; but not of the true variolous kind, as patients thus inoculated were found fill fufceptible of the fmallpox contagion. It is furely a poffible fuppofition, tho ${ }^{\text {b }}$ metely a conjecture, that the vaccine matter in Mr Malin's cafe had undergone fome fuch change.

The cafe however, is in feveral refpects an interefting one. As it has been funpofed that variolons contagion, communicated in the form of exhalation, does not affeet the conRitution in lefs than fourteen or fiftecn days, and as the vaccine matter, communicated by inocula. tion, produces its fpecilic effects fome days earlier, it has been fuggefled, that wherever a perfon has been accidentally expofed to variolous efluvia, we thould endeavour to anticipate the f:nall-pox by immediately inoculating with the vaccine virus. But if there be nothing falacions in the above cafe, it appears that this meafure would not fop the progrefs of the finall pox, but that our patient would incur the additional danger of having two difeafes inflead of o:e.

At all events, it mult be allowed that this child liad Protably been infected by the fmall-pox before the vaccine mat-accounted ter liad begun to prodace its fpecific effects, and pro. for. bahly even before the inoculation. Thus the fmall pox may be conffered as having begun before the cow-pox; and thongh we fhould be forced to allow that. matters teing thus fienated, the later diforder could rot prevent the farther progrefs of the former, it by no means f)llows, that when the cow pox has fairly run its courfe, the conltitution is fill fufceptible of fmall pox. 'i he two difeafes mult have exilted in this patient at the fame time, though the one was in a latent flate during the active Alage of the other.

This folitary cafe, then, is by no means concluifive, and certainly is not fufficient to outweigh the immerlic mats of concurring evidence which is oppofed to it.

We proceed now to another highly important branch a 14 of our futject--the comparifon of the advantares and aee fras difadvantagus of the two difeafes, with a viens to the new frace. practice of incrulation.
Notwithfinding the imenenfe number of cafes in which the i:oculation of the cow-pox has been tried, we are not yet folly qualified to appreciate thic malue of the new practice; becasfe the diteafe las varid very much in feverity, and even 1 . ita moft remarkable fyma. toms, and that without any caufe which has jet been difonvered.

Dr Jenuer's account of tie difeafe gave us reaifon tes think that the local affection in cow-pox was nore fevere than in the inoculated fmall-pox: 'Flat the fever in this difeafe was never atterded with dangerous fymp. toms : that thofe fymptoms which affict the patient with feverity are entirely fccondary, excited by the isritatil:g proceffes of in:flammation and ulceration: that the difeafe was uot attended with any eruption refem. bling fmall-pox: and that the fore produced iny the ino. culation was apt to degenerate into a very diflreflin: phagredenic ulcer, which required to be trated with ap. plications of a caultic nature, of which he found the unguentum hydrargyri nitrati the mot ufeful.

Sison after Dr Jenncr's publication, the attention of medical men was forcibly drawn to the fubject ; and feveral eininent practitiuncis in London, particularly $\Gamma$ : Georpt

Ceorge Pearfon, and Dr Woodville phyfician to the frall pux and inocmlation hefritals, immediately began to practife the vaccine inoculation. The latter gentleman foon publificed an accurate and candid accoust of the effect of this virus upon 200 patients, with a table of the tefults of above 500 cafes in which the inoculation was performed.
It is very remarkable, that in none of thefe caifes did incoavenience, excepting in one inflance, in which it was foon fubdued by the aqua lythat gyri acetati. The general offection of the contitution, on the other hand, though in a great mizjority of cafes it was very flight, yet, in fome inffances, was fevere. An eruption, exadty refembling fimall.poes, was, contrary to expectatiom, a very cormmon occurrence, and in fome the puf. tules were not fexer than 1000 ; and althowirh in thefe cafes the difeafe was fill unattended with fecomdary fever, yct the febrile fy mptoms which took place from the comirenceme:t were coafideraile, and even alarim. ing; as fometimes alfo happens wih the inoculated fnall pox.
1). TVoodville fometires inoculted with matter from the primary lore in the arm, and fometimes with matter taken from the puntur eruption; and it appears from the tahle that a much larger proportion of thefe who were inoculated in the latter way had pultules, than of thofe who were inoctlated either with natter immeciately fiom the cove, or from the prinary fore in the human hody. Shere were $4: 17$ patients in all inoculated, either from the cow or trem the primary fore; and of thefe 241 had pullules, and 206 had none. Sixty-two perfons, on tife other hand, were inoculated with matter from the pulliles of ten different paticrits; and of thefe nio fewer than 57 had paftules, and oulv 5 efcaped without. Nor cant it be faid that this diproportion arofe from thefe 10 patients having the diteafe in a more virulent form than ordirary, for matter was alfo taken from the primary fore in 4 of the 10 , with whech 48 were inoculated ; of whom 27 hat piffules, ant' 21 had none: whereas, of 9 perfons when were inoculated with matter from the pulales of thefe fame 4, on!y 2 efcaped withont nufule.. This obfervation correfpunds alfo with 1)r Pearfon's experience.

Hhough thefe eruptions have been met with by other practitioners, yet they certainly appear very rare. ly in private practice. Dr Woodville, for this reafon, confiders them, in a more recent publication, as the ef. fi. o fome adventitio as caufe, indepcrident of the collpox: And this be fuppofes to be the variolated atinofphere of the hofpital, whech thofe patients were neciffarily cbliged to infoire duting the progrets of the cowpaxi fection. This opinion. however, does nut leem to agree well with his former remerk, which, as we have faid, is contirmed by Dr Pearfon, that e"options rarely tuok place, if care was trken to avoid mattor for inoculation from fuch as had puitules; a foat that cannot be explained on fuch a fuppotition. Nrither is this idea reconcilcable with what he alio tells us, that the propoltion of cafes in the hofpital attendet with puftules has been of late only three or four i:n a hendred.
This change in the arpearatices of the ciflezle in the
practitioner at different times, is one of the moit unaccountable circumftances refpeefing this fingular diforder. There is fome curious information on this fublject, contained in a letter from Mr Stromeyer of Hanover to Mr Hannehmaun.
"This year (fays he) we have inoculated 40 perfons, as well with the vaccine matter received of Dr Pearfon as with that from Dr Je:ner; all of whom underwent the difeafe properly.
". Betwixt the London and Cloucefter vaccine matter, it appears to me there fubfi?s an effential difference. ithe London matter produces frequently an eruption of fmall pimples ; but they difappear within a day or two is furthett. Dr Peaffon cails thefe eruptions puffuls, - The Glowcetter naater has never produced this effect here; but frequently occafioned vicerations of the inoculated part, of a bcchous and long duration; wolich the latter never did: on acconst of wlich I now only make nfe of Dr Pearfon's vaccine matter. 'The nettle-fever like cruptions I have obfervel feveral times, but never that fort of eruption, repeatedly noticed in London, which io much refembles the fnall pox."
If thefe obfervations of Mr Str meyer forld be confirmed by the expenierce of others, they would go far to explain the difference which the London practitioners have found in this difeale from the account given of it by Dr Jenmer, notwithtansing the abfence of the exuption relembling fmall-pox at Hanover. We believe an intechange of raccine matter has once or twice taktu place betweun London and Glouceiter Bire. Is it firce that period that the eruption has been lefs feeevent at London? Dr Pearfon is inclined to fuppole, that the comparative feverity of the cilcafe at Lomuon, during the firll winter, arofe rather from the difference is the human constitution at the different feafons of the year, than from any change in the flate of the vaccine matter.

In comparing the cegree of danger from the inoc12- $M$ reatity lation of cow. pox with that arifing from the inoculated fur the oid fmali-pox. we are convinced that Dr i'earfon greatly wat ate over-rates the mortality in the latter dilorder. ile finp hyer he ated poles it to be no lefo than one ul 200 . Dr Mofeley, vo "es for on the other hend. who is a violent opponent of the vaccine inecu'ation, afferti, that he has ineculated feveral thoulands with variolons matter, in Enrope and the Welt Ludies, without ever huling a paticat, and hat feveral other peifons, whom he knows, have done the fame, with clee fame luccefs. Wie are afraid, howerer, that the exprimenee of other innculators dhes mot affurd fo favom able a reluht. We believe that in this comutry the montahty is otten occalioned by imporoper treateneat; and forn companing the accounts which we have rectived from prathioniors of extensive experie ce, and undoubted veracity, we brieve that, where the treatment is proper from the begiming, the fymptomis ver: rarely arife to an alarning height, and that the mortality is not fo great as one in 6.0 . And this effinate nearly correfponds with Dr Woolv:lle's very great experience. It mult be allowed, that patients in an hofpital are fuoject to fome difadvantages, which may be avaided in private pmatice: yet, out of the laft 5000 cafes of rariolous menlation at the inoculation hofpital, prior to the publication of the Doctor's reports, the mortality dhe not exceed one in 600 .

- Notwithtanding this itateinent, however, we are hap.
py to fay, that the danger in the vaccine difeafe is fill much lefs. Dr Pearfon tells us, that iu little more than fix months after the new inoculation was introduced into London, which includes the period at which the cow-pox afumed the moot unfavourable appearance, 2000 perfons at lea? underwent the operation ; of thefe, one only, an infant at the breaft, under the care of Dr Wendville, died. In this folitary fatal cafe, the locel tumor was but very inconfiderable; and the ermptive fymptoms took place on the feventh day, when the child was attacked with fits of the fpafmodic kind, which recurred at fhort intervals, with increafe-t violence, and cartied it off on the theventh day after the cowpox inetter had been infected into ito arm, and after an eruption of about 80 pu?nules had appeared.

Since that time a much greater inumber, amounting certainly to feveral thoufands, hove been inoculated with cow pox in different parts of Great Britain and on the continent. Among thefe, not one fatal inftance, that we lave heard of, has occurred.

But even if he danger to the individual from the frallpox and from the cow-pox were equat, there is an impor tant adrantage to the public attending the latter, which we think ssould alonche fufficient to intite it to a prefer-ence-It is not capabl: of heing propagated by the ef. fluvia arifing from the bodies of perfors infutted with it. There are m. ny fituations in which a prudent furgeon will be reftraned from inoculating witl finall pex, ieft the contagion fould foread to other people, who may be either prevented by prejudice fiom fubmitting to the operation, or in whom it would be ohvioufly improper, from the circumflances of ayse, teething, or the prefence of fome other difeafe. Here the cove pox vi rus may be fublituted wih great propricty. It is chictly from this quality that the cow pox bids fair to extirpate the fmall pox entircly.

This valuable property of the vaccine diforder is not, however, to be admitted without fume limitation. When it preduces numerous mint!nles on the body, 1r Wcood ville tells Liso $^{\text {, that the exhatations they fend forth are }}$ capable of afficting others, in the fame natiner as the fmall. pox. Two in?ances of cafual infection in this way have fallen mader his obfervation. In one, the dif. eafe was fevere, and the crnption confluent: in the other, the difeafe was mild, and the puntules fews. It has been remarked, that the inoculated cow pox is little, if at -1l, different from the difeafe when enfinally categht. But. Itrietly feaking, the above are the only two cafes in which the difeafe has bees comnnumicated otherwile than by inciculation.
-The writers upon this fubjeet are divided in opinion, Whether the cow-pox and finall pox ought to be co:lidered as different difeafes, of whether they are meiely varieties of the faine difeafe
They certainly, notwithfanding the frong analogy which fubflls between thion, differ foom each other in Several Ariking particutars. The cow pox comes to riant frum thie. cow, and is capable of being carrie! back foom him to that animal. Similar attempts with variolous matter have faited: in this r fpeet, then, thefe two morbid poifons are altugether diferent.
SUPFL. Vol 11. Part II.

The local tumor produced by the inoculation of the cow-pox is cotmmonly of a different appearance from that which is the confequence of inoculation with va-

Variola
Vaccinic. riolons matter: for if the innculation of the cow pox be performed by a fimple puncture, the confequent tumor, in the provortion of three times out of four, according to 1 r W oodville, affumes a form completely circular, and it continues circumferibed, with its edges elevated and well defined, and its furface nat, through every ftage of the difeare; while that which is produced fiom the variolous matter, either preferves a peculiar form, or fpreads along the fkin, and tecomes angulated, or irregu!ar, or distgured by numerous veliculic. Another diltinction Alill more decifive and general, is to be drawn from the contents of the cow-pox tumor; for the fluid here formed very rarely becomes puriform; and the feab which fueceeds is of a herder texture, exhihits a fmoother furface, and differs in its culour from that which is furmed by the concretion of pus. The appearances, however, are fometimes fo changed, that they can in mo refpect be diftingnifhed from thofe which arife trom the inoculation of fnall-pox. We may alfo mention that the rendency of the fore in the inoculated part to degenerate into a phagedenic uleer does not occur in fin -ll pox.

On the other hand, the points in which thefe two difeafes relemble each other are very remarkable. When introduced inso the body by inoculation, they affeet the con!!itution i:: nearly the fame length of time, and feenr to be coverned by nearly the fame laws. They mutually deftroy the fufceptibility of the body for the action of each other.

Dr Pearfor, who thinks the difeafee onght to be confidered az dillinct fpecies, neverthelefs draws the following conclutio:s, 2s chablifled by experience.
" That in certain conltitutions, or under the circumflances of centain co-operating agents, the vaccine poifon produces a difoufe refombling the fimall po.x; and of courfe the puttule in the inoculated part is very nifferent from that of the raccine pos ordinarily occurving, and the cruptions refemble aery much, if not exacly, Some varieties of the finall.pox: That in fume intances thefe ereptions have occurred, althongh the inoculated part exhibited the genuine vaceme pultule: I hat the matter of fuch eraptive cafis. wheiher taken from the inoculated part, or trom other parte, produces univerlally (a), or ac lealt generally, finilar cruptive cafer; and has not (he believen) been fen to gin back, by pafing through diffetent conftitutions, to the thate in which it produces what is called the genkine saccinc diffofe: 'That eruptions, of a different apearance from variolous ones, lonetimes oecar in the crue cow pax."

From the fe facts we are flrongly inclined to think They are that the vaccine difeafe and the finall pox ought mere-minclashy Iy to be comidered as varicties of the lame diteate; and ${ }^{0}$. Iy varieut have lith doubt that they both derive their origin fee of the from the fame fource.

I! Dr Joniner's opinion, that the vaccine difeafe is de ' rived irom the greife, were fully eltablifhed, we fould be difiperfed tio offer a conjecture, that the finall-pox, in coming from the horfe to man, may have paffed thro'

(A) We have feen that Dr Woodvilte's table contains a few exceptions to this rule, though it frongly conhims the general truth of the propolition.

Variole fome animal different from the cow, and may thus have Vaccinx undergone a modification finnilar to, but not exactly, the fame with what takes place in the paffage of the virus through the conltitution of the cow.

But withont having recourfe to this conjecture, which is perfectly gratuitous, we are of opinion that the varia. tions which lave taken place in the cow pox withis the laft three years are fufficient to warrant a belief, that the fimail pox may have originally been exactly the fame difeafe, even in the human conflitution, as the cow-pox is now; ; but that in a fucceffon of ages, and from the operation of caufes wholly unknown to us, it may have been changed to what we now fee it.

We nall now conclule this article with a few practical remarks, which we hope may be of ufe to practitioners who mean to begin the vaccine inoculation.
It is of the ut:aof confequeace that the matter employed fhould be the genuine vacciric virus. Dr Jen- ner points out the following particulars as fources of a fpurious cow pos: 1. That arifing from puftules on the nipples or udier of the cow, which pufules contain no fpecific virus. 2. From matter, although originally poffeffing the fpecific virus, which has fufiered a decompofition, either from putrefaction, or any other caufe lefs obvious to the fenfes. 3. From matter taken from an wicer in an advanced ftage, though the ulcer arofe from a true cow-pox. 4. From matter produced on the human fkin from the contact of foine peculiar morbid matter generated by a hoife.
Many have remarked that inoculation with the vaccine matter is more apt to fail in communicating the infection than with variolous matter, efpecially if it be fuffered to dry upon the lancet before it is ufed. This does not feem to depend upon the virus of the former being more volatile, but upon its becoming more hard and indiffoluble upon exficcation. Care thould thereforc be taken to moiten it a confiderable time before it is ufed.

We bave already noticed the danger that may arife from miftaking the local eifeits of the vaccine difeafe for its effects upna the conftitution. To guard practitioners again? this error, Dr Woodville makes the fullowing remariks: "When a confiderable tumor ant an extenfive redaefs take place at the inoeulated part, within two or three diays after the infuctious matter lias been applied, the failure of inoculation may be confidered as certain as where wither rednefs nor tumor is the confequence. This rapid and premature advancement of the inflammation will always be fufficient to prevent the inoculater from miftaking fuch cefes for thofe of ifficient inoculation. But there are other circumftances under which I have found the inoculation to be equally ineffectual, and which, as being more likely to deccive the inoculator, require his utmoft circumfpestion and difcrimination. I here allude to cafes in which it happens that though the local affection does not exhibit much more inflanmation than is ufital, yet neither veficle nor puftule fupervenes; and in which, about the fixth or feventl day, it rapidly advances ints au irregular fuppuration, producing a feftering or cruf taceuns fore. Care, however, fhould be taken to diflinguik this cafe from that in which the inoculated part affumes a puftular form, though it continues for onie or two days only, when the fame appearances folluw as thofe above ceferibed; for I have experienced
the latter inoculation to be as effectual as where the tumor has proceeded in the moft regular manner."
"The eflurefcence at the inoculated part, which feldom intervenes before the eighth, or later. than the eleventh, day, is to be regarded as an indication that the whole fyttem is affected ; and if the patient has not felt any indifpofition on or before its approach, he may be affured that there will not be any afterwards. When efflorefcence does not cominence till the eleventh day, it is almoft always attended with more indifpofition than when it occurs on the eighth or ninth day. The efflorefcence is more frequent in young infants than inv cliildren advanced to three or four years of age : and the former have the efforefcence and the difeafe more favourably than the latter, infomuch that by far the greater part of them have no percentible illnefs, and require no medicines. On the other hand, in aclults, the cow-pox frequently products headache, pain of the limbs, and other febrile fymptoms, for two or thee days, which are greally relieved by a brifk purgative."

We would, upon the whole, recommend the vaccine iroculation to our medical readers as being an effectual preventative againft the fmall-pux, and fafer to the in dividual, while it is more ddvantageons to the public at large, in being lefs capable of propagation by contagion.

VECTOR, or Radius Vector, in aftronomy, is a line fuppofed to be drawn from any planet, inoving round a centre, or the focus of an ellipfe, to that cencre or focus. It is fo called, becaufe it is that line by which the planet feems to be carried romnd its centre ; and with which it defcribes arcas proportional to the times.

## VEGETABLES. $\}$ See Vegetable Substances in VEGETATION. $\}$ this Supil.

VENTILATION OF SHIPs is a matter of fogreat iniportance, that we would rather hazard the ftatigg of an idle project for this purpofe, than omit any thing which inay be ufeful. We hazard nothing, however, in fating the following plan by M. Abernetly, who candidly acknowleciges that it is built upon the principles which we, together with the leained editor of Charbers's Cyclopædia, have borrowed from Dr Haiks. This plan confills merely in cauling two tubes to defeend fiom above the deck to the bottom of a veffel, or as low as ventilation is required; and which flould communicate by finaller pipes (open at their extremities) with thofe places defigned to be ventilated. Thene fhould be a contrivance for fopping thefe commuricating pipes, fo that ventilation may be occafionally prevented froni taking place, or confinel to any particular part of the veffel.

One of the principal air tubes flould defcend as near to the flem of the veffel as convenient, and the other as near to the flem.

Through that tube which is in the head, the foul air is to be extracted; and through that which is in the flern, the frefl air is to defcend to the different decks and other apartments of the veffel.

The extraction of the air is cafly effected in the following manner: Let a tranfverfe tube be fitted to that which effeends in the head of the veffl; it may be fumk within the level of the deck, fo as to crufe no inequaslity of fufface. Let it be continued till it comes be- rection through the fire, and open a little above it ; or it may be made to communicate with the chimney. It would be more convenient if the fire was near the place vihere the tube tifes through the deck ; but the experiment mult equally fucceed, if the tube be made to defcend again till it is beneath the cormon fire-place. The effect that will refult from this contrivance is obvious; when the tube which paffes through the fire is heated, the air will afcend with a force proportionable to its levity, and the afcending column can only be fup. plied from below, confequently it mull come from all thofe parts of the fip with which the main tube communicates.

When the ports are open, the quantity of air thus exhaufted from the fhip will be fupplied from all quarters; but if they were all fhut, and the hatchways and other openings completely clofed. the renewal of fiefh air is made certain by mearis of the tube which defeends in the ftern. The main air tube, where it rifes above the deck in the ftern, fhould have an horizontal one fitted to it, which might be made to travenfe, fo that it conld be turned to windward; it might alfo expand at its extremity like the mouth of a trumpet; and thus pesfectly freth air muft enter, and the force of the galc would tend to impel it into the veffel.

When that part of the tube which paffes through the fire is red hot, the draught which would be thus socafioned might perhaps be too great, and the open pipes which communicate with the decks might emit and im bibe the frefh air in fo direet a ftream, that it might be injurious to thofe perfons within the current.

Mr Abernethy therefore thinks it would be better if thofe fmaller pipes which lead from the main tubes were made to run along the decks, and communicate with them by numerous orifices. Two pipes opening into the main exhaufting tube might be extended along the qups of the deck, in the angle formed betwien the fides and the cidling: and thus the air would be extracted equally from all parts, and in a manner not likely to occafion injurious currents. Some divition of the Itream of oir which enters from the Itern might alfo be made, if it were thought nece?fary.

Thus a very complete, and in no way injnrious, ventilation may be obtained: the air in the veffel would be perficilly changed when the fire was ftrong, with out expence or trouble; and a gradual and falubrious alteration of it might at all times be made, by a very little additional quantity of fuel. The air tibles thould confat of feparate joints, fo that occafonally they mipht be taken to pieces; and to prevent their being injured or put out of order by rough ufage, the eopper pipes Alould be made of confiderable ftrength, placed againlt the fides of the veffel, and even incafed in wood.

In the Letters and Papers of the Bath Society, Sxc. we have the following defeription of a ventilator for preferving corn on thip board, by Thomas South, Efq;
Diate
XI.Vil.

Ifig. 1. is a cylindrical air-veffel, or forcing pump, of lead, tin, or other cheap metal; its internal diameter being ten inches, and its length three feet; having a crutch-handled piton to work with, and an ion nofle, viz. a hollow inverted cone, two feet long, to condenfe the air, and increafe its power in its paffage downwards. This cylinder mould be rivetted or lerewed, by means of an iron collar or flaps, to the deck it palles through,
both above and below, as at $a a$; and mould be fanther fecured by fome holdfaft near $l$, to kec! it Ateady in working.

Fig. 2 , is a bottom of wood, four inches and a half thick, with a projecting rim at its bale, for the met: ! cylinder to reft on when cemented and fcrewed to the wood. The centre of this bottom is excavated, for the reception of the crown of the nolle. In the fame figure the nofe is reprefented with its crown like a bowl difh, to condenfe the air gradually, without relitance, in its advance to the more contracted balc of the inverted cone, $i$. e. the top or entrance of the nofe. About two-thirds down this nolle may be fixed a male ferew, as $c c$, for the purpofe hercafter mentioned.
N. B. The forcing-pump flould be cafed in wood, to protect it from outward bruifes, which would prevent the working of the pillon, and ruin its effects. The leaiher round the embolus mould be greafed when ufed.

Fig. 3. is a crutch hendle, falened to the embolus A by its iron legs $B, B$. $A$ is a cylinder of wood, calid with leather, fo as to fit well, but glice fmoothly, in the metal cylinder; having in opening as la:ge as its flrength will permit, for the free accefo of armofipheric air. $C$ is a valve well leathered on its toy, and yielding downwards to the preflure of the air when the pifton is raifed up. 1) is a crols bar of iron, to confine the valve, fo that it may clofe in:ftantly on the return of the pifton downwards.

Fig. 4. is a tin pipe or tube, of lefs than four inches diameter, and of fuch length as, when fixed to the bafe of the cylinder, fig. 1. fadt admit the nofte $d$, fig. 2. to within half an inch of the valve $E$, at the bottom of the wooden cylinder F , in fig. 4 ; which valve E will then yitld to the preflure of ar concenfed in its paffage through the nofle, and deliver it in:to the pipes below. This valve muft be well leachered on its upper furface, and fattened with an hinge of leather to the cylinde it is meant to clofe: afinxed to its bottom is the fipi dle G , paffing through a foiral lpuing $H$, which, betr है conpreffed on the defcent of the valve, will, by its chafticity, caufe it to rife again, clufe the aperture above, and retain the air delivered bereath it. On connecting this cylinder with the upper end of the nofle, at ee, fig. 2. We mult carctully picvent any lapfe of air that way, by a landage of oakum fmeared whit wax, on which to furew the cylinier, like the joints of a flute, air-tight. I is a bar of iron, having a ritiag 'n its cemre, wide enough for the foindle to play through, but at the fame time fufficiently contracted to prevent the paffage of the fpiral ipring

Fig. 5 . is an allemblage of tin pipes, of any lengthe, कhaped fuitably and conveniently to their istuation in the fuip, to the form of which, when thut into one another, they muft be adapted; wbferving only, that the neck be flraight for a length fufficient to adnit the lower end of the cylinder, lig. 4. as high as the letter F ;, or higher.

Fig. 6. To the midale pipe, which runs along the bottom, thould be lixed a perpendicular one, fully perforated, to convey the air more readily into the centre of the heap; and this may have a conical top, as reprefented in the Plate, perforated with a imaller punch to prevent the air from eicaping too thattily. In large cargoes, two or three of thete perpendiculars may be ${ }_{5} 132$ neceffary ;

## V E R [748] V E R

Ventila- neceffary; and each thould be well fecured by an iron tion, Verden. bar $g$, fcrewed down to prevent their being injured by the fhifting of the cargo in flormy weather or a rolling fea. The top of the conical cap of thefe pipes may reach two-thirds up the cargo.

Fig. 7 . is a valve of the fame contruction as that reprefented in fig. 4. but inclofed in a tube of brafs, hawirg a female fcrew at $f f$, adaoted to the male ferew $c$ c, on the nofle fig 2. and may then be infented into the head of the pive fig. 5 . This will add to the expence ; but in a large apparatus is to be preferred, as a more certain fecurity from lapfe of air, than the junction of the tube fig. 4. to the neck ee in fig. 2.
N. B ee is a neck of wood, making a part of the bottom fig. 2. whereon to fecure the tube fig. 4. when applied to the nof.e. The juints of the pipes, when put together for ufe, flould be made air-tight, by means of bees wax or fome fl:onger cement, till they reach the bottom of the veffel, when there is no farther need of this piecantion. The horizontal pipes fhould run by the fice of the kelfon the whole length of the hald. The tin plates of which K is made, fhould be punched in holes, like the rofe of a watering pot, in two or thrce lines only af molt, ard then formed into a tube, with the rough fidc outwards. L may have four or five lines of the like perforations. W!, and the rett, fhonld gradually increafe in their number as they ad. vance towards the middle of the hold, and contimie fully perforated to the laft pipe which mould be choted at its end to prevent the ingrefs of the corn. It is the centre of the cargo which moft requires ventilating, yet air fonld pervade the whole. like the trade winds, it will direcé? its courfe to the pant moft heated, and, having effected its falutary pu:pofe there, will difperfe itfelf to refrefh the mafs.

Whire the hatches are chofe caulked, to prevent the iuflux of water, vent-holes may be bored in convenient parts of the deck, to be bunged up, and opened ocea. fionaily, from whence the Itate of the corn may be k:own by the eflluvid which afeend when the ventiltor is working.

The power of the ventilator is determined by the fquare of its diameter multiplicd into, the length of the ftroke, and that again by the number of ftrokes in any given time.

The air-veffel or forcing puinp, with the reft of the appalatus here cifcribed, is duapted to a veffel of 120 tons buiden; but by lengthening the air veflel, extending its ciameter to it inchus, and athing ic inches more to the length of the ftroke, a power may be ob tained of ventilating a cargo of 4 tons within the hour. If this machine be properly wrought for one hour every day, or even every tivo days, beginning the operations immediatcly when the corn is put on board, the cargo may be preterved from taint or injury of eve. ry kind during the longett voyage.

VERDEN, a duchy of Germany, in the circle of Lower Saxeny. It is bounded on the ealt and fouth by that of Lunenburg; on the wef!, by the Wefer and the duchy of Bremen : and on the north, by the duchies of Bremen and Lunenburg; extending buth in length and breadth about $2:$ inles. It coufitts chiefly of heaths and high dry lands; but there are goois mathes on the rivers Wefer and Aller. In 1712 , the I) haizes wreled this duchy from Sweden, and, in 1715 , ceded
it to the king of Great Britain, as elector of Hanover; Verdigri3s which ceffon, in 1718, was confirnied by the Swedes. 'ithe inhabitants are Lutherans.

YER1)IGRIS, or Acetite of Copper. Ste that aticle, Encyal where an account is given of the procefs by which verdigris was long manufactured. A different, and more economical procefs, however, has for fome years been practifed in Montpellier, which is worthy of notice, becaufe it may be adopted in this country by fublituting the hufks of goofeberries or currants for thofe of grapes.

In the manufacture of verdigris, the materials are copper and the hufks of grapes after the latt preffing. The copper is formed into round plates, half a line in thicknefs, and fiom twenty to twenty five inches in dinneter. Each plate, at ifontpellier, is divided intos twenty five laminx, forming aimoit all ublong lquares of from four to fix inches in lencrih, three in breacth, and weghing about four ounces. They are beat feparately with the lammer on an anvil to fmooth their finfaces, and to give the coppor the neaflay comithence. Without his precausion it would exfoliate, and it would be mo:e difficult to fcrape the furface in order to detach the oxyaated cruit. Befices this, feales of pure metal would be taken off, which would halten the confumption of the copper.

The hufk:, which Bould not be too much preffed, are lirft made to fement by being put into clefe vats, and the fermentation is generally completed in three or four days The time, however, mult valy accordire. $t$ the temperature in which they are kept, and cther circumftances. Whilft the hufis are fermenting, a prelininary preparation is given to the copper plates. 'This confifts in ciflolving verdigris in water in an earthen veffel, and rubbing over each phate with a picce of coarie linen dipper! in this folution. The plates are then immediatuls placed chole to cach uthicr, and left in that ranner to dry. Sometimes the plates are only laid on the top of the formented hefis, or placed under thole which liave been already ufed for cauling the conper to oxydate It has been obforved, that when this operation has not heen employed, the plates grow biak at t! c firts operation, inftead of becoming green. It is not, bowtier, necflary to thofe which have been once ufed, and are to be ufed agrain.

When the plates are this prepared, and the hioks have been brought to ferment, the workmen try whether the latter are proper for the procef3, by placing undes them a plate of copper, and leaving it buried there ios twenty four hours. It the plate, altor this period, is found covered with a fnooth green cruit, in fuch a manner that none of the metal appeare, they are then thought fit for being dilpofed in layers with the copper. On the other hand, if drops of water are obleived on the furface of the plates, the phates are laid to /rueat, and it is concluded that the heat of the hufks has not fuffiriently iubfided. 'I hey confaquently defer making anotier trinl till the next day. When they are aflured that the huffes are in a proper flate, they form them into layers in the followirg manuer :

The plates are all put into a box, which, inftead of having a bottom, is civides in the middle by a wooden grate. The plates difputed on this grate are fo tirongIy heated by a chatli: of cifh flaced under them, hat the woman emploged in this labour is fometimes obliged
rdigris, to take them up with a cloth, in order that fhe may that heat, they are put into jars in layers with the
hufks. Each jar is then clofed with a covering of ftraw, and left to oxydate. Thirty or forty pounds of copper, more or lefs according to the thicknefs of the plates, are put into each jar. At the end of ten, twelve, fifteen, or twenty days, the jar is opened; and if the hufks are white, it is time to take out the plates. The cryttals are then feen detached, and of a filky appearance on their furface. The hufks are thrown back, and the plates are put in what is called relai. For that purpofe they are immediately depofited in a corner of the cellar on ficks ranged on the floor. They are placed in an upright pofition, one leaning against the other; and at the cud of two or three days they are moiftened, by taking them up in handfuls and immerfing them in water in earthen pans. i hey are depofited quite wet in their former pofition, and left there for feven or eight days; after which they are once or twice immerfed again. This immerfion and diying are renewed fix or eight times every feven or eight days. As the plates were formerly put into wine, thefe immerfions were called one wuine, two wines, three wines, according to the number of times. By this procefs the plates fwell up, the green is nourifhed, and a coat of verdigris is formed on all their furfaces, which may be eafily detached by fcraping them with a knife.

This verdigris, which is called freflo verdigris, moijt verdigris, is fold by the manufacturers to people who dry it for oreign exportation. In this fret fate it is only a pafte, which is carefully pounded in large wooden troughs, and then put into bags of white leather, a foot in lieight and ten inches in diameter. Thefe bags are expofed to the air or the fun, and are left in that flate till the verdigris has acquired the proper degree of drynefs. By this operation it decreafes about 50 rer cent. more or lefs according to its primitive flate. It is faid to Hand proof by the knife, when the point of that inftrument pufhed againtt a cake of verdigris through the fkin cannot penerate it. White lead may be made by a fintilar procefs.

Cryplilized Verdigris is mannfactured at Montpellier in the following manner: A vinegar, prepared by the diftillation of four wine, is put into a kettle, and boiled on the common verdigris. After faturation the folution is leff to clarify, and then poured into another kettle of copper, where it is evaporated till a pellicle forms on the Surface. Sticks are then immerled into it, and by means of fome packthread are tied to fome wooden bars thet reft on the edge of the kettle. Thefe flicks are about a foot tong, and are fylit crofo wife nearly two inches at the end, fo that they open into four branches, kept at about the diftance of an inch from each other by finall bage. The cryftals adhere to thefe flicks and cover them entirely, forming them felves into groimps or clufters, of a dark blue colour, and a rhomboidal fhape. Each clufter weighs from five to fix pounds. hree pounds of moilt verdigris are required for one pound of the crytals ; the undiffolved refiduum is thrown away.
VERDUN, an ancient, ftrong, and confiderable town of France, in the department of Meufe, and late province of Lorrair, with a bifhop's fee, and a Atrong citadel. Its fortifications were conflructed by the Che-
valier de Ville and Marfhal de Vauban. The latter was Vormifuge. a native of this place. In 1755 , great part of the cathedral was deftroyed by lightning. Verdun was taken by the Fruffians in 1792, but retaken by the French foon after. The inhabitants are noted for the fine fiscetmeats thry make. It is feated on the river Maefo. which runs through the middle, 42 miles fouthwett of Luxemburg, and 150 ealt of Paris. E. Lon. $5^{\circ}$ $28^{\prime} \mathrm{N}$. lat. $43^{3} 9$.

VEKMIFUGE, a medicine which expels worms from the intellines. Of tbefe medicines numbers are daily advertifed in the newfpapers as infallible, hough the ingredients of which thiy are compofed are carefully kept fecret. We think it our duty therefore to affure our readers, that the medicines vended by quacka are generally the very fame that would be prefericed by a regular phy fician for the cifeafe in which they are pretended to be fpecifics, with this only difference, that the unfeen and unprincipied quack generally preferibes them iu more powerful dofes than the regular phy fician deems fafe for his patient. Thus Ching's famous worms medicine, which has been fo ftrenuouily recommended, is nothing more than mercury given in the very lame form in which it is given by every phyfician; but Ching gives it in dofes, which, though they have not injure? the children of a bifhop and a judge, we have knowh: to falivate other children to the great hazard of their lives. It is indeed wonderful that parents fhould truft the health and the lives of their children to men whom they never faw, and whom they know to be not oppreffed with an over delicate fenfe of honour, in preference to a man of fcience who has a charater to fupport, and who is probably their friend, and almoft always their acquaintance.

Of the different vermifugas, however, it mult be confeffed that the greater number are liable occalionally to fail. One of the mont powerful which we have mentioned in the article Medicinf, Engach. is compsed of the fpicilie of the cowbage of cow-ituls; and fince that article was publifhed, it has come more into wife, chiefly through the recommendation of Mr Chamberlaine furgeon. He fays that a tea fpoonful of the elcetuary (See Medicine, Engod. p- $34^{2}$.) may be fafely given to a young child, and one or even two table fpoonfuls to adults. The medicine is to be taken in the morning falting; and the dofe to be repeated for two orthree mornings, after which a gentle purge completes the cure. This medicine, however, Mr Chamberlaine prohibits in every cale where there is a tendency to inthammation in any part of the inteltinal canal, or where the mucus has been carried off or greatly diminifhed by dyientery or any other canfe.
Dr Hacmmertia of Ulm bas lately recommen? ${ }^{\text {d }}$ as a very powerfut and fafe vermifuge the coraline of Corfica, and fays that it has been fo ufed in that ifland with complete fuccefs from time immemorial. It is a fucus. achering to the rocks wafhed by the fea, and fometimes. to the itones and flells thrown upon the fhore. It is found in little tufts. It is generally of a yellow colour, with a reddith timeture. When dried, as it appears when offered for fale, it contains a ftrong fmell of the fea. It confiits of little cartilaginous ftalks, with full threads, gradually cylindrical and tubulated. Its talle is falt and unpleafaut. In the fyttem of plants of L .innexussit belongs to the clafs cryprogamia. Its mort com-

## V E S

Vamon t man name are, fea rock mocris the Geccian nierb; lextesp:3 - $\mathrm{r}^{\mathrm{m}}$ nithouton:on; and the corilise of Confica. It is the cenfurea beininthertos of Sclywendimann, and the fucus 1-imimbororter of Latnuelte. 'iliere is reafon to think that all thofe frecies of fucus whofe teratere is foft and $\mathrm{f}_{\mathrm{f}}$ ungy, might be applied to the fame medicinal ufes. I here is a fort of red coraline found in Sweden which, eccurding to fome whitere, is a greater deltroyer of worms than any other known fubftance; being not too frong for the llomach either of infants or of adults. Schwendimann afierts that the onferva dichotema of Lin. sueus, which is found in the ditches in England, bears a ftrong analogy to the coraline of Corfica. Might tot this conferva be tried as a vernifuge? The Corfican coraline is in great eftimation in the pharmaco pemins of the Continent, efpecially in that of Geneva, in which is given a recipe for preparing a fyrup of it.

VERMONT', one of the United States of North America, bounded on the nortly by Canada; on the ea?, by-the river Connecticnt, which divides it from Aew LHampthire; on the fonth, by $\mathrm{M}_{\mathrm{a}}$ fichuffets; and on the welt by New York. It is about 155 miles Ins, and 60 broad, and is divided into 7 counties. A chrin of higg mountains, 1 unning north and fouth, di* iles this !late nearly in the centre, between the river Comecticut and lake Champlain. The height of land is generally fiom 20 to 30 miles from the river, and about the fane diftance from the New Yoik line. The natural growth upon this mountain is hemlock, pine, foruce, and other evergreens: hence it has always a sreen appearance, and, on this account, has obtained the defcriptive riame of Vermonit, from the French Verd Micnt, Green Mountain. Ou fome high parts of this mountain, fnow lies till May, and fornetimes till July, The country is generally hilly, but not rocky. It is finely watered, the foil is very fertile, and there is mot a better climate in the world. The iulabitants have very lately been chimated at 100,060 . The bulk of thein are emigranta fiom Connecticut and Maflachufets. The principal town is Bennington, but the affembly grenerally hold their feffions at Windfor.

VESPA (See Encycl.). A new fpecies of this ge n!:s of infects has been lately defcribed by Cuvier, in a note read before the Philomathic Society of Paris. It has fome refemblance to the vripa nidulans of Fabricius, which, as is generally known, is a native of certaits parts of America. The nefts of the vefpa nidulans are conAructed of a very fine web, of a very folid and pretty white palte. Their form is that of a bell clofed upon all fides, excepting a narrow hole at the bottom; and they are fufpendicil from the branches of trees.
The veffa defcribed by Cuvier, which is a native of Cayenne in America, las in general more volume than the preceding fpecies, and its pafte is grey, coarfer, lefs homogeneous, and lefs fold. The bottom of its neft alfo, in licu of being flaped funnel-like, is flat, and the orifice appears at one of the fides of the Lortom part, and not in the middle. In the country where it is found, this fpecies of wafp is called the tatou fy (mouche latou). It differs greatly in form from that which Fabricius has deferibed; it is all entirely of a fliuing black; the firt articulation, or joint of its ahdomen, is narrow, and in form of a pear; the fecond, larger than the others, is in form of a bell: the wings are brown. The following is the character affigucd to it by Cuvier:

750 V E S
Itefpaiduc, Nigra, Nitida, Alis fujcis, atdomine pedisellitio.

VESPERTILTO (fee Encyol.) has been fubjected to fome cruel, but curious experimente, by the Abbe Spallanzani and M. de Jurine. The former of thele pliilofophers having let loofe feveral bats in a chamber perfectly dark, found that they flew about in it without any impediment, neither rufhing againt any thing in the apartment, nor toushing the walls with their wings. This furprifed lim; but imagining that they were conducted by fome glimple of lighlit which he did not perceive, he blindfolded them with a fmall and very clofe hood. They then ceafed to fly ; but he obferved, at the fame time, that this did not proceed from any deprivation of light, but rather from the conftraint thence occafoned, efpecially when a hood of a very light texture was attended with the fame effect.

He then conccived the idea of pafting up the eyes of the bats with a few drops of fize or gum ; but they fill flew about in the fame manner as if their eyes had been open. As this, however, was not fufficient, he pafted up the eyes of thefe animals with round bits of leather; and this even did not impede them in their flight.

That he might at length be certain of his object, he blinded them entirely, either by burning the cornea with a red hot wire, or by pulling out the pupil with a pair of finall pincers, and fcooping out the cye entirely. Not contented even with this precantion, he covered the wounds with pieces of leather, that the !ight might have no influence whatever on the remains of the organs which had been deftroyed. The animals feemed to fufo fer very much by this cruel operation; but when they were compelled to ufe their wiugs, either by day or by night, and even in an apartment totally dark, they flew perfectly well, and with great caution, towards the walls, in order to fufpend themfelves when they wifhed to reft. They avoided every impediment, gieat or fmall, and flew from one apartmeit to another, backwards and forwards, hlrough the door by which they were connected, withont touching the frame with their wings. In a word, they thewed themfelves as bild and lively in their fight as any other animals of the fame fpecies which enjoy the ufe of their eye-fighr.

Thefe experiments wele repeated by M. Jurine, and with the fame refults. Spallanzani had fuppofed that the bat poffeffed fome organ or fenfe which is wanting in the human fpecies, and which fupplies to thefe animals the place of vifion; and Jurine determined to afcertain the truth or falfehood of this hypotheitis by anatomical refearches. During the counfe of thefe, he found the organ of hearing very great in proportion to that of other animals, and a contiderable nervons apparatus affigned to that part. The upper jaw alfo is furm.thed with very large nerves, which are expanded in a tiflue on the muzzle.
M. Jurine then extended his experiments to the organ of hearing and that of freell. Faving put a imall lood on a long eared bat, it immediately pulled it off, and flew. He flopped up its ears with cotton; but it freed itfelf in the like manner from that inconvenience. He then put into its ears a naftic of turpentine and wax. During the operation the animal fhewed a great deal of impatience, and flew afterwards very imperfectly.

A longe eared tat, the ears of which had been bound up, flew very badly: but this did niot arife from any

## V 1 B

prian occafionel by the ligature ; for when its cars were lowed up, it flew exceedingly well. In all probability the animal would have preferred having its ears bound up to having them fewed. Sometimes it few towards the cicling, extenling its muzale before it fetted.
M. Jurine ponred liquid pomatum into the ears of a bat which ey foyed the ufe of its fight. It aypeared to be much affected by this oneration; but when the ful', fance was remove lit took flight. Its ears were aghin filled, and it; eyes were taken out; but it flew then only in an irregular manner, without any certain or fix. ed direction.
-The ears of a horfe thee bat, which had the nfe of its fight, were filled with tinder mixed with water. It was uncafy under the operation, and appeared after. wards reflefs and ftunned : but it conducted itfelf tolerably well. On heing blinded, it rufhed with its head againft the cicling, and made the air refound with ftrokes which it gave itfelf on the muzzle. This experiment was repeated on other bats with the like effect.

