
WIKI
INFOGRAPHICS
■■■■■
TECHNICAL PLAN V1 (30 June 2024)

1. Overview...2
2. Requirements..3
3. Technical Stack... 5
4. Architecture Design.. 13
5. Development Plan... 14
6. Risk Management.. 17
7. Documentation.. 19
8. Deployment Plan.. 21
9. Maintenance and Support...23
Expedient..24

1. Overview ■■■■■

Summary

Wiki Infographics is a multi-year commitment from Wiki Movimento Brasil. This initiative aims to leverage structured

information within Wikimedia projects to create informative and visually engaging infographics. These infographics will be

available in both fixed and dynamic formats and will be released under an open license, making them freely accessible to

the public.

Objectives

● To develop a methodology for extracting and utilizing structured data from Wikimedia projects.

● To design and implement a platform for the creation and dissemination of high-quality infographics.

● To engage people using educational and informational open-licensed infographics.

Scope

● Extraction and processing of structured data from Wikimedia projects.

● Production of a variety of infographics, including those tailored for different topics and audiences.

● Establishment of guidelines and best practices for creating and sharing infographics.

2

2. Requirements ■■■■■

Features

Data retrieval

The software must be able to connect and retrieve structured data from Wikimedia projects.

This capability should support different types of data and different sources (Wikipedia,

Wikimedia Commons, Wikidata etc). Users should be able to access the data they want

efficiently and with minimal effort.

Data processing

The software needs robust tools for cleaning and preprocessing the information retrieved. This

includes, but is not limited to handling missing data, normalization of data formats, and

enriching datasets with additional or necessary context. The goal here is to prepare the data for

visualization.

Data visualization

This is the core of this application. The software must support innovative and interactive forms of

visualization of the data, providing capabilities such as zooming, panning, and filtering, to

enable detailed exploration of the data. Users must be able to change color schemes, labels, and

legends, tailoring the visualization to their needs.

3

User interface

The software should provide an intuitive interface where users can create and modify the

visualization configurations. The user interface needs to be designed to ensure a good and

efficient user experience through an intuitive and user-friendly layout. It should feature clear

navigation with descriptive labels and icons, and offer flexible configuration options, such as

customizable color schemes, labels, and legends and exportations. As per WMB's development

practice, accessibility is paramount, as it is responsive design for mobile devices. Informative

messages, contextual tooltips are to be implemented and increase usability. The software should

have its performance optimized and any error that might occur should provide clear

instructions for the users and guide them towards proper help channels.

4

3. Technical Stack ■■■■■
The tools and technologies are evaluated based on the following criteria:

● Features: The range and depth of visualization capabilities provided by the tool.

● Performance: How well the tool handles rendering and interacting with large datasets.

● Scalability: The tool's ability to scale with increasing amounts of data, complexity, and types of visualization.

● Security: The level of security provided, especially dealing with automated calls to the tool.

● Usability: Encompasses ease of use and includes the overall user experience, effectiveness, efficiency, and

satisfaction over long-term use.

Infographic creation solutions

Tool Stack Ease of Use Integration with
Wikimedia projects Performance

Tableau Python, JavaScript, C++, Hyper database Moderate Via APIs/Connectors High

Microsoft Power BI Microsoft technologies, Popular front-end
technologies High Via APIs Moderate

Google Data Studio JavaScript, Google Cloud Platform High Via APIs Moderate

Infogram HTML5, JavaScript, PHP Very High Via CSV/APIs Moderate

5

Wikimedia projects integration tools

Tool/Technology Stack Ease of Use Integration with
Wikimedia projects Performance Cost

SPARQL Endpoints Java, RDF Low Direct High Free

Wikidata Query
Service (WDQS) + UI JavaScript, RDF Low to

Moderate Direct High Free

Pywikibot Python Low Direct High Free

Wikibase PHP, JavaScript Low Direct Very High Free

SPARQLWrapper Python Library High Direct High Free

Wikimedia REST
API Python, JavaScript, PHP Low to

Moderate Direct High Free

6

Infographics packages

Tool/Technology Usability Features Security Scalability Performance Cost

D3.js Moderate
Very High (custom
visualizations,
animations)

Moderate (depends
on implementation) High High Free

Chart.js High Moderate (pre-built
charts, easy to use)

Moderate (depends
on implementation) Moderate Moderate Free

Highcharts High High (interactive charts,
wide variety)

High (commercial
grade) High High

Free for
non-commerci
al, paid for
commercial

Plotly.js Moderate High (supports a wide
variety of charts)

High (commercial
grade) High High

Free for basic,
paid for
advanced
features

Vega/Vega-Lite Moderate
High (declarative,
supports a variety of
charts)