The tympanum of a large horfe foee bat was pierced with a pin (trois quart). File aniunal appeared to fuf. fer mucl, from the operation, and fell down in a perpendicular direction when thrown into the air. It died next morning. The fame effect was produced on piercing the tympanm of a long-eared bat with a needle.
ithe author then made very accurate refearches on the differcrice between the organifation of the brain of thefe two kinds of Lats; and, after a careful diffection, found that the eye of the long eared bat is much larger than that of the horfe fhoe bat, but that the optic nerve is propationed to it. The outer part of the ear of the former is much larger than that of the latier, but the interior part is fmaller.

The horfe thoe bat is indemnified for this difference by a greater ester:fon of the organ of fmell, as cvident. 1) appears when the external elevations and irregnlarities of its muzzle are examined. When it is about to take fight, it agitates its nofe much more than the long. careत bat.
Irom thefe experiments, the author conclndes: Firf, That the eyes of the bat are not indifpenfably neceffary 10 it for finding its way: fremdit, That the organ of litaring appears to fupply that of fight in the ditcovery of bodies, and to furnina thicfe animals with different fenfations to direct their Hight, and enable them to avoid thofe obftacles which inay prefent themfleles.
VIBRATION Figures, are certain figures, form. ed by fand or very dry faw duff, on a vibrating furface, which is conreeted with the fenfation of fomm in our argens of hearing. If the furface, on which the figures are to be formed, be ftrewed over with bodies caflly put in motion, thefe, during the vibration, remain on the fats at reft, and are thrown from the parts in motion. The form of the parts at reft, which will be fhown by the fand that remains unmoved, and which, in general, is fymaretric, is called a vibration figure. To produce fech a figure, rothing is neceffary but to know the method of binging that part of the furface which yon wifh not to vibrate into a flate of reft, and of patting in motion that which you wifh to vitrate. On chis depends the whole expertiefs of prozucing vibration figures

Thus take a fquare piece of giafs, petty chin, and very fanoth, fuch as that ufed for windows, about four or
five inches over, or even inore. Smooth it at the edges on a grinding-fone ; flrew a little faw-duft over its furface, and lay lold of it gently with the thumb and forefinger of the left hand. Holding it thus by the middle, with the right hand rub a violin bow foftly againft one of its edges, drawing the bow either up or down in a divection almo? perpendicular to the furface of the glafs, and yon will fee a tremulons movement, and the whole duft leap about. If the bow be exactly in the middle of one of the fides, the duft will arrange iffulf almof in the direction of the two diagonals, dividing the fquare into four ifofeles triangles. If the bow be applied at a quarter only of the diltance of the one co:ner from the other, the du? will arrange itfelf in fuclin a manner as to be found in the two diameters of the fquare, dividing it into four equal fquares. At other times, when the bow deviates a little, the duft forme a figure like a double C, when the two letters are joined back to back. If the fquare be held by the two extremities of the ciameter, oppolite to that againft which the bow is apolied, the dutt will form a kind of oval, one of the axes of which will be the fame dianneter. If the glafs be of a circulan figure, and be held by the middle, thee duft will arrange itfelf in fuch a manner as to form the fix radii of a regular hexagon. Thefe difenverics were made by Dr Chiladni, ahout the time that he iaven: ad the mufical inftrument, to which he gave the name of eupron (fee that article, Suppl.) ; and as he found the vibration figures to vary in form with the various toncs proluced by the vibrating fubflances, a profecution of his experinents may probably contribute to throw new light on the fhilufoplyy of multical founds. We fat! therefo:e give, from the 3 d volume of Neues $\mathcal{F}$ ournal der Jloyjil, by Profefor Gren, a fcw diections for making. fuch experiments.

Any fort of glafs may be employed, provided its furface be fmooth; and when the plate has acquired the proper vibration, it fhoml. 1 be kept in that flate for feme fuconds, by continuing to rub it with the bow: The figures will thus be accurately formed.
Such plates thould be procured as are pretty equal in thicknefs. It may be fad, in general, that a plate the thinner it is will be fo much the fitter for theie experiments, thongh in this refpect thase is a certain minimum. In finall plates, fuch as thofe that are circular, and not above fix inches in dianeter, the oblorvatio: is general ; but in larger plates too great thinnef is prec judicial. Befides, it will be fond that very thin glas is commonly very meven, and non? therefore be unft for the experiments.

Ill practifing the experiments, it will be proper in have plates of different fizes; and the fand enm?oyed thould not be too fine. In other worls, it nuft he of fuch a nature that when you incline the glafs-plate it may readily roll off, becaufe, in that cafe, it will ise eafily thrown from the vilhating parts. It will be of advantage that it be mixed with fine duft, which Rews peculiar phenomena during the experiments, as it collects itfelf at one place of the vib:ating part.

The p!?e mutt be equally beflesesed with fand, and not too thick, as the lintes will then be execedingly fure, and the figures will acquire a better detined appearance.

VIETA (Franci-), a very celebrated French ma. Fitton's thematician, was bou in 1540 at Fontenai, or Fonte- mathomeri. nai le-Cumté, in Lower J'oiton, a prozince of France cal Liaiuns.

Vi'sra•ion
Fifure;
Vict

Viets. THe was Mrafter of requefts at Paris, where he died in 1603 , being the 63 y year of his age. Among other branches of learning in which he excelled, the was one of the moft refpectable mathematicians of the $\sigma$ oth century, or indeed of any age. His writings abound with marks of great originality, and the finelt genius, as well as intepfe application. His application was luch, that he has fometimes remained in his fudy for three days togrether without eating or 解ping. His invent:ons and improvements in all parts of the matheratics were very confiderable. Ife was in a manner the inventor and introducer of Specious Algebra, in which letters are ufed inttead of numbers, as well as of many beantiful thenrens in that fcience. He made alfo comiderable improvements in geometry and trigonometry. Hlis angular fections are a very ingenious and maflerly performance: by thefe he was enabled to refolve the probem of Adrian Romanus, propofed to all ma thematicians, amounting to an equation of the 45th degrce. Romanus was fo fruck with his fagacity, that he immediately quitted his refidence of Wirtzbourg in Iranconia, and came to France to vifit him, and tolicit his friendthip. His Apollonius Gallus, being a rettoration of Apollonius's tract on 'Tangencies, and many other geometrical pieces to be found in his works, new the finct tafte and genins for true geometrical fpeculations. - He gave fume mallerly tracts on Trigonometry, both plane and fpherical, which may be found in the collection of his works, publifhed at Leyden in 1646, by Schooten, befides another large and feparate volume in follo, pullifhed in the anthon's life time, at Paris, in 1579, cortaning extenfive trigonometrical tahies, with the conftruction and ufe of the fame, wiich are particularly Celcribed in the introduclion to Dr Hutton's Lo. gatihms, p. 4. S.c. To this complete treatife on trigomonetry, platue and fpherical, are furfoned feveral nifcellaneons probllems and obfervacions; fuch as, the chadretwe of the circle, the duplication of the cube, S:C. Computations are here given of the ratio of, the ciameter of a circle to the circumference, and of the length of the fine of a mimute, both to a great many places of figures; by which he found that the fine of 1 minute is

> between 2908881059
> and 2008882056 ;
alfo the diameter of a circle being 1000 , \&c. that the perimeter of the inferibed and circunferibed poly gon of 393216 fides will be as follows, viz. the
perim. of the infcribed polygon - 3141;926535
perim. of the circumferibed polygon $31415925 ; 37$
and that therefore the circumference of the circle lies between the fe two numbers.

Viet: having ol,ferved that there were man:y faults in the Gregorinn Kalendar, as it then exil.ted, compo fed a new furm of it, to which he added perpetun! canom, and an explication of it, with remarks and ab jections againt Clavius, who: he accufed of having deformed the true Lelian reformation, by not righitly under! ansing it.
Betices thefe, it feems a work, greatly efterned, and the lofs of which cannot be finfficiently deplored, was his Hurmonicon Calefe, which. beng communicated to father Merfe:ne, was. by fome per dions acquatitance of that honelt minded perfon, lurrepiriouly taken from hin and irrecorerably loft, or fuppreffed, to the great
detriment of the learned worls. There were alfo, it is faid, other works of an altronomical kind, that have been buried in the ruins of time.

Viet t was alfo a profound decipherer, an accomplifh$m$ nt that prov I very ufeful to his country. As the different parts of the Spanif monarchy lay very dittant from one another, when they had occafion to communicate any fecret defigns, they wrote them in ciphers and unknown characters during the diforders of the le guc. The cipher was compofed of more than 500 different clamacters, which yielded their hidden contents to the penctrating genins of Vieta alone. His fkill fo difoncert the Spanih councils for two years, that they pullithed it at Rome, and other parts of Europe, that the French king had only difcovered their ciphers by means of magic.

VINTAIN, a town, fituated about two miles up a creek on the fouthern fide of the river Gambia. It is much reforied to hy Europeans, on account of the great quantities of bees-wax which are brought hither for fale. The wax is collected in the woods by the Feloops, a wild and unfociable race of people. Their country, which is of corfiderable extent, abounds in rice : and the natives fupply the traders, both on the Gambia and Caffamanfa rivers, with that article, and alfo with goats and poultry, on very reafonable terms. The honey which they colleat is chiefly ufed by themfolves in making a fltony intoxicating liquor, inuch the fame as the mead which is produced from honey in Great Bitzin.

In their traffic with Europeans, the Feloops generally employ a factor, or agent, of the Mandingo nation, who lpeaks a little Englifn, anil is acquainted with the trade of the river. This broker makes the bargain; and, with the connivance of the European, receives a certain part only of the payment; which he gives to his employer as the whole; the remainder (which is very tuly called the cheuting money) he receives when the Feloop is gone, and appropriates to himfalf as a reward for liis tromble. Vintain, according to Mr Pırk, from whofe valuable travels this account of the Feloops is taken, is fituated in $13^{\circ} 9^{\prime}$ North Lat. and $15^{\circ} 5^{\prime}$ Long. We!t fron Greenwich.

VIRGINITY, the teft or criterion of a virgin : or that which intitles her to the denomination. See Hr man, Ency $=1$.

VISION. In the article Oprics, no 144. (Encyll.), it is faid, that as we have a power of contract ng or ielaxing the ligamenta crlisria, and thereby altering the form of the crytalline humour of the eye, we hence fee objects dittinctly at different diffances. It appears, however, fr in fome experiments mace by Mr Everand Home and Mr Ramfen, in the ycar 1794, that this power of contracting and relaxing the ligamenta ciliaria is not alone fufficient to account for the phenomenon. Converling with Mr Home on the different ales of the chryitalline humour, Mr Ramden faid, that as that humour "cowith of a fubflance of different denfities, the central parts being the mof compact. and from thence diminfing in denlity grad ally in every direction, epproaching the vitreons humour on one fide, and the equeous humour on the other, its refative po ver becomes nearly the face with that of the two contiçuons fubflances That fome philofophers have flated the ufe of the cryitaline humour to be, for accommodating
calculate the refractive power of the crytalline with confiderable precifion.
"Again, having the fpherical aberration of the dif. ferent humours of the cye, and having afcertained the refractive power of the cry? alline, we have data from whence to determine the proportional incteafe of its denfity as it approaches the central part, on a fuypofition that this property corrects the aberration.
"An opportunity prefented iffelf for bringing the obfervations of Mr Ramfden, 1 fepecting the nie of the cryftatline lens, to the pronf. is ourg in an came it. to St George's Hofpital with a cararact in the right eye. The cryfalline lens was reacily extraited, and the union of the wound in the cornea took place unattended by inflamination; fo that the eye fuffered the fmalleft degree of injury that cun attend fol levere an operation. The man himfelf was in heal:h, 21 years of age, intelligent, and his left cye perfect: the wher had been an uncommonty thort time in a difeafed llate, and 27 days after the operation appeared to be fee from every other defect but the lufs of the cryftalline lens.
s A number of experiments were made on the imperfent eve, afilled by a lene, and compared with the perfect eye. The aim of thefe iri:ts, which were judiciounly varied, was to afcertain whether the eye which had been deprived of the cryltalline lens was capahle of a ijuiting iffelt to diflinct vifron at different diltances. Among other refults, the perfect eye, with a glafs of $6 \frac{1}{2}$ inches focus, had ditinct vifion at 2 iuclies; the near linnit was $1 \frac{7}{7}$ iuch, the diftant limit lefs than 7 inches. The inperfect eye, with a glafs $21^{2}$ inclees focus, with an aperture asthe of an inch, hid diftin!? vifion at $2 \frac{7}{8}$ inches, the near limit $1 \frac{7}{8}$ inch, and the diAtant limit 7 inches. 'I'he accuracy with which the eye was brought to the fame point, on repeating the experiment, proved it to be uncummonly correet; and as he did not himfelf fee the fcale ufed for admeafurement, there could be no fource of fallacy. From the refult of this experiment, it appears that the range of a justment of the imperfect eye, when the two cyes were masie to fee at nearly the fame focat diftance, exceeded that of the perfen eye. Mr Ramlden fuggefted a reafon why the point of diftine vilion of the imperfect eye might appear to the nan himfelf nearer than it was in reality : namely, that from the imperfection of this organ he might find it eafer to real the leiters when they fubtorded a greater angle than at his real point of diftinit vifion. 'i he experiments, however, appear to thew that the internal power of the eye, by which it is adjuited to fee at different difances, docs not refide in the ciyftalline lens, at leaft not alongether ; and that if any agency in this refpect can be proved to refide in the cryitahine, the other powers, whatever they may be, are capable of exertion beyond their ufual limits, fo as to periorm its office in this refpect.
"From thefe confiderations, and in confequence of other reflections tending to thew that an clongation of the ontical axis is not probably the means of adjuftment, thefe phitofophers directed their enquiries to afcertain how far the curvature of the connea might be fubject to change. They found by trial that this part of the organ poffeffes a degree of elafticity which is very confiderable, both for its perfection and its range ; and by
anatomical anatomical diffection it was found that the four traight mufcles of the eye do in effect terminate in the cornea at their tendinons extiemities; that the whole external lamina of the cornea could by gentle force be feparated, by means of thefe mulcles, from the eye; fo that the tendons feem toft in the cornea, and this laft has the appearance of a central tendon. It was alfo feen that the central part of the cornea is the thickeit and the molt elantic.
"Thefe were confiderable advances towards eftablifh. ing the hypothefis of adjuftment by the external curve of the eye. It remained to be fhewn, by experiments on the living fubject, that this curve does reatly vary in the due direction, when the mind perceives the dianct vifible fenfation of objefs at different diftances. For this purpofe Mr Ramiden provided an appaaatus, confifting of a thick bard Aeadily fixed, in which was a fquare hole large enough to afmit a perfon's face ; the forehead and chin vefting againtt the noper and tower bars, and the cheek agrintt either of the fides; fo that when the face was protruded, the head was feadily fixed by refling on three fides; and in this unfition the left eye projected beyon? the outer furface of the board. A microfcope, properly mounted, fo as with eafe to be fet in every requilite nofition, was applied to view the cornea with a magnifying power of thirty times. In this fituation, the perfon whole eye was the object of experiment was defired to look at the corner of a chimney, at the diftance of 235 yards , through a fmall hote in a brafs plate, fixed for that pupofe, and afterwards to look at the edge of the hole itfelf, which was only fix inches diftant. After fome management and cau tion, which the delicate nature of thefe experiments re quires, the motion of the cornea, which wa. immediately perceptible, hecame very difinit and certain. The circular fection of its furface remained in a tine with the wire in the field of the microfcope, when the eye was adjufled to the diftant object, but projected confiderably bevond it when adspted to the near one. When the diftant ohjest was only 90 feet from the obferver, and the near object fix inches, the difference in the prominence of the cornea was eflinated at I 8octh of an inch. Thefe experiments were repeated and vailiel at different times and on different fubje?ts. The obferver at the microfcope found no difficulty in deternining, from the appearance of the cornea, whether the eje was fixed on the remnte or the near nbject.
"From thefe different experiments Mr Home confiders the following facts to have been afcertained :
". I That the eye has a power of adjuthing itfelf to diffeent diftances when deprived of the cryftalline lents; and therefore the fibrous and laminated fructure of that lens is not intended to ahter its form, but in prevent re flections in the bafage of the rays through the furfeces of media of different denlities, and to correct fpherical aberration.
" 2 That the cornea is made un of lamine; that it is elafic, and when fretched is capable of being elongated I 1th part of its dianeter, contracting to its former length iminediately upou being left to itielf
" 3. That the tendons of the four ftraight mufcles of the eye are continued on to the edge of the cornea, and terminate, or are inferted, in its external haninz: their action will therefore extend to the edge of the cornea.
" 4 . That in changing the focus of the eye from fee-
ing with parallel rays to a near diftance, there is a vifible alteration produced in the figure of the cornes, rendering it more convex ; and when the eye is again adapted to paraltel rays, the alteration by which the cornea is brought back to its former ftate is equally vifible."

Mr Home made many other experiments with a view to throw light upon this curious fubject ; and the refult of the whole appears to be, that the adjutment of the cye is produced bv three different changes in that organ ; an increafe of curvature in' the cornea, an elongation of the axis of vifion, and a motion of the cryltalline lens. Thefe changes, in a great meafure, depend upon the contraction of the four ftraight mufcles of the eye. Mr Ramflen, from computations grounded on the principles of optics and general ftate of the facts, eftinates that the increafe of curvature of the cornea may be capable of producing one-third of the effect, and that the change of place of the lens, and elongation of the axis of vifion, fufficiently account for the other two thirds of the quantity of adjuflment neceffary to make up the whole.

VI'TAIITY, the power of fubfitting in life, which the fathionable phik fophers of the French and German fchools attribute to chemiflry. For a confutation of their abfurd and impions jargon on this fubject, we rew fer our readers, with fome degree of comfidence, to the articles Physiology (Encycl.), and Animal Substan. cis (Suppl.)

VIVERR.1 (fee Encycl.) A new fpecies of this genus of anima!s wa difcovered by Vaillant during his laf travels in Africa; at leaft he ranks under the generic name Viverra, the animal of which he gives the following defcription Its body was of the fize of that of a kitten fix monthy old: it had a very large nofe, the upper jaw exceeding the lower near two-thirds of an inch in length, and forming a fort of inoveable fuout refembling that of the coati of Guiana. The fore feet were armed with four large claws, very fharp and cinlved; the hiad ones have each five, but they are fhort and blunt. All the fur on the upper part of the body is marked with crofs bands of a deep brown colour, on a gound of lighe brown with which many white hairs are intermixed. 'i he lower part of the body and infides of the legs are of a reddifin white. The tail, which is very flefhy, and more than two thirils longer than the body, is black at the tip, and the reft brown, intermixed with white hairs

This animal employs its fore paws to dig very deep holes in the earth, in which it remains concealed during the day, not going out till fun-fet in queft of fond.

The Hottentots who accompanied our traveller called it muys-lond (a moufedog); a general name among the imhabitants of the Cape for all the fmaller carnivorons quadrupeds

VIVES (Ludovicus), the contemporary and friend of Erafmus, was a native of Valentia in Spain. Though well trained in all the fubtleties of the fcholattic phitofophy at laris. he had the good fenfe to difcover its futility, and diligently applied himfelf to more uftful itudies. At louvain he undertook the office of a preceptor, and exerted himfeff with great ability and fuccefs in correcting barbarifm, chaltiling the corrupters of learning, and reviving a tafte for true fcience and elegant letters. Erafmus, with whom he lived upon the
footing

## U L T

Vives, footing of intimate friendhip, fpeaking of Vives when Wherana rine. part of philofophy in which he did not excel ; and that he had made fuch proficiency in learning, and in the arts of fpeaking and writing, that he fcarcely knew his equal. He wrote a commentary upon Auguftine's treatife De Civitate Dei, which difcovers an extenfive acquaintance with ancient philofophy. Henry VIII. of England, to whom he dedicated this work, was fo pleafed with it, that he invited the anthor to his court, and made him preceptor to his daughter Mary. 'Though he difcharged his office with great fidelity, yet in confequence of lis oppofition to the king's divorce, he fell under his difpleature; and it was not without difficulty that he efcaped to Bruges, where he devoted the remainder of his days to ftudy. He died in the year 3537, or, according to Thuanus, in 1541 . With E. rafmus and Buddrus he formed a triumvirate of literature which did honour to the age. He wrote De Prima Philofophic, "On the Firlt Philooophy;" De Ew planatione Elfertiarum, "On the Explanation of Effences;" De Cenfura Veri, "On the Teft of 'Iruth;" De Initiis, Sedis, et Laudibus Pbilofop bia, "On the O. rigin, Sects, and Praifes of Philofophy ;" and De Corruptis Aitibus et Tradendis Difciplinis, "On the Corruption of Science, and on Education." Thefe writings, of which the two laft are the moft valuable, difcover great Atrength of judgment, an extenfive knowledge of philofophy, much enlargement of conception, urcommon fagacity in detecting the errors of ancient and modern philolophers, particularly of Ariftotle and his followers, and, in fine, a mind capable of attempting things beyond the ftandard of the age in which he lived. Io all this he added great perfpicuity and elegance of ityle, not unworthy of the triend of Eralmus.

ULTRAMARINE is a very fine blue powder, almoft of the colour of the corn flower or blue tottle, which has this uncommon property, that, when expofed to the air or a moderate heat, it neither facles nor becomes tarnifhed. On this account it is ufed in painting; but it was employed formerly for that purpofe much more than at prefent, as fmalt, a far cheaper article, was not then known. (See Cobalt, in this Suppl.) Ultramarine is made of the blie parts of the tapis lazuli, by feparating them as much as poffible from the other coloured particles with which they are mixed, and reducing them to a fine powder. The real lapis Jazuli is found in the mountains of that part of farcary called Bucharia, which extends ealtwards from the Caf. pian fea, and particularly at Kalab and Budukichu. It is fent thence to the Eaft Indies, and from the Ealt Indies to Europe. Good ultramarine mutt be of a beautiful dark colour, and free from fand as well as every other mixture. It mult unite readily with oil; it mufl not become tarnifhed on a red hot tile or plate of iron, and it ought to diffolve in Atrong acids, almo't like the zeolite, without caufing an effervefence. In the year 3763 , an ounce of it at Paris colt four pounds fterling, end an ounce of cendre d'vutremer, which is the refulfe, two pounds. 'the bafis of this colour was long fufpected to be copper, but the experiments of Margraft Shewed that it was iron, in fome unknown flate of combination. New light has been thrown on this fubject by Morveau, who has difcovered that felenite loaded with iron, when decompofed by carbonaceous matter,
yields a blue fulphuret of iron of equal permanency with Vorticess the true uitramarine.

At prefent, fmalt of a good colour is often purchafed at a dear rate and fubflituted for ultramarine; and it is found that the colour of this preparation of cobalt is more durable in the fire than even that of the lapis lazuli. For the analyfis of lapis lazuli, fee MineraloGy, $\mathrm{n}^{0}$ 69. Suppl.

VORTICES of Des Cartes are now jufly exploded; but being the fiction of a very fuperior mind, they are ftill an objeet of curiofity, as being the foundation of a great philofophical romance. According to the author of that romance, the whole of infinite fpace was full of matter; for with him matter and extention were the fame, and confequently there could be no void. This immenfity of matter he fuppofed to be divided into an infinite number of very fmall cubes ; all of which, being whirled about upon their own centres, neceflarily gave occation to the production of two different elements. The firf confitted of thofe angular parts which, having been neceffarily $\mathbf{u}$ bbed off, and grinded yet fmaller by their mutual friction, conltituted the moft fubtle and moveable part of matter. The fecond confifted of thofe little globules that were formed by the rubbing off of the firit. The intertices betwixt thefe globules of the fecond element were filled up by the particles of the firft. But in the infinite collifions, which muft occur in an infinite fpace filled with matter, and all in motion, it muft neceflarily happen that many of the glo. bules of the fecond element thould be broken and grind. ed down into the firft. The quantity of the firlt elcment having thus been increafed beyond what was fufficient to fill up the intertices of the fecond, it muft, in many places, have been heaped up together, without any mixture of the fecond along with it. Such, according to Des Cartes, was the original divifion of matter. Upon this infinitude of matter thus divided, a certain quantity of motion was originally imprefled by the Creator of all things, and the laws of motion were fo adjufled as always to preferve the fame quantity in it, without increafe, and withont dimination. Whatever motion was loft by one part of matter, was communicated to fome other; and whatever was acquired by one part of matter, was derived from fome other: and thus, through an eternal revolution from relt to motion, and from motion to teft, in every part of the univente, the quantity of motion in the whole was always the fame.
But as there was no void, no one part of matter could be moved withont thrufling fome other out of its place, nor that witiout thrulting fome other, and fo on. 'l'o avoid, therefure, an infinte progrcis, he fuppofed that the matter which any body pufhed before it rolled immediately backwards to fupply the place of that matter which flowed in behind it; as we may obferve in the fwimming of a filh, that the water which it pufhes before it inmeciately tolls backwards to fupply the place of what flows in behind it, and thus forms a fimall circle or vortex round the body of the fifh. It was in the fame manner that the motion originally impreffed by the Creator upon the infinitude of matter neceflarily produced in it an infinity of greater and fmaller vorticts, or circular ftreams: and the law of motion being. fo adjuuted as always to pieferve the fame quantity of motion in the univerfe, thofe vortices cither continued

Vortices. for ever, or by their diffolution gave birth to uthers of the fame kinc. There was thus at all times an infinite number of greater and finaller vortices, or circular ftreams, revolving in the univerfe.

But whacever moves in a circle is conitantly endea. vouring to fyy off from the centre of its revolution. For the natural motion of all bodies is in a atraight line. All the partecles of matier therefore, is each of thofe greater vortices, were continually prefing from the centre to the circumference, with more or lefs force, according to the different degres of their bulk and folidity. The larger and more folid globules of the fecond element fureed thenfelves upwards to the circumference, while the finaller, more yieldines, and more active particles of the firf, which could flow even through the interftices of the feennd, were forced downwards to the centre. They were forced duxnwards to the centre notwithitanding thei natural tondency was upwards to the circumference ; for the fame reafon that a piecc of wood, when plntiged in water, is forced upwards to the furface, notwithioarding its natural tendency is downwards to the buttom; becaule its tendency downwards is lefs ttrong than that of the particles of water, which, therefore, if one may fay fo, prefs in before it, and thus force it upwar's. But there being a greater quantity of the firft element than what was neceffary to fill up the interfrices of the fecond, it was neceffarily accumulated in the centre of each of thefe great circular ftreams, and formed there the fiery and active fubltance of the fun. For, according to that philofopher, the folar fy!tems were infinite in number, eqch fixed far heing the centre of one; and he is among the firt of the moderns who thus took away the boundaries of the univerfe: cvell Copernicus and Kepler, themfelves, have confined it within what they fuppofed the vault of the firmarient.
The centre of each vortex being thus occupied liy the molt astive and moveable parts of matter, there was neceffarily amongr them a more violent agitation than in any other part of the vortex, and this violent agitation of the centre cherifhed and fupported the movement of the whole. But among the particles of the firt ele. ment, which fill up the interitices of the fecond, there are many, which, from the preflure of the globules on all fides of them, neceffarily receive an argular form, and thus comflitute a third element of particles lefs fit for morion than thofe of the other two. As the particles, hovever, of this third element were formed in the interthiees of the fecond, they are neceflatily fmaller than thofe of the fecond, and are therefore, along with thole of the frr?, urged dewn cowards the centre, where, when a number of them happen to take hold of one an. other, they form fuch fonts upon the furface of the accumulated particles of the filf element, as are often dil covered by telefeopes upun the face of that fun which enlightens and animates our particular fytem. Thofe fpots are often brrken and dilpelled by the violent agitation of the particles of the fi: it clement, as has hitherto happily been the cafe with thofe which have fucceffively been formed upon the face of our fun. Sometimes, however, they encruft the whole furface of that fire which is accumulated in the centre; and the communication betwixt the molt active and the molt inert parts of the vortex being thus interrupted, the rapidity of its motion imnediately beging to languih, and can no longer defend it from being fwatlowed up and carried
away by the fuperior violence of fome other like circnlar ftrean ; and, in this manner, what was once a fun becomes a planet. Thus the time was, according to the fyftem, when the Moon was a body of the lame kind with the fun, the fiery centre of a circular fream of ether, which flowed continually round her: but her face having been crufted over by a congeries of angular particles, the motion of this circular thream began to languifh, and could no longer defend itlilf finm being abforbed by the more violent vortex of the earth, which was then, too, a fun, and which chanced to be placed in its neighbourhood. 'The moon therefure became a planet, and revolved round the eanth. In procels of time, the fame fortune, which had thus befollen the moon, befel alfo the earth; ito face was encru? grofs and inactive fubfance; the motiou of its voitex begran to languifh, and it was abforbed by the greater vortex of the fun: Lut though the vortex of the earth had thus becone langnid, it itill had force enough to occafion both the diurnal revolution of the eanch, and the monthly motion of the moon. For a fmall circular fraim may eatily be conceived as flowing round the body of the carth, at the fame-tinme that it is carried along by that great ocean of ether which is continually revolving romed the fun; in the fame manner, as in a great whirlpool of vater, one may oftea fee 1.veral fnall whirlpools, which revolve round centres of their own, and at the fame time are carried ronnd the centre of the great one. Such was the caule of the original formation and confequent motions of the planetary fyftem. When a folid body is turned round its centre, thofe parts of it which are neareft, and thofe which are remotelt from the centre, complete their revolutions in one and the fame time. But it is othervife with the revolutions of a fluid: the parts of it which are neare!t the centre complete their revolutions in a florter time than thofe which are remoter. 'Ihe planets, therefore, all floating in that immenfe tide of sether which is continnally fetting in from weft to eaf round the body of the fun, complete their revolutions in a longer or a fhorter time, according to their nearnefo or diftance from him.

I his bold fyftem was eminently fitted to carotivate the imagination; and though franght with contradictions and impoinblities, attempts have been made to revive it, wen in this country, binder different rames. Alt thofe fyftems which reprefent the notions of the heavenly bodies as being the effect of the phyfical agency of ethers, of air, of fire, and of light, of which the univerfe is conceived to be full, labour under the fane difficultics with the Cartefian liypothetes; and viry tew of them, if any, are 10 neatly put together. It is furely dufficient, however, to demolith this goodly fabric, barely to af: how an abfolute infinty of matter can be divided into cubes, or any thing clle? how there can poffibly be interltices in a perfect plenum? or how in fich a plenum any purtion of matter can be thruft from its place?

URALIAN Cossacs, a people that inhabit the Ruffian province of Orenburg in Afia, on the fouth fide of the river Ural. 'Thefe Coffacs are defocuded from thofe of the Don: they are a very valiant race. They profeîs the Greek religion ; but there is a kind of diffuters from the eflablified religion, whom the Kufieus called Rafoolniki, or Separatifts, and who ftyle themfelves Staraver/ki, or Old Believers. They confi-

Uralian der the fervice of the eftablined church as profane and Urceoła. facrilegious, and have their own priefts and ceremonies. The Uralian Coffacs are all enthufiats for the ancient
sitnal, and prize their beands almof equal to their lives. A Ruffan officer having ordered a number of Coffac secruits to be publicly Maved in the town of Yaitfo, in 1771, this wanton infult excited an infurrecioon, which was lupprelicd fur a time; bnt, in 1773, that daning impottor, Pugatchef, having aflumed the name and perion of l'cier III. appeared among them, and taking advantage of this circumitance, and of their religiotio prejudices, 10 tiled them once more into open rebellion. 'This being at laft effectually fupprefied by the defeat and execution of the impuftor (See Suworow, Sispl.), in order to extinguifh all remembrance of this rebellion, the river Yaik was called Ural; the Yaik Coffacs were denominated Uralian Coffacs; and the town of Yaitk, Cralja. 'The Uralian Coffacs enjoy the right of fitiing on the coat of the Cafpian Sea, for 47 mules on each lide of the river Ural. 'Their priecipal fifhery is for furgeons and beluga, whofe roe fupplies large quantitics of caviare; and the fif, which ale chis A! lalicd and dried. afford a confiderable articte of conimmption in the Ruffian empire. In confeguence of thefe fifherics, the fe Cunacs are very rich.

- URBINO, a town of Italy, in the territery of the Pope. alid capital of tlie duchy of Utbino, with an old citadel. an archbithoy's fee, and a handfome palace, where the dukea formerly refted. The houfes are well buils, and great quantities of fine earthen ware are made here. It is feated on a mountain, between the rivers Metro and Foglia, 18 niles fouth of Kimini, 58 eaft of Flurnce, and 125 north-calt of Rome. E. Lun. 12. 40. N. lat. $4.3 \cdot 46$.

Urbino, a duchy of Italy, in the territory of the church, boundeci on the north by the gulph of Venice; on the fouth, by Perugino and Umbria; on the call, by the marquifate of Ancona; and! on the wen, by Tufcany and Romagna. It is about 55 miles in iength, and 45 in breadth. Here is great plenty of gance and fifh; but the air is not very wholefome, nor to the luil fertile. Urbino is the capital.

URCEOL. 1, a lately difoovered genus of the pentandria clafs, and monogynia order of planta, ranking immediately after 'JABIRN压MONTANA (fee Encyct.), and confequently belonging to the 3 tht natural order or clafs called Contorta by Limmous in his natural method of arrangencut. One of the qualities of the plants of this order is their yiclding, on being cut, a juice which is generally milky, and for the mutt part deemed of a poifonous nature. The genus is thus characterifid by Dr Roxburgh: Calyx belicath five-touthed; corol one petaled, pitcher maped, with its contracted mouth live toothed: nectary entire, furroming the germs; follicles two, round, drupacious; feeds numervus, im. merfed in pulp. There is but one known fpecies, which is thus deferibed by the fame eminent botanit ;

Urceola elastica: Shrubby, twining, laves oppolite, oblong, panicles terminal, is a native of Sumatra, Prince of Wales's Inland, \&c. Malay countries. Slem woody, climbing over trees, \&c. to a very great extent, young thoots twining, and a little hairy, bark of the old woody parts thick, dark coloured, confiderably un even, a little fcabrous, on which are tound feveral fpecies of mofs, particularly large patches of lichen; the wood
is white, light, and porous. Leaves onpofite, fhort- Urecola. petioled, hoizuntal, ovate, oblong, pointed, entire, a little fabtous, with a sew feattered white liairs on the under fide. Stipuins nore. Paniches terminal, brachiate, very 1 amms. Flsevers numeious, minte, of a dull greenith colour, and hairy on the outfide. Brodis lancooldte, one at each divition and fubdivifion ot the panicle. Cia'y: perianth, one-kaved, five tothed, permanent. Corol one pet lecd, picher fhaped, hairy, mouth much contracted, tive toutlicd, divilions erect, acute, roctary entire, cylindric, conlracong the lower twothirds of the geras. Siamens, filaments ive, very floot from the baic of the corol. Anthers arrow Anapued, converginge, beasing their pollen in two grooves on the infide, near the apex ; between thefe groores and the infertions of the flaments they are coseod with whate fofe liairs. Pjait, genens iwo ; above the nedtary they are vory hairy round the nargirs of their truncated tops. A:tyle lingle, norter than the flamens. Stigma ovate, with a cincular Land, dividing it into twu portions of eifferent colours. Por. Follitles twe, round, latcrally compreffed into the thape of a tumin, wrinkled, leathery, about theree inches in their greateft diame-ters- one celled, two vaitod. Siods very numerous, renitorm, inmented in firm @et!:y pulpo

Sec liate XI.Vi1. where t!g. 1 . is a branchlet in flower of the ratural fize. 2. A flower magnitied. 3 . The lanie laii upen, which expufes to view the Etuation of the tiamesis inierted into the bottom of the corol, the nectariam furrouncing the lower half of the two germs, their upper half with hairy margins, the flyle and ovate party coloured; Itigma appearnger above the
 Infide of the fame, both mutich magniticd. 6. The nettarium lais open, expofing to view the whoke of the piftil 7. The two teed veffels (called by Limnæus fulfiles), ratural fize ; half of one of them is renoved, (1) fhew the leed inmerfed in pulp. A portion thereof is alfo cut away, which more clearly thews the fituation and कhaty of the feed.

From wounds made in the bank of this plant there onzes a milky flis, whach on expofure to the open air feparates into an: elaftic coagulam, and watery liquid, apparenily of no ufe, after the depayation tukis prace. 'ilis coagulum is not only l.ke the American caoutchouc or hadizn mbber, bet pofieffes the fame properties; for which, foe Cauutcrouc, both in the Encyd. and Supil.

The chemeal properties of this vegetable milk, while frefh, were found by Mr Howifon, bate furgeon on Prince of Wales's Inand, furprimity to refemble thofe of animal milk. From its deconpufition, in confequence of fontancous fermentation, or by the addstion of acids, a feparation takes place between its cafcous and ferous parts, both of which are very fimilar in thofe produced by the fanie procefles from animal milk. An oily or butyrous matter is alfo one of its componer:t pants, which appears upon the funface of the gum fo foun as the latter has attained its folid torm. Die endeavoured to form an extract of this milk fo as in approach to the confiltence of new butter, by which he hoped to reiard its fermentative fage, without depriving it of its ufeful qualities, but as he had no apparatus for diftilling, the furface of the milk, that was expofed to the air, inftantly formed into a folid coat, by which

Urinaly, which the evaporation was in a great degree prevented. Untica. He, however, learned, by collectint the thickened milk from the infide of the coats, and deonfiting it in a jelly pot, that, if excluded from the air, it might be preferved in this ftate for a confiderable length of time; and even without any preparation he kept it in bottles, tolerably good, upwards of twelve months.

URINARY concretions. See Animal Substancris, Suppl.

UR TICA. Sce Encycl. where it is obferved that the common nettle, though it has a place in the materia medica, is now very little ufed. It has lately been recommended, however, by Zannetini, a phyfician who attended the French army in Italy, as a grood fubfitute in fevers for cinchona. The fuccefs of fome experiments, which he made with it in tertian and quartan -malignant fevers, furpaffed, he fays, his mot? fanguine expectation. The netele often produces a Speedier ef.
feot than bark; for it heats in a great degree, and when the dole is pretty Itrong, occetions a lethargic fleep. 'The dofe muft never exceed a dram, and is given in wine two or three times in the courfe of 24 hours. Zarnetini found this medicine of great fervice to guard. againft that total exhauftion which forms the principal character of malignant fevers; and he recommends a night infufion of it in wine as an excellent prefervative for thole who refide in mar?hy and infalubrious diftricts. In employing the nettle in fover, Zannetini gives the fame caution as ought to be obferved in regard to cinchona, that is, that it muft not be employed where there is an inclination to inflammation, or where a continued fever, arifing from obitructions, exifts. This difcovery is not unworthy the attention of phyficians, and deferves at leaft to be farther inveftigated, as a great deal would be faved if cinchona could be entirely difpenfed with.

## W.

WATIES, New South, is a country which muft be interefting on account of the fingular colony which was fetted there in the year 1788 . Under the title Nero Holland (Encycl.) fome account has been given of that fettlement, as well as of the climate and the foil about Port J?ekfon; but it will probably gratify the curiolity of our readers, if we give a fhort hiAtery of thofe European fettlers, of whom it is to be hopec that they carried not with them, to that diftant nore,
" Minds not to be changed by time or place."
This hiftory we fhall take from the accurate decount of the Enzlifh Colony in Nerw South Wales, by David Collins, Efq; who went out with Governor Plifllip, and continued to execute the offices of Judgre a! vocate and Secretary till the clofe of the year 1795 ; and we fhatl begin our narrative from the difembarkation of the firft colonifts, when his Majefly's commiffion to the governor, and the letters patent eftablifhing courts of criminal and civi! judicature in the territory were read.

The criminal court was con!lituted a court of record, and was to confif of the judge-advocate and fuch fix cificers of the fea and lend fervice as the governor flall, hy precent iftued under his hand and feal, require to af. fe:mble for that purpofe. This court has power to inquive of, hear, cetermine, and punif all treafons, mifpuifons of treafons, murders, felonics, forgeries, perjuries, trefraffes, and other crimes whatfoever that may be committed in the colony; the puniflament for fuch offences to be inflicted according to the laws of Englind as nearly as may be, confidering end allowing for the circumflances and fituation of the fettlement and its inhabitants. The charge aga:nft any offender is to be reduced into writing, and exhibited by the judge-advocate: witneffes are to be examined upon oath, as well for as againft the prifoner ; and the court is to adjudge whetlite he is guilty or not guilty by the opinion of the major part of the court. If guilty, and the offence is capital, they ase to pronounce judgment of death, in like manner as if the prifoner had been convicied by the
verdict of a jury in England, or of fuch corporal pue nilhment as the court, or the major part of it, flall deem meet. And in cafes not capital, they are to adjudge fuch corporal punifhment as the majority of the court fhall determinc. But no offender is to fuffer death unlefs five menibers of the court fhall concur in adjucging him to be guilty, until the proceedings fhall have bees tranfmitted to England, and the king is pleafure fignified thercupon. The provolt-marfhall is to caufe the judgenent of the court to be executed according to the governor's warrant under his hand and feal.

Befrde this court for the trial of criminal offenders, there is a civil conrt, conlitting of the judge-allvocate and two inhalistants of the fettlement, who are to be appointed by the roverno: ; which count has full power to hear and detcimine in a furnmary way all pleas of lands, houfes, dehts, contracts, and all perfon=1 pleas what foever.

From tris court, on either party, plaintiff or defen. dant, finding hinfelf or themtelvico azgrieved by the judgment or decree, in ap peal lies to the governor, and from him, where the dabt or thing in demand naall exceed the value of L. 300 , to the kin.g in council.

A vice-a.miralty court was alfo appointed, for the trial of offences on the high feas; and the governor, lieuterant governor, and judge-adyocate, were by patent made jultices of the peace, with a power in the governor to appoint other juttices.

The fituation which Governor Phillip had felected for his refidence, and for the principal tettlement, was the ealt fide of a cove in Port Jackton, which he called Sydney Corere. Its latitude was found to be $33^{\prime} 55^{2} \quad 30^{\prime \prime}$ fouth, and its longitude $152^{\circ} 19^{\prime} 32^{\prime \prime}$ catt. This fituation was chofen without due examination; for it foon appeared that the head or uppet part of the cove wore a much more favourable appearance than the ground immediately about the fettiement. From the natives, the new fettlers met no oppolition: during the firlt fix wecks they received only one vifit from them, two men ftrolling one evening into the camp: and remaining in


Fig. 6.


Fig. ${ }^{5}$.


it for about half an nour. They appeared to admire whatever they faw ; and after receiving a $h$ tchet (of the ufe of which the eldeft inftently and curioufly hewed his knowledge, by turning up his foot and Marpen. ing a piece of wood on the fole with the hatchet) took their leave, apparently well ple?fed with their reception. The fifing boats alfo frequently reported their having been vifited by many of thefe people when hauling the feine; at which labour they often afflted with cheer fulnefs, and in return were generally rewarded with a part of the fin taket.
The firft labour in which the convicts were employed was that of building huts; and for this purpofe it was found neceffary to divide them into gangs, and to appoint an overfeer to each, who fhould fee that the proper quantity of work was pefformed. The provifions were diatributed by a weekly ration, and to each man were allowed 7 lb . of bifcuit, 1 lb . of flour, 7 lb . of beef or 4 lb . of pork, 3 pints of peafe, and 6 ounces of butter. To the female conviets two thirds of this ration were allowed. This was the full ration, which, in many infances, it became neceffary to reduce; and once, in confequence of the delay of tranfports with a fupply, the conviets were put on an allowance of which flefh meat conflituted no part.

The temporary hurs in which the coloniffs lived, for fome time after their arrival, were formed principally of the cabbage tree. With this the fides and ends were filled; the pofts and plates being made of the pine; and the whole was plattered with clay. The roofs were generally thatched with the grafs of the gumruft; though fome were covered with clay, but feveral of there failed; the weight of the clay and rain foon deflroying them. In a fhort time they applied themfelves to the burning of bricks; by which their habitations foon became much more lafting and comfortable The progrefs of the colony, however, towards that degree of convenience which was within its reach, was greatly impeded by the ircorrigible vices of thofe who principally compofed it. Drankennefs, theft, robbery, and unconquerable lazinefs, continued to mark the charac ter of the great body of the convies. Though to fly from the colony, and venture into the interior of the country, was inevitable death in the form of famine or of murder, yet fuch was the in incible antipathy to labour manifelted by fome of thofe people, that they often fled to the woods, from which they feldom returned; fome dying of hunger, and fome being facrificed by the natives. Difinclination to labour produced here, as elfewhere, its natural effeet-robbery

In the month of May 1788, a lad of 17 years of age was tried, convicted, and executed, for breaking open a tent belonging to ore of the tranfoort Mips; feveral others were taken into cuftody in that month for various thefts and burglaries, and two were afterward tried and executed. One of thefe had abfoonded, and lived in the woods for 19 days, fublifting by what he was able to procure by nocturnal depredations among the huts and ftock of individuals. His vifits for this purpofe were fo frequent and daring, that it became abfolutely neeef fary to proclaim him an outlaw. By the negligence of one of thofe fellows who had been entruited with the care of the cattle, the bull and four cows were loft: he left them in the fields, and returned to his hut to dine ; and in the mean time they either flrayed away or
were driven off by the natives. Five years elapfed before thefe cattle were difoovered wild, at a confiderable diftance up the country, and ercatly multiplied.

The perpetration of crimes, chielly theft and robbery, had become fo prevalent before twenty months had paffed fince the colony was eftatiifhed, that it was neceflary to think of a fytem of police. A plan was prefented to the governor by a convia which with fome improvements was adopted on the 8th of Augult 1789: The following are the heads of the arrangement.

The fettlement was divided into four diftriets, over each of which was placed a watch confifting of three perfons, one principal and two fubordinate watchmen. Thefe being felected from among thofe conviets whofe conduet and charaeter had been unexceptionable fince their landing, were vefted with anthority to patrole at all hous in the night, to vifit fuch places as might be deemed requifite for the difcovery of any felony, trefpafs, or mifdemeanor, and to fecure for examination all perfons that might appear to be concerned therein; for which purpofe they were di ected to enter any fufpected hut or divelling, or to ufe any other means that might appear expedient. They were requied to detain and give information to the neareft guardhoufe of any fol. dier or feaman who fhould be found itraggling after the tattoo had been leat. They were to ufe their utmolt endeavours to crace out offenders on receiving accounts of any depredation; and in addition to their mightduty, they were directed to take cognizance of fuch conviês as gamed, or folt or bartered their flops or provifions, and report them for punifhment. A return of all occurrences during the night was to be made to the judge-advocate; and the military were required tofurnifh the watch with any affefance they might be in need of, beyond what the civil power could give them. They were provided each with a fhort flaff, to dittinguin them during the night, and to denote their office in the colony ; and were inftrueted not to receive any ftipulated encouragement or reward from any individual for the convittion of offenders, but to expect that negligence or mifconduct in the execution of their trult would be punifhed with the intmoft rigour. it was to have been wifhed, fays Mr Colling, that a watch efad blifhed for the prefervation of public and private property had been formed of free people, and that neeeffrty had not compelled us, in felcaing the firft members of our little police, to appoint them from a body of men, in whofe eyes, it could not be denied, the property of individuals had never before been facred 13ut there was not any choice: The military had their line of duty marked out for them, and between then and the convict there was no defcription of people from whom overfeers or watchmen could be provided. It might, however, be fuppoled, that among the convicts there muft be many who would feel a pride in being diltinguilhed from their fellows, and a pride that might give burth to a returning principle of honefty. It was hoped that the convicts whom we had chofen were of this defeription ; fome effort had become necefliary to deteet the various offenders who were prowling about with fecurity under cover of the night; and the conviets who had any property were themfelves interefted in defeating fuch practices. They pronifed fidelity and difigence, fiom which the fcorn of their fellow-priloners. flould not induce them to fwerve, and began with a

## W A L

 felves offered to undertake.A fpecies of difturber now infented the colony, againft which the vigilance of a police could not gurard. Rats, in immenfe numbers, had attacked the provifinn. Pores, and could be comiteracted only by removing the provifions from one !ore to another. When their ravages were firft difcovered, it was found that eight cafks of flour were already deftroyed by thefe vermin. Such of thefe animals as efcaped the dogs, which were fet upon them, flew to the gardens of individuale, where they rioted on the Indian corn that was growing, and did confiderable mifchier.

Our author gives the moit melancholy account of the ext:eme fufferings of the eally colonits from want of provilions. and of the difeafes imported into the conntry by newcomer:, who had either canght them on the woyare on brought them from England 'The fettlers on Nortork-Ifland (fee Encyel.), to which New South Wales was a mother country, mult have been much more liable than that colony to fuffer from famine, had they not fometines obtained a temporary funply from a fource which was unknown at Sydney Cove. On a mountain in the ifland, to which had been given the name of Mount Pitt, they were fortunate enough to obtain, in an aburdance almont incredible, a fuecies of aquatic birds, anfwering the defeription of that known by the name of the piffin. Thefe birds came in from the fea every evening, in clouds literally darkening the air. and defcending on Mount Pitt. depofited their eggs in deep holes made ty themflelves in the ground, generally quitting them in the morning, and returuing to feek their Subfi?ence in the fea. Fiom two to three thoufand of thefe birds were often taken in a night. Their feeking their food in the ocean left no doubt of their own flef pariaking of the quality of that upon which they fed; but to penole circumitanced as were the inhabitants on Norfolk ifland, this leffened not their importence ; and while any Monut Pitt birds (fuch being the name given them) were to be had, they were eagerly fought.

The firt fetter in New South Tiales, who declared himfelf able to live on the produce of his farm, withont any affiftance from the fores, was Jamcs Rufe; who in April 1,92 relinquithed his claim to any farther fhare of the public provifion. As a rexard, the governor immediately put him in poffeffion of an allotinenc of 30 acres.

In the July of the fame year, the convicts whofe terms of tranfportation had expired were now collected, and by the authority of the governor iutormed, that fuch of them as wifhed to become fettlers in this coun. try fhould receive every encomragenent; that thofe who did not, were to latoner for their provilions, Itipulating to work for 12 or 18 months certain: and that in the way of fuch as pefferred returning to Eugland no obitacles would be thrown, provided they could procure paltages from the mafters of finch flips as might arrive; but that they were not to expect any affitanice on the part of government to that end. 'The wifh to return to their friends appeared to be the prevailing idea, a few only giving in their names as fetters, and none encraging to work for a certain tine.

That the wifh to retarn home was ftrong indees, and paramount to all other feelings, was crinced in a very
melancholy infarice fome time before. A convica, an elderly m?n, was found dead in the woods, near the fettlement ; who, on being opened, it appeared, had died from want of nourifhment; and it was found that be was aceuflomed to deny himfelf even what was abfor lutely neceffary to his exitence, aisltaining from his provilions, and felling them for money, which he was referving, and had fornewhere conctaled, in order to purchafe his paflage to England when his time fhould terminate!

Of fome convicts whofe terms of tranfportation had expired, the governor eltalsinfed a new fettlement in Augult 179I, at a place which he called Profped Hill, about twenty miles diffant from Sydney Cove; and an. other refidence was formed at the Ponds within three or four miles of the former. This mate the fourth fritlement in the coluny, exclufively of that at Norfolk 1 nand.

Dhont this time the governor receiveci from England a public feal for the colony: on the obverfe of which were the kins's arms and royal titles; and on the reverfe. embleinatic figures fuited to the fituation of the people for whofe ule it was defligned. The motto was "Sic fortis Etruria crevit;" and in the margin were the words "Sigillum Nor. Camb. Aufl." A commifo fion alfo arrived, empowering him to remit abfolusely, or conditionally, the whoic or any par: of the term for which the felons fent to the colony might be tranfportce. By this fower he was enabled to tefow on fuperior honefly and induntry the nont valuable reward which, in fuch circumfances, they could receive.
In addition to the calamities under which the fettleinent had fo often laboured fiom being reduced to sery A.ort allewance of provitions, and the frequency of the ordinary diferfes which were to be expected among a people fo fituated, a new malady of a very alarning nature isas perceived about $\Lambda$ pril 1792 . Sevenal convi¿ts were fized with infanity; and as the nujor part of thofe who were vifited by this calamity were females, who, on account of their fex, were not harafed riths hard labour, and who in general fhared largely of fuch little comforts as were to be procured in the fettlement. it was dificult to affign a caule for this diforder: Is feems, however, to have been of fort duration : for we hear unt of it again during the period that Mr Collins's narrative comprehends.
About this time (1792) the colony had affumed fomething of an eftajlihed form. Brick huts were in hand for the convicts in room of the milerable hovela occupied by many, which had beer, put up at their firft landing, and in room of others which, from having been erected on fuch ground as was then cieared, were now found to interfere with the dircetion of the itreets which the governor was laving ous. People were allo employed in cutting paling for fencing in their gardens. At a place called Paramatta, ahout in miles from Syd ney Cove, fituated on a finall river which rons into Port Jackfon, the people were enmployed, during the greatelt part of the month of May, in getting in the maize ant fowing wheat. A foundation for an hofpital was laid, a houle built for the matter carpenter, and roofs prepared fol the different huts either building or to be built in future.

In December 1792, when Captain Phillip refigned the government, nearly five years from the foundation
of the colony, there were in cultivation at the different fettements i4 29 acres, of which 417 belonged to fetthers; that is, 67 fettlers, for thene were no nore, cul tivated nearly half as much ground as was cultivated by the public labour of all the conviets; a Ariking proof of the fuperior zeal and diligence with which men exert themfelves when they have an interelt in their labour. Of free fettlers, whofe excrtions promifed fo fairly to promote the interefts of the colony, feveral ar. rived from England in January 1793, and fixed themfelves in a fituation which they called Liberty Plains. 'I'o one of thefe, Themas Rofe, a farmer from Dorfetfhire, and his family of a wife and four children, 120 acres were allotted. 'ithe conditions minder which thefe people agreed to fettle were, "to have their paffage provided by envernment (A) ; an saffortment of tools and implements to be given to them out of the fores; that they finuld be fupplied with two years revilions; tha: thicir lands thould be granted free of expence: the fervice of convicts alio to be affigned to them free of expence: and that thofe convi?ts fhould be fuppliced with two years rations and one ycur's clothing."
imong the great Ciffenties with which this infant eftablinment had to ftrugule, not the leaft was that of procuring cartle. Of thofe which were embarked in England and other places for the colony, a very finall proportion only arrived; for of 15 bulls and 119 cows, which hed been embarked for Botany Bay, ouly 3 bulls and 28 cows were lansed at the fettlement. It was not unti! the arrival of the Endeavour, Cantain Bampton, in 1795 , that the mode of convering catcle to the colony withont material lofs was difeovered. In that reffel, out of 120 liead which he embarked at Dombay, one cow only died on the pafíage, and that too on the dav before his arrival.

The fearcity of cattle naturally raifed their price. Even after this la!t importation, an linglifh con in calf fold for 1. . So.

Notwithfanding the various obftacles which induftry had met in the cultivation of this fettlement, it vet made confiderable advances; for in October 1793, the valne of land had fo rifen, that one fettler fold his allotment of 30 acres for as many pounds; and one farm, with the honfe, \&c. fold for L.ioo. The value of ground, indeed, was confiderably enhanced by governinert agrecing to purchafe the redundance of the produce of the fettlers at fixed prices. Wheat properly dried and cleanfed was received from the fettlers at Sy duey, by the commiffary, at 10 s. per bufhel. Some cultivators, however, had devifed another mode of difpofing of their corn. One of them, whofe lituation was near Parramatta, having obtairied a fmall ftill from England, found it more advantagcous to draw an ar. dent diabolical foirit from his wheat, than to fend it to the fores. From one bushel of wheat he ubtained neally five quarts of fpirit, which he fold or paid in exchange for labour, at the rate of five or fix fhillings per quart A better ufe was made of grain by another fettler; who, laving a mill, ground it, and procured 44 lb . of good flour, from a bufhel of wheat taken at 59 lb . This flour he fold at 4 d . per lb .

Suppl. Vol. II. Part II.

13 a return of the number of peifores in New South Wales and Norfolk Inarid in April 1-04, it appeared that there were in all $44^{1} 7$, inchading women and children ; the annual expence of whoni, to the mothercountry, Mr Collins cftimates at L. 161,101 . Rapid ftrides, however, were at that time making towards independence, if not toward; an ability of repaying to England a part of what the fettlement had coit hicr. Already the colony lived on grain of its own growth, and an increafe of live fock was become almoft certain. There were now $466 ;$ acres of ground cleased for cultivation: more than half of which had been effectec by thofe who lad become fettlers in the courfe of fifteen months.
'I'o this fpirit of improvement fuch a check was given in September 1594. that not more than a third of governinent ground, and a fifith of ground betunging 10 individuale, was in enlrivation 1-9\%. As this event has Ecen mifreprefented, we fufpect purpofely, by founc of our journalits, we fha!! give the true account of it in the words of Mr Collins him'elf.
"i'he Francis fchooner (fays he) returned from Norfolk, having heen abfent about eight wecks and thrce days. From Mr King, who commanded in that iflanc, we lcarned that his harvelt had been prodigionny product've. He had puichafed from the tirts crope, which the fottlers had brought to narket, upwards of $11,0 \geqslant 0$ tufhels of maize: and bills for the anount were drawis by him in favon! of the relpestive fett!ens ; but requi. ring the fanction of the lieutcona giovernor. tion were now fent to Port Jackion. Mr King had boe: purtly induced to make this porifonal kind of purcinef: u:1der an idea, that the com would be asceptable at PortJackfon, and alfo in compliance with the conditions on which the fettlers had received theis refpective allotments under the reculations of Governor Phillip ; that is to fay, that their overplus grain fould be purchafed at a fair market-puice. Being, however, well flocked with that arsicle already, the Licntenant governor did not think himfelf junifiable in putting the crown to fo gleat an expence (nearly L. 3050 .Sterling), and C.eclined accepting the biihs." 'This naturally excited fome difcontents in Norfolk lfiant, ased olie or two fettlers gave up their farms: but inmediately on the arrival of Governor Hunter, he paid for the corn, and tranquillity was reltored to the inand.

Though feveral quarrels had oceurred between the natives and individuals among the colonifts, $y$ et it was fappofed that nur people were in general the aggreffors. The governor had taken much pains to infpie the native with confldence, and had in a gleat meafure fucceeded. 'To theft they were natuatly and irrefittibly inclined: but, like other lavages, they feemed unconfcious of the crime, and were fetdom deterred ly setection from mixing with the colonifts. At a fettlement which had carly been formed at a viver called the Hawkefoury (and at which, cultivation having grone on well, there was, in convfe, much grain to flimulate to depredution), the natives affumed a more formidable appearance.
"At that fettlement (fays Mr Coilins) an open war 5 D
feemed
(a) Government paid for the paffage of each perfon above ten years of age L. $8,8 \mathrm{~s}$. and one frilling per day
victualling them. for viftualling them.

## W A L

Wales. feemed about this time to have commenced between the natives and the fettlers ; and word was received overland, that two people were killed by them; one a fettler of the name of Wilfon, and the other a freeman, one William Thorp, who had hired himfelf to this Wilfon as a labourer. 'The nativez appeared in large bodies, men, women, and children, provided with blankets and nets to carry off the corn, of which they appeared as tond as the natives who lived among us, and feemed determined to take it whenever and wherever they could meet with opportunities. In their attacks they conducted themfelves with much art ; but where that failed they had recourfe to furce; and on the leatt appearance of refiffance made ufe of their fpears or clubs. To check at once, if poffible, thefe dangerous depredators, Captain Paterfon dirested a party of the corps to be fent from Paramatta, with inftructions to deltroy as many as they conld mett with of the wood tribe (Bè-diagal) ; and, in the hope of ftriking terror, to erect gib. bets in different places, whereon the bodies of all they might kill were to be hung. It was reported that feveral of thefe people were killed in confequence of this order; but none of their bedies being found (perhaps if any were killed they were carrited off by their companions), the number could not be afcertained. Some prifoners, however, were taken, and fent to Sydney; one man (apparently a cripple), five women, and fome children. One of the women, with a child at her breatt, had been thot throush the foulker, and the fame fot had wounded the babe. They were inmediately placed in a hut near our hofpital, and every care taken of them that humanity firggefled. 'The man was faid, inftead of being a cripple, to have been very active about the farms, and inftrumental in fome of the murders which had been committed. In a fhort time he found means to efcape, and by fwimming reached the north thore in fafety; whence, no doubt, he got back to his friends. Captain Paterfon looped, by detaming the mrifoners and treating them well, that fome good effect might refult ; but finding, after fome time, that coercion, wot attention, was more likely to anfwer his ends, he fent the women back. While they were with us, the wounded child died, and one of the women was delivered of a boy, which died immediately. ()n our withdrawing the party, the natives attacked a farm nearly oppofite Richnond Hill, belonging to one Wrilliam 'Rowe, and put him and a very fine child to death; the wife, after receiving feveral wounde, crawled down the bank, and concealed henfelf among fome reeds half innserfed in the river, where the reniained a confiderable time with. out affiftance : being at length found, this poor creature, after having feen her hufband and her child flanghtered before her eyes, was bronglit into the liofpital at Paramatta, where fhe recovered, though flowly, of her wounds."

By the vigorons meafures which were adopted, the colony, towards the clofe of 1796 , had acquired a degree of Arength which feemed to enfure its future profperity. Not only the neceffary edifices were raifed for the habitations of its people, but fome for the purpofes of religion, amufement, \&c. A playhoufe had been erected at the expence of fome perfons who performed in it for their own emolument, and who admitted anditors at one hilling each. A convenient church had been built, a printing.prefs had been fet up, the civil
court was open for the recovery of dehts by action and for proving wills, licences had been iffued to regulate the fale of fpirits, and paffage-boats were eftablined for the convenience of communication between the different fettlements. In the houfes of individuals were to be found moft of the comforts, and not a few of the luxu. ries, of life; and, in a word, the former years of famine, toil, and difficulty, were now exchanged for thofe of plenty, eafe, and pleafure.

The quantity of ground at this time in cultivation was 5410 acres ; of which 2547 were occupied by fettlers. The number of perfons in New South Wales and its dependencies amounted to 4848 . The price of labour, however, compared with the prices of provifions (as given in Mr Collins's 'Tables), does not ap. pear fo high as to, enable the workman to live very comfortably. He who receives but threc fhillings for his day's work, and gives two Chillings for a pound of nutton, fifteen pence for a pound of pork, and half of that fun for a pound of flour, will farcely derive from his mere labour the firpport neceffary for a family.
'I'lat many things are yet wanted to give full effect to the advantages which the colony now enjoys, Mr Collins declares in the following paragraph, with which he concludes his account:
"The want at this time of feveral public buildings in the fettlement has alveady been mentioned. 'io this want mutt be added, as abfolutely neceffary to the wellbeing and comfort of the fettlers, and the profperity of the colony in general, that of a public ftore, to be open. ed on a plan, though not exactly the fame, yet as liberal as that of the Ifland of St Helena, where the Eaft India Company iffue to their own Servants European and Indian goods at so per cent. advance on the prime cott. Confidering our immenfe diflance from England, a greater adrance wonld be neceflary; and the fettlers and others would be well fatisfied, and think it equally liberai, to pay 50 per cent. on the prime coft of all goods brought from England; for at prefent they pay never lefs than 100 , and frequently 1000 , per cent. on what they have occafion to purchafe. It may be fupm pofed that government would not choofe to open an account, and be concerned in the tetail of goods; but any individual wotald find it to his intereft to do this, particularly if afferted by government in the freight; and the inhabitants would gladly prefer the manufactures of their own country to the fweepings of the Indian bazars.
" The great want of men in the colony mult be fupplied as foon as a peace fhall take place; but the want. of refpectable fettlers may, perliaps, be longer felt; by thefe are meant men of property, with whom the gentlemen of the colony could affociate, and who thould be thoroughly experienced in the bufinefs of agriculture. Should fuch men ever arrive, the adminifration of juftice might affume a lefs military appearance, and the trial by jury, ever dear and moft congenial to Englifto men, be feen in New South Wales.'?
'Ihere is, however, one ferious difficulty which the colony has not yet overcome, and which, until it be overcome, will certainly prevent fuch men from fettling in New South Wales. 'Till fome Itaple commodity can be raifed for exportation, indutrious free \{ettlers will never be tempted to emigrate from Europe to a country where their induftry cannot procure the comforts as

Wiales, well as the neceffaries of life. The American colonies, in their infancy, did not labour under this difadvantage. Tobacce foon became, and fill continues to be, ant article of fuch importance, that its cultivation afforded the trans-atlantic farmer a ready exchange for European commodities; whilt in New south Wales there feems to be no vegetable production of much value, except New Zeeland hemp, which is produced indeed in great abundance in Norfolk Inand, and which Captain Cook long ago pointed out as an article of great importance to the Britiih navy. This is indeed a valuable plant, and grows in all the cliffs of the illand, where nothing elfe will grow, in fufficient abundance to give conflant employment to 500 people; yet when Mr Cullins left the fettlement, there was no more than one loom on the ifand, and the flay or reed was defigneed for coarfe canvas; nor did they poffefs a fingle tool required by flaxdeeffiers ar weavers beyond the poor fubititutes wlich they were obliged to fabricate for theninfelves. In this deferet of necellarics for the manufacture, ouly 18 people could be employed in it ; and of thefe the united labour in a week produced 16 yards of canvas, of the fize called $\mathrm{N}^{5}{ }_{7}$.

Belides a ufeful manufactory of this plant, which certainly might te eltablified, the colony appears to poffefs feverat :mportant advantages. Froum Mr Collius's narrative, it appears probable that a feal and perlaps a whale tifhery might be eftablithed with a fair profpect of fuceefs; good tich earth is found near Syciney Cove; there are immenfe flrata of coal in the fointhern part of New Hollland; Norfolk Illand abounds wihh lime; and vaft quantitues of ficlls, which anfwer the fame purpofe, have been found on the main land. Though the wood in general be not of a durable kind, it appears that there is fome good tinber near the Hawkefbury river; and at Norfolk Ifland and New Zealand it is renarkably fine.
WALPOLE (Horzee, Earl of Orford), was the youngeft fon of the celcbrated Sir Rubert Walpole, afterwards Earl of Orford, by his firlt wife, Catharine, danghter of Robert Sharter, Eff; of Bybrook in Kent. He was born 1716 ; and was educated, firtl at Eton fchool, and afterwards at Cambridye. At Eton he formed an intinate acquainuance wilh the celcbrated poet Gray : and they went togrecher on the tour of Eu10pe, in the years 1759,1740 , and $174^{1}$. Unthappily they liad a difipute in the courfe of their travels, whicich producel a feparation.
Mr Walpole was able to make a fplendid figure during the remainder of liis deftined courfe; but poor Gray, after the feparation, was obliged to obferve a very fevere economy. " $i$ his cifference arofe from the difference of their tempers: the latter being, from his carliett years, curious, penfive, and philofophical ; the former, gay, lively, and inconfderate. 'ilhis, therefore, occafoned their feparation at Re大gy: Mr Gray went before him to Vellice; and Aaying there till he could frisd means of returning to England, he made the beft of his way home, repalfing the Alps, and following almoit the fame rout, thronglt Fiance, which he had be for gone to Italy. in juitice to the memory of to refopertable a friend, M: Walpule (fays Mr Mafon, Life of Gray, 4to, P. 4..) enjoins me to charge him with the chief blame in their çuarrel, confeffing that mure attention, complaiance, and defercnce, to a warm triend-
hip, and fuperior judgment and prudence, might have prevented a rupture that gave much uneafinefs to them both, and a latting concern to the furvivor; though in the year 1744 a reconciliation was cffected between them, by a lady who wilhed well to both parties." This event took place after their return to England; but the roound in their friendhip left a foar that never was totally effaced.

We do not, indeed, think that Horace Walpole and Mr Gray were formed, either by nature or by hahite, to continue long in a flate of intimate friendfhip. Gray appears to have been a man of the pureft inoral principles, a friend to religion, penfive, and at lealt fufficiently cunfcious of his intellectual powers and intellectual attainments. Walpole's morality was certainly of a kofer kind; he feems to have had no religion; he was ofien unfeafonably gay; and to an equal Thare of intetleetual pride, though without equal reafon, lie added the pride of birch. It can therefore excite no furprife that a man of Gray's independent fpirit could not bear the fupercilions freaks of fuch a character.

Mr Walpote was nominated to reprefent the city of Norwich, when his father vifited it July 3d, 1733, having acquired confequence, not onty as the fon of the minitter, but as liaving attended the Prince of Orange to England in that year. He was chofen member for Collington, in Cornwall, in the parliament which met Jme 2ith, 1741 ; was a fecond time in parliament as ieprefentative for CaRle. Riling, in Norfolk, in 1747; and for King'b I.ynn in 1754 and 17 (11 ; and, at the expiration of that prat liament, he finally retired from the Itage of palitics, and confined limfelf wholly to literary purfuits. He held to his death the office of ufher of his Mzjefly's excheçuer, comptroller of the pipe, and clerk of the eftreats. Upon the death of his nephew, George, third Earl of ()fford, 1791, he fucceeded to the title and eltates ; but that event made fo little alteration in his mode of tiving, that we know not whether hie ever took his feat in the houfe of peers. During atmot the whole comife of his life he was the viction of the gout, which at laft reduced lim to a cripple: but it never impaired his faculties; and, to the rery moment of death, his miderttanding feemed to bid defiance to the fhock of Nature. He died at his houfe in Berkefley siquart, in 1796, having juft entered his 8oth year; and was interred in the fantily vault at Houghton, is a private manner, agreeably to his particular di. sections.

Hordee, Lord Orford, was never married, and, by one of his biugraphers, his chief miltrefs through lift is faid to have been the mufe. It is certain that he devotrd the greater part of his life to belles lettres and virtú, though he ridiculoully aflected, in his letters to his friends, to defpife leaming and learned men, for which he was very properly reprimanded both by Gray and Hume. It was an affectation pecularly abiurd in him, who was conftantly publithing foncething, and who wiote with uncommon acrinony agranft all who prefuned to call in quettion the fidelity of the picune which Le. lad drawn of Richard IIL. or indeed to controvert any of his opunions. Hence his antipatly to Johnfon, becaufe he was a tury, a Chrittian, and a rigid moralilt ; whillt he himfelf was a whers, an intidel, and fuch a moralift as could retail, without blesthing, all the fcandalous anccdotes, whether trme or falle, of that auguit fanily, from
whom he acknouledged his whoje fortune to be derived IFe had, indeed, another reafon for dilliking Johr:fon. Lo:d Ortord fhone in converfation, and lurpaffed all his contemporaries in that kind of talk, which, without dazzling by its wit, alsays delighted; white Johnfon, when roufed, krocked fown, as by a flafh of lightning, his I ordfhip, and every one elfe who had the conficence before lim to talk profanely. Johnfon's wit was original: Lord Orford's confilted of lndicrous ftories and of literary and political anecdotes. His works, of which by far the moft valuable part has long been in the hands of the public, were collected in 1798 , and pullifhed in five volumes, 4 to. They refemble his colverfation, being rather amuling than profound or inilusive.

WARING (Eddward, M. D.), Lucafian Profeffor of Nothematics in the uniwafity of Cambridge, was the fon of a wealthy fermer, of the Old Heath, near She ewf. bury. The easly part of his educention he received at the free fchool in Sheenforry; whence he romoed to Car bridge, and w"s admitted on the 2 th of March 1753 a meri't of Magdalen college. Here his talents for abtrufe calculation foon devoloped themfelven, atd, at the time of taking his degree, he was confodered as a prodigy in thole feiences which: make the fuhjeit of the bachelo:'s examimation. The rame of Senior Tiv rang. ler, or the firtt of the year, was thought fcarcely a fufficcent honoer to diftinguifh one who fo far outfone his contemporaries; and the merits of John Jebb were fufficiently acknowledged, by being the fecard in the litt. Waring took his firtt, or bachclor's ácgrec, in 1757, and the Lneafian Profefforfip became vacent before he was of fuficient Itanding for the next, or mafter's degree, which is a neceffary qualitication for that office. This defect was fupplied by a royal mandate, through which he became mafler of arts in 1760 ; and fhortly after his admiffion to this degree, the Lucafian Profel: for.

The royal mandate is too frequently a fcreen for indolence; and it is now become almoit a cuffum, that hads of collegres, who ought to fet the example in dif. cipline to others, are the chief violaters of it, by ma. king their office a pretext for taking their doctor's defree in civinity, without performing thofe exercifes which were c'eligned as pronfs of their qualifatations. Such indolence canlot be imputed to Waring; yet ieveral circumftancos, previous to his election into the profeflorial chair, difeovered that there was, at lealt, one perfon is the eniverity $\because$ ho difepproved of the anticipation of degees by external influence. - Waring, before his tection, gave a fmall fpecimen of his abilities, as proof of his çualification for the office which he wes then foliciting; and a controverfy ou his merits enfued: Dr Powell, the maiter of St John's college, attacking, in two pamphets, the Profeflor; and his friend, afterwards Judge Willon, defending. 'The attack was fearcely warranted by the eirors in the fpecimen; and the abundant proofs of talents in the exercife of the profefforial office are the bett anfwers to the farcalms which the learned divine amufed himftif in cafting on rifing merit. An office held by a Barrow, a Newton, a Whifton, a Cotes, and a Sanderfon, muft excite an ingenuous mind to the greatctt exerticts; and the new P'rofeffor, whatever may have beeri his fuccefs, did not fall
hichind any of his predeceffors, in either zeal for the feience, or application of the powers of his mind, to exten l its boundaries. In 1762. he publifhed his Mifectlanea Analytica; one of the molt abftrufe books writ. ten on the abftrufett parts of algebra. 'This work extended his fame nver all Europe. He was elected, with. put folicitation on his part, niember of the focieties of Bononia and Gottingen ; and received flattering marks of efteem from the moft eminent mathematicians at home and abroad. The difficulty of this work may be prefinmed from the writer's own words, "I cannot fay that I know any one who thought it worth while to read through the whole, and perhaps not the half of it."

Mathematics did not, however, engrofs the whole of his attention. He could dedicate fome time to the ftrdy of his future piofeffion ; and in 1767 , he was admitted to the degree of doctor of phyfic; but, whether from the incapacity of uniting together the employments of active life with abftufe freculation, or from the natural difidence of his temper, for which he was moft peculiarly remarkable; the degree which gave him the right of cxercifing his talents in medicine was to him intrely a barren title. Indeed he was fo cmbarraffed in his manners before ftrangers, that l:e could not have made his way in a profeffion in which fo much is done by addrefs ; and it was fortunate that the cafe of his circumftances permitted him to devote the whole of his time to his favourite purfinit. His life pafted on, markeci out by difcoveries, chiefly in abftract fcience; and by the publication of them in the Philofophical Tranfactions, or in feparate volumes, under his own infpection. He lived fome years after taking his doctor's degree, at St Ives, in Ifuntingdorfnire. White at Cambridge he married - quitted Cambridge with a view of living at Shrewfbury; but the air or fmoke of the town being injurious to Mrs Waring's health, he removed to his own citate at Plaifey, about 8 miles from Shrewfoury, where he died in 1797, nniverfally efteemell for inflexible integrity, modefty, plainnefs, and funplicity of manners. They who knew the greatnefs of his mind from his writings looked up to him with reverence everywhere; but he enjoyed himfelf in domeftic circles with thofe chiefly among whom his purfats conld not be the ndm ject either of admiration or envy. The outwaid pom? whic! is affected frequently in the higher departments in acadonic life, was no gratification to one whote habits were of a very oppolite nature; and he was too much occupied in leience to attend to the intrigues of the univerity. Where, irs all queftions of fcience, his word was the law ; and at the anmal examination of the candicates for the prize inflituted by D. Smith, he appeared to the greatelt advantage. The candidates were generally three or four of the beft proficients in the mathematics at the previons annual examination for the bachelor's degree, who were employed from nine o'clock in the morning to ten at night, with the excep. tion of two hours for dinner, and twenty minutes for tea, in anfwering, viva voce, or writing down anfwers to the profeffor's queftions, from the firft rudiments of philofophy to the decpelt parts of his own and Sir Ifaac Newton's workso Perhaps no part of Europe affords an inttance of fo fevere a procefs; and there was never any ground for fufpecting the Profeffor of partiality,

Waring. lity. The zeal and judgment with which he pet formed this part of his office cannot be obliterated from the memory of thofe who paffel ihrough his fiery ordeal.

Wifhing to do ample juftice to the talents and virtue of the Profeffor, we feel ourielves fomewhat at a lofs in fpeaking of the writings by which alone he will be known to polterity He is the difcoverer, accordirg to his own account, of nearly 4:0 propolitions in the analytics. This may appear a vain glorious boaft, efpecially as the gerater part of thote difooveries are likely to fuk into cinition ; but he was, in a manuer, compelled to make it by the infolence of Lalande, who, in his life of Condorcet, afferts that, in 1704 , there was no firt-rate analyft in England. In reply to this affertion, the Profeffor, in a letter to Dr Mankelyne, lirlt mentions, with proper refpect, the inventions and writings of Harriot, Briggs, Napier, Wallis, Halley, Bruncker, Wren, l'll, Barrow, Mercator. Newton, De Moivre, Machurin, Cotes, Stirling, Taylor, Simpfon, Inerfon, Landen, and others ; of whom Emenfon and Landen wete living in $1,6+$. I-Ie then gives a fair and full detail of his own inventions, of which many were fublifned anterior to 1764 ; and concludes his letter in thefe word.
"I know that Mr Laiande is a fiff-rate aftronomer, and writer of aftronemy; but I never heard that he was much converfant in the deeper parts of mathematics; for which reafon I take the liberty to ank him the following quefions:
"Has he ever read or underfood the writings of the Enghih mathematicians: and, as the queition comes from me, I fubjoin, particularly of mine? If the an. fiver be in the negative, as it is my opinion, if his antfwer be the truth, that it will, then there is an end of all further controver!y ; - but if he afferts that he bas, which is more than Condorcet did by his onn acknowledgment, then he may know, from the enumeration of inventions made in the prefaces, with fome fubfequent ones added, that they are faid to amount to more than 400 of one kind or other. Leet him try to reduce thofe to as low a number as he can, with the lealt appearance of candonr and tuth; and then let him compare the number with the number of inventions of any French nathematician or mathematicians, either in the prefent or paft times, and there will refult a comparifoen (if I miftake not) not much to his liking; and, further, let lim compare fome of the firt inventions of the French mathematicians with fome of the tirit containcd in my works, both as tontility, orenerality, novelty, difficulty, and elegance, but wifcly as to unlity, there is litt?e contajned in the deep parts of any fcience; he will find their difficulty and novelty from his difficulty of underitanding them, and his never having read any thing fimilar before; their generality, by the application of them ; principles of elegance will differ in different perfons.I muft fay, that he will probably not find the difference expected. After or before this inquiry is inftituted for mine, let him perform the fame for the other Englifh mathematicians; and when he has completed fuch inquities, and not before, he will become a judge of the juflice of his affertion; but I am afraid that he is not a fufficient adept in thefe ftudies to inftitute fuch inquiries; and if he was, fuch inquiries are invidious, troubleSome, and of fmall utility."

By mathematical readers this account, which was not
publified by the Profeffor himfelf, is allowed to be very little, if at all, exaggerated. Iet if, according to is s own confeffon, "fes thought it worth their while to read even half of his works," the:e muit be fome grounds for this neglect, either from the difficulty of the fubject, the timportance of che difeoveries, or a defect in the communication of chem to the public. The fubjects are certainly of a difficult nature, the calculations are abitrufe; yet Europe contained many perfons not to be deterred by the mof intricate theorems. Shall we fay then, that the difcoverics were unimpurtant? If this were really the cafe, the want of utility would be a very fmall difparargement amorig thofe who cultivate fcience with a view chiefly to chitertainment and the exercife of their rational powers. We are compelled, then, to attubute much of this ne rleat to a perplexity in ft jle, manuer, and lat guage ; the reader is fopped at every in. flant, firlt to nake ont the writer's meaning, then to fill up the chafm in the denonflation. He muft invent anew cuery invention ; for, after the enumbiation of the theorem or problem, and the nention of a few ficp:, little affilanice is derived from the Frofeftor's pewers of explanation. Indeed, an anonymous writer, certairly of very contederable abilitics, has aptly compared the wotks of Wiaring to the heavy nupendages of a Gothic building, which adjlithe of cither beauty or fability to the itrecture.

A great ryalt of the difonseries relate to an affumption in algebra, that equations riey be generated by meltiplying ingether others of inferior dimenfions. The roots of the ie latter eçuations are frequenty terms cal!ed negatioi or imfolrble; and the relation of thefe terms to the coefficients of the princip-l equation is a great object of inquiry. In this art the profeflor was very fuccefstul, though little affitance is to be derived from his writines in looking for the real roots. We flall not, pe:haps, be deemed to depreciate his merita, if we place the feries for the fum of the powers of the roots of any esuation among the moft indenious of his difiorerics; yet we can:not ad!, that it las very ufefully enlarget the bounds of feience, or that the al rebrait will ever find occation to introdice it into practice. We may fay the fane on mary ingenious transformations of equations, on the difcovery of inpoffible roots, and fimilar exertions of mimdonbtedly great telerts. They have carried the affumption to its utmof limits; and the difictilty attending the fpecuiation las rendered porfons more ansiove to afcertnin its real utility ; yet they who racet it may occulional! y rectite u feful hitits from the Aiscellanea Analytica.

The tirlt time of Waring's appearing in public as an author was, we believe, in the latter end of the year 1759, when he publified the firt chapter of the Mifcellanea Analytica, as a fpecime:1 of his qualifications for the profeforllip; and this chapter he defended, in a reply to a pamphlet, intitled, "Ubfervations on the Firft Chapter of a book called Mifcellanea Analytica." Here the Profeffor was Itrangely puzzled with the come mon paradox, that nothing divided by nothing may be equal to various finite quantities, and has recourle to unqueftionable authorities in proof of this pofition. The names of Maclaurin, Sanderfon, De Moivre, Bernoulli, Monmort, are ranged in favour of his opinion : But Dr Powell was not fo eafily convinced, and returns to the charge in defence of the Obfervations; to which the

Waring. Profeflor replied in a letter to the Rev. Dr Yowell, Fellow of St John's collegr, Cambridge, in anfwer to his Obfervations, \&c. In this controverfy, it is certain that the Profefor gave evident proofs of his abilities ; though it is equally certain that he followed too implicitly the decilions of his predeceffors. No apparent adrantage, no authority whatever, niould induce mathematicians to fiwerve from the principles of right reafon ing, on which their feience is fuppufed to be peculialy founded. According to Maclaurin, Dr Waring, and others, If $\mathrm{P}=\frac{a-x}{a^{2}-x^{2}}$, then, when $x=a, \mathrm{P}$ is equal to $\frac{1}{2 a}$; for, fay they, $\frac{a-x}{a^{2}-x^{2}}$ is equal to $\frac{a-x x}{a-x} \times$ $\frac{1}{a+x}$; that is, when $x$ is equal to $a, p=\frac{1}{a+x}$, or $\frac{1}{2 a}$. But when $x$ is equal to $a$, the numerator and denominator of the fraction $\frac{a-x}{a^{2}-x^{2}}$ are both, in their language, equal to notling. Therefore, nothing divicled by nothing is equal to $\frac{1}{2 a}$. In the fame manner, $\frac{a-x}{a^{3}-x^{3}}=\frac{1}{a^{2}+a x+x^{2}} \times \frac{a-x}{a-x}$, which, when $x$ is equal to $a$, becomes $\frac{1}{3 a^{2}}$. Therefore, nothing divided by nothing is equal to $-\frac{1}{3 a^{2}}$, or $\frac{1}{3 a^{2}}=\frac{1}{2 a}$; that is, $\frac{1}{3 a}$ $=\frac{1}{2}$; which is abfurd. But we need only trace back our fleps to fee the fallacy in this mode of reafoning. For P is equal to fore number multiplied into $\frac{a-x}{a-x}$; That is, when $x$ is equal to $a, P$ is equal to fome number multiplied into nothing, and divided by nothing; that is, P is, in that cafe, no number at all. For $a-a$ cannot be divided by $a-x$ whell $x$ is equal to $a$, fince, in that cafe, $a-x$ is no number at all.

If, in the beginning of his career, the Profeffor could admit fuch paralogifins into his fpeculations, and the writings of the matlematicians, for nearly a century be. fore him, may plead in his excufe, we are not in be furprifed that his difcoveries fhould be built rather on the affurnptions of others than on any new principles of his own. Acquiefcing in the ftrange notion, that nothing could be divided by nothing, and produce a variety of numbers, he as cafily adopted the pofition, that an eŗuation has as many roots as it has dimentions. Thus 2 and -4 are faid to be roots of the equation $x^{2}-2 x=8$, though 4 can be the root only of the equation; $\because^{\prime}-2 x=8$, which differs fo materially from the preceding, that in one cafe $2 x$ is added, in the other cale it is fubtracted from $x^{2}$.

Allowances being made fur this error in the ptinciples. the deductions are, in gencral, legritimately minde; and any one, who can give himflf the treuble of demonftrating the propofitions, may find fufficient employincut in the p'rofeffor's analy tics. l'erthaps it will be fufficient for a flucent to devote his timic to the fimplett cate $x^{n} \pm 1=0$; and when lie has found a ftw thoufand roots $\mathrm{Cf}+1$ and - 1 , the publication of them inay afford to polterity a frong proof of the
ingenvity of their predeceffors, and the application of Waring: the powers of their mind to uffful and important truths. In this exercile inay he confulced the method given by the Profeflor, of finding a quantity, which, multiplied into a given irrational quantity, will produce a rational product, or confequently exterminate irrational quantities out of a given equation; but if an irrational quantity cannot come into an equation, the utility of this invention will not be admitted without hefitation.

The "Proprictates Algebraicarum Curvarum," publifhed in 1772 , neceffarily lebour under the fame defects with the Mifcellanea Analytica, the Meditationes Algebraice, publifhed in 1770 , and the Meditationes A. nalyticx, which were in the prefs during the years 1773, 1774, 1775, 1776. Thefe were the chief and the moft laborious works edited by the Profeffor; and in the Plilofephical Tranfactions is to be found a variety of papers, which alone would be fufficient to place hin in the frit rank in the mathematical world. The nature of them may be feen from the following catalogue.

Vol. LIII. p. 294, Mathematical Problems.-LIV. 193. New Properties in Conics.--LV. 143. Two Theorems in Mathematics.-LXIX. Problems concerning Interpolations.-86. A General Refulution of Alge. braical Equations --LXXVI. 8r. On Infinite Series. LXXVII. 71. On Finding the Values of Algebraical Quantities by Converging Seriffes, and Demonitrating and Extending Propofitions given by Pappus and o-thers.-IXXVIII. 67. On Centripetal Forces. -Ib. 588. On fome Properties of the Sum of the Divifion of Numbers. - I.XXIX 166. O11 the Methad of Cor. refpondent Values, \&c.- 16.185 . On the Refolution of Attractive Powers.—LXXXI. 1.46. On Infinite Serie-fes.-LXXXIV. $385-415$. Ont the Sunnmation of thofe Serivites whofe general term is a determinate function of $z$, the ditance of the term of the Series.

For thefe papera, the Profefior was, in 1784 , defervedly honoured by the Royal Society with Sir Godfrey Copley's medal; and moft of them afford very ft:ong proofs of the powers of his mind, both in abflract feience, and the application of it to philofophy : though they labour, in common with his other works, under the difadvautage of being clothed in a very unaturactive form. The mathematician, who has refolution to go through them, will not only add much to his own knowledge, but be uffully employed in dilating on thofe articles for the benefit of the more general reader. Wie might add in this place, a work written on morals and metaphyfics in the Englim language; but as a few copies only were prefented to his friends, and it was the Profeflor's wifh that they fhould not have a more extenfive circulation, we fhall not here enlarge upon its contents.

In the mathematical world, the life of Waring may be confidered as a diftinguilhed æra. The frictnets of demonlthation required by the ancients laad gradually fallen into difife, and a more conmodious, though alnout mechanical mode by algebra and fluxions took its plice, and was carried to the ntmult limit by the Profeffur. Hence many new demonftiations may be attributed to him, but 400 difcoveries can farcely fall to the lot of a buman being. If we examine choroughly thole whid oun Piofeflor would ditingnini by fuch namico, we fhall find mary to be inere deduetions, o-
thers, as in the folution of biquadratics, anticipated by former writers. But if we cannot allow to him the merit of fo inventive a genius, we mutt appland his affiduity ; and, diftinguithed as he was in the fcientific world, the purity of his life, the fimplicity of his mauners, and the zeal which he always manifefted for the truths of the Gofpel, will intitle him to the refpect of all who do not efteem the good qualities of the licart imferior to thofe of the head.
WARTON (Jofeph, D. D.) was born either towarce the cud of the year 1721 , or in the bergianing of the year 1 ' $\% 22$. He was the eldeft fon of Thomas Warton. B. D. who had been fellow of Magdalen College, Oxford ; poetry profeffor from the year 1758 to 1728 , and vicar of Balingttoke in Hamphire, and of Cubham in Surrey. Where the fubject of this memoir was born we have not learned, thongh, wene we to hazard a conjecture, we would fay that it was in Oxford, as his father probably refided in that city during his profefforfhip.