Moderate (depends
on implementation) High High Free

7

Flask Vs Django for back-end

Criteria Flask Django

Framework Type Micro-framework Full-stack framework

Learning Curve Gentle learning curve Steeper learning curve

Flexibility Highly flexible, allows customization More rigid, "batteries-included" approach

Built-in Features Minimal, requires third-party extensions Comes with many built-in features

Routing Simple, explicit routing Automatic URL routing with views

Data Handling Customizable, can use Pandas directly Integrated ORM for complex data handling

Admin Interface Not included, requires external packages Comes with built-in admin interface

Community
Support Strong, but smaller than Django Very strong, extensive community

Use Cases APIs, Microservices, Data visualizations Large web applications, CMS, e-commerce

Performance Lightweight, potentially faster Heavier, potentially slower

Documentation Comprehensive and easy-to-navigate Very comprehensive, might be overwhelming

Modularity High, better for small components Less modular, more monolithic

Development
Speed Faster for small, focused applications Faster for large, feature-rich applications

8

Summary of important points:

● Flexibility and Simplicity: Flask’s microframework nature allows us to build a highly customized and modular

application. This flexibility is crucial for our project's need to handle specific data fetching and processing tasks.

● Learning Curve: Flask has a gentler learning curve, facilitating quicker onboarding and faster initial development,

which is beneficial given our project's specialized nature.

● Modularity: Flask allows for a more modular approach, making it easier to add and manage specific components

such as SPARQL data fetching and infographic generation.

● Performance: Flask's lightweight nature can offer better performance for our focused tasks, such as data

processing and infographic generation.

● Custom Data Handling: Flask's flexibility allows us to directly use powerful data handling libraries like Pandas,

which aligns well with our data-centric project.

Similar tools on Wikimedia

Tool/Technology Link Description

Dataviz, by Stevenliuyi dataviz.toolforge.org
From the docs “This web app provides various easy-to-configure tools for

visualizing Wikidata SPARQL query results”.

Wikidata Charts, by
Germartin1

wikidata-charts.vercel.app This tool uses SPARQL and React to draw line charts of properties or queries.

PageViews Analysis, by
MusikAnimal, Kaldari
and Mforns (WMF).

pageviews.wmcloud.org This is a suite of tools to visualize pageviews data of Wikimedia projects

9

https://www.wikidata.org/wiki/User:Stevenliuyi
https://dataviz.toolforge.org
https://www.wikidata.org/wiki/User:Germartin1
https://wikidata-charts.vercel.app
https://en.wikipedia.org/wiki/User:MusikAnimal
https://en.wikipedia.org/wiki/User:Kaldari
https://en.wikipedia.org/wiki/User:Mforns_(WMF)
http://pageviews.wmcloud.org

Suggested Technology Stack

Based on the comparisons above Javascript is more used for creating interactive charts amongst the tools. In the same

vein, Python seems to be better suited for the back-end. The Flask framework is a well maintained and lightweight option,

as well as popular amongst the community.

Separating the front-end and back-end source codes into different repositories will improve the following ways:

● Maintenance, since both front-end and back-end will not be built in the same programming language;

● Contribution, since programmers with either React or Flask skills will be able to contribute to the part of the code

they are most familiar with;

● Testing, since both front-end and back-end will be able to be tested independently.

Front-end

● React.js: For creating a highly interactive user interface.

○ Why: React is widely used, highly customizable, and has a strong community. It integrates well with data

visualization libraries like D3.js.

● D3.js: For creating complex and interactive visualizations.

○ Why: D3.js offers fine-grained control over visualizations, making it perfect for creating custom infographic

elements like bar chart races.

● Highcharts: Similar to D3.js but less popular.

10

Back-end

● Flask (Python): For handling API requests and processing data.

○ Why: Flask is lightweight, flexible, and easy to set up, making it suitable for small to medium-sized

applications. It integrates well with Python libraries for data processing.

Data Fetching and Processing

● SPARQL: For querying Wikidata.

○ Why: SPARQL is specifically designed to query RDF data, making it the best choice to interact with Wikidata.

● Wikimedia REST API: For querying structured data from Wikimedia projects.

○ Why: This is a solution embedded into the Wikimedia projects and it allows us to gather, among other

metrics, user contributions, content growth and visualization metrics.

● Pandas (Python): For data manipulation and preparation.

○ Why: Pandas provide powerful data manipulation capabilities, making it easy to clean and prepare data for

visualization.

Database

● MariaDB: For database registers

○ Why: This is a solution already available for tools in Toolforge.

11

Conclusion

By selecting React.js and D3.js for the front-end, Flask for the back-end, Wikimedia APIs and SPARQL for data retrieval,

and Pandas for data manipulation, we can create a lightweight, adaptable, and robust tool for building infographics

integrated with the Wikimedia projects.