Our knowlecge of the private hiftory of Dr Warton is indeed extremely limited. We do not even know at what fchool, or in what college, he was educated; tho' it was probably at Wincheter fchool, and certainly in fome of the colleges in the univerfity of Oxfurd. For many years, he was fucceffively under and upper matter of Winchetter college; but refigned the latt of thefe offices whea he found the infirmities of age coming up. on him; and was lucceeded by Dr Goddard the prefent excellent mafter. He was likewife prebendary of the eathedral church of Winchefter, and reetor of Wick. ham in Hampflhire, where he died, aged $\tau 8$.

His publications are few, but valuable. A fmall collestion of poems, without a nane, was the firt of them, and contained the Ode to Fancy, which has been fo much and fo defervedly admired. They were all of them afterwards printed in Dodfley's collechion. He was alfo a conliderable contributor to the iddenturer, publifhed by Dr Hawkefworth; and all the papers which contain criticifms on Shakefpeare were written by hin and his brother Tliomas Warton, the fubject of the next article.

The firt volume of his Effay on the Life and Wri tings of Pope was publifhed, liad pafied throagh feveral editions, and an interval of between 20 and 30 years had elapfec', befure he gave a fecond volume of that elegant and inftructive work to the world. It bad not only meditated, but had collected materials for a literary hiflory of the age of Leo X.; and propofals were actually in circulation for a work of that kied; but it is probable that the duties of his ttation did not leave him the neceflary leifure for an undertaking which required years of feclufion and independence. His loft and late work, which he undertook for the brokfellers at a very advanced age, was an cdition of Pope's Works, that has not altogether fatisfied the public expectation. He retained, with great propriety indeed, many of the notes of Warburton ; hut is feverely reprehended by the author of the Purfuits of Literature for fi:ppreffing the name of that prelate on lris title-page, or including. it only, as fubordinate to his own, in the general ex. preffion others.

Dr Warton was checrful in his temper, convivial in his difpoffrion, of an elegant tałte and lively imagination, with a large purtion of ichularhip, and a very
general knowledge of the Bellea Lettres of Europe; it may be prefumed that Dr Warton poffeffed, beyond molt men, the power of enlivening Claffical Society. He was the intimate friend of Dr Juhnfon; was feen at the parties of Mrs Montagrue, as well as at the table of Sir Joffua Reynolds, and was an original nember of the Literary Club. He poffeffed a liberal mind, a generous difpofition, and a bentevolent heart. He was not only admired for his talents and his knowled.ge, but was beloved for thofe qualities which are the belt giits of this imperfect flate.

Warton (Thomas), the brother of the preceding, was born in the year 17,28. He received, as we have reafon to believe, the firft part of his education at Win. chetter; and at the age of 16 was entesed a commoner of I'rinity Callere, Oxforl, under the twition of Mr Geering.

He began his poetical career at an early age. In 1745, he publified five pattoral ectogues, in which ate beantifully defcribed the mieries of war to which the thepherds of Germany were expofed. Not long afier, in the year $17+5$, he had full foope afforded for the exertion of his genius. It is well known that Jacobite principles were fufpeeted to prevall in the univertity of Oxford about the time of the rebellion in the year $1 ; \div 5$. Soon afte: its fupprelfion. the dronkennefs and folly of fome young men gave offunce to the court, in confequence of which a profecution was inftituted in the court of King s Bench, and a figma was fixed on the vice chancellor and fome uther heads ef colleges in Oxford. Whilft this affair was the general fubjeet of convufation, Mr Mafon publifhel his "Ifis," an elegy, in which he adverts to the above mentioned circunifta ces. In anfwer in this poem, Mr Warton, encouraged by Dr Huddesford, the prefident of his cnilege, puibiffed, in 1749, "The Triumph of If:e," which excelled more in manly expoflulation and dignity than the poem that proluced it dis in neatnefs and elegance. With great pnetical warmth, and a judicions felection of circum. Itances, he cha:ackerifes the emirient men who had becr: educated in Oxford, and draws a ftriking and animated portrait of Dr King, the celebrated public orator of that time. The whole poem thews the early maturity of his genius, and is finithed with harpy diligence.

In the year 1751 , he fucceeded to a fellowfhip of h: college, and was thus placed in a fitmation cafy and independent, and particularly congenial with his habits of retirement and ftudy. In 1753, appeared his obferva. tions on "The Paery Quee:i of Spencer," in Svo, a work which he corrected, cnlarged, and republitsed, in $t$ wo volumes crown oftavo, in the year 1562 . I ie fent a copy of the firft edition to Dr Johnfon, who, in a letter to him upon the fubject, expreffed this hand fome compliment: "I now pay you a very honett acknow. ledgement for the advancement of the literature of our native country: you have fhewn to all, who fhall thereafter attempt the ftudy of ancient authors, the way to fuccefs, by directing thein to the perufal of the booke which thefe authors had read."

In 1754, Dr Johnfun vifited Oxford fot.the firt: time after he had quitted refidence there. Much of his time was fpent with $M_{1}$ Wrarton; and there appearect to have been a confiderable degree of confidential intercourfe between them upon literary fubjects, end pa:ticularly on their own works. A plealing account of

## W A R

]
this vifit was communicated by Mr Warton to Mr Bof. well, who has inferted it in his life of Johmfon.

In 1755 , Mr Warton excrted himfelf to procure for his friend the degree of mafter of arts by diploma from the univerfity of Oxford; an honour which Johnfon efteemed of great inportance to grace the title page of his dictionary which he was about to publif. In $1756, \mathrm{Mr}$ Warton was elected profeffor of poctry, which office he held for the ufual term of ten years. His lectures were remarkable for elegance of diction and juftnefs of obfervation. One of them, on the fubject of paftoral poetry, was afterwards prefixed to his edition of Theucritus. In $175 \%$, he contributed to affí 1)r Johnfon in the fubfcription to his edition of Shakejpeare, and furnihed him with fome valuable notes. The Doetor remarks, in a letter to hin, when foliciting lis farther aid, "It will be reputable to my work, and fuitable to your profufforhip, to have fomething of yours in my notes."
From the Clarendon prefs, in the year 1766 , he publifhed "Anthologix Gracex, a Conftantino Ce phala conditx, Libri tres," in 2 vols, 12 mo . He concludes the lcarned and claffical preface to this work, which is replete with accurate remarks on the Greek epigram, in the following words, which mank this publication for his own: "Vereor ut hactenus in plexendis flornm corollis otium nimis longum pertraxerin. Proximè fequetur, cui nurc omnes operas et vires intendo, 'Theocritus. Interea quar: promilfden convivii Lecto. ribis meis elegantias hafce vetultatis eruditx propino."

In the year 1770 , he conferred a fimilar honour upon the academical prets hy his edition of Theocritus, in 2 vols, 8 vo. He undertock this work by the advice of Judge Blach fone, then fellow of All Souls College, and an ardent promoter of every publication that was likely to do credit to the Clarencon prefs. This elaborate publication reflects no finall credit on the learning, diligence, and talte of the cditor.

In 177 I , he was cleled a fellow of the Antiquarian Society, and was prefented by the Earl of Lichlield to the frmall living of Kiddington in Oxfordhire, which he held till his death. He likewife in this year publifhed an improved account of "The Life of Sir 'Thomas Iope, founder of Trinity College, Oxford. In compoling thefe iremuils, he beftowed much labour and refearch, and fhewed great jndgment in the arrangement of his materials. But poffibly, in his ardour to pay a debt of gratitude, he has not fufficiently confidered what was due to his own fame. The fame flrength of defcription and vigour of remark would have better fuited the life of fome eminently dittinguithed characher, and extended the reputation of the author as a biographer beyond the circle of thofe academical readers who are influenced by the fame feelings of veneration, refpeet, and gratitude which prompted Mr Warton to compofe this work. The preface contains fome excellent remarks on biographical writing.

The plan for a hiftory of Englifh poetry was laid by Pupe, enlarged by Gray : but to brirg an original plan nearly to a completion was referved for the perfeverance of Warton. In 1774 appeared his firlt volume; in 1778, the fecond and third; which brings the narrative down to the commencenent of the reign of Elizabeth in 588 . This work difplays the molt fingular com-
bination of extrasedinary talents and attainments. It unites the deep and minute refearches of the antiquary with the elegance of the claffical foholar and the fkill of the practiced writer. The ftyle is vigorous and manly; the obfervations acnte and jult ; and the views of the fubject are extenfive and accnrate.

In 1777, he collceted his poems into an octavo volume, containing mifcellancous pieces, odes, and founets. This publication may be confidered in fome meafure original ; there being only feven pieces that had before appeared, and near three times that number which were then printed for the firit time.

In vindication of the opinion he had given in his fecond volume of "The Hittory of Poetry," relative to the ingenions attempt of Chatterton to impofe upon the public, he ploduced, in 1782 , " An Ingniry into the Authenticity of the Poerns attributed io Rowley." In this excellent pamphlet the principles of true criticifm are laid down, an appeal is properly nade to the internal evidence of the puem: ; and upon thefe grounds it is proved, in the moft fatisfactory manner, that they could not have been written by a monk of the fourteenth century.

The year 1785 brought him thofe diftinctions which were no lef honou:able to thofe who conferred than to him who received them. He was appointed poet laureat on the death of Whitchead, and clected Camden profeffor of anciont hitary on the refignation of 1) Scott. Iis inauguration lecture was delivered in a clear and imprefive manner from the profefforial chair. It contained excellent obfervations on the Latin hiftorians, and was written in a firong, perfpicuous, and clafiical ftyle. In his odes, the vigour and brilliancy of his fancy were not proftituted to an infipid train of courtly compliments: each prefents an elegant fpecimen of deleriptive poetry, and as all of them have only a night relation to the particular occafion on which they were written, and have always a view to fome particular and interelling fubject, they will be perufed with pleafure as long as this fpecies of compofition is admired.

IIc made occafional journeys to London to attend the literary chib, of which he was fome years a meniber; and to vifit his friends, particularly Sir Johua Reynolds. At his houfe he was firre to meet petfons remarkable for fation, elegance, and tate.

His laft pullication, except his cficial odes, confetted of Milton's finaller poems. A quarto edision appearcd in 1790, with corrections and additions. The great object of thefe notes is to explain the allufions of Milton, to trace his imitations, and to illultrate his beantics.

Uutil he reached his fixty fecond year, he continned to enjoy vigorous and uninterrupted health. On being feized with the gont, he went to 13ath, and flattered himfelf, on his ruturn to college, that he was in a fair way of recovery. But the change that had taken place in his contitution was vifible to his friends On Thurfday, May 20, 1790 , he paffed the evening in the common room, and was for fome time more cheerful than ufual. Between ten and eleven o'clock he was ftruck with the palfy, and continued infenfible till his death, which happened the next day at two o'clock. On the $2 ;$ th, his remains were interred in the college chapel with the moft diftinguifhed academical honours.

## W A R

Warton. The infcription upon the flat fone which is placed over his grave contains only an enunieration of his preferinents.

Such was the general conduct and behaviour of $\mathrm{Mr}_{\mathrm{r}}$ Warton as to render him truly amiable and refpectable. By his friends he was beloved for his open and cafy manners; and by the members of the univerfity at large lie was refpected for his conflant relidence, flrong attachment to Alma Mater, his ftudious purfuits, and high literary character In all parties where the company accorded with his inclination, his converfation was eafy and gay, enlivened with humour, enriched with anlecdote, and pointed with wit. Among his peculiarities it may be mentioned that he was ford of all military fights. He was averfe to ftrangers, particu. larly to thofe of a literary turn; and yet he took a great pleafure in encouraging the efforts of rifing genius, and affifing the ftudious with his advice; as many of the young men of his college, who thared his affability and honnured his talents, could teftify. He was bred in the fchool of punfters; and made as many good ones as Barton and Leigh, the celebrated word-hunters of his day. Under the mafk of indolence, no man was more bufy; his mind was ever on the wing in fearch of fome literary prey. Although, at the accuftomed hours of Oxford fludy, he was often feen fauntering about, and converfing with any friend he chanced to meet ; yet, when others were walting their mornings in fleep, he was induiging his meditations in his favourite walks, and courting the Mufes. His fituation in Oxford was perfectly congenial with his difpofition, whether he indulged his fallies of pleafantry in the common room, retired to his own ftudy, or to the Bodleian library; fauntered on the banks of his favourite Cherweth, or furveyed, with the enthufiaftic eye of tafe, the ancient gateway of Magdalen College, and other fpecimens of Gothic architecture.

The following is a lift of Mr Warton's works: 1. "Five Paftoral Eclogues," 4to, 1745. Reprinted in Pearch's Collection of l'oems. 2. "The lleafures of Melancholy," written in 1745 ; firft printed in Dodfley's Collection, and afterwards in the Collection of Mr Warton's Poems. 3. "Progreis of Difcontent," written in 1746 . Firft printed in the "Student," a periodical paper. 4. "The Trimmph of Ifis, a Puen," 4to, 1770 . 5. "Newmarket, a Satire," folio, 1751. 6. "Ode for Mufic," performed at the theatre in Oxford 1751. 7. "Obfervations on the Faerie Queen of Spenfer," 8vo, 1754. 8. "Iuferiptionum Mictricarum Delectus," 4to, 1758. 9. "A Defcription of the City. College, and Cathedral, of Winchetter," 8 vo, no date. 10. "The Life of Sir Thomas Pope," in the sth rolume of the Biographia Britannica," "epublifhed in 1772. 11. "The Life and literary Remains of Ralph Bathurf, M. D. Dean of Wells, and Prefident of Trinity College in Oxford," 1761. 12. "A Cumpanion to the Gride, and a Guide to the Companion," 12mo, 1\%62. 13. "The Oxford Saufage," in which are feveral Poems by Warton. 14. "Anthologiz

Supfl. Vol. II. Part II.

2 tom. 1766. 15. "Theocritis Syracufii qua fuperfunt, cum Scholiis Greecis," \&cc. 2 tom. 4to, 1770. 16. "Hiftory of Englifh Poetry, from the Clofe of the 11th to the Commencement of the 18 th Century," 4to, Vol. I. 1774 . Vol. II. 1778. Vol. III. 1781 17. "Poems," 8vo, 1777. 18. "Specimen of a Hiftory of OxfordMire," ${ }^{1783 .}$ 19. "An Enquiry into the Authenticity of the Poems attributed to Thomas Rowley," 8vo, r782. 20. Verfes on Sir J. Reynolds's painted Window in New College Clapel, 4t0." 1782. 21. "Poems on Several Occafions, by John Milton, with Notes critical and explanatory," 8 vu , 1785.

WASHINGTON (George), whofe name is likely to tive as long as that of any modern, was born on the 1 th of February 1732 , in the parifh of Walhington, Virginia. He was defcended from an ancient family in Chefhire, of which a branch had been eftablithed in Virginid about the middle of the 17 th century. We are not acquainted with any remarkable circumflances of his education or his early youth; and we fhould not in. deed expect any marks of that diforderly prematureners of talent, which is fo often fallacious, in a charater whofe diftinguifhing praife was to be regular and natural. His claffical inttruction was probably fmall, fuch as the private tutor of a Virginian country gentleman could at that period have imparted; and if his opportunitiesof information liad been inore favourable, the time was too thort to prolit by them (A). Before he was twenty he was appointed a major in the colonial militia, and he had very ea: If occafion to difplay thofe political and military talents, of which the exertions on a greater theatre have fince made his name fo famous throughout the world.
The plenipotentiaries who framed the treaty of Aix la Chapelle, by leaving the boundaries of the Britifh and French territories in North America ulfixed, had fown the feeds of a new war, at the moment when they concluded a peace. - The limits of Canada and Louifiana, negligently defcribed in vague language by the treaties of Utrecht and Aix la Chapelle, becaufe the greater part of thefe vaft countries was then an impenetrable wildernefs, furnifhed a motive, or a pretext, for one of the moft fucceffful, but one of the moft bloody and wafteful wars in which Great Buitain had ever been engaged. See Britain, Encigel.
In the difputes which arofe between the French and Englifh officcrs on this fubject, Major Wafhington was employed by the governor of Virginia, in a negociation with the French governor of Fort din Qnefine (now Pitfourgh) ; who threatened the Englifh frontiers with a body of lirench ant their Indian allies He fucceeded in averting the invalion; but hottilities becoming in. evitable, he was in the next year appointed lieutenant colonel of a regiment raifed by the colony for its own defence; to the command of which he foon after fucceeded. The expedition of Braddock followed in the 5 E
ycar
(A) Several accounts of the life of Waßhington have flated that he ferved as a midhipman on board a Britifis frigate. This is a millake. His elder brother, who died yonng, ferved in that capacity in Vernon's expeution pgainft Carthagena; whence the family feat was called Mount Vernon. Wa hugton himfelf never left the U? zated States, except in one fhort voyage to a Weft India ifland, when he was very young.

## W A S [ 770 ] $\upharpoonright$ A S

Wafting- year 1755 ; of which the fatal iffue is too well known to require being defcribed by us.: Colonel Wafhington ferved in that expedition only as a volunteer; but fuch was the general confidence in his talents, that he may be faid to have conducted the retreat. Several Britifh officers are flitl alive who remember the calmnefs and intrenidity which he fhewed in that difficult fituation, and the voluntary obedience which was fo cheerfully paid by the whole army to his fuperior mind. After having acted a diftinguifhed part in a fubfeqnent and more fucceffful expedition to the Ohio, he was obliged by itl health, in the year 1758, to refign his military fitmation. The fixteen years which followed of the life of Wafhington fupply few materials for the biographer. Having married Mrs Cuftis, a Virginian lady of amiable charaeter and refpectable connections, he fettled at his beautiful feat of Mount Vernon, of which we have had fo many defcriptions; where, with the exception of fuch attendance as was required by his duties as a magiftrate and a member of the affembly, his time was occupied by his domeftic enjoyments, and the cultivation of his eftate, in a manner well fuited to the tranquillity of his pure and unambitious mind. At the end of this period he was called by the voice of his country from this ftate of calm and fecure though unofentatious hap. pinefs.
For almof half a century fymptoms of difaffection to the mother country had been fo vifible in the New England provinces, that fo early as 1734 the celebrated B3ifhop Berkeley had predicted a total feparation of North America from Great Britain. That prelate, when a private clergyman, had lived three years in Rhode Ifland, and was an attentive and fagacious obferver of the manners and principles of the people, among whom he perccived the old leaven of their forefathers fermenting even then with great violence. The middle and fouthern provinces, however, were more loyal, and their influence, together with perpetual dread of the French before the peace of $1766_{3}$, put off the feparation to a more diftant day than that at which, we have reafon to believe, the Bifhop expected it to take place. Virginia, the mof loyal of all the cotonies, had long been in the habit of calling itfelf, with a kirid of proud pre-eminence, bis Majelly's ancient dominion; and it was with fome difficulty that the demagogues of New England could gain over that province when the time arrived for effecting their long nieditated revolt. At latt, however, they fucceeded; and we find Mr Wafnington as a dclegate from Virginia in the Congrefs which met at Philadelphia on the 26 th of October 1774. (See America, n ${ }^{3}$ 174. Encycl.) As no American united in fo high a degree as he did, military experience with refpectability of character, he was appointed to the command of the army which had affe.nbled in the New England provinces, to hold in check the Britifh army which was then encamped under General Gage at Bofon.

At this period there is fome reafon to believe that neither Mr Wafhington nor his contituents entered heartily
into the views of the New Englanders; but afraid Icft Wafhinge the army of thofe rebellious fanatics, after fhaking off the yoke of Great 13ritain, might give law to the continent, he took upon hinfelf the cominand of that army in the month of July 1775 (B). To detail his conduct in the years which followed, would be to relate the hiftory of the American war, which we have already related in the article America (Encycl.). Within a very fhort period after the declaration of independence, the affairs of $A$. merica were in a condition fo defperate, that perhaps nothing but the peculiar character of Wafhington's genius could have retrieved them. A气tivity was the po. licy of invaders. In the field of battle the fuperiority of a difciplined army is difplayed. But delay was the wifdom of a country defended by undifciplined foldiers againft an eneny who mutt be more exhanfted by time than he could be weakened by defeat. It required the confummate prudence, the calm wifdom, the inflexible firmnefs, the moderate and well-balanced temper of Wafhington to embrace fuch a plan of policy, and to perfevere in it : to refift the temptations of enterprize ; to fix the coafidence of his foldicrs withont the attraction of victory ; to fupport the fpirit of the army and the people amidft thole flow and cautious plans of defenfive warfare which are more difpiriting than defeat itfelf; to contain his own ambition and the impetuofity of his troops ; to endure temporary obfcurity for the falvation of his country, and for the attainment of folid and immortal glory ; and to fuffer even temporary re. proach and obloquy, fupported by the approbation of his own confcience and the applaufe of that fma!l number of wile men, whofe praife is an earneft of the admiration and gratitude of pofterity. ViAtorious generals eatily acquire the confidence of their army. 'I heirs, however, is a confiderice in the fortune of their general. 'That of Wafhington's army was a confidence in his suifiom. Victory gives fpirit to cowards, and even the agitations of defeat fometimes impart a courage of defnair. Courage is infired by fuccefs, and it may be itimulatee to defperate exertion even by calamity; but it is generally paltied by inactivity, - A fyftem of cautious defence is the fevereft trial of human fortitude ; and by this telt the firmnefs of Wafhington was tried. It muft not, however, be concealed, that fome of the Britifl commanders gave him advantages, which he furcly did not expect ; for more than once, as it appears to us, they had it in their power to annihilate his army, merely by following up their victories. The iflue of the conteft is known.

Much has been faid by the Britifh and Ameriean democrates of the magnanimity of Wanhington du.ing the ravages of a civil war, in which le actert fo conficictous a part; and we feel not ourfelves inclined to refnfe him the praife which he may have merited on this or on any other account. But granting that cuty required him to execute as a fpy the accomplifhed André, true magnanimity would have prevented him from infultingly erecting, in the view of that unfortunate of ficer, the gallows on which he was to be hung, feveral
(B) That fuch were the motives of his conduct on this occafion, is rendered in the higheft degree probable in the preface to $A$ Viezu of the Caufes and Confequences of the American Revolution, in thirteen Difcourfes, Preachod in North America, between the years $17 \sigma_{3}$ and 1775 ; by Jonathan Boucher, A. M. and F. A. S. Vicar of Epfom in the County of Surrey.

Wafting- days before his execution! When Earl Cornwallis was ton. overpowered by numbers, and obliged at York town to
furrender to the united armies of America and France, a magnanimous conqueror would not have maliciouny claimed, contrary to the ufage of civilized war, the fword from the hands of that gallant nobleman. On thefe two occafions, and on fome others, the confuct of Wafhington agreed fo ill with his general character, that we are inclined to believe that he inut have been influenced by the leaders of the French army Rochembeau and Fayecte. One thing is certain, that he was fo little pleafed either with his own conduct on particular occafions, or with the general principle of the American revolution, that he never could be forced to talk on the fubject. An Italian nobleman, who vifited him after the peace, had often attempted, in vain, to turn the converfation to the events of the war. At length he thought he had found a favourable opportunity of effecting his purpofe; they were riding together over the fcene of an action where Wafhington's conduct had been the fubject of no fmall animadverfion. Comut
faid to him, "Your conduct, Sir, in thits action has been criticifed." Wafhington made no aufwer, but clapped fpurs to his horfe; after they had paffed the fielt, he turned to the Italian and faid, "Count ——, 1 obferve that you wifh me to fpeak of the war ; it is a converfation which I always avoid. I rejuice at the eflablifhnent of the liberties of America. But the time of the Aruggle was a horrible period, in which the beft men were compelled to do many things repugrant to their nature." This, we think, is the language of a good man not altogether fatisfied with the part which he had been compelled to act, and who though he rejoiced at the eftablifhment of the liberties of America, probably forefaw that the would reap no benefit from her favourite independence.

The conclufion of the American war permitted Wafh. ington to return to thofe domeftic fcenes, from which no views of ambition feem to have had the power to draw him. But he was not allowed long to enjoy this privacy. The fupreme government of the United States, haftily thrown up, in a moment of turbulence and danger, as a temporary fortification againlt anarchy, pro. ved utterly inadequate to the prefervation of general tranquillity and permanent fecurity. The confufions of civil war had given a taint to the morality of the people, which rendered the reftraints of a jult and vigorous government more indifpenfably neceffary. Confifcation and paper money, the two greatef fchonls of rapacity and dithonefty in the world, had widely dpread their poifon among the Americans. One of their own writers tells us, that the whole fyitem of paper money was a fyftem of public and private frauds. In this ftate of things, which threatened the diffolution of morality and government, good men faw the neceffity of concentrating and invigorating the fupreme authority. Under the influence of this conviction, a convention of delegates was affembled at Philadelphia, which Arengthened the bands of the Federal Union, and beftowed on Congrefs thofe powers which were neceffary for the purpofes of good government. Wafhington was the prefident of this convention, as he, in three years after, was elected prefident of the United States of Americs, under what was called "The New Conftitution," tho' it ought to have been called a reform of the republican
government, as that republican government itfelf was Wafling. only a rejorm of the ancient colonial contlitution under the Britifh crown. None of thefe changes extended fo far as an attempt to new-model the whole focial and political fyftem.

Events occurred during his chief magiftracy which convulfed the whole pulitical world, and which tried moft feverely his moderation and prudence. The French revolution took place; Wahington, who had experienced the evils of one revolution, angured, froni the beginning, no good from the daring fecculations of inexperienced vifionaries ; and the progrefs of the revolution was not calculated to cure his difturf. When, in the year 1793, France, then groaning under the mof intolerable and hideous tyranny, became engaged in war with alinutt all the governments of the civilized world, it is faid to have been a matter of deliberation with the Prefident of the United States, whether the republican envoy, or the agent of the French pinces flould be reccived in America as the diplomatic reprefentative of France. But whatever might be his private feelings of repugnance and horror, his public conduct was influenced only by his public duties As a virtuous man he muft have abhorred the fyllem of crimes which was ellablifhed in France. 13 ut as the firft magittrate of the is merican commonwealth, he was buund only to confider how far the interelt and fafety of the ptople whom he governed were affected by the conduct of lirance. He faw that it was wife and neceflary for Americs to prelérve a good underttanding and a beneficial inrercourfe with that great country, in whatever manner f.e was governed, as tong as the abitaised from committing injury againtt the United States. Guided by this jult and finple principle, uninfl:enced by the abliorrence of crimes which he felt, and which others affected, he received $\mathrm{Mr} \mathrm{Ge-}$ net, the miniter of the French Republic. The hiltory of the outrages which that minilter committed, or inftigated, or countenanced, againit the American government, mult be frefh in the memory of all our readers. The conduct of Warhirgton was a model of firm and dignitied moderation. Infults were offered to his authority in official papers, in anonymous libels, by incendiary declaminers, and by tumultuous meetings. The law of nations was trampled under foot. His confidential minititers were fecuced to betray him, and the deluded populace were fo inflaned by the arts of their enemies, that they broke out into infurrection. No vexation, however galling, could difturb the tranquillity of his mind, or make him dieviate from the pulicy which his fituation preferibed. With a more confirmed authority, and at the head of a longer eitablifhed government, he might perhaps have thought greater vigour juftifiable But in his circumitances, he was fenfible that the nerves of authority were not itrong enough to bear being ftrained. Perfualion, always the moft defirable inftrument of government, was in his cafe the fafutt. Yet he never ove:palfed the line which feparates conceflion from meannefs. He reached the utmolt limits of moderation, without being betrayed into pufillanimity. He preferved external and internal peace by a fyltem of mildnefs, without any of thole virtual confeffions of weaknefs, which fo much difhonour and enfeeble fupreme authority. During the whole of that arduous flruggle, his perfonal character gave that ftrength to a nezu magyfracy which in other countries arifes from tow , ty of his virtne was more efficacious for the prefervation of America than the legal powers of his office.
During this turbulent period, he was re-clected to the office of the Prefidency of the United States, which he held from April 1789 till September ${ }^{1796 \text {. Pro- }}$ bably no magiftrate of any commonwe?lth, ancient or modern, ever occupied a place fo painful and perilous. Certainly no man was ever called upon fo often to facrifice his virtuous feelings (he had no other facrifices to make) to his public duty. Two circumftances of this fort deferve to be particularly noticed. In the fpring of 1794 , he fent an ambaffator to Paris with credentials, addreffed to his "Dear friends the citizens compofing the Committee of Public Safety of the French Republic," whom he prays God "to take under his holy protection." Fortunately the American ambaffador was fpared the humiliation of prefenting his crecentials to thefe bloody tyrants. Their power was fubverted, and a few of them had fuffered the punifhment of their crimes, which no punifhment could expiate, before his arrival at Paris. Readily as we admit the purity of the motives which induced him to fend this embaffy to Paris, we cannot peffibly approve of his conduct in deviating fo far from the utial diplomatic flyle, as to call Robefpierre his friend: but he was befet by an abfurd, though formidable, faction at home.

He had another ftruggle of feeling and duty to encounter, when he was compelled to fupprefs the infurreetion in the weftern counties of Pennfylvania by force of arms. But here he had a confolation. The exercife of mercy confoled his mind for the neceffity of having secourfe to arms. Never was there a revolt quelled with fo little blood. Scarcely ever was the bafeft daftard fo tender of his own life, as this virtuous man was of the lives of his follow citizens. The value of his clemency is enhanced by recollecting that he was neither without provocations to feverity, nor without pretexts for it. His character and his office had been reviled in a manner almof unexampled auong civilized nations. His authority had been infulted. - His fafety had been threatened. Of his perfonal and political enemies fome might, perhaps, have been fufpected of laving inttigated the infurrection; a greater number were thought to wifn well to it; and very few fhewed much zeal to fupprefs it. Is babitus animorum fuit, ut peffimum fafcinus auderent pouci, plures vellent, omnes poterentur. But neither refentment, nor fear, nor even policy itfelf, could extinguif the humanity of Wafhington. This feems to have teen the only facrifice which he was incapable of making to the intereft of his comitry.
'Throughout the whole courfe of his fecond Prefidency, the danger of America was great and immineut almoft beyond example. The firit of change, indeed, at that period, fhook all nations. But in other comntries it had to encounter ancient and folicly ettablifhed power; it had to tear up by the roots long habits of attachment in foome nations for their government ; of awe in others ; of acquiefcence and fubmiffion in all.But in America the government was new and weak. The people had farce tire to recover from the ideas and feelings of a recent civil war. In other countrics the volcanic force muif be of power to blow up the mountains, and to convulfe the continents that held it
down, before it could "fcape from the deep caverns in Wantirgwhich it was imprifoned:- in America it was covered only by the anies of a late convulfion, or at mot by a little thin foil, the produce of a few years quiet.

The government of America had none of thofe falutary prejudices to employ, which in every other country were ufed with fuccefs to open the eyes of the people to the enormities of the French revolution. They had, on the contrary, to contend with the prejudices of their people in the moft moderate precautions againit internal confufion, in the mo:t meafured and gua:ded refiftance tos the unparalleled infults and enormous encroachments of France. Without zealous fupport from the people, the American government was impotent. It required a confiderable time, and it coft an arduous and dubious ftruggle, to direct the popular feirit againft a fifter republic, eftablifhed among a people to whofe aid the Americans afcribed the eftablifhment of their independence. It is probeble, indeed, that no policy could have produced this effect, unlefs it had been powerfully aided by the crimes of the French government, which have proved the ftrongeft allies of all ettablifhed governments; which have produced fuch a general difpofition to fubmit to any knozun tyranny, rather than rufh into all the unknown and undefinable evils of civil confultion, with the horrible train of new and monftrous tyrannies of which it is ufually the forerunner. But of thefe circumftances Wafhington availed himfelf with uncommon addrefs. He employed the horror excited by the atrocities of the French revolution for the moft honeft and praife-worthy purpofes: to preferve the internal quiet of his country: to aflert the dignity, and to maintain the righte, of the commonwealth which he goverued, argaintt foreign enemies. He avoiled war without incurring the imputa. tion of pufillanimity. He cherifhed the deteftation of A mericans for anarchy, without weakening the fpirit of liberty; and he maintained, and even confolidated, the authority of government, without abridging the privileges of the people.

The relignation of Wafhington in 1796 was certainly a meafure of prudence, and we doubt not of patriotifin; but the conduct of his fuccelfor has been fuch as to give the A mericans reafon to regret that the reins of govern. ment were thrown up by the only hand, perhaps, that was fit to guide them during fo unfetted a ttate of public affairs. When he retired, he published a valedictory addrefs to liis countrymen, as he liad before done when he quitted the command of the army in 1788 . In thefe compofitions, the whole heart and foul of Warhington are laid open. Other llate papers liave, doubtlefs, fhewn more fpirit and dig:ity, more eloquence, greater furce of genins, and a more tularged comprehention of mind; but none ever difplayed more fimplity and ingenuoufnefs, more moderation and fobriety, more grood fenfe, more prudence, more honety, inore earnelt affection for his country and for mankind, more profound reverence for virtue and religion; more ardent withes for the happinefs of his fellow-creatures, and more jult and rational views of the means which alone can effectually promote that happinefs.

From his refignation till the month of July $179^{8}$, he lived in retirement at Mount Vernon. At this latter period, it became. necellary for the United States to arm. They hat? cndurd with a patience, of which there is no example in the hittory of ftates, all the contumery

## W A TVI [773] W A TM

Wofring tumely and wrong which fucceffive acminitrations in tun France had heaped upon them. Their thips were every. Watch-where captured, their minifters were detained in a fort
work work.
of imprifonment at Y 'aris; while incenciaries, clothed in the facred character of ambaffadors, fcattered over their peaceful provinces the fire brands of fedition and civil war. An offer was made to terminate this long courfe of injuftice, for a bribe to the French minifters. This offer was made by perfons who appeared to be in the confidence of M. Talleyrand, who profeffed to act by his anthority; who have been firce, indeed, difavowed by him; buc who never will be believed not to have been his agents, till he convict them of impofture by legal evidence, and procure them to be punifhed for fo abominable a fraud.

The United States refolved to arm by land and fea. The command of the army was beftowed on General Wafhington ; which he accepted, becaufe he was convinced that "every thing we hold dear and facred was ferinufly threatened *;" though he bad flattered himfelf "that he had quitted for ever the boundlefs Geld of public action, inceffant trouble and high refponfibi- lity, in which he had long afted fo confpicuous a part." In this office he continued during the thort period of his life which ftill remained. - On Thurfday the 12th Decensber 1799 , he was feized with an inflammation in his throat, which became confiderably worle the next day; and of which, notwithttanding the efforts of his phyficians, he died on Saturday the 14th of December 1799, in the 68th year of his age, and in the 23 d year of the independence of the United States, of which he may be confidered as the founder. The fame calmnefs, Emplicity, and regularity, which had uniformly marked his demeanor, did not forfake him in his dying moments. He faw the approaches of death without fear: -he met them without parade. - Even the perfectly well ordered fate of the moft minute particulars of his private butinefs, bore the ftamp of that conftant authority of prudence and practical reafon over his actions, which was a diftinguißhing feature of his character. He died with thofe fentiments of piety which had given vigour and confiftency to his virtue, and adorned every part of his illuftrions life.

WAICHWORK. Our intention in this article does not extend to the manual practice of this art, nor even to all the parts of the machine. We mean to confider the moft important and difficult part of the conftruction, namely, the method of applying the maiataining power of the wheels to the regulator of the motion, fo as not to hurt its power of regulation: Our obfervations would have come with more propriety under the title Scapement, that being the name given by our artifts to this part of the conftruction. Indeed they were intended for that article, which had been unaccountably omitted in the body of the Dietionary under the words Clock and Watch. But the bad health and occupations of the perfon who had engaged to write the article, have obliged us to defer it to the laft opportunity which the alphabetical arrangement affords us; and, even now, the fame caufes unfortunately pre-
vent the author from treating the fubject in the manner Watchshe intended, and which it well deferves. But we truft work. that, from the account which is here given, the reader, who is converfant in mathematical philofophy. will perceive the juitnefs of the conclufions, and that an intelligent artitt will have no hefitation in acceding to the propriety of the maxims of conftruction deduced from them.

The regulator of a clock or watch is a pendulum or a balance. Without this check to the motion of the wheels, impelled by a weight or a fpring, the machine would run down with a motion rapidly accelerating, till friction and the refiftance of the air induced a fort of uniformity, as they do in a kitchen jack. But if a pendulum be fo put in the way of this motion, that only one tooth of a wheel can pafs it at each vibration, the revolution of the wheels will depend on the vibration of the pendulum. This has long been obferved to have a certain conitancy, infomuch that the aftronomers of the Ealt employed pendulums in meafuring the times of their obfervations, patiently counting their vibrations during the phafes of an eclipfe or the tranfits of the ftars, and renewing them by a little puih with the finger when they became too Imall. Gaffendi, Riccioli, and others, in more recent times, followed this example. The celebrated phyfician Sanctorius is the firf perfon who is mentioned as having applied them as regulators of clock movements. Machines, however, called clocks, with a train of toothed wheels leading round an index of hours, had been contrived long before. The earlicit of which we have any account is that of Riclard of Wallingford, Abbot of St Alban's, in $1326(\mathrm{~A})$ : It: appears to have been regulated by a Hy like a kitchea: jack* . Not long after this Giacomo Dondi macte one * Conradi at Padua, which had a motus fuccufforius, a hobbling or (ic/neri Etrotting motion; from which expreffion it feems pioba pitume, $F$. ble that it was regulated by fome alternate movement. We cannot think that this was a pendulum, becaufe, once it was introduced, it never could have been fup. planted by a balance. I'he alternate motion of a pendulum, and its feeming uniformity, are among the moft familiar obfervations of common life; and it is furprifing that they were not more early thought of for regulating time meafurers. The alternate motions of the old balance is one of the moft. far-fetched means that can be imagined, and might pals for the invention of a very reflecting mind, while a pendulum only requires to be drawn afide from the plumb-line, to make it vibrate with regularity. The balance mult be put in motion by the clock, and that motion mult be ftopped, and the contrary motion induced; and we muft know that the fame force and the fame checks will produce uniform ofcillations. All this muft be previoufly known before we can think of it as a regulator; yet fo it is that clocks, regulated by a balance, were long ufed, and very common through Europe, before Galileo propofed the pendulum, about the year 1600 . Pendulum clocks then came into general ufe, and were found to be greatly preferable to balance clocks as accurate meafurers of time. Mathematicians faw that their vibrations had fome regular
(A) Profeffor Beckmann, in the firft volume of his Hifory of Irventions, expreffes a belief that clocks of this kind were ufed in fome monofteries to early as the when century, and that they were derived to the monks frome the Saracens. His authorities, however, are difcordant, and feem not completely fatisfactory even to himfelf,
gular dependance on uniform gravity, and in their writings we meet with many attempts to determine the It ind demonftrate the ifochronifm of the vibrations. It is amufing to read the fe attempts. We wonder at the awkwardvefs and infufficiency of the explanation given of the motions of pendulnms, even by men of acknowledged eminence. Mer fennus carried on a moft uffful correfpondence with all the mathematicians of Europe, and was the means of making them acquainted with each other; nay, he was himfelf well converfant in the fcience; yet one cannot but fmile at his reafonings on this fubject. Standing on the fhoutders of our predeceffors, we look around us, in great fatisfaction with our own powers of obfervation, not thirking how we are raifed up, or that we are trading with the ftock left us by the diligent and fagacious philofophers of the $17^{\text {th }}$ century ( $B$ ). Riccioli, Gaffiendus, and Galiten, made fimilar attempes to explain the motion of pendulums; bit without fuccefs. 'This honour was referved for Mr Huyghens, the moit elegant of inodern geometers. He had fucceeded in $16 ; 6$ or 16,5 in adapting the machinery of a clock to the maintaining of the vibrations of a penculum. Charmed with the accuracy of its performance, he began to inveltigate with fcrupulous attention the theory of its motion. By the moft ingenious and elegant application of geometry to mechanical problems, he demonftrated that the wider vi brations of a pendulum cinployed mare time than the narrower, and that the time of a femicircular vibration is to that of a very firatl one nearly as 34 to 29 ; and, aided by a new department of geometrical fience invented by himfelf, namely, the evolution of curves, he fhewed how to make a pendulum foing in a cycluid, and that its vibrations in this curve are all performed in equal times, whatever be their extent.

But before this time, Dr Hooke, the mof ingeninus and inventive mechanician of his age, had dilcovered the great accuracy of pendulum clocks, having found that the manner in which they had been employed had onfcured their real merit. They had been made to vibrate in very large arches, the only motion that could be given then by the contrivances then known ; and in 1056 he invented another method, and made a clock which moved with aftonifing regularity. Ufing a heavy pendulum, and making it iwing in very f:nall arches, the clocks fo confrueted were found to excel Mr Huyghens's cycloidal penduluns; and thofe who were unfriend!y to Huyghens had a fort of trimmph on the occalion. But this was the refult of ignorance. Mr Huyghens had hewn, that the crror of $\frac{1}{8} \sigma$ of ant inch, in the formation of the parts which produced the cycloidal mation, caufed a greater irregularity of vibration than a circular vibration could do, although it fhould extend five or tix degrees on each fide of the perpendicular. It has been found that the unavoidable inaccuracies, even of the beft artifts, in the cychodal conflruction, make the performance much inferior to that of a common pendulum vibrating in arches which
do not exceed three or four degrees from the perpendicular. Such clocks alone are now made, and they ex. ceed all expectation.

We have faid that a pendulum needed only to be removed from the perpendicular, and then let go, in order to vibrate and meafure time. Hence it might feem, that nothing is wanted but a machinery fo connected with the pendulum as to keep a regifter, as it were, of the vibration. It could not be difficult to contrive a method of doing this; but more is wanted. The air mut be difplaced by the pendulum This requires fome force, and mult therefore employ fo ne part of the momentum of the pendulum. The pivot on which it fwings occafions friction - the thread, or thin piece of metal by which it is hung, in order to avoid this frifion, occafions fome expenditure of force by its want of perfect flexibility or elafticity. Thefe, and other caufes, make the vibrations grow more and more narrow by degrees, till at laft the pendulum is brought to reft. We mult therefore have a contrivance in the wheelwork which will reftore to the pendulum the faall portion of force which it lofes in every vibration. The action of the wheels therefore may be called a maintaining pozver, becaufe it keeps up the vibrations

But we now fee that this may affect the regularity of vibration. If it be fuppofed that the action of gravity renders all the vibrations ifochronous, we mu? giant that the additional impulfion by the wheels will deftroy that ifochronifin, unlefs it be fo applied that the fam total of this impultion and the force of gravity may vary fo with the lituation of the pendulum, as fill to give a feries of furces, or a law of variation, perfectly funilar to that of gravity. This caunot be effected, unleis we know both the law which regulates the action of gravity. producing ifochronifin of vibration, and the intenfity of the force to be derived from the wheels in every ficuation of the pendulum.
The neceffary requifite for the ifochronous motion of the pendulum is, that the force whlich urges it to. ward the perpendicular, be proportional to its dillance from it (fee Dreamics, n ${ }^{0} 10$.3. Cor. 7. Suppl.) ; and therefore, fince pendulums fwinging in fmall circular arches are fenfibly ifochronous, we mult infer that fuch is the law by which the accelerating action of gravity on them is really accommodated to every fituation in thofe arclies.

It will greatly conduce to the better underfanding of the effect of the inaintaining power, if the reader keep in continual view the chief circumftances of a motion of this kind. Therefore let AC a (fig. 1.) reprefent the arch paffed over by the pendulum, Atretched out into a fraight line. Let C be its middle point, when the pendulum hangs perpendicular, and A and $a$ be the extremities of the ofeillation. Let AD be drawn perpendicular to AC , to reprefent the accelerating action of gravity on the pendulum when it is at A. Draw the Atraight line $\mathrm{DC} d$, and $a d$, perpendicular to $\mathrm{A} a$. A bout C, as a centre, deferibe the femicircle $\mathrm{AFH} a$. Through
(B) We are provoked to make this obfervation, by oblerving at this moment, in a literary journal, a pert and petulant up?art fpeaking of Newton's optical difcoveries in terms of ridicule and abufe, cmploying thefe very difeoveries to diminif? his authority. Is it rot thus that Chriltianity is now nighted by thofe who enjoy the fruits of the pure morality which it introduced?

Watch- Through any points B, K, $k, b, \& c$. of $A a$, draw the perpendiculars BFE, KLM, \&c. cutting both the ftraight line and the femicircle. Then,

1. The actions of gravity on the pendulum, when in the fituations $1, \mathrm{~K}$, \&c. by which it is urged toward C, are proportional to, and may be reprefented by, the ordinates $\dot{B} \mathbf{E}, \mathrm{KL}, b e, k l$, \&ec. to the ftraight line DC $d$.
2. The velocities acquired at $\mathrm{B}, \mathrm{K}$, \& cc . by the acceleration along $\mathrm{AB}, \mathrm{AK}$, \& c . are proportional to the ordinates $\mathrm{BF}, \mathrm{KM}$, \&c. to the femicircle $\mathrm{AH} a$; and, therefore, the velocity with which the pendulum paffe's through the middle point C , is to its velocity in any other point B , as CH to BF .
3. The times of defcribing the parts $\mathrm{AB}, \mathrm{BK}, \mathrm{KC}$, \&cc. of the whole arch of ofcillation, are proportional to, and may be reprefented by, the arches AF, FM, MH, \&sc. of the femicircle.
4. If one pendulum defcribe the arch reprefented by $\mathrm{AC} a$, and another defcribe the arch $\mathrm{KC} k$, they will defcribe them in equal times, and their maximum velocities (viz. their velocities in the middle point), are proportional to AC and KC; that is, the velocities in the middle point are proportional to the width of the ofcillations.
The fame proportions are true with refpeet to the motions outwards from C. That is, when the perdulum defcribes CA, with the initial velocity CH, its velocity at K is reduced to KM by the retarding action of glavity. It is reduced to 1 BF at B , and to nothing at $A$; and the times of deferibing CK, KB, BA, CA, are as HM, HF, HA. Another pendulum fetting out from C, with the initial velocity CO , reaches orily to $\mathrm{K}, \mathrm{CK}$ being $=\mathrm{CO}$. Alfo the times are equal. If we confider the whole ofcillation as performed in the direction is $a$, the forces $\mathrm{AD}, \mathrm{BE}, \mathrm{KL}$ accelerate the pendulum, and the fimilar forces a $d, b e, k l$, on the other fide, retard it. The contrary liappens in the next efcillation $a$ CA.
5. The areas DABE, DAKL, \&c. are proportional to the fquares of the velocities acquired by moving along $\mathrm{AB}, \mathrm{AK}$, \&cc. or to the diminution of the fquares of the velocities fuftained by moving outwards along BA or KA, \&c.

The confideration of this figure will enable the reader (even though not a mathematician) to form fome no. tion of the effect of any propofed application of a maintaining power by mcans of whetiwork: For, knowing the weight of the pendulum, we know the accelerating action of that weight in any particular fitnation $A$ of the perdulum. We alfo know what addition or fubtraction we produce on the pendulum in that fituation by the whecl-work. Suppofe it is an addition of preffure equal to a certain number of grains. We can make AD to D \& as the firft to the latt ; and then A \& will be the whole force urging the pendulum toward C. Doing the fame for every point of AC , we obtain a line $\sin c$, which is a new fcale of forces, and the fpace DC \& comprehended between the two feales CD and $\mathrm{C} \delta$, will exprefs the addition made to the fquare of the velocity in paffing along $A C$ by the joint action of gravity and the maintaining power. Alfo, by drawing a line $* \pi$ perpendicular to AC, making the fpace $\mathrm{C} r \times$ equal to CAD , the point $\pi$ will be the limit of the ofcillation outward from C , where the initial
velocity HC is extinguifhed. If the line $x+$ cut the fame circle in s, one.half the arch ? A will nearly exprefs the contraction made in the time of the outward ofcillation by the maintaining power. An accurate determination of this laft ci:cumftance is operofe, and even cifficult ; but this folution is not far from the truth, and will greatly affift our judgment of the effect of any propofal, even though $x$ o be drawn only by the judgement of the cye, making the area left out as nearly equal to the area taken in as we can eftirate by infpection. This is fcid from experience.

Since the motion of a perdulum or balance is alternate, while the preflure of the wheels is conflantly in one direction, it is plain that fome art muft be ufed to accommodate the one to the ofler. When a cooth of the wheel has given the balance a motion in one direction, it muft quit it, that it may get an impulion in the oppotite disetion. The balance or pendulum thus cfcaping from the tooth of the whecl, or the tooth eCeaping from the balance, lizs given to the reneral contrivance the name of SCAPEmint anong our artifts, from the Irench word eshappranent. We proceed, therefurc, to confictr this fubject more particularly, firft contide:ing the fcaperems which are pecolliatly fuited to the fmall v:brations of pendulums, and then thofe which mull produce much vidicr vibrations in balanices. This, with forne other cirentitances, re tor the feapements for pendulums and badauces very "ficrent.

## I. Of the Alion of a Whbecl and Pulict.

The feaperent which has been in ufe for clocks and watches ever fince their firf appearance in Eurrpe, is extremely fiemple, and its mode of operation is too ubvious to riced much explanation. In fig. 2. XY reprefents a horizontal axis, to which the perialumem is attached by a fender rod, or otherwife. This axis has two leaves C and D attaclied to it , one near each end, and not in the fame plane, Lut fo that when the penCulum hangs perpendicula:ty, and at reil, the piece $C$ fpreads a few degrees to the right han?, and $D$ as much to the left. ithey commonly make an angle of 7 O , 8o, or 90 degrees. Thefe two picces are called pallets. AFB reprefents a wheel, turning round on a perpendienlar axis EO, in the order of the letters AFEB. The teeth of this wheel are cut into the form of the tecth of a faw, leaning forward, in the diremion of the motion of the rim. As they fume what refemble the points of an old fefhioned royal diadun, this wheel has got the name of the crown whesl. In watches it is ofien called the bulance swbect. The munber of tecel is generally odd; fo that when one of thein 13 is pref. fing on a pallet D , the oppofite pallet C is in the fpace between two teeth $A$ and I. The figure reprefents the pendulum at the extremity of its cscurfion to the right hand, the tooth $A$ having juf cícaped trom the palkt $C$, and the tooth 13 having juft dropped on the pallet D . It is plain, that as the pendulum now moves over to the left, in the arch $P G$, the tooth $B$ continues to prefs on the pallet $D$, and thus accelcrates the pendulum, both during its defcent along the arch PH , and its afcent along the arol HG. It is mo lefs evident, that when the pallet D , by turning round the axis XY , raifes its point above the plane of the wheel, the tooth ${ }_{1}$ efcapes from it, and I drops on the pallet C , which is now nearly perpendicular. I preffes C to the right,

Watch work.

$$
\text { W A T } \quad[7761 \quad W \quad \text { W }
$$

Varch woik.
and acederates the motion of the pendulum along the arch GP. Nothing, can be more obvious than this ac tion of the wheel in maintaining the vibrations of the pendulum. We can eafily perceive, alfo, that when the pendulum is hanging perpendicularly in the line XH , the tooth B , by preffing on the pallet D , will force the pendulum a little way to the left of the perpendicular, and will force it fo much the farther as the pendulum is lighter ; and, if it be fufficiently light, it will be forced fo far from the perpendicular that the tooth B will efcape, and then I will catch on $C$, and force the pendulum back to $P$, where the whole operation will be repeated. The fame effect will be produced in a more yemarkable degree, if the rod of the pendulum be conrinued through the axis XY , and a ball Q put on the other end to balarce P. And, indeed, this is the conirivance which was firft applied to clocks all over Eurrope, befure the application of the pendulum. They were balance clocks. 'The force of the wheel was of a certain magnitude, and therefore able, during its action un a pallet, to communicate a certain quantity of motion and velocity to the balls of the balance. When the tooth 13 efcapes from the pallet D . the balls are then noving with a certain velocity and momentum. In this condition, the balance is checked by the tooth I catching on the pallet C. But it is not inftantly ftopped. It continues its motion a little to the left, and the pallet $C$ forces the tooth I a little backward. But it cannot force it fo far as to efeape over the top of the tooth I ; becaufe all the momentum of the balance was generated by the force of the tooth 13 ; and the tooth $I$ is equally powerful. Befides, when I catches on C, and C continues its motion to the left, its lower point applies to the face of the tooth I, which now acts ou the balance by a long and powerful lever, and foon fops its farther inotion in that direction, and now, continuing to jurefs on C, it urges the balance in the oppofite direc. tion.

Thus we fee that in a fuapement of this kind, the motion of the wheel mutt be very hobbling and unequal, making a great ftep forward, and a mort ftep back. ward, at every beat. This has occalioned the contrivance to get the name of the recoiling scapement, the recoiling pallets. This hobbling motioa is very ob. fervalle in the wheel of an alarm.

Thus have we obtained two principles of regulation. The firif and molt obvious, as well as the moft perfect, is the natural ifochronous vibration of a pendulum. The only ufe of the whechwork here, befides regittering the vibrations, is to give a gentle impulfion to the perdulum, by means of tise pallet, in order to compenfate friction, \&c. and thus maintain the vibrations in their primitive magnitude. But there is no fuch native motion in a balance, to which the motion of the wheels mult accommodate itfelf 'The wheels, urged by a de. temined preffure, and acting through a determined fpace (the face of the pallet), mult generate a certain determined velocity in the balance; and therefore the time of the ofcillation is alfo ciermined, both cluring the progreffive and the retrograde motion of the wheel. 'I'he actions being fimilar, and through equal fpaces, in cvery ofcillation, they muf employ the fame time. - Therefore a balance, moved in this manner, muft be ifochronois, and a regulator for a time-kecper.

By thus employing a balance, the horizontal polition
of the axis XY is unneceffary. Accordingly, the old clocks had this axis perpendicular, by which neeans the whole weight of the balance relted on the point of the pivot Y or X , according as the balance PQ was placed above or below. By making the fupporting pivot of liard Iteel, and very Sharp, friction was greatly diminish. ed Nay, it was entirely removed from this part of the michinc by fufpending the balance by a thread at the end X , inftead of allowing it to reft on the point of the pivot Y.

As the balance regulator of the motion admits of every pofition of the machine, thofe clock, were made in an infinite variety of fanciful forms, efpecially in Germany, a country famous for mechanical contrivances. They were made of all fizes, from tha' of a great tteeple clock, to that of an ornament for a lady's toilet. The fubftitution of a fpring in place of a weight, as a firft mover of the wheel-work, was a moft ingenious thought. It was very gradual. We have feen, in the Emperor's mufeum at Bruffels, an old (perhaps the firlt f fpring clock the fpring of which was an old fword blade, from the point of which a catgut was wound round the barrel of the firft wheel. Some ingeniutis German fubftituted the fpiral fpring, which both took lefs room. and produced more revolutions of the firf wheel.

When clocks had been reduced to fuch fmall fizes, the wifh to make them portable was very natural ; and the means of accomplifhing this were obvious, namely, a farther reduction of their fize. L'his was accomplithed very early; and thus we obtained pocket watches, moved by a fpiral fpring, and regulated by a balance with the recoiling fcapement, which is ftill in ufe for conimon watches. The hobbling motion of the clown wheel is wery eaflly feen in all of them.

It is very uncentain who firf fubftuted a pendulum in place of the balance (Clock, Encycl.) Huyghens, as we have already obferved, was the firft who inveftigated the motions of pendulums with fuccefs, and his Look De Horolugio Ofcillatorio may be confidered as the elements of refined mechanics, and the fource of all the improvements that have becin made in the conftruction of fcapements. But it is certain that Dr tooke had employed a penduhn for the regulation of a clock many years before the publication of the abovementioned treatite, and he claims the merit of the invention of the only proper method of employing it. We imagine therefore that Dr Hooke's invention was nothing more than a fcapement for a perdulum making fmall vibrations, without making ufe of the uppnfite notions of the two fides of the crown wheel. Dr Hooke had contrived fome foapement more proper for pendulums than the recoiling pallets, becaufe certainly thofe might be eniployed, and are actually employed as a fcapement for pendulum clocks to this day, although they are indeed very ill adapted to the purpofe. He had not only remarked the great fuperiority of fuch pendulum clocks as were made before IItryghens's publication of the cycloidal pendulum over the balance clocks, but had alfo leen their ciefeets, arifing from the light pendulnms and wide arclies of vibration, and invented a fcapement of the nature of thofe now employed. The pendulum clock which lie made in 1658 for Dr Wilkins, atterwards Bifhop of Chefter, is mentioned by the inventor as peculiarly fuited to the moderate fwiag of a pen. dulum ; and he oppofes this circumitance to a general

## W A T

Wratch- practice of wide vibrations and trifing pendulums. The wo k.

French are not in the practice of alcribing to us any
thing that they can claim as their own ; yet Lepante fays that the Echaopement ì l'Ancre catee from England about the year 1665 . It is alfo admitted by him that clock-making flourihed in England at that time, and that the French artifts went to London to improve in it. Putting thefe and other circumftances tngether, we think it highly probable that wc are indehtect to Dr Hooke for the feapenient now in ufe. The principle of this is altogether different fiom the fimple pallets and direct impulfe alrcady defcribed; and is fo far from being obvints, that the manner of action has been mifunderfood, even by men of fcience, and writers of fyltems of mechanics.

In this fcapement we employ thofc teeth of the wheel which are moving in one direstion; whereas in the former feapement, oppofite teeth were employed moving in contrary directions. Yet even here we mult coinmunicate an alternate motion to the axis of the pallets. The contrivance, in general, was as follows: On the axis A (See fig. 3) of the pendulum or balance is fix. ed a piece of metal BAC, called the crutch by our artilts, and the anchor by the French. It terminates in two faces $\mathrm{B} b \mathrm{C} c$ of tempered flecl, or of fome hard ftone. Thefe are called the pallets, and it is on them that the tecth of the wheel act. The faces Bb C $c$ are fet in fuch pofitions that the teeth puth them nut of the way. Thus B pufhes the pallet to the left, and C punhes its pallet to the right. Both puth their pallets fidewife outward from the centre of the wheel. The pallet B is ufually called the leadin.f, and C the driving pailet by, the artifts, although it appears to us that thefe names ?lould be reverfed, becaule B drives the pallet out of the way, and C pulls or leads it nut of the way. They might be called the fir $f$ and fecond pallet, in the order in which they are acted on by the wheel. We fhall ufe either denomination. The figure is accommodated to the imactive or refting polition of the pendulum. Suppofe the pendulum drawn afide to the right at $Q$, and theri let go. It is plain that the tooth $B$, preffing on the face of the pallet $\beta B b$ all the way from $\beta$ to $b$, thrufts it afide outwards, and thus, by the connection of the crutch with the pendulum rod, aids the pendulum's motion along the arch QPR. When the pendulum reaches R , the point of the tooth B has reached the angle $b$ of the pallet, and efcapes from it. The wheel preffing forward, another tooth C drops on the pallet face $\mathbf{C}_{c}$, and, by preffing this pallet outward, evidently aids the pendulum in its motion from R to P . The tooth C elicapes from this pallet at the angle $c$, and riow a tooth $\mathrm{B}^{\prime}$ drops on the firtt pallet, and again aids the pendulum; and this operation is repeated continually.

The mechanifm of this communication of motion is thus explained by feveral writers of elements. The tooth B (fig. z.) is urged forward in the direction BD , perpendicular to the radius MB of the swivg wheet. It therefore preffes on the pallet, which is moveable only in the direction BE , perpendicular to BA the radius of the pallet. Therefore the force BI) muft be refolved into two, viz. BE, in the direction in which alone the pallet can move, and ED, or BF, perpencicular to that direction. The latt of thefe only preffes the pallet and erutch againt the pivot hole A. Suppl. Vol. II. Part II.

BE is the only ufeful force, or the furce communicated to the pallet, enabling it to maintain the pendulum's notion, by reftoring the momentum lof by friction and other caules.

But this is a very erroneous account of the modus operandi, as may be feen at once, by fuppofing the radius of the pallets to be a tangent to the wheel. This is a pofition moft frequently given to them, and is the very pofition in fig. 3. In this cafe $\mathbf{A}[13$ is perpencticular to 1 AA , and therefore BD will coincide with BA , and there will be no fuch force as BE to move the pen. dulum. It is a truth, deducible from what we know of the mechanical conttitution of folid bodies, and confirmed by numberlefs oblervations, that when two folid bodies prefs on each other, either in impulfion or in dead preffure, the direction in which the mutual preffure is exerted is always perpendicular to the touching furfaces, whatever has been the virection of the impelling body (See Impulsion, Supthl. no 66 . Michinery, Suppl. n 35 . and feveral outhor parts of this Work) Moreover this prefure is mutual, equal, and oppolite. Whatever be the fhapes of the: faces of the tooth and pallet, we can draw a pline BN, which is the common tangent to both furfices, and a line HBI through the point of conta? perpendicular to BN. It is farther demonftrated in the article MachiNERY, Susphl. $\mathrm{n}^{3} 35$, Sic. that the action of the wheel on the penfulum is the fame as if the whole crutelt were annihilated, and in its ftead there were two rigid lines $\mathrm{AH}, \mathrm{Mr}$, from the centres of the crutch and wheel, perpendicular to IFI, and connected by a third rigid line or rod HI, touching the two in H and 1 .

For if a weight $V$ be hung at $v$, the extremity of the horizontal radius M e of the whet, it will act on the lever ve MII, prefang its point I upwards in the lirection III perpendicular to MI ; the upper end of this rod IH will, in like manner, prefs the extremity $H$ of the rod H.1, and this will urge the pendulum from P toward R. To withltand this, the pendulum rod AP may be withheld by a weight $\approx$, hanging by a thread on the extremity of the horizontal lever $A z$, equal to $M v$, and conneeted with the crutclı and pendulum. The weights V and z may be fo proportioned to each other that, by acting perpendicularly on the cro, ked levers $v \mathrm{MI}$, and $\approx A H$, the prellures at If and I thall be equal, and juit balance tach other by the iutervention of the rnd HI. When this is the cafe, we have put things into the fame mechanical ftate, in refpect of mutual action, as is effected by the crutch, pallets, and wheel, which, in like inanner, produce equal prefures at B the point of contact, in the direction BII and 13I. The weight $V$ may be fuch as produces the very fame cffeet at 13 that is produced by the previous train of wheel-work. 'The weight $\approx$ therefore matt be juft equal to the force produced by the wheel-work on the point $z$ of the pendulum rod, becaufe by acting in the oppofite direction it jult balances it. Let us fee thercfore what force is communicated to the pendulum by the wheeis.

Let $x$ be the upward preffure excited at I , and $y$ the equal oppofite preflure excited at 1 H . 'Thenl, by the property of the lever, we have $\mathrm{Mf}: \mathrm{M} v=\mathrm{V}: x$, and $x \times \mathrm{MI}=\mathrm{V} \times \mathrm{M} v$. In like manner $y \times \mathrm{AH}=$ $Z \times A z$. Therefore, becanfe $x=y$, and $A z=M v$, we have $V: Z=M I: A H$. That is, the force exert5 F

## Watch-

## work.

ed by the tooth of the wheel in the direction of its mo. tion is to the force imprefien on the pendulum rod at a diftance equal to the radius of the wheel as $M 1$ to $A I$. The force impreffed on the ball of the pendulum is lefs than this in the proportion of $A P$ to $A z$, or $M v$.

Cor. 1. If the perpendiculars MN. AV, he drawn on the tangent plane, the forces at $B$ and $\approx$ will be as BN to BO . For thefe lines are refpectively equal to MI and A.H.

Cor. 2. If Ht meet the line of the centres $\Delta \mathrm{C}$ in $S$, the forces will be as $S M$ to $S A$; that is, $V: Z=$ SMI: SA.

Cor. 3. If the face $\beta[3 b$ of the pallet be the evolutrix of a circle defcribed with the radius $A H$, and the face of the tooth be the evolutix of a circle deferibed with the radius MI, the force impreflied on the pendulum by the wheels will be conllant during the whole vibration (Machinery, no 36 ) But thefe are not the only forms which produce this conftancy. The forms of teeth defcribed by different authors, fuch as De la İire. Camus, \&x. for producing a conftant force in trains of wheel-work, will have the fame effect herc. It is alfo eafy to fee that the force impreffed on the pendulum may be varied according to any law, by makiog tlicfe faces of a proper form. Therefore the face, from $B$ outwards, may be fo formed that the force communicated to the pendulum by the wheels, during its defcent from $Q$ to $P$, may be in one couftant proportion to the acceleration of gravity, and then the fum of the forces will be fuch as produce ifochronous vibrations. If the inner part $P, b$ of the face be formed on the fame principle, the difference of the forces will have the fame law of variation. If the face $6 b$ be the colutrix of a circle, and the tooth B terminate in a point gently sounded, or quite angular, the force on the pendulum will continually increafe as the tooth flides from s to $b$ For the line AH continues of the fame magnitude, and MI diminithes. The contrary will happen, if the pallet be a point, cither fharp or rounded, and if the face of the tooth be the cvolutrix now mentioned; for MI will remain the fane, while AH diminithes. If the tooth be pointed, and $\beta b$ be a ftraight line, the force communicated to the pendulum will diminifh, while the tooth nides from $\beta$ to $l$. For in this cafe AH diminifies and MI increafes.

Cor. 4. In general, the force on the pendulum is greater as the angle $M B b$ increafes, and as ABb diminifhes.

Cor. 5. The angular velocity of the wheel is to that of the pendulum, in any part of its ribration, as A H to MI. T'lis is evident, becaufe the rod IH moving (in the moment under confideration) in its own direc tion, the points H and 1 move through equal fpaces, and therefore the angles at $A$ and $M$ mutt be inverftly as the rasii.

All that has now been faid of the firt pallet $A B$ may be applied to the fecond pallet AC.

If the perpendiculars $\mathrm{C} s$ be drawn to the touching plane o $\mathrm{C} n$, cutting AM in $s$, we fhall have $\mathrm{V}: z=s \mathrm{M}$ is A , as in Cor. 2. And if the perpendiculars $\mathrm{Mi}, \mathrm{A} /$, be drawn on $\mathrm{C} s$, we have $\mathrm{V}::^{\prime}=\mathrm{M} i: A b$, as in the general theorem. The only difference between the action on the two pallets is, that if the faces of both are plain. the force on the peudulum increafes during the whole of the action on the pallet $C$, whereas it dimi-
nifhes during the progrels of the tooth along the other pallet.

The reader will doubtlefs remark that each tooth of the whecl acts on both pallets in fucceffon; and that, during its action on either of them, the pendulum makes one vibuation. Therefore the nuriber of vibratione during one turn of the wheel is double the number of the teeth: confcquently, while the tooth nides along one of the pallets, it advances half the fpace between two fucceffive teeth; and when it efcapes from the pallet, the other tooth may be juf in contad with the other pallet. We fay it may be fo; in which cafe there will be no dropping of the teeth from pailet to pallet. This, however, requres very nice workmanfhip, and that every tuoth be at precifly the fame diftance from its neigh. bour. Shomld the tooth which is jutt going to apply to a pallet chance to be a little too far advanced on the wheel, it would touch the pallet before the other had efcaped. 'Thus, fuppofe that before B efcapes from the point $b$ of the pallet, the tooth C is in contact with the pallet CG, B carnot efcape. Therefore when the pendulum returns from $R$ towards $Q$. the pallet $s b$, returning along with it, will pufh back the tooth I of the wheel. It does this in oppofition to the force of the wheel. 'Therefore, whatever motion the wheel had communicated to the pendulum, during its fiving from $P$ to $Q$, will now be taken from it again. The pendulum will not reach $Q$, becaufe it had been aided in its motion from $Q$. and had proceeded further than it would have done without this help. Ite motion toward $Q$ is further diminifted by the friction of the pallet. Therefore it will now return arain from fome nearer point $q$, and will not go fo far as in the laft vibration, but will return throush a ftill forter arch: And this will be ftill more contrasted in the mext vibration, \&c. \&c. 'Thus it appeans that if a tooth chances to touch the pallet before the efcape of the other, the wheel will advance no farther, and foon after the pendulum will be brought to reft.

For fuch reafons it is neceffary to allow one tooth to efcape a litule before the other reaches the pallet on which it is to act, and to allow a fmall drop of the tecth from pallet to pallet. I3ut it is accounted bad workmanhip to let the drop be confiderable, and clofe foapement is accunnted a mark of care and of good workmankip It is evidently an advantage, becaufe it gives a longer time of action on each pallet. This freeing the fcapement cannot be accompliihed by filing fomething from the face of the tooth; becaufe this being done to all, the diflance between them is diminifed rather than allgmented. The pallets mutt be firit fcaped as clofe as poffible. This ubliges the workman to be carefu! in making the teeth equidiftant. 'Ihen a fmall matter is taken from the point of each pallet, by filing off the back $b r$ of the pallet. The tooth will now eicape before it has moved through lalf a fpace.

From all that has been faid on this particular, it appears that the interval between the pallets inu!t comprehent a cercain number of teeth, and half a fpace more.
'ille firlt circum?ance to be confidered in contriving a fcapement is the angular motion that is intended to be given to the pendulum during the astion of the wheel. This is ufually called the angle of ficterement, or the angle of action. Having tixed ou an angle $a$ that we think

## W A T

Ir atchwork.
proper, we muft fecure it by the pofition and form of the face of the pallets. Knowing the number of teeth in the fwing-wheel, divide $180^{\circ}$ by this number, and the quotient is the angle $b$ of the wheel's motion doring one vibration of the pendulum. In the line AM, joining the centres of the crutch and wheel, make SM to SA , and $s \mathrm{M}$ tos A , as the angle $a$ to the angle $b$; and then, having determined how many teeth fhall be comorehended between the pallets, call this number $n$. Multiply the angle $b$ by $n+1$. and take the half of the product. Set off this half in the circumference of the wheel (at the points of the teeth) on each fide of the line joining the centres of the crutch and whecl, as at TB and TC. Through S and $s$ daw Sll and $s$ C, and through $B$ draw $\operatorname{s} B b$ perpendicular to $S B$, for the medium pofition of the face of the firlt pallet ; that is, for its pofino when the pendulum liangs perpendiculer. In like monner, drawing o $\mathrm{C} n$ perpendicular to $s \mathrm{C}$, we have the medium pofition of the fecond pallet. ' $i$ 'he demonftration of this confruction is very evident from what has been faid.

We have hitherto fuppofed that the pendulum fi. nifhes its vibration at the inftant that a tonth of the wheel efcapes from a palict, and another tonth drops on the other pallet. But this is never, or fhould never be, the cafe. The pendulum is made to fwing fomewhat beyond the angle of fcapement : for if it do not when the cluck is clean and in good order, but fop precifely at the drop of a tooth, then, when it grows fonl, and the vibration diminifhes, the teeth will not efcape at all, and the clock will immediately flop, Therefore the force communicated by the wheels during the vibration within the limits of fcapement, muft be increafed fo as to make the pendulum throw (as the artifts term it) farther out; and a click is more valued when it throws out confiderably beyond the angle of feapement. There are geod reafons for this The monentum of the pendulem, and its power to regulate the clock (which Mr Harrifon fignificantly called its dominion), is proportional to the width of its vibrations very nearly.

This circumftance of exceeding the angle of fcapement has a very great influcnce on the performance of the clock, or greatly affects the dominion of the pendulum. It is eafy to fee that, when the face $s b$ of the leading pallet is a plane if the pendulum continue its motion to the right, from P toward Q , after the tooth B has dropped on it, the pallet will purh the whee! back again, while the tooth flides outward on the pallet toward B. Such pallets therefore will make a recoiling frapement, refenbling, in this circuinflance, the old pollet employed with the crown whel, and will have the properties attached to this circum:Itarce. One confequence of this is, that it is much affected by any inequalities of the maintaining power. It is a matter of the moft familiar obfervation, that a common watch goes flower when within a quarter of an bour of being down, when the action of the fpring is very weak, in confequence of its not pulling by a radius of the fufee. We obferve the fame thing in the beating of an alarum clock. Alfo if we at any time prefs torward the wheelwork of a common watch with the key, we obferve its beats acclerate immediately. The reafon of this is pretty plain. 'The balance, in confequence of the acceleration in the angle of fcapement, would have gone much farther, empluying a corifiderable time in
the excurfion. This is checked abruptly, which both flortens the vibration and the time employed in it. In the return of the penculum, the motion is accelerated the whole way, along an arch which is fhorter than what correfponds to its velocity in the middle point; for it is again checked on the other fide, and does not make its full excurlion. Morenver, all this irregularity of force, or the great deviation from a refiftance to the excurfion propoitional to the diftance from the mis 1 ll point, is exerted on the pendulum when it is near the end of the excurfion, where the velocity being fmall, this irregular force acts long upon it, at the very time that it has little force wherewith to refint it. All temporary inequalities of force, thercfore, will be more felt. in this fituation of the balance than if they had been exerted in the middle of its motion. And although the regulating power of a pendulum greatly exceeds that of the light balances ufed in pocket watches, foonething of the fame kind may he expected even in peridulum clock. A ccordingly this appeary by a ferics of experiments made by Mr Berthoud, a celebrated watchmaker of Paris. A clock, with a half fecond pendulum weighing five diams, was furnifked with a recoiling feapement, whofe pallets were planes. The angle of feapement was $5^{\frac{1}{2}}$ degrees. When actuated with a weight of two pounds, it fiwung $8^{\circ}$, and loft $15^{\prime \prime}$ per hour; with four pounds, it fwung $10^{\circ}$, and loft $6^{\prime}$. Thus it appears that by doubling the maintaining power, although the vibration was increafed in confe. quence of the greater impulfe, the time was leffened $9^{\prime \prime}$
 faid when we deferibed the firf fcapement, that an increafe of maintaining power muft render the vibration more frequent. We faw, on that occafion, that, cren when the gravity of the pendulum is balanced by $a$ weight on the other end of the rod, the force of the whetls will prochuce a vibratory motion, and that an augmentation of this force will increafe it, or make the vibrations more rapid. The precife effect of any particular form of teeth can be learned only by computing the force on the pendulum in every pofition, and thell conftructing the curve $f: C$ of fig 1 . The rapid increafe of the ordinates beyond thofe of the triangle ADC , forms a conliderable area DA $\approx 0$, to compenfate the area $\times 0 \mathrm{C}$, and thus makes a confiderable contraction $A \pi$ of the vibration, and a fenfible contraction A.

## of the time.

Mr George Grahnm, the celchrated watchmaker in London, was alfo a grod mathematician, and well qualified to confider this fubject fcientifically. He contrived a fcapement, which he hoped would leave the pendulum almott in its natural tate. The aeting lace of the pallet $a b c$ (fig. 4.) is a plane. The tooth mpors on $a$, and efcapes from $c$, and is on the midelle point $b$ when the pendulum is perpendicular. 13eyond $a$, the face of the pallet is an arch a d, whofe centre is $A$, the centre of the crutch. The maintaining power is made fo great as to produce a much greater vibration than the angle of active leapement $a \hat{\Lambda} c$. The confequence of this is that, when the tootl drops on the angle $a$, the pendulan, coatinuing its motion, carries the crnt ch along with it, and the trouth paffes on the arch ad , in a direction paffing through the centic of the crutch. This preffure can neither accelcrate nor retard the no-

Wiatch- tion of the crutch and pendulum. As the pendulum work. was accelcrated after it paffed the perpendicular, by the other pallet, it will (if quite unobftructed) throw out farther than what correfponds to the velocity which it had in the middle point of its vibration; perh?ps till the tooth paffes from $a$ to $e$ on the circular arch of the pallet. But although it fuftains no contrary action from the wheels during this excurfon beyond the arigle of fcapement, it will not proceed fo far, but will ftop when the tooth reaches $d$; becanfe there muft be fome vefiftance arifing from the friction of the tooth along the arch $a d$, and from the clamminefs of the oil employed to lubricate it: but this refiftance is exceeding. ly minute, not amounting to $\frac{3}{8}$ th of the preffure on the arch. Nay, we think that it appears from the experiments of Mr Coulomb that, in the cafe of fuch minute preflures on a furface covered with oil, there is no fenfible retardation analogous to that produced by friction, and that what retardation we obferve arifes entirely from the clamminefs of the oil. We are fo imperfectly acquainted with the marner in which friction and vifcidity obftruct the motions of bodies, that we cannot pronounce decifively what will be their effect in the vrefent cafe. Friction does not increafe much, if at all, by an increafe of velocity, and appears like a fixed quantity when the preffure is given. This makes all motions which are obftructed by friction terminate abruptiy. 'This will thorten both the length and the time of the outward excuifion of the pendnlum. The vifcidity of the oil refifs differently, and more nearly in the proportion of the velocities. The diminution of notion will not be in this proportion, becaufe in the greater velocitics it acts for a fhorter time. Were this accurately the cafe, the refiftance of vifcidity would aifo be nearly conftant, and it wonld operate as friction does. But it does not flop a motion atruptly, and the motions are extingnihed gradnally. Therefore, al. though vifcidity mut alwaye diminiff the extent of the excurfion, it may fo vary as not to diminifh the time. We apprehend, however, that it generally does. But whatever happens in the excurfion, the return will cersainly be flower, and employ more time than if it had not beell obftructed, becaule the velocity in every point is lefs than if perfectly free. The whole arch, confifting of a returning arch and an excurfion on the other Gide, may be either flower or quicker, according as the compenfation is complete or not, or is even overdone.

All thefe reflections occurred to Mr Grahan ; and he was perfuaded that the time of the tonth's remaining on the arch a d, both afcending and defcending, would differ very little from that of the defciption of the fame arch by a free pendulum. The great caufes. of irregularity feemed to be removed, viz. the inequalities in the action of the whets in the vicinity of the extremity of the vibration, where the pendulum having little momentum is, long in the fame little face, expofed to their action. The derangement produced by any force cepends on the time of its action, and therefore mut be greateft when the motion is floweft. The pendulum gets its impulfe in the very middle of its vibiation, where its velocity is the greateft; and therefore the inequalities of the inaintaining power act on it on ly for a thort time, and make a very trifling alteration in the time of its defcribing the arch of fcapement. Beyond this, it is nearly in the flate of a free pendu.
lum; nay, even though it be affected by an inequality of the maintaining power, and it be accelerated beyond its ufual rate in that arch, the chief effect of this will be to caufe it to defcribe a larger anch of excurfon. The flortening of the time of this defeription by the friction will be the fame as before, happening at the very end of the excurfion; Lut the return will he more retarded by the friction on a longer arch. And, by this, a comperfation may be made for the trifing contraction of the time of defcribing the arch of fcapement.

This circumfance of giving the impulie in the niddle of the vibration, where its time of action is the fnalleft polfible, and whereby the pendulum is fo long left free from the action of the whecls, is of the very firt importance in all fcapements, and chould ever be in the mind of the mechanician. When this is adhered to, the form of the face $a b c$ is fearcely of any moment. Much has been written ou this form, and many attempts have been made to make it fuch that the action of the wheels. flall be proportional to the action of grasity. To do this is abfolutely impoffible. Mr Craham made them plancs, not only becanie of eafieft execution, but becaufe a plane really confpires pretty well with the change of gravity. While the pendulum moves from Q to P (fig. 3.), the force of gravity, ading in the direction QP, is continually diminifhing. So is the accelerating power of the pallet from $a$ to $b$. Wher the $p e n d u l n m$ rifes from $P$ to $R$, a force in the oppofite direction RP continually increafes. This is analogons to the continual diminution of a force in the direction PR. Now we have fuch a diminution of tuch a furce. in the action of the pallet from $b$ to $c$, and fuch an ang: mentation in the action of the other pallet.

For all thefe reafons, this conftruction of a fcapement appeared very promifing. Mr Grahan put it in practice, and it anfwered bis mof fanguine expectation, and is now univerfally adopted in all nice clucks. Mr Graham, however, did not think it prodent to caufe a tooth to drop on the very angle $a$ of the pallet. He made it drop on a point $f$ of the alch of excurfion. This has allo the advantage of diminithirig the angic of action, which we have proved to be of fervice. It re. quires, indeed, a greater mantaining power ; Lut this can cafily be procured, and is lefs affected by the changes to ulich it is liathe by the effect of licat and cold on the nil. Our obfervations on the effects of frection and vifcidity in the atch ad feem to be cont med by the olrlervations of feveral artiffs, who agree in faying that a great increafe ot waintaining puwer increafen the vibrations, but makes them peiceptibly flower. Wi hen they wote, much oil was eppliedt to dimimith the triction on the arch of repofe; bat, fince that tire, the rubbing parts were made fuch as required no oil, and this retardation difappeared. In the clock of the tranfit room of the Royal Obfervatory, the angle of action feldom exceeds one-third of the fwing of the pendulum. The pallets are of oriental ruby, and the wheel is of fiel tempered to the utmolt degree of hardnefs. This clock rever varies a whole tecond fiom equable motion in the courfe of tive days.

This contrivance is known by the name of the jEAD beat, the dead scapement; becaufe the feconds index. flands ftill after each drop, whereas the index of a clock with a recuiling feapement is always in motion, hobbling backward and forward.

Thefe feapements, both recciling and cead beat, have been inade in a thoufand forms; but any perfon tolerably acquainted with mechanics, will fee that they are all on the fare principlea, and differ only in mape or fome equally unimportant circumftance. Perhaps the moft convenient of eny is that reprcfented i: fig. 5 where the thaded part is the crutch, made of brafs or iron, and $A$ and $B$ arc two pieces of agate, fint, or other hard flone, cut into the proper fhape for a mallet of either kird, and firmly fixed in proper fockers. Tley project half an inch, or thereabonts, in front of the crutch, fo that the fiving wheel is alfo tefore the crutch, diflant about rist of an inch or fo. J'allets of ruby, criven by a hard ficel fwing whel, need no oil, but merely to te once rubbed clean with an nily cloth.

Soinetines the wheel tas pins inftead of teeth. They are ranged round the rim of the wheel, perpendicular to its flane, and buth pallets are on one fide of the wheel, flatding perpendicular to its plane One of thefe pins dions foum the firft to the fecond pallet at once. The pallets are placed on two al ms, as in fig. 6 . in which cafe the pins are alternately on different fides of the wheel ; or on one, as in fig. 7. Py the motion of the perdulum to the right, the pin (in fig. r.), af. ter refing on the concave arch $d a$, aes.s on the face $a c$, and drops fiom $c$ on the other concave arch $i g$, which continutes to move a little way to the right. It then returns, and the pin fides aud acts on the pallet $i b$, and efcapes at $h$; and the next pin is then on the arch of repofe $d$ a.

It being evident that the recoiling feapement accele. rates the vibrations beyond the rate of a free pendulum, and it alfo appearing to mary of the firt artifts that the dead fcapement retards them, they have attempted to form a fe?pement which thall avoid both of thefe defeets, by forming the arches ad, ig, fo as to produce a very frall reccil. Mr. Berthoud does this in a very fimple manner, by placing the centre of $a d$ at a fimall diftance from that of the crutch, fo as to make the rife of the pallet atove the concent:ic arch about one-third of the arch itfelf. Applying fuch a crutch to the light pendelum mentioned in a former paragraph, he found that doubling, ard even trebling the maintaining power, produced ine change in the time of vibration, though it incteafed the width from $8^{\circ} 1012^{\circ}$ and $14^{\circ}$. We have no douth of the efficacy of this contrivance, and think it very proper for all clocks which require much oil, fuch as turret clocks. \&cc. But we apprehend that no :nle can be given for the angle that the recoiling arch thould nake with the concentric one. We imagine that this depends entirely on the flare which friction and oil have in producing the retardation of the dead beat.

Other artifts liave endeavoured to avoid the inconveniences of friction and oil on the arch of repufe in another way. Inftead of allowing the tooth of the wheel to drop on the back of the pallet, which we called the arch of excurfion, and others call the arch of repofe, it diops on a detent ota (fig. 8.), of which the part $t$ a is part of an arch whofe centre is $A$, the centre of the crutch, and the part 10 is in the direction of the radius. This piece does not adhere to the pallet, but is on the end of an armoA, which turns round the axis A of the crutch on fine pivots: it is made to apply itfelf to the back of the pallet by means of a fender fpring A $p$, attached to the pallet, and preffing inward on a pin $p_{0}$,
fixed in the arm of the cetent. When fo applied, its Watcharch $t a$ makes the repofe, and its point $a$ makes a fmall $\underbrace{\text { work. }}$ portion of the face $a 6$ of the pallet.
The action of this apparatus is very eafily underftood. When a tonth efcapes from the fecond pallet, by the motion of the pendulum from the left to the right, another tooth drops on this pailet (wlich the fggure fhews to be the firt or leading pallet) at the angle $i$, and refts on the fniall portion $t a$ of an alch of repufe. But the crutch, continuing its motion to the right, immediately ouits the armo $A$, car:ying the pallet $a c r$ along with it, and leaving the whect locked on the detent of a. By ald bye the pendulum fniftes its exculfion to the right, ard returns. When it enters the arch of action, the pallet 'as applied itfelf to the detent of $a$, aid withdraws it from the touth. The tooth immediately acts on the face $a c$ of the pallet, and reflores the motion loft during the laft vibration. The ufe of the fpring is inerely to keep the detent applied to the palkt without faking. It is a little bent duting their feparation, and acds fomeching of an onfofing force to the afeent of the perdulum on the cther fice of the whed, and acecleta:es its retum. A finilar detent on the back of the fecond pailet performs a fimilar cffice, lupporting the when while the fendalan is beyond the arch of fcapement, ard quitting it when the peldulum enters that arch.

Hie do not know who fuft practifed this very ingenious and promiling invention. Mr Mudge certainly did fo early as 175.3 or 1754 . Mr fierthoud fpeaks obfcurely of contrivances of the fame naru!e. ©o docs Le Roy, and (we think) le Pame. Tie fay that it is very proming. Friction is almoft annihilated by transferring it to the pivots at A ; fo that, in the excurtion beyond the angle of fcapement, the pendulum feenis alniont free. Indeed iome artilts of our acquaintance have even avoided the frietion of the pirots at $A$, by making the arm of the detent a fpring of contiderable thicknefs, except very necar to A , where it is made very thin and broad. But we do not find that this conftuetion, though eafily exccuted, and fufceptitle of great precifion and fleedinefs of acion, is nuch practiied. W'e plefume that the pelformance has not anfivered expectations. It has iet beell fuperior to the inconparably irore fimple dead fapement of Graham. Inded we think that it canict A pant of the trictinn fill remains, which cannot be removed; mamely, while the arch $t a$ is diawn fiom between the tocth and paller. Nay we apprethond that fomething noure thain friction muft be overcome lere. The tooth is apt to foree the detcnt outward, uniefs the part ta Le a little clevated at its point a like a claw, above the concentric arch, and the face of the tocth be made to incline forward, fo as to fit this fhape of the detent. This will confume fome force, when the monentum of the pendulum is by no means at its maximum. Should the clock be foul, and the excurfions beyond fcapememt be very fmall, this difturbance muft be excecdingly pernicious. But we have a much greater objection. During the whole excurfion beyond icapenucnt, there is a new force of a fpring acting on the pendulunt, which deviates confiderably from the proportions of the accelerating power of gravity. It does not commence its action till the detent leparates from the arm of the crutchoThen the fpring of the detent acts as a retarding force.
againf

## W A T [ 782 ] W A T

Watch. again? the excurfion of the pendulum, now on the owork. ther fide, bringing it fooner to reft, and then accelera-
ting it in its way back to the beginning of the arch of fcapement. In fhort, this conltruction fhould have the properties of a recoiling fcapencut. We got a clockmaker to make fome experiments on one which he had made for an amateur, which fully confirmed our conjecture. When the detent fpring was ftrong, an increafe of maintaining power made the vibrations both wider and more rapid. The artift reduced the ftrength of the fpring till this effect was rendered very fmall. It inight perhaps be quite removed by means of a ftill weaker fpring: But the fpring was already fo weak that a hard fep on the floor of the room did fometimes difengage the detent from the wheel. It appears, therefore, that nothing can be reafonably experted from this conftruction that is not as well performed by the dead fcapement of Mr Graham, of much eafier execution, and more certain performance.

Very fimilar to this conftruction (at leaft in the excurfien beyond the angle of fcapement) is the conftruc. tion of Mr Cumming, and it has the fame defects. His pallets are carried, as in the one defcribed, by the crutch. The detents prefs on them behind by their weight only : therefore, when the tooth is locked on the detent of one pallet, its weight is taken off from the pendulum on that fide, and the weight of the detent on the other fide oppofes the afcent, and accelerates the defeent of the pendulum.