12

4. Architecture Design ■■■■■
The system architecture is designed to ensure modularity, scalability, and maintainability. The architecture follows a

Client-Server architecture with a three tier pattern: Client (React.js), Server (Flask) and Data access (WDQS, Wikimedia

REST API and Pandas). The data flow is designed to be efficient, ensuring that data is processed and transferred smoothly

between components.

The user inputs SPARQL queries in the front-end, which sends the user request to the back-end. The back-end then

accesses and posts the request query into Wikidata Query Service SPARQL endpoint, which in turn returns the results

from Wikidata to the backend. These results are then processed and treated using Pandas, and then parsed back to the

front-end interface so it can be plotted using D3.js.

13

5. Development Plan ■■■■■
Per Wiki Movimento Brasil’s internal tech culture, the development approach for the Wiki Infographics project will follow

an Agile methodology, with continuous feedback and collaboration with stakeholders throughout the project lifecycle. We

will establish regular sprint cycles and incremental development and delivery of features. We will rely on GitHub for

version control to facilitate collaboration among team members and help manage changes to the codebase. We adopt

"mobile first" as a design methodology, as we focus on Global Majority digital practices first.

Agile methodology

The development of the Wiki Infographics Initiative will follow an Agile methodology to ensure flexibility and adaptability

throughout the project. The project will be divided into multiple sprints, each focusing on delivering specific features and

improvements.

Sprints

● Sprint Duration: Each sprint will last 2 weeks.

● Sprint Objectives: Each sprint will have clearly defined goals, such as developing specific features, integrating tools,

or refining existing functionalities.

Scrum

● Daily check-ups: Short meetings or asynchronous updates to discuss progress, obstacles, and actions for the day.

● Sprint Planning: Meetings at the beginning of the sprint, focused on planning tasks and setting sprint goals.

● Sprint Review: Meetings or asynchronous updates at the end of each sprint to demonstrate completed work.

● Sprint Retrospective: Meetings to discuss what went well and what could be improved for the next sprint.

14

https://en.wikipedia.org/wiki/Agile_software_development
https://en.wikipedia.org/wiki/Responsive_web_design

Mobile-first design

Considering that 70% of people from the Global Majority access the Internet using mobile devices, for a long time now it is

our practice to develop tools with these devices in mind. We use both a design and a content-based approach, as we have

to consider responsivity and Internet bandwidth required to use the tools we develop. Only necessary elements should be

implemented in the design of the tool. In regards to development, we always prioritize solutions that are more efficient

and have lower bandwidth costs for the end user. We prime the user experience in our developments.

Task Breakdown

● Analysis

○ Analyze structured data sources within Wikimedia projects.

○ Benchmark existing tools and technologies for infographic creation and Wikimedia projects integration,

especially Wikidata.

● Initial platform development

○ Set up the development environment and define requirements.

○ Develop the core infrastructure for data extraction and processing.

● Infographic template Design

○ Determine the range of initial infographic templates to be offered and gather input on desired features.

○ Develop wireframes and mockups for the user interface.

● Platform integration

○ Integrate the infographic generation tools with Wikimedia’s existing infrastructure.

○ Ensure seamless data flow and real-time updates.

15

● Testing and feedback

○ Conduct functional and usability testing.

○ Perform performance testing.

○ Implement automated testing scripts.

○ Solicit feedback from initial testers, selected based on the methodology to be defined and with diverse

pooling from the Wikimedia community.

● Final deployment and documentation

○ Prepare the application for deployment to a production environment.

○ Conduct final testing in the production environment.

○ Document the installation, configuration, and usage of the Wiki Infographics MVP application.

○ Develop user guides and tutorials.

Version Control

All the code will be stored in Wiki Movimento Brasil's GitHub repository, available at https://github.com/WikiMovimentoBra

sil/wiki_infographics. Pull requests will be analyzed by the Products and Technology team and/or other interested

stakeholders.

16

https://github.com/WikiMovimentoBrasil/wiki_infographics
https://github.com/WikiMovimentoBrasil/wiki_infographics

6. Risk Management ■■■■■

Risk identification

Risk Description Consequences Probability Impact

Bad performance

and low potential

for scalability

Inability to handle large volumes of

data and concurrent users while

maintaining performance.

This can cause slow response

times, system crashes, and inability

to scale with increasing usage.

20% High

Low user adoption

and engagement

Not engaging enough users and/or

not meeting user expectations.

Low user adoption rates, reduced

user satisfaction, and limited

software usage.

20% High

Technical

complexity

Complex integration with

Wikimedia APIs and other data

retrieval tools.

This can delay development and

increase potential for technical

failures.

20% Low to Moderate

Dependency on

non-perennial tools

and protocols

Over reliance on tools and

protocols that change constantly.

Disruptions due to API changes,

protocols and tools updates

without backward compatibility.