Mr Cumming executed another fcapement, confinting, like thofe, of a pallet and detent. But the manner of applying the maintaining power is extremely different in principle from any yet defcribed. It is exceedingly ingenions, and feems to do all that is pofshble for removing every fonrce of irregulanity in the maintaining power, and every obftrnction to free motion arifing from friction and oil in the fcapement. For 1his reafon we hall give fuch an account of its effential circumilances as may fuffice to give a clear conception of its manner of acting, and its gond properties and defeets; but referring the inquifitive reader to Mr Cumming's Elements of Clock and Watch Work, publifted in i 76.6 , for a more full account.

In the feapements laft defcribed, the pallets were fixed to the crutch and pendelum, and the mantaining power, during irs action, was applied to the pendulum by means of the pallets, in the fame way as in ordinary fapements. The detents were unconnected with the pendulum, and it was free during the whole excurfion. In the prefent fcapement both the olllets and detents are detached from the pendulum, except in the moment of nulocking the wheel; fo that the pendulum may be faid to be free during its whole vibration, except during this fhoit moment.

ABC (fig. 9.) reprefents a portion of the fwing wheel, of which $\cap$ is the centre, and $A$ one of the teeth ; Z is the centre of the crutch, pallets, and pendulum. The crutch or detents is reprefented of a form refembling the letter A, having in the circular crofs picce a flit $i k$, alfo circular, $Z$ being the centre. This form is very different from Mr Cumming's, and inferior to his, but was adopted here in order to avoid a lorig defcription. The arm ZF forms the firt detent, and we tooth $A$ is ceprefected as locked on it at $F$. I) is the firft pallet on the end of the arm Z $d$ moveable
round the fame centre with the detents, but moveable indenendently of them. The arm $d e$, to which the pallet I) is attached, lies altogether behind the arm ZF of the detent, being fixed to a round piece of brafs if $g$, which has pivots turning concentric with the verge or axis of the perdulum. To the fame round piece of brafs is fixed the horizontal arme H . carrying at its extremity the ball $H$, of fuch fize, that the action of the tooth $A$ on the pallet $D$ is juft able (but without any rink of fait. ing) to raife it up to the pofition here drawn. $Z \mathbb{P} p$ reprefents the fork, or the pendulum rod, behind both detent and pallet. A pin p projects forward, coming through the nit $i k$, without touching the upper or un der margin of it. There is alfo attached to the fork the arm $m n$ (and a fimilar one on the other fide), of fuch lergth that, when the pendulum rod is perpendi. cular, as is reprefented here, the angular ditlance of $n$ ? from the rod eqH is precifcty equal to the angular diAance of the lefic fide of the pin $p$ from the left end $i$ of the flit $i k$.

The mode of action on this apparatus is abundantly fimple. The natural pofition of the pallet $D$ is at $\delta$, re. prelented by the dotted lines, refting on the back of the detent F . It is naturally brought into this pofition by its own weight, and ftill more by the weight of the ball H. The pallet $D$, being fet on the fore fide of the arm at $Z$, comes into the fame plane with the detent $F$ and the fwing-wheel. It is drawn, however, in the figure in another pofition. The tooth C of the wheel is fuppofed to have efcaped from the fecond pallet, on which the tooth A immediately engages with the pallet $D$, fituated at $\delta$, forces it out, and then refts on the detent F, the pallet $D$ learing on the tip of the tonth. F is brought into this fituation in a way that will appear prefently. After the efcape of $C$, the pendulum, moving down the arch of femivibration, is repre. fented as having attained the vertical pofition. Proceeding till to the left, the pin $p$ reaches the extremity $i$ of the flit $i k ;$ and, at the fame inftant, the arm $n$ touches the rod e eI in $q$. The pendulum proceeding a hair's breadth further, withdraws the detent F from the tooth, which now evea pufles of the detent, by acting on the flant face of it. The wheel being now unlocked, the tooth following C on the other fide acts on its pallet, puftes it off, and refts on its detent, which has been rapialy brought into a proper pofition by the action of $A$ on the flant face of F . It was a fimilar action of C on its detent, in the moment of efcape, which bronght $\mathrm{F}^{*}$ into a fit pofition for locking the wheel by the tooth A. The pendulum till going on, the arm $m n$ carries the weight of the ball H , and the pallet connected with it, and it comes to reft before the pin $p$ again reaches the end of the nit which had been fuddenly withdrawn from it by the action of $A$ on the flant face of F . The pendulum now returns towards the right, loaded on the left with the ball $H$, which reftores the motion which it had loft during the latt vibration. When, by its motion to the right, the pin $p$ reaches the end $k$ of the nit $i k$, it unlocks the wheel on the right fide. At the fame iaftant the weight $H$ ceafes to act on the pendulum, being now railed up from it by the action of a tooth like 13 on the pallet $D$.

Let us now confider the mechanifm of thefe motions. The prominent feature of the contrivance is the almoft complete difengagement of the regुulator from the wheels.

## iv A T $[783] \quad$ W A T

Warch. The whenls, in ${ }^{1}$ ee ${ }^{1}$, aft on the pallets; but the pallets work. wheel is to raifs the litt'e weights white the pendulum is on the other fide, in order to have then in readinefs at the arrival of the pentulum. They a:e then laid on the pendulum, and fupply an accelerating force, which reflores to the pendulum the momentum lolt during the preceding vibration. Therefore no inequalities in the action of the wheel on the pallets, whether arifing from friction or oil, has any effect on the maintaining power. It remains always the fame, bamely, the rotative inomentum of the two weights. The only circumftance, in which the irregularity of the action of the wheels can affect the pendulum is at the roment of unlock ing. Licre indeed the regulator may be affected; but this moment is fo fhort, in comparifon with other fcapements, that it inult be confidered as a real improve ment.

It is very unicandid to refufe the author a claim to the character of an ingemions artift on account of this contrivance, as has been tone hy a very ingemious univerfity Profeffor, who taxes Mr Cumming with ignorance of the firfl elements of mechanics, and fays that the bett thing in his book is his advice to fufpend the penduhem irom a great hlock of marhle, firmly fixed in the wall *. This is certainly a gund advice, and we doubt not but that the Profeffor's chock wonld have performed ftill better if he had condefcended to follow it It is itill lefs candid to queftion the originality of the invention. We know for certain that it was invented at a time and place where the author could not know what had been done by others. It would lave been more like the mrbanity of a well educated man to have acknowlidged the genius, which, wiihout fimilar advantages, had dune fo mituch.

But, while we thus pay the tribute of junlice to Mr Cumming, we do mot adopt all his opinions. The cleck has the lame defects of the former in tefpect of the laws of the force which accelerates the pendulum. The fudden addition of the fimall weight, and this almolt at the extrenity of the vibration, would derange it very much, if the addition were fufceptible of any fenfible variation. The irregularity of the action of the wheels may tenfibly affect the motion during the n!!locking, when the clock is foul, and the pendulum juft able to u:lock ; for any dilluruance at the exticinity of the vibration greatly affects the time. We acknowledge that the parts which we here fuppofe to be foul may not be fo in the courfe of twenty ycars, thefe parts being only the pivots of the [eapement. The great defect of the fe?pernent is its liablenefo to untock by any jolt. It is more fubjeef to this than the other; already mentioned. This rikk is much increafed by the flender make of the parts, in Mr Cunming's drawings, and in the only cluck of the kind we have feen ; but this is not neceffary: and it flould be avoided for another Leafon; the interpoting fo many flender and crooked parts between the moving power and the pendulum weakens the cormunication of power, and iequires a much more powerful wheelwork.

All thefe, howevcr, are night defecte, and only the
hit can be called a fault. The clocks made on this principle have gone remarkably well, as inay be feen by the regifters of his maje?t's private oblervatory. But the greatel objection is, that they do not perform bet. ter than a well-made dead feapement; and they are vafly inore troublefome to make and to manaye. This is itrictly true, and is a ferious obje rio:. The fact is, that the dominion of a heavy pendulum is fo great, that if any one of the fcapements now defcribed be well exccated with paliets of agate, and a wheel of hard Iteel, and if the pendulum be tufpended acreeably to Mr Cumming's advice, there is hardly any difference to be obferved in their performance. We fhal! content our elves with a fingle proof of this from fuct. The clock in vented by the celebrated Harrifon is at logit cyudal in its performance to any ocher. Friction is almoft annihilated, and no oil is :eqsired. It went fourtecin years without being touched, and during that time did not vary one complete fecond from one day to another, nor ever deviated half a minute by accumulation from equable motion : Yet the fea nement, in fo far as it reipects the law of the accelerating force, ¿cviates more from the proportion of the fpaces than the wort reculliag feapement that ever was put to a good clock. It is fo, different f:oin all hitherto deicribe?, botly in form and priaciple, that we nund not omit fome account of it, and with it we mall conchde our feapements for cocks.
I.et (Gl)O reperent the fwin whicet, of which MI is the centre. A is the verge or axis of the peadulum. It lins two very fhort arms $\boldsymbol{A} \mathrm{B}, \mathrm{AE}$. A flender rod BC turns on fine pivots in the joint B , and has at its extremity C a hook or claw, which takes hold of a woth I) of the fwing-wheel when the pendulum moves from the right fide to the left. This cisw, when at liberty, flands at right angles, or, at leatt, in a certain determinate angle, with regard to the arm $A B$; and when drawn a little from that polition, it is brought back to it aguin by a very flender fpring. The arm AE is fur. nillied with a detent EF, which alfo, when at liberty, maintains its pofition on the arm by means of a very fiender foring.

Let us now fuppofe that the tooth $D$ is prefling ont the claw C , while the pendulun: is moving to the right. The joint $B$ yields, by its motion round $A$, to the pretfire of the tooth on the claw. liy this yielding, the angle $A B C$ opens a litule. In the mean time, the fame motion round $A$ caules the point $F$ of the detent ons the other fide to approach the circumference of the wheel i: the arch of a circle, aud the tooth C at the fare time admances. 'Hocy mect, and the puint of $G$ is lodged in the noth mader the projecting heel $f$. When this takes place, it is evident thas any farther motion of the point E round A miult pufin the tooth Ga little backward, by means of the detent EF. It cannot come any nearer to the wheel, becaufe the point of the tooth fops the lieel $f$. the intant that F puffes $G$ back, the tooth 1) is with. drawn from the claw C, and C Gies one, by the action of its fp:ing, and refumes its pofition at right an:gla to 13.1 ; and the wheel is now free from the chaw, bu: is puning at the detent $l$ (c). 'i he penculum, lia-
(c) The reader may here remark the manner in which the preffire of the tooth $C$ on the detent is tranciefered to the joiat E by the intervention of the fhank FE , and from the joint E to the penculum rod, hy the interith-

## W A T

Wratchwork. work.
ving finifled its excurfion to the right (in which it canfes the wheel to recoil by means of the detent F), returns toward the left. The whecl now advances again, and, by preffing on $F$, aids the pendulum through the whole angle of feapement. By this motion the claw C defcribes an arch of a circle round $A$, and app:onches the wheel, till it take hold of another tooth, nainely, the one following D , and pulls it back a little. This immediately frees the deterit F from the preffure of the tooth G , and it flies out a little from the wheel, refuming its natural pofition by means of its fpring. Soon after, the motion of the pendulum to the left ceafes, and the pendulum returns; D pulling forward the hook C to aid the pendulum, and the former operation is repeated, sc. \&c.

Such is the operation of the pallets of Harrifon and Hindley. Friction is almoft totally avoided, and oil entiely ( D ). The motion is given to the pendulum by a fair pull or pufh, and the teeth of the wheel only apoly themfelves to the detents without rubbing. There is no drop, and the fcapement makes no noife, and is what the artills call a filent fiapement. The mechanician will readily perceive, that by properly difpofing the arms AB, AE, and difpoling the paliets on the circumference of the wheel, the law, by which the action of the wheel on the pendulum is regulated, may be ireatly varied, fo as to harmonize, as tar as the nature of fcapement, alternately pufhing and pulling, will admit, with the action of gravity.

But this is evidently a recoiling fcapement, and one of the wortt kind; for the recoil is made at the very contines of the vibration, where every diturbanee of the regular cycluidel vibration occafions the greatelt difturbance to the motion. Ytt this clock kept time with moft unexampled precition, far excelling all that had been made bcfore, and equal to any that have been made fince. This is entirely owing to the immenfe fuperiority of the momentum of the pendulum over the maintaining power.

## II. Of Scapements for a Watch .

Tas execution of a proper fcapement for watches is a far more delicate and difficult problem than the foregroing, on account of the finall lize, which requires much more accurate workmanfhip, becaufe the error of the hundredth part of an inch has as great a proportion to the dimenfons of the regrulator as an inch in a common houfe cluck. It is m:uch more difficult on another account. We have no fuch ineans of accumulating fuch a dominion (to ufe Mr Hiarrifun's expreffive term) over the wheel-work in the regulator of a watch as in that of a clock. The heaviett halance that we can employ, without the certainty of fnapping its pivots by every

## 784 ] W A T

flight jolt, is a mere trifle, in comparifon with the pen. dulum of the moft ordinary clock. A dozen or twenty grains is the utmoft weight of the balance, cven of a very large pocket watch. The only way that we can accu. mulate any notable quantity of regulating power in fuch a finall pittance of matter is by giving it a very great velocity. This we do by accumulating all its weight in the rim, by giving it very wide vibrations, and by making them extremely frequent. The balancerin of a middling good watch fhould pafs through at leaft ten inches in every fecond. Now, when we reflect on the fmall momentum of this regulator, the inevitable inequalities of the maintaining power, and the great arch of vibation on which thefe inequalities will operate, and the comparative magnitude even of an almott infentible fricion o. clanminefs, it appears almolt chimerical to expect any thing near to equability in the vibrations, and incredible that a watch can be made which will not vary more than one teat in 86400 . Yet fuch have been made. They mult be confidered as the moft matterly exertions of human art. The performance of a refiecting telefcope is a great wonder: the worlt that can find a narket mult have its mirrors executed without an error of the ten thoulandth part of an inch ; but we now know that this accuracy is attained almont in fpite of nE , and that we fearcely can make them of a worfe figure. But the cafe is far other wife in watch work. Here all thofe wonderful approaches to perfection are the refults of rational difcuffion, by means of found principles of fciznce ; and, unlefs the artitt who puts thefe principles into practice be more than a mere copyit, unlefo the principles themfelves are perceived by him, and actually direct his hand, the watch may ftill be good for nothing. Surely, then, this is a liberal art, and far above a manual knack. The ftudy of the means by which fuch wonders are fteadily effected, is therefore the ftudy of a gentleman.

In the account given above of the fcapements for pendulums, we affumed as one leading principle that the natural vibrations of a pendulums are performed is equal fimes, zubetber wide or narrow. This is fo nearly true, when the arches on each fide of the perpendicular do not exceed four degrees, that the retardation of the wider arches within that limit will not become fenfible, though accumulated for a long time. The common feapement with a plane face of the pallet, helps to correct even this fmall inequality much better than the niceft form of the cycloidal checks propoled by Huyghens.

In watch work we affume a fimilar principle, namely, that the ofiellations of a balunce, urged by its Spring, and undifiurbed
tion of the arm EA. This communication of preffure is precifely the fame that we made ufe of in explaining the common fcapement. $\mathrm{MG}, \mathrm{FE}$, and EA, in this fig. 10 . are performing the offices which we then gave to the lines $\mathrm{MB}, 131$, and HA , in fig. 3. Harrrifon's pallet realifes the ab!t ract theory.
(D) M: Harrifon was at fift by profuffion a carpenter in a country place. Being extremely ingenious and inventive, he had made a variety of curions wooden clocks. He made one, in perticular, for a turret in a gentleman's houfe. Its expofure made it wafte oil very fatt, and the maker was often obliged to walk two or three miles to renew it, and got nothing for lis trouble. In trudging home, not in very good humour, he pondered with himfelf how to make a clock go without oil. He changed all his pintion leaves into roilers; which anfwered very well. But the pailets required it more than any other part. : fter various other projects, he contrived thofe now reprefented, where there was no friction, and no oil is wanted. The turret clock continued to go without being touched till Mr Harrifon left the country.

## W A T [ 785$]$ W A T

Wrath- undiflurbed by ail foreign forces, are performed in equal times, whelber thry be wide or narrow. This principle was affumed by the celebrated meclianician Dr Robert Hooke, on the authority of many experiments which he had made on the bending and unhending of fprings. He found that the force neceffary for retaining a fpring in any conflainced pofition was proportional to its tenfion, or deflection from its natural form. He expreffed this in an anagram, which he publifhed about the year 1660 , in order to eftablifh his claim to the difcovery, and yet conceal it. till he had made fome important application of it. When the anagram was explained fome years afterwards, it was, "Ut tenfio, fic vis." Dr Hooke thought of applying this difeovery to the regulation of watch movements. For, if a flender fpring be properly apolied to the axis of a watch balance, it will put that balance in a certain detcrminate pofition. If the balance be turnect alide from this pofition, it feems to ful. low that it will be urged back toward it by a force proportional to its diftance from it. He immediately made the application to an old watch, which he afterward gave to Dr Wilkins, Bithop of Chefter. This was in 1658. Its mution was fo amazingly imbroved, that Hooke was perfuaded of thie perfection of his principle, and thought that nothing was now wanting for making a watch of this kind a perfect chronometer but the hand of a rood workman. For his watch feemed atmoft perfeet, though made in a fmatl country tuwn, in a very coarfe manncr. Mr Huyphens alfo clains this difcovery. He publifed his claim abomt the year 1675 , and propofed to make watches for difcovering the longitude of a thip at fea. But there is the molt unqueftionable evidence of 1 Dr Hooke's priority by fifteen years, and of his having made feveral watches of this kind. One of them was in the poffeflion of his majetty king Clartes II. Dr Huoke's firft balance frring was ftraight, and acted on the balance in a very imperfect manner. But he foon faw the imperfections, and made feveral fucceffive alterations ; and, among others, he employed the cylindical fpiral now employed by Mir Ainold; but he gave it up for the flat fpiral: and the king's watch had one of this kind before Mr Huyghens publifhed his invention. His project of longitude watches had been carried on along with L.ord Brouncker and Sir Robert Moray, and they had quarrelled fume years before that publication. See Watch, Encyd.

But both Dr Hooke and Mr Huyghens were too farrguine in their expectations. We, by no means, have the evidence for the truth of this principle that we have for the accelerating action of gravity on a pendulum. It refts on the nicety and the propriety of the experiments; and long experience has fhewn that it is fenlibly true only within certain limits. The demonflrations by whicli Bernoulli fupports the unqualified principle of Mr Huyghens, proceed on hypothetical doctrines concerning the nature of ela.ticity. And even thefe Bew that the law of elalticity which he affumed was felected, not becaufe fuunded on fiumpler principles than any other, but becaufe it was confiftent with the experiments of Hooke and Huyghens. Befides, although this fhould be the true law of a fpring, it does not follow that this fpring, applied in any way to the axis of a balance, will urge that balance agreeably to the lame law : and if it did, it ftill does not follow that the ofcilld-

Suppl. Vol. II Part II.
tions of the balance will be ifochronous; for the force has to more not only the balance but alfo the fpring. Part of the retoling force of the fpring is employed in refloring it rapidly to its quiefcent thape, and thus enabling it to follosu anil fill inpel the yielding balance. It is therefore only the furplus which is employed in actually moving the balance, and it is uncertain whether this furplus varies according to the fame law, being always the fame proportion of the whole force of the fpring. We find it an extremely difficult problem to determine the law of variation of this furplus, even in the fimpleft form of the (pring; nay; it is by wo means an ealy problem to determine the law of ofcillation of a fpring, unloaded with any balance; and we can eaflly thew that there are fuch forms of a fpring, that although the velocity with which the different parss approach to their quiefcent pofition be exactly as their exchition from it, this is by no means the law of velocity which this fpriug will produce in a balance. The matter of fact is, that when the fpring is a fimple Araight thel wire, fufpending the balance in the direction of its axis, the motions of it, if not immoderate, are precilcly agrecable to Huyghens's and Ifooke's rule ; and that the motion of a balance urged by a foring wound up into a flit, or a cylindrical fpiral, as in common watclies, and thofe of Arnold, deviates Cenfibly from it, unleis a cutain analogy be preferved between the length and the elaficity of the fpring. It the fpring be immoderately long, the wide vibrations are flower than the narrow ones; and the contrary is obferved when the ipring is immoderately fhort. A certain taper, or gradual ciminution of the fpring, is alio found to have an effect in equalizing the wide and narrow vibrations. Thicre is alfo a gicat difference between the force with which a past of the fpring unbends itielf, and the action of that furce in urging the balauce round its axis; and the perform.ince of many watches, good in other refpects, is often faulty from the manner in which this unbending force is conployed.

But, fince thefe corrections are in our power in a confiderable degres, we may fuppofe thicm applied, and the true motion (which we thall call che cycloidal) ittained; and we may then adapt the conitrnittion of the fcapement to the preferving this motion unditurbed. And here we mult fee at once that the problem is incomparably more delicate than in the cafe of pendulums. The vibrations muft be very wide, and the angular mo. tion'rapid, that it may be little affected by external mutinus. The finalict inequalities of inaintaining power acting through fo great a fpace, mult bear a confiderable proportion to the vely minute momentum of a watch balance. Oil is as clammy on the pallets of a watch as on thole of a clock; a vifcidity which would never be felt by a pendulun of 20 pounds weight will ftop a balance of 20 grams altogether. For the fame reafon, it is evident that any impropricty in the forms of the pallet muft be incomparably more pernicious than in the cafe of a pendulum; the deviation which this may uccation from a force proportional to the angular diflance from the middle point, mult bear a great pro. portion to the whole force.

The cominon recoling feapement of the old clocks ftill holds its place in the ordinary pocket watches, and anfwers all the common purpofes of a watch very well. . A well finifhed watch, with a recoilng fcapenent,

Watch. work.
will keep time within a minute in the day. 'I'his is enough for the ordinary afairs of life. But fuch watches are fuvject to great variation in their rate of gning, by any change in the power of the wheels. This is evident; for if the watch be held back, or preffed forw ird, by the key applied to the fufee fquare, we hear the teating greatly retarled or accelerated. The maintaining power, in the beft of fuch watches, is never lefs than one fifth of the regulating power of the fpring. For, if we take off the balance fpring, and allow the balance to vibrate by the impulfe of the wheels alone, we fhall find the minute band to go forsard from 25 to 30 minutes per hour. Suppofe it 30 . Then, fince the wheels aft throngh equal fpaces with or withont a fpring, the forces are as the fquares of the acquired velocities. (Drnamics, Suppl. $1^{3} 95$.) The velocity in this cafe is double; therefore the accelerating force is quadruple, and the force of the fpring is three times that of the wheels. If the hand goes forward 25 mi nutes, the force of the wheels is about one-fifth of that of the fpring. This great proportio: is neceffary, as already obferved, that the watch may go as foon as un. flopped.

We have but little to fay on this fcapement ; its prin. ciple and inanner of action, and its good and bad qua. lities, being the fame with thofe of the fimilar fcapement for pendulums. It is evident that the maintaining power being applied in the moft direct manner, and dusing the whole of the vibration, it will have the greateft poffible influence to move the balance. A given mainfpring and trairt will keep in motion a heavier balance by means of this fcapement than by any other. But, on the other hand, and for the fame reafon, the balance has lefs dominion over the wheel-work, and its vibra. tinns are more affeeted by any irregularities of the wheel. work. Moreover, the chief action of the wheel being at the very extremities of the vibrations, and being very abrupt, the vasiations in its force are molt hurtful to the ifochronifm of the vibrations.

Althongh this cuapeinent is extremely fimole, it is fufceptible of more degrees of guodnefs or imperfection than almo? any other, by the variation of the few particulars of its conftruction. We fhall therefore briefly defcribe that conftruction which long experience has fanctioned as appioaching near to the beft performance that can be obtained from the common feapement. Fig. ${ }^{11}$. reprefent: it in what are thonght its beft proportions, as it appears when lo iking flraight down on the end of the balance artor. $C$ is the centre of the balance and verge. CA and CB are the two pallets; CA being the upper pallet, or the one next to the balance, and CB being the lower one. F and $D$ are two teeth of the crown wheel, moving from left to right; and $E, G$, are two teeth on the lower part of the circumference, moving from right to left. The tooth I) is reprefented as juft efcaped from the point of CA, and the lower tooth E as juit come in contact with the lower pallet. The fcapement ftould not, however, be quite fo clofe, becaufe an inequlity on the teeth might prevent D from efeaping at all. For if $E$ touch the pallet CH before D has quitted CA, all will fland fill. This fault will be corrected by withdrawing the wheel a little from the verge, or by fhortening the pallets.

The proportions are as follow The diftance besween the front of the teeth (that is, of $G, F, E, D$ ) and
the axis C of the balance is one.tifth of FA , the di. ftance between the points of the teeth. The length $C A, C B$ of the pallets is three-fifthis of the fome diftance. Th: pallets make an angle ACB of 9 ? de. grees, and the front DH or FK of the teeth make an angle of 25 with the axis of the crown-wheel The f ping fide of the tooth mult be of an epicycloidal form, fuited to the relative motion of the tooth and pallet.

From thefe proportions it appears that the pallet $A$ can throzv out, by the action of the tooth D , till it reaches $a, 120$ degrees from $\mathrm{CI}_{1}$, the line of the crownwheel axis. For it can throw out till the pallet $B$ ftrike againft the front of E , which is inclined $27^{\circ}$ to CL . 'I'o this add BCA, $=95^{\circ}$, and we have LC a $=120$. In like manner B will throw out as far on the other fide. From 240, the firm of thefe angles, take the angle of the pallets $95^{\circ}$, and there remains $145^{\circ}$ for the greateft vibration which the balance can make without friking the front of the teeth. 'This ex. tent of vibration fuppofe the teeth to terminate in points, and the acting furfaces of the pallets to be planes cirecied to the very axis of the verge. But the points of the teeth muft be rounded off a little for ftrength, and to dinuinifh fiction on the face of the pallets. This diminifles the angle of fcapement very confiderably, by fhorreniag the teeth. Morcover, we muft by no means allow the point of the pallet to bank or frike on the forefide of a tooth. 'This would greatly derange the vibration by the violence and abruptnefs of the check which the wheel would give to the pallet. This circumflance makes it improper to continne the vibrations much beyond the angle of foapement. One-third of a citcle, or $120^{\circ}$, is therefore reckuned a very proper vibration for a fcapement made in thefe proportions. The impulfe of the wheels, or the angle of feapement, may be increaled by making the face of the patlets a Ittle concave (preferving the fame angle at the centre). The vibration may alfo be widened by pufhing the wheel nearer to the verge. This would alfo diminifh the recoit. Indeed this mav be entirely removed by bringing the front of the whect up to $C$, and making the face of the pallet not a radius, but parallel to a radius and behind it, i. e. by placing the pallet CA fo that its acting face may be where its back is juft now. In this cale, the twoth 1 would drop on it at the centie, and lie there at rell, while the balance completes its vibration But this would make the banking (as the ftroke is called) on the tecth alnoft unavoidable. In fhort, after varying every circumilance in every poffible manner, the betl makers have fettled on a fcapement very nearly fuch as we have defcribed. Precife rules can fcarcely be given; bccaufe the law by which the force acing on the pallets varies in its intenfity, deviates fo widely from the action of the balance fpring, efpecially near the himits of the excurfions.

The difcoveries of Huy ghens and Newton in rational mechanics engaged all che mathematical pnilofophers of Europe in the folution of mechanical problems, about the end of the laft century. I he vibrations of elaftic plates or wires, and their inlluence on watch balances, became familiar to every body. The great requifites for producin: fochronous vibrations were well manderitood, and 1 he ertitis were prompted by the fpeculatifts to at. tempi contructions of icapements proper tor this purpofe. It appeared cleatly, that the molt effectual means

Watch. for this purpofe was to leave the balance unconnected wok.

## 4~

 with the wheels, efpecially near the extremities of the vibration, where the motion is languid, and where everyineçuality of maintaining power muft act for a longer time, and therffore have a great effect on the whole dilration of the vibrations 'The maxim of conftrufion that naturally arifes from thefe reflections is to confine, if puffible, the action of the wheels to the middle of the vibration, where the motion is rapid, and where the chief effect of an increale or diminution of the maintaining power will be to erlarge or contraef the angular motions, but will make little change on their duration; becaufe the greatelt part of the motion will be effected by the balance fpring alone. This maxim was inculcated in exprefs terms by John Bernoulli, in hio Re. cherches Mlechaniques et Pbyiques; but it had been fug. gefted by common fenfe to feveral unlettered artifts befure that time About the beginning of this century watches were made in Lond $n$, where the verge liad a portion $e d b$ (fg. 12.) of a fmall cylinder, having its centre $c$ in the axis, and a radial pallet $b a$ proceeding from it. Suppofe a tooth jult efcaped from the point of the pallet, moving in the direction bde, the cylindrical part was fof fituated that the next tooth dropped on it at a fmall diftance from its termination. While the verge continues turning in the direction $b d e$, the tooth continues retting on the cylinder, and the balance fultains no action from the wheels, and has only to overcome the minute frictions on the polifhed furface of a hard fteel cylinder. 'This motion may perhaps continue till the pallet acquires the pofition $f$, almolt touching the tooth. It thenll ftops, its motion being extinguifhed by the increafing force of the fpring It now returns, moving in the dircetion $e d b$; and when the pallet has acquired the pofition $c i$, the touth $g$ quits the circumference of the cylinder, and drops in on the pallet at the very centre. The crooked form of the tooth allows the pallet to proceed ftill farther, before there is any danger of banking on the tooth. This vib:ation being alfo ended, the balance refumes its firft direction, and the tooth now acts on the face of the prallet, and refiores 'o the balance all the motion which it had lolt by friction, \&c. during the two preceding vibrations.

It is evident that this con?friction obviates all the obje Ctions to the former recoiling teapement, and that, by fifficiently dimmithing the diameter of the cylindrical part, the friction may be rednced to a very finall quantity, and the balance be made to move by the action of the fpring during the whole of the excurfinn, and of the returming vibration. Yet this conltruction does not feem to have come mueh into ufe, owing, in all probabitity, to the great diffeculty of making the drop fo accurate in all the teeth. The fmallet inequality in the length of a tooth voould occafion it to drop fooner or later; and if the cylinder was made very fmali, to diminı? friction, the formation ot the notch was almoft a microfcopical operation, and the finallett 1lake in the axis of the verge or the balance wheel would make the tooth nip palt the cylinder, and the watch ran down amain.

About the lame time, a French altift in Lond n (then the fchool of this art) formed another feapement, with the fame views. We have rot any difinct account ef it, but are only informed (in the 7 th volume of the Wachines affrouvécs par l'Acad. dis Scionces) that the
tooth refted on the furface of a hollow cylinder, and then efcaped by acting on the inclined edge of it. But we may prefume that it had merit, being there told that Dir Ifaac Newton wore a watch of this kind.

A much fuperior fcapement, on the fame principle, was invented by Mr Geo. Graham, at the fame tine that he changed the recoiling fcapement for pendulums into the dead beat. Indeed it is the lame fcapement, accommodated to the large vibrations of a balance. In fig 13. DE reprefents part of the rim of the balancewhecl. A and $\mathcal{C}$ are two of its tecth, having their faces $b e$ formed into planes, inclined to the circumference of the wheel, in an angle of about 15 degrees; fo that the length $b e$ of the face is nearly quadruple of its height e m. Suppofe a circular arch ABC defcribed round the ceratre of the wheel, and through the middle of the faces of the teeth. The axis of the balance paffes thro' forme point B of this arch, and we may fay that the mean circumference of the teeth paffes through the mean circumference of the teeth patles through the
centre of the verge. On this axis is fixed a portion of a thin hollow cylinder $b c d$, made of hard tempered f.eel, or of fome hard and tough fone, fuch as ruby or
fapphire. Agates, thongh very hard, are brittle Chalfeel, or of fome hard and tough ftone, fuch as ruby or
fapphire. Agates, thongh very hard, are brittle Chalcedony and cornelian are totgh, but inferior in hard-
nefs. This cylinder is fo placed on the verge, that when cedony and cornelian are tough, but inferior in hard-
nefs. This cylinder is fo placed on the verge, that when the balance is in its quicfent pofition, the two edges $b$ and $d$ are in the circumference which paffes through the points of the teeth. By this conltruction the purtion of the cylinder will occupy $210^{\circ}$ of the circimference, of the cylinder will occupy $210^{\circ}$ of the circumference,
or $30^{\circ}$ more than a femicircle. The edge $b$, to which the tooth approaches from withont, is rounded off on
both ancles. The other edse $d$ is formed into a plane, both angles. The other edge $d$ is formed into a plane, inclined to the radius about $30^{\circ}$
Now, fuppofe the whitel preffed forward in the direc. tion AC The puint $b$ of the tonth, touching the rounded er.ge, will puff it ontwards, turning the ba-
lance round in the direction $b c d$. The heel e of the rounded er.ge, will puff it ontwards, turning the batooth will efeape from this edge when it is in the polition $h$, and $e$ is in the polition $f$. The point $b$ of the
tooth is now at $d$, hit the edge of the cylinder has now tion $h$, and $e$ is in the polition $f$. The point $b$ of the
tooth is now at $d$, hit the edge of the cylinder has now got to $i$. The tnoth, theretore, refts on the infice of the cylinder, while the balance continues its vibration a sittle way, in confequence of the fhove which it has received from the action of the inclined plane pufhing it cenved from the action of the inchined plane punhing it a ttone alide. When this vibration is ended, by the oppofition of the balance-fring, the balance returns, the
tooth (now in the pofition i3) rubbing all the while on pofition of the balance-fpring, the calance returns, the
tooth (now in the pofition 13) rubbing all the while on the intide of the cylinder The balance comes back into its natural poftion $b c d$, with an accelesated motion, by the action of its fpring, and would, of itfelf, vibrate as far, at leatt, on the other fide. But it is aided again by the tooth, which, prefling on the edge $d$, pufles it alide, tith it come into the pofition $k$, when the tooth efeapes from the cylinder altogether. At this moment the other edge of the cylinder is in the polition /, and thercfore is in the way of the next tooth, now in the polition A. 'The balance continues its vibration. the tooth all the while retting, and rubbing on the outhide
of the cylinder. When this vibration, in the dircetion tooth all the while retting, and rubbing on the outhide
of the cylinder. When this vibration, in the direction $d c l$, is finifhed, the balance refumes its firlt morion $l c d$, by the action of the foring, and the tooth begins to act on the ti it edge $b$, as ioon as the belance gets into its natural polition, thoves it alide, efcanes from it, and drops on the infide of the cylinder. In this manner are

## $\qquad$

$\qquad$
















## W A T

Watch- the vibrations produced, gradually increafed to their work. maximum, and maintained in that fate. Every fuc-
ceeding tooth of the wheel acts firlt on the cige $b$, and then on the edge $d$; refling firtt on the outlide, and then on the infide of the cylinder. The balance is under the influence of the whecls while the edge $b$ paffes to $b$, and while $d$ paffes to $k$; and the reft of the vibration is performed without any asion on the part of the wheels, but is a little oblrncted by friction, and by the clamminefs of the oil. In the conitrustion now deferibed, the arch of action or fcapement is evidently $30^{\circ}$, being twice the angle which the face of a tooth makes with the circumference.

The reader will perceive, that when this fcapement is executed in fuch a manner that the fucceeding tooth is in contact with the cylinder at the inftant that the preceding one clcapes from it, the face of the tooth muft be equal to the infide diameter of the cylinder, and that the diftance between the heel of one tooth and the point of the following one mult be equal to the outfide diameter. When the feapement is fo clofe there is no drop. A grood artill approaches as near to this adjuftment as poffible; becaufe, while a tooth is dropping, but not yet in contact, it is not acting on the balance, and fome force is lont. The execution is accounted very good, if the dittance between the centres of two tecth is twice the external diameter of the cylinder. 'This allows a drop equal to the thicknefs of the cylirider, which is about $\frac{1}{2}^{\frac{1}{2}}$ th of its diameter.

We mult alio explain how this cylinder is fo connefed with the verge as to make fuch a great rev-lurion round the tooth of the wheel. The triangular toothe $b m$ is placed on the top of a little pillar or pin fixed into the extremity of the piece of brafs $m \mathrm{D}$ formed on the rim of the wheel. Thus the wellge tooth has its plane parallel to the plane of the wheel, but at a fnall diftance 2 . thove it. Fig. 13 reprefents the verge, a long hollow cylinder of hard fteel. A great portion of the metal is cint out. If it were fpread out flat, it would have the thare of fig. C. Suppofe this rolled up till the edges GH and $\mathrm{G}^{\prime} \mathrm{H}^{\prime}$ are joinect, and we have the exact form. The part acted on by the poirt of the tooth is the dotted line $b d$. The part DIFE' ferves to connect the two ends. Thus it appears to be a very flender and delicate piece; but being of tempered flecl, it is flrong enough to refit moderate jolts. The ruby cylinde1s are much more delicate.

Such is the cylinder fcapernent of Mr Graham, called alfo the horizontal scapment, becaufe the balance wheel is parallel to the others. Let us fee how far it may be expected to anfwer the intended purpufes. If the excurlions of the balance beyond the angle of im. pulion were made altogether minconmectest with the whicels, the whole vibration would be quieker than one of the fanme extent, made by the adtion of the balanceipring alore, becaule the micdle part of it is accelerated by the whecls. Bit the excurfions are obitructed by frietion and the clamminefs of cil. The effict of this in oiffruaing the motion is very confiderable. Mr I.e Roy placed the balance fo, that it refted when the point of the twoth was on the middle of the cylindric furface. When the wheel was allowed to preis on it, and it was drawn $80^{\circ}$ from this polition, it vibrated only during $4 \frac{1}{2}$ feconds. When the wheel was not allowed to touch the cylinder, it vibrated 90 feconds, or 20 times as
long ; fo much did the frigion on the cylinder exceed that of the pivots. We are not fufficiently acquainted with the laws of either of thefe obltructions to pronounce decidedly whether they will increafe or diminifh the time of the whole vibrations. We oblerve diftinctly, in motions with confiderable friction, that it does not increafe nearly fo falt as the velocity of the motion; nay, it is often lefs when the velocity is very great. In all cafes it is oblerved to terminate motions abruptly. The friction requires a certain force to overcome it, and if the body has any lefs it will ftop. Now this will not ouly contract the excurfion of the balance, but will fhorten the time. But the return to the angle of impulion will undoubtedly be of longer duration than the excurfion; for the arch of return, from the extremity of the excurfion to its beginning, where the angle of impulfion ends, is the fame with the arch of excurfron. 'The velocity which the balance has in any point of the return is lefs than what it had in the fame point of the excurfion; becanfe, in the excurfion, it had velocity enough to carry it to the extremity, and alfo to overcome the friction. In the return, it could, even without frićtion, only have the velucity which would have carried it to the extremity; and this fmaller velucity is ciminifted by frimion during the return. The velocity being lefs through the whole return than during the excurfin, the time muft be greater. It may therefore happen that this retardation of the return may compenfate the contraction of the excurtion and the dimination of its duration. In this cafe the vibration will occupy the fame time as if the balance had been free from the wheels. But it may more than compenfate, and the vibrations will then be flower; or it may not fully compenfite, and they will be quicker. We cannot therefore fay, is priori, which of the two will happen : but we may venture to fay that an increafe of the force of the wheds will make the watch go flower: for this will exeyt a grcater preffire, give a greater impulion, proluce a wider excurfion, and in. creafe the friction during that greater excurfion, inaking the wide vibrations slower than the nalrow ones; becaufe the angle of impulforn romaining the fame, the profures exerted ma:ft be quadruplet, in order to double the excurtion (ice 1)ymamics, $n^{\circ} 95$. Supp! ), and therefore the friction will be i.creased in a greater proportion than the momentum which is to overcome it. Bint, with refpeet to the oblituction ariling from the vilcidity of the oil, we know that it foll. wh's a very different law. It bears a manifelt relation to the velocity, and is nearly proportios:al to it. 13ut itill it is difficult to fay how this will affict the whole vibration. 'The duration of the excurlion will not be for much contracted as by an equal obflruction from friction, beraufe it will not terminate the mution abruptly. There are therefore more chances of the increafed duration of the return excceding the diminution of it in the excurfion. All that we can fay, therefore, is, that there will be a compenfation in both cafes. The time of excurfion will be contracted, and that of return angmented.

Now, as the frietion may be greatly diminifhed by fine polih, fine oil, and a finall diameter of the cylinder, we inay reafonably expect that the vibrations of fuch a balance will not vary rearly to much from ifochronifm as with a recoiling fcapement, and will be little affected by changes in the force of the wheels.

## W A T [ 789 ] W A T

ed all others as foon as it was generally known. We cannot compare the vibrations with thofe of a free balance, becaule we have no way of makingry a free balance vibrate for fome hours. But we frad that doutling or trebling the force of the wheels makes very little alteration in the rate of the watch, though it greatly en. larges the angular inotion. Any one may percive the immenfe fuperiority of this feapement over the common recoling fcapement, by preffing forward the movement of a horizontal watch with the key, or by keeping it back. No great changee can be obferved in the fre - quericy of the beats, however hard we prefs. But a more carefel examination flews that an increafe of the power of the wheels generally caufes the watch to go flower; and that this is mote remarkarle as the watch has been long groiner witheut being cleaned. This flews that the cauf is to be afcribed to the friction ant oil operatiog on the wide arklors of excurfion. But when this learment is well exccuted, in the bet proportions of the parts, the pe formance is extremely good. We know fuch watches, which have continued for feveral weeks without cucr varying more than $7_{7}$ i. one day from equate motion. We have feen one whofe cylinder was not cuncentric with the balance, but fo placed on the verge that the axis of the verge was ato (fig. 13.), between the centre 13 of the cylinder and the entering edge $b$, and $B e w$ as equal to the thicknt fo of the cylinder. The watch was made by Emery of L ndon, ard was faid to go with aftoniting regularity, fo as to ectual any time piece while the temperature of the air did not pary; ani when ciean, was faid to be lefs affected by the temperathre than a watch with a free fcapement, but unprovided with a compenfation piece. It is evident that thio watch muft have a minute iccoil. This was faid to be the ain of the artith, in order to compenfate for the obfrriction caufed by friction curing the return of the balance from its excurfions. It indecd promifes to have this effect ; but we fhould fear that it fubjects the cxcurfions to the influence of the wheels. We fuipect that the irclifferent performance of cylinder watches may often arife from the cylinder being off the centre in fome difadvantageous maner.

The watch from which the propurtions here ftated were taken, is a very fine one made by Grahain for Arthiba!d Duke of Arggle, which has kept time with the regularity now mentioned. We believe that theye ase but few watches which have folarge a portion of the cylinetr: feiw indeed have mote than one half, or $180^{\circ}$ of the circunference. But this is too littlc. The tooth of the wheel does not begin to act on the refting cylinder till its niddle point $A$ or $B$ touch one of the eriges. To ubtain the fame angle of feapement, the inclination of the face of the tootio muft be increafed (it mutt be doubled) ; and this requires the maintaining power to be increafed in the fame proportion. Befides, in fuch a fcapement it may liappen that the tooth will never reft on the cylinder ; becaufe the inftant that it quits one edge it falls on the other, and pufhes it atide, fo that the balance acquires no wider vibration than the angle of fcapement, and is continually under the influence of the wheels. 'The fcapement is in its beft ftate when the portion of the cylinder exceeds $180^{\circ}$ by twice the inclination of the teeth to the circumference of the whecl.

It would employ volumes to defcribe all the fapements which have been contrived hy different artits, aimung at the fame noints which Graliam had in view. We fiall only take notice of fuch as have fome effential difference in principle.

Fig. 1\%. reprefents a fcapersent invented in France, end called the Echoffemont it F'ifgulf, becaufe the pallet refonbles a connind. The tecth $\mathrm{A}, \mathrm{B}, \mathrm{C}$, of the balance whecl are fet very cbligue to the radius, and there is formed on the point of each a pin, ftending up perpendicular to the plane of the wheel. Whis greatly refentics the wheel of Grahan's feapement, when the tilangular wudge is cut off from the top of the cin on which it itands. Whe axis $c$ of the velge is placed in the circumfere:ce pafling through the pins. The p3llet is a plate of hard liect $a$ ej $d b$, having its plane $p$ ?rall. 1 to the pane of the whol. 'I he inner edge of this flate is formed ipto a concave cylindrical furface between 0 and $b$, whefe axis $c$ coincides with the axis of the verge. Adjoining to 1 his is the adting face $b d$ of the pallet. This is citlier a itraight line $b i$, inaking an angle of $n$ ar! $30^{\circ}$ with a line $c b g$ drawn from the centre, or it is nome generally canved, acconding to the noflsum of the artift the back of the jaillet ase $f$ is alfo a cylindrical fufece (convex) concentric with the otlier. This extends about $100^{\circ}$ from a to $f$. The part between $f$ and $d$ may have any fape. 'The interval $a_{0}$ is formed into a convex furface, in fuch a mianner as to be every where interfectu? by the radius in an angle of $30^{\circ}$ nearly; i. $e$. it is a portion of an equiangular fpiral. 'The whole of this is connected with the verge by a c!ank, which paf?cs perpendiculatly through it between $f$ and $e$; and the plate is fet at fuct lecight on the craik or verge, that it can turn round clear of the wheet, but not clear of the pins. The tceth of the whect are fet fo cbliquely, end made fonender, that the verge may turn almolt quite roun! without thee crank's bavking on the teeth. The part f lb , called the horn, is of li:cls a lengrth, that when one pin B refts on the ontide cylinder at $a$, the puitit $d$ is juft cicar of the next rin is.

Whine the aheel is not acting, and the balance fpring is in enviliorio, the poftion of the balance is fuch that the point $d$ of the horn is near $i$, about $30^{\circ}$ from $d$. The figute reprefents it in the refition which it las when the tooth is has juft feaped flom the point $d$ of the horn. In this polition the next touth ls is anplied to the convex cylinder, a very little way (abont $5^{\circ}$ ) from it sxtremity $a$. This cuferiotion will crable the reader to maderitand the uperation of the vig gule fcape. ment.

Now fuppofe the pin. A juft cfaped from the horn. The fuccecding pin $B$ is now in contact with the back of the cylinder; and the balance, liaving got an impulfe by the action of $A$ along the concave pallet $b d$, continues its motion in the direction $d_{g} b$, till its force is fpent, the point of the horn arriving perhaps at $h$, more than $90^{\circ}$ from d. All this while the following tooth 1 is celting on the back ef of the cylinder. The balance now returns, by the action of its fpring; and when the horn is at $i$, the pingets over the edge a a and drops on the oppofite fide of the concave eylinder, where it refts, while the horn moves from $i$ to $k$, where it ftopss the force of the balance being again fpent. The ba.. lance then returns; and when the horn comes within

300 t, $l$, the pin gets nut of the hollow cylimter, fhoves the horn out of its way, ans efcapes at $d$. Befides the impulfe which the balance receives by the action of the whed on the horn $b d$, there is another, though frreller, action in the contrary direction, while the point of $B$ paffes over the furface $a 0$; for this furface being in. clined to the radius, the preffure on it urges the balance round in the direction $b d i$.

The chief difference of this fcapement from the for mer is that the inclined plane is taken from the teeth of the wheel, and placed on the verge. This alone is a confiderable improvement ; for it is difficult to flape all the teeth alike; whereas the horn $b d$ is invariable. Moreover, the relting parts, although they be drawn large in this figure for the fake of ditinetnefs, may be made vaftly fmaller than Graham's cylinder, which inult be big enough to hold a tooth within it. By this change, the friction, during the repofe of the wheel, that is, during the excurfions of the balance, may be vaftly diminifhed. The infide cylinder need be no bigger than to receive the pin. But although the per formance of thefe fcapements is excellent, they have not come into general ufe in this country. The caufe feems to be the great nicety requifte in makiag the pins of the wheel pafs exactly through the axis of the verge. 'The leall nake in the pivots of the balance and balance wheel muft greatly change the a\&tion. A very minute increafe of diftance between the pivots will caufe the pin B to flide from the edge $a$ to the horn, without relting at all on the infide cylinder ; and when it does fo, it will flop the balance at oute, and, immediately after, the watch will run down. The fame irregulasities uill happen if all the pins be not at precifcly the fame dittance from the axis of the whecl.

This feapement was greatly improved, and, in ap. pearance, totaliy changed, by Mr Lepaute of Paris in 1753. By placing the pins altemately on the two fides of the rim of the balance-xheel, he avoited the nife of the outfide cylinder altogether. The fcapement is of fuch a fingular form, that it is not eafy to reprefent it ly any drawing. We fhall endeavour, however, to deferibe it in fuch a manner as that our readers, who are ${ }_{1}, 0 t$ attits, will underttand its manner of acting. Artitt: by profulfon will eatly comprehend how the parts may be united which we repeferit as feparate.

Let ABC ( lig. 15.) repiefent part of the rim of the balance-shree!, having the fins $1,2,3,4,5$, \&c. projecting from its faces; the pins $1,3,5$, biing on the dide rext the cye, but the pins 2 and $+0: 3$ the farther fide. D) is the centre of the balance and verge, and the finall circle round D) teprefents its thicknels. But the verge in this place is crooked, like a crank, that the rim of the wheel may not be interriptes liy it. This will be more particularly deferioed by and bye. There is attached to it a piece of hard tempered tteel u. $b c d$, of which the part $a b c$ is a consave arch of a circt, having 1 ) for its centre. It wants about ivo of a femicircle. 'The relt of it $c d$ is alfo an arch of a circle, havi g the fame radus with the bulance whecl. The natural polition of the balance is firch, that a lime drawn from 1). though the madle of the face $c i$, is a tangent $t$.) the circumference of the wheel. But, fuppofe the bulance turned round till the point $d$ of the thormeomes to and the point o comes io 2 , in the circunaference in which the pins are placed. 'Thent the
pin, preffing on the beginning of the horn or pallet, purhes it afide, flides along it, and efcapes at $d$, after having generated a certain velocity in the balance. So far this fcapement is like the virgule frapement deferibed already. But now let another pallet, fimilar to the one now defcribed, be placed on the other fide of the wheel, but in a contrary pofition, with the acting face of the pallet tuined away from the centre of the wheel. Let it be fo placed at $E$, that the moment that the pin 1 , on the upper fide of the wheel, efcapes from the pallet $c d$, the pin 4 , on the under fide of the wheel, fatls on the end of the circular arch efg of the other pallet. Let the two pallets be connecied by means of equal pulleys $G$ and $F$ on the axis of each, and a thread round both, fo that they fhall turn one way. The ba lance on the axis D , having gotten an impulfe from the action of the pin $x$, will continue its motion from A towarde $i$, and will carry the other pallet with a fimilar motion round the centre E from $h$ towards $k$. The pin 4 will therefore reft on the concave arch $g f e$ as the pallet turns round. When the force of the balance is fpent, the pallet $c d$ returns towards its firlt pofition. The pallet $g b$ turns along with it; and when the point of the firft has arrived at $d$, the beginning $g$ of the other arrives at the pin 4 ; and, proceeding a little farther, this pin efcapes from the concave arch ef $g$, and Aldes along the pallet $g h$, pufhing it afide, and therefore urging the pallet round the centre $E$, and confequently (by means of the connection of the pulleys) urging the balance on the axis D round at the fame time, and in the fame direction. The pin 4 efcapes from the pallet $g / b$, when $b$ arrives at 3 ; but in the time that the pin 4 was fliding along the yielding pallet $g h$, the pin 3 is movirig in the circumference 73 D .1 ; and the inftant that the pin 4 efcapes from $b$ at 3 , the pin 3 arrives at 2 , and finds the beginning $c$ of the concave arch $c b$ a ready to receive it. It therefore refts on this arch, while the balance continnes its mo. tion. This perhaps continues till the point $b$ of the arch comes to 2. I'he balance now fops, its force be. ing fpent, and then returns; and the pin 3 efcapes from the circle at $c$, flides along the yielding pallet $c d$, and wher it efcapes at 1 , another pin on the under fide of the wheel arrives at 4 , and finds the arch $g f c$ ready to reccive it. And in this manner will the vibration of the balance be continued.

This delcription of the mode of action at the fame time points out the dimenfions which muft be given to the parts of the pallet. The length of the pallet $c d$ or $g$ is mult be equal to the interval between two fucceeding pins, and the ditance of the centres D and E mu't be double of this. The radius De or Eg may be as fmall as we pleale. The concave arches $c b d$ and $g f e$ muit be continued far enough to kece a pias reftigg on them during the whole excurfion or the balance. itre angle of fonpement, in which the balance is under the influrnce of itre wheels, is had by drawing $\mathrm{D} c$ and D) $d$. 'This angle $c \mathrm{D} d$ is about 30 ', but may be mide grater or lefs.

Fig. 13 will give fome notion how the two pallets may be combinitit on one varge KL reprefent the vorge with a pivot at tach end. It is bent into a crank MNO , to acmit the balance wheel between its branches. BC reprefents this wheel, feen edrgewife, with its pins, aliernately on different fides. The pallets are aifo 1 c-
prefented edgewife by $b c d$ and $b g f$, fixed to the infide of the brat hes of the craik, fronting each other The pofition of their asting faces may be feen in the preceding figure, on the verge 1 , where the nallet $g h$ is reprefented by the dotted line $2 i$, as being fituated be hind the pallet $c d$. The remote pallet $2 i$ is slaced $f$, that when the point $d$ of the near patlet is jult quitted by a pin 1 on the upper ficte of the wheel, the angle formed by the face and the arch of rett of the other pallet is jut ready to receive the mext oin $2_{2}$ which lies on the under lide of the rim. A hitile attention will make it plain, that the action will be precifely the fame as when the patlets wre on feparate axes the pili I efapes from $d$, and the pin 2 i. received on the arch of reit, and locks the whel while the balance is continuing its motion. When it returns, 2 gets off the arch of rett, puntes afrde the pritet $2 i$, cfcanes from it when $i$ geta to 1 , and then the pin 3 freds the point $c$ ready to receive it, \&e. The vibrations may be increafed by giving a fufficient impulfe throngh the angle of feapement. But they cantot be more han a certain quantity, otherwife the top N of the crank will Itrike the rin of the whieel. By placing the pins at the very edge of the wheet, the vibrations may eafily be increafed to a femicircle. By piacing them at the points of leng teeth, the crank may get in between them, and the vibratious ex ended Itll farther, perhaps to $2 \neq 0^{\text {. }}$.

This feapement is unquellionally a very grood one; and when equally well executed, anould exce! Craha'n's, both ty having tut two acting faces to form (and thele of hard fteet or of fone), and by allowing us to make the circle of relt exceedingly fall without diminithing the acting face of the pallet 'This will greatly diminifh the frietion and the infuence of oil. But, on the other hand, we apprehend that it is of very dufficult execution. The figure of the pallets, in a manner that thall be fufceptible of adjeltnent and removal for repair, and yet fufficiently accurate and fleady, feems to us a verv delicate job.

Mr Cumming, in his Elements of Clock and Watehwork, defcribes (fightly) pallets of the very fame conftrution, making what he conceives to be confluterable improvements in the form of the acting faces and the curves of reit $H_{c}$ has alfo made iome watehts with this fcapement; but they were fo difficult, that few workuen can be found fit for the tafk; and they are excee ingly delcate, and apt to be put out of order. The connection of the pallels with each other, and with the veige, makes the whole fuch a contorted figure, that it is eaflily bent and twifted by any jolt or unfkiful handling.

There remains another fcapement of this kind, having the tooth of the balance-wheel refting on a cylindrical furface on the axis of the verge dun ing the excurlions of the balance beyond the angie of feapement, and which differs fomewhat in the application of the maintaining power from all thofe already cefcribed.

This is known by the name of Dufleix's focpement, and is as follows: Fig 16. rep:efents the effential parta grearly magniticd. AD is a portion of the balarice whetl, having tecth $f, b, g$, at the circunference ilhefe teeth ate entirely for producing the rylt of the whetl, while the balance is making excurfions beyond the feapement. This is effested by means of an aga.e cybinder $o p q$ on the verge. This cylinder has a notch
o. When the cylinder turns round in the direction $o p q$, the notch eariy paffes the tooth $B$ which is refting on the cylindric furface; but when it returns in the direction qpo. the tooth B, gets into the notch, and follows it, prefling on one fide of it till the notch comes into the pofition o. The tonth, being then in the pofition b. efcapes from the notch, and another tooth drops on the cornvex furface of the cylinder at $B$.
the balance whect is Afo furnifhed with a fee of fout flat fided pin=, Amdug upright on its rim, as reprefented by $a, \mathrm{D}$. There is alfo fixed on the virge a layger cylinder GIP above the fimaller one op $q$, with its under furfice clear of the wheel, and having a pullet C, of ruby or fapphire, firmly indented into it, ?nd projecting fof far as juit to keep clear of the pins on the whecl. The potition of this cylinder, with refpect to the fraller one below it, is fueh that, when the tooth $b$ is ficaped niom the notch, the pallet C has juft paffed the Din $a$, which was at $A$ while $B$ refted on the fmall cy linder ; but it moved from $\mathbf{A}$ to $a$, while B inowed to b. Tlie wheel being now at likerty, the pin $a$ exe:ts its prefliure on the pallet C in the moft direct and a.dvantageons manner, and gives it a frong impulfion, following and accelerating it till another to thituns on the little eylinder. The angle of feapement depença pertly on the projertion of the pallet, and paitly oin the diameter of the firall cylinder and the advance of the tnoth B into the notch. Independent of the ection on the fmall cylinder, the angle of fcapoment wonld be the whole arch of the lange eylinder betwcen C and . But a ltops before it is clear of the pillet, and the arch of impullion is fhortened by all the fpace that is defcribed by the pin while a tooth moves from B to $b$. It flops at $a$.

We are inf.rmed by the beft artins, that this fcapement gives great latisfaction, and equals, if it cio nive excel, Graham's cylindrical feapenent. It is eafier made, and requires very little oit on the fmall cylinder, an' none at all on the pallet. 'They fay that it io the be?t for pocket watches, aid is coming every day nore into repute Theory leems to accord with this character. The refting cylinder may be made very linall, and the direet impulte on the pailet gives it a great fuperiority over all thofe aheady delcribed, where the action on the pa?let is oblique, and therefore much force is lott by the influence of oil. But we fear that much force is lot? by the tooth B flifting its place, and thus flortening the arch of impulfion; for we cannot reckors much on the action of B on the fide of the notch, becaufe the lever is fo extemely fhort. Accordingly, all the watches which we have feen of this kend have a very ftrong main firriug in ploportion to the fize and vibration of the balance If we leffen this diminution of the angle of impulfion, by leffening ilie cylinder op q o $_{0}$ and by not allowing B to penetrate far into the netch, the fmallelt inequality of the teeth, or fhake in the pivots of the balance or wheel, will caufe irregularity, and even uncertainties in the locking and unlocking the wherl by this cylinder.

A fapenent exceeclingly lise this was apritied iong ago by Dotentre, a lifench antitt, to a pendulum. The only difference is, that in the pendulum feapement the frall cy linder is cut through to the centre, half of it only being left; but the pendulum fcapement gives a more effective employment of the maintaining forver, becaula:

Watch work.

Watchwork.
the wheel acts on the pallet during the eviole of the affifted vibration. In a balance fcapement, if we attempt to diminifh the inefficient motion of the pin from $\Lambda$ to a, by leffening the diameter of the fmall cylinder, the hold given to the tooth in the notch will be fo trifling, that the tooth will be thrown out by the fmalleft play in the pirot holes, or inequality in the length of the teeth.

With this we conclude our account of fcapements, where the action of the maintaining power on the balance is fulponded during the excurfon beyond the angle of impulfion, by making a touth reft on the furface of a frall concentric cylinder. In fuch fcapements, the balance, during its excurfions, is almoft free from any connectios with the whecls, and its ifochronifm is difturbed by nothing but the friction on this furface.We come nuw to fapements of more artful conftruction, in which the balance is really and completely free during the whole of its excurfion, being altogether dif. engaged fom the wheclwork Thefe are called de. tachen scapements. They are of inote recent date. We beliere that Mr Le Roi was the firft inventor of them, about the year 1748. In the Memoirs of the Academy of Paris for that year, and in the Cullection of approved Machines and Jnventions, we have deferiptions of the contrivance. The halance wheet rets on a detent, while the balance is vibrating in perfect fiee. dom. It has a pallet ftanding out from the certre, which, in the courfe of vibration, pafles clole by the point of a tooth of the wheel. At that inftant a pin, counefed with this pallet, withdraws the detent from the whecl, and the tonth juft now mentioned follows the pallet with rapidity, and gives it a fmast pufh forward. Immediately after, arother tooth of the whocl maets the other claw of the Cetent, and the wheel is again lockec. When the balance returns, the pin pulties the detent back into its former place, where it argain locks the wheel. Then the balance, refuming its firft disection, unfocks the wheel, and receives another infputlion from it. Thus the balance is unconnected with the wheels, except while it gets the impulfion, and at the moments of unlocking the wheels.

This contrivance has been recuced to the greatef poffible fimplacity by the Pritifh artifts, and feems farcely capable of farther improvement. The following is one of the moft approved conftructions. In fig. 17 . abc reprefents the pallet, which is a cylinder of hard iteel or tone, having a notch a $b$. A portion of the balance-wheel is repretented by AB. It is placed fo near to the cylinder that the cylinder is no more than claar of troo adjoining teeth. DE is a long fpring, fo fixed to the watch plate at I , as to prefis very gently on the fop pin $\mathrm{C}_{\mathrm{r}}$. A fimall thud F is fixed to that fide of the fpring that is next to ilse whect. The toot $h_{1}$ of the whitect retts on this ttud, in fuch a manner that the tooth $a$ is juft about to touch the cylinder, and the tooth $f$ is ju!t clear of it. A nother rpring, extremely flender, is attached to the fring DE, on the fide next the brlance whecl, and clapas clofe to it, but keeping clear of the flud $F$, and having its point o projecting about $\frac{5}{5}^{\prime}$ th of an incl beyond its extremity. When the point $o$ is preffed towards the wheel, it yields moft readily; but, witen preffed in the oppofite direction, it carries the fpring DE along with it. The cylinder being fo placed on the verge that the edge $a$ of the notch
is clofe by the tooth $a$, a hole is drilled at $i$ ciofe by the projecting point of the flender fpring, and a fmall pill is driven into this hole. This is the whole apparetus; and this fituation of the parts correiponds to the quiefcent pofition of the balance.

Now, let the balance be turned out of this pofition 80 or 90 degrees, in the direction $a b c$. When it is let go, it returns to this pofition with an accelerated motion. 'The pin $i$ ftrikes on the projecting point of the flender fpring, and, preffing the ftrong fpring $D E$ outward from the wheel, witheraws the Rud I from the tooth; and thus unlocks the wheel. 'I'he tooth a engages in the notch, and urges round the balance. The pin $i$ quits the flender fpring before the tooth quits the notch; fo that when it is clear of the pallet, the wheel is locked agzin on the Aud $\Gamma$, and another tooth $g$ is now in the place of $a$, ready to act in the fame manner. When the force of the balance is fpent, it flors, and then returns coward its quiefcent pofition with, a motion continually accelerated. 'The pin $i$ arrives at the point 0 of the nlender fpring, raifes it from the drong fpring without difubing the latter, and almoft without bring difturbed by this trifling obitacle ; and it goes on, turning in the direction $a b c$, till its force is again fpent; it flopo, returns, again unlocks the wheel, and gets a new impulfion. And in this manner the vibrations are continued. Thus we fee a vibiation, almoft free, maintained in a manner even more fimple than the common crutch fcapement. The impulfe is givens direct, without any decompofition by oblique action, and it is continued through the whole motion of the wheel. Nu part of this motion is luft, as in Dupleix's fcapement, hy the gradeal approach of the tooth to its aftive pofition. Vey little force is reguired for unlocking the wheel, becaufe the fpring DFF is made flender at the remote end E , fo that it turns round $\mathbb{E}$ 。 almoft like a lever turning on pivots. A fudlien twich of the watch, in the direction $b a$, might chance to unlock the whect. But this will only derange one vibra. tion, and even that not confiderably, becaufe the teetla are fo clofe to the cylinder that the whed cannot ad. vance till the notch comes round to the ulace of feapement. A tooth will continne preffing on the cylinder, and $b y$ its friction will clange a little the extent and duration of a fingle vibration. The greatef derangement will happen if the wheel Rould thus unlork by a jolt, while the notch faffes through the arch of feapement in the returning vibration. Even this will not greatly deranire it, whea thic watch is clean and vibrating wide; becaufe, in this polition, the balance has its greateit momentum, and the cirection of the only jolt that can unlock the wheel tends to increafe this momentum rclatively. In fhort, confidering it theoretically, it feems an almoft perfect fcapement; and the performance of many of thele watches abindantly confirms that opinion. They are known to keep time for many days together, without varying one fecond from day to day ; and this even under conliderable variations of the maintaining power. Other detached fcapements may equal this, but we fcarcely expect any to cxceed it ; and its fimplicity is fo much fuperior to any that we have feen, that, on this account, we are difpofed to give it the preference. We do not mean to fay that it is the beft for a pocket watch. Perhaps the, fcapernent of Dupleix or Graham may be preferable, as being fufceptible

Tritechwork.
ceptible of greater ftrength, and more able to withfand jolts. Set it is a fact that fome of the watches made in this form by Ainold and oihers have keut time in the wonderfu! inanner abovementioned while carried about in the pocket.

Mr Musge of London invented, about the year $17 \operatorname{Con}_{3}$, another detached fcapement, of a fill more ingenious conftruction. It is a counterpat of Mr Cumming's fcapement for pendulums. Ihe contrivance is to this effect. In fig. IS. $a b c$ reprefents the balance. Its axis is bent into a large crank EFGHIK, fufficiently roomy to admit within it two other axes $M$ and $L$, with the proper cocks for rcceiving their pivots. The three axes form one ftraight line. About thefe fmaller axes are coiled two auxilia:y fprings, in oppofite di rections, having their onter extremities fixed in the ftuds $A$ and $B$. The balance has its fpring alfo, as ufual, and the three fprings are fo difpofed that each of them alone would keep the balance at reft in the fame polition, which we may fuppofe to be that reprefented in the figure. The auxiliary fprings $A$ and $B$ are connected with the balance only occationally, by mean of the arms $m$ and $n$ projecting from their refpective axes. Thefe arms are catcired on oppofite fides by the pins $o$, $p$, in the branches of the crank; fo that when the ba lance turns round, it carries one or other of thofe arms round with it, and, during this motion, it is affected by the auxiliary fpring connected with the arm fo carried round by it.

Let us fuppofe that the balance vibrates $120^{\circ}$ on each fide of its çuiefcent pofition $a b c$, fo that the radius E $a$ acquires, alternately, the pofitions $\mathrm{E} b$ and $\mathrm{E} c$. The auxiliary fprings are connected with the whecls by a common dead-beat penclulu:n fcapement, fo that each can be feparately wound up abont $30^{n}$, and retained i:s that pofition. Let us alfo fuppofe that the fpring $A$ has been wound up $30^{\circ}$ in the direction al, by the whecl-work, and that the point $a$ of the rim of the balance, having come from $c$, is paffing through $a$ with its greateft velocity: When the radius E a has peffed a $30^{\circ}$ in its courle toward $b$, the pino fincls the arm $m$ in its way, and carries it along with it till $a$ gets to $b$. But, by carrying away the arm $m$, it has unlocked the wheel-work, and the Spring $B$ is now wound up $30^{\circ}$ in the other direction, but has nos commedion with the balance during this operation. Thus the balance fimifhes its femivibration $n b$ of $120^{\circ}$, oppofed by its own fpring the whole w'ay, and by the auxiliary fpring A through an angle of yo. It returns to the pofition $\mathrm{E} a$, aided by A and by the balance fpring, through an angle of 1200 . In like manner, when $E a$ has moved $30^{\circ}$ toward the polition $\mathrm{E} c$, the pin $p$ meets with the arm $n$, and carries it along with it through an angle of $90^{\circ}$, oppofed by the fpring $B$, and then returns to the pofition E a aflified ty the fame fpring through an arch of $120^{\circ}$.

Thus it appears that the balance is oppofed by each auxiliary fpring through an angle of $90^{\circ}$, and affited through an angle of 120 . This difference of action maintains the vibrations, and the neceflary winding up of the auxiliary fprings is performed by the wheelwork, at a time when they ate totally difengaged from the balance. No irregularity of the wheel-work can have any influence on the force of the auxiliary fprings,

Duppl. Voz. II. Part II.
and therefore the balance is completely diengrged from all thefe irregularities, except in the flurt moment of unlockiag the wheel that winds up the fprings.

This is a mot ingenious contrnetion, and the nearent aporoach $t 0$ a free vibration that has yet been thourge of. It deferves particular remark that. during the whote of the returning or accelerated femivibration, the united force of the fprings is proportional to the diftance from the quiefcent pofition. The fame may be faid of the retarded excurfion beyond the angle of imptilfe: therefore the only deviation of the forces from the low of cycloidal vibration is during the motiou from the quiefcent pofition to the mecting with the auxiliary foring. Therefore, as the forces, on both fides, beyond this angle, are in their due proportion, and the balance al. ways makes fuch cxcurfions, there feems nothing to ditturb the ifochronifm, whether the vibrations are wide or narrow. Accordingly, the performance of this feapement, under the feverclt trials, equalled any that were compared with it, in as far as it depended on feapement alone. l3ut it is evident that the execution of this feapement, though mott fimple in priticiple, mu\{t always be vaftly more difficult than the one defcribed before. There is fo little room, that the parts inult be exceedingly fmall, requiring the moft accurate workmanfhip. We think that it may be greatly fimplified, preferving all its advantages, and that the parte may be made of more than twice their prefent fize, with even kfs load on the balance from the intrtia of matter. 'I'his im. provement is now carising into cffect by a friend.

Still, however, we do not fee that this feapemerit is, theoretically, fuperior to the laft. The irregularities of maintaining power affect that foapement only in the arch of impulion, where the velocity is great, and the time of action very fmall. Prorcover, the chief effect of the irregularities is orly to enlarge the excurfions; and in thefe the wheels bave no coneern.

Mr Mudge has alfo given another dictached feapement, which he recommends for aocket watches, and executed entirely to his fatisfaction in one made for the Queen. A cead beat perdulum feapement is enterpofed, as in the laft, between the wheels and the balatice. The crutch EDF (fig. 19.) has a third arm DG, 1land. ing ontwards from the meeting of the other two, and of twice their length. I'his arm terninates in a fork $A G B$. : he verge $V$ has a palltt $C$, which, when all is at rctt, would tand between the points $\mathrm{A}, \mathrm{B}$ of the fork. But the whecl, by its action on the pallet E, forces the fork into the pofition $13 \mathrm{~g} l$, the point A of the fork being now where B was before, jutt touching; the cylindrical furface of the verge. The fapement of the crutch IEDF is not accuratcly a dead Beat feapement, but has a very fnall recoil beyond the angle of impulfion. Ly this circumitance the branch $A$ (now at 13 ) is made to prefo inoft gently on the cylinde:, and keeps the whieel locked, while the balance is going round in the dircetion BHA. The point $A$ gets moving from $A$ to $B$ by mcans of ? notch in the cylincice, which turns round at the fame sime by the action of the branch $A G$ on the pallet $C$; bit $A$ does not touct, the cylinder during this motion, the noth leaving free room for its paffage. Wivien the balance coturns from its excurfon, the pallet $C$ ftrikes on the braneh $A$ (ftill at $B_{i}$, and unlocks the wheel. This now acting on the
W.h
wo. K.

WV: Works.
rrutch pallet F , caufes the branch $\ell$ of the fork to follow the pallet C , and give it a fireng impulfe in the cisection in which it is then moving, caufing the balance to make a femivibration in the direction AHP. 'The fork is now in the lituation $\mathrm{A} g a$, fimilar to $\mathrm{B} g b$, and the wheel is again locked on the crutch pallet E .

The intelligent reader will admit this to be a very fteady and effective fcapement. The lockage of the wheel is procured in a very ingenious manner; and the friction on the cylinder, neceffary for effeeting this, may be made as fmall as we pleafe, notwithtanding a very frong action of the wheel: For the proffure of the fork on the cylinde: depends cutirely on the degree of recoil that is formed on the pallets E and F. Preffure on the cylinder is not indifpenfably neceflary, and the crutch feapement might he a real dead beat. But a fmall recoil, by keeping the fork in contaft with the cylinder, gives the moft perfect fieadinefs to the motion. The incenious inventor, a man of approved iutegrity and judgment, declares that her Majefty's watch was the beft pocket watch he lad ever feente We are not difpoted to queltion its excellency. We faw an experiment watch of this confluction, made by a country artilt, havirg a balance fo heavy as to vibrate only twice in a fecond. Every vibration was fenfibly beyond a turn and a half, or $540^{\circ}$. The artift affured us, that when its proper balance was in, vibrating fomewhat more than five times in a fecond, the vibrations even exceeded this. He had procured it this great molility by fublituting a roller wit! fine pivots in olace of the fimple pallet of Mudge. This great extent of detached vibration is an unquettionable excellence, and is peculiar to thofe two fapements of this ingrenious artitt.

Very ingenions fcapements liave been made by Ernfhaw, Howel, Hayley, and other Britifh artitls; and many by the artifts of I'aris and Geneva. But we muft conclude the atticle, having defcribed all that have any difference in principle.

The fcapement laviag been brought to this degree of perfection, we have an opportunity of making experiments on the law of action of fprings, which has been too readily affumed. We think it cafy to demonftrate, that the figure of a finging, which muft liave a great exient of rapid motion, will have a confiderable influence on the force which it impreffes on a balance in aitual motion. The accurate determination of this influence is not very difficult in fome fimple cafes it is the greateft of all in the piane fairal, and the leaft in the cylindrical; and, in this latt form, it is fo much lefs as the diameter is lefs, the length of the fpring being the fame. ily employing many turns, in order to have the fame ultimate fore at the extremity of the excurfion, this in fiuence is increafed. A particular length of fpring, therefore, will make if equal to a given quantity; and it may thus compenfate for a particular inagnitude of frictiot, ard other obfructions. This accounts for the obfervation of Le Roy, who found that every fpring, aubin applied to a movement, had a certain length, which made the wide and narrow vibrations ifuchronous. His method of trial. was fo judicious, that there can be no din:zt of the juftnefs of his conclufion. His time-keeper had no fuzee; and when the laft revolution of the main wheel was going on, the vibrations were but of half the extent of thofe made during the firt revolution. Without minding the rea! :ate of going, lie only compared
the duration of the firft and lat revolution of the minute hand. An artift of our acquaintance repeated thefe experiments, and with the fame refult: Bur, un fortunately, could derive little benefit from them; be. caufe in one flate of the oil, or with one balance, he found the lengths of the fame fpring, which produced ifochronous vibrations, were different from thofe whach had this effect in another flate of the oil, or with another balance. IIe alfo obferved another difference in the rate, arifing from a difference of pofition, according as XII, VI, III, or 1X, was uppermoft; which difference plainly arifes from the fwagging of the foring by its weight, and, in that ftate, acking as a pendulum. This unluckily put a fop to lis attemots to leffen this hurtful influence by employing a cylindrical fpiral of fmall diameter and great length.

WATER-Blowing Machine, callet in French Souflet d'eau or trompe, is a machine which, by the action of falling water, fupplies air to a blatt furnace. It confils of an upright pipe, through which a fhower of water is made to fall; and this fhower carrics down with it a mafy of air, which is received beneath in a kind of $t ⿲ b$, and conducted to the furnace by means of a pipe. 'The first idea of fucls a machine was doubtlefs fuggefted by thore local wirds, which are always produced by na. tural falls of water over precipiccs, and in the moun. tains (fee page 278 of this Volune); but perhaps we are indebted for the firlt accurate theory of it to Profeffor Ventari.
'I'hat philofopher, in his experimental refearches concerning the lateral communication of motion in fluids, proves that the waterblowing machine affords air to the furnace, by the accelerating force of gravity and the lateral communication of motion combined together. He begins with an idea, which, he candidly acknowledges, did not efcape the penetration of Leconardo $\mathrm{D}_{\text {a }}$ Vinci. Suppofe a number of equal balls to move in contact with each other along the horizontal line 11 B (Plate XLVI, fig. 1.). Imagine them to pafs with an uriform motion, at the sate of four balls in a fecond. Leet us take 13 F, equal to 16 feet Erglifh. Du. ring each fecond four balls will fall from $B$ to $F$, and their refpective diftances in falling will be nearly $\mathrm{BC}=$ $1, \mathrm{CD},=3, \mathrm{DE}=5, \mathrm{EF}=7$. We have here a very evident reprefentation of the f?paration, and fucceflive elongation, which the accelerating force of gravity produces between bodies which fall atter each other.

The rain water flows out of gutters by a continued current ; but during its fall it feparates into portions is the vertical direction, and ftrikes the pavement with ditlinct blows. 'The water likewife divides, and is fcattered in the horizontal direction. The ft eam which iffues out of the gutcer may be one inch in diameter, and frike the pavement over the fpace of one foot. The air which exifts between the vertical and horizontal feparations of the water which falls, is impelled and carried downwards. Uther air fucceeds laterally; and in this manner a current of air or wind is produced round the place ftruck by the water. Hence the following idea of a water-blowing maching:

Let 13 CD ) E (fig. 2.) reprefent a pipe, through which the water of a canal $A B$ falls into the lower receiver MN. The fides of the tube have openings all round, through which the air freely enters to fupply what the water carries down in its fall. This mixture of water

Watch. and air proceeds to ftrike a mafs of tone $Q$; whence work rebounding through the whole width of the receiver MN, the water feparates from the air, and falls to the battom at $\mathrm{X} \%$, whence it is difcharged into the lower channel or drain, by one or more openings TV. 'The air being lefs heavy than the water, oceupies the upper part of the receiver; whence being urged through the upper pipe $O$, it is conveyed to the forge.

It has been feppofed by fome eminent chemifts, that the air which paffes through the pipe O is furnifhed by the decompolition of water. To afcertain whether this be the cafe or not, our author Formed a waterblowing engine of a (mall fize. The pipe B1) was two inches in diameter, and four feet in height. When the water accurately filled the fection BC , and all the lateral openings of the pipe B1DEC were cloled, the pipe O no longer offered any wind. It is therefore evident, that in the open pipes the whole of the wind comes from the atmofphere, and np portion is afforded by the decompofition of water. It remaius, therefore, to determine the circumflances proper to drive into the receiver MN the greateft quantity of air, and to meafure that quantity.
r. To ubtain the greateft effeet from the acceleration of gravity, it is neceflary that the water fhould begin to fall at BC, (fig. 2.) with the lealt poffible velucity; and that the height of the water FB fhould be no more than is neceflary to fill the fection BC. Our author fuppofes the vertical velocity of this feetion to be pro duced by an height or head equal to BC.
2. We do not yet know, ly direct experiment, the diftance to which the lateral communication of motion between water and air can extend irfelf; but we inay admit wirh confidence, that it can take place in a fection double that of the original fection with which the wa ter enters the pipe. Leet us fuppofe the fection of the pipe BDEC to be double the fection of the water at BC ; and, in order that the ftream of fluid may extend and divide itfelf through the whole donble fection of the pipe, fome bars, or a grate, are placed in BC , to diftribute and featter the water throingh the whule internal part of the pipe.
3. Since the air is required to move in the pipe $O$ with a certain velocity, it mult be compreffed in the receiver. This compreffion will tec proportioned to the fum of the accelerations, which thail have been deitroy. ed in the inferior part KD of the pipe. aking KD $=1,5$ feet, ${ }^{\circ}$ we fhatl have a preflire' fufficient to give the requilite velocity in the pipe (). The fides of the portion KD , as well as thofe of the receiver MN, muit be exactly chfod in every part.
4. The lateral openings in the remaining part of the pipe BK may be fo difpofed and multiplied, particularly at the upper part, that the air may have free acceís within the tube. We will fuppofe them to be fuch that 0,1 foot lieeglit of water wight be fufficient to give the seccflary velocity to the air at its introcuction through the apertuies.

All thele conditions being attended to, and fuppofing the pipe 13i) to be cylindrical, it is required to de. termine the quantity of ar which paf.es in a given time through the circular fection 15 L . Let us rake in feet $\mathrm{KB}=1,5 ; \mathrm{BC}-\mathrm{PH}=a ; \mathrm{PD}=b$. By the com mon hlicosy of talling bodies, the valocity in is $L$ will be $7,76 \vee(a \div b-1,4)$; the circular fection $\mathrm{Kh}=$
$0,78 a^{2}$. Admitting the air in KL to have acqui- Watch-
red the fame the mixture of the water and air which paftes in a fecond through KL is $=6,1 a^{2} \sqrt{ }(a+b-1$,$) .$ We mult deduct from the quantity $(a+b-1,4)$ that height which anfwers to the velocity the water muit lofe by that portion of velocity which it communicates to the air laterally introduced ; but this quantity is fo fmall that it may be neglected in the calcuiation. The water which paffes in the fame time of one fecond thro, $B C$ is $\left.=0.4 a^{0} \sqrt{ } \cdot a+0,1\right)$. Confequently, the quantity of air which pafles in one fecond through KL, will be $=6,1 a^{2}, ~ \sqrt{ }(a+b-1,4)-0,4 a^{2} \sqrt{ }(a+0,1)$, taking the air itfuf, even in its ordinary thate of compreffion, under the weight of the atmofphere. It will be proper, in practical applications, to deduct one-fourth from this quantity; I. On account of the fhocks which the fcattered water fuftains again? the inferior part of the tube, which deprive it of part of its motion; and, 2. Beraufe it mult liappen that the air in LK will not, in all its parts, have acquired the fame velocity as the wate.
If the pipe $O$ do not difcharge the whole quantity of air afforde.t by the fall, the water will defcend at XZ : the point K will rile in the pipe, the affux of air will diminith, and part of the wind will iffue out of the lower lateral apertures of the pipe BK.

We flall not here examine the greater or lefs degree of perfection of the different forms of water blowing machines which are ufed at various iron forges; fuch ais thofe of the Catalans, and elfewhere. Thefe points may be cafily determined from the principles here laid down, compared with thofe effablifhed in the articles Resistance of Fluilds (Lincycl.), and Dysamics (Supplement.).

WE.IVING (fee Encycl.) is an operation, which, by means of a wcil-known inftrument called the wera-ving-loum, has hitherto been performed by bodily labur. 'That labour is pretty fevere ; and Mr Rubert Nillar, an ingenious calicu priuter in the county of Dumbarton, scothand, wifhing to leffen it, iuvcuted, fome years ago, a weaving-loon, which may be wronght by water, tleam, horfes, or any other power. For his invention lie received a patent, dated June $2 G \mathrm{th} 150 \mathrm{O}$; and though truth compels us to fay, that we do not think it likely to cmulate the fpisning machime of $A \mathrm{rk}$ wright, it is fufficiently ingenious to deferve notice in a Work of this kind. The fullowing is his own deferiptiun of his patent weaving loom:
Fig. I. (Plate I.) reprefents a fide view of the loom, $\mathrm{AA}, \mathrm{BL}, \mathrm{CC}, \mathrm{DD}$, being the frame. $a$ is an axis (which we thell call the fpindle; acrofs the frame. On this axis is a theeve $b$, two inchis thack, having a groove round it, two inches deep, and halif an inch wide. The bottom of this groove is circiliar, an pt in one part $c$, where it is fliled up to the top; ; acr. il refls on the bottom of this groove, an is lifted by it when the elevation comes round to : Fituatio: reprefonted in the figure. Dy this morion, ate lever $d$ ! atis on the ratchet wheel e by the catch 1 , mole ens it forward one tooth, ezch revehation of the mic.e.c. This ratchet wheel is in iron frame g g. which aifo pro. perly carries the two catches $t$ and $u$, w!ich are cono necte? with i: $x t$ ", '1 ine eatch $u$ holls the ratu netwheel in it porm, whe the lever if and the card: $t$, are moved by tine fowuve in the t.l.ceve. On: the arbor $5 \mathrm{H}_{2}$
$\underbrace{\text { Wannt of the ratchet is a fmall pinion } b \text {, working in the wheel }}$ $\underbrace{} f$; this whect is tixect oin thic end of the roller $e$ of fig. 3. On the fide of the theeve $b$ is fixed a wiper $k$, which 1ffs the treadle $l$. This treadle turns on its joints in the fheerc F , which is fixed to the fide of the frame A En? 1) ; it is kept prefing on the bottom of the groove ia the theceve by a fpring $m$. fixed to the frame fide A, and having a flender rod $n$ from its extremity, joining it with the treadle at $l$. Fom the point of the treadle thicre goes a betc 0 . which paffes over the pulley $p$, which is feen edgewife in this figure, and is joined to the top of the fly pin $q$, of fig. 2 . At the end of the frame $A$ is the firt poft $F$; on this refts the yarn beam $j$, havirg a theeve $r$, over which paftes a cord, having a wecights fufpended to it. The other end of this cord is faltened to the fpriam $v$ : the weight caufes the yarnbeam to fretch the wei) from the ratchet whecl e, with its catch $u$; and the fpring $y$ allows the rope to fide on the fhecere as the ratchet is drawn round during the working.
Fig. 2. is a front view of the loom. $a$ a is the faindle which carrics the fleeve $l$, and the wipers $d$ and $d$, which move the treadles $s v$. $w$. of fig. I. Thefe ufe the treadles of the headles, with which they are connected by cords from the fliafts of the headles $s, s$. From the upper fhaft there go two leathern belcs $f$, $f$, to the roller $y$, furnifhed each with a buckle, for tightening them at pleafire. The two wipers $c, c$, on the flaft $i$, which ferve for taking back the lay, have the two treadtcs $x, x$, in fig. 3 . with a beit from each paffing over the roller $/ 22$ of fig. I. and fised to the fword of the lay. Irom the fwords of the lay forward is fixed a belt to cach end of the roller $i$; from this roller there goes a cord to the fpring $j$, which ferves for taking forward the lay which is linged on the rocking tree $t$. Thie flar-whect $b$ of f.g. 3. and the fhecve $b$ of fig. 3 . are fixed to the oppofite ends of the fpindle $a$ without the frane; and both the wheel and thetve have a wiper $k$ fixed to them for moving the treadles. In order to drive the flutle, the betts 0,0 , go from the points of the treadles, over the pulicys $p, p$, to the top of the flypin $q$ : This turns on a pin joint in a rail $r$, which goes actofs the loom. From its lower end there go two fmall cords to the fintele drivers $g . g$, which fice on the iron rods $n, n$. A long iron rod $v$ goes acrofs the lav, and is hung on two centres at the ends. In this rod $v$ are fixed two fmall crooked wires $z v, w$, which are more diftinctly marked in the little figure zo above, which reprefents a fection of the lay. The dot at the lower end of the wire $w$, in this figure, is the fection of the rod \%. The thuttle paffes between thefe wires and the lay every fiot, and lifis them up, cauting the rod $v$ to turin round a little. But if the fluttle fhould not pafs there wires, nor lift them, it would be drawn home by the lay, and deffroy the web. To prevent this, there is fix$t d$ on one end of the rod $v$ a flout crooked wire $z$, ha. ving a broad or fat head, which naturally refts, on a Plate of iron, marked and fixed to the back of the lay. This plate has a fit in its middle about an inch deep. Tn this nit reffs the rod a 2 of fig: 3 . on which is a fhort flud, which is caught by the wire $z$ when the wire w is not lifted back by the paffing thuttle. This will ftop the lay from coming home, and will fet of the looin.

Fig. 3. is another fice.view of the loom oppo.
fite to fig. r . On the fpindle $a$ is the flar wheel $b$, on Weigher. the outfice of the loom frame, on the arms of which wheel is fixed the wiper $k$, as the fimilar wiper is fixed to the fheeves on thic other and of the fpindle. The wipers which drive the fhutles are fixed on oppofite fquares of the fpindle, and work alternately. Below the flar-wheel is a pinion $c$, which is on a round fpindle, turned by the water wheel, by means of a wheel on this fpindle. In a wheet on this fpindle are two fluds, on whicl the pinion c fides off and on as the loom is fet off and on by the lever $d$. At the farther end of this lever is the weight $s$, hanging by a cord which pafics over a pulley $t$, fixelf at the outer end of the fpring catcli on which the lever $d$ refts; and thus the loom is drawn in at the upper end of the lever $d$. But when the fhuttle does not lift the wire $\approx$, it catches on the ftud on the $\operatorname{tod} a 2$, which is corneeled with the fpring.catch, and the lever $d$ fices off with the weight $s$, and the loan flops working. On the head of the po!t F is the yarnbeam. The rollers $e$ and $f$ are cylinders, preffed togither by a felew. lever, and take a away the cliotin between them at a proper rate. In the roller $f$ is a groove for a band for driving the roller g, on which the cloth winds it felf as it is wrought. Wherever fprings are mentioned to be nfed in the above defcription, weights may be ufed in their ftea!, and to the fame eficict, and more efpecially upon the treadle of lig. 1. for driving the flutele.