10% Moderate

Bad designed user

interface and poor

user experience

Non intuitive and inaccessible

interface for users to interact with

generated visualizations.

This could lead to low adoption

rates and user frustration.
10% High

17

Risk mitigation

Risk Mitigation strategy

Bad performance

and low potential

for scalability

● Perform load testing to identify performance bottlenecks early in development;

● Implement asynchronous requests and study caching strategies for frequently accessed data and

queries.

Low user adoption

and engagement

● Conduct user research and usability testing throughout the development lifecycle;

● Incorporate user feedback to enhance features and usability;

● Implement outreach strategies to promote software benefits and encourage adoption.

Technical

complexity

● Conduct thorough API feasibility studies and prototype testing early in the project;

● Allocate extra time and resources for troubleshooting and debugging;

● Engage with Wikimedia community experts for support.

Dependency on

non-perennial tools

and protocols

● Maintain flexible software architecture to accommodate API changes and tools updates;

● Establish communication channels with the Wikimedia community for timely updates and compliance.

Bad designed user

interface and poor

user experience

● Conduct usability testing with representative users throughout the development process;

● Incorporate user feedback into iterative design improvements;

● Provide comprehensive user documentation and tutorials.

18

7. Documentation ■■■■■
There are different types of documentation, with different purposes. For this project, we will be using a system that

classifies 4 types of documentation: tutorials, how-to guides, reference guides and an explanation.

Tutorials

Tutorials are lessons with steps for one to complete a

task. They are based on a beginner level of knowledge

about the project and its dynamics and are

learning-oriented. This can be done in several formats,

such as videos, brochures and/or directly into the tool.

How-to guides

How-to guides are materials that answer specific

questions one might have about the use of the

software. They are based on an intermediate level of

knowledge about the project and its dynamics and are

goal-oriented. This also can be done in several formats,

but we will prioritize formats that can be easily

updated, such as a Wikitech page.

19

Reference guides

Reference guides are technical descriptions of the

software and how one can install, contribute to and

maintain. They are based on an experienced level of

knowledge about the project or its infrastructure, and

are information-oriented. This is commonly done

through the repositories that store the source code of

the software. We will use the Github Wiki structure

and the readme file of the software.

Explanation

Explanations expand the context of certain topics

related to the software. They enrich our knowledge

about the problems we are trying to solve, the

decisions we take and why we are taking them. This

will be done in different ways: This technical

development plan, case studies, and Diff blog posts.

20

8. Deployment Plan ■■■■■

Timeline

Milestone Description Jun Jul Aug Sep Oct Nov

Benchmark tools
and technologies

Begin benchmark tools and technologies for
infographic creation and Wikimedia integration ◼

Technical plan Write technical development plan ◼

Initial prototype

Develop the core infrastructure for data extraction
and processing for Wikidata ◼ ◼
Develop front-end interface ◼
Build performance and other automated testing
scripts ◼
Create initial documentation (tutorials and reference
guides) ◼

Feedback from
initial testers

Gather feedback from initial testers, invited from the
Wikimedia community ◼ ◼

21

Milestone Description Jun Jul Aug Sep Oct Nov

Minimal Viable
Product

Develop core infrastructure for data extraction and
processing for other Wikimedia projects ◼
Implement system for log and store queries ◼
Build performance and other automated testing
scripts ◼
Improve and expand documentation (how-to guides,
tutorials and reference guides) ◼

Deployment

Deploy the updated product on Toolforge ◼
Launch the Wiki Infographics on Wikidata Lab ◼
Finalize documentation (Explanation) ◼ ◼

Maintenance and
Support

Monitor usage of the software, collect user feedback
and handle issues ◼

22

9. Maintenance and Support ■■■■■
We will observe performance and usage metrics of the tool, gathering issues and feature requests from various sources,

primarily GitHub tickets and Wikimedia discussion pages, and respond to them promptly. To ensure proper operation

after the release of Wiki Infographics, we will establish a quarterly development cycle for major updates, while deploying

minor fixes and updates as needed. Continuous monitoring and tuning of system performance and the user interface will

be conducted to handle increased loads and improve user experience based on feedback.

By executing these strategies, Wiki Infographics will remain reliable, engaging, and user-friendly, ensuring long-term

success and good user experience.

23

Expedient ■■■■■

Writing

Éder Porto

Products and Technology Manager, Wiki Movimento Brasil

Lucas Belo

Projects assistant, Wiki Movimento Brasil

James Okolie

Outreachy intern

Advisory

João Alexandre Peschanski

Executive Director, Wiki Movimento Brasil

Subcommittee (Re) Imagine the sociotechnical infrastructure of the Wikimedia Movement

Alberto Leoncio, Member

Augusto Resende, Member

Erika Guetti, Member

Geisa Santos, Member

Tiago Lubiana, Member

Veronica Stocco, Member

24