WEIGHTS and Mensures, in conmerce, are fo various, not only in different countries, but even in different provinces of the fame coumtry, and this varia. tion is the fource of fo much inconveniency in trade, that writers on political and comineccial economy have propofed varions methods for fixing an univertat and immoveable flandard of weights and meafures for all ages and nations. Sir James Stewart Dealham's fpeculations on this fubject have been notieed in his life publifhed in this Supplement; Mr Whitehurf's ingenious contrivance for eltablifhing a nandard of weighits and meafures has been mentioned undcr the title Me.ssURE (Enyycl.) ; and the new table of weights and meafures, which the Frencla republicans wilh to impofe upon all Europe, is given (Encjel.) under the title $\mathrm{R}_{\mathrm{E}}$ Tol:MTION, $\mathrm{n}^{\circ} 183$.

As thefe meafures occur frequently, even in Englifh tranflations of French books of value, we fhall here give fuch an account of them 2s may enable the reader to reduce them with eafe to the Englifh flandards. They are of five kinds ; meafures of length, of capacity, of wevigbt, of Juperficies for land, and of wood for fucl. For every kind, there are many meafures of different fizes, one of which has been taken as the beflis of all the reft, and its name aflumed as the root of their names. 'i'hus METRE is called the principal meafure of length; LITRE, of capacity ; GRAMME, of weight ; ARE, of fuperficies of land; and stere, of wood for fuel. Thefe words being the radical terms of the names of other meafures of length, capacity, \&c. a relation is hereby preferved between the names.
The meafures of length above the metre, are ten times, a hundred times, a thoufand times, ten thoufand times, greater than the metre. The meafures of length below the metre, are ten tines, a hundred times, a thioufand times, lefs. T'o form the names of thefe meafures, other worde which indicate the relations of ten times, a

Weight. Wiandred iines, greater; and of ten times, a bundred times, -u- lefs, \&ce. are pliceed before the word metre. The fame auncxes have been ufed to form the names of meafures, greater or lefo, than the litre, the dramme, \&c. It is neeeflary, therefure, to flate in this place the Engrifh equivalents of only the metre, the litre, the gramm:, the are, and the flere.

The melre $=3.23$. 87 feet Englifh.
Whe latre $=61.02+3$ cubic inches, or $1_{4^{10}}^{103}$ pint ale meafure.

The gramme, or cubic centi metre of water, at the freczing point, $=15 \mathrm{lb}$. averd. or $\frac{1}{25}$ of an ounct, or $\frac{20}{5}$ of a dram uearly.
The $\mathrm{ARE}=1076 \frac{2}{5}$ \{quare fcet, or $110 \frac{3}{5}$ fquare yards, or z' of an acre nearly.

The sTERE, or cubic metre $=35 \cdot 31+57$ cubic feet.
The better part of our countrymen, not chooling to ad.opt the weights and neafures preferibed to them by the French Convention a:d the Nationat Infitute, Sir (Storge Shuckburgh Evelyn, Bart. turned his attention to this fut ject, and publifed, in the Phile fophical 'T'ranf. iutions fue $179^{\circ}$, an account of fome endeavours to afcertain a itandard of weights and meafures. The principles upon which he proceeded are the fame with Mr Whitehura's ; but he has carried his expetinents much father than his predeceffor, and feems to have conducted them with greater accuracy. His memoir is hardly fufceptible of abridgment; and our limits do not permit us to infert it entire. I his is indecd unneceflary, if it be true, as another ingenious gentleman alleges *,

* H. Con vi: 177 in Nichelfin's fournut, w.... i. P. 103 , Nc that we are in the actual poliffion, and the contant ufe, of a ftandard both for weight and meafure, as invariable as that now ufed in France. This itandard he finds in the foot meafure, and in the avoisdupoife, or, as he thinks it ought to be callet, the diculte ounce weight.

The decade ounce weight of pare rain, or ciitilled water, at $60^{\circ}$ of heat, is generally allowed to be equal in bulk to the ore thoufandth patt of the cubic fuot. Were 44.3511 parts out of 10000 , or about $=\frac{1}{1}-$ th part added to the prefent Winchetter buthel, that buthel would then contain exactly 10 cubic feet or 10,050 oz. of difilled water, at $60^{\circ}$ of heat.

Our author then gives comparative tables between this fyitem and that which is now eftablifed in France. Taking the metre at 3 French feet, and $11.2 y 5$ adines $t$, and the French foot to be to the Englifh as $\$$ Yournal de lines r. 4 40. 10.65752004 Englifh decades, or tenths of an Englifh f Pbil. foot : hence he calculates the following
Ir.mn.
$27+8, f$. Connoif:nce des Temps, 1795 .

Comparative Thbles, Englifo with Frencl.。
LONG MEASURE.

## Long

decade. Metre. Metre. Leng decades. $1=0.03047983$ ferè $1=\left\{\begin{array}{l}32.808583358, \text { \&uc. } \\ \text { or irches } 39.3703 .\end{array}\right.$

## SQUARE MEASURE.

Square

CUBE MEASURE.
$\mathrm{Cu}^{1} \mathrm{e}$
decades. Lieres. Litre. Cube derades.
$1=0.02831637$ fere $1=\left\{\begin{array}{l}35 \cdot 3152622, \text { \&2c. or } \\ \text { cub.inch.61.0247727 }\end{array}\right.$

Avoird or
decadeoz. Grammics. Gramme
Wheat.
$1=28.31637$ ferè $1=\left\{\begin{array}{l}0.03 ; 31525,8<e \text { or } \\ \text { grains, } 15.45042625\end{array}\right.$ $\left.\begin{array}{c}\text { Long, } \\ \text { Square, } \\ \text { or } \\ \text { Cube, }\end{array}\right\} \begin{aligned} & \text { decades are } \\ & \text { reduced to }\end{aligned}\left\{\begin{array}{c}\text { I.our, } \\ \text { Scuare, } \\ \text { or } \\ \text { or } \\ \text { Cube, }\end{array}\right\} \begin{gathered}\text { Englifh } \\ \text { inches by } \\ \text { multiply- } \\ \text { ing by }\end{gathered}\left\{\begin{array}{l}1.2 \\ 1.44 \\ 1.723\end{array}\right.$ and decase ounces are reduced to grains, containing $\left\{\begin{array}{c}7<02, \\ \text { or } \\ 5 ; 60,\end{array}\right\}$ tw the lb. $\left\{\begin{array}{c}\text { A voird. } \\ \text { Troy, }\end{array}\right\} \mathrm{Ly}_{\mathrm{y}}$ multiplyin $\%$ the cunce by $4.37 .5=$ the number of grains in an avoirdumito ounce.

Our author, who feems to liave paid much attention to weights and meafures, obferves, that a flandard meafure for the puipofes of trade, in particular, as well as for others, that would uniformly give an accurate refult, and could be eatily made, examined, and afeertained, by common mechanics, which neither our prefent liquid nor diy mealures evidently can, would furely be an acquisition of great value. Such an one, he prefumes, woult be the following: A fquare pyramid, whole perpendicular licight is exactly thrice the length of the fide of the baft: ior fuch an one, and every fection of it, made by a plane parallel to its bafe, would, in the firlt inflance, poiffis, and, in every fubdivilion, retain thefe remarkable properties.

Ift, Similar comparative dimenfons to thofe above given, for the original pyramid, i. e. every finaller pyramid, formed by the above mentioned parallel feition, would have its perpendicular height thiice the length of the fide of its bafe; and,

2dly, The length of the fide of each bafe will always indicate, or equal the cube root of the folid content of the pyramid ; e. . . If the length of the fide of the bife be 3 , the folid content will be the cube of 3 , viz. $3 \times 3 \times 3=27$.
We do not perceive very clearly the great value of this flandard; but Mr Goodwyn fays, that he has been many years in the habit of ufing a pyranid meafure to examine corn ; and is perfectly convinced that fuch a one will indicate a fur more accurate refult than can a. rife from the manner in which corn is meafured by tbe butt:cl. This we are bound to believe; for it is anfurd to orpofe theories to a fact afeettained by experience.

WESTRINGIA, a new genus of plants deferibed by J. E. Smith, M. D. prefident of the Linvean Snciety of London. It was finft difeovered in Now Holland by Dr solander, who called it Cunita Fruticofir, though it is totally different from the CUNLLA (fee that article, Encycl.), and more refembles rofemary, from which, however, it is likewife different. Its peculiar character is: Cally: fomiquinquefidus pentugonus; corolit: refupinata, limbo quadrifílo, lobo longiore ereclo, bipartito: Stamina dijlantia, dao Lreviora (inferiora) aburtiond. Dr Smith affigns it rather to the dilynamia-arisifpermia, placing it immediately after the Teucrium, thain to the diandria clafs of plants.

WHEAT (fee 'Triticum, Encycl.) has for fome years palt been at fo very light a puce, that every hint for increafing its quantity or improving its quality is intitled to notice. In the Leicelter Journal for the 6 ih of Decmber 1799, there is an ingenious pmper on the fubject of trantplating whent, as a nitans of providing

## W H E

againt the expected fearcity of that necendary of life. It is recommended "to fow, in dry land, at the ufual feafoh, as much corn as may be deemed neeeflary to plant in the fpring any number of acres which may be oceupied with that article in the following year. When the foil is prepared, z furrow is to be made with a very fmall plough and one horfe, in the centre of the ridge or land, returning back in the fame track (this time only of every ridge) ; then turn towards the left hand, and plough another furrow, about eight or nine inches from the firf furrow, turning always to the left band, till the whole ridge is finifhed; it will then be formed into trenches, in parallel lines, of about eight or nine incles afunder, and imitate what gardeners term drawing of drills. In thefe furrows the plants are to be laid." Mr John Ainfworth of Glen, the experienced author of this communication, fays he has practifed this method with the moft comolete fuccefs.

It has been likewife practifed, on a finall fcale, with equal fuccefs, but we know not in what county. About the end of Auguft 1783 , that gertleman threw a fmall quantity of wheat, which near two years before had been fleeped and limed (fee Wheat, Encycl.) into an unmanured corner of his garden. In the beginning of February following he had a piece of ground (alfo unmanured) dug in an open part of his orchard, and he tranfplanted it on beds of fix rows wide, at nine inches afunder every way. It tillered, and fread over the ground fo completely, as to prevent even a weed grow. ing among it. It produced admirable corn, and at the rate of near four quarters per acre.

From accurate calculations which he then made, he found that an acre, fuppofing the feed to be very good, and the plants fet at the difance above mentioned, would reçuire only balf a peck of feed.

Befides the faving of the feed, there are two other material advantages which attend fuch a method; one is, that fome fuitable crop may be on the ground all the winter for ule ; and the other is, that ploughing the ground fo late as February, will effectually bury and deftroy thofe weeds which were beginning to vegetate; and before others can fpring up, the coin plants have taken to the ground, and fo fpread over it that the weeds cannot rife, by which means there is a very clean crop, and all the cuftomary expence for weeding is faved.

This author feems to think that wheat will thrive as well, and produce as full a crop, when fown in the fpring, as if it had been committed to the ground in the preceding autumu, In the fouthern counties of Eng. land we doubt not but it may ; but the cafe is otherwife in Scotland, where the fpring is not fo early, and where, from the narrownefs of the ifland, the froft is felidom fo fevere. We agree, however, with Dr Pike, in thinking it a pity that the way of fetting wheat (as done in Norfolk and Suffolk) is not every where more general. The procefs is indeed tedious and trouble. fome; and we have often wondered that, among the numberlefs machines lately contrived to leffen manual labour, none has been invented for dibbling wheat ex- to learn, that Dr Pike himfele has turned his attention to the fubject, and hopes in the courfe of chis year ( 1800 ) to prefent the public with a metbod of Setting wheat at PERFACTLX EXACT-diffances through a whole freld, and as expeditiouslr as the common broadcaft forwing, wwbich can therefore be applied to farms of any magnitude; and when a peck of feed is found to be fufficient for an acre (and in fome land much lefs), the faving on a large farm muft be immenfe. We truft to the liberality of his profeffion, that he will not take out a patent for his invention.

Though we have elfewhere given the ufual recipes for preventing fmut in wheat, it would be insproper to conclude this article without mentioning the very fimple one which Mr Wagttaffe of Norwich has uniformly found attended with complete fuccefs. This confifts in nothing more than immerfing the feed in pure water, and repeatedly fcouring it therein, juft before it is fown or dibbled in the foil. Whether well, fpring, or river water be ufed, is indifferent; but repeated ftirring and change of water is effential to remove the particles of infection that may have imperceptibly achered to the feeds thus purified. The fubfequent crop will be perfect in itfelf, and its feeds, he fays, fucceffively fo likewife, if there are no adjacent fields from whence this contamination may be wafted. He recommends the fame wafhing, and for the fame reafon, of barley and oats before they be fown.

WILKIE (William, D. D.), the author of an heroic poem, intitled the Epigoniad, was born in the parifh of Dalmeny, in the county of Welt-Lothian, on the 5 th of Odober 1721. He was defeended of an ancient family in that county, though his father rented only a fmall farm, and was poor and unfortunate through life. He was able, however, to give his fon a liberal education; and that fon, it is faid, difcovered fo early a propenfity to the fludy of poetry, that he began to write verfes in his tenth year.
As this wonderful prematurity of genius was never heard of during Wilkie's life, it will probably be confidered as a ftory fabricated to raife the Scottifh poet to the fame eminence with Pope, whofe verfification he is allowed to have imitated with fuccefs. We have no doubt but that Wilkie wrote in early life the defeription of a form, which is publifhed in the gth volume of the Statiftical Acconnt of Scotland; but that he wrote it in his tenth year is not proved, and is highly improbable. The poem difplays a notion-a confufed notion indeed-of the laws of electricity, which a boy in his tenth year, and at a period when electricity was little undertlood, could not have acquired.

Having learned the rudiments of the Iatin tongue at the parifh-fchool of Dalmeny, young Wilkie was, at the age of thirteen, fent to the univerfity of Ediuburgh, where he was foon diftinguifhed by his originalit; of thought, and by his rapid progrefs in erudition and fcience. Among his fellow.ftudent, he was moit clofeIy affociared with Dr Robertfon the filtorian, Mr Joln Home the pot:, Dr M.Ghie(A), who afterwards obtained
wilkie. tained the friendhip of Johnfon, and became a member of the Ivy lane Club; and a Mr Cleghorn, who promifed be an ornament to the univerfity, in which he was afterwards a profeflor, but died before he had time to sealize the fond hop*s of his friends. During the courfe of his education, Wilkie became acquainted with the celebrated David Hume and 1) Fergufon, and at a later period with Dr Adam Smith, the far-famed author of "The Wealth of Nations." Of all thofe men he regarded Dr Fergufon with the greateft affection, and Dr Smith with the greatef admiration. This laft writer he confidered as equal to Robertfon and Hume in erndirion, and valtiy their fuperior in originality and invention; and this opinion he cherifhed to the day of his death.
ljefore he had completed his education, his father died, leaving him no other inheritance than the flock and unexpired leafe of his farm, and the care of his three filters. Wilkie, therefore, turned much of his atiention to agriculture, in which he became eminent, not merely as a theorift, but as a practical farmer. He had ton much fcience to be the fave of ancient prejudice, and too much judgment to be hurried into hazardous experiments by the charms of untried fpeculation. One of his fifters being married to a Akilful, though unlettered fa: mer, he avaled himfelf of his brother's expe:ience; and upon the fafis ard maxims derived from lim built a fyltem of pracical farning, which fully anfivered his own expectation, and obtained the applaufe of all his neighbours.

He fill profecuted his fludies in the univerfity, and without ceafing to be a farmer became a preacher in the church of Scolland. For fome years this made no a!teration in the mode of his living. He preached occafionally for the miniters in his neightoun hood; cultiva. ted his farm; read the claffics; and, enamoured of the fimple fublimity of Homer, projected an epic poem on the Homeric model. The fubject of his intended poem he drew from the fourth book of the Iliad, where Sthenelus gives Agamemnon a fhort account of the facking of Thebes; and as that city was taken by the fons of thofe who had fallen before it, Wilkie gave to his poem the quaint tiile of Fipigoniad, from the Greck word arizoroo, which fignifies deffiendants. It is not our bufiwefs to write a criticifm upon this poem. The fubject was ill-chofen; for the learned rcader lias enough of the heroic ages in the inmortal poemis of Homer and Virgill, and in thofe ages the unlearued reader can feel no interef. The Epigroniad, therfore, though compoled in fmooth and clegant verfe, with due attention to ancient mannere, and conftructed on the mo!t regular plan, has fallen into neglect, from which no critic or biographer will ever refene it.

In the year 1753 , Mr Wilkie was ordained minifter of Ratho, in confequence of a prefentation from the Earl of Lauderdale, who knew his worth and admired his genins. Without neglecting his favourite amufements of hufbandry, or the fludy of the belles lettres, he difcharged with fidelity the duties of a Chriftian paftor, was tamed for his original and impreffive mode of
preaching, and foon canie to be loved as well as efteemed by his rural flock.

In the year 1757 the Epigoniad was publifhed, the refult of fourteen years fudy and application, which might furely have been more ufefully employed on fome other work; and in 1759 a fecond edition was cailed for, to which he added $A$ Dream in the manner of Spenfir. He was, the fane year, chofen profeflor of natural philofophy in the univerfity of St Andrew's; an office for which it is difficult to conceive how he could have been fitted by the fludy of epic poetry, and clofe attention to the cultivation of his farm. He was, how. wer, a man of a vigorous mind, and we never heard that he difgraced his electors.

When he removed in St Andrew's, his whole fortune exceeded not 1 . 200 Sterling; a proof that his Epigoniad had not enriched him. With this fum he purchafed a few acres of land in the neighbourhood of the city, carried his two unmarnied fillers with him, and continued to live in the univerfity exactly as he hat lived at Ratho. In his piofefforial career there was no. thing remarkable. He patronifed grenius, efoecially poctical genius, in the young men who attended his le:tures, and by them was, of courfe, loved and etleemed: (See Flequsson in this Suffl). In the year 1768 hic publifhed a volume of fables of no great value, previows to which the univerfity confurrel upon him the degree of 1). 1). : and he ched, after a lingering thineff, wh the 1 cth of OAtober 1752.
The manners of 1 ) Wikkie were finguinr, and in: fome refpects diignfing. He has been feverciy blamed for his permarioufnefs, but, in our opinion, unjultiy. His father had left him in debt, with noihing but the pronits which he might make of a fmall farm to cifcharge that dubt, aud to support himelf and three fifters. Sa hini, therffore, rigid cocnomy was, for mary y yeers, a virtue: and lee knows lizte of liman nature, who can blan:c a man for not breaking habits which it had been the duty, as well as the bulnefs, of a gicat part of his life tw form. Amidt his mon rigit and offenfive economy, he was liberal in his cionations to the poor.

He had been teized, while minifter of latho, with: an unformed agrue, of which lee never got entirely nid. For this complaint he thought an cxtraordinary perfipi ration neceflary, and generally fept, in wihter, unde: tuenty-four blankets. He hed an utter avertion from clean linen, and has beea known to bargain, when l. Atsid a night from horne, not only for the proper quantity of blankets to his bed, but alfo for fheets, whicthad been ufed by fome other pelfon, and rendered fafficiently dirty to pleafe his fecting. It will calily be conceired that fuch a man was, to the laft degrec, fluvenly in his drefs.

Sufpicions have been thrown out by his late?, and we betiere his only, bingrapher, that Dr Wilkie's belief of the Chrilian religion was weither orthodox nor fteady. Not having had the pleafure of his acquaistance, we cannot pofitively fay that thefe fufpicions are groundlefs; but the writer of this articie has converfed much about the author of the Epiguniad with a clergy-
man
reft of his countrymen, and perhaps in return for his loyalty. He was a learned, ingenious, and modea man; but fo litte fuccefful in his profefion, that he died of a broken heart, and was buried by a contribution of his friençs.

Wrs man who knew lim wrl, and w? would have been ght to accufe him off infitulity, if he could have preferred fich an acculation with trulis. He was a very ablent man, apt to forget what he was bout even when dichargiug tle molt fokm pants of his clerical dity, and uled !o fay of hionelf that the never conld conduct a farmment. From this abfence of mine!, and thofe conffions of it, may have arifen the fufpicion that he was not a firm believer ; but no fuch fufpicion was ever thecen out to this writer by the cicrgyman already refurred to.

He had one very extraordinary defect in a poet: He could line 1 cal. alcud the fnoothe? verfes, fo as to preferve either the meafure or the fenfe of them. Of this D) A Anderfon has produced very complete proof in his life of Wilkie, prefixed to his poeticat works in the Edinburgh edition of the loritifh ? ?oets. With all his defects, however, ard all his foibles, he was uncueftionably a genins, and, we are inclined to believe, a good man.

WINE: (fee that article, Encycl. and Yegretalle Sorst.a:cts, Suftl.) are fo often adulterated with minerals prejudicial to the health, that var:ons methods have Leen devifed for detecting the ardulevation. The property which liver of fulphur (a!kaline fulphures) and hepatic air (fulphurated hydroger) porfts of precinitating lead in a black form, has betn long ago made public; and this property has been employed to determine the quality of wincs hy means of the liquar probatorius lizirtemberser fis, or Wirtemberg :noviner liquor. But in tring wines furpofed to have been adulterated, this proof does more hurt than fervice, becaufe it precipitates iron of the fame colour as the pennicions lead. Many wine merchants, therefire, of the greateft sefucctability, rendered by thefe means fufpeeted, have been suined.

The following is recommended by M. Hanhemann as a better teft of found wines than the proving liquor of Wirtemberg. Mix equal parts of oyfter fhells and crude fulphur in a fine powder, and put the mixture into a crucible. Heat it in a wind furnace, and increafe the fire fuddenly, fo as to bring the crucible to a white heat, for the fpace of 15 minites. Pulverife the mafs when it is cool, and preferve it in a bottle clofely ftopped.
'I'o prepare the liquor, put $I=0$ grains of this powder, and 120 grains of cream of tartar (acidulous tartarite of potafh), into a ftrong hottle; fill the bottle with common water, which boil for an hour, and then let it cool ; clofe the bottle immediately, and Thake it for fome time : after it lıas remained at reft to fettle, decant the pure liquor, and pour it into fmall phials ca. yable of holding about an ounce each, firlt putting into each of them zo drops of muriatic acid. They muft be ttopped very clofely with a piece of wax, in which there is a finall mixture of turpentine.

One part of this liquor, mised with three parts of fufpeeted wine, will difcover, by a very fenfible black precipitate, the leall traces of laad, copper, \&c. but will prodace no effect upon iron, if it contains any of that metal. When the precipitate lias fallen do wn, it may ftill be difcuvered whetl.er the wine contains iron, by fatnrating the decrnted licurer with a little falt of tartar (tartareous acidu'urn of potafti), by which the liquo: will immediately become black. Pure wines re.
main clear and Bright after this liquor has been added wionecuts to them.

WOOD cuts are engravings on wood, commonly on box, which, in many cafes, are ufed with advantage inftcad of copper-plates. The art of catting or engia. ving on wood is undoubtedly of high antiquity ; for Chinefe printing is a fpecinicn of it. (Sec CHiNA, $\mathrm{n}^{\circ}$ 127. Eincycl.) Even in Europe, if credit be due to Papillon, this art was practifed at a pericid confiderably remote; for he mentions cight engravings on wood, entitled, "A reprefentation of the warlike aftions of the great and magnanimous Macedonian king, the bold and valiant Alexander; dedicated, prefented, and humbly offered, to the moft holy father, Pope Honorius il. by us Alexander Alberic Cunio Chevalier, and Ifabella Cunio, \&cc." "This anecdote, if true, carries the art of cutting in wood back to 1284 or 1285 ; for Honorius occupied the papal throne only during thefe two years. Even this is not the remoteft period to which fome have carricd the art in Europe; for the ufe of feals or fiernats being of very high antiquity, they imagine that the invention of wood-cuts mult be coeval with them. The, fuppofition is certainly plaulible, but it is not fupported by proof. The earlieft impreffion of a wooder:cut, of which we have any certain account, is that of St Chriftopler carrying an infant Jefus through the fea, in which a hermit is fcen holding up a lantern to fow him the way; and a peafant, with a fack on lis back, climbing a lill, is exhibited in the back ground. The date of this impreffion is 1423 .

In the year 1430 was printed at Haarlem, "IThe hitory of St John the evangelift and his revelation, reprefented in 48 figures in wood, by Lowrent Jalifon Cofter ;" and, in 1448 , Jorg Schappf of Augfourg cut in wood the hiftory of the Apocalypfe, and what was called The poor man's bible. (Sec Engraving, Eincycl. page (168.)

A folio chronicle, publifeed 1493 by Schedal, was adorned with a vaft mumber of venod-clits by William Plydenwurff and Michael Wolgemut, whofe cngravings were greatly fuperior to any thing of the kind which had appeared before them. Wolgemut was the preceptor of Albert Durer, whofe admirable performances in this department of art are juflly held in the higheft efteem even as the prefent day.

About this period it became the practice of almoft all the German engravers on copper to engrave likewife on wood; and many of their wood cuts furpafs in beauty the impreffions of their copper-plates. Such are the wood-cuts of Albert Aldtorfer, Hifbel l'en, Virgil Soles, Lucas van Cranach, and Lucas van Lyden, the friend and initator of Albert Durer, with feveral others.

It appears that the Germans carried this art to a great degree of perfection. Hans or John Holbien, who fourifhed in 1500 , engraved the Dance of Death, in a feries of wooden cuts, which, for the freedom and delicacy of execution, has hardly been equalled, and never \{urpafied.
Italy, France, and Ifolland, lave produced many ca. pital artitts of this kind. Joan. 'lomef?um printed a bible at Lyyden, in 1554 (a coppy of which we have feen), with wooder-cuts of excellent workmanikip. Chrittopher Jegher of Antwerp, from his eminence in the art, was cmployed by Rubens to work nuder his

## W O O

Wood-cuts. infpection, and he executed feveral pieces which are held in much eftimation; the character of thefe is boldnefs and Spirit.
'Che next attempt at improvement in this art was by Hugo da Carpi, to whom is attributed the invention of the chiuro fouro Carpi was an Italian, and of the 16 th century ; but the Geimans claim the invention alfo, and produce in evidence feveral engravings by Mair, a difciple of Martin Schoen, of date 1499. His mode of performing this was very fimple. He firft engraved the fubjec upon copper, and finifhed it as much as the artifts of his time ufually did. He then prepared a block of wood, upon which he cut out the extreme lights, and then imprefled it upon the print; by which ineans a faint tint was added to all the reft of the piece, excepting only in thofe parts where the lights were meant to predominate, which appear on the fpecimens extant to be whitened with white paint. The drawings for this fpecies of engraving were made on tinted paper with a pen, and the lights were drawn upon the paper with white paint.
There is, however, a material differcnce between the chiar o fouros of the old German matters and thu fe of the Italians. Mair and Cranach engraved the outlines and deep thadows upon copper. The impreflion taken in this flate was tinted over by means of a fingle block of wood, with thofe parts hollowed out which were defigned to be left white upon the print. On the contrary, the mode of engraving by Hugo da Carpi was, to cut the ontline on one block of wood, the dark fhadows upen a fecond, and the light fhadows, or half tint, upon a third. The firft being impreffed upon the paper, the outlines only appeared : this block being taken away, the fecond was put in its place, and being alfo impreffed on the paper, the dark fhacows were added to the outlines; and the third block being put in the fame place upon the removal of the fecond, and alfo impreffed upon the paper, made the dim tints, when the print was conipleated. In fonnc inftasces, the number of blocks were increafed, but the operation was ilill the fame, the print receiving an impreffion from cuery block.

In 1698 , John Baptil Michel Papillon praczifed en. graving on wood with much fuccefs, particularly in ornamental foliage and flowers, fhells, \&c. In the opinion, however, of fome of the molt eminent artifts, his performanets are fiff and cramped. From that period the art of engraving on wood gradually degenerated, and may be faid to thave been wholly hoft, when it was lately re-invented by Mr Bewiek of Newcafte.

This eminent artift was apprentice to Mr Bielby, an engraver on thetal of the very loweft order, who was feldom employed in any thing more difficult than the cutting of the face of a clock. Application having been made to this man for a wood-cut or two of the moft trifling defcription, the job was given to Thomas Bewick; by whom it was executed in fuch a manner, Suppl. Vol. II. Part II.
that Mr Bielby, who was accuft omed to employ his ap. Won 1.cuts. prentices in fuch work, advifed him to profecute engraving in that line. The advice was followed; and young Bewick inventing toots, cven making them with his own hands, and fawing the wood on which lie was to work into the requifite thicknefs, proceeded to innprove upon his own difeoveries, without affitlance or inftruction of any kind. Whets his apprenticefhip expired, he went to London, where the obfeure wood-engravers of the time withed to avail themfetres of his abifities, while they were determined to give him no infight into their art. He remained fome years in London; and during that time, if we mifake not, received from the Society for the Encourcasenent of Arts, ECc. a premium of confiterable value for the heft engraving in wond. Returning to Newcafle, he entered i:to copartnerflip with his old maner; and eftablined his reputation as an artift by the puitication of his admirable Hiftory of Quadrupeds. This was followed by his Hifory of Bird, of which only one volume has yet (1800) appeared.
John Bewick, brotles to Thomas, learned the art of hins, and practifed it for feveral years in London with great applufe. His ablities, however, though refreetable, were not, by the befl judgres, deemed to b-illiant as his brother's; and owing to bal health, and the mature of his connection with the bisokfillers and others, he feems sut to have arvanced the art beyond the ftage at which he received it. He died, three or four jears ago, at Neweafte.

Mr Neflit, whon executed the admirable Ifudibras publifted by Vernor and Hood (A), and Mr Auderfon, whofe beautiful cuts adorn the poem entitled Grove Hill, were the next, and hitherto have been the hat of Thomat Rewick's pupils, who have anveared before the public as artifs. By thefe gentlemen we are authorized to fay, that the method practifed by the an. cient engravers on wrood, whofe wo:ks are nill admired, muft have been diferent from that of Bewick and his pupits. What that method wa, feenis to be alengetlicr rimknown. Papillon, who writes the bef hiftory extant of the art, grueffes indeed in what manner the old engravers proceeded fo as to give to their works the fpirit and freedom for which they are famed; bert that hais guefes are erroneous feems evident from the Itiffnefs of his cwn works. The principal charadterilat in the mechanical department of the productions of the ancient mafters is the croffing of the black li"ts, which Papillon has attempted with the greate?t awkwardncfs, though it feems to have been accomplified by thens with in much eafe, that they introduced it at rindom, even where it could and nothing to the beauty of the piece. In Bewick's method of working, this crofs latching is fo difficult and mnnatural, that it may be conlidered as impracticable ( ( ).

The engravers of Bewick's fehool work on the end of the wood which is cut acrofs the trunk of the tree, 5 I
in
(A) The defigns were by Thornton; and the cuts from them have been compared to Holbein's far-famed: Dance of Death.
(b) Mr Nefbit has indeed introduced fomething of it into two or three of his pieces, merely to fhew that he coutd do it; but fo great was the labour, and fo little the advantage of this improvement, if fuch it can be called ${ }^{2}$. that probably it will not be attempted again.

## W $\mathrm{O} \quad \mathrm{O}$

Wood-cuts in pieces of the proper thicknefs. As wood-cuts are generally employed in the printer's prefs amidft a form of types, this thicknefs mult be regulated by the height of the types with which they are to be ufed. The tools employed are nearly the fame with thole ufed in copperplate engraving, being only a little more deep, or lozenge, as engravers call it. They mult have points of various degrees of finenefs for the different purpofes to which they are applied, fome of them being fo much rounded off at the botton as to approach to the nature of a goodge, whilt others are in fact little chiffels of various fizes. Thefe chiffels and goodges, to which every artilt gives the fhape which he deems mof conveniont, are held in the hand in a manner connewhat different from the tool of the engraver on copper, it being neceffary to have the power of lifting the chips upwards with eafe. To attempt a defeription of this in writing would be in vain ; but it is cafily acquired, we are toid, hy practice.

The pupits of the fhool of Bewick confider it as quite iniproper to fpeak of his invention as a revival of the ancient art. Some old prints, it is true, have the appearance of being executed in the fame way with his; but others have certainly been done by a method very different. It is thercfore not fair to appreciate the prefent art hy what has heen done, but by what may be done; and that remains yet to be fhewn. The art is in its inlancy; and thofe who are difpofed to compare it with the art of engraving on copper, ought to lock tack to the period when copperplate englaving was of as recent invention as Bewick's method of engraving on wood. Marc Antonio, who engraved unner the direction of the great painter Raphael, thought it no reean proof of his proficiency in his art, that he was able to imitate on copper plates the wood cuts of Albert Durer; and Papillon is highly indignant that there fhould liave beens perfons fo very blind as to miftake the copies for the originais. If copper has its advartages over wood in point of delicacy an! minutenefs, wood has, in its turn, advantages not inferior in regard to ftrength and richucfs. Thofe prints which were executed under the aulpices of 'litian and Rubens, wilt always remain a monument of the fpirit and vigour natural to wood engraving; and if there be not found in them all the attention to chiaro fouro, which the prefent age demands, it mult not be attribuced either to defect in the art, or to want of abilities in the art its, but to the tafte of the times when chiaro juaro was little t:ndertood. It remains for fome enterprieng artift to flew that the vigollr of the ancient art may be attained by the prefent one, and at the lame time to add to that vigour thofe gradations of fhade which are fo much admired in good coppcrplates. As there feems to be a more peifect, or at leatt a more pleafant black produced by wood than by copperplate printing, and certainly a more pericit white (c), who will fay that ary intermediate thade whatever may not be produced by wood cute? To attempt this on a fmall fcale would indeed be vain, becaufe the flightelt variatien, produce! by a little more or lefs ink, or a harder picflure in printing, bears fuch a proportion to a very fhort line, as mutt neceffiaily render the attempt abortive.
difadvantage while it is confined to fmall fubjects, and will never reach its Itation as a fine art, till thofe who are engaged in its cultivation improve upon the difcoveries of one another, and apply to fubjects to which it is properly adapted. As an economical art for illuttra. ting mechanics and other fubjects of fcience, it is too little employed even in its prefent ftate.

The works of Bewick and his pupil3, which have hitherto been publifhed, are not numerous. Betides his quadrupeds and birds, the Hudibras by Nefoit, and the Grove I-ill by Anderfon, which have been already nuticed, we are acquainted with uone but the follow. ing:-Goldfnith's 'T raveller and Deferted Village with eicgant plates, all by Thomas Lewvick, except one or two which were executed by John; Somerville's Cloace by the fane artifts, executed in a ftyle of ciegance which: pei haps has never been furpaffed; a View of st ivicholas's Church, Newcattle, 15 inches long, by Mr Nefoit, who received for it a filver medal from the Society for the Encouragement of Arts, and an honolary letter from the Suciety of Antiquaries.

WOOL-combing, a well known operation, which. when performed by the hand, is labonous, tedious, and expentive. The expence of it through all England has been calculated at no lefs a fum than L. 800,000 ; and to lefien this expence, the Rev. Edmund Cartwright of Doncalter in Yorklinire bethought himielf, fome years ago, of earding wool by machinery. A ifter repeated attempts and improvements, for which he took out three patente, he found that wool can be combed in pertection by machinery, of which he gives the following defcription:

Fig. 1. Is the crank lather. A is a tube through Plate I . which the materiat, being formed into a fliver, and nlighty twitted, is drawn furward by the delivering rollers. 13, a wheel faft upon the crols.bar of the crank C, a wheel, on the oppolite end of whofe axis is a piniun workng in a wheet upon the axis of one of the delivering rollers.

Note, When two or more flivers are required, the cans or bafkets, in which they are contained, are placed upon a table under the lafier (as reprefented at D), which, by laving a flow motion, twilts them together as they go up.

Fig. 2. Is che circular clearing comb, for giving work in the liead, carried 111 a frame by two cranks. Iig. 3 . 'The comb-table, having the teeth pointing towards the centre, moved by cogs upon the rim, and carried round apon trucks, like the liead of a windinill. $a, b$, the drawing rollers. $c, c$, callender, or conducting rollers.

Note, Underneath the table is another pair of rollers, for drawing out the backings.

In the above fpecification, we have omitted the frame in which the machine ftands, the wheets, fhafts, \&c. Had thefe been introduced, the drawng would have been crowded and confufed; befides, as matters of information, they would have been unnecefla:y, every mechanic, when he knows the principles of a machine, being competent to apply the movements to it.
The wool, if for particular nice work, goes through three operations, otherwife two are fufficient : the firit


Fig. 11.


Fig. 12.


Fig. 14


Fig. B. 13.

Fig. 19.


Fig. 16.


Fig. C.


Fig. 17.


Fig. 18.



## Z E M [SO3 ] Z E M

WHol. tombing
operation opens the wool, and makes it connect to. gether into a rough fliver, but does not clear it. The clearing is performed by the fecond, and, if neceffary, a third operätion. A fet of maehinery, confilting of three machines, will require the attendance of an overlooker and ten children, and will comb a paek, or 240 lb . in twelve hours. As neither fire nor oil is neceffary for macline combing, the faving of thofe articles, even the
fire alone, will, in general, pay the wages of the over. looker and chitdren; fo that the actual faving to the looker and chitdren; fo that the actual faving to the
manufacturer is the wobole of what the combing colts,
by the old imperfect mode of hand-combing. Nachine-
combed wool is better, efpecially for machine fpinning,
by at lealt 12 per cent. being all equally mixed, and the looker and chitdren; fo that the actual faving to the
manufacturer is the wobole of what the combing colts,
by the old imperfect mode of hand-combing. Nachine-
combed wool is better, efpecially for machine fpinning,
by at lealt 12 per cent. being all equally mixed, and the looker and chitdren; fo that the actual faving to the
manufacturer is the wobole of what the combing colts,
by the old imperfect mode of hand-combing. Nachine-
combed wool is better, efpecially for machine fpinning,
by at lealt 12 per cent. being all equally mixed, and the looker and chitdren; fo that the actual faving to the
manufacturer is the wobole of what the combing colts,
by the old imperfect mode of hand-combing. Nachine-
combed wool is better, efpecially for machine fpinning,
by at lealt 12 per cent. being all equally mixed, and the fivers uniform, and of any required lengtl. a.

Wcol. $\underbrace{\text { combing. }}$
$\qquad$ 1 $+\frac{2+2}{-2}$

## Z.

Zaminy,
Eemintars.

ZAMINY, in the language of Bengal, fecurity.
Z.EMINDARS, the great landholders of Bengal. This is the original fenfe of the word; but it is now more ftrictly applicable to thofe who have their title conftituted or confirned by a patent or charter from government, by which they hotd their lands or Zemindaries upon certain conditions. As far as ean be afcertained from the narrations of hiffory, it appears that, in times prior to the irruptions of the Nahomedans, the rajahs who held their refidence at 1)ethy, and poffeffed the fovereignty of Hindoftan, deputed officers to collect their revennes (Kher:ije), who were ealled in the ludian langnage Choudheries. The word Zemindar is P'efian, and that language can have had no currency in the countries of India, until it was introdueed by the people of Yerfia. When the Emperor Shehâb ul Dien Ghory conquered the empire of Hindoftan ( $A$ ), he left Sultan Cutub ul Dien to be his viceroy at D)elhy, and adminitter the government of Hindoflan. From that time the cuftoms and practices of the Mahomedans began gradually to be eftablifhed in Incia: their armies were fent into the countries of the reduced Rajahs, un. der the command of Oniralis, in order to preferve the conqueft ; and lands were allotted to them to defray the expence. From hence arofe the fyftem of Jaghiredarry in Hindofari. But when thefe Omrah Jaghiredars 1 ad eftallifeed their own ftrength, feveral of them rebelled againft the imperial authority, and afpired at the crown. Thus circumftaneed, the emperors, in order to obviate thefe mifchiefs, thought it would be more politic to commit the management of the country to the wative Ifindoos, who had moft dillinguifhed themfelves by the readinefs and conflancy of their obedience to the fovereign power.

In purfuance of this plan, diftriets were allotted to numbers of them under a reafonable revenue (Juinmah Monafib), which they were required to pay in money to the governors of the provinees, deputed from the Emperor. And in cafe any one of the Omrahs or provircial governors thould fwerve from his allegiance, the Zemindars of that country were to exert themfelves in fuch a manner as fhould check rebellion, and re!tore good government. For this purpofe, grants of Ze mindary were feverally conferred upon fuch of the Hindoos as were obedient; defcrihing their apportionment of the country; and every perfon who had reccived a
grant under the authority of the crown was thereby Zemindars. fuliy invefted with the functions of Zemiudar.

The functions of a Zemindar are, ift, The preferva. tion and defenee of their refpective bomdaries fiom traitors and iufurgents; 2dly, 'Tlee tranquillity of the finbjects, the abundance of cultivators, and mincreafe of his revenue. 3 dly, The punithment of thieves and robbers, the prevention of crimes, and the deatruction of highwaynien. The accomplithment of thefe objects is coutidered in the royal grant as the difctarge of office to the fovereign; and on that aecount the woid affice (Khidnut) is employed in the Dewanny sunnud for a Zemindary.

It was a rule in the times of the ancient emperors, that when any of the Zemindars died, their cffects and property were feciueftrated by the goverıment. After which, in confideration of the rights of long fervice, which is incumbent on foversigns, and elevates the dig. nity of the employer, Summuds for the office of Ze. miudary were granted to the children of the deceafed Zemindar ; and no other perfon was accepted, becaufe the inhabitants could never feel for any ftranger the attachment and affiction which they naturally entertain for the family of their Zemindar, and wonld have been afflicted if any other had been put over them. For this reafon, the emperors, confidering it as a means of conciliating the minds of the people, gracionfly fixed and confirmed the children of the deeealed Zeinindar in the office of their fathers and grandfathers, by iffuining new funnuds to transfer the poffeffion to them. By degrees Zemindaries became truly heritable property, which, however, could be transforred by gift or fale from one family to another. They could likewife be forfeited to the fuvereign, by the 'Zemindar's deviating from his allegiance, neglecting to pay his tribute, or to difcharge the duties of his tation.

It is univerfally known, fays Sir Charles Roufe Boughton, that, when the three provinces of liengal, Bahar, and Oriffa, were ceded to the Britith Iialt India Company, the country was diftributed among the Zemindars and T'alookdars (lee that article in this Vol.), who paid a flipulated revenue, by twelve intalments, to the lovereign power or its delegates. 'They atiembled at the capital in the beginning of evety Bengal year (commencing in April), in o!der to complete their final payments, and inake $u_{p}$ their annual accounts ; to fettle
(A) This event took place towards the clofe of the 12 th century. N. B. Kberaje fignifies feecifically the tribute paid by a conquered country.

2 emindars. fettle the difcount to be charged upon their feveral remittances in various coins for the purpofe of reducing them to one ftandard, or adjuft their concerns with their bankers; to petition for remiffions on account of ftorms, drought, inundation, difturbances, and fuch like; to make their reprefentations of the fate, and occurrences of their diftricts: after all which they entered upon the collections of the new year ; of which, however, they were not permitted to begin receiving the rents from their own farmers, till they had completely clofed the
accounts of the preceding year, fo that they might not Zemindar encroach upon the new rents, to make up the deficien. cy of the paft. Our author proves, we think com. pletely, the right of the Zemindars to transfer their poffeffions, either by inheritance to their children, or, with the confent of the fovereign, to other families; and he argues ftrenuoully and fuccefsfully againft the bad policy, as well as injuftice, of interfering with thofe rights, as long as the Zemindars difcharge the dus. ties of their feveral ftations.


## DIRECTIONS for rlacing the PLATES.



Part If.
Plate XLII. to face Page 522

$$
\begin{aligned}
& \text { XLIII. }\} \text { - } 670 \\
& \text { XLIV. }
\end{aligned}
$$

XLV.

$$
722
$$

$$
\begin{array}{ll}
\text { XLVI. } & 722 \\
\hline
\end{array}
$$

$$
\begin{aligned}
& \text { XLVII. }-758 \\
& \text { YI } \\
& \hline
\end{aligned}
$$

XLVIII.
XLIX.
1.

- 802

Centrurgh:
PRINTED BY JOHN BROWN, ANCHOR CLOSE,
I8OI.



[^0]:    

[^1]:    

[^2]:[^3]:    (A) Better known u..der the name of $E_{0}$ ocaccio or Boccace. Certaldo was the place of his birth.

